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Measure reducibility of countable Borel
equivalence relations

By Clinton T. Conley and Benjamin D. Miller

Abstract

We show that every basis for the countable Borel equivalence relations

strictly above E0 under measure reducibility is uncountable, thereby ruling

out natural generalizations of the Glimm-Effros dichotomy. We also push

many known results concerning the abstract structure of the measure re-

ducibility hierarchy to its base, using arguments substantially simpler than

those previously employed.
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Introduction

Over the last few decades, the notion of Borel reducibility of equivalence

relations has been used to identify obstacles of definability inherent in clas-

sification problems throughout mathematics. While there are far too many

such applications to provide an exhaustive list here, a few notable exam-

ples include the classifications of torsion-free abelian groups [Hjo99], [AK00],

[Tho03], [Tho06], ergodic measure-preserving transformations [Hjo01], [FW04],

[FRW06], [FRW11], separable Banach spaces [FLR09], [Ros11], and separable

C∗-algebras [FTT13], [FTT14], [Sab16]. In order to better understand such re-

sults, one must obtain insight into the abstract structure of the Borel reducibil-

ity hierarchy. Unfortunately, this has turned out to be a very difficult task.

The first of the two main lines of research into the abstract structure of the

Borel reducibility hierarchy concerns its base. The first such result appeared

in [Sil80], where it was shown that equality on R is the immediate successor of

equality on N within the co-analytic equivalence relations. Building upon this

and operator-algebraic work in [Gli61], [Eff65], it was shown in [HKL90] that

the relation E0 on 2N, given by x E0 y ⇐⇒ ∃n ∈ N∀m ≥ n x(m) = y(m), is

the immediate successor of equality on R within the Borel equivalence relations.

Work in this direction stalled shortly thereafter, with [KL97, Th. 2] ruling

out further such results within the Borel equivalence relations. However, the

question of whether there are further such results within the countable Borel

equivalence relations remains open.

The first of the two main goals of this paper is to show that every basis

for the countable Borel equivalence relations strictly above E0 under measure

reducibility is uncountable.

The second of the two main lines of research into the abstract structure of

the Borel reducibility hierarchy concerns exotic properties appearing beyond its

base. The first such result, due originally to Woodin and later refined in [LV94],

was the existence of uncountable families of pairwise incomparable Borel equiv-

alence relations. However, the underlying arguments depended heavily upon

Baire category techniques, and [HK96, Th. 6.2] ensures that such an approach

cannot yield incomparability of countable Borel equivalence relations.
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This difficulty was eventually overcome in [AK00], yielding the existence

of uncountable families of pairwise incomparable countable Borel equivalence

relations, in addition to myriad further results concerning the complexity of

the Borel reducibility hierarchy. The arguments behind these theorems marked

a sharp departure from earlier approaches, relying upon sophisticated supper-

rigidity machinery for actions of linear algebraic groups.

Soon thereafter, similar techniques were used in [Ada02], [Tho02] to obtain

many striking new properties of the Borel reducibility hierarchy, such as the ex-

istence of countable Borel equivalence relations E to which the disjoint union of

two copies of E is not Borel reducible. While many of the underlying arguments

were later simplified in [HK05], even these refinements depended upon complex

rigidity phenomena. And while the still simpler arguments of [Hjo12] gave rise

to pairwise incomparable treeable countable Borel equivalence relations, they

still gave little sense of how far one must travel beyond the base of the Borel

reducibility hierarchy before encountering such extraordinary behavior.

The second of the two main goals of this paper is to show that such

phenomena appear just beyond E0 under measure reducibility.

We obtain our results by introducing a measureless notion of rigidity,

which we establish directly for the usual action of SL2(Z) on T2. In the presence

of a measure, this yields strong separability properties of the induced orbit

equivalence relation. Many of our results follow rather easily from the latter,

while others require an additional graph-theoretic stratification theorem, also

established via elementary methods.

Basic notions. A set X is countable if there is an injection φ : X → N. A

sequence (Xr)r∈R of sets is increasing if Xr ⊆ Xs for all real numbers r ≤ s.
Suppose that X and Y are standard Borel spaces. We say that a sequence

(xy)y∈Y of points of X is Borel if {(xy, y) | y ∈ Y } is a Borel subset of

X × Y , and more generally, a sequence (Xy)y∈Y of subsets of X is Borel if

{(x, y) | x ∈ Xy and y ∈ Y } is a Borel subset of X × Y .

Suppose that E is a Borel equivalence relation on X. We say that E is

aperiodic if all of its classes are infinite, E is countable if all of its classes are

countable, and E is finite if all of its classes are finite. A subequivalence relation

of E is a subset of E that is an equivalence relation on X. The E-saturation of

a set W ⊆ X, or [W ]E , is the smallest E-invariant set containing W . The orbit

equivalence relation induced by an action of a group Γ on X is the equivalence

relation on X given by x EXΓ y ⇐⇒ ∃γ ∈ Γ γ · x = y.

Suppose that F is a Borel equivalence relation on Y . A homomorphism

from E to F is a function φ : X → Y sending E-equivalent points to F -equi-

valent points, a reduction of E to F is a homomorphism sending E-inequivalent

points to F -inequivalent points, and an embedding of E into F is an injective

reduction.
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A graph on X is an irreflexive symmetric set G ⊆ X×X. A path through

G is a sequence (xi)i≤n with the property that ∀i < nxi G xi+1, in which case n

is the length of the path. A graph is acyclic if there is at most one injective path

between any two points. We say that G is a graphing of E if E is the smallest

equivalence relation on X containing G. When G is acyclic, we also say that

G is a treeing of E. We say that E is treeable if there is a Borel treeing of E.

Suppose that µ is a Borel measure on X. We say that µ is E-ergodic if

every E-invariant Borel set is µ-null or µ-conull, µ is E-invariant if µ(B) =

µ(T (B)) for all Borel sets B ⊆ X and all Borel injections T : B → X whose

graphs are contained in E, and µ is E-quasi-invariant if the E-saturation of

every µ-null set is µ-null.

We say that E is µ-nowhere reducible to F if there is no µ-positive Borel

set B ⊆ X for which E � B is Borel reducible to F , E is µ-reducible to F if

there is a µ-conull Borel set C ⊆ X for which E � C is Borel reducible to F , E

is invariant-measure reducible to F if E � B is µ-reducible to F for every Borel

set B ⊆ X and every (E � B)-invariant Borel probability measure µ on B, and

E is measure reducible to F if E is µ-reducible to F for every Borel probability

measure µ on X. The corresponding notions of invariant-measure embeddabil-

ity and measure embeddability are defined analogously. It is straightforward to

check that invariant-measure embeddability, measure embeddability, and mea-

sure reducibility are transitive (and only marginally more difficult to check

that invariant-measure reducibility is transitive).

We say that E is hyperfinite if it is a union of an increasing sequence

(En)n∈N of finite Borel subequivalence relations, E is µ-nowhere hyperfinite

if there is no µ-positive Borel set B ⊆ X for which E � B is hyperfinite, E

is µ-hyperfinitet if there is a µ-conull Borel set C ⊆ X for which E � C is

hyperfinite, E is invariant-measure hyperfinite if E � B is µ-hyperfinite for

every Borel set B ⊆ X and every (E � B)-invariant Borel probability measure

µ on B, and E is measure hyperfinite if E is µ-hyperfinite for every Borel

probability measure µ on X. As a countable Borel equivalence relation is

hyperfinite if and only if it is Borel reducible to E0 (see Theorem 1.3.8), it

immediately follows that a countable Borel equivalence relation is invariant-

measure hyperfinite if and only if it is invariant-measure reducible to E0, and

measure hyperfinite if and only if it is measure reducible to E0.

Bases. A quasi-order on Q is a reflexive transitive binary relation ≤ on Q.

A basis for Q under ≤ is a set B ⊆ Q such that ∀q ∈ Q∃b ∈ B b ≤ q.
Here we seek to elucidate the extent to which measure theory can shed

light on the structure of the Borel reducibility hierarchy just beyond E0. But

given our limited knowledge of the structure of the hierarchy, the appropriate

meaning of “just beyond” is not entirely clear. We will focus on properties that

hold of some relation in every basis for the nonmeasure-hyperfinite countable
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Borel equivalence relations under measure reducibility. One should first strive

to understand the structure of such bases, the original motivation for this

paper.

Theorem A. Every basis for the nonmeasure-hyperfinite countable Borel

equivalence relations under measure reducibility is uncountable.

Separability. Although we will later give a somewhat different definition,

for the sake of the introduction we will say that F is projectively separable

if whenever X is a standard Borel space, E is a countable Borel equivalence

relation on X, and µ is a Borel probability measure on X for which E is

µ-nowhere hyperfinite, there is a Borel set R ⊆ X ×Y , whose vertical sections

are countable, such that µ({x ∈ B | ¬x R φ(x)}) = 0 for every Borel set

B ⊆ X and every countable-to-one Borel homomorphism φ : B → Y from

E � B to F . It is easy to see that measure-hyperfinite Borel equivalence

relations are projectively separable.

Recall that SL2(Z) is the group of all two-by-two matrices with integer

entries and determinant one. The natural action of SL2(Z) on R2 factors over

Z2 to an action of SL2(Z) on the quotient space T2. It is well known that the

orbit equivalence relation induced by this action is not measure hyperfinite,

although it is treeable (see Propositions 1.8.2 and 1.8.3). Our primary new

tool here is the following.

Theorem B. The orbit equivalence relation induced by the action of

SL2(Z) on T2 is projectively separable.

We obtain Theorem A by showing that if E is a non-measure-hyperfinite

projectively-separable treeable countable Borel equivalence relation, then every

basis for the nonmeasure-hyperfinite Borel subequivalence relations of E under

measure reducibility is uncountable.

Ultimately, one would like to have the analogous result for bases for

the nonmeasure-hyperfinite countable Borel equivalence relations measure re-

ducible to E. We show that E is a counterexample if and only if it is a

countable disjoint union of successors of E0 under measure reducibility. While

the existence of such successors remains open, we show that if there are any

at all, then there are uncountably many.

As projective separability and treeability are closed downward under Borel

reducibility, every basis for the non-measure-hyperfinite countable Borel equiv-

alence relations under measure reducibility contains a relation whose restriction

to some Borel set is not measure hyperfinite, but is projectively separable and

treeable. In particular, if we wish to prove that every such basis contains a

relation whose restriction to some Borel set has a given property, then it is

sufficient to show that the property holds for every nonmeasure-hyperfinite

projectively-separable treeable countable Borel equivalence relation.
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Antichains. The existence of a Borel sequence (Er)r∈R of pairwise non-

measure-reducible treeable countable Borel equivalence relations was first es-

tablished in [Hjo12, Th. 1.1]. In light of the above observations, the following

yields a simple new proof of this result, while simultaneously pushing it to the

base of the reducibility hierarchy.

Theorem C. Suppose that X is a standard Borel space and E is a non-

measure-hyperfinite projectively-separable treeable countable Borel equivalence

relation on X . Then there is a Borel sequence (Er)r∈R of pairwise non-

measure-reducible subequivalence relations of E.

As with our anti-basis theorem, one would like to have the analogous result

in which each Er is measure reducible to E, rather than contained in E. We

show that E is a counterexample if and only if there is a finite family F of

successors of E0 under measure reducibility for which E is a countable disjoint

union of countable Borel equivalence relations measure bi-reducible with those

in F .

In particular, it follows that the existence of a sequence (En)n∈N of pair-

wise non-measure-reducible countable Borel equivalence relations measure re-

ducible to E is equivalent to the existence of a Borel sequence (Er)r∈R of pair-

wise non-measure-reducible countable equivalence relations measure reducible

to E. Moreover, the nonexistence of such sequences implies the stronger fact

that every sequence (En)n∈N of countable Borel equivalence relations measure

reducible to E contains an infinite subsequence that is increasing under mea-

sure reducibility.

Complexity. In [AK00], the existence of perfect families of pairwise in-

comparable countable Borel equivalence relations with distinguished ergodic

Borel probability measures was used to establish a host of complexity results.

We obtain simple new proofs of these results, while simultaneously pushing

them to the base of the reducibility hierarchy, by establishing the following

strengthening of Theorem C.

Theorem D. Suppose that X is a standard Borel space and E is a non-

measure-hyperfinite projectively-separable treeable countable Borel equivalence

relation on X . Then there are Borel sequences (Er)r∈R of subequivalence rela-

tions of E and (µr)r∈R of Borel probability measures on X such that

(1) each µr is Er-ergodic and Er-quasi-invariant ;

(2) for all distinct r, s ∈ R, the relation Er is µr-nowhere reducible to the

relation Es.

While this result is somewhat technical, the complexity results of [AK00]

are all obtained as abstract consequences of its conclusion.
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Again, one would like to have the analog for which each Er is measure

reducible to E, rather than contained in E. We show that E is a counterex-

ample if and only if it is a countable disjoint union of successors of E0 under

measure reducibility.

Products. The existence of nonmeasure-hyperfinite treeable countable

Borel equivalence relations that do not measure reduce every treeable count-

able Borel equivalence relation was originally established in [Hjo08, Th. 1.6].

Identify E×F with the equivalence relation on X×Y given by (x1, y1) (E × F )

(x2, y2) ⇐⇒ (x1 E x2 and y1 F y2), and let ∆(X) denote the diagonal on

X ×X. The following yields a simple new proof of the aforementioned result.

Theorem E. Suppose that X is a standard Borel space and E is a non-

measure-hyperfinite projectively-separable countable Borel equivalence relation

on X . Then E × ∆(R) is not measure reducible to a Borel subequivalence

relation of E.

In [Tho02, Th. 3.3a], the rigidity results behind [AK00] were used to estab-

lish the existence of countable Borel equivalence relations E with the property

that for no n ∈ N is E×∆(n+ 1) measure reducible to E×∆(n). While there

are nonmeasure-hyperfinite projectively-separable countable Borel equivalence

relations that do not have this property, in light of our observations on bases,

the following yields a simple new proof of this result, while simultaneously

pushing it to the base of the reducibility hierarchy.

Theorem F. Suppose that X is a standard Borel space and E is a non-

measure-hyperfinite projectively-separable countable Borel equivalence relation

on X . Then there is a Borel set B ⊆ X such that for no n ∈ N is (E � B)

×∆(n+ 1) measure reducible to (E � B)×∆(n).

Containment versus reducibility. In [Ada02], the rigidity results behind

[AK00] were used to establish the existence of countable Borel equivalence re-

lations E ⊆ F on the same space such that E is not measure reducible to F .

This was strengthened by the proof of [Hjo12, Th. 1.1], which actually pro-

vided an increasing Borel sequence (Er)r∈R of pairwise non-measure-reducible

treeable countable equivalence relations on the same space. In light of our ob-

servations on bases, the following yields a simple new proof of this fact, while

simultaneously pushing it to the base of the reducibility hierarchy.

Theorem G. Suppose that X is a standard Borel space and E is a non-

measure-hyperfinite projectively-separable treeable countable Borel equivalence

relation on X . Then there is an increasing Borel sequence (Er)r∈R of pairwise

non-measure-reducible subequivalence relations of E.

Embeddability versus reducibility. In [Tho02, Th. 3.3b], the rigidity results

behind [AK00] were used to establish the existence of aperiodic countable Borel
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equivalence relations E and F for which E is Borel reducible to F , but E is

not measure embeddable into F . In fact, such examples were produced with

E = F × I(2), where I(X) = X ×X.

If E is invariant-measure hyperfinite and F is aperiodic and countable,

then E is measure reducible to F if and only if E is measure embeddable into

F (see Proposition 3.2.1). In particular, if E is aperiodic and invariant-measure

hyperfinite, then E×I(N) is measure embeddable into E. In light of our obser-

vations on bases, the following yields a simple new proof of the aforementioned

result, while simultaneously pushing it to the base of the reducibility hierarchy.

Theorem H. Suppose that X is a standard Borel space and E is an aperi-

odic non-invariant-measure-hyperfinite projectively-separable treeable countable

Borel equivalence relation on X . Then there is an aperiodic Borel subequiv-

alence relation F of E with the property that for no n ∈ N is F × I(n + 1)

measure embeddable into F × I(n).

Refinements. We have taken great care to state our results in forms that

make both the theorems and the underlying arguments as clear as possible.

Nevertheless, by utilizing several additional ideas, one can obtain many gener-

alizations and strengthenings.

In particular, by establishing analogs of our results for orbit equivalence

relations induced by free Borel actions of countable discrete non-abelian free

groups, one can rule out strong dynamical forms of the von Neumann conjec-

ture, while simultaneously providing an elementary proof of the existence of

continuum-many pairwise incomparable such relations, as found, for example,

in [GP05]. Moreover, as the notion of comparison we consider is far weaker

than those typically appearing in ergodic theory, our results are correspond-

ingly stronger.

One can also obtain similar results for substantial weakenings of measure

reducibility, as well as for broader classes of equivalence relations. We plan to

explore such developments in future papers.

Part 1. Preliminaries

We assume familiarity with the basic results and terminology of descrip-

tive set theory, as found in [Kec95]. We provide here all additional standard

definitions and previously known results utilized throughout the paper. Al-

though we mainly give references to the relevant arguments, we provide proofs

when they are particularly short or difficult to find in the literature. For the

sake of simplicity, we assume the axiom of choice throughout. However, with

only one slight exception (see Section 3.4), our results go through with only

the axiom of dependent choice.
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1.1. Borel equivalence relations

A partial transversal of an equivalence relation is a subset of its domain

intersecting every equivalence class in at most one point.

