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On the number of generators of ideals
in polynomial rings

By Jean Fasel

Abstract

For an ideal I in a noetherian ring R, let µ(I) be the minimal number

of generators of I. It is well known that there is a sequence of inequal-

ities µ(I/I2) ≤ µ(I) ≤ µ(I/I2) + 1 that are strict in general. However,

Murthy conjectured in 1975 that µ(I/I2) = µ(I) for ideals in polynomial

rings whose height equals µ(I/I2). The purpose of this article is to prove

a stronger form of the conjecture in case the base field is infinite of char-

acteristic different from 2: Namely, the equality µ(I/I2) = µ(I) holds for

any ideal I, irrespective of its height.
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Introduction

Let R be a ring, I ⊂ R a finitely generated ideal, and let µ(I) be the

minimal number of generators of I (as a R-module). In general, computing

µ(I) is an extremely difficult problem, even in the case of a polynomial ring

k[T1, . . . , Td] over a field k. Indeed, Macaulay showed that given any integer

r ≥ 4, there exists a prime ideal p ⊂ C[T1, T2, T3] of height 2 such that µ(p) ≥ r
[Abh73, Theorem]. The situation is much better when one assumes that the

variety defined by p ⊂ k[T1, . . . , Td] is regular. In that case, Forster proved in

[For64, §3, Satz 5] that any such ideal is generated by at most d+1 elements, a

result later improved to µ(p) ≤ d by Sathaye [Sat78, Introduction, Corollary] in

case the base field is infinite and Mohan Kumar [MK78, Th. 4] in full generality.

Now let R be a noetherian ring, and let I ⊂ R be an ideal. It is easy to

see that µ(I) ≥ µ(I/I2), and an easy application of Nakayama’s lemma shows
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that there is an inequality µ(I) ≤ µ(I/I2) + 1. The example of a real maximal

ideal in the real algebraic circle shows that this inequality is, in general, strict.

In case R = k[T1, . . . , Td] is a polynomial ring over a field k, it was however

conjectured in 1975 by M. P. Murthy in [Mur75, Question (b)] that the above

inequality is actually an equality under some additional hypotheses.

Conjecture 1 (Murthy). Let k be a field, and and let R = k[T1, . . . , Td]

for some d ∈ N. Let n ∈ N , and let I ⊂ R be any ideal of height n such that

µ(I/I2) = n. Then µ(I) = µ(I/I2) = n.

This conjecture was resolved in the affirmative in 1978 by N. Mohan Ku-

mar in case n := µ(I/I2) ≥ dim(R/I) + 2 in [MK78, Th. 5], but the general

case has remained open since then. The purpose of this article is to prove

a stronger form of the conjecture in case k is infinite having characteristic

different from 2.

Theorem 2. If k is an infinite field with char(k) 6=2 and R = k[T1, . . . , Td]

for some d ∈ N, then µ(I) = µ(I/I2) holds for any ideal I ⊂ R.

Observe that there are no assumptions on the height of I and that I/I2

can be generated by more elements than the height of I. Moreover, the result

can easily be generalized to polynomial rings over regular local rings essentially

of finite type over an infinite field of characteristic different from 2.

The method we use to establish our main theorem appears to be new.

Indeed, we use naive homotopy theory and unstable K-theory of orthogo-

nal groups, as we now explain. If I ⊂ R is an ideal and ωI : (R/I)n →
I/I2 is a surjective homomorphism, then it is easy to see that there ex-

ist (a1, . . . , an, s) ∈ I and b1, . . . , bn ∈ R such that I = 〈a1, . . . , an, s〉 and

s(1− s) =
∑n
i=1 aibi (see, e.g., [MK77, Lemma] or Lemma 2.0.1 below). Such

an element (s, a1, . . . , an, b1, . . . , bn) corresponds to a morphism of schemes

SpecR → Q2n, where Q2n is the smooth hypersurface in A2n+1
Z given by the

equation
∑
xiyi = z(1− z). However, this morphism depends on many choices

and is not uniquely determined by the pair (I, ωI). The situation improves if

one considers morphisms up to naive homotopies.

Recall that two morphisms f0, f1 : SpecR → Q2n are said to be naively

homotopic if there exists F : SpecR[T ] → Q2n whose restrictions at T = 0

and T = 1 are, respectively, f0 and f1. Considering the equivalence rela-

tion on Hom(SpecR,Q2n) generated by naive homotopies, we obtain a set

HomA1(SpecR,Q2n). We prove that the assignment sending a pair (I, ωI) to

the class of (s, a1, . . . , an, b1, . . . , bn) in the set HomA1(SpecR,Q2n) is well de-

fined. Following Murthy ([Mur94, §5]), we write s(I, ωI) for this class and

call it the universal Segre class of the pair (I, ωI). This terminology can be

justified as follows.
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Let us consider contravariant pointed-set valued functors F associating

with each smooth affine scheme X = SpecR a pointed set F (X) and with each

pair (I, ωI) as above an element sF (I, ωI) ∈ F (X). Suppose moreover that F

is homotopy invariant, i.e., that the map F (X)→ F (X × A1) induced by the

projection is a bijection, and that sF (I, ωI) = ? (where ? is the base point of

F (X)) if there is a commutative diagram

Rn
Ω //

��

I

��
(R/I)n

ωI

// I/I2,

with Ω surjective. As an example, one can consider the functor X 7→ CHn(X)

and the Segre class considered by Murthy in [Mur94, §5] following Fulton’s

construction ([Ful98, Ch. 4]). It is easy to check that the functor X 7→
HomA1(X,Q2n) and the universal Segre class defined above is initial among

pairs (F, sF ); i.e., any such pair (F, sF ) factors through the one we define.

