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Rigid inner forms of real and p-adic groups
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Abstract

We define a new cohomology set H'(u — W,Z — G) for an affine
algebraic group G and a finite central subgroup Z, both defined over a
local field of characteristic zero, which is an enlargement of the usual first
Galois cohomology set of G. We show how this set can be used to give
a precise conjectural description of the internal structure and endoscopic
transfer of tempered L-packets for arbitrary connected reductive groups
that extends the well-known conjectural description for quasi-split groups.
In the case of real groups, we show that this description is correct using
Shelstad’s work.
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1. Introduction

The principal goal of this paper is to give a precise conjectural description
of the internal structure of tempered L-packets and the character identities
satisfied by them for an arbitrary connected reductive group defined over a
local field F' of characteristic zero, and then to prove that this description is
correct when F' = R. For a quasi-split group G, such a description has been
available for some time. Indeed, let I', Wg, and W}, be the absolute Galois,
Weil, and Weil-Deligne groups of F, let G be the connected complex Lang-
lands dual group of G, and let G = G x W be the Weil-form of its L-group.
Given a tempered Langlands parameter ¢ : Wi — L@, one expects the exis-
tence of a finite set Hg of irreducible admissible tempered representations of
the topological group G(F'). These finite sets, called L-packets, are supposed
to satisfy a number of properties, some of which are listed in [Bor79, §10].
Among the most important properties are their internal parametrization and
the endoscopic character identities. These tie the L-packets to the stabiliza-
tion of the spectral side of the Arthur-Selberg trace formula and lead to the
multiplicity formula for discrete automorphic representations. The conjectural
internal parametrization is the following. First, Shahidi’s tempered L-packet
conjecture [Sha90, §9] states that for a fixed Whittaker datum t of G, the
set Hg should contain a unique tv-generic representation. Second, if we let S,

denote the centralizer in G of the image of ¢, it is expected that there exists
an injection (bijection if F' is p-adic)

(1.1) o IS — Trr(mo (S, /Z(G)Y)),

where the right-hand side is the set of isomorphism classes of irreducible rep-
resentations of the finite group mo(S,/Z (G)T). This map should however not
be arbitrary. It should send the unique tv-generic constituent of Hg to the
trivial representation and should, moreover, provide the correct relationship
between the Harish-Chandra characters of the constituents of HS and the char-
acters of the representations of 7y (S, /2 (G)T) so that the endoscopic character
identities hold. This conjecture has been established for F' = R and general
quasi-split connected reductive groups by Langlands and Shelstad [Lan89],
[She79c|, [She79al, [She81], [She82|, [She08b] and for a finite extension F/Q,
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and quasi-split symplectic and orthogonal groups by Arthur [Art13]. This in-
cludes the proof of Shahidi’s conjecture. In the real case it is is based on
the work of Kostant [Kos78] and Vogan [Vog78], and in its strong form it is
completed in [She08b]. In the p-adic case, Konno [Kon02] proved the exis-
tence of generic members of tempered L-packets of classical groups conditional
on their twisted endoscopic transfer to GL,, which was then established for
quasi-split symplectic and orthogonal groups in [Art13]. Uniqueness was ini-
tially obtained in the course of proving the local Gan-Gross-Prasad conjecture
by Waldspurger, Beuzart-Plessis, and Gan-Ichino. Recently a short and simple
proof was announced by Atobe [Atol5].

Important for both the statement and the proof of these conjectures is
the fact that the same datum that is used to fix the bijection (1.1), namely,
the Whittaker datum, also leads to a normalization of the endoscopic transfer
factors that enter the formulation of the character identities.

The situation for groups G’ that are not quasi-split is more subtle. Let
G be the (unique up to isomorphism) quasi-split inner form of G’. If we fix
an isomorphism 9 : G — G’ defined over F such that 1 ~'o(¢) is an inner
automorphism for all ¢ € I, then ¥ can be used to identify the L-groups of
G and G'. (Note that this identification depends on the isomorphism class of
¥, and not just on G and G’.) The parameter ¢ now becomes a parameter for
G’, and we may ask for an analog of (1.1). Such an analog has to depend not
just on G’, but also on 9. The tuple (G', 1)) is called an inner twist of G and
the set of isomorphisms of inner twists is parametrized by H'(I',G/Z(G)). Tt
was shown by Kottwitz [Kot86] that there is a canonical map from this set to
the Pontryagin dual of the finite abelian group Z (é\sc)r — the I'-fixed points
of the center of the simply connected cover of the derived subgroup of G. One
can now try to formulate a conjectural injection similar to (1.1) in terms of
a variant of S, involving Gise, making a reference to the character of Z (@SC)F
to which 1) corresponds. However, Vogan [Vog93] and Arthur [Art06] observe
that such an attempt cannot be successful. Arthur’s point of departure is the
fact that on a nonquasi-split group G’ the endoscopic transfer factors have no
natural normalization, and this makes it impossible to state the endoscopic
character identities. Since those are intimately tied with the internal structure
of L-packets, one also cannot hope to parametrize that structure. He suggests
[Art06, §3] that to resolve this problem, one can conjecture the existence of
two sets of functions — the spectral transfer factors A(p, 7) and the mediating
functions p(A, 3). These functions take away the problem arising from the lack
of a natural normalization of the endoscopic transfer factors by incorporating
all possible normalizations. Shelstad [She08b] has been able to show that such
functions indeed exist when the ground field is R. The existence of these
functions for p-adic fields has thus far remained unknown. This was a serious
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problem that prevented the establishment of the endoscopic classification of
representations of nonquasi-split symplectic and orthogonal groups. We refer
the reader to [Art13, Ch. 9] for a discussion.

Studying this problem from a different perspective, Vogan [Vog93| points
out that the object (G’,) has too many automorphisms, and these automor-
phisms can permute Hg/ without being detected by “G. This behavior is not
at all pathological and already occurs for groups as simple as SLo(R). This
indicates that the datum (G’, ) is by itself not sufficient to specify an injec-
tion as in (1.1) and that one needs to further enrich it by additional data.
Vogan then proposes one such enrichment, which consists of adding to (G', )
an element z € Z1(T', G) with the property that 1 ~lo(¢) = Ad(z(c)). The
triples (G, 1, z) are called pure inner twists and their isomorphism classes are
parametrized by the set H'(I', &), which according to Kottwitz’s result is re-
lated to the Pontryagin dual of 7y(Z (@)F) The work of Adams, Barbasch,
Kottwitz, Vogan, and others suggests the following variant of (1.1): There
should exist a finite set IIP" of isomorphism classes of quadruples (G 4, z,7),
where (G’ 1), z) is a pure inner twist and 7’ is an irreducible tempered repre-
sentation of G'(F), together with a commutative diagram

(1.2) IPe — > Trr(mo(S,,))

| |

HY(T,G) — mo(Z(G)")*

in which the bottom arrow is Kottwitz’s map, the right arrow sends an irre-
ducible representation to its central character, the left arrow sends a quadruple
(G', ¢, z,7") to the class of z, and the top arrow (the only conjectural arrow
in the diagram) is a bijection that identifies the trivial representation on the
right to the quadruple (G, id, 1, 7) on the left, where 7 is the unique w-generic
constituent of Hg, and furthermore provides the correct virtual characters nec-
essary for the endoscopic character identities. Note that in this formulation
the top arrow is expected to be bijective both in the real and in the p-adic case,
making this formulation more uniform than that of (1.1). The diagram (1.2)
was constructed by DeBacker and Reeder [DR09] for any unramified p-adic
group G and a class of depth-zero supercuspidal Langlands parameters ¢. It
was then shown by the author [Kalll] that this construction satisfies the ex-
pected endoscopic character identities. Just as in the quasi-split case, it was
important for both the statement and the proof of the conjecture that given a
pure inner twist (1, z) : G — G’, the data v and z lead to a natural normaliza-
tion Alto, 2] of the endoscopic transfer factors. The relationship of this point
of view with that of Arthur is straightforward: The spectral transfer factor is
given by the expression A(yp,uy(p)) = tr(p(s)), where s € S, is part of the
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endoscopic datum to which Afw, z] is associated, and the mediating function
p(A, §) is specified by p(Alrv, 2], §) = 1.

While pure inner twists seem to very elegantly resolve the problem, they
have an essential drawback: The map H'(I',G) — HY(I',G/Z(G)) is usually
not surjective, which means that not every inner twist ¢» : G — G’ can be
equipped with an element z. The worst case is when F' is p-adic and G is sim-
ply-connected. A theorem of Kneser [Kne65] states that then HY(T',G) = {1}
and the diagram (1.2) collapses to the quasi-split case (1.1). Over the real num-
bers, the notion of a strong real form was introduced in the work of Adams-
Barbasch-Vogan, which resolves this problem and builds one of the founda-
tions of the treatment of the local Langlands correspondence for real groups in
[ABV92]. Over p-adic fields however, the problem of finding a suitable analog
of strong real forms has thus far remained open [Vog93, Prob. 9.3].

One attempt to alleviate this problem can be made using Kottwitz’s the-
ory of isocrystals with additional structure [Kot85], [Kot97]. In this theory a
different cohomology set for G is studied — if we let L be the completion of the
maximal unramified extension of F' and L an algebraic closure of L, Kottwitz
studies the set H!(Wg,G(L)) and shows that the elements of a certain subset
B(G)pas of this cohomology set give inner forms of G and have an interpreta-
tion in terms of G similar to that of HY(T,G). Using this theory, Kottwitz has
suggested a diagram similar to (1.2), and a precise formulation of the result-
ing conjecture is presented in [Kall4, §2.4]. It was then shown by the author
[Kall4] that the work [DR09] of DeBacker and Reeder extends to this setting
and that the endoscopic character identities hold. Furthermore, the same is
true [Kallba] for a different class of supercuspidal Langlands parameters, for
which the corresponding L-packets consist of epipelagic representations [RY14].
The cohomology set B(G)pas has a map to HY(T, G/Z(G)) that is surjective
when the center of G is connected. In this case, the set B(G)pas resolves the
problem completely. The opposite case is that of a simply connected group
G, where again one has B(G)p,s = {1}. One also encounters other problems
when using B(G)pas to study local L-packets. For one, the relationship be-
tween B(G)pas and the strong real forms of [ABV92] is unclear. Furthermore,
we do not see a way to relate in this language local L-packets and the stable
Arthur-Selberg trace formula when G fails the Hasse principle, because this
would entail passing from G to its simply connected cover Ggc, a step that is
problematic due to B(Ggc)pas = {1}-

In the present paper we introduce a new cohomology set for affine algebraic
groups by replacing the cohomology of the Galois group with the cohomology of
a certain Galois gerb [LR87] that is canonically associated to any local field of
characteristic zero. This new cohomology set resolves the problems described
above pertaining to the statement of the local Langlands correspondence and
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endoscopic character identities for p-adic groups. It provides a solution to
[Vog93, Prob. 9.3]. It also provides explicit formulas for Arthur’s conjectural
spectral transfer factors and mediating functions. In fact, since our goal is
not just to give a good description of L-packets for p-adic groups, but to
also make sure that this description interfaces well with the stabilized Arthur-
Selberg trace formula so as to be suitable for global applications, we provide
a construction that works uniformly for real and p-adic groups. The interplay
between this construction and the trace formula is studied in [Kall5b], where
it is shown that the local normalizations established here fit perfectly with the
stabilized trace formula. The new cohomology set is associated to any affine
algebraic group G and any finite central subgroup Z C G, both defined over
a local field F' of characteristic zero, and is denoted by H'(u — W, Z — G).
For applications to the local Langlands correspondence, G will be connected
and reductive, and Z will be a finite central subgroup, which can often times
be taken to be the center of the derived subgroup of G. The cohomology set
H'(u — W, Z — G) has the following properties: There exist an injective map
HY(T,G) = H'(u — W, Z — G) and a surjective map H'(u — W, Z — G) —
HY(T',G/Z). Both of these maps are functorial in GG. We show that, when G
is connected and reductive and Z contains the center of the derived subgroup
of G, the induced map H'(u — W,Z — G) — HYT',G/Z(G)) is surjective,
and thus every inner twist ¢ : G — G’ can be equipped with an element of
Hl(u = W,Z — G). The set H'(u — W, Z — G) is efficient in the following
sense: It is always finite, and when G is split and F' is p-adic, the map

H'(u = W, Z(Gyer) = G) = HY,G/Z(G))

is bijective, which means that for every inner twist v : G — G’, there is a
unique element of H'(u — W, Z(Gger) — G) belonging to that twist. A similar
efficiency holds over the real numbers, but it is slightly more complicated
to state. For a general connected reductive G and finite central Z, the set
H'(u — W, Z — G) admits a functorial map to a certain finite abelian group
that is constructed from “G. This analog of the result of Kottwitz discussed
above allows us to construct a normalization of the endoscopic transfer factors
from an element of H'(u — W, Z — G), and this in turn allows us to state a
version of (1.2) and of the endoscopic character identities for all inner forms of
a given quasi-split connected reductive group G, and thus for any connected
reductive group.

