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Geometric invariants for

real quadratic fields

By W. Duke, Ö. Imamoḡlu, and Á. Tóth

Abstract

To an ideal class of a real quadratic field we associate a certain surface.

This surface, which is a new geometric invariant, has the usual modular

closed geodesic as its boundary. Furthermore, its area is determined by

the length of an associated backward continued fraction. We study the

distribution properties of this surface on average over a genus. In the

process we give an extension and refinement of the Katok-Sarnak formula.

1. Introduction

In this paper we will introduce a new geometric invariant associated to a
(narrow) ideal class of a real quadratic field. This invariant is a finite area hy-
perbolic surface1 with a boundary that maps naturally on the modular surface.
The boundary is a simple closed geodesic whose image in the modular surface
is the usual modular closed geodesic associated to the ideal class. Its length
is well known to be expressible in terms of a fundamental unit of the field.
The area of the surface is determined by the length of an associated minus
(or backward) continued fraction. Since the surface contains more informa-
tion than the closed geodesic alone, it might be hoped that an investigation of
its geometric properties could lead us to a better understanding of the class
groups of real quadratic fields. Their mysterious behavior as the discriminant
varies has tantalized number theorists since the time of Gauss. One purpose
of this work is to initiate this investigation.
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For the present at least, our main goal is to obtain a result about the distri-
bution properties of the surface as it lies in the modular surface. To obtain good
results we need to average over a genus of classes. This problem is closely allied
with (and in fact completes in a natural way) the problem, introduced in [12], of
showing the uniform distribution of the closed geodesics on the modular surface
when ordered by their associated discriminant. The analytic approach to the
closed geodesic problem leads to estimating the Fourier coe�cients of Maass
cusp forms of weight 1/2. For the surface problem, this approach also leads
to estimating these Fourier coe�cients (for di↵erent indices), but it requires
interesting and nontrivial extensions of formulas of Hecke and Katok-Sarnak.
The needed extensions for surface integrals involve genus characters associated
to two negative discriminants, as opposed to the closed geodesic case, which
leads to two positive discriminants. Discriminants of di↵erent signs arise in the
case of CM points, where the quadratic field is imaginary. Thus points, curves
and surfaces associated to quadratic ideal classes all occur in a natural way.

We begin by presenting some background material about real quadratic
fields, continued fractions, binary quadratic forms, Fuchsian groups and modu-
lar closed geodesics. Then in Section 3 we introduce the surfaces we will study
and give some of their properties in Theorem 1. The main uniform distribution
result is stated in Section 4 as Theorem 2. Section 5 contains statements of
the extended formulas of Hecke (Theorem 3) and Katok-Sarnak (Theorem 4).
Assuming these, we prove the main result in Section 6. Theorem 3 is proven
in Section 7. The rest of the paper (Sections 8–10) is devoted to the proof of
Theorem 4.

Acknowledgements. Duke and Tóth thank the FIM at ETH in Zürich for
generous ongoing support of our joint research, including this project. We
also thank Alex Kontorovich for his comments, Nickolas Andersen for inde-
pendently verifying some of our numerical computations and the referee for
helpful suggestions.

2. Preliminaries

Real quadratic fields. Let K/Q be a real quadratic field. Then K =
Q(

p
D), where D > 1 is the discriminant of K. Let � : K ! K be the

nontrivial Galois automorphism w 7! w�, and for ↵ 2 K, let N(↵) = ↵↵�.

Let Cl+(K) be the group of fractional ideal classes taken in the narrow sense.
Thus two ideals a and b are in the same narrow class if there is a ↵ 2 K
with N(↵) > 0 so that a = (↵)b. Let h(D) = #Cl+(K) be the (narrow) class
number and "

D

> 1 be the smallest unit with positive norm in the ring of
integers OK of K. We denote by I the principal class and by J the class of
the di↵erent (

p
D) of K, which coincides with the class of principal ideals (↵)
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where N(↵) = ↵↵� < 0. Then

Cl(K) = Cl+(K)/J

is the class group in the wide sense. Clearly J 6= I if and only if OK contains no
unit of norm �1. In this case each wide ideal class is the union of two narrow
classes, say A and JA. A su�cient condition for J 6= I is that D is divisible
by a prime p ⌘ 3 (mod 4).

Minus continued fractions. Each ideal class A 2 Cl+(K) contains frac-
tional ideals of the form wZ + Z 2 A, where w 2 K is such that w > w�.
Consider the minus (or backward) continued fraction of w:

w = Ja0, a1, a2, . . .K = a0 �
1

a1 �
1

a2 �
1

a3 � · · ·

,

where a
j

2 Z with a
j

� 2 for j � 1. This continued fraction is eventually
periodic and has a unique primitive cycle ((n1, . . . , n

`

)) of length `, only defined
up to cyclic permutations. Di↵erent admissible choices of w lead to the same
primitive cycle. The continued fraction is purely periodic precisely when w is
reduced in the sense that

0 < w� < 1 < w

(see [28], [57]). The cycle ((n1, . . . , n
`

)) characterizes A; it is a complete class
invariant. The length ` = `

A

, which is also the number of distinct reduced w,
is another invariant as is the sum

(2.1) m = m
A

= n1 + · · ·+ n
`

.

The cycle of A�1 is given by that of A reversed:

(2.2) ((n
`

, . . . , n1)) .

To see this observe that A�1 is represented by (1/w�)Z+Z and by [58, p. 128]
the continued fraction of 1/w� has (2.2) as its cycle.

Binary quadratic forms. In place of ideal classes, it is sometimes more
convenient to use binary quadratic forms

Q(x, y) = [a, b, c] = ax2 + bxy + cy2,

where a, b, c 2 Z and D = b2 � 4ac. Quadratic forms are especially useful
when one wants to consider arbitrary discriminants D. For fundamental D,
all quadratic forms are primitive in that gcd(a, b, c) = 1, and we have a simple
correspondence between narrow ideal classes of K and equivalence classes of
binary quadratic forms of discriminant D with respect to the usual action of
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PSL(2,Z). This correspondence is induced by a 7! Q(x, y), where a = wZ+Z
with w� < w and

Q(x, y) = N(x� wy)/N(a).

The map takes the narrow ideal class of a to the �-equivalence class of Q. The
inverse map is given by Q(x, y) 7! wZ+ Z, where

w =
�b+

p
D

2a
,

provided we choose Q in its class to have a > 0. The following table of
correspondences is useful. Suppose that Q = [a, b, c] represents in this way the
ideal class A. Then

[a,�b, c] represents A�1,(2.3)

[�a, b,�c] represents JA,(2.4)

[�a,�b,�c] represents JA�1.(2.5)

Fuchsian groups and closed geodesics. Let H be the upper half plane. As
usual, lengths and areas on H are hyperbolic and determined by the metric
and measure

ds = y�1|dz| and dµ(z) = y�2dxdy,

respectively, where z = x+ iy. Define the cross ratio of z1, z2, z3, z4 2 C by

(2.6) [z1, z2, z3, z4] =
(z1 � z3)(z2 � z4)

(z1 � z2)(z3 � z4)
.

A useful formula for the distance between z and z⇤ in H is given by

(2.7) d(z, z⇤) = log |[w, z, z⇤, w⇤]|,
where w,w⇤ 2 R are the points where the geodesic arc joining z to z⇤ intersects
R and where the order in which this arc passes through the points is given by
w, z, z⇤, w⇤ (see, e.g., [2]).

Suppose that � ⇢ PSL(2,R) is a nonelementary Fuchsian group. (See [2]
for background.) Let ⇤ be the limit set of �. The group � is said to be of the
first kind when ⇤ = R, otherwise of the second kind. In general, R � ⇤ is a
countable union of mutually disjoint open intervals. Let N� be the intersection
of the (non-Euclidean) open half-planes that lie above the geodesics having the
same endpoints as these intervals. This N� is called the Nielsen region of �. It
is shown in [2, Thm. 8.5.2] that N� is the smallest nonempty �-invariant open
convex subset of H. Clearly N� = H exactly when � is of the first kind.

Suppose now that � is finitely generated. Let H⇤ be the upper half-plane
with all elliptic points of � removed. Then �\H⇤ becomes a Riemann surface
of genus g with t < 1 conformal disks and finitely many points removed. The
group � is said to have signature (g;m1, . . . ,mr

; s; t), where m1, . . . ,mr

are
the orders of the elliptic points and there are s parabolic cusps of �\H⇤. The
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boundary circle of each removed disk, assumed positively oriented, is freely
homotopic in �\H⇤ to a unique closed geodesic (see, e.g., [19, Prop. 1.3]).
These geodesics form the boundary of the image in �\H⇤ of (the closure of)
the Nielsen region.

Thus �\N� is a Riemann surface with signature having t geodesic bound-
ary curves, s cusps, and r orbifold points. Let F� ⇢ H be a fundamental
domain for �\N�. For simplicity, we will identify the surface with F�. This
should cause no confusion as long as it is understood that for us @F� denotes
the pre-image of the boundary of the surface as a subset of the boundary of
the fundamental domain. In other words, we will not count as part of the
boundary of F� those sides of F� that are identified by �. The Gauss-Bonnet
theorem [2, Thm. 10.4.3] gives

(2.8) 1
2⇡area(F�) = 2(g � 1) + s+ t+

rX

j=1

Ä
1� 1

mj

ä
.

Suppose now that � = PSL(2,Z) is the usual modular group. As is well
known, � is generated by

S = ±
Ç

0 1
�1 0

å
and T = ±

Ç
1 1
0 1

å

and has signature (0; 2, 3; 1, 0). Let F denote the standard fundamental domain
for �:

F = {z 2 H;�1/2  Rex  0 and |z| � 1}
[ {z 2 H; 0 < Rex < 1/2 and |z| > 1}.

By (2.8) or otherwise we have that area(F) = ⇡

3 .