In view of this property, one could state the following principle: the uni-

versal Segre class should be the precise obstruction to lifting ωI to a surjective

homomorphism Ω : Rn → I. We are not able to establish this principle in

complete generality, but we prove a strong enough form to resolve Murthy’s

conjecture. More precisely, let R be a smooth k-algebra over an infinite field

k having characteristic different from 2. It is easy to prove that Q2n(R) is

isomorphic to the set of elements v := (s, a1, . . . , an, b1, . . . , bn) in R2n+1 such

that q2n+1(v) = 1, where q2n+1 is the quadratic form z2 +
∑
xiyi. If O2n+1(R)

denotes the orthogonal group of q2n+1 and EO2n+1(R) its elementary sub-

group (see Section 1), then by transport of structure, both groups act on

Q2n(R). We can then consider the set of orbits Q2n(R)/EO2n+1(R) under this

action and we prove that there is a natural bijection Q2n(R)/EO2n+1(R) '
HomA1(SpecR,Q2n) provided n ≥ 2. The advantage of the left-hand term

over the right-hand term is that EO2n+1(R) is generated by elementary trans-

formations that are easier to understand than abstract homotopies.

Given v = (s, a1, . . . , an, b1, . . . , bn) ∈ Q2n(R), we say that v satisfies the

strong lifting property provided there exists a sequence µ1, . . . , µn ∈ R such

that the ideal I = 〈s, a1, . . . , an〉 is actually generated by n explicit elements,

namely, a1 + µ1s
2, . . . , an + µns

2 for some µ1, . . . , µn ∈ R. We prove next that

the strong lifting property is preserved under the action of EO2n+1(R) and

therefore that v satisfies the strong lifting property if and only if it is in the

orbit of v0 := (0, . . . , 0) ∈ Q2n(R). In the final section, we put everything

together by observing that the set Q2n(k[T1, . . . , Tm])/EO2n+1(k[T1, . . . , Tm])

is reduced to a point.
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Let us now spend a few lines on the ideas underlying the results of this

paper. Let H(k) be the A1-homotopy of schemes as developed by Morel and

Voevodsky ([MV99]). One of the main ideas of this category is to give a refined

notion of homotopy that allows us to import the full strength of homotopy

theory into algebraic geometry. In particular, there exists for any smooth k-

schemes X and Y a map HomA1(X,Y )→ HomH(k)(X,Y ), which is in general

neither injective nor surjective. However, it follows from [AHW15, Th. 4.2.2]

that this map is a bijection in case X is affine and Y = Q2n. In other words,

the naive notion of homotopy and the refined one coincide in the framework

of this paper. Moreover, the scheme Q2n is isomorphic in H(k) to a motivic

sphere by [ADF14, Th. 2.2.5], and thus the obstruction set we consider can be

thought of as a motivic cohomotopy set.

Besides the motivic motivations just sketched, which will be developed

elsewhere, one can try to extend the results in different directions. First, it

seems likely that the universal Segre class can actually be defined in the orbit

set Q2n(R)/EO2n+1(R) for any (Noetherian) ring R and that it is the precise

obstruction for ωI to lift to a surjection. Second, it would be nice to get rid

of the assumptions that k is infinite and of characteristic different from 2 in

Theorem 3.2.9.

Notation. Let R be a ring, and let a = (a1, . . . , am) ∈ Rm. We denote by

〈a〉 ⊂ R the ideal generated by a1, . . . , am.

Acknowledgments. It is a pleasure to thank Satya Mandal for very useful
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mistake in a previous version of this article. I am grateful to the referee for a
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alternative approach to remove this assumption was worked out by S. Mandal

prior to the referee’s comments in [Man15]. I am also indebted to Wilberd

van der Kallen for references, to Aravind Asok for several helpful discussions

and numerous remarks, and to Mrinal Das and Neena Gupta for some useful

remarks. Murthy’s conjecture was part of the problems discussed during the

conference “Projective modules and A1-homotopy theory” at AIM, Palo Alto

(http://aimath.org/pastworkshops/projectiveA1.html), and the author would

like to thank all the participants for stimulating conversations.

1. Quadrics and naive homotopies

Let k be a field, and let Schk be the category of separated schemes of

finite type over k. Given objects X,Y ∈ Schk, recall that two morphisms

f0, f1 : X → Y are said to be naively homotopic if there exists a morphism

F : X × A1 → Y such that F (0) = f0 and F (1) = f1. We can consider the

http://aimath.org/pastworkshops/projectiveA1.html
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equivalence relation on HomSch(X,Y ) generated by the naive homotopies, and

we write HomA1(X,Y ) for the set of classes under this relation.

Definition 1.0.1. Write π0(Y ) for the presheaf (of sets)X 7→ HomA1(X,Y ).

The following lemma can be found in [Swa72, Lemma 4.1].

Lemma 1.0.2. For any scheme X , the projection X × A1 → X yields a

bijection

π0(Y )(X)→ π0(Y )(X × A1).

