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Perverse sheaves over
real hyperplane arrangements

By Mikhail Kapranov and Vadim Schechtman

Abstract

Let H be an arrangement of real hyperplanes in Rn. The complexifica-

tion of H defines a natural stratification of Cn. We denote by Perv(Cn,H)

the category of perverse sheaves on Cn smooth with respect to this strati-

fication. We give a description of Perv(Cn,H) as the category of represen-

tations of an explicit quiver with relations, whose vertices correspond to

real faces of H (of all dimensions). The relations are of monomial nature:

they identify some pairs of paths in the quiver. They can be formulated in

terms of the oriented matroid associated to H.
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0. Introduction

0.1. Let X be a smooth complex algebraic variety and X = (Xα) be

a complex algebraic Whitney stratification of X. Fix a base field k. One

then has the abelian category Perv(X,X ) of X -smooth perverse sheaves of

k-vector spaces on X; see [2], [25]. Understanding this category is one of the

central problems of topology of algebraic varieties. In many applications it
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is important to have an explicit description of Perv(X,X ) as the category of

k-representations of some quiver with relations. General microlocal methods

[1], [29], [18] provide a way to approach such a description in principle: an

object F ∈ Perv(X,X ) gives rise, for each α, to a “local system of Morse data”

Lα on some open part of the conormal bundle T ∗XαX, and the strategy is then

to try to glue the categories formed by the Lα into a single abelian category

by an inductive procedure, adding one stratum at a time. However, there

are only a very few higher-dimensional examples where a complete description

has been obtained: normal crossings [15], Grassmannians with the Schubert

stratification [7], rectangular matrices with the rank stratification [9].

0.2. In this paper we consider the case when X = Cn and X is given by

an arrangement HC of linear hyperplanes in X with real equations (so HC is

the complexification of an arrangement H of hyperplanes in Rn). We denote

the corresponding category Perv(Cn,H) and give a complete, combinatorial

description of it in terms of the following data:

(1) The poset (partially ordered set) (C,≤) of faces, i.e., convex locally closed

subsets of all dimensions into which H stratifies Rn. The order ≤ is given

by inclusion of the closures of the faces; see Section 2.A.

(2) The concept of collinearity. We call an ordered triple of three faces (A,B,C)

collinear if there are points a ∈ A, b ∈ B, c ∈ C such that b lies in the

straight line segment [a, c].

Here the order is important. For example, a triple (A,A,B) is always

collinear, whereas (A,B,A) is not if B 6= A.

Note that these data can be recovered from the oriented matroid associated to

H; see [5] and Proposition 7.4 below. See also (0.5) below.

Let us denote by Rep(2)(C) the category formed by double representations

of C, i.e., of diagrams consisting of finite-dimensional k-vector spaces EC , C ∈ C
and linear operators

γC′C : EC′ −→ EC , δCC′ : EC −→ EC′ , C
′ ≤ C,

such that the γC′C form a representation of (C,≤), and the δCC′ form a rep-

resentation of the opposite poset (C,≥), in k-vector spaces. Our main re-

sult, Theorem 8.1, is that Perv(Cn,H) is equivalent to the full subcategory in

Rep(2)(C) consisting of representations satisfying the following three conditions:

Monotonicity: For any C ′ ≤ C , we have γC′CδCC′ = IdEC .

This allows us to define, for any A,B ∈ C, the transition map

φAB = γCBδAC : EA −→ EB,

where C is any cell ≤ A,B. For example, φAA = IdEA .

Transitivity: If (A,B,C) is a collinear triple of faces, then φAC =

φBCφAB .
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Note that this relation does not imply that φABφBA = IdEB
.

Invertibility: If C1, C2 are faces of the same dimension d, lying in the

same d-dimensional subspace, on the opposite sides of a (d − 1)-dimensional

face D, then φC1C2 is an isomorphism.

Let L ⊂ X be a flat, i.e., an intersection of some hyperplanes from HC,

of dimension d. The last two conditions mean that the spaces EC and the

maps φCC′ where C,C ′ run through all d-dimensional faces inside L, form a

local system over L◦ = L \ ∪H∈HCH. This follows from a description of the

fundamental groupoid of L◦ given in Proposition 9.11.

0.3. The type of description of Perv(Cn,H) that we obtain is quite dif-

ferent from those appearing in most of the earlier approaches. More precisely,

(a) It is of monomial nature: the conditions on the maps γC′C , δCC′ do

not appeal to the operations of addition or multiplication by scalars but only

to composition of maps. For comparison, in the most classical case of X = C
stratified by {0} and C \ {0}, the standard description [1], [15] is in terms of

diagrams {Φ
v //

Ψ}
u
oo such that IdΨ +vu is invertible, so it is not monomial.

