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Decay for solutions of the wave equation
on Kerr exterior spacetimes III:
The full subextremal case |a| < M

By Mihalis Dafermos, Igor Rodnianski, and Yakov Shlapentokh-Rothman

Abstract

This paper concludes the series begun in [M. Dafermos and I. Rodni-

anski, Decay for solutions of the wave equation on Kerr exterior space-

times I–II: the cases |a| � M or axisymmetry, arXiv:1010.5132], pro-

viding the complete proof of definitive boundedness and decay results for

the scalar wave equation on Kerr backgrounds in the general subextremal

|a| < M case without symmetry assumptions. The essential ideas of

the proof (together with explicit constructions of the most difficult mul-

tiplier currents) have been announced in our survey [M. Dafermos and

I. Rodnianski, The black hole stability problem for linear scalar pertur-

bations, in Proceedings of the 12th Marcel Grossmann Meeting on Gen-

eral Relativity, T. Damour et al. (ed.), World Scientific, Singapore, 2011,

pp. 132–189, arXiv:1010.5137]. Our proof appeals also to the quantitative

mode-stability proven in [Y. Shlapentokh-Rothman, Quantitative Mode

Stability for the Wave Equation on the Kerr Spacetime, arXiv:1302.6902,

to appear, Ann. Henri Poincaré], together with a streamlined continuity

argument in the parameter a, appearing here for the first time. While serv-

ing as Part III of a series, this paper repeats all necessary notation so that

it can be read independently of previous work.
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1. Introduction

The boundedness and decay properties of solutions to the scalar wave

equation

(1) 2ga,Mψ = 0

on the exterior regions of Kerr black hole backgrounds (M, ga,M ) have been the

subject of considerable recent activity, in view of the intimate relation of this

problem to the stability of these spacetimes themselves in the context of Ein-

stein’s theory of general relativity (cf. [19]). Following definitive results [43],

[10], [23], [11], [26], [12], [13], [24] in the Schwarzschild case a = 0, bounded-

ness in the very slowly rotating Kerr case |a| �M was first proven in our [29],

and subsequently, decay results have been established for |a| �M in [31] and

in the first parts of this series [27], and independently by Tataru–Tohaneanu

[63] and Andersson–Blue [4]. See also [49]. Our [27] also obtained such decay

results in the general subextremal case |a| < M , under the assumption that

ψ is itself axisymmetric. (Let us mention also the previous nonquantitative

study [35], [36] of fixed azimuthal modes on Kerr.) The main significance of

these restrictive assumptions is that the well-known difficulty of superradiance

is controlled by a small parameter (the case |a| �M) or is in fact completely
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absent (the case of axisymmetric ψ). The present paper represents the culmi-

nation of this programme by dropping these restrictions, extending the above

boundedness and decay results to the general subextremal case |a| < M without

axisymmetry :

Theorem. 1. General solutions ψ of (1) on the exterior of a Kerr black

hole background (M, ga,M ) in the full subextremal range |a| < M , arising from

bounded initial energy on a suitable Cauchy surface Σ0, have bounded energy

flux through a global foliation Στ of the exterior, bounded energy flux through

the event horizon H+ and null infinity I+, and satisfy a suitable version of

“local integrated energy decay.”

2. Similar statements hold for higher-order energies involving time-trans-

lation invariant derivatives. These statements imply immediately uniform

pointwise bounds on ψ and all translation-invariant derivatives to arbitrary

order, up to and including H+, in terms of a sufficiently high order initial

energy.

The precise statements of parts 1 and 2 of the above theorem will be given

in Section 3 as Theorems 3.1 and 3.2. Note that these are exact analogues of

Theorems 1.2 and 1.3 of [27], dropping the assumption of axisymmetry (alter-

natively, Theorem 1.1 dropping the assumption a0 � M). The main results

of the present paper have been previously announced in our survey paper [30],

which provided both an outline of the proof and many details of the crucial

arguments, including all high frequency multiplier constructions. To complete

the outline, one required a quantitative refinement of Whiting’s classical mode

stability result [65] and a continuity argument in the parameter a. The former

refinement has very recently been obtained [60] and will indeed be used in our

proof. As for the latter, the proof presented here introduces a streamlined

continuity argument that as an added benefit in fact reproves the theorems

of the first parts of the series [27] in the case |a| � M . We will only rely

on [27] for a detailed discussion of the background, the setup and several of

its elementary propositions. All necessary notation and results from [27] are

reviewed and quoted explicitly, however, so that the present paper can be read

independently. We will also repeat all constructions originally introduced in

the survey [30].

In view of our general “black box” decay result [28], a corollary of the

above theorem is

Corollary. Solutions ψ of equation (1) arising from sufficiently regular

and localised initial data (i.e., whose initial suitably higher-order weighted

energy is finite) satisfy uniform polynomial decay of the energy flux through a

hyperboloidal foliation Σ̃τ of the exterior region as well as uniform pointwise

polynomial decay bounds.
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As in the case of Minkowski space, there is a hierarchy of polynomial

decay bounds that can be obtained, both for energy fluxes and pointwise, de-

pending on the quantification of the initial localisation assumed on initial data.

The precise statement we shall give (Corollary 3.1 of Section 3) is motivated

by applications to quasilinear problems; further refinements fail to be robust

from this point of view. We remark explicitly that the decay estimates of the

above corollary are indeed sufficient for applications to quasilinear problems

with quadratic nonlinearities. See [50], [68], [69], [67]. We note also that the

nonquantitative fixed-azimuthal mode statements of [35], [36] are of course im-

plied a fortiori by the above corollary. To obtain from our theorem alternative

more refined corollaries for compactly supported smooth initial data, see [62].

As stated, the above theorem and its corollary concern the black hole

exterior. Note that boundedness and polynomial decay statements in the Kerr

exterior propagate easily to any fixed-r hypersurface in the interior following

[48] using the red-shift effect and stationarity for r strictly greater than its

value on the Cauchy horizon. This insight goes back to [21]. On the other

hand, by a result of [56], uniform nondegenerate energy boundedness cannot

hold up to the Cauchy horizon in view of the blue-shift. Uniform L∞ bounds

on ψ and its tangential derivatives up to and including the Cauchy horizon

have been obtained in the thesis of Franzen [37].

Besides the Kerr family, there is an additional class of black hole space-

times of interest in classical general relativity: the sub-extremal Kerr–Newman

metrics. These now form a three-parameter family of metrics, with parameters

a, M and Q (the latter representing charge), which, when coupled with a suit-

able Maxwell field associated to Q, satisfy the Einstein–Maxwell equations.

See [39]. (Setting Q = 0, the Maxwell field vanishes and the family reduces to

the Kerr case.) As shown in the thesis of Civin [20], all the miraculous prop-

erties of the Kerr family that allow for the results proven in the present paper

in fact extend to the Kerr–Newman family in the full sub-extremal parameter

range
√
a2 +Q2 < M , leading to a precise analogue of our theorem and its

corollary in this more general class.

Though outside of the domain of astrophysically relevant black holes, it is

interesting to consider the problem of boundedness and decay for scalar waves

on the analogues of the Kerr family when a nonzero cosmological constant

Λ is added to the Einstein equations. These spacetimes are known as Kerr-

de Sitter (Λ > 0) and Kerr-anti de Sitter (Λ < 0). See [39]. It is in fact the

negative case Λ < 0 that presents more surprising new phenomena from the

mathematical point of view and has been definitively treated in the work of

Holzegel–Smulevici [41], [42]. See also [38]. The Λ > 0 case is from some points

of view easier than Λ = 0, and results in the Schwarzschild-de Sitter (a = 0) and

very slowly rotating Kerr-de Sitter (|a| �M, |a| � Λ) case followed soon after
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the analogous results for Schwarzschild and very slowly rotating Kerr had been

obtained. See [25], [14], [51], [64], [33], [32], [58]. Let us note, however, that

Kerr-de Sitter is still not understood in its full subextremal range, in particular,

in view of the absence of an analogue of the mode stability statements [65],

[60]. The best results to date have been obtained by Dyatlov [34].1

Returning to the classical astrophysical domain, let us recall finally that

the Kerr metrics ga,M represent black hole spacetimes in the full closed pa-

rameter range |a| ≤ M ; the geometry of the extremal case |a| = M , however,

exhibits several qualitative differences, most conspicuously, the degeneration

of the celebrated red-shift effect at the horizon. In view of the recently discov-

ered Aretakis instability [6], [7], [9], [47], [54], the precise analogue of the above

theorem does not in fact hold without qualification in the case of extremal-

ity |a| = M . In particular, in the extremal case, for generic solutions, cer-

tain higher-order time-translation-invariant derivatives asymptotically blow up

along the event horizon. This generic blow up is completely unrelated to super-

radiance and holds even for solutions ψ restricted to be axisymmetric. For such

axisymmetric ψ, restricted decay results of a definitive nature have been ob-

tained by Aretakis [8]. The fundamental remaining problem for scalar waves on

black hole backgrounds of interest in classical general relativity is thus the pre-

cise understanding of the |a| = M case for general nonaxisymmetric solutions.

1.1. Overview of the main difficulties. We begin with an overview of the

difficulties of the problem and the basic elements of the proof. In this discus-

sion, we will assume some familiarity with the Schwarzschild and Kerr fam-

ilies of metrics as well as basic aspects of the analysis of wave equations on

Lorentzian manifolds. See our lecture notes [31].

1.1.1. Review of the very slowly rotating case |a| �M . We have discussed

at length in the first parts of this series [27] the various difficulties connected to

showing energy boundedness and “integrated local energy decay” for solutions

of the wave equation (1) in the very slowly rotating case. We review these

briefly.

Already in the Schwarzschild case a = 0, to show boundedness, one must

face the difficulty that at the event horizon H+, the conserved ∂t-energy (as-

sociated to stationarity of the metric) degenerates. To show integrated local

1Let us remark briefly that besides these extensions to Λ 6= 0, there are a host of other

related problems one can also consider, including higher dimensional black holes [57], [46],

other hyperbolic equations like Klein–Gordon (for which it is now proven [59] that there

are exponentially growing solutions for all |a| 6= 0), Maxwell [3], linearised gravity and the

nonlinear Einstein vacuum equations themselves (see [40], [22]). We refer the reader to the

many additional references in the first part of this series [27], our survey [30] and our lecture

notes [31].
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energy decay, one must moreover understand both “low” and “high” frequency

obstructions to dispersion, in particular, the high frequency obstructions con-

nected to the presence of trapped null geodesics.

The horizon difficulties were overcome by our introduction of the red-

shift vector field [26], while the difficulties concerning both excluding low fre-

quency obstructions and quantifying the high frequency phenomena connected

to trapped geodesics were overcome in one go by appeal to the energy iden-

tity of Morawetz-type (cf. [52]) multipliers associated to a vectorfield f(r)∂r,

where f is a carefully chosen function vanishing at the so-called photon sphere

r = 3M , the timelike cylinder to which all trapped null geodesics asymptote.

In the Schwarzschild context, such Morawetz estimates were pioneered by [45],

[12]. The boundedness of the nonnegative space-time integral given by the

energy identity associated to this multiplier is precisely the statement of “in-

tegrated local energy decay.” See also [13], [26]. The degeneracy of any such

estimate at trapping is necessary in view of a general result of Sbierski [56] in

the spirit of the classical [55]. On the other hand, the fact that such a degen-

erate estimate indeed holds (and the precise nature of the degeneracy) means

that the trapping is “good”; at the level of geodesic flow, this corresponds to

the fact that dynamics are hyperbolic near the trapped set. This estimate also

degenerates at the event horizon when only the initial conserved ∂t-energy is

included on the right-hand side. On the other hand, as shown in [26], again

using the red-shift vector field, this degeneracy is removed by replacing the

latter with the initial nondegenerate energy.

Turning from Schwarzschild to the very slowly rotating Kerr case |a| �M ,

the above difficulties are combined with a new one: superradiance. Now, the

vector field ∂t is spacelike in a region outside the horizon known as the er-

goregion, hence its energy identity gives no obvious a priori control over the

solution. Moreover, it is clear that the high frequency obstructions to decay

cannot be captured from classical physical space vector field multipliers [2].

This can be seen at the level of geodesic flow as the projection of the trapped

space to physical space is no longer a codimension-1 hypersurface.

The problem of superradiance was first overcome in our proof of bound-

edness [29] mentioned previously, which concerned in fact the more general

setting of the wave equation on backgrounds that are small axisymmetric sta-

tionary perturbations of Schwarzschild, a class including the very slowly rotat-

ing Kerr case |a| � M . In this class of spacetimes, one can analyse solutions

with respect to frequencies ω ∈ R and m ∈ Z corresponding to the stationary

and axisymmetric Killing fields, and decompose general solutions ψ of (1) into

their superradiant and nonsuperradiant part. For the latter part, one can prove

boundedness as in Schwarzschild. For the superradiant part, it turns out that

one can explicitly prove both boundedness and integrated local energy decay
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perturbing a Schwarzschild energy identity yielding both positive boundary

and space-time terms that do not degenerate. The nondegeneracy of this esti-

mate encodes the fact that the superradiant part of ψ is not trapped. We shall

return to this insight later in our discussion of the general |a| < M case.

Turning to the issue of proving decay for |a| � M , the problem of cap-

turing the good properties of trapping was overcome using frequency-localised

generalisations of the Morawetz multipliers applied in Schwarzschild. There

have been three independent approaches [31], [63], [4], which all crucially rely

on the additional hidden symmetries of Kerr that are reflected in the existence

of a Killing tensor and separability properties of both geodesic flow and the

wave equation itself. In our approach [31], [27], the frequency localisation di-

rectly uses Carter’s separation of the wave equation [15], which introduces, in

addition to ω and m above, a real frequency parameter λm`(aω) parametrised

by an additional parameter ` ∈ N0 such that, localised to each frequency triple

(ω,m, λm`(aω)), the wave equation (1) reduces to the following second order

o.d.e.:

(2) u′′ + ω2u = V (aω,m, λm`)u,

where V is a potential and ′ denotes differentiation in a rescaled r∗(r) coordi-

nate. The frequencies λm` are themselves eigenvalues of an associated elliptic

equation whose eigenfunctions (known as oblate spheroidal harmonics) appear

in the formula reconstructing ψ from u.

Note that in the Schwarzschild (a = 0) case, the reduction to (2) corre-

sponds to the classical separation by spherical harmonics, and we have explic-

itly λm` = `(`+ 1) (independent of ω) and

VSchw(r) = (r − 2M)

(
λm`
r3

+
2M

r4

)
.

For all λm`, the potential VSchw has a unique simple maximum at an r-value

rmax(λm`) such that

rmax(λm`)→ 3M

as `→∞. One thus sees the relation of this potential to the trapping phenom-

enon. Indeed, the radial dependence of null geodesics with fixed energy and

angular momentum is governed by a potential that coincides with V above in

the high frequency rescaled limit.

In the Kerr case, the eigenvalues λm`(aω) are no longer explicit expres-

sions, and the form of V is considerably more complicated. It was shown,

however, in [31], that for |a| �M and for frequencies in the “trapping” regime

(3) 1� ω2 ∼ λm`,

the potential V retains its “good” Schwarzschild properties. Specifically, the

potential V in (2) can be seen to again have a unique simple maximum in this
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frequency range, whose r-value rmax depends on the frequency parameters

rmax = rmax(aω,m, λm`).

This allows, separately for each (ω,m, λm`(aω)), the construction of an ana-

logue of the current f(r)∂r vanishing exactly at rmax, yielding the desired pos-

itivity properties. Unlike the Schwarzschild case, however, there does not exist

a unique high frequency limit of rmax, consistent with the fact [2] that these

currents cannot be replaced by a classical vector field defined in physical space.

See, however, [4]. At the level of geodesic flow, this precisely reflects the fact

that trapped null geodesics exist for a full range of r-values in a neighbourhood

of r = 3M .2

In the remaining frequency regimes, one can in fact simply carry over the

previous physical-space Schwarzschild constructions (see our argument in [31])

to the more general |a| � M case, as, restricted to those ranges, the relevant

Schwarzschild estimates do not degenerate and thus their positivity properties

are manifestly stable to small perturbation. Alternatively, as in the first parts

of this series [27], one can construct new currents taylored specifically to these

frequency ranges. The latter approach is more flexible (it has the additional

benefit of providing [27] an independent second proof of the Schwarzschild

case) and will be more useful for the general subextremal case |a| < M .

Let us note that our proof of integrated decay in the first part of this

series [27] in fact gives a separate proof of the boundedness statement of [29],

when the latter is specialised to Kerr. Here, one exploits the fact that when

|a| �M , superradiance is controlled by a small parameter and thus boundary

terms of the wrong sign can be absorbed by a small multiple of the red-shift

current added to the conserved ∂t energy. One thus obtains boundedness and

integrated local energy decay at the same time, without separating the solution

into its superradiant and nonsuperradiant parts. We shall see, however, that for

the general case |a| < M , the original insight of [29] will again be fundamental.

In discussing our frequency analysis for both the problems of boundedness

and integrated local energy decay, we have suppressed an important point: To

define frequencies ω ∈ R, we are applying the Fourier transform in time. Since

solutions are not known a priori to be sufficiently integrable in time, however,

one must first apply suitable cutoffs in the future, generating error terms which

2A posteriori, the good structure of trapping in phase space for |a| � M can be under-

stood more conceptually, using the structural stability properties of normal hyperbolicity,

provided the latter condition is checked for Schwarzschild; see [66]. Note, however, that

these stability properties depend on strong regularity assumptions on the metric, whereas

our original boundedness theorem [29] only requires closeness to Schwarzschild in C1. Thus

one expects the domain of validity of [29] to be strictly bigger than the class of spacetimes

where decay results of the type of our main theorem hold.
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must then be absorbed. For this, some weak a priori control of these terms

is essential — and in both [29], [27]3 we have yet again used the closeness to

Schwarzschild. The analogue of this procedure for the general |a| < M case

is our appeal to the continuity argument of Section 1.1.5. We defer further

discussion of this till then.

1.1.2. Structure of trapping and its disjointness from superradiance. In

passing to the general subextremal case |a| < M , the first fundamental issues

that must be addressed are the “high frequency” ones.

The most obvious question is whether the structure of trapping retains

its “good” properties that allow in principle for degenerate integrated decay

statements. At the same time, since superradiance is no longer governed by a

small parameter, one has to understand: what is it that finally quantifies its

strength, or, in the context of the proof, how does one guarantee the control

of boundary terms in space-time energy identities?

Though geodesic flow and various measures of the strength of superradi-

ance have been thoroughly investigated in physics [16], [17], [61], the properties

that turn out to be essential for our argument do not appear to have been con-

sidered explicitly in the classical literature. Indeed, it is somewhat of a miracle

that the Kerr geometry turns out to be well behaved on both accounts for the

entire subextremal range |a| < M ; specifically,

(a) the structure of trapping is as in Schwarzschild,

(b) superradiant frequencies are not trapped.

The embodiment of properties (a) and (b) we shall need were proven

already in our survey paper [30] by analysing the potential V in (2). Concerning

(a), the “trapping” frequency range (3), the potential V was shown to have a

unique simple maximum Vmax at a (frequency-dependent) r-value rmax, just as

in the slowly rotating case |a| �M . (This shows a fortiori that the underlying

null geodesic flow near trapping is hyperbolic.) Concerning (b), it was shown

that for high superradiant frequencies,

(4) 1� λ+ ω2, ω

(
ω − am

2M(M +
√
M2 + a2

)
< 0,

the maximum of V is always “quantitatively” above the energy level ω2, in the

sense

(5) Vmax ≥ (1 + ε)ω2.

3Let us note that given the boundedness result of [29], then one need not appeal again

to closeness to Schwarzschild in the argument for integrated local energy decay; see our

original proof in the lecture notes [31]. We have used it again in [27] so as for [27] to retrieve

independently our previous boundedness result.
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(This in turn shows a fortiori that future directed null geodesics whose tangent

vector has nonnegative inner product with ∂t are never future trapped; they

will always cross the event horizon H+.4 Note that in contrast to the |a| �M

case, the stronger statement that ∂t is eventually timelike along any future

trapped null geodesic is not true; i.e., it is not true that all future trapped null

geodesics must leave the ergoregion.)

As with the |a| � M case, it is not statements about geodesic flow that

we appeal to, but rather we use directly the properties of the potential V to

construct appropriate energy currents. More specifically, the above properties

of the potential are used to construct frequency-dependent multiplier currents

yielding both positive bulk and positive boundary terms for all high frequency

ranges. In the superradiant case, property (5) can be exploited to arrange such

that the bulk term is in fact nondegenerate; this can be thought of as the defin-

itive embodiment of (b). Note that these high frequency multiplier construc-

tions all appeared explicitly in our survey [30]. We will repeat these construc-

tions here with very minor modifications. See the outline in Section 1.2 below.

It is interesting to note that property (b) above in fact degenerates in

the extremal limit |a| → M in the following sense: At the endpoint of the

superradiant frequency range (4), one loses the ε in (5). This is an additional

(and separate) phenomenon to the degeneration of the red-shift and could

have interesting implications for the remaining problem of understanding non-

axisymmetric ψ in the extremal case |a| = M . See [5] and the discussion in [8].

1.1.3. Absence of bounded frequency superradiant obstructions. The above

still leaves us with the problem of understanding bounded (i.e., |ω| . 1) fre-

quencies.

One must first distinguish the near-stationary case |ω| � 1. This fre-

quency range is very sensitive to global aspects of the geometry. It turns out

that here an explicit multiplier construction is possible that adapts our con-

struction of the first parts of this series [27]. (Interestingly, the cases of |a| ≤ ã0

and |a| ≥ ã0 are here handled differently.) These multiplier constructions ap-

pear for the first time in the present paper.

Turning now to the remaining bounded frequencies, as explained in our

survey [30], whereas in the nonsuperradiant regime, one can explicitly construct

multipliers with both nonnegative bulk and boundary terms, for bounded non-

superradiant frequencies, adapting the constructions of [27] from the |a| �M

case, there does not appear to be a straightforward such construction for the

4In the borderline case when the time frequency ω vanishes, this is intimately related to

the fact that there are no trapped null geodesics orthogonal to ∂t. This latter observation

turns out to be important in the study of black hole uniqueness (see [1]).
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superradiant regime, when neither can superradiance be treated as a small pa-

rameter, nor can one exploit (5) together with either ω, m or λm` as a large pa-

rameter. One can indeed construct currents with a nonnegative bulk term, but

these generate a boundary term of the wrong sign that still must be controlled.

As announced already in [30], to control the remaining term one requires

a quantitative extension of Whiting’s celebrated mode stability [65] which, in

particular, excludes the presence not just of growing modes but also resonances

on the real axis. This was achieved in the recent [60]. Appeal to [60] will indeed

allow us to control the remaining boundary term. Again, see the outline in

Section 1.2 below.

1.1.4. Higher order estimates. To obtain higher-order integrated local en-

ergy decay in the slowly rotating case |a| � M , it was sufficient to commute

(1) with ∂t (which is Killing) and also with the red-shift vector field (the latter

an argument first applied in [29]), exploiting the fact that the latter, though

not Killing, generates positive terms in appropriate energy estimates modulo

terms that can be controlled by the ∂t-commutation. To show this fact, one

uses in turn that control of a second derivative of ψ in a timelike direction

allows control of all second derivatives of the solution via elliptic estimates (in

view of equation (1)).

For the general case |a| < M , one appeals to yet another fundamental fact

about Kerr geometry:

(c) The span of the stationary ∂t and axisymmetric ∂φ Killing fields is timelike

outside the horizon for the full range |a| < M .

Thus, commuting with ∂t, χ∂φ (where χ is a cutoff function with compact

support in r) and the red-shift vector field, one can essentially apply the same

argument as before.

1.1.5. Continuity argument. We now return to the issue that we have sup-

pressed at the end of Section 1.1.1, namely, the question of how one can justify

in the first place a frequency analysis based on real frequencies ω defined via

the Fourier transform in time. In the case |a| �M , closeness to Schwarzschild

gave a small parameter that could be exploited here. For the general |a| < M

case, however, as explained already in our survey [30], one must exploit a

continuity argument in |a|.
Note first that to justify the Fourier assumption and thus prove integrated

local energy decay, one sees easily that it is sufficient to assume the nonquan-

titative assumption that the energy through Στ of the projection ψm of ψ to

each azimuthal frequency is finite. This is the statement that we show by

continuity: For each azimuthal frequency number m ∈ Z, we define the subset

Am ⊂ [0,M)

= {|a| : ψ satisfying (1) with ga,M =⇒ energy of ψm remains finite}.
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We will show that Am is a nonempty open and closed subset of [0,M), and

thus, Am = [0,M).

We turn to a brief account of the continuity argument.

The nonemptyness of Am follows from the general boundedness result for

black hole spacetimes without ergoregions proven in [31], specialised to the

Schwarzschild case a = 0.

For openness, one shows that if å ∈ Am, then |a− å| < ε satisfies a ∈ Am
for sufficiently small ε. One exploits here ε as a small parameter. The issues

associated to openness already appeared in the small |a| �M case; see [29] and

[27]. The fact that we have fixed the azimuthal mode m makes the argument

here technically easier to implement. For this, the fundamental insight is that

for m fixed,

(i) trapping occurs outside the ergoregion;

(ii) using the energy identity for a vector field of the form ∂t + α(r)∂φ, one

can obtain boundedness modulo lower order terms supported only in the

ergoregion.

To exploit the above, we first construct from a fixed-m solution ψm to (1) on

ga,M and for each τ ≥ 0, a solution Ψ of the inhomogeneous wave equation

2gΨm = Fm on an interpolating metric g which coincides with ga,M in the

region between Σ0 and Στ−δ0 and coincides with g̊a,M in the region in the future

of Στ and to which the integrability properties apply (since å ∈ Am). Applying

our estimates and using (i) and (ii), we may now absorb (for sufficiently small ε)

the error terms arising from the inhomogeneity to obtain an integrated decay

statement for ψm. We note that the fixed-m currents used for (i) and (ii) may

find additional applications.

Closedness is easy given the estimates shown and the smooth dependence

of the Kerr family on the parameter a.

1.1.6. Nondegenerate boundedness from integrated local energy decay. The

frequency analysis on which our proof of integrated local energy decay is based

does not directly “see” the energy flux on fixed time hypersurfaces Στ , only the

energy fluxes on the horizon H+ and future null infinity I+. Thus, it remains

to show boundedness of the energy (and higher-order energies) through Στ .

In the slowly rotating case |a| �M , it is clear that given integrated local

energy decay, boundedness of the energy flux through a spacelike foliation

easily follows a posteriori5 by revisiting the physical space energy identity of a

globally timelike vector field that coincides with T where the latter is timelike,

noting that, if |a| is sufficiently small, T is timelike near trapping.

5Of course, in our original proof [27], we proved those two statements together as we used

the boundedness in our version of the continuity argument. In the new continuity argument

presented here, this is not necessary.
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The above argument again uses in an essential way the disjointness of the

ergoregion and the set —associated to trapping — on which integrated local

energy decay estimate degenerates. As we have remarked earlier, these sets

intersect when |a| ∼ M — it is only in phase space where superradiance can

be understood as disjoint of trapping.

One approach to boundedness could be to try to again exploit property (b)

from Section 1.1.2. It is technically easier to simply exploit the physical space

fact (c) of Section 1.1.4, namely, that Killing fields ∂t and ∂φ together span

a timelike subspace outside the horizon. Specifically, in a small neighbour-

hood of any r-value, there exists a combination of ∂t and ∂φ that is timelike

and Killing. We use our frequency analysis to partition a solution ψ of the

wave equation into finitely many pieces ψ̃i, each of which satisfies an ana-

logue of integrated local energy decay degenerating only in a small neighbour-

hood of some ri. Applying the energy estimates corresponding to a suitable

i-dependent combination of ∂t and ∂φ to each ψ̃i, and summing, one obtains

the desired nondegenerate uniform boundedness of the energy flux through Στ .

1.2. Outline of the paper. We end this introduction with an outline of the

structure of the paper.

In Section 2, we will review the setup and various notation from the first

parts of the series [27], including the ambient manifold, the form of the Kerr

family of metrics and useful vector fields, hypersurfaces and formulas. This

will allow us to give precise formulations of the main theorems in Section 3.

(The reader may wish to refer to this outline again when reading Section 3.4,

which will describe the logical flow of the proofs of the various statements.)

Section 4 contains various preliminaries, including a review of the propo-

sitions from [27] capturing the redshift effect, an estimate for large r, Hardy

inequalities and, finally, various statements concerning the span of the Killing

fields ∂t and ∂φ.

Our frequency localisation based on Carter’s separation will be reviewed

in Section 5. The natural setting for this will be the class of sufficiently inte-

grable outgoing functions Ψ : R → R, a useful notion which we shall define in

Section 5.1. The resulting coefficients u and their corresponding radial o.d.e.

(cf. (2) above) are obtained in Section 5.2.2 and the “outgoing” boundary

conditions in Section 5.1.2.

The next three sections, Sections 6, 7, and 8 concern the study of the

o.d.e. (2) and the proof of uniform estimates in the frequency parameters ω,

m, and Λ.

In Section 6, we will give salient properties of the potential V of (2) that

embody (a) and (b) of Section 1.1.2. Versions of the lemmas of Sections 6.3

and 6.4 together with proofs have in fact already been given in our survey

paper [30]; we repeat these here for completeness. The lemma of Section 6.5,
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reflecting the properties of trapping for fixed m, is new and will be used in the

context of the continuity argument of Section 11 discussed below.

In Section 7, we shall review our notation for fixed frequency current

templates which, upon selection of the free functions, will be used to obtain

multiplier estimates for solutions to (2).

Section 8 is the heart of the paper. Here, with the help of well-chosen

functions in the current templates of Section 7, we construct suitable currents

for all relevant frequency ranges yielding positive bulk terms and thus an es-

timate for solutions of the radial o.d.e. (2) uniform in frequency parameters.

In the trapping regime, the currents degenerate at rmax. All these currents

have appeared previously in our survey paper [30] with the exception of the

near-stationary range of Section 8.7.3. The boundary terms can also be made

positive, with the exception of a range of bounded frequencies, which give rise

to an extra horizon boundary term on the right-hand side of the resulting

estimate, which must still be absorbed.

In Section 9, we apply the results of the previous section to the coeffi-

cients u arising from the setting of Section 5, summing the resulting frequency

localised estimates to obtain control of a nonnegative definite space-time in-

tegral. We note Section 9.7, where the extra horizon term (arising from low

superradiant frequencies) is bounded by appeal to Proposition 9.7.1, a result

of [60]. One obtains finally an integrated local decay statement for “future-

integrable” solutions of the wave equation, and a similar statement for the

inhomogeneous equation in Section 9.8.

Higher order decay estimates are then provided in Section 10, using the

structure described in Section 1.1.4.

In Section 11, we implement our new continuity argument discussed in

Section 1.1.5 above, which will allow us to drop the a priori assumption of

future-integrability, and extend our results to general solutions of the Cauchy

problem for (1). The reduction to fixed azimuthal frequency is accomplished

in Section 11.1. The most difficult part of the argument is openness, handled

in Section 11.2, while closedness is considered in Section 11.3.

Section 12 will state the more precise integrated local energy statement

that has actually been obtained in the proof.

Finally, in Section 13, we prove the boundedness statements, following our

discussion in Section 1.1.6. This will conclude the paper.
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2. Review of the setup

In this section, we review the setup and certain notation from the first

parts of the series [27], so that the present paper can be read independently.

The reader wishing for a more leisurely exposition of this material should refer

back to [27]; he or she familiar with [27] can skip to Section 3.

2.1. Ambient manifold and coordinate systems. The first task is to define

an ambient manifold-with-boundary on which the Kerr family in its subex-

tremal range defines a smooth two-parameter family of metrics. The differ-

ential structure of the smooth manifold is defined by what we shall call fixed

coordinates, while the Kerr metric itself will be defined with the help of auxil-

liary coordinates depending on the parameters. We review this here.

2.1.1. Fixed coordinates (y∗, t∗, θ∗, φ∗). We first define the manifold-with-

boundary

(6) R = R+ × R× S2.

Fixed coordinates are just the standard y∗ ∈ R+, t∗ ∈ R and a choice of

standard spherical coordinates (θ∗, φ∗) ∈ S2. Associated to this ambient dif-

ferentiable structure are the event horizon H+ .
= ∂R = {y∗ = 0}, the vector

fields T = ∂t∗ , Φ = ∂φ∗ and the one-parameter group of transformations ϕτ
generated by T .

2.1.2. Kerr-star coordinates (r, t∗, θ∗, φ∗). We define a new coordinate sys-

tem that depends on parameters |a| < M .

For each choice |a| < M , we first set r± = M ±
√
M2 − a2 and then define

a new coordinate r that is related smoothly to y∗, depends smoothly on the

parameters and such that, for fixed parameters, we have r = r+(a,M) on H+.6

Associated to these coordinates is the vector field Z∗, defined to be the smooth

extension of the Kerr-star coordinate vector field ∂r to R.

We will sometimes replace r by a rescaled version, r∗, defined only in the

interior of R, by

(7)
dr∗

dr
=
r2 + a2

∆
, r∗(3M) = 0,

where ∆ = (r−r+)(r−r−). Here we note that ∆ vanishes to first order on H+,

and the coordinate range r > r+ corresponds to the range r∗ > −∞. Given a

particular r-value r0, we will denote the corresponding value of r∗ by r∗0.

6The precise relation to fixed coordinates as defined in [27] is as follows. Let P = {(x1, x2) :

0 ≤ |x1| < x2} denote the parameter space of all admissible subextremal (a,M). We chose a

smooth map r : P × (0,∞)→ (x2 +
√
x2

2 − x2
1,∞) such that r|{(x1,x2)}×(0,∞) is a diffeomor-

phism (0,∞)→ (x2 +
√
x2

2 − x2
1,∞) that moreover restricts to the identity map restricted to

{(x1, x2)} × (3x2,∞). Note that with this definition, then for r ≥ 3M , r(y∗) is independent

of a.
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2.1.3. Boyer–Lindquist coordinates (r, t, θ, φ). We define a final coordinate

system, again depending on a choice of fixed parameters |a| < M , by further

transforming Kerr star coordinates, by defining

t(t∗, r) = t∗ − t̄(r), φ(φ∗, r) = φ∗ − φ̄(r) mod 2π, θ = θ∗,

where t̄ is a smooth function (see [27] for details) chosen to satisfy

t̄(r) = r∗(r)− r − r∗(9M/4) + 9M/4 for r+ ≤ r ≤ 17M/8,(8)

t̄(r) = 0 for r ≥ 9M/4,(9)

d(r∗ − t̄)
dr

> 0, 2−
(

1− 2Mr

ρ

2) d(r∗ − t̄)
dr

> 0.(10)

Associated to these coordinates is the vector field Z defined to be (the extension

to int(R) of) the Boyer–Lindquist coordinate vector field ∂r.
7

2.2. The Kerr metric and its properties. Given these coordinate systems,

we may now define the Kerr metric as a smooth two-parameter family on R.

2.2.1. Explicit form of the metric. For fixed parameters |a| < M , in ad-

dition to ∆ above, let us first set ρ2 = r2 + a2 cos2 θ. The Kerr metric is then

defined with respect to Boyer–Lindquist coordinates by

ga,M = −∆

ρ2

(
dt− a sin2 θdφ

)2
+
ρ2

∆
dr2 + ρ2dθ2 +

sin2 θ

ρ2

(
a dt− (r2 + a2)dφ

)2
.

(11)

Though a priori this is only well defined on int(R), by transforming the

above into regular coordinates (see [27]), one sees that the metric (11) ex-

tends uniquely to the boundary so that for each |a| < M , indeed (R, ga,M )

defines a smooth Lorentzian manifold-with-boundary, and such that moreover

the metric smoothly depends on the parameters a, M .8 These metrics are

Ricci flat (i.e., they satisfy Einstein’s vacuum equations).

2.2.2. Killing fields. We note that the fixed vector fields T and Φ on R
defined in Section 2.1.1 are Killing for ga,M for all parameter values |a| < M .

For each given |a| < M , the span of T and Φ yields a timelike subspace

of TpR for all p ∈ int(R). (In particular, T is a timelike vector when Φ = 0.)

7Recall that this vector field is significant as it will define the directional derivative that

does not degenerate in the integrated decay estimate due to trapping. Note that in Boyer–

Lindquist coordinates the fixed vector fields T and Φ correspond to the coordinate vector

fields ∂t and ∂φ.
8The latter can be understood in the sense that

g : P ×R → T ∗R⊗ T ∗R

is a smooth map.
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The event horizon H+ = ∂R is also a Killing horizon: the Killing field given

by the linear combination

K = T +ω+Φ,

where ω+
.
= a

2Mr+
is the “angular velocity” of the event horizon, is null and

normal to H+; thus, H+ is, in particular, a null hypersurface. Note that along

H+, we have

(12) ∇KK = κK, κ =
r+ − r−

2(r2
+ + a2)

> 0.

The quantity κ is known as the surface gravity. The positivity (12) is what

determines the red-shift property, essential for our estimates (see Section 4.5).

We note that κ in fact vanishes in the extremal case |a| = M ; this gives rise

to the Aretakis instability [9].

We recall moreover that the vector K restricted to H+ coincides with the

smooth extension of the coordinate vector field ∂r∗ of the (r∗, t, θ, φ) coordinate

system.