Theorem 1.1.1 (Silver). Suppose that X is a Polish space and E is a co-

analytic equivalence relation on X . Then exactly one of the following holds :

(1) the relation E has only countably-many classes ;

(2) there is a continuous injection of 2N into a partial transversal of E.

Proof. See [Sil80]. �

We say that E is smooth if it is Borel reducible to equality on a standard

Borel space. The following fact ensures that E0 is the minimal nonsmooth

Borel equivalence relation under Borel reducibility.

Theorem 1.1.2 (Harrington-Kechris-Louveau). Suppose that X is a Po-

lish space and E is a Borel equivalence relation on X . Then exactly one of the

following holds :

(1) the relation E is smooth ;

(2) there is a continuous embedding of E0 into E.

Proof. See [HKL90, Th. 1.1]. �

1.2. Countable Borel equivalence relations

We begin by considering smoothness in the presence of countability.

Proposition 1.2.1. Suppose that X is a standard Borel space and E is

a finite Borel equivalence relation on X . Then E is smooth.

Proof. By the isomorphism theorem for standard Borel spaces (see, for ex-

ample, [Kec95, Th. 15.6]), there is a Borel linear ordering ≤ of X. But then the

Lusin-Novikov uniformization theorem (see, for example, [Kec95, Th. 18.10])

ensures that the function φ : X → X, given by φ(x) = min≤[x]E , is a Borel

reduction of E to equality. �

Remark 1.2.2. We say that a subset of X is E-complete if it intersects ev-

ery E-class. A selector for E is a reduction of E to equality on X whose graph

is contained in E, and a transversal of E is an E-complete partial transversal

of E. Although the above argument actually yields the apparently stronger

fact that every finite Borel equivalence relation has a Borel selector, the Lusin-

Novikov uniformization theorem implies that if E is countable, then smooth-

ness, the existence of a Borel selector, the existence of a Borel transversal, and

the existence of a partition (Bn)n∈N of X into Borel partial transversals are

all equivalent. Moreover, in the special case that E is aperiodic, they are also

equivalent to the existence of a partition (Bn)n∈N of X into Borel transversals.
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Proposition 1.2.3. Suppose that X is a standard Borel space and E is

a smooth countable Borel equivalence relation on X . Then every Borel sube-

quivalence relation of E is smooth.

Proof. By Remark 1.2.2, there is a partition of X into countably-many

Borel partial transversals of E. As every partial transversal of E is a par-

tial transversal of all of its subequivalence relations, one more application of

Remark 1.2.2 yields the desired result. �

A function I : X → X is an involution if I2 = id.

Theorem 1.2.4 (Feldman-Moore). Suppose that X is a standard Borel

space and R ⊆ X × X is a reflexive symmetric Borel set whose vertical sec-

tions are all countable. Then there are Borel involutions In : X → X with the

property that R =
⋃
n∈N graph(In).

Proof. This follows from the proof of [FM77, Th. 1]. �

The following can be viewed as generalizations of Rokhlin’s Lemma.

Proposition 1.2.5 (Slaman-Steel). Suppose that X is a standard Borel

space and E is an aperiodic countable Borel equivalence relation on X . Then

there is a decreasing sequence (Bn)n∈N of E-complete Borel subsets of X with

empty intersection.

Proof. By the isomorphism theorem for standard Borel spaces, we can

assume that X = 2N. For each n ∈ N and x ∈ 2N, let sn(x) be the lexico-

graphically least s ∈ 2n for which Ns ∩ [x]E is infinite. The Lusin-Novikov

uniformization theorem ensures that each of the functions sn is Borel, thus so

too is each of the sets An = {x ∈ 2N | sn(x) v x}. It follows that the sets

Bn = An \
⋂
n∈NAn are as desired. �

Proposition 1.2.6. Suppose that X is a standard Borel space and E

is an aperiodic countable Borel equivalence relation on X . Then there is a

sequence (Bn)n∈N of pairwise disjoint E-complete Borel subsets of X .

Proof. By Proposition 1.2.5, there is a decreasing sequence (An)n∈N of

E-complete Borel subsets of X with empty intersection. Recursively define

functions kn : X → N by first setting k0(x) = 0 and then defining kn+1(x) =

min{k ∈ N | (Akn(x) \ Ak) ∩ [x]E 6= ∅}. The Lusin-Novikov uniformization

theorem ensures that these functions are Borel, so the sets Bn = {x ∈ X | x ∈
Akn(x) \Akn+1(x)} are as desired. �

1.3. Hyperfiniteness

We begin with the most basic properties of hyperfiniteness.
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Proposition 1.3.1 (Dougherty-Jackson-Kechris). Suppose that X is a

standard Borel space and E is a Borel equivalence relation on X . Then the

family of Borel sets on which E is hyperfinite is closed under countable unions.

Proof. See, for example, [DJK94, Prop. 5.2]. �

Proposition 1.3.2 (Dougherty-Jackson-Kechris). The family of hyper-

finite Borel equivalence relations is closed downward under countable-to-one

Borel homomorphism.

Proof. This follows, for example, from [DJK94, Prop. 5.2]. �

Proposition 1.3.3 (Jackson-Kechris-Louveau). Suppose X is a standard

Borel space and E is an aperiodic countable Borel equivalence relation on X .

Then there is an aperiodic hyperfinite Borel subequivalence relation F of E.

Proof. See, for example, [JKL02, Lemma 3.25]. �

We say that a countable discrete group Γ is hyperfinite if whenever X

is a standard Borel space and Γ y X is a Borel action, the induced orbit

equivalence relation EXΓ is hyperfinite.

Proposition 1.3.4 (Slaman-Steel, Weiss). The group Z is hyperfinite.

Proof. See, for example, [SS88, Lemma 1]. �

We say that E is hypersmooth if it is the union of an increasing sequence

(En)n∈N of smooth Borel subequivalence relations.

Theorem 1.3.5 (Dougherty-Jackson-Kechris). Suppose that X is a stan-

dard Borel space and E is a hypersmooth countable Borel equivalence relation

on X . Then E is hyperfinite.

Proof. See, for example, the beginning of [DJK94, §8]. �

The tail equivalence relation induced by a function T : X → X is the

equivalence relation on X given by

x Et(T ) y ⇐⇒ ∃m,n ∈ N Tm(x) = Tn(y).

Theorem 1.3.6 (Dougherty-Jackson-Kechris). Suppose that X is a stan-

dard Borel space and T : X → X is Borel. Then Et(T ) is hypersmooth.

Proof. See, for example, [DJK94, Th. 8.1]. �

We now mention several further facts concerning reducibility.

Theorem 1.3.7 (Dougherty-Jackson-Kechris). All hyperfinite Borel equiv-

alence relations on standard Borel spaces are Borel embeddable into all non-

smooth Borel equivalence relations on standard Borel spaces.
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Proof. This follows from Theorem 1.1.2 and [DJK94, Th. 1]. �

Theorem 1.3.8 (Dougherty-Jackson-Kechris). Suppose that X is a stan-

dard Borel space and E is a countable Borel equivalence relation on X . Then

the following are equivalent :

(1) the relation E is hyperfinite;

(2) the relation E is Borel reducible to E0.

Proof. To see (1) =⇒ (2), note that E0 is nonsmooth, and appeal to

Theorem 1.3.7. To see (2) =⇒ (1), note that E0 is hyperfinite, so Propo-

sition 1.3.2 ensures that so too is every countable Borel equivalence relation

Borel reducible to E0. �

Theorem 1.3.9 (Dougherty-Jackson-Kechris). All hyperfinite Borel equi-

valence relations on standard Borel spaces are comparable under Borel re-

ducibility.

Proof. As all standard Borel spaces are comparable under Borel embed-

dability, and Remark 1.2.2 implies that smooth countable Borel equivalence

relations have Borel transversals, it follows from the Lusin-Novikov uniformiza-

tion theorem that all smooth countable Borel equivalence relations are com-

parable under Borel reducibility. But the desired result then follows from

Theorem 1.3.7. �

Proposition 1.3.10. Suppose that X is a standard Borel space and E is

a nonsmooth countable Borel equivalence relation on X . Then there is a Borel

reduction π : X → X of E to E such that E is nonsmooth off of [π(X)]E .

Proof. By Theorem 1.1.2, it is sufficient to establish the proposition for E0.

Towards this end, observe that the function π : 2N → 2N, given by

π(x)(n) =

x(m) if n = 2m, and

0 if n is odd,

is as desired. �

1.4. Treeability

Here we note the analog of Proposition 1.3.2 for treeability.

Proposition 1.4.1 (Jackson-Kechris-Louveau). The family of treeable

countable Borel equivalence relations is closed downward under countable-to-

one Borel homomorphism.

Proof. See [JKL02, Prop. 3.3]. �
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1.5. Measures

Following [Kec95, §17], we use P (X) to denote the standard Borel space

of all Borel probability measures on X, and when X is a Polish space, we use

the same notation to denote the Polish space of all Borel probability measures

on X. Two Borel measures µ and ν are orthogonal if there is a Borel set that

is µ-null and ν-conull.

Theorem 1.5.1 (Burgess-Mauldin). Suppose that X is a standard Borel

space and A ⊆ P (X) is an uncountable analytic set of pairwise orthogonal

measures. Then there are Borel sequences (Bc)c∈2N of pairwise disjoint subsets

of X and (µc)c∈2N of Borel probability measures on X in A such that µc(Bc) = 1

for all c ∈ 2N.

Proof. By the isomorphism theorem for standard Borel spaces, we can

assume that X is a zero-dimensional Polish space. Fix a countable clopen

basis A for X. By Theorem 1.1.1, there is a continuous injection π : 2N → A.

Fix real numbers εn > 0 such that
∑
n∈N εn < ∞, and appeal to the regular-

ity of Borel probability measures on Polish spaces (see, for example, [Kec95,

Th. 17.10]) to recursively obtain kn ∈ N, φn : 2n → 2kn , and An : 2n → A with

the following properties:

(1) ∀n ∈ N∀s ∈ 2n φn+1(sa(0)) 6= φn+1(sa(1));

(2) ∀i < 2∀n ∈ N∀s ∈ 2n φn(s) v φn+1(sa(i));

(3) ∀n ∈ N∀s, t ∈ 2n (s = t ⇐⇒ An(s) ∩An(t) 6= ∅);
(4) ∀n ∈ N∀s ∈ 2n∀µ ∈ π(Nφn(s)) µ(An(s)) ≥ 1− εn.

Define φ : 2N → 2N by φ(c) =
⋃
n∈N φn(c � n), and for each c ∈ 2N, define

Bc =
⋃
n∈N

⋂
m≥nAn(c � n) and µc = (π ◦ φ)(c). �

We now describe a means of coding Borel functions, modulo sets which

are null with respect to Borel probability measures, which is uniform in both

the function and the measure in question. Let C(X,Y ) denote the space of

continuous functions from X to Y ; see, for example, [Kec95, §4.E]. In order to

keep our coding as transparent as possible, we will assume that X, Y , C(X,Y ),

and C(Y,X) are Polish and that every continuous partial function from X to Y

has a continuous total extension. This holds, for example, when X = Y = 2N.

Proposition 1.5.2. Suppose that X is a compact Polish space and Y is a

Polish space. Then the function φ : C(X,Y )×X → Y given by φ(f, x) = f(x)

is continuous.

Proof. It is sufficient to show that if U ⊆ Y is open and φ(f, x) ∈ U , there

are open neighborhoods V and W of f and x such that φ(V ×W ) ⊆ U . Towards

this end, fix a Polish metric d on Y compatible with its underlying topology.

As U is open, there exists ε > 0 such that B(f(x), ε) ⊆ U . As f is continuous,

there is an open neighborhood W of x such that f(W ) ⊆ B(f(x), ε/2). Fix
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an open neighborhood V of f such that ∀g ∈ V ∀x ∈ X d(f(x), g(x)) ≤ ε/2. It

only remains to note that if (g, y) ∈ V ×W , then d(f(x), g(y)) ≤ d(f(x), f(y))+

ε/2 < ε, thus g(y) ∈ U . �

We refer to elements c of C(X,Y )N as codes for measurable functions.

Proposition 1.5.2 ensures that the sets

Dn = {(c, x) ∈ C(X,Y )N ×X | ∀m ≥ n c(m)(x) = c(n)(x)}
and D =

⋃
n∈NDn are Borel. We associate with each c ∈ C(X,Y )N the map

φc : Dc → Y , where φc(x) is the eventual value of (c(n)(x))n∈N.

Proposition 1.5.3. Suppose that X and Y are standard Borel spaces.

Then the function φ : D → Y given by φ(c, x) = φc(x) is Borel.

Proof. As φ(c, x) = y ⇐⇒ ∃n ∈ N∀m ≥ n c(m)(x) = y, the graph of φ

is Borel, so φ is Borel; see, for example, [Kec95, Th. 14.12]. �

The push-forward of a Borel measure µ on X through a Borel function

φ : X → Y is given by (φ∗µ)(B) = µ(φ−1(B)).

Proposition 1.5.4. Suppose that X and Y are standard Borel spaces.

Then the function φ : {(c, µ) ∈ C(X,Y )N × P (X) | µ(Dc) = 1} → P (Y ) given

by φ(c, µ) = (φc)∗µ is Borel.

Proof. It is sufficient to show that if B ⊆ Y is Borel and F ⊆ R is of the

form (a, b], where a < b are in R, then the intersection of the sets

R = {(c, µ) ∈ C(X,Y )N × P (X) | µ(Dc) = 1}
and

S = {(c, µ) ∈ C(X,Y )N × P (X) | (φc)∗µ(B) ∈ F}

is Borel. But R is clearly Borel (see, for example, [Kec95, Th. 17.25]), and

to see that S is Borel, observe that (c, µ) ∈ S if and only if ∃n ∈ N∀m ≥
n µ(c(m)−1(B) ∩ (Dn)c) ∈ F . �

1.6. Measured equivalence relations

Here we consider countable Borel equivalence relations in the presence of

measures.

Proposition 1.6.1. Suppose that X is a standard Borel space, E is a

nonsmooth Borel equivalence relation on X , and µ is a Borel probability mea-

sure on X . Then there is a µ-null Borel set on which E is nonsmooth.

Proof. By Theorem 1.1.2, there is a continuous embedding π : 2N → X of

E0 into E. For each c ∈ 2N, the function πc : 2N → 2N, given by

πc(d)(n) =

c(m) if n = 2m, and

d(m) if n = 2m+ 1,
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is a continuous embedding of E0 into E0. As the sets of the form πc(2
N) are

pairwise disjoint, it follows that for all but countably many c ∈ 2N, the function

π ◦ πc is as desired. �

Suppose that ρ : E → (0,∞) is a cocycle, in the sense that ρ(x, z) =

ρ(x, y)ρ(y, z) whenever x E y E z. For each set Y ⊆ [x]E , define ρ(Y, x) =∑
y∈Y ρ(y, x). We say that Y is ρ-finite or ρ-infinite according to whether

ρ(Y, x) is finite or infinite. Our assumption that ρ is a cocycle ensures that

the ρ-finiteness of Y does not depend on the choice of x ∈ [Y ]E . We say

that ρ is finite if every equivalence class of E is ρ-finite, and ρ is aperiodic if

every equivalence class of E is ρ-infinite. Given Y,Z ⊆ [x]E , define ρ(Y, Z) =

ρ(Y, x)/ρ(Z, x). Again, our assumption that ρ is a cocycle ensures that ρ(Y,Z)

does not depend on the choice of x ∈ [Y ]E .

Proposition 1.6.2. Suppose that X is a standard Borel space, E is a

countable Borel equivalence relation on X , and there is a finite Borel cocycle

ρ : E → (0,∞). Then E is smooth.

Proof. See, for example, [Mil08, Prop. 2.1]. �

Theorem 1.6.3 (Ditzen). Suppose that X is a standard Borel space and E

is a countable Borel equivalence relation on X . Then the set of E-ergodic

E-quasi-invariant Borel probability measures on X is Borel.

Proof. See [Dit, Th. 2, Ch. 2]. �

We say that µ is ρ-invariant if µ(T (B)) =
∫
B ρ(T (x), x) dµ(x) for all Borel

sets B ⊆ X and all Borel injections T : B → X whose graphs are contained

in E.

Proposition 1.6.4. Suppose that X is a standard Borel space, E is a

countable Borel equivalence relation on X , and µ is an E-quasi-invariant Borel

probability measure on X . Then there is a Borel cocycle ρ : E → (0,∞) with

respect to which µ is invariant.

Proof. See, for example, [KM04, §8]. �

We say that E is µ-nowhere smooth if there is no µ-positive Borel set

B ⊆ X for which E � B is smooth.

Proposition 1.6.5. Suppose that X is a standard Borel space, E is a

countable Borel equivalence relation on X , ρ : E → (0,∞) is an aperiodic

Borel cocycle, and µ is a ρ-invariant Borel probability measure on X . Then E

is µ-nowhere smooth.