To elaborate on the last sentence, let G be a connected reductive group
defined and quasi-split over F', and let Z C G be a finite central subgroup
ieﬁned over F. Set G = G/Z. The isogeny G — G d@lizes to an isogeny
G — G of the complex Langlands dual groups. We let Z(G)™" be the preimage
under this isogeny of the diagonalizable group Z (é\)F . Then we show that the
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set H'(u — W, Z — G) is equipped with a functorial map to the Pontryagin

dual of m(Z(G)*). This map is a bijection when F is p-adic or when G
is a torus, and is compatible with Kottwitz’s map for any F and G. We
define a rigid inner twist of G' to be an inner twist ¢ : G — G’ equipped
with an element z € Z'(u — W, Z — G) (for some Z) that lifts the element
v to(y) € ZYT,G/Z(Q)). ‘Given a tempered Langlands parameter ¢, we let
S/ denote the preimage in G of S,. When F = R, the finite group mo(S}) is
always abelian but may fail to be a 2-group. When F' is p-adic, WO(S;“ ) can
be nonabelian — this already happens for SLo, and we discuss an example
in Section 5.4. We expect to have a finite set II, of isomorphism classes of
quadruples (G', 1, z, ') and a commutative diagram

(1.3) I, o Irr(mo(S1))

|

H'(u =W, Z = G)

T(Z(G)*)*

with the same properties as (1.2). In fact, each term in diagram (1.2) is a
subset of the corresponding term here, and we expect that this diagram is an
enlargement of (1.2) in the obvious sense. Furthermore, we show that the data
 and z lead to a normalization A[w, z| for the endoscopic transfer factor and
this allows us to state the conjectural endoscopic character identities. In order
to state these identities, we must work with a slight refinement of the notion
of endoscopic datum. This refinement resolves another problem observed by
Arthur in [Art06] that pertains to the invariance of the transfer factor under
automorphisms of endoscopic data. We refer the reader to Section 5.4 for
more details. The relationship between our statement of the local Langlands
conjecture and the endoscopic character identities and that of Arthur is again
straightforward. When G is simply connected, the conjectural spectral transfer
factor of Arthur is given by the expression A(yp, tw(p)) = tr(p(8)), where 5 is
part of the refined endoscopic datum to which Afw, z] is associated, and the
mediating function p(A, ) is specified by p(Aw,z],5) = 1. When G is not
simply connected, the situation is almost as simple but requires a bit more
notation. We refer the reader to [Kall5b, §4.6]. For any G, our results provide
a construction of Arthur’s mediating functions. As a result, these objects are
now known for p-adic groups.

Given the mature state of the local Langlands correspondence and en-
doscopy for real groups, two natural questions arise: If G is a real reductive
group, how does our set H'(u — W, Z — G) relate to the set of strong real
forms of G constructed in [ABV92], and how does our diagram (1.3) and our
statement of endoscopic character identities relate to the work of Langlands
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and Shelstad? In this paper we answer both questions completely. With re-
gards to the first question, we were pleasantly surprised to find out that, while
the notion of strong real forms and the notion of rigid inner twists (for real
groups) are defined in very different ways, they are in fact equivalent. By
this we mean that the category of strong real forms of a given real group
is equivalent to the category of rigid inner twists. We alert the reader that
[Vog93] introduces the similar sounding notion of “rigid rational form,” of
which “strong real form” is a special case. Despite the similarity in names, our
“rigid inner twists” in the case of real groups are equivalent to “strong real
forms” and not to “rigid rational forms.” Regarding the second question, it
turns out that the constructions and arguments of Langlands and Shelstad can
be put into our framework without much effort, after which their work implies
the existence of diagram (1.3) for any tempered Langlands parameter, as well
as the validity of our statement of endoscopic character identities. A further
natural question would be to compare the construction of diagram (1.3) given
in this paper, which is based on the cohomology sets H'(u — W,Z — G),
with the analogous construction in [ABV92], which is based on the geometry
of the dual group. We leave this more subtle question for a separate paper.
There is by now substantial evidence that the formulation of the refined lo-
cal Langlands correspondence presented in this paper is the correct one. First,
it is uniform for real and p-adic groups and is true for real groups. Second,
we show in [Kall5b] that this formulation fits seamlessly into the spectral side
of the stabilized Arthur-Selberg trace formula. In particular, the canonical
adelic transfer factor admits a decomposition as the product of the normalized
local transfer factors introduced here, and the normalized local bijections of
diagram (1.3) fit together to a canonical pairing between the adelic L-packet
and its global S-group, which in turn leads to the multiplicity formula for
discrete automorphic representations of arbitrary connected reductive groups.
With these facts at hand, a proof of our formulation of the local Langlands
conjecture for classical groups is well within reach by the methods of [Art13].
Third, it is shown in [Kall5b, §4.6] that our formulation implies, and is in fact
equivalent to, a stronger version of Arthur’s local conjecture [Art06, §3]. The
strengthening comes from the fact that the results of this paper give explicit
formulas for Arthur’s conjectural spectral transfer factors and mediating func-
tions. Fourth, it is shown in [Kallbc, §84, 6] that for groups for which the
formulation of the local conjecture based on B(G)pas, as presented in [Kall4,
§2.4], is available, its validity is equivalent to the validity of the formulation pre-
sented here. In particular, this implies that the results of [Kall4] and [Kall5a]
provide a proof of the validity of our formulation in the special case of depth-
zero and epipelagic supercuspidal representations. And fifth, it is shown in
[Kall5c, §85, 6] that the validity of our formulation for all connected reductive
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groups is equivalent to the validity of the formulation of [Kall4, §2.4] for all
connected reductive groups with connected center. The latter formulation, be-
sides having been proved in special cases in [Kall4] and [Kall5a], is supported
by a conjecture of Kottwitz that describes the cohomology of Rapoport-Zink
spaces. Fargues has recently announced a conjectural program that aims at a
resolution of Kottwitz’s conjecture and at a proof of the formulation of [Kall4,
§2.4] for all connected reductive p-adic groups with connected center.

We will now describe the contents of this paper and sketch the construc-

tion of the set H'(u — W,Z — G) and its map to the dual of m(Z(G)™).
The construction and study of H*(u — W, Z — G) is the main topic of Sec-
tion 3. It is based on Kottwitz’s notion of algebraic 1-cocycles introduced in
[Kot97, §8]. If W is a topological group, which is an extension of I' by an
algebraic group X (a Galois gerb in the terminology of [LR87]), then Kottwitz
defines an algebraic 1-cocycle of W into the F-points of an algebraic group Y
to be a continuous 1-cocycle W — Y (F) whose restriction to X (F) is given
by an algebraic homomorphism X — Y. In Section 3.1 we construct a certain
pro-finite multiplicative algebraic group u as a limit of certain finite multi-
plicative algebraic groups ug/r,. We then show that H YT, u) vanishes and
H?(T,u) is topologically cyclic. This implies that there is an (up to isomor-
phism) canonical Galois gerb W bound by u and the only automorphisms it
has come from conjugation by elements of u. In other words, it is as canonical
as the relative Weil group of a finite Galois extension of F'. In Section 3.2
we then define H'(u — W,Z — G) to be the set of cohomology classes of
those algebraic 1-cocycles of W valued in G whose restriction to v has im-
age contained in Z. An important feature of the group w is that for any
finite multiplicative algebraic group Z defined over F', there is a natural sur-
jection Hom(u, Z)'' — H?(I', Z). This eventually leads to the surjectivity of
H'(u - W,Z - G) - HYT',G/Z). The latter, together with the injective
map HY(T,G) — H'(u — W, Z — G), the finiteness of H'(u — W, Z — Q),
its functoriality in Z — G, an inflation-restriction sequence, as well as fur-
ther properties, are discussed in Section 3.3. These properties make the set
H'(u — W, Z — G) easily computable by reducing the computation to that of
classical Galois cohomology groups. In Section 3.4 we construct a quotient of
H'(u — W, Z — G) by a certain equivalence relation. This quotient is called
H;b(u — W,Z — @) and is analogous to the first Galois-cohomology set of
the crossed module Gy — G. When the ground field F' is p-adic, the equiva-
lence relation is trivial and we obtain nothing new, but over the real numbers,
HY (u — W, Z — G) is usually a proper quotient of H!(u — W, Z — G).
Section 4 is concerned with the construction of the functorial map from
HY(u — W,Z — G) to the Pontryagin dual of mo(Z(G)") in the case where
G is a connected reductive group defined over F. This map is among the
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most important properties of the cohomology set H'(u — W,Z — G) and
is crucial for its application to the local Langlands conjectures. Instead of
using the language of the dual group, in this section we construct a finite
abelian group Y 1 tor(Z — G) from the root datum of G that will later turn

out to admit a functorial map to mo(Z(G)")* that is bijective when F is
p-adic or when G is a torus and injective in general. The abelian group
Y4 tor(Z — G) is constructed in Section 4.1. It is functorial in Z — G. In
Section 4.2 we show that there can exist at most one functorial isomorphism
Yitor(Z = G) = HY (u — W, Z — G) subject to two conditions, one of them
being that it coincides with the Tate-Nakayama isomorphism when Z = {1}
and G is a torus. The task then becomes to construct this isomorphism. For
this, we introduce in Section 4.3 a device similar to the cup-product between
Tate-cochains of positive and negative degrees, which we call an unbalanced
cup-product. In Section 4.4 we review some arithmetic material from [Lan83]
concerning specific representatives of fundamental classes of finite Galois ex-
tensions. With these preparations in place we can give an explicit realization of
the Galois gerb W in Section 4.5 and then use it to construct the isomorphism
Yitor(Z = G) = HY (u— W,Z — G), first when G is a torus in Section 4.6,
and then when G is a connected reductive group in Section 4.7.

Section 5 describes how the set H'(u — W, Z — G) can be applied to the
study of the local Langlands correspondence and endoscopy. We introduce the
concept of rigid inner twists in Section 5.1 and show how for a given maximal
torus S C G in a connected reductive group, the set H'(u — W,Z — S)
parametrizes the rational classes inside the stable class of any given strongly-
regular element of S(F'). This leads to a cohomological invariant inv(d, §’) that
will allow us to normalize the transfer factors later. This discussion follows
the ideas already used in [Kalll, §2.1], but now adapted to the set H'(u —
W,Z — G). In Section 5.2 we establish the equivalence between the notion
of rigid inner twists of a given real reductive group and that of strong real
forms of it. In Section 5.3 we establish the functorial injective map from the
abelian group Y (or(Z — G) defined in Section 4.1 to the Pontryagin dual
of mo(Z(G)*). This map can be phrased (Corollary 5.4) as a pairing between
Hl(u — W,Z — G) and 7o(Z(G) "), and, besides inv (6, '), this pairing is the
second ingredient in the normalization of the transfer factor. We then proceed
to define the notions of a refined endoscopic datum and of an isomorphism
between such data. This notion is the third ingredient in the normalization of
the transfer factor, which we then are able to establish. We also show that this
normalization is invariant under all automorphisms of the refined endoscopic
datum, thereby resolving the issue noted by Arthur [Art06, p. 208] that an
absolute transfer factor for a nonquasi-split group need not be invariant under
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all automorphisms of a (usual) endoscopic datum. In Section 5.4 we spell out
the conjectural diagram (1.3) and the statements of the conjectural endoscopic
character identities. In Section 5.6 we turn to the setting of real groups and
show that the work of Langlands and Shelstad implies that the conjectures
stated in Section 5.4 hold for real groups. In Section 5.7 we give a short
overview of the applications of our local results to the study of automorphic
forms that are developed in [Kall5b].

The author is grateful to Robert Kottwitz for introducing him to this
problem and for sharing his intuition that algebraic cocycles of Galois gerbs
could hold the key to its resolution. He further thanks Jeffrey Adams, Stephen
DeBacker, Diana Shelstad, and Olivier Taibi for their helpful comments, sug-
gestions, and corrections. The support of the National Science Foundation via
grant DMS-161489 is gratefully acknowledged.

2. Some notation

Let F be a local field of characteristic zero. Fix an algebraic closure F
of F, and write I or I'r for the Galois group of F//F and W for the Weil
group of F'/F. Finite extensions of I will be taken to be subfields of F'. For a
fixed finite Galois extension E/F we will write I'g /r and W p for the relative
Galois and Weil groups and Ny, for the norm endomorphism of any I'g/p-
module. We will reserve the letter W for a different purpose. Given o € I" and
x € F, we will denote the image of 2 under o by oz.