For a fixed narrow ideal class A 2 Cl+(K) and a = wZ + Z 2 A with
w > w� let S

w

be the geodesic in H with endpoints w� and w. The modular
closed geodesic C

A

on �\H is defined as follows. Define �
w

= ±
�
a b

c d

�
2 �,

where a, b, c, d 2 Z are determined by

"
D

w = aw + b,(2.9)

"
D

= cw + d,

with "
D

our unit. Then �
w

is a primitive hyperbolic transformation in � with
fixed points w� and w. Since

(cw + d)�2 = "�2
D

< 1,

we have that w is the attracting fixed point of �
w

. This induces on the geodesic
S
w

a clock-wise orientation. Distinct a and w for A induce �-conjugate trans-
formations �

w

. If we choose some point z0 on S
w

, then the directed arc on S
w

from z0 to �
w

(z0), when reduced modulo �, is the associated closed geodesic
C
A

on �\H. It is well defined for the class A and gives rise to a unique set of
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oriented arcs (which could overlap) in F . We also use C
A

to denote this set of
arcs. It is well known and easy to see using (2.9) that

(2.10) length(C
A

) = 2 log "
D

.

For a primitive quadratic form Q(x, y) = [a0, b0, c0] with any nonsquare
discriminant d0 > 1, its group of automorphs in � is generated by

(2.11) �
Q

= ±
Ç

t�b0u
2 �c

0
u

a

0
u

t+b0u
2

å
,

where (t, u) gives the smallest solution with t, u � 1 to t2� d0u2 = 4 (see [44]).
If

Q(x, y) = N(x� wy)/N(a)

as above, then �
Q

= �
w

and "
D

= t+u

p
D

2 . Using (2.5) we see that the closed
geodesic C

JA

�1 has the same image as C
A

but with the opposite orientation.

Remark. The arcs of C
A

might retrace back over themselves. When this
happens C

A

is said to be reciprocal. In terms of the class A, it means that
JA�1 = A or equivalently A2 = J . Sarnak [46] has given a comprehensive
treatment of these remarkable geodesics for arbitrary discriminants.

3. Hyperbolic surfaces

The basic object we will study is a certain hyperbolic surface with bound-
ary associated to A. This surface is built out of the cycle ((n1, . . . , n

`

)) of A. For
each class A, choose once and for all a fixed wZ+Z 2 A with w reduced, hence
a fixed `-tuple (n1, . . . n

`

). For each k = 1, . . . `, define the elliptic element of
order 2 in �:

(3.1) S
k

= T (n1+···nk)ST�(n1+···nk).

Consider the subgroup of the modular group

(3.2) �
A

= hS1, S2, . . . , S
`

, Tmi = hS, S1, . . . , S
`�1, T

mi,

where m was defined in (2.1). We will show below in Theorem 1 that �
A

is an
infinite index (i.e., thin) subgroup of �, hence a Fuchsian group of the second
kind. A di↵erent choice of wZ + Z 2 A with reduced w leads to a conjugate
subgroup �

A

in �, in fact conjugate by a translation. In case ` = 1 we have
that �

A

= hS, Tn1i, which is among those studied by Hecke [26].
Let N

A

= N�A be the Nielsen region of �
A

and F
A

= F�A the associated
surface. Before giving its properties, it is useful to see some examples.
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Example. Consider the quadratic field Q(
p
7), for which D = 28 = 4 · 7.

There are two classes: the principal class I with associated cycle ((3, 6)) and J

with cycle ((3, 3, 2, 2, 2)).
The fundamental norm one unit is "28 = 8 + 3

p
7. The class I contains

(3+
p
7

2 )Z+ Z

with reduced w = 3+
p
7

2 = J3, 6K. A fundamental domain for the Fuchsian
group of the second kind

�
I

= hS, T 3ST�3, T 9i
is indicated in Figure 1. It has signature (0; 2, 2; 1, 1). The surface F

I

is
depicted in Figure 2 and is bounded from below by the simple closed geodesic
@F

I

consisting of the two large circular arcs. The length of @F
I

is 2 log(8+3
p
7)

and the area of F
I

is 2⇡. Another depiction is in Figure 3, where the two
distinguished points are the points of order 2 and segments connect them to
the boundary geodesic.

Figure 1. Fundamental domain for �
I

when d = 28.

Figure 2. The surface F
I

.
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Figure 3. The surface F
I

.

The other class J contains the ideal (5+
p
7

3 )Z+ Z with reduced

5+
p
7

3 = J3, 3, 2, 2, 2K.

A fundamental domain for the Fuchsian group of the second kind

�
J

= hS, T 3ST�3, T 6ST�6, T 8ST�8, T 10ST�10, T 12i

is indicated in Figure 4. It has signature (0; 2, 2, 2, 2, 2; 1, 1). The surface F
J

is pictured in Figure 5. It has area 5⇡. The closed geodesic that bounds F
J

also has length 2 log(8 + 3
p
7).

When either surface F
I

or F
J

is mapped to F we obtain overlapping
polygons and the image of their boundaries are the closed geodesics C

I

and
C
J

, which have the same image as sets but with opposite orientations. This is
depicted in Figure 6.

Figure 4. Fundamental domain for �
J

in case d = 28.

Figure 5. The surface F
J

.
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3

Figure 6. Projection of F
I

and @F
I

to the modular surface.

Theorem 1. The group �
A

defined in (3.2) is Fuchsian of the second

kind with signature

(0; 2, . . . , 2| {z }
` times

; 1; 1).

The hyperbolic Riemann surface F
A

thus has genus 0, contains ` points of

order 2 and has one cusp and one boundary component. The boundary @F
A

is

a simple closed geodesic whose image in F is C
A

. We have

(3.3) length(@F
A

) = 2 log ✏
D

and area(F
A

) = ⇡`
A

.

The conformal class of F
A

determines A.

Proof. The first two statements of Theorem 1 follow easily from an exam-
ination of the fundamental domain for

�
A

= hS, S1, . . . , S
`�1, T

mi

constructed as in the examples above. That this construction is valid is an
easy consequence of the Poincaré theorem for fundamental polygons [42] (see
also [39]). It also follows that �

A

is isomorphic to the free product

Z ⇤ Z/2Z ⇤ · · · ⇤ Z/2Z
| {z }

` times

.

Note that the unique boundary circle of �
A

\H⇤ can be visualized by identifying
endpoints of the intervals on R bounding the fundamental domain using elliptic
elements and the translation of �

A

.
We next show that the boundary component of F

A

is a simple closed
geodesic whose image in �\H is C

A

. Recall that we have fixed a choice of
reduced w for each ideal class A. Using the minus continued fraction of w we
have by [33] that for �

w

from (2.9),

(3.4) �
w

= S1S2 · · ·S
`

Tm,
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where S
k

is given in (3.1) and m in (2.1). In particular,

�
w

2 �
A

= hS1, S2, . . . , S
`

, Tmi.

Set w1 = w and for k = 2, . . . ` set w
k

= S
k�1 · · ·S1(w). By the construc-

tion of the minus continued fraction expansion we have that
(3.5)
n1+· · ·+n

k�1 < w�
k

< n1+· · ·+n
k�1+1  n1+· · ·+n

k

�1 < w
k

< n1+· · ·+n
k

for k = 1, . . . ` where, when k = 1, the first two inequalities mean that 0 <

w� < 1. Therefore the intersection of the unit circle with the geodesic in H
with endpoints w� and w exists and defines a point z. We have by (3.4) that

�
w

(z) = �(z) = S1S2 · · ·S
`

Tm(z),

and so

(3.6) T�mS
`

· · ·S2S1�(z) = z.

The circular arc from z to �(z) will intersect the circle with equation
(x�n1)2+y2 = 1 at some z⇤ since by (3.5) we have that n1�1 < w < n1. The
image of the arc from z⇤ to �(z) under S1 covers part of the geodesic joining
w�2 to w2. Again the excess arc from S1(z⇤) to S1�(z) will intersect the circle
(x� n1 � n2)2 + y2 = 1 at some z⇤⇤ since n1 + n2 � 1 < w2 < n1 + n2. Using
now S2 we can map the new excess arc from S2(z⇤⇤) to S2S1�(z). We can
repeat this process of cutting o↵ arcs until we have applied S

`

. Now observe
that by (3.6), upon application of T�m, we have returned to z. Since the maps
are orientation preserving isometries, we see that the bounding geodesic arcs
piece together to give exactly one copy of C

A

, known to have length 2 log "
D

.

See Figure 7 for an illustration of this argument when w = 3+
p
7

2 from our first
example above.

Figure 7. Cutting up @F
A

.
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It is easily seen that the constructed geodesic is freely homotopic to the
boundary circle of �

A

\H⇤ and hence by uniqueness is the boundary curve of
F
A

. Furthermore, F
A

can be identified with the intersection of the fundamental
domain for �

A

with the region above this boundary curve.
The fact that the area of F

A

is ⇡`
A

is an immediate consequence of (2.8).
Finally we must show that the conformal type of F

A

determines A to
complete the proof of Theorem 1. We will do this by demonstrating that this
conformal type determines the cycle ((n1, . . . n

`

)). By the above construction of
F
A

, each elliptic fixed point in F
A

determines a unique point on the boundary
geodesic that is closest to it. The boundary geodesic (which is simple and
oriented) determines an ordering of these points, which is unique up to cyclic
permutations. This determines an ordering of the elliptic fixed points. Using
(2.7) we compute the cycle of hyperbolic distances between successive fixed
points of S0, S1, . . . S

`

in H. This is given by (V (n1), V (n2), . . . V (n
`

)), where
V (x) is the monotone increasing function

V (x) = log
Å
x

2

Äp
x2 + 4 + x

ä
+ 1
ã
.

The cycle of distances is a conformal invariant since these distances and the
orientation of the boundary geodesic are preserved under conformal equiva-
lence. The cycle of distances clearly determines the cycle ((n1, . . . n

`

)) since V

is monotone increasing.
This completes the proof of Theorem 1. ⇤

4. Uniform distribution

In this section we state the main result of this paper. To obtain satis-
factory results about the uniform distribution of F

A

, we average over a genus
of ideal classes of K. A genus is an element of the group of genera, which is
(isomorphic to) the quotient group

(4.1) Gen(K) = Cl+(K)/(Cl+(K))2.