Proof. As π0(Y ) is a presheaf, we see that the map

π0(Y )(X)→ π0(Y )(X × A1)

induced by the projection is split injective. Now, the multiplication morphism

m : A1 × A1 → A1 shows that the identity on A1 is naively homotopic to the

composite i0 ◦ p, where i0 : Spec k → A1 is the inclusion at T = 0. If F ∈
HomSch(X×A1, Y ), then G := F ◦(1X×m) ∈ HomSch(X×A1×A1, Y ) satisfies

G(1) = F and G(0) = F ◦i0◦p, thus showing that π0(Y )(X)→ π0(Y )(X×A1)

is also surjective. �

Suppose now that k is of characteristic different from 2. Let q2n be the

quadratic form on k2n given by the equation
∑n
i=1 xiyi and q2n+1 be the qua-

dratic form on k2n+1 given by the equation
∑n
i=1 xiyi+z2. Let O2n and O2n+1

be the algebraic groups of invertible matrices preserving respectively q2n and

q2n+1, and let SO2n and SO2n+1 be their subgroups of matrices of determi-

nant 1. Embedding k2n into k2n+1 as the first 2n coordinates yields embeddings

O2n → O2n+1 and SO2n → SO2n+1; we can thus consider the quotient presheaf

defined on k-algebras by R 7→ SO2n+1(R)/SO2n(R). If Q′2n ⊂ A2n+1 is the

smooth affine k-scheme defined by the equation q2n+1 = 1, then we see that

v0 := (0, . . . , 0, 1) ∈ Q′2n(k), and thus the assignment M 7→Mv0 defines a map

SO2n+1(R) → Q′2n(R) for any k-algebra R that is constant on SO2n(R). We

therefore obtain a morphism of presheaves p2n+1 : SO2n+1/SO2n → Q′2n.

Lemma 1.0.3. Let R be a local k-algebra and n ≥ 1. The map p2n+1(R) :

SO2n+1(R)/SO2n(R)→ Q′2n(R) is a bijection.

Proof. Let v ∈ Q′2n(R). Then the restrictions q|Rv and q|Rv0 of q to Rv

and Rv0 are both nondegenerate. It follows from [Kne02, Ch. I, (4.4) and

(4.5)] that there exists an orthogonal transformation M ∈ O2n+1(R) such that

Mv = v0. Multiplying if necessary by a reflection fixing both v and v0, we

may suppose that M ∈ SO2n+1(R) and p2n+1 is then surjective. To conclude,

it suffices to check that the stabilizer of v is isomorphic to SO2n(R), which is

obvious. �
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As a consequence, we see that the SO2n-torsor p2n+1 : SO2n+1 → Q′2n
is Zariski locally trivial. This will allow us to give another description of

the presheaf of sets π0(Q′2n), but we first need the definition of the subgroup

EO2n+1(R) ⊂ SO2n+1(R). It is the subgroup generated by the following el-

ementary operations changing exactly two entries and leaving the other fixed

(e.g. [CF16, §6.1, p. 117]):

(1) for any λ ∈ R and 1 ≤ i ≤ n,

(s, a1, . . . , an, b1, . . . , bn) 7→(s+ λbi, a1, . . . , ai−1, ai − 2λs− λ2bi, ai+1, . . . , bn);

(2) for any λ ∈ R and 1 ≤ i ≤ n,

(s, a1, . . . , an, b1, . . . , bn) 7→ (s+ λai, a1, . . . , bi−1, bi − 2λs− λ2ai, bi+1, . . . , bn);

(3) for any λ ∈ R and 1 ≤ i, j ≤ n with i 6= j,

(s, a1, . . . , an, b1, . . . , bn)

7→ (s, a1, . . . , ai−1, ai + λaj , ai+1, . . . , bj−1, bj − λbi, bj+1, . . . , bn);

(4) for any λ ∈ R and 1 ≤ i < j ≤ n with i 6= j,

(s, a1, . . . , an, b1, . . . , bn) 7→(s, a1, . . . , ai−1, ai + λbj , . . . , aj − λbi, aj+1, . . . , bn);

(5) for any λ ∈ R and 1 ≤ i < j ≤ n with i 6= j,

(s, a1, . . . , an, b1, . . . , bn) 7→(s, a1, . . . , bi−1, bi + λaj , . . . , bj − λai, bj+1, . . . , bn).

Let now SKO1(2n+ 1) be the presheaf defined on k-algebras R by

SKO1(2n+ 1)(R) := SO2n+1(R)/EO2n+1(R).

The following theorem gathers the results of several authors.

Theorem 1.0.4. Suppose that k is a field with char(k) 6= 2 and let

n ≥ 2. Then the subgroup EO2n+1(R) ⊂ SO2n+1(R) is normal and the

presheaf SKO1(2n+1) is homotopy invariant for regular k-algebras essentially

of finite type. In particular, we have SO2n+1(k[X1, . . . , Xm]) = SO2n+1(k) ·
EO2n+1(k[X1, . . . , Xm]) for any m ≥ 1.