Proof. See, for example, [Mil08, Prop. 2.1]. �

The following fact usually allows us to assume quasi-invariance.
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Proposition 1.6.6. Suppose that X is a standard Borel space, E is a

countable Borel equivalence relation on X , and µ is a Borel probability measure

on X . Then there is an E-quasi-invariant Borel probability measure ν on X

such that µ� ν and the two measures take the same values on all E-invariant

Borel sets.

Proof. By Theorem 1.2.4, there is a countable group Γ = {γn | n ∈ N}
of Borel automorphisms of X whose induced orbit equivalence relation is E.

Define ν =
∑
n∈N (γn)∗µ/2

n+1.

To see that ν is a Borel probability measure, simply note that it is a

convex combination of Borel probability measures. Moreover, if B ⊆ X is

an E-invariant Borel set, then µ(B) = (γ∗µ)(B) for all γ ∈ Γ, thus ν(B) =∑
n∈N µ(B)/2n+1 = µ(B). And if N ⊆ X is a ν-null Borel set, then µ(N) ≤∑
n∈N (γn)∗µ(N) = 0, thus µ� ν. �

Note that any two E-ergodic E-quasi-invariant Borel probability measures

are either orthogonal or equivalent; the following gives a sufficient condition to

strengthen equivalence to equality.

Proposition 1.6.7. Suppose that X is a standard Borel space, E is a

countable Borel equivalence relation on X , ρ : E → (0,∞) is a Borel cocycle,

and µ � ν are E-ergodic ρ-invariant Borel probability measures on X . Then

µ = ν.

Proof. The Radon-Nikodým theorem (see, for example, [Kec95, §17.A])

yields a Borel function φ : X → [0,∞) such that µ(B) =
∫
φ(x) dν(x) for all

Borel sets B ⊆ X. As µ(X) = ν(X) = 1, to see that µ = ν, it is sufficient

to show that φ is constant on a µ-conull Borel set. Suppose, towards a con-

tradiction, that there are µ-positive Borel sets A,B ⊆ X with the property

that ∀x ∈ A∀y ∈ B φ(x) < φ(y). As E is countable, Theorem 1.2.4 yields a

countable group Γ of Borel automorphisms of X whose induced orbit equiv-

alence relation is E. As µ is E-ergodic, there exists γ ∈ Γ such that the set

A′ = A ∩ γ−1(B) is µ-positive, so

µ(γ(A′)) =

∫
A′
ρ(γ · x, x) dµ(x) =

∫
A′
φ(x)ρ(γ · x, x) dν(x)

and

µ(γ(A′)) =

∫
γ(A′)

φ(x) dν(x) =

∫
A′
φ(γ · x)ρ(γ · x, x) dν(x),

the desired contradiction. �

A Borel disintegration of a Borel probability measure µ on X through a

Borel function φ : X → Y is a Borel sequence (µy)y∈Y of Borel probability

measures on X with the property that µ =
∫
µy d(φ∗µ)(y) and µy(φ

−1(y)) = 1
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for all y ∈ Y . The existence of such sequences is noted, for example, in [Kec95,

Exercise 17.35].

A Borel ergodic decomposition of a Borel cocycle ρ : E → (0,∞) is a Borel

sequence (µx)x∈X of Borel probability measures on X such that µx = µy for

all (x, y) ∈ E, µ({x ∈ X | µ = µx}) = 1 for all E-ergodic ρ-invariant Borel

probability measures µ, and µ =
∫
µx dµ(x) for all ρ-invariant Borel probability

measures µ.

Theorem 1.6.8 (Ditzen). Suppose that X is a standard Borel space, E is

a Borel equivalence relation on X , and ρ : E → (0,∞) is a Borel cocyle. Then

there is a Borel ergodic decomposition of ρ.

Proof. See [Dit, Th. 6, Ch. 2]. �

A compression of E is a Borel injection T : X → X, whose graph is

contained in E, such that the complement of T (X) is E-complete. We say

that E is compressible if there is a Borel compression of E.

Proposition 1.6.9. Suppose that X is a standard Borel space, E is a

countable Borel equivalence relation on X , and B ⊆ X is a Borel E-complete

set for which E � B is compressible. Then there is a Borel injection T : X → B

whose graph is contained in E.

Proof. Fix a Borel compression φ : B → B of E � B. The Lusin-Novikov

uniformization theorem yields a Borel function ψ : X → B \φ(B) whose graph

is contained in E, as well as a Borel function ξ : X → N such that ψ × ξ is

injective. Set π(x) = φξ(x) ◦ ψ(x). �

We say that E is µ-nowhere compressible if there is no µ-positive Borel

set B ⊆ X for which E � B is compressible.

Theorem 1.6.10 (Hopf). Suppose that X is a standard Borel space, E

is a countable Borel equivalence relation on X , and µ is an E-quasi-invariant

σ-finite Borel measure on X . If E is µ-nowhere compressible, then there is an

E-invariant Borel probability measure ν ∼ µ.

Proof. See, for example, [Nad98, §10]. �

When µ is an E-invariant Borel probability measure, the µ-cost of a graph-

ing G of E is given by

Cµ(G) =
1

2

∫
|Gx| dµ(x).

The µ-cost of E is the infimum of the costs of its Borel graphings.

Proposition 1.6.11 (Gaboriau). Suppose that X is a standard Borel

space, E is a countable Borel equivalence relation on X , µ is an E-invariant

Borel probability measure on X , B ⊆ X is an E-complete Borel set, and
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µB is the Borel probability measure on B given by µB(D) = µ(D)/µ(B).

Then Cµ(E) − 1 = µ(B)(CµB (E � B) − 1). In particular, it follows that

Cµ(E) ≤ CµB (E � B).

Proof. See, for example, [KM04, Th. 21.1]. �

Proposition 1.6.12 (Gaboriau). Suppose that X is a standard Borel

space, E is an aperiodic treeable countable Borel equivalence relation on X ,

and µ is an E-invariant Borel probability measure on X for which E is not

µ-hyperfinite. Then Cµ(E) > 1.

Proof. See, for example, [KM04, Cor. 27.12]. �

An E-ergodic measure µ is (E,F )-ergodic if there is no µ-null-to-one Borel

homomorphism from E to F .

Proposition 1.6.13. Suppose that X is a standard Borel space, E is

a countable Borel equivalence relation on X , µ is an (E,E0)-ergodic Borel

probability measure on X , and (En)n∈N is an increasing sequence of countable

Borel equivalence relations on X whose union is E. Then for all ε > 0, there

is a Borel set B ⊆ X of µ-measure at least 1− ε on which µ is En-ergodic for

all sufficiently large n ∈ N.

Proof. See, for example, [Mil12, Prop. 2.2]. �

For the following, recall the definition of codes for measurable functions

given just before Proposition 1.5.3.

Proposition 1.6.14. Suppose that X and Y are compact Polish spaces

and E and F are countable Borel equivalence relations on X and Y . Then the

set of pairs (c, µ) ∈ C(X,Y )N × P (X) for which φc is a reduction of E to F

on an E-invariant µ-conull Borel set is analytic.

Proof. By Theorem 1.2.4, there are countable groups Γ and ∆ of Borel

automorphisms of X and Y whose induced orbit equivalence relations are E

and F . Then (c, µ) has the desired property if and only if there exists d ∈
C(Y,X)N such that the following conditions hold:

(1) µ(Dc) = 1;

(2) ∀∗µx ∈ X∀γ ∈ Γ φc(x) F φc(γ · x);

(3) ∀∗µx ∈ X∀δ ∈ ∆ (δ · φc(x) ∈ Dd =⇒ x E φd(δ · φc(x)));

(4) (φc)∗µ(Dd) = 1.

Clearly the sets determined by conditions (1) and (2) are Borel, Proposi-

tion 1.5.3 ensures that the set determined by condition (3) is Borel, and Propo-

sition 1.5.4 implies that the set determined by condition (4) is Borel. �
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1.7. Measure hyperfiniteness

Here we consider connections between hyperfiniteness and measures.

Proposition 1.7.1. Suppose that Γ is a countable discrete nonamenable

group, X is a standard Borel space, Γ y X is a free Borel action, and µ

is an EXΓ -invariant Borel probability measure on X . Then the induced orbit

equivalence relation EXΓ is not µ-hyperfinite.

Proof. See, for example, [JKL02, Prop. 2.5]. �

Theorem 1.7.2 (Dye, Krieger). Suppose that X is a standard Borel space,

µ is a Borel probability measure on X , and (En)n∈N is an increasing sequence of

µ-hyperfinite Borel equivalence relations on X . Then the equivalence relation

E =
⋃
n∈NEn is also µ-hyperfinite.

Proof. See, for example, [KM04, Prop. 6.11]. �

Given equivalence relations E and F on X, define

eµ(E,F ) = µ({x ∈ X | [x]E 6= [x]F }).

Proposition 1.7.3. Suppose that X is a standard Borel space and µ is

a Borel probability measure on X . Then eµ is a complete pseudo-metric.

Proof. To see that eµ is a pseudo-metric, it is sufficient to check the tri-

angle inequality. Towards this end, suppose that E1, E2, and E3 are Borel

equivalence relations on X, and observe that

eµ(E1, E3)

= 1− µ({x ∈ X | [x]E1 = [x]E3})
≤ 1− µ({x ∈ X | [x]E1 = [x]E2} ∩ {x ∈ X | [x]E2 = [x]E3})
= 1 + µ({x ∈ X | [x]E1 = [x]E2} ∪ {x ∈ X | [x]E2 = [x]E3})
− (µ({x ∈ X | [x]E1 = [x]E2}) + µ({x ∈ X | [x]E2 = [x]E3}))

≤ 2− (µ({x ∈ X | [x]E1 = [x]E2}) + µ({x ∈ X | [x]E2 = [x]E3}))
= eµ(E1, E2) + eµ(E2, E3).

To see that eµ is complete, suppose that (En)n∈N is an eµ-Cauchy se-

quence, fix a sequence of real numbers εn > 0 such that
∑
n∈N εn <∞, and fix

a strictly increasing sequence of natural numbers kn such that

∀n ∈ N∀i, j ≥ kn eµ(Ei, Ej) ≤ εn.

Note that for all n ∈ N, the set Yn = {x ∈ X | ∀m ≥ n [x]Ekm = [x]Ekn}
has µ-measure at least 1 − ∑

m≥n εm. In particular, it follows that the set

Y =
⋃
n∈N Yn is µ-conull. Letting E denote the union of the diagonal on X
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with the equivalence relations of the form Ekn � Yn for n ∈ N, it follows that

Ekn →eµ E as n→∞, thus eµ is indeed complete. �

It is not difficult to see that eµ is not separable, even when restricted to the

family of Borel equivalence relations on X whose classes are all of cardinality

two. In contrast, we have the following.

Proposition 1.7.4. Suppose that X is a standard Borel space and E

is a countable Borel equivalence relation on X . Then there is a countable

family F of finite Borel subequivalence relations of E such that for all Borel

probability measures µ on X , the family F is eµ-dense in the set of all finite

Borel subequivalence relations of E.

Proof. Fix an enumeration (Un)n∈N of a basis, closed under finite unions,

for a Polish topology generating the Borel structure of X. By Theorem 1.2.4,

there is a sequence (fn)n∈N of Borel automorphisms of X such that E =⋃
n∈N graph(fn).

For each n ∈ N and s ∈ Nn, let Xs denote the Borel set of x ∈ X

with the property that whenever i, j, k < n, x ∈ Us(i) ∩ Us(j), y ∈ Us(k), and

fi(x) = fk(y), there exists ` < n such that y ∈ Us(`) and fj(x) = f`(y). Let

Fs denote the reflexive Borel relation on X in which distinct points x and y

related if there exist i, j < n and z ∈ Us(i) ∩Us(j) ∩Xs such that x = fi(z) and

y = fj(z).

Lemma 1.7.5. Each Fs is an equivalence relation.

Proof. As Fs is clearly reflexive and symmetric, it is sufficient to show

that it is transitive. Towards this end, observe that if x Fs y Fs z are pairwise

distinct, then there exist i, j < n and v ∈ Us(i) ∩ Us(j) ∩Xs with the property

that x = fi(v) and y = fj(v), as well as k, ` < n and w ∈ Us(k) ∩ Us(`) ∩ Xs

with the property that y = fk(w) and z = f`(w). As v ∈ Xs, there exists

m < n with w ∈ Us(m) and x = fi(v) = fm(w), in which case the definition of

Fs ensures that x Fs z. �

To see that the family F = {Fs | s ∈ N<N} is as desired, suppose that

ε > 0, F is a finite Borel subequivalence relation of E, and µ is a Borel

probability measure on X. Fix n ∈ N sufficiently large that the µ-measure of

the set Y = {x ∈ X | ∀y, z ∈ [x]F∃i < n f i(y) = z} is strictly greater than

1 − ε. Set δ = µ(Y ) − (1 − ε), and define Yk = {x ∈ X | x F fk(x)} for all

k < n. As Borel probability measures on Polish spaces are regular, there exists

s ∈ Nn with the property that the µ-measure of the set

Zi,j,k = {x ∈ X | (f−1
i ◦ fj)(x) ∈ Us(k) ⇐⇒ (f−1

i ◦ fj)(x) ∈ Yk)}

is at least 1− δ/n3 for all i, j, k < n.
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Lemma 1.7.6. The set Z = Y ∩⋂
i,j,k<n Zi,j,k is contained in Xs.

Proof. We must show that if i, j, k < n, z ∈ Us(i)∩Us(j)∩Z, y ∈ Us(k), and

fi(z) = fk(y), then there exists ` < n such that y ∈ Us(`) and fj(z) = f`(y).

Towards this end, note that y = (f−1
k ◦ fi)(z), so the fact that z ∈ Z ensures

that z ∈ Yi ∩ Yj and y ∈ Yk. In particular, it follows that fj(z) F z F fi(z) =

fk(y) F y. The fact that z ∈ Y then yields ` < n such that fj(z) = f`(y). As

y ∈ Y`, one more appeal to the fact that z ∈ Z ensures that y ∈ Us(`). �

Lemma 1.7.7. Suppose that z ∈ Z . Then [z]F = [z]Fs .

Proof. Suppose first that x ∈ [z]F . As z ∈ Y , there exist i, j < n such

that x = fi(z) and z = fj(z). Then z ∈ Yi ∩ Yj , so the fact that z ∈ Z ensures

that z ∈ Us(i) ∩ Us(j). As Lemma 1.7.6 implies that z ∈ Xs, the definition of

Fs ensures that x ∈ [z]Fs .

Suppose now that x ∈ [z]Fs . The definition of Fs then yields i, j < n and

w ∈ Us(i) ∩ Us(j) ∩ Xs such that x = fi(w) and z = fj(w). As z ∈ Y , there

exists ` < n such that z = f`(z). As z ∈ Y`, the fact that z ∈ Z ensures

that z ∈ Us(`), so the fact that w ∈ Xs yields k < n such that z ∈ Us(k) and

x = fk(z). One more appeal to the fact that z ∈ Z then ensures that z ∈ Yk,
in which case x = fk(z) ∈ [z]F . �

As µ(Z) ≥ 1− ε, it follows that eµ(F, Fs) ≤ ε. �

We use HE to denote the space of Borel probability measures µ on X with

respect to which E is µ-hyperfinite. The following fact originally appeared in

[Seg97].

Theorem 1.7.8 (Segal). Suppose that X is a standard Borel space and

E is a countable Borel equivalence relation on X . Then there is a Borel set

F ⊆ (N×(X×X))×P (X) such that for all µ ∈ P (X), the following conditions

hold :

(1) the sets (Fµ)n form an increasing sequence of finite Borel subequivalence

relations of E;

(2) the set Bµ = {x ∈ X | [x]E 6=
⋃
n∈N[x](Fµ)n} does not contain a µ-positive

Borel subset on which E is hyperfinite.

In particular, it follows that HE is Borel.

Proof. Fix real numbers εn > 0 such that
∑
n∈N εn < ∞. By Proposi-

tion 1.7.4, there is a family E = {Ek | k ∈ N} of finite Borel subequivalence

relations of E such that for all Borel probability measures µ on X, the family

E is eµ-dense in the set of all finite Borel subequivalence relations of E. Then

the functions mn : P (X)→ [0, 1] given by

mn(µ) = supk∈N µ({x ∈ X | ∀i < n x Ek fi(x)})
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are Borel, as are the functions kn : P (X)→ N given by

kn(µ) = min{k ∈ N | µ({x ∈ X | ∀i < n x Ek fi(x)}) > mn(µ)− εn}.

Thus so too is the set F ⊆ (N× (X ×X))× P (X) given by

x (Fµ)n y ⇐⇒ ∀m ≥ n x Ekm(µ) y.

To see that F is as desired, suppose that µ ∈ P (X). As the sets (Fµ)n =⋂
m≥nEkm(µ) form an increasing sequence of finite Borel subequivalence rela-

tions of E, it is enough to show that if A ⊆ Bµ is a Borel set on which E is

hyperfinite, then µ(A) = 0. As Bµ is E-invariant and E is countable, the Lusin-

Novikov uniformization theorem and Proposition 1.3.2 allow us to assume that

A is E-invariant.

Lemma 1.7.9. Suppose that n ∈ N. Then

µ({x ∈ A | ∀i < n x Ekn(µ) fi(x)}) ≥ µ(A)− εn.

