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Bilinear forms with Kloosterman sums
and applications

By Emmanuel Kowalski, Philippe Michel, and Will Sawin
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Abstract

We prove nontrivial bounds for general bilinear forms in hyper-Klooster-

man sums when the sizes of both variables may be below the range con-

trolled by Fourier-analytic methods (Pólya-Vinogradov range). We then

derive applications to the second moment of cusp forms twisted by char-

acters modulo primes, and to the distribution in arithmetic progressions

to large moduli of certain Eisenstein-Hecke coefficients on GL3. Our main

tools are new bounds for certain complete sums in three variables over fi-

nite fields, proved using methods from algebraic geometry, especially `-adic

cohomology and the Riemann Hypothesis.
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1. Introduction

1.1. Statements of results. A number of important problems in analytic

number theory can be reduced to nontrivial estimates for bilinear forms

(1.1) B(K,α,β) =
∑
m

∑
n

αmβnK(mn)

for some arithmetic function K and complex coefficients (αm)m>1, (βn)n>1. A

particularly important case is when K : Z −→ Z/qZ→ C runs over a sequence

of q-periodic functions, which are bounded independently of q, and estimates

are required in terms of q.

In dealing with these sums, the challenges lie (1) in handling coefficients

(αm), (βn) which are as general as possible; and (2) in dealing with coefficients

supported in intervals 1 6 m 6 M and 1 6 n 6 N with M , N as small as

possible compared with q. In this respect, a major threshold is the Fourier-

theoretic range (also called sometimes the Pólya-Vinogradov range), where M

and N are both close to q1/2, and especially when they are slightly smaller

in logarithmic scale, so that applying the completion method and even best-

possible bounds for the Fourier transform gives trivial results.

In particular, when dealing with problems related to the analytic theory

of automorphic forms, one is often faced with the case where K(n) is a hyper-

Kloosterman sum Klk(n; q). We recall that these sums are defined, for k > 2

and a ∈ (Z/qZ)×, by

Klk(a; q) =
1

q(k−1)/2

∑
x1,...,xk∈Z/qZ
x1···xk=a

e
(x1 + · · ·+ xk

q

)
.

A deep result of Deligne shows that |Klk(a; q)| 6 kω(q) for all a ∈ (Z/qZ)×.

For any integer c coprime to q, we also denote by [×c]∗Klk the function a 7→
Klk(ca; q).

There are several intrinsic reasons why hyper-Kloosterman sums are ubiq-

uitous in the theory of automorphic forms:

– they are closely related, via the Bruhat decomposition, to Fourier coeffi-

cients and Whittaker models of automorphic forms and representations,

and therefore occur in the Kuznetsov–Petersson formula — see, for in-

stance, the works of Deshouillers and Iwaniec [DI83], Bump–Friedberg–

Goldfeld [BFG88] or Blomer [Blo13]);

– the hyper-Kloosterman sums are the inverse Mellin transforms of certain

monomials in Gauss sums, and therefore occur in computations involving

root numbers in families of L-functions (as in the paper of Luo, Rudnick

and Sarnak [LRS95]);

– the hyper-Kloosterman sums are constructed by iterated multiplicative

convolution (see Katz’s book [Kat88] for the algebro-geometric version
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of this construction), which explains why they occur after applying the

Voronoi summation formula on GLk.

Our main results provide new bounds for general bilinear forms in hyper-

Kloosterman sums that go beyond the Fourier-theoretic range; see Theorems

1.1 and 1.3 below. To illustrate the potential of the results, we derive two

applications of these bounds in this paper. Both are related to the third

source of hyper-Kloosterman sums described above, but we believe that further

significant applications will arise from the other perspectives (as well as from

other directions).

1.2. Bilinear forms with Kloosterman sums. We will always assume that

the sequences α and β have finite support. We denote

‖α‖1 =
∑
m

|αm|, ‖α‖2 =
(∑
m

|αm|2
)1/2

,

the `1 and `2 norms.

Our main result for general bilinear forms is the following:

Theorem 1.1 (General bilinear forms). Let q be a prime. Let c be an

integer coprime to q. Let M and N be real numbers such that

1 6M 6 Nq1/4, q1/4 < MN < q5/4.

Let N ⊂ [1, q − 1] be an interval of length bNc, and let α = (αm)m6M and

β = (βn)n∈N be sequences of complex numbers.

For any ε > 0, we have

(1.2) B([×c]∗Klk,α,β)� qε‖α‖2‖β‖2(MN)
1
2

(
M−

1
2 + (MN)−

3
16 q

11
64

)
,

where the implied constant depend only on k and ε.

Remark 1.2. The bilinear form is easily bounded by ‖α‖2‖β‖2(MN)
1
2 ,

which we view as the trivial bound; a more elaborate treatment yields the

bound of Pólya-Vinogradov type (cf. [FKM14, Th. 1.17])

(1.3) B([×c]∗Klk,α,β)�k ‖α‖2‖β‖2(MN)
1
2

(
q−

1
4 +M−

1
2 +N−

1
2 q

1
4 log q

)
,

which improves the trivial bound as long as M � 1 and N � q1/2 log2 q.

We then see that for M = N , the bound (1.2) is nontrivial as long as M =

N > q11/24, which goes beyond the Fourier-theoretic range. In the special case

M = N = q1/2, the saving factor is q−1/64+ε.

When β is the characteristic function of an interval (or more generally, by

summation by parts, a “smooth” function; in classical terminology, this means

that the bilinear form is a “type I” sum), we obtain a stronger result:
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Theorem 1.3 (Special bilinear forms). Let q be a prime number. Let c

be an integer coprime to q. Let M , N > 1 be such that

1 6M 6 N2, N < q, MN < q3/2.

Let α = (αm)m6M be a sequence of complex numbers bounded by 1, and let

N ⊂ [1, q − 1] be an interval of length bNc.
For any ε > 0, we have

(1.4) B([×c]∗Klk,α, 1N)� qε‖α‖1/21 ‖α‖
1/2
2 M

1
4N ×

(M2N5

q3

)−1/12
,

where the implied constant depend only on k and ε.

Remark 1.4. (1) A trivial bound in that case is ‖α‖1/21 ‖α‖
1/2
2 M1/4N ,

which explains why we stated the result in this manner. When M = N ,

we see that our bound (1.4) is nontrivial essentially when M = N > q3/7,

which goes even more significantly below the Fourier-theoretic range. In the

special case M = N = q1/2, the saving is q−1/24+ε.

(2) For k = 2, a slightly stronger result is proved by Blomer, Fouvry,

Kowalski, Michel and Milićević [BFK+17, Prop. 3.1]. This builds on a method

of Fouvry and Michel [FM98, §VII], which is also the basic starting point of

the analysis in this paper.

(3) If α and β are both characteristic functions of intervals, a stronger

result is proved by Fouvry, Kowalski and Michel in [FKM14, Th. 1.16] for

a much more general class of summands K, namely, the trace functions of

arbitrary geometrically isotypic Fourier sheaves, with an implied constant de-

pending then on the conductor of these sheaves. (For M = N , it is enough

there that MN > q3/8, and for M = N = q1/2, the saving is q−1/16+ε.)

1.3. Application 1: moments of twisted L-functions. Let f and g be fixed

Hecke-eigenforms (of level 1 say). A long-standing problem is the evaluation

with power-saving error term of the average

1

ϕ(q)

∑
χ (mod q)

L(f ⊗ χ, 1/2)L(g ⊗ χ, 1/2),

where χ runs over Dirichlet characters of prime conductor q. When f and g

are nonholomorphic Eisenstein series, the problem becomes that of evaluat-

ing the fourth moment of Dirichlet L-series at 1/2. This was studied, for

instance, by Heath-Brown [HB81] and by Soundararajan [Sou07], and it was

solved by Young [You11]. For f and g cuspidal, this question was studied

by Gao, Khan and Ricotta [GKR09] and, with different methods, by Hoff-

stein and Lee [HL]. Recently, the problem was revisited in full generality by

Blomer and Milićević [BM15] and by Blomer, Fouvry, Kowalski, Michel and

Milićević [BFK+17]. This last work solved the problem when one of the two
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forms is noncuspidal. The general bilinear bound of Theorem 1.1 (for k = 2) is

the final ingredient to the resolution of this problem in the case where f and g

are cuspidal.

Theorem 1.5 (Moments of twisted cuspidal L-functions). Let q be a

prime number. Let f, g be cuspidal Hecke eigenforms (holomorphic forms or

Maass forms) of level 1 with respective root numbers ε(f) and ε(g) (equal to

±1). If f and g are either both holomorphic forms or both Maass forms, as-

sume also that ε(f)ε(g) = 1.

Let δ < 1/144. If f 6= g, we have

(1.5)
1

ϕ(q)

∑
χ (mod q)

L(f ⊗ χ, 1/2)L(g ⊗ χ, 1/2) =
2L(f ⊗ g, 1)

ζ(2)
+O(q−δ),

where L(f ⊗ g, 1) 6= 0 is the value at 1 of the Rankin–Selberg convolution of f

and g, and the implied constant depends only on f , g and δ.

If f = g, then there exists a constant βf ∈ C such that we have

(1.6)
1

ϕ(q)

∑
χ (mod q)

|L(f ⊗ χ, 1/2)|2 =
2L(sym2f, 1)

ζ(2)
(log q) + βf +O(q−δ),

where L(sym2f, s) denotes the symmetric square L-function of f , and the the

implied constant depends only on f and δ.

Proof. In [BFK+17, §7.2], Theorem 1.5 (which is Theorem 1.3 in loc. cit.)

was shown to follow from a certain bound on a bilinear sum of Kloosterman

sums; cf. the statement of [BFK+17, Prop. 3.1]. That bound is exactly the

case k = 2 and c = 1 of Theorem 1.1. �

Remark 1.6. (1) The assumption on the root number in Theorem 1.5 is

necessary, since otherwise the special values vanish and the sums are identi-

cally 0.

(2) It is well established that an asymptotic formula with a power saving

error term for some moment in a family of L-functions typically implies the

possibility of evaluating asymptotically some additional “twisted” moments,

in this case those of the shape

1

ϕ(q)

∑
χ (mod q)

L(f ⊗ χ, 1/2)L(g ⊗ χ, 1/2)χ(`/`′),

where 1 6 `, `′ 6 L are coprime integers that are also coprime with q and

L = qη for some fixed absolute constant η > 0.

Using such a formula for f = g, we may apply the mollification method and

the resonance method and obtain further results on the special values for this

family of L-functions (estimates for the distribution of the order of vanishing
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at s = 1/2, existence of large values, for instance). This will be taken up in

the forthcoming paper [BFK+] jointly with Blomer, Fouvry and Milićević.

1.4. Application 2: arithmetic functions in arithmetic progressions. In our

second application, we use the bound for special bilinear forms when K = Kl3
to study the distribution in arithmetic progressions to large moduli of certain

arithmetic functions that are closely related to the triple divisor function.

Theorem 1.7. Let f be a holomorphic primitive cusp form of level 1 with

Hecke eigenvalues λf (n), normalized so that |λf (n)| 6 d2(n). For n > 1, let

(λf ? 1)(n) =
∑
d|n

λf (d).

For x > 2, for any η < 1/102, for any prime q 6 x1/2+η , for any integer a

coprime to q and for any A > 1, we have∑
n6x

n≡a (mod q)

(λf ? 1)(n)− 1

ϕ(q)

∑
n6x

(n,q)=1

(λf ? 1)(n)� x

q
(log x)−A,

where the implied constant depends only on (f, η,A).

When f is replaced by a specific nonholomorphic Eisenstein series, we

obtain as coefficients (λf ? 1)(n) = (d2 ? 1)(n) = d3(n), the triple (or ternary)

divisor function. In that case, a result with exponent of distribution > 1/2 as

above was first obtained (for general moduli) by Friedlander and Iwaniec [FI85].

This was subsequently improved by Heath-Brown [HB86] and more recently

(for prime moduli) by Fouvry, Kowalski and Michel [FKM15b].

The approach of [FKM15b] relied ultimately on bounds for the bilinear

sums B(Kl3,α,β) when both sequences α and β are smooth. Indeed, as al-

ready recalled, a very general estimate for B(K,α,β) was proved in that case

in [FKM14]. Here, in the cuspidal case, the splitting d2(n) = (1 ? 1)(n) is not

available and we need instead a bound where only one sequence is smooth,

which is given by Theorem 1.3. (We could of course also use Theorem 1.1,

with a slightly weaker result.)

The functions n 7→ d3(n) = (1 ? 1 ? 1)(n) and n 7→ (λf ? 1)(n) are

the Hecke eigenvalues of certain noncuspidal automorphic representation of

GL3,Q, namely the isobaric representations 1 � 1 � 1 and πf � 1. The meth-

ods of [FI85], [HB86], [FKM15b] and of the present paper can be generalized

straightforwardly to show that the n-th Hecke eigenvalue function of any fixed

noncuspidal automorphic representation of GL3,Q has exponent of distribu-

tion > 1/2 for individual prime moduli. Extending this further to cuspidal

GL3,Q-representation is a natural and interesting challenge.

Theorem 1.7 is proved in Section 5.
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1.5. Further developments. We describe here some possible extensions of

our results, which will be the subject of future papers.

1.5.1. Extension to other trace functions. A natural problem is to try to

extend Theorems 1.1 and 1.3 to more general trace functions K. In [FM98],

Fouvry and Michel derived nontrivial bounds as in Theorem 1.3 (type I sums)

when Klk is replaced by a rational phase function of the type

Kf (n) =

eq(f(n)) if n is not a pole of f,

0 otherwise,

where q is prime, eq(x) = exp(2πixq ) and f ∈ Fq(X) is some rational function

that is not a polynomial of degree 6 2. They proved bounds similar to The-

orem 1.1 (type II sums) for K given by a quasi-monomial phase, defined as

above with

f = aXd + bX

for some a, b ∈ Fq, a 6= 0 and d ∈ Z − {0, 1, 2}. While both cases relied on

arguments from algebraic geometry, they were different from, and far simpler

than, those involved in the present work.

It is plausible that the methods developed in the present paper would allow

for an extension of Theorems 1.3 and 1.1 to many of the families of exponential

sums studied in great details in the books of Katz (in particular, in [Kat88],

[Kat90]). Other potentially interesting variants that could be treated by the

methods presented here are bilinear sums of the shape∑
m,n

αmβnK((mdn)±1), d> 1 fixed.

Again the case where K is a hyper-Kloosterman sum (possibly including mul-

tiplicative characters) seem particularly interesting for number theoretic ap-

plications. (See, for instance, the recent work of Nunes [Nun].)

1.5.2. Extension to composite moduli. In this paper, we have focused our

attention on bilinear forms associated to functions K that are periodic mod-

ulo a prime q. This is in some sense the hardest case, but nevertheless it

would be very useful for many applications to have bounds similar to those of

Theorems 1.3 and 1.1 when the modulus q is arbitrary, or at least squarefree.

For instance, Blomer and Milićević [BM15, Th. 1] proved the analogue of

the asymptotic formula in Theorem 1.5 with power saving error term when the

modulus q admits a factorization q = q1q2 where q1 and q2 are neither close

to 1 (excluding therefore the case when q is prime, which is now solved by

Theorem 1.5) nor to q1/2. This excludes the case when q is a product of two

distinct primes that are close to each other; it would be possible to treat this

if a version of Theorem 1.1 for composite moduli were available.
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Another direct application would be a version of Theorem 1.7 for general

moduli q. This would immediately imply the following shifted convolution

bound: there exists a constant δ > 0, independent of f and h, such that for

all N > 1 and h > 0, we have∑
n6N

(λf ? 1)(n)d2(n+ h)�f N
1−δ,

where the implied constant is independent of h. We refer to the works of

Munshi [Mun13a], [Mun13b] and Topacogullari [Top16] for related results.

Other potential applications are to problems involving the Petersson–

Kuznetsov trace formula (the first of the three items listed in the beginning of

this introduction) as well as to the study of arithmetic functions (like the

primes) in arithmetic progressions to large moduli, as suggested by Theo-

rem 1.7.

1.6. Structure of the proofs. We now discuss the essential features of the

proofs of our bounds for bilinear sums, in the more difficult case of general

coefficients α and β. Several aspects of the proof are not specific to the case

of hyper-Kloosterman sums. In view of possible extensions to new cases, we

describe the various steps in a general setting and indicate those that are

currently restricted to the case of hyper-Kloosterman sums.

Let q be a prime, and let K be the q-periodic trace function of some `-adic

sheaf F on A1
Fq

, which we assume to be a middle-extension pure of weight 0,

geometrically irreducible and of conductor c(F). We think of q varying, while

the conductor c(F) is bounded independently of q. (For the case of hyper-

Kloosterman sums, the sheaf F = Klk is the Kloosterman sheaf, defined by

Deligne and studied by Katz [Kat88].) We denote by ψ a fixed nontrivial

additive character of Fq.

The problem of bounding the general bilinear sums B(K,α,β), with non-

trivial bounds slightly below the Fourier-theoretic range, can be handled by

the following steps.

(1) We consider auxiliary functions K and R, of the “sum of product”

type, defined by

K(r, s, λ, b) = ψ(λs)
2∏
i=1

K(s(r + bi))K(s(r + bi+2))

and

R(r, λ, b) :=
∑
s∈Fq

K(r, s, λ, b),

where r, s and λ are in Fq, and b = (b1, b2, b3, b4) ∈ F4
q .

Building on methods developed in [FM98] (also inspired by the work

of Friedlander–Iwaniec [FI85] and the “shift by ab” trick of Vinogradov and
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Karatsuba), we reduce the problem in Section 2 to that of obtaining square-

root cancellation bounds for two complete exponential sums involving K and

R. Precisely, we need to obtain bounds of the type

(1.7)
∑

r (mod q)

K(r, s, 0, b)� q1/2,

for s ∈ F×q , as well as generic bounds∑
r (mod q)

R(r, λ, b)� q,(1.8)

∑
r (mod q)

R(r, λ, b)R(r, λ′, b) = δ(λ, λ′)q2 +O(q3/2).(1.9)

Here, “generic” means that the bounds should hold for every λ ∈ Fq pro-

vided b does not belong to some proper subvariety of A4. Of course, the implied

constants in all these estimates must be controlled by the conductor of F, but

this can be achieved relatively easily in all cases using general arguments to

bound suitable Betti numbers independently of q.

We will obtain the bounds (1.7), (1.8) and (1.9) from Deligne’s general

form of the Riemann Hypothesis over finite fields [Del80]. A crucial feature is

that we can interpret the functions K and R themselves as trace functions of

suitable `-adic sheaves denoted K (on A7) and R (on A6) respectively. We call

the latter the sum-product transform sheaf associated to the input sheaf F, to

emphasize the structure of its trace functions and the “+ab” trick.

Using the Grothendieck–Lefschetz trace formula and Deligne’s form of the

Riemann Hypothesis, we see that the bounds will result if we can show the

following properties of these sheaves:

– the sheaf representing r 7→ K(r, s, 0, b) is geometrically irreducible and

geometrically nontrivial;

– the sheaf Rλ,b with trace function r 7→ R(r, λ, b) is geometrically irre-

ducible, and Rλ,b is not geometrically isomorphic to Rλ′,b if λ′ 6= λ.

This is a natural and well-established approach, but the implementation of

this strategy will require very delicate geometric analysis of the `-adic sheaves

involved.

(2) The first bound (1.7) is proved in great generality in Section 3 using

the ideas of Katz around the Goursat–Kolchin–Ribet criterion (see [Kat90,

Prop. 1.8.2]) following the general discussion of sums of products by Fouvry,

Kowalski and Michel in [FKM15c]. Indeed, it is sufficient that the original

sheaf F with trace function K be a “bountiful” sheaf in the sense of [FKM15c,

Def. 1.2], a class that contains many interesting sheaves in analytic number

theory (in particular, Kloosterman sheaves).
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(3) To prove that the sheaf representing r 7→ R(r, λ, b) is geometrically

irreducible is much more involved. As a first step, we prove (also in Section 3)

a weaker generic irreducibility property, where both b and λ are variables.

Indeed, using Katz’s diophantine criterion for irreducibility [Kat96, §7]), it

suffices to evaluate asymptotically the second moment of the relevant trace

function over all finite extensions Fqd of Fq, and to prove that

1

(qd)5

∑
(r,b)∈F5

qd

|R(r, 0, b;Fqd)|2 = qd(1 + o(1)),

1

(qd)2

∑
(r,λ)∈F2

qd

|R(r, λ, b;Fqd)|2 = qd(1 + o(1))),

as d→ +∞. Again, the methods are those of [FKM15c] and require only that

F be a bountiful sheaf.

(5) The next and final step is the crucial one and is the deepest part of

this work. In the very long Section 4, we show that one can “upgrade” the

generic irreducibility of R from the previous step to pointwise irreducibility

of the sheaf deduced from R by fixing the values of λ and b, where only b

is required to be outside some exceptional set. This step uses such tools as

Deligne’s semicontinuity theorem and vanishing cycles. It requires quite precise

information on the ramification properties of K and R. At this stage, we need

to build on the precise knowledge of the local monodromy of Kloosterman

sheaves K`k, which is again due to Katz [Kat88]. We will give some indications

of the ideas involved in Section 4.

Notation. We write δ(x, y) for the Kronecker delta symbol. For any prime

number `, we assume fixed an isomorphism ι : Q` → C. Let q be a prime

number. Given an algebraic variety XFq , a prime ` 6= q and a constructible

Q`-sheaf F on X, we denote by tF : X(Fq) −→ C its trace function, defined

by

tF(x) = ι(Tr(Frx,Fq | Fx)),

where Fx denotes the stalk of F at x. More generally, for any finite extension

Fqd/Fq, we denote by tF(·;Fqd) the trace function of F over Fqd , namely,

tF(x;Fqd) = ι(Tr(Frx,F
qd
| Fx)).

We will usually omit writing ι; in any expression where some element z of

Q` has to be interpreted as a complex number, we mean to consider ι(z).

We denote by c(F) the conductor of a constructible `-adic sheaf F on A1
Fq

as defined in [FKM15a] (with adaptation to deal with sheaves that may not
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be middle-extensions). Recall that this is the nonnegative integer given by

c(F) = rank(F) + | Sing(F)|+
∑

x∈Sing(F)

Swanx(F) + dimH0
c (A1

Fq
,F),

where Sing(F) ⊂ P1(Fq) is the set of ramification points of F and Swanx(F)

is the Swan conductor at x.

For convenience, we recall the general version of the Riemann Hypothesis

over finite fields that will be the source of our estimates.

Proposition 1.8. Let Fq be a finite field with q elements. Let F and G be

constructible `-adic sheaves on A1
Fq

that are geometrically irreducible, mixed of

weights 6 0 and pointwise pure of weight 0 on a dense open subset. We have∑
x∈Fq

tF(x;Fq)tG(x;Fq)�,
√
q,

unless F is geometrically isomorphic to G, and∑
x∈Fq

|tF(x;Fq)|2 = q +O(
√
q).

The implied constants depend only on the conductors of F and G.

We denote by F∨ the dual of a constructible sheaf F; if F is a middle-

extension sheaf, we will use the same notation for the middle-extension dual.

Let ψ (resp. χ) be a nontrivial additive (resp. multiplicative) charac-

ter of Fq. We denote by Lψ (resp. Lχ) the associated Artin–Schreier (resp.

Kummer) sheaf on A1
Fq

(resp. on (Gm)Fq), as well (by abuse of notation) as

their middle extension to P1
Fq

. The trace functions of the latter are given by

tψ(x;Fqd) = ψ(TrF
qd
/Fq(x)) if x ∈ Fqd , tψ(∞;Fqd) = 0,

tχ(x;Fqd) = χ(NrF
qd
/Fq(x)) if x ∈ F×

qd
, tχ(0;Fqd) = tχ(∞;Fqd) = 0

(which we denote also by ψqd(x) and by χqd(x), respectively). For the trivial

additive or multiplicative character, the trace function of the middle-extension

is the constant function 1.

Given λ ∈ Fqd , we denote by Lψλ the Artin–Schreier sheaf of the character

of Fqd defined by x 7→ ψ(TrF
qd
/Fq(λx)).

If q > 3, we denote by χ2 the Legendre symbol on Fq.

If XFq is an algebraic variety, ψ (resp. χ) is an `-adic additive character of

Fq (resp. `-adic multiplicative character) and f : X −→ A1 (resp. g : X −→
Gm) is a morphism, we denote by either Lψ(f) or Lψ(f) (resp. by Lχ(g) or

Lχ(g)) the pullback f∗Lψ of the Artin–Schreier sheaf associated to ψ (resp.

the pullback g∗Lχ of the Kummer sheaf). These are lisse sheaves on X with

trace functions x 7→ ψ(f(x)) and x 7→ χ(g(x)), respectively. The meaning of

the notation Lψ(f), which we use when putting f as a subscript would be
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typographically unwieldy, will always be unambiguous, and no confusion with

Tate twists will arise.

Given a variety X/Fq, an integer k > 1 and a function c on X, we denote

by Lψ(cs1/k) the sheaf on X ×A1 (with coordinates (x, s)) given by

α∗Lψ(c(x)t),

where α is the covering map (x, s, t) 7→ (x, s) on the k-fold cover

{(x, s, t) ∈ X ×A1 ×A1 | tk = s}.