It is classical that Gen(K) ⇠= (Z/2Z)!(D)�1 so if G
D

is a genus in Cl+(K), then

(4.2) #G
D

= 21�!(D)h(D),

where !(D) is the number of distinct prime factors of D.

Theorem 2. Suppose that for each positive fundamental discriminant

D > 1, we choose a genus G
D

2 Gen(K). Let ⌦ be an open disc contained

in the fundamental domain F for � = PSL(2,Z), and let �⌦ be its orbit under

the action of �. We have

(4.3) ⇡

3

X

A2GD

area(F
A

\ �⌦) ⇠ area(⌦)
X

A2GD

area(F
A

),

as D ! 1 through fundamental discriminants.
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In view of Theorem 1, the uniform distribution of closed geodesics proven
in [12] (generalized to genera) can be stated in the following form:2

(4.4) ⇡

3

X

A2GD

length(@F
A

\ �⌦) ⇠ area(⌦)
X

A2GD

length(@F
A

)

as D ! 1 through fundamental discriminants.
The statement of (4.4) given in [12] has averaging over the entire class

group. Unlike (4.4), (4.3) is actually trivial when one averages over the whole
group since we get an even covering in that case and the ⇠ can be replaced by
equality. The reason is that F

A

and F
JA

�1 are complementary in that their
union covers F evenly and the images of their boundary geodesics are the same
as sets but with opposite orientations. For instance, the surfaces F

I

and F
J

are complementary. In general, (4.3) is trivial when J is in the principal genus.
This happens if and only if D is not divisible by any primes p ⌘ 3 (mod 4) or,
equivalently, when D is the sum of two squares (see, e.g., [24, Prop. 3.1]). In
particular, for any class A that satisfies A2 = J , so that C

A

is reciprocal, we
have that F

A

covers F evenly.
An interesting special case for which (4.3) is nontrivial is when D = 4p

where p ⌘ 3 (mod 4) is prime. The case p = 7 was illustrated above. There
are exactly two genera, one containing I and the other containing J . Cohen
and Lenstra [9] have conjectured that I and J are the only classes in their
respective genera for > 75% of such p. This happens exactly when K has wide
class number one. Suppose that arbitrarily large such p exist. Then Theorem 2
and (4.4) imply that as p ! 1 through such p, we have that

area(F
I

\ �⌦)

area(F
I

)
⇠ area(⌦)

area(F)
and

length(@F
I

\ �⌦)

length(@F
I

)
⇠ area(⌦)

area(F)
.

Remarks. Since F
I

and F
J

are complementary, their distribution prop-
erties are directly related. A pretty class number formula of Hirzebruch and
Zagier [28] (see also [57]) states that for such p > 3,

`
J

� `
I

= 3h(�p),

where h(�p) is the class number of the imaginary quadratic field Q(
p�p).

Upon using that area(F
A

) = ⇡`
A

, this is equivalent to the area formula

area(F
J

)� area(F
I

) = 3⇡h(�p).

There is a third hyperbolic distribution problem, one associated to imagi-
nary quadratic fields. For K = Q(

p
D) with D < 0, we may again associate to

each ideal class A a geometric object, a CM point we denote by z
A

2 F where

2Recall our convention concerning @FA.
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z
A

Z+ Z 2 A. Choose for each D a genus G
D

, noting that (4.1) and (4.2) are
valid for D < 0. Then by [12] generalized to genera we have that

(4.5) ⇡

3 #{A 2 G
D

| z
A

2 ⌦} ⇠ area(⌦) #G
D

as D ! �1 through fundamental discriminants.

5. The analytic approach

Here we give a brief review of the analytic method and then state the
extensions of formulas of Hecke and Katok-Sarnak that we will use to prove
Theorem 2. Since it creates no new di�culties, we will allow both positive and
negative D and set things up so that only obvious modifications are needed to
prove the other two uniform distribution results (4.4) and (4.5). The analytic
approach that we follow is based on the spectral theory of the Laplacian for
automorphic forms and strong sub-convexity estimates for L-values, or equiv-
alently nontrivial estimates of Fourier coe�cients of modular forms of half-
integral weight. Standard references for this section are Hejhal’s book [27], the
book of Iwaniec [30] and that of Iwaniec and Kowalski [31]. Some other related
distribution problems are treated in Sarnak’s book [45].

In this paper we will make use of many standard special functions, in-
cluding the Bessel functions I

s

, J
s

,K
s

and the Whittaker functions M
r,s

,W
r,s

.
Some standard references for their properties are [38] and [55].

Spectral expansion. First we review the spectral expansion. The initial
idea is to employ hyperbolic Weyl integrals, which are analogous to the usual
Weyl sums used in proving the uniform distribution of sequences of points
on a circle. One approximates the characteristic function of �⌦ from above
and from below by smooth �-invariant functions with compact support. If
f : H ! R+ is such a function, we expand it spectrally:

(5.1) f(z) = c0 +
1

4⇡

Z 1

�1
c(t)E(z, 12 + it)dt+

X

'

c(')h','i�1'(z),

where h','i =
R
F |'(x)|2dµ(z). Here E(z, s) is the Eisenstein series of weight 0

given for Re(s) > 1 by

(5.2) E(z, s) =
X

�2�1\�
(Im �z)s = 1

2(Im z)s
X

gcd(c,d)=1

|cz + d|�2s,

where �1 is the subgroup of � generated by T . Clearly E(z, s) is an eigen-
function of

� = �y�2(@2
x

+ @2
y

)
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with eigenvalue � = s(1� s). If we define E⇤(z, s) = ⇤(2s)E(z, s), the Fourier
expansion of E⇤(z, s) is given by (see, e.g., [31])

E⇤(z, s) = ⇤(2s)ys + ⇤(2� 2s)y1�s(5.3)

+ 2y1/2
X

n 6=0

|n|s�1/2�1�2s(|n|)K
s� 1

2
(2⇡|n|y)e(nx),

where ⇤(s) = ⇡�s/2�( s2)⇣(s). Then E⇤(z, s) is entire except at s = 0, 1, where
it has simple poles and satisfies the functional equation

(5.4) E⇤(z, 1� s) = E⇤(s).

Furthermore, we have that

(5.5) Res
s=1E

⇤(z, s) = �Res
s=0E

⇤(z, s) = 1
2 .

The residue at s = 1 gives rise to constant term c0 in (5.1).
The second sum in (5.1) is over the countably infinite set of Hecke-Maass

cusp forms '. Like the Eisenstein series, these are Maass forms in that they
are �-invariant eigenfunctions of � with �' = �', where we express the
eigenvalue uniquely as

(5.6) � = �(') = 1
4 + r2

and choose r � 0. Being a Hecke-Maass cusp form means that, in addition,
' is an eigenfunction of all the Hecke operators, that k'k2 = h','i < 1 and
that the constant term in its Fourier expansion at i1 is zero. We can and
always will normalize such a Hecke-Maass cusp form ' so that this Fourier
expansion has the form3

(5.7) '(z) = 2y1/2
X

m 6=0

a(m)K
ir

(2⇡|m|y)e(mx),

where a(1) = 1. We can also assume that

a(�n) = a(�1)a(n) = ±a(n).

If a(�1) = 1, we say that ' is even, otherwise odd since '(�z) = a(�1)'(z)
or equivalently '(z) = a(�1)'(z). Thus the associated L-function has a Euler
product (for Re(s) > 1):

(5.8) L(s;') =
X

n�1

a(n)n�s =
Y

p prime

(1� a(p)p�s + p�2s)�1.

Furthermore, its completion

(5.9) ⇤(s;') = ⇡�s�( s+ir+✏
2 )�( s�ir+✏

2 )L(s;')

3Note the 2 in front!
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is entire and satisfies the functional equation ⇤(s;') = (�1)✏⇤(1�s;'), where

✏ = 1�a(�1)
2 .

Remark. Note that the Eisenstein series is also an even Hecke eigenform
and that its associated L-function

L(s; t) =
X

n�1

nit��2it(m)m�s = ⇣(s+ it)⇣(s� it),

defined for a fixed t, satisfies ⇤(s, t) = ⇡�s�( s+it

2 )�( s�it

2 )L(s, t) = ⇤(1 � s, t).
Unlike ⇤(s;'), it has poles, reflecting the fact that E(z, s) is not a cusp form.

Weyl’s law gives that as x ! 1,

(5.10) #{';�(')  x} ⇠ x

12
.

The first five values of � to five decimal places (see [5]) are

(5.11) 91.14134, 148.43213, 190.13154, 206.41679, 260.68740.

It appears to be likely that each � is simple, but this is open. The eigenvalues
in (5.11) all belong to odd forms except the third.

For our f , the spectral expansion (5.1) converges uniformly on compact
subsets of H.

Hyperbolic Weyl integrals. The Weyl integrals give the remainder terms in
the asymptotics and are of two types depending on whether they come from the
Eisenstein series or the Hecke-Maass cusp forms. Let u(z) denote either E(z, s)
for Re(s) = 1/2 or h','i�1'(z). Note that E(z, s) is absolutely integrable over
F
A

for Re(s) = 1/2 by (5.3). To pick out genera we need genus characters,
or what is the same thing, real characters of Cl+(K). These are in one-to-
one correspondence with factorizations D = d0d, where d0, d are fundamental
discriminants. See Section 7 for more information about the genus characters.
Given such a � define

(5.12) Weyl(u,�) =
X

A2Cl+(K)

�(A)

8
>><

>>:

�

2

R
FA

u(z)dµ(z) if d0, d < 0,
R
@FA

u(z)y�1|dz| if d0, d > 0,
1
!D

u(z
A

) if d0d < 0.