Proof. As Ekn(µ) is finite, Remark 1.2.2 ensures that it has a Borel trans-

versal C ⊆ X from which the quotient X/Ekn(µ) inherits a standard Borel

structure and, moreover, that the map associating each Ekn(µ)-class with the

unique point of C it contains is a Borel reduction of E/Ekn(µ) to E. Propo-

sition 1.3.2 therefore implies that the restriction of E/Ekn(µ) to A/Ekn(µ) is

hyperfinite.

Given ε > 0, observe that all but finitely many relations E′ along any se-

quence witnessing the hyperfiniteness of the restriction of E/Ekn(µ) toA/Ekn(µ),

when viewed as equivalence relations on A, satisfy the condition that

µ({x ∈ A | ∀i < n x E′ fi(x)}) > µ(A)− ε.

The eµ-density of E therefore yields k ∈ N such that

µ(A)− µ({x ∈ A | ∀i < n x Ekn(µ) fi(x)})− ε

is strictly less than

µ({x ∈ X | ∀i < n x Ek fi(x)})− µ({x ∈ X | ∀i < n x Ekn(µ) fi(x)}).

As the definition of kn(µ) ensures that the latter quantity is itself strictly less

than εn, it follows that

µ({x ∈ A | ∀i < n x Ekn(µ) fi(x)}) > µ(A)− εn − ε,

thus µ({x ∈ A | ∀i < n x Ekn(µ) fi(x)}) ≥ µ(A)− εn, as the former inequality

holds for all ε > 0. �

Set A′ =
⋃
n∈N

⋂
m≥n{x ∈ A | ∀i < m x Ekm(µ) fi(x)}, and note that µ(A)

= µ(A′), since
∑
n∈N εn <∞, thus µ(A) = 0, since A′ ∩Bµ = ∅.
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As HE = {µ ∈ P (X) | µ(Bµ) = 0} and the Lusin-Novikov uniformization

theorem ensures that the set B = {(x, µ) ∈ X × P (X) | x ∈ Bµ} is Borel, it

follows that HE is Borel as well. �

Proposition 1.7.10. Suppose that X is a standard Borel space, E is a

countable Borel equivalence relation on X , ρ : E → (0,∞) is a Borel cocycle,

and there is a ρ-invariant Borel probability measure µ on X for which E is not

µ-hyperfinite. Then there is such a measure that is also E-ergodic.

Proof. This follows from Theorems 1.6.8 and 1.7.8. �

We use EE to denote the family of all E-ergodic Borel probability mea-

sures on X, QE to denote the family of all E-quasi-invariant Borel probability

measures on X, and EQE to denote EE ∩QE .

Theorem 1.7.11. Suppose that X is a standard Borel space and E is a

countable Borel equivalence relation on X . Then exactly one of the following

holds :

(1) the relation E is measure hyperfinite;

(2) the set EQE \ HE is nonempty.

Proof. Suppose that E is not measure hyperfinite. Proposition 1.6.6 then

yields an E-quasi-invariant Borel probability measure µ on X with respect to

which E is not µ-hyperfinite, and Propositions 1.6.4 and 1.7.10 give rise to an

E-ergodic such measure. �

We close this section by considering preservation of µ-hyperfiniteness un-

der Borel homomorphisms.

Proposition 1.7.12. Suppose that X and Y are standard Borel spaces,

E is a countable Borel equivalence relation on X , φ : X → Y is a Borel homo-

morphism from E to equality, µ is a Borel probability measure on X , (µy)y∈Y
is a Borel disintegration of µ through φ, and E � φ−1(y) is µy-hyperfinite for

(φ∗µ)-almost every y ∈ Y . Then E is µ-hyperfinite.

Proof. By Theorem 1.7.8, the set D = {y ∈ Y | E is µy-hyperfinite} is

Borel, and there is a hyperfinite Borel equivalence relation F on X for which

there is a Borel set C ⊆ X such that µy(C) = 1 and E � C = F � C for all

y ∈ D. Then µ(C) = 1, so E is µ-hyperfinite. �

Proposition 1.7.13. Suppose that X and Y are standard Borel spaces,

E is a countable Borel equivalence relation on X , F is a hyperfinite Borel

equivalence relation on Y , φ : X → Y is a Borel homomorphism from E to F ,

µ is a Borel probability measure on X , (µy)y∈Y is a Borel disintegration of

µ through φ, and E � φ−1(y) is µy-hyperfinite for (φ∗µ)-almost every y ∈ Y .

Then E is µ-hyperfinite.
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Proof. Fix an increasing sequence (Fn)n∈N of finite Borel equivalence rela-

tions on Y whose union is F . Proposition 1.7.12 then ensures that each of the

equivalence relations En = E∩(φ×φ)−1(Fn) is µ-hyperfinite. As E =
⋃
n∈NEn,

Theorem 1.7.2 implies that E is µ-hyperfinite. �

1.8. Actions of SL2(Z)

Let ∼ denote the equivalence relation on R2 \ {(0, 0)} given by

v ∼ w ⇐⇒ ∃r ∈ R (r > 0 and rv = w),

and let T denote the quotient. Define projT : R2\{(0, 0)}→T by projT(v)=[v]∼,

and let SL2(Z) y T denote the action induced by SL2(Z) y R2.

Proposition 1.8.1 (Jackson-Kechris-Louveau). The action SL2(Z) y T
is hyperfinite.

Proof. See the remark following the proof of [JKL02, Lemma 3.6]. �

Let Z2oSL2(Z) denote the group of all functions T : R2 → R2 of the form

T (x) = Ax + b, where A ∈ SL2(Z) and b ∈ Z2, under composition. Define

projSL2(Z) : Z2 o SL2(Z)→ SL2(Z) by projSL2(Z)(Ax+ b) = A.

Proposition 1.8.2. Suppose that µ is the Borel probability measure on

T2 induced by Lebesgue measure on R2. Then the orbit equivalence relation

ET2

SL2(Z) is not µ-hyperfinite.

Proof. As SL2(Z) is not amenable and [JKL02, Lemma 3.6] ensures that

SL2(Z) y R2 is free off of a µ-null set, this is a consequence of Proposition 1.7.1.

�

Proposition 1.8.3 (Jackson-Kechris-Louveau). The orbit equivalence re-

lation ET2

SL2(Z) is treeable.

Proof. See [JKL02, Prop. 3.5]. �

1.9. Complexity

The conclusion of the following summarizes the main results of [AK00].

Theorem 1.9.1 (Adams-Kechris). Suppose that X is a standard Borel

space, E is a countable Borel equivalence relation on X , (Er)r∈R is a Borel

sequence of subequivalence relations of E, and (µr)r∈R is a Borel sequence of

Borel probability measures on X such that

(1) each µr is Er-ergodic and Er-quasi-invariant ;

(2) the relation Er is µr-nowhere reducible to the relation Es, for all distinct

r, s ∈ R.

Then the following hold :
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(a) there is an embedding of containment on Borel subsets of R into Bor-

el reducibility of countable Borel equivalence relations with smooth-to-one

Borel homomorphisms to E (in the codes);

(b) Borel bi-reducibility and reducibility of countable Borel equivalence rela-

tions with smooth-to-one Borel homomorphisms to E are both Σ1
2-complete

(in the codes);

(c) every Borel quasi-order is Borel reducible to Borel reducibility of count-

able Borel equivalence relations with smooth-to-one Borel homomorphisms

to E;

(d) Borel and σ(Σ1
1)-measurable reducibility do not agree on the countable

Borel equivalence relations with smooth-to-one Borel homomorphisms to E.

Proof. The proof of [AK00, Th. 4.1] yields (a), the proof of [AK00, Th. 5.1]

yields (b), the final paragraph of [AK00, §7] yields (c), and the proof of [AK00,

Th. 5.5] yields (d). �

Part 2. Tools

Here we introduce the new ideas underlying our arguments. In Section 2.1,

we show that SL2(Z) y T satisfies a measureless strengthening of amenability.

In Section 2.2, we use this to prove that Z2oSL2(Z) y R2 satisfies a measure-

less local rigidity property. In Section 2.3, we establish a strong separability

property for orbit equivalence relations induced by such actions. In Section 2.4,

we show that the latter yields countability of an appropriate auxiliary equiva-

lence relation on the underlying space of ergodic quasi-invariant Borel proba-

bility measures witnessing the failure of hyperfiniteness, and we derive several

consequences of this countability. In Section 2.5, we provide a general stratifi-

cation theorem for treeable countable Borel equivalence relations.

2.1. Productive hyperfiniteness

Suppose that Γ is a countable discrete group. The diagonal product of

actions Γ y X and Γ y Y is the action Γ y X × Y given by γ · (x, y) =

(γ · x, γ · y). We say that a Borel action Γ y X on a standard Borel space

is productively hyperfinite if whenever Γ y Y is a Borel action on a standard

Borel space, the orbit equivalence relation induced by the diagonal product

action Γ y X × Y is hyperfinite.

Proposition 2.1.1. Suppose that Γ is a countable discrete group, X is a

standard Borel space, and Γ y X is a Borel action such that

(1) the induced orbit equivalence relation is hyperfinite;

(2) the stabilizer of every point is hyperfinite;

(3) only countably-many points have infinite stabilizers.

Then Γ y X is productively hyperfinite.
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Proof. Let C denote the set of points whose stabilizers are infinite, and

fix an increasing sequence (En)n∈N of finite Borel equivalence relations whose

union is EXΓ .

Suppose now that Y is a standard Borel space and Γ y Y is a Borel

action. For each n ∈ N, let Fn denote the equivalence relation on (X \C)× Y
for which two E

(X\C)×Y
Γ -equivalent pairs (x, y) and (x′, y′) are related exactly

when x En x
′. As each Fn is finite and their union is E

(X\C)×Y
Γ , the latter

equivalence relation is hyperfinite.

It only remains to show that EC×YΓ is hyperfinite. As C is countable

and Proposition 1.3.1 ensures that the family of Borel sets on which a Borel

equivalence relation is hyperfinite forms a σ-ideal, we need only show that

EX×YΓ is hyperfinite on {x} × Y , for all x ∈ C. But this follows from the fact

that its restriction to such a set is the orbit equivalence relation induced by a

Borel action of the stabilizer of x. �

To apply this to SL2(Z) y T, we must first consider its stabilizers.

Proposition 2.1.2. Suppose that θ ∈ T. Then the stabilizer of θ under

SL2(Z) y T is either trivial or infinite cyclic.

Proof. We consider first the case that θ∩Z2 6= ∅. Let v denote the unique

element of θ ∩ Z2 of minimal length. Note that the stabilizers of θ and v are

one and the same, for if A is in the stabilizer of θ, then v is an eigenvector

of A, so minimality ensures that Av = v. Minimality also ensures that the

coordinates of v are relatively prime, so there exists a ∈ Z2 such that a · v = 1,

in which case B = ( a1 a2
−v2 v1 ) is a matrix in SL2(Z) for which Bv = ( 1

0 ), thus

conjugation by B yields an isomorphism of the stabilizer of v with that of ( 1
0 ),

and the latter is the infinite cyclic group {( 1 n
0 1 ) | n ∈ Z}.

It remains to consider the case that θ∩Z2 = ∅. Fix v ∈ θ. An elementary

calculation reveals that the stabilizer of v is trivial. Let Λ denote the set of

eigenvalues of matrices in the stabilizer of θ, noting that Λ forms a group under

multiplication.

Lemma 2.1.3. The group Λ is cyclic.

Proof. It is sufficient to show that 1 is isolated in Λ∩ [1,∞). Towards this

end, suppose that A is in the stabilizer of θ and v is an eigenvector of A with

eigenvalue λ > 1. If µ is the other eigenvalue of A, then λµ = det(A) = 1, so

tr(A) = λ+µ = λ+1/λ. As tr(A) ∈ Z, another elementary calculation reveals

that λ ≥ (3 +
√

5)/2. �

By Lemma 2.1.3, there is a matrix A in the stabilizer of θ that has an

eigenvalue λ generating Λ. Note that if B is any matrix in the stabilizer of θ,

then there exists n ∈ Z for which v is an eigenvector of B with eigenvalue λn,
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in which case AnB−1 is in the stabilizer of v, so B = An, thus A generates the

stabilizer of θ, hence the latter is cyclic.

Observe finally that if A is a nonidentity matrix fixing θ, then any two dis-

tinct powers of A are themselves distinct, since the eigenvalues corresponding

to v are distinct. In particular, it follows that if the stabilizer of θ is nontrivial,

then it is infinite. �

As a consequence, we can now obtain the main result of this section.

Proposition 2.1.4. The action SL2(Z) y T is productively hyperfinite.

Proof. As Proposition 1.8.1 ensures that the orbit equivalence relation

induced by SL2(Z) y T is hyperfinite, Proposition 2.1.2 ensures that the

nontrivial stabilizers of SL2(Z) y T are infinite cyclic, and Proposition 1.3.4

ensures that infinite cyclic groups are hyperfinite, it is sufficient to show that

only countably many θ ∈ T have nontrivial stabilizers, by Proposition 2.1.1.

As every such θ is the equivalence class of an eigenvector of some nontrivial

matrix in SL2(Z), and every such matrix admits at most two such classes of

eigenvectors, this follows from the countability of SL2(Z). �

2.2. Projective rigidity

Given R ⊆ X × X, ∆ y Y , and ρ : R → ∆, we say that a function

φ : X → Y is ρ-invariant if x1 R x2 =⇒ φ(x1) = ρ(x1, x2) · φ(x2) for all

x1, x2 ∈ X. The difference set associated with two functions φ : A ⊆ X → Y

and ψ : B ⊆ X → Y is given by

D(φ, ψ) = {x ∈ A ∩B | φ(x) 6= ψ(x)} ∪ (A 4 B).

We say that ∆ y Y is projectively rigid if whenever X is a standard Borel

space, E is a countable Borel equivalence relation on X, and ρ : E → ∆ is

a Borel function, there is essentially at most one countable-to-one ρ-invariant

Borel function, in the sense that for any two such functions φ and ψ, the

relation E � D(φ, ψ) is hyperfinite.

Theorem 2.2.1. The action Z2 o SL2(Z) y R2 is projectively rigid.

Proof. Suppose that X is a standard Borel space, E is a countable Borel

equivalence relation on X, ρ : E → Z2oSL2(Z) is a Borel function, φ : X → R2

is a countable-to-one ρ-invariant Borel function, and ψ : X→R2 is a ρ-invariant

Borel function.

Define π : D(φ, ψ) → T by π(x) = projT(φ(x) − ψ(x)), and define σ : E �
D(φ, ψ)→ SL2(Z) by σ(x1, x2) = projSL2(Z)(ρ(x1, x2)).

Lemma 2.2.2. The function π is σ-invariant.
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Proof. Simply observe that if x1 (E � D(φ, ψ)) x2, then

π(x1) = projT(φ(x1)− ψ(x1))

= projT(ρ(x1, x2) · φ(x2)− ρ(x1, x2) · ψ(x2))

= projT(σ(x1, x2) · φ(x2)− σ(x1, x2) · ψ(x2))

= projT(σ(x1, x2) · (φ(x2)− ψ(x2)))

= σ(x1, x2) · projT(φ(x2)− ψ(x2))

= σ(x1, x2) · π(x2),

thus π is σ-invariant. �

As (projT2 ◦φ) � D(φ, ψ) is also σ-invariant, it follows that the product π×
(projT2 ◦φ) is a countable-to-one homomorphism from E � D(φ, ψ) to the orbit

equivalence relation induced by the diagonal product action SL2(Z) y T×T2.

As Proposition 2.1.4 ensures that SL2(Z) y T is productively hyperfinite, it

follows that the latter relation is hyperfinite. As Proposition 1.3.2 ensures that

the family of hyperfinite Borel equivalence relations is closed downward under

countable-to-one Borel homomorphism, it follows that the former relation is

also hyperfinite. �

Remark 2.2.3. As noted by both Manuel Inselmann and one of the anony-

mous referees, the productive hyperfiniteness of SL2(Z) y T can also be used

to show that the orbit equivalence relation induced by SL2(Z) y R2 is hy-

perfinite. To see this, observe that the function π : R2 \ {0} → T × R2 given

by π(x) = (projT(x), x) is a reduction of the orbit equivalence relation in-

duced by SL2(Z) y (R2 \ {0}) to the orbit equivalence relation induced by

SL2(Z) y T× R2.

2.3. Projective separability

Let L(X,Y ) denote the set of Borel functions φ : B → Y , where B varies

over Borel subsets of X. Let L(X,µ, Y ) denote L(X,Y ) equipped with the

pseudo-metric dµ(φ, ψ) = µ(D(φ, ψ)).

Proposition 2.3.1. Suppose that X and Y are standard Borel spaces,

µ is a finite Borel measure on X , and L ⊆ L(X,µ, Y ). Then the following

are equivalent :

(1) the space L is separable;

(2) there is a Borel set R ⊆ X×Y , whose vertical sections are countable, with

the property that

∀φ ∈ L µ({x ∈ dom(φ) | ¬x R φ(x)}) = 0.