(See Section 9 for the comparison of the two descriptions in this case.) Note

that with a monomial description one has the means to define what should be

a “perverse sheaf of sets,” or a “perverse stack of categories” on Cn smooth

with respect to HC; cf. [22].

(b) Since the strata Xα are, in our situation, generic parts of the complex

flats LC of H; see Section 2.D, the local systems Lα of Morse data in the stan-

dard approach are defined on some open parts of T ∗LC
Cn. Our linear algebra

data provide maps (φC1,C2 in the invertibility condition) that can be related,

in the sense outlined in (d) below, to half-monodromies of appropriate Lα cor-

responding to paths joining neighboring cells and going around the wall in the

complex domain. This is different from a more straightforward approach when

a local system is described by its monodromies corresponding to closed loops.

It is a known phenomenon in the theory of quantum groups that a typi-

cal monodromy matrix M of the Knizhnik-Zamolodchikov equation has quite

complicated matrix elements, whereas the two half-monodromies M+ and M−
of which it is composed via M = M+M− are of much simpler (monomial)

nature; cf. [36].

(c) From the purely topological point of view, our approach emphasizes not

the fundamental groups but the fundamental groupoids of the complex strata,

with as many base points as there are different faces in the same stratum. The

simpler nature of relations is achieved therefore by introducing a certain redun-

dancy in our description: to each complex stratum we associate not a single

vector space (as in the standard approaches) but several isomorphic spaces EC
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corresponding to different cells C in the stratum. Our approach can thus be

seen as a natural development of the work of Salvetti [33], Gelfand-Rybnikov

[16] and Björner-Ziegler [6] who studied the topology of complexified arrange-

ments by real methods and formulated the results in terms of oriented matroids.

(d) The spaces EC appearing in our description are not obtained as the

stalks of the local systems Lα at appropriate points (as in most of the stan-

dard approaches). The indexing sets for the EC and the Lα are already quite

different. Instead, EC can be identified, noncanonically, with direct sums of

several such stalks (involving several different Lα). This can be surmised al-

ready from the monotonicity condition that implies dim(EC′) ≥ dim(EC) for

C ′ ≤ C. In particular, the “biggest” space E0 has the dimension equal to the

sum of the ranks of all the local systems corresponding to all the strata. In our

approach, E0 can be identified with the space of hyperfunction solutions of the

holonomic D-module M corresponding to the perverse sheaf. More generally,

for any face C, the space EC is the stalk, at any point c ∈ C, of the sheaf

of hyperfunction solutions of M, i.e., the space of such solutions defined in a

small neighborhood of c in Rn.

The study of the spaces of hyperfunction solutions in 1 dimension (i.e.,

for C stratified by {0} and C \ {0}) goes back to the very origins of the theory

of D-modules as presented in Kashiwara’s 1971 Master Thesis [24, Th. 4.2.7]

and to the paper of Komatsu [27] from the same year. These works identify

the dimension of the space E0 in this case with what in the “standard” (much

later) description would be denoted by dim(Φ ⊕ Ψ). Higher-dimensional gen-

eralizations were found in the papers of Takeuchi [39] and Schürmann [38] of

which the first considers precisely the situation of the complexification of a

real arrangement. Spaces that turn out to be identical with our EC have also

appeared in the work of Bezrukavnikov, Finkelberg and one of the authors, [3],

under the name “generalized vanishing cycles.” In fact, it was conjectured in

[3, p. 50] that a perverse sheaf F can be uniquely reconstructed from the linear

algebra data equivalent to our (EC , γC′C , δCC′). From this point of view, we

not only prove the conjecture of [3] but find an explicit characterization of the

linear algebra data that can appear.

0.4. Our method is closest to that of Galligo, Granger and Maisonobe [15]

(who attribute the original idea to Malgrange). That is, we construct a version

of Cousin resolution of a perverse sheaf F ∈ Perv(Cn,H) using a stratification

of Cn into “tube cells” C+ iRn, C ∈ C, so the terms of the resolution are direct

sums of the sheaves of cohomology with supports in such tubes. It turns out

that for each C, only the sheaf EC = Hcodim(C)
C+iRn (F) is nonzero, and EC can be

identified with the space of global sections of this sheaf. The main technical

point of our study is that the entire Cousin complex E• formed by the EC can
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be recovered from linear algebra data represented by the EC , γC′C and δCC′

and that HC-smoothness and perversity of E• ' F are precisely equivalent to

the three conditions above.

0.5. The concept of collinearity of a triple of faces contains, as a partic-

ular case, the familiar condition

(∗) l(w′w′′) = l(w′) + l(w′′), w′, w′′ ∈W.