We will use the symbol N* to denote the set of positive integers with the
partial order given by divisibility. By a co-final sequence in N* we mean a
totally ordered subset {n;} C N* so that every element of N* is dominated
by some ny.

If D is a diagonalizable group, we will write X*(D) and X.(D) for its
character and cocharacter modules. These will be written additively, and the
canonical pairing between x € X*(D) and A\ € X, (D) will be denoted by
(x, \). For z € T, we will sometimes write 2* instead of A(z) for the image of
x under the map A\ : G,, — D.

If G is a connected reductive group, we will write Gge, for its derived
subgroup and Gg and G,q for the simply connected cover and the adjoint
quotient of Gger. If S C G is a maximal torus, we will write Sger, Sse and Saq
for the corresponding maximal tori of Gger, Gsc and G,q respectively. Recall
that a strongly regular semi-simple element of GG is one whose centralizer is a
maximal torus of G; the subset of strongly regular semi-simple elements of G
will be denoted by Gg,. When G is defined over F', we will write G(R) for the
set of points of G with values in an F-algebra R. The notation g € G will be
shorthand for g € G(F). The action of g on G by conjugation will be denoted
by Ad(g). Two elements g1, g2 € Gg(F') are called stably conjugate if they
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are conjugate under G(F'). For all elements h € G(F) with Ad(h)g1 = g2,
conjugation by h provides the same isomorphism from the centralizer of g; to
the centralizer of gs, and we will call this isomorphism ¢4, 4,. In the slightly
more general setting where an isomorphism ¢ : G — G’ has been fixed and
g1 € Gy, g2 € GL. are such that there exists h € G with go = ¢(hgih™1), we
will write ¢g, 4, for the isomorphism ¢ o Ad(h).

We will write G for the (connected) complex Langlands dual group of G
and LG = G x Wy for the (Weil-form) of its L-group, as in [Bor79, §1].

Given a finite group A and a A-module M, besides the usual group coho-
mology H*(A, M), we will also use the modified, or Tate-cohomology, which
we will denote by Hiy, (A, M).

3. The cohomology set H'(u — W, Z — G)

3.1. The multiplicative pro-algebraic group uw. For a finite Galois exten-
sion E/F (which by our convention is taken to be a subfield of F) and a
natural number n, we consider the algebraic group Rpg/r[n] := Resg/piin.
This is a multiplicative group with X*(Rg,p[n]) = Z/nZ[l'g/p] with T' act-
ing by multiplication on the left, and for any Galois extension K/F, we
have Ry p[n](K) = Maps(T/, in(F))%, where (f)(r) = o(f(o~17)) for
f:Tgr— pn(F), 0 € Tk, and 7 € I'g/p. We have the diagonal embedding
pn — Rpy r[n] that sends each = € pu,, to the constant map with value . We
define the multiplicative group ug,r,, to be the cokernel of this embedding, so

that we have the exact sequence

If K/F is a Galois extension containing E and m is a multiple of n, then
composing the norm for K/E with the m/n-power map leads to the map

(3.2) p: Ry/plm] — Rpplnl,

which in terms of the explicit description of both sides given above has the
formula
(fa)= J[ f®)=, acTgmp.

b—a

This map is an epimorphism and descends to an epimorphism ug/p,, —
up/Fyn- We define the pro-algebraic multiplicative group u as the limit

U= l&lu E/Fn
taken over the index category Z whose objects are tuples (E/F,n) and where
there is at most one morphism (K/F,m) — (E/F,n) and it exists if and only
if £ C K and n|m. For every (E/F,n), the canonical map u — ug/py, is an
epimorphism.
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Given a finite multiplicative algebraic group Z defined over F' we will write
Hom(u, Z) for the set of algebraic homomorphisms. Such a homomorphism
is given by the composition of an algebraic homomorphism ug,p, — Z for
some suitable (E/F,n) € T with the natural projection u — ug/p,. It is
straightforward to check that we have the isomorphism

(3-3) Homalg.grp.(uE/F,na Z)F — Homalg.grp-(:um Z)NE/Fa f = fode,

where the superscript N, p denotes the kernel of the norm map and dc : pp, —
Ug/F,, is the homomorphism dual to the “evaluation at e map” eve : X*(ug/pp)
= Z/nZ[lg/plo — Z/nZ. (Thus é.() is the map I'g/p — p, supported at e
and having the value z there.)

The group of F-points of the pro-algebraic group u carries a natural pro-
finite topology and a continuous action of I The continuous cohomology
groups H'(T',u) are therefore defined.

THEOREM 3.1. We have

Z, F' is nonarch.

HYT,u) =0 and H*(T,u) =
7)2Z, F =R.

Note here that the equality signifies a canonical isomorphism.

Proof. We begin by noting that the limit defining © may be taken over
any co-final subcategory of Z. We fix such a subcategory {(E%,ni)} by taking
atower F' = Ey C Fh4 C Ey C --- of finite Galois extensions of F with the
property |J Ex = F and a co-final sequence {n;} C N*. According to [NSWO08,
Cor. 2.7.6], we have an isomorphism H*(T",u) — Tngi(F, ug ), where the limits
are taken over the above co-final subcategory and we have abbreviated ug, /r,p,
by u. We must compute @HZ(F,uk) fori=1,2.

We begin with ¢ = 2 and use the functorial isomorphism

*

T 7| =7/ (ny, [Ex : F))Z,

(nk, [Ex : F])
where * denotes the group of Q/Z-valued characters. Here the first isomor-
phism is given by Poitou-Tate duality [Tat63]. Note that in the archime-
dean case, in general one needs to use the quotient H%ate of H°, but for
X*(ug), one sees that the two groups coincide. For k > [, the transition
map H?%(p) : H*(T,u) — H?(T',;) is translated by this isomorphism to the
natural projection map Z/(ny, [Ey : F))Z — Z/(n,[E; : F))Z. If F = R,
then for k > 0, we have (ng, [E) : F]) = 2. If F' is nonarchimedean, we can
clarify the situation by setting ny = [Ej : F']. Then (ng, [Ey : F]) = ng. This
completes the computation in the case i = 2.

H*(T,up) = HO(D, X" (ug))* =

Now we turn to ¢ = 1. Our goal is to show that for any [ there is k > [
such that the transition map H'(p) : HY(T,ux) — H*(T',u;) is the zero map.
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This would follow if we could find & > j > [ so that the transition maps
H'(p) : H(T,R;) — H' (T, R;) and H?(p) : H*(T, pin,,) = H*(L, pin, ) are zero,
by chasing through the diagram arising from the exact sequence H'(T', R;,) —
HYT,ur) — H*(T, ptn, ). To treat the case of H' (T, R;), we apply Shapiro’s
lemma to obtain an isomorphism H'(T, R;) — H'(Tg;, pin;) — EJ /ijmj.
Under this isomorphism the transition map is translated to the norm map
Ng, /B, : EjX/EjX’nj — E/E;*™, and we select j so that Ng,/p(E}) C E[M,
For the case of HQ(F,,u,nk), we note that the restriction of the map p to the
diagonally embedded copy of p,, into Ry is the (%)2—power map. We then
choose k so that ny/n; is a multiple of nj. This completes the proof. U

From now on we will denote by ¢ € H?(T',u) the element corresponding
to —1 € Z resp. —1 € Z/2Z. The reason we use —1 instead of 1 is that we
want the isomorphism of Section 4 to be compatible with the classical Tate-
Nakayama isomorphism, rather than its negative. Of course for F' = R, this
makes no difference, but for F'/Q, it does.

For any multiplicative algebraic group Z defined over F', we obtain a map

(3.4) ¢ :Hom(u, Z)" — HXT,Z) ¢~ 6(&).
ProprosITION 3.2. If Z is a finite multiplicative algebraic group defined

over I, then £ is surjective. If Z is also split, then £* is also injective.

Proof. We again appeal to the perfect duality of Poitou-Tate, which can
be written uniformly in the archimedean and nonarchimedean cases as

H*T,2)® (@X*(Z)F/NE/FX*(Z)) — Q/Z, (z,x) — invp(z U x).
Under this duality, the map dual to £* takes the form
lim X*(Z)" /Ng/pX*(2) = Hom(X*(Z), X*(u))"™*
by(3.3) & (lim Hom(X*(2), Z/nZ)"*/r)*

= Hom(lim X*(Z)/Ng/p X*(2), Q/Z)*

> Jim X*(Z) /Ny pX"(2).
The somewhat unorthodox manipulation of limits is justified by the finiteness
of the appropriate arguments of Hom. Tracing through the identifications, one

sees that the composite map works out to be the obvious inclusion. In addition,
when X*(Z) carries a trivial I'-action, this map is an isomorphism. O

3.2. Definition of H'(u — W, Z — G). According to [NSWO08, Th. 2.7.7],
the class & € H?(I',u) corresponds to an isomorphism class of extensions of
profinite groups

l1—=su(F)—=W-—=>I-—=1



RIGID INNER FORMS OF REAL AND p-ADIC GROUPS 573

Furthermore, H'(I',u) = 0 implies that the only automorphisms of an exten-
sion belonging to this isomorphism class, which induce the identity on both I
and u, are given by inner automorphisms by elements of u. We now fix one
such extension.

Let A be the category of monomorphisms Z — G defined over F', where
G is an affine algebraic group, Z is a finite multiplicative group, and the
morphism embeds Z into the center of G. Later we will also be interested in
the subcategories T C R C A, where [Z — G] € A belongs to 7 if G is a torus
and belongs to R if G is a connected reductive group. For two such objects
Z1 — G and Zy — Go, we define the set of morphisms A(Z; — Gy, Zy — Go)
to be the set of commutative diagrams

Z]AH'ZQ

oo

G1%G27

where the horizontal maps are morphisms of algebraic groups defined over F'.
Since F' has characteristic zero, such a diagram is determined by its bottom
horizontal arrow.

Given [Z — G] € A, the set G(F) taken with the discrete topology carries
a continuous I'-action, which we inflate to a continuous W-action. We define
ZYu — W, Z — G) to be the set of those continuous cocycles of W in G(F)
whose restriction to u is an algebraic homomorphism v — Z. Clearly, this
definition is functorial in [Z — G]. Further define 71(u - W, Z - Q) =
ZYu - W, Z — G)/B*W,Z) and H'(u — W,Z — G) = Z'(u — W,Z
—~ G)/B(W,G).

If1 —-u— W —T — 1is an isomorphic extension, then there are canon-
ical isomorphisms of functors Z' (u— W) — Vi (u — W') and H' (u — W)
— HY(u — W'). On the other hand, while there is also an isomorphism
ZYu — W) = ZY(u — W'), it is not canonical.

3.3. Basic properties of H'(u — W, Z — G). We continue with a fixed ex-
tension W of I' by u belonging to the canonical isomorphism class determined
by ¢ € H*(T',u). Let [Z — G] € A. A simple remark of fundamental impor-
tance for us is that any z € Z!(u — W, Z — G) gives rise to an inner form G~
of G. Namely, the image of z in Z'(W, G.q) belongs to Z}(I', G,q) and we can
use it to twist the ['-action on G(F). This will be the prime topic of discussion
in Section 5.1, but it will be also useful now, as we shall see momentarily.

The inflation-restriction sequence associated to the homomorphism W —T°
specializes to the exact sequence

(35) 1— HYTI',G) = HY(u =W, Z — G) — Hom(u, Z2)" — H*(I',G),

where the last term is to be ignored if G is not abelian.
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LEMMA 3.3. If G is abelian, then the map Hom(u,Z)" — H?(,G)
in (3.5) can be taken to be the composition of (3.4) with the natural map
H?(T',Z) — H*(T, Q).

Proof. The map in question is usually taken to be the transgression map.
Recall from [NSWO08, Prop. 1.6.6] that the image of ¢ € Hom(u, Z)I'" under
the transgression map can be represented by choosing a continuous section
s: I' = W and taking the differential of the 1-cochain

c:W =G, c(w) = p(wts(w)).
By definition, £(o,7) = s(0)s(7)s(o7) ™" represents the class & and one com-
putes that dc(o, 7) = ¢(£(o, 7)) L. Of course we may replace the transgression
map by its negative and still keep the sequence (3.5) exact. [l

LEMMA 3.4. The set H'(u — W, Z — G) is finite.

Proof. The finiteness of Z implies that Hom(u, Z)" =lim Hom(ug/pp, AR
is also finite. For any z € Z'(u — W, Z — G), let G* be the inner form of
G obtained by twisting the I-structure by z. Then the fiber of H'(u — W, Z
— G) — Hom(u, Z)' through the class of z is identified under (3.5) with the
set HY(T', G*), which is also known to be finite [PR94, Th. 6.14]. O

PROPOSITION 3.5. Let [Z — S] € A, and assume that S is a split torus.
Then HY(u — W, Z — S) = 0.