MEASURE REDUCIBILITY 375

Proof. To see (1) =⇒ (2), note that if D is a countable dense subset of L ,

then the set R =
⋃
φ∈D graph(φ) is as desired, since graphs of Borel functions

are Borel. To see (2) =⇒ (1), it is sufficient to show that if condition (2) holds,

then there is a countable subset of L(X,µ, Y ) whose closure contains L . As the

vertical sections of R are countable, the Lusin-Novikov uniformization theorem

yields a countable family F of Borel partial functions, the union of whose

graphs is R. Fix a countable algebra B of Borel subsets of X, containing the

domain of every φ ∈ F , such that for all Borel sets A ⊆ X and all ε > 0, there

exists B ∈ B with µ(A 4 B) ≤ ε. We then obtain the desired countable dense

family by considering those ψ : B → Y , where B ranges over B, for which there

is a finite partition A ⊆ B of B such that ∀A ∈ A ∃φ ∈ F φ � A = ψ � A. �

We say that a function φ : Y → Y ′ is a homomorphism from a set L ⊆
L(X,µ, Y ) to a set L ′ ⊆ L(X,µ, Y ′) if ∀ψ ∈ L φ ◦ ψ ∈ L ′.

Proposition 2.3.2. Suppose that X , Y , and Y ′ are standard Borel spaces,

µ is a Borel probability measure on X , L ⊆ L(X,µ, Y ) and L ′ ⊆ L(X,µ, Y ′),

there is a countable-to-one Borel homomorphism φ : Y → Y ′ from L to L ′,

and L ′ is separable. Then L is separable.

Proof. Fix a Borel set R′ ⊆ X×Y ′ satisfying the analog of condition (2) of

Proposition 2.3.1 for L ′, and observe that the set R = (id× φ)−1(R′) satisfies

condition (2) of Proposition 2.3.1 for L . �

Let Hom(E,µ, F ) denote the subspace of L(X,µ, Y ) consisting of all

countable-to-one partial homomorphisms φ ∈ L(X,µ, Y ) from E to F .

Proposition 2.3.3. Suppose that X , Y , and Y ′ are standard Borel spaces,

E, F , and F ′ are countable Borel equivalence relations on X , Y , and Y ′, µ is

a Borel probability measure on X , there is a countable-to-one Borel homo-

morphism φ : Y → Y ′ from F to F ′, and Hom(E,µ, F ′) is separable. Then

Hom(E,µ, F ) is separable.

Proof. As the function φ is also a homomorphism from Hom(E,µ, F ) to

Hom(E,µ, F ′), the desired result follows from Proposition 2.3.2. �

We say that F is projectively separable if whenever X is a standard Bor-

el space, E is a countable Borel equivalence relation on X, and µ is a Borel

probability measure on X with respect to which E is µ-nowhere hyperfinite,

the space Hom(E,µ, F ) is separable.

Proposition 2.3.4. Suppose that X and Y are standard Borel spaces,

E and F are countable Borel equivalence relations on X and Y , there is a

countable-to-one Borel homomorphism from E to F , and F is projectively sep-

arable. Then E is projectively separable.
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Proof. This is a direct consequence of Proposition 2.3.3. �

We next establish the connection between projective rigidity and projec-

tive separability.

Theorem 2.3.5. Suppose that ∆ is a countable discrete group, Y is a

standard Borel space, and ∆ y Y is a projectively rigid Borel action. Then

the orbit equivalence relation F = EY∆ is projectively separable.

Proof. Suppose that X is a standard Borel space, E is a countable Borel

equivalence relation on X, and µ is a Borel probability measure on X with

respect to which E is µ-nowhere hyperfinite. Let µc denote the counting mea-

sure on X. The Lusin-Novikov uniformization theorem yields an increasing

sequence (Rn)n∈N of Borel subsets of X×X such that E =
⋃
n∈NRn and every

vertical section of every Rn has cardinality at most n. Set νn = (µ× µc) � Rn
for all n ∈ N.

Lemma 2.3.6. Suppose that φ ∈ Hom(E,µ, F ), ρ : E � dom(φ) → ∆ is a

Borel function with respect to which φ is invariant, (Dn)n∈N is a sequence of

Borel subsets of X with
∑
n∈N µ(dom(φ) 4 Dn)<∞, (ρn:Rn � Dn→∆)n∈N is

a sequence of Borel functions such that
∑
n∈N dνn(ρ � (Rn � dom(φ)), ρn) <∞,

and φn : Dn → Y is a ρn-invariant Borel function for all n ∈ N. Then

dµ(φ, φn)→ 0.

Proof. For all n ∈ N, let En be the equivalence relation on dom(φ) ∩Dn

generated by the relation Sn = (Rn � (dom(φ) ∩Dn)) \D(ρ, ρn).

Sublemma 2.3.7. For all n ∈ N, there is a Borel function σn : En → ∆

for which every (ρ � Sn)-invariant function is σn-invariant.

Proof. Note that if x En y, then there are only countably many ` ∈ N
and (zi)i≤` ∈ X`+1 such that x = z0, ∀i < ` zi Sn zi+1, and y = z`, so the

Lusin-Novikov uniformization theorem yields Borel functions ` : En → N and

f : En → X<N with the property that

∀(x, y) ∈ En x = f0(x, y) Sn f1(x, y) Sn · · · Sn f`(x,y)(x, y) = y.

Define σn(x, y) =
∏
i<`(x,y) ρ(fi(x, y), fi+1(x, y)). �

As the restrictions of φ and φn to dom(φ) ∩ Dn are (ρ � Sn)-invariant,

they are σn-invariant. Note that the set D = dom(φ) ∩ ⋃
n∈N

⋂
m≥nDm is

(µ � dom(φ))-conull.

Sublemma 2.3.8. There is a (µ � D)-conull Borel set C ⊆ D such that

E ∩ (C ×D) ⊆ ⋃
n∈N

⋂
m≥n Sm.
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Proof. The Lusin-Novikov uniformization theorem ensures that the sets

Cn = {x ∈ dom(φ) ∩ Dn | ∃y ∈ dom(φ) ∩ Dn x (Rn \ Sn) y} are Borel,

and Fubini’s theorem (see, for example, [Kec95, §17.A]) ensures that µ(Cn) ≤
dνn(ρ � (Rn � dom(φ)), ρn) for all n ∈ N. In particular, it follows that the

set C = D \ ⋂n∈N
⋃
m≥nCm is (µ � D)-conull. And if (x, y) ∈ E ∩ (C × D),

then there exists n ∈ N for which x Rn y, so the fact that x ∈ C ensures that

x Sm y for sufficiently large m ≥ n. �

Suppose now that ε > 0. Set Fn =
⋂
m≥nEm for all n ∈ N, and observe

that E � C =
⋃
n∈N Fn � C. As Theorem 1.7.2 ensures that the µ-hyperfinite

Borel equivalence relations are closed under increasing unions, there are Borel

sets Bn ⊆ C ∩ ⋂
m≥nDm with the property that µ(C \ Bn) < ε and Fn � Bn

is (µ � Bn)-nowhere hyperfinite, thus φ � Bn = φn � Bn for sufficiently large

n ∈ N. �

Fix a countable family B of Borel subsets of X such that for all Borel sets

A ⊆ X and all real numbers ε > 0, there exists B ∈ B with µ(A 4 B) ≤ ε.

Proposition 2.3.1 yields countable dense sets Dn ⊆ L(Rn, νn,∆). For each

n ∈ N, B ∈ B, ε ∈ (0,∞) ∩Q, and σ ∈ Dn for which it is possible, fix a Borel

set Dn,B,ε,σ ⊆ X with µ(B 4 Dn,B,ε,σ) ≤ ε, a Borel function ρn,B,ε,σ : Rn �
Dn,B,ε,σ → ∆ such that dνn(σ, ρn,B,ε,σ) ≤ ε, and a ρn,B,ε,σ-invariant Borel

function φn,B,ε,σ : Dn,B,ε,σ → Y . It only remains to check that the functions of

the form φn,B,ε,σ are dense in Hom(E,µ, F ).

Towards this end, suppose that φ ∈ Hom(E,µ, F ), and fix a Borel function

ρ : E � dom(φ) → ∆ for which φ is ρ-invariant. Fix a sequence (εn)n∈N of

positive rational numbers for which
∑
n∈N εn < ∞, and for each n ∈ N, fix

Bn ∈ B with µ(Bn 4 dom(φ)) ≤ εn and σn ∈ Dn such that dνn(σn, ρ �
(Rn � dom(φ))) ≤ εn. Then the sets Dn = Dn,Bn,εn,σn and the functions ρn =

σn,Bn,εn,σn and φn = φn,Bn,εn,σn are well defined. As µ(dom(φ) 4 Dn) ≤ 2εn
and dνn(ρ � (Rn � dom(φ)), ρn) ≤ 2εn for all n ∈ N, Lemma 2.3.6 ensures that

dµ(φ, φn)→ 0. �

In particular, we can now establish the existence of nontrivial projectively-

separable countable Borel equivalence relations.

Theorem 2.3.9. The orbit equivalence relation induced by SL2(Z) y T2

is projectively separable.

Proof. Note that the orbit equivalence relation in question is Borel re-

ducible to that induced by Z2 o SL2(Z) y R2. As Theorem 2.2.1 ensures that

the latter action is projectively rigid, its induced orbit equivalence relation is

projectively separable by Theorem 2.3.5. But Proposition 2.3.4 ensures that

the projectively-separable countable Borel equivalence relations are closed un-

der Borel reducibility. �
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2.4. The space of measures

Here we consider connections between E and EQE \ HE . Theorems 1.6.3

and 1.7.8 ensure that the latter is a Borel subset of P (X).

Proposition 2.4.1. Suppose that X is a standard Borel space, E is a

countable Borel equivalence relation on X , and the set EQE \ HE is a sin-

gle measure-equivalence class. Then E is a successor of E0 under measure

reducibility.

Proof. Suppose that Y is a standard Borel space and F is a countable

Borel equivalence relation on Y that is measure reducible to E, but not to E0.

We must show that E is measure reducible to F .

By Theorem 1.7.11, there exists ν ∈ EQF \ HF . By Proposition 1.6.1,

there is a ν-null Borel set N ⊆ Y on which F is nonsmooth. As F is countable,

the Lusin-Novikov uniformization theorem ensures that [N ]F is Borel, so by

replacing N with [N ]F , we can assume that N is F -invariant. Fix a ν-conull

Borel set C ⊆ ∼N for which there is a Borel reduction φ : C → X of F � C
to E. As E and F are countable, the Lusin-Novikov uniformization theorem

ensures that the set B = [φ(C)]E is Borel, and that there is a Borel function

ψ : B → C such that graph(φ ◦ ψ) ⊆ E. In particular, it follows that ψ is a

Borel reduction of E � B to F � C.

Suppose now that µ is a Borel probability measure on X. As Propositon

1.3.2 ensures that the class of hyperfinite Borel equivalence relations is closed

downward under Borel reducibility, it follows that the push-forward ν ′ of ν � C
through φ is not in HE . By Proposition 1.6.6, there is an E-quasi-invariant

Borel probability measure ν ′′ on X such that ν ′ � ν ′′ and the two measures

have the same E-invariant null Borel sets. Then ν ′′ ∈ EQE \ HE , so E � ∼B
is measure hyperfinite, thus there is a Borel set A ⊆ ∼B such that E � A is

hyperfinite and µ(A ∪ B) = 1. As Theorem 1.3.7 ensures that every hyper-

finite Borel equivalence relation is Borel reducible to every nonsmooth Borel

equivalence relation, it follows that there is a Borel reduction ψ′ : A → N of

E � A to F � N . As ψ ∪ ψ′ is a reduction of E � (A ∪ B) to F , it follows that

E is µ-reducible to F , thus E is measure reducible to F . �

Proposition 2.4.2. Suppose that X is a standard Borel space, E is a

countable Borel equivalence relation on X , and EQE \HE is a nonempty count-

able union of measure-equivalence classes. Then E is a countable disjoint union

of successors of E0 under measure reducibility.

Proof. Suppose that N is a nonempty countable set and EQE \HE is the

disjoint union of the measure-equivalence classes of Borel probability measures

µn on X for n ∈ N . Fix a partition (Bn)n∈N of X into E-invariant Borel
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sets with the property that µn(Bn) = 1 for all n ∈ N , and observe that

Proposition 2.4.1 ensures that each E � Bn is a successor of E0 under measure

reducibility. �

On the other hand, we have the following.

Proposition 2.4.3. Suppose that X is a standard Borel space, E is a

countable Borel equivalence relation on X , and EQE \ HE is not a countable

union of measure-equivalence classes. Then there are Borel sequences (Bc)c∈2N

of pairwise disjoint E-invariant subsets of X and (µc)c∈2N of Borel probability

measures on X in EQE \ HE such that µc(Bc) = 1 for all c ∈ 2N.

Proof. As measure equivalence is Borel, Theorem 1.1.1 yields a Borel se-

quence (µc)c∈2N of pairwise orthogonal Borel probability measures on X in

EQE \HE . Theorem 1.5.1 then implies that by thinning down (µc)c∈2N , we can

ensure the existence of a Borel sequence (Ac)c∈2N of pairwise disjoint Borel sub-

sets of X with µc(Ac) = 1 for all c ∈ 2N. Define Bc = {x ∈ X | [x]E ⊆ Ac}. �
Combining the previous two results yields the following.

Proposition 2.4.4. Suppose that X is a standard Borel space and E is

a nonmeasure-hyperfinite countable Borel equivalence relation on X . Then at

least one of the following holds :

(1) the relation E is a countable disjoint union of successors of E0 under mea-

sure reducibility ;

(2) there are Borel sequences (Bc)c∈2N of pairwise disjoint E-invariant subsets

of X and (µc)c∈2N of Borel probability measures on X in EQE \ HE such

that µc(Bc) = 1 for all c ∈ 2N.

Proof. This follows from Propositions 2.4.2 and 2.4.3. �

Let �E,F denote the set of all (µ, ν) ∈ (EQE \ HE) × (EQF \ HF ) for

which there is a µ-conull Borel set C ⊆ X and a Borel reduction φ : C → Y

of E � C to F sending (µ � C)-positive sets to ν-positive sets. Clearly �E,F

is transitive, and if C ⊆ X is a µ-conull Borel set and φ : C → X is a Borel

reduction of E � C to F , then µ �E,F φ∗(µ � C). When E = F , we simply

write �E . It is easy to see this is an equivalence relation, in spite of our

adherence to the usual measure-theoretic abuse of notation.

The following fact provides a partial converse to Proposition 2.4.1.

Proposition 2.4.5. Suppose that X is a standard Borel space, E is a

countable Borel equivalence relation on X , and some vertical section of �E

is a countable union of measure-equivalence classes. Then the following are

equivalent :

(1) the set EQE \ HE is a single measure-equivalence class ;

(2) the relation E is a successor of E0 under measure reducibility.
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Proof. By Proposition 2.4.1, it is sufficient to show that if EQE \ HE
contains multiple measure-equivalence classes, then E is not a successor of E0

under measure reducibility. Towards this end, fix µ ∈ EQE \ HE for which

the corresponding vertical section of �E is a countable union of measure-

equivalence classes, as well as a Borel probability measure ν on X in EQE \HE
for which µ 6∼ ν. Fix an E-invariant ν-conull Borel set D ⊆ X that is null with

respect to every measure in the µth vertical section of �E that is not measure

equivalent to ν.

Lemma 2.4.6. Suppose that A ⊆ X \D is a µ-conull Borel set and B ⊆ D
is a ν-conull Borel set. Then there is no Borel reduction φ : A ∪ B → D of

E � (A ∪B) to E � D.

Proof. Suppose that φ is such a reduction. Then our choice of D ensures

that (φ � A)∗(µ � A) � ν, so µ �E ν. As �E is transitive, it follows that

µ�E (φ � B)∗(ν � B), so our choice ofD also ensures that (φ � B)∗(ν � B)� ν.

Then there exist x ∈ A and y ∈ B such that φ(x) E φ(y), contradicting the

fact that φ is a reduction. �

In particular, it follows that E is not measure reducible to E � D, and

therefore it cannot be a successor of E0 under measure reducibility. �

The following provides a partial converse to Proposition 2.4.2.

Proposition 2.4.7. Suppose that X is a standard Borel space, E is a

countable Borel equivalence relation on X , and every vertical section of �E

is a countable union of measure-equivalence classes. Then the following are

equivalent :

(1) the set EQE \ HE is a nonempty countable union of measure-equivalence

classes ;

(2) the relation E is a nonempty countable disjoint union of successors of E0

under measure reducibility.

Proof. By Proposition 2.4.2, it is sufficient to show that if N is a nonempty

countable set and (Bn)n∈N is a partition of X into E-invariant Borel sets on

which E is a successor of E0 under measure reducibility, then EQE \ HE is a

countable union of measure-equivalence classes. Towards this end, note that

for all n ∈ N , every vertical section of�E�Bn is a countable union of measure-

equivalence classes, so Proposition 2.4.5 ensures that EQE�Bn \ HE�Bn is the

measure-equivalence class of some Borel probability measure µn on Bn. Identi-

fying µn with the corresponding Borel probability measure on X, it follows that

EQE \HE is the union of the measure-equivalence classes of µn for n ∈ N . �

Summarizing these results, we obtain the following.
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Theorem 2.4.8. Suppose that X is a standard Borel space, E is a non-

measure-hyperfinite countable Borel equivalence relation on X , and every ver-

tical section of �E is a countable union of measure-equivalence classes. Then

exactly one of the following holds :

(1) the relation E is a countable disjoint union of successors of E0 under mea-

sure reducibility ;

(2) there are Borel sequences (Bc)c∈2N of pairwise disjoint E-invariant subsets

of X and (µc)c∈2N of Borel probability measures on X in EQE \ HE such

that µc(Bc) = 1 for all c ∈ 2N.