Given a field extension L/Fp, and elements α ∈ L× and β ∈ L, we denote

by [×α] the scaling map x 7→ αx on A1
L, and by [+β] the additive translation

x 7→ x+ β. For a sheaf F, we denote by [×α]∗F (resp. [+α]∗F) the respective

pull-back operation. More generally, given an element γ =
(
a b
c d

)
∈ PGL2, we

denote by γ∗F the pullback under the fractional linear transformation on P1

given by

γ · x =
ax+ b

cx+ d
.

We usually omit mention of any necessary base change to L if the matrix

involved is in PGL2(L) for some extension L/Fq.

We will usually not indicate base points in étale fundamental groups;

whenever this occurs, it will be clear that the properties under consideration

are independent of the choice of a base point.

As mentioned above, a large portion of our argument is valid for a more

general class of functions K than hyper-Kloosterman sums. We now state

the definition of the relevant class of sheaves, which is a slight extension

of [FKM15c, Def. 1.2]. Let G be a middle-extension sheaf on A1 of rank

k > 2, which is pure of weight 0. Let U = A1 − SG denote the maximal open

subset where G is lisse, and let c(G) be the conductor of G. Let F be either G

or the extension by zero to A1 of G|U .

Definition 1.9. We say that F is bountiful (resp. bountiful with respect to

the upper-triangular Borel subgroup B ⊂ PGL2) if

– The geometric and arithmetic monodromy groups of the lisse sheaf F|U ,

or equivalently of G|U , coincide and are equal either SLk if k > 3 or to

Spk. Accordingly, we will say that F (or G) is of Sp or SL type.

– For any nontrivial element γ ∈ PGL2(Fq) (resp. in B(Fq)), the sheaf γ∗G

is not geometrically isomorphic to G⊗ L for any rank 1 sheaf L.

– If F is of SL-type, there is at most one ξ ∈ PGL2(Fq) (resp. ξ ∈ B(Fq))

such that we have a geometric isomorphism

ξ∗G ' G∨ ⊗ L
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for some rank 1 sheaf L. If the element ξ exists, it is called the special

involution of F. It is exactly of order 2 and in the Borel case, is of the

shape

ξF =

Ç
−1 bF

1

å
.

Remark 1.10. We take this occasion to address a minor slip in [FKM15c]

pointed by one of the referees: the original definition of a bountiful sheaf

should have required the rank of the sheaf to be > 3 in the SL case, since SL2

should be viewed as a symplectic group in this context (because its standard

representation is self-dual). Correspondingly [FKM15c, Th. 1.5] should include

this condition as well. This has no impact on applications since the resulting

corollaries all included that condition in their statement.

Remark 1.11. Another difference with [FKM15c] is that we allow the pos-

sibility that F be the extension by zero of G and do not require that F be

necessarily a middle extension. It is immediate that the results of [FKM15c]

that we use extend to this slightly more general class of sheaves: the arguments

there are either performed on a dense open subset where all sheaves involved

are lisse, or only depend on the bound |tG(x)| 6 rank(x) for a middle-extension

sheaf G (see, e.g., [FKM15c, p. 21, proof of Prop. 1.1]). We refer to Remark 4.7

for a justification of this change in the definition of [FKM15c].

The Kloosterman sheaves K`k (defined here as extension by zero of the

Kloosterman sheaves on Gm) are examples of bountiful sheaves. They are of

Sp-type if k is even and of SL-type if k is odd (cf. [Kat88, FKM15c]), and

in that case, there is a special involution given by ξ =
(−1

1

)
, and indeed

ξ∗K`k ' K`∨k . All this will be recalled with references in Section 4.2.
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2. Reduction to complete exponential sums

In this section, we perform the first step of the proof of Theorems 1.3

and 1.1: the reduction to estimates for complete sums over finite fields. The

two subsections below are essentially independent; the first one concerns special

bilinear forms (“type I,” as in Theorem 1.3) and the second discusses the case

of general bilinear forms (“type II,” as in Theorem 1.1).

2.1. Special bilinear forms. We follow the method of [FM98], as general-

ized in [BFK+17, §6.2]. Let q be a prime number, and let F be a bountiful

sheaf on A1
Fq

(with respect to the Borel subgroup). Let k > 2 be the rank of

F and c(F) its conductor.

We fix some c ∈ F×q and denote Kc = [×c]∗K. We consider the special

bilinear form

B(Kc,α,N) =
∑∑

m6M,n∈N
αmK(cmn),

where N is an interval in [1, q − 1] of length bNc and α = (αm)m6M with

(2.1) 1 6M 6 N2, N < q, MN < q3/2.

Remark 2.1. The condition MN < q3/2 is somewhat restrictive. It arises

from the estimate of the possible “bad” parameter b. (See the proof of The-

orem 2.4 below.) However, for MN > q3/2, other methods lead to nontrivial

estimates for these bilinear forms (e.g., the bound (1.3)).

Given auxiliary integral parameters A,B > 1 such that

(2.2) 2B < q, AB 6 N, AM < q,

we have

B(Kc,α,N) =
1

AB

∑∑
A<a62A
B<b62B

∑
m6M

αm
∑

n+ab∈N
Kc(m(n+ ab))

=
1

AB

∑∑
A<a62A
B<b62B

∑
m6M

αm
∑

n+ab∈N
Kc(am(an+ b)).

We get

B(Kc,α,N)�ε
qε

AB

∑∑
r (mod q)
s62AM

ν(r, s)

∣∣∣∣ ∑
B<b62B

ηbKc(s(r + b))

∣∣∣∣,
where

ν(r, s) =
∑∑∑

A<a62A, m6M, n∈N
am=s, an≡r (mod q)

|αm|
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and (ηb)B<b62B are some complex numbers such that |ηb| 6 1. We have clearly∑
r,s

ν(r, s)� AN
∑
m6M

|αm|.

We also have ∑
r,s

ν(r, s)2 =
∑
· · ·
∑

a,m,n,a′,m′,n′

am=a′m′
a′n=an′ (mod q)

|αm||αm′ |.

Observe that, once a and m are given, the equation am = a′m′ determines

a′ and m′ up to O(qε) possibilities; furthermore, for each such pair (a,m) and

each n ∈ N, the congruence a′n = an′ (mod q) determines n′ uniquely, as n′

varies over an interval of length 6 q. Therefore we get∑
r,s

ν(r, s)2 �
∑
a,m

|αm|2
∑
· · ·
∑

n,a′,m′,n′

am=a′m′
a′n=an′ (mod q)

1�ε q
εAN

∑
m

|αm|2,

where we have used the inequality |αm||αm′ | 6 |αm|2 + |αm′ |2.

We next apply Hölder’s inequality in the form∑∑
r (mod q)

16s62AM

ν(r, s)

∣∣∣∣ ∑
B<b62B

ηbKc(s(r + b))

∣∣∣∣
6
(∑
r,s

ν(r, s)
) 1

2
(∑
r,s

ν(r, s)2
) 1

4

×
(∑
r,s

∣∣∣∣ ∑
B<b62B

ηbKc(s(r + b))

∣∣∣∣4) 1
4

�ε q
ε(AN)

3
4 ‖α‖

1
2
1 ‖α‖

1
2
2

(∑
r,s

∣∣∣∣ ∑
B<b62B

ηbKc(s(r + b))

∣∣∣∣4) 1
4
.

Expanding the fourth power, we have

(2.3)
∑
r,s

∣∣∣∣ ∑
B<b62B

ηbKc(s(r + b))

∣∣∣∣4 6∑
b∈B

∣∣∣Σ(Kc, b;AM)
∣∣∣,

where B denotes the set of tuples b = (b1, b2, b3, b4) of integers satisfying B <

bi 6 2B (i = 1, . . . , 4), and

(2.4) Σ(Kc, b;AM) =
∑∑
r (mod q)

16s62AM

2∏
i=1

Kc(s(r + bi))Kc(s(r + bi+2)).

This is a sum over r and s of a product of four values of the trace function K,

which we will later specialize to hyper-Kloosterman sums. At this stage, we
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have proved the bound

(2.5) B(Kc,α,N)� qε
N3/4

A1/4B
‖α‖1/21 ‖b‖

1/2
2

(∑
b∈B

∣∣∣Σ(Kc, b;AM)
∣∣∣)1/4

for any ε > 0, where the implied constant depends on ε and on the conductor

of F.

To continue, we first define the “diagonal” in the space of the parameters

b ∈ B. We recall that sheaves of Sp-type or of SL-type were introduced in

Definition 1.9.

Definition 2.2. Let V∆ be the affine variety of 4-uples

b = (b1, b2, b3, b4) ∈ A4
Fq

defined by the following conditions:

– if F is of Sp-type, then for any i ∈ {1, . . . , 4}, the cardinality

|{j = 1, . . . , 4 | bj = bi}|
is even;

– if F is of SL-type, then for any i ∈ {1, 2}, we have

|{j = 1, 2 | bj = bi}| − |{j = 3, 4 | bj = bi}| = 0.

We now denote by B∆ the subset of tuples of integers b ∈ B such that

b (mod q) ∈ V∆(Fq).

Since k > 2 and 2B < q (by (2.2)), we have |B∆| = O(B2). For b ∈ B∆,

we estimate Σ(Kc, b;AM) trivially using the bound |K(cx)| 6 c(F). The

contribution to (2.3) of all b ∈ B∆ satisfies

(2.6)
∑
b∈B∆

|Σ(Kc, b;AM)| � AB2Mq,

where the implied constant depends only on the conductor of F.

In Section 3, we will establish two estimates concerning the contribution

of b 6∈ B∆. For the first argument, we fix the value of s with 1 6 s 6 2AM

and we average over r.

Lemma 2.3. For b ∈ B\B∆ and any s ∈ F×q , we have∑
r (mod q)

2∏
i=1

Kc(s(r + bi))Kc(s(r + bi+2))�k q
1/2,

where the implied constant depends only on c(F).

In particular, for any subset B′ ⊂ B\B∆, we have

(2.7)
∑
b∈B′
|Σ(Kc, b;AM)| �k AM |B′|q1/2,

where the implied constant depends only on c(F).
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This result gives a saving of a factor q1/2 over the trivial bound. We refer

to Section 3.1 for the proof.

The second argument is much deeper, and we can only bring it to comple-

tion for hyper-Kloosterman sums. We apply the discrete Plancherel formula

to complete the sum with respect to the variable s. (See, for instance, [IK04,

Lemma 12.1 and following].) Recall that ψ is a fixed nontrivial additive char-

acter of Fq. For any function L : Fq → C, define

Σ̂(L, b, λ) =
∑
r∈Fq

R(L, r, λ, b)

with

(2.8) R(L, r, λ, b) =
∑
s∈F×q

ψ(λs)
2∏
i=1

L(s(r + bi))L(s(r + bi+2)).

Then, observing that for any c ∈ F×q , we have

(2.9) R(Kc, r, λ, b) = R(K, r, λ/c, b), Σ̂(Kc, b, λ) = Σ̂(K, b, λ/c),

and the completion yields the bound

Σ(Kc, b;AM)� (log q) max
λ∈Fq

|Σ̂(K, b, λ)|,

where the implied constant is absolute.

Taking F to be the Kloosterman sheaf with trace function K = Klk, we

will obtain an additional saving of q1/2 in comparison with Lemma 2.3, from

the cancellation in the completed variable s, leading to a net saving AMq1/2.

Theorem 2.4. Let k > 2, and let K = Klk. There exists a codimension

1 subvariety Vbad ⊂ A4
Fq

containing V∆, with degree bounded independently of

q, such that for any λ ∈ Fq and any b 6∈ Vbad(Fq), we have

Σ([×c]∗Klk, b;AM)� q log q

for any c ∈ F×q . The implied constant depends only on k.

This follows from Theorem 4.11 in Section 4.

Now, assuming Lemma 2.3 and Theorem 2.4, we can conclude the proof

of Theorem 1.3. Indeed, set

Bbad = B ∩ {b ∈ B | b (mod q) ∈ Vbad(Fq)}, Bgen = B\Bbad.

Since Vbad has degree bounded in terms of k only, independently of q, we have

|Bbad| = Ok(B
3). (In fact, |Bbad| 6 (degVbad)|B|3 by the so-called Schwarz–

Zippel Lemma.)
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Thus, applying Theorem 2.4 for b ∈ Bgen, the bound (2.7) from Lemma 2.3

for b ∈ Bbad −B∆, and finally (2.6) for b ∈ B∆, we obtain∑
b∈B

∣∣∣Σ([×c]∗Klk, b;AM)
∣∣∣�k (B4q +AB3Mq1/2 +AB2Mq)(log q).

Upon choosing

A = M−
1
3N

2
3 , B = (MN)

1
3 ,

(which satisfy (2.2) by (2.1)), we see that the first and third terms in paren-

thesis coincide and are equal to (MN)4/3q, while the second term is equal

to

(MN)4/3q × (MNq−3/2)1/3 6 (MN)4/3q

by (2.1). Therefore we deduce from (2.5) that

B([×c]∗Klk,α,N)�k,ε
qε

AB
(AN)

3
4 ‖α‖

1
2
1 ‖α‖

1
2
2Bq

1/4

�k,ε q
ε‖α‖

1
2
1 ‖α‖

1
2
2M

1/4N
(M2N5

q3

)−1/12
.

This proves Theorem 1.3, subject to the proof of Lemma 2.3 and of The-

orem 2.4.

2.2. General bilinear forms. We now consider the situation of Theorem 1.1.

Again we begin with a prime q and a bountiful sheaf F on A1
Fq

with respect

to the Borel subgroup. Let k > 2 be the rank of F and c(F) its conductor.

Given M,N > 1 satisfying

(2.10) 1 6M 6 Nq1/4, q1/4 < MN < q5/4,

an interval N ⊂ [1, q − 1] of length bNc and sequences α = (αm)m6M and

β = (βn)n∈N, we consider the general bilinear form

B(Kc,α,β) =
∑∑

m6M,n∈N
αmβnK(cmn).

We begin once more as in [FM98], [BFK+17]. We choose auxiliary pa-

rameters A,B > 1 satisfying (2.2). The argument of [BFK+17, §5.5] leads to

the estimate

(2.11)

|B(Kc,α,β)|2 � ‖α‖22‖β‖22
(
N +

qε

AB
(AN)3/4M1/2

(∑
b

|Σ6=(Kc, b;AM)|
)1/4)
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for any ε > 0, where the implied constant depends only on c(F) and ε, and

where

Σ 6=(Kc, b;AM) =
∑

r (mod q)

∑∑
16s1,s26AM
s1 6=s2 (mod q)

2∏
i=1

Kc(s1(r + bi))Kc(s2(r + bi))

Kc(s1(r + bi+2))Kc(s2(r + bi+2))

for b running over the set B of quadruples of integers (b1, b2, b3, b4) satisfying

B < bi 6 2B. Note that, in the case K = Klk, we now have a sum, over the

three variables (r, s1, s2), of a product of eight hyper-Kloosterman sums.

We will estimate the inner triple sum over r, s1, s2 in different ways de-

pending on the value taken by b.

First, for b ∈ B∆ (as defined in Definition 2.2), we use the trivial bound

from |K(cx)| 6 c(F) and obtain

(2.12)
∑
b∈B∆

|Σ 6=(Kc, b;AM)| � qA2B2M2,

where the implied constant depends only on c(F).

We next have an analogue of Lemma 2.3, where we sum over the variable r

for fixed (s1, s2):

Lemma 2.5. For b ∈ B\B∆ and any s1, s2 ∈ F×q with s1 6= s2, we have

∑
r (mod q)

2∏
i=1

Kc(s1(r + bi))Kc(s2(r + bi))

Kc(s1(r + bi+2))Kc(s2(r + bi+2))� q1/2,

(2.13)

where the implied constant depends only on c(F).

In particular, for any subset B′ ⊂ B\B∆, we have∑
b∈B′
|Σ 6=(Kc, b;AM)| � (AM)2|B′|q1/2,

where the implied constant depends only on c(F).

This is proved in Section 3.1.

Finally, we use discrete Fourier analysis. We detect the condition s1 6≡
s2 (mod q) using additive characters:

1− 1

q

∑
λ (mod q)

eq(λ(s1 − s2)) =

1 if s1 6= s2 in Fq,

0 otherwise.
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We further complete the sums over s1 and s2 using additive characters.

For any L : Fq → C, we define

C(L, λ1, λ2, b) =
∑

r (mod q)

R(L, r, λ1, b)R(L, r, λ2, b),

where R(L, r, λ, b) is the sum defined in (2.8). Then let

Σ̂(L, b, λ1, λ2, ) = C(L, λ1, λ2, b)−
1

q

∑
λ (mod q)

C(L, λ1 + λ, λ2 + λ, b).

Observing, as in (2.9), that for c ∈ F×q we have

Σ̂(Kc, b, λ1, λ2) = Σ̂(K,λ1/c, λ2/c, b),

the completion leads to the bound

Σ 6=(Kc, b;AM)� (log q)2 max
λ1,λ2∈Fq

|Σ̂(K, b, λ1, λ2)|

for any c ∈ F×q , where the implied constant is absolute.

We must now assume as before that F = K`k is the Kloosterman sheaf of

rank k with trace function K = Klk. We will prove below our final bound:

Theorem 2.6. Let k > 2, and let K = Klk. There exists a codimension

1 subvariety Vbad ⊂ A4
Fq

containing V∆, with degree bounded independently of

q, such that for any b 6∈ Vbad(Fq) and every distinct λ1, λ2 ∈ Fq , we have

(2.14) |Σ̂(Klk, b, λ1, λ2)| � q3/2,

where the constant depends only on k.

This follows from Theorem 4.11 in Section 4. In fact, the subvariety Vbad

is the same as in Theorem 2.4.

Assuming these results, we conclude the proof of Theorem 1.1 in the same

manner as in the previous section. For

Bbad = B ∩ {b ∈ B | b (mod q) ∈ Vbad(Fq)}, Bgen = B\Bbad,

we have the estimate |Bbad| = Ok(B
3) since Vbad has degree bounded inde-

pendently of q.

We apply Theorem 2.6 for b ∈ Bgen, the bound (2.13) of Lemma 2.5 for

b ∈ Bbad −B∆ and finally (2.12) for b ∈ B∆. This gives∑
b

|Σ 6=([×c]∗Klk, b;AM)| � (log q)2(B4q3/2 +A2B3M2q1/2 +A2B2M2q),

where the implied constant depends only on k.

We select

A = q
1
8M−

1
2N

1
2 , B = q−

1
8M

1
2N

1
2 ,
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which satisfy (2.2) by (2.10). Then AB = N and the first and third terms on

the right-hand side are equal to (MN)2q. The second term is (MN)
5
2 q

3
8 6

(MN)2q by (2.10). Therefore we have∑
b

|Σ6=([×c]∗Klk, b;AM)| � (MN)2q(log q)2,

and consequently we obtain from (2.11) the bound

|B([×c]∗Klk,α,β)|2 � ‖α‖22‖β‖22
(
N +

qε

N
(AN)3/4M1/2q1/4(MN)1/2

)
� qε‖α‖22‖β‖22

(
N + (MN)

5
8 q

11
32

)
� qε‖α‖22‖β‖22MN

(
M−1 + (MN)−

3
8 q

11
32

)
,

for any ε > 0, where the implied constant depends only on k and ε.

This concludes the proof of Theorem 1.1 modulo the proof of Lemma 2.5

and of Theorem 2.6.

Remark 2.7. As in [FM98] it is possible to apply the Hölder inequality

that leads to (2.11) with higher exponent than 2l = 4. Doing this leads to

sums involving products of the shape

(r, s1, s2) 7→
l∏

i=1

K(s1(r + bi))K(s2(r + bi))K(s1(r + bi+l))K(s2(r + bi+l))

for

bl = (b1, . . . , bl, bl+1, . . . , b2l) ∈]B, 2B]2l.

Except for heavier notational complexity, some of the arguments of this

section (and of the next) do carry over and (assuming that (2.10) holds), one

obtains for l > 3 and MN > q7/8 the bound

|B(Klk,α,β)|2 �ε,k q
ε‖α‖22‖β‖22MN

(
M−1 + (ql+4(MN)−8)

1
4l(l+2)

)
.

This bound is only interesting when l = 3 and yields a nontrivial estimate

in the range

MN > q
7
8

+δ, δ > 0

compared with MN > q
11
12

+δ in Remark 1.2.

In order for the Hölder inequality with higher exponents to give better

estimates, one needs to improve the lower bound on the codimension of the

variety Vbad
l ⊂ A2l

Fq
in the corresponding generalization of Theorem 2.6. At

the moment, we only know that this codimension is at least 1, but if one could

prove that this variety has codimension 2, one could take l = 5 and obtain a

nontrivial bound in the range MN > q
5
6

+δ.
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The best possible result that might be achieved using this method would

be if Vbad
l had codimension l. This would lead to nontrivial bounds as long as

MN > q
3l+5

4(l+1)
+δ
, δ > 0.

Although we expect that the codimension of Vbad
l is indeed l, this seems a diffi-

cult geometric problem when l is large. (Indeed, the method used in Section 4

do not seem to be sufficient, as they amount to “estimating” Vl by showing

that it is a subvariety of another variety whose codimension we estimate, and

one expects that the codimension of this auxiliary variety is exactly 1.)

By taking l very large, we thus see that the limit of the method is the

range MN > q
3
4

+δ. Interestingly, this is the same range achieved in [FKM14,

Th. 1.6] for the case where α and β are both smooth.

D. Bejleri, A. Christensen, B. Kadets, C.-Y. Hsu and Z. Yao have verified

some of the claims in this remark while pursuing a research project during the

2016 Arizona Winter School.

3. Bounds for complete exponential sums

In this section we use methods from `-adic cohomology to prove Lem-

mas 2.3 and 2.5, and we make the first steps towards Theorems 2.4 and 2.6.

The proof of these last two theorems will be finished in Section 4.

All results in this section apply for bountiful sheaves (with respect to the

Borel subgroup). Thus we fix a prime q and such a sheaf F on A1
Fq

. We denote

by K the trace function of F, and by Sing(F) ⊂ P1(F̄q) the set of ramification

points of F.

For any finite extension Fqd/Fq, for b ∈ (Fqd)
4, λ ∈ Fqd , and (r, s) ∈

Fqd × Fqd , we denote

K(r, s, λ, b;Fqd) = ψF
qd

(λs)
2∏
i=1

K(s(r + bi);Fqd)K(s(r + bi+2);Fqd).

For d = 1, we write simply K(r, s, λ, b) = K(r, s, λ, b;Fq).

3.1. One variable bounds. The next proposition is a restatement of Lem-

mas 2.3 and 2.5, where the variable c ∈ F×q is taken to be equal to 1; since we

may replace s by cs (resp. (s1, s2) by (cs1, cs2)), this implies the case where

c ∈ F×q is arbitrary.

Proposition 3.1. Assume q 6= 2. Let V∆ ⊂ A4
Fq

be the affine variety

given in Definition 2.2. For all b = (b1, b2, b3, b4) ∈ Fq
4 − V∆(Fq) and for all

s, s1, s2 ∈ F×q , with s1 6= s2, we have

(3.1)
∑
r∈Fq

K(r, s, 0, b)� q1/2
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and

(3.2)
∑
r∈Fq

K(r, s1, 0, b)K(r, s2, 0, b)� q1/2,

where the constant implied depends only on the conductor of F.

Proof. This follows from the techniques surveyed in [FKM15c]. Precisely,

for fixed s ∈ F×q and b /∈ V∆(Fq), the sum in (3.1) is of the type discussed

in [FKM15c, Cor. 1.6] with k = 4, h = 0, the 4-tuple

γ = (γs,1, . . . , γs,4) ∈ PGL2(Fq)
4

such that

γs,i =

Ç
s sbi

1

å
, i = 1, . . . , 4

and (if F is of SL-type) the 4-tuple

σ = (σi)i=1,...,4 ∈ Aut(C/R)4,

where

σ1 = σ2 = IdC, σ3 = σ4 = c, c = complex conjugation.

If F is of Sp type, the fact that b is not contained in V∆(Fq) implies that

the tuple γ is normal in the sense of [FKM15c, Def. 1.3].

Similarly, if F is of SL-type with rank(F) = r > 3, and b 6∈ V∆(Fq), the

pair of tuples (γ, σ) is r-normal, including with respect to the special involution

ξF of F, if the latter exists. Indeed, because q 6= 2, γs,iγ
−1
s,j is not an involution

unless bi = bj and so can only be equal to ξF if bi = bj . This means that

conditions (2) and (3) of [FKM15c, Def. 1.3] are equivalent in our situation.

Thus the bound (3.1) follows from [FKM15c, Cor. 1.6].

We now consider the bound (3.2), with h = 0, k = 8, the 8-tuple

γ = (γs1,1, . . . , γs1,4, γs2,1, . . . , γs2,4)

and (in the SL-type case) the 8-tuple

σ = (IdC, IdC, c, c, c, c, IdC, IdC).

For s1 6= s2 and b 6∈ V∆(Fq), the 8-tuple γ is normal for F of Spk-type

while for F of SLr-type with r > 3, the tuples (γ,σ) are again r-normal (also

possibly with respect to the special involution ξF, if it exists). Indeed, the

fact that s1 6= s2 implies that the multiplicities involved in checking [FKM15c,

Def. 1.3] are either multiplicities from the 4-tuple associated to s1, or from

that associated to s2, and we are reduced to the situation in (3.1). Hence we

obtain (3.2) by [FKM15c, Cor. 1.6]. �

By definition, the bound (3.1) gives Lemma 2.3, and (3.2) gives Lemma 2.5.
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Remark 3.2. In the case of hyper-Kloosterman sums (K = Klk), the state-

ments we use are special cases of the bounds stated in [FKM15c, Cors. 3.2, 3.3].