Proof. The statement on the normality of EO2n+1(R) in SO2n+1(R) can

be found in [Tad86, Th. 0.3]; see also [VP07, Lemma 4] for additional refer-

ences. The homotopy invariance of SKO1(2n + 1) can be found in [Sta14,

Th. 1.3] in case the base field is perfect. However, as explained in the intro-

duction of [Sta14, Th. 1.3], an argument of T. Vorst shows that in case R is

essentially of finite type over a nonperfect field k one can reduce to the case

k = Fp, which is perfect ([Vor81, proof of Th, 3.3]). �

Remark 1.0.5. The restriction n ≥ 2 is necessary for both the normality

of the elementary subgroup and the homotopy invariance in view of [Coh66,

discussion after Prop. 7.3].
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As a subgroup of SO2n+1(R), the group EO2n+1(R) acts on Q′2n(R),

and it is easy to check that its generators are naively homotopic to iden-

tity. Consequently, we obtain a surjective map ϕn(R) : Q′2n(R)/EO2n+1(R)→
π0(Q′2n)(R) for any k-algebra R.

Theorem 1.0.6. Let k be an infinite field with char(k) 6= 2, and let R be

an essentially smooth k-algebra. If n ≥ 2, then the map

ϕn(R) : Q′2n(R)/EO2n+1(R)→ π0(Q′2n)(R)

is a bijection.

Proof. We follow the proof of [Fas11, Th. 2.1]. From Lemma 1.0.3, we

know that the SO2n-torsor

SO2n+1 → Q′2n
is Zariski locally trivial. This torsor corresponds to a universal orthogonal mod-

ule (E, q) over Q′2n of rank 2n such that (E, q) ⊥ (OQ′2n , q0) (where q0(x) = x2)

is isometric to the trivial quadratic module (O2n+1
Q′2n

, q2n+1). If α ∈ Q′2n(R[T ]),

then the pull-back of (E, q) along the map α : SpecR[T ]→ Q′2n is a quadratic

module (P, q) on R[T ] that is Zariski-locally trivial. It follows from [AHW15,

Th. 3.3.6] that P is extended, i.e., that (P, q) ' (P (0), q(0)). Now, (P (0), q(0))

is the bundle obtained by pulling back along α(0), and it follows that there is an

automorphism (P (0), q(0)) ⊥ (R, q0) ' (R2n+1, qh) that we can extend to R[T ].

The same argument as in [Fas11, Th. 2.1] shows that we have an automorphism

between α(0) and α whose image at T = 0 is the identity. We conclude from

the above theorem that α = α(0) ·M for some M ∈ EO2n+1(R[X]). It follows

that α(1) = α(0)M(1), and the result is proved. �

Remark 1.0.7. If n = 0, the statement of the theorem is still valid for

trivial reasons but the theorem fails for n = 1 because of Cohn’s example once

again. To get the correct statement in that case, one would have to consider

the subgroup of matrices in SO3(R) that are homotopic to the identity.

2. The universal Segre class

Let Q2n be the smooth quadric in A2n+1
Z defined by the equation

∑n
i=1 xiyi

= z(1 − z). If R is a ring, then by definition an element v ∈ Q2n(R) cor-

responds to a sequence of elements (x1, . . . , xn, y1, . . . , yn, z) ∈ R satisfying

the above equation. Given v ∈ Q2n(R), we can consider the ideal I(v) :=

〈x1, . . . , xn, z〉 ⊂ R. If we write xi for the image of xi under the map I(v) →
I(v)/I(v)2, then the quotient I(v)/I(v)2 is generated by {x1, . . . , xn}, yielding

a surjective homomorphism ωv : (R/I(v))n → I(v)/I(v)2.

Conversely, any finitely generated ideal I in a ring R endowed with a

surjective homomorphism ωI : (R/I)n → I/I2 yields an element of Q2n(R) as

shown by the following lemma (see [MK77, Lemma]).
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Lemma 2.0.1. Let R be a commutative ring, and let I ⊂ R be a finitely

generated ideal. Given elements a1, . . . , an ∈ I such that I/I2 = 〈a1, . . . , an〉,
there exist an element s ∈ I and elements b1, . . . , bn ∈ R such that I =

〈a1, . . . , an, s〉 and s(1− s) =
∑
aibi.

Proof. By construction, C := I/〈a1, . . . , an〉 is a finitely generated R-

module such that C/IC = 0. It follows from Nakayama’s lemma that there

exists s ∈ I such that (1 − s)C = 0. For any c ∈ I, we find, in particular,

that c =
∑
λiai + cs and therefore I = 〈a1, . . . , an, s〉. Setting c = s gives the

existence of the bi. �

Given a pair (I, ωI), we then obtain an element

s(I, ωI) := (a1, . . . , an, b1, . . . , bn, s)

in Q2n(R) by choosing lifts a1, . . . , an of the generators of I/I2 given by ωI and

applying the above lemma. There are many choices of such (2n + 1)-tuples,

and s(I, ωI) is therefore not well defined, but our aim is now to show that these

choices do not matter if we consider elements of Q2n(R) up to naive homotopy.

Theorem 2.0.2. Let R be a noetherian ring, n ∈ N be an integer, I ⊂ R
be an ideal, and ωI : (R/I)n → I/I2 be a surjective homomorphism. Then the

class of s(I, ωI) in π0(Q2n)(R) is independent of any choices.

The proof of the theorem will consist of several lemmas.

Lemma 2.0.3. Let a= (a1, . . . , an), b= (b1, . . . , bn) and b′ := (b′1, . . . , b
′
n)

be elements of Rn. Let s ∈ R be such that s(1 − s) = abt = a(b′)t. Then the

classes of (a, b, s) and (a, b′, s) are the same in π0(Q2n)(R).