Here W is the Weyl group of a root system (h,∆). In this case we have the

arrangement H = {α⊥}α∈∆ of root hyperplanes in h. Chambers (open faces) of

H form a W -torsor, so for any two chambers A,B, there is a unique wAB ∈W
such that wAB ·A = B. A triple of chambers (A,B,C) is collinear if and only if

w′ = wBC and w′′ = wAB satisfy (∗). The transitivity property φAC = φBCφAB
of our double representations is thus reminiscent of the classical Gindikin-

Karpelevich factorization formula (cf. [20, Th.1]) and of the cocycle property of

the principal series intertwiners [26], [37], [31] (which is another manifestation

of that formula).

0.6. We are grateful to Misha Finkelberg for useful discussions and to

Persi Diaconis for showing us some interesting references. We would like to

thank Pierre Schapira for a useful correspondence at the early stage of this

work. We are particularly grateful to the referees for many remarks that helped

us improve the paper. These remarks included suggestions for simplifying

several arguments as well as pointing out some erroneous ones, which we have

corrected. M.K. would like to thank Université Paul Sabatier for hospitality

and financial support during a visit when a substantial part of this work was

carried out. His work was also supported by World Premier International

Research Center Initiative (WPI Initiative), MEXT, Japan and by the Max-

Planck-Institut für Mathematik, Bonn, Germany.

1. Generalities

1.A. Postnikov systems. Let D be a triangulated category. A left Post-

nikov system in D is a diagram of exact triangles of the form

A = A01···n A1···n A2···n · · · An−1,n An 0

A0 A1 · · · · · · An−1 An.

α0
β0+1 α1

+1 β1 α2
+1 αn−1

+1 βn−1
αn

It gives rise to a sequence of objects and morphisms in D

(1.1) A0
δ0−→ A1[1]

δ1−→ A2[2]
δ2−→ · · · δn−1−→ An[n], δi = αi+1βi.
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Similarly, a right Postnikov system in D is a diagram of exact triangles of

the form

A = A01···n A0···n−1 A0···n−2 · · · A01 A0 0

An An−1 · · · · · · A1 A0.

α′n
β′n+1
α′n−1

+1 β′n−1
α′n−2

+1
α′1

+1 β′1
α′0

It gives rise to a sequence of objects and morphisms in D

(1.2) A0
δ′0−→ A1[1]

δ′1−→ A2[2]
δ′2−→ · · ·

δ′n−1−→ An[n], δ′i = β′i+1α
′
i.

Proposition 1.3. Suppose we have a left resp. right Postnikov system in

D. Then

(a) The sequence (1.1) resp. (1.2) is a complex in D, i.e., δi+1δi = 0, resp.

δ′i+1δ
′
i = 0.

(b) Suppose, in addition, that D = Db(A) is the bounded derived category of

an abelian category A, and assume that each Ai[i] is quasi-isomorphic to

an object Bi ∈ A, so Bi = H i(Ai) is the only cohomology object of Ai.

Then the complex in A

B0 −→ B1 −→ · · · −→ Bn

induced from (1.1) resp. (1.2) by passing to H0 is an object of Db(A) = D,

isomorphic to A.

Proof. (a) follows because the composition of two consecutive morphisms

in an exact triangle is equal to 0. Part (b) is proved by induction on the length

of the Postnikov system. �

Remark 1.4. In general, the left or right Postnikov system as above ex-

hibits A as a total object of the complex (1.1) or (1.2); see [19, Ch. 4, §2].

1.B. Filtered topological spaces. By a space we mean a topological space

homeomorphic to an open subset of a finite CW-complex. We fix a base field k.

For a space X, we denote by ShX the category of sheaves of k-vector spaces on

X and by Db ShX the corresponding bounded derived category. For any map

f : X → Y of spaces, we have the standard functors f∗, f ! : Db ShY → Db ShX
and f∗, f! : Db ShX → Db ShY . In particular, we reserve the notation f∗ for

the derived direct image functor and denote the usual direct image functor on

sheaves by R0f∗. If j : Y ↪→ X is an embedding of a locally closed subspace,

then we denote by

RΓY (F) = j∗j
!F

the complex of “cohomology with support in Y .”
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If V is a k-vector space, then we denote by V X the constant sheaf on X

with stalk V . If i : Z ↪→ X is the embedding of a closed subspace, then, by a

slight abuse of notation, we consider V Z as a sheaf on X via the direct image

functor i∗.

Let X be a space and

X =
¶
X0 ⊂ X1 ⊂ · · · ⊂ Xn = X

©
be a filtration of X by closed subspaces. We then have the locally closed

subspaces Yd = Xd \Xd−1 and denote by

id : Xd ↪→ X, jd : Yd ↪→ X

the embeddings.