Proof. By assumption, the groups Z and S = S/Z are split, hence both
maps Hom(u, Z)!' — H*(I',Z) — H*(T,S) are injective. The proposition
follows from (3.5). O

PROPOSITION 3.6. Let [Z — G| € A. Put G = G/Z. Then we have the
commutative diagram with exact rows and columns

(3.6) G(F) =——G(F)

|

1—— HYT,z) M

L HYw— W, Z — Z) 2% Hom(u, Z)F

1—— HY(,G) 2 HY(u > W, Z - G) 2 Hom(u, Z)F —— x
a o
HY(T,G) HY(T,G) H3(T,Z) %
1 1,

where * is to be taken as H*(T, G) if G is abelian and disregarded otherwise.
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Proof. The second and third rows come from (3.5), the fourth row and
the left column come from the long exact sequence for I'-cohomology of the
short exact sequence 1 = Z — G — G — 1. The middle column comes from
the long exact sequence for W-cohomology associated to the same short exact
sequence. The commutativity of all squares is obvious, except for the bottom
right one, which is the content of Lemma 3.3, and the bottom middle one,
which we turn to now.

Choose again a continuous section s : ' —+W. Let z€ Z'(u — W, Z = G).
Then c(0) = z(s(0)) is an element of C*(T', G) that lifts a(z), so dc € Z%(T', Z)
is the image of a(z) under the connecting homomorphism. Using the fact that z
is a cocycle, we see that de(o,7) = z(£(0, 7)), where (o, 7) = s(0)s(r)s(or)
represents the class .

To complete the proof of the proposition, we need to establish the surjec-
tivity of the map a. If G is abelian, this surjectivity follows from the already
established surjectivity of (3.4) and the four-lemma. For a general G, let R C G
be a complement to the unipotent radical of G, i.e., a Levi subgroup [PR94,
Th. 2.3], and let S C R be a fundamental maximal torus [Kot86, §10]. Then
Z is a subset of S, S is a fundamental maximal torus of R, and R is a Levi
subgroup of G. Then we have the diagram

H(u—W,Z—=8)—=H'(u—W,Z - G)

| l

H'(T,S) HY(T,C) .

We already know that the left vertical map is surjective, and according to
[PR94, Prop. 9.2] and [Kot86, Lemma 10.2], the bottom horizontal map is
surjective. It follows that the right vertical map is also surjective. O

COROLLARY 3.7. Let [Z — G| € R.

(1) If G possesses anisotropic maximal tori, then the map H(u — W, Z — Q)
— Hom(u, Z)V from (3.5) is surjective.
(2) If S C G is a fundamental torus, then the map

H'(u—=W,Z = S) = H'(u - W, Z — G)
18 surjective.
Proof. The first point follows from the fact that if S is an anisotropic

torus, then H?(T',S) vanishes, so by (3.5) the map H'(u — W,Z — S) —
Hom(u, Z)' is surjective, and then so is H'(u — W, Z — G) — Hom(u, Z)'.
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The second point follows from the surjectivity of the map H'(I',S) —
HY(T',G) [Kot86, Lemma 10.2] and the four-lemma applied to the diagram

H(w—W,Z—272)—=H'<uw—W,Z— S)— HYT,S) —=1

| |

Hw—-W,Z2—272)—=H'\u—W,Z - G) — H\(I'G) —=1. 0O

COROLLARY 3.8. Let G be a connected reductive group defined over F,
let Z be the center of Gaer, and set G = G/Z. Then both natural maps

H'(u—W,Z - G) — H(I,G) - HYT',Ga)

are surjective. If F' is p-adic and G is split, then both maps are bijective. If
F =R and G is split, then the second map is bijective and the first map has
trivial kernel (but possibly nontrivial fibers away from the neutral element).

Proof. The surjectivity of the first map is already stated in Proposition 3.6,
while that of the second maps follows from the fact that G is the direct product
Gaa X Z(G)/Z. Assume now that G is split. The group Z(G)/Z is a split torus
and has trivial first cohomology, which accounts for the injectivity of the second
map.

We will now discuss the first map. The bijectivity of (3.4) and the exact
sequence (3.5) imply the bijectivity of Inf : HY(T', Z) — H'(u — W, Z — Z).
Combining this with Proposition 3.6 we see that the kernel of the the first map
in the corollary, which coincides with the kernel of the composition

H'(u—=W,Z - G) = H(I',G) - HYI',Gaa),

must be equal to the kernel of the map H'(I',G) — HY(T',G.q). But this
kernel is trivial. Indeed, it is enough to check that G.q(F) — HY(T', Z(Q))
is surjective, but if T' C G is a split maximal torus, with image T,q in Gaq,
then Thq(F) — HY(T, Z(Q)) is surjective because H(T',T) is trivial, and that
suffices.

If F is p-adic, then the map H'(I',G) — HY(T',G,.q) is actually a homo-
morphism of abelian groups [Kot86, Th. 1.2], and the triviality of its kernel
implies its injectivity. O

Remark. The following is a simple example that shows that some fibers of
the first map in Corollary 3.8 can be nontrivial for F' = R and G a split group.
Let G = SLy/R. Then H'(R,G,q) has two elements. The fiber of the sur-
jection H'(u — W, Z — G) — H'(I', Gaq) over the nontrivial element can be
identified via twisting with the kernel of H!'(u — W, Z — G') — HY(I',G.,),
where G’ is the nontrivial inner form of SLy/R, namely, the anisotropic group
SUsy. The arguments of Corollary 3.8 show that this kernel is equal to the
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image of H'(I', Z) — HY(I',G"). Using [PR94, Th. 6.17], one computes that
this map is a bijection between two sets of order 2.

3.4. Definition of HY (v — W,Z — G). Let [Z — G] € R. We will
now describe a quotient of H'(u — W, Z — G) that will be used in the next
section. For this, we impose on H'(u — W, Z — @) the following equivalence
relation: Let 21,20 € Z'(u — W, Z — G). Let G' be the twist of G by the
image of z1 in Z1(TI', G,q). Tautologically zy - zfl € ZY(u —W,Z — G'), and
we say that the images of z; and zp in H'(u — W, Z — G) are equivalent if
25 - 27+ belongs to the image of Z'(T', GL.). One checks easily that this defines
an equivalence relation on H'(u — W, Z — G) and we denote the quotient
by HY (u — W, Z — G). Since every homomorphism of reductive groups lifts
uniquely to a homomorphism of the simply connected covers of their derived
groups, we obtain a functor H;b(u — W) : R — Sets and a surjective map

H'(u— W) = Hay(u— W),
which is an isomorphism whenever H(T', Gs.) = 1. This condition holds when
F is p-adic by Kneser’s theorem [Kne65], as well as when G is a torus because
then G¢. = 1.

We remark that in the same way we can define H) (I',G) by impos-
ing the same equivalence relation on H(I',G). In that situation, we obtain
HL(T,G) 2 HY(T,Gsc — G), where Gs. — G is regarded as a crossed module
placed in degrees —1 and 0. This group was introduced by Borovoi [Bor98|.

4. The isomorphism Y 1o — H} (u — W)

Recall that if S is an algebraic torus defined over F' and split over a fi-
nite Galois extension E/F, there is an isomorphism Hfa}te(FE/F,X*(S)) —
HY(T,S) [Tat66]. The source of this isomorphism can be computed to be
X+ (S)r tor, the torsion submodule of the I'-coinvariants of X (.S). This has the
advantage of eliminating the dependence of this isomorphism on the finite ex-
tension F, and in this way one obtains an isomorphism X.(S)r tor — H(T, S)
that is functorial in S.

In this section we are going to define a functor

?—i-,tor R — AbGrp,

which extends the functor S +— X, (S)r tor, as well as a morphism of functors
from Y 1 tor to the functor [Z — G] — Hom(u, Z)'. We will then prove that
there exists a unique isomorphism

Y i tor = Hop(u — W),

which for objects [I — S] € T, coincides with the Tate-Nakayama isomor-
phism, and such that the composition Y1 1o:(Z = G) = HL (u = W, Z — G)
— Hom(u, Z)' coincides with the morphism just alluded to.
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4.1. Definition of Y 4 tor. Let [Z — S] € T. As before we write S = S/Z.
Let X = X*(9), X = X*(9), Y = X,(9), and Y = X,(S). We have the exact
sequences

0-X—>X—-X/X-0 and 0—-Y—=>Y->Y/Y =0,

and we will identify X with its image in X and Y with its image in Y. The
abelian group Y /Y is finite and the Z-pairing between Y and X provides a
Q-pairing between Y and X, which in turn provides a I'-equivariant perfect
pairing

Y)Y @ X/X - Q/Z.

This perfect pairing can also be formulated as the isomorphism

(4.1) Y /Y — Hom(uy, Z), A= (2 x”;\) for [Y : Y]|n.

We will write Y~ and Y for the kernel of the norm map for the action of the
Galois group I'g/p for any finite Galois extension of E/F'" over which S splits.
If I C Z[l'g/p] is the augmentation ideal, we define Y, =Y /IY. The modules

YN, 7N, and IY are independent of the choice of E, and we have the exact
sequence

0—-Yr =Y, =>Y/Y =0,
where Yr = Y/IY is the module of I'-coinvariants in Y. Write Y% and ?f for
the quotients of YV and v by IY. The following fact is easily observed.
FAcT 4.1. For any field extension E/F splitting S, we have ?ﬁ =Y tors

the latter being the torsion submodule of Y . Moreover, we have the exact
sequence

= - N
0= Yrior = Yitor — [Y/YIVN S YI/N®Y).

Composing the map Y4 tor — [Y/Y]Y with (4.1) and the inverse of (3.3)
we obtain a homomorphism Y (o, — Hom(ug /Fm,Z)F. For varying E/F
and n, these homomorphisms are compatible and splice to a homomorphism

(4.2) Y ¢ tor — Hom(u, Z)'.

Given a morphism [Z; — Sij] — [Z2 — S3] in T, the induced morphism
S1 — S gives rise to a morphism X, (S1)+ tor — X«(S2)+ tor- In other words,
the assignment [Z — S| — Y (o is functorial; i.e., we obtain a functor

Y. tor : T — FinAbGrp.

The homomorphism Y oy — Hom(u, Z)! is functorial in [Z — S)].
In order to extend the functor ?Jﬁtor to R, we need the following lemma.
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LEMMA 4.2. Let [Z — G| € R, and let S1,S2 C G be mazimal tori. Any
g € G(F) with So = Ad(g)S1 provides a I'-equivariant isomorphism

Ad(g) : Y1/Q) = Y2/Qs3,

where Y; = X.(Si/Z) and Q) = X.(Sisc). Moreover, this isomorphism is
independent of the choice of g.

Proof. 1t is clear that Ad(g) provides an isomorphism between its source
and target. If we show that this isomorphism is independent of the choice of g,
the I'-equivariance will follow. We may assume S; = S2 = S and g € N (5, G).
Let w be the image of g in the Weyl group (S, G). We want to show that w
acts trivially on Y /QV. Theisogeny S/Z — S/(Z-Z(Gger)) = Saa X G/(Z-Gaer)
gives an injection Y — PV @® X.(G/Z - Gger), where PV = X,(Saq) is the
coweight lattice. Let j € Y, and decompose it as §j = p + z with p € PV and
2 € Xu(G/Z - Gger). Then wz = z and wp —p € QY by [Bou02, Ch VI, §1, no.
10, Prop 27]. O

Let [Z — G] € R. For a maximal torus S C G, we consider the expression

[X.(8/2)) X(Sse)]N
I(Xu(S)/ X (Sse))

where the colimit is taken over the set of Galois extensions E/F splitting S.
We define Y to;([Z — G]) to be the limit of the system whose objects are
these expressions and whose morphisms are given by Lemma 4.2.