Here !
D

= 1 except that !�3 = 3 and !�4 = 2.
To prove uniform distribution by the analytic method we need estimates

for Weyl(u,�) for real � that are nontrivial in the D-aspect and uniform (but
weak) in the spectral aspect. This is enough since the Weyl integral in (5.12) in
the first case is zero when d0, d > 0 as is that in the second case when d0, d < 0.

When u(z) = E(z, s), we apply a version of a classical formula of Hecke.
Let L(s,�

d

) be the Dirichlet L-function with character given by the Kronecker
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symbol �
d

(·) =
Ä
d

·
ä
, and for ↵ = 1

2(1� sign d) define the completed L-function

(5.13) ⇤(s,�
d

) = ⇡�s/2�( s+↵2 )|d|s/2L(s,�
d

).

Theorem 3. For the genus character � associated to D = d0d and Re(s)
= 1

2 , we have

⇤(s,�
d

0)⇤(s,�
d

) =
X

A2Cl+(K)

�(A)

8
>><

>>:

�

2

R
FA

E⇤(z, s)dµ(z) if d0, d < 0,
R
@FA

E⇤(z, s)y�1|dz| if d0, d > 0,

2
p
⇡!�1

D

E⇤(z
A

, s) if d0d < 0.

This formula, due to Hecke except when d0, d < 0, reduces the problem
of estimating nontrivially the Weyl integrals for Eisenstein series to obtaining
a sub-convexity bound for Dirichlet L-functions in the conductor aspect. Of
course, this is one of the first such to be done and is a famous result of Burgess.

Theorem 3 can be expressed in terms of Maass forms of weight 1/2. These
generalize the (modified) Jacobi theta series,

✓(z) = Im(z)1/4
X

n2Z
e(n2z),

which is a modular form of weight 1/2 for �0(4). Set

(5.14) J(�, z) =
✓(�z)

✓(z)
for � 2 �0(4).

Say F defined on H has weight 1/2 for �0(4) if

F (�z) = J(�, z)F (z) for all � 2 �0(4).

For fundamental d, set

b(d, s) = (4⇡)�1/4|d|�3/4⇤(s,�
d

),

and define b(dm2, s) for m 2 Z+ by means of the Shimura relation

m
X

n|m
n>0

n� 3
2

Ä
d

n

ä
b
Ä
m

2
d

n

2 , s
ä
= ms�1/2�1�2s(m)b(d, s).

Then it follows from [16, Prop. 2 p. 959] that

E⇤
1/2(z, s) = ⇤(2s)2sy

s
2+

1
4 + ⇤(2� 2s)21�sy

3
4� s

2

+
X

n⌘0,1(mod 4)
n 6=0

b(n, s)W 1
4 sgnn,

s
2� 1

4
(4⇡|n|y)e(nx)

has weight 1/2 for �0(4). The idea behind this example originates in the papers
of H. Cohen [8] and Goldfeld and Ho↵stein [21]. See also [50], [15].

The formula

(5.15) ⇤(s,�
d

0)⇤(s,�
d

) = 2
p
⇡|D|3/4b(d0, s)b(d, s)
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in connection with Theorem 3 hints strongly as to what should take place for
cusp forms; this is the extension (and refinement) of the formula of Katok-
Sarnak mentioned earlier. Their result from [34], together with [1], gives the
case d = 1 in the following.4

Theorem 4. Let

'(z) = 2y1/2
X

n 6=0

a(n)K
ir

(2⇡|n|y)e(nx)

be a fixed even Hecke-Maass cusp form for �. Then there exists a unique

nonzero F (z) with weight 1/2 for �0(4) with Fourier expansion

F (z) =
X

n⌘0,1(mod 4)
n 6=0

b(n)W 1
4 sgnn,

ir
2
(4⇡|n|y)e(nx),

such that for any pair of co-prime fundamental discriminants d0 and d, we have
(5.16)

12
p
⇡|D| 34 b(d0)b(d) = h','i�1

X

A2Cl+(K)

�(A)

8
>><

>>:

�

2

R
FA

'(z)dµ(z) if d0, d < 0,
R
@FA

'(z)y�1|dz| if d0, d > 0,

2
p
⇡ !�1

D

'(z
A

) if d0d < 0,

where � is the genus character associated to D = d0d. Here

hF, F i =
Z

�0(4)\H
|F |2dµ = 1

and the value of b(n) for a general discriminant n = dm2 for m 2 Z+ is

determined by means of the Shimura relation

m
X

n|m
n>0

n� 3
2

Ä
d

n

ä
b
Ä
m

2
d

n

2

ä
= a(m)b(d).

Remarks. The
p
⇡ in (5.15) and (5.16) is an artifact of the normalization of

the Whittaker function. Also, if we choose F in Theorem 4 so that hF, F i = 6,
which is the index of �0(4) in �, then we get 2 in the left-hand side of (5.16)
instead of 12, which matches the Eisenstein series case (5.15). Perhaps not
coincidentally,

Res
s=1E

⇤
1/2(z, s) =

1
2✓(z),

and by [7] we have h12✓(z),
1
2✓(z)i = 6.

It is also possible to evaluate |b(d)|2. When d = 1, this was done in [34]
and in general by Baruch and Mao [1]. Here we quote their result in our

4Except that when d0 < 0, in (5.16) we get 2
p
⇡ !�1

D on the right-hand side instead of

their (2
p
⇡ !D)�1.
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context. Under the same assumptions as in Theorem 4 we have

(5.17) 12⇡|d||b(d)|2 = h','i�1�(12 + ir

2 � sign d

4 )�(12 � ir

2 � sign d

4 )L(12 ,',�d

),

where

L(s,',�
d

) =
X

n�1

�
d

(n)a(n)n�s.

Hence in the cuspidal case our problem also reduces to obtaining a sub-
convexity bound, this time for a twisted L-function.

Results like Theorem 4 and (5.17) have a long history, especially in the
holomorphic case. Some important early papers are those by Kohnen and
Zagier [36], Shintani [49] and Waldspurger [54]. All of these relied on the
fundamental paper of Shimura [48].

Examples. It is interesting to evaluate numerically some examples of The-
orem 4. This is possible thanks to computations done by Strömberg [52]. Note
that half-integral weight Fourier coe�cients, even in the holomorphic case, are
notoriously di�cult to compute.

For example, for '(z), we take the first occurring even Hecke-Maass form
with eigenvalue

� = 190.13154731 = · · · = 1
2 + r2,

where r/2 = 6.889875675 · · · . We have

h','i = 7.26300636⇥ 10�19.

A large number of Hecke eigenvalues for this ' are given (approximately,
but with great accuracy) in the accompanying files of the paper of Booker,
Strömbergsson and Venkatesh [5]. The first six values to twelve places are
given in Table 1.

p a(p)

2 1.549304477941
3 0.246899772453
5 0.737060385348
7 -0.261420075765
11 -0.953564652617
13 0.278827029162

Table 1. Hecke eigenvalues

A few values of b(d) for fundamental d (except for d = 1, which we com-
puted independently) are computed from Strömberg’s Table 5 and given in our
Table 2.
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d > 0 b(d) d < 0 b(d)

1 10894.40532 -3 6404.69711
5 894.31877 -4 11927.63292
8 2191.95607 -7 8495.02618
12 -1298.74136 -8 -4512.60385

Table 2. Weight 1/2 coe�cients

Let us illustrate Theorem 4 in a few cases. Consider first the quadratic
field Q(

p
3), for which D = 12 = 4·3. There are two classes: the principal class

I with associated cycle ((4)) and J with cycle ((2, 3)). For D = 12 = (1)(12),

127/4
p
⇡ b(1)b(12) = 2h','i�1

Z

@FI

'(z)y�1|dz| = �1.94029⇥ 109

and for D = (�3)(�4),

127/4
p
⇡ b(�3)b(�4) = �h','i�1

Z

FI

'(z)dµ(z) = 1.04759⇥ 1010.

Two examples when D < 0: D = (1)(�3),

18 33/4 b(1)b(�3) = h','i�1'(1+
p�3
2 ) = 2.86296⇥ 109

and D = (1)(�4),

12 43/4 b(1)b(�4) = h','i�1'(i) = 4.41046⇥ 109.

In these examples the integrals and special values were computed by approx-
imating ' by its Fourier expansion and using the Fourier coe�cients given in
the files accompanying [5].

6. Proof of Theorem 2

We now show how to deduce Theorem 2 (and (4.4) and (4.5)) from The-
orems 3 and 4. In order to show that we actually have an asymptotic formula
we need a lower bound for the main term that is larger than the remainder
terms. The main term comes from the constant c0 in the spectral expansion
(5.1). It is a little more complicated to obtain a lower bound for the main term
in (4.3) than the corresponding bounds for geodesics or CM points, which we
get almost directly from Siegel’s theorem. For the geodesic case, we have by
the class number formula and (4.2) that

X

A2GD

length(@F
A

) = 22�!(D)h(D) log "
D

.

Similarly, when D < 0 we have

#G
D

= 21�!(D)h(D).
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By Siegel’s theorem we obtain that the main term in either case is �
✏

|D|1/2�✏
for any ✏ > 0, where the implied constant is not e↵ective.

Unlike the lengths of the closed geodesics, the areas of the surfaces F
A

are
not the same for di↵erent A! Still, we have the needed lower bound.

Proposition 1. For any ✏ > 0, we have that

(6.1)
X

A2GD

area(F
A

) �
✏

D1/2�✏.

The implied constant is not e↵ectively computable for a given ✏.

Proof. We have by Theorem 1 that

(6.2)
X

A2GD

area(F
A

) =
X

A2GD

`
A

.

We have the identity (see [58, p. 167] or [58, p. 138])

(6.3)
Y

w reduced

w = "
D

.

Now for a reduced w, there are a, b, c 2 Z with D = b2 � 4ac and

a, c > 0 and a+ b+ c < 0

so that w = �b+
p
D

2a . Thus
p
D �

p
D

a

= w � w� > w � 1.

We conclude that w <
p
D + 1, so (6.3) easily implies that

(6.4) `
A

>
log "

D

log(
p
D + 1)

.