Any complex of sheaves F ∈ Db ShX includes into two canonical Post-

nikov systems, which we call the cohomological (right) and homological (left)

Postnikov systems of F relative to the filtration X . The cohomological system

has the form

F = in!i
∗
nF (in−1)!i

∗
n−1F (in−2)!i

∗
n−2F · · · i1!i

∗
1F i0!i

∗
0F 0

jn!j
∗
nF (jn−1)!j

∗
n−1F · · · · · · j1!j

∗
1F j0!j

∗
0F

+1 +1 +1 +1

and gives rise to the complex in Db ShX

(1.5) j0!j
∗
0F −→ j1!j

∗
1F [1] −→ · · · −→ jn!j

∗
nF [n].

If all the jν!j
∗
νF [ν] are quasi-isomorphic to single sheaves in degree 0, this

complex has total object F . The homological system has the form

F = in∗i
!
nF (in−1)∗i

!
n−1F (in−2)∗i

!
n−2F · · · i1∗i

!
1F i0∗i

!
0F 0

jn∗j
!
nF (jn−1)∗j

!
n−1F · · · · · · j1∗j

!
1F j0∗j

!
0F

+1 +1 +1 +1

and gives rise to a complex in Db ShX

(1.6) jn∗j
!
nF −→ (jn−1)∗j

!
n−1F [1] −→ · · · −→ j0∗j

!
0F [n].

If all the (jn−ν)∗j
!
n−νF [ν] are quasi-isomorphic to single sheaves of degree 0,

this complex has total object F .
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1.C. Verdier duality. For a space X, we denote by

D : Db ShX −→ Db ShX

the Verdier duality functor; see [25, 43]. We recall that D interchanges the

functors f∗ and f!, as well as the functors f∗ and f ! for any continuous map f

of spaces.

Let X be a real analytic manifold of dimension d. We denote by orX the

orientation local system on X. This is the rank 1 local system of k-vector

spaces whose stalk at x ∈ X is Hd
c (U,k), where U is any open neighborhood

of X homeomorphic to a d-ball. In this case

D(F) = RHom(F , orX [d]),

and we denote by

(1.7) FF = D(F)[−d] = RHom(F , orX)

the shifted Verdier duality that has the advantage of preserving local systems

in degree 0.

We further denote by Db
constr ShX ⊂ Db ShX the subcategory formed by

R-constructible complexes, i.e., by complexes whose cohomology sheaves are

R-constructible [25]. The functor D preserves the subcategory Db
constr ShX and

its restriction there is a perfect duality. The same is true for F.

If X is a filtration of X by real analytic subsets, then D takes the cohomo-

logical Postnikov system for F to the homological Postnikov system for D(F)

for any R-constructible complex F .

1.D. Cellular sheaves and complexes. For background on cellular spaces

and sheaves, we refer the reader to [11], [32], [44], [45]. Here we present a

(self-contained) synopsis of features needed in the rest of the paper.

By a d-cell we mean a topological space homeomorphic to an open d-ball.

For a d-cell σ, we denote by

or(σ) = Hd
c (σ,k)

its 1-dimensional orientation space. For constant sheaves on σ, the Verdier

duality has the form

D(V σ) = V ∗ ⊗k or(σ)
σ
[d].

By a cellular space we will mean a space with a filtration X by closed subspaces

such that each Xd = Xd \Xd−1 is a disjoint union of finitely many d-cells. We

denote by C = CX the set of all cells of X together with the partial order

σ′ ≤ σ ⇔ σ′ ⊂ σ.

By a slight abuse of language we will refer to the relation ≤ as cell inclusion

although, set-theoretically, it is the closures of the cells that are included.
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For a cell σ of a cellular space X, we denote by jσ : σ → X the corre-

sponding embedding. A cellular space X will be called regular if the closure

of each d-cell is homeomorphic to a closed d-ball. A cellular space X will be

called quasi-regular if it can be represented as X ′ − X ′′, where X ′ is a regu-

lar cellular space and X ′′ is a closed cellular subspace (union of some cells of

X ′) that is then also regular. In the sequel all cellular spaces will be assumed

quasi-regular.

For any k-vector space V , we have an identification in Db ShX :

V σ = jσ∗V σ = R0jσ∗V σ.

A cellular sheaf on X (with respect to X ) is, by definition, a sheaf F on X

such that each j∗σF is a constant sheaf on σ with finite-dimensional stalks. We

denote by ShX,X the category of cellular sheaves on X with respect to X and

by Db
X (ShX) ⊂ Db ShX the full subcategory of complexes whose cohomology

sheaves lie in ShX,X .