Given a morphism f : [Z — G| — [C — H]in R, the map f : G — H lifts
uniquely to a map fs : Gs¢ = Hse. Choose maximal tori S C G and T' C H
such that f(S) C T. Restricting f to S we obtain a morphism f: [Z — S] —
[C — T]in T and a compatible homomorphism Ss. — Ty, and hence a map
(X (8/2)/ Xe(Sse)]Y fsz (. [XlT/C) /X (Tec)]™

I(X(5)/ X (Ssc)) = IXL(D)/ X (Tae)
If " and T" are other choices of maximal tori of G and H with f(S") C T",
then there exist ¢ € G and h € Cent(f(S), H) such that S’ = Ad(g)S and
T' = Ad(hf(g))T. The commutativity of

lig

(4.3) ling

Ad(g)

- 7 .9

oy

AdRI@)

implies that the maps fgr for all possible choices of S and T splice together
to a map

?-i—,tor(f) : ?+7tor(G> — ?-l-,tor(H)-
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This completes the definition of the functor
Y 4 tor : R = FinAbGrp.
One checks that (4.2) extends to a homomorphism
(4.4) Y 4 tor — Hom(u, Z)"
of functors R — FinAbGrp.
4.2. Uniqueness of the isomorphism. Let (V) () Y itor = HL (u— W)
be two isomorphisms, both of which coincide with the Tate-Nakayama isomor-

phism for objects [1 — S] € T and lift the morphism Y 4o, — Hom(u, Z)!
defined by (4.2). We will show that (1) = (),

Step 1: Let [Z — S] € T with S an anisotropic torus. Then we have the
equations lig(?/Y)NE/F = X.(8)/X.(S) and Y4 tor = Xi(S)/I1X.(S) and
-1
conclude that the composition (LE? i S]) LE;L 9] is therefore an automorphism
of the extension

0— X.(S)/I1X.(S) = X.(S/Z)/IX.(S) = X.(S/Z)/ X.(S) — 0.
This automorphism induces the identities on the first and third terms and thus
differs from the identity by a homomorphism
Szss) Xa(S/2)/X.(S) = X.(8)/IX.(S).
As we fix S and vary Z, this homomorphism is still functorial in Z and hence

determines a homomorphism

b : lim X..(/2)/X.(S) = X.(8)/IX.(S).
Z

This homomorphism has a divisible source and a finite target and is thus zero.
Each individual homomorphism d[7_, g is a restriction of g and thus also zero.

Step 2: Now let [Z — S] € T be arbitrary. Let S, C S be the maximal
anisotropic subtorus and let Z, = Z N S,. Then we obtain the diagram with
exact rows

HY (u—W,Z,—S,) — H (u—=W,Z—8) — H (u—W,Z/Z,— S/S.)

T T T

?+,t0r(Za_>Sa) ?+,t0r(Z_>S) ?+,t0r(Z/Za_>S/Sa) .

According to Proposition 3.5, the top third term vanishes, and then so must
the bottom third. Thus LE?_)S] is determined by LEZ)Z +Sa] for k = 1,2, and by
Step 1 we have L[(éLS] = Lf?_w].

Step 3: Let [Z — G] € R, and let S C G be a fundamental maximal

torus. According to Corollary 3.7, L(Zkl)G is determined by Lgi g
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4.3. Unbalanced cup-products. The construction of the isomorphism Y | tor
— H}, (u— W) will be based on a modified version of the cup-product between
a positive-degree cochain and a negative-degree cochain in Tate cohomology.
It is defined as follows. Let A — © be a surjection of finite groups, let A be a
A-module, and let B a ©-module. Recall that for any integer ¢, the set of ho-
mogenous i-cochains Ci'™ (O, B) is defined as Home (P2, B), where (PP)icz
is the standard complete resolution of the trivial ©-module Z. Analogously,
we have C’ff:&m(A,A) = Homa (P~, A). When i > 0, the set Cff:fem(A,A) can
be identified with the set of A-equivariant functions from A*! to A, where A
acts by diagonal left multiplication on A**!. Moreover, we may work in the
more general situation where A is not finite, but rather a compact topological
group and A — © is continuous, as long as we take the functions from A#*!
to A to be continuous with respect to the discrete topology on A. We will also
occasionally drop the subscript “Tate” in that situation.

Let ¢ > 5 > 0. We will be interested in a subset

CHPOm(A, 0, A) C CPM™ (A, A)

defined as follows: An i-cochain of A with values in A belongs to this subset
if and only if its values remain unchanged when we multiply any of its last
j-many variables by an element in the kernel of A — O. This is equivalent
to saying that this i-cochain is the composition of a (continuous) function
A7 % @7 — A with the natural projection At — A7 x©7. Notice that
the differential d : C%P°™ (A, A) — CTHLhom(A | A) carries C*hom(A, 0, A) to
Ci+1,j,hom(A’ @’ A)

We can consider B as a A module as well and form the A-module A® B.
Now let i > j/ > j > 0. Given two cochains f € C»"hm(A O, A) and
g€ Cﬂ;gom(@, B), we define

flUgeCidi=ihomn g Aw B)
using the formula

(fl—lg)(g(]aagz—j): Z f(g()a'-'vgi—jasla"'vsj)®g(8;7"'78>{>'
(s15...,85)€OT

The condition on f ensures that this formula makes sense. In the degenerate
case A = O this is just the formula for f U g given in [NSW08, Prop. 1.4.7].
We also define

(fUg)(go:---,9:) = (fUINg0,---,9) = flg0,---.9) ©9(gi)

in the case 7 = 0. Then we observe that LI has the following feature in common
with the usual cup-product.

Fact 4.3. d(fUg) =df Ug+ (—1)'f U dg.
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The proof relies on the fact that for ¢ > 0, the differential for homogenous
i-cochains is given by a formula that is independent of the group; i.e., it is the
same for both A and ©® — a fact that is not true for ¢ < 0. Once this has been
observed, the proof is straightforward and we shall leave it to the reader.

It will be more convenient to work with inhomogenous cochains in the
subsequent sections. For i > j' > j > 0, the set of inhomogenous i-cochains
C'(A, A) is then just the set of (continuous) functions A — A, and the subset
CH'(A,0, A) is defined by the same condition as for the homogenous case.
For negative degrees, we will be particularly interested in the case j = 1. An
inhomogenous (—1)-cochain with values in B is simply an element of B. Given
f € CH(A,0,A) and X € B, we have

(FUN(g1 - gi-1) =Y flg1,-- -, 8i-1,a) @ g1 ... gi1aA.

a€®

In a situation where more than one pair of groups A — O is involved, we
will write f g g to keep track of which group is being used. When © is the

Galois group of some finite Galois extension E/F, we will also write f EI7IF g.

4.4. Arithmetic preparations. We again choose an increasing tower Fj of
Galois extensions of F' with |JE, = F. For each k, the relative Weil group
W, r = Wr/WE, fits into the exact sequence [Tat79]

rec p
1 ——>E —>Wg, p—>Tpg/p—>1.

For each k, choose an arbitrary (set-theoretic) section (i for the natural pro-
jection 7r,1; :I'g,,/F = I'p,/p. Every element of I'g,  /r can be written as a
product y(x(x) for unique y € I'g, ., /g, and x € T'g, /p. For each k, choose
inductively a section syt1: ', /)r = Wg,,,/F of ppy1 with the properties

$k+1(YCe(®)) = sp1 (V) se41(Ge(@))  and  sg(z) = 1 (sp11(G(2))),

where ﬂ,‘éV : W, ., /r — Wg,/r s the natural projection.

Define ¢, € Z*(Ug, /. E)) by cx(o,7) = rec; ! (sx(0)sk(7)sk(o7)™1). Then
¢k represents the canonical class of the extension Ey/F. The following lemma
expresses the compatibility between the different c;. Its proof is contained
in the discussion found in [Lan83, VI.1], and we reproduce it here for the
convenience of the reader.

LEMMA 4.4. For any 0,7 € I'g, , /r, we have

cr(m (o), 75 (7)) = [ ensr(vo, Guolmi (7)) = [ [ ensa (o, v7) e (o, 0) 7

verEkJrl/Ek UeFEk+1/Ek
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Proof. Forany z,y € I'g, jp and z,w € I'g, /g, , our choice of the sections
sg implies the following equations, whose derivation we leave to the reader:

(4.5) crpa(w, 2) = cppar(w, 2G(2)),
(46)  cx(2,y) = Niy,,/m, (a1 (G(@), G(y))) - ey (m (spra(er(z,9)))).

Here cr : F%Ek/F — g, /B, 18 defined by cr(z,y) = Ce(2)Cr(y)Cr(zy) ! and
the second factor in the right-hand side of (4.6) is defined because the function
7TZV o sk41 maps I'g, /g, into the image of recy. Given z € I'g, /g, , we have

rec; (1 (sk+1(2))) = reciy, (tr(my (sr41(2)))),

. ab ab : ab __ ab
where tr : Wg’ — WgP is the transfer map. Because W) = Fror /By
3 3 . ab ab —
this transfer map is equal to the transfer map tr : WEk+1/Ek — WEk+1/Ek+1 =

WE, /B~ In order to compute it, we need a section of the natural projection
Wg,./B, — WEk+1/Ek/WEk+1/Ek+1 =T'g,,,/E,, and for this we can take sj1.
Then we have

rec; 1y(tr(m(s+1(2))) = [ [ reciii(sk1 (0)sua1 () sp1 (v2) ) =[] ehra (v, 2).
veFEk+l/Ek verEk+l/Ek

Plugging this into equation (4.6) we obtain
alzy)= ]  versr(G(@), () - corr (v er(z,y)),

verEk+1/Ek
and according to equation (4.5) this leads to

a(my)= I verra(G(@), () - crpr(v, er (e, y)iu(zy))

’UeFEk+l/Ek

= H VCL41 (Ck: (.Z‘), Ck (y)) : Ck+1(v7 Ck (x)Ck (y))

UEFEk+1/Ek

= H i1 (vC(), G (y)) - crg1(v, Gi(x))

Vel /By,

= H C,Ig+1(UCk(x)v Ck (y))

UerEkH/ By
This completes the proof of the first of the two equations that are stated in
the lemma. The second equation follows from
r r
cx(my, (0), m, (7))
= I erilov,Glmi()

UGFEk+1/Ek

= JI ocrr(v. G(mi (7)) - erpalo, véu(mh (7)) - cryr(o,v) ™!

UerEk+1/Ek

and the fact that ci1(v, (i (7L (7)) = 1 according to equation (4.5). O
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4.5. An explicit realization of the extension of I' by w. In the previous
section we chose the sequence of extensions Fj as well as the maps (i and sy.
We obtained 2-cocycles ¢, € Z2(T° Ey/F> E}) representing the canonical classes.

In addition, we choose a co-final sequence {n;} C N* and maps I : F* ST~

having the properties ()™ = z and lk+1(x)% = () for all z € F .

For each k, again write uy = ug, /Fp,. Recall the homomorphism J, :
piny, — Rp, rp[nk] that sends = to the map 'y, /p — pin, supported at e and
having value x there. It induces a homomorphism 9, : 1, — uy that is easily
seen to be killed by the norm map for the group I', /- acting on Hom (pun,, , uy).
Thus 0, € Zfalte(FEk/F’ Hom(fin, , ug)). On the other hand we have the cochain
lper € C’272(FF,FEk/F,FX) and its differential dljc, € Z3’2(I‘F,FEk/F,unk).
We define

— 2
(4.7) & = dlgeg E;L_l/F 0c € Z (F,uk)

and let Wy, = u; X, I' be the extension of I' by u;, determined by this 2-cocycle.
We will now arrange the extensions Wj into a projective system. In order
to define the transition maps, it will be convenient to introduce the torus
Rg, /r = Resg, /pGp, and let S, /p by the quotient of Rp, ,r by the diagonally
embedded copy of G,. Then wy is the subgroup of ny-torsion points in Sg, /p.
Recall the map p : ugy1 — ug defined by (3.2). Define

1
1
(4.8) o = (lkck Ell:l/F 6@) D (lk+1ck+1 Ek_l:ll/F (Se> eC (F, SEk/F)

LEMMA 4.5.

(1) The cochain ay, takes values in uy, and the equality day, = p(€xy1)Ey - holds
m 02 (F, uk)
(2) The element ([£x]) of@Hz(F, ug) is equal to the canonical class §.

Proof. In order to prove the first statement, we will rewrite ay, as follows.
Define for 0,7 € ',/ the element

(0, 7) = ler(mi (0), k(W)™ TT k(o 70) - lecrpa(o,0) 7
UEFEk+1/Ek

According to Lemma 4.4 we have n, € C%1(T, Lg,/Fs bny ), and we claim that

=, U 6. € CHT,uy).
Qp = Tk By F e (', u,)
Indeed, in C?(T, S £,/F) one computes that

(o,7) — 1:[ Ircry1(o, V) EI|€—|/F de = P(lpt1Ckt1 Ek-l;ll/F de) = P(&k+1),



RIGID INNER FORMS OF REAL AND p-ADIC GROUPS 585

while
= ]! U 6
(0,7) 1;[ kCh+1(0,v) op %
represents an element of R, /r that lies in the image of the diagonal embedding
of Gy, and is thus trivial in Sg, /p.