Proof. Consider the morphism a : Rn → R given by c 7→ act. Observe

that d = b′− b belongs to the kernel of this map. Setting B := b+Td ∈ R[T ]n,

we get B(0) = b and B(1) = b′. Moreover, aBt = s(1 − s), and therefore

(a,B, s) can be seen as an element of Q2n(R[T ]). As B(0) = b and B(1) = b′,

the claim follows. �

Lemma 2.0.4. Let I ⊂ R be an ideal, a1, . . . , an ∈ I and a = (a1, . . . , an)

∈ Rn. Suppose that there exist s, s′ ∈ I such that (1 − s)I ⊂ 〈a1, . . . , an〉 and

(1−s′)I ⊂ 〈a1, . . . , an〉. For any choices of b = (b1, . . . , bn) and b′ = (b′1, . . . , b
′
n)

such that (1 − s)s = abt and (1 − s′)s′ = a(b′)t, the classes of (a, b, s) and

(a, b′, s′) are the same in π0(Q2n)(R).

Proof. Let b = (b1, . . . , bn) and c = (c1, . . . , cn) ∈ Rn be such that

(1− s)s = abt,

(1− s′)s = act.
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As a consequence, abt + s2 = act + s′s. Consider next the morphism (a, s) :

Rn+1 → R defined by v 7→ (a, s)vt, and observe that (b− c, s− s′) belongs to

the kernel of this map. Let S(T ) = s′ + T (s− s′). As s′ and (s− s′) are in I,

we see that S(T ) ∈ I[T ]. By construction, we have S(0) = s′ and S(1) = s and

we now check that (1 − S(T ))I[T ] ⊂ 〈a1, . . . , an〉. Since I = 〈a1, . . . , an, s〉, it

suffices to check that (1 − S(T ))s ∈ 〈a1, . . . , an〉. As (a, s)(b − c, s − s′)t = 0,

we have s(s− s′) ∈ 〈a1, . . . , an〉. Now

(1− S(T ))s = (1− s′ − T (s− s′))s = (1− s′)s− Ts(s− s′).

Since (1− s′)s ∈ 〈a1, . . . , an〉, we see that (1−S(T ))I[T ] ⊂ 〈a1, . . . , an〉. It fol-

lows that there exists B(T ) = (B1(T ), . . . , Bn(T )) such that (a,B(T ), S(T )) ∈
Q2n(R[T ]). By definition, we get that the classes of (a,B(0),S(0))=(a,B(0),s′)

and (a,B(1), S(1)) = (a,B(1), s) are the same in π0(Q2n)(R). The result now

follows from Lemma 2.0.3. �

Lemma 2.0.5. Let I ⊂ R be an ideal, and let a = (a1, . . . , an) and a′ =

(a′1, . . . , a
′
n) be such that

a1, . . . , an, a
′
1, . . . , a

′
n ∈ I and ai − a′i ∈ I2

for any i = 1, . . . , n. Suppose moreover that I/I2 = 〈ā1, . . . , ān〉. For any

choice of s, s′ ∈ I , b = (b1, . . . , bn) and b′ = (b′1, . . . , b
′
n) such that abt =

s(1− s) and a′(b′)t = s′(1− s′), the classes of (a, b, s) and (a′, b′, s′) are equal

in π0(Q2n)(R).

Proof. For any i = 1, . . . , n, let ci = a′i − ai ∈ I2 and A(T ) = (a1 + Tc1,

. . . , an + Tcn). As I/I2 = 〈ā1, . . . , ān〉, we deduce that the classes of a1 +

Tc1, . . . , an + Tcn modulo I[T ]2 generate I[T ]/(I[T ])2. It follows that there

exist S(T ) ∈ I[T ] and B[T ] ∈R[T ]n such that A(T )B(T )t = S(T )(1 − S(T )).

By definition, the classes of

(A(0), B(0), S(0))=(a,B(0), S(0)) and (A(1), B(1), S(1)) = (a′, B(1), S(1))

coincide in π0(Q2n)(R). The result now follows from Lemma 2.0.4. �

Proof of Theorem 2.0.2. Then let (I, ωI) be the pair of the statement. The

procedure described in Lemma 2.0.1 to associate s(I, ωI) to this pair depended

a priori on the choice of lifts (a1, . . . , an) of generators of I/I2, then on the

choice of an element s ∈ I such that (1 − s)I ⊂ 〈a1, . . . , an〉 and finally on

b1, . . . , bn such that s(1 − s) =
∑
aibi. The different choices are addressed in

Lemma 2.0.5. �

Definition 2.0.6. Let I ⊂ R be an ideal and ωI : (R/I)n → I/I2 be a

surjective homomorphism. We call universal Segre class of (I, ωI) the class of

s(I, ωI) in the pointed set π0(Q2n)(R).
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3. Main theorems

Our aim in this section is to prove that the universal Segre class of an

ideal vanishes in π0(Q2n)(R) if and only if the surjection ωI lifts (in a strong

sense) to a surjection Rn → I. We begin with a technical lemma (Lemma 3.1.2

below), whose proof is due to Satya Mandal.

3.1. Quillen patching and a lifting lemma.

Lemma 3.1.1. Let R be a commutative ring, and let B be a (not neces-

sarily commutative) R-algebra. Let f ∈ R and θ ∈ (1 +Bf [T ])×. There exists

then an integer k ∈ N such that for any g1, g2 ∈ R with g1 − g2 ∈ fkR, there

is a unit ψ ∈ (1 + TB[T ])× such that ψf (T ) = θ(g1T )θ(g2T )−1. Moreover, if

g1 − g2 ∈ fk+rR for some r ≥ 1 then ψ ∈ (1 + f rTB[T ])× by construction.