For a cellular sheaf F on X, we have the linear algebra data that consists

of stalks Fσ = H0(σ, j∗σF) and generalization maps (terminology taken from

[17])

γσ′σ : Fσ′ −→ Fσ, σ′ ≤ σ

defined as follows. Take a point x′ ∈ σ′. Then Fσ′ = H0(U ′,F), where U ′ is a

sufficiently small contractible neighborhood of x′ in X. Let x ∈ U ′ ∩ σ. Then

Fσ = H0(U,F), where U is a sufficiently small contractible neighborhood of x

in X. Taking U small enough, we can assume U ⊂ U ′. Then γσ′σ is given by

the restriction map

F ′σ = H0(U ′,F)
Res−→ H0(U,F) = Fσ.

The following is by now well known.

Proposition 1.8.

(a) For F ∈ ShX,X , the data (Fσ, γσ′σ) form a representation of the poset

(C,≤), i.e., a covariant functor C → Vectfd
k .

(b) The construction in (a) defines an equivalence of ShX,X with Rep(C) =

Fun(C,Vectfd
k ).

(c) The natural functor

φ : Db Rep(C) = Db ShX,X −→ Db
X (ShX)

is an equivalence of triangulated categories.

Proof. (a) and (b) are obvious; cf. the case of “simplicial complexes” con-

sidered in detail by Kashiwara [23]. In fact, the notion of “exit paths” invented

by MacPherson allows one to formulate and prove analogs of these statements
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for arbitrary stratifications; see [41]. In our present case, the category of exit

paths is equivalent to (C,≤).

To see (c), note that the sheaf jσ∗k corresponds via (b) to the injective

object of Rep(C), i.e., to the covariant functor Rσ : τ 7→ (k HomC(τ, σ))∗ dual

to the representable contravariant one. Therefore for p ∈ Z,

HomDb ShX,X (jσ∗k, jτ∗k[p]) = ExtpShX,X
(jσ∗k, jτ∗k)

= ExtpRep(C)(Rσ.Rτ ) =

k if p = 0, σ ≥ τ,
0 otherwise.

(1.9)

On the other hand, adjointness between j∗τ and jτ∗ gives that

HomDb ShX
(jσ∗k, jτ∗k[p]) = HomDb Shτ (j∗τ jσ∗k,k[p])

and so it is given by the right-hand side of (1.9) as well. This means that the

morphism

φF ,G : HomDb ShX,X (F ,G) −→ HomDb ShX
(F ,G)

is an isomorphism whenever both F and G are shifts of sheaves of the form

jσ∗k, σ ∈ C. Now, each object of ShX,X has a finite resolution by direct sums

of the injective objects jσ∗k. This means that φF ,G is an isomorphism for

any F ,G ∈ Db ShX,X , i.e., that φ is fully faithful. To see that φ is essentially

surjective, note that the cohomological Postnikov system of any object F ∈
Db
X (ShX) shows that F lies in the smallest triangulated category containing

all the jσ∗k. �

Remark 1.10. An object of Db Rep(C) corresponding to F ∈ Db
X (ShX)

by (c) can be seen as “linear algebra data for F at the level of complexes,”

i.e., as a choice of actual complexes of vector spaces F •σ quasi-isomorphic to

RΓ(σ, j∗σF) and actual morphisms of complexes γσ′σ : F •σ′ → F •σ forming a

representation of (C,≤) at the level of complexes.

Proposition 1.11. Let X be a quasi-regular cellular space of dimension

n and F a cellular complex represented by (F •σ , γσ′σ). Then the the complex

D(F [n]) is quasi-isomorphic to the total complex of the double complex⊕
codim(σ)=0

F ∗σ ⊗ or(σ)
σ
−→

⊕
codim(σ)=1

F ∗σ ⊗ or(σ)
σ
−→ · · · .

Here each summand is a complex of constant sheaves on the closed cell.

This is a combinatorial version of the Cousin complex.

Proof. First let F be a cellular sheaf (not a complex) on X, so the F •σ = Fσ
are vector spaces. The cohomological Postnikov system for F relative to X
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gives a complex in Db ShX

(1.12)
⊕

dim(σ)=0

jσ!(Fσσ) −→
⊕

dim(σ)=1

jσ!(Fσσ)[1] −→ · · ·

whose total object is F . Applying the exact functor D[−n] to (1.12), we get

a complex in Db ShX described in the proposition, with total object F . By

Proposition 1.3(b), this complex represents D(F [n]).