Turning to the second statement, we need to show that under the isomor-
phism H?(T,uy) — HO(T, X*(ug))* — Z/(nk, [Ex : F])Z used in the proof
of Theorem 3.1, the class of £ maps to the element —1. For this we com-

; ng ng ~
pute the cup-product of £ with the element lEcF]) € (nk,[Ek:F])Z/nkZ =

HO(T, X*(ug)) and obtain the (mm[%i’““,])—th power of the element of C?(T, i, )

given by
(o,7) H dlgex (o, T, (o7)La).
a€l'g, /F
In C2(I',F”) this power is cohomologous to the [Ej : F]/(ny, [E) : F])-th
power of ¢, ! and is thus a 2-cocycle of invariant —1/(ny, [Ey : F]). It follows
that the class & corresponds to the character of H°(I', X*(uy)) that sends the

element (nb[%’“kﬂ) to (nk,[jElk:FD €Q/Z. O

It follows from the first part of the above lemma that the map
Wit1 — Wi, x®o— p(x)ag(oc) Ko

is a homomorphism of extensions. Since it is surjective, the limit W = @Wk
is an extension of I by u. The element of H?(T',u) = Hm H?(T',uy,) defined by
this extension is given by the system ([{x]). Thus, by the second part of the
above lemma, the extension W belongs to the isomorphism class of extensions
of I' by u determined by &.

We also have the following explicit description of the homomorphism (3.4),
which follows right away from the explicit formula (4.7) for &.

FACT 4.6. Let ¢ € Hom(uy, Z)', and let p = ¢ 05, € Hom(jip,, Z)NEk/F.

Then
=dl L o
B(&x) KOk U@

4.6. Construction of the isomorphism in the case of tori. Now let [Z — 5]
€ T. We again write Y = X, (S) and Y = X,(S/Z). Let k be large enough so
that Ej splits S and |Z| divides ng. Let AeY VBT and let 5. € Hom(ug, Z)"
be its image under the isomorphism

[V /YNEr/F — Hom(pun, , Z)VEx/F — Hom(uy, Z)*
given by the composition of (4.1) and (3.3). For t Ko € Wy, = uy, KT, set
zx (e o) = 5 p(2) - (lkck U nk)\> (o) € S(F).
) ) Ek/F

Then zj3 ;, is a map Wy — S that we inflate to a map W — S.
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LEMMA 4.7. The map 25, : W — S belongs to ZYu — W, Z — S). If
I >k, then z5,; and zy ;, are equal in Z*(u — W, Z — S).
Proof. By definition z3 j is a continuous 1-cochain W — S whose restric-

tion to u factors through an algebraic homomorphism u; — Z. It remains to
show that this 1-cochain is in fact a 1-cocycle. We compute

dzy (z Mo,y X 1) = ¢y 1 (§k (o, ™))L d(Iger Ung) (o, 7),
(Fact 4.3) = ¢35 1 (& (o, )L (dler Ung) (o, 7),
(Fact 4.6) =1.

To compare 25 ; and zj ;, we will show that the inflation of z5 , to W} is equal
to 23 ;. For this it is enough to consider [ = k + 1. According to the definition
of the transition map Wj1 — Wi, the inflation of z5 j takes at x Mo € Wi
the value

oralol@)ono)) (1w U mA) (o)

One checks that the equalities

5 = ¢s s (1 U 6. | =1 L A
PrpOP=Prpr1r Pag ( Kk pH ) Kk LU nEA
hold, and the proof is complete. O

We will henceforth denote the inflation of z5, to a map W — S(F) by
zy, due to its independence of k.

THEOREM 4.8. The assignment \ +— z5 induces an isomorphism
LY 4 tor — HY(u— W)

of functors T — AbGrp. This isomorphism coincides with the Tate-Nakayama
isomorphism for objects [1 — S] € T and lifts the morphism (4.2).

Proof. The fact that zj is additive in \ is clear from its definition, so
that we indeed obtain a homomorphism of groups from the subgroup of Y of
elements killed by Ng, /p for some k, to the group HY(u — W,Z — S). The
functoriality in Z — S is also clear from the construction, as both factors in the
product defining Z3 |, are functorial in X\. If A € Y, then ¢35, = 0 and, moreover,
lpcr Ungh = ¢ U A, thus zyx represents the image in HYT,S) of X\ under
the classical Tate-Nakayama isomorphism [Tat66]. This shows that the group
homomorphism A — zy, annihilates I'Y and thus descends to a homomorphism
Uz—s) Y 4por(Z = 8) = H'(u = W, Z — S). Tt furthermore shows that the
latter homomorphism is equal to the Tate-Nakayama isomorphism if Z = 1.
The fact that ¢z_,g) lifts (4.2) is evident from the construction of zy ;. What
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remains to be shown is that ¢[z_,q) is an isomorphism. For this, we consider
the diagram

1 —= HYT,S) — H'(u—W,Z—8) — Hom(u, Z)" —— H*(T,95)

! ! ! !

0 —— YT tor lig[Y /YN —lim YT /Ny (Y) |

Y+,t0r

where N} denotes the norm map for the action of I'g, /p and the limits are
taken with respect to k, beginning with k£ large enough. The transition maps
for the first limit are the natural inclusions, and the transition map k — k+1
for the second limit is given by the norm map for the action of ', /p,.
(In fact, this action is trivial, so the map is just multiplication by [Fxy; :
Ex].) The right-most bottom horizontal map is given by the system of maps
[Y/Y]Ne — YT /N(Y) sending A +Y to Ni(A) + Ni(Y). The right vertical
map sends A € YT to AU clzl; i.e., it is the composition of the negative of
the Tate-Nakayama isomorphism Y'/N(Y) — H?(Tg, /p, S(Eg)) with the
inclusion into H?(T', S). The commutativity of the left and middle square has
just been established. For the commutativity of the right square, we know
that A € Y maps up and across to ¢5 (&) € H2(T,S), which by Fact 4.6
equals dlgcy, ELI/F niA. According to Fact 4.3, we have in C2(T', S) the equality
k

d(lgcpUngA) = dlpcrUngA+1gcp Ungd), which implies in H2(T, S) the equality
dipcp Ung = —lpc, Lingd). Since ) represents an element of [Y /Y] and the
differential in degree —1 is the map Ny, we see that d\ € YT, so the right-hand
side of the last equation is equal to —cj U d), which coincides with the image
of X across and then up.

We have shown that the above diagram is commutative. The top row
is exact by (3.5), and the bottom row is exact, being derived from the exact
sequence of Fact 4.1. We know that the first and third vertical maps are iso-
morphisms. We also know that the fourth vertical map is injective, being given
by a system of compositions Yr/Ni(Y) = H*(Tg, /p, S(Ey)) — H?*(T,S), of
which the first is bijective and the second injective. (Recall that k is large
enough.) We now appeal to the five-lemma, and the proof is complete. O

4.7. Construction of the isomorphism for reductive groups. We will now
extend the isomorphism of Theorem 4.8 to an isomorphism

L ?—‘,—,tor — H;b(u — W)

of functors R — Sets. When F is p-adic, this isomorphism will endow the
set H'(u — W,Z — @) with the structure of an abelian group. Moreover,
this group structure will be compatible with the group structure on H(T, G)
obtained by Kottwitz [Kot86, Th. 1.2] and with the natural group structure
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on Hom(u, Z), and the maps in diagram (3.6) will all become group homomor-
phisms.

LEMMA 4.9. Let [Z — G] € R, and let S C G be a mazimal torus. The
fibers of the composition

Yite(Z—8) = H(u—W,Z—8) = Hyp(u—W,Z = G)
are torsors under the image of X.(Ssc)rtor in Y 4 tor(Z — S).

Proof. The usual twisting argument reduces the question to studying the
fiber of the given map over the equivalence class containing the trivial element.
This is the preimage under Y tor(Z — S) — H'(u — W, Z — G) of the the
image of HY(T', Gs.) in H'(u — W, Z — G). Anelement of H'(u — W, Z — 5)
will map to that image only if it belongs to H*(I", S). This reduces the problem
studying the preimage under

YF,tor — Hl(F,S) — Hl(FaG)

of the image of H(T', Gs.). According to [Kot86, Th. 1.2], this preimage is
dual to the cokernel of the map

70(Z(G)T) = mo(SD).

The cokernel of this map is equal to (ST /Z(G)F), and this is a subgroup
of mo([S/Z(G)|"). It follows that dually the map HY(T',Ss.) — HY(T,S) —
H(T', G) surjects onto the image of H!(T', Gs.). The lemma follows. O

LEMMA 4.10. Let [Z — G| € R, and let S1,S2 C G be mazximal tori. Let
g € G(F) with Ad(g)S1 = Sa. If \; € ?71;\{ are such that Ay = Ad(g)A1, then
the images of vz_,5,/(A1) and vz_5,)(A2) in HY (u — W,Z — G) are equal.

Proof. Consider the isogeny S;/Z — Si/(Z - Z(G4er)). It provides an
injection Y; — PY ® X.(G/Z - Ger), where P = X, (S; aq). Write Ay = p1 + 2
accordingly. Then Ay = py + z with po = Ad(g)p;. The map Z(G)° —
G/Z-Gger is an isogeny and leads to an injection X, (Z(G)°) = X« (G/Z-Gyer)
with finite cokernel. We choose k large enough so that ngp; € QY = X.(S1sc)
and ngz € X.(Z(G)°). By construction (Lemma 4.7), for t Ko € W), we have

z;\i,k(:c Xo)= gb;\i,k(:v) Nlker U ngpil(o) - [lkek U ngz](o).
We have

d);\hk(a:) = d);%k(a:) €7 and [lgep Ungz](o) € Z(G)°
and conclude that

Z,‘\g,k(x Xo)- le,k(m X 0)71 =az(0)-ai(o) ",
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where a; = lgcg U ngp; € CL(T, Sisc). The image of ay in CH(T, S} aq) is equal
to ¢ Upy and is thus a 1-cocycle, so we can twist the I'-structure on Gg. using
it. We call the twisted structure G.. We need to show that

as a7t € ZYI,GL).
For this, we compute the coboundary at (o, 7) and obtain
[az(0)ar(0) 1] - ar(o)olaz(r)ar(r) Hai (o)™t - [ag(or)ar(or) ]!
= ay(0)oaz(7)[oar (1) tai (o) tay(o7)]as(or) L.
The three bracketed factors in the second line belong to Sis. and we can
rearrange them, obtaining da; (¢, 7)~!. This is an element of Z2(T, Z(Gy.)) and

can be pulled in front of the other terms, which themselves produce dasg (o, 7).
However, by Fact 4.3 we have

dai = dlpcp Ungpr = dlpcp Ungps = dasg,
because the images of p; and py under PY — PY/QY — Hom(pn, Z(Gsc))
coincide. This proves the claim that as - a;* € ZYT', GL). O

THEOREM 4.11. The isomorphism ¢ of Theorem 4.8 extends to an iso-

morphism
L Y+7t0r — H;b(u — W)

of functors R — Sets, which lifts (4.4).

Proof. Let [Z — G] € R and let S C G be a fundamental maximal torus.
According to Corollary 3.7 the map

YiwlZ—=8) = H@wu—-W,Z—>58) > H(u—W,Z—G)
is surjective, and according to Lemma 4.9 it descends to a bijection
Yitor(Z = S)/Xi(Sse)rtor = Hap(u = W, Z = G).
We claim that
[X:(5/2) /X4 (Ssc)]
I(X(8)/Xi(Ssc))

where the colimit is again taken over all finite Galois extensions E/F split-

(49) ?+,tor(Z — S)/X*(SSC)F,tOr = hgl

ting S. Indeed, for any maximal torus S and finite Galois extension E/F
splitting it, we have the exact sequence
Xo(Sse)™ | Xu(S/Z)N | [X(S/2)/Xu(Ssc)]Y | Xu(See)
IX.(Ssc) IX.(5) I(X(8)/Xu(Ssc)) N (Xu(Sse))’
in which the last map sends an element represented by = € X.(S/Z) to N(z).
This gives the inclusion C in (4.9). The reverse inclusion follows from the fact

that a fundamental maximal torus of a simply connected semi-simple group
has vanishing H%ate, so the fourth term in the above exact sequence vanishes.
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If S’ is a second fundamental maximal torus of G and g € G(F) is such that
S’ = Ad(g)S, then Lemmas 4.2 and 4.10 imply that we have a commutative

diagram
[X*(S/Z)/ «(Sse)|Y
lim 70X () 7% (520))
Ad(g) Hi(u—=W,Z = G).

/

X.(S'/2)/ X (St )
lim B2 Gl

By definition of Y1 tor(Z — G), the diagonal bijections in the above diagram

splice to a bijection
Uzs6) Y 41002 = G) = Hyp(u — W, Z — G).