3.2. Second moment computations. We now consider second moment av-

erages. These estimates will be used in the next section to prove irreducibility

of various sheaves.

For any finite extension Fqd/Fq, any b ∈ (Fqd)
4 and r ∈ Fqd , we define

(3.3) R(r, λ, b;Fqd) =
∑
s∈F

qd

K(r, s, λ, b;Fqd).

Note that, as a function of λ, this is the discrete Fourier transform of s 7→
K(r, s, 0, b;Fqd).

Lemma 3.3. Suppose that the bi, 1 6 i 6 4, are pairwise distinct in Fq .

For any d > 1, we have

(3.4)
1

(qd)2

∑∑
r,λ∈F

qd

|R(r, λ, b;Fqd)|2 = qd +O(qd/2),

where the implied constant depends only on the conductor of F.

If F is of SL-type and admits the special involution

(3.5) ξ =

Ç
−1 0

0 1

å
,

then we have

(3.6)
1

(qd)2

∑
r,λ∈F

qd

R(r, λ, b;Fqd)R(r,−λ, b;Fqd) = O(qd/2),

where the implied constant depends only on the conductor of F.

Proof. We abbreviate simply ψ = ψF
qd

and K(x) = K(x;Fqd) in the

computations. Opening the squares in the left-hand sides of (3.4) and (3.6)

and averaging over λ, we obtain

q−d
∑

r,s∈F
qd

|K(r, s, 0, b;Fqd)|2

= q−d
∑

r,s∈F
qd

4∏
i=1

|K(s(r + bi))|2

= q−d
∑
r∈F

qd

r+bi 6=0, i=1,...,4

∑
s∈F

qd

4∏
i=1

|K(s(r + bi))|2 +O(1)
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and

q−d
∑

r,s∈F
qd

K(r, s, 0, b;Fqd)K(r,−s, 0, b;Fqd)

= q−d
∑

r,s∈F
qd

2∏
i=1

K(s(r + bi))K(s(r + bi+2))K(−s(r + bi))K(−s(r + bi+2))

= q−d
∑
r∈F

qd

r+bi 6=0, i=1,...,4

∑
s∈F

qd

2∏
i=1

K(s(r + bi))K(s(r + bi+2))

×K(−s(r + bi))K(−s(r + bi+2)) +O(1)

respectively, where the implied constant depends only on the conductor of F.

Since ξ∗F is geometrically isomorphic to the tensor product of the dual

of F with a rank 1 sheaf L, by assumption, it follows that K(−x) = χ(x)K(x)

for some function χ with |χ(x)| = 1 for all x such that F is lisse at x. Hence

the last sum is equal to

q−d
∑
r∈F

qd

r+bi 6=0, i=1,...,4

∑
s∈F

qd

L(s)
2∏
i=1

K(s(r + bi))
2K(s(r + bi+2))

2
+O(1),

where

L(s) =
2∏
i=1

χ(s(r + bi))χ(s(r + bi+2))

is the trace function of a rank 1 sheaf. Using the relation ξ∗F ' F∨ ⊗ L, we

see that the conductor of L is bounded in terms of the conductor of F only.

We proceed to evaluate the sum over s using again [FKM15c]. (More

precisely, the final estimates follow from the extension to all finite fields of

these results, which is immediate.)

For each i, let

γr+bi =

Ç
r + bi 0

0 1

å
.

In the Sp-type case, since the r + bi are pairwise distinct for 1 6 i 6 4,

the 8-tuple

γ = (γr+b1 , . . . , γr+b4 , γr+b1 , . . . , γr+b4)

consists of four distinct pairs (γ, γ); by [FKM15c, Cor. 1.7 (1)], it follows that

for each r distinct from the −bi, for 1 6 i 6 4, we have∑
s∈F

qd

4∏
i=1

|K((r + bi)s)|2 = qd +O(qd/2),

and summing over r gives (3.4).
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In the SL-type case with r = rank(F) > 3, the components of the pair of

8-tuples

γ = (γr+b1 , . . . , γr+b4 , γr+b1 , . . . , γr+b4),

σ = (IdC, IdC, IdC, IdC, c, c, c, c)

satisfy the final assumption of [FKM15c, Cor. 1.7 (2)], and hence

∑
s∈F

qd

4∏
i=1

|K((r + bi)s)|2 = qd +O(qd/2)

also follows if r + bi is nonzero for each i. We therefore derive (3.4) again.

Finally we prove (3.6): Recall we are in the SL-type with the special

involution ξ as in (3.5) and with the pair of 8-tuples

γ = (γr+b1 , . . . , γr+b4 , γr+b1 , . . . , γr+b4),

σ = (IdC, IdC, c, c, IdC, IdC, c, c).

This pair is r-normal with respect to ξ (because the multiplicity of any element

in the tuple is either 0 or 2). Arguing as in the proof of [FKM15c, Th. 1.5]

(pp. 20–21, loc. cit.), we deduce that for each r distinct from the −bi for

1 6 i 6 4, we have

∑
s∈F

qd

L(s)
2∏
i=1

K(s(r + bi))
2K(s(r + bi+2))

2 � qd/2,

where the implied constant depends only on the conductor of F. �

Finally, we consider one more averaging over the r and b variables in the

case when λ = 0.

Lemma 3.4. For any d > 1, we have

1

(qd)5

∑∑
(r,b)∈F5

qd

|R(r, 0, b;Fqd)|2 = qd +O(qd/2),

where the implied constant depends only on the conductor of F.

Proof. By a change of variables, we see that the sum is given by

q−4d
∑∑
b1,b2,b3,b4

∣∣∣∣ ∑
s∈F×

qd

2∏
i=1

K(sbi;Fqd)K(sbi+2;Fqd)

∣∣∣∣2

=
∑

s,s′∈F×
qd

|C(K, s, s′;Fqd)|2|C(K, s′, s;Fqd)|2,
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where C(K, s, s′;Fqd) denote the correlation sum

C(K, s, s′;Fqd) = q−d
∑
b∈F

qd

K(sb;Fqd)K(s′b;Fqd)

= q−d
∑
b∈F

qd

K((s/s′)b;Fqd)K(b;Fqd).

By assumption, the sheaf F is geometrically irreducible and is such that

[×(s/s′)]∗F is geometrically isomorphic to F if and only if s = s′. Therefore

by the usual application of the Riemann Hypothesis (see Proposition 1.8), we

have

C(K, s, s′;Fqd) = δ(s, s′) +O(q−d/2),

where the implied constant depends only on the conductor of F. It follows that∑
s,s′∈F×

qd

|C(K, s, s′;Fqd)|2|C(K, s′, s;Fqd)|2 = qd +O(qd−d/2) +O(q2d−4d/2)

= qd +O(qd/2),

where the implied constant depends only on the conductor of F. �

4. Irreducibility of sum-product transform sheaves

The goal of this long section, which is the most difficult of the paper, is

to prove Theorems 2.4 and 2.6. In the whole section, we fix a prime q and a

nontrivial additive character ψ of Fq. We also fix an integer k > 2. We will

also assume that q is sufficiently large depending on k. In particular, unless

stated otherwise, we always assume that

q > k > 2.

We first begin by outlining the argument. The 7-variable function K and

its sum R associated to the trace function of a sheaf F are first interpreted as

trace functions of suitable sheaves in Section 4.1. The goal is then to prove that

various specializations of these sheaves, which we call sum-product sheaves, are

geometrically irreducible. This we can do when F is a Kloosterman sheaf. To

do so requires quite delicate properties of these sheaves, which are recalled in

Section 4.2. It also requires some relatively general tools, which are stated

for convenience in Section 4.3. The argument splits in two parts, depending

on whether we specialize with λ = 0 or with λ 6= 0, and these are handled

separately in Sections 4.4 and 4.5.
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4.1. Sum-product sheaves. Let F be an Q`-sheaf on A1
Fq

, lisse of rank

k and pure of weight 0 on a dense open subset, and mixed of weight 6 0

on A1. (Examples of this include the extension by zero of a lisse and pure

sheaf from an open subset or the middle extension of a lisse and pure sheaf

[Del80, Cor. 1.8.9].)

On the affine space A7 = A2 × A1 × A4, with coordinates denoted

(r, s, λ, b), we define the projection p2,3 : A7 −→ A1 by

p2,3(r, s, λ, b1, . . . , b4) = λs

and morphisms fi : A7 −→ A1 for 1 6 i 6 4 by

(4.1) fi(r, s, λ, b1, . . . , b4) = s(r + bi).

Let K be the Q`-sheaf on A7 defined by

(4.2) K = p∗2,3Lψ ⊗
2⊗
i=1

(f∗i F ⊗ f∗i+2F
∨).

The sheaf K is a constructible Q`-sheaf of rank k4 on A7, pointwise mixed

of weights 6 0. It is lisse and pointwise pure of weight 0 on the dense open set

UK that is the complement of the union of the divisors given by the equations

{s(r + bi) = µ} for µ ∈ SF and i = 1, . . . , 4,

where SF is the set of ramification points of F in A1. The trace function of K is

tK(r, s, λ, b) = K(r, s, λ, b)

for (r, s, λ, b) ∈ UK(Fq).

Now we consider the projection π(2) : A7 −→ A6 given by

π(2)(r, s, λ, b) = (r, λ, b),

and the compactly-supported higher-direct image sheaves Riπ
(2)
! K. Since the

fibers of π(2) are curves, these sheaves are zero unless 0 6 i 6 2.

Lemma 4.1. Assume that the sheaf F is bountiful with respect to the Borel

subgroup.

(1) For 0 6 i 6 2, the sheaf Riπ
(2)
! K on A6

Fq
is mixed of weights 6 i.

(2) Let V∆ be the subvariety of A4 given in Definition 2.2. The sheaves

R0π
(2)
! K and R2π

(2)
! K are supported on A1 ×A1 × V∆.

(3) For (r, λ, b) such that b /∈ V∆, the geometric monodromy representation

of the sheaf Kr,λ,b does not contain a trivial subrepresentation on a dense

open subset of A1 where it is lisse.
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Proof. The first part is an application of Deligne’s main theorem [Del80,

Th. 1]. For the second part, by the proper base change theorem, the stalk of

Riπ
(2)
! K at x = (r, λ, b) ∈ A6 is

H i
c(A

1
Fq
,Lψ(sλ) ⊗

2⊗
i=1

[×(r + bi)]
∗K⊗ [×(r + bi+2)]∗K∨),

where s is the coordinate on A1.

This cohomology group vanishes for i = 0 and any x. For i = 2 and x /∈
V∆, its vanishing is given by [FKM15c, Th. 1.5] using (only) the assumption

that F is bountiful in the sense of our definition.

For the last part, we first consider a closed point x = (r, λ, b). Then the

vanishing of the stalk

H2
c (A1

Fq
,Lψ(sλ) ⊗

2⊗
i=1

[×(r + bi)]
∗K⊗ [×(r + bi+2)]∗K∨)

of R2π
(2)
! K implies that the geometric monodromy representation of Kr,λ,b

has no trivial subrepresentation where it is lisse (by the co-invariant formula

and the semisimplicity that holds because the sheaf is pure of weight 0). The

statement then extends to all points by Pink’s Specialization Theorem [Kat90,

Th. 8.18.2]. �

The sheaf R1π
(2)
! K, which is mixed of weights at most 1, is almost the sheaf

we want to understand. However, some cleaning-up is required to facilitate the

later arguments. Precisely, recall (see [Del80, Th. 3.4.1 (ii)]) that a lisse sheaf

that is mixed of weight 6 w is an extension of a lisse sheaf that is pure of

weight w by a mixed sheaf of weight 6 w − 1. Thus the following definition

makes sense:

Definition 4.2 (Sum-product sheaf). Let F be a bountiful sheaf on A1
Fq

,

and let K be the sheaf (4.2) and R = R1π
(2)
! K. Consider the stratification

(Xi)16i6m of A6
Fq

such that

– X1 is the maximal open subset of A6 on which R is lisse;

– for i > 2, Xi is the maximal open subset of A6 \ (X1∪· · ·∪Xi−1) on which

R is lisse.

We define the sum-product transform sheaf R∗ associated to F as the con-

structible sheaf given as the sum over Xi of the maximal quotient of R|Xi that

is pure of weight 1 extended by zero to all of A6
Fq

, so that R∗|Xi is the maximal

quotient of R|Xi pure of weight 1.

For any (λ, b) ∈ A5, we denote by R∗λ,b the pullback of R∗ to the affine line

given by the morphism r 7→ (r, λ, b), and we call R∗λ,b a specialized sum-product

sheaf.
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By construction, the sum-product sheaf is punctually pure of weight 1. A

first property of this sheaf is as follows:

Proposition 4.3. For any d > 1, we have

1

(qd)5

∑∑
(r,b)∈F5

qd

|tR∗(r, 0, b;Fqd)|2 = qd +O(qd/2).

Proof. Since

tR∗(r, 0, b;Fqd) = tR(r, 0, b;Fqd) +O(1),

by construction, it is enough to prove that

1

(qd)5

∑∑
(r,b)∈F5

qd

|tR(r, 0, b;Fqd)|2 = qd +O(qd/2).

Let V∆ be the subvariety of A4 of Definition 2.2. We have∑∑
(r,b)∈F5

qd

|R(r, 0, b;Fqd)|2 =
∑∑

(r,b)∈F5
qd

b 6∈V∆(F
qd

)

|R(r, 0, b;Fqd)|2

+
∑∑

(r,b)∈F5
qd

b∈V∆(F
qd

)

|R(r, 0, b;Fqd)|2.

Since V∆ has codimension 2 and R(r, 0, b;Fqd) �k qd, the second sum is

bounded by �k q
5d. On the other hand, the first sum equals∑∑

(r,b)∈F5
qd

b6∈V∆(F
qd

)

|tR(r, 0, b;Fqd)|2.

By the same argument, we get∑∑
(r,b)∈F5

qd

b6∈V∆(F
qd

)

|tR(r, 0, b;Fqd)|2 =
∑∑

(r,b)∈F5
qd

|tR(r, 0, b;Fqd)|2 +O(q5d),

and the result then follows from Lemma 3.4. �

The following lemma is a fairly standard one:

Lemma 4.4. Let F1 and F2 be two lisse `-adic sheaves on a smooth geo-

metrically connected scheme X/Fq . Assume that F1 and F2 are both pure of

some weight w and that for any d > 1 and any x ∈ X(Fqd), we have

tF1(x;Fqd) = tF2(x;Fqd) +O(qd(w−1)/2),
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where the implied constant is absolute. Then the semisimplifications of F1 and

F2 are isomorphic.

Proof. By the Chebotarev density theorem, it suffices to prove that the

trace functions of F1 and F2 actually coincide (see, e.g., [Lau87, Prop. 1.1.2.1]).

After applying a suitable Tate twist, we may assume that w = 0. Let d > 1,

and let x ∈ X(Fqd). Denote by (αi) (resp. (βj)) the (complex) eigenvalues of

the Frobenius at x relative to Fqd on F1 (resp. F2). By assumption, for any

integer k > 1, we have ∑
i

αki =
∑
j

βkj +O(q−k/2).

We multiply this by zk and sum over k > 1, getting∑
i

αiz

1− αiz
=
∑
j

βjz

1− βjz
+R(z),

where R(z) is holomorphic for |z| < q1/2. Comparing poles, we deduce that

the αi’s are a permutation of the βj ’s, hence the result. �

We deduce from this an important duality property.

Lemma 4.5. For b = (b1, b2, b3, b4) ∈ A4, let b̃ = (b3, b4, b1, b2). For any

λ and b /∈ V∆, the arithmetic semisimplifications of R∗∨λ,b and R∗−λ,b̃(1) are

isomorphic on any dense open subset where R∗λ,b is lisse.

Proof. Let U be a dense open subset where R∗λ,b is lisse. We will check

that the sheaves R
∗,∨
λ,b and R∗−λ,b̃(1), which are both pure of weight −1, satisfy

the conditions of the previous lemma. Indeed, let d > 1 and x ∈ U(Fqd) be

given. We observe that

tR∗
−λ,b̃

(x;Fqd) = tR−λ,b̃(x;Fqd) +O(1) = −R(x,−λ, b̃) +O(1)

= −R(x, λ, b) +O(1) = tRλ,b(x;Fqd) +O(1)

= tR∗
λ,b

(x;Fqd) +O(1).

Since R∗λ,b is pure of weight 1 on U , we have further that

tR∗∨
λ,b

(x;Fqd) =
1

qd
tR∗
λ,b

(x;Fqd) =
1

qd
tR∗
−λ,b̃

(x;Fqd) +O(q−d).

The conclusion now follows. �

4.2. Properties of Kloosterman sheaves. We will study the sum-product

transform of the Kloosterman sheaves. We first summarize the basic properties

of the Kloosterman sheaves, which were originally defined by Deligne.
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Proposition 4.6 (Kloosterman sheaves). Let q > 2 be a prime number,

` 6= q an auxiliary prime number and ψ a nontrivial `-adic additive character

of Fq . Let k > 2 be an integer.

There exists a constructible Q`-sheaf K`k = K`ψ,k on P1
Fq

with the fol-

lowing properties :

(1) For any d > 1 and any x ∈ Gm(Fqd), we have

tK`(x;Fqd) = Klk(x;Fqd) =
(−1)k−1

qd(k−1)/2

∑
x1···xk=x

ψF
qd

(x1 + · · ·+ xk).

(2) The sheaf K`ψ,k is lisse of rank k on Gm.

(3) On Gm, the sheaf K`ψ,k is geometrically irreducible and pure of weight 0.

(4) The sheaf K`ψ,k is tamely ramified at 0 with unipotent local monodromy

with a single Jordan block.

(5) The sheaf K`ψ,k is wildly ramified at ∞, with a single break equal to 1/k,

and with Swan conductor equal to 1.

(6) There is an arithmetic isomorphism

K`∨ψ,k ' [x 7→ (−1)kx]∗K`ψ,k

and, in particular, K`ψ,k is arithmetically self-dual if k is even.

(7) If k > 2, then the arithmetic and geometric monodromy groups of K`ψ,k
are equal. If k is even, they are equal to Spk, and if k is odd, then they

are equal to SLk.

(8) The stalks of K`ψ,k at 0 and ∞ both vanish.

(9) If γ ∈ PGL2(Fq) is nontrivial, there does not exist a rank 1 sheaf L such

that we have a geometric isomorphism over a dense open set

γ∗K`ψ,k ' K`ψ,k ⊗ L.

Proof. All this is essentially mise pour mémoire from [Kat88]. The sheaf

K`k is the sheaf denoted Kln(ψ)((k − 1)/2) in [Kat88, 11.0.2]; precisely, prop-

erties (1) to (5) are stated with references in [Kat88, 11.0.2], property (6) is

found in [Kat88, Cors. 4.1.3, 4.1.4], and the crucial property (7) is [Kat88,

Th. 11.1, Cor. 11.3]. The sheaf constructed in [Kat88] is on Gm, and we ex-

tend by zero from Gm to P1, making property (8) true by definition. The last

property is explained, e.g., in [FKM15c, §3, (b), (c)]. �

Remark 4.7. (1) As a matter of definition, one possibility is to define K`ψ,k
as k-fold (Tate-twisted) multiplicative convolution of the basic Artin–Schreier

sheaf Lψ, namely,

K`k = (Lψ ? · · · ? Lψ)((k − 1)/2),

see [Kat88, 5.5].
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(2) Katz has also shown (see [Kat88, Cor. 4.1.2]) that property (1) char-

acterizes K`ψ,k as a lisse sheaf on Gm, up to arithmetic isomorphism.

(3) It might seem more natural to define K`ψ,k as the middle extension

from Gm to P1 of the sheaf constructed by Katz. However, the property of

being a middle extension is not preserved by tensor product, so we would not

be able to use directly any of the properties of middle-extension sheaves when

studying the sum-product transform sheaves. On the other hand, having stalk

zero is preserved by tensor product, and it will turn out that this property

simplifies certain technical arguments.

Corollary 4.8. For k > 2, the sheaf K`ψ,k is bountiful with respect to

the full group PGL2; it is of Sp-type if k is even, and of SL-type if k is odd.

In the second case, K`ψ,k has the special involution
(−1 0

0 1

)
. Moreover, the

conductor of K`ψ,k is bounded in terms of k only.

Proof. This is clear from Proposition 4.6 using the definition of bountiful

sheaves and of the conductor of a sheaf. �

For convenience, we will most often simply denote K`k = K`ψ,k since we

assume that ψ is fixed.

The following lemma computes precisely the local monodromy of K`k
at ∞. This is a special case of a formula of L. Fu [Fu10, Prop. 0.8] (which

also describes K`k as a representation of the decomposition group, not just the

inertia group).

Lemma 4.9. Assume q > k > 2. Denote by ψ̃ the additive character

x 7→ ψ(kx) of Fq . Then, as representations of the inertia group I(∞) at ∞,

there exists an isomorphism

K`k ' [x 7→ xk]∗(Lχk+1
2
⊗ Lψ̃),

where we recall that χ2 is the unique nontrivial character of order 2 of F×q .

Proof.According to the remark in [Kat88, 10.4.5], we have an isomorphism

K`k ' [x 7→ xk]∗(Lψ̃)

as a representation of the wild inertia subgroup P (∞) ⊂ I(∞). On the other

hand, by [Kat88, §1.18] and [Kat90, Th. 8.6.3], an I(∞)-representation that is

totally wild with Swan conductor 1 is determined, up to scaling, by its rank

and its determinant. (That is, if two such representations π1 and π2 have same

rank and determinant, then there exists a nonzero c such that π2 ' [×c]∗π1.)

Since detK`k is trivial (see Proposition 4.6(7)), it is sufficient to check that

the determinant of the I(∞)-representation [x 7→ xk]∗(Lχk+1
2
⊗ Lψ̃) is trivial.

But for any multiplicative character χ, we have a geometric isomorphism

det([x 7→ xk]∗(Lχ ⊗ Lψ̃)) ' χχk+1
2 ,
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and this is geometrically trivial if χ = χk+1
2 . (This follows, e.g., from the Hasse–

Davenport relations as in [Kat88, Prop. 5.6.2] or from the block-permutation

matrix representation of an induced representation, similarly to the argument

that appears later in Lemma 4.15.) �

Finally, we can state our main theorem concerning the sum-product sheaves

associated to Kloosterman sheaves.

Theorem 4.10 (Irreducibility of sum-product sheaves). Let k > 2 be an

integer. Let ` be a prime 6= q, and let R∗ be the `-adic sum-product transform

sheaf of K`k over Fq .

If q is sufficiently large with respect to k, there exists a closed subset Vbad ⊂
A4

Fq
containing V∆, of codimension 1 and of degree bounded independently of q,

stable under the automorphism (b1, b2, b3, b4) 7→ (b3, b4, b1, b2), such that for all

b = (b1, b2, b3, b4) not in Vbad, the following properties hold :

(1) for all λ, the specialized sum-product sheaf R∗λ,b is lisse and geometrically

irreducible on a dense open subset of A1;

(2) for all λ, there does not exist a dense open subset U of A1 such that R∗λ,b|U
is geometrically trivial ;

(3) if λ 6= λ′, then there does not exist a dense open subset U of A1 such that

R∗λ,b|U is geometrically isomorphic to R∗λ′,b|U .

(4) for all λ1, λ2, b1, b2, the dimensions of the stalks of the sheaf Rλi,bi and

the dimensions of the cohomology groups

H i
c(A

1
Fq
,Rλ1,b1)

and
H i
c(A

1
Fq
,Rλ1,b1 ⊗ Rλ2,b2)

are bounded in terms of k only — in particular, independently of q for k

fixed.

After some preliminaries, the proof splits into two cases: the case λ = 0

in Section 4.4 and the case λ 6= 0 in Section 4.5.

First, let us recall how this theorem implies our desired Theorems 2.4

and 2.6.

Theorem 4.11. Let k > 2 be an integer. Let R(r, λ, b) be the function

on A6(Fq) defined in (3.3). For any b ∈ F4
q − Vbad(Fq) and any λ, λ′ ∈ Fq ,

we have ∑
r∈Fq

R(r, λ, b)� q,

∑
r∈Fq

R(r, λ, b)R(r, λ′, b) = δ(λ, λ′)q2 +O(q3/2),

where the implied constant depends only on k.
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Proof. It is sufficient to prove the theorem when q is sufficiently large

with respect to k, since we can handle any finite set of primes by replacing the

implied constant by a larger one using trivial bounds for the sums.

First of all, note that by the proper base change theorem and the Grothen-

dieck–Lefschetz trace formula, we have

(4.3) tR(r, λ, b) = −
∑
s∈Fq

tK(r, s, λ, b) = −R(r, λ, b)

for b /∈ V∆(Fq), where the implied constant depends only on k. Since R is

mixed of weights 6 1 and of rank bounded in terms of k only, we have

tR(r, λ, b)� q1/2

for b /∈ V∆(Fq).