Using (6.2), (6.4), (4.2) and Siegel’s theorem (see [11]), we derive (6.1). ⇤

Remark. It is also possible to give an upper bound for `
A

. For example,
Eichler [17] gave a general argument that yields for the modular group that

`
A

< c log "
D

for an explicit c.

We now turn to estimating the Weyl integrals.

Proposition 2. There is a constant C > 0 such that for any ✏ > 0, we
have

Weyl(E(·, s),�) ⌧
✏

|s|C |D|7/16+✏,(6.5)

Weyl(h','i�1',�) ⌧
✏

rC |D|13/28+✏,(6.6)

where Re(s) = 1/2 and ' is any even Hecke–Maass cusp form with Laplace

eigenvalue 1
4 + r2.
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Proof. By Theorem 3 and standard estimates for the gamma function
quotient and for ⇣(2s), we have for Re(s) = 1/2 that

(6.7) Weyl(s,�) ⌧
✏

|s|C |L(s,�
d

0)L(s,�
d

)|D1/4+✏.

Thus (6.5) now follows from the subconvexity bound of Burgess [6] made uni-
form in s (see [31, Thm. 12.9 p. 329]): for any ✏ > 0, we have

L(s,�
d

) ⌧ |s||d|3/16+✏,

where the implied constant depends only on ✏.
Part (6.6) of Proposition 2 follows straight from Theorem 4 and Theorem 5

of [12]. ⇤

To see that it is enough to restrict to even Maass cusp forms observe that
for an odd form all the Weyl integrals are identically zero. To see this first
observe that �(A) = �(A�1). There is a symmetry under A ! A�1 of all the
geometric objects that forces the corresponding sum of integrals for A and A�1

to cancel for an odd form '. For example, when d0, d < 0 we have that

(6.8)
Z

FA�1

'(z)dµ(z) = �
Z

FA

'(z)dµ(z).

To get (6.8) observe that by (2.2) the cycle for A�1 is that for A reversed.
This has the e↵ect of making a left translate by T�mA of the fundamental
domain F

A

�1 a mirror image in the imaginary axis of F
A

. Here we are using
the fundamental domains constructed in the proof of Theorem 1. The cases
d0, d > 0 and d0d < 0 are handled similarly by using (2.3).

Theorem 2 follows from Propositions 1 and 2 and the fact that the spectral
coe�cients in (5.1) satisfy

c(t) ⌧ |s|�A and c(') ⌧ |r|�A

for any A > 0 and by the Weyl law (5.10); see, e.g., [30].

Remarks. There has been a lot of progress on subconvexity estimates since
the paper [12] that we quote was written. We were content to use the result
of [12] here since any strong nontrivial estimate is enough to get the uniform
distribution results. By “strong” we mean a power savings in the exponent,
and this is required due to our use of Siegel’s theorem for the main term.

After the fundamental paper of Iwaniec [29], techniques for dealing directly
with the L-functions were developed in a series of papers starting with [13]. See
also [14]. Currently the best known subconvexity bound for the L-functions
(5.17) was obtained in the breakthrough paper [10] of Conrey and Iwaniec,
which gives the exponent 1/3+ ✏ of |D| in both estimates of Proposition 2 but
under the technical assumption that D is odd. This result was improved by
Young [56], who gives the same value 1/3 + ✏ for the exponent of C in these
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estimates. See also the paper of Blomer and Harcos [4]. Although we have not
pursued this here, such explicit hybrid estimates would allow one to improve
the ranges of certain parameters in the distribution results.

In a di↵erent direction, it would be interesting to see if the methods of
arithmetic ergodic theory could be applied here along the lines of the paper
[18] of Einsiedler, Lindenstrauss, Michel and Venkatesh.

7. Proof of Theorem 3

To prove Theorem 3, we begin by giving some background on Hecke’s
L-functions. The zeta function for an ideal class A is given for Re(s) > 1 by

⇣
A

(s) =
X

a2A
N(a)�s,

where a runs over all integral ideals in A. When K = Q(
p
D) with D < 0, we

have

(7.1) ⇡�s�(s)⇣
A

(s) = 2s

!D
|D|� s

2 E⇤(z
A

, s).

In order to generalize this in the presence of an infinite groups of units, Hecke
invented his famous trick of dividing out the action of the unit group on gen-
erators of principal ideals. For real quadratic fields, this procedure amounts
to either integrating the Eisenstein series with respect to arc length over the
associated closed geodesic C

A

or integrating its derivative over this geodesic.
He showed

⇡�s�( s2)
2Ds/2

Ä
⇣
A

(s) + ⇣
JA

(s)
ä
= 2

Z

CA
E⇤(z, s)y�1|dz|(7.2)

and

⇡�s�( s+1
2 )2Ds/2

Ä
⇣
A

(s)� ⇣
JA

(s)
ä
= 2

Z

CA
i @

z

E⇤(z, s) dz.(7.3)

Hecke’s L-function for a character � of Cl+(K) is given for Re(s) > 1 by

L(s,�) =
X

a

�(a)N(a)�s =
Y

p

(1�N(p)�s)�1,

where a runs over all integral ideals in K and p over all (finite) primes. Clearly

L(s,�) =
X

A

�(A)⇣
A

(s).

When D < 0, the completed L-function is

(7.4) ⇤(s,�) = ⇡�s�( s2)�(
s+1
2 )|D|s/2L(s,�) = 21�s⇡1/2�s|D|s/2�(s)L(s,�),

while when D > 0, it is

⇤(s,�) = ⇡�s�( s+↵2 )�( s+↵2 )Ds/2L(s,�),
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where

(7.5) ↵ = ↵
�

= 1
2(1� �(J)).

Then from (7.1) and (7.4) we have when D < 0 that

(7.6) ⇤(s,�) = 2
p
⇡

!D

X

A2Cl+(K)

�(A)E⇤(z
A

, s),

while from (7.2) and (7.3) we have when D > 0 that

(7.7) ⇤(s,�) =
X

A2Cl+(K)

�(A)

8
<

:

R
CA E⇤(z, s)y�1|dz| if �(J) = 1,
R
CA i @

z

E⇤(z, s) dz if �(J) = �1.

These equations show that the analytic properties of ⇤(s,�) are inherited from
those of E⇤(z, s). For instance, (5.4) gives the functional equation

⇤(1� s,�) = ⇤(s,�).

When �(J) = 1, the narrow class character � descends to a character of the
wide class group, so these formulas are usually given in terms of the wide class
group Cl(K) in this case. When �(J) = �1, the character is a norm class
character (see [24], [25]).

Genus characters. The characters of Cl+(K) that we need are the genus
characters, which are the same as the real characters. See [51] for their basic
theory. The genus characters are in one-to-one correspondence with decompo-
sitions D = d0d, where d and d0 are fundamental discriminants. Given such a
decomposition, the associated character � is defined for a prime ideal p of K
by

�(p) =

8
<

:

Ä
d

N(p)

ä
if p - d,Ä

d

0

N(p)

ä
if p - d0,

where
Ä
d

·
ä
is the Kronecker symbol. From now on by � we shall always mean,

unless otherwise specified, the genus character associated to D = d0d. Later we
need a generalization of � to some cases where d is fundamental but d0, hence
D, need not be.

We have that �(J) = sign d = sign d0, and we also have Kronecker’s de-
composition L(s,�) = L(s,�

d

0)L(s,�
d

). Equivalently,

⇤(s,�) = ⇤(s,�
d

0)⇤(s,�
d

).

By (7.6) we have when D < 0 that

⇤(s,�
d

0)⇤(s,�
d

) = 2
p
⇡

!D

X

A2Cl+(K)

�(A)E⇤(z
A

, s),
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while by (7.7) we get when D > 0 that

(7.8) ⇤(s,�
d

0)⇤(s,�
d

) =
X

A2Cl+(K)

�(A)

8
<

:

R
CA E⇤(z, s)y�1|dz| if d0, d > 0,
R
CA i @

z

E⇤(z, s) dz if d0, d < 0.

Stokes’ theorem. To get the surface case of Theorem 3 we need to express
the Weyl surface integrals in terms of cycle integrals. Of course, the main tool
for this is Stokes’ theorem. We do the cusp form case at the same time.

Lemma 1. For u as in (5.12), we have

(7.9) �

2

Z

FA

u(z)dµ(z) =
Z

CA
i @

z

u(z)dz.

By an integral over C
A

we always mean the integral from z0 2 S
w

to
�
w

(z0) 2 S
w

along the arc on S
w

, assuming that the integral is independent
of z0.

A little more generally we have the following lemma. Recall that m was
defined in (2.1).

Lemma 2. Suppose that F (z) is any real analytic �
A

-invariant function

on H that satisfies

(7.10) �F = �y2(F
xx

+ F
yy

) = s(1� s)F

and the growth condition
R m
0 @

z

F (x+ iY )dx = o(1) as Y ! 1. Then we have

(7.11) s(1�s)
2

Z

FA

F (z)dµ(z) =
Z

@FA

i @
z

F (z)dz.

Proof. By Stokes’ theorem we have
Z

FA(Y )
@
z

(@
z

F (z))dz dz = �
Z

@FA

@
z

F (z)dz +
Z m

0
@
z

F (x+ iY )dx,

where F
A

(Y ) = {z 2 F
A

; Im(z) < Y }. Using that dz dz = �2idx dy, by (7.10)
we have

@
z

@
z

F (z)dz dz = i

2s(1� s)F (z)dµ(z).

By our growth assumption on F we get (7.11) by letting Y ! 1. ⇤

To deduce Lemma 1, note that both E(z, s) and '(z) satisfy (7.10) and
that the growth condition for ' is clear while that for E(z, s) when Re(s) = 1/2
follows from its Fourier expansion (5.3). Finally, since both '(z) and E(z, s)
are �-invariant we may replace the integrals over @F

A

by integrals over C
A

.