Proof. If EQE \ HE is a nonempty countable union of measure-equival-

ence classes, then Proposition 2.4.7 ensures that condition (2) holds, and its

proof implies that condition (3) fails. If EQE \HE is not a countable union of

measure-equivalence classes, then Proposition 2.4.7 ensures that condition (2)

fails, and Proposition 2.4.3 implies that condition (3) holds. �

In light of our earlier results, the following yields a criterion for ensuring

that Borel subequivalence relations of successors of E0 under measure reducibil-

ity are again successors of E0 under measure reducibility.

Proposition 2.4.9. Suppose that X is a standard Borel space, E ⊆ F

are countable Borel equivalence relations on X , µ is an E-ergodic F -quasi-

invariant Borel probability measure on X , and EQF \ HF is contained in

the measure-equivalence class of µ. Then EQE \ HE is also contained in the

measure-equivalence class of µ.

Proof. Suppose that ν ∈ EQE but µ 6∼ ν. Then there is an E-invariant

µ-null ν-conull Borel set C ⊆ X, in which case Proposition 1.6.6 yields a

Borel probability measure ν ′ � ν with the same F -invariant null sets. As the

F -quasi-invariance of µ ensures that [C]F is µ-null, it follows that ν ′ ∈ HF .

As Proposition 1.3.2 ensures that the class of hyperfinite Borel equivalence

relations is closed downward under Borel subequivalence relations, it follows

that ν ′ ∈ HE , thus ν ∈ HE . �

We also have the following criterion for ensuring strong ergodicity.

Proposition 2.4.10. Suppose that X and Y are standard Borel spaces, E

and F are countable Borel equivalence relations on X and Y , F is hyperfinite,

and µ ∈ EQE \ HE is not (E,F )-ergodic. Then EQE \ HE is not a countable

union of measure-equivalence classes.

Proof. Fix a µ-null-to-one Borel homomorphism φ : X → Y from E to F ,

as well as a Borel disintegration (µy)y∈Y of µ through φ.
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Then the set C = {y ∈ Y | E is not µy-hyperfinite} is Borel by Theorem

1.7.8. As E is µ-nowhere hyperfinite, Proposition 1.7.13 ensures that C is

(φ∗µ)-conull.

In particular, as φ is µ-null-to-one, it follows that C is uncountable, in

which case there is an uncountable partial transversal P ⊆ C of F . Theo-

rem 1.7.11 then yields Borel probability measures νy on X in EQE \ HE such

that [φ−1(y)]E is νy-conull, for all y ∈ P . As the latter sets are pairwise dis-

joint, it follows that EQE \HE is not a countable union of measure-equivalence

classes. �

We next compute a bound on the complexity of �E,F .

Proposition 2.4.11. Suppose that X and Y are standard Borel spaces

and E and F are countable Borel equivalence relations on X and Y . Then

�E,F is analytic.

Proof. Note that µ�E,F ν if and only if there is a code c for a measurable

function φc : X → Y such that (φc)∗(µ � dom(φc))� ν and φc is a reduction of

E to F on a µ-conull set. Proposition 1.5.4 ensures that the former relation is

Borel, and Proposition 1.6.14 implies that the latter relation is analytic. �

We close this section by noting that our hypothesis on �E holds of all

projectively-separable countable Borel equivalence relations.

Proposition 2.4.12. Suppose that X and Y are standard Borel spaces,

E and F are countable Borel equivalence relations on X and Y , and F is

projectively separable. Then the vertical sections of �E,F are countable unions

of measure-equivalence classes.

Proof. Suppose that µ ∈ EQE \HE , and let A denote the vertical section

of �E,F corresponding to µ. As Proposition 2.4.11 ensures that �E,F is ana-

lytic, so too is A. As measure equivalence is Borel, Theorem 1.1.1 implies that

if A is not a union of countably-many measure-equivalence classes, then there

is a Borel sequence (νc)c∈2N of pairwise orthogonal Borel probability measures

on Y in A. Theorem 1.5.1 then ensures that by passing to an appropriate sub-

sequence, we can ensure that there is a Borel sequence (Dc)c∈2N of pairwise dis-

joint subsets of Y such that νc(Dc) = 1 for all c ∈ 2N. But for each c ∈ 2N, there

is a µ-conull Borel set Cc ⊆ X for which there is a Borel reduction φc : Cc → Dc

from E � Cc to F � Dc, contradicting the projective separability of F . �

2.5. Stratification

Proposition 1.3.3 ensures that every aperiodic countable Borel equivalence

relation has an aperiodic hyperfinite Borel subequivalence relation. This is the

special case of the following fact, in which G is the difference of E and equality,

and ρ is the constant cocycle.
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Proposition 2.5.1. Suppose that X is a standard Borel space, E is a

countable Borel equivalence relation on X , G is a Borel graphing of E, and

ρ : E → (0,∞) is an aperiodic Borel cocycle. Then there is a Borel subgraph H

of G generating a hyperfinite Borel equivalence relation on which ρ is aperiodic.

Proof. As graphs of Borel functions are themselves Borel, the following

observation implies that it is sufficient to establish the proposition on an

E-complete Borel set.

Lemma 2.5.2. Suppose that B ⊆ X is an E-complete Borel set and H is

a Borel subgraph of G � B generating a hyperfinite Borel equivalence relation

on which ρ is aperiodic. Then there is a Borel function f : ∼B → X such that

graph(f±1) ∪H is a subgraph of G generating a hyperfinite Borel equivalence

relation on which ρ is aperiodic.

Proof. As the vertical sections of G are countable, the Lusin-Novikov uni-

formization theorem yields Borel sets Bn ⊆ X and Borel functions fn : Bn → X

with the property that G =
⋃
n∈N graph(fn). Let dG(x,B) denote the length

of the shortest G-path from x to an element of B. Observe that this function

is Borel, as it can also be expressed, for x /∈ B, as the least n ∈ N for which

there exist k1, . . . , kn ∈ N such that fk1 ◦ · · · ◦fkn(x) ∈ B. Noting that for each

x ∈ X, the set of y ∈ Gx with the property that dG(y,B) = dG(x,B) − 1 is

countable, one more application of the Lusin-Novikov uniformization theorem

yields a Borel function f : ∼B → X, whose graph is contained in G, such that

dG(f(x), B) = dG(x,B)− 1 for all x ∈ ∼B. As every connected component of

graph(f±1)∪H contains a connected component of H, it follows that ρ is aperi-

odic on the equivalence relation generated by graph(f±1)∪H. As the function

sending x to fdG(x,B)(x) is a Borel reduction of the latter equivalence relation

to that generated by H and Proposition 1.3.2 ensures that the class of hyper-

finite Borel equivalence relations is closed under Borel reducibility, it follows

that the equivalence relation generated by graph(f±1) ∪H is hyperfinite. �

We will now recursively construct an increasing sequence (Hn)n∈N of ap-

proximations to the desired graph, beginning with H0 = ∅. Given Hn, let En
denote the equivalence relation induced by Hn, and let Bn denote the set of

all x ∈ X for which ρ is finite on En � [x]E . As Hn and E are countable, the

Lusin-Novikov uniformization theorem ensures that these sets are Borel. As

Proposition 1.6.2 implies that countable Borel equivalence relations admitting

finite Borel cocycles to R are smooth, it follows that En � Bn is smooth. Re-

mark 1.2.2 therefore yields a Borel transversal An ⊆ Bn of En � Bn. Let Rn
be the relation consisting of all (x, (y, (x′, y′))) ∈ An × (An × (Bn × Bn))

for which x En x′ (G \ En) y′ En y and ρ([x]En , [y]En) ≤ 1. As the verti-

cal sections of Rn are countable, the Lusin-Novikov uniformization theorem
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ensures that the set A′n = projAn(Rn) is Borel, there is a Borel uniformiza-

tion f ′n : A′n → An × (Bn × Bn) of Rn, and both of the sets Sn = f ′n(A′n) and

H ′n = projBn×Bn(Sn)±1 are Borel.

Set Hn+1 = Hn ∪ H ′n. To see that the equivalence relation En+1 gener-

ated by Hn+1 is hyperfinite, we consider the function fn : An → An given by

fn = (projAn ◦ f
′
n)∪ (id � (An \A′n)). As Theorem 1.3.6 ensures that Et(fn) is

hypersmooth, Theorem 1.3.5 implies that it is hyperfinite. As Proposition 1.3.2

ensures that the class of hyperfinite Borel equivalence relations is closed down-

ward under Borel reducibility, and the unique function φn : Bn → An such that

∀x ∈ Bn x En φn(x) is a Borel reduction of En+1 � Bn to Et(fn), it follows

that En+1 is hyperfinite. This completes the recursive construction.

As every equivalence class of E � ∼Bn contains a ρ-infinite equivalence

class of En, it follows from Lemma 2.5.2 that we can construct the desired

graph off of the set B∞ =
⋂
n∈NBn. In order to construct the desired graph

on B∞, set H∞ =
⋃
n∈NHn and let E∞ denote the equivalence relation gen-

erated by H∞. As E∞ =
⋃
n∈NEn, it follows that E∞ � B∞ is hypersmooth,

so Theorem 1.3.5 ensures that it is hyperfinite. By one more application

of Lemma 2.5.2, it is therefore sufficient to observe that there do not exist

(G \ E∞)-related points x, y ∈ B∞ for which the corresponding equivalence

classes [x]E∞ , [y]E∞ are ρ-finite.

Suppose, towards a contradiction, that there are such points. Then there

exists n ∈ N such that ρ([x]E∞ , [x]En), ρ([y]E∞ , [y]En) < 2. As ρ([x]En , [y]En)

≤ 1 or ρ([y]En , [x]En) ≤ 1, it follows that φn(x) ∈ A′n or φn(y) ∈ A′n, so

ρ([x]En+1 , [x]En) ≥ 2 or ρ([y]En+1 , [y]En) ≥ 2, thus ρ([x]E∞ , [x]En+1) < 1 or

ρ([y]E∞ , [y]En+1) < 1, which is impossible. �

In particular, we obtain the following measure-theoretic corollary.

Proposition 2.5.3. Suppose that X is a standard Borel space, E is a

countable Borel equivalence relation on X , µ is an E-quasi-invariant Borel

probability measure on X for which E is µ-nowhere smooth, and G is a Borel

graphing of E. Then there is a Borel subgraph H of G whose induced equiva-

lence relation is µ-nowhere smooth but hyperfinite.

Proof. By Proposition 1.6.4, there is a Borel cocycle ρ : E → (0,∞) with

respect to which µ is invariant. As Proposition 1.6.2 ensures that countable

Borel equivalence relations admitting finite Borel cocycles to R are smooth, by

throwing away an E-invariant µ-null Borel set on which E is smooth, we can

assume that ρ is aperiodic. Proposition 2.5.1 then yields a Borel subgraph H

of G generating a hyperfinite equivalence relation on which ρ is aperiodic. As

Proposition 1.6.5 ensures that every such relation is µ-nowhere smooth, the

result follows. �
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The following yields disjoint Borel sets that, in the measure-theoretic set-

ting, are complete with respect to different equivalence relations.

Proposition 2.5.4. Suppose that X is a standard Borel space, E and F

are aperiodic countable Borel equivalence relations on X , and µ and ν are

Borel probability measures on X . Then there are disjoint Borel sets A,B ⊆ X
such that µ([A]E) = ν([B]F ) = 1.

Proof. By two applications of Proposition 1.2.5, there are decreasing se-

quences (An)n∈N and (Bn)n∈N of Borel subsets of X such that each An is

E-complete, each Bn is F -complete, and
⋂
n∈NAn =

⋂
n∈NBn = ∅. Fix

real numbers εn > 0 such that εn → 0 as n → ∞, and recursively con-

struct strictly increasing sequences (in)n∈N and (jn)n∈N of natural numbers

by setting i0 = 0, and given n ∈ N and in ∈ N, choosing jn > maxm<n jm
sufficiently large that µ([Ain \ Bjn ]E) ≥ 1 − εn, as well as in+1 > in suffi-

ciently large that ν([Bjn \Ain+1 ]F ) ≥ 1− εn. Define A =
⋃
n∈N(Ain \Bjn) and

B =
⋃
n∈N(Bjn \Ain+1). �

A directed graph on X is an irreflexive subset G of X ×X. The domain

of such a relation is the set of x for which Gx is nonempty. An oriented graph

on X is an irreflexive antisymmetric subset H of X ×X. An orientation of a

graph G is an oriented graph H with G = H±1. Although the domain of an

orientation H of a graph G can be strictly smaller than the domain of G itself,

we do have the following.

Proposition 2.5.5. Suppose that X is a standard Borel space, E is an

aperiodic countable Borel equivalence relation on X , G is a locally countable

Borel graph on X , and µ is an E-quasi-invariant Borel probability measure

on X for which E is µ-nowhere smooth and the domain of G has µ-conull

E-saturation. Then there is a Borel orientation H of G whose domain has

µ-conull E-saturation.

Proof. For each Borel set B ⊆ X, put XB = {x ∈ B | [x]E�B is finite}. As

E is countable, the Lusin-Novikov uniformization theorem ensures that such

sets are Borel, as are E-saturations of Borel sets.

Lemma 2.5.6. Suppose that B ⊆ X is Borel. Then [XB]E is µ-null.

Proof. As E is countable, the Lusin-Novikov uniformization theorem en-

sures that there is a Borel reduction of E � [XB]E to E � XB. As Propo-

sition 1.2.1 ensures that E � XB is smooth, so too is E � [XB]E . As E is

µ-nowhere smooth, it follows that [XB]E is µ-null. �

We consider now the special case that G is of the form graph(I), where

A ⊆ X is a Borel set and I : A → A is a Borel involution. Proposition 1.2.1
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and Remark 1.2.2 yield a Borel transversal B ⊆ A of the equivalence relation

generated by G. Lemma 2.5.6 ensures that the set C = [A]E \ [XB ∪XA\B]E
is µ-conull.

We use EB, EA\B, µB, and µA\B to denote the restrictions of E,

(I × I)−1(E), µ, and I∗µ to B ∩ C. As EB and EA\B are aperiodic, Proposi-

tion 2.5.4 yields a Borel set B′ ⊆ B, an EB-invariant µB-null Borel set NB ⊆ C,

and an EA\B-invariant µA\B-null Borel set NA\B ⊆ C such that B′ ∪ NB is

EB-complete and (B\B′)∪NA\B is EA\B-complete. As µ is E-quasi-invariant,

the set D = C \ [NB ∪NA\B]E is µ-conull. Let H denote the graph of the re-

striction of I to B′ ∪ I(B \B′).
The fact that B is a transversal of the equivalence relation generated

by I ensures that H is an oriented graph. To see that H is an orientation

of G, note that if x G y, then x ∈ B or y ∈ B, from which it follows that

(x ∈ B′ or y ∈ I(B \ B′)) or (y ∈ B′ or x ∈ I(B \ B′)), so (x H y or y H x)

or (y H x or x H y), thus x H y or y H x. To see that the E-saturation

of the domain of H is µ-conull, it is enough to show that the domain of H

intersects the E-class of every x ∈ D. Towards this end, note that A ∩ [x]E is

nonempty, thus so too is B ∩ [x]E or (A \B)∩ [x]E , in which case B′ ∩ [x]E or

I(B \B′) ∩ [x]E is nonempty as well, hence the domain of H intersects [x]E .

We now consider the general case. As G is locally countable, Theorem

1.2.4 yields Borel sets An ⊆ X and Borel involutions In : An → An, with pair-

wise disjoint graphs, such that G =
⋃
n∈N graph(In). Setting Gn = graph(In),

Xn = [An]E , and µn = µ � Xn, the above special case yields Borel orientations

Hn of Gn whose domains have µn-conull E-saturations. Then H =
⋃
n∈NHn

is a Borel orientation of G whose domain has µ-conull E-saturation. �

A µ-stratification of E is an increasing sequence (Er)r∈R of subequiva-

lence relations of E whose union is E and that is strictly increasing on every

µ-positive Borel set.

Theorem 2.5.7. Suppose that X is a standard Borel space, E is a treeable

countable Borel equivalence relation on X , and µ is an E-quasi-invariant Borel

probability measure on X for which E is µ-nowhere hyperfinite. Then there is

a Borel µ-stratification of E.

Proof. Fix a Borel treeing G of E. By Proposition 2.5.3, we can as-

sume that there is Borel subgraph H of G whose induced equivalence relation

F is µ-nowhere smooth but hyperfinite. As E is µ-nowhere hyperfinite, the

F -saturation of the domain of G \H is µ-conull. As F is µ-nowhere smooth,

Proposition 2.5.5 ensures that there is a Borel orientation K of G \H whose

domain has µ-conull F -saturation. As µ is E-quasi-invariant, by throwing out

an E-invariant µ-null Borel set, we can assume that the domain of K intersects

every F -class. By Proposition 1.6.4, there is a Borel cocycle ρ : E → (0,∞)
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with respect to which µ is invariant. As F is µ-nowhere smooth and Proposi-

tion 1.6.2 ensures that F is smooth on the finite part of ρ � (F � dom(K)), by

throwing out another µ-null Borel set, we can assume that ρ � (F � dom(K)) is

aperiodic, and therefore that F � dom(K) is aperiodic. The E-quasi-invariance

of µ again allows us to ensure that the set we throw out is E-invariant. Propo-

sition 1.2.6 then yields a partition of the domain of K into a sequence (Bq)q∈Q
of pairwise disjoint F -complete Borel sets. Set Kr = K � (

⋃
q<r Bq ×X) and

Gr = H ∪ K±1
r for all r ∈ R. As Gr is locally countable, the Lusin-Novikov

uniformization theorem ensures that the equivalence relations Er induced by

the graphs Gr are Borel.