We begin the proof of the second bound. Thus let b ∈ F4
q − Vbad(Fq) (in

particular, b 6∈ V∆(Fq)) and λ, λ′ ∈ Fq be given. First, we have

R(r, λ, b) = R(r,−λ, b̃),

where b = (b3, b4, b1, b2) ∈ F4
q − Vbad(Fq). Thus the relation (4.3) and the

Grothendieck–Lefschetz trace formula imply that∑
r∈Fq

R(r, λ, b)R(r, λ′, b) =
2∑
i=0

(−1)i Tr
(
Frq | H i

c(A
1
Fq
,Rλ,b ⊗ R−λ′,b̃)

)
.

Let F = Rλ,b ⊗ R−λ′,b̃ and F∗ = R∗λ,b ⊗ R∗−λ′,b̃. Since R is mixed of weight

6 1, the tensor product sheaf F is mixed of weight 6 2, so the i-th compactly

supported cohomology group with coefficient in F is mixed of weight 6 i + 2

by Deligne’s Theorem [Del80].

The dimension of these cohomology groups are bounded in terms of k only

by Theorem 4.10 (4). Thus we have∑
r∈Fq

R(r, λ, b)R(r, λ′, b) = Tr(Frq | Wλ,λ′) +O(q3/2),

where Wλ,λ′ is the subspace of weight 4 in H2
c (A1

Fq
,F) = H2

c (UFq
,F), and the

implied constant depends only on k. (Here U is any dense open set where F is

lisse.)

By definition we have a short exact sequence

0 −→ G −→ F −→ F∗ −→ 0

of lisse sheaves on U where G is mixed of weights < 2. Taking the long co-

homology exact sequence and again applying Deligne’s Theorem, we see that

Wλ,λ′ 'W ∗λ,λ′ , where W ∗λ,λ′ is the subspace of weight 4 in H2
c (UFq

,F∗).

By the coinvariant formula, we have

H2
c (UFq

,F∗) = (F∗η̄)π1(U
Fq

)(−1),
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so it is sufficient to prove that the weight 2 part of the π1(UFq
)-coinvariants

of F∗ has dimension δ(λ, λ′) and that the action of Frq is multiplication by q

when λ = λ′.

The sheaves R∗λ,b and R∗λ′,b are geometrically irreducible by Theorem 4.10(1);

in particular, they are arithmetically semisimple. By Lemma 4.5, we have

arithmetic isomorphisms

R∗−λ′,b̃ ' R∗∨λ′,b(−1), F∗ ' R∗λ,b ⊗ R∗∨λ′,b(−1)

on U . Again by geometric irreducibility of R∗λ,b and R∗λ′,b, the monodromy

coinvariants of that tensor product is one-dimensional if R∗λ,b and R∗λ′,b are ge-

ometrically isomorphic and is zero otherwise. By Theorem 4.10(3), the sheaves

are geometrically isomorphic if and only if λ = λ′. In that later case the space

of (geometric) coinvariants of R∗λ,b⊗R∗∨λ′,b is one-dimensional, generated by the

trace, and Frq acts trivially on it; therefore Frq acts by multiplication by q on

F∗.

The argument for the first bound is similar but simpler. We work with

the cohomology groups H i
c(A

1
Fq
,Rλ,b), which are mixed of weights 6 i+ 1. It

is sufficient to show that the weight 3 part of H2
c (A1

Fq
,Rλ,b) vanishes, and thus

it is sufficient to show that the weight 1 part of the monodromy coinvariants of

Rλ,b vanishes. Because R∗ is the weight 1 part of R, this is the same as showing

that the monodromy coinvariants of R∗λ,b vanish. But R∗λ,b is irreducible and

nontrivial as a monodromy representation, by Theorem 4.10(2) (3), so it has

no coinvariants. �

4.3. Preliminaries. In this section we collect a number of results and def-

initions that we will use in the proof of our results. At first reading, it might

be easier to only survey the statements before going to the next section.

We will derive the irreducibility statement of Theorem 4.10 for λ 6= 0 from

the second of the following criteria:

Lemma 4.12. Let X0 and Y0 be normal varieties over Fq . Let f : Y0 → X0

be a smooth proper morphism whose fibers are curves and whose geometric

fibers are geometrically connected. Let D0 ⊂ Y0 be a divisor. Write X , Y

and D for the corresponding varieties over Fq .

For a lisse Q`-sheaf F on Y0−D0, consider the three following conditions :

(1) the sheaf F is geometrically irreducible and pure of some weight ;

(2) for the generic point η of X , there exists a point z of Dη defined over the

function field κ(η) of X such that there exists an irreducible component of

multiplicity 1 of the restriction of the monodromy representation of Fη to

the inertia group at z whose isomorphism class is preserved by the action

of the Galois group of κ(η) by conjugation on representations of the inertia

group;
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(3) the divisor D is finite and flat over X , and the function

x 7→
∑

y∈Yx−Dx
(Swany(F ⊗ F∨) + rank(F ⊗ F∨))

is locally constant on X .

Then the following statements are true:

(a) if (1) and (2) hold, then for all x in a dense open subset of X , the restric-

tion Fx = F|(Yx −Dx) to a fiber Yx −Dx is geometrically irreducible;

(b) if (1), (2) and (3) hold, then for all x in X , the restriction F|(Yx −Dx)

to a fiber Yx −Xx is geometrically irreducible.

Proof. We assume that conditions (1) and (2) hold. Let η′ be the generic

point of Y . By [GR71, V, Prop. 8.2], the natural homomorphism π1(η′) −→
π1(Y −D) is surjective. Since it factors through the natural homomorphism

π1(Yη −Dη)→ π1(Y −D),

it follows that the latter is also surjective. In particular, condition (1) shows

that the restriction of F to Yη−Dη corresponds to an irreducible representation

of π1(Yη−Dη). Thus Fη = F|(Yη−Dη) is an irreducible lisse sheaf on Yη−Dη.

Consider now a geometric point η̄ over η, the geometric fibers Yη̄ and Dη̄

and the pullback Fη̄ of Fη to (Y −D)η̄. We will show that condition (2) implies

that Fη̄ is irreducible.

Indeed, the representation of π1(Yη̄−Dη̄) corresponding to Fη̄ is semisim-

ple because it is the restriction to a normal subgroup of an irreducible, hence

semisimple, representation. Let

Fη̄ =
⊕
i∈I

niVi

be a decomposition of this representation of π1(Yη̄ −Dη̄) into irreducible sub-

representations, where ni > 1 and the Vi are pairwise nonisomorphic. The

quotient

G = π1(Yη −Dη)/π1(Yη̄ −Dη̄)

is isomorphic to the Galois group of the function field κ(η) of X since f has

geometrically connected generic fiber. It acts on the set {Vi} of irreducible sub-

representations of Fη̄. Since Fη is an irreducible representation of π1(Yη −Dη),

this action is transitive. Hence, for any point y of Dη defined over κ(η), the

restriction of Fη to the inertia group at y has the property that it is a direct

sum of n =
∑
ni subrepresentations that are G-conjugates (but not necessarily

irreducible or even indecomposable). In particular, any irreducible subrepre-

sentation of the inertia group whose isomorphism class is fixed by G appears

with multiplicity divisible by n. By condition (2), this means that n = 1, so

that Fη̄ is irreducible.
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By Pink’s Specialization Theorem (see [Kat90, Th. 8.18.2]), it follows

that Fx is geometrically irreducible for all x in some dense open subset, which

gives (a).

Now assume further that condition (3) holds. For a closed point x ∈ X,

the fiber Fx is geometrically irreducible if and only if the cohomology group

H2
c ((Y − D)x,Fq ,Fx ⊗ F∨x ) is one-dimensional, by the coinvariant formula for

the second cohomology group on a curve (see, e.g., [Kat88, 2.0.4]) and the fact

that Fx, being pure by condition (1), is geometrically semisimple (see [Del80,

Th. 3.4.1(iii)]). Equivalently, by the proper base change theorem, the special-

ized sheaf Fx is geometrically irreducible if and only if the stalk of R2f!(F⊗F∨)

at x is one-dimensional. Condition (3) and Deligne’s semicontinuity theo-

rem [Lau81, Cor. 2.1.2] imply that the sheaf R2f!(F⊗F∨) is lisse on X. Since

it has rank 1 at all closed points in an open set, by what we proved before,

it has rank 1 on all of X, which means that Fx is geometrically irreducible

for all closed points x in X. By Pink’s Specialization Theorem (see [Kat90,

Th. 8.18.2]), Fx is geometrically irreducible for all points in X. �

Remark 4.13. Our proof of condition (1) below generalizes to quite general

(bountiful) sheaves, but the proofs of conditions (2) and (3) involve careful

calculations that depend on specific properties of the Kloosterman sheaves.

This means that our results do not easily generalize to other sheaves.

However, condition (2) is a “generic” condition that should hold for a

“random” sheaf. Thus it should be possible to prove it in a number of dif-

ferent concrete cases. The last condition (3) is more subtle; although it is

always true on a dense open subset (hence is generic in that sense), the closed

complement where it fails will usually have codimension 1. However, it should

often be possible to explicitly compute that subset and to use this information

for further study; for instance, cf. Remark 2.7.

In this paper, we will only use the second criterion of Lemma 4.12 in the

proof of Theorem 4.10 to show that for all b outside of a proper subvariety,

the specialized sheaves R∗λ,b are geometrically irreducible for every nonzero λ.

However, the first criterion might be useful in other applications. (In the first

draft of this paper, we used it to deal with sum-product sheaves where λ = 0,

but we later found a simpler argument to deal with this case.)

To verify the first condition of the lemma, we will use Katz’s diophantine

criterion for geometric irreducibility (compare [Kat96, Lemma 7.0.3]).

Lemma 4.14 (Diophantine criterion for irreducibility). Let Y be a normal

variety over Fq , U ⊂ Y a dense open subset and F a sheaf on Y that is lisse

on U . Assume, moreover, that F|U is pure of some weight w and that F is
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mixed of weights 6 w on Y . Then F|U is geometrically irreducible if

1

qd dimY

∑
y∈Y (F

qd
)

|tF(y)|2 = qdw(1 + o(1))

as d tends to infinity.

Proof. Using a Tate twist, we may assume that w = 0. Let n be the

dimension of Y and D = Y − U . We have

1

qnd

∑
y∈Y (F

qd
)

|tF(y)|2 =
1

qnd

∑
y∈U(F

qd
)

|tF(y)|2 +
1

qnd

∑
y∈D(F

qd
)

|tF(y)|2.

The second sum is bounded by O(q−d) = o(1) using our assumption on the

weights of F on Y (and the reduction to w = 0), and hence the assumption

implies that

1

qnd

∑
y∈U(F

qd
)

|tF(y)|2 → 1

as d → +∞. On the other hand, the Grothendieck–Lefschetz Trace Formula

and the Riemann Hypothesis imply that∑
y∈U(F

qd
)

|tF(y)|2 = Tr(FrF
qd
| H2n

c (YFq ,F ⊗ F∨)) +O(qd(n−1/2)),

and therefore

1

qnd

∑
y∈U(F

qd
)

|tF(y)|2 = Tr(FrF
qd
| H2n

c (YFq ,F ⊗ F∨)(n)) + o(1).

By the semisimplicity of F (see [Del80, Th. 3.4.1 (iii)]) and the coinvariant

formula

H2n
c (YFq ,F ⊗ F∨) ' (F ⊗ F∨)π(U

Fq
)(−n),

we deduce by combining these formulas that the geometric invariant subspace

of F ⊗ F∨ is one-dimensional, which by Schur’s Lemma means that F is geo-

metrically irreducible. �

We will use the following lemma from elementary representation theory

to describe the local monodromy of tensor products of Kloosterman sheaves.

Lemma 4.15. Let G be a group and E an arbitrary field. Let H be a

normal subgroup of G of finite index. Consider the usual action σ · V = σ(V )

of G/H on E-representations of H , where x ∈ H acts on σ(V ) by the action

of σ−1xσ on V .
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For any finite-dimensional E-representations V1, . . . , Vn of H , we have a

canonical isomorphism
n⊗
i=1

IndGH Vi '
⊕

(σ2,...,σn)∈(G/H)n−1

IndGH

(
V1 ⊗

n⊗
i=2

σi(Vi)
)
.

Proof. We proceed by induction on n. The case n = 1 is a tautology. For

n = 2, we need to prove that

IndGH V1 ⊗ IndGH V2 '
⊕

σ∈G/H
IndGH (V1 ⊗ σ(V2)) .

To see this, first apply the projection formula

IndGH(V1 ⊗ ResHG IndGH V2) = IndGH V1 ⊗ IndGH V2

and then the fact that

ResHG IndGH V2 =
⊕

σ∈G/H
σ(V2),

which follows from the definition of induction. (See, e.g., [Kow14, Props. 2.3.15,

2.3.18] for these standard facts.)

We easily complete the proof for n > 3 by induction using the case

n=2. �

As a corollary, we now obtain the local monodromy at infinity for the

sheaves Kr,λ,b. To state the result, we recall from the introduction the notation

Lψ(cs1/k) for a variety X/Fq, an integer k > 1 and a function c on X: this is

the sheaf on X ×A1 (with coordinates (x, s)) given by

Lψ(cs1/k) = α∗Lψ(c(x)t),

where α is the map X ×A1 → X ×A1,

(x, t) 7→ (x, tk).

Lemma 4.16. Assume q > k > 2, and denote by ψ̃ the character x 7→
ψ(kx). Fix r, b, λ such that r + bi 6= 0 for all i. Let (r + bi)

1/k be a fixed k-th

root of r + bi in Fq .

Then the local monodromy at s = ∞ of Kr,λ,b is isomorphic to the local

monodromy at s =∞ of the sheaf

Lψ(λs) ⊗
⊕

ζ2,ζ3,ζ4∈µk

Lψ̃

((
(r + b1)1/k + ζ2(r + b2)1/k

− ζ3(r + b3)1/k − ζ4(r + b4)1/k
)
s1/k

)
,

(4.4)

where µk is the group of k-th roots of unity in Fq .
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More generally, for fixed λ and b, for any algebraic variety UFq , let f :

U −→ A1 − {−b1, . . . ,−b4} be a morphism, and assume there are morphisms

ri : U −→ A1 such that [x 7→ xk] ◦ ri = [x + bi] ◦ f . Assume that k is odd or

that there exist a constant c and a function g on U such that r1r2r3r4 = cg2.

Then the local monodromy of the sheaf (f × Id)∗Kλ,b on U × A1 along the

divisor U × {∞} is isomorphic to the local monodromy of the sheaf

Lψ(λs) ⊗
⊕

ζ2,ζ3,ζ4∈µk

Lψ̃

Ä
(r1 + ζ2r2 − ζ3r3 − ζ4r4) s1/k

ä
along U × {∞}

Proof. We have

Kr,λ,b = Lψ(λs) ⊗
2⊗
i=1

[×(r + bi)]
∗K`k ⊗ [×(r + bi+2)]∗K`∨k ,

so that it is enough to treat the case λ = 0. Furthermore, the first statement is

the special case of the second where U is a single point (the second assumption

holds with c = r1r2r3r4, g = 1), so it is enough to handle the second case. By

definition, we have

(f × Id)∗Kλ,b = (f × Id)∗
2⊗
i=1

(f∗i K`k ⊗ f∗i+2K`
∨
k )

=
2⊗
i=1

(
(f × Id)∗f∗i K`k ⊗ (f × Id)∗f∗i+1K`

∨
k

)
,

where fi is the map (r, s) 7→ s(r + bi).

Let α : A1 → A1 be the morphism t 7→ tk. By Lemma 4.9, the local

monodromy of K`k at ∞ is α∗(Lχk+1
2
⊗ Lψ̃).

Let V = A1−{−b1, . . . ,−b4}. For each i, we have the Cartesian diagram

U ×A1 A1

U ×A1 V ×A1 A1.

IdU×α

(u,t)7→ri(u)t

α

f×IdA1 fi

By proper base change, this implies that the local monodromy at ∞ of

(f × Id)∗f∗i K`k is the same as the local monodromy at ∞ of

(IdU × α)∗
(
Lχk+1

2
(rit)⊗ Lψ̃(rit)

)
.

In terms of representation theory, this means that the local monodromy

representation at ∞ is induced from the normal subgroup H of G = π1((U ×
Gm)Fq) corresponding to the covering IdU × α (which we will simply denote

α by slight abuse of notation).
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The quotient group G/H is naturally isomorphic to the Galois group of

the covering, which is isomorphic to µk by the homomorphism sending a root

of unity ζ ∈ µk to the maps (s, t) 7→ (s, ζt). One checks easily that the action

of ζ on representations of H is given by

ζ · Lχk+1
2

= Lχk+1
2

, ζ · Lψ̃ = [×ζ]∗Lψ̃.

Hence by Lemma 4.15, the local monodromy at ∞ of Kr,0,b is isomorphic

to that of ⊕
ζ2,ζ3,ζ4∈µk

α∗
(
Lχk+1

2 (r1t)
⊗ Lψ̃(r1t)

⊗ Lχk+1
2 (r2t)

⊗ Lψ̃(ζ2r2t)

⊗ Lχk+1
2 (r3t)

⊗ Lψ̃(−ζ3r3t) ⊗ Lχk+1
2 (r4t)

⊗ Lψ̃(−ζ4r4t)

)
'

⊕
ζ2,ζ3,ζ4∈µk

α∗
(
Lχk+1

2
(r1r2r3r4t

4)Lψ̃(r1t+ ζ2r2t− ζ3r3t− ζ4r4t)
)
.

If k is odd, then χk+1
2 is trivial. Otherwise χk+1

2 = χ2. Since r1, . . . , r4 are

nonvanishing on U , the sheaf Lχ2(r1r2r3r4t
4) is lisse on U ×Gm ⊆ U ×A1.

By assumption, we have r1r2r3r4 = cg2, so r1r2r3r4t
4 = c(gt2)2, and thus

Lχ2(r1r2r3r4t
4) is geometrically trivial on U ×Gm. Therefore we may ignore

that term, and we obtain (4.4). �

The following lemma about Kloosterman sheaves will prove useful to com-

pute the monodromy at r =∞ of sum-product sheaves.

Lemma 4.17. Let R be a strictly Henselian regular local ring of charac-

teristic q > 2 with fraction field K and maximal ideal m. Assume that q - k.

(1) If a ∈ R− {0} and b ∈ m, then we have

a∗K`k ' (a+ ab)∗K`k,

where we view a and a+ ab as maps Spec(R) −→ A1
Fq

.

(2) If a ∈ K× is such that a−1 ∈ m, and b ∈ R, then we have

a∗K`k ' (a+ b)∗K`k,

where we view a and a+ b as maps Spec(R) −→ P1
Fq

.

Proof. (1) There are two cases: either a ∈ m or a ∈ R×. If a ∈ m, we first

observe that as 1 + b ∈ R×, the ideals (a) and (a+ab) are the same, and hence

Z = a−1({0}) = (a+ ab)−1({0}) ⊂ Spec(R).

Let U be the open complement of Z in Spec(R). Let j be the open immersion

U → SpecR. As K`k is zero at 0 according to our definition, both a∗K`k and

(a+ ab)∗K`k are zero on Z. Thus a∗K`k is the extension by zero of j∗a∗K`k,

and (a+ ab)∗K`k is the extension by zero of j∗(a+ ab)∗K`k. So it is sufficient
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to check that j∗a∗K`k is isomorphic to j∗(a+ab)∗K`k on U , and then applying

j! gives the isomorphism on SpecR.

As K`k is lisse on Gm, the sheaves j∗a∗K`k and j∗(a+ ab)∗K`k are both

lisse on U . We next check that these two sheaves are isomorphic as lisse sheaves

on U , or equivalently that they are isomorphic as representations of π1(U).

First, a and a + ab, viewed as maps from Spec(R) to A1
Fq

, both factor

through the étale local ring at 0. So on the complement U of the inverse image

of zero, both maps factor through the generic point.

By Proposition 4.6(4), the local monodromy representation associated to

K`k at 0 is tame, hence it factors through the tame fundamental group

πt1 ' lim←
(n,q)=1

µn(Fq),

(see, e.g., [Mil80, Exams. I.5.2(c)]) corresponding to coverings obtained by

adjoining n-th roots of the coordinate with (n, q) = 1. To show that a∗K`k
and (a + ab)∗K`k are isomorphic on U , it is therefore enough by the Galois

correspondence to prove that, for any n with (n, q) = 1, the pullbacks under a

and a+ab of the covers obtained by n-th roots of the coordinate are isomorphic.

But 1 + b is a unit and R is a strict Henselian local ring, so that R contains an

n-th root of 1 + b, and the equation

(a+ ab)n = a1/n(1 + b)1/n

gives such an isomorphism.

On the other hand, if a ∈ R×, then a+ab ∈ R×. Hence both a and a+ab,

as maps from Spec(R) to A1
Fq

, send the special point to a point y ∈ Gm.

Therefore the pullbacks a∗K`k and (a+ ab)∗K`k are both locally constant on

Spec(R) and hence correspond to representations of π1(Spec(R)). These are

all trivial since π1(Spec(R)) is trivial for R strictly Henselian (see, e.g., [Mil80,

Ex. I.5.2(b)]), and since a∗K`k and (a+ab)∗K`k have the same rank, they are

isomorphic.

(2) Assume now that a−1 ∈ m. Then

u =
a+ b

a
= 1 +

b

a
∈ R×,

and hence (a+ b)−1 = u−1a−1 ∈ m. So both a and a+ b (now viewed as maps

Spec(R) −→ P1
Fq

) send the special point of Spec(R) to ∞ ∈ P1. Furthermore

the inverse image Z ⊂ Spec(R) of ∞ ∈ P1
Fq

is the same under both maps,

since multiplying by a unit does not change whether a function is infinite at a

point. Because the sheaves a∗K`k and (a+ b)∗K`k are 0 on Z and lisse on the

complement U = Spec(R) − Z, they are both the extensions by zero of their

restrictions to U , so it is enough to check that they are isomorphic on U as

lisse sheaves, or as representations of the fundamental group π1(U).
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As representations of the fundamental group, both sheaves are pullbacks

of the local monodromy representation of K`k. By Lemma 4.9, the local mon-

odromy of K`k at ∞ is isomorphic to that of the sheaf

[x 7→ xk]∗(Lχk+1
2
⊗ Lψ̃),

where ψ̃(x) = ψ(kx). It is therefore enough to show that the pullbacks of this

sheaf along a and a+ b are isomorphic.

Let Ca = Spec(R[a−1/k]) and Ca+b = Spec(R[(a + b)−1/k]), viewed as

étale covers of U . Then, because u = (a+ b)/a ∈ R× is a unit congruent to 1

modulo m (and k is coprime to q), there exists a k-th root (say v) of u in R×

that is congruent to 1 modulo m. The two covers are isomorphic via the map

Ca+b −→ Ca

induced by y 7→ vy. Let f : Ca −→ U be the covering map. We then have

a∗([x 7→ xk]∗(Lχk+1
2
⊗ Lψ̃)) ' f∗

(
(a1/k)∗Lχk+1

2
⊗ (a1/k)∗Lψ̃

)
,

(a+ b)∗([x 7→ xk]∗(Lχk+1
2
⊗ Lψ̃)) ' f∗

(
(va1/k)∗Lχk+1

2
⊗ (va1/k)∗Lψ̃

)
.

It is therefore sufficient to prove that

(a1/k)∗Lχk+1
2
⊗ (a1/k)∗Lψ̃ ' (va1/k)∗Lχk+1

2
⊗ (va1/k)∗Lψ̃.

Indeed, since q 6= 2 and v is a unit, we first have

(a1/k)∗Lχk+1
2
' (va1/k)∗Lχk+1

2

since v is a unit. Furthermore, since v − 1 = w belongs to m, we get

(va1/k)∗Lψ̃ ' (a1/k)∗Lψ̃ ⊗ (wa1/k)∗Lψ̃.

Now we claim that the second factor is trivial on R[a−1/k], which concludes

the proof. Indeed, w is in the ideal generated by a−1 (by the power series

v = 1 + bk−1a−1 + · · · ), so wa1/k is in the ideal generated by a−(k−1)/k and

thus in the maximal ideal of R[a−1/k]. Hence it sends SpecR[a−1/k] to a

neighborhood of 0 in A1
Fq

, where Lψ̃ is lisse and hence locally trivial, so the

pullback (wa1/k)∗Lψ̃ is trivial. �

We will need some simple facts about hypergeometric sheaves in the sense

of Katz [Kat90] — more precisely, about a particular hypergeometric sheaf.

Definition 4.18. For k > 2 an integer, we denote by Hk−1 the middle

extension to A1 with coordinate ξ of the `-adic sheaf on Gm given by

Hk−1 = [ξ 7→ ξ−1]∗j∗ FTψ(Lψ̃(x1/k)),

where j : Gm −→ A1 is the open immersion, and we recall that ψ̃(x) = ψ(kx).

It is important for later purpose to note the following lemma:
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Lemma 4.19. The sheaf Hk−1 is a multiplicative translate of a hyperge-

ometric sheaf of type (k − 1, 0) in the sense of Katz. More precisely, it is

geometrically isomorphic to

Hyp(−1)k(!, ψ̄; {χ|χk = 1, χ 6= 1}; ∅),

with the notation of [Kat90, 8.2.2, 8.2.13]. The inertia representation of Hk−1

at infinity is absolutely irreducible.

We thank the referee for giving a proof that is simpler than our original.