Applying Lemma 1 when u(z) = E(z, s) we finish the proof of Theorem 3.
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8. Maass forms and the resolvent kernel

Our proof of Theorem 4 is similar in spirit to that of Hecke’s for the
Eisenstein series case. We will employ resolvent kernels for the Laplacians
of weight 0 and weight 1/2. The residue of such a resolvent at a spectral
point gives the reproducing kernel for the associated eigenspace. Our principal
reference here is the paper of Fay [20]. Other references include Hejhal [27]
and Roelcke [43].

We begin with the case of Maass cusp forms of weight 0 for �. For Re(s)>1,
consider the Poincaré series

(8.1) F
m

(z, s) =
X

�2�1\�
f
m

(�z, s),

where f0(z, s) = ys and for m 6= 0,

f
m

(z, s) = y1/2I
s�1/2(2⇡|m|y)e(mx) = |m|�1/2

2⇡
�(s)
�(2s)M0,s� 1

2
(4⇡|m|y)e(mx).

The function F
m

(z, s), which was first studied by Neunhö↵er [40] and Niebur
[41], is a �-invariant eigenfunction of �:

�F
m

(z, s) = s(1� s)F
m

(z, s).

We will get to the Maass cusp forms through residues of F
m

(z, s).

Proposition 3. For any m 6= 0, we have that F
m

(z, s) has meromorphic

continuation in s to Re(s) > 0 and that

Res
s= 1

2+ir

(2s� 1)F
m

(z, s) =
X

'

h','i�12a(m)'(z),

where the (finite) sum is over all Hecke-Maass cusp forms ' with Laplace

eigenvalue 1
4 + r2 and a(m) is defined in (5.7).

Proof. For u 2 L2(F , dµ), the resolvent kernel G(z, z0; s) for � satisfies

(8.2)
Ä
�� s(1� s)

ä Z

F
G(z, z0; s)u(z)dµ(z) = u(z0).

The function F
m

(z, s) occurs in the Fourier expansion of G(z, z0; s), which is
given by

(8.3) G(z, z0; s) =
p
y0

X

m2Z
F�m

(z, s)K
s�1/2(2⇡|m|y0)e(mx0),

valid when y0 > y. This follows from Theorem 3.1 on page 173 of [20]. The
meromorphic continuation of the resolvent kernel in s is proven in [27] (see
also [43]). If s = 1

2 + ir is such that the eigenspace with eigenvalue 1
4 + r2
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is nonempty and {u} is an orthonormal basis for this eigenspace, then the
integral kernel

(8.4) H(z, z0, s) = G(z, z0; s)� 1
1
4 + r2 � s(1� s)

X
u(z)u(z0)

has a holomorphic extension to s = 1
2 + ir. This is a consequence of the fact

that it represents the resolvent on the orthogonal complement of this eigenspace
and vanishes identically on the eigenspace itself.

Now let u = '

k'k , where ' is a Hecke-Maass cusp form. The set {u} of all

such is an orthonormal basis for our eigenspace. Then by (8.3) and (8.4) we
have for 0 < y < y0 that

Z 1/2

�1/2
H(z, z0, s)e(�mx0)dx0 =

p
y0F�m

(z, s)K
s�1/2(2⇡|m|y0)

� 1
1
4 + r2 � s(1� s)

X
h','i�1'(z)2a(m)K

ir

(2⇡|m|y0),

after referring to (5.7). Since the left-hand side is holomorphic at s = 1
2 + ir,

we get that

Res
s= 1

2+ir

(2s� 1)F�m

(z, s) =
X

'

h','i�12a(m)'(z).

Replacing m with �m and noting that a(�m)'(z) = a(m)'(z) from below
(5.7) we get Proposition 3. ⇤

For comparison with the weight 1/2 case that we will treat next, it is
instructive to carry the analysis one step further. The Fourier expansion of
F
m

(z, s) is given by (see [20],[16])

F
m

(z, s) = f
m

(z, s) + 2|m|1/2�s
�2s�1(|m|)

(2s�1)⇤(2s) y1�s]

+ 2y1/2
X

n 6=0

�(m,n; s)K
s� 1

2
(2⇡|n|y)e(nx),

where for Re(s) > 1,

�(m,n; s) =
X

c>0

c�1K(m,n; c) ·

8
<

:
I2s�1(4⇡

»
|mn| c�1) if mn < 0,

J2s�1(4⇡
»
|mn| c�1) if mn > 0.

Here K(m,n; c) is the Kloosterman sum

K(m,n; c) =
X

a(mod c)

(a,c)=1

e
Ä
ma+na

c

ä
.
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It follows that for fixed m,n with mn 6= 0, the function �(m,n; s) has mero-
morphic continuation to Re(s) > 0 and

Res
s= 1

2+ir

(2s� 1)�(�m,n; s) = 2
X

'

h','i�1a(m)a(n),

where the sum is over all Hecke-Maass cusp forms ' for � with eigenvalue
1
4 + r2.

There is a parallel (yet more intricate) development for Maass forms of
weight 1/2. The invariant Laplace operator of weight 1/2 is given by

�1/2 = �y2(@2
x

+ @2
y

) + 1
2 iy@x.

This means that for all � 2 �0(4), we have

(�1/2F )(�z) = J(�, z)�1/2F (z).

A Maass form of weight 1/2 for �0(4) has weight 1/2, is smooth and satisfies
�1/2F = �F, where we write � = �(F ) = 1

4 + ( r2)
2. Usually we also require

some growth conditions as well in the three cusps of �0(4). In particular, a
Maass cusp form F is in L2(�0(4)\H, dµ) and has the further property that
its zeroth Fourier coe�cient in each cusp vanishes.

The resolvent kernel G1
/2(z, z

0; s) for �1/2 in this case was also studied by
Fay [20] (see also [43]). It satisfies

(8.5)
Ä
�1/2 � s(1� s)

ä Z

�0(4)\H
G 1

2
(z, z0; s)u(z)dµ(z) = u(z0)

for u 2 L2(�0(4)\H, dµ) with weight 1/2. By Theorem 3.1 of [20] we have the
Fourier expansion5

G1
/2(z

0, z; s) =
X

n

F1
/2,n(z, s)W 1

4 signn,s� 1
2
(4⇡|n|y0)e(�nx0)

valid for Im z0 > Im z, where for n 6= 0 and Re(s) > 1,

(8.6) F1
/2,n(z, s) =

�(s� 1
4 signn)

4⇡|n|�(2s)
X

�2�1\�0(4)

J(�, z)�1f1
/2,n(�z, s)

with
f1

/2,n(z, s) = M 1
4 signn,s� 1

2
(4⇡|n| Im z)e(nRe z).

As above it follows that F1
/2,n(z, s) has a meromorphic continuation to Re(s)

> 0 with simple poles at the points 1
2 +

ir

2 giving the discrete spectrum of �1/2

and that
Res

s= 1
2+

ir
2
(2s� 1)G1/2(z

0, z) =
X

 (z0) (z)

5 Note that in the notation of Fay, F1/2,n(z, s) = �Fn(z, s). The minus sign comes from

his definition of �1/2. We are also using his (38), which gives G1/2(z, z
0; s) = G1/2(z

0, z; s).

Observe as well that for weight 1/2, his k = 1/4.
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and

(8.7) Res
s= 1

2+
ir
2
(2s� 1)F1

/2,n(z, s) =
X

 

b(n) (z).

Here the sum is over an orthonormal basis { } of Maass cusp forms for V
r

and
b(n) is defined by

(8.8)  (z) =
X

n 6=0

b(n)W 1
4 signn,

ir
2
(4⇡|n|y)e(nx).

Plus space. There is an important distinguished subspace of V
r

, denoted
by V +

r

and called after Kohnen the plus space, that contains those Maass cusp
forms  2 V

r

whose n-th Fourier coe�cient b(n) vanishes unless n ⌘ 0, 1
(mod 4). It is clearly invariant under �1/2. We shall apply to F1

/2,n(z, s) from

(8.6) the projection operator pr+ : V
r

! V +
r

defined by pr+ = 2
3WU + 1

3 ,

where6

U (z) =
p
2
4

3X

⌫=0

 ( z+⌫4 ) and W  (z) = e
i⇡
4

Ä
z

|z|
ä� 1

2 (� 1
4z ).

We will need an expansion of each of the Fourier coe�cients of pr+F1
/2,m(z, s)

when m ⌘ 0, 1 (mod 4). These involve certain Kloosterman sums of weight
1/2 that we now recall. Let

Ä
c

a

ä
be the extended Kronecker symbol (see [48]),

and set

"
a

=

8
<

:
1 if a ⌘ 1 (mod 4),

i if a ⌘ 3 (mod 4).

Then for c 2 Z+ with c ⌘ 0 (mod 4) and m,n 2 Z,

K1/2(m,n; c) =
X

a(mod c)

Ä
c

a

ä
"
a

e
Ä
ma+na

c

ä

defines the weight 1/2 Kloosterman sum. Here a 2 Z satisfies aa ⌘ 1 (mod c).
It is convenient to define the modified Kloosterman sum

K+(m,n; c) = (1� i)K1/2(m,n; c)⇥

8
<

:
1 if c/4 is even,

2 otherwise.

It is easily checked that

(8.9) K+(m,n; c) = K+(n,m; c) = K+(n,m; c).

6The constant
p
2 that is not present in [16] is due to the factor y1/4 that comes from our

normalization.
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It follows7 from [16, Prop. 2, p. 959] that for Re(s) > 1 and d any nonzero
integer with d ⌘ 0, 1 (mod 4), we have

pr+F1
/2,d(z, s) =

2

3

�(s� sign d

4 )

4⇡|d|�(2s) M 1
4 sign d,s� 1

2
(4⇡|d|y)e(dx)(8.10)

+
X

n⌘0,1(4)

�+(n, d; s)W 1
4 signn,s� 1

2
(4⇡|n|y)e(nx),

where for n 6= 0, we have

�+(n, d; s) =
1

|nd| 12
�(s� signn

4 )�(s� sign d

4 )

3
p
⇡ 22�2s �(2s� 1

2)
(8.11)

·
X

c⌘0(4)
c>0

K+(n, d; c)

c

8
><

>:

I2s�1

⇣
4⇡
p

|nd|
c

⌘
if nd < 0,

J2s�1

⇣
4⇡
p

|nd|
c

⌘
if nd > 0.