2.2.3. The photon sphere and trapping parameters. It is well known that

in the Schwarzschild case a = 0, all future-trapped null geodesics asymptote

to the timelike hypersurface r = 3M .

In the statement of Theorem 1.1 of [27], we defined s±(a0,M) such that

for all |a| ≤ a0, then r+ < 3M−s−(a0,M) and all future trapped null geodesics

enter the region 3M − s−(a0,M) < r < 3M − s+(a0,M). We have shown in

Section 10.4 of [30] the existence of such parameters again for the full subex-

tremal range |a| < M . We will repeat this proof in Section 8.9. We note that

in the extremal limit a0 →M , 3M − s− → r+(M,M).

Given the above parameters, let η[3M−s−,3M+s+](r) denote the indicator

function, and let us define, for each a0 < M , the function

(13) ζ(r) = (1− 3M/r)2(1− η[3M−s−,3M+s+](r)).

This function will encode physical space degeneration of the “integrated local

energy decay” estimate of Theorem 3.1. The presence of the (1−3M/r)2 factor

ensures uniformity of the estimate as a0 → 0 so as to retrieve our original

Schwarzschild result [26].

Finally, since it is derivatives with respect to the vector field Z that do

not degenerate at trapping, but it is the vector field Z∗ which extends to the

horizon, it will be convenient to define a hybrid vector field that has both good

properties. For this let us define, for each |a| < M , a cutoff function χ(r) such

that χ = 1 for r ≥ 3M − s− and χ = 0 for r ≤ (r+ + 3M − s−)/2. Then we

define a new vector field Z̃∗ = χZ + (1 − χ)Z∗. This will be the vector field

that appears in the statement of Theorem 3.1.
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2.2.4. The ergoregion. The region S ⊂ R where T is spacelike is known

as the ergoregion; more explicitly, it is exactly the subset of R defined by

(14) S = {∆− a2 sin2 θ < 0}.

The boundary ∂S is called the ergosphere.

2.2.5. The Στ hypersurfaces, and the regions R(0,τ), H+
(0,τ). We have ar-

ranged the definition of Kerr-star coordinates in Section 2.1.2 so that the hy-

persurfaces t∗ = c are spacelike (see the conditions (10)) with respect to the

metric ga,M for all values of parameters |a| < M .

In the region r ≤ 15M/8, we have in fact

g(∇t∗,∇t∗) = −1− 2Mr

ρ2
.

We will define

Στ = {t∗ = τ}, R(0,τ) = ∪0≤τ∗≤τΣτ∗ , and R0 = ∪R(0,τ).

Note that Σ0 is a past Cauchy hypersurface for the regions R(0,τ), R0. Let us

also define
H+

(0,τ) = R(0,τ) ∩H+, H+
0 = R0 ∩H+.

2.2.6. Angular derivatives and the volume form. For future reference, let

us introduce here the notation g/, ∇/ to denote the induced metric and covariant

derivative from ga,M (11) on the S2 factors of R in the product (6).

We record finally from [27] some useful properties of the volume form dV

of the metric ga,M : With respect to Boyer–Lindquist coordinates, there exists

a constant C such that we have

dV = v(r, θ) dt dr dVg/ with C−1 < v < C,

whereas using the alternative r∗ coordinate,

dV = v(r∗, θ) dt dr∗ dVg/ with C−1 <
vr2

∆
< C.

With respect to Kerr-star coordinates, we have

dV = v(r, θ∗) dt∗ dr dVg/ with C−1 < v < C.

Note that the functions v appearing in the above are not the same function.

Let γ denote the standard unit metric on the sphere in (θ, φ) coordinates.

We have that g/ ∼ r2γ, and thus we may replace dVg/ in the above using

dVg/ = v(r, θ) r2 sin θ dθ dφ with C−1 < v < C.

Finally, we note that

(15) dV = vdτ dVΣτ with C−1 < v < C.

For a0 < M and |a| ≤ a0, note that the constant C in the above is

uniformly bounded above and below, depending only on a0 and M .
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2.3. Multiplier currents and the general energy identity. We shall repeat

our standard notation for vector field multiplier current identities associated

to “multiplier” vector fields V that will be applied to ψ as well as to Ξψ for

various commutation vector fields Ξ. See [27] for more details and [18] for a

systematic discussion. See [44] for an early application of nontrivial energy

currents to the problem of decay for the wave equation on Minkowski space.

2.3.1. Currents. Given a general Lorentzian manifold (M, g), let Ψ be a

sufficiently regular complex valued function. We define

Tµν [Ψ]
.
= Re

(
∂µΨ∂νΨ

)
− 1

2
gµνg

αβRe
(
∂αΨ∂βΨ

)
.

Given a sufficiently regular vector field Vµ and a real valued function w onM,

we will define the currents

JVµ [Ψ] = Tµν [Ψ]V ν , JV,wµ [Ψ] = JVµ [Ψ] +
1

8
w∂µ |Ψ|2 −

1

8
(∂µw) |Ψ|2 ,

KV [Ψ] = Tµν [Ψ]∇µV ν , KV,w[Ψ] = KV [Ψ]− 1

8
2gw |Ψ|2+

1

4
wRe

(
∇αΨ∇αΨ

)
,

EV [Ψ] = Re
(
(2gΨ)V νΨ,v

)
, EV,w[Ψ] = EV (Ψ) +

1

4
wRe

(
Ψ2gΨ

)
.

Remark 2.3.1. Note that even if one is only interested in the study of solu-

tions ψ to the homogeneous (1), inhomogeneous terms will arise from applying

cutoffs to ψ and also from applying commutation vector fields (like vector field

Y from Section 4.5 below) that do not commute with 2g.

2.3.2. The divergence identity. The divergence identity between two ho-

mologous spacelike hypersurfaces S−, S+, bounding a region B, with S+ in

the future of S−, yields

(16)

∫
S+

JVµ [Ψ]nµ
S+ +

∫
B

(KV [Ψ] + EV [Ψ]) =

∫
S−

JVµ [Ψ]nµ
S− ,

where nΣi denotes the future directed timelike unit normal. The induced

volume forms are to be understood. A similar identity holds for the JV,wµ
currents, etc.

We shall typically apply (16) for the Kerr metric ga,M in the case where

S−=Σ0 and S+ =Στ ∪H+
(0,τ) and Ψ is compactly supported in R(0,τ) to obtain

(17)∫
Στ

JVµ [Ψ]nµΣτ +

∫
H+

(0,τ)

JVµ [Ψ]nµH+ +

∫
R(0,τ)

(KV [Ψ] + EV [Ψ]) =

∫
Σ0

JVµ [Ψ]nµΣ0
.

Let us note that the compactness of the support justifies the absence of an

additional boundary term even though S± are not homologous. Since H+ is

null, its induced normal form is coupled to the choice of nµH+ . In writing the

above, we shall assume such a choice has been made such that the formula

indeed holds.
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2.3.3. Superradiance in Kerr. As already mentioned in the introduction,

the presence of the ergoregion S is one of the fundamental difficulties associ-

ated with the passage from Schwarzschild to a rotating Kerr spacetime. One

particular consequence is that for a 6= 0, the conserved JTµ [ψ] energy flux for a

solution to (1) may be negative on the horizon H+. Hence, applying (17), the

energy on Στ can be larger than the energy on Σ0; this phenomenon is known

as superradiance.9

An explicit computation in (17) shows that the JTµ [ψ] energy flux along

H+(0,∞) is given by ∫
H+(0,∞)

Re
(
Tψ(Tψ +ω+Φψ)

)
,

where ω+ was defined in Section 2.2.2. In particular, if one formally considers

a (complex-valued) solution of the form

ψ(t∗, r, θ, φ∗) = e−iωt
∗
eimφ

∗
ψ0 (r, θ) ,

then the sign of the JTµ [ψ] flux on the horizon is determined by the sign of

ω (ω −ω+m) .

Thus, we say that the parameters ω and m are superradiant if

(18) ω (ω −ω+m) < 0.

Observe that in the case a ≥ 0, the condition (18) is equivalent to

(19) mω ∈
(

0,
am2

2Mr+

]
.

We will return to a discussion of the significance of this frequency range in

Section 6.4.

3. The main theorems

With the notation of Section 2 we may now give precise statements of the

results.

3.1. Boundedness and integrated local energy decay. Recall the notation

of Section 2, in particular, the hypersurfaces Στ , the region R0, the vector

fields T , Z̃∗ and the degeneration function ζ defined in (13). Let nµΣτ , nµH+

denote the corresponding normals. The vector field N below can be taken10

to be nΣτ , thought of now as a smooth vectorfield on R.

9In this context, it is in fact more appropriate to refer to the energy flux to null infinity I+.
10We can alternatively take N to be the vector field of Proposition 4.5.1; this is the vector

field we shall use in the proof. For the statement of Theorem 3.1, the only important feature

of N is that it is φτ -invariant, strictly timelike and asymptotic to T for large r. Whereas we

could have used everywhere nΣτ in the statement, we prefer to keep the distinct roles of nΣτ

and N as this will be important when we replace Στ with hyperboloidal hypersurfaces Σ̃τ in

Section 3.3.
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The main theorem of the present paper is

Theorem 3.1. Fix M > 0, 0 ≤ a0 < M and δ > 0. There exists a

constant C = C(a0,M, δ) such that for all |a| ≤ a0, and all sufficiently regular

solutions ψ of the wave equation 2ga,Mψ = 0 on R0, the following estimates

hold : ∫
R0

(
r−1ζ|∇/ψ|2g/ + r−1−δζ |Tψ|2 + r−1−δ

∣∣∣Z̃∗ψ∣∣∣2 + r−3−δ |ψ − ψ∞|2
)

(20)

≤ C
∫

Σ0

JNµ [ψ]nµΣ0
,∫

H+
0

(
JNµ [ψ]nµH+ + |ψ − ψ∞|2

)
≤ C

∫
Σ0

JNµ [ψ]nµΣ0
,(21)

∫
I+

JTµ [ψ]nµI+ ≤ C
∫

Σ0

JNµ [ψ]nµΣ0
,(22) ∫

Στ

JNµ [ψ]nµΣτ ≤ C
∫

Σ0

JNµ [ψ]nµΣ0
∀τ ≥ 0,(23)

where 4πψ2
∞ = limr′→∞

∫
Σ0∩{r=r′} r

−2|ψ|2.

Estimate (20) is an integrated local energy decay statement degenerating

at trapping. The full statement obtained in the proof is more precise but

cannot be expressed in physical space; see Proposition 12.1 of Section 12.

Estimate (21) is the boundedness of the energy flux through the event hori-

zon H+
0 (as measured by a local observer), while estimate (22) is the bound-

edness of the energy flux to null infinity I+. (The latter will be explained in

Section 9.5.) These two estimates are obtained concurrently with (20).

Estimate (23) is the statement of uniform energy boundedness through

the foliation Στ . We note that the proof of this statement, which is obtained

a posteriori, requires the more precise version of (20) given in Proposition 12.1.

Note that∫
Στ

JNµ [ψ]nµΣτ ∼ |ψ |
2
H̊1(Στ )

+ |nΣτψ |2L2(Στ )

∼
∫
θ,φ∗

∫ ∞
r+

(|∂t∗ψ|2 + |∂rψ|2 + |∇/ψ|2g/) dr dVg/

(24)

with respect to coordinates (t∗, r, θ, φ∗), where here f (ψ) ∼ g (ψ) means there

exist constants c and C not depending on ψ such that cg (ψ) ≤ f (ψ) ≤ Cg (ψ).

Thus, (23) gives uniform geometric H̊1 bounds on the solution.
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The reader familiar with Penrose-diagrammatic notation may find the

following useful:

H −
I
−

H
+
0

Σ0

R

R0
Σ
τ

I +
0

3.2. The higher-order statement. For various applications, it is essential

to have a higher-order analogue of the above. This is given by

Theorem 3.2. Let M , a0, a be as in Theorem 3.1. Then, for all δ > 0

and all integers j ≥ 1, there exists a constant C = C(a0,M, δ, j) such that the

following inequalities hold for all sufficiently regular solutions ψ to the wave

equation 2ga,Mψ = 0 on R0:

∫
R0

r−1−δζ
∑

1≤i1+i2+i3≤j
|∇/i1T i2(Z̃∗)i3ψ|2g/

(25)

+ r−1−δ
∑

1≤i1+i2+i3≤j−1

(
|∇/i1T i2(Z̃∗)i3+1ψ|2g/ + |∇/i1T i2(Z∗)i3ψ|2g/

)
≤ C

∫
Σ0

∑
0≤i≤j−1

JNµ [N iψ]nµΣ0
,

∫
H+

0

∑
0≤i≤j−1

JNµ [N iψ]nµH+ ≤ C
∫

Σ0

∑
0≤i≤j−1

JNµ [N iψ]nµΣ0
,(26) ∫

I+

∑
0≤i≤j−1

JTµ [N iψ]nµI+ ≤ C
∫

Σ0

∑
0≤i≤j−1

JNµ [N iψ]nµΣ0
,(27) ∫

Στ

∑
0≤i≤j−1

JNµ [N iψ]nµΣτ ≤ C
∫

Σ0

∑
0≤i≤j−1

JNµ [N iψ]nµΣ0
∀τ ≥ 0.(28)

Let us note that by an elliptic estimate, we have

(29)

∫
Στ

∑
0≤i≤j−1

JNµ [N iψ]nµΣτ ∼
∑

1≤i≤j
|ψ |2

H̊i(Στ )
+ |nΣτψ |2H̊i−1(Στ )

.

Thus, as with (23) before, we may re-express statement (28) of the above theo-

rem as the statement of the uniform boundedness of geometric Sobolev norms.
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Note that uniform pointwise bounds on |ψ| and its derivatives to arbitrary or-

der |∇/i1T i2(Z̃∗)i3ψ|g/ in R0 follow as an immediate consequence of the above

theorems in view of the Sobolev inequality applied on each Στ .

The above theorems also imply pointwise decay statements and decay for

the energy flux through suitable hypersurfaces. We turn to this now.

3.3. Corollaries. Let us note first that by a reduction proven as Propo-

sition 4.6.1 of [27], Theorems 3.1 and 3.2 hold where Σ0 is replaced by an

arbitrary “admissible” hypersurface Σ̃0 (see Section 4.4 of [27] for this notion),

Στ is replaced by Σ̃τ
.
= ϕτ (Σ̃0), nΣτ is replaced by n

Σ̃τ
, R0, H+

0 are rede-

fined as D+(Σ̃0), D+(Σ̃0) ∩H+, respectively, and N is kept as is. This notion

includes both asymptotically flat hypersurfaces terminating at spatial infinity

(a special case of admissible hypersurfaces of the first kind) and asymptoti-

cally hyperboloidal hypersurfaces terminating at null infinity (a special case of

admissible hypersurface of the second kind). The latter case is depicted below:

H −
I
−

H
+
0 I +

0

R

Σ̃
τ

R0

Σ̃0

Note, however, that in the latter case, (29) (with the above substitutions) will

never hold. It is for this reason that we prefer to state Theorems 3.1 and 3.2

in the form given.

As a consequence of this more general statement, the above theorems

allow us to apply our “black box” result of [28]. (See [57] and [53] for detailed

treatments.) We obtain

Corollary 3.1. Let a0, M , a, and δ be as in Theorems 3.1–3.2, and let

R > r+. Let Σ̃0 be an asymptotically hyperboloidal hypersurface terminating at

null infinity, and denote Σ̃τ = ϕτ (Σ̃0). Then for sufficiently regular solutions

of the wave equation, we have the following estimates for the energy flux :

∫
Σ̃τ

JNµ [ψ]nµ
Σ̃τ
≤ C(a0,M)Eτ−2,∫

Σ̃τ∩{r≤R}
JNµ [Nψ]nµ

Σ̃τ
≤ C(a0,M, δ,R)Eτ−4+2δ,
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and the following pointwise estimates :

sup
Σ̃τ

r|ψ − ψ∞| ≤ C(a0,M)
√
E τ−1/2,

sup
Σ̃τ∩{r≤R}

|ψ − ψ∞| ≤ C(a0,M, δ,R)
√
Eτ−3/2+δ,(30)

sup
Σ̃τ∩{r≤R}

|n
Σ̃
ψ|+ |∇

Σ̃
ψ| ≤ C(a0,M, δ,R)

√
Eτ−2+δ,(31)

where in each inequality, E denotes an appropriate higher-order weighted en-

ergy on Σ̃0 (or alternatively on an asymptotically flat Σ0 in the past of Σ̃0).

From the point of view of nonlinear applications, the main significance of

the powers on the right-hand side of (30) and (31) is that they are integrable

in time.

3.4. The logic of the proof. Now that we have given precise formulations

of the main theorems, we will give a brief account of the logic of the proof,

highlighting where each statement is proven.

The reader may wish to refer back to the outline of Section 1.2. Recall that

Section 4 concerns various preliminary propositions, including a reduction (in

Section 4.1) to considering ψ arising from smooth compactly supported data on

Σ0, whereas Section 5 defines a class of functions for which Carter’s separation

to the radial o.d.e. (44) and appropriate boundary conditions can be justified

a priori. Sections 6, 7 and 8, on the other hand, are logically independent of

the rest of the paper; they are concerned with the study of classical solutions

u to the o.d.e. (44) assumed to satisfy appropriate boundary conditions. The

culmination is Theorem 8.1, which establishes estimates on u independent of

the frequency parameters in the potential.

The logic of the proof of Theorem 3.1 can be properly thought to com-

mence in Section 9. We define a class of solutions to (1) that we call “future-

integrable” and that allows us to apply Carter’s separation of Section 5 to

a suitably defined function, with the help of a cutoff. We then apply Theo-

rem 8.1 to the resulting u. Summing via Plancherel, and using in addition the

preliminary propositions of Section 4 and the refined mode stability of [60], we

establish in Proposition 9.1.1 the integrated energy decay statement (20), the

horizon energy flux bound (21) and the null infinity flux bound (22) for this

class of future-integrable solutions to (1).

In Proposition 10.1 we will upgrade these to the higher-order statements

(25), (27) and (28) of Theorem 3.2, again for the class of future-integrable

solutions.

Next, in Proposition 11.1 we will use a continuity argument to show that

all solutions to (1) arising from smooth compactly supported data (according
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to the reduction of Section 4.1) are future-integrable. We thus unconditionally

obtain the statements (20), (21), (22), (25), (26) and (27).

Finally, in Proposition 13.1 we unconditionally establish the statements

(23) and (28). This will complete the proof of Theorems 3.1 and 3.2.

4. Preliminaries

4.1. Well posedness, regularity and smooth dependence. Let us note that

the wave equation (1) is well posed in R0 with initial data (ψ,ψ′) defined on

Σ0 in Hj
loc(Σ0)×Hj−1

loc (Σ0) (cf. Proposition 4.5.1 of [27]). We take these spaces

to consist of complex valued functions. Moreover, if the initial data are smooth

and of compact support on Σ0, then ψ will be smooth and of compact support

on all Στ for τ ≥ 0.

In the proof of our theorems, by standard density arguments (applied to

ψ − ψ∞), we may thus assume that ψ indeed arises from such data and thus

is smooth and of compact support for fixed Στ for all τ ≥ 0.

Lastly, we observe that the solution ψ to (1) depends smoothly on a; e.g.,

Lemma 4.1.1. Let |a∞| < M , {ak}∞k=1 satisfy ak → a∞, 2gak,M
ψk = 0,

ψk|Σ0 = ψ∞|Σ0 and nΣ0ψk|Σ0 = nΣ0ψ∞|Σ0 . Then, for every j ≥ 1 and τ ≥ 0,

lim
k→∞

∫
Στ

∑
1≤i1+i2+i3≤j

∣∣∣∣∇/i1T i2 (Z̃∗)i3 ψk∣∣∣∣2
g/

=

∫
Στ

∑
1≤i1+i2+i3≤j

∣∣∣∣∇/i1T i2 (Z̃∗)i3 ψ∞∣∣∣∣2
g/
.

(We shall appeal to the above lemma at the end of Section 11.3 in the

context of the closedness part of our continuity argument.)

4.2. The sign of a. For given a, M , given a solution ψ of 2gM,aψ = 0,

then, defining ψ̃(y∗, t∗, θ∗, φ∗) = ψ(y∗, t∗, θ∗, 2π − φ∗), we have that ψ̃ satis-

fies 2gM,−aψ̃ = 0. Moreover, the estimates of Theorems 3.1 and 3.2 for ψ̃

with quantities defined with respect to the metric gM,−a are equivalent to the

analogous estimates for ψ with respect to the metric gM,a. Thus, it suffices

to prove our theorems for a ≥ 0. This reduction is of no conceptual signif-

icance, but it slightly simplifies the notation for discussing the superradiant

frequency range, which then can be given by (19). For notational convenience

we will indeed use the reduction to a ≥ 0 in Sections 6–8 in the context of

describing the properties of the potential V in various frequency regimes and

defining the frequency-dependent multiplier currents. The reader can assume

that a ≥ 0 globally in this paper, but it is strictly speaking only necessary for

those statements that refer explicitly to frequency-dependent functions in the

separation.



DECAY FOR SOLUTIONS OF THE WAVE EQUATION ON KERR III 813

4.3. Hardy inequalities. As in the previous parts of this series [27], at

various points we shall refer to Hardy inequalities. In view of our comments

concerning the volume form (see Section 2.2.6), the reader can easily derive

these from the one-dimensional inequalities∫ 2

0
x−1| log x|−2|f |2dx ≤ C

∫ 2

0

∣∣∣∣ dfdx
∣∣∣∣2 dx+ C

∫ 2

1
|f |2dx,(32) ∫ ∞

1
|f |2dx ≤ C

∫ ∞
1

x2

∣∣∣∣ dfdx
∣∣∣∣2 dx,(33)

where the latter holds for functions f of compact support.

4.4. Generic constants in inequalities and fixed parameters. Let us recall

our conventions from [27] regarding constants depending on the Kerr geometry.

As in the statement of Theorem 3.1, all propositions in this paper provid-

ing estimates will explicitly refer to two fixed parameters a0 < M delineating

the range of Kerr parameters allowed. In the context of inequalities, we shall

denote by B potentially large positive constants, whereas we shall denote by

b potentially small positive constants, both depending only on M and a0. This

dependence is always to be understood. We record the resulting algebra of

constants:

b+ b = b, B +B = B, B ·B = B, B−1 = b, . . . .

We note that these constants will often blow up B → ∞, b−1 → ∞ in the

extremal limit a0 →M .

Our constructions will depend on various additional parameters, for in-

stance, the parameters ωhigh, E, etc., which are free in the statements of Propo-

sitions 8.3.1, etc., but are chosen by the end of the proof of Theorem 8.1, in

whose statement they appear as fixed parameters.

When a parameter is required to be “sufficiently large” or “sufficiently

small” without further clarification, this always means that there exists a con-

stant depending on a0 and M such that the parameter can be taken to be

an arbitrary value bigger than that constant. If a parameter is required to be

“sufficiently large” given another parameter, this means that there again exists

such a constant depending on a0 and M and the other parameter.

Until a parameter has been fixed, e.g., the parameter ωhigh, we shall use the

notation B(ωhigh), etc., in the context of inequalities, to denote constants de-

pending on ωhigh in addition to M and a0. For a parameter, say c, that is an ex-

plicit function of other parameter(s), say ωhigh, together with M and a0, we will

write c(ωhigh). Again, the dependence on M and a0 is always to be understood.

The final choices of all initially free parameters used in the present paper

will be made to depend only on M and a0. Once such choices are made,

B(ωhigh) is replaced by B, following our conventions.



814 M. DAFERMOS, I. RODNIANSKI, and Y. SHLAPENTOKH-ROTHMAN

4.5. The red-shift. Understanding the red-shift is an essential part of the

dynamics. Definitive constructions have been given in Section 7 of [31]. These

depend only on the positivity of the surface gravity κ, recalled in Section 2.2.2.

4.5.1. The vectorfield N . Let us recall briefly from [27] the construction

of a vector field N capturing the red-shift effect.

Proposition 4.5.1. Let |a| ≤ a0 < M , ga,M be the Kerr metric and

R, etc., be as before. There exist positive constants b and B, parameters

r1(a,M) > rred(a,M) > r+ and a ϕτ -invariant timelike vector field N =

N(a,M) on R, normalised so that N −K is future oriented, traverse to H+,

and null with g(N,K) = −2, such that

(1) KN [Ψ] ≥ bJNµ [Ψ]Nµ for r ≤ rred,

(2) −KN [Ψ] ≤ B JNµ [Ψ]Nµ for r ≥ rred,

(3) T = N for r ≥ r1,

where the currents are defined with respect to ga,M .

Note the implicit a0 and M dependence of constants b and B as described

in Section 4.4 above. This proposition would fail in the case a0 = M . See [8]

and [56].

4.5.2. The red-shift estimate. The above leads immediately to the follow-

ing estimate (see [27]).

Proposition 4.5.2. Let g = ga,M for |a| ≤ a0 < M , and let rred be as in

the above proposition. Then the following is true. For all r+ ≤ r̃ ≤ rred and

δ̃ > 0, there exists a positive constant B(r̃, δ̃), such that for all functions Ψ on

R0, then∫
R(0,τ)∩{r≤r̃}

(JNµ [Ψ]Nµ + | log(|r − r+|)−2||r − r+|−1 |Ψ|2)

+

∫
H+

(0,τ)

JNµ [Ψ]nµH+ +

∫
Στ∩{r≤r̃}

JNµ [Ψ]nµ

≤ B(r̃, δ̃)

∫
Σ0

JNµ [Ψ]nµ+B(r̃, δ̃)

∫
R(0,τ)∩{r̃≤r≤r̃+δ̃}

(JNµ [Ψ]Nµ + |Ψ|2)− EN [Ψ] .

Again, recall that the additional dependence of B on M and a0 is now

implicit according to our conventions. Note that the proof of this estimate

uses the Hardy inequality (32), so as to include the useful zeroth order term

on the left-hand side. We note that the same estimate holds with the above

zeroth order terms removed from both the right- and the left-hand sides.

4.5.3. Red-shift commutation and the vector field Y . We specialise Theo-

rem 7.2 of [31] to the Kerr case.
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Proposition 4.5.3. Let g=ga,M , let K be the vector field of Section 2.2.2,

let Y = N − K , and let E1, E2 be ϕτ -invariant vector fields such that the

collection {K,Y,E1, E2} form a local null frame on H+. Then for all k ≥ 0

and multi-indices m = (m1,m2,m3,m4), on the horizon H+ we have

2g(Y
kΨ) = κkY

k+1Ψ +
∑

|m|≤k+1,m4≤k

cmE
m1
1 Em2

2 Lm3Y m4Ψ + Y k(2gΨ),

where κk > 0 and the cm are smooth ϕτ -invariant functions.

The above proposition, which is another manifestation of the red-shift ef-

fect, effectively allows us not only to apply a transversal vector field to the

horizon as a multiplier, but also as a commutation vector field. This is funda-

mental for retrieving higher-order statements as in Theorem 3.2.

4.6. An estimate for large r. We will also need the following estimate.

Proposition 4.6.1. Fix M > 0 and a0 < M . For each δ > 0, there

exist positive values 2M < R̃ < Rlarge, and positive constants B(δ) such that

if |a| ≤ a0, ψ denotes a solution of (1) and ψ∞ = 0, then for all τ ≥ 0,∫
R(0,τ)∩{r≥Rlarge}

r−1(r−δ|∂rψ|2 + r−δ|∂tψ|2 + |∇/ψ|2g/ + r−2−δ |ψ|2)

≤ B(δ)

∫
Σ0

JNµ [ψ]nµΣ0
+B(δ)

∫
Στ

JNµ [ψ]nµΣτ

+B(δ)

∫
R(0,τ)∩{r≥R̃}

r1+δ |F |2

+B(δ)

∫
R(0,τ)∩{R̃≤r≤Rlarge}

(|∂rψ|2 + |∂tψ|2 + |∇/ψ|2g/ + |ψ|2).

The homogeneous case is treated in [27], and the inhomogeneous case

follows by the same argument.

4.7. A timelike vector field. We have noted in Section 2.2.2 that the span

of T and Φ is a null subspace on the horizon H+ and a timelike subspace on

R \H+. These statements are, in particular, implied by the following lemma,

which will be important later.

Lemma 4.7.1. The vector field

T +
2Mar

(r2 + a2)2 Φ

is timelike in R \H+ and null on H+.
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Proof. On the horizon H+, the vector field reduces to

T +
a

2Mr+
Φ,

which can immediately be seen to be its standard null generator.

Off the horizon, computing g
(
T + 2Mar

(r2+a2)2 Φ, T + 2Mar
(r2+a2)2 Φ

)
in Boyer–

Lindquist coordinates reduces the assertion to checking that

−∆ + sin2 θ

(
a2 − 4M2r2a2

(r2 + a2)2
− 4M2r2a4 sin2 θ∆

(r2 + a2)4

)
< 0.

It suffices to consider the case where the quantity in parentheses is positive.

In this case, it is sufficient to check that

(34) −∆ + a2 − 4M2r2a2

(r2 + a2)2
< 0.

Observe that

(r2 + a2)2 = (∆ + 2Mr)2 = ∆2 + 4Mr∆ + 4M2r2.

Multiplying through by (r2 + a2)2 then reduces (34) to

−∆3 − 4Mr∆2 − 4M2r2∆ + a2∆2 + 4Mra2∆ < 0

⇔ −∆2 − (4Mr − a2)∆− 4Mr(Mr − a2) < 0.

Now it suffices to observe the inequalities r > M > a. �

We also note the following, which actually is a trivial consequence of

positivity of surface gravity (12).

Lemma 4.7.2. There exists ε0 > 0 such that the vector field

T +
a

2Mr+
Φ

is timelike for r ∈ (r+, r+ + ε0).

Proof. A computation gives

g

(
T +

a

2Mr+
Φ, T +

a

2Mr+
Φ

)
= ρ−2

(
−∆ + sin2 θ

(
a2 − 2a2r

r+
+
a2
(
r2 + a2

)2
4M2r2

+

− a4 sin2 θ∆

4M2r2
+

))
.

Consider the function

F (r) := −∆ + a2 − 2a2r

r+
+
a2
(
r2 + a2

)2
4M2r2

+

.
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The lemma follows, noting that F (r+) = 0 and

dF

dr
(r+) = −(r+ − r−)− 2a2

r+
+

2a2

M
= −2

√
M2 − a2 − 2a2

M +
√
M2 − a2

+
2a2

M

(35)

=
1

M(M +
√
M2 − a2)

(
−2M(M2 − a2)− 2

√
M2 − a2(M2 − a2)

)
< 0. �

5. The sufficiently integrable outgoing class and Carter’s separation

In this section we will define a suitable class of functions Ψ for which one

can apply Carter’s separation and for which, moreover, the resulting radial or-

dinary differential equation for u will satisfy appropriate “outgoing” boundary

conditions. We shall define this class in Section 5.1 below, review the separa-

tion in Section 5.2, establish the relevant boundary conditions in Section 5.3,

and study the regularity properties of u in Section 5.4.

5.1. The class of sufficiently integrable outgoing functions. We define here

a class of functions Ψ for which frequency analysis is well defined. To give

some motivation for the class, we give a brief preview of how separation will

be applied.

As described in the introduction, the frequency analysis necessary for

our proof of integrated local energy decay requires taking a Fourier transform

in t. However, a priori, solutions ψ to the wave equation (1) could even grow

exponentially in time. We shall at first instance, however, restrict to smooth

solutions of the wave equation (arising from compactly supported data) that

are assumed to be L2 in time in the future of Σ0.11 We shall first appeal to

our estimates with Ψ = ξψ, where ψ is a solution that is known to be future

integrable, and ξ(τ) is a suitable cutoff so that ξ = 1 for τ ≥ 1 and ξ = 0 for

τ ≤ 0. See Proposition 9.1.1. Note that Ψ satisfies an inhomogeneous equation

(36) 2ga,MΨ = F

with compactly supported F , and Ψ = 0 to the past of Σ0.

In the context of the openness argument, we shall apply estimates to

Ψ = ξψ with two different choices of ψ and the cutoff ξ(τ). First, we will take

ψ to solve the wave equation (1), and the cutoff ξ(τ) will be taken to vanish for

τ ≤ 0 and τ ≥ τ0. Next, we will take ψ to be be a solution of 2gψ = 0 where

g is an “interpolating metric” between ga,M and a g̊a,M , with interpolation

11Recall that in [27] the Fourier transform was only applied to Schwartz functions in t.

The added flexibility gained by working with square integrable functions in t will be crucial

for the continuity argument (see Section 11).
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region between hypersurfaces Στ−δ0 and Στ , and ξ(τ) will be take to equal 1

for τ ≥ 1 and equal 0 for τ ≤ 0. This will make Ψ an L2 in time solution of

the inhomogeneous (36), where again F is compactly supported in spacetime

and Ψ = 0 in the past of Σ0. See Proposition 11.1.2 and Section 11.2.2.

In the closedness argument, we shall be able to work with solutions ψ

which are a priori square integrable in time. Thus, we shall apply our estimates

to Ψ = ξψ where ξ(τ) is an appropriate cutoff such that ξ = 1 for τ ≥ 1 and

ξ = 0 for τ ≤ 0. Then, Ψ will satisfy an inhomogeneous equation (36) with a

compactly supported right-hand side, and Ψ = 0 in the past of Σ0.

Finally, in the context of the boundedness argument, ψ has already been

proven to be L2 in time (both to the future, and, after suitable extension, to

the past), and the argument is applied to Ψ = χ̃ψ where χ̃(r) is a cutoff in r

away from the horizon and null infinity. See Section 13.

In all these cases, we note that we apply frequency analysis to Ψ that

satisfies

(a) Ψ (r) is square integrable in t for each r ∈ [r+,∞);

(b) Ψ is supported away from the past event horizon H− and “past null infin-

ity” I− (cf. the Penrose diagram of Section 3.1), with 2ga,MΨ vanishing

for sufficiently large r.

It is these properties that motivate the following definitions.

5.1.1. Sufficiently integrable. We first introduce the most basic integrabil-

ity assumptions that will allow us to apply the separation and make sense of

the radial o.d.e. (2) discussed already in Section 1.1.1.

Definition 5.1.1. Let a0 < M , |a| ≤ a0 and let g = ga,M . We say that a

smooth function Ψ : R → R is “sufficiently integrable” if for every j ≥ 1 and

A > r+, we have

sup
r∈[r+,A]

∫ ∞
−∞

∫
S2

∑
0≤i1+i2+i3≤j

∣∣∣∇/i1T i2 (Z∗)i3 Ψ
∣∣∣2
g/

sin θ dt dθ dφ <∞,

sup
r∈[r+,A]

∫ ∞
−∞

∫
S2

∑
0≤i1+i2+i3≤j

∣∣∣∇/i1T i2 (Z∗)i3 2gΨ
∣∣∣2
g/

sin θ dt dθ dφ <∞.

Remark 5.1.1. Observe that each fixed-r integral is unchanged under the

change of variables t 7→ t∗ and φ 7→ φ∗.

5.1.2. The “outgoing” condition. We next introduce an assumption that

will imply that solutions of the radial o.d.e. (2) have “outgoing” boundary

conditions.

Definition 5.1.2. Let a0 < M and |a| ≤ a0. We shall say a smooth

function Ψ is “outgoing” if there exists an ε > 0 such that Ψ vanishes in
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Στ ∩ {r ≤ r+ + ε} and Στ ∩ {r ≥ ε−1} for all τ ≤ −ε−1, and 2ga,MΨ vanishes

for sufficiently large r.

We shall see the significance of each of these assumptions individually in

Sections 5.2 and 5.3 below. From Section 9 onward, we shall always work in the

class defined by assuming both Definitions 5.1.1 and 5.1.2; i.e., Ψ will always

be a sufficiently integrable outgoing function.

Remark 5.1.2. Of course, one could significantly weaken the assumptions

in Definitions 5.1.1 and 5.1.2; however, this class of functions is very easy to

work with, and weakening the assumptions would not simplify the proof of

Theorem 3.1.

5.2. Review of Carter ’s separation. As we have already discussed in our

summary of the first parts of the series in Section 1.1.1, we shall view Carter’s

separation of the wave equation as a convenient geometric framework for

frequency-localising energy estimates, closely tied to the Kerr geometry. In

the present section, we shall review the relevant formalism from [27].

5.2.1. The oblate spheroidal harmonics. Let ν ∈ R. We begin by recalling

the collection

{Sm`(ν, cos θ)eimφ}m`
of the eigenfunctions of the self-adjoint operator

P (ν) f = − 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ
f

)
− ∂2f

∂φ2

1

sin2 θ
− ν2 cos2 θf

on L2(sin θ dθ dφ). These form a complete orthonormal basis on L2(sin θ dθ dφ).

The eigenfunctions are parametrised by a set of real discrete eigenvalues λ
(ν)
m`

(37) P (ν)Sm`(ν, cos θ)eimφ = λm`(ν)Sm`(ν, cos θ)eimφ,

which have the property that

λ
(ν)
m` + ν2 ≥ |m|(|m|+ 1),(38)

λ
(ν)
m` + ν2 ≥ 2 |mν| .12(39)

For ν = 0, the oblate spheroidal harmonics Sm`(ν, cos θ)eimφ reduce to the

standard spherical harmonics Ym` with the corresponding eigenvalues λ
(0)
m` =

`(`+ 1).