Proof. Since both Hk−1 and hypergeometric sheaves are middle-extension

sheaves (recall that k > 2), it is enough to prove the isomorphism after restric-

tion to Gm. We compute

j∗Hk−1 = [ξ 7→ ξ−1]∗j∗FTψ(Lψ̃(x1/k))

' [ξ 7→ ξ−1]∗j∗FTψ(j∗Hyp1(!, ψ; {χ|χk = 1}; ∅)) [Kat88, 5.6.2]

' [ξ 7→ ξ−1]∗Hyp(−1)k(!, ψ; ∅; {χ 6= 1, χk = 1})) [Kat88, 5.6.2]

' Hyp(−1)k(!, ψ; {χ 6= 1, χk = 1}; ∅),

where ' always denotes geometric isomorphisms.

The last assertion now follows from [Kat90, Th. 8.4.2(6)], which shows

that the inertia representation at ∞ is of dimension k − 1 with unique break

1/(k − 1) and [Kat88, Prop. 1.14], which shows that such a representation of

the inertia group at ∞ is absolutely irreducible. �

We will need some properties of the local monodromy at ∞ of Hk−1. To

state them, we need the following definition:

Definition 4.20. Let K be a local field, and let σ be an automorphism of

K. Let n > 1 be an integer, and let π be a uniformizer of K. We say that σ

is a reparametrization of order n if σ(π) is a uniformizer of K such that

σ(π) ≡ π (modπn).

Note that since an order n reparametrization acts on K, it also defines

an outer automorphism of the Galois group of K: each extension σ̄ of σ to

a separable closure K̄ of K gives an automorphism of Gal(K̄/K), and the

ambiguity in the possible choices of this extension amounts to conjugating σ̄

with an element of Gal(K̄/K), so that the corresponding outer automorphism

of the Galois group is well defined. This outer automorphism defines an action

of σ on the set of isomorphism classes of representations of the Galois group.

More abstractly, σ defines an automorphism of the category of finite étale

covers of Spec(K) by pullback, and hence acts on the category of étale sheaves

on Spec(K), which is equivalent to the category of Galois representations.
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Lemma 4.21. Assume that q > k > 2.

(1) The local monodromy representation at infinity of Hk−1 is invariant under

reparametrizations of order 2.

(2) The local monodromy representation at infinity of Hk−1, restricted to the

wild inertia group, is a direct sum of pairwise nonisomorphic characters

with multiplicity 1. The tame inertia group acts transitively on these char-

acters.

(3) Let α1, α2 be elements of an algebraically closed extension of Fq such that

the wild local monodromy representation at infinity of [×α1]∗Hk−1 and

[×α2]∗Hk−1 have a common irreducible component. Then α1 = α2.

Proof. The integer q is coprime with 2(k − 1) since q > k > 2. By

[Fu10, Th. 0.1(iii)] (which is more precise), we derive isomorphisms of I(∞)-

representations

Hk−1|I(∞) ' FTψ(Lψ̃(x1/k))|I(0)

' FTψ loc(∞, 0)([t 7→ tk]∗Lψ̃) ' [t 7→ −tk−1]∗(Lψ((k−1)t) ⊗ Lχ2),

(4.5)

where FTψ loc(·, ·) denotes Laumon’s local Fourier transform functors (see,

e.g, [Kat90, 7.4]).

To prove (1), it is therefore enough to prove that for any additive charac-

ter η and any multiplicative character χ, the local monodromy representation

at ∞ of [t 7→ tk−1]∗(Lη ⊗Lχ) is invariant under reparametrizations of order 2.

Let V denote this representation. Let R be the strict henselization at

∞, let K be its field of fractions, and let π be a uniformizer of R. Let g :

Spec(K) −→ Spec(K) be the map corresponding to t 7→ tk−1. A representation

obtained from V by applying a reparametrization of order 2 is of the form

σ∗V = (σ−1)∗V , where σ is an automorphism K such that σ(π) ≡ π (modπ2).

We view σ and σ−1 as automorphisms Spec(K) −→ Spec(K).

Let W = Lη ⊗ Lχ; we have V ' g∗W and hence (σ−1)∗V = τ∗W , where

τ = σ−1 ◦ g. There exists an automorphism σ1 such that τ = g ◦ σ1, and σ1 is

a reparametrization of order k. We can see this in coordinates by solving the

equation

σ1(t)k−1 = σ−1(tk−1) = tk−1 + a1t
2(k−1) + · · ·

with

σ1(t) = t+
a1

k − 1
tk + · · · .

Thus σ∗V ' g∗(σ1,∗W ) and, in particular, we obtain σ∗V ' V , provided W is

invariant under reparametrizations of order k. In fact, we will show that both

Lη and Lχ are invariant under any reparametrization σ1 of order k > 2, which

will be enough.
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For multiplicative characters, this amounts to saying that for d coprime

to q, the covering Spec(K(π−1/d)) −→ Spec(K) is invariant under σ1, which is

clear because if we write σ1(π) = π + bπ2 for some b ∈ R, we get

σ1(π)−1/d = π−1/d(1 + bπ)−1/d

and (1 + bπ)−1/d ∈ K. For additive characters, this amounts to proving that

the Artin–Schreier covering with equation yq − y = π−1 is invariant, and this

follows because the equation

zq − z =
1

σ1(π)
− 1

π
= − b

1 + bπ

is solvable in K.

(2) By (4.5), the local wild monodromy representation of Hk−1 at ∞ is

isomorphic to

[t 7→ −tk−1]∗(Lψ((k−1)t)).

It is equivalent to study this after pulling back by any tame cover. In particular,

after pulling back along the map t 7→ tk−1, we have to deal with

(4.6)
⊕

ξk−1=1

Lψ(ξ(k−1)t),

which is indeed a sum of one-dimensional characters. They are pairwise non-

isomorphic. (If we have, say, an isomorphism Lψ(ξ1(k−1)t) ' Lψ(ξ2(k−1)t) as

representations of the wild inertia group, then Lψ((ξ1−ξ2)(k−1)t) is tamely ram-

ified, which means that ξ1 = ξ2 since otherwise Lψ((ξ1−ξ2)(k−1)t) is a nontrivial

additive character sheaf with Swan conductor 1.)

Since Hk−1 is an irreducible representation of the full inertia group at

infinity (Lemma 4.19), the tame inertia group acts transitively by conjugation

on the set of characters in (4.6). (The direct sum of any subset of the characters

that is stable under the tame inertia group would define an inertia-invariant

subspace.)

(3) Let L/Fq be an algebraically closed extension. We use the same no-

tation Hk−1 and Lψ for the sheaves base-changed to L so that, for instance,

[×α]∗Hk−1 and Lψ(βt) are well defined for α and β ∈ L×.

Adding a multiplicative shift to the computation of (2), the pullback along

[t 7→ −tk−1] of the local wild monodromy representation of [×α]∗Hk−1 at ∞ is

isomorphic to ⊕
βk−1=α

Lψ((k−1)βt).

If the local wild monodromy representations of [×α1]∗Hk−1 and [×α2]∗Hk−1

at∞ have a common irreducible component, then one of the additive characters

appearing in one of the two sums must also appear in the other, so there exists β

such that α1 = βk−1 = α2. �
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The following lemma is quite standard but we include a proof for lack of

a suitable reference:

Lemma 4.22. (1) Let UFq be a dense open subset of a smooth projective

curve CFq , and let F be an `-adic sheaf on C . Assume that F is lisse and

pure of weight w on U , that it has no punctual sections, and that, viewed as

a representation of the geometric fundamental group of U , it has no trivial

subrepresentation.

Then the subspace of weight < w + 1 of H1(CFq
,F) is equal to⊕

x∈C−U
(FIxη /Fx),

where Ix is the inertia group at x and Fη is the stalk at the geometric generic

point of F.

(2) Let π : C → X be a smooth projective morphism of relative dimension 1

over Fq , and let F be an `-adic sheaf on C . Assume that F is lisse and pure of

weight w on e open subset U ⊂ C . Assume that for all x ∈ X in some dense

open subset, F|Cx has no punctual sections and that, when F|Cx is viewed as

a representation of the geometric fundamental group of Ux, it has no trivial

subrepresentation.

On the dense open set where R1π∗F is lisse, let (R1π∗F)<w+1 be the max-

imal lisse subsheaf of R1π∗F of weight < w + 1. Then for any point x in the

dense open subset where R1π∗F is lisse, we have an isomorphism

(R1π∗F)<w+1
x =

⊕
y∈Cx−Ux

((F|Cx)
Iy
η /(F|Cx)y),

where (F|Cx)η is the stalk at the geometric generic point of the restriction of F

to Cx.

Proof. (1) Let j : U −→ C denote the open immersion. Because F has no

punctual sections, the natural adjunction map F → j∗j
∗F is injective. Let G

be its cokernel. Then we have a long exact sequence

(4.7) · · · −→ H i(CFq
,F)→ H i(CFq

, j∗j
∗F)→ H i(CFq

,G) −→ · · · .

By assumption on F, we have

H0(CFq
, j∗j

∗F) = H0(UFq
, j∗F) = 0.

Since G is supported on C−U , its cohomology vanishes in degree above 1, and

hence we deduce a short exact sequence

0→ H0(CFq
,G)→ H1(CFq

,F)→ H1(C, j∗j
∗F)→ 0.

Because j∗j
∗F is the middle extension of a lisse sheaf pure of weight w,

a result of Deligne implies that its cohomology group H1(CFq
, j∗j

∗F) is pure

of weight w + 1 (see [Del80, Ex. 6.2.5(c) and Prop. 6.2.6]). Therefore the
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weight < w + 1 part of H1(CFq
,F) is the same as the weight < w + 1 part of

H0(CFq
,G). Since the sheaf G is punctual, we have

H0(CFq
,G) =

⊕
x∈C−U

Gx =
⊕

x∈C−U
(j∗j

∗F)x/Fx

(by definition of G). We also have

(j∗j
∗F)x = FIxη ,

and [Del80, Lemma 1.8.1] shows that this space is of weight 6 w, so that all

of H0(CFq
,G) is the weight < w + 1 part of H1(CFq

,F), as claimed.

(2) Denote again by j : U −→ C the open embedding. We want to

apply (1) fiber by fiber. First (since pushforward does not commute with

arbitrary base change), we let U1 denote a dense open subset of X such that

the adjunction map

F|π−1(U1)→ j∗j
∗F|π−1(U1)

is injective. (The existence of such a dense open set follows from [Del77,

Th. Finitude, Th. 1.9(2)], applied to the morphism j over the base X.) Let G

be the quotient sheaf. Then we again take the long exact sequence

· · · −→ Riπ∗F → Riπ∗j∗j
∗F → Riπ∗G −→ · · · .

The fiber over any x ∈ U1 of this exact sequence is the same as the ex-

act sequence (4.7) for the fiber curve Cx, again using [Del77, Th. Finitude,

Th. 1.9(2)]. In particular, for any point x′ ∈ U1 (closed or not), we have⊕
y∈Cx′−Ux′

((F|Cx′)
Iy
η /(F|Cx′)y) = (R0π∗G)x′ .

Thus (1) shows over any closed point x′ ∈ U1 that the weight < w + 1 part

of (R1π∗F)x′ is the image of (R0π∗G)x′ in (R1π∗F)x′ . Over a possibly smaller

dense open set U2 ⊂ U1 where R0π∗G and R1π∗F are both lisse, this implies

that the maximal weight < w + 1 lisse subsheaf of R1π∗F is R0π∗G. Then for

an arbitrary x ∈ U2, we have

(R1π∗F)<w+1
x = (R0π∗G)x =

⊕
y∈Cx−Ux

((F|Cx)
Iy
η /(F|Cx)y).

If x is the generic point, it is necessarily contained in the dense open

subset U2. If not, we can replace X by the closure of x in X and apply the

same argument, obtaining the same identity (because the direct sum⊕
y∈Cx−Ux

((F|Cx)
Iy
η /(F|Cx)y)

depends only on the fiber over x, and the same for (R1π∗F)<w+1
x , since taking

the weight < w + 1 part commutes with restriction to a closed subscheme.) �
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The next lemma will be useful to bound in terms of q the degree of the

subvariety Vbad for λ = 0, by showing that this variety is defined over Z[1/`].

Lemma 4.23. Let X and Y be separated varieties of finite type over

Z[1/`]. Let f : X → Y and g : X → A1 be morphisms. Let p2 : Gm ×X → X

be the second projection.

There exists an `-adic complex K on Y such that, for any prime q 6= `

and any additive character ψ of Fq , we have

R(f ◦ p2)!Lψ(tg) = K|YFq .

Proof. We denote by t a coordinate on Gm. As R(f ◦ p2)! = Rf!Rp2,!, it

is sufficient to prove that there exists a complex K ′ on X with

Rp2,!Lψ(tg) = K ′|XFq

for all q 6= ` and all ψ, as we can then take K = Rf!K
′.

Let p′2 denote the second projection Gm ×A1 → A1. By the proper base

change theorem, we have

Rp2,!Lψ(tg) = g∗Rp′2,!Lψ(tx)

for any q 6= ` and ψ, so it is sufficient to find a complex K∗ on A1
Z[1/`] with

Rp′2!Lψ(tx) = K∗|A1
Fq

for all q 6= ` and all ψ, and to define K ′ = g∗K∗.

By the above reduction we may assume that X = A1
Z[1/`] and write p2

for p′2. Let j : Gm → A1 be the open immersion and i : {0} → A1 the

complementary closed immersion. Then Rp2,!Lψ(tx) is the Fourier transform

of j!Q` (as extension by zero commutes with pullback and tensor product).

The existence of an `-adic complex on A1
Z[1/`] that specializes to FTψj!Q` =

Rp2,!Lψ(tx) in each positive characteristic q 6= ` is a special case of Laumon’s

homogeneous Fourier transform (see [Lau03, Th. 2.2]). In this special case,

L. Fu (see [Fu16, Lemma 3.2]) showed that we can take the complex to be j∗Q`.

�

Finally, we can prove the last part of Theorem 4.10.

Proposition 4.24. For all λ1, λ2 ∈ Fq, b1, b2 6∈ V∆(Fq), the dimensions

of the stalks of the sheaf R and the dimensions of the cohomology groups

H i
c(AFq

,Rλ1,b1), H i
c(AFq

,Rλ1,b1 ⊗ Rλ2,b2)

are all bounded in terms of k only.

Proof. We deal with the second of these cohomology groups. Fix λ1, λ2

in Fq, b1, b2 6∈ V∆(Fq). By construction of R and by interpreting sheaf-

theoretically the definition of the hyper-Kloosterman sums, there exist an affine
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variety VZ and maps f : V → A1
Z and g : V → A1

Z such that, for any prime q,

we have

(Rλ1,b1 ⊗ Rλ2,b2)|A1
Fq = Rf!g

∗Lψ[2].

(See also Lemma 4.27 below for this construction.)

By the Leray spectral sequence, it is enough to bound the sum of Betti

numbers ∑
i

dimH i
c(ṼFq ,Lψ(g)),

where Ṽ is the inverse image in V of either a line or a plane. Since (V, f, g)

are defined over Z, a suitable bound is given by the estimates of Bombieri and

Katz for sums of Betti numbers. (See the version of Katz in [Kat01, Th. 12].)

A similar argument applies to H i
c(A

1
Fq
,Rλ,b). �

Finally, we need a lemma on inertia groups that is probably well known

but for which we do not know a convenient reference.

Lemma 4.25. Let π : A5
Fq
→ A4

Fq
be the projection on the first four coor-

dinates. Let π̄ : P4 ×P1 → P4 be the analogue projection. For any divisor D

in P4, the induced homomorphism from the inertia group at the generic point

of π̄−1(D) to the inertia group at the generic point of D is surjective.

Proof. Let R (resp. R′) be the étale local ring of D (resp. of π̄−1(D))

at its generic point, and let K (resp. K ′) be its field of fractions. Then the

inertia group ID of D is the Galois group of K and the inertia group Iπ̄−1(D)

of π̄−1(D) is the Galois group of K ′. If the homomorphism Iπ̄−1(D) → ID of

profinite groups is not surjective, then its image is contained in some proper

open subgroup of ID. By the Galois correspondence, this means that there

exists some finite étale covering E → K without a section whose pullback to

K ′ admits a section.

We will show that every finite étale covering E → Spec(K) whose pullback

to K ′ admits a section already has a section over K, implying by contradiction

that the homomorphism is surjective, as claimed.

Let E → Spec(K) be such a covering, and let s′ be a section of the pullback

to K ′. The section s′ is defined over K ′ = R′[t−1], where t is a uniformizer of R

(and hence also a uniformizer of R′). Because R′ is the étale local ring of the

generic point of π̄−1(D), it is the étale local ring of the generic point η of the

special fiber A1
R. Because the section s′ is necessarily defined over some finitely

generated subring of R′[t−1], and R′ is the limit of the rings of functions on all

étale neighborhoods of η, the section s′ is defined over the ring of functions on

some étale neighborhood X → A1
R of η, after inverting t. The equations for s′

over this ring describe a map s : X − {t = 0} → E over Spec(R).
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The image of X in A1
R contains a Zariski neighborhood of η, which con-

tains all but finitely many closed points of the special fiber. Hence it contains

the image of some section of the projection π : A1
R → Spec(R). Let Y be the

pullback of X along that section. Then there is a morphism Y −{t = 0} → E,

and Y is an étale cover of Spec(R), so it contains a copy of Spec(R), hence

there is a map Spec(R)− {t = 0} → E, which means that E admits a section

over Spec(K) = Spec(R)− {t = 0}. �

4.4. Irreducibility of sum-product sheaves for λ = 0. We now begin the

study of sum-product sheaves in the case λ = 0. We always assume that q > k.

We denote by Rλ=0 (resp. R∗λ=0) the pullback i∗R (resp. i∗R∗) for the

inclusion i of A5 in A6 such that i(r, b) = (r, 0, b), and similarly we define

Kλ=0.

The main result of this section establishes that for q large enough, and

for generic values of b (i.e., outside some proper subvariety Vbad ⊂ A4
Fq

), the

sheaf R∗λ=0,b is geometrically irreducible.

The strategy is as follows:

(1) A key observation (Lemma 4.27) is that, by homogeneity, R∗λ=0 is defined

over Z[1/`]. In particular, this implies that for q large enough, the sheaf

R∗λ=0 is not wildly ramified.

(2) In Proposition 4.28, we use this fact together with the diophantine criterion

of irreducibility (Lemma 4.14) and the the mean square average asymptotic

formula of Proposition 4.3 to prove that R∗λ=0,b is generically geometrically

irreducible.

(3) In Proposition 4.29, we conclude and show, using (1), that Vbad is in fact

defined over Z[1/`].

Lemma 4.26. Let Z be the subvariety of A5 ×A4 defined by

(4.8) {(r, b, x1, x2, x3, x4) ∈ A5 ×A4 | xki = (r + bi), i = 1, . . . , 4},

and let Z̃ ⊂ A5 be the image of the subvariety of Z defined by the equation

x1 + x2 − x3 − x4 = 0 under the projection

(r, b, x1, x2, x3, x4) ∈ Z 7→ (r, b) ∈ A5.

(1) The image Z̃ is closed and irreducible.

(2) Let U be the dense open complement of the union of Z̃ and of the divisors

given by the equations r = −bi in A5. The sheaf Rλ=0 is lisse on U .

(3) On any dense open subset V ⊂ U where R∗λ=0 is lisse, the monodromy

representation of R∗λ=0 factors through π1(U).

Proof. (1) The projection Z → A5 is finite because Z is defined by ad-

joining the coordinates x1, x2, x3, x4 to A5, and each satisfies a monic poly-

nomial equation. Thus the closed subvariety of Z defined by the equation
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x1 + x2 − x3 − x4 = 0 is also finite over A5, and hence its image Z̃ is closed.

Moreover, Z̃ is the projection of the subvariety of A9 with equationsxki = r + bi, 1 6 i 6 4,

x1 + x2 − x3 − x4 = 0,

and hence this subvariety is isomorphic to the divisor in A5 with coordinates

(x1, x2, x3, x4, r) given by the equation x1 + x2 − x3 − x4 = 0. In particular, it

is irreducible, and therefore its image Z̃ is also irreducible.

(2) This will use Deligne’s semicontinuity theorem [Lau81]. Precisely,

as we already observed, the sheaf Kλ=0 is lisse on the complement of the

divisors given by the equations r = −bi and s = 0 in A6. We compactify the

s-coordinate by P1 and work on

X = (A1 ×P1 ×A4) ∩ {(r, s, b) | (r, b) ∈ U}.

By extending by 0, we view Kλ=0 as a sheaf on X that is lisse on the

complement in X of the divisors s = 0 and s =∞ (because U is contained in

the complement of the divisors r = −bi and thus X is as well). Let

π(2) : X −→ U

denote the projection (r, s, b) 7→ (r, b). Then π(2) is proper and smooth of

relative dimension 1 and Rλ=0|U = R1π
(2)
∗ K.

Since the restrictions of Kλ=0 to the divisors s = ∞ and s = 0 are zero,

this sheaf is the extension by zero from the complement of those divisors to

the whole space of a lisse sheaf. Deligne’s semicontinuity theorem [Lau81,

Cor. 2.1.2] implies that the sheaf Rλ=0 is lisse on U if the Swan conductor is

constant on each of these two divisors.

On s = 0, the Kloosterman sheaf has tame ramification, hence any tensor

product of Kloosterman sheaves has tame ramification. Thus Kλ=0 has tame

ramification at s = 0 and, in particular, the Swan conductor is zero, which is

constant.

On the other hand, Lemma 4.16 gives a formula for the local monodromy

representation at s =∞ as a sum of pushforward representations from the tame

covering x 7→ xk. Since the Swan conductor is additive and since the Swan

conductor is invariant under pushforward by a tame covering (see, e.g., [Kat88,

1.13.2]), it follows that

Swan∞(Kr,λ=0,b)

=
∑

ζ2,ζ3,ζ4∈µk

Swan∞
(
Lψ
ÄÄ

(r + b1)1/k + ζ2(r + b2)1/k

− ζ3(r + b3)1/k − ζ4(r + b4)1/k
ä
t
ä)

= k3,
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by definition of U , since the Swan conductor of Lψ(at) is 1 for a 6= 0. This is

constant, and therefore we deduce that Rλ=0 is lisse on U .

(3) The restriction R∗λ=0|V is a quotient of R|V , and both sheaves are lisse

on V ; since the monodromy representation of R|V factors through π1(U), the

same holds for R∗|V . �

We can now deduce the main result of this section. We first show that Rλ=0

is defined over Z. Intuitively, this is because its trace function is independent

of the choice of additive character ψ used in the definition of the Kloosterman

sheaf. Indeed, let ψ′(x) = ψ(λx), for some λ ∈ F×q , be any nontrivial additive

character of Fq and let

Klk,ψ′(x) = q−
k−1

2 (ψ′ ? · · · ? ψ′)(x) = Klk(λ
kx)

be the Kloosterman sums defined using ψ′ instead of ψ. We then have, with

obvious notation, the equality

Rψ′(r, 0, b) =
∑
s

2∏
i=1

Klk,ψ′(s(r + bi))Klk,ψ′(s(r + bi+2))

=
∑
s

2∏
i=1

Klk(λ
ks(r + bi))Klk(λks(r + bi+2)) = R(r, 0, b)

by making the change of variable s 7→ λks, so that (r, b) 7→ R(r, 0, b) does not

depend on the choice of ψ.

The following lemma is a geometric incarnation of this simple computa-

tion:

Lemma 4.27. For any prime `, there exists an `-adic sheaf Runiv on

A5
Z[1/`] such that, for any prime q 6= `, we have

Runiv|A5
Fq = Rλ=0,

where Rλ=0 is defined using the Kloosterman sheaf K`ψ,k for any nontrivial

additive character ψ of Fq .

Proof. Let X1 ⊂ Gk+1
m be the subvariety over Z with equation

x1 · · ·xk = t,

and let

f1 : X1 −→ A1

be the projection (x1, . . . , xk, t) 7→ t. For any prime q 6= ` and any ψ, we then

have an isomorphism

K`k,ψ ' Rfk−1
1,! Lψ(x1 + · · ·+ xk)
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of sheaves on A1
Fq

(up to a Tate twist). Let X2 be the variety in G4k
m ×A6

(over Z[1/`]) defined by the equations

k∏
j=1

xi,j = s(r + bi), 1 6 i 6 4,

and let f2 : X2 −→ A5 be the projection

f2(x1,1, . . . , x4,k, r, s, b) = (r, b).

By definition, it follows that for all q 6= `, we have

Rλ=0 = Rf4k−3
2,! Lψ

( k∑
j=1

(x1,j + x2,j − x3,j − x4,j)
)
.

Let X ⊂ G4k−1
m ×A6 be the variety over Z[1/`] with equations

α1,2 · · ·α1,k = β(r + b1),

α2,1 · · ·α2,k = β(r + b2),

α3,1 · · ·α3,k = β(r + b3),

α4,1 · · ·α4,k = β(r + b4).

The morphism X2 −→ Gm ×X given by

(x1,1, . . . , x4,k, r, s, b) 7→
(
x1,1,

(x1,2

x1,1
, . . . ,

x4,k

x1,1
, r,

s

xk1,1
, b
))

is an isomorphism over Z[1/`]. In coordinates (x1,1, x) of Gm ×X, we have

k∑
j=1

(x1,j + x2,j − x3,j − x4,j) = x1,1g(x),

where g : X −→ A1 is the morphism

(α1,2, . . . , α4,k, r, s, b) 7→ 1 +
k∑
j=2

α1,j +
k∑
j=1

(α2,j − α3,j − α4,j).