The fact that t[z_,g lifts (4.2) implies that ¢;_q lifts (4.4). Moreover, for
any maximal torus S C G (fundamental or not), the diagram

?—i-,tor(Z — S) ?+’t0r<Z — G)

\LL[ZHS] \LL[Z*}G]

H(u—»W,Z = S)——=HY(u—W,Z = G)

commutes. This and the functoriality of ¢z_,g imply the functoriality of
L Z—=aG)- g

5. Applications to the Langlands conjectures

5.1. Rigid inner twists. We continue to work with a fixed extension W of
I" by u belonging to the isomorphism class determined by £. For any connected
reductive group G and finite central subgroup Z, both defined over F', the sets
ZY u—W,Z —G) and H'(u— W, Z — G) are then defined. Set G = G/Z.
The natural projection G — G induces maps Z'(u—W,Z —G)— Z}(T,G) —
ZYT,Gaq) and HY(u - W, Z — G) — HYT,G) — H'(T,Gn). If Z Cc G
is another finite central subgroup defined over F and Z C Z’, we obtain an
isogeny G/Z — G/Z' as well as natural injective maps Z'(u— W, Z — G) —
ZY u—W,Z2'=G) and H' (u—W,Z—G)—= H (u—W,Z' = G).

Recall that an inner twist of G is an isomorphism 1 : G — G’ defined
over F' between G and a connected reductive group G’ defined over F' such
that for any o € T', the automorphism 1 ~'o(¢)) of G is inner. An isomorphism
between two inner twists ¢¥1 : G — G1 and ¥y : G — G is an isomorphism
f + G1 — G2 defined over F' and having the property that 1, Lo foq is an
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inner automorphism of G. The set of isomorphism classes of inner twists is in
bijection with H(T', G,q).

By a rigid inner twist (v, z) : G — G’ we will mean an inner twist ¢ :
G — G’ and an element z € Z'(u — W, Z — ), where Z is any finite central
subgroup, having the property that for all o € I', we have

Y 7lo(¢) = Ad(2(0)),

where zZ € Z1(I', G,q) is the image of z. We will say that (v, 2) is realized by Z
if we want to keep track of Z. Given two rigid inner twists (¢1,21) : G = Gy
and (9,22) : G — Go, with z; € Z'(u — W,Z — @), an isomorphism
(f,9) : (¥1,21) — (2, 22) consists of an element g € G(F) and an isomorphism
f : Gi — G5 defined over F, for which the equality z2(w) = gz1(w)w(g™1)
holds in Z'(u — W, Z — G) and the diagram

a "

Ad(g)l J/f
G- Gy

is commutative. The following fact is obvious but very important.

FacT 5.1. Fvery automorphism of a rigid inner twist (¢, z) : G — G’ is
given by an inner automorphism by an element of G'(F).

We will denote by RIz(G) the category whose objects are rigid inner twists
of G realized by Z and whose morphisms are isomorphisms of rigid inner twists.
For Z C Z', the obvious functor RIz(G) — RIz(Q) is fully faithful. We will
denote by RI(G) = lim RT z(G) the category of rigid inner twists of G. The
set of isomorphism classes of RIz(G) is H(u — W, Z — G), and the set of
isomorphism classes of RI(G) is

H'(u—= W,G):=limH' (u = W,Z = G),

the limit being taken over all finite central subgroups Z defined over F'. We
point out that even though the set H'(u — W, G) may appear more natural
than H'(u — W, Z — G), it is in fact less natural, as it is not functorial in G.

A remark is in order on the dependence of the category RIz(G) on the ex-
tension W. Let us temporarily write RI}) (G) to emphasize this dependence.
If W’ is another extension in the isomorphism class determined by &, then
any isomorphism of extensions W — W' determines an equivalence of cate-
gories RIY (G) — RIY'(G) and, in particular, a bijection between their sets
of isomorphism classes. Two different isomorphisms W — W’ will in general
produce two different equivalences RIY (G) — RIY'(G), but these equiva-
lences will determine the same bijection on the level of isomorphism classes.
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Since it is only the isomorphism class of a rigid inner form that matters for
applications to endoscopy, the dependence of RI‘ZV(G) on the particular choice
of W is for us inessential, and we will drop the superscript W.

According to Corollary 3.8, for every inner twist ¢ : G — G’, there exists
z € ZYu — W,Z(Gger) — G) such that (¢, 2) is a rigid inner twist. If G
is split and F' is p-adic, then the map (¢, z) — 1 sets up a one-to-one cor-
respondence between the set of isomorphism classes of Rz, ) and and the
set of isomorphism classes of (ordinary) inner twists. Thus it appears natural,
at least in the p-adic case, to fix the finite central subgroup Z to be equal
to Z(Gqer). However, the additional flexibility that comes from not fixing Z
makes some arguments more transparent — in particular, parabolic descent.
(We refer to the discussion surrounding equation (5.14) for an example.) More-
over, as we will see in the next subsection, taking the limit over all Z allows
us to reconcile our notion of rigid inner twists for /' = R with the notion of
strong real forms defined in [ABV92]. For any fixed Z, the category RIz(G)
has only finitely many isomorphism classes by Lemma 3.4, so there are only
finitely many isomorphism classes of rigid inner twists realized by Z that map
to the same isomorphism class of a given (ordinary) inner twist. After taking
the limit over all Z, this is no longer true, and we obtain an infinite set of
isomorphism classes of rigid inner twists mapping to a given (ordinary) inner
twist. In practice it will often be enough to work with an arbitrary fixed Z as
long as one keeps track of how the constructions change upon enlarging 7.

A rigid inner twist (1, 2) is called pure if it is realized by {1}. The pure
rigid inner twists are of course just the pure inner twists introduced in [Vog93,
Def. 2.6] and further studied in [Kalll, §2]. In order to accommodate the fact
that for F = R, the set H} (v — W, Z — G) might be a proper quotient of
HY'(u — W,Z — @), we introduce the following notion: A K-group of rigid
inner twists of G is a set, each element of which is an isomorphism class of
rigid inner twists of G, and if we identify each such isomorphism class with an
element of H'(u— W, Z — @), then the resulting subset of H(u— W, Z —G)
is exactly one fiber of the map H'(u — W, Z — G) — HL (v —» W, Z — G).
Note that this is very close to the notion of a K-group studied in [Art99,
§1] and [SheO8b, §4]. In fact, if we choose a set of rigid inner twists that
represents the isomorphism classes comprising a given K-group of rigid inner
twists of GG, then the reductive groups we obtain comprise a K-group in the
sense of these references. The difference is, however, that in these references
the individual reductive groups are endowed with Galois 1-cocycles valued in
their simply connected covers that measure the relative position of one group
to another, while in our case the reductive groups are endowed with elements
of ZY(u — W,Z — G) that measure the absolute position of each reductive
group relative to the fixed group G. Moreover, it is possible that two distinct
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K-groups of rigid inner twists of G give rise to the same K-group in the earlier
sense. That is, the two K-groups of rigid inner twists are disjoint sets of
isomorphism classes of rigid inner twists, but give the same set of inner forms
of G. An example of this phenomenon is the quasi-split unitary group in an
odd number of variables with Z = {1}, where there are precisely two K-groups
of rigid inner twists, both of which contain the same inner forms.

Now let Z C G be a finite central subgroup of G defined over F', let
(Yi,2i) + G — Gy, i = 1,2, be two rigid inner twists realized by Z, and
let 0; € Gio(F). We say that (G1,vn,21,61) and (Ga, 12, 22,02) are (ratio-
nally) conjugate if there exists an isomorphism (f, g) : (¢1,21) — (2, 22) with
f(01) = d2. We say that (G1,v1,21,01) and (Ga, 9, 29, d2) are stably conju-
gate if ¢ (81) and 1y '(9) are G(F)-conjugate. If G is quasi-split, then for
any (G1,v1,z1,01), there exists 0 € Gg(F) such that (Gy,1,21,01) is sta-
bly conjugate to (G,id,1,0). This follows from [Kot82, Cor. 2.2] by taking
as T the centralizer of §; in G and taking as 7 the restriction to 7" of ¢ L
Now fix § € G4 (F') and consider the category Cz(d) whose objects are the
tuples (Gy,1,21,61), with z; € Z'(u — W, Z — @), which are stably con-
jugate to (G,id, 1,d), and where the set of morphisms from (G1, 1, 21,d1) to
(G, 12, 22, 02) is the set of isomorphisms (f, g) : (1, 21) — (9, 22) satisfying
f(91) = 02. The category Cz(d) can be seen as a generalization of the concept
of a stable conjugacy class, and the set of isomorphism classes of Cz(9) corre-
sponds to the set of rational classes inside the stable conjugacy class of §. Set
S = Cent(4,G). For an object 6, = (G1,1,21,81) € Cz(8), choose g € G such
that 11 (gdg~1) = 61. One checks easily that

[wi g 21 (w)w(g)] € Z'(u— W, Z — 9),

that the class of this element in H'(u — W,Z — S) is independent of the
choice of g, and that it remains unchanged if we replace (G1, 1, 21,d1) by an
isomorphic object of Cz(8). We call this class inv(, ;). The usual argument
(e.g., [Kalll, Lemma 2.1.5]) shows that the map

51 — inv(d, (51)

sets up a bijection between the set of isomorphism classes in Cz(8) and H'(u —
W,Z — S). Moreover, if we fix a rigid inner twist (G1,1,21), then this
map restricts to a bijection between the set of G1(F)-conjugacy classes of
elements §; € G (F) that are stably conjugate to § and the fiber of H!(u —
W,Z = S) = HY(u — W,Z — G) over the class of 1. If Z/ C G is a
finite central subgroup defined over F' and containing Z, there is an obvious
fully-faithful functor ¢ : Cz(6) — Cz/(0), as well as a natural embedding
H'(u - W,Z = S) = H'(u — W, Z' — S), and for any §; € Cz(0), the
image of inv(8,6;) in H'(u — W, Z" — S) coincides with inv(d,(1)). For
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this reason, we will not include Z in the notation for inv and will also identify
Cz(0) with its image under ¢.

It is useful to rephrase this discussion in an equivalent but slightly different
way. We continue to assume that G is quasi-split and consider only rigid
inner twists realized by the fixed finite central subgroup Z. If we are given a
torus S and a I-invariant G(F)-conjugacy class of embeddings S — G defined
over ' and having maximal tori of G as their images, we obtain for every
rigid inner twist (G’,, 2) a I'-invariant G'(F)-conjugacy class of embeddings
S —G'. Kottwitz’s result cited above shows that there exist embeddings S — G
defined over F' and belonging to the given G(F)-conjugacy class. Fix one such
n:S — G. For a given rigid inner twist (G',, z), there may or may not exist
embeddings of S into G’ defined over F' and belonging to the given G'(F)-
conjugacy class. Say 7' : S — G’ is one such; then there exists g € G(F) such
that 7 = 9o Ad(g)on. One checks in the same way as above that g~ z(w)w(g)
provides a well-defined element inv(n, ') € H'(u — W, Z — S) and that ' —
inv(n, n’) is a bijection between equivalence classes of embeddings of S into rigid
inner twists of G and the group H'(u — W, Z — S). Here two embeddings
m :S — Gpand ny : S — Go of S into the rigid inner twists (G, v, z;) are
equivalent if there exists an isomorphism (f,g) : (G1,%1,21) — (G2,19, 22)
such that ne = f ony. Moreover, for a fixed rigid inner twist (G, ), z), the set
of embeddings S — G’, taken up to G'(F)-conjugacy, is in bijection with the
fiber over the class of 2z of the map H'(u — W, Z — S) — H(u — W, Z — G)
induced by 7. In particular, such embeddings exist if and only if this fiber is
nonempty.

We define a representation of a rigid inner twist of G to be a tuple
(G1,1, z1,m1), where (11,21) : G — G; is a rigid inner twist and 7 is an ad-
missible representation of G1(F'). By an isomorphism (f, g) : (G1,v1,21,71) —
(G2, 12, 22, m2) we mean an isomorphism (f,g) : (¢1,21) — (¢2, 22) such that
the representations mo o f and 7 are isomorphic. (In the real case we take this
to mean infinitesimally equivalent.) According to Fact 5.1, two representations
(G1,v1,21,m) and (G, 1, 21, 7)) of the same rigid inner twist are isomorphic
if and only if 1 and 7} are isomorphic in the usual sense as representations of
G1(F). That this is not true if one uses the classical notion of inner twists was
observed by Vogan [Vog93, §2]. We will write IT"8(G) for the set of isomor-
phism classes of irreducible admissible representations of rigid inner twists of
G. The subsets Hflifit(G), H?egmp(G) and H;ig (G) will then be those consisting
of unitary, tempered, and essentially square-integrable representations.

Given 7 € II"8(Q), * = (G4, 1, 21, T1), the Harish-Chandra character O,
of m is an invariant distribution on G1(F), represented by a locally integrable
function. Any isomorphism of rigid inner twists (G1,v1,21) — (G2,v2, 22)
allows us to transport this distribution to Ga(F'). According to Fact 5.1, the
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resulting distribution on Go(F') is independent of the choice of isomorphism.
Thus we get a well-defined distribution on the F-points of any rigid inner twist
that is isomorphic to (G1, %1, 21), and we will use the symbol O to denote this
distribution.