Suppose now that B ⊆ X is a Borel set for which there are real numbers

r < s with Er � B = Es � B. Then B∩ [x]Es ⊆ [x]Er for all x ∈ B. As Gr ⊆ Gs
and the latter graph is acyclic, it follows that if x ∈ B and y ∈ [x]Es \ [x]Er ,

then there is a unique point of [y]Er of minimal distance to [x]Er with respect

to the graph metric associated with Gs. Let φ : [B]Es \[B]Er → [B]Es \[B]Er be

the function sending each point of its domain to the corresponding point of its

Er-class. As E is countable, the Lusin-Novikov uniformization theorem ensures

that [B]Er , [B]Es , and φ are Borel. As φ is a selector for the restriction of Er
to [B]Es \ [B]Er , it follows that this restriction is smooth. As F is µ-nowhere

smooth and Proposition 1.2.3 ensures that the class of smooth countable Borel

equivalence relations is closed downward under Borel subequivalence relations,

it follows that Er is also µ-nowhere smooth. In particular, this means that

the set [B]Es \ [B]Er is µ-null, and since µ is Es-quasi-invariant, so too is the

Es-saturation of [B]Es \ [B]Er . As every Er-class is properly contained in the

corresponding Es-class, it follows that B is contained in this saturation, and is

therefore µ-null as well, hence (Er)r∈R is indeed a µ-stratification of E. �

Part 3. Applications

Here we obtain our main results. While our theorems were listed in the in-

troduction in order of importance, we now proceed according to the amount of

new machinery behind the arguments, with those requiring the least appearing

first. In Section 3.1, we use the countability of the vertical sections of�E to es-

tablish our results on products. In Section 3.2, we combine the countability of

the vertical sections of�E with facts about compressibility and costs of equiv-

alence relations to obtain our results on the distinction between embeddability

and reducibility. In Section 3.3, we combine projective separability, facts about

�E , and the existence of stratifications to obtain our results on antichains and

the distinction between containment and reducibility. In Section 3.4, we use

these tools to obtain our anti-basis theorems. And in Section 3.5, we combine

these tools with Theorem 1.9.1 to obtain our complexity results.
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3.1. Products

We begin this section with an observation concerning measurable re-

ducibility of products.

Proposition 3.1.1. Suppose that X and Y are standard Borel spaces,

E and F are countable Borel equivalence relations on X and Y , m is a con-

tinuous Borel probability measure on R, µ ∈ EQE \ HE , and the µth vertical

section of �E,F is a countable union of measure-equivalence classes. Then

E ×∆(R) is (µ×m)-nowhere reducible to F .

Proof. Suppose, towards a contradiction, that there is a (µ×m)-positive

Borel set B ⊆ X × R on which there is a Borel reduction φ : B → Y of

E×∆(R) to F . As E is countable, the Lusin-Novikov uniformization theorem

ensures that [B]E×∆(R) is Borel, in addition to yielding a Borel reduction of

(E×∆(R)) � [B]E×∆(R) to (E×∆(R)) � B. By replacing B with its (E×∆(R))-

saturation, we can therefore assume that B is (E×∆(R))-invariant. Note that

the set R = {r ∈ R | µ(Br) > 0} is m-positive, by Fubini’s theorem. As m

is continuous, it follows that R is uncountable. For each r ∈ R, Proposi-

tion 1.6.6 yields an F -quasi-invariant Borel probability measure νr on Y such

that (φr)∗(µ � B
r) � νr, but the two measures have the same F -invariant

null sets. But then the νr are pairwise orthogonal elements of the µth vertical

section of �E,F , the desired contradiction. �

This has the following consequences for measure reducibility.

Proposition 3.1.2. Suppose that X and Y are standard Borel spaces,

E is a nonmeasure-hyperfinite countable Borel equivalence relation on X , and

F is a projectively separable countable Borel equivalence relation on Y . Then

E ×∆(R) is not measure reducible to F .

Proof. By Theorem 1.7.11, there exists µ ∈ EQE \HE . Proposition 2.4.12

then implies that the µth vertical section of �E,F is a countable union of

measure-equivalence classes. Fix a continuous Borel probability measure m

on R. As Proposition 3.1.1 ensures that E×∆(R) is (µ×m)-nowhere reducible

to F , the former is not measure reducible to the latter. �

Theorem 3.1.3 (Hjorth). There exists a nonmeasure-hyperfinite treeable

countable Borel equivalence relation to which some treeable countable Borel

equivalence relation is not measure reducible.

Proof. Proposition 3.1.2 ensures that every nonmeasure-hyperfinite pro-

jectively-separable treeable countable Borel equivalence relation has the desired

property. �

We now consider products with smaller equivalence relations.
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Proposition 3.1.4. Suppose that X and Y are standard Borel spaces,

E and F are countable Borel equivalence relations on X and Y , m is a strictly

positive probability measure on 2, µ ∈ EQE\HE , ν ∈ EQF \HF , and µ�E,F ν.

If the µth vertical section of �E,F is a countable union of measure-equivalence

classes, then there is an F -invariant ν-conull Borel set C ⊆ Y for which E ×
∆(2) is not (µ×m)-reducible to F � C .

Proof. Fix an F -invariant ν-conull Borel set C ⊆ Y that is ν ′-null for

every measure ν ′ in the vertical section of �E,F corresponding to µ, other

than those that are measure equivalent to ν. Suppose, towards a contradiction,

that there is a (µ×m)-positive Borel set B ⊆ X × 2 on which there is a Borel

reduction φ : B → Y of E ×∆(2) to F � C. As E is countable, the Lusin-No-

vikov uniformization theorem ensures that [B]E×∆(2) is Borel, in addition to

yielding a Borel reduction of (E ×∆(2)) � [B]E×∆(2) to (E ×∆(2)) � B. By

replacing B with its (E × ∆(2))-saturation, we can therefore assume that B

is (E ×∆(2))-invariant. Proposition 1.6.6 then yields (F � C)-quasi-invariant

Borel probability measures νi on C with the property that (φi)∗(µ � B
i)� νi

but the two measures have the same E-invariant null Borel sets for all i < 2.

As ν0 and ν1 are orthogonal elements of the vertical section of �E,F �C , this

contradicts our choice of C. �

This has the following consequence for measure reducibility.

Proposition 3.1.5. Suppose that X is a standard Borel space and E

is a nonmeasure-hyperfinite projectively-separable countable Borel equivalence

relation on X . Then there is a Borel set B ⊆ X on which E is not measure

hyperfinite such that (E � B)×∆(2) is not measure reducible to E � B.

Proof. By Theorem 1.7.11, there exists µ ∈ EQE \HE . Proposition 2.4.12

then implies that the µth vertical section of�E is a countable union of measure-

equivalence classes. Fix a strictly positive probability measure m on 2. As

Proposition 3.1.4 yields a µ-conull Borel set C ⊆ X for which E ×∆(2) is not

(µ × m)-reducible to E � C, it follows that (E � C) × ∆(2) is not measure

reducible to E � C. �

Remark 3.1.6. A similar argument can be used to show that ifX and Y are

standard Borel spaces, E is a nonmeasure-hyperfinite countable Borel equiva-

lence relation on X, and F is a nonmeasure-hyperfinite projectively-separable

countable Borel equivalence relation on Y , then there is a Borel set B ⊆ Y on

which F is not measure-hyperfinite such that E×∆(2) is not measure reducible

to F � B.

3.2. Reducibility without embeddability

We begin this section with an observation concerning the relationship

between measurable reducibility and measurable embeddability.
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Proposition 3.2.1. Suppose that X and Y are standard Borel spaces, E

is an invariant-measure-hyperfinite countable Borel equivalence relation on X ,

F is an aperiodic countable Borel equivalence relation Y , and µ is a Borel

probability measure on X . Then E is µ-reducible to F if and only if E is

µ-embeddable into F .

Proof. Suppose that E is µ-reducible to F , and fix a µ-conull Borel set

C ⊆ X on which there is a Borel reduction φ : C → Y of E to F . As E

is countable, the Lusin-Novikov uniformization theorem ensures that [C]E is

Borel, and there is a Borel reduction of E � [C]E to E � C. By replacing φ with

its composition with such a function, we can therefore assume that C is itself

E-invariant. Proposition 1.6.6 ensures that there is an E-quasi-invariant Borel

probability measure on X, with respect to which µ is absolutely continuous,

which agrees with µ on all E-invariant Borel sets. By replacing µ with such a

measure, we can assume that µ is E-quasi-invariant.

We handle first the case that F is smooth. Then E � C is also smooth. As

E is countable, Remark 1.2.2 yields partitions (Cn)n∈N of C into Borel partial

transversals of E, and (Dn)n∈N of Y into Borel transversals of F . One then

obtains an embedding π : C → Y of E � C into F by setting

π(x) = y ⇐⇒ ∃n ∈ N (x ∈ Cn, y ∈ Dn, and φ(x) F y).

As C inherits a standard Borel structure from X and functions between stan-

dard Borel spaces are Borel if and only if their graphs are Borel, it follows that

π is Borel.

We next turn to the case that F is nonsmooth. As Proposition 1.3.10

ensures that there is a Borel reduction of F to the restriction of F to an

F -invariant Borel set off of which F is smooth, by composing such a reduction

with φ, we can assume that the restriction of F to the set Z = ∼[φ(X)]E
is nonsmooth. As φ is countable-to-one, the Lusin-Novikov uniformization

theorem yields an (E � C)-complete Borel set B ⊆ C on which φ is injective.

Fix a Borel set A ⊆ B of maximal µ-measure on which E is compressible.

As E is countable, the Lusin-Novikov uniformization theorem ensures that [A]E
is Borel. As Proposition 1.6.9 ensures that countable Borel equivalence rela-

tions can be Borel embedded into their restrictions to complete compressible

Borel sets, there is a Borel injection ψ : [A]E → A whose graph is contained

in E. Then the function π = φ ◦ ψ is a Borel embedding of E � [A]E into

F � φ(C).

If µ([A]E) = 1, then it follows that E is µ-embeddable into F . Otherwise,

Theorem 1.6.10 ensures that µ � (B \ [A]E) is equivalent to an E � (B \ [A]E)-

invariant Borel probability measure ν on B \ [A]E . As E is invariant-measure

hyperfinite, there is a ν-conull Borel set A′ ⊆ B \ [A]E on which E is hyper-

finite. As E is countable, the Lusin-Novikov uniformization theorem ensures
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that [A′]E is Borel and there is a Borel reduction of E � [A′]E to E � A′. As

Proposition 1.3.2 ensures that the class of hyperfinite Borel equivalence rela-

tions is closed downward under Borel reducibility, it follows that E � [A′]E is

also hyperfinite. As Theorem 1.3.7 ensures that every hyperfinite Borel equiv-

alence relation is Borel embeddable into every nonsmooth Borel equivalence

relation, there is a Borel embedding π′ : [A′]E → Z of E � [A′]E into F � Z.

As µ([A ∪ A′]E) = 1 and π ∪ π′ is an embedding of E � [A ∪ A′]E into F , the

proposition follows. �

This has the following consequence for the relationship between measure

embeddability and measure reducibility.

Proposition 3.2.2. Suppose that X and Y are standard Borel spaces,

E and F are countable Borel equivalence relations on X and Y , E is invariant-

measure hyperfinite, and F is aperiodic. Then E is measure reducible to F if

and only if E is measure embeddable into F .

Proof. This is a direct consequence of Proposition 3.2.1. �

In particular, we obtain the following.

Proposition 3.2.3. Suppose that X is a standard Borel space and E is

an aperiodic invariant-measure-hyperfinite countable Borel equivalence relation

on X . Then E × I(N) is measure embeddable into E.

Proof. This is a direct consequence of Proposition 3.2.2. �

We next record a natural obstacle to measurable embeddability. We use

IE to denote the family of all E-invariant Borel probability measures on X,

and EIE to denote EE ∩ IE .

Proposition 3.2.4. Suppose that X and Y are standard Borel spaces,

E and F are countable Borel equivalence relations on X and Y , µ ∈ EIE \HE ,

ν ∈ EIF \ HF , Cµ(E) < Cν(F ), and the µth vertical section of �E,F is the

measure-equivalence class of ν. Then E is not µ-embeddable into F .

Proof. Suppose, towards a contradiction, that there is a µ-conull Borel set

C ⊆ X on which there is a Borel embedding π : C → Y of E into F . Then

π∗(µ � C) � ν, since otherwise Proposition 1.6.6 would yield an F -quasi-

invariant Borel probability measure ν ′ on Y with the same F -invariant Borel

sets as π∗(µ � C), in which case the E-ergodicity of µ would ensure that

ν ′ is F -ergodic, and the downward closure of the family of hyperfinite Borel

equivalence relations under Borel embeddability (see Proposition 1.3.2) would

imply that F is ν ′-nowhere hyperfinite, despite the fact that ν and ν ′ are

orthogonal. Let νD be the Borel probability measure on the set D = π(C) given
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by νD(B) = ν(B)/ν(D). As π∗(µ � C)� νD and both measures are (F � D)-

ergodic and (F � D)-invariant, Proposition 1.6.7 implies that π∗(µ � C) = νD.

The formula for the cost of Borel restrictions given by Proposition 1.6.11 then

ensures that Cν(F ) ≤ CνD(F � D) = Cµ(E), a contradiction. �

As a special case, we obtain the following.

Proposition 3.2.5. Suppose that X is a standard Borel space, E is a

countable Borel equivalence relation on X , µ ∈ EIE \ HE , 1 < Cµ(E) < ∞,

and the µth vertical section of �E is the measure-equivalence class of µ. Then

for no n ∈ N is it the case that E × I(n+ 1) is µ-embeddable into E × I(n).

Proof. Let mn denote the uniform probability measure on n. Then the for-

mula for the cost of Borel restrictions given by Proposition 1.6.11 ensures that

Cµ×mn+1(E × I(n+ 1)) < Cµ×mn(E × I(n)) for all n ∈ N, so Proposition 3.2.4

implies that E × I(n+ 1) is not (µ×mn+1)-embeddable into E × I(n). �

Putting these observations together, we obtain the following.

Proposition 3.2.6. Suppose that X is a standard Borel space and E is

an aperiodic non-invariant-measure-hyperfinite projectively-separable treeable

countable Borel equivalence relation on X . Then there is an aperiodic Borel

subequivalence relation F of E such that for no n ∈ N is F × I(n+ 1) measure

embeddable into F × I(n).

Proof. Fix a Borel set B ⊆ X and an (E � B)-invariant Borel probability

measure µ on B such that E � B is not µ-hyperfinite. Fix a Borel graphing G

of E � B. As G is locally countable, the Lusin-Novikov uniformization theo-

rem yields an increasing sequence (Gn)n∈N of Borel subgraphs of G of bounded

vertex degree whose union is G. As Theorem 1.7.2 ensures that the increasing

union of µ-hyperfinite Borel equivalence relations is µ-hyperfinite, there exists

n ∈ N sufficiently large for which the equivalence relation F generated by Gn
is not µ-hyperfinite. Note that Cν(F ) < ∞ for every F -invariant Borel prob-

ability measure ν on B. By Proposition 1.7.10, there exists ν ∈ EIF \ HF .

As Proposition 2.3.4 ensures that the class of projectively-separable count-

able Borel equivalence relations is closed downward under Borel restrictions

and Borel subequivalence relations, it follows that F is projectively separable.

As Proposition 2.4.12 ensures that the vertical sections of �F ′ are countable

unions of measure-equivalence classes, there is a ν-conull Borel set C ⊆ B that

is null with respect to every measure in the νth vertical section of �F ′ , with

the exception of those in the measure-equivalence class of ν. By removing a

ν-null Borel subset of C, we can assume that the relation F ′ = F � C is aperi-

odic. As Proposition 1.4.1 ensures that the family of treeable countable Borel

equivalence relations is closed downward under Borel subequivalence relations,
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it follows that F ′ is treeable, so 1 < Cν(F ′) < ∞ by Proposition 1.6.12, thus

Proposition 3.2.5 implies that for no n ∈ N is it the case that F ′ × I(n + 1)

is ν-embeddable into F ′ × I(n). Proposition 1.3.3 then yields an aperiodic

hyperfinite Borel subequivalence relation F ′′ of E � ∼C, in which case F ′ ∪F ′′
is as desired. �

3.3. Antichains

In this section, we produce perfect sequences of pairwise nonmeasure re-

ducible Borel subequivalence relations of a given projectively-separable treeable

countable Borel equivalence relation.

We begin by noting that hyperfiniteness rules out such sequences.

Proposition 3.3.1. Suppose that X is a standard Borel space, E is a

hyperfinite Borel equivalence relation on X , and E1 and E2 are Borel subequiv-

alence relations of E. Then E1 and E2 are comparable under Borel reducibility.