5.2.2. The coefficients Ψ
(aω)
m` . Given parameters a, M , let Ψ be “suffi-

ciently integrable” in the sense of Definition 5.1.1. We write

Ψ(t, r, θ, φ) =
1√
2π

∫ ∞
−∞

e−iωtΨ̂(ω, r, θ, φ)dω
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and then, setting ν = aω for each ω ∈ R, further decompose

Ψ̂(ω, r, θ, φ) =
∑
m`

Ψ
(aω)
m` (r)Sm`(aω, cos θ)eimφ

to arrive at

Ψ(t, r, θ, φ) =
1√
2π

∫ ∞
−∞

∑
m`

e−iωtΨ
(aω)
m` (r)Sm`(aω, cos θ)eimφdω.

The sufficiently integrable assumption implies that for each r, the first and

third equality may be interpreted in L2
tL

2
S2 , while the second equality may be

interpreted in L2
ωL

2
S2 .

Furthermore, if Ψ satisfies Definition 5.1.1, then so do ∂tΨ, ∂φΨ and, by

the well-known properties of the Fourier transform, we have

∂tΨ(t, r, θ, φ) =
−i√
2π

∫ ∞
−∞

∑
m`

ωe−iωtΨ
(aω)
m` (r)Sm`(aω, cos θ)eimφdω,

∂φΨ(t, r, θ, φ) =
i√
2π

∫ ∞
−∞

∑
m`

me−iωtΨ
(aω)
m` (r)Sm`(aω, cos θ)eimφdω.

As above, for each r these equalities may be interpreted in L2
tL

2
S2 .

Let us take the opportunity to observe the following consequences of

Plancherel’s formula and the orthonormality of the Sml(aω, cos θ)e−imφ:∫ 2π

0

∫ π

0

∫ ∞
−∞
|Ψ|2(t, r, θ, ϕ) sin θ dϕ dθ dt =

∫ ∞
−∞

∑
m`

|Ψ(aω)
m` (r)|2 dω,

∫ 2π

0

∫ π

0

∫ ∞
−∞

Ψ ·Υ sin θdϕ dθ dt =

∫ ∞
−∞

∑
m`

Ψ
(aω)
m` · Ῡ

(aω)
m` dω,∫ 2π

0

∫ π

0

∫ ∞
−∞
|∂rΨ|2(t, r, θ, ϕ) sin θ dϕ dθ dt =

∫ ∞
−∞

∑
m`

∣∣∣∣ ddrΨ
(aω)
m` (r)

∣∣∣∣2 dω,∫ 2π

0

∫ π

0

∫ ∞
−∞
|∂tΨ|2(t, r, θ, ϕ) sin θ dϕ dθ dt =

∫ ∞
−∞

∑
m`

ω2|Ψ(aω)
m` (r)|2dω.

Finally, we note that a straightforward integration by parts, Plancherel

and the orthonormality of Sm`(aω, cos θ)eimφ imply∫ 2π

0

∫ π

0

∫ ∞
−∞

[∣∣∣∣∂Ψ

∂θ

∣∣∣∣2 +

∣∣∣∣∂Ψ

∂φ
sin−1 θ

∣∣∣∣2
]

(t, r, θ, ϕ) sin θ dϕ dθ dt

=

∫ ∞
−∞

∑
m,`

λ
(aω)
m` |Ψ

(aω)
m` (r)|2dω − a2

∫ 2π

0

∫ π

0

∫ ∞
−∞

cos2 θ |∂tΨ|2 sin θ dϕ dθ dt.
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5.2.3. The radial ordinary differential equation and the potential V . If Ψ

is sufficiently integrable in the sense of Definition 5.1.1, define

(40) F = 2gΨ

for g = ga,M a Kerr metric with |a| < M .

The sufficiently integrable assumption implies that we may define the

coefficients Ψ
(aω)
m` (r),

(
ρ2F

)(aω)

m`
(r) as above.

Carter’s formal separation [15] of the wave operator yields

Proposition 5.2.1. Let a0 < M , |a| ≤ a0, Ψ be sufficiently integrable,

and let F be defined by (40). Then

∆
d

dr

(
∆
dΨ

(aω)
m`

dr

)(41)

+
(
a2m2+(r2+a2)2ω2 − 4Mraωm−∆(λm`+a

2ω2)
)

Ψ
(aω)
m` = ∆

(
ρ2F

)(aω)

m`
.

Note that the sufficiently integrable assumption allows us to interpret this equal-

ity for each r in L2
ωl

2
m`.

Using the definition (7) of r∗ and setting

u
(aω)
m` (r) = (r2 + a2)1/2Ψ

(aω)
m` (r),(42)

H
(aω)
m` (r) =

∆
(
ρ2F

)(aω)

m`
(r)

(r2 + a2)3/2
,(43)

we obtain

(44)
d2

(dr∗)2
u

(aω)
m` + (ω2 − V (aω)

m` (r))u = H
(aω)
m` ,

where

V
(aω)
m` (r) =

4Mramω − a2m2 + ∆(λm` + ω2a2)

(r2 + a2)2
(45)

+
∆(3r2 − 4Mr + a2)

(r2 + a2)3
− 3∆2r2

(r2 + a2)4
.

In the Schwarzschild case,

V
(0ω)
m` (r) = (r − 2M)

(
` (`+ 1)

r3
+

2M

r4

)
,(46)

(
dV

dr∗

)(0ω)

m`

(r) =
r − 2M

r

(
2` (`+ 1) (3M − r)

r4
+

2M(8M − 3r)

r5

)
.(47)

Again, for each r, (44) is to be interpreted in L2
ωl

2
m`.
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5.2.4. Notational conventions. Following well-established convention, in

what follows, as in [27], we shall suppress the dependence of u, H and V on

aω, m, and ` in our notation. We will also use the notation

(48) ′ =
d

dr∗
.

We repeat the following warning from [27]: Since for fixed ga,M , r is a

smoothly invertible function of r∗, we shall often refer to r∗-ranges by their

corresponding r-ranges (in particular, given an r-parameter such as R, we

shall very often use the notation R∗ = r∗(R) without further comment), and

we shall express functions appearing in most estimates as functions of r. The

derivative ′ always is to denote (48)!

5.3. Boundary conditions. In this section, we shall establish boundary

conditions for the radial o.d.e. (44). We will require Definitions 5.1.1 and

5.1.2.

Lemma 5.3.1. Let a0 < M , |a| ≤ a0, and Ψ be sufficiently integrable and

outgoing. Define u
(aω)
m` (r) by (42). Then

(49)

∫ ∞
−∞

∑
m`

∣∣∣∣u′(r) + i

(
ω − am

2Mr+

)
u(r)

∣∣∣∣2 dω
is a smooth function of r that vanishes at r = r+.

Proof. The assumptions on Ψ imply that∫ ∞
−∞

∫
S2

∑
0≤i1+i2+i3≤j

∣∣∣∇/i1T i2 (Z∗)i3 Ψ
∣∣∣2
g/

sin θ dt dθ dφ

is a smooth function of r. Combining this with the fact that ∂r∗ = T + a
2Mr+

Φ

on H+, we conclude that∫ ∞
−∞

∫
S2

∣∣∣∣∂r∗ ((r2 + a2)1/2Ψ
)

−
(
T +

a

2Mr+

)(
(r2 + a2)1/2Ψ

) ∣∣∣∣2 sin θ dt dθ dφ = O(r − r+)

⇔
∫ ∞
−∞

∑
m`

∣∣∣∣u′(r) + i

(
ω − am

2Mr+

)
u(r)

∣∣∣∣2 dω = O (r − r+)

as r → r+. �

Lemma 5.3.2. Let a0 < M , |a| ≤ a0, and let Ψ be sufficiently integrable

and outgoing. Define u
(aω)
m` (r) by (42). Then, there exists a sequence {rn}∞n=1
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such that rn →∞ as n→∞ and

(50) lim
n→∞

∣∣∣∣(u(aω)
m`

)′
(rn)− iωu(aω)

m` (rn)

∣∣∣∣→ 0

for almost every ω.

Proof. The “rp-estimate” from [28] with p = 1, and Definitions 5.1.1 and

5.1.2 immediately imply that for R sufficiently large,∫ ∞
−∞

∫
r≥R

∫ 2π

0

∫ π

0

∣∣∣(∂t + ∂r∗)
((
r2 + a2

)1/2
Ψ
)∣∣∣2 sin θ dt dr dθ dφ <∞.

An application of Plancherel and a standard pigeonhole argument imply that

there exists a dyadic subsequence {rn}∞n=1 such that

lim
n→∞

∫ ∞
−∞

∣∣∣∣(u(aω)
m`

)′
(rn)− iωu(aω)

m` (rn)

∣∣∣∣2 dω → 0.

Finally, we recall the standard fact that convergence in L2 implies almost

everywhere pointwise convergence along a subsequence. �

As noted in [30], we may formally write these boundary conditions as

u′ + i

(
ω − am

2Mr+

)
u = 0, r = r+,(51)

u′ − iωu = 0, r =∞.(52)

5.4. On the almost everywhere regularity of u
(aω)
m` . The most natural set-

ting for our frequency analysis is the class of functions of r with values in L2
ωl

2
m`

referred to already after equality (41). However, for convenience, in Sections 7

and 8, we shall study classical solutions u to the o.d.e. (44). The following

lemma will be used in Section 9 to justify the reduction to classical solutions.

Lemma 5.4.1. Let a0 < M , |a| ≤ a0, let Ψ be sufficiently integrable and

outgoing, and define u
(aω)
m` (r) by (42). Then, for almost every ω, for all m

and `, H is smooth and u is a smooth solution to the o.d.e. (44) satisfying the

boundary conditions (52) and (51).

Proof. Pick any labeling of the eigenvalues λm` such that λm` is a mea-

surable function of ω. Then, using the fact that a countable union of measure

zero sets is measure zero, it clearly suffices to prove the lemma for each fixed

value of m and `.
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For any j ≥ 1 and R > r+, the fundamental theorem of calculus implies

∑
0≤i≤j

∫ ∞
−∞

sup
r∈[r+,R]

∣∣∣(Z∗)i u∣∣∣2 dω ≤ ∑
0≤i≤j

∫ ∞
−∞

∑
m`

sup
r∈[r+,R]

∣∣∣(Z∗)i u∣∣∣2 dω
(53)

≤
∑

0≤i≤j

∫ ∞
−∞

∑
m`

∣∣∣(Z∗)i u∣∣∣2 ∣∣∣
r=r+

dω

+
∑

0≤i≤j+1

∫ ∞
−∞

∑
m`

∫ R

r+

∣∣∣(Z∗)i u∣∣∣2 dω dr.
Next, Plancherel (see the explicit formulas in Section 5.2.2), Sobolev inequali-
ties on S2 and the sufficiently integrable assumption imply that (53) is less than

B
∑

0≤i≤j+1

∫ ∞
−∞

∫ R

r+

∫
S2

∣∣∣(Z∗)i Ψ
∣∣∣2 sin θ dt∗dr dθ dφ∗

+B
∑

0≤i≤j

∫ ∞
−∞

∫
S2

∣∣∣(Z∗)i Ψ
∣∣∣2 ∣∣∣

r=r+
sin θ dt∗dθ dφ∗

≤ B
∑

0≤i≤j+1, k=0,1,2

∫ ∞
−∞

∫ R

r+

∫
S2

∣∣∣∇/k (Z∗)i Ψ
∣∣∣2
g/

sin θ dt∗ dr dθ dφ∗

+B
∑

0≤i≤j, k=0,1,2

∫
S2

∫ ∞
−∞

∣∣∣∇/k (Z∗)i Ψ
∣∣∣2
g/

∣∣∣
r=r+

sin θ dt dθ dφ∗ <∞.

Thus, we conclude that for each n ∈ Z+ and j ≥ 0,∑
0≤i≤j

sup
r∈[r+,r++n]

∣∣∣(Z∗)i u∣∣∣2
is an L2 function of ω. Consequently, we may find a set U

(j)
n ⊂ R such

that
∣∣∣(U (j)

n

)c∣∣∣ = 0 and ω ∈ U
(j)
n implies that u

(aω)
m` (r) is Cj on the interval

(r+, r+ + n). Observe that∣∣∣(∩∞j,n=1U
(j)
n

)c∣∣∣ =
∣∣∣∪∞j,n=1

(
U (j)
n

)c∣∣∣ ≤ ∞∑
j,n=1

∣∣∣(U (j)
n

)c∣∣∣ = 0.

Thus, we have a set U
.
= ∩∞j,n=1U

(j)
n such that the complement of U has mea-

sure 0, and ω ∈ U implies that u
(aω)
m` is a smooth function of r. Of course, the

same procedure may be carried out for H
(aω)
m` . We conclude that for almost

every ω, u and H are smooth functions of r and hence u is a classical solution

of the radial o.d.e. (44).

Next, we turn to the boundary condition (52). For every ω such that u is

a classical solution of the radial o.d.e. (44), an asymptotic analysis of the o.d.e.
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(44) as r∗ →∞ implies that we can find constants Aout and Ain such that

u
(aω)
m` = Aoute

iωr∗ +Aine
−iωr∗ +O

(
r−1
)

as r∗ →∞,

where O
(
r−1
)

is preserved upon differentiation. Lemma 5.3.2 implies that we

must have Ain = 0, and hence that the boundary condition (52) holds.

Similarly, an asymptotic analysis of the o.d.e. (44) as r∗ → −∞ implies

that we can find constants Cout and Cin such that

u
(aω)
m` = Coute

−i(ω−ω+m)r∗ + Cine
i(ω−ω+m)r∗ +O

(
|r∗|−1

)
as r∗ → −∞.

Lemma 5.3.1 implies that we must have Cin = 0 and hence that the boundary

condition (51) holds. �

6. Properties of the potential V

In this section, we prove certain fundamental properties of the potential

V appearing in (44), defined by the expression (45). In particular, we shall

prove high frequency regime properties that will be essential for the coercivity

of the currents of Section 8 in the high frequency ranges. Sections 6.2–6.4

below follow closely Section 11.1 of our survey [30]. Section 6.5, relevant for

the fixed-m case that will be used in our continuity argument of Section 11, is

new. Finally, we record explicitly in Section 6.6 the relation of the properties

of V proven here to properties of geodesic flow on Kerr.

Remark 6.1. Recall from the outline in Section 1.2 and the discussion of

Section 3.4 that the present section, together with Sections 7 and 8, can be

understood to form an independent logical unit of this paper that culminates

in Theorem 8.1 giving frequency independent estimates for classical solutions

u of the o.d.e. (44) satisfying the boundary conditions (51) and (52). Note

that for convenience, this analysis will use the reduction to a ≥ 0 discussed in

Section 4.2. We shall return to the study of (1) in Section 9.

6.1. Admissible frequencies. Recall that the set of eigenvalues {λm`(aω)}
defined by (37) are not known explicitly in closed form. As is clear from (45),

the potential depends on λm`(aω) only through the quantity

(54) Λ = λm`(aω) + a2ω2,

which according to (38) and (39) obeys

Λ ≥ |m|(|m|+ 1),(55)

Λ ≥ 2 |amω| .(56)

It turns out that the results of this section depend only on the constraints
(55) and (56), not on the precise values of the set {λm`(aω)}. In what follows,
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we may thus consider ω ∈ R, m ∈ Z, Λ ∈ R to be independent parameters13

constrained only by (55) and (56). This motivates

Definition 6.1.1. We call a frequency triple (ω,m,Λ) admissible if ω ∈ R,

m ∈ Z, Λ ∈ R, where Λ ≥ |m|(|m|+ 1) and Λ ≥ 2 |amω|.
6.2. Decomposition of the potential. Given Kerr parameters 0≤a<M , and

an admissible frequency triple (ω,m,Λ), we may now define the potential as

(57) V (ω,m,Λ) = V0(ω,m,Λ) + V1,

where

V0 =
4Mramω − a2m2 + ∆Λ

(r2 + a2)2
,(58)

V1 =
∆(3r2 − 4Mr + a2)

(r2 + a2)3
− 3∆2r2

(r2 + a2)4
.

Note that V0 dominates for high frequencies since V1 does not contain any

frequency parameters m, ω, Λ. Note also the nonnegativity property

V1 =
∆

(r2 + a2)4

[
a2∆ + 2Mr(r2 − a2)

]
≥ 0.

6.3. The critical points of V0 and the structure of trapping. To understand

the nature of trapping, one must first identify the critical points of V0. This is

provided by the following lemma. (This appeared as Lemma 11.1.1 of [30]; we

repeat its statement and proof here.)

Lemma 6.3.1. Let M > 0, a0 < M and 0 ≤ a ≤ a0. Then for all

admissible frequency triples (ω,m,Λ) with Λ > 0, the potential function V0

defined by (58) as a function V0 : (r+,∞)→ R is either

(a) strictly decreasing,

(b) has a unique critical value r0
max that is a global maximum, or

(c) has exactly two critical values r0
min < r0

max that are a local minimum and

maximum respectively.

The value r0
max is bounded independently of the frequency parameters

r0
max ≤ B.

13In fact, taking m to be integer-valued is of no significance in this analysis, but we will

continue to write m ∈ Z to avoid confusion.
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Proof. We have

d

dr
V0 = 4maMω

(
1

(r2 +a2)2
− 4r2

(r2 +a2)3

)
+

4ra2m2

(r2 +a2)3
+

Λ

(r2 +a2)2

(
2(r −M)− 4r∆

r2 +a2

)
=

1

(r2 +a2)3

(
4maMω(−3r2 +a2)+4ra2m2 − 2Λ(r3 +a2r − 3Mr2 +Ma2)

)
,

and thus,

d

dr

(
(r2 + a2)3 d

dr
V0

)
=−24Mamωr + 4a2m2 − 2Λ(3r2 − 6Mr + a2)

=−6Λ

(
r2 − 2Mr + 4Mrσ +

a2

3
− 2

3
a2m

2

Λ

)
,

where we have set

σ =
amω

Λ
.

It follows that any critical points of the function (r2 + a2)3 d
drV0 must be

roots of the quadratic function

r2 − 2Mr(1− 2σ) +
a2

3

(
1− 2m2

Λ

)
.

We may denote these roots as

r1,2 = M(1− 2σ)±

√
M2(1− 2σ)2 − a2

3

(
1− 2m2

Λ

)
.

Recalling that r+ > M , then if mω ≥ 0 (and thus σ ≥ 0), it follows that

Re(r2) < M , and thus the only possible critical point on the interval (r+,∞)

would be

r1 = M(1− 2σ) +

√
M2(1− 2σ)2 − a2

3

(
1− 2m2

Λ

)
.

Noting that since Λ > 0, we have

lim
r→∞

(r2 + a2)3 d

dr
V0 = −∞,

it follows that d
drV0 either (a*) vanishes nowhere, (b*) vanishes at a unique

point to be denoted r0
max, or (c*) vanishes at two points, denoted r0

min < r0
max,

where
d2

dr2
V0(r0

min) > 0,
d2

dr2
V0(r0

max) < 0.

In case (a*), it follows that V0 is strictly decreasing (case (a) of the lemma).

In case (b*), it follows that rmax is a global maximum (case (b) of the statement

of the lemma). In case (c*), it is easy to see that r0
min and r0

max correspond to
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the unique minimum and maximum of V0 on (r+,∞) (corresponding to case

(c) of the statement of the lemma).

If mω < 0 (and thus σ < 0), then let us re-express the root r2 by

r2 = M(1− 2σ)

1−

√
1−

a2(1− 2m2

Λ )

3M2(1− 2σ)2

 .

Since a < M and σ < 0, we have

a2(1− 2m2

Λ )

3M2(1− 2σ)2
<

1

3
.

Noting for 0 ≤ x < 1
3 the inequality

√
1− x ≥ 1− 2x

3 , it follows that

Re(r2) <
2M(1− 2σ)a2(1− 2m2

Λ )

9M2(1− 2σ)2
=

2a2(1− 2m2

Λ )

9M(1− 2σ)
<

2M

9
< r+.

This now implies that r1 is the only possible zero of d
dr

[
(r2 + a2)3 d

drV0

]
on the

interval [r+,∞), and the previous argument applies.

The last statement of the lemma easily follows from observing that for all

Λ > 0,

(r2 + a2)3 d

dr
V0 = (6ΛM − 12Mamω)r2 − 2Λr3 +O

(
amω,m2

)
r as r →∞,

and we have Λ ≥ |m| (|m|+ 1), Λ ≥ 2a|mω|. �

The next statement effectively establishes that even if r0
min exists, it can

only be “trapped” for the value ω = ω+m. (Again this appeared as Lemma

11.1.2 of [30]. We repeat its statement and proof here.)

Lemma 6.3.2. Let M > 0, a0 < M and 0 ≤ a ≤ a0. For all admissible

frequency triples (ω,m,Λ), we have

(59) ω2 ≥ V (r+)

with equality achieved if and only if ω = ω+m. In particular, in the notation

of the previous lemma, this implies that

ω2 > V0(r0
min).

Proof. We simply compute

ω2 − V (r+) = ω2 − 4Mr+amω − a2m2

(r2
+ + a2)2

=
(2Mr+ω − am)2

4M2r2
+

. �

Note that the equality

ω = ω+m =
am

2Mr+

occurs precisely at the threshold of the superradiance condition (19).
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6.4. Superradiant frequencies are not trapped. We now turn specifically to

the superradiant frequencies, which under the assumption a ≥ 0 are defined

by (19). We will show that these are in fact not trapped, in the sense that,

for such frequencies, the maximum of V is always (quantitatively) above the

energy level ω2.

First, let us show that for a range of frequency parameters including the

superradiant regime, V0 can only have a critical point at a maximum; that

is, the point r0
min is absent. (This was Lemma 11.1.3 of [30] augmented by

Remark 11.1.)

Lemma 6.4.1. Let M > 0, a0 < M and 0 ≤ a ≤ a0. Then for all

admissible frequency triples (ω,m,Λ) satisfying in addition

mω ≤ am2

2Mr+
,

we have

(60)
d

dr
V (r+) ≥ d

dr
V0(r+) ≥ bΛ ≥ 0.

Recall that Lemma 6.3.1 showed that on [r+,∞) either V0 was strictly decreas-

ing, V0 had exactly one critical point r0
max, or V0 had two critical points r0

min

and r0
max with r0

min < r0
max. Thus (60) implies that the potential V0 has exactly

one critical point at r0
max.

Moreover, for all α > 0 sufficiently small,14 the same statement holds

under the weaker assumption

(61) mω ≤ am2

2Mr+
+ αΛ.

Proof. We begin with the first statement of the lemma. Note that

d

dr
V0(r+) =

4maMω

(r2
+ +a2)3

(
−3r2

+ +a2
)

+
4r+a

2m2

(r2
+ + a2)3

+
2(r+ −M)Λ

(r2
+ + a2)2

=
1

(r2
+ + a2)3

(
4maMω(−3r2

+ +a2)+4r+a
2m2 + 2(r2

+ + a2)(r+ −M)Λ
)
.

For frequency parameters satisfying mω < 0, the conclusion of the lemma is

now obvious, since −3r2
+ + a2 < 0. Otherwise, using the condition

0 ≤ mω ≤ am2

2Mr+
,

14Recall our conventions from Section 4.4 on the meaning of this term. This smallness

constraint indeed degenerates as a0 →M .
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we obtain

(r2
+ + a2)3 d

dr
V0(r+)

≥
(

2a2m2

r+
(−3r2

+ + a2) + 4r+a
2m2 + 2(r2

+ + a2)(r+ −M)Λ

)
=

(
2a2m2

r+
(−r2

+ + a2) + 2(r2
+ + a2)(r+ −M)Λ

)
= 2(r+ −M)

(
Λ(r2

+ + a2)− 2a2m2
)

= 4(r+ −M)
(
ΛMr+ − a2m2

)
.

The inequalities Λ ≥ m2 and r+ > M > a imply that d
drV0(r+) ≥ bΛ. We finish

the proof of the first statement by recalling that V = V0 + V1 and observing

the identity

d

dr
V1(r+) =

4Mr+(r+ −M)(r2
+ − a2)

(r2
+ + a2)4

> 0.

It is clear that the final assertion of the lemma concerning the weaker

assumption (61) follows immediately now from the first. �

Recall the superradiant condition (19). The statement that superradiant

frequencies are not trapped now follows from the following lemma (again, cf.

Lemma 11.1.4 of [30])

Lemma 6.4.2. Let M > 0, a0 < M and 0 ≤ a ≤ a0. For all α ≥ 0

sufficiently small, then for all admissible frequency triples (ω,m,Λ) satisfying

in addition

0 < mω ≤ am2

2Mr+
+ αΛ,

the potential V0 satisfies

bΛ ≤ V0(r0
max)− ω2.

Proof. Again, it suffices to prove the lemma with α = 0. Let ε > 0 be a

fixed sufficiently small constant.

We first consider the case when m
(

am
2Mr+

− ω
)
≤ ε |m|

√
Λ. In this case

we have

ω2 − V0(r+) =

(
ω − am

2Mr+

)2

≤ ε2Λ.

Combining this with Lemma 6.4.1 easily shows

V0(r+ + δ)− ω2 ≥ bΛ

for some sufficiently small δ > 0 and even smaller ε.
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Next, we consider the case when ω2 ≤ εΛ. Then we clearly have

V0(r)− ω2 ≥ Λ

r2
+O

(
Λ

r3

)
− εΛ as r →∞.

Therefore, if we let r̃ be sufficiently large, and then let ε be sufficiently small,

we can arrange for

V0(r̃)− ω2 ≥ bΛ.

Finally, we consider the case where m
(

am
2Mr+

− ω
)
> ε |m|

√
Λ and ω2 >

εΛ. Consider the following identity:(
r2 + a2

)2 − 4M2r2 =
(
r2 − 2Mr + 2Mr + a2

)2 − 4M2r2(62)

=
(
r2 − 2Mr + a2

)2
+ 4Mr

(
r2 − 2Mr + a2

)
=
(
r2 − 2Mr + a2

) (
r2 + 2Mr + a2

)
.

Then, observe that r0
.
= am

2Mω will satisfy r0 ∈ [r+ + δ,R] for some δ > 0

and R <∞. Letting ∆r0 denote r2
0 − 2Mr0 + a2, we then compute

ω2 − V0(r0) =ω2 − 4Mr0amω − a2m2 + ∆r0Λ

(r2
0 + a2)2

=
1

(r2
0 + a2)2

[
(r2

0 + a2)2ω2 − 4Mr0amω + a2m2 −∆r0Λ
]

=
1

(r2
0 + a2)2

[
(r2

0 + a2)2ω2 − 4M2r2
0ω

2 −∆r0Λ
]

=
ω2(r2

0 − 2Mr0 + a2)(r2
0 + 2Mr0 + a2)−∆r0Λ

(r2
0 + a2)2

=
∆r0

(r2
0 + a2)2

(
a2m2

4M2

(
1 +

2M

r0
+
a2

r2
0

)
− Λ

)
.

In between line 2 and line 3 we substituted 2Mωr0
a for m. Then, in going

from line 3 to line 4 we have used (62). Finally, in between lines 3 and 4 we

substituted am
2Mr0

for ω.

We now recall that a < M < r0 and that Λ ≥ |m| (|m| + 1) to conclude

that

V0 (r0)− ω2 ≥ b ∆r0(
r2

0 + a2
)2 Λ ≥ bΛ.

In the last inequality we have used that r0 is bounded away from r+ and ∞
independently of the frequency parameters. �

6.5. Trapping for fixed-azimuthal mode solutions. The final result of this

section shows in the case of a fixed azimuthal frequency m, large Λ and ω2 ∼ Λ,

r0
max occurs outside the ergoregion.
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Lemma 6.5.1. Let M > 0, a0 < M and |a| ≤ a0. Recall that we previously

defined σ = amω
Λ . There exists a small constant c > 0 such that |σ| ≤ c,

m2 ≤ cΛ and c−1 ≤ Λ imply that r0
max > (1 +

√
2)M .

Proof. A previous computation showed(
r2 + a2

)3 dV0

dr
= 4maMω

(
−3r2 + a2

)
+ 4ra2m2 − 2Λ

(
r3 − 3Mr2 + a2r + a2M

)
.

Since r0
max is the final critical point of V0, we have that r ≥ r0

max implies that
dV0
dr (r) ≤ 0. Hence, if we can check that dV0

dr

(
r =

(
1 +
√

2
)
M
)
> 0, the lemma

will follow:

Λ−1
(
r2 + a2

)3 dV0

dr

∣∣∣
r=(1+

√
2)M

= O (c)− 2

(
M3

(
1 +
√

2
)3
− 3M3

(
1 +
√

2
)2

+ a2M
(

1 +
√

2
)

+ a2M

)
.

Since we have (
1 +
√

2
)2

= 3 + 2
√

2,(
1 +
√

2
)3

= 7 + 5
√

2,

we obtain

Λ−1
(
r2 + a2

)3 dV0

dr

∣∣∣
r=(1+

√
2)M

= O (c)− 2
(

7M3 + 5
√

2M3 − 9M3 − 6
√

2M3 + a2M +
√

2a2M + a2M
)

= O (c)− 2
(

2M
(
a2 −M2

)
+
√

2M
(
a2 −M2

))
.

This is positive for sufficiently small c > 0. �

Remark 6.5.1. The importance of the value r =
(
1 +
√

2
)
M comes from

the fact that this is the unique location of trapping for axisymmetric solutions

to the wave equation on an extreme Kerr background; see [8].

Remark 6.5.2. Note that in the case a = 0, one may drop the assumptions

|σ| ≤ c and |m|2 ≤ cΛ and the O(c)’s that occur in the proof.

Remark 6.5.3. Of course, the Killing vector field T satisfies

g (T, T ) = −
(
r2 − 2Mr + a2 cos2 θ

r2 + a2 cos2 θ

)
,

which is manifestly negative for r ≥
(
1 +
√

2
)
M > 2M .
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6.6. Aside: relation with null geodesic flow. We note that the potential

V0 is intimately related to the potential that appears for the radial dependence

of solutions of the geodesic equation, i.e., let γ(s) = (t (s) , r (s) , θ (s) , φ (s))

be a null geodesic.

The conserved quantities associated to stationarity and axisymmetry are

E
.
= g (γ̇, T ) = −

(
1− 2Mr

ρ2

)
ṫ− 2Mra sin2 θ

ρ2
φ̇,

L
.
= −g (γ̇,Φ) =

2Mra sin2 θ

ρ2
ṫ− sin2 θ

(r2 + a2)2 − a2 sin2 θ∆

ρ2
φ̇.

Carter’s hidden conserved quantity is

Q
.
= ρ4

(
θ̇
)2

+
L2

sin2 θ
− a2E2 cos2 θ.15

Geodesic motion then reduces to the following system (see [16]):

ρ2ṫ = a
(
Ea sin2 θ − L

)
+

(
r2 + a2

) (
La−

(
r2 + a2

)
E
)

∆
,

ρ2φ̇ =
Ea sin2 θ − L

sin2 θ
+
a
(
La− (r2 + a2)E

)
∆

,

ρ4
(
θ̇
)2

= Q+ a2E2 − 2aEL−
(
L− aE sin2 θ

)2
sin2 θ

,

ρ4 (ṙ)2 =
(
(r2 + a2)E − aL

)2 −∆
(
Q+ a2E2 − 2aEL

)
.(63)

Note that the right-hand side of (63) can be rearranged to

(64)
(
r2 + a2

)2
E2 − 4MarEL+ a2L2 −∆

(
Q+ a2E2

)
.

Under the correspondence E 7→ ω, L 7→ m and Q 7→ λml, (64) is exactly

equal to (r2 + a2)2
(
ω2 − V0

)
. Hence, we can write ṙ’s equation as

ρ4

(r2 + a2)2
(ṙ)2 = E2 − V0 (E,L,Q, r) .

As a corollary of Lemmas 6.3.1, 6.3.2, 6.4.1, 6.4.2 and 6.5.1, one has that

(a) null geodesic flow is hyperbolic in a neighborhood of the set of future

trapped null geodesics;

(b) null geodesics γ whose future tangent γ̇ has ga,M (γ̇, T ) ≥ 0 are not future

trapped; they intersect H+;

(c) trapped null geodesics orthogonal to ∂φ lie outside of the ergoregion.

We shall not, however, make direct use of any of these facts at the level of

geodesic flow.

15Instead of Q one often finds the Carter constant defined as K := ρ4
(
θ̇
)2

+ (L−aE sin2 θ)2

sin2 θ
,

but Q will relate more naturally to our conventions for the wave equation.
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7. The separated current templates

Before turning to our estimates we recall the separated current templates

of [27] and [30].

7.1. The frequency-localised virial currents JX,w. First, we define the fre-

quency-localised analogue of the virial currents JX,w, where X is in the direc-

tion of ∂r∗ and w is a suitable function.

Fix Kerr parameters M > 0 and |a| < M and frequency parameters ω ∈ R,

m ∈ Z, and Λ ∈ R. Let f(r∗), h(r∗) and y(r∗) be arbitrary sufficiently regular

functions.16 With the notation (48), let us define17 the currents

Qf [u] = f
(
|u′|2 + (ω2 − V )|u|2

)
+ f ′Re

(
u′ū
)
− 1

2
f ′′|u|2,

Ϙ
h[u] = hRe(u′ū)− 1

2
h′|u|2,

ϟ
y[u] = y

(
|u′|2 + (ω2 − V )|u|2

)
,

associated to the choice of an arbitrary smooth function u(r∗).18

For u satisfying (44), we compute

(Qf [u])′ = 2f ′|u′|2 − fV ′|u|2 + Re(2fH̄u′ + f ′H̄u)− 1

2
f ′′′|u|2,(65)

(Ϙh[u])′ = h
(
|u′|2 + (V − ω2)|u|2

)
− 1

2
h′′|u|2 + hRe(uH̄),(66)

(ϟy[u])′ = y′
(
|u′|2 + (ω2 − V )|u|2

)
− yV ′|u|2 + 2yRe(u′H̄).(67)

The virial currents we shall employ will be various combinations of Q, Ϙ, ϟ

with suitably selected functions f , h, y. Note that the choice of these functions

may depend on a, ω, m, Λ, but, again, we temporarily suppress this from the

notation.

7.2. The frequency-localised conserved energy currents. As in our survey

[30], we shall need, in addition to the above, a frequency-localised analogue

of the conserved energy current JT . Whereas in [30], we introduced also a

frequency-localised version of the red-shift current JN , here we shall use in its

place a frequency-localised version of the (again conserved) current JK .

16In general, f will be bounded and C2, h will be bounded, C1 and piecewise C2 and y

will be bounded, C0 and piecewise C1.
17For better or for worse, we follow here the notation we instituted in the first parts of

this series [27]. As this notation proved somewhat unpopular, we suggest that readers who

dislike archaic Greek simply substitute Qy, Qh for both ϟy and Ϙh, as we shall consistently

use functions named f , h and y, according to whether we mean Qf , Ϙh or ϟy. Note that in

our survey [30], we used the notation Qf0 = Qf , Qh1 = Ϙh, Qy2 = ϟy.
18Recall that Qf is itself the combination Ϙh[u] + ϟy[u], with y = f and h = f ′, but

sufficiently important to deserve its own name!
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Again, fix Kerr parameters M > 0 and |a| < M and frequency parameters

ω ∈ R, m ∈ Z, and Λ ∈ R. The “frequency-localised” versions of JT and JK

are then defined as follows:

QT [u] =ω Im(u′u),

QK [u] = (ω −ω+m) Im(u′u),

where ω+ = a
2Mr+

is the “angular velocity” of the event horizon. For u

satisfying (44), we have(
QT [u]

)′
= ω Im(Hu),(68) (

QK [u]
)′

= (ω −ω+m) Im(Hu).(69)

8. The frequency localised multiplier estimates

In the present section, using the current templates of Section 7, we will

estimate smooth solutions u to the radial o.d.e. (44) with a general smooth

right-hand side H and that satisfy the boundary conditions (51) and (52).

The point is to obtain estimates that are uniform in the frequency parameters

(ω,m,Λ). In view of future applications, we will write the result as an inde-

pendent theorem. We apply this theorem several times in the present paper

(in slightly different contexts) in Sections 9, 11, 12 and 13. We remark that

the theorem can in principle be applied in future applications independently

of the specific setup of Section 5.

Before stating the theorem, given |a|≤a0<M , set R−
.
= r++ 1

2 (rred − r+),

where rred is the constant from Proposition 4.5.1, and set R+
.
= 2Rlarge, where

Rlarge is the constant from Proposition 4.6.1. Recall that, as per the comments

from the end of Section 2.1.2, the constants R∗± are the r∗-values corresponding

to R±. These values will be referred to below. The precise statement of the

main result of this section is

Theorem 8.1. Given 0 ≤ a0 < M , there exist positive parameters ωhigh,

ωlow, εwidth, and E, such that the following is true.

Let 0 ≤ a ≤ a0 and let (ω,m,Λ) be an admissible frequency triple.