The general case follows by compatibility of D[−n] with forming total

complexes of double complexes. �

Remark 1.13. If F is a cellular sheaf as above and X is regular, then

RΓ(jσ!Fσσ) = RΓc(σ, Fσ) = Fσ ⊗ or(σ)[−dim(σ)]

and so from (1.12), we get a complex in Db Vectfd
k⊕

dim(σ)=0

Fσ ⊗ or(σ) −→
⊕

dim(σ)=1

Fσ ⊗ or(σ) −→ · · ·

whose total object is RΓ(X,F). By Proposition 1.3(b), this complex represents

RΓ(X,F). This is the “standard cellular cochain complex” of F . Compare

also with the well-known fact that the geometric realization of the simplicial

nerve of (C,≤) is, for a regular X, homeomorphic to X.

2. Background on real arrangements and the three stratifications

2.A. Faces and sign vectors. Let V be a finite-dimensional real vector

space and H be an arrangement of linear hyperplanes in V . Note that, in

particular, 0 ∈ H for any hyperplane H ∈ H. We choose, once and for all, a

linear equation fH : V → R for each H ∈ H. (The essential concepts that we

define will not depend on the choice.)

By L = LH we denote the poset of flats ofH, i.e., of linear subspaces of the

form
⋂
H∈I H for various subsets I ⊂ H. Note that L contains V (for I = ∅).

We will assume that {0} ∈ L. This can always be achieved by quotienting

by the smallest flat of H, without changing the combinatorial structure of the

arrangement.

In the sequel we also assume V = Rn for simplicity. We denote by

sgn : R −→ {+,−, 0}

the standard sign function. By a sign vector we will mean a sequence (sH)H∈H
∈ H{+,−,0} assigning a “sign” to each element of H. Each x ∈ Rn gives rise to

a sign vector (sgn fH(x))H∈H. Level sets of this vector function subdivide Rn
into locally closed subsets called faces. Thus x and x′ lie in the same face, if
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and only if sgn fH(x) = sgn fH(x′) for each H ∈ H. We will sometimes identify

a face C with the corresponding sign vector

C ↔ (CH)H∈H, CH = sgn(fH |C) ∈ {+,−, 0}.

Faces are convex subsets of Rn, each given by a system of linear equations and

strict linear inequalities [3], [33], [35], [42]. Open faces will be called chambers.

We denote by C = CH the poset of faces, with the partial order given by C ′ ≤ C,

if C ′ ⊂ C. Note that C does not depend on the choice of equations fH , both

as a poset and as a stratification. For x ∈ Rn, we denote by σ(x) = σH(x) ∈ C
the face containing x. Similarly, if X ⊂ Rn is a subset contained in one face,

we denote by σ(X) = σH(X) this face.

The faces form a quasi-regular cell decomposition of Rn that we also denote

C. (Taking the one-point compactification of Rn to a sphere, we embed (Rn, C)
into a regular cellular space.)

We also write

C ′ <1 C, if C ′ ≤ C and dim(C ′) = dim(C)− 1

and call this relation codimension 1 inclusion of faces.

Alternatively, let us introduce a partial order ≤ on {+,−, 0} in which the

only nontrivial inequalities are

(2.1) 0 ≤ +, 0 ≤ −

(and + and − are incomparable). This is the order of inclusion of the subsets

{x ≥ 0}, {x ≤ 0} and {x = 0} in R. Further, introduce on H{+,−,0} the

Cartesian product partial order. Then

C ≤ D ⇔ CH ≤ DH for each H ∈ H;

i.e., C ↪→ H{+,−,0} is an embedding of posets.

2.B. Functoriality of faces. Any L ∈ L gives rise to two induced hyper-

plane arrangements:

• the arrangement H ∩ L in L, formed by the H ∩ L, H ∈ H, H 6⊃ L;

• the arrangement H/L in V/L, formed by the H/L, H ∈ H, H ⊃ L.

Therefore we have the face stratifications CH∩L and CH/L of these arrange-

ments.

For any face C ∈ C, we denote by L(C) the R-linear subspace in Rn
spanned by C and denote by

πC : Rn −→ Rn/L(C)

the projection. Note that πC induces an isomorphism of posets

(2.2) πC : C≥C '−→ CH/L(C), D 7→ D/L(C).
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Here C≥C is the star of C, i.e., the poset of D ∈ C = CH such that D ≥ C. For

such a D, we denote D/L(C) = πC(D) (which is a face of H/L(C)).

2.C. Composition of faces. Let (Σ,≤) be a poset. As usual, we write

a < b if a ≤ b and a 6= b. Following [6], introduce a binary operation ? on Σ,

called composition, by

a ? b =

b if a < b,

a otherwise.

This operation is associative but not commutative in general. If ≤ is a to-

tal order, then a ◦ b = max(a, b) is commutative. Thus ? can be seen as a

generalization of the maximum to partially ordered sets.