Proof. As Proposition 1.3.2 ensures that the family of hyperfinite Borel

equivalence relations is closed downward under Borel subequivalence relations,

it follows that E1 and E2 are themselves hyperfinite. But Theorem 1.3.9 implies

that any two hyperfinite Borel equivalence relations are comparable under

Borel reducibility. �

We next turn our attention to very special sorts of antichains.

Proposition 3.3.2. Suppose that X is a standard Borel space and E

is a nonmeasure-hyperfinite projectively-separable countable Borel equivalence

relation on X . Then exactly one of the following holds :

(1) the relation E is a nonempty countable disjoint union of successors of E0

under measure reducibility ;

(2) there are Borel sequences (Bc)c∈2N of pairwise disjoint E-invariant subsets

of X and (µc)c∈2N of Borel probability measures on X in EQE \ HE with

the property that µc(Bc) = 1 for all c ∈ 2N, and for no distinct c, d ∈ 2N is

it the case that E � Bc is µc-reducible to E � Bd.

Proof. By Theorem 2.4.8, it is sufficient to show that if (Bc)c∈2N is a Borel

sequence of pairwise disjoint E-invariant sets and (µc)c∈2N is a Borel sequence

of Borel probability measures on X in EQE \ HE such that µc(Bc) = 1 for all

c ∈ 2N, then by passing to a perfect subsequence, one can ensure that for no dis-

tinct c, d ∈ 2N is it the case that E � Bc is µc-reducible to E � Bd. Towards this

end, let R denote the binary relation on 2N in which two sequences c, d ∈ 2N

are R-related if E � Bc is µc-reducible to E � Bd. Then Proposition 1.6.14

ensures that R is analytic and therefore has the Baire property. As the pro-

jective separability of E ensures that the vertical sections of R are countable,
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it follows that the vertical sections of R are meager, so the Kuratowski-Ulam

theorem (see, for example, [Kec95, Th. 8.41]) ensures that R is itself meager,

in which case Mycielski’s theorem (see, for example, [Kec95, Th. 19.1]) yields

the desired perfect subsequence. �

In particular, this allows us to characterize the circumstances under which

there is a perfect sequence of pairwise nonmeasure reducible countable Borel

equivalence relations that are measure reducible to a given projectively-sepa-

rable countable Borel equivalence relation.

Proposition 3.3.3. Suppose that X is a standard Borel space and E

is a nonmeasure-hyperfinite projectively-separable countable Borel equivalence

relation on X . Then exactly one of the following holds :

(1) there is a finite family F of successors of E0 under measure reducibility

for which E is a nonempty countable disjoint union of Borel equivalence

relations that are measure bi-reducible with those in F ;

(2) there is a Borel sequence (Ec)c∈2N of pairwise non-measure-reducible count-

able equivalence relations measure reducible to E.

Proof. In light of Proposition 3.3.2, we can assume that E is a nonempty

countable disjoint union of a sequence (En)n∈N of successors of E0 under mea-

sure reducibility.

To see that at least one of these conditions holds, note that if condition

(1) fails, then by passing to an infinite subsequence, we can assume that the

relations En are pairwise nonmeasure-reducible. Proposition 2.4.5 then ensures

that if n ∈ N and µ ∈ EQEn \HEn , then En is not µ-reducible to
⊔
m∈N\{n}Em.

In particular, if (Nc)c∈2N is a Borel sequence of subsets of N such that Nc * Nd

for all distinct c, d ∈ 2N, then the relations Ec =
⊔
n∈Nc En are pairwise non-

measure-reducible.

To see that the conditions are mutually exclusive, we will establish the

stronger fact that if condition (1) holds, then every sequence (Fn)n∈N of count-

able Borel equivalence relations measure reducible to E has an infinite subse-

quence that is (not necessarily strictly) increasing under measure reducibility.

Towards this end, note that for each n ∈ N, there is a sequence (kF,n)F∈F

of countable cardinals with the property that Fn is measure bi-reducible with⊔
F∈F F ×∆(kF,n). A straightforward induction shows that, by passing to

an infinite subsequence, we can assume that kF,m ≤ kF,n for all F ∈ F and

m ≤ n in N. But this implies that (Fn)n∈N is increasing under measure re-

ducibility. �

As a corollary, we obtain the following.



MEASURE REDUCIBILITY 395

Proposition 3.3.4. Suppose that X is a standard Borel space and E is

a projectively-separable countable Borel equivalence relation on X . Then the

following are equivalent :

(1) there is a sequence (En)n∈N of countable Borel equivalence relations mea-

sure reducible to E for which no infinite subsequence is (not necessarily

strictly) increasing under measure reducibility ;

(2) there is a sequence (En)n∈N of pairwise non-measure-reducible countable

Borel equivalence relations measure reducible to E;

(3) there is a Borel sequence (Ec)c∈2N of pairwise non-measure-reducible count-

able equivalence relations measure reducible to E.

Proof. This follows from the proof of Proposition 3.3.3. �

We next turn our attention to subequivalence relations. The main addi-

tional tool we will need is the following observation concerning the power of

µ-stratifications in the presence of projective separability.

Proposition 3.3.5. Suppose that X is a standard Borel space, E is a

projectively-separable countable Borel equivalence relation on X , µ is a Borel

probability measure on X , (Bn)n∈N is a sequence of µ-positive Borel subsets

of X , and (En,r)r∈R is a Borel (µ � Bn)-stratification of E � Bn such that⋂
r∈REn,r is (µ � Bn)-nowhere hyperfinite, for all n ∈ N. Then there is a Borel

embedding π : R→ R of the usual ordering of R into itself such that Em,π(r) is

(µ � Bm)-nowhere reducible to En,π(s) for all distinct (m, r), (n, s) ∈ N× R.

Proof. Let Rm,n denote the relation on R in which two real numbers r

and s are related if Em,r is (µ � Bm)-somewhere reducible to En,s.

Lemma 3.3.6. Every horizontal section of every Rm,n is countable.

Proof. Suppose, towards a contradiction, that there exist m,n ∈ N and

t ∈ R for which Rtm,n is uncountable. For each r ∈ Rtm,n, fix a µ-positive

Borel set Bm,r ⊆ Bm on which there is a Borel reduction φr : Bm,r → Bn of

Em,r to En,t. Then there exists ε > 0 such that µ(Bm,r) ≥ ε for uncountably

many r ∈ Rtm,n. As each φr is a homomorphism from (
⋂
r∈REm,r) � Bm,r

to E, the (µ � Bm)-nowhere hyperfiniteness of (
⋂
r∈REm,r) � Bm coupled with

the projective separability of E ensures the existence of distinct r, s ∈ Rtm,n
for which µ(Bm,r), µ(Bm,s) ≥ ε and dµ(φr, φs) < ε. Then {x ∈ Bm,r ∩ Bm,s |
φr(x) = φs(x)} is a µ-positive Borel set on which Em,r and Em,s coincide, a

contradiction. �

Proposition 1.6.14 ensures that each Rm,n is analytic and therefore has

the Baire property. As the horizontal sections of each Rm,n are countable

and therefore meager, the Kuratowski-Ulam theorem ensures that each Rm,n
is meager, thus so too is their union R, in which case Mycielski’s theorem
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yields a continuous injection φ : 2N → R with respect to which pairs of distinct

sequences in 2N are mapped to R-unrelated pairs of real numbers. Galvin’s

theorem (see, for example, [Kec95, Th. 19.7]) ensures that by replacing φ with

its composition with an appropriate continuous function from 2N to 2N, we can

assume that it is an embedding of the lexicographical ordering of 2N into the

usual ordering of R. Fix a Borel embedding ψ : R → 2N of the usual ordering

of R into the lexicographical ordering of 2N, and observe that the function

π = φ ◦ ψ is as desired. �

In particular, this yields the following measure-theoretic result.

Theorem 3.3.7. Suppose X is a standard Borel space, E is a projectively-

separable treeable countable Borel equivalence relation on X , and µ is a Borel

probability measure on X for which E is µ-nowhere hyperfinite. Then there

is an increasing Borel sequence (Er)r∈R of pairwise µ-nowhere reducible sube-

quivalence relations of E.

Proof. As Proposition 1.6.6 yields an E-quasi-invariant Borel probabil-

ity measure ν for which µ � ν, Theorem 2.5.7 yields a Borel µ-stratification

(Fr)r∈R of E. As Theorem 1.7.2 ensures that the family of µ-hyperfinite count-

able Borel equivalence relations is closed under increasing unions, there is a

partition (Bn)n∈N of X into µ-positive Borel sets, as well as a sequence (rn)n∈N
of real numbers, such that Frn � Bn is (µ � Bn)-nowhere hyperfinite for all

n ∈ N. Fix order-preserving Borel injections φn : R → (rn,∞), and appeal

to Proposition 3.3.5 to obtain a Borel embedding φ : R → R of the usual

ordering of R into itself such that F(φm◦φ)(r) � Bm is (µ � Bm)-nowhere re-

ducible to F(φn◦φ)(s) for all distinct (m, r), (n, s) ∈ N × R. Then the relations

Er =
⋃
n∈N(F(φn◦φ)(r) � Bn) are as desired. �

In the special case that the equivalence relation in question is a successor

of E0 under measure reducibility, we can ensure that the same holds of the

subequivalence relations.

Theorem 3.3.8. Suppose X is a standard Borel space, E is a projectively-

separable treeable countable Borel equivalence relation on X that is a successor

of E0 under measure reducibility, and µ is a Borel probability measure on X

for which E is µ-nowhere hyperfinite. Then there is an increasing Borel se-

quence (Er)r∈R of pairwise µ-nowhere reducible subequivalence relations of E

consisting of successors of E0 under measure reducibility with the property that

µ is (
⋂
r∈REr)-ergodic.

Proof. Proposition 1.6.6 yields an E-quasi-invariant Borel probability mea-

sure ν � µ agreeing with µ on all E-invariant Borel sets. By Proposi-

tion 1.6.4, there is a Borel cocycle ρ : E → (0,∞) with respect to which

ν is invariant. As Theorem 1.6.8 ensures the existence of a Borel ergodic
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decomposition of ρ, Proposition 2.4.5 implies that EQE \ HE consists of a

single measure-equivalence class, and Proposition 1.6.7 implies that E is not

almost-everywhere hyperfinite with respect to at most one measure along the

ergodic decomposition, it follows from Proposition 1.7.12 that ν is E-ergodic.

Proposition 2.4.10 therefore implies that ν is (E,E0)-ergodic.

Theorem 2.5.7 yields a Borel ν-stratification (Fr)r∈R of E. Theorem 1.7.2

ensures that not every Fr is ν-hyperfinite, so by passing to a Borel subsequence,

we can assume that there is a ν-positive Borel set B ⊆ X on which
⋂
r∈R Fr is

ν-nowhere hyperfinite. Proposition 1.6.13 implies that by passing to a further

subsequence, we can also assume that ν � B is (
⋂
r∈R Fr � B)-ergodic. Propo-

sition 3.3.5 therefore yields a Borel embedding φ : R→ R of the usual ordering

of R into itself such that Fφ(r) � B is (ν � B)-nowhere reducible to Fφ(s) for all

distinct r, s ∈ R. As E is countable, the Lusin-Novikov uniformization theorem

ensures that the set [B]E is Borel and that there is an extension of the identity

function on B to a Borel function ψ : [B]E → B whose graph is contained in E.

Let Er denote the equivalence relation given by x Er y ⇐⇒ ψ(x) Fφ(r) ψ(y)

on [B]E and that is trivial off of [B]E . As Proposition 2.4.9 ensures that each

EQEr \ HEr consists of a single measure-equivalence class, Proposition 2.4.1

implies that each Er is a successor of E0 under measure reducibility. �

We close this section with the Borel analogs of these results.

Theorem 3.3.9. Suppose that X is a standard Borel space and E is a

nonmeasure-hyperfinite projectively-separable treeable countable Borel equiva-

lence relation on X . Then there is an increasing Borel sequence (Er)r∈R of

pairwise non-measure-reducible subequivalence relations of E.

Proof. Appeal to Theorem 1.7.11 to obtain a Borel probability measure

µ ∈ EQE \ HE , and apply Theorem 3.3.7. �

Theorem 3.3.10. Suppose that X is a standard Borel space and E is a

projectively-separable treeable countable Borel equivalence relation on X which

is a successor of E0 under measure reducibility. Then there is an increasing

Borel sequence (Er)r∈R of pairwise non-measure-reducible subequivalence rela-

tions of E that are themselves successors of E0 under measure reducibility.

Proof. Appeal to Theorem 1.7.11 to obtain a Borel probability measure

µ ∈ EQE \ HE , and apply Theorem 3.3.8. �

3.4. Bases

Here we establish the nonexistence of small bases B ⊆ E for E under

measure reducibility. We obtain the optimal result in this direction when

working below successors of E0 under measure reducibility.
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Theorem 3.4.1. Suppose that X is a standard Borel space and E is a

projectively-separable treeable countable Borel equivalence relation on X that

is a successor of E0 under measure reducibility. Then every basis for the

nonmeasure-hyperfinite Borel subequivalence relations of E has cardinality at

least 2ℵ0 .

Proof. By Theorem 3.3.10, there is an increasing Borel sequence (Er)r∈R
of pairwise non-measure-reducible subequivalence relations of E, which are

also successors of E0 under measure reducibility. Then each element of B is

measure reducible to at most one Er, thus |B| ≥ 2ℵ0 . �

While we can nearly obtain the analogous result without the assumption

that E is a successor of E0 under measure reducibility, there is a slight meta-

mathematical wrinkle. Although we have thus far freely used the axiom of

choice throughout the paper, it is not difficult to push through all of our argu-

ments under the axiom of dependent choice. While the cardinality restriction

appearing below implies only that bases are necessarily uncountable under the

axiom of dependent choice, it yields the full result that bases have size contin-

uum under the axiom of choice, as well as in models of the axiom of dependent

choice where every subset of the real numbers has the Baire property and there

is an injection of the real numbers into every non-well-orderable set, such as

L(R) under the axiom of determinacy (see [CK11]).

Theorem 3.4.2. Suppose that X is a standard Borel space, E is a non-

measure-hyperfinite projectively-separable treeable countable Borel equivalence

relation on X , and B is a basis for the nonmeasure-hyperfinite Borel sube-

quivalence relations of E under measure reducibility. Then R is a union of

|B|-many countable sets.

Proof. By Theorem 3.3.9, there is an increasing Borel sequence (Er)r∈R of

pairwise non-measure-reducible subequivalence relations of E. But then each

element of B is measure reducible to only countably-many relations of the

form Er. �

3.5. Complexity

In this section, we establish a technical strengthening of Theorem 3.3.7

that gives rise to our complexity results.

Theorem 3.5.1. Suppose that X is a standard Borel space and E is a

nonmeasure-hyperfinite projectively-separable treeable countable Borel equiva-

lence relation on X . Then there are Borel sequences (Er)r∈R of subequivalence

relations of E and (µr)r∈R of Borel probability measures on X such that
(1) each µr is Er-quasi-invariant and Er-ergodic;

(2) the relation Er is µr-nowhere reducible to the relation Es for all distinct

r, s ∈ R.



MEASURE REDUCIBILITY 399

Proof. Note that if E is not a countable disjoint union of successors of

E0 under measure reducibility, then Proposition 3.3.2 yields the desired result.

On the other hand, if E is a countable disjoint union of successors of E0 under

measure reducibility, then there is an E-invariant Borel set B ⊆ X on which E

is a successor of E0 under measure reducibility. Proposition 2.4.5 then yields a

Borel probability measure µ on B for which E � B is µ-nowhere hyperfinite, in

which case one obtains the desired equivalence relations by trivially extending

those given by Theorem 3.3.8 from B to X. �

As a consequence, we obtain the following.

Theorem 3.5.2. Suppose that X is a standard Borel space and E is a

nonmeasure-hyperfinite projectively-separable treeable countable Borel equiva-

lence relation on X . Then the following hold :

(a) there is an embedding of containment on Borel subsets of R into Bor-

el reducibility of countable Borel equivalence relations with smooth-to-one

Borel homomorphisms to E (in the codes);

(b) Borel bi-reducibility and reducibility of countable Borel equivalence rela-

tions with smooth-to-one Borel homomorphisms to E are both Σ1
2-complete

(in the codes);

(c) every Borel quasi-order is Borel reducible to Borel reducibility of count-

able Borel equivalence relations with smooth-to-one Borel homomorphisms

to E;

(d) Borel and σ(Σ1
1)-measurable reducibility do not agree on the countable

Borel equivalence relations with smooth-to-one Borel homomorphisms to E.

Proof. By Theorem 3.5.1, there are Borel sequences (Er)r∈R of subequiv-

alence relations of E and (µr)r∈R of Borel probability measures on X such

that

(1) each µr is Er-quasi-invariant and Er-ergodic;

(2) the relation Er is µr-nowhere reducible to the relation Es, for all distinct

r, s ∈ R.

But then Theorem 1.9.1 yields the desired result. �
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Zbl 1104.03043.

(Received: August 1, 2014)

(Revised: March 26, 2016)

Carnegie Mellon University, Pittsburgh, PA

E-mail : clintonc@andrew.cmu.edu

http://www.math.cmu.edu/∼clintonc/
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