Then there exist functions f , h, y, ŷ, ỹ, χ1 and χ2, and a value rtrap,

depending on the parameters a0, M , a and the frequency triple (ω,m,Λ) but

satisfying the uniform bounds

|rtrap − r+|−1+|rtrap|+|f |+∆−1r2
∣∣f ′∣∣+|h|+|y|+|ỹ|+|ŷ|+|χ1|+|χ2| ≤ B,

f+y = 1, f ′ = 0, h = 0, |ỹ| ≤ B exp (−br∗) ,
ŷ = 0, χ1 = 0, χ2 = 1 for r∗ ≥ R∗∞,
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such that, for all smooth solutions u to the radial o.d.e. (44) with right-hand

side H , satisfying moreover the boundary conditions (51) and (52), we have,

b

∫ R∗+

R∗−

[∣∣u′∣∣2 +
((

1− r−1rtrap

)2 (
ω2 + Λ

)
+ 1
)
|u|2
]
dr∗

(70)

≤
∫ ∞
−∞

H · (f, h, y, χ) · (u, u′) dr∗ + η{ωlow≤|ω|≤ωhigh}∩{Λ≤ε−1
widthω

2
high}
|u (−∞)|2 .

The symbol η{ωlow≤|ω|≤ωhigh}∩{Λ≤ε−1
widthω

2
high}

denotes the indicator function for

the set {ωlow ≤ |ω| ≤ ωhigh} ∩ {Λ ≤ ε−1
widthω

2
high}, and

H · (f, h, y, χ) · (u, u′) .
= −2f Re

(
u′H

)
− f ′Re

(
uH
)

+ hRe
(
uH
)

(71)

− Eχ2ωIm (Hu)− Eχ1 (ω −ω+m) Im (Hu)

− 2yRe
(
u′H

)
− 2ỹRe

(
u′H

)
− 2ŷRe

(
u′H

)
.

Before discussing the proof of the theorem, we give a few remarks per-

taining to the application of Theorem 8 in Section 9 in the context of u arising

from Carter’s separation applied to a solution Ψ of the inhomogeneous wave

equation.

Remark 8.1. For frequencies in the trapping regime, rtrap will denote the

unique trapped value of r associated to the triple (ω,m,Λ). Otherwise, rtrap

will be set to 0. This will capture the degeneration due to trapping.

Remark 8.2. The specific behaviour of the functions f , h, y, ŷ, ỹ, χ1 and

χ2 in the region r∗ ≥ R∗∞ will be useful in Section 9 when we sum (70) to

produce a physical space estimate.

Remark 8.3. If we consider the right-hand side of the estimate (70) as

“data,” a direct application of Plancherel (see the explicit formulas in Sec-

tion 5.2.2) shows that (70) is the phase space version of integrated local energy

decay.

Remark 8.4. Let us draw particular attention to the term

η{ωlow≤|ω|≤ωhigh}∩{Λ≤ε−1
widthω

2
high}
|u (−∞)|2

on the right-hand side of the estimate (70). This term must initially be put

on the right-hand side of the corresponding integrated energy decay statement

(cf. Remark 8.3). Eventually, this term will be dealt with in Section 9.7 using

the quantitative refinement [60] of mode stability.

Remark 8.5. In Section 8.10, we will establish a fixed-m variant of Theo-

rem 8.1. At the price of letting the constant b in (70) and the choice of ωhigh
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depend on m, we will be able to confine rtrap outside the ergoregion; cf. Prop-

erty (i) of Section 1.1.5. This will be very useful in the continuity argument of

Section 11.

The proof proper of Theorem 8.1 will be given in Section 8.8. It will

be based on a series of propositions proven in Sections 8.3–8.7 below, where

(70) is successively obtained for various ranges of admissible frequency triples.

These frequency ranges, however, are determined by parameters that must be

suitably optimised so as for our constructions to be possible. We thus begin

with a discussion of these ranges and an overview of the constructions.

8.1. The frequency ranges. Let a0 < M . Fix a parameter α (depending

only on a0, M) satisfying the statement of Lemma 6.4.1. For each 0 ≤ a ≤
a0, and all ωhigh > 0, εwidth > 0, we define the frequency ranges G[(ωhigh),

G[(ωhigh, εwidth), G\(ωhigh, εwidth), G](ωhigh, εwidth), G](ωhigh, εwidth) by

• G] = {(ω,m,Λ) admissible : Λ ≥ ( a
2Mr+

+ α)−2ω2
high, mω ∈ (0, am2

2Mr+
+

αΛ]},

• G] = {(ω,m,Λ) admissible : |ω| ≥ ωhigh, Λ < εwidthω
2,mω 6∈ (0, am2

2Mr+
+

αΛ]},

• G[= {(ω,m,Λ) admissible : Λ > ε−1
widthω

2
high, εwidthΛ>ω2,mω 6∈(0, am2

2Mr+
+

αΛ]},
• G\ = {(ω,m,Λ) admissible : |ω| ≥ ωhigh, εwidthΛ ≤ ω2 ≤ ε−1

widthΛ,mω 6∈
(0, am2

2Mr+
+ αΛ]},

• G[ = {(ω,m,Λ) admissible : |ω| < ωhigh, Λ ≤ ε−1
widthω

2
high} \ G].

The parameters ωhigh and εwidth will be fixed in the course of the proof of

Theorem 8; see Section 8.8.

We see easily that

Lemma 8.1.1. With the above notation, for all 0 ≤ a ≤ a0 if (ω,m,Λ) is

admissible, then, for all choices of parameters ωhigh, εwidth such that εwidth <

min
(
α2, 1

)
, (ω,m,Λ) lies in exactly one of the frequency ranges G], G], G[,

G\, or G[.

Proof. We fist consider (ω,m, `) that satisfy mω ∈ (0, am2

2Mr+
+ αΛ]. We

need to show that such a frequency triple lies in exactly one of G] or G[. Since

the two regions are clearly disjoint, we just need to show that (ω,m, `) lies in

one of the regions. Observe that

|ω| ≥ ωhigh and mω ∈
(

0,
am2

2Mr+
+ αΛ

]
⇒ Λ ≥

(
a

2Mr+
+ α

)−2

ω2
high.
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Thus |ω| ≥ ωhigh implies that (ω,m, `) ∈ G]. Next, we note that the condition

εwidth ≤ α2 implies that
(

a
2Mr+

+ α
)−2
≤ ε−1

width. It immediately follows that

in the case |ω| ≤ ωhigh, (ω,m, `) lies in one of G] or G[.
Now we consider the case when mω 6∈ (0, am2

2Mr+
+αΛ]. If |ω| < ωhigh, then

it is immediately clear that (ω,m, `) lies in exactly one of G[ or G[ and does

not lie in any other frequency range. If |ω| > ωhigh then, depending on whether

ω2 < εwidthΛ, εwidthΛ ≤ ω2 ≤ ε−1
widthΛ, or εwidthω

2 > Λ, (ω,m, `) is easily seen

to lie in exactly one of G], G[, G\. (Note that ω2 < εwidthΛ and |ω| ≥ ωhigh

imply that Λ > ω2
highε

−1
width.) �

Our constructions of currents will vary according to the frequency range

of the triple (ω,m,Λ). We now give an overview of these constructions.

8.2. Overview. For each admissible triple (ω,m,Λ), we would like to find

a current Q consisting of various combinations of Qf , ϟy, Ϙh, QT and QK

satisfying the bulk coercivity property

∫ ∞
−∞

Q′[u] ≥ b (εwidth, ωhigh)

∫ R∗+

R∗−

(
|u′|2 +

(
1− r−1rtrap

)2
(Λ + ω2)|u|2 + |u|2

)(72)

−
∫ ∞
−∞

H · (f, h, y, χ) · (u, u′)

and, ideally, the boundary positivity property

(73) Q (∞)−Q (−∞) ≤ 0.

The terms Q, rtrap, H, f , h, y should all be understood to depend on ω,

m, and Λ, here omitted for brevity, and the integrals are with respect to r∗.

One restricts the domain of integration on the first term to [R∗−, R
∗
+] on the

right-hand side because one expects this virial current not to control things at

the horizon and infinity.

The most difficult aspect of establishing (72) is the need to understand

trapping. In order to do this, we will heavily rely on the analysis of the

potential V0 carried out in Section 6. For frequencies for which trapping is

relevant, rtrap will denote the unique value of r, associated with the frequency

triple, where the estimate must degenerate. For frequencies where trapping is

not relevant, rtrap = 0.

The fundamental obstruction to achieving (73), on the other hand, is

superradiance (see Section 2.3.3). For nonsuperradiant frequencies, i.e., fre-

quencies that satisfy ω (ω −ω+m) ≥ 0, one may easily19 control these fluxes

19For the moment we are suppressing the fact that this estimate may be insufficiently

strong if 0 ≤ ω (ω −ω+m)� (ω −ω+m)2. See Section 8.2.3.
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via a sufficiently large multiple of the conserved QT current∫ ∞
−∞

Im (Hu) =

∫ ∞
−∞

(
QT
)′

= QT (∞)−QT (−∞)(74)

= ω2 |u(∞)|2 + ω (ω −ω+m) |u(−∞)|2 .

However, for superradiant frequencies, where ω (ω −ω+m) < 0, no conserved

current gives a coercive estimate for the boundary terms and it is thus no

longer clear how to arrange for (73). As it turns out, see Section 8.3 below,

one of the miracles of the Kerr geometry is that trapping and superradiance are

disjoint; exploiting this, one may indeed establish (73) for sufficiently large fre-

quencies with the help of (72) and a large positive parameter. Unfortunately,

for bounded superradiant frequencies, one does not have a large parameter at

hand. We will not be able to carry out such a scheme, and we will not in fact

establish (73); see Section 8.2.5.

We now turn to a more detailed discussion of the difficulties in each fre-

quency range. The reader may wish to refer to this when reading Sections 8.3–

8.7 below.

8.2.1. The G] range. This is the large frequency superradiant regime. From

Lemma 6.4.2, it follows that these frequencies are not trapped. Thus, it is not

difficult to establish (72) via the combination of a Qf and Ϙh current with

a monotonically increasing f that switches signs at the unique maximum of

the potential and a positive function h that peaks near the maximum of the

potential.

As for the boundary terms, despite the lack of a coercive conserved current,

we will appeal to the aforementioned miracle that superradiant frequencies are

not trapped to find a large parameter that will still allow us to achieve (73).

Briefly put, Lemma 6.4.2 shows that we have a quantitatively large “classically

forbidden region,” and from this one expects to derive an estimate for u near

rmax that comes with a large parameter.

8.2.2. The G] range. This is a nonsuperradiant regime where the time

frequency ω is large and dominates the other parameters. It is easy to see that

a ϟy current with an appropriate choice of y will establish (72).

Of course, the boundary terms may be easily controlled with (74).

8.2.3. The G[ range. This is a nonsuperradiant regime where the angular

frequency Λ is large and dominates the other parameters. One may easily show

that the conclusions of Lemma 6.4.2 still hold and, as in Section 8.3, it is not

difficult to establish (72).

Turning to the boundary terms, note that ω (ω −ω+m) and (ω −ω+m)2

are not necessarily comparable in this regime. Thus, even though the flux

QT [u]|r=∞ may be controlled with (74), the estimate (74) does not provide
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sufficient control of the flux QK [u]|r=r+ . Fortunately, we may apply the same

argument as in the Section 8.3 to control the horizon flux.

8.2.4. The G\ range. This is a nonsuperradiant regime where the angu-

lar frequency Λ and the time frequency ω are large and comparable. This is

the regime of trapping and hence the only frequency range where rtrap will be

nonzero. The estimate (72) is achieved via a Qf current with a monotonically

increasing function f that switches sign at the unique maximum of the poten-

tial. The construction the function f will heavily depend on the critical point

analysis of V0 carried out in Section 6.3.

The estimate (73) is easily achieved via (74).

8.2.5. The G[ range. This is a bounded frequency regime. It turns out

to be useful to further split this frequency regime into the following four sub-

regimes:

(1) |ω| ≤ ωlow, 0 ≤ a < ã0 and m 6= 0;

(2) |ω| ≤ ωlow and m = 0;

(3) |ω| ≤ ωlow, m 6= 0 and a ≥ ã0;

(4) |ω| ≥ ωlow.

Here ωlow is the small parameter mentioned in Theorem 8 and ã0 is a small

parameter to be fixed in the course of the proof.

For the estimate (72) we will exploit two types of estimates. If |ω| ≥
ωlow or |ω| ≤ ωlow, m 6= 0 and a ≥ ã0, then we will either have ω2 ∼ 1 or

(ω −ω+m)2 ∼ 1. In this case we will employ ϟy currents with exponential

multipliers y
.
= exp

(∫
υ
)

and appropriate functions υ. If |ω| ≤ ωlow and ωlow

is sufficiently small, then in regions with 1 . V we will have 1 . V − ω2. We

will apply Ϙh currents to exploit this positivity of V − ω2.

As in Section 8.3, the fundamental difficulty is a lack of control of the

boundary terms for superradiant frequencies. It turns out that when ω2 � 1,

i.e., |ω| ≤ ωlow for ωlow sufficiently small, then ω arises naturally as a small

parameter and we will again be able to achieve (73). However, for bounded

frequencies with |ω| ≥ ωlow there is no large or small parameter to exploit.

Instead, for this frequency range we will only be able to establish the weaker

(75) Q(∞)−Q(−∞) ≤ B |u (−∞)|2 .
This is the origin of the term η{ωlow≤|ω|≤ωhigh}∩{Λ≤ε−1

widthω
2
high}
|u (−∞)|2 on the

right-hand side of the estimate (70).

We now turn to the detailed constructions of the currents for each fre-

quency regime.

8.3. The G] range. As discussed in Section 8.2.1, this defines a large fre-

quency superradiant regime, and by the results of Section 6.4, frequencies in

this regime can be viewed as nontrapped.
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Once we have made our final choice of the parameter ωhigh, then for

(ω,m,Λ) ∈ G](ωhigh), we will set the functions y, ŷ and ỹ together with the

parameter rtrap from the statement of Theorem 8.1 to be 0. The desired coer-

civity in this range and remaining functions f , h, χ1 and χ2 are given by the

following

Proposition 8.3.1. Let a0 < M . Then, for all E ≥ 2, for all ωhigh

sufficiently big depending on E, for all R∞ sufficiently big, and for all 0 ≤ a ≤
a0, (ω,m,Λ) ∈ G](ωhigh), there exist functions f , h, χ1 and χ2 satisfying the

uniform bounds

|f |+ ∆−1r2
∣∣f ′∣∣+ |h|+ |χ1|+ |χ2| ≤ B (ωhigh) ,

f = 1, h = 0, χ1 = 0 and χ2 = 1 for r ≥ R∞,

such that, for all smooth solutions u to the radial o.d.e. (44) with right-hand

side H , satisfying moreover the boundary conditions (51) and (52), we have

the estimate

b

∫ R∗+

R∗−

(
|u′|2 + (ω2 + Λ)|u|2

)
(76)

≤
∫ ∞
−∞

(
− 2f Re(u′H)− (f ′ + h) Re(uH)

+ Eχ2ω Im(Hu) + Eχ1 (ω −ω+m) Im(Hu)
)
.

Proof. As G] is a superradiant regime with Λ > 0, the conclusions of both

Lemma 6.4.1 and Lemma 6.4.2 apply. In particular, the potential V0 has a

unique r0
max that is a maximum and satisfies

(77) V0(r0
max)− ω2 ≥ cΛ

for some positive constant c depending only on a0 and M .

We shall first need to establish the following lemma, which shows that the

full potential V behaves similarly in the range G] (ωhigh) for sufficiently large

ωhigh.

Lemma 8.3.1. There exists a δ > 0 depending only on a0 and M such

that for sufficiently large ωhigh and (ω,m,Λ) ∈ G] (ωhigh), then V has a unique

critical point rmax and satisfies

V (r)− ω2 ≥ bΛ ∀r ∈ (rmax − δ, rmax + δ),

(78) − (r − rmax)
d

dr
V (r) ≥ bΛ(r − rmax)2

r4
∀r ∈ [r+,∞),∣∣rmax − r0

max

∣∣ ≤ BΛ−1.
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Proof. Let us first refine our estimates on V0 for frequencies (ω,m,Λ) ∈
G] (ωhigh).

Using the fact that
∣∣∣dV0
dr

∣∣∣ ≤ BΛ, (77) imply that we may find a δ1 > 0

depending only on a0 and M such that

V0(r)− ω2 ≥ c

2
Λ ∀ r ∈ [r0

max − δ1, r
0
max + δ1].

Lemma 6.3.1 implies that r0
max is bounded from above independently of

the frequency parameters

r0
max ≤ B.

Furthermore, Lemma 6.4.1 and the bound
∣∣∣d2V0
dr2

∣∣∣ ≤ BΛ implies r0
max is also

bounded away from r+ independently of the frequency parameters

r0
max − r+ ≥ b.

Lemma 6.4.1 also implies that the full potential V = V0 + V1 satisfies

(79)
d

dr
V (r+) ≥ d

dr
V0(r+) ≥ ĉΛ

for a positive constant ĉ depending only on a0 and M .

Recall now that the proof of Lemma 6.3.1 showed that the function

d

dr

(
(r2 + a2)3 d

dr
V0(r)

)
is either nonpositive on [r+,∞) or there exists a unique point r+ ≤ r1 < r0

max

such that d
dr

(
(r2 + a2)3 d

drV0(r)
)

is positive on [r+, r1) and negative on (r1,∞).

We first consider the case where the point r1 exists. Then,

d

dr
V0(r) ≥ ĉ

(r2
+ + a2)3

(r2
1 + a2)3

Λ ∀ r ∈ [r+, r1].

Next, recall from the proof of Lemma 6.3.1 that

d

dr

(
(r2 + a2)3dV0

dr

)
= −6Λ

(
r2 − 2Mr + 4Mrσ +

a2

3
− 2

3
a2m

2

Λ

)
,

and furthermore, by definition, d
dr

(
(r2+a2)3 dV0

dr

)
is negative on (r1,∞). Thus,

we can choose a value r′1 ∈ (r1, r
0
max) such that

(80)
d

dr
V0(r) ≥ ĉ

2

(r2
+ + a2)3

(r2
1 + a2)3

Λ ∀r ∈ [r+, r
′
1]

and

(81)
d

dr

(
(r2 + a2)3 d

dr
V0(r)

)
≤ −c̃Λr2 ∀r ∈ [r′1,∞)

for a positive constant c̃ independent of the frequency parameters.
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In the case where r1 does not exists, the same argument mutatis mutandis

will produce a value r′1 with the properties (80) and (81).

Now, we simply observe that the potential V1 satisfies the bounds

|V1| ≤ Br−3,

∣∣∣∣ ddrV1(r)

∣∣∣∣ ≤ Br−4,

∣∣∣∣ ddr
(

(r2 + a2)3 d

dr
V1(r)

)∣∣∣∣ ≤ Br.
For ωhigh sufficiently large (and hence large Λ), it immediately follows

that, for (ω,m,Λ) ∈ G] (ωhigh), the full potential V = V0 + V1 cannot have

any critical points on [r+, r
′
1] and has a unique maximum rmax ∈ [r′1,∞) that

satisfies
∣∣rmax − r0

max

∣∣ ≤ BΛ−1.

The proof concludes by applying the fact that
∣∣dV
dr

∣∣ ≤ BΛ. �

We now proceed to the construction of a suitable current for the regime

G]. The current will be of the form

Q = Qf + Ϙh − Eχ1QK − Eχ2QT

for appropriate functions f , h, χ1 and χ2 and large constant E.

It is simpler to describe this procedure in three stages.

Stage 1. We first apply current Qf , where f is a function chosen such that

f = −1 at r = r+, f = 0 at r = rmax, f = 1 when r∗ ≥ R∗∞,(82)

f ′(r∗) > 0 for all r ≤ R1, f
′(r∗) ≥ 0 for all r > r+, |f |+ ∆−1r2

∣∣f ′∣∣ ≤ B.(83)

Application of (65) then yields∫ ∞
−∞

(
2f ′|u′|2 − fV ′|u|2 − 1

2
f ′′′|u|2

)
(84)

=
(
|u′|2 + (ω −ω+m)2|u|2

)
r=r+

+
(
|u′|2 + ω2|u|2

)
r=∞

−
∫ ∞
−∞

(
2f Re(u′H) + f ′Re(uH)

)
.

Let us moreover require that f above has been chosen so that in addition to

(82), (83), the following coercivity property holds:

(85) − fV ′ − 1

2
f ′′′ ≥ Λ

∆(r − rmax)2

r7
for all r > r+.

Since f vanishes at r = rmax and V ′ obeys the property (78), we can easily

arrange such that in addition to (82), (83) and (85), we have

(86) − fV ′ ≥ bΛ∆(r − rmax)2

r7
.

It remains to impose

(87) f ′′′(r) < 0 in a small neighbourhood of rmax, |f ′′′(r)| ≤ B∆r−5.
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Note that the reader may easily construct a function f satisfying the

conditions (82), (83), (85), (86) and (87). With the above choice of f , the

left-hand side of (84) is now nonnegative but still degenerate at r = rmax. As

discussed in Section 6.4, the bound V (rmax) − ω2 ≥ bΛ indicates this regime

is nontrapped, and thus the degeneracy may be removed with the help of the

current Ϙh. The more serious problem is a lack of control of the boundary

terms on the right-hand side, due to the superradiant condition. However, as

we shall see below, we will be able to overcome this by exploiting the largeness

of the potential in the region (rmax − δ, rmax + δ).

Stage 2. We now add a Ϙh current with a function h
.
= Ah̃ such that

h ≥ 0,
∣∣∣h̃∣∣∣ ≤ B,(88)

supp (h) ⊂ [rmax − δ, rmax + δ], h̃ = 1 for r ∈ [rmax − δ/2, rmax + δ/2]

(89)

and A is a constant to be determined.

We obtain∫ ∞
−∞

(
(2f ′ +Ah̃)|u′|2 +

(
Ah̃(V − ω2)− fV ′

)
|u|2 − 1

2
(f ′′′ +Ah̃′′)|u|2

)
(90)

=
(
|u′|2 + (ω −ω+m)2|u|2

)
r=r+

+
(
|u′|2 + ω2|u|2

)
r=∞

−
∫ ∞
−∞

(
2f Re(u′H) + (f ′ + h̃) Re(uH)

)
.

Note that as long as A ≤ ε̃ω2
high for a sufficiently small constant ε̃ only depend-

ing on a0 and M , the integrand of the left-hand side of (90) will be positive.

Moreover, this integrand has the property that it satisfies

≥ bA(|u′|2 + Λ|u|2), ∀ r ∈
[
rmax −

δ

2
, rmax +

δ

2

]
.

Stage 3. We now let χ1(r) be a smooth function such that

(91) χ1 = 1 for r ∈ [r+, rmax −
δ

2
], χ1 = 0 for r ∈ [rmax +

δ

2
,∞), |χ1| ≤ B.

Since E ≥ 2, we have(
|u′|2 + (ω −ω+m)2|u|2

)
r=r+

≤ E
∫ ∞
−∞

(χ1QK)′

= E

∫ rmax+ δ
2

rmax− δ2
χ′1 (ω −ω+m) Im

(
u′u
)

+ E

∫ ∞
−∞

χ1 (ω −ω+m) Im (Hu) .
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Now, we require that ωhigh be sufficiently large so as to satisfy Eδ−1 �
(1/2)ε̃ω2

high, and then we set A
.
= (1/2)ε̃ω2

high. This choice of A will both

maintain the coercivity of the left-hand side of (90) and yield

E

∣∣∣∣∣
∫ rmax+ δ

2

rmax− δ2
χ′1 (ω −ω+m) Im

(
u′u
)∣∣∣∣∣ ≤ Eδ−1

∫ rmax+ δ
2

rmax− δ2

(∣∣u′∣∣2 +
(
ω2 +m2

)
|u|2
)

�A

∫ rmax+ δ
2

rmax− δ2

(∣∣u′∣∣2 + Λ |u|2
)
.

We can, of course, carry out an analogous construction with a cutoff χ2, sat-

isfying

(92) χ2 = 1 for r ∈ [rmax +
δ

2
,∞), χ2 = 0 for r ∈ [r+, rmax −

δ

2
], |χ2| ≤ B,

and the current QT . Then, adding the currents −Eχ1QK − Eχ2QT will give

us the necessary control of the boundary terms.

Observing that the left-hand side of the resulting estimate is coercive

(with weights that degenerate, however, as r∗ → ±∞), restricting the domain

of integration of the left-hand side then yields (76). �

8.4. The G] range. As discussed in Section 8.2.2, G] defines a large fre-

quency regime (whose definition still depends on parameters ωhigh and εwidth,

yet to be fixed) where time frequencies will dominate angular frequencies. The

regime is manifestly nonsuperradiant and, for suitable choice of parameters,

nontrapped.

Once we have made our final choice of parameters ωhigh and εwidth, then

for (ω,m,Λ) ∈ G](ωhigh, εwidth), we will set the functions f , h, ŷ, ỹ and χ1

appearing in Theorem 8.1 together with the parameter rtrap to be 0. The

remaining function y and the desired coercivity property are given by

Proposition 8.4.1. Let a0 < M . Then, for all ωhigh, ε−1
width, R∞ suffi-

ciently big, for all E ≥ 2, 0 ≤ a ≤ a0, (ω,m,Λ) ∈ G](ωhigh, εwidth), there exists

a function y satisfying the uniform bounds

|y| ≤ B,
y = 1 for r∗ ≥ R∗∞,(93)

such that, for all smooth solutions u to the radial o.d.e. (44) with right-hand

side H , satisfying moreover the boundary conditions (51) and (52), we have

the estimate

b

∫ R∗+

R∗−

(
|u′|2 + (ω2 + Λ)|u|2

)
≤
∫ ∞
−∞

(
−2yRe(u′H) + Eω Im(Hu)

)
.
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Proof. The construction of our currents will exploit the fact that the range

G] defines a large frequency regime in which Λ � ω2 (and thus also m2 �
ω2). To handle the boundary terms, we will use that this regime is moreover

manifestly nonsuperradiant, and thus addition of a sufficiently large multiple

of the QT current provides positive terms at r = r+ and r =∞.

We turn to the details. First of all, it is easy to see that the admissibility

inequalities Λ ≥ 2a|mω| and Λ ≥ |m| (|m| + 1) imply that there exists a

constant R∗dec ≥ 2R∗+ only depending on a0 and M such that

(94) V ′ < 0 for r∗ ≥ R∗dec.

Define a current given by the following expression:

Q = ϟy − EQT .

We require that∣∣y′∣∣ ≤ B, y′ ≥ 0 for r ∈ [r+,∞), y′ > 0 for r∗ ∈ [R∗−, R
∗
1],(95)

1

2
≤ y ≤ 1 for r∗ ∈ (−∞, R∗+], y(−∞) = 1/2, y = 1 for r∗ ≥ R∗dec.

(96)

Such a y is trivial to construct.

We obtain from (67) and (68) the identity∫ ∞
−∞

(
y′|u′|2 +

(
y′(ω2 − V )− yV ′

)
|u|2
)

(97)

+

(
1

2
|u′|2 +

(
1

2
(ω −ω+m)2 + Eω(ω −ω+m)

)
|u|2
)
r=r+

−
(
|u′|2 + (1− E)ω2|u|2

)
r=∞

=

∫ ∞
−∞

(
−2yRe(u′H) + Eω Im(Hu)

)
.

Next, we observe the bound

(98)

|V | ≤ B
(
ε−1Λ + εω2 + ω−2

highω
2
)
, |V ′| ≤ B∆

r5

(
ε−1Λ + εω2 + ω−2

highω
2
)
,

where ε > 0 is arbitrary.

Now, we fix a sufficiently small ε > 0, require that εwidth is sufficiently

small depending on ε, and combine the inequality ω2 > ε−1
widthΛ with the in-

equalities (98) and (94). We conclude that the integrand on the left-hand side

of (97) is nonnegative and bounds from above the expression

b

∫ R∗+

R∗−

(
|u′|2 + (ω2 + Λ)|u|2

)
.
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The boundary terms are nonnegative due to the boundary conditions (51) and

(52), the nonsuperradiance condition and the requirement E ≥ 2. Requiring

that R∗∞ > R∗dec ensures that (93) is satisfied. �

8.5. The G[ range. As described in Section 8.2.3, this is again a large fre-

quency regime (whose definition still depends on parameters ωhigh and εwidth

yet to be fixed), but where angular frequencies will now dominate time fre-

quencies. The regime is again manifestly nonsuperradiant and, for suitable

parameters, nontrapped, but as we shall see, we will have to handle the hori-

zon boundary term as in the superradiant regime.

Once we have made our final choice of the parameters ωhigh and εwidth,

then for (ω,m,Λ) ∈ G[(ωhigh, εwidth), we set the functions y, ỹ and ŷ together

with the parameter rtrap to be 0. The remaining functions f , h and χ1 and

the desired coercivity properties are given by

Proposition 8.5.1. Let a0 < M . Then, for all ωhigh, R∞ and ε−1
width

sufficiently large, for all E ≥ 2, 0 ≤ a ≤ a0, (ω,m,Λ) ∈ G](ωhigh, εwidth), there

exist functions f , h and χ1 satisfying the uniform bounds

|f |+ ∆−1r2
∣∣f ′∣∣+ |h|+ |χ1|+ |χ2| ≤ B (ωhigh, εwidth) ,

f = 1, h = 0, χ1 = 0 for r∗ ≥ R∗∞,

such that, for all smooth solutions u to the radial o.d.e. (44) with right-hand

side H , satisfying moreover the boundary conditions (51) and (52), we have

the estimate

b

∫ R∗+

R∗−

(
|u′|2 + (ω2 + Λ)|u|2

)
≤
∫ ∞
−∞

(
−2f Re(u′H)−(f ′+h) Re(uH)+Eω Im(Hu)+χ1 (ω −ω+m) Im(Hu)

)
.

Proof. For the construction of our currents, we again shall exploit that

G[ defines a large frequency regime, where now, however, ω2 � Λ. Since

this is a nonsuperradiant regime, the boundary term of r∗ = ∞ may be con-

trolled with the QT current; however, we shall handle the boundary term at

the horizon as we did for the regime G]. As we explained in Section 8.2.3,

this is necessary because the boundary term at the horizon is proportional to

(ω −ω+m)2 |u (−∞)|2, and the QT current would only give an estimate for

ω (ω −ω+m) |u (−∞)|2. In the frequency regime under consideration these

are not necessarily comparable.

Turning to the proof, we begin by arguing that εwidth sufficiently small

implies mω ≤ 0. Suppose mω > 0. Then we have

(99) mω ≥ am2

2Mr+
+ αΛ ≥ αε−1

widthω
2 ⇒ |m| ≥ αε−1

width |ω| .
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On the other hand,

(100) mω ≥ am2

2Mr+
+ αΛ⇒ |ω| ≥ αΛ |m|−1 ≥ α |m| .

Combining (99) and (100) implies

|ω| ≥ α2ε−1
width |ω| .

This is a contradiction if we take εwidth < α2. Thus, we indeed have mω < 0.

From the above inequality, it follows that Lemma 6.4.1 applies, and we

may thus conclude that the potential V0 is increasing at r+, and hence has

only one critical point at r = r0
max where it attains a maximum. As in the

proof of Proposition 8.3.1 concerning the regime G], we again infer that, for

ωwidth sufficiently large, in the regime G[(ωhigh, εwidth), the potential V has a

unique nondegenerate critical point at rmax, where it attains a maximum, and

that rmax is uniformly bounded away from r+ and is uniformly bounded from

above. Similarly, we also obtain the existence of an interval (rmax−δ, rmax +δ),

where δ is independent of frequency parameters, such that V satisfies the two

relations

V (r)− ω2 ≥ bΛ ∀r ∈ (rmax − δ, rmax + δ)

and

(r − rmax)
d

dr
V (r) ≥ bΛ(r − rmax)2

r4
, r > r+.

We may now follow the construction given in Proposition 8.3.1 for the

range G]. We first define a current Q = Qf + Ϙh with the same choice of

functions f and h = Ah̃ as for G]. This gives the inequality

∫ ∞
−∞

(
(2f ′ +Ah̃)|u′|2 +

(
Ah̃(V − ω2)− fV ′

)
|u|2 − 1

2
(f ′′′ +Ah̃′′)|u|2

)(101)

=
(
|u′|2 + (ω −ω+m)2|u|2

)
r=r+

+
(
|u′|2 + ω2|u|2

)
r=∞

−
∫ ∞
−∞

(
2f Re(u′H) + (f ′ +Ah̃) Re(uH)

)
,

where the integrand on the left-hand side is positive definite. As in the G]
regime, we may gain a large parameter in the region (rmax − δ, rmax + δ) by

observing that there exists a small constant δ̃ only depending on a0 and M so

that, as long as A ≤ δ̃ε−1
widthω

2
high, the left-hand side of (101) will give a coercive

estimate. We fix such an A. Finally, using a χ1 (ω −ω+m) QK current we may

handle the boundary term at the horizon, mutatis mutandis, as we did for the
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G] regime. We obtain

b

∫ ∞
−∞

(
(2f ′ +Ah̃)|u′|2 +

(
Ah̃(V − ω2)− fV ′

)
|u|2 − 1

2
(f ′′′ +Ah̃′′)|u|2

)
≤
(
|u′|2 + ω2|u|2

)
r=∞

−
∫ ∞
−∞

(
2f Re(u′H) + (f ′ +Ah̃) Re(uH) + χ1 (ω −ω+m) Im (Hu)

)
.

Finally, for any E ≥ 2, the boundary term at infinity is controlled easily with
a QT current:

b

∫ ∞
−∞

(
(2f ′ +Ah̃)|u′|2 +

(
Ah̃(V − ω2)− fV ′

)
|u|2 − 1

2
(f ′′′ +Ah̃′′)|u|2

)
≤ −

∫ ∞
−∞

(
2f Re(u′H) + (f ′ +Ah̃) Re(uH)

+ χ1 (ω −ω+m) Im (Hu) + EωIm (Hu)
)
.

Restricting the domain of integration of the left-hand side of our estimate then

finishes the proof. �

8.6. The G\ range. This range is manifestly nonsuperradiant. By the re-

sults of Section 6.4, it will follow that, after suitable such choices of ωhigh and

εwidth, this will be the only range that can contain trapping phenomena; thus,

it is only in this range for which we will define a nonzero parameter rtrap.

After the final choices of parameters ωhigh and εwidth have been made, then

for (ω,m,Λ) ∈ G\(ωhigh, εwidth), we set the functions h, ỹ, ŷ and χ1 appearing

in the statement of Theorem 8.1 to be identically 0. The remaining functions

f and ŷ, the parameter rtrap, and the desired coercivity properties are given

by the following

Proposition 8.6.1. Let a0<M . Then, for all εwidth>0, for all ωhigh, R∞
and E sufficiently big depending on εwidth, and for all 0≤ a≤ a0, (ω,m,Λ) ∈
G\(ωhigh, εwidth), there exist functions f and ŷ and a value rtrap satisfying the

uniform bounds

rtrap = 0 or 0 < b < rtrap − r+ < B,

|f |+ ∆−1r2
∣∣f ′∣∣+ |y| ≤ B (εwidth) ,

f = 1, ŷ = 0 for r∗ ≥ R∗∞,

such that, for all smooth solutions u to the radial o.d.e. (44) with right-hand

side H , satisfying moreover the boundary conditions (51) and (52), we have
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the estimate

b (εwidth)

∫ R∗+

R∗−

(
|u′|2 +

(
(ω2 + Λ)

(
1− r−1rtrap

)2
+ 1
)
|u|2
)

(102)

≤
∫ ∞
−∞

(
−2f Re(u′H)− f ′Re(uH) + Eω Im(Hu)

)
+

∫ ∞
−∞

2ŷRe(u′H).

Proof. As noted above, this frequency range, where ω2 is comparable to Λ,

contains the trapping phenomena, but is nonsuperradiant. For frequencies

(ω,m,Λ) ∈ G\, Lemma 6.3.1 implies that the potential V0 may have at most

two critical points. Furthermore, either a maximum r0
max exists or V0 is non-

increasing on [r+,∞); if the maximum exists, then there may also exist a

minimum r0
min that will satisfy r0

min < r0
max.

In analogy to Lemma 8.3.1, we first must show that for ωhigh sufficiently

large, the full potential V enjoys similar properties.

Lemma 8.6.1. For εwidth as above, for all ωhigh sufficiently large depend-

ing on εwidth and for (ω,m,Λ) ∈ G\(ωhigh, εwidth), there exists an r3 ∈ (r+,∞]

depending on the frequency triple but bounded away from r+,

r3 − r+ ≥ b(εwidth),

such that for r ∈ [r+, r3],

V (r) ≤ ω2 − b (εwidth) Λ.

Furthermore, in the case when r3 < ∞, then in fact r3 ≤ B (ωhigh, εwidth),

r0
max exists and the potential V has a unique nondegenerate maximum rmax ∈

[r3,∞),
∣∣rmax − r0

max

∣∣ ≤ B (εwidth) Λ−1 and d2

dr2V (rmax) < −b (εwidth) Λ.

Proof. Since mω 6∈ (0, am2

2Mr+
+ αΛ] and εwidthΛ ≤ ω2 ≤ ε−1

widthΛ , we find

ω2 − V (r+) = ω2 − V0(r+) ≥ cΛ,
where c = c (εwidth) only depends on the value of εwidth. We define r0 ∈ (r+,∞]

to be the largest value with the property that for all r ∈ [r+, r0),

V0(r) ≤ V0(r+) +
c

2
Λ.

If r0 is finite, then we must have a maximum r0
max. Furthermore, dV0

dr (r0) ≥ 0;

hence, Lemma 6.3.1 implies that if r0
min exists, then

r0
min < r0 ≤ r0

max.