As in [20, Cor. 3.6 p. 178] we have that �+(n, d; s) has a meromorphic contin-
uation to all s, and it is now straightforward to get from (8.10) and (8.7) the
following residue formula.

Proposition 4. For fixed discriminants d0, d, the function �+(d0, d; s)
has meromorphic continuation to Re(s) > 0 and

Res
s= 1

2+
ir
2
(2s� 1)�+(d0, d; s) =

X

 

b(d0)b(d),

where the sum is over an orthonormal basis of cusp forms  for V +
r

and b(d)
is the Fourier coe�cient of  as in (8.8).

9. Cycle integrals of Poincaré series

We next give an identity from which the extended Katok–Sarnak formula
will be derived. Our main source is [16], where other relevant references are
also given. As in the previous section, we will deal with general discriminants.
This causes no essential new di�culties and makes it easier to quote some of
our previous results. It also makes it clear how one could approach our main
theorem for nonfundamental discriminants. Thus we need to define genus
characters for arbitrary discriminants. We will use the language of binary
quadratic forms. As in [16], let Q

D

be the set of Q with discriminant D that
are positive definite when D < 0. For Q = [a, b, c] with discriminant D = d0d

7There is a typo in (2.19) of [16]. It should read P+
d (⌧, s) = 3

2pr
+(Pd(⌧, s)).
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where d is fundamental, we define

�(Q) =

8
<

:

Ä
d

m

ä
if (a, b, c, d) = 1 where Q represents m and (m, d) = 1,

0, if (a, b, c, d) > 1.

In case D > 0 is fundamental and Q is any binary quadratic form associated
to a 2 A as in Section 2, we have that �(Q) = �(A). When D > 0 and Q is
primitive and n 2 Z+, define C

nQ

= C
Q

as in [16] using (2.11).8 When D < 0,

let z
Q

= �b+
p
D

2a 2 H if Q = [a, b, c] and let !
Q

be the number of automorphs
of Q in �.

The following result together with Propositions 3 and 4, will be used to
derive the extended Katok-Sarnak formula. The first and second parts follow
directly from [16], but we include them here for the sake of completeness.
Recall that F

m

was defined in (8.1) and �+ in (8.11).

Proposition 5. Let m 6= 0 and Re(s) > 1. Suppose that d is a funda-

mental discriminant and that d0 is any discriminant such that D = d0d is not

a square. Then

6⇡
1
2 |D| 34 |m|

X

n|m
n>0

n� 3
2

Ä
d

n

ä
�+
Ä
d0, m

2
d

n

2 ; s2 + 1
4

ä

=
X

Q2�\QD

�(Q)

8
>><

>>:

2
p
⇡!�1

Q

F
m

(z
Q

, s) if d0d < 0,
R
CQ F

m

(z, s)y�1|dz| if d0, d > 0,
R
CQ i @

z

F
m

(z, s)dz if d0, d < 0.

We assume that d is a fundamental discriminant and that D = d0d. We
need an associated exponential sum, defined for c ⌘ 0 (mod 4) by

(9.1) S
m

(d0, d; c) =
X

b(mod c)

b

2⌘D (mod c)

�
Ä
[ c4 , b,

b

2�D

c

]
ä
e
Ä
2mb

c

ä
.

Clearly

S�m

(d0, d; c) = S
m

(d0, d; c) = S
m

(d0, d; c).

Lemma 3. For m 6= 0, d0d < 0 and Re(s) > 1, we have
X

Q2�\QD

�(Q)!�1
Q

F
m

(z
Q

, s) = 2�1/2|D|1/4
X

0<c⌘0(4)

Sm(d0,d;c)p
c

I
s�1/2(4⇡|m|

p
D

c

).

Proof. This follows directly from [16, Prop. 4 p. 970]. ⇤

Similarly we have for the second case the following.

8Actually, we use gQ = ��1
Q in [16].
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Lemma 4. For m 6= 0, d0, d > 0 with d0d not a square and Re(s) > 1, we
have

X

Q2�\QD

�(Q)
Z

CQ
F
m

(z, s)y�1|dz|

= 2s�1/2�(
s

2)
2

�(s)
D1/4

X

0<c⌘0(4)

Sm(d0,d;c)p
c

J
s�1/2(4⇡|m|

p
D

c

).

Proof. Again this follows directly from [16, Prop.4]. Note that
p
D

Q(z,1)dz =

y�1|dz| on C
Q

. ⇤

The third case requires some new computations.

Lemma 5. For m 6= 0, d0, d < 0 with d0d not a square and Re(s) > 1, we
have

X

Q2�\QD

�(Q)
Z

CQ
i@

z

F
m

(z, s)dz

= 2s�1/2�(
s+1
2 )2

�(s)
D1/4

X

0<c⌘0(4)

Sm(d0,d;c)p
c

J
s�1/2(4⇡|m|

p
D

c

).

Proof. Now (8.1) and a calculation using di↵erentiation formulas for the
Whittaker functions in [38, p.302] gives for that for Re(s) > 1,

�2i@
z

F
m

(z, s) =
X

�2�1\�
f2,m(�z, s)

d(�z)

dz
,

where

(9.2) f2,m(z) = �s|m|�1/2(2⇡y)�1 �(s)
�(2s)Msgn(m),s�1/2(4⇡|m|y)e(mx).

The proof proceeds in a very similar way as for Lemma 4 except that we
need the analogs of two technical lemmas in [16].

For a smooth function �(y) that satisfies �(y) ⌧ y1+" as y ! 0, let
f(⌧) = e(mRe ⌧)�(Im ⌧) and

P
m

(⌧,�) =
X

�2�1\�
f(�⌧)

d(�z)

dz
.

Then the following is the weight 2 analog of Lemma 7 in [16].

Lemma 6. Suppose that d0, d < 0 and that dd0 = D is not a square. Then
for all m 2 Z,

X

Q2�\QD

�(Q)
Z

CQ

P
m

(⌧,�)d⌧ =
X

0<c⌘0(4)

S
m

(d, d0; c)�
m

Ä
2
p
D

c

ä
,
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where

(9.3) �
m

(t) = it

Z
⇡

0
e(mt cos ✓)�(t sin ✓)ei✓d✓.

Taking �(t) = �s|m|�1/2(2⇡y)�1 �(s)
�(2s)Msgn(m),s�1/2(4⇡|m|y) in (9.3) re-

duces the proof of Lemma 5 to the the following lemma about special functions.

Lemma 7. For µ 2 C, t > 0 and Re(s) > 0,

(9.4)
Z
⇡

0
e±i(t cos ✓+µ✓)M

µ,s�1/2(2t sin ✓)
d✓

sin ✓
= G(s, µ)t1/2J

s�1/2(t),

where

G(s, µ) = e(±µ/4)(2⇡)3/2
2�s�(2s)

�( s+1+µ

2 )�( s+1�µ

2 )
.

Proof. See the appendix. ⇤

The following identity, which allows us to relate the cycle integrals to the
spectral coe�cients, is proved by a slight modification of the proof given by
Kohnen in [35, Prop. 5, p. 259] (see also [12], [32] and [53]).

Lemma 8. For positive c ⌘ 0 (mod 4), d,m 2 Z with d0 ⌘ 0, 1 (mod 4)
and d a fundamental discriminant, we have

S
m

(d0, d; c) =
X

n|(m,

c
4)

Ä
d

n

ä»
n

c

K+
Ä
d0, m

2
d

n

2 ; c

n

ä
.

Proceeding as in [16], Proposition 5 follows from Lemmas 4,5 and 8. ⇤

Remarks. For the purpose of proving the extended Katok–Sarnak for-
mula by the method of spectral residues we actually have many choices of
Poincaré series to use since we can add a holomorphic form without changing
the residues. Thus we could employ the Poincaré series originally used by Sel-
berg [47] (see also [22]). This might make some of the calculations somewhat
simpler, but that would not give an exact formula as we obtain in Proposition 5.
One advantage of an exact formula is that we can also use it to show that cycle
integrals of modular functions give weight 1/2 weak Maass forms. This was
done in [16] for the first two cases of Proposition 5. The last case can also be
applied in this way. It is also possible to prove Theorem 3 by these methods.

10. Proof of Theorem 4

Recall the plus space V +
r

of Maass cusp forms of weight 1/2 defined in
Section 8 above. It is shown in [34] that V +

r

has an orthonormal basis B
r

= { }
consisting of eigenfunction of all Hecke operators T

p

2 where p > 2 is prime.
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Fix such a basis B
r

. Given  2 B
r

with Fourier expansion

(10.1)  (z) =
X

n 6=0

b(n)W 1
4 sgnn,

ir
2
(4⇡|n|y)e(nx)

and a fundamental discriminant d with b(d) 6= 0, the Hecke relation T
p

2 =
a
 

(p) implies that

L
d

(s+ 1
2)

X

n�1

b(dn2)n�s+1 = b(d)
Y

p

(1� a
 

(p)p�s + p�2s)�1.

Define the numbers a
 

(n) via

(10.2)
Y

p

(1� a
 

(p)p�s + p�2s)�1 =
X

n�1

a
 

(n)n�s

and let

(10.3) Shim (z) = y1/2
X

n 6=0

2a
 

(|n|)K
ir

(2⇡|n|y)e(nx).

Note that for some d, we must have that b(d) 6= 0 so that this is always defined.
It is convenient to define

T (',�) =
1

h','i
X

Q2�\QD

�(Q)

8
>><

>>:

2
p
⇡!�1

Q

'(z
Q

) if d0d < 0,
R
CQ '(z)y

�1|dz| if d0, d > 0,
R
CQ i @

z

'(z)dz if d0, d < 0.

Theorem 4 follows easily from the next proposition together with Lemma 1.