Similarly, the projection f2 is f ◦ p2 in the coordinates of Gm × X where

f : X −→ A5 is the projection (α1,2, . . . , α4,k, r, s, b) −→ (r, b) and p2 is the

second projection Gm ×X −→ X. Thus we get

Rλ=0 ' R4k−3(f ◦ p2)!Lψ(tg(x))

on A5
Fq

for all q 6= `.

We can now apply Lemma 4.23 to the variety X, to Y = A5 and to

f : X −→ Y . We deduce the existence of a complex K on A5
Z[1/`] such that,

for q 6= `,

R(f ◦ p2)!Lψ(tg(x)) = K|A5
Fq ,
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so

Rλ=0|A5
Fq = R4k−3(f ◦ p2)!Lψ(tg(x)) = H4k−3(K)|A5

Fq ,

and we can take Runiv = H4k−3(K). �

Proposition 4.28. For any sufficiently large prime q, the specialized

`-adic sum-product sheaf R∗λ=0,b is geometrically irreducible for all b in an

open dense subset of A4
Fq

.

Proof. We will show that R∗λ=0,b is geometrically irreducible at the generic

point. By Pink’s Specialization Theorem [Kat90, Th. 8.18.2], this will imply

the result on an open dense subset. We compactify A4 (resp. A5) in P4 (resp.

P4 × P1), and we compactify the projection π : A5 → A4 using the analogue

projection π̄ : P4 ×P1 → P4.

Let W be the stalk of R∗λ=0 at the generic point of A5, and let % : G −→
GL(W ) be the corresponding representation of the Galois group

G = Gal(Fq(b, r)/Fq(b, r)).

This representation is irreducible since the sheaf R∗λ=0 on A5 is geometrically

irreducible by an application of Lemma 4.14 and Proposition 4.3.

It is then enough to prove that the restriction of % to the normal subgroup

G1 = Gal(Fq(b, r)/Fq(b)(r))

is also irreducible, since this will show that the fiber of R∗λ=0 over the generic

point of A4 is geometrically irreducible. Note that G/G1 = Gal(Fq(b)/Fq(b)).

The quotient G/G1 acts on the set W of G1-invariant subspaces of W .

Assume that the action of G1 on W is not irreducible. Then there is some

nonzero proper G1-invariant subspace, which cannot be G-invariant, so the

action of G/G1 on W is not a trivial action.

Since the tame geometric fundamental group of A4 is trivial (see, e.g.,

[Org03, Th. 5.1] — using the fact that the tame fundamental group is inde-

pendent of the choice of compactification, as explained in loc. cit., and the fact

that the tame fundamental group of A1 is trivial), the action of G/G1 on W

must be ramified at some codimension 1 point of A4 or wildly ramified at ∞,

in the sense that the inertia group (resp. wild inertia group) at such a point

acts nontrivially.

Let D be divisor in A4 where the action of G/G1 is ramified. Denote

by ID the corresponding inertia group and by Iπ̄−1(D) the inertia group of the

divisor π̄−1(D). We have the commutative diagram

Iπ̄−1(D) G GL(W )

ID G/G1 Sym(W).
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By Lemma 4.25, the homomorphism on the left is surjective. Since ID acts

nontrivially on W, it follows that Iπ̄−1(D) acts nontrivially on W . Hence R∗λ=0 is

ramified at the pullback of some codimension 1 point of A4, or wildly ramified

at∞. By Lemma 4.26(3), the monodromy action of R∗λ=0 on some dense open

set V where it is lisse factors through π1(U). Since R∗λ=0|V is a quotient of

Rλ=0|V , it follows that Rλ=0 is either ramified at the pullback in A5 of some

codimension 1 point of A4 or wildly ramified at ∞.

However, if q is sufficiently large, the sheaf Rλ=0 is not wildly ramified at∞
because it is defined over Z (by Lemma 4.27) and hence can only have wild

ramification at finitely many primes (as can be seen by applying Abhyankar’s

Lemma [GR71, Exposé XIII, §5] as in [Kat80, Th. 4.7.1(i)]).

Furthermore, by Lemma 4.26(2), the sheaf Rλ=0 is lisse outside the com-

plement of the union of the subvariety Z̃ defined in that lemma and the divisors

given by the equations r = −bi in A5. So the only codimension 1 points where

the sheaf is ramified are the generic points of these divisors. The divisors

with equation r = −bi are clearly irreducible, and the same is true of Z̃ by

Lemma 4.26(1), so they each contain a single codimension 1 point; thus we

will obtain a contradiction if we show that none of these divisors is a pullback

from A4 under the map (r, b) 7→ b.

It is clear that the divisors with equation r + bi = 0 are not pullbacks

from A4. Recall that the divisor Z̃ was defined as the (closed) projection

of the subvariety with equation x1 + x2 − x3 − x4 of the subvariety Z of A9

given by (4.8), and (from Lemma 4.26 (1)) that it is irreducible. This means

we will be done if we check that Z̃ is not a pullback from A4 when q is

sufficiently large. For instance, note that (r, b) = (0, 1, 1, (−1)k, 3k) is in Z̃, as

the image of (1, 1,−1, 3, 0, 1, 1, (−1)k, 3k); if Z̃ is a pullback from A4, we must

have also (−1, b) = (−1, 1, 1, (−1)k, 3k) ∈ Z̃, but this is not the case since the

corresponding equations for (x1, . . . , x4) to be in Z impose
x1 = x2 = 0,

xk3 = −1 + (−1)k,

xk4 = −1 + 3k,

and to be in Z̃ we should have a solution with x3 = −x4, hence

(−1 + (−1)k) = (−1)k(−1 + 3k) ∈ Fq.

This equation holds only for finitely many primes q. �

Proposition 4.29. Fix a prime `. There exists a hypersurface Vbad ⊆
A4

Z[1/`], containing V∆, that is stable under the automorphism b 7→ b̃ =

(b3, b4, b1, b2) of A4, and such that, for any sufficiently large prime q, the spe-

cialized `-adic sum-product sheaf R∗λ=0,b over Fq is geometrically irreducible

for all b outside Vbad.
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Proof. First we see by Proposition 4.28 that, for a given q sufficiently

large, the sheaf R∗λ=0,b is geometrically irreducible for all b outside of some

subvariety of codimension > 1 over Fq.

To construct the exceptional subvariety over Z[1/`], we denote by σ :

A4
Z −→ A4

Z the automorphism (r, b) 7→ (r, b̃). We define the `-adic sheaf

F = Runiv ⊗ (Id × σ)∗Runiv, where Runiv is the sheaf on Z[1/`] constructed

in Lemma 4.27. This is a constructible sheaf on A5
Z[1/`]. Setting π to be the

projection (r, b) −→ b we define E = R2π!F, a constructible `-adic sheaf on

A4
Z[1/`].

Let U ⊂ A4
Z[1/`] be the maximal open subset where E is lisse. Let

H ⊃ A4 − U be any codimension 1 closed subscheme of A4
Z[1/`] containing

the complement of U . Then let

Vbad = V∆ ∪H ∪ σ(H).

It is clear that Vbad is stable under σ. We will now show that, for any q > k

distinct from `, the specialized sheaf R∗λ=0,b over Fq is geometrically irreducible

for b outside Vbad.

Let such a q be given, and fix b ∈ F4
q /∈ Vbad(Fq). We claim that the

specialized sheaf R∗λ=0,b is geometrically irreducible if and only if the weight 4

part of the stalk H2
c (A1

Fq
,Fb) of E|A4

Fq
at b is one-dimensional. If this is so,

then we are done: since mixed lisse sheaves are successive extensions of pure

lisse sheaves, the rank of the weight 4 part of E on the open set where it is lisse

is constant. The first part of the argument has shown that this weight 4 part

is of rank 1 on some dense open set, so we know it has rank 1 on the open set

where it is lisse.

The proof of the claim is similar to the argument in the proof of Theo-

rem 4.11 above. If Ub is a dense open subset on which Fb is lisse, we have

H2
c (A1

Fq
,Fb) ' (Fb,η̄)π1(Ub)(−1),

so the weight 4 part of the stalk is isomorphic to the weight 2 part of the

coinvariants of Fb,η̄. This weight 2 part is isomorphic to the coinvariants of the

maximal weight 2 quotient of F, which is R∗λ=0⊗ [Id×σ]∗R∗λ=0. By Lemma 4.5

(and the geometric simplicity of the sheaves), we have a geometric isomorphism

R∗∨λ=0,b ' R∗
λ=0,b̃

on any dense open set where the sheaf is lisse. So the weight 4 part of

H2
c (A1

Fq
,Fb) is the same as the coinvariants of R∗λ=0,b ⊗ R∗∨λ=0,b, which is just

the endomorphisms of R∗λ=0 as a geometric monodromy representation. Since

R∗λ=0 is geometrically semisimple, the dimension of this space is 1 if and only

if the representation is geometrically irreducible. �
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4.5. Irreducibility of sum-product sheaves for λ 6= 0. This section is de-

voted to the study of the irreducibility of sum-product sheaves for λ 6= 0. We

always assume that q > k > 2.

Using Lemma 4.12, we want to show that if b /∈ V∆, then Rλ,b is geometri-

cally irreducible for all λ 6= 0. This is the most delicate part of our argument.

The strategy is as follows:

(1) We show that for b /∈ V∆, the sheaf R∗b is geometrically irreducible on A2;

this gives the first condition in Lemma 4.12.

(2) Let 0 = (0, 0, 0, 0); we compute explicitly the wild part of the monodromy

at infinity of Rλ,0 for λ 6= 0.

(3) We show that the wild part of the monodromy at infinity of Rλ,b is inde-

pendent of b (for λ 6= 0) and thus is known by the previous step; this should

be understood intuitively from the fact that for any b = (b1, b2, b3, b4), the

map r 7→ (r, r, r, r) approximates the map r 7→ (r+ b1, r+ b2, r+ b3, r+ b4)

as r →∞.
(4) We extend the computation to R∗λ,b; this leads to a verification of the

second condition of Lemma 4.12.

(5) Finally, we check the last condition of this lemma.

In all of this section, we fix a tuple b 6∈ V∆(Fq).

Lemma 4.30. For any b 6∈ V∆(Fq), the sheaf R∗b on A2 is geometrically

irreducible on the open subset where it is lisse.

Proof. The result follows from Lemma 4.14 and (3.4), as in the beginning

of the proof of Proposition 4.29. �

Lemma 4.31. The following properties hold :

(1) the sheaf Rb is lisse on the complement U of the union of the divisor with

equation λ = 0 and of the divisors with equations r = −bi for 1 6 i 6 4;

(2) the generic rank of Rb is k4;

(3) the generic rank of Rλ=0,b is at most k3.

Proof. First we prove that Rb is lisse on U . Let

i : U ↪→ A1 ×Gm

and

j : A2 ×Gm ↪→ A1 ×P1 ×Gm

be the canonical open immersions, and let K̃b = j!Kb be the extension by 0

of Kb. Write π̃ for the projection (r, s, λ) 7→ (r, λ) on A1 × P1 × Gm. Let

π = π̃ ◦ j, W̃ = π̃−1(U) and W = π−1(U) so that W is the preimage of W̃

under j. Also denote by πW the restriction of π to W .

We note that Kb is lisse on the complement of s = 0 in W and vanishes

on the divisor s = 0. Similarly, K̃b is lisse on the complement of the smooth
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divisor {s = 0} ∪ {s =∞} in W̃ . Moreover, we have

Rb|U = R1πW !(Kb) = R1πW !(K̃b|W ),

where the point is that we write the restriction of Rb to U as a higher direct

image of the restriction of a sheaf lisse outside a smooth divisor.

We next claim that the Swan conductor of K̃b is constant along the two

divisors s = 0 and s =∞. Indeed, recall that

Kb = Lψ(λs) ⊗
2⊗
i=1

(f∗i K`k ⊗ f∗i+2K`
∨
k ) = Lψ(λs) ⊗ G,

say. Along the divisor s = 0, the pullbacks f∗i K`k and f∗i+2K`
∨
k are tamely

ramified since the Kloosterman sheaf K`k is tamely ramified at 0 and s 7→
(r + bi)s fixes 0 and ∞. Since Lψ(λs) is unramified along s = 0, we see that

K̃b is tamely ramified and, in particular, has constant Swan conductor equal

to zero.

On the other hand, the Kloosterman sheaf K`k is wildly ramified at ∞
with unique break 1/k, so the tensor product G above has all breaks at most

1/k at ∞ (again because fi fixes ∞ as a function of s). Since k > 2 and the

single sheaf Lψ(λs) has rank 1 and is wildly ramified at ∞ with break 1 (recall

that λ 6= 0 in this argument), the sheaf K̃b has unique break 1 at ∞. Since

the rank of K̃b is k4, the Swan conductor at s = ∞ of K̃b is the constant k4.

This establishes our claim.

It follows from the above and Deligne’s semicontinuity theorem [Lau81,

Cor. 2.1.2] that the sheaf R1πW !(Kb) is lisse on U . As we observed, this is the

same as the restriction of Rb to U , and hence Rb is lisse on U .

Now we consider the rank estimates. By the propre base change theorem,

the stalk of R over x = (r, λ, b) ∈ A2 × (A4 \ V∆) is H1
c (A1

Fq
,F), where

F = Lψ(sλ) ⊗
2⊗
i=1

[×(r + bi)]
∗K`k ⊗ [×(r + bi+2)]∗K`∨k )).

We recall from Lemma 4.1 that the 0-th and 2-nd cohomology groups of F

vanish, so that the rank of the stalk of R at x is minus the Euler–Poincaré

characteristic of the sheaf whose cohomology we consider. The Euler–Poincaré

formula for a constructible sheaf on A1 gives

χ(A1
Fq
,F) = rank(F)−

∑
x∈P1

Swanx(F)−
∑
x∈A1

dropx(F),

where dropx(F) is the generic rank of F minus the dimension of the stalk at x.

(See, e.g., [Kat12, p. 67] and the references there, or [Fu11, Cor. 10.2.7].)
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Since we normalized the Kloosterman sheaf K`k to have stalk 0 at 0, so

does F, and the above formula becomes

χ(A1
Fq
,F) = −

∑
x∈P1

Swanx(F)−
∑
x∈Gm

dropx(F).

(2) In the generic case λ 6= 0 and r + bi 6= 0, the rank is equal to k4

since the sheaf F is then lisse on Gm, tame at 0, and has unique break 1 with

multiplicity k4 at infinity.

(3) If λ = 0 (and b generic), then we get generic rank 6 Swan∞(F) 6 k3,

since F (for λ = 0) has all breaks 6 1/k at ∞ and rank k4. �

We now consider the local monodromy of Rb in terms of the r variable for

λ 6= 0. First we deal with the singularity r = −bi.

Lemma 4.32. On the open set where λ 6= 0, the sheaf Rb has tame rami-

fication around the divisors r = −bi for 1 6 i 6 4.

Proof. Let O be the ring of integers in a finite extension of Q` such that the

sheaves K`k and Lψ(λs) have a model over O, in the sense of [Kat88, Remark

1.10], and let $ be a uniformizer of O. Then Rb has a model over O and we

have

Swan−bi(Rb) = Swan−bi(Rb/$)

for any i (see, e.g., [Kat88, Rem. 1.10]). Thus we reduce to `-torsion sheaves.

We will show that the torsion sheaf Rb/$ is trivialized at −bi after pull-

back to a covering defined by adjoining n-th roots of r+bi, for some n coprime

to q. This implies that Rb/$ is tame at −bi and hence gives our claim.

We fix λ 6= 0, and we now view fi as a morphism A1 × A1 −→ A1

given by (r, s) 7→ s(r + bi). Over the étale local ring at 0, the sheaf K`k is

isomorphic (by Proposition 4.6(4)) to the extension by zero of a lisse sheaf U

on Gm corresponding to a principal unipotent rank k representation of the

tame fundamental group

lim←
(n,q)=1

µn(Fq)

of Gm. Hence f∗i K`k and f∗i U are isomorphic after pullback in an étale neigh-

borhood of the divisor D with equation s(r + bi) = 0 in A2.

The sheaf U/$ corresponds to a representation of the monodromy group

of an étale Kummer covering of Gm, defined by adjoining the n-th root of

the coordinate for some n coprime to q. Therefore f∗i U/$ corresponds to a

covering of A2, ramified over D, obtained by adjoining the n-th root of s(r+bi).

It follows that, if we adjoin the n-th root of r + bi, the cover defining f∗i U/$

becomes isomorphic to the cover obtained by adjoining the n-th root of s of

order coprime to q. Consider the map

g : A2 −→ A2
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with g(t, s) = (tn−bi, s). Then because of this isomorphism of covers, g∗f∗i U/$

is locally isomorphic to g∗[(r, s) 7→ s]∗U/$ = [(t, s) 7→ s]∗U/$. From now on,

we will write s∗U/$ for [(t, s) 7→ s]∗U/$.

The sheaf g∗f∗i K`k is lisse on A2 away from the lines s = 0 and t = 0.

We claim that g∗f∗i K`k, restricted to the open set t 6= 0, may be extended

to A2 as a sheaf K`′k in such a way that K`′k is lisse away from the line

s = 0 and isomorphic to s∗U/$ on the line t = 0. This is an étale-local

condition, and it may be checked in an étale neighborhood of the line t = 0.

In fact, since it depends only on the restriction to the open set t 6= 0, it may

be checked on the complement of the line t = 0 in an étale neighborhood of

itself. In such a neighborhood, we have the two aforementioned isomorphisms

g∗f∗i K`k/$
∼= g∗f∗i U/$

∼= s∗U/$. The existence of the desired extension is

obvious for s∗U/$ and hence holds for g∗f∗i K`k. We next denote by K`0k the

extension by zero to A2 of the restriction of K`′k to the complement of the line

s = 0 in A2.

We have

g∗Kb/$ = g∗Lψ(λs)/$ ⊗ g∗f∗i K`k/$ ⊗
⊗
j 6=i

g∗f∗jK`k/$.

Let

K0
b = g∗Lψ(λs)/$ ⊗K`0k ⊗

⊗
j 6=i

g∗f∗jK`k/$

be the same tensor product but with the g∗f∗i K`k/$ term replaced with K`0k.

Then K0
b is lisse on A2 away from the line s = 0 and the lines tn − bi = −bj

for j 6= i.

The sheaf R1π!K
0
b is lisse in an étale neighborhood of 0, by a proof similar

to the proof in Lemma 4.31 that K is lisse. Indeed, K0
b is lisse near t = 0 away

from s = 0 and s =∞, and tamely ramified at 0, so by Deligne’s semicontinuity

theorem [Lau81, Cor. 2.1.2] it suffices to check that the Swan conductor of K0
b

at∞ is constant. The three Kloosterman sheaves all have breaks at∞ strictly

less than 1, and the same is true of K0 because for t 6= 0, it is a Kloosterman

sheaf and at t = 0 it is unipotent and tame. Thus tensoring with Lψ(λs), all

the breaks become 1 and the Swan conductor is constant.

So the local monodromy at t = 0 of R1π!K
0
b is trivial. But, by construc-

tion, the sheaf K0
b is isomorphic to g∗Kb/$ away from t = 0, so the local

monodromy of

R1π!g
∗Kb/$ = [t 7→ tn − bi]∗R1π!Kb/$ = [t 7→ tn − bi]∗Rb/$

around t = 0 is also trivial. Thus Rb/$ has trivial local monodromy after

adjoining the n-th roots of the uniformizer, and it is tamely ramified, as desired.

�
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It remains to compute the local monodromy at ∞. For this purpose,

we will use the theory of nearby and vanishing cycles. Since this theory is

likely to be unfamiliar to analytic number theorists, Appendix A gives a short

introduction, with some explanation of its relevance for our purposes.

Lemma 4.33. Let λ 6= 0 be fixed in a field extension (possibly transcen-

dental) of Fq . Let X be the blowup of P1 × P1 at the point (r, s) = (∞, 0).

Consider the projection X −→ P1 given by (r, s) 7→ r. Let F be the extension

by zero of the sheaf Kλ,b on A2 to X , and let G be the extension by zero of

Kλ,0 on A2.

(1) The nearby cycles sheaves of F and G over r = ∞ are locally isomorphic

at all s 6=∞ in P1 and at each point of the exceptional divisor of X .

(2) The nearby cycles sheaves of F and G over r = ∞ have the property that

the stalk of RΨF at s = ∞, as a representation of the wild inertia group,

can be split into summands

%1, . . . , %m,

and the stalk of RΨG at s = ∞, as a representation of the wild inertia

group, can be split into summands

%′1, . . . , %
′
m

such that, for all i, the representations %′i and %i of the wild inertia group

are isomorphic up to order 2 reparametrizations, in the sense of Defini-

tion 4.20.

Remark 4.34. We use the blowup X instead of P1 × P1 because the ar-

gument below would not apply to P1 × P1: for (r, s) = (∞, 0), the function

1/(rs) does not belong to the maximal ideal. See, e.g., [Har77, pp. 28, 29] for

a quick description of blowups.

Proof. (1) Since

Kλ,b = Lψ(λs) ⊗
2⊗
i=1

(
[s 7→ (r + bi)s]

∗K`k
)
⊗
(
[s 7→ (r + bi+2)s]∗K`∨k

)
,

Kλ,0 = Lψ(λs) ⊗
2⊗
i=1

(
[s 7→ rs]∗K`k

)
⊗
(
[s 7→ rs]∗K`∨k

)
,

on A2, the étale-local nature of nearby cycles shows that it is enough to prove

that, for 1 6 i 6 4, the sheaf [s 7→ (r + bi)s]
∗K`k is locally isomorphic to

[s 7→ rs]∗K`k on A1 − {0} ⊂ P1 (with coordinate s) and on the exceptional

divisor D of the blowup.

For points not on the exceptional divisor, we apply Lemma 4.17(2) to the

strict henselization R of the local ring at (∞, s) ∈ X, with a = rs and b = bis,
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where r and s are now viewed as elements of the field of fractions of R. Note

that r−1 belongs then to the maximal ideal m of R (since we are considering

the situation at r = ∞) and s is a unit (since we are outside the exceptional

divisor), hence a−1 also belongs to m. Moreover b ∈ R, and therefore we obtain

(a+ b)∗K`k ' a∗K`k,

which is the desired conclusion.

The exceptional divisor D is isomorphic to P1 by the map (r, s) 7→ s/r−1

= rs. Hence, for all points x on D except the point mapping to ∞ under

this isomorphism, the function rs is a function in the local ring at x, and

we may apply Lemma 4.17(1) to the strict henselization R of the local ring

at that point, with a = rs and b = bi/r. The function 1/(rs) vanishes at

the point mapping to ∞, thus is in the maximal ideal, so we may again use

Lemma 4.17(2) with a = rs and b = bis.

(2) We denote again by R the strict henselization of the local ring at

(∞,∞) ∈ P1 × P1 and by m its maximal ideal. We also denote by R1 the

strict henselization of the local ring at∞ of P1 (with coordinate r), and by m1

its maximal ideal. Then 1/r is a uniformizer or R1. Let R0 be the extension of

R1 generated by a k-th root 1/% of 1/r. Let U = SpecR0[%]. Since 1 + bi/r ≡
1 (modm), there exists yi ∈ R1 ⊂ R with yki = 1 + bi/r and yi ≡ 1 (modm1).

We can apply Lemma 4.16 to U , where f is the projection to SpecR1 − {∞}
composed with the inclusion SpecR1−{∞} → A1−{−b1, . . . , b4} and ri = %yi.

We observe that r1r2r3r4 = %4y1y2y3y4 is a perfect square, as y1, y2, y3, y4

are all units in R1, hence squares in R1 and thus squares in R0. Hence, by

Lemma 4.16, we have an isomorphism of local monodromy representations

[f × Id]∗
(
Lψ(λs) ⊗

2⊗
i=1

f∗i K`k ⊗ f∗i+2K`
∨
k

)
'

⊕
ζ2,ζ3,ζ4∈µk

Lψ(λs) ⊗ Lψ̃

(
s1/k%

(
y1 + ζ2y2 − ζ3y3 − ζ4y4

))
,

where ψ̃(x) = ψ(kx) as before.

The complex of nearby cycles is preserved by this pullback to a k-th power

covering, as is the action of the wild inertia subgroup (because the action of

the full inertia group is restricted to the inertia group of the covering, which

contains the wild inertia group).

Since the nearby cycle functor is additive, we have a local isomorphism

[f×Id]∗RΨKλ,b '
⊕

ζ2,ζ3,ζ4∈µk

RΨ
(
Lψ(λs)⊗Lψ̃

(
s1/k%

(
y1 +ζ2y2−ζ3y3−ζ4y4

)))
,

and we handle each term in the sum separately. We will show that, for each

(ζ2, ζ3, ζ4), either the corresponding component has no nearby cycles for any
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b ∈ A4 (not only for b 6∈ V∆), or that its nearby cycles, with the action of

the wild inertia group, are independent of b ∈ A4, up to reparametrizations of

order 2. We consider two cases.

Case 1. Assume that 1 + ζ2 = ζ3 + ζ4. In that case, the element

y1 + ζ2y2 − ζ3y3 − ζ4y4

of R belongs to the maximal ideal. Since %−1 is a uniformizer of R0, the element

%(y1 + ζ2y2 − ζ3y3 − ζ4y4)

belongs to R0. Thus the sheaves

Lψ(λs), Lψ̃

Ä
s1/k% (y1 + ζ2y2 − ζ3y3 − ζ4y4)

ä
both extend to lisse sheaves in an étale neighborhood of (∞,∞) away from the

line s =∞.