5.2. Comparison between rigid inner twists of real groups and strong real
forms. In this section we consider the ground field FF = R. Let G be a con-
nected reductive group defined over R. In Chapter 2 of [ABV92], Adams,
Barbasch, and Vogan, define the notion of a strong real form of G(C) x I'.
This notion is a refinement of the notion of an inner twist of GG, and the pur-
pose of this section is to compare this notion with the notion of a rigid inner
twist of G. While the two notions are defined by completely different methods,
it turns out (quite surprisingly, as we find) that they are equivalent.

We begin by recalling from [ABV92, Def. 2.13] that a strong real form
of G(C) x I' is an element of the coset G(C) x ¢ of G(C) x I whose square
is a central element of finite order in G(C). Here o € I' denotes complex
conjugation. Such an element, usually denoted by § in loc. cit., leads to the
inner form of G with R-points given by

G(5,R) = {g € G(C)|0gs " = g}.

Two strong real forms 4,4’ are called equivalent if they are conjugate under
the action of G(C) on the coset G(C) x 0. The set of strong real forms can be
given the structure of a small category by setting Hom(d,46") = {g € G(C)|d' =

969~}

THEOREM 5.2. The category of strong real forms of G(C)x T is equivalent
to the category RI(G).

Proof. To construct an equivalence we will use the following objects tra-
ditionally associated with the fields R and C, which are also used in [ABV92].
First, we have a preferred primitive fourth root of unity ¢ € C. This element
leads, for any natural number n, to the function

kp(r - €?) = {L/?-e%, r € Rug, ¢ € [0,27).

We have k,(2)" = z and kp,(2)» = kn(2) for all z € C* and n|m. Second, the
relative Weil-group W¢ g has a traditional presentation [ABV92, Def. 5.2] as
the group C*X.I', where ¢ € Z2(I", C*) is the 2-cocycle satisfying c¢(o, o) = —1.
In particular, we have a section s : I' = W¢/g. We set £ = C for all k,
ng = k!, l = ky,, (¢ = id, s = s. The construction of Section 4.5 now gives
us an inverse system Wy = uy X, I" of extensions of I' by u;, whose limit is an
extension W of I' by u belonging to the isomorphism class given by &.

Let (¢,2) : G — G’ be a rigid inner twist of G. Thus z € Z'(up —
Wi, Z — Q) for some suitable finite central subgroup Z C G defined over R
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and some k. We define ¢, = z2(1X o) - 0 and claim that this is a strong real
form. Indeed, we have 62 = 2(1X0)-0(2(1X0)) = 2(&(0,0) K1), which is an
element of Z, thus a central element of finite order. Notice that the transition
map Wyy1 — Wy is given by xXo +— p(z)Xo, because the 1-cochain oy, defined
in (4.8) is trivial in this case. This shows that §, is independent of the choice
of k. It is clearly independent of the choice of Z. The assignment (i, z) — ¢,
is thus well defined and will be the equivalence of categories that we seek on
the level of objects. On the level of morphisms, this equivalence sends the
isomorphism (f, g) : (¢, 2) — (¢', 2') to the isomorphism g € Hom(d,, d,/). We
will now show that the resulting functor is indeed an equivalence of categories.
It is clear that it is fully faithful, with the inverse of (f,g) — ¢ being given
by g — (¢ 0 Ad(g) o ¥~1, g). To show essential surjectivity, let § € G(C) x o
be a strong real form. Then §2 € Z(G)(C) is of finite order and, moreover,
0(6%) = 6-6%-61 = §2 shows that it actually belongs to Z(G)(R). Let Z C G
be the subgroup generated by 2. This is a finite central subgroup of G defined
over R. If n is a multiple of |Z|, we have the isomorphisms

Hom(u(C/R,rw Z)F — Homalg.grp(/lna Z)NC/R — Z(R)’

the first one being (3.3), and the second one being ¢ +— (;S(e%). The resulting
system of isomorphisms is compatible with the maps p : uc/rm — uc/rpn
defined by (3.2) for n|m and induces an isomorphism

Hom(u, Z)" — Z(R).

Let ¢s € Hom(u, Z)' be the preimage of §2 under this isomorphism. We choose
k so that ny, is a multiple of |Z| and define z5; : Wy, = up K¢, I' = G(C) by
zsk(z 1) = ¢ps(x) € Z and 25, (1K 0) = do~! € G(C). The inflation z; of 25
to W does not depend on k, and we claim that it belongs to Z!'(u — W, Z —
G). For this, we compute

sk (18 0) - o(z0(lR o)) = 62 = 0(8%) = o (¢5 (56 (ﬁ))) ,

and recalling the definition (4.7) of &, we see

64(0,0) = s U.](0,0) = diel,0,0)7" = () =0 <(€)5> |

We conclude that z5 (1 X o) - o(z5,(1 X o)) = ¢5(&k(0,0)), and this is enough
to establish that zs € Z1(W,G). Tt is then evident from the construction that
in fact z5 € Z'(u — W, Z — G). Letting G° be the twist of G by the image of
zs in ZY(T', Gaq), we have that (id, z5) : G — G° is a rigid inner twist and that
our functor maps it to 4. O
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5.3. Refined endoscopic data and transfer factors. Let [Z — G] € R, and
let G be a complex Langlands dual group for G. The isogeny G — G duahzes

to an isogeny G — G. Let Z be the kernel of the latter isogeny. We let Z (G)
denote the preimage of Z (G) in Z (G) In this way one obtains a functor

R = FinAbGrp,  [Z — G = 10(Z(G))",
where * denotes Pontryagin-dual.

PROPOSITION 5.3. There is a functorial embedding

—~

Yito(Z = G) = m(Z(G)H)*.

When G is a torus, it is an isomorphism. For general G, this embedding is
an isomorphism when F' is p-adic and when F = R its image consists of those

characters of mo(Z(G)") that kill the image of the norm map N¢/g : Z(G) —
Z(G).

Proof. For every maximal torus S C G, there exists a canonical embed-
ding Z(G) — S and analogously a canonical embedding Z(G) — S. These

embeddings provide the identifications
X (9)
X* (Ssc)

X..()
X*(Ssc) .

—~

X*(2(G)) = and X" (Z(Q)) =

—~.

Since Z(i)+ is the fiber product of Z(é) with Z(G) over Z(G), we see that

= X.(S)
X2EN) = X571 X5

and the elements on the left that kill the connected component of the identity
are precisely the torsion elements on the right. On the other hand, for every
finite Galois extension E/F splitting S, we have the obvious embedding

(X (9)/Xu(Ssc)] X.(S5)
I(X*(S)/X*(Ssc)) IX*(S) +X*(Ssc)

tor

The image of this egbedding/\consists of those characters of Z(G)™ that kill
the image of N : Z(G) — Z(G). Assume that F is p-adic. For varying E/F,
the above displayed embeddings are compatible and lead to an embedding of
the colimit over all E/F of the left-hand side into the right-hand side. This
embedding is in /f\act surjggtive, because for a large enougliextension E/F, the
image of N : Z(G) — Z(G) is contained in Z(G) © = Z(G)™°. If we drop the
assumption that F' is p-adic and instead assume that G is a torus, then the
surjectivity of same embedding is stated in Fact 4.1. O
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COROLLARY 5.4. There is a pairing
H'(u—W,Z = G) @ m(2(G)") = Q/Z,

which is functorial in [Z — G] € R. Its left kernel is trivial. If F' is p-adic or
G is a torus, then its right kernel is also trivial; i.e., it is perfect. If Z = {1},
this pairing coincides with the one defined by Kottwitz in [Kot86].

Proof. Only the last statement requires proof. For this, use that both
pairings coincide for tori and are functorial with respect to the inclusion S C G
of a fundamental maximal torus. O

In the situation that Z = Z(Gqer), we have G = Gaq X G/Gqer and conse-

o~ —

quently G = [G]sc x Z(G)°. Note that if G is split, this implies m(Z(G)") =
Z([G)se), which is in accordance with Corollary 3.8.

Our next task is to show how any fixed normalization of the endoscopic
transfer factor of Langlands and Shelstad [L.S87] for the group G extends to a
normalization of the transfer factor for any rigid inner twist of G. Before we
can address this issue, we need a slight refinement of the notion of endoscopic
datum. We begin by recalling that notion, following [L.S87, §1.2] and [KS99,
§2.1]. An endoscopic datum for G is a tuple (H,H,s,n), where H is a quasi-
split connected reductive group defined over F'; H is a split extension of Wg
by H such that the homomorphism Wr — Out(ﬁ ) provided by this extension
is identified with the homomorphism Wz — Out(H) provided by the rational
structure of H via the natural isomorphism Out(H) = Out(H); s € Z(H);
n:H — LG is an L-embedding mapping H isomorphically to Cent(n(s), @)O
and s € Z(H)' -n~1(Z(G)). An isomorphism from (H,H, s, n) to another such
tuple (H',H/, s',) is an element g € G satisfying the following two conditions.
First, gn(H)g~! = o/ (H'). Write 8 : H — H’ for the isomorphism determined
by Ad(g). The second condition is that $(s) and s’ become equal modulo
Z(H"e = Y(Z(G)).

Given an endoscopic datum (H,H,s,n) of G, we may replace it by an
equivalent one and assume that s € Z (ﬁ )T, Furthermore, there is a canonical
embedding Z(G) — H,Aand we may form H = H/Z. The isogeny H — H
dualizes to an isogeny H — H, and as before we obtain Z(H)" that is the
preimage of Z (ﬁ )I' under that isogeny.

We now propose the following refinement of the notions of endoscopic data
and of an isomorphism of endoscopic data. A refined endoscopic datum s a
tuple (H,H,$,m) where H and H are as before; § is an element of Z(H)™T,
whose image in Z (ﬁ )I' we denote by s; and 7 is again as before. It is ob-
vious that a refined endoscopic datum (H, M, $,n) gives rise to an (ordinary)
endoscopic datum (H,H,s,n), and we argued that up to equivalence every
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(ordinary) endoscopic datum comes from a refined one. An isomorphism of
refined endoscopic data between (H,H,$,n) and (H',H',§',n’) is an element
g € @ satisfying the following two conditions. First, gn(H)g~* = n/(H'). Write
B: H — H' for the isomorphism detemlizled by Ad(g). This isomorphism lifts

uniquely to an isomorphism 3 : H — H'. The second condition is that B(8)

and & become equal in mo(Z(H')T).

Clearly, an isomorphism of refined endoscopic data induces an isomor-
phism between the corresponding ordinary endoscopic data. However, the
converse is not true — two nonisomorphic refined endoscopic data may give
isomorphic ordinary endoscopic data. Indeed, the requirement imposed on an
isomorphism of ordinary endoscopic data is that 3(s) and s be equal in a
quotient of my(Z (ﬁ )1), while the requirement for an isomorphism of refined

endoscopic data is that 5($) and &' are equal in 7o(Z(H)™T), and the latter
surjects onto mo(Z(H)T) with finite kernel. It follows that every isomorphism
class of ordinary endoscopic data can be refined in only finitely many ways up
to isomorphism. We will see that this new notion of an isomorphism is nec-
essary in order for the value of the endoscopic transfer factor we are about to
define to be invariant under isomorphisms of endoscopic data. This is related
to the problem discovered by Arthur [Art06, §3] that an absolute transfer fac-
tor for a nonquasi-split connected reductive group will not be invariant under
all automorphisms of the (ordinary) endoscopic datum. Our stricter notion of
an isomorphism resolves this problem.

We now proceed to show how rigid inner twists provide the means to
extend normalizations of transfer factors. We let G be a connected reductive
group defined and quasi-split over F', Z a finite central subgroup defined over
F, and (¢,z) : G — G’ a rigid inner twist of G realized by Z. Let ¢ =
(H,H,$,m) be a refined endoscopic datum for G, and let ¢ = (H,H,s,n) be
the corresponding ordinary endoscopic datum. Let 3 = (Hj,n;) be a z-pair for
e. We recall [KS99, §2.2] that Hj is an extension of H by an induced torus,
and n; : H — LHzj is an L-embedding extending the embedding H — fIZ, dual
to the surjection H; — H. Then this data (without the element z) gives rise
to relative transfer factors for both G and G’, which are functions

Ale,3] : Hy g—s(F) X G(F) X Hy g—e(F) x Ge(F) = C,
Ale,3,9) : Hyg—s(F) x GL(F) x Hy o (F) x G4.(F) — C.

These functions are constructed in [LS87]. See, in particular, [LS87, §3.7],
where their values are denoted by A(ym,va;YH,7c). We have added the
notation in brackets to indicate the additional data they depend on. Recall
that Gy, is the set of strongly-regular semi-simple elements. To explain H; ¢,
recall that to any maximal torus S C G corres