Proof. See [Qui76, Lemma 1]. �

Lemma 3.1.2. Let R be a regular k-algebra, and let s ∈ R and A1, . . . , An,

B1, . . . , Bn ∈ R[T ] such that V = (s,A1, . . . , An, B1, . . . , Bn) ∈ Q2n(R[T ]).

Set I(V ) = 〈s,A1, . . . , An〉, and assume that I(V )(0) = 〈a1, . . . , an〉 where

ai = Ai(0). Then I(V ) = 〈C1, . . . , Cn〉 for some C1, . . . , Cn ∈ R[T ] such that

Ai − Ci ∈ s2R[T ].

Proof. As s(1− s) =
∑
AiBi, we see that I(V )1−s = 〈A1, . . . , An〉, and it

follows that the map

f1 : (R1−s[T ])n → I(V )1−s

defined by ei 7→ Ai is surjective. On the other hand, we have I(V )s = Rs[T ]

and, in particular, a1, . . . , an ∈ I(V )s. Since s ∈ I(V )(0) = 〈a1, . . . , an〉, it

follows that there exist λ1, . . . , λn ∈ R such that
∑
λiai = s, and therefore the

map

f2 : (Rs[T ])n → I(V )s = Rs[T ]

defined by ei 7→ ai is surjective. We obtain exact sequences of Rs(1−s)[T ]-

modules

0 // P1
// (Rs(1−s)[T ])n

f1 // // Rs(1−s)[T ] // 0,

0 // P2
// (Rs(1−s)[T ])n

f2 // // Rs(1−s)[T ] // 0,

with P1, P2-projective Rs(1−s)[T ] modules of rank n − 1. Since the k-algebra

Rs(1−s) is regular, it follows from [Lin82, Theorem] (in case R is essentially of

finite type, or [Pop89] for a more general statement) that both P1 and P2 are

extended from Rs(1−s). Now f1(0) = f2(0), and therefore

P1 ' P ⊗Rs(1−s)
Rs(1−s)[T ] ' P2
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for some projective Rs(1−s)-module P . We have thus obtained an endomor-

phism θ of (Rs(1−s)[T ])n such that the diagram

0 // P ⊗Rs(1−s)
Rs(1−s)[T ] // (Rs(1−s)[T ])n

f1 ////

θ
��

Rs(1−s)[T ] // 0

0 // P ⊗Rs(1−s)
Rs(1−s)[T ] // (Rs(1−s)[T ])n

f2 //// Rs(1−s)[T ] // 0

commutes and θ(0) = Id. In other words, we have θ ∈ (1+End(Rn)s(1−s)[T ])×,

and we can use Quillen’s localization Lemma 3.1.1 for both s and 1 − s. It

follows that there exists k ∈ N such that

(1) There exists ψ1 ∈ (1 + T End(Rn)s[T ])× with the property that whenever

g1, g2 ∈ (1− s)k+2Rs, we have (ψ1(T ))1−s = θ(g1T )θ(g2T )−1.

(2) There exists ψ2 ∈ (1+s2T End(Rn)1−s[T ])× such that we have (ψ2(T ))s =

θ(g1T )θ(g2T )−1 if g1 − g2 ∈ sk+2R1−s. Notice that, in particular, ψ2 = Id

(mod s2).

As s + (1 − s) = 1, it follows that there exist c, d ∈ R such that csk+2 +

d(1− s)k+2 = 1. From the first property above and the fact that csk+2 − 1 ∈
(1− s)k+2R, we derive that

(3.1) (ψ1(T ))1−s = θ(T )θ(csk+2T )−1.

Now considering g1 = csk+2 and g2 = 0 and using the second property, we get

(3.2) (ψ2(T ))s = θ(csk+2T )θ(0)−1 = θ(csk+2T ).

Putting together (3.1) and (3.2), we get θ = (ψ1)1−s(ψ2)s. Now let E be the

patching of (R(1−s)[T ])n and (Rs[T ])n along θ. Patching f1 and f2, we obtain

a surjective homomorphism f : E → I(V ). Now using the isomorphisms

(ψ2)−1 : (R(1−s)[T ])n → (R(1−s)[T ])n and ψ1 : (Rs[T ])n → (Rs[T ])n, we obtain

an isomorphism R[T ]n → E and thus a surjective homomorphism R[T ]n →
I(V ) corresponding to generators C1, . . . , Cn of I(V ). To conclude, we have to

check that Ai − Ci ∈ s2R[T ], which follows easily from the fact that ψ2 is the

identity modulo s2. �

3.2. Lifting generators.

Definition 3.2.1. Let v = (s, a1, . . . , an, b1, . . . , bn) ∈ Q2n(R) and I(v) =

〈s, a1, . . . , an〉. We say that the strong lifting property holds for v if there exist

µ1, . . . , µn ∈ R such that I(v) = 〈a1 + µ1s
2, . . . , an + µns

2〉.