To check that their tensor product has no vanishing cycles, it suffices (by

Deligne’s semicontinuity theorem once more [Lau81, Th. 5.1.1]) to check that

the Swan conductor is constant. But the breaks at infinity (in terms of s) of

Lψ̃

Ä
s1/k% (y1 + ζ2y2 − ζ3y3 − ζ4y4)

ä
are all 6 1/k, while Lψ(λs) has break 1, so the tensor product has all breaks

equal to 1, and we are done.

Case 2. Assume that 1 + ζ2 6= ζ3 + ζ4. Then we have

y1 + y2ζ2 − y3ζ3 − y4ζ4 = (1 + ζ2 − ζ3 − ζ4)d,

where d ∈ R1 satisfies d ≡ 1 (modm1). Let µ = %d and u = rdk = µk. Then

we have

%(y1 + y2ζ2 − y3ζ3 − y4ζ4) = µ(1 + ζ2 − ζ3 − ζ4).

So, after pulling back to U (which is also the cover defined by adjoining µ), we

are dealing with the sheaf

Lψ(λs) ⊗ Lψ̃

(
s1/kµ(1 + ζ2 − ζ3 − ζ4)

)
.

The wild inertia action on the nearby cycles of this sheaf, in terms of the

variable u, can be computed on the pullback to the cover defined by µ with

µk = u. Thus it is independent of b ∈ A4, because this formula for the pullback

is independent of b and the cover is also independent of b.

Since 1/r and 1/u are uniformizers of R1, there is a unique automorphism

σ of R1 sending r to u. Since d ≡ 1 (modm1), it follows that

1

u
≡ 1

r
(mod (1/r)2),

and hence σ is a reparametrization of order 2 (see Definition 4.20). This is the

desired result. �
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We will describe the wild part of the local monodromy at r = ∞ of Rλ,b
using the following data.

Definition 4.35. Let k > 2, and let q be a prime with q - k. We denote by

Sk the multiset of nonzero elements of Fq of the form

(1 + ζ2 − ζ3 − ζ4)k,

where ζ2, ζ3 and ζ4 range over µk(Fq).

We first use this definition to treat the local monodromy for Rλ,0.

Lemma 4.36. Let λ 6= 0 be fixed in a field extension (possibly transcenden-

tal) of Fq . The local monodromy representation of Rλ,0 at r =∞ is isomorphic

to that of the sheaf ⊕
α∈Sk

[×αλ−1]∗Hk−1,

where Hk−1 is the sheaf defined in Definition 4.18, plus a tamely ramified

representation.

The meaning of the direct sum over the multiset Sk is⊕
ζ2,ζ3,ζ4∈µk

1+ζ2−ζ3−ζ4 6=0

[×((1 + ζ2 − ζ3 − ζ4)kλ)−1]∗Hk−1,

and similarly below.

Proof. Note that every representation of the inertia group is a sum of a

wildly ramified representation and a tamely ramified representation, as the

wild part is a q-group, so has semisimple `-adic representation theory, hence

every representation of the wild inertia group splits canonically into trivial

and nontrivial parts. Thus, because Hk−1 is totally wild at ∞, we concern

ourselves only with the wild summand.

The change of variable

(r, s) 7→ (λ/r, rs)

is an isomorphism Gm×A1 −→ Gm×A1 (with inverse (ξ, x) 7→ (λ/ξ, xξ/λ)).

In terms of the variables (ξ, x), the sheaf Rλ,0 becomes the Fourier transform

with respect to ψ of the sheaf

F =
2⊗
i=1

K`k ⊗K`k,

on A1 with coordinate x, reflecting the trace function identity∑
s∈Fq

ψ(λs)
2∏
i=1

Klk(rs)Klk(rs) =
∑
x∈Fq

ψ(xξ)
2∏
i=1

Klk(x)Klk(x).



BILINEAR FORMS WITH KLOOSTERMAN SUMS 479

We now need to compute the local monodromy at ξ = 0 of this Fourier

transform, which we can do using Laumon’s local Fourier transform functors.

Laumon’s results (see, e.g., [Kat90, Th. 7.4.3 and Cor. 7.4.3.1]) give an iso-

morphism

Rλ,0/(Rλ,0)0 ' FTψ loc(∞, 0)(F(∞))

of representations of the inertia group at 0, where (Rλ,0)0 is the stalk at 0

and F(∞) is the local monodromy representation of F at ∞. Since the stalk

at 0 is a trivial representation of the inertia group, this implies that the wild

summand of the local monodromy is the same as that of FTψ loc(∞, 0)(F(∞)).

Using Lemma 4.9 as in Lemma 4.16, the local monodromy at ∞ of F is

isomorphic to that of⊕
ζ2,ζ3,ζ4∈µk

Lψ̃

Ä
x1/k(1 + ζ2 − ζ3 − ζ4)

ä
=

⊕
ζ2,ζ3,ζ4∈µk

Lψ̃

((
(1 + ζ2 − ζ3 − ζ4)kx

)1/k)
,

where ψ̃(x) = ψ(kx). All triples (ζ2, ζ3, ζ4) with 1+ζ2−ζ3−ζ4 = 0 give tamely

ramified local monodromy, whose local Fourier transform at 0 is also tamely

ramified (see, e.g., [Kat90, Th. 7.4.4 (3)]), so they do not contribute to the

wild part of the local monodromy.

Otherwise, if α = (1 + ζ2 − ζ3 − ζ4)k 6= 0 is an element of Sk, then we

have the following isomorphisms of local monodromy representations at 0 in

A1 with (Fourier) coordinate ξ, using the definition of the sheaf Hk−1:

FTψ loc(∞, 0)(Lψ̃((αx)1/k)) = [×α−1]∗RΦη0 FTψ(Lψ̃(x1/k))

' [×α−1]∗RΦη0([ξ 7→ ξ−1]∗Hk−1)

' [×α−1]∗[ξ 7→ ξ−1]∗Hk−1,η∞

' [ξ 7→ (α/ξ)]∗Hk−1,η∞ .

(It is important to note that when composing pullbacks, one applies the left-

most functions first, since this is the opposite order from the usual composition

of functions, where the rightmost is applied first. So ξ is sent to α−1ξ, which

is sent to (α−1ξ)−1 = α/ξ.) Since ξ = λ/r, this concludes the proof. �

We can finally conclude

Corollary 4.37. Let λ 6= 0 be fixed in a field extension (possibly tran-

scendental) of Fq . The wild inertia representation of Rλ,b at r = ∞ is the

same as that of the sheaf ⊕
α∈Sk

[×αλ−1]∗Hk−1

plus a trivial representation.
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For the proof, we use the same notation as in Lemma 4.33. Thus, X

denotes the blowup of P1×P1 at (∞, 0) and F and G on X are the extensions

by 0 from A1 ×A1 to X of Kλ,b and Kλ,0 respectively. Let π be the proper

map

X −→ P1 ×P1 −→ P1,

where the second map is the proper projection (r, s) 7→ r.

We need to compute the wild inertia representations at ∞ of Rπ∗F and

Rπ∗G. To do that, we use the nearby cycles RΨF and RΨG relative to π.

These are complexes of sheaves with an inertia group action on the fiber over

∞ over X. We know by Lemma 4.33 that RΨF and RΨG are locally isomorphic

away from the point (∞,∞).

The key step is the following sub-lemma:

Lemma 4.38. Away from (∞,∞), the wild inertia group acts trivially on

RΨG.

Proof. Let f1(r, s) = rs. By definition, we have

Kλ,0 = Lψ(λs) ⊗ f∗1K`⊗2
k ⊗ (f∗1K`k

∨
)⊗2.

Because we are verifying a local condition away from the line s =∞, we may

ignore the factor Lψ(λs) and consider only the nearby cycles of

K = f∗1K`
⊗2
k ⊗ (f∗1K`k

∨
)⊗2.

For any α ∈ Gm, let sα be the map (r, s) 7→ (αr, α−1s). We have f1 ◦ sα = f1,

hence s∗αK ' K. The action of sα extends to the blowup X and to the fiber of

X over ∞, so it extends by functoriality to the nearby cycles complex RΨK.

Since sα acts by scaling on the coordinate r of the base local ring, the induced

isomorphism s∗αRΨK ' RΨK sends the Galois action on the nearby cycles

complex to its multiplicative translate by α. Since the nearby cycles sheaf

is constructible [Del77, Th. Finitude, Th. 3.2], only finitely many different

irreducible representations of the inertia group can appear in the stalks of RΨK

as Jordan–Hölder factors anywhere on the fiber over ∞. (On each open set

where RΨK is lisse, there is a single representation with finitely many Jordan–

Hölder factors, and at each other point there is another representation, again

with finitely many Jordan–Hölder factors.) By symmetry, if any irreducible

inertia representation appears in the stalks, its multiplicative translates by

α must also appear. But by [Kat88, 4.1.6], any nontrivial wildly ramified

representation has infinitely many nonisomorphic multiplicative translates as

α varies, so the wild inertia group must act trivially on the stalks.

Let I1 be the wild inertia group. There is an I1-invariants functor from

`-adic sheaves with an action of I1 to `-adic sheaves, and an adjoint functor

that views `-adic sheaves as `-adic sheaves with a trivial action of I1, giving
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a natural adjunction map (RΨG)I1 → RΨG. Because I1 is a pro-q group, the

I1-invariants functor on `-adic sheaves has no higher cohomology. Because

the stalks are I1-invariant, this map is an isomorphism on stalks away from

(∞,∞), hence an isomorphism away from (∞,∞), so the wild inertia group

acts trivially on RΨG away from (∞,∞). �

Proof of Corollary 4.37. It follows from Lemmas 4.38 and 4.33(1) that the

wild inertia group acts trivially on RΨF away from (∞,∞).

Let Z = {(∞,∞)}, and let U be the open complement. Let i be the

closed immersion of Z and j the open immersion of U . We have distinguished

triangles

Rπ∗j!RΨF|U → Rπ∗RΨF → Rπ∗i∗RΨF|Z →
and

Rπ∗j!RΨG|U → Rπ∗RΨG→ Rπ∗i∗RΨG|Z → .

The middle terms are the local monodromy representations of Rπ∗F and

Rπ∗G at ∞, which we want to compute. The third terms are the stalks of

RΨF and RΨG at (∞,∞). The left-hand terms, by the above, have trivial

wild inertia action at ∞.

Since the representations of the wild inertia group are semisimple (as it is

a pro-q-group acting on an `-adic vector space), this implies that the nontrivial

part of the wild inertia representation on the local monodromy of Rπ∗F and of

Rπ∗G are each equal to the nontrivial parts of the wild inertia representation

on the stalks of RΨF and RΨG at (∞,∞). By Lemma 4.33(2), the stalks of

RΨF and RΨG at (∞,∞) can be split into summands that are isomorphic as

representations of the wild inertia group up to order 2 reparametrizations, so

the nontrivial parts of the wild inertia representations on Rπ∗F and Rπ∗G can

be split into summands that are equal up to order 2 reparametrizations.

Finally, Lemma 4.36 shows that the wild inertia representation at ∞ of

Rπ∗G is exactly as claimed in the statement. Since, by Lemma 4.21, any

summand of the local monodromy at ∞ of Rπ∗G (i.e., of Rλ,0) is preserved by

reparametrizations of order 2, we obtain in fact the same decomposition for

Rλ,b also. �

Corollary 4.39. Let λ 6= 0 be fixed in a field extension (possibly tran-

scendental) of Fq . The wild inertia representation of R∗λ,b at r =∞ is isomor-

phic to that of ⊕
α∈Sk

[×α/λ]∗Hk−1

plus a trivial representation.

Proof. In view of Corollary 4.37 and of the definition of R∗, it suffices to

prove that the weight < 1 part of Rb is tamely ramified at r =∞. To do this
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we will study the action of the decomposition group at ∞ on the stalk of the

weight < 1 part of Rλb at a generic point of the r-line.

We apply Lemma 4.22(2) to C = A1×P1×Gm, with coordinates (r, s, λ),

with its dense open subset U = A1 ×A1 ×Gm (with open embedding j), to

the morphism π : C −→ A1 × Gm given by π(r, s, λ) = (r, λ) and to the

sheaf F = j!Kb on C. The assumptions of Lemma 4.22 are easily verified using

Lemma 4.1(2) and (3).

Taking x = (r, λ) for a generic value of r, the lemma implies that the part

of weight < 1 of

(R1π∗F)x = H1(π−1(x̄),F) = (Rb)x

is isomorphic to

K
I(0)
x,b /(Kx,b)0 ⊕K

I(∞)
x,b /(Kx,b)∞ = K

I(0)
x,b ,

since Kx,b is totally wildly ramified at s =∞ and has stalk 0 at s = 0.

Recall that the local monodromy representation of K`k at 0 is unipotent.

Let K be an algebraically closed field extension of Fq containing λ, so that over

K the decomposition group representation of K`k at 0 is unipotent. Hence the

decomposition group representation of

[(r, s) 7→ s(r + bi)]
∗K`k

at a point where s = 0 is unipotent (still over K). The decomposition group

representation of Lψ(λs) is trivial at a point where s = 0. Hence we con-

clude that the decomposition group over K also acts unipotently on the tensor

product Kx,b. Hence the space of inertia invariants K
I(0)
x,b is a unipotent rep-

resentation of the Galois group of the residue field of the generic point x. In

particular, the inertia group at r = ∞ acts unipotently. Because it is unipo-

tent, it must factor through a pro-` group and hence be tame. �

We need some last elementary geometric considerations to isolate features

of the local monodromy at ∞ that will allow us to deduce the irreducibility

and disjointness of the sheaves Rλ,b.

Lemma 4.40. Let k > 2 be given.

(1) If q is sufficiently large, then the multiset Sk contains an element with

multiplicity 1.

(2) If q is sufficiently large, then the group of µ ∈ F
×
q such that µSk = Sk is

trivial if k is even and is reduced to {±1} if k is odd.

Proof. We denote by S̃k ⊂ C the analogue of Sk defined using µk(Q̄).

We observe that the set of nonzero numbers ζ1 + ζ2 − ζ3 − ζ4, where ζi runs

over µk(Fq), is the set of k-th roots of the elements of Sk, and similarly for

S̃k and ζi ∈ µk(Q̄). Moreover, the nonzero element of this form has the same
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multiplicity as its k-th power as an element of S̃k. Indeed, there is a bijection

from the set of representations

α = ζ1 + ζ2 − ζ3 − ζ4

to those of

αk = (1 + ζ ′2 − ζ ′3 − ζ ′4)k,

given by

(ζ1, . . . , ζ4) 7→ (ζ2/ζ1, ζ3/ζ1, ζ4/ζ1)

with inverse

(ζ ′2, ζ
′
3, ζ
′
4) 7→ (ζ, ζζ ′2, ζζ

′
3, ζζ

′
4),

where ζ is such that α = ζ(1 + ζ ′2 − ζ ′3 − ζ ′4).

(1) Since any two distinct elements of S̃k are equal modulo q for finitely

many primes q, it is enough to check that the set S̃k contains an element of

multiplicity 1 in C. To find an element of S̃k with multiplicity 1, it is sufficient

to find an R-linear map C −→ R with a unique maximum and minimum

on µk. Clearly a generic linear function has this property; e.g., if k is even, we

may take the real part.

(2) We first show the corresponding property for S̃k. Let Tk be the multiset

of numbers ζ1 + ζ2 − ζ3 − ζ4. By the description above, it is enough to show

that the group of complex numbers µ such that µTk = Tk is equal to µk if k is

even and to µ2k if k is odd.

Consider the convex hull of Tk. It is the difference of two copies of twice

the convex hull of the k-th roots of unity. Since the convex hull of µk in C is

a k-sided regular polygon, the convex hull of Tk is a k-sided regular polygon if

k is even, and a 2k-sided regular polygon if k is odd. The result is then clear.

To reduce the case of Sk to the complex case, we note that an arbitrary

nonempty finite set S ⊂ C or S ⊂ Fq may only be equal to its multiplicative

translate by µ if µ is a root of unity. Moreover, µS = S, where µ is a primitive

n-th roots of unity, if and only if the coefficients of a monic polynomial whose

roots are S vanish in degrees coprime to n. When reducing a polynomial with

algebraic coefficients modulo a prime q large enough, the only degrees that are

zero modulo q are those that are zero in C. Hence, for q large enough, the

same roots of unity stabilize Sk as S̃k. �

Finally we can conclude the basic irreducibility statement for sum-product

sheaves when λ is nonzero:

Proposition 4.41. For q large enough in terms of k, the sheaf R∗λ,b is

geometrically irreducible whenever λ 6= 0 is fixed in a field extension (possibly

transcendental) of Fq and b 6∈ V∆.
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Proof. We apply Lemma 4.12(b) to Y = Gm × P1 where the coordinate

of Gm is λ and the coordinate of P1 is r and to the first projection f : Y −→
X = Gm. We consider the sheaf on Y that is the extension by zero of the

sheaf R∗b on Gm ×A1. The divisor D is the union of the divisors {r = −bi}
and {r =∞}. If the three conditions of Lemma 4.12 hold, then we obtain our

desired conclusion.

By Lemma 4.14 and (3.4), the sheaf R∗b is geometrically irreducible on

Y −D, so that the first condition holds. It is also pure on Y −D by definition.

Next, we will show that the second condition holds by showing that there

exists an irreducible component of multiplicity 1 in the local monodromy at∞
of the restriction of R∗b to the fiber of f over a geometric generic point of Gm

whose isomorphism class is Galois-invariant.

By Corollary 4.39, the wild inertia representation of R∗λ,b at r = ∞ is

isomorphic to that of
⊕

α∈Sk [×α/λ]∗Hk−1 plus a trivial representation. By

Lemma 4.40(1), assuming q is large enough, some α appears with multiplicity 1

in Sk. Take such an α. Let V be the subspace of that local monodromy

representation that is sent to [×α/λ]∗Hk−1 under this isomorphism.

The irreducible components of the summands [×α/λ]∗Hk−1 as represen-

tations of the wild inertia group are disjoint by Lemma 4.21(3). So we may

characterize V as the subspace generated by all representations of the wild

inertia group that are isomorphic to wild inertia representations that appear

in [×α/λ]∗Hk−1. Because [×α/λ]∗Hk−1 is a representation of the full decom-

position group, that set of isomorphism classes is stable under the action of

the decomposition group, so V is a subrepresentation of the local monodromy

representation as a representation of the full decomposition group. (Here we

work over a large enough finite field so that all of Sk, including α, is contained

in the base field.)

We will show that V , restricted to the inertia group, is irreducible. Re-

stricted to the wild inertia group, it is isomorphic to [×α/λ]∗Hk−1. By Lemma

4.21(2), the action by conjugation of the tame inertia group on the irreducible

wild inertia subrepresentations of [×α/λ]∗Hk−1 is transitive. Thus any sub-

space would be a sum of wild inertia characters and would be invariant under

the tame inertia subgroup. So it must contain all the characters or none, and

therefore V is indeed irreducible.

Then the irreducible representation V occurs with multiplicity 1 because

each wild inertia component in it occurs with multiplicity 1, and its isomor-

phism class is invariant under conjugation by the Galois group because it ex-

tends to a representation of the full decomposition group.

For the third condition of Lemma 4.12, it is enough to show that the

functions

λ 7→ Swanr(R
∗
λ,b ⊗ R∗∨λ,b)
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are locally constant on the divisors r = −bi and r =∞. By Lemma 4.32, this

function is constant (equal to 0) on the divisors r = −bi for 1 6 i 6 4. The

Swan conductor is determined by the restriction to the wild inertia subgroup.

By Corollary 4.37, the restriction of Rλ,b to the wild inertia subgroup is a sum

of terms of the form [×α/λ]∗Hk−1 plus a trivial representation. Hence the

restriction of R∗λ,b ⊗ R∗∨λ,b to the wild inertia subgroup is a sum of representa-

tions of the form [×α/λ]∗Hk−1 ⊗ [×β/λ]∗H∨k−1, representations of the forms

[×α/λ]∗Hk−1 and [×β/λ]∗H∨k−1, and a trivial representation.

Therefore, on the divisor r = ∞, it suffices to check that the Swan con-

ductor of

[×α/λ]∗Hk−1 ⊗ [×β/λ]∗H∨k−1 = [×α/λ]∗(Hk−1 ⊗ [×β/α]∗H∨k−1)

depends only on (α, β) but is independent of λ ∈ Gm, and the same property

for a single hypergeometric sheaf [×α/λ]∗Hk−1. But scalar multiplication does

not affect Swan conductors (since it is just an automorphism of the local field

and hence preserves the wild ramification filtration), and hence these Swan

conductors are equal to the Swan conductors of Hk−1 ⊗ [×β/α]∗H∨k−1 and

Hk−1 respectively and thus are independent of λ. �

4.6. Final steps. In this final section, we compare different specialized

sum-product sheaves R∗λ,b.

We now show distinctness of specialized sum-product sheaves for dis-

tinct λ. We recall that the subvariety Vbad has been defined in Proposition 4.29.

It is defined over Z[1/`] and stable under b 7→ b̃ = (b3, b4, b1, b2).

Lemma 4.42. For b not contained in Vbad(Fq), and for λ1 6= λ2 in Fq ,

the sheaves R∗λ1,b
and R∗λ2,b

are not geometrically isomorphic.

Proof. Let us recall first that, by definition, Vbad contains V∆, and there-

fore the sheaves R∗λ,b are geometrically irreducible for b 6∈ Vbad.

First assume that λ1 = 0 and λ2 6= 0. (The case λ2 = 0 and λ1 6= 0 is of

course similar.) We will show that the generic ranks of the two sheaves R∗0,b
and R∗λ2,b

are different, which of course implies that they are not geometrically

isomorphic. By Lemma 4.31(2) and (3), we have

rankRλ2,b = k4 > k3 = rankR0,b.

Applying Lemma 4.22(2) exactly as in the proof of Corollary 4.39, we see that

the part of weight < 1 of Rλ2,b has rank

dimK
I(0)
λ=λ2,η,b

,

while (by the same argument) the part of weight < 1 of R0,b has rank

dimK
I(0)
λ=0,η,b + dimK

I(∞)
λ=0,η,b > dimK

I(0)
λ=0,η,b.
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However the local monodromy representation of Kλ,η,b at 0 is independent of λ

because K is a tensor product of Kloosterman sheaves defined independently

of λ with Lψ(λs), which is lisse at 0. So the rank of the inertia invariants is

independent of λ also.

Hence there is a larger “drop” in the generic rank when passing from Rλ,b
to R∗λ,b when λ is 0, and we deduce that

rankR∗λ2,b > rankR∗0,b.

Now assume that λ1 and λ2 are nonzero and distinct. Corollary 4.37 shows

that the wild inertia representation of R∗λ1,b
at∞ is the multiplicative translate

by λ2/λ1 of the wild inertia representation of R∗λ2,b
, which is itself isomorphic

to the wild inertia representation of⊕
α∈Sk

[×αλ−1
2 ]∗Hk−1.

Since the wild inertia representation of Hk−1 is not isomorphic to any non-

trivial multiplicative translate of itself by Lemma 4.21(3), these local mon-

odromy representations are therefore isomorphic only if Sk = (λ2/λ1)Sk. By

Lemma 4.40(2), this is only possible if λ2 = λ1 or if λ2 = −λ1, and that second

case occurs only if k is odd.

Thus it only remains to deal with the case when k is odd, λ1 = −λ2, and

both are nonzero. We assume that we have a geometric isomorphism

(4.9) R∗λ1,b ' R∗−λ1,b

for some λ1 6= 0, and we proceed to derive a contradiction. This isomorphism,

and the fact that R∗λ1,b
and R∗−λ1,b

are geometrically irreducible, implies that

H2
c (A1

Fq
− {−b},R∗λ1,b

⊗ R∗∨−λ1,b
) is one-dimensional, where we use {−b} to

denote the closed set {−b1,−b2,−b3,−b4}. This cohomology group is the stalk

at λ1 of the constructible `-adic sheaf

G = R2p!(R
∗
b ⊗ g∗R∗∨b )(1),

where p : (A1 − {−b})×Gm → Gm is the projection (r, λ) 7→ λ and g is the

automorphism (r, λ) 7→ (r,−λ) of (A1 − {−b})×Gm.

By Deligne’s semicontinuity theorem [Lau81], the sheaf G is lisse on Gm;

indeed, the Swan conductors are constant functions of λ on the ramification

divisors, by an argument similar to that at the end of the proof of Proposi-

tion 4.41. Hence, since the stalk of G at λ1 ∈ Gm is one-dimensional, the

sheaf G is lisse of rank 1 on Gm.

By Verdier duality (see, e.g., [KL85, §1, (1.1.3)] and the references there,

and the fact that the dual of a (shifted) lisse sheaf is the shifted dual lisse

sheaf), the dual of the sheaf G is isomorphic to

R0p∗(R
∗,∨
b ⊗ g

∗R∗b) ' p∗(Hom(R∗b, g
∗R∗b)),



BILINEAR FORMS WITH KLOOSTERMAN SUMS 487

and the latter is therefore lisse on Gm. We have a natural adjunction morphism

p∗p∗Hom(R∗b, g
∗R∗b)→ Hom(R∗b, g

∗R∗b).