We are interested in the case when Σ = {+,−, 0} with the partial order

(2.1). Define an associative operation ◦ on the set H{+,−,0} of sign vectors by

putting

(s ◦ t)H = sH ? tH , H ∈ H.

Proposition 2.3. Let C,D ∈ C be two faces with corresponding sign

vectors (CH)H∈H and (DH)H∈H. Then

(a) The sign vector (CH ◦DH)H∈H corresponds to a (necessarily unique) face

C ◦D. We thus obtain an associative binary operation ◦ on C.

(b) Explicitly, choose any c ∈ C, d ∈ D. Then

C ◦D = σ
Ä
(1− ε)c+ εd

ä
, 0 < ε� 1

is the cell containing a small displacement of c in the direction of d.

(c) Alternatively, C ◦ D is the minimal cell K ∈ C such that K ≥ C and

K + L(C) ⊃ D.

Remark 2.4. The operation ◦ on C is the cornerstone of the “covector”

axiomatization of oriented matroids; see [5, Axioms 4.1.1]. An arrangement of

hyperplanes in Rn gives a representable oriented matroid; see loc. cit. §2.1. In

this way, isomorphism classes of representable oriented matroids are in bijection

with combinatorial equivalence classes of real hyperplane arrangements.

The characterization in (b) is also taken from loc. cit. §4.1.

The operation ◦ was introduced (in a slightly different context) by Tits

under the name of “projection”; cf. [40, 3.19]. It plays a basic role in the studies

of random walks on hyperplane arrangements; cf. [10] and references therein.

Proof of Proposition 2.3. Parts (a) and (b) follow from the next lemma,

whose verification is left to the reader.

Lemma 2.5. Let x, y ∈ R. Then, for 0 < ε� 1, we have

sgn
Ä
(1− ε)x+ εy

ä
= sgn(x) ? sgn(y).
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Part (c) follows from (b). Indeed, (b) implies that (C ◦D) + L(C) ⊃ D.

Conversely, suppose K ≥ C and K + L(C) ⊃ D. We claim that K ≥ C ◦D;

that is, KH ≥ CH ? DH for each H ∈ H. We already know that KH ≥ CH ,

since K ≥ C. We need to prove that whenever DH > CH , we also have

KH ≥ DH . But DH > CH means that CH = 0 and DH 6= 0; that is, C ⊂ H

but D 6⊂ H. The statement that KH ≥ DH means therefore KH = DH ; that

is, K and D lie on the same side of H. But this is clear since D ⊂ K + L(C)

and L(C) ⊂ H since C ⊂ H. �

For future reference, let us note yet another characterization of C ◦ D.

Consider the image πC(D) ⊂ Rn/L(C). This image lies in one face but

may not itself be a face of the quotient arrangement H/L(C). We denote

by σH/L(C)(πC(D)) ∈ CH/L(C) the cell of H/L(C) containing πC(D).

Proposition 2.6. C ◦D = π−1
C σH/L(C)(πC(D)), where πC is the isomor-

phism of posets from (2.2).

Proof. This is a reformulation of Proposition 2.3(c). �

We further note the following monotonicity properties of the composition.

Proposition 2.7.

(a) If D′ ≤ D, then for any C , we have C ◦D′ ≤ C ◦D.

(b) For any C and D, the flat L(C ◦D) is the minimal flat L ∈ LH containing

both L(C) and L(D). In particular, if C ′ ≤ C , then for any D, we have

L(C ′ ◦D) ⊂ L(C ◦D).

Proof. (a) follows from the obvious fact that the operation a?b on a poset

Σ is monotone in the second argument. Part (b) follows because

L(C ◦D) =
⋂

CH?DH=0

H,

and CH ? DH = 0 means that CH = DH = 0, i.e., C,D ⊂ H. �

Remark 2.8. Note that ◦ is not monotone in the first argument; that is,

the condition C ′ ≤ C does not imply that C ′ ◦ D ≤ C ◦ D. To obtain a

counterexample, it suffices to take C ′ = 0. Then C ′ ◦D = D for any D. So if

D 6≥ C, then 0 ◦D 6≤ C ◦D.

2.D. Complexified arrangement and its stratifications. Let VC = Cn be the

complexification of V = Rn. For z ∈ Cn, we denote by <(z),=(z) ∈ Rn its real

and imaginary parts. For L ∈ L, we denote by LC ⊂ Cn its complexification.

Accordingly, we write LC(X) for the C-linear span of X ⊂ Cn. Therefore

we have the complexified arrangement HC of complex hyperplanes in VC = Cn,

formed by the HC, H ∈ H. We will be interested in three natural stratifications

of Cn induced by H.
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The complex stratification S(0) consists of the open parts of the complex-

ified flats

L◦C = LC \
⋃
H 6⊃L

HC.