Moreover, Lemma 6.3.1 implies that r0
max is bounded from above by a constant

only depending on εwidth. On the other hand, since
∣∣ d
drV0(r)

∣∣ ≤ B (εwidth) Λr−3,

the value r0−r+ and thus r0
max−r+ is bounded from below by a constant only

depending on εwidth.
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We continue to consider the case where r0 < ∞. Recall from the proof

of Lemma 6.3.1 that either d
dr

(
(r2 + a2)3 dV0

dr

)
is negative on [r+,∞), or there

exists a unique value r1 ∈ [r+, r
0
max) such that d

dr

(
(r2 + a2)3 dV0

dr

)
is positive

on [r+, r1) and negative on (r1,∞). Moreover, since for frequency triples in G\,
the parameter σ = amω/Λ is bounded by a constant only depending on εwidth,

the value of r1 is uniformly bounded from above by a constant only depending

on εwidth. We first consider the case where the point r1 exists and further split

the analysis into two sub-cases based on the value of V0(r1).

If V0(r1) ≤ V0(r+) + 3c
4 Λ then, in view of the fact that V0 has a unique

maximum at r0
max, we have that

V0(r) ≤ V0(r+) +
3c

4
Λ ∀r ∈ [r+,max(r0, r1)].

Moreover, using that
∣∣∣dV0
dr

∣∣∣≤B(εwidth) Λr−3 and that Λ−1 d
dr

(
(r2 + a2)3 d

drV0(r)
)

is a quadratic polynomial, with coefficients bounded by εwidth, vanishing at

the unique point r1 on the interval [r+,∞), we can find a small constant

δ = δ (εwidth) > 0 only depending on εwidth such that

V0(r) ≤ V0(r+) +
3c

5
Λ ∀r ∈ [r+,max(r0, r1) + δ]

and

d

dr

(
(r2 + a2)3 d

dr
V0(r)

)
< −c1 (εwidth) Λr2 ∀r ∈ [max(r0, r1) + δ,∞),

where the positive constant c1 only depends on εwidth.

Now we consider the case where V0(r1) ≥ V0(r+) + 3c
4 Λ. Then, once again

using the bound
∣∣∣dV0
dr

∣∣∣ ≤ B (εwidth) Λ, we conclude that r1−r0 is bounded from

below by a small positive constant just depending on εwidth. Furthermore,

since d
drV0(r0) ≥ 0, we can find a value r′0 ∈ [r0, r1] such that

V0(r) ≤ V0(r+) +
3c

4
Λ ∀r ∈ [r+, r

′
0]

and
d

dr
V0(r) ≥ c2Λ ∀r ∈ [r′0, r1],

where c2 = c2 (εwidth) is a positive constant that only depends on εwidth.

Moreover, after slightly changing c2, the last property can be easily ex-

tended to a slightly larger interval

d

dr
V0(r) ≥ c2Λ ∀r ∈ [r′0, r1 + δ],

so that δ only depends on the constant εwidth

d

dr

(
(r2 + a2)3 d

dr
V0(r)

)
< −c3Λr2 ∀r ∈ [r1 + δ,∞)

for a positive constant c3 = c3 (εwidth) that only depends on εwidth.
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If r1 does not exists, the above arguments mutatis mutandis will produce

a value r′0 only depending on the value εwidth such that

V0(r) ≤ V0(r+) +
3c

4
Λ ∀r ∈ [r+, r

′
0],

d

dr

(
(r2 + a2)3 d

dr
V0(r)

)
< −c4 (εwidth) Λr2 ∀r ∈ [r′0,∞)

for a positive constant c4 = c4 (εwidth) only depending on εwidth.

Finally, in both cases r0 < ∞ and r0 = ∞, we may therefore claim the

existence of a value r3 (possibly infinite), bounded away from r+ by a constant

only depending on εwidth, such that

V0(r) ≤ V0(r+) +
3c

4
Λ ≤ ω2 − c

4
Λ ∀r ∈ [r+, r3]

and, such that for any r ∈ [r3,∞), either

d

dr
V0(r) ≥ b (εwidth) Λ

or
d

dr

(
(r2 + a2)3 d

dr
V0(r)

)
< −b (εwidth) Λr2.

We note that if r3 is finite, then it is bounded from above by a constant only

depending on εwidth.

Now, just as we argued in the frequency range G], adding the bounded

potential V1, and requiring that ωhigh is sufficiently large finishes the proof. �

Before constructing our current, it will be useful to recall that, as observed

in Section 8.4, the inequalities Λ ≥ |m| (|m|+ 1) and Λ ≥ 2a |mω| imply that

there exists a constant R∗dec ≥ 2R∗+ only depending on a0 and M such that

(103) V ′ < 0 for r∗ ≥ R∗dec.

We now construct our current, first under the assumption that r∗3 < R∗dec.

Given E sufficiently large depending on εwidth, we shall use a combination

Q = Qf − ϟŷ − EQT

of the currents Qf , ϟŷ and QT where f , ŷ are chosen as described below.

The current Qf is applied with a function f such that

|f |+ ∆−1r2
∣∣f ′∣∣ ≤ B (εwidth) , f(r+) = 0, f ′ > 0 for r ∈ [r3, R∞],

(104)

f switches from negative to positive at r = rmax, f = 1 for r∗ ≥ R∗dec,

(105)

−fV ′ − 1

2
f ′′′(r) > b(εwidth)Λ

∆(r − rmax)2

r7
∀r ∈ [r3,∞).(106)
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In view of the properties of V proven above, such a function can easily be

constructed.

The second current will be ϟŷ, with

(107) ŷ = 0 for r ≥ r3, ŷ′ > 0 for r ≤ r3, |ŷ|+
∣∣ŷ′∣∣ ≤ B (εwidth) .

Such a ŷ is now trivial to construct.

Finally, we subtract the multiple EQT of the current QT . We obtain∫ r3

−∞

(
ŷ′
(
|u′|2 + (ω2 − V )|u|2

)
− ŷV ′|u|2

)
+

∫ ∞
−∞

(
2f ′|u′|2 − (fV ′ +

1

2
f ′′′)|u|2

)
+

(
−f |u′|2 + (

1

2
E − f)ω2|u|2

)
r=∞

+

(
1

2
Eω(ω −ω+m)− 2ŷ(ω −ω+m)2

)
|u|2|r=r+

= −
∫ ∞
−∞

(
2f Re(u′H) + f ′Re(uH)− Eω Im(Hu)

)
+

∫ r3

−∞
2ŷRe(u′H).

By the described properties of the potential V , the expression −(fV ′ + 1
2f
′′′)

is positive on the interval [r3,∞). On the interval (r+, r3], we need to choose

a function ŷ so that in addition to (107), we have

(108) ŷ′(ω2 − V )− ŷV ′ − (fV ′ +
1

2
f ′′′) ≥ 0.

Since for these values of r,

(ω2 − V ) ≥ b (εwidth) Λ, |V ′| ≤ B (εwidth) Λ
∆

r2
, |f |+ |f ′′′| ≤ B (εwidth)

∆

r2
,

it suffices to fulfill the inequality

(109)
d

dr
ŷ ≥ −ŷC + C,

provided that C is sufficiently large only depending on εwidth. The function

ŷ = 1− eC(r3−r)

satisfies all the above criteria. Note that the constant C only depends on

εwidth. Finally, for all E such that C � E, the nonsuperradiant condition

mω 6∈ (0,mω+] and the boundary condition u′ = iωu at r = ∞ ensure that

both boundary terms at r = r+ and r =∞ are positive. After restricting the

domain of integration of the left-hand side of our estimate, we have obtained

(102), defining
rtrap = rmax.

In the case ∞ ≥ r3 ≥ R∗dec, we construct our current as follows. As above

we will have

(110) Q = Qf + ϟŷ − EQT .
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We define

ŷ = 1− eĈ(Rdec+2−r) for r ≤ Rdec + 2,

ŷ = 0 for r ≥ Rdec + 2.

Note that we shall satisfy (109) with C replaced by Ĉ. Thus, arguing just as

in the case when r3 < Rdec, for a sufficiently large Ĉ, we will have∫ Rdec+1

−∞

(
ŷ′
(
|u′|2 + (ω2 − V )|u|2

)
− ŷV ′|u|2

)
≥ b (εwidth)

∫ Rdec+1

R∗−

(∣∣u′∣∣2 + ω2 |u|2
)
.

Next, we let f be any smooth function such that

(111)

f ′ ≥ 0, f = 0 for r ∈ [r+, Rdec], f = 1 for [Rdec+1,∞), |f |+|f ′|+
∣∣f ′′′∣∣ ≤ B.

Such an f is trivial to construct.

Requiring ωhigh to be sufficiently large depending on εwidth, we shall have∫ ∞
Rdec

(
ŷ′
(
|u′|2 + (ω2 − V )|u|2

)
− ŷV ′|u|2

)
+

∫ ∞
Rdec

(
2f ′|u′|2 − (fV ′ +

1

2
f ′′′)|u|2

)
≥
∫ R∗dec+1

R∗dec

(
bω2

high −
1

2
f ′′′
)
|u|2 ≥ 0.

Thus, the bulk term of the estimate corresponding to Q is positive. Just as in

the case r3 < Rdec, requiring that E is large enough depending on εwidth will

guarantee that the boundary terms are controlled. Finally, we require that

R∗∞ ≥ R∗dec + 1. This again gives (102) defining rtrap = 0. �

8.7. The G[ range. This range again depends on ωhigh and εwidth. As op-

posed to the propositions concerning the other ranges that restrict the choices

of one or both these parameters, in the range G[(ωhigh, εwidth), estimates can

be obtained for arbitrary ωhigh > 0 and εwidth > 0, but the relevant constants

will degenerate as ωhigh →∞, εwidth → 0.

We shall split the frequency range G[ into four sub-cases, considering each

separately. We will see the above degeneration in the last of the cases. We note

that our decomposition will not, however, distinguish between superradiant

and nonsuperradiant frequencies. It should be clear to the reader how the

constructions could be simplified if restricted to the nonsuperradiant case.

The split will rely on the introduction of a further small parameter ã0.

This parameter is for now free — we choose it in Section 8.8.
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8.7.1. The subrange |ω| ≤ ωlow, 0 ≤ a < ã0 and m 6= 0. Given the final

choice of parameters, ωhigh, εwidth and ωlow, then for (ω,m,Λ)∈G[(ωhigh, εwidth)

such that |ω| ≤ ωlow and a < ã0, we will set the functions f and ỹ together

with the parameter rtrap to be 0. The remaining functions y, ŷ, h, χ1, χ2 and

the desired coercivity properties are given by the following

Proposition 8.7.1. Let a0 < M . Then, for all ωhigh > 0, εwidth > 0,

for all ωlow > 0, ã0 > 0 sufficiently small depending on ωhigh and εwidth, for

all R∞ sufficiently large, for all E ≥ 2, 0 ≤ a ≤ a0, and for all (ω,m,Λ) ∈
G[(ωhigh, εwidth) such that |ω| ≤ ωlow and 0 ≤ a < ã0, there exist functions y,

ŷ, χ1, χ2 and h, satisfying the uniform bounds

|y|+ |ŷ|+ |h|+ |χ2| ≤ B,
χ2 = 1, χ1 = 0, y = 1, ŷ = 0, h = 0 for r∗ ≥ R∗∞,

such that, for all smooth solutions u to the radial o.d.e. (44) with right-hand

side H , satisfying moreover the boundary conditions (51) and (52), we have

the estimate

b

∫ R∗+

R∗−

(∣∣u′∣∣2 + |u|2
)
≤
∫ ∞
−∞

(
2(y + ŷ) Re(u′H) + hRe(uH)

(112)

+ Eωχ1 Im(Hu) + χ2 (ω −ω+m) Im(Hu)
)
.

Proof. The construction of our current is inspired by the treatment of

similar frequency regimes in [8] and [41].

The following three properties are easily verified:

(1) for every −∞ < α < β < ∞, if we require ã and ωlow sufficiently small,

both depending on α and β, then r ∈ [α, β]⇒ V − ω2 > 0;

(2) for sufficiently large r∗, independent of the frequency parameters, we have

V ′ < 0;

(3) for sufficiently small ã0 and sufficiently negative r∗, independent of the

frequency parameters, we have V ′ > 0.

Let us introduce the set of relevant constants:

(1) requiring that ã0 is sufficiently small, let R∗1 < R∗− be a fixed negative con-

stant chosen so that r∗ ≤ R∗1 implies that V ′ > 0 and
(
r∗
(
V − V |r=r+

))′
> 0;

(2) let R∗2 > R∗+ be a fixed positive constant chosen so that r∗ ≥ R∗2 implies

V ′ < 0 and (r∗V )′ < 0;

(3) let ε > 0 be a sufficiently small positive constant to be fixed later;

(4) let p = p (ε) > 0 be a sufficiently small positive constant depending on ε.
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We now construct our current Q in a step-by-step fashion. Choose a

function h satisfying

h = 1 for r∗ ∈ [R∗1, R
∗
2], h = 0 for r∗ ∈ (−∞, ep−1

R∗1], h ≥ 0,(113)

h = 0 for r∗ ∈ [ep
−1
R∗2,∞),(114) ∣∣h′′∣∣ ≤ Bp

|r∗|2
when r∗ ∈ [ep

−1
R∗1, R

∗
1] ∪ [R∗2, e

p−1
R∗2].

Note that one may easily construct a function h satisfying (113) and (114).

We then apply a Ϙh current:∫ ∞
−∞

(
h|u′|2 +

(
h(V − ω2)− 1

2
h′′
)
|u|2
)

= −
∫ ∞
−∞

hRe(uH).(115)

The integrand of the left-hand side of the estimate (115) will cease to be

nonnegative for r∗ ∈ [ep
−1
R∗1, R

∗
1]∪[R∗2, e

p−1
R∗2]. We will produce a nonnegative

integrand by adding in ϟy and ϟŷ currents.

Define a function y by

y = 0 for r∗ ∈ (−∞, R∗2 − 1), y =
r∗ −R∗2 + 1

2
for r∗ ∈ [R∗2 − 1, R∗2),(116)

y = ε

(
1

r∗V
− 1

R∗2V |r∗=R∗2

)
+

1

2
for r∗ ∈ [R∗2, e

p−1
R∗2],(117)

y = ε

(
1

ep−1R∗2V |r∗=ep−1R∗2

− 1

R∗2V |r∗=R∗2

)
+

1

2
for r∗ ∈ [ep

−1
R∗2,∞).(118)

Note that we have chosen R∗2 so that we will have y′ ≥ 0. Of course, we also

have y ≥ 0.

Now we add in a ϟy current to (115) and obtain∫ ∞
−∞

((
h+ y′

)
|u′|2 +

(
y′ω2 + h(V − ω2)− (yV )′ − 1

2
h′′
)
|u|2
)

(119)

= y(∞)
(
|u′|2 + ω2|u|2

)
r=∞ −

∫ ∞
−∞

(
2yRe(u′H) + hRe(uH)

)
.

We will now show that if we require ωlow and ã0 to be sufficiently small

depending on appropriate choices of ε and p, then the integrand of the left-

hand side of (119) is nonnegative in the region r∗ ∈ [R∗+,∞). Since h, y′ ≥ 0,

it suffices to show that the term h(V − ω2)− (yV )′ − 1
2h
′′ is nonnegative.

The function y vanishes, and h = 1 in the region r∗ ∈ [R∗+, R
∗
2 − 1). Thus

we have

r∗ ∈ [R∗+, R
∗
2 − 1)⇒ h(V − ω2)− (yV )′ − 1

2
h′′ = V − ω2.

If ωlow and ã0 are sufficiently small, then V −ω2 will be positive in this region.
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Next, we have

r∗ ∈ [R∗2 − 1, R∗2)⇒ h(V − ω2)− (yV )′ − 1

2
h′′ = V − ω2 − 1

2
V − yV ′.

Recall that we chose R∗2 so that V ′ < 0 in this region. Since y > 0, we then get

r∗ ∈ [R∗2 − 1, R∗2)⇒ V − ω2 − 1

2
V − yV ′ ≥ 1

2
V − ω2.

Now, it is clear that if ωlow and ã0 are sufficiently small, then 1
2V − ω

2 will be

positive in this region.

Next we consider the region r∗ ∈ [R∗2, e
p−1

R∗2). As usual, we start by not-

ing that if we require ωlow and ã0 to be sufficiently small depending on p, then

V − ω2 > 0 in the region r∗ ∈ [R∗2, e
p−1

R∗2). Hence, we will have

(120)

r∗ ∈ [R∗2, e
p−1

R∗2)⇒ h(V −ω2)−(yV )′−1

2
h′′ ≥ ε−Bp

(r∗)2
−
(

1

2
− ε

R∗2V |r∗=R∗2

)
V ′.

Again, we recall that V ′ < 0 for r∗ > R∗5. Furthermore, as long as we require

ε to be sufficiently small, we will have 1
2 −

ε
R∗2V |r∗=R∗2

> 0. Finally, we may

choose p small enough depending on ε so that the first term on the right-hand

side of (120) is also positive.

In the region r∗ ∈ [ep
−1
R∗2,∞), we have that h = 0 and y is constant.

Since V ′ < 0 in this region, we have

h(V − ω2)− (yV )′ − 1

2
h′′ = −y(∞)V ′ > 0.

Thus as long as ε > 0 is sufficiently small, p is sufficiently small depending

on ε and ωlow and ã0 are sufficiently small depending on p, the integrand of

the left-hand side of (119) is nonnegative for r∗ ≥ R∗2; however, it is still not

nonnegative for r∗ < R∗1. To remedy this we will employ a ϟŷ current with

a function ŷ whose properties as r∗ → −∞ will mimic the properties of y as

r∗ →∞. The key point that allows us to carry out an analogous construction

is that V ′ > 0 for r∗ sufficiently close to −∞.

We define

ŷ = 0 for r∗ ∈ (R∗1 + 1,∞), ŷ =
r∗ −R∗1 − 1

2
for r∗ ∈ [R∗1, R

∗
1 + 1),(121)

ŷ = ε

(
1

r∗Ṽ
− 1

R∗1Ṽ |r∗=R∗1

)
− 1

2
for r∗ ∈ [ep

−1
R∗1, R

∗
1),(122)

ŷ = ε

 1

ep−1R∗1Ṽ |r∗=ep−1R∗1

− 1

R∗1Ṽ |r∗=R∗1

− 1

2
for r∗ ∈ (−∞, ep−1

R∗1].

(123)
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Here Ṽ
.
= V −V |r=r+ . Note that we have chosen R∗1 so that ŷ′ ≥ 0. Of course,

we also have ŷ ≤ 0.

Now we add a ϟŷ current to (119). We obtain

∫ ∞
−∞

((
h+y′+ ŷ′

)
|u′|2

(124)

+

(
y′ω2 + ŷ′ (ω −ω+m)2 +h(V − ω2)− (yV )′ − (ŷṼ )′ − 1

2
h′′
)
|u|2
)

= y(∞)
(
|u′|2 +ω2|u|2

)
r=∞+ |ŷ(−∞)|

(
|u′|2 +(ω −ω+m)2|u|2

)
r=r+

−
∫ ∞
−∞

(
(y+ ŷ) Re(u′H) + hRe(uH)

)
.

Now, keeping in mind that V ′ > 0 for sufficiently negative r∗ and repeating

the argument, mutatis mutandis, that showed that r∗ ≥ R∗2 ⇒ h(V − ω2) −
(yV )′ − 1

2h
′′ ≥ 0, we obtain that

r∗ ≤ R∗1 ⇒ h(V − ω2)− (ŷṼ )′ − 1

2
h′′ ≥ 0.

We conclude that the integrand of the left-hand side of (124) is nonnegative

and is greater than

b

∫ R∗+

R∗−

(
|u′|2 + |u|2

)
.

We may now fix the constants ε and p.

It remains to absorb the boundary terms on the right-hand side of (124).

We start with the term at r = ∞. Let χ2 be a function that is identically 1

for r∗ ≥ R∗+ and identically 0 for r∗ ≤ R∗−. Requiring that E ≥ 2, we obtain

y(∞)
(
|u′|2 + ω2|u|2

)
r=∞ ≤ Ey(∞)

∫ ∞
−∞

(
χ2QT

)′
(125)

≤ B(ωhigh, εwidth)ωlow

∫ R∗+

R∗−

(
|u′|2 + |u|2

)
+ Ey(∞)ω

∫ ∞
−∞

χ2Im(Hu).

Taking ωlow sufficiently small, we may add this into our previous estimate

and obtain

b

∫ R∗+

R∗−

(
|u′|2 + |u|2

)
≤ B

(
|u′|2 + (ω −ω+m)2|u|2

)
r=r+

(126)

−
∫ ∞
−∞

(
(y + ŷ) Re(u′H) + hRe(uH) + Ey(∞)ωχ2Im(Hu)

)
.
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Let χ1 be a function that is identically 1 for r∗ ∈ (−∞, R∗1) and identically

0 for r∗ ≥ R∗2. We obtain

B
(
|u′|2 + (ω −ω+m)2|u|2

)
r=r+

(127)

= B

∫ ∞
−∞

(
χ1QK

)′ ≤ B(ωhigh, εwidth) (ωlow + ã0)

∫ R∗+

R∗−

(
|u′|2 + |u|2

)
+B (ω −ω+m)

∫ ∞
−∞

χ1Im(Hu).

Thus, it is clear that if require that ωlow and ã0 are sufficiently small, depend-

ing on ωhigh and εwidth, then we may multiply χ1 by a bounded constant, add

in χ1QK to our current and obtain

b

∫ R∗+

R∗−

(
|u′|2 + |u|2

)
≤−

∫ ∞
−∞

(
(y + ŷ) Re(u′H) + hRe(uH)

(128)

+ Ey(∞)ωχ2Im(Hu)+(ω−ω+m)χ1Im(Hu)
)
.

Finally, we may rescale all of the multipliers so that y(∞) = 1. We obtain

b

∫ R∗+

R∗−

(
|u′|2 + |u|2

)
≤ −

∫ ∞
−∞

(
(y + ŷ) Re(u′H) + hRe(uH)

(129)

+ Eχ2Im(Hu) + (ω −ω+m)χ1Im(Hu)
)
.

Of course, R∗∞ is simply required to be larger than ep
−1
R∗2. �

Remark 8.7.1. The above proof does not use the assumption m 6= 0. We

only include m 6= 0 in the definition of the frequency range so that the set of

frequencies covered by Proposition 8.7.1 is disjoint from the set of frequencies

covered by Proposition 8.7.2.

8.7.2. The subrange |ω| ≤ ωlow and m = 0. Given the final choice of

parameters, ωhigh, εwidth and ωlow, then for (ω,m,Λ) ∈ G[(ωhig, εwidth) such

that |ω| ≤ ωlow and m = 0, we will set the functions f , ỹ and χ1 together with

the parameter rtrap to be 0. The remaining functions y, ŷ, h and the desired

coercivity properties are given by the following

Proposition 8.7.2. Let a0 < M . Then, for all ωhigh> 0, εwidth>0, for

all ωlow > 0 sufficiently small depending on ωhigh and εwidth, for all R∞ suffi-

ciently large, for all E ≥ 2, 0 ≤ a ≤ a0, and for all (ω,m,Λ) ∈ G[(ωhigh, εwidth)

such that |ω| ≤ ωlow and m = 0, there exist functions y, ŷ and h, satisfying
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the uniform bounds

|y|+ |ŷ|+ |h| ≤ B,
y = 1, h = 0, ŷ = 0 for r∗ ≥ R∗∞,

such that, for all smooth solutions u to the radial o.d.e. (44) with right-hand

side H , satisfying moreover the boundary conditions (51) and (52), we have

the estimate

b

∫ R∗+

R∗−

(∣∣u′∣∣2 + |u|2
)
≤ −

∫ ∞
−∞

(
2(y + ŷ) Re(u′H) + hRe(uH) + Eω Im(Hu)

)
.

(130)

Proof. Observe that the properties of the potential V used in the proof of

Proposition 8.7.1 also hold here:

(1) for every −∞ < α < β < ∞, if we require ωlow sufficiently small, both

depending on α and β, then r ∈ [α, β]⇒ V − ω2 > 0;

(2) for sufficiently large r∗, independent of the frequency parameters, we have

V ′ < 0;

(3) for sufficiently negative r∗, independent of the frequency parameters, we

have V ′ > 0.

Using these observations, one may repeat, mutatis mutandis, the current con-

struction from the proof of Proposition 8.7.1. In fact, the situation is strictly

better here; since this proposition concerns a nonsuperradiant regime, we may

set χ1 = 0. One obtains

b

∫ R∗+

R∗−

(
|u′|2 + |u|2

)
≤ −

∫ ∞
−∞

(
2(y + ŷ) Re(u′H) + hRe(uH) + EIm(Hu)

)
.

�

8.7.3. The subrange |ω| ≤ ωlow, m 6= 0 and a ≥ ã0 (the near-stationary

sub-case). Although these frequencies are near-stationary, here we will be able

to effectively exploit the nonvanishing of a and the bound |m| ≥ 1.

For (ω,m,Λ) ∈ G[, m 6= 0, and a ≥ ã0, we set the functions f and ŷ

together with the parameter rtrap to 0. The remaining functions ỹ, y, h, χ1

and χ2 and the desired coercivity properties are given by the following

Proposition 8.7.3. Let a0 < M . Then, for all ωhigh > 0, εwidth > 0,

E ≥ 2, for all ωlow > 0 sufficiently small depending on ã0 and E, for all

R∞ sufficiently large depending on ã0, 0 ≤ a ≤ a0, and for all (ω,m,Λ) ∈
G[(ωhigh, εwidth) such that |ω| ≤ ωlow, m 6= 0 and a ≥ ã0, there exist functions

ỹ, y, h, χ1 and χ2, satisfying the uniform bounds

|ỹ|+ |y|+ |h|+ |χ1|+ |χ2| ≤ B (ã0) ,

|ỹ| ≤ B exp (−br) , y = 1, h = 0 for r∗ ≥ R∗∞,
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such that, for all smooth solutions u to the radial o.d.e. (44) with right-hand

side H , satisfying moreover the boundary conditions (51) and (52), we have

the estimate

b (ã0)

∫ R∗+

R∗−

(
|u′|2 + |u|2

)
(131)

≤
∫ ∞
−∞

(
− 2ỹRe(u′H)− Eχ2ω Im(Hu)

− 2χ1 (ω −ω+m) Im(Hu)− hRe(uH)− 2yRe(u′H)
)
.

Proof. Our current will be of the form

Q = ϟỹ + Ϙh + ϟy − χ1QK − Eχ2QT

for suitable functions ỹ, h, y, χ1 and χ2.

As we did for the frequency range G], for the purposes of exposition

we shall construct the current in a step-by-step fashion. The first impor-

tant observation is that the assumptions m 6= 0 and a ≥ ã0 imply that

ω2
0 := (ω −ω+m)2 ≥ b (ã0) as long as ωlow � ã0. The second important

observation is that V = Λ
r2 +O(r−3) as r →∞ and, since m 6= 0, Λ ≥ 2. This

implies that for any 1� α� β <∞, then requiring that ωlow is small enough,

depending on α and β, we have

(132) r ∈ [α, β]⇒ V − ω2 ≥ b

r2

in this frequency range. We shall exploit this positivity via the use of a Ϙh

current.

Let us now introduce the set of relevant constants. Let p > 0, R1 < R2 <

R3 < ep
−1
R3, C > 0 and c > 0 be constants such that

(1) C = C(ã0) is sufficiently large;

(2) c is sufficiently small;

(3) R1 is sufficiently large;

(4) cω−2
0 R1 exp (BCR1)� R2;

(5) R2 � R3;

(6) p� R−3
3 ;

(7) ω2
low � cE−1ω2

0 exp
(
−p−1

)
exp (−BCR2)R−4

3 and, requiring ωlow suffi-

ciently small, r ∈ [R1, e
p−1

R3]⇒ V − ω2 ≥ br−2.

We write

ω2 − V =: ω2
0 − Ṽ ,

where Ṽ (r+) = 0. Let υ(r) be a positive function such that

(133) υ = ∆ near r+, υ = 1 when r∗ ≥ R∗∞, |υ| ≤ B.
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Then we define

ỹ(r∗) := − exp

(
−C

∫ r∗

−∞
υdr∗

)

and consider the current ϟỹ. Note that ỹ (−∞) = −1 and ỹ (∞) = 0. We

obtain ∫ ∞
−∞

(
ỹ′|u′|2 +

(
ỹ′ω2

0 −
(
ỹṼ
)′)
|u|2
)

(134)

=
(
|u′|2 + (ω −ω+m)2|u|2

)
r=r+

−
∫ ∞
−∞

(
2ỹRe(u′H)

)
.

Remark 8.7.2. Note that unlike every other microlocal current we have

considered, this ỹ cannot be taken independent of the frequency parameters

when r∗ ≥ R∗∞ (since this is the only regime that employs a ϟỹ current where

the seed function ỹ is negative for large r). Nevertheless, the exponential decay

of ỹ as r →∞ will allow us to handle this when we re-sum (see Section 9).

We now turn to the
(
ỹṼ
)′
|u|2 term on the left-hand side of (134) that

threatens to destroy our estimate:

∣∣∣∣∫ ∞
−∞

(
ỹṼ
)′
|u|2
∣∣∣∣ = 2

∣∣∣∣∫ ∞
−∞

2ỹṼ Re
(
u′u
)∣∣∣∣

≤ ε
∫ ∞
−∞

ỹ′
∣∣u′∣∣2 +Bε−1

∫ ∞
−∞

ỹ′ω2
0

ỹ2Ṽ 2

(ỹ′)2 ω2
0

|u|2

= ε

∫ ∞
−∞

ỹ′
∣∣u′∣∣2 +Bε−1

∫ ∞
−∞

ỹ′ω2
0

Ṽ 2

C2υ2ω2
0

|u|2

≤ ε
∫ ∞
−∞

ỹ′
∣∣u′∣∣2 +Bε−1C−2ω−2

0

∫ ∞
−∞

ỹ′ω2
0 |u|

2 .

Hence, taking ε sufficiently small and then C = C(ã0) sufficiently large gives

us the estimate

b

∫ ∞
−∞

(
ỹ′|u′|2 + ỹ′ω2

0|u|2
)
≤
(
|u′|2 + (ω −ω+m)2|u|2

)
r=r+

−
∫ ∞
−∞

2ỹRe(u′H).

(135)

As in the frequency regime G], we need to find a large parameter in order

to handle the boundary term
(
|u′|2 + (ω −ω+m)2|u|2

)
r=r+

. We employ a Ϙh
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current where

h = 0 for r ∈ [r+, R1], h′′ = cỹ′ω2
0 for r ∈ [R1, R2], h′′ = 0 for r ∈ [R2, R3],

(136)

∣∣h′∣∣ ≤ BR3p

r
for r ∈ [R3, e

p−1
R3],

∣∣h′′∣∣ ≤ BR3p

r2
for r ∈ [R3, e

p−1
R3],(137)

h = 0 for r ∈ [ep
−1
R3,∞).(138)

Note that one may easily construct an h satisfying (136), (137) and (138).

In order to help orient the reader for the estimates below, let us briefly

describe the rationale behind the construction of h. First of all, the Ϙh current

gives a good estimate when h is positive, h
(
V − ω2

)
is positive and if the error

terms from the −1
2h
′′ term can be controlled. Since V −ω2 is only positive for

large enough r, we set h to be 0 for r ≤ R1. In order for h to become nonzero,

it is necessary for −1
2h
′′ < 0. Thus, the definition of h on [R1, R2] is motivated

by the desire to increase h as fast as possible while still being able to absorb

the error term −1
2h
′′ with the estimate (135). This successfully produces a

positive h, but we still need to find a large parameter. In the region [R2, R3],

we achieve this by setting h′′ = 0 and then letting h grow linearly. Since we

have taken ω2 small enough so that V − ω2 is positive on [R2, R3], by taking

R3 very large we can arrange for h to be as large as we wish. The crucial

estimates for absorption of the boundary term |u(−∞)|2 are

r ∈ [R2, R3]⇒ bcω2
0 exp (−BCR1) (r −R1) ≤ h ≤ BR3,

r ∈ [R2, R3]⇒ h−1 ≤ B
(
V − ω2

)
h;

see the estimates (149), (150) and (151). Now that we have succeeded in finding

a large parameter to absorb the boundary term, we need to take h back down to

0. Keeping in mind that pR3 � 1, the choice of h on [R3, e
p−1

R3] is motivated

by the desire to take h down to 0 in a such a way that the error term −1
2h
′′

is as small as possible. See estimates (144), (145) and (146) for the details of

how these error terms are dealt with.

We now turn to the specifics. Applying the current Ϙh gives∫ ∞
−∞

((
bỹ′ + h

)
|u′|2 +

(
bỹ′ω2

0 + h
(
V − ω2

)
− 1

2
h′′
)
|u|2
)

(139)

≤
(
|u′|2 + (ω −ω+m)2|u|2

)
r=r+

−
∫ ∞
−∞

(
2ỹRe(u′H) + hRe(uH)

)
.

Recall that we explicitly required that ωlow be sufficiently small so that, in

particular, V − ω2 is positive on [R1, e
p−1

R3]. Given this, the only negative

terms on the left-hand side of this estimate come from the −1
2h
′′ term on the

intervals [R1, R2] and [R3, e
p−1

R3]. By construction of h and the assumption

that c� 1, the negative terms on [R1, R2] can be controlled by the by′ω2
0 |u|

2
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term. Therefore, we have

b

∫ ∞
−∞

((
ỹ′ + h

)
|u′|2 +

(
ỹ′ω2

0 + h
(
V − ω2

))
|u|2
)

(140)

≤
(
|u′|2 + (ω −ω+m)2|u|2

)
r=r+

+BpR3

∫ ep
−1
R3

R3

|u|2 r−2 −
∫ ∞
−∞

(
2ỹRe(u′H) + hRe(uH)

)
.

The left-hand side now is sufficiently strong to absorb the boundary term

on the right-hand side in a similar fashion as in the G] regime, i.e., by an

application of the current χQK for a suitable cutoff χ. However, we still need

to address the term BpR3

∫ ep−1
R3

R3
|u|2 r−2. For this we use a ϟy current with a

function y that is determined by

y = 0 for r ∈ [r+, R2], y′ =
h

2
for r ∈ [R2, R3],(141)

y =
r −R3

R2
3

+
1

2

∫ R3

R2

h for r ∈ [R3, e
p−1

R3],(142)

y =
ep
−1
R3 −R3

R2
3

+
1

2

∫ R3

R2

h for r ∈ [ep
−1
R3,∞).(143)

We obtain

∫ ∞
R2

(
y′
∣∣u′∣∣2 +

(
y′ω2 − (yV )′

)
|u|2
)(144)

=

(
ep
−1
R3 −R3

R2
3

+
1

2

∫ R3

R2

h

)(
|u′|2 + ω2|u|2

)
r=∞ −

∫ ∞
R2

2yRe(u′H).

Observe that r ∈ [R3, e
p−1

R3] implies

− d

dr
(yV ) = −

(
R−2

3

(
Λ

r2
+O

(
r−3
))

(145)

+

(
r −R3

R2
3

+
1

2

∫ R3

R2

h

)(
−2Λ

r3
+O

(
r−4
)))

≥ R−2
3

Λ

r2
+R−1

3 O
(
r−3
)

+

(
1

2

∫ R3

R2

h

)
2Λ

r3
≥ bR−2

3 r−2.

We have used that∫ R3

R2

h ≥ bcω2
0 exp (−BCR1)

(
R2

3 −R2
2 −R1

)
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and that R3 has been chosen to dominate R2 + cω−2
0 exp (BCR1). Of course,

d
dr∗ (yV ) =

(
1 +O(r−1)

)
d
dr (yV ). We conclude that

−(yV )′ ≥ bR−2
3 r−2.

Next, keeping in mind that p� R−3
3 and that R1 sufficiently large implies

that V ′ < 0 for r ∈ [R1,∞), we may add (144) to (140) to obtain

b

∫ ∞
−∞

((
ỹ′ + h

)
|u′|2 +

(
bỹ′ω2

0 + h
(
V − ω2

))
|u|2
)

(146)

≤
(
|u′|2 + (ω −ω+m)2|u|2

)
r=r+

+

(
ep
−1
R3 −R3

R2
3

+

∫ R3

R2

h

)(
|u′|2 + ω2|u|2

)
r=∞

−
∫ ∞
−∞

(
2ỹRe(u′H) + hRe(uH) + 2yRe(u′H)

)
.

Lastly, it remains to absorb the boundary terms on the right-hand side.

We start with the horizon term. Let χ1 be a smooth function such that

χ1 = 1 for r ∈ [r+, R2], χ1 = 0 for r ∈ [R3,∞),(147) ∣∣χ′1∣∣ ≤ B (R3 −R2)−1 , |χ1| ≤ B.(148)

(
|u′|2 + (ω −ω+m)2|u|2

)
r=r+

= 2

∫ ∞
−∞

(
χ1QK

)′
(149)

= (ω −ω+m)

∫ R3

R2

χ′1Im
(
u′u
)

+ (ω −ω+m)

∫ ∞
−∞

χ1Im (Hu) .

Now, recall that r ∈ [R2, R3] implies that h ≥ bcω2
0 exp (−BCR1) (r −R1),

which in turn implies

h
(
V − ω2

)
≥ bcω2

0 exp (−BCR1) r−1 −BR1R
−1
2 r−1 − ω2

lowR3

≥ bcω2
0 exp (−BCR1) r−1.