We want to show that the strong lifting property is preserved by naive

homotopies. If k is of characteristic different from 2, it is easy to see that the
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morphisms αn : Q′2n → Q2n given on sections by

αn(a1, . . . , an, b1, . . . , bn, s) =
1

2
(a1, . . . , an, b1, . . . , bn, 1− s)

and βn : Q2n → Q′2n given by

βn(a1, . . . , an, b1, . . . , bn, s) = (2a1, . . . , 2an, 2b1, . . . , 2bn, 1− 2s)

are inverse to each other and thus yield isomorphisms Q2n → Q′2n. It follows

that the group EO2n+1(R) acts on Q2n(R), and the generators of this group

act as follows:

(1) for any λ ∈ R and 1 ≤ i ≤ n,

(s, a1, . . . , an, b1, . . . , bn)

7→ (s− λbi, a1, . . . , ai−1, ai − λ(1− 2s)− λ2bi, ai+1, . . . , bn);

(2) for any λ ∈ R and 1 ≤ i ≤ n,

(s, a1, . . . , an, b1, . . . , bn)

7→ (s− λai, a1, . . . , bi−1, bi − λ(1− 2s)− λ2ai, bi+1, . . . , bn);

(3) for any λ ∈ R and 1 ≤ i, j ≤ n with i 6= j,

(s, a1, . . . , an, b1, . . . , bn)

7→ (s, a1, . . . , ai−1, ai + λaj , ai+1, . . . , bj−1, bj − λbi, bj+1, . . . , bn);

(4) for any λ ∈ R and 1 ≤ i < j ≤ n with i 6= j,

(s, a1, . . . , an, b1, . . . , bn)

7→ (s, a1, . . . , ai−1, ai + λbj , ai+1, . . . , aj−1, aj − λbi, aj+1, . . . , bn);

(5) for any λ ∈ R and 1 ≤ i < j ≤ n with i 6= j,

(s, a1, . . . , an, b1, . . . , bn)

7→ (s, a1, . . . , bi−1, bi + λaj , bi+1, . . . , bj−1, bj − λai, bj+1, . . . , bn).

As a corollary of Theorem 1.0.6, we see that the set π0(Q2n)(R) is isomorphic

to the orbit set Q2n(R)/EO2n+1(R). To prove that the strong lifting property

is preserved by naive homotopies, it suffices to prove that this property is pre-

served by elementary operations of type (1)–(5) above. The typical statement

of the following few lemmas will be of the form “for M an elementary operation

of type (i), the strong lifting property holds for v if and only if it holds for

vM .” We observe that since the inverse of an elementary operation of type (i)

is an elementary operation of the same type, it suffices to establish the “only

if” direction to prove the result.

Lemma 3.2.2. Let M be an elementary operation of type (3) or (5) above.

Then the strong lifting property holds for v if and only if it holds for vM .
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Proof. In case M is of type (5), there is nothing to do since the operation

does not change the generators of I(v). If M is of type (3), then we see that

I(vM) = 〈a1 + µ1s
2, . . . , ai−1 + µi−1s

2, ai + λaj + (µi + λµj)s
2,

ai+1 + µi+1s
2, . . . , an + µns

2〉

if I(v) = 〈a1 + µ1s
2, . . . , an + µns

2〉. �

Lemma 3.2.3. Let M be an elementary operation of type (2) above. Then

the strong lifting property holds for v if and only if it holds for vM .

Proof. As I(v) = 〈a1 + µ1s
2, . . . , an + µns

2〉, it follows that there exist

α1, . . . , αn such that s =
∑n
j=1 αj(aj + µjs

2) and that there exist β1, . . . , βn
such that ai =

∑n
j=1 βj(aj + µjs

2). Therefore, we get

s− λai =
n∑
j=1

(αj − λβj)(aj + µjs
2),

and it follows that I(vM) = 〈a1 + µ1s
2, . . . , an + µns

2〉 as well. �

Proposition 3.2.4. Let M be an elementary operation of type (4) above.

Then the strong lifting property holds for v if and only if it holds for vM .

Proof. Let

V = (s, a1, . . . , ai−1, ai+Tλbj , ai+1, . . . , aj−1, aj−Tλbi, aj+1, . . . , an, b1, . . . , bn)

in Q2n(R[T ]), and let Ar = ar + µrs
2 for 1 ≤ r ≤ n such that r 6= i, j,

Ai := ai + µis
2 + Tλbj ∈ R[T ] and Aj := aj + µjs

2 − Tλbi ∈ R[T ]. We have∑
Aibi = s− (1−

∑
µibi)s

2,

and it follows that 〈A, (1−∑
µibi)s〉 = 〈A, s〉 and that

W :=
Ä
A1, . . . , An,

Ä
1−

∑
µibi
ä
b1, . . . ,

Ä
1−

∑
µibi
ä
bn,Ä

1−
∑

µibi
ä
s
ä
∈ Q2n(R[T ]).

As Ai(0) = ai + µis
2, we have

I(W )(0) = I(v) = 〈A1(0), . . . , An(0)〉 = 〈A1(0), . . . , An(0), (1−
∑

µibi)s〉.

Applying Lemma 3.1.2, we see that I(W ) = 〈C1, . . . , Cn〉 with Ai − Ci ∈
(1 −∑

µibi)
2s2R[T ]. It follows that the strong lifting property also holds for

I(vM). �

Corollary 3.2.5. Let v = (s, a1, . . . , an, b1, . . . , bn) and 1 ≤ i, j ≤ n

such that i 6= j. Let v′ ∈ Q2n(R) be obtained by exchanging ai and bi, as well

as aj and bj . Then the strong lifting property holds for v if and only if it holds

for v′.