The s(2)-stratification S(2) = C+iC consists of direct product cells C+iD,

C,D ∈ C. It makes Cn into a quasi-regular cellular space.

The s(1)-stratification S(1) consists of cells [C,D] defined for any face in-

terval, by which we mean a pair C,D ∈ C such that C ≤ D. By definition,

[C,D] consists of z ∈ Cn such that

(a) =(z) ∈ C,

(b) <(z) lies in π−1
C (πC(D)).

For example, [0, D] = D + i0.

Note that dim[C,D] = dim(C) + dim(D). Notice also that for different

pairs (C,D) 6= (C ′, D′), we have [C,D] ∩ [C ′, D′] = ∅; i.e., the strata of S(1)

are precisely labelled by the pairs (C ≤ D). The stratification S(1) also makes

Cn into a quasi-regular cellular space.

The stratifications S(ν), ν = 1, 2, were introduced and studied by Björner

and Ziegler [6]. They use a slightly different definition, based on the following

two complex generalizations of the sign function: the obvious one

s(2) : C −→ {+,−, 0}2, s(2)(a+ bi) = (sgn(a), sgn(b)),

and the less obvious one

s(1) : C −→ {i, j,+,−, 0}, s(1)(a+ bi) =



i if b > 0,

j if b < 0,

+ if b = 0 and a > 0,

− if b = 0 and a < 0,

0 if b = a = 0.

Proposition 2.9. Two vectors z, w ∈ Cn lie in the same stratum of S(ν),

ν = 1, 2, if and only if we have s(ν)(fH(z)) = s(ν)(fH(w)) for each H ∈ H.

Proof. Obvious for ν = 2. For ν = 1, this is the content of Theorem 5.1(ii)

of [6]. �

We will view each S(ν), ν = 0, 1, 2, as a poset, i.e., as the set of strata

with the partial order ≤ defined by S′ ≤ S if and only if S′ ⊂ S.

Proposition 2.10.

(a) Denoting by ≺ the relation of refinement of stratifications, we have

S(2) ≺ S(1) ≺ S(0).
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In particular, we have order preserving maps of posets S(2) → S(1) → S(0)

describing which stratum of S(ν−1) contains a given stratum of S(ν), ν =

1, 2. These maps are as follows :

(b) The stratum of S(0) containing a cell [C,D] ∈ S(1), C ≤ D, is LC(D)◦.

(c) The stratum of S(1) containing a cell D + iC ∈ S(2), is [C,C ◦D].

(d) For two cells [C ′, D′] and [C,D] of S(1), we have [C ′, D′] ≤ [C,D] if and

only if C ′ ≤ C and C ◦D′ ≤ D.

Proof. (a) Note that the stratification S(0) can also be described in the

style of Proposition 2.9, by using the sign-type function

s(0) : C −→ {0, ∗}, s(0)(z) =

0 if z = 0,

∗ if z 6= 0.

The statement follows since the three stratifications of C induced by the three

sign functions s(ν), ν = 0, 1, 2, refine each other as claimed.

(b) The R-linear span of π−1
C (πC(D)), the allowable range for <(z), z ∈

[C,D], is L(D). So [C,D] cannot be contained in any C-linear subspace strictly

smaller than LC(D). Also, by construction it is indeed contained in LC(D),

since the allowable range for =(z) is C ⊂ D.

(c) This follows by definition of C ◦D.

(d) This is Proposition 5.2 of [6]. �

3. Constructible complexes on arrangements

We keep the notation of the previous section, in particular, concerning the

three stratifications S(ν) of Cn, ν = 0, 1, 2, induced by the arrangement H.

3.A. Constructible sheaves. A sheaf F ∈ ShCn will be called S(ν)-smooth

if it is locally constant on each stratum of S(ν). We will say that F is

S(ν)-constructible if it is S(ν)-smooth with finite-dimensional stalks. A complex

F ∈ Db ShCn will be called S(ν)-smooth (resp. S(ν)-constructible) if all the co-

homology sheaves of F are S(ν)-smooth (resp. S(ν)-constructible). We denote

by Db
S(ν) ShCn ⊂ Db ShCn the full subcategory of S(ν)-constructible complexes.

In particular, for ν = 2, 1, since S(ν) is cellular, an S(ν)-smooth sheaf F
is uniquely defined by its cellular stalks and generalization maps, which we

denote, respectively, as follows:

(3.1)
F
∣∣∣
D+iC

, γFD′+iC′,D+iC : F
∣∣∣
D′+