Thus, keeping in mind that R1R
−1
2 � h

(
V − ω2

)
on [R2, R3], we conclude

r ∈ [R2, R3]⇒ h−1 ≤ Bh
(
V − ω2

)
.

Thus, ∣∣∣∣∫ R3

R2

χ′1Im
(
u′u
)∣∣∣∣ ≤ B (R3 −R2)−1

∫ R3

R2

∣∣u′∣∣ |u|(150)

≤ B (R3 −R2)−1
∫ R3

R2

(
h
∣∣u′∣∣2 + h−1 |u|2

)
≤ B (R3 −R2)−1

∫ R3

R2

(
h
∣∣u′∣∣2 + h

(
V − ω2

)
|u|2
)
.
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Hence, we may combine (149), (146) and (150) to obtain

b

∫ ∞
−∞

((
ỹ′ + h

)
|u′|2 +

(
ỹ′ω2

0 + h
(
V − ω2

))
|u|2
)(151)

≤

(
ep
−1
R3 −R3

R2
3

+

∫ R3

R2

h

)(
|u′|2 + ω2|u|2

)
r=∞

−
∫ ∞
−∞

(
2ỹRe(u′H) + 2χ1 (ω −ω+m) Im(Hu) + hRe(uH) + 2yRe(u′H)

)
.

Now we shall handle the boundary term at∞. Let χ2 be a smooth function

such that

(152) χ2 = 1 for r ∈ [R2,∞), χ2 = 0 for r ∈ [r+, R1], |χ2| ≤ B.

Then, we have

E

2

(
ep
−1
R3 −R3

R2
3

+

∫ R3

R2

h

)[
|u′|2 + ω2|u|2

]
r=∞(153)

= E

(
ep
−1
R3 −R3

R2
3

+

∫ R3

R2

h

)∫ ∞
−∞

(
χ2QT

)′
= E

(
ep
−1
R3 −R3

R2
3

+

∫ R3

R2

h

)
ω

∫ R2

R1

χ′2Im
(
u′u
)

+ E

(
ep
−1
R3 −R3

R2
3

+

∫ R3

R2

h

)
ω

∫ ∞
−∞

χ2Im (Hu) .

We have

E

(
ep
−1
R3 −R3

R2
3

+

∫ R3

R2

h

)∣∣∣∣ω ∫ R2

R1

χ′2Im
(
u′u
)∣∣∣∣(154)

≤ BEω−2
0 exp (BCR2)

(
ep
−1
R3 −R3

R2
3

+

∫ R3

R2

h

)
ωlow

·
∫ R2

R1

(
ỹ′
∣∣u′∣∣2 + ω2

0 ỹ
′ |u|2

)
.

Thus, using that E ≥ 2, we may combine (153) and (151) and obtain

b

∫ ∞
−∞

((
ỹ′ + h

)
|u′|2 +

(
ỹ′ω2

0 + h
(
V − ω2

))
|u|2
)

(155)

≤
∫ ∞
−∞

(
− 2ỹRe(u′H)− Ey(∞)χ2ω Im(Hu)

− 2χ1 (ω −ω+m) Im(Hu)− hRe(uH)− 2yRe(u′H)
)
.
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At this point, it is clear that we may rescale the functions ỹ, h and y by an ã0

dependent constant so that y is identically 1 for r∗ ≥ R∗∞. �

8.7.4. The subrange |ω| ≥ ωlow (the nonstationary sub-case). We turn fi-

nally to our last frequency range. It is only this range that gives rise to the term

η{ωlow≤|ω|≤ωhigh}∩{Λ≤ε−1
widthω

2
high}
|u(−∞)|2

on the right-hand side of (70) in the statement of Theorem 8.1.

Let (ω,m,Λ) ∈ G[, where |ω| ≥ ωlow. When the final choices of ωhigh

εwidth, ωlow have been made, we will set the functions f , h, ỹ, ŷ and χ1 together

with the trapping parameter rtrap to be 0. The remaining function y and

desired coercivity property is given by

Proposition 8.7.4. Let a0 < M . Then, for all ωhigh > 0, εwidth > 0,

ωlow > 0, E ≥ 2, for all R∞ sufficiently large depending on ωhigh, ωlow, 0 ≤
a ≤ a0, and for all (ω,m,Λ) ∈ G[(ωhigh, εwidth) such that |ω| ≥ ωlow, there

exists a function y satisfying the uniform bounds

|y| ≤ B, y = 1 for r∗ ≥ R∗∞,
such that, for all smooth solutions u to the radial o.d.e. (44) with right-hand

side H , satisfying moreover the boundary conditions (51) and (52), we have

b (ωlow, ωhigh, εwidth)

∫ R∗+

R∗−

(
|u′|2 + |u|2

)
≤ E

(
|ω (ω −ω+m)| |u|2

)
r=r+

−
∫ ∞
−∞

(
2yRe(u′H)− Eω Im(Hu)

)
.

Proof. As in the previous section we will treat the superradiant and non-

superradiant frequencies concurrently. However, as previously discussed, it is

only for the sake of the superradiant frequencies for which we include the first

term on the right-hand side of the estimates of the proposition.

Our current will be of the form

Q = ϟy − EQT

for

y(r∗) := exp

(
−C

∫ ∞
r∗

χR∗∞r
−2dr

)
,

where C = C(ωlow, ωhigh, εwidth) is a sufficiently large constant. The function

χR∗∞ is a smooth function that is identically 1 on [r+, R∞ − 1) and identically

0 on [R∞,∞). Note that y|r∗≥R∗∞ = 1 and y (−∞) = 0. Applying the current

Q gives∫ ∞
−∞

(
y′|u′|2 +

(
y′ω2 − (yV )′

)
|u|2
)
−
(
|u′|2 + (1− E)ω2|u|2

)
r=∞(156)

= E
(
ω(ω −ω+m)|u|2

)
r=r+

−
∫ ∞
−∞

(
2yRe(u′H)− Eω Im(uH)

)
.
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Let R∞ be sufficiently large and R6 be chosen such that 1� R6 � R∞−1.

Then, let χ2 be a smooth function such that

χ2 = 1 for r ∈ [r+, R6], χ2 = 0 for R ∈ [R∞ − 1,∞),(157) ∣∣χ′2∣∣ ≤ B (R∞ −R6)−1 , |χ2| ≤ B.(158)

Then set V≤ := χ2V and V≥ = (1− χ2)V . Of course, we have V = V≤ + V≥.

For V≤, we have

∣∣∣∣∫ ∞
−∞

(yV≤)′ |u|2
∣∣∣∣ = 2

∣∣∣∣∫ ∞
−∞

yV≤Re
(
u′u
)∣∣∣∣

(159)

≤ ε
∫ ∞
−∞

y′
∣∣u′∣∣2 +Bε−1

∫ ∞
−∞

y′ω2
y2V 2
≤

(y′)2 ω2
|u|2

= ε

∫ ∞
−∞

y′
∣∣u′∣∣2 +B (ωhigh, εwidth) ε−1

∫ ∞
−∞

y′ω2
V 2
≤

C2r−4ω2
|u|2

≤ ε
∫ ∞
−∞

y′
∣∣u′∣∣2 +B (ωhigh, εwidth) ε−1C−2ω−2

∫ ∞
−∞

y′ω2 |u|2 ,

while for V≥, we have

−
∫ ∞
−∞

(yV≥)′ |u|2 =

∫ ∞
−∞

(
−y′V≥ − yV ′≥

)
|u|2

(160)

≥
∫ ∞
−∞

(
−B (ωhigh, εwidth)R−2

6 ω−2
(
y′ω2

)
−B (ωhigh, εwidth) (R∞ −R6)−1 ηsupp(χ′2)

yV + by (1− χ2) r−3
)
|u|2

≥ −B (ωhigh, εwidth) max
(
R−2
∞ ω−2, (R∞ −R6)−1

)∫ ∞
−∞

(
y′ω2

)
|u|2 .

Here ηsupp(χ′2)
denotes the indicator function for supp (χ′2).

It is now clear that choosing C, R∞ and R∞ − R6 sufficiently large de-

pending on ωlow or ωlow and ωhigh and εwidth and combining (156), (159) and

(160) will imply the proposition. �

8.8. Putting everything together. In this section we combine the proposi-

tions of the above sections to prove Theorem 8.1.

First of all, keeping Lemma 8.1.1 in mind, we observe that for any choice

of ωhigh and εwidth, every admissible frequency triple (ω,m,Λ) lies in exactly

one of the frequency ranges: G[(ωhigh, εwidth), G[(ωhigh, εwidth), G\(ωhigh, εwidth),

G](ωhigh, εwidth), G](ωhigh, εwidth). Thus, it only remains to choose the con-

stants εwidth, E, ωhigh, ωlow, ã0 and R∞ in the correct order so that it is

possible to apply simultaneously all of the above propositions.
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The first constant we fix is a sufficiently small εwidth, consistent with

the requirements of Propositions 8.4.1 and 8.5.1. Then, depending on the

choice of εwidth, for all large enough ωhigh, R∞ and E we may apply Propo-

sitions 8.4.1, 8.5.1 and, in addition, Proposition 8.6.1, corresponding to the

frequency regimes G], G[ and G\. Now we fix the choice of E consistent with

the above requirement. Then, depending on this choice of E, for all large

enough ωhigh and R∞ we may apply, in addition to the above propositions,

also Proposition 8.3.1, corresponding to the frequency regime G]. Finally, we

fix the constant ωhigh consistent also with this requirement.

Since εwidth and ωhigh are both fixed, the frequency ranges G], G[, G\, G
],

G[ are now determined. We still must determine the four subranges of G[ that

depend on additional parameters ωlow and ã0, and make our final choice of R∞.

We first choose ã0 and ωlow sufficiently small so that for R∞ sufficiently

large, we can apply Propositions 8.7.1 and 8.7.2. We then fix our choice of

ã0. WE then chose sufficiently small ωlow depending on ã0 and note that for

sufficiently large R∞ depending on ã0, we may also apply (in addition to all

previous Propositions) Proposition 8.7.3. Finally, choose R∞ so that we may

also apply, in addition to all the previous propositions, Proposition 8.7.4.

With these choices, all frequency ranges are determined so as to indeed

simultaneously satisfy the assumptions of Propositions 8.3.1–8.7.4. Now for

each frequency range, we define the functions f , y, rtrap, etc., as given in

the corresponding proposition or else set them to 0 (as explained before each

statement). The statements of Propositions 8.3.1–8.7.4 then give Theorem 8.1

for frequencies (ω,m,Λ) in the corresponding range. Since these ranges cover

all admissible frequencies, the proof is complete.

8.9. Trapping parameters. We finally define the trapping parameters s±
that appear in the definition of the degeneration function ζ (see (13)), which

in turn appears in the statement of Theorem 3.1.

Definition 8.9.1. Let 0 ≤ a0 < M , and let ωhigh = ωhigh(a0,M) and

εwidth = εwidth(a0,M) be the parameters from Theorem 8.1. We define the

trapping parameters s± by

s− (a0,M)
.
= 3M − inf

0≤a≤a0,(ω,m,Λ)∈G\,rtrap 6=0
rtrap (ω,m,Λ)− ε (a0) ,(161)

s+ (a0,M)
.
= sup

0≤a≤a0,(ω,m,Λ)∈G\rtrap 6=0
rtrap (ω,m,Λ)− 3M + ε (a0) ,(162)

where ε (a0) is a fixed choice of a continuous function such that ε(0) = 0 and

ε (a0) > 0 for a0 > 0, and such that s± satisfy for all 0 ≤ a ≤ a0 the relations

r+(a,M) < 3M − s−(a0,M) < 3M + s+ (a0,M) <∞.
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The proof of Proposition 8.6.1 shows that ε(a0) can be chosen ensuring

that s±, ε enjoy the properties claimed in the above definition.

Remark 8.9.1. Let us observe that we then necessarily have

lim
a0→0

s± (a0,M) = 0, lim
a0→M

s−(a0,M) = 2M = 3M − r+(M,M).

From the latter, it follows that we must also have lima0→M ε (a0) = 0.

Recall the definition of the physical space degeneration function ζ (see

(13)) which, in particular, required the definition of the points s±. It follows

from our definition of rtrap in Theorem 8.1 that we now have that for all

admissible (ω,m,Λ), then rtrap = 0 or

3M − s− + ε(a0) ≤ rtrap ≤ 3M + s+ − ε(a0).

It follows that for all admissible (ω,m,Λ), we have the uniform bound

(163) bζ ≤ (1− r−1rtrap)2.

In particular, the statement of Theorem 8.1 holds with (1−r−1rtrap)2 replaced

by ζ. It is this weaker statement that we will in fact apply in the following

section.

8.10. A fixed-m variant. It will be useful for the continuity argument of

Section 11 to have the following fixed-m variant of Theorem 8.1.

Theorem 8.2. If we allow the constant b in (70) and the choice of ωhigh

to depend on m, then we can redefine the frequency ranges, functions, and

rtrap (ω,m, `) in Theorem 8.1 so that either

rtrap = 0 or rtrap ∈
((

1 +
√

2
)
M, 3M + s+

]
.

In particular, rtrap is not in the ergoregion S .

Proof. The key point is that Lemma 6.5.1 tells us that for fixed m and

large Λ (where the necessary largeness depends on |m|), the critical points of

V (which are responsible for the degeneration in the ILED estimate) will be

contained in
((

1 +
√

2
)
M,∞

)
.

Specifically, we modify the proof of Theorem 8.1 as follows. Return-

ing to Section 8.8 we choose ωhigh sufficiently large, now depending on |m|,
so that in the trapping frequency regime G\, Λ|m|−2 will be large enough

so that the hypothesis of Lemma 6.5.1 holds. Consequently, for frequencies

in the newly defined G\, rtrap (ω,m, `), as given in Section 8.6, will lie in((
1 +
√

2
)
M, 3M + s+

]
. Since, by definition, rtrap = 0 in the other frequency

regimes, this completes the argument. Note that we must write b(m) on the

left-hand side of (70) because the largeness of ωhigh depends on m. �
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9. Summing and integrated local energy decay

for future-integrable solutions

In this section, we will combine the estimates of Sections 4.5, 4.6 and the

o.d.e. analysis of Section 8 to prove integrated local energy decay for solutions

of the wave equation sufficiently integrable towards the future. We begin by

defining this class and stating the main proposition.

9.1. Future-integrable solutions of the wave equation. Let a0 < M , |a| ≤
a0 and let ψ be as in the reduction of Section 4.1, i.e., a solution of the wave

equation (1) on R0 arising from smooth compactly supported data at Σ0. Let

ξ (τ) be a smooth function that is 0 in the past of Σ0 and identically 1 in the

future of Σ1. Then we define

ψQ
.
= ξψ.

We have

(164) 2gψQ = F
.
= 2∇µξ∇µψ + (2gξ)ψ.

Definition 9.1.1. Let |a| < M , and let ψ be a solution of (1) as in the

reduction of Section 4.1. We shall say that ψ is future-integrable if ψQ satisfies

Definition 5.1.1.

Note that ψQ by its construction will then automatically satisfy Defini-

tions 5.1.2.

Recall the degeneration function ζ defined by (13) in Section 2.2.3, and

(15). The main result of this section is

Proposition 9.1.1. Let a0 < M , |a| ≤ a0, and let ψ be a future integrable

solution of (1). Then, for every δ > 0,∫
H+

0

JNµ [ψ]nµH+ +

∫
I+

JTµ [ψ]nµI+

+

∫ ∞
0

∫
Στ

(∣∣∣Z̃∗ψ∣∣∣2 r−1−δ + r−3−δ |ψ|2 + ζ |Tψ|2 r−1−δ + ζ |∇/ψ|2g/ r
−1

)
dτ

≤ B(δ)

∫
Σ0

JNµ [ψ]nµΣ0
.

The proof of this proposition will be carried out in Sections 9.2–9.7. In

view of the reduction of Section 4.2, we may assume in this proof that a ≥ 0,

in order to appeal to the the results of Section 8 as stated.

9.2. Finite in time energy estimate. Defining ψQ as above, by Section 5.2,

we may apply Carter’s separation to the inhomogeneous equation (164) to

define the function u
(aω)
m` . Lemma 5.4.1 implies that for almost every ω, then

for all m, `, the function H
(aω)
m` is smooth and u

(aω)
m` is a smooth solution to
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the radial o.d.e. (44) satisfying the boundary conditions (52) and (51). For

each such ω, we may apply the estimates of Section 8 to the admissible triples

(ω,m,Λ = Λm`(aω)) and conclude that Theorem 8.1 holds.

Thus, integrating (70) in ω, summing in m and ` and applying (163) yields

the estimate

b

∫ ∞
−∞

∑
m`

∫ R∗+

R∗−

(∣∣u′∣∣2 +
(
ζ
(
ω2 + Λm`

)
+ 1
)
|u|2
)
dr∗ dω(165)

≤
∫ ∞
−∞

∑
m`

∫ ∞
−∞

H · (f, h, y, χ) · (u, u′) dr∗ dω

+

∫
ωlow≤|ω|≤ωhigh

∑
{m`:Λ≤ε−1

widthω
2
high}

|u (−∞)|2 dω.

An application of Plancherel to (165) (see the explicit formulas in Sec-

tion 5.2.2 and the discussion of the volume form in Section 2.2.6) yields

b

∫ ∞
0

∫
Στ∩[R−,R+]

(
|∂r∗ψQ|2 + |ψQ|2 + ζ |TψQ|2 + ζ |∇/ψQ|2g/

)
dτ(166)

≤
∫ ∞
−∞

∑
m`

(∫ ∞
−∞

H · (f, h, y, χ) · (u, u′)
)
dω

+

∫
ωlow≤|ω|≤ωhigh

∑
{m`:Λ≤ε−1

widthω
2
high}

|u (−∞)|2 dω.

Recall that the last term on the right-hand side of both of these estimates

arises from Section 8.7.4. We further remark that this term would be controlled

by the physical space quantity
∫
H+(0,∞) JNµ [ψ]nµH+ if we had control for the

latter — in general, we do not, however! In Section 9.7 we shall exploit the

localisation of the integral in ω to control this using the quantitative mode

stability result [60].

The first thing we observe is that ∂ψQ only differ from ∂ψ when τ ∈ [0, 1].

However, in this region, the energy can simply be controlled by a finite in time

energy inequality and a Hardy inequality.

For the |ψQ|2 term, we observe∫ 1

0

∫
Στ∩[R−,R+]

|ψ|2 ≤ B
∫ 1

0

∫
Στ

|ψ|2

r2
≤ B

∫ 1

0

∫
Στ

JNµ [ψ]nµΣτ

≤ B
∫

Σ0

JNµ [ψ]nµΣτ ,

where we have used a Hardy inequality and a finite in time energy estimate.
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We conclude

b

∫ ∞
0

∫
Στ∩[R−,R+]

(
|∂r∗ψ|2 + |ψ|2 + ζ |Tψ|2 + ζ |∇/ψ|2g/

)
dτ(167)

≤
∫ ∞
−∞

∑
m`

(∫ ∞
−∞

H · (f, h, y, χ) · (u, u′)
)
dω

+

∫
ωlow≤|ω|≤ωhigh

∑
{m`:Λ≤ε−1

widthω
2
high}

|u (−∞)|2 dω +

∫
Σ0

JNµ [ψ]nµΣ0
.

9.3. Adding in the red-shift. Next, we add a small constant (depending

only on M) times the red-shift estimate of Proposition 4.5.2 to (167). Recalling

that R− = r+ + 1
2 (rred − r+), we thus obtain

b

∫ ∞
0

∫
Στ∩[r+,R+]

[∣∣∣Z̃∗ψ∣∣∣2 + |ψ|2 + ζ |Tψ|2 + ζ |∇/ψ|2g/

]
dτ(168)

+ b

∫
H+(0,∞)

JNµ [ψ]nµH+

≤
∫ ∞
−∞

∑
m`

(∫ ∞
−∞

H · (f, h, y, χ) · (u, u′)
)
dω

+

∫
Σ0

JNµ [ψ]nµΣ0
+

∫
ωlow≤|ω|≤ωhigh

∑
{m`:Λ≤ε−1

widthω
2
high}

|u (−∞)|2 dω.

9.4. Adding in the large r current. Next, we would like to add in a small

constant times the large r estimate of Section 4.6. However, we must be careful

because that estimate produces an error proportional to
∫

Στ
JNµ [ψ]nµΣτ , and we

do not yet have a uniform energy boundedness statement.

We surmount this difficulty as follows. Since ψ is future-integrable, we

know that
∫

Στ∩[r+,R+] J
N
µ [ψ]nµΣτ , as a function of τ , is in L1

τ [0,∞). A pigeonhole

argument implies that we may find a constant C (ψ) and a dyadic sequence

{τn}∞n=1 with limn→∞ τn =∞ such that

(169)

∫
Στn∩[r+,R+]

JNµ [ψ]nµΣτn ≤
C

τn
.

Note that R+ = 2Rlarge ≥ 4M , so that T is timelike in the region r ≥ R+.

Then, a JTµ energy estimate implies∫
Στn

JNµ [ψ]nµΣ ≤ B
∫

Στn∩[r+,R+]
JNµ [ψ]nµΣ +B

∫
Στn∩[R+,∞)

JTµ [ψ]nµΣ(170)

≤ B C

τn
+B

∫
H+(0,τn)

JNµ [ψ]nµ +B

∫
Σ0

JNµ [ψ]nµ.
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Now, combine Proposition 4.6.1 with (170), multiply the result by a sufficiently

small constant, and then add the result to (168). In particular, the horizon

term on the right-hand side of (170) will be multiplied by a small constant,

and hence it can be absorbed into the left-hand side of (168). We obtain

b

∫ τn

0

∫
Στ

[
|Z̃∗ψ|2r−1−δ + |ψ|2 r−3−δ + ζ |Tψ|2 r−1−δ + ζ |∇/ψ|2g/ r

−1
]
dτ

(171)

≤
∫ ∞
−∞

∑
m`

(∫ ∞
−∞

H · (f, h, y, χ) · (u, u′)
)
dω +B(δ)

∫
Σ0

JNµ [ψ]nµΣ0

+

∫
ωlow≤|ω|≤ωhigh

∑
{m`:Λ≤ε−1

widthω
2
high}

|u (−∞)|2 dω +
C

τn
.

Taking n→∞ gives

b

∫ ∞
0

∫
Στ

[∣∣∣Z̃∗ψ∣∣∣2 r−1−δ + |ψ|2 r−3−δ + ζ |Tψ|2 r−1−δ + ζ |∇/ψ|2g/ r
−1

]
dτ

(172)

≤
∫ ∞
−∞

∑
m`

(∫ ∞
−∞

H · (f, h, y, χ) · (u, u′)
)
dωB(δ) +

∫
Σ0

JNµ [ψ]nµΣ0

+

∫
ωlow≤|ω|≤ωhigh

∑
{m`:Λ≤ε−1

widthω
2
high}

|u (−∞)|2 dω.

9.5. Boundedness of the energy flux to I+. The estimates of the previous

section give in addition an estimate for the energy flux to null infinity

(173)

∫
I+

JTµ [ψ]nµI+ ,

which is well defined by an easy limiting operation (see [29]), which we omit

here.

To bound (173), we only need the easily proven property of its definition

— that applying JT energy estimates outside the ergoregion, (173) can be seen

to satisfy

(174)

∫
I+

JTµ [ψ]nµI+ ≤ lim sup
n→∞

∫
Σsn

JNµ [ψ]nµΣsn ,

where {sn} is any sequence with limn→∞ sn =∞.
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Now, taking the limit as n→∞ in the inequality (170) and then applying

(168) gives

lim sup
n→∞

∫
Στn

JNµ [ψ]nµΣ(175)

≤ B
∫
H+(0,∞)

JNµ [ψ]nµ +B

∫
Σ0

JNµ [ψ]nµ

≤ B
∫ ∞
−∞

∑
m`

(∫ ∞
−∞

H · (f, h, y, χ) · (u, u′)
)
dω +B(δ)

∫
Σ0

JNµ [ψ]nµΣ0

+B

∫
ωlow≤|ω|≤ωhigh

∑
{m`:Λ≤ε−1

widthω
2
high}

|u (−∞)|2 dω.

Then (174) implies

b

∫
I+

JTµ [ψ]nµI+ ≤ b lim sup
n→∞

∫
Στn

JNµ [ψ]nµΣ(176)

≤
∫ ∞
−∞

∑
m`

(∫ ∞
−∞

H · (f, h, y, χ) · (u, u′)
)
dω +B(δ)

∫
Σ0

JNµ [ψ]nµΣ0

+

∫
ωlow≤|ω|≤ωhigh

∑
{m`:Λ≤ε−1

widthω
2
high}

|u (−∞)|2 dω.

An alternative approach for controlling
∫
I+ JNµ [ψ]nµI+ can be found in the

proof of the inequality (236) where a cutoff JT energy estimate is applied and

the errors are absorbed with the integrated energy decay statement. Lastly,

we note that yet another approach would be to first show that (up to a nor-

malisation constant)∫
I+

JTµ [ψ]nµI+ =

∫ ∞
−∞

∑
m`

ω2 |u (∞)|2

and then use the fact that the estimates of Section 8 give a bound for the

right-hand side of this equality.

9.6. Error terms associated to the cutoff. In this subsection we will study

closely the terms
∫∞
−∞

∑
m`

(∫∞
−∞H · (f, h, y, χ) · (u, u′)

)
dω on the right-hand

side of (172). Recall that when r ≥ R∞, we have arranged for our multipliers

to be independent of the frequency parameters or decay exponentially in r (see

Remark 8.2). In particular, we may split the error terms associated to the
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cutoff into

∫ ∞
−∞

∑
m`

(∫ ∞
−∞

H · (f, h, y, χ) · (u, u′)
)
dω

(177)

=

∫ ∞
−∞

∑
m`

(∫ ∞
−∞

χR∞H · (f, h, y, χ) · (u, u′)
)
dω

−
∫ ∞
−∞

∑
m`

(∫ ∞
−∞

2 (1− χR∞) Re
(
u′H

))
dω

+

∫ ∞
−∞

∑
m`

(∫ ∞
−∞

Eω (1− χR∞) Im (Hu)

)
dω

+ 2

∫
ωlow≤|ω|≤ωhigh

∑
{m`:Λ≤ε−1

widthω
2
high}

(∫ ∞
−∞

(1− χR∞) ỹRe
(
u′H

))
dω.

Here χR∞ is a cutoff that is identically 1 on [r+, R∞] and 0 on [R∞ + 1,∞).

9.6.1. The bounded r error terms. The error terms in the region [r+, R∞]

are the easiest to deal with. We simply observe that an application of Plancherel

(see Sections 5.2.2 and 2.2.6), finite in time energy estimates and Hardy in-

equalities give

∣∣∣∣∣
∫ ∞
−∞

∑
m`

(∫ ∞
−∞

χR∞H · (f, h, y, χ) · (u, u′)
)
dω

∣∣∣∣∣
(178)

≤ B
∫ ∞
−∞

∑
m`

∫ R∞+1

−∞
|H|

(∣∣u′∣∣+ |u|
)

≤ Bε−1

∫ ∞
0

∫
Στ∩[r+,R∞+1)

|F |2 + ε

∫ ∞
0

∫
Στ∩[r+,R∞+1)

(
|∂r∗ψ|2 + |ψ|2

)
≤ Bε−1

∫ 2

0

∫
Στ∩[r+,∞)

JNµ [ψ]nµΣτ + ε

∫ ∞
0

∫
Στ∩[r+,R∞+1)

(
|∂r∗ψ|2 + |ψ|2

)
≤ Bε−1

∫
Σ0

JNµ [ψ]nµΣ0
+ ε

∫ ∞
0

∫
Στ∩[r+,R∞+1)

(
|∂r∗ψ|2 + |ψ|2

)
.

9.6.2. Large r: ϟy error terms. For error terms supported in the r ∈
[R∞,∞) region we must be careful that lower order terms come with appro-

priate r-weights so that either a Hardy inequality can be applied or they can

be absorbed into the left-hand side of (172). First of all, an application of

Plancherel (see Section 5.2.2) gives
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∫ ∞
−∞

∑
m`

(∫ ∞
−∞

(1− χR∞) Re
(
u′H

))
dω

(179)

=

∫ ∞
0

∫ ∞
−∞

∫
S2

(1− χR∞)

· Re
(
∂r∗
((
r2 + a2

)1/2
ψQ

)
∆ (r2 + a2)−1/2 F

)
sin θ dt dr∗ dθ dφ.

Recall that

F =
(
r2 + a2

)−1
ρ2 (2∇µξ∇µψ + (2gξ)ψ) .

For sufficiently large r, ξ is just a function of t. Hence,

F =
(
r2 + a2

)−1
ρ2
(

2gttξ̇∂tψ + 2gtφξ̇∂φψ + gttξ̈ψ
)
.

Thus, (suppressing the sin θ dt dr∗ dθ dφ)

∫ ∞
0

∫ ∞
−∞

∫
S2

(1− χR∞) Re
(
∂r∗
((
r2 + a2

)1/2
ψQ

)
∆ (r2 + a2)−1/2 F

)(180)

=

∫ ∞
0

∫ ∞
−∞

∫
S2

(1− χR∞)

· Re

(
∂r∗
((
r2 + a2

)1/2
ψQ

)
∆ (r2 + a2)−3/2 ρ2

(
2gttξ̇∂tψ + 2gtφξ̇∂φψ

))
+

∫ ∞
0

∫ ∞
−∞

∫
S2

(1− χR∞)

· Re
(
∂r∗
((
r2 + a2

)1/2
ψQ

)
∆ (r2 + a2)−3/2 ρ2gttξ̈ψ

)
.

First we consider the term with gttξ̇∂tψ:∣∣∣∣∫ ∞
0

∫ ∞
−∞

∫
S2

(1− χR∞)(181)

· Re

(
∂r∗
((
r2 + a2

)1/2
ψQ

)
∆ (r2 + a2)−3/2 ρ2

(
2gttξ̇∂tψ

))∣∣∣∣
≤B

∣∣∣∣∫ ∞
0

∫ ∞
−∞

∫
S2

(1− χR∞) Re

(
(∂r∗ψQ) ∆ (r2 + a2)−1 ρ2

(
2gttξ̇∂tψ

))∣∣∣∣
+B

∣∣∣∣∫ ∞
0

∫ ∞
−∞

∫
S2

(1− χR∞)
r

(r2 + a2)1/2

· Re

(
(ψQ) ∆ (r2 + a2)−3/2 ρ2

(
2gttξ̇∂tψ

))∣∣∣∣
≤B

∫ 1

0

∫
Στ∩[R∞,∞)

(
JNµ [ψ]nµΣτ +

|ψ|2

r2

)
≤ B

∫
Σ0

JNµ [ψ]nµΣτ .
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Keeping in mind that gtφ = O
(
r−3
)
, the term with gtφξ̇∂φψ can be treated

like (181). Finally, recalling that ∂r∗ξ = 0 for r ≥ R∞, we have

∣∣∣∣∫ ∞
0

∫ ∞
−∞

∫
S2

(1− χR∞) Re
(
∂r∗
((
r2 + a2

)1/2
ψQ

)
∆ (r2 + a2)−3/2 ρ2gttξ̈ψ

)∣∣∣∣
(182)

=

∣∣∣∣∫ ∞
0

∫ ∞
−∞

∫
S2

(1− χR∞) ∆
(
r2 + a2

)−2
ρ2gttξ̈ξ

· Re
(
∂r∗
((
r2 + a2

)1/2
ψ
)

(r2 + a2)1/2 ψ
)∣∣∣

=
1

2

∣∣∣∣∫ ∞
0

∫ ∞
−∞

∫
S2

∂r∗
(

(1− χR∞) ∆
(
r2 + a2

)−2
ρ2gttξ̈ξ

) (
r2 + a2

)
|ψ|2

∣∣∣∣
≤ B

∫ 1

0

∫
Στ∩[R∞,∞)

|ψ|2

r2
≤ B

∫
Σ0

JNµ [ψ]nµΣ0
.

Combining everything implies∣∣∣∣∣
∫ ∞
−∞

∑
m`

(∫ ∞
−∞

2 (1− χR∞) Re
(
u′H

))
dω

∣∣∣∣∣ ≤ B
∫

Σ0

JNµ [ψ]nµΣ0
.

9.6.3. Large r : QT error terms. An application of Plancherel (see Section

5.2.2) gives∣∣∣∣∣
∫ ∞
−∞

∑
m`

(∫ ∞
−∞

ω (1− χR∞) Im (Hu)

)
dω

∣∣∣∣∣(183)

=

∣∣∣∣∫ ∞
0

∫ ∞
−∞

∫
S2

∆ (1− χR∞) Re
(
∂tψQF

)
sin θ dt dr∗ dθ dφ

∣∣∣∣ .
We have

F =
(
r2 + a2

)−1
ρ2
(

2gttξ̇∂tψ + 2gtφξ̇∂φψ + gttξ̈ψ
)
, ∂tψQ = ξ̇ψ + ξ∂tψ.

To ease the notation, let us introduce

W (r, θ) := ∆
(
r2 + a2

)−1
(1− χR∞) ρ2.

Then, suppressing the sin θ dt dr∗ dθ dφ, we have

∣∣∣∣∫ ∞
0

∫ ∞
−∞

∫
S2

∆ (1− χR∞) Re
(
∂tψQF

)∣∣∣∣
(184)

≤2

∣∣∣∣∫ ∞
0

∫ ∞
−∞

∫
S2

W (r, θ) gtφξ̇Re
((
ξ̇ψ + ξ∂tψ

)
∂φψ

)∣∣∣∣
+

∣∣∣∣∫ ∞
0

∫ ∞
−∞

∫
S2

W (r, θ) Re

((
ξ̇ψ + ξ∂tψ

)(
2gttξ̇∂tψ + gttξ̈ψ

))∣∣∣∣ .
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Several of the above terms are easy to deal with:∣∣∣∣∫ ∞
0

∫ ∞
−∞

∫
S2

W (r, θ) gtφξ̇Re
((
ξ̇ψ
)
∂φψ

)∣∣∣∣
=

∣∣∣∣∫ ∞
0

∫ ∞
−∞

∫
S2

W (r, θ) gtφ
(
ξ̇
)2
∂φ |ψ|2

∣∣∣∣ = 0,

∣∣∣∣∫ ∞
0

∫ ∞
−∞

∫
S2

W (r, θ) gtφξ̇ξRe
(
(∂tψ) ∂φψ

)∣∣∣∣
≤
∫ 1

0

∫
Στ

JNµ [ψ]nµΣτ ≤
∫

Σ0

JNµ [ψ]nµΣ0
,

and

2

∣∣∣∣∫ ∞
0

∫ ∞
−∞

∫
S2

W (r, θ) gttξξ̇ |∂tψ|2
∣∣∣∣ ≤ ∫ 1

0

∫
Στ

JNµ [ψ]nµΣτ ≤
∫

Σ0

JNµ [ψ]nµΣ0
.

Combining everything yields

∣∣∣∣∣
∫ ∞
−∞

∑
m`

(∫ ∞
−∞

ω (1− χR∞) Im (Hu)

)
dω

∣∣∣∣∣
(185)

≤
∣∣∣∣∫ ∞

0

∫ ∞
−∞

∫
S2

W (r, θ)

(
Re

(
ξ̇ψ
(

2gttξ̇∂tψ + gttξ̈ψ
))

+ Re
(
ξ∂tψgttξ̈ψ

))∣∣∣∣
+

∫
Σ0

JNµ [ψ]nµΣ0
.

We now focus on the first term on the right-hand side:

∣∣∣∣∫ ∞
0

∫ ∞
−∞

∫
S2

gttW (r, θ)

(
2
(
ξ̇
)2

Re
(
ψ∂tψ

)
+ ξ̇ξ̈ |ψ|2 + ξξ̈Re

(
∂tψψ

))∣∣∣∣
(186)

=

∣∣∣∣∫ ∞
0

∫ ∞
−∞

∫
S2

gttW (r, θ)

(
2
(
ξ̇
)2

Re
(
ψ∂tψ

)
−
(
ξ̇
)2

Re
(
ψ∂tψ

)
+ ξξ̈Re

(
∂tψψ

))∣∣∣∣
=

∣∣∣∣∫ ∞
0

∫ ∞
−∞

∫
S2

gttW (r, θ)

((
ξ̇
)2

Re
(
ψ∂tψ

)
+ ξξ̈Re

(
∂tψψ

))∣∣∣∣
=

∣∣∣∣∫ ∞
0

∫ ∞
−∞

∫
S2

gttW (r, θ)

((
ξ̇
)2

Re
(
ψ∂tψ

)
−
(
ξ̇
)2

Re
(
∂tψψ

)
− ξξ̇Re

(
∂2
t ψψ

)
− ξξ̇ |∂tψ|2

)∣∣∣∣
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=

∣∣∣∣∫ ∞
0

∫ ∞
−∞

∫
S2

gttW (r, θ)
(
ξξ̇Re

(
∂2
t ψψ

)
+ ξξ̇ |∂tψ|2

)∣∣∣∣
≤
∫

Σ0

JNµ [ψ]nµΣ0
+

∣∣∣∣∫ ∞
0

∫ ∞
−∞

∫
S2

gttW (r, θ)
(
ξξ̇Re

(
∂2
t ψψ

))∣∣∣∣ .
Instead of additional integration by parts on this last term, we use that ψ

solves the wave equation, which we write out here for reference:

gtt∂2
t ψ =

4Mar

ρ2∆
∂2
t,φψ −

∆− a2 sin2 θ

∆ρ2 sin2 θ
∂2
φψ(187)

− r2 + a2

∆ρ2
∂r∗
((
r2 + a2

)
∂r∗ψ

)
− 1

ρ2 sin θ
∂θ (sin θ∂θψ) .