328 JEAN FASEL

Proof. In view of Lemmas 3.2.2 and 3.2.3, as well as Proposition 3.2.4

above, the result holds if we show that the permutation matrix M such that

v′ = vM is obtained using elementary operations of type (3)–(5) above. This

can be obtained by performing, for instance, the following operations (for sim-

plicity, we assume n = 2, i = 1 and j = 2 but the argument is the same in

general):

(s, a1, a2, b1, b2)
(4)7→ (s, a1 + b2, a2 − b1, b1, bs)
(5)7→ (s, a1 + b2, a2 − b1, b1 + (a2 − b1), b2 − (a1 + b2))

= (s, a1 + b2, a2 − b1, a2,−a1)

(4)7→ (s, a1 + b2 − a1, a2 − b1 − a2, a2,−a1)

= (s, b2,−b1, a2,−a1)

(3)7→ (s, b2, b2 − b1, a2 + a1,−a1)

(3)7→ (s, b2 − (b2 − b1), b2 − b1, a2 + a1,−a1 + (a2 + a1))

= (s, b1, b2 − b1, a2 + a1, a2)

(3)7→ (s, b1, b2 − b1 + b1, a2 + a1 − a2, a2)

= (s, b1, b2, a1, a2). �

Corollary 3.2.6. Let n ≥ 2, and let M be an elementary operation of

type (1) above. Then the strong lifting property holds for v if and only if it

holds for vM .

Proof. By Corollary 3.2.5, we can replace ai and aj by bi and bj (for

some i 6= j) in v = (s, a1, . . . , an, b1, . . . , bn). The result now follows from

Lemma 3.2.3. �

We can finally state the main theorem of this section.

Theorem 3.2.7. Let k be an infinite field of characteristic different from

2, and let R be an essentially smooth k-algebra. Moreover, let n ≥ 2, v ∈
Q2n(R), and v0 = (0, . . . , 0) ∈ Q2n(R). The strong lifting property holds for

the row v if and only if v ∈ v0EO2n+1(R).

Proof. Suppose first that v ∈ v0EO2n+1(R). In view of Lemmas 3.2.2,

3.2.3, Proposition 3.2.4 and Corollary 3.2.6, it suffices to prove that v0 sat-

isfies the strong lifting property, which is obvious. Conversely, suppose that

v satisfies the strong lifting property. There exist then µ1, . . . , µn such that

I(v) = 〈a1 + µ1s
2, . . . , an + µns

2〉. Setting Ai := a1 + Tµis
2, we get

n∑
i=1

Aibi = s− (1− T
n∑
i=1

µibi)s
2.
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If S := s(1 − T ∑n
i=1 µibi) and Bi = bi(1 − T

∑n
i=1 µibi), we then get 〈A, s〉 =

〈A,S〉 and further V := (S,A1, . . . , An, B1, . . . , Bn) ∈ Q2n(R[T ]). Now v =

V (0), and v′ :=V (1)=(s′, a′1, . . . , a
′
n, b
′
1, . . . , b

′
n) is such that I(v′)=〈a′1, . . . , a′n〉.

Using elementary operations of type (2), we see that we may suppose s = 0.

(Note that the b′i might change.) For such a row, (0,Ta′1, . . . ,Ta
′
n,T b

′
1, . . . , T b

′
n)

is in Q2n(R[T ]), and we finally see that if the strong lifting property holds

for v, then v is homotopic to v0. The result now follows from the fact that

π0(Q2n)(R) = Q2n(R)/EO2n+1(R). �

As an immediate corollary, we obtain our main theorems.

Theorem 3.2.8. Let k be an infinite field of characteristic different from 2,

and let R be an essentially smooth k-algebra. Suppose that n ≥ 2, and let I ⊂ R
be an ideal equipped with a surjective map ωI : (R/I)n → I/I2. If s(I, ωI) = v0

in π0(Q2n)(R), then there exists a surjective homomorphism Rn → I lifting ωI .

Recall now that if R is a ring and I ⊂ R, then the number µ(I) ∈ N is

defined to be the minimal number of generators of I.

Theorem 3.2.9 (Murthy’s conjecture). Let k be an infinite field of char-

acteristic different from 2, m ∈ N, and I ⊂ k[T1, . . . , Tm] be an ideal. Then we

have µ(I) = µ(I/I2).

Proof. If n := µ(I/I2) = 1, then I is of height ≤ 1 and without loss

of generality we can assume that it is of height 1. Since µ(I/I2) = 1, it

follows that I is an invertible ideal and any such ideal in k[T1, . . . , Tm] is

principal. We may therefore suppose that n ≥ 2. In view of the above theo-

rem, it suffices to prove that π0(Q2n)(k[T1, . . . , Tm]) = v0. By Lemma 1.0.2,

we have π0(Q2n)(k[T1, . . . , Tm]) = π0(Q2n)(k) and we are reduced to show

that EO2n+1(k) acts transitively on Q2n(k). Using Lemma 1.0.3, we see that

SO2n+1(k) acts transitively on Q2n(k) and we have SO2n+1(k) = EO2n+1(k)

by Gaussian elimination. �

Remark 3.2.10. The same proof shows that Murthy’s conjecture holds

when the base R is a regular local k-algebra essentially of finite type.
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