We tensor with R∗b and compose with the canonical morphism

R∗b ⊗Hom(R∗b, g
∗R∗b)→ g∗R∗b

to deduce a morphism

φ : R∗b ⊗ p∗G∨ → g∗R∗b.

The restriction to the geometric generic fiber p−1(η̄) of A1 − {−b} ×Gm of

p∗G∨ is

(p∗p∗Hom(R∗b, g
∗R∗b))|p−1(η̄) = p∗(p∗Hom(R∗b, g

∗R∗b)|η̄),

which is

(p∗Hom(R∗b, g
∗R∗b))η̄ = Γ(p−1(η̄),Hom(R∗b, g

∗R∗b)|p−1(η̄))

viewed as a constant sheaf.

The restriction to the geometric generic fiber of the previously described

morphism is a natural homomorphism

R∗b|p−1(η̄)⊗ Γ(p−1(η̄),Hom(R∗b, g
∗R∗b)|p−1(η̄))→ g∗R∗b|p−1(η̄).

Specifically, we can describe this as the map that sends a section (say s) of R∗b
over an open subset of p−1(η̄) and a global section (say f) over p−1(η̄) of the

sheaf of homomorphisms from R∗b to g∗R∗b to the image f(s).

This morphism is nontrivial as long as Γ(p−1(η̄),Hom(R∗b, g
∗R∗b)|p−1(η̄))

is nonzero, as any nonzero section must correspond to a homomorphism that is

nontrivial on some open set. The space of global sections is indeed nontrivial

because we saw it is isomorphic to the stalk of G at η̄, which is one-dimensional.

Hence φη̄ is nonzero on the geometric generic fiber. Because R∗b and g∗R∗b
are geometrically irreducible lisse sheaves, and p∗G∨ is one-dimensional, this

implies that φη̄ is an isomorphism. Hence φ is a geometric isomorphism on any

open dense set U on which g∗R∗b, p
∗G, and R∗b are lisse.

We have seen that G is lisse on Gm, and we know that R∗b is lisse on the

complement of the divisors λ = 0 and r = −bi, and the same holds for g∗R∗b.

So the homomorphism φ is a geometric isomorphism on the complement U of

these divisors.

Our next goal is to prove that G is in fact geometrically trivial. For this,

we now specialize the r variable. For r fixed but generic, we deduce from the

above that R∗r,b is geometrically isomorphic to (g∗R∗)r,b ⊗ G. However, Rr,b is

the restriction to Gm of the Fourier transform with respect to ψ of the sheaf

F =
⊗

16i62

[s 7→ (r + bi)s]
∗K`k ⊗ [s 7→ (r + bi+2)s]∗K`∨k
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on A1 with variable s. The sheaf F is lisse on Gm, with unipotent tame local

monodromy at 0, and with all breaks 6 1/k at ∞. By Fourier transform

theory it follows that Rr,b is lisse on Gm (see [Kat90, Lemma 7.3.9(3)]), with

unipotent tame local monodromy at ∞ ([Kat90, Th. 7.4.1(1), Th. 7.4.4(3)])

and with all breaks 6 1/(k − 1) at 0. (See [Kat90, Th. 7.5.4(5)]; note the

integers c, d in the assumption of that reference are not necessarily coprime.)

Pulling-back by g, we see that the sheaf g∗Rr,b has the same ramification

properties, and hence also g∗R∗r,b. From this and the isomorphism R∗r,b '
(g∗R∗)r,b⊗ G, it follows that G must also be lisse on Gm, tame with unipotent

monodromy at ∞, and with (unique) break 6 1/(k − 1) at 0. But since a

rank 1 sheaf has an integral break, this means that G is also tame at 0, and

since unipotent monodromy in rank 1 is trivial, this means that G is lisse at∞.

However, a sheaf on P1 that is lisse on P1 − {0} and tamely ramified at 0 is

geometrically trivial, so G is geometrically trivial.

We have therefore proved that R∗b and g∗R∗b are geometrically isomorphic.

But this is impossible, since this would imply that

lim sup
d→+∞

∣∣∣∣ 1

qd
1

q2d

∑∑
λ,r∈F

qd

R(r, λ, b,Fqd)R(r,−λ, b;Fqd)
∣∣∣∣ > 0

(since R(r, λ, b;Fqd) = tR∗(r, λ, b;Fqd) +O(1) where R∗b is lisse) and this con-

tradicts the estimate (3.6) for odd-rank Kloosterman sheaves. �

We can now finally recapitulate and prove Theorem 4.10.

Proof of Theorem 4.10. Let Vbad be the subvariety in Proposition 4.29. It

is defined over Z[1/`], and hence its degree is bounded independently of q. It is

also stable under b 7→ b̃ by construction. For q large enough, let b 6∈ Vbad(Fq).

Then R∗0,b is geometrically irreducible (by Proposition 4.29), and R∗λ,b is ge-

ometrically irreducible for all λ 6= 0 if q is large enough by Proposition 4.41

since Vbad is defined to contain V∆.

The second part of Theorem 4.10 is given by Lemma 4.42, and the third

by Proposition 4.24. �

5. Functions of triple divisor type in arithmetic progressions

to large moduli

In this section, we prove Theorem 1.7. Let f be a holomorphic primitive

cusp form of level 1 and weight k. We denote by λf (n) the Hecke eigenvalues,

which are normalized so that we have |λf (n)| 6 d2(n). The method will be very

similar to that used in [FKM15b], and some technical details will be handled

rather quickly as they follow very closely the corresponding steps for the triple

divisor function.
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For any prime q and integer a coprime to q, we denote

E(λf ? 1, x; q, a) :=
∑
n6x

n≡a (mod q)

(λf ? 1)(n)− 1

ϕ(q)

∑
n6x

(n,q)=1

(λf ? 1)(n).

5.1. Preliminaries. We first recall several useful results. We begin by stat-

ing the estimates for linear and bilinear forms involving the hyper-Kloosterman

sums Kl3(a; q).

Proposition 5.1. Let q a prime number, M,N ∈ [1, q], N an interval

of length N , and (αm)m, (βn)n two sequences supported respectively on [1,M ]

and N. Let a be an integer coprime to q.

Let V and W be smooth functions compactly supported in the interval [1, 2]

and satisfying

(5.1) V (j)(x),W (j)(x)�j Q
j

for some Q > 1 and for all j > 0.

Let ε > 0 be given.

(1) There exists an absolute constant C1 > 0 such that we have

(5.2)
∑∑
m,n>1

λf (m)V
(m
M

)
W
( n
N

)
Kl3(amn; q)� qεQC1MN

(1

q
+
q1/2

N

)
and

(5.3)
∑
m

λf (m)V
(m
M

)
Kl3(am; q)� qεQC1M

( 1

q1/8
+

q3/8

M1/2

)
.

(2) We have

(5.4)
∑∑

m6M,n∈N
αmβn Kl3(amn; q)� qε‖α‖2‖β‖2(MN)1/2

( 1

M1/2
+

q1/4

N1/2

)
.

(3) If

1 6M 6 N2, N < q, MN 6 q3/2,

we have

(5.5)
∑∑
m,n>1

λf (m)V
(m
M

)
W
( n
N

)
Kl3(amn; q)� qεQC1MN

( q1/4

M1/6N5/12

)
.

In all estimates, the implied constant depends only on ε.

Proof. The bound (5.2) is an instance of the completion method and fol-

lows from an application of the Poisson summation formula to the sum over n,

using the fact that

K̂l3(u)� 1, K̂l3(0) = − 1

p3/2
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(the former because Kl3(·; q) is the trace function of a Fourier sheaf modulo q,

and the latter by direct computation).

The bounds (5.3) and (5.4) are special cases of [FKM15a, Th. 1.2] and

[FKM14, Th. 1.17]. The bound (5.5) is a consequence of Theorem 1.3 (for

c = 1) after summation by parts. �

Proposition 5.2. Let q be a prime number, and let V,W be two smooth

functions compactly supported on ]0,+∞[. Let K : Z −→ C be any q-periodic

arithmetic function.

We have∑∑
m,n>1

K(mn)λf (m)V (m)W (n)

=
K̂(0)

q1/2

∑∑
m,n>1

λf (m)V (m)W (n)

+
(
K(0)− K̂(0)

q1/2

)∑∑
m,n>1

λf (m)V (m)W (qn)

+
1

q3/2

∑
m,n>1

K̃(mn)λf (m)V̌
(m
q2

)
Ŵ
(n
q

)
,

where Ŵ denotes the Fourier transform of W , V̌ is the weight k Bessel trans-

form given by

(5.6) V̌ (x) = 2πik
∫ ∞

0
V (t)Jk−1(4π

√
xt)dt,

and

K̃(m) =
1

q1/2

∑
(u,q)=1

K(u) Kl3(mu; q).

In particular, if a is an integer coprime with q and K(n) = δn=a (mod q),

then we have

K(0) = 0, K̂(0) =
1

q1/2
, K̃(m) =

1

q1/2
Kl3(am; q)

by direct computations.

Proof. We split the sum into

(5.7)
∑
q|n

(∑
m

· · ·
)

+
∑

(n,q)=1

(∑
m

· · ·
)
.

The contribution of those n divisible by q is

K(0)
∑
m,n>1

λf (m)V (m)W (qn).
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For those n coprime to q, we apply the Fourier inversion formula

K(mn) =
K̂(0)

q1/2
+

1

q1/2

∑
u (mod q)
(u,q)=1

K̂(u)e
(
−umn

q

)
.

The contribution of the first term is

K̂(0)

q1/2

∑
m,n>1
(n,q)=1

λf (m)V (m)W (n) =
K̂(0)

q1/2

( ∑
m,n>1

λf (m)V (m)W (n)

−
∑
m,n>1

λf (m)V (m)W (qn)
)
.

For the last term, we apply the Voronoi summation formula to the sum

over m: we have∑
m>1

λf (m)V (m)e
(
−mnu

q

)
=

1

q

∑
m>1

λf (m)V̌
(m
q2

)
e
(num

q

)
for each u (see, e.g., [FGKM14, Lemma 2.2]). Therefore, the total contribution

of the second term in (5.7) equals

1

q

∑∑
m,n>1
(n,q)=1

λf (m)V̌
(m
q2

)
W (n)K̃(m,n)

with

K̃(m,n) =
1

q1/2

∑
(u,q)=1

K̂(u)e
(mnu

q

)
.

We finish by applying the Poisson summation formula to the sum over n:

we have ∑
(n,q)=1

W (n)K̃(m,n) =
1

q

∑
n

Ŵ
(n
q

) ∑
(v,q)=1

e
(muv + nv

q

)
=

1

q1/2

∑
n

Ŵ
(n
q

)
Kl2(mnu; q)

for each m, so that the total contribution becomes

1

q3/2

∑∑
m,n

(n,q)=1

K̃(mn)λf (m)V̌
(m
q2

)
Ŵ
(n
q

)
,

where

K̃(m) =
1

q1/2

∑
(u,q)=1

K̂(u) Kl2(mu; q) =
1

q1/2

∑
(u,q)=1

K(u) Kl3(mu; q)

for any m. This gives the formula we stated. �
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5.2. Decomposition of E(λf ? 1, x; q, a). Given any A > 1 as in Theo-

rem 1.7, we fix some B > 1 sufficiently large (to depend on A). Given x > 2,

we set

L := log x, ∆ = 1 + L−B.

Arguing as in [FKM15b], we perform a partition of unity on the m and n

variables and decompose E(λf ? 1, x; q, a) into O(log2 x) terms of the form

Ẽ(V,W ; q, a) =
∑

mn=a (mod q)

λf (m)V (m)W (n)− 1

q

∑
(mn,q)=1

λf (m)V (m)W (n),

where V,W are smooth functions satisfying

suppV ⊂ [M,∆M ], suppW ⊂ [N,∆N ],

xjV (j)(x), xjW (j)(x)�j L
Bj ,

and where

xL−C 6MN 6 x

for some C > 0 large enough, depending on the value of the parameter A in

Theorem 1.7.

Applying Proposition 5.2 to the first term, we obtain

Ẽ(V,W ; q, a) =
1

q1/2

∑
m,n>1

Kl3(mn; q)λf (m)V̌
(m
q2

)
Ŵ
(n
q

)
,

and hence it only remains to prove that

(5.8)
1

q1/2

∑
m,n>1

Kl3(mn; q)λf (m)V̌
(m
q2

)
Ŵ
(n
q

)
�A

MN

q
L−A.

The following standard lemma describes the decay of the Fourier and

Bessel transforms of V and W :

Lemma 5.3. Let V,W be as above, and let W̌ , Ŵ be their Bessel and

Fourier transforms as defined in (5.6). There exists a constant D > 0 such

that for any x > 0, any E > 0 and any j > 0, we have

xj V̌ (j)(x)�E,f,j MLBj
( LDj

1 + xM

)E
,(5.9)

xjŴ (j)(x)�E,j NLBj
( LDj

1 + xN

)E
.(5.10)

Proof. By the change of variable u = 4π
√
xt, we find that

V̌ (x) =
ik

8π

∫ ∞
0

u2

x
V
( u2

16π2x

)
Jk−1(u)

du

u

=
ik

8π
√
x

∫ ∞
0

(u2

x

)1/2
V
( u2

16π2x

)
Jk−1(u)du.
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Since Jk−1(u)�f (1 + u)−1/2, we have

V̌ (x)� M

(1 + xM)1/2
.

On the other hand, applying [KMV02, Lem. 6.1] we obtain the bound

V̌ (x)�f,j
M1/2

x1/2

(1 + | log xM |)LO(j)

(xM)
j−1

2

(xM)1/4.

In particular, if xM > 1, then by taking j large enough, we see that V̌ (x)�f,E

MLO(E)(xM)−E , which concludes the proof of (5.9) when j = 0. The gen-

eral case is similar, and the proof of (5.10) follows similar lines (using easier

standard properties of the Fourier transform). �

Set

M∗ = q2/M and N∗ = q/N.

Then this lemma shows that, if η > 0 is arbitrarily small, the contribution to

the sum (5.8) of the (m,n) such that

m > xη/2M∗ or n > xη/2N∗

is negligible. Therefore, by (5.9) and (5.10), and a smooth dyadic partition of

unity, we are reduced to estimating sums of the type

S(M ′, N ′) =
∑∑
m,n>1

λf (m)Kl3(amn; q)V ∗(m)W ∗(n),

where

1/2 6M ′ 6M∗xη/2, 1/2 6 N ′ 6 N∗xη/2,

and V ∗,W ∗ are smooth compactly supported functions with

supp(V ∗) ⊂ [M ′, 2M ′], supp(W ∗) ⊂ [N ′, 2N ′]

ujV ∗(j)(u), ujW ∗(j)(u)� LO(j)

for any j > 0. Precisely, it is enough to prove that

S(M ′, N ′)�A qL
−A.

Since the trivial bound for S(M ′, N ′) is

S(M ′, N ′)�M ′N ′L,

we may assume that

qL−A−1 6M ′N ′ 6 q3x−1+η.

Let us write

x = q2−δ, M = qµ, N = qν , M ′ = qµ
′
, N ′ = qν

′

so that

M∗ = qµ
∗
, N∗ = qν

∗
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with

µ∗ = 2− µ, ν∗ = 1− ν, µ′ 6 µ∗ + η/2, ν ′ 6 ν∗ + η/2

and

µ+ ν = 2− δ + o(1).

Let us write

S(M ′, N ′) = qσ(µ′,ν′).

Then Proposition 5.1 translates to the estimates

σ(µ′, ν ′) 6 τ(µ′, ν ′) + o(1),

where

τ(µ′, ν ′) 6 µ′ + ν ′ + max(−1, 1/2− ν ′) (by (5.2)),(5.11)

τ(µ′, ν ′) 6 µ′ + ν ′ + max(−1/8, 3/8− µ′/2) (by (5.3)),(5.12)

τ(µ′, ν ′) 6 µ′ + ν ′ + max(−µ′/2, 1/4− ν ′/2) (by (5.4)),(5.13)

τ(µ′, ν ′) 6 µ′ + ν ′ + max(−ν ′/2, 1/4− µ′/2) (by (5.4) with(5.14)

M , N interchanged),

τ(µ′, ν ′) 6 µ′ + ν ′ + 1/4− µ′/6− 5ν ′/12 (by (5.5), if(5.15)

0 6 µ′ 6 2ν ′).

(Indeed, note that the conditions ν ′ 6 1 and µ′+ν ′ 6 3/2 also required in (5.5)

are always satisfied for η small enough, since µ′+ ν ′ 6 3 + (2− δ)(−1 + η) < 3
2

and ν ′ = 1− ν 6 1.)

We will prove that if δ < 1
26 and η is small enough, then we have σ(µ′, ν ′) 6

1−κ, where κ > 0 depends only on δ and η. This implies the desired estimate.

In the argument, we denote by o(1) quantities tending to 0 as η tends to 0 or

q tends to infinity.

First, since

µ′ + ν ′ − 1 6 µ′ + ν ′ − 1

8
6 1 + δ − 1

8
+ o(1) < 1,

we may replace (5.11) and (5.12) by

τ(µ′, ν ′) 6 µ′ +
1

2
,(5.16)

τ(µ′, ν ′) 6
µ′ + ν ′

2
+
ν ′

2
+

3

8
.(5.17)

We now distinguish various cases:

– if µ′ 6 1
2 − κ, then we obtain the bound by (5.16);

– if

ν ′ > 2(δ + κ) and µ′ >
1

2
+ (2δ + κ),

then we obtain the bound by (5.14);
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– if ν ′ 6 2(δ + κ), we obtain a suitable bound, provided κ is small enough,

by (5.17) since then

µ′ + ν ′

2
+
ν ′

2
+

3

8
6

1 + δ + o(1)

2
+ δ + κ+

3

8
6

7

8
+

3δ

2
+ κ+ o(1);

– finally, if µ′ 6 (2δ + κ) + 1
2 , then from µ′ + ν ′ > 1, we deduce that

2ν ′ > 1− 4δ − 2κ >
1

2
+ 2δ − 4κ > µ′

provided κ is small enough, and so (5.15) is applicable and gives the desired

bound since

µ′ + ν ′ +
1

4
− µ′

6
− 5ν ′

12
=

7

12
(µ′ + ν ′) +

1

4
+
µ′

4
+ o(1)

6
7

12
(1 + δ) +

1

4
+

1

4

(1

2
+ 2δ + κ

)
+ o(1)

= 1− 13

12
(1/26− δ) +

κ

4
+ o(1).

Appendix A. Nearby and vanishing cycles

Let R be a Henselian discrete valuation ring R with fraction field K. Let S

be the spectrum of R, and denote its generic point by η and its special point

by s. Let η̄ be a geometric point over η and s̄ a geometric point over s.

For any proper scheme f : X −→ S, and any prime ` invertible on S, the

nearby cycles function RΨ is a functor from `-adic sheaves on Xη to the derived

category of `-adic sheaves on Xs equipped with an action of the absolute Galois

group G of K (see, e.g., [DK73, Exp. XIII] for the definition and further

references):

(A.1) Xs
i //

��

X

f

��

Xη
joo

��
s

i0 // S η.
j0oo

Given F a sheaf on X and Fs := i∗F and Fη := j∗F, the complex RΨF is

defined as

RΨF = i∗Rj∗Fη.

The mapping cone of the adjunction map i∗F → RΨF is noted RΦF and

is called the complex of vanishing cycles; one then has a cohomology exact

sequence arising from the corresponding distinguished triangle

(A.2) · · · → H i(Xs,Fs)→ H i(Xs, RΨF)→ H i(Xs, RΦF)→ · · · .

The functor RΨ has several key properties that we use in this paper:
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(1) (See [Lau81, (1.3.3.1)], [DK73, (2.1.8.3)]) For any i > 0, there is a

natural isomorphism of G-representations

(A.3) H i(Xη,F) = H i(Xs, RΨF).

Since the left-hand side of (A.3) is, together with its Galois action, the local

monodromy representation of the higher-direct image sheaf Rif∗F at s, the

nearby cycle complex will enable us to compute the local monodromy repre-

sentation at specific points of some global sheaves obtained by pushforward on

curves.

(2) (See [Lau81, Th 1.3.1.3], [Del77, Th. Finitude, Prop. 3.7]) The functor

RΨ is defined étale-locally: if two pairs (X −→ S,F) and (X ′ −→ S,F′) are

given that are isomorphic in an étale neighborhood of a point x ∈ X, i.e., if

there exist a scheme U over S, a point x̃ ∈ U and étale morphisms making the

diagram

U
g′−→ X ′

g ↓ ↓ f ′

X
f−→ S

commute with g(x̃) = x, g′(x̃) = x′ (say), and if g∗F ' (g′)∗F′, then we have

g∗RΨF ' (g′)∗RΨG;

i.e., the nearby cycles complexes are isomorphic in the same étale neighbor-

hood.

This will be useful to compare the local monodromy of a given sheaf on

a given curve to possibly simpler ones on other (also possibly simpler) curves,

which are étale-locally isomorphic and take advantage of some existing compu-

tations of nearby cycles: for instance, the local acyclicity of smooth morphisms

(which handles the case of a lisse sheaf on a smooth scheme) and Laumon’s

local Fourier transform, which describes the nearby cycles that arise when com-

puting the Fourier transform of a sheaf (in other words, the stationary phase

formula).
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[BFK+] V. Blomer, É. Fouvry, E. Kowalski, P. Michel, D. Milićević, and
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Algébrique. II, Lecture Notes in Math. 340, Springer-Verlag, New York,
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[Lau81] G. Laumon, Semi-continuité du conducteur de Swan (d’après P. Deligne),

in The Euler-Poincaré Characteristic (French), Astérisque 83, Soc. Math.

France, Paris, 1981, pp. 173–219. MR 0629128. Zbl 0504.14013.

[Lau87] G. Laumon, Transformation de Fourier, constantes d’équations fonc-

tionnelles et conjecture de Weil, Inst. Hautes Études Sci. Publ. Math.

no. 65 (1987), 131–210. MR 0908218. Zbl 0641.14009. Available at

http://www.numdam.org/item?id=PMIHES 1987 65 131 0.

[Lau03] G. Laumon, Transformation de Fourier homogène, Bull. Soc. Math.

France 131 no. 4 (2003), 527–551. MR 2044494. Zbl 1088.11044.

[LRS95] W. Luo, Z. Rudnick, and P. Sarnak, On Selberg’s eigenvalue con-

jecture, Geom. Funct. Anal. 5 no. 2 (1995), 387–401. MR 1334872.

Zbl 0844.11038. https://doi.org/10.1007/BF01895672.

[Mil80] J. S. Milne, Étale Cohomology, Princeton Math. Ser. 33, Princeton Univ.

Press, Princeton, N.J., 1980. MR 0559531. Zbl 0433.14012.

[Mun13a] R. Munshi, Shifted convolution of divisor function d3 and Ramanujan τ

function, in The Legacy of Srinivasa Ramanujan, Ramanujan Math. Soc.

Lect. Notes Ser. 20, Ramanujan Math. Soc., Mysore, 2013, pp. 251–260.

MR 3221314. Zbl 06389649.

[Mun13b] R. Munshi, Shifted convolution sums for GL(3) × GL(2), Duke Math.

J. 162 no. 13 (2013), 2345–2362. MR 3127803. Zbl 1330.11033. https:

//doi.org/10.1215/00127094-2371416.

[Nun] R. M. Nunes, Squarefree integers in large arithmetic progressions.

arXiv 1602.00311.

http://www.ams.org/mathscinet-getitem?mr=1366651
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0864.14013
https://doi.org/10.1515/9781400882595
https://doi.org/10.1515/9781400882595
http://www.ams.org/mathscinet-getitem?mr=1803934
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1068.14501
https://doi.org/10.1006/ffta.2000.0303
https://doi.org/10.1006/ffta.2000.0303
http://www.ams.org/mathscinet-getitem?mr=2850079
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1261.11084
http://www.ams.org/mathscinet-getitem?mr=0823177
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0603.14015
http://www.numdam.org/item?id=PMIHES_1985__62__145_0
http://www.numdam.org/item?id=PMIHES_1985__62__145_0
http://www.ams.org/mathscinet-getitem?mr=3236265
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1320.20008
http://www.ams.org/mathscinet-getitem?mr=1915038
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1035.11018
https://doi.org/10.1215/S0012-7094-02-11416-1
https://doi.org/10.1215/S0012-7094-02-11416-1
http://www.ams.org/mathscinet-getitem?mr=0629128
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0504.14013
http://www.ams.org/mathscinet-getitem?mr=0908218
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0641.14009
http://www.numdam.org/item?id=PMIHES_1987__65__131_0
http://www.ams.org/mathscinet-getitem?mr=2044494
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1088.11044
http://www.ams.org/mathscinet-getitem?mr=1334872
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0844.11038
https://doi.org/10.1007/BF01895672
http://www.ams.org/mathscinet-getitem?mr=0559531
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0433.14012
http://www.ams.org/mathscinet-getitem?mr=3221314
http://www.zentralblatt-math.org/zmath/en/search/?q=an:06389649
http://www.ams.org/mathscinet-getitem?mr=3127803
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1330.11033
https://doi.org/10.1215/00127094-2371416
https://doi.org/10.1215/00127094-2371416
http://www.arxiv.org/abs/1602.00311


500 EMMANUEL KOWALSKI, PHILIPPE MICHEL, and WILL SAWIN

[Org03] F. Orgogozo, Altérations et groupe fondamental premier à p, Bull. Soc.
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