Substituting the right-hand side of (187) for gtt∂2
t ψ , carrying out a straight-

forward integration by parts, and applying a finite in time energy inequality

shows ∣∣∣∣∫ ∞
0

∫ ∞
−∞

∫
S2

gttW (r, θ)
(
ξξ̇Re

(
∂2
t ψψ

))∣∣∣∣ ≤ B ∫
Σ0

JNµ [ψ]nµΣ0
.

Thus, we have shown∣∣∣∣∣
∫ ∞
−∞

∑
m`

(∫ ∞
−∞

ω (1− χR∞) Im (Hu)

)
dω

∣∣∣∣∣ ≤ B
∫

Σ0

JNµ [ψ]nµΣ0
.

9.6.4. Large r: ϟỹ error terms. Since |ỹ| ≤ exp (−br∗) as r∗ → ∞, we

may estimate the term∫
ωlow≤|ω|≤ωhigh

∑
{m`:Λ≤ε−1

widthω
2
high}

(∫ ∞
−∞

(1− χR∞) ỹRe
(
u′H

))
dω

exactly as in Section 9.6.1. We obtain∣∣∣∣∣∣∣
∫
ωlow≤|ω|≤ωhigh

∑
{m`:Λ≤ε−1

widthω
2
high}

(∫ ∞
−∞

(1− χR∞) ỹRe
(
u′H

))
dω

∣∣∣∣∣∣∣
≤ Bε−1

∫
Σ0

JNµ [ψ]nµΣ0
+ ε

∫ ∞
0

∫
Στ∩[R∞,∞)

e−br
∗
(
|∂r∗ψ|2 + |ψ|2

)
.

9.6.5. Absorbing the error terms. Combining the results of Sections 9.6.1,

9.6.2, 9.6.3 and 9.6.4 gives

∫ ∞
−∞

∑
m`

(∫ ∞
−∞

H · (f, h, y, χ) · (u, u′)
)
dω

(188)

≤ B
∫

Σ0

JNµ [ψ]nµΣ0
+ ε

∫ ∞
0

∫
Στ

r−1−δ
(
|∂r∗ψ|2 + r−2 |ψ|2 + ζJNµ [ψ]nµΣτ

)
.
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Taking ε sufficiently small and combining (188) with (172), (168) and (176)

implies

b

∫
H+(0,∞)

JNµ [ψ]nµH+ + b

∫
I+

0

JNµ [ψ]nµI+

(189)

+ b

∫ ∞
0

∫
Στ

(
|∂r∗ψ|2 r−1−δ + |ψ|2 r−3−δ + ζ |Tψ|2 r−1−δ + ζ |∇/ψ|2g/ r

−1
)
dτ

≤ B(δ)

∫
Σ0

JNµ [ψ]nµΣ0
+

∫
ωlow≤|ω|≤ωhigh

∑
{m`:Λ≤ε−1

widthω
2
high}

|u (−∞)|2 dω.

9.7. The nonstationary bounded frequency horizon term. Finally, we come

to the term
∫
ωlow≤|ω|≤ωhigh

∑
{m`:Λ≤ε−1

widthω
2
high}
|u (−∞)|2 dω. Since we do not

have a small parameter, we cannot hope to absorb this error term into the

left-hand side of (189); however, this term has already been dealt with in the

context of the quantitative mode stability work [60]:

Proposition 9.7.1. Let ψ be a future-integrable solution to (1). Define

u by (42) with Ψ = ψQ. Then∫
ωlow≤|ω|≤ωhigh

∑
{m`:Λ≤ε−1

widthω
2
high}

|u (−∞)|2 dω ≤ B
∫

Σ0

JNµ [ψ]nµΣ0
.

Proof. This follows immediately from Theorem 1.9 of [60] if we replace Σ0

with a hyperboloidal hypersurface Σ̃0. For any 1 � R, one can easily find a

hyperboloidal hypersurface Σ̃0 that agrees with Σ0 on {r ≤ R} and that lies

to the future of Σ0. If we choose R large enough so that T is timelike in the

region {r ≥ R}, then a JTµ energy estimate will immediately imply∫
ωlow≤|ω|≤ωhigh

∑
{m`:Λ≤ε−1

widthω
2
high}

|u (−∞)|2 dω ≤ B
∫

Σ̃0

JNµ [ψ]nµ
Σ̃0

≤ B
∫

Σ0

JNµ [ψ]nµΣ0
. �

Remark 9.7.1. We observe that the appeal to [60] is not necessary in

the case of a � M or if ψ is only supported on sufficiently high azimuthal

frequencies.

Combining (189) with Proposition 9.7.1 finishes the proof of Proposi-

tion 9.1.1.

9.8. An inhomogeneous estimate. In Sections 10 and 11 we will need to

consider future-integrable solutions Ψ to the inhomogeneous wave equation

2ga,MΨ = F . Let us first generalise the definition of future-integrability to

apply to general smooth Ψ.
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Definition 9.8.1. With cutoff ξ (τ) as in Section 9.1, we say that Ψ : R0 →
R is future-integrable if ξΨ satisfies Definitions 5.1.1 and 5.1.2.

Proposition 9.8.1. Let Ψ be a future integrable solution of the inhomo-

geneous wave equation 2ga,MΨ = F . Then, for every δ > 0 and ε > 0,

∫
H+(0,∞)

JNµ [Ψ]nµH+ +

∫
I+

JNµ [Ψ]nµI+

(190)

+

∫ ∞
0

∫
Στ

(∣∣∣Z̃∗Ψ∣∣∣2 r−1−δ + |Ψ|2 r−3−δ + ζ |TΨ|2 r−1−δ + ζ |∇/Ψ|2g/ r
−1

)
dτ

≤ B(δ)

(∫
Σ0

JNµ [Ψ]nµΣ0
+

∫
Σ0

|Ψ|2

+

∫ ∞
0

∫
Στ

[
ε−1r1+δ |F |2 + ε (1− ζ)

(
|TΨ|2 + |ΦΨ|2

)])
.

If F is supported in the region {r ≤ R}, then one may drop the
∫

Σ0
|Ψ|2 term :

L.H.S. of (190) ≤ B (δ,R)

(∫
Σ0

JNµ [Ψ]nµΣ0

(191)

+

∫ ∞
0

∫
Στ

[
ε−1r1+δ |F |2 + ε (1− ζ)

(
|TΨ|2 + |ΦΨ|2

)])
.

If F is supported in the region {r ≥ 3M + s+}, then one may drop the

(1− ζ)
(
|TΨ|2 + |ΦΨ|2

)
term :

L.H.S. of (190) ≤ B (δ)

(∫
Σ0

JNµ [Ψ]nµΣ0
+

∫ ∞
0

∫
Στ

r1+δ |F |2 +

∫
Σ0

|Ψ|2
)
.

(192)

If F is supported in the region {R ≥ r ≥ 3M + s+}, then one may drop both :

L.H.S. of (190) ≤ B (δ,R)

(∫
Σ0

JNµ [Ψ]nµΣ0
+

∫ ∞
0

∫
Στ

r1+δ |F |2
)
.(193)

Proof. Repeating the proof of Proposition 9.1.1 mutatis mutandis yields∫
H+(0,∞)

JNµ [Ψ]nµH+ +

∫
I+

JNµ [Ψ]nµI+

+

∫ ∞
0

∫
Στ

(∣∣∣Z̃∗Ψ∣∣∣2 r−1−δ + |Ψ|2 r−3−δ + ζ |TΨ|2 r−1−δ + ζ |∇/Ψ|2g/ r
−1

)
dτ

≤ B(δ)

(∫
Σ0

JNµ [Ψ]nµΣ0
+

∫ ∞
0

∫
Στ

[
ε−1r1+δ |F |2 +ε (1− ζ)

(
|TΨ|2 + |ΦΨ|2

)])
+

∫ 1

0

∫
Σs

JNµ [ΨQ]nµΣs ds.
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We cannot absorb the ε (1− ζ)
(
|TΨ|2 + |ΦΨ|2

)
term into the left-hand side

because of the degeneration due to trapping. The final term on the right-hand

side arises due to the fact that ΨQ and Ψ differ when ξ̇ 6= 0; since there are

no weights in r, we cannot hope to absorb this term into the left-hand side.

However, an application of the fundamental theorem of calculus and Hardy

inequalities easily allows us to finish the proof of (190).

In the case where F is compactly supported in the region {r ≤ R}, the

proof of (9.1.1) yields∫
H+(0,∞)

JNµ [Ψ]nµH+ +

∫
I+

JNµ [Ψ]nµI+

+

∫ ∞
0

∫
Στ

(∣∣∣Z̃∗Ψ∣∣∣2 r−1−δ + |Ψ|2 r−3−δ + ζ |TΨ|2 r−1−δ + ζ |∇/Ψ|2g/ r
−1

)
dτ

≤ B(δ)

(∫
Σ0

JNµ [Ψ]nµΣ0
+

∫ ∞
0

∫
Στ

[
ε−1r1+δ |F |2+ε (1− ζ)

(
|TΨ|2 + |ΦΨ|2

)])
+

∫ 1

0

∫
Σs∩[r+,R]

JNµ [ΨQ]nµΣs ds.

The proof of (191) follows from an application of Hardy inequalities and a

finite in time energy estimate to the last term on the right-hand side.

The proofs of (192) and (193) follow from the same reasoning as above

mutatis mutandis. �

Remark 9.8.1. After one has proved Theorem 3.1 it is possible to revisit

the inhomogeneous problem and prove a sharper version of this proposition;

however, we shall refrain from a systematic treatment of the inhomogeneous

problem.

10. The higher-order statement for future-integrable solutions

Section 9 has established the integrated decay statement (20) for the class

of future-integrable solutions to the wave equation (1). Retaining this restric-

tion, in this section we will upgrade this statement to the higher-order (25).

Proposition 10.1. Let M > 0, 0 ≤ a0 < M . Let |a| ≤ a0, and let ψ be

a future-integrable solution of (1) on R0. Then, for all δ > 0 and all integers

j ≥ 1, the following bound holds :∫
H+(0,∞)

∑
1≤i1+i2+i3≤j

|∇/i1T i2(Z̃∗)i3ψ|2g/ +

∫
I+

∑
1≤i≤j−1

JNµ [N iψ]nµI+

+

∫
R0

r−1−δζ
∑

1≤i1+i2+i3≤j
|∇/i1T i2(Z̃∗)i3ψ|2g/
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+ r−1−δ
∑

1≤i1+i2+i3≤j−1

(
|∇/i1T i2(Z̃∗)i3+1ψ|2g/ + |∇/i1T i2(Z∗)i3ψ|2g/

)
≤ B (δ, j)

∫
Σ0

∑
0≤i≤j−1

JNµ [N iψ]nµΣ0
.

10.1. Elliptic estimates. Before turning to the proof of Proposition 10.1,

we will require a few standard elliptic estimates for solutions of the wave equa-

tion (1).

Throughout this section, M > 0, 0 ≤ a0 < M , |a| ≤ a0 will be fixed,

and χ will be a cutoff that is identically 1 on [r+, 20M ] and identically 0 on

[21M,∞) so that, in particular, ∇χ is supported outside the ergoregion S, and

Y will be the red-shift commutation vector field from Section 4.5.

Lastly, for the reader’s benefit we recall the following pointwise rela-

tion, which follows immediately from the algebraic properties of the energy-

momentum tensor:

JNµ [Ψ]nµΣτ ≥ b
(
|TΨ|2 +

∣∣∣Z̃∗Ψ∣∣∣2 + |∇/Ψ|2g/

)
.

All the lemmas below refer to solutions ψ of the wave equation (1) as in

the reduction of Section 4.1.

Lemma 10.1.1. For ψ as above, we have∫
Στ

∑
1≤i1+i2+i3≤2

|∇/i1T i2(Z̃∗)i3ψ|2g/ ≤ B
∫

Στ

(
JNµ [Nψ] + JNµ [ψ]

)
nµΣτ .

Proof. This is standard: Let Σ̂τ be an extension of Στ from r ∈ [r+,∞)

to r ∈ [r+ − ε,∞). By a standard extension lemma, one may extend ψ to a

function ψ̂ on Σ̂τ in such a way that
∣∣∣∣∣∣∆Σ̂τ

ψ̂
∣∣∣∣∣∣
L2(Σ̂τ)

≤ B ||∆Στψ||L2(Στ ). The

lemma then follows from a local elliptic estimate. �

Lemma 10.1.2. For ψ as above, we have∫
Στ

∑
1≤i1+i2+i3≤2

|∇/i1T i2(Z̃∗)i3ψ|2g/

≤ B
∫

Στ

(
JNµ [Tψ]nµΣτ + JNµ [χΦψ]nµΣτ + JNµ [Y ψ]nµΣτ + JNµ [ψ]nµΣτ

)
.

Proof. This is standard: One uses elliptic estimates on spheres near the

horizon and an elliptic estimate on Στ ∩ {r ≥ r0} away from the horizon. The

key point is that T and Φ span a timelike direction away from the horizon,

and Y , T and Φ span a timelike direction near the horizon. �
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Lemma 10.1.3. For ψ as above, we have∫
H+(0,∞)

∑
1≤i1+i2+i3≤2

|∇/i1T i2(Z̃∗)i3ψ|2g/

≤ B
∫
H+(0,∞)

(
JNµ [Tψ]nµH+ + JNµ [χΦψ]nµH+ + JNµ [Y ψ]nµH+ + JNµ [ψ]nµH+

)
.

Proof. This follows from elliptic estimates on spheres. �

One can, of course, localise Lemma 10.1.2:

Lemma 10.1.4. For ψ as above, then for any R <∞, we have∫
Στ∩[r+,R]

∑
1≤i1+i2+i3≤2

|∇/i1T i2(Z̃∗)i3ψ|2g/

≤ B
∫

Στ∩[r+,R+1]

(
JNµ [Tψ]nµΣτ + JNµ [χΦψ]nµΣτ + JNµ [Y ψ]nµΣτ + JNµ [ψ]nµΣτ

)
.

The next four lemmas give control of the solution without including a

Y -commuted energy on the right-hand side.

Lemma 10.1.5. For ψ as above, then for any r0 > r+,∫
Στ∩{r≥r0}

JNµ [Y ψ]nµΣτ

≤ B(r0)

∫
Στ

(
JNµ [Tψ]nµΣτ + JNµ [χΦψ]nµΣτ + JNµ [ψ]nµΣτ

)
.

Proof. This follows from an elliptic estimate away from the horizon using

the fact that the span of T and Φ is timelike. The straightforward proof is

omitted. �

Lemma 10.1.6. For ψ as above, then for any r+ < r0 < r1 <∞, δ > 0,∫
Στ∩{[r0,r1]}

JNµ [Y ψ]nµΣτ

≤ B(r0, r1, δ)

∫
Στ∩[r0−δ,r1+δ]

(
JNµ [Tψ]nµΣτ + JNµ [χΦψ]nµΣτ + JNµ [ψ]nµΣτ

)
.

Proof. This straightforward proof is omitted. �

Lemma 10.1.7. For ψ as above, then for any, r+ < r0 <∞ and δ1, δ2 > 0,∫
Στ∩[r0,∞)

∑
1≤i1+i2+i3≤2

r−1−δ1 |∇/i1T i2(Z̃∗)i3ψ|2g/

≤ B(r0, δ2)

∫
Στ∩[r0−δ2,∞)

r−1−δ1 (JNµ [Tψ]nµΣτ + JNµ [χΦψ]nµΣτ + JNµ [ψ]nµΣτ
)
.
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Proof. This straightforward proof is omitted. �

Lemma 10.1.8. For ψ as above, then for any 2M + 1 ≤ r0 < ∞ and

δ1, δ2 > 0,∫
Στ∩{[r0,∞)}

r−1−δ1JNµ [χΦψ]nµΣτ

≤ B(δ2)

∫
Στ∩[r0−δ2,∞)

(
r−1−δ1JNµ [Tψ]nµΣτ + r−1−δ1JNµ [ψ]nµΣτ

)
.

Proof. It suffices to remark that the region [2M + 1,∞) lies outside the

ergoregion (see (14)) and then apply elliptic estimates as before. �

The following lemma will be used in conjunction with red-shift estimate

of Proposition 4.5.2 and the commutation formula for Y given in Proposi-

tion 4.5.3.

Lemma 10.1.9. For ψ as above, then for all ε > 0, we may find a r0 > r+

depending on ε such that∫
Στ∩{r≤r0}

∣∣∣∇/2ψ
∣∣∣2
g/

≤ B
∫

Στ∩[r+,r0)

(
JNµ [Tψ]nµΣτ + JNµ [χΦψ]nµΣτ + JNµ [ψ]nµΣτ

)
+ ε

∫
Στ

JNµ [Y ψ]nµΣτ .

Proof. Since Y is null on H+, on H+ there is no Y 2 term in the wave

equation. In particular, on the horizon, the second derivative terms in the

wave equation that contain a Y derivative may be controlled by JNµ [Tψ]nµΣτ and

JNµ [Φψ]nµΣτ . For r slightly greater than r+, Y does not remain null and there is

an additional term in the wave equation proportional (r−r+)Y 2ψ. Given these

observations, the lemma easily follows from elliptic estimates on spheres. �

We will also need some integrated in time estimates:

Lemma 10.1.10. Let ψ be as above, and let R <∞. Then,∫ ∞
0

∫
Στ∩[3M+1,R)

JNµ [ψ]nµΣτ

≤ B
∫ ∞

0

∫
Στ∩[3M,R+1)

(
|Tψ|2 + |∂r∗ψ|2 + |ψ|2

)
+B

∫
Σ0

JNµ [ψ]nµΣ0
.

Proof. This is standard. One writes the wave equation as

gtt∂2
t ψ −

4Mar

ρ2∆
∂2
t,φψ =

∆− a2 sin2 θ

∆ρ2 sin2 θ
∂2
φψ

− r2 + a2

∆ρ2
∂r∗
((
r2 + a2

)
∂r∗ψ

)
− 1

ρ2 sin θ
∂θ (sin θ∂θψ) ,
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multiplies by a cutoff to r ∈ [3M,R+ 1), multiplies by ψ, integrates by parts,

remembers the comments concerning the volume form in Section 2.2.6, and

applies Hardy inequalities when appropriate. �

Lemma 10.1.11. For ψ as above, then for any r0 > r+, R < ∞ and

δ > 0, ∫ ∞
0

∫
Στ∩[r0+δ,R−δ]

JNµ [ψ]nµΣτ

≤ B(r0, δ)

∫ ∞
0

∫
Στ∩[r0,R])

(
|Tψ|2 + |∂r∗ψ|2 + |Φψ|2 + |ψ|2

)
+B

∫
Σ0

JNµ [ψ]nµΣ0
.

Proof. This is proven in the same fashion as Lemma 10.1.10. �

10.2. Proof of Proposition 10.1. Now we will prove Proposition 10.1.

Proof. Let a0, M , a and ψ be as in the statement of the proposition. Let

us be given moreover δ > 0. We will consider the case j = 2. The case of j ≥ 3

follows by induction in a straightforward fashion.

First, we commute the wave equation with T and obtain 2g (Tψ) = 0.

Since Tψ is future-integrable, the integrated energy decay statement (20) holds

for Tψ.

Next, we commute with χΦ, where χ is a cutoff that is identically 1 on

[r+, R1] and identically 0 on [R1 + 1,∞). We obtain 2g (χΦψ) = (2gχ) Φψ +

2∇µχ∇µΦψ. Now, Lemma 10.1.8 implies

∫ ∞
0

∫
Στ

|2g (χΦψ)|2 ≤ B
∫ ∞

0

∫
Στ∩[R1,∞)

r−1−δ (JNµ [Tψ]nµΣτ + JNµ [ψ]nµΣτ
)(194)

≤ B
∫

Σ0

(
JNµ [Tψ]nµΣ0

+ JNµ [ψ]nµΣ0

)
.

In the last inequality, we used that the integrated energy decay statement

holds for Tψ. Now, statement (193) of Proposition 9.8.1 implies that the

integrated energy decay statement holds for χΦψ as long as we add

B

∫
Σ0

(
JNµ [Tψ]nµΣ0

+ JNµ [ψ]nµΣ0

)
to the right-hand side of the inequality.

Finally, we turn to commutation with Y . We recall Proposition 4.5.3,

which implies

(195) 2g(YΨ) = κ1Y
2Ψ +

∑
|m|≤2,m4≤1

cmE
m1
1 Em2

2 Lm3Y m4Ψ,
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where κ1 > 0 is proportional to the surface gravity. Next, for any r̃ ≤ rred, we

apply the energy estimate associated to the red-shift vector field N , in between

the hypersurfaces Σ0 and Στ :

∫
Στ

JNµ [Y ψ]nµΣτ +

∫
H+(0,τ)

JNµ [Y ψ]nµH+ +

∫ τ

0

∫
Σs∩{r≤r̃}

JNµ [Y ψ]nµΣs ds

(196)

≤ B
∫ τ

0

∫
Σs

(
ηr∈[r̃,r̃+δ]J

N
µ [Y ψ]nµΣs − E

N [Y ψ]
)
ds+

∫
Σs1

JNµ [Y ψ]nµΣ0
.

As usual, η denotes the indicator function, and we recall that EN [·] is defined
in Section 2.3.1.

For any ε > 0, we may choose r̃ close enough to r+, δ small enough so that

r̃+ 2δ < 3M − s− and use (195), Lemma 10.1.6, Lemma 10.1.9, Lemma 10.1.4

and the fact that N = K + Y to show that

−
∫

Σs

EN [Y ψ] ≤ ε
∫

Σs∩{r≤r̃}
JNµ [Y ψ]nµΣs

(197)

+Bε−1

∫
Σs∩[r+,r̃+2δ]

(
JNµ [Tψ]nµΣs + JNµ [χΦψ]nµΣs + JNµ [ψ]nµΣs

)
≤ ε

∫
Σs∩{r≤r̃}

JNµ [Y ψ]nµΣs

+Bε−1

∫
Σ0

(
JNµ [Tψ]nµΣ0

+ JNµ [χΦψ]nµΣ0
+ JNµ [ψ]nµΣ0

)
.

Combining (197) and (196) implies∫
Στ

JNµ [Y ψ]nµΣτ +

∫
H+(0,τ)

JNµ [Y ψ]nµH+ +

∫ τ

0

∫
Σs∩{r≤r̃}

JNµ [Y ψ]nµΣs ds(198)

≤ B
∫

Σ0

(
JNµ [Tψ]nµΣ0

+ JNµ [χΦψ]nµΣ0
+ JNµ [ψ]nµΣ0

)
.

Now, the proof concludes with applications of Lemmas 10.1.3, 10.1.2,

10.1.4, 10.1.11, 10.1.7, 10.1.1, 10.1.10 and (for the null infinity I+ term)

straightforward JT energy estimates in a large r region. �

11. The continuity argument

In this section, we will prove

Proposition 11.1. Let M > 0 and |a| < M . All solutions ψ to the

wave equation (1) on R0 as in the reduction of Section 4.1 (i.e., arising from

smooth, compactly supported initial data on Σ0) are future-integrable.
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11.1. The reduction to fixed azimuthal frequency. We begin with the fol-

lowing easy but important lemma.

Lemma 11.1.1. It suffices to prove Proposition 11.1 for solutions ψ to

(1) assumed moreover to be supported on an arbitrary but fixed azimuthal fre-

quency m.

Proof. Let ψ be a solution to the wave equation arising from smooth, com-

pactly supported initial data, and suppose we have established Proposition 11.1

for solutions supported on any fixed azimuthal frequency. We may expand ψ

into its azimuthal modes: ψ =
∑

m∈Z ψm. Since each ψm is future-integrable,

it follows by Proposition 9.1.1 that the integrated energy decay statements

(20) and (25) hold for ψm. Orthogonality immediately implies that (20) and

(25) hold for ψ. Finally, we simply observe that the fundamental theorem of

calculus implies that

sup
r∈[r+,A]

∫ ∞
0

∫
S2

∑
1≤i1+i2+i3≤j

|∇/i1T i2(Z̃∗)i3ψ|2g/ sin θ dt dθ dφ

≤ B

∫
H+(0,∞)

∑
1≤i1+i2+i3≤j

|∇/i1T i2(Z̃∗)i3ψ|2g/

+

∫ ∞
0

∫
Σs∩[r+,A]

∑
1≤i1+i2+i3≤j+1

|∇/i1T i2(Z̃∗)i3ψ|2g/

 . �

Lemma 11.1.1 thus implies that Proposition 11.1 follows from the following

Proposition 11.1.1. Let M > 0, |a| < M and m ∈ Z. Let ψ be a solu-

tion to (1) as in the reduction of Section 4.1 such that, moreover, ψ is supported

only on the azimuthal frequency m. Then ψ is sufficiently integrable.

The following lemma will be very useful for the proof of Proposition 11.1.1.

Lemma 11.1.2. Let M , a, m, and ψ be as in the statement of Proposi-

tion 11.1.1. Then, for every τ ≥ 0 and δ > 0,∫
H+(0,τ)

JNµ [ψ]nµH+

+

∫ τ

0

∫
Σs

(
r−1(1− η[(1+

√
2)M,3M+s+])(1− 3M/r)2

(
|∇/ψ|2g/ + r−δ |Tψ|2

)
+ r−1−δ

∣∣∣Z̃∗ψ∣∣∣2 + r−3−δ |ψ|2
)

≤ B(δ,m)

(∫
Σ0

JNµ [ψ]nµΣ0
+

∫
Στ

JNµ [ψ]nµΣτ

)
.
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Proof. One modifies the cutoff ξ from Section 9.2; now let ξ be identically

1 in between Σ1 and Στ−1 and identically 0 to the past of Σ0 and the future

of Στ . Then we repeat the arguments of Section 9, appealing to Theorem 8.2

instead of Theorem 8.1. �

Remark 11.1.1. Let us emphasise that we do not assume that ψ is future-

integrable. This is why we must have the term
∫

Στ
JNµ [ψ]nµΣτ on the right-hand

side.

Remark 11.1.2. As observed in Remark 6.5.3, we see that (for a fixed

azimuthal frequency) trapping and the ergoregion are nonoverlapping! This

will be extremely useful in what follows.

We will also need higher-order versions of Lemma 11.1.2.

Lemma 11.1.3. Let M , a, m, and ψ be as in the statement of Proposi-

tion 11.1.1. Then, for every τ ≥ 0, j ≥ 1 and δ > 0,

∫
H+(0,τ)

∑
1≤i1+i2+i3≤j

|∇/i1T i2(Z̃∗)i3ψ|2g/

+

∫ τ

0

∫
Σs

r−1−δ(1− η[(1+
√

2)M,3M+s+])(1− 3M/r)2

·
∑

1≤i1+i2+i3≤j
|∇/i1T i2(Z̃∗)i3ψ|2g/

+ r−1−δ
∑

1≤i1+i2+i3≤j−1

(
|∇/i1T i2(Z̃∗)i3+1ψ|2g/ + |∇/i1T i2(Z∗)i3ψ|2g/

)

≤ B(δ, j,m)

∫
Σ0

∑
0≤i≤j−1

JNµ [N iψ]nµΣ0
+

∫
Στ

∑
0≤i≤j−1

JNµ [N iψ]nµΣτ

 .

Proof. This follows from repeating the arguments of Section 10. �

We have the following easy corollary.

Corollary 11.1.1. Let M , a, m, and ψ be as in Proposition 11.1.1.

Then, ψ is future-integrable if

(199) sup
τ≥0

∫
Στ

∑
1≤i1+i2+i3≤j

|∇/i1T i2(Z̃∗)i3ψ|2g/ <∞ ∀ j ≥ 1.



DECAY FOR SOLUTIONS OF THE WAVE EQUATION ON KERR III 891

Proof. As in the proof of Lemma 11.1.1 we need only observe that

sup
r∈[r+,A]

∫ ∞
0

∫
S2

∑
1≤i1+i2+i3≤j

|∇/i1T i2(Z̃∗)i3ψ|2g/ sin θ dt dθ dφ

≤ B(j)

∫
H+(0,∞)

∑
1≤i1+i2+i3≤j

|∇/i1T i2(Z̃∗)i3ψ|2g/

+

∫ ∞
0

∫
Σs∩[r+,A]

∑
1≤i1+i2+i3≤j+1

|∇/i1T i2(Z̃∗)i3ψ|2g/

 . �

The proof of Proposition 11.1.1 will be a continuity argument in the ro-

tation parameter a of the black hole. That is, fix M > 0, and for each m ∈ Z,

define the set

Am := {|a| ∈ [0,M) : the statement (199) holds for g = ga,M}.
We shall prove that Am = [0,M) by showing that it is nonempty, open and

closed. Proposition 11.1.1 then follows by Corollary 11.1.1.

First we note

Proposition 11.1.2. For all m ∈ Z, the set Am is nonempty.

Proof. When a = 0, it is well known that (199) holds (even without the

restriction to a fixed azimuthal frequency). One may find the (relatively short)

argument in the lecture notes [31]. Thus 0 ∈ Am. �

We now turn to openness.

11.2. Openness. In this section, we will prove

Proposition 11.2.1. For all m ∈ Z, the set Am is open. That is, suppose

å ∈ Am. Then there exists ε > 0 such that |a− å| < ε implies a ∈ Am.

The proof proper will be given in Section 11.2.2 below. We begin with

some preliminaries.

11.2.1. Gaining derivatives. We start with a definition.

Definition 11.2.1. Let |a| < M , and let ε0 > 0 be from Lemma 4.7.2. Let

α(r) be a function such that V := T + α(r)Φ is a smooth vector field timelike

in R that satisfies

V = T +
a

2Mr+
Φ, when r ∈ [r+, r+ + ε0/2],

V = T +
2Mar

(r2 + a2)2 Φ, when r ∈

[
r+ + ε0,

M
(
7 +
√

2
)

4

]
,

V = T, when r ≥
M
(
3 +
√

2
)

2
.
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Remark 11.2.1. Note that 2M <
M(3+

√
2)

2 < M
(
1 +
√

2
)
. In particular,

V is Killing in the region where trapping occurs in Lemmas 11.1.2 and 11.1.3.

The following lemma can be thought of as a derivative gaining converse

to Lemma 11.1.2.

Lemma 11.2.1. Let |a| ≤ a0 < M , let m ∈ Z, and let ψ be a solution of

the wave equation (1) as in the reduction of Section 4.1, which is furthermore

supported on the fixed azimuthal frequency m. Then,∫
Στ

JNµ [ψ]nµΣτ

≤ B(m)

∫ τ

0

∫
Σs∩

{
r≤M(3+

√
2)

2

} |Φψ|2 ds+

∫
Σ0

JNµ [ψ]nµΣ0

 ∀ τ ≥ 0

≤ B(m)

∫ τ

0

∫
Σs∩

{
r≤M(3+

√
2)

2

} |ψ|2 ds+

∫
Σ0

JNµ [ψ]nµΣ0

 ∀ τ ≥ 0.

Proof. We apply the energy identity associated to the vector field V :∫
Στ

JVµ [ψ]nµΣτ ≤ B
∫ τ

0

∫
Σs

∣∣KV [ψ]
∣∣ ds+

∫
Σ0

JVµ [ψ]nµΣ0
.(200)

In view of the fact that T and Φ are Killing vector fields, we have

KV [ψ] = K(αΦ)[ψ] = 2T(∇α,Φ)[ψ] = 2
∆

ρ2

dα

dr
T(Z,Φ)[ψ] = 2

∆

ρ2

dα

dr
Re(ZψΦψ).

Recall that dα
dr is supported away from the horizon, so that Z is a regular vector

field when the expression above is nonzero. We may conclude that∣∣KV [ψ]
∣∣ ≤ Bηsupp( dα

dr
)

(
ε|∂rψ|2 + ε−1|Φψ|2

)
.(201)

Lemma 11.1.2 implies∫ τ

0

∫
Σs

ηsupp( dα
dr

)|∂rψ|
2 ds ≤ B(m)

(∫
Στ

JNµ [ψ]nµΣτ +

∫
Σ0

JNµ [ψ]nµΣ0

)
.(202)

Combining B(m)ε times estimate (202) with estimates (200) and (201) implies∫
Στ

JVµ [ψ]nµΣτ ≤ B(m)

ε−1

∫ τ

0

∫
Σs∩

{
r≤M(3+

√
2)

2

} |Φψ|2 ds(203)

+

∫
Σ0

JNµ [ψ]nµΣ1
+ ε

∫
Στ

JNµ [ψ]nµΣτ

 .
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In order to finish the lemma we apply the standard red-shift argument (see the

lecture notes [31]). Set

A := sup
0≤s≤τ

ε−1

∫ s

0

∫
Σs′∩

{
r≤M(3+

√
2)

2

} |Φψ|2 ds′+
∫

Σ0

JNµ [ψ]nµΣ0
+ε

∫
Σs

JNµ [ψ]nµΣs .

For every 0 ≤ s1 < s2 ≤ τ and r̃ sufficiently close to r+, the red-shift estimate

of Proposition 4.5.2 implies∫
Σs2

JNµ [ψ]nµΣs2
+

∫ s2

s1

∫
Σs∩{r≤r̃}

JNµ [ψ]nµΣs ds(204)

≤ B(m)

∫ s2

s1

∫
Σs∩{r̃≤r≤r̃+1}

JNµ [ψ]nµΣs ds+

∫
Σs1

JNµ [ψ]nµΣs1
.

Now, we observe that in the region {r̃ ≤ r} the quantities JNµ [ψ]nµΣs and

JVµ [ψ]nµΣs are comparable. Thus, adding
∫ s2
s1

∫
Σs

JVµ [ψ]nµΣs ds to both sides of

(204) implies∫
Σs2

JNµ [ψ]nµΣs2
+ b(m)

∫ s2

s1

∫
Σs

JNµ [ψ]nµΣs ds(205)

≤ B(m)

∫ s2

s1

∫
Σs

JVµ [ψ]nµΣs ds+

∫
Σs1

JNµ [ψ]nµΣs1
.

Now, estimate (203) (with τ on the left-hand side replaced by s) implies∫
Σs2

JNµ [ψ]nµΣs2
+ b(m)

∫ s2

s1

∫
Σs

JNµ [ψ]nµΣs ds(206)

≤ B(m)A(s2 − s1) +

∫
Σs1

JNµ [ψ]nµΣs1
.

Let

f(s) :=

∫
Σs

JNµ [ψ]nµΣs .

We may rewrite equation (206) as

f(s2)+ b

∫ s2

s1

f(s) ds ≤ B(m)A(s2−s1)+f(s1) for every 0 ≤ s1 < s2 ≤ τ.

An easy argument shows that this implies

f(s) ≤ B(m) (A+ f(0)) .
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Writing this out gives

sup
0≤s≤τ

∫
Σs

JNµ [ψ]nµΣs ≤ B(m)

ε−1

∫ τ

0

∫
Σs∩

{
r≤M(3+

√
2)

2

} |Φψ|2 ds

+

∫
Σ0

JNµ [ψ]nµΣ0
+ ε sup

0≤s≤τ

∫
Σs

JNµ [ψ]nµΣs

 .

We conclude the proof by taking ε sufficiently small. �

Remark 11.2.2. Observe that the proof does not exploit the fact that the

ergoregion and trapping are disjoint; indeed, even without the restriction to

fixed m, we could have proved the first line of the proposition, with a constant

B not depending on m, simply by exploiting the fact that the ∂r derivative does

not degenerate in the integrated local energy decay. Rather, the point is that

for fixed m, the presence of the ergoregion is only a low-frequency obstruction

to boundedness.

Remark 11.2.3. Note that the proof crucially uses that we can upgrade a

degenerate energy boundedness statement to a nondegenerate energy bound-

edness statement without a full integrated local energy decay.

Next, we play Lemmas 11.2.1 and Lemma 11.1.3 off each other. We end

up being able to gain an arbitrary number of derivatives.

Lemma 11.2.2. Let |a| ≤ a0 < M , let m ∈ Z, and let ψ be a solution

the wave equation (1) as in the reduction of Section 4.1, which is furthermore

supported on the fixed azimuthal frequency m. Then, for every j ≥ 1,∫
Στ

∑
1≤i1+i2+i3≤j

|∇/i1T i2(Z̃∗)i3ψ|2g/

≤ B(j,m)

∫ τ

0

∫
Σs∩

{
r≤M(3+

√
2)

2

} |ψ|2 ds

+

∫
Σ0

∑
1≤i1+i2+i3≤j

|∇/i1T i2(Z̃∗)i3ψ|2g/

 ∀ τ ≥ 0.

Proof. We first consider the case j = 2. We begin by commuting the wave

equation with T and applying Lemma 11.2.1. We obtain

∫
Στ

JNµ [Tψ]nµΣτ ≤ B(m)

∫ τ

0

∫
Σs∩

{
r≤M(3+

√
2)

2

} |Tψ|2 ds+

∫
Σ0

JNµ [Tψ]nµΣ1

 .

(207)
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Now commute the wave equation with the red-shift commutation vector field Y .