Proposition 6. For any even Hecke-Maass cusp form ' for � with

Laplace eigenvalue 1
2 + r2, there is a unique  2 B

r

with Fourier expansion

given in (10.1) so that ' = Shim and such that for d a fundamental discrim-

inant and d0 any discriminant such that D = d0d is not a square, we have

T (',�) = 12⇡
1
2D

3
4 b(d0)b(d),

where � is the genus character associated to the factorization D = d0d.

Proof. Let m > 0, and suppose that D = d0d > 1 where d is fundamental.
First we will show that

(10.4) 12⇡
1
2D

3
4

X

 2Br

b(d0)b(d)a
 

(m) =
X

'

a(m)T (',�),

where ' is summed over all Hecke–Maass cusp forms with Laplace eigenvalue
1
2 + r2. We have from Propositions 3 and 5 that for every m 6= 0,

6⇡
1
2D

3
4 |m|

X

n|m
n>0

n� 3
2

Ä
d

n

ä
Res

s= 1
2+ir

(2s� 1)�+
Ä
d0, m

2
d

n

2 ; s2 + 1
4

ä
(10.5)

=
X

'

2a(m)T (',�).
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Observe that

Res
s= 1

2+ir

(2s� 1)�+
Ä
d0, d; s2 + 1

4

ä
= 2ir lim

s!1
2+ir

Ä
s� (12 + ir)

ä
�+
Ä
d0, d; s2 + 1

4

ä

which, setting s = 2w � 1
2 , = 4ir lim

w!1
2+

ir

2

Ä
w � (12 + ir

2 )
ä
�+ �

d0, d;w
�

= 4Res
s=

1
2+

ir

2
(2s� 1)�+ �

d0, d; s
�
.

Therefore, Proposition 4 gives

Res
s= 1

2+ir

(2s� 1)�+
Ä
d0, m

2
d

n

2 ; s2 + 1
4

ä
= 4

X

 

b(d0)b(m
2
d

n

2 ),

where the sum is over an orthonormal basis of cusp forms { } for V +
r

and b(d)
is the Fourier coe�cient of  as in (8.8). By (10.5) we get

24⇡
1
2D

3
4m

X

 2Br

b(d0)
X

n|m
n>0

n� 3
2

Ä
d

n

ä
b
Ä
m

2
d

n

2

ä
=

X

'

2a(m)T (',�),

and we obtain (10.4) by using the Hecke relation

m
X

n|m
n>0

n� 3
2

Ä
d

n

ä
b
Ä
m

2
d

n

2

ä
= a

 

(m)b(d).

It follows from (10.4) and (10.3) that

(10.6) 12⇡1/2D3/4
X

 

b(d0)b(d)Shim( ) =
X

'

T (',�)'.

This identity is valid for all discriminants d, d0 where d is fundamental, and dd0

is not a square. As in the proof of Theorem 1 on page 129 of Biró in [3], one
can conclude that Shim( ) is a weight 0 Maass form with eigenvalue 1

2 + r2

and by (10.2) it is some '. This leads to

12⇡1/2D3/4
X

'

X

Shim( )='

b(d0)b(d)' =
X

'

T (',�)'.

The linear independence of the Maass forms ' now gives the following version
of the proposition:

12⇡1/2D3/4
X

Shim( )='

b(d0)b(d) = T (',�).

Finally, it is known (see [1, Thm. 1.2]) that  7! ' = Shim( ) gives a bijection
between B

r

and the even Hecke-Maass cusp forms ' with Laplace eigenvalue
1
2 + r2, thus finishing the proof of Proposition 6. ⇤
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Remarks. Some of our arguments in the proof of Theorem 4 are quite
similar in spirit to those of Biró in [3], who applies the Kuznetsov formula to
prove a generalization of the Katok-Sarnak formula to general levels, but still
for only positive discriminants d.

The method employed by Katok-Sarnak to prove their formula is based
on a theta correspondence. This idea, which is a refinement of that introduced
by Maass [37], was first used by Siegel to study indefinite quadratic forms. It
would be interesting to apply this method to give our extension.

Appendix A. An integral

In this appendix we give a proof of the following integral formula, which
was given in Lemma 7. For µ 2 C, t > 0 and Re(s) > 0,

(A.1)
Z
⇡

0
e±i(t cos ✓+µ✓)M

µ,s�1/2(2t sin ✓)
d✓

sin ✓
= G(s, µ)t1/2J

s�1/2(t),

where

G(s, µ) = e(±µ/4)(2⇡)3/2
2�s�(2s)

�( s+1+µ

2 )�( s+1�µ

2 )
.

Proof. To prove the lemma we will restrict to the case when the signs in
(A.1) are positive since the formula with negative signs follows by complex
conjugation. To prove the lemma we will prove that both sides of (A.1) satisfy
the same order di↵erential equation and that the Taylor series coe�cients of
both sides agree up to order 2.

Let � = s� 1/2 and g(t) = t1/2J
�

(t). A simple computation shows that

t3/2
î
g00(t) + (1 + (1/4� �2)/t2)g(t)

ó
= t2J 00

�

(t) + tJ 0
�

(t) + (t2 � �2)J
�

(t) = 0.

Hence we want to show that the left-hand side of (A.1) also satisfies

f 00(t) + (1 + (1/4� �2)/t2)f(t) = 0.

Factoring out the t-dependent part we need to compute

h00(t) +
Ç
1 +

1/4� �2

t2

å
h(t)

for h(t) = ei(t cos ✓)M
µ,�

(2t sin ✓).
The fact that the Whittaker function M

µ,�

satisfies the di↵erential equa-
tion

M 00
µ,�

(2t sin ✓) =

Ç
1

4
� µ

2t sin ✓
� 1/4� �2

4t2 sin2 ✓

å
M

µ,�

(2t sin ✓)

and

h00(t) = [� cos2 ✓M
µ,�

(2t sin ✓) + 4 sin2 ✓M 00
µ,�

(2t sin ✓)]ei(t cos ✓)

+ 4i cos ✓ sin ✓M 0
µ,�

(2t sin ✓)ei(t cos ✓)
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leads to

h00(t) +
⇣
1� �

2�1/4
t

2

⌘
h(t)

=
Ä
2 sin2 ✓ � 2µ sin ✓

t

ä
h(t) + 2i sin 2✓e±i(t cos ✓)M 0

µ,�

(2t sin ✓).

Using this last equation gives for the integral in (A.1)
Ç

d2

dt2
+

Ç
1 +

1/4� �2

t2

åå Z
⇡

0
ei(t cos ✓+µ✓)M

µ,�

(2t sin ✓)
d✓

sin ✓

=
Z
⇡

0

Å
2 sin ✓ � 2µ

t

ã
h(t)eiµ✓d✓ + 2i

Z
⇡

0
2 cos ✓ei(t cos ✓)+iµ✓M 0

µ,�

(2t sin ✓)d✓.

Now we use d

d✓

M
µ,�

(2t sin ✓) = M 0
µ,�

(2t sin ✓)2t cos ✓ and integration by parts
to get

2i

⇡Z

0

ei(t cos ✓+µ✓)M 0
µ,�

(2t sin ✓)2 cos ✓d✓

= �2i

t

⇡Z

0

d

d✓

Ä
ei(t cos ✓+µ✓)

ä
M

µ,�

(2t sin ✓)d✓

as
î
ei(t cos ✓+µ✓)M

µ,�

(2t sin ✓)
ó
⇡

0
= 0. Finally, since

�2i

t

⇡Z

0

d

d✓

Ä
ei(t cos ✓+µ✓)

ä
M

µ,�

(2t sin ✓)d✓ =
Z
⇡

0

Å
2µ

t
� 2 sin ✓

ã
h(t)eiµ✓d✓,

we haveÇ
d2

dt2
+

Ç
1 +

1/4� �2

t2

åå Z
⇡

0
ei(t cos ✓+µ✓)M

µ,�

(2t sin ✓)
d✓

sin ✓
= 0.

This proves that both sides of (A.1) satisfy the same di↵erential equation.
To prove the lemma we still need to check the Taylor coe�cients. To

this end we use the Taylor expansions of the exponential function and of the
Whittaker function, namely,

M
µ,s�1/2(x) = e�x/2xs

1X

n=0

(s� µ)
n

(2s)
n

xn

n!
.

Then
Z
⇡

0
ei(t cos ✓+µ✓)M

µ,s�1/2(2t sin ✓)
d✓

sin ✓

=
1X

n=0

1X

m=0

(s� µ)
n

(2s)
n

n!
(2t)n+s

(it)m

m!

Z
⇡

0
ei(m+µ)✓(sin ✓)n+s�1d✓.

Using the integral formula (see [23, p. 511, 3.892(1)]),
Z
⇡

0
ei�x sin⌫�1 xdx =

⇡ei⇡�/2�(⌫)

�(⌫+�+1
2 )�(⌫��+1

2 )
,
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and (a)
n

= �(a+n)
�(a) gives

Z
⇡

0
ei(t cos ✓+µ✓)M

µ,s�1/2(2t sin ✓)
d✓

sin ✓
(A.2)

= (2⇡)e(µ/4)
�(2s)

�(s� µ)

⇥
1X

`=0

X

m+n=`

(�1)m�(s� µ+ n)�(s+ n)

m!n!�(2s+ n)�(n+s+m+µ+1
2 )�(n+s�m�µ+1

2 )
ts+`.

On the other hand, using the Taylor expansion

t1/2J
s�1/2(t) =

1X

r=0

(�1)r(t/2)s+2r

r!�(s+ 1/2 + r)
.

gives for the right-hand side of (A.1)
(A.3)

G(s, µ)t1/2J
s�1/2(t) =

(⇡)3/2e(µ/4)22�2s�(2s)

�( s+1+µ

2 )�( s+1�µ

2 )

1X

r=0

(�1)r2�2r

r!�(s+ 1/2 + r)
ts+2r

A straightforward calculation shows that the coe�cients of ts, ts+1 and
ts+2 in (A.2) and (A.3) match, which is more than what is needed to finish the
proof of the lemma. ⇤
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