On the horizon H+ we will have

2g (Y ψ) = κ1Y
2ψ +

∑
i+j+k∈[0,2],k≤1

cijkT
i∂jθY

kψ,(208)

where κ1 > 0 is proportional to the surface gravity of H+.

Next, we apply Proposition 4.5.2, the energy estimate associated to the

red-shift multiplier N , to Ψ = Y ψ. For every 1 ≤ s1 < s2 ≤ τ , we obtain

∫
Σs2

JNµ [Y ψ]nµΣs2
+

∫ s2

s1

∫
Σs∩{r≤r̃}

JNµ [Y ψ]nµΣs ds

(209)

≤ B
∫ s2

s1

∫
Σs

(
ηr∈[r̃,r̃+1]J

N
µ [Y ψ]nµΣs − E

N [Y ψ]
)
ds+

∫
Σs1

JNµ [Y ψ]nµΣs1
.

For any ε > 0, we may choose r̃ close enough to r+, and use (208), Lem-

mas 10.1.5, 10.1.9 and the fact that N = K + Y , to show that

−
∫

Σs

EN [Y ψ] ≤ ε
∫

Σs∩{r≤r̃}
JNµ [Y ψ]nµΣs +Bε−1

∫
Σs

(
JNµ [Tψ]nµΣs + JNµ [ψ]nµΣs

)
.

(210)

Adding
∫ s2
s1

∫
Σs

(
JNµ [Tψ]nµΣs + JNµ [ψ]nµΣs

)
ds to both sides, using Lemma 10.1.5

and using (210) implies∫
Σs2

JNµ [Y ψ]nµΣs2
+ b

∫ s2

s1

∫
Σs

JNµ [Y ψ]nµΣs ds(211)

≤ B
∫ s2

s1

∫
Σs

(
JNµ [Tψ]nµΣs + JNµ [ψ]nµΣs

)
ds+

∫
Σs1

JNµ [Y ψ]nµΣs1
.

Now we use (207), Lemma 11.2.1 and the same argument that occurs at the

end of the proof of Lemma 11.2.1 to conclude

∫
Στ

JNµ [Y ψ]nµΣτ ≤B(m)

∫ τ

0

∫
Σs∩

{
r≤M(3+

√
2)

2

} (|Tψ|2 + |ψ|2
)
ds

(212)

+B(m)

∫
Σ0

(
JNµ [Tψ]nµΣ1

+ JNµ [Y ψ]nµΣ1
+ JNµ [ψ]nµΣ1

)
.



896 M. DAFERMOS, I. RODNIANSKI, and Y. SHLAPENTOKH-ROTHMAN

Next, Lemma 10.1.2 allows us to combine (212) and (207) to get∫
Στ

∑
1≤i1+i2+i3≤2

|∇/i1T i2(Z̃∗)i3ψ|2g/(213)

≤ B(m)

∫ τ

0

∫
Σs∩

{
r≤M(3+

√
2)

2

} (|Tψ|2 + |ψ|2
)
ds

+B(m)

∫
Σ0

∑
1≤i1+i2+i3≤2

|∇/i1T i2(Z̃∗)i3ψ|2g/

 .

It remains to remove the space-time integral of |Tψ|2 from the right-hand side;

however, we observe the following immediate consequence of Lemmas 11.1.2

and 11.2.1:∫ τ

0

∫
Σs∩

{
r≤M(3+

√
2)

2

} |Tψ|2 ≤ B(m)

(∫
Στ

JNµ [ψ]nµΣτ +

∫
Σ0

JNµ [ψ]nµΣ0

)
(214)

≤ B(m)

∫ τ

0

∫
Σs∩

{
r≤M(3+

√
2)

2

} |ψ|2 +

∫
Σ0

JNµ [ψ]nµΣ0

 .

Combining (213) and (214) completes the proof for j = 2.20 The case for

general j ≥ 2 follows by induction in a straightforward fashion. �

The following straightforward corollary will be useful in what follows.

Corollary 11.2.1. Let |a| ≤ a0 < M , let m ∈ Z, and let ψ be a solution

the wave equation (1) as in the reduction of Section 4.1, which is furthermore

supported on the fixed azimuthal frequency m. Then, for all δ > 0, j ≥ 1,

sup
τ ′≤τ

∫
Στ ′

∑
1≤i1+i2+i3≤j

|∇/i1T i2(Z̃∗)i3ψ|2g/

+

∫ τ

0

∫
Σs

 ∑
1≤i1+i2+i3≤j−1

|∇/i1T i2(Z̃∗)i3ψ|2g/

+
∑

1≤i1+i2+i3≤j−1

|∇/i1T i2(Z̃∗)i3+1ψ|2g/

+r−2−δ |ψ|2 + η[r+,(1+
√

2)M]

∑
1≤i1+i2+i3≤j

|∇/i1T i2(Z̃∗)i3ψ|2g/

 · r−1−δ

20Observe that this final trick relies on the fact that trapping and the ergoregion are

disjoint in physical space when the azimuthal frequency is fixed.
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≤ B(δ, j,m)

∫ τ

0

∫
Σs∩

{
r≤M(3+

√
2)

2

} |ψ|2 ds

+

∫
Σ0

∑
1≤i1+i2+i3≤j

|∇/i1T i2(Z̃∗)i3ψ|2g/

 .

Proof. This is a simple combination of Lemmas 11.2.2 and 11.1.3. �

11.2.2. An interpolating metric and the proof of Proposition 11.2.1. We

now turn to the proof of Proposition 11.2.1.

Proof. Recall that we have fixed M > 0. Let us suppose m ∈ Z is fixed

and å ∈ Am. Let us choose a0 such that |̊a| < a0 < M . We will find an ε > 0

with |̊a|+ ε ≤ a0 such that

(215) |a− å| < ε

implies a ∈ Am.

Let a satisfy (215), for ε to be determined, and ψ be a solution of the wave

equation (1) on gM,a, as in the reduction of Section 4.1, such that moreover,

ψ is supported on the fixed azimuthal frequency m.

Recall that Corollary 11.1.1 implies that solutions ψ̃ to 2g̊a,M ψ̃ = 0 that

are supported on a fixed azimuthal frequency are known to be future-integrable.

In order to exploit this “black box” knowledge about g̊a,M it is useful to in-

troduce a metric g̃τ that interpolates between g̊a,M and ga,M . Fortunately, we

will not need to fine tune g̃τ .

Definition 11.2.2. Pick τ ≥ 1. Recalling that the hypersurfaces Σs are

independent of a, let χτ be a cutoff that is 0 in the past of Στ−δ0 and identically

one in the future of Στ for some sufficiently small δ0 > 0. We define the

interpolating metric g̃τ by

g̃τ
.
= χτ g̊a,M + (1− χτ ) ga,M .

If ε in (215) is assumed sufficiently small, then g̃τ defines a Lorentzian

metric on R.

Remark 11.2.4. Note that it is easy to see that Φ is a Killing vector field

for the metric g̃τ and that for all τ ≥ 0, Στ is a past Cauchy hypersurface for

R0 \ R(0,τ) with respect to g̃τ .

Corresponding to our interpolating metric, we will need an “interpolating”

solution to the wave equation.
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Definition 11.2.3. Let ψ be our solution to 2ga,Mψ = 0 defined above. We

define the interpolating solution ψ̃τ by solving 2g̃τ ψ̃τ = 0 with the same initial

data as ψ on Σ0.

Of course, ψ̃τ will exactly equal ψ in the past of Στ−δ0 , and in the future

of Στ , ψ̃τ is a solution to 2g̊a,M ψ̃τ = 0. Furthermore, since Φ is a Killing

vector field for g̃τ , the interpolating solution ψ̃τ will be supported on the same

azimuthal frequency m as the original solution ψ. Hence, by the assumption

å ∈ Am and Corollary 11.1.1, it follows that ψ̃τ is future-integrable with respect

to å.

We write

2g̊a,M ψ̃τ =
(
2g̊a,M −2g̃τ

)
ψ̃τ(216)

and observe

r1+δ
∣∣∣(2g̊a,M −2g̃τ

)
ψ̃τ

∣∣∣2≤B (δ−1
0

)
|a− å|2 r−2

∑
1≤i1+i2+i3≤2

∣∣∣∇/i1T i2(Z̃∗)i3ψ̃τ

∣∣∣2
g/
.

(217)

In this statement, and in what follows, metric defined quantities (such as ∇/ and

JNµ [ψ]nµ) will refer to g̊a,M . Now we apply the g̊a,M integrated local energy

estimate to ψ̃τ .

Keeping in mind that (216) is supported in the past of Στ , Proposi-

tion 9.8.1 implies∫ τ−δ0

0

∫
Σs∩{r≤M(1+

√
2)}

(
JNµ [ψ]nµΣs + |ψ|2

)
ds(218)

≤ B(δ0,m) |a− å|
∫ τ

0

∫
Σs

∑
1≤i1+i2+i3≤2

r−2
∣∣∣∇/i1T i2(Z̃∗)i3ψ̃τ

∣∣∣2
g/
ds

+B (δ0,m) |a− å|
∫ ∞
τ

∫
Σs∩[r+,(1+

√
2)M ]

[∣∣∣T ψ̃τ ∣∣∣2 +
∣∣∣ψ̃τ ∣∣∣2]

+B(m)

∫
Σ0

[
JNµ [ψ]nµΣ0

+ |ψ|2
]
.

For δ0 sufficiently small (and then fixing the value of δ0), finite in time energy

estimates (and an easy domain of dependence argument) imply∫ τ

0

∫
Σs∩

{
r≤M(3+

√
2)

2

} (JNµ [ψ]nµΣs + |ψ|2
)
ds(219)

≤ B
∫ τ−δ0

0

∫
Σs∩{r≤M(1+

√
2)}

(
JNµ [ψ]nµΣs + |ψ|2

)
ds.
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Since ψ̃τ is equal to ψ along Στ−δ0 , finite in time energy estimates for 2g̃τ
imply ∫ τ

τ−δ0

∫
Σs

∑
1≤i1+i2+i3≤2

r−2
∣∣∣∇/i1T i2(Z̃∗)i3ψ̃τ

∣∣∣2
g/
ds(220)

≤ B
∫

Στ−δ0

∑
1≤i1+i2+i3≤2

∣∣∣∇/i1T i2(Z̃∗)i3ψ
∣∣∣2
g/
.

Similarly, ∫ τ

τ−δ0

∫
Σs

∑
1≤i1+i2+i3≤2

r−2
∣∣∣∇/i1T i2(Z̃∗)i3ψ

∣∣∣2
g/
ds(221)

≤ B
∫

Στ−δ0

∑
1≤i1+i2+i3≤2

∣∣∣∇/i1T i2(Z̃∗)i3ψ
∣∣∣2
g/
.

Finally, Proposition 10.1, the fact that ψ̃τ is future-integrable, and finite in

time energy inequalities imply∫ ∞
τ

∫
Σs∩[r+,(1+

√
2)M ]

[∣∣∣T ψ̃τ ∣∣∣2 +
∣∣∣ψ̃τ ∣∣∣2](222)

≤ B
∫

Στ−δ0

∑
1≤i1+i2+i3≤2

∣∣∣∇/i1T i2(Z̃∗)i3ψ
∣∣∣2
g/
.

Combining (218), (219), (220), (221) and (222) gives

∫ τ

0

∫
Σs∩

{
r≤M(3+

√
2)

2

} (JNµ [ψ]nµΣs + |ψ|2
)
ds

(223)

≤ B(m) |a− å|

∫ τ

0

∫
Σs

∑
1≤i1+i2+i3≤2

r−2
∣∣∣∇/i1T i2(Z̃∗)i3ψ

∣∣∣2
g/
ds

+

∫
Στ−δ0

∑
1≤i1+i2+i3≤2

∣∣∣∇/i1T i2(Z̃∗)i3ψ̃τ

∣∣∣2
g/


+B(m)

∫
Σ0

[
JNµ [ψ]nµΣ0

+ |ψ|2
]
.
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Now combine Corollary 11.2.1 and (223):

sup
τ ′≤τ

∫
Στ ′

∑
1≤i1+i2+i3≤j

|∇/i1T i2(Z̃∗)i3ψ|2g/

+

∫ τ

0

∫
Στ

 ∑
1≤i1+i2+i3≤j−1

|∇/i1T i2(Z̃∗)i3ψ|2g/

+
∑

1≤i1+i2+i3≤j−1

|∇/i1T i2(Z̃∗)i3+1ψ|2g/

+ r−2−δ |ψ|2 + η[r+,(1+
√

2)M]

∑
1≤i1+i2+i3≤j

|∇/i1T i2(Z̃∗)i3ψ|2g/

 r−1−δ

≤ B(δ, j,m)

∫ τ

0

∫
Σs∩

{
r≤M(3+

√
2)

2

} |ψ|2 ds

+

∫
Σ0

∑
1≤i1+i2+i3≤j

|∇/i1T i2(Z̃∗)i3ψ|2g/


≤ B(δ, j,m) |a− å|

∫ τ

0

∫
Σs

r−2
∑

1≤i1+i2+i3≤2

|∇/i1T i2(Z̃∗)i3ψ|2g/ ds

+

∫
Στ−δ0

∑
1≤i1+i2+i3≤2

|∇/i1T i2(Z̃∗)i3ψ|2g/


+B(δ, j,m)

∫
Σ0

∑
0≤i1+i2+i3≤j

|∇/i1T i2(Z̃∗)i3ψ|2g/ .

As long as j ≥ 3, we may take ε in (215) sufficiently small, absorb the |a− å|
term on the left-hand side and conclude

sup
τ ′≤τ

∫
Στ ′

∑
1≤i1+i2+i3≤j

|∇/i1T i2(Z̃∗)i3ψ|2g/

≤ B(j,m)

∫
Σ0

∑
0≤i1+i2+i3≤j

|∇/i1T i2(Z̃∗)i3ψ|2g/ <∞ ∀ j ≥ 3.

Lastly, we observe that the final inequality clearly remains true if we define

∇/i1 with respect to ga,M instead of g̊a,M . �
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11.3. Closedness. To finish the proof, it remains to show

Proposition 11.3.1. The set Am is closed in [0,M). That is, suppose

we have a sequence {ak}∞k=1 with ak ∈ Am and ak → a ∈ (−M,M). Then

a ∈ Am.

Proof. Let ψ be a solution the wave equation 2ga,Mψ = 0 arising from

smooth, compactly supported initial data that is furthermore supported on a

fixed azimuthal frequency m.

We may choose a0 < M such that |a| < a0, and without loss of generality,

we may assume that |ak| ≤ a0 for all k.

We define a sequence of functions ψk by solving 2gak,M
ψk = 0 with the

same initial data as ψ. Using the future-integrability of ψk, for every j ≥ 1,

we will have

∫ ∞
0

∫
Σs

r−1−δ(1− η[(1+
√

2)M,3M+s+])(1− 3M/r)2(224)

·
∑

1≤i1+i2+i3≤j
|∇/i1T i2(Z̃∗)i3ψk|2g/

+ r−1−δ
∑

1≤i1+i2+i3≤j−1

(
|∇/i1T i2(Z̃∗)i3+1ψk|2g/ + |∇/i1T i2(Z∗)i3ψk|2g/

)
≤ B(δ, j,m)

∫
Σ0

∑
0≤i≤j−1

JNµ [N iψk]n
µ
Σ0
.

Now, using the fact that the region {r ≤M
(
1 +
√

2
)
} contains the ergoregion

S, combining (224) and an N -based energy estimate yields

sup
τ≥0

∫
Στ

JNµ [ψk]n
µ
Στ
≤ B(m)

∫
Σ0

JNµ [ψk]n
µ
Σ0

(225)

+B(m)

∫ ∞
0

∫
Σs∩{r≤M(1+

√
2)}

JNµ [ψk]n
µ
Σs

≤ B(m)

∫
Σ0

JNµ [ψk]n
µ
Σ0
.

It remains to upgrade (225) to its higher-order version in the (by now) standard

fashion. First we commute with T and obtain

sup
τ≥0

∫
Στ

JNµ [Tψk]n
µ
Στ
≤ B(m)

∫
Σ0

JNµ [Tψk]n
µ
Σ0
.(226)
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Next, we commute with Y and follow the same argument as in the proof of

Lemma 11.2.2. We obtain

sup
τ≥0

∫
Στ

JNµ [Y ψk]n
µ
Στ

(227)

≤ B(m)

∫
Σ0

(
JNµ [ψk]n

µ
Σ0

+ JNµ [Tψk]n
µ
Σ0

+ JNµ [Y ψk]n
µ
Σ0

)
.

Just as in the proof of Lemma 11.2.2, elliptic estimates imply

sup
τ≥0

∫
Στ

∑
1≤i1+i2+i3≤2

|∇/i1T i2(Z̃∗)i3ψk|2g/

≤ B(m)

∫
Σ0

(
JNµ [ψk]n

µ
Σ0

+ JNµ [Tψk]n
µ
Σ0

+ JNµ [Y ψk]n
µ
Σ0

)
.

Finally, an easy induction argument will imply

sup
τ≥0

∫
Στ

∑
1≤i1+i2+i3≤j

|∇/i1T i2(Z̃∗)i3ψk|2g/

≤ B(j,m)

∫
Σ0

∑
1≤i1+i2+i3≤j

|∇/i1T i2(Z̃∗)i3ψk|2g/ .

Then, we conclude the proof by observing∫
Στ

∑
1≤i1+i2+i3≤j

|∇/i1T i2(Z̃∗)i3ψ|2g/ = lim
k→∞

∫
Στ

∑
1≤i1+i2+i3≤j

|∇/i1T i2(Z̃∗)i3ψk|2g/

≤ B(j,m)

∫
Σ0

∑
1≤i1+i2+i3≤j

|∇/i1T i2(Z̃∗)i3ψ|2g/ .

The first equality uses the well posedness of the wave equation, the smooth

dependence of ga,M on a (see Lemma 4.1.1) and the fact that ψk and ψ have

the same initial data along Σ0. �

12. The precise integrated local energy decay statement

In this section we give will a more precise form of the integrated local

energy decay statement. So as to produce a purely physical space estimate, in

the proof of Proposition 9.1.1 we employed a physical space cutoff ζ (see (13))

in the integrated energy decay statement (20). It is clear from the statement of

Theorem 8.1 in Section 8 that this throws away information (cf. the discussion

in Section 8.9).

In order to succinctly state the microlocally precise form of integrated local

energy decay, we introduce the following notation. For a sufficiently integrable
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function Ψ on R, we define

Ptrap [Ψ]
.
=

1√
2π

∫ ∞
−∞

(228)

·
∑
m`

∣∣ζ − (1− ζ)r−1rtrap

∣∣ e−iωtΨ(aω)
m` (r)Sm`(aω, cos θ)eimφdω,

where rtrap = rtrap(ω,m,Λm`) is defined in Theorem 8.1. Then, we have

Proposition 12.1. Let 0 ≤ a0 < M , 0 ≤ a ≤ a0, and let ψ be a solution

of (1) on R0 as in the reduction of Section 9.1.1. Then,

b

∫ ∞
0

∫
Στ

(∣∣∣Z̃∗ψ∣∣∣2 r−1−δ + |ψ|2 r−3−δ

(229)

+ |TPtrap[ξψ]|2 r−1−δ+|∇/Ptrap[ξψ]|2g/ r
−1
)
dr∗ dω≤B

∫
Σ0

JNµ [ψ]nµΣ0
,

where rtrap = rtrap(ω,m,Λm`) is defined in Theorem 8.1 and ξ is the cutoff

from Section 9.

Proof. One revisits the proof of Proposition 9.1.1 and simply retains the

nonnegative term on the left-hand side of (229) instead of applying the physical

space ζ and the inequality (163). �

13. Energy boundedness

In this section, we establish the uniform boundedness of the energy flux

through Στ for solutions ψ to the wave equation (1).

Proposition 13.1. Let 0 ≤ a0 < M , |a| ≤ a0, and let ψ be a solution of

the wave equation (1) on R0 as in the reduction of Section 4.1. Then∫
Στ

JNµ [ψ]nµΣτ ≤ B
∫

Σ0

JNµ [ψ]nµΣ0
∀ τ ≥ 0.

First, recall that the arguments of Sections 9 and 11 have shown that ψ is

future-integrable and satisfies the integrated decay statements (20) and (25).

Let δ > 0 be a fixed small parameter, A0 be sufficiently close to r+ and

A1 be sufficiently large. The proof proceeds in three steps where the cases

r ∈ [A0 + δ, A1 − δ], r ∈ [r+, A0 + δ] and r ∈ [A1 − δ,∞) are each dealt with.

As one expects, the first region is the most difficult.

13.1. Boundedness of
∫

Στ∩[A0+δ,A1−δ] J
N
µ [ψ]nµΣτ . It turns out to be conve-

nient to extend the solution to the entire domain of outer communication R
from R0.
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13.1.1. Extending the solution. The trace of ψ and Nψ along the hyper-

surface Σ0 only suffice to determine ψ in the future of Σ0. However, an easy

domain of dependence argument and finite in time energy estimates allow one

to extend ψ to the R in such a way as to guarantee

(230)

∫
Σ̂0

JNµ [ψ]nµΣτ ≤ B
∫

Σ0

JNµ [ψ]nµΣ0
.

Here Σ̂0 denotes the image of Σ0 under the Boyer–Lindquist coordinate defined

map: t 7→ −t.

13.1.2. Integrated local energy decay for the extended solution. Since the

Boyer–Lindquist defined map t 7→ −t and a 7→ −a is an isometry, Proposi-

tion 9.1.1 remains true if one goes to the past instead of the future, i.e., if we

replace all integrals
∫∞

0 with
∫ 0
−∞ and replace Στ with Σ̂τ . Keeping (230) in

mind, we conclude∫ ∞
−∞

∫
Στ∩[A0,A1]

(
|∂r∗ψ|2 + r−2 |ψ|2 + ζJNµ [ψ]nµΣτ

)
r−1−δ dτ(231)

≤ B (A0, A1)

∫
Σ0

JNµ [ψ]nµΣ0
.

Unfortunately, this version of integrated local energy decay is too crude

for our purposes, and we shall need to appeal to the version (229) of integrated

local energy decay.

Let χ[A0,A1] be a bump function that is identically 1 when r ∈ [A0 + δ,

A1 − δ] and 0 when r 6∈ [A0, A1]. We define

ψ̃
.
= χ[A0,A1]ψ.

We will have

2ga,M ψ̃ = F̃
.
= 2gχ[A0,A1]ψ + 2∇µχ[A0,A1]∇µψ.

Observe that F̃ has compact support in r, and
∣∣∣F̃ ∣∣∣2 ≤ B

(
|ψ|2 + |∂r∗ψ|2

)
.

In particular, ψ̃ is sufficiently integrable in the sense of Definition 5.1.1 and

outgoing in the sense of Definition 5.1.2. We also have∫ ∞
−∞

∫
Στ

∣∣∣F̃ ∣∣∣2 ≤ B ∫ ∞
−∞

∫
Στ∩{[A0,A0+δ]∪[A1−δ,A1]}

(
|ψ|2 + |∂r∗ψ|2

)
(232)

≤ B
∫

Σ0

JNµ [ψ]nµΣ0
.

Now we apply Carter’s separation as defined in Section 5 and obtain

ũ′′ +
(
ω2 − V

)
ũ = H̃.

Note that the compact r support in [A0, A1] of ψ̃ is inherited by ũ. We

now apply Theorem 8.1. In view of the support of ũ, it follows that the
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term |ũ (−∞)|2 vanishes. Furthermore, the right-hand sides of all the fre-

quency localised multiplier estimates (70) are O
(
H̃
)

and hence are supported

in [A0, A0 + δ] ∪ [A1 − δ, A1]. Consequently, we can apply the (now trivial)

arguments of Section 9 to conclude the inhomogeneous version of (229)

b

∫ ∞
−∞

∫
Στ

(∣∣∣∂r∗ψ̃∣∣∣2 +
∣∣∣ψ̃∣∣∣2 + JNµ [Ptrapψ̃]nµΣτ

)
(233)

≤
∫ ∞
−∞

∫
Στ∩{[A0,A0+δ]∪[A1−δ,A1]}

(
|ψ|2 + |∂ψ|2

)
≤ B

∫
Σ0

JNµ [ψ]nµΣ0
,

where we recall that Ptrap is defined by (228).

13.1.3. A decomposition. In order to work around the presence of Ptrap

in (233), it will be useful to decompose ψ̃ in pieces, each of which experi-

ence trapping near a specific value of r. Recalling the definition of rtrap from

Theorem 8.1, we make the following definition.

Definition 13.1.1. Let ε > 0 be a sufficiently small parameter to fixed

later. We define

C0 := {(ω,m,Λ) : rtrap = 0} ,
Ci :=

{
(ω,m,Λ) : rtrap

∈
[
3M − s− + (i− 1) ε, 3M − s− + iε

) }
∀ i = 1, . . . , dε−1

(
s+ + s−

)
e.

Observe that each value of (ω,m,Λ) lies in exactly one of the Ci.

Definition 13.1.2. We define ψ̃i by a phase space multiplication of ψ̃ by

ηCi , the indicator function of Ci:

ψ̃i
.
=

1√
2π

∫ ∞
−∞

∑
m`

e−iωtηCiψ̃
(aω)
m` (r)Sm`(aω, cos θ)eimφdω.

Note that it immediately follows from Plancherel (see Section 5.2.2) that

each ψ̃i is sufficiently integrable, and we have 2ga,M ψ̃i = F̃i, where F̃i is defined

in the same fashion as ψ̃i.

It will be useful to observe the following.

Proposition 13.1.1. For each i = 0, . . . , dε−1 (s+ + s−)e, there exists a

constant Ci and a dyadic sequence {τ (i)
n }∞n=1 such that τ

(i)
n → −∞ as n → ∞

and ∫
Σ
τ
(i)
n

JNµ

[
ψ̃i

]
nµΣ

τ
(i)
n

≤ Ci∣∣∣τ (i)
n

∣∣∣ .
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Proof. Since each ψ̃i is sufficiently integrable and compactly supported

in r, we have ∫ ∞
−∞

∫
Στ

JNµ

[
ψ̃i

]
nµΣτ <∞.

The proof then concludes with a standard pigeonhole argument. �

13.1.4. Boundedness. Finally, we will establish boundedness of the energy

of ψ̃.

Proposition 13.1.2. Under the assumptions of Proposition 13.1 and

with the above notation, we have∫
Στ

JNµ

[
ψ̃
]
nµΣτ ≤ B

∫
Σ0

JNµ [ψ]nµΣ0
∀ τ ∈ (−∞,∞).

Proof. Since ψ̃ =
∑dε−1(s++s−)e

i=0 ψ̃i, it suffices to prove the proposition

with ψ̃ replaced by ψ̃i.

In Proposition 4.7.1 we showed that the vector field T + 2Mar
(r2+a2)2 Φ is time-

like in R\H+. Given this and taking ε from Definition 13.1.1 sufficiently small

(and then fixing ε), it is easy to construct a ϕτ -invariant timelike vector field

Vi on R that is Killing in the region

r ∈
[
3M − s− + (i− 1) ε, 3M − s− + iε

)
.

Now we apply the energy identity associated to Vi in between the hypersurfaces

Στ and Σ
τ

(i)
n

. Since Ptrapψ̃i = ψ̃i where Vi is nonKilling, we obtain

∫
Στ

JViµ

[
ψ̃i

]
nµΣτ ≤ B

∫ τ

τ
(i)
n

∫
Σs∩[3M−s−+(i−1)ε,3M−s−+iε]c

JNµ [ψ̃i]n
µ
Σs

(234)

+

∫
Σ
τ
(i)
n

JViµ

[
ψ̃i

]
nµΣτ

≤ B
∫ ∞
−∞

∫
Σs∩[3M−s−+(i−1)ε,3M−s−+iε]c

JNµ [Ptrapψ̃i]n
µ
Σs

+
BCi∣∣∣τ (i)
n

∣∣∣
≤ B

∫ ∞
−∞

∫
Σs

JNµ [Ptrapψ̃]nµΣs +
BCi∣∣∣τ (i)
n

∣∣∣
≤ B

∫
Σ0

JNµ [ψ]nµΣ0
+
BCi∣∣∣τ (i)
n

∣∣∣ ,
where we have used (233) as well as Plancherel. It remains to take n → ∞
and to observe (the trivial fact) that, in view of the support of ψ̃i and the

φτ -invariance of Vi, we have JViµ

[
ψ̃i

]
nµΣτ ∼ JNµ

[
ψ̃i

]
nµΣτ . �
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Remark 13.1.1. The reader may wonder why we do not directly apply a

Vi energy estimate to each ψ̃i in between the hypersurfaces Στ and Σ0. This is

because we would then need to show that the sum of the energies of ψ̃i along

Σ0 is controlled by the energy of ψ at Σ0, and this would require an additional

argument. (Note in contrast that the converse of this statement is a trivial

application of the triangle inequality.)

13.2. Boundedness of
∫

Στ∩[r+,A0+δ] J
N
µ [ψ]nµΣτ and

∫
Στ∩[A1−δ,∞) JNµ [ψ]nµΣτ .

The following inequality is a trivial consequence of the red-shift estimate

(Proposition 4.5.2) and Proposition 9.1.1:

∫
Στ∩[r+,A0+δ)

JNµ [ψ]nµΣτ ≤
∫

Σ0

JNµ [ψ]nµΣ0
+B

∫ τ

0

∫
Σs∩[A0+δ,A0+2δ]

JNµ [ψ]nµΣs

(235)

≤ B
∫

Σ0

JNµ [ψ]nµΣ0
.

Similarly, we may consider the energy estimate associated to χA1−δT

where χA1−δ is a cutoff that is identically 1 on [A1 − δ,∞) and identically

0 on [r+, A1 − 2δ]. We obtain

∫
Στ∩[A1−δ,∞)

JTµ [ψ]nµΣτ ≤
∫

Σ0

JNµ [ψ]nµΣ0
+B

∫ τ

0

∫
Σs∩[A1−2δ,A1−δ]

JNµ [ψ]nµΣs

(236)

≤ B
∫

Σ0

JNµ [ψ]nµΣ0
.

13.3. Putting everything together and the higher-order statement. Com-

bining Proposition 13.1.2, (235) and (236) concludes the proof of Proposi-

tion 13.1. In view of Section 3.4, this completes the proof of Theorem 3.1.

For Theorem 3.2, we are left only with proving the higher-order version

of Proposition 13.1.

Proposition 13.3.1. With the notation of Proposition 13.1, for every

j ≥ 1,

(237)

∫
Στ

∑
0≤i≤j−1

JNµ [N iψ]nµΣτ ≤ B(j)

∫
Σ0

∑
0≤i≤j−1

JNµ [N iψ]nµΣ0
∀τ ≥ 0.

Proof. We will be brief, since we have already seen multiple times how to

upgrade lower order statements to higher-order ones. As usual, we will only

consider the case j = 2 as the general case will follow by an easy induction

argument.
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First we commute (1) with T and apply Proposition 13.1. We obtain

(238)

∫
Στ

JNµ [Tψ]nµΣτ ≤ B(j)

∫
Σ0

JNµ [Tψ]nµΣ0
, ∀τ ≥ 0.

Next, letting χ be a cutoff that vanishes for large r, we commute with

χΦ. Using the integrated energy decay to the handle resulting error terms, we

obtain

(239)

∫
Στ

JNµ [χΦψ]nµΣτ ≤ B(j)

∫
Σ0

(
JNµ [Nψ]nµΣ0

+ JNµ [ψ]nµΣ0

)
∀τ ≥ 0.

Finally, we commute with the red-shift commutation vector field Y and

apply the argument from the proofs of Lemma 11.2.2 and Proposition 10.1 to

establish

(240)

∫
Στ

JNµ [Y ψ]nµΣτ ≤ B(j)

∫
Σ0

(
JNµ [Nψ]nµΣ0

+ JNµ [ψ]nµΣ0

)
, ∀τ ≥ 0.

The proof concludes via application of standard elliptic estimates (see the

proofs of Lemma 11.2.2 and Proposition 10.1). �

In view of Section 3.4, this obtains the remaining statement (28) of The-

orem 3.2. The proof of both main theorems is thus complete.
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trapped sets, Ann. Henri Poincaré 12 (2011), 1349–1385. MR 2846671. Zbl 1228.

81170. http://dx.doi.org/10.1007/s00023-011-0108-1.

[67] S. Yang, Global solutions of nonlinear wave equations in time dependent inho-

mogeneous media, Arch. Ration. Mech. Anal. 209 (2013), 683–728. MR 3056620.

Zbl 1284.35290. http://dx.doi.org/10.1007/s00205-013-0631-y.

[68] S. Yang, On the quasilinear wave equations in time dependent inhomogeneous

media, 2013. arXiv 1312.7246.

[69] S. Yang, Global stability of solutions to nonlinear wave equations, Selecta Math.

21 (2015), 833–881. MR 3366921. Zbl 1326.35045. http://dx.doi.org/10.1007/

s00029-014-0165-7.

(Received: March 27, 2014)

(Revised: February 23, 2015)

University of Cambridge, Department of Pure Mathematics

and Mathematical Statistics, Cambridge, United Kingdom and

Princeton University, Princeton, NJ

E-mail : dafermos@math.princeton.edu

Princeton University, Princeton, NJ

E-mail : irod@math.princeton.edu

Princeton University, Princeton, NJ

E-mail : yashlapen@princeton.edu

http://www.ams.org/mathscinet-getitem?mr=3038715
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1266.83033
http://dx.doi.org/10.1353/ajm.2013.0012
http://dx.doi.org/10.1353/ajm.2013.0012
http://www.ams.org/mathscinet-getitem?mr=2764864
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1209.83028
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1209.83028
http://dx.doi.org/10.1093/imrn/rnq069
http://www.ams.org/mathscinet-getitem?mr=3117526
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1315.35015
http://dx.doi.org/10.1007/s00222-012-0446-8
http://dx.doi.org/10.1007/s00222-012-0446-8
http://www.ams.org/mathscinet-getitem?mr=0995773
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0689.53041
http://dx.doi.org/10.1063/1.528308
http://www.ams.org/mathscinet-getitem?mr=2846671
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1228.81170
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1228.81170
http://dx.doi.org/10.1007/s00023-011-0108-1
http://www.ams.org/mathscinet-getitem?mr=3056620
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1284.35290
http://dx.doi.org/10.1007/s00205-013-0631-y
http://www.arxiv.org/abs/1312.7246
http://www.ams.org/mathscinet-getitem?mr=3366921
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1326.35045
http://dx.doi.org/10.1007/s00029-014-0165-7
http://dx.doi.org/10.1007/s00029-014-0165-7
mailto:dafermos@math.princeton.edu
mailto:irod@math.princeton.edu
mailto:yashlapen@princeton.edu

	1. Introduction
	1.1. Overview of the main difficulties
	1.2. Outline of the paper
	1.3. Acknowledgements

	2. Review of the setup
	2.1. Ambient manifold and coordinate systems
	2.2. The Kerr metric and its properties
	2.3. Multiplier currents and the general energy identity

	3. The main theorems
	3.1. Boundedness and integrated local energy decay
	3.2. The higher-order statement
	3.3. Corollaries
	3.4. The logic of the proof

	4. Preliminaries
	4.1. Well posedness, regularity and smooth dependence
	4.2. The sign of a
	4.3. Hardy inequalities
	4.4. Generic constants in inequalities and fixed parameters
	4.5. The red-shift
	4.6. An estimate for large r
	4.7. A timelike vector field

	5. The sufficiently integrable outgoing class and Carter's separation
	5.1. The class of sufficiently integrable outgoing functions
	5.2. Review of Carter's separation
	5.3. Boundary conditions
	5.4. On the almost everywhere regularity of u(a)m

	6. Properties of the potential V
	6.1. Admissible frequencies
	6.2. Decomposition of the potential
	6.3. The critical points of V0 and the structure of trapping
	6.4. Superradiant frequencies are not trapped
	6.5. Trapping for fixed-azimuthal mode solutions
	6.6. Aside: relation with null geodesic flow

	7. The separated current templates
	7.1. The frequency-localised virial currents JX,w
	7.2. The frequency-localised conserved energy currents

	8. The frequency localised multiplier estimates
	8.1. The frequency ranges
	8.2. Overview
	8.3. The G range
	8.4. The G range
	8.5. The G1mu-9mu 6pt_ range
	8.6. The G range
	8.7. The G range
	8.8. Putting everything together
	8.9. Trapping parameters
	8.10. A fixed-m variant

	9. Summing and integrated local energy decay for future-integrable solutions
	9.1. Future-integrable solutions of the wave equation
	9.2. Finite in time energy estimate
	9.3. Adding in the red-shift
	9.4. Adding in the large r current
	9.5. Boundedness of the energy flux to I+
	9.6. Error terms associated to the cutoff
	9.7. The nonstationary bounded frequency horizon term
	9.8. An inhomogeneous estimate

	10. The higher-order statement for future-integrable solutions
	10.1. Elliptic estimates
	10.2. Proof of Proposition 10.1

	11. The continuity argument
	11.1. The reduction to fixed azimuthal frequency
	11.2. Openness
	11.3. Closedness

	12. The precise integrated local energy decay statement
	13. Energy boundedness
	13.1. Boundedness of [A0+,A1-]JN[]n
	13.2. Boundedness of [r+,A0+]JN[]n and [A1-,)JN[]n
	13.3. Putting everything together and the higher-order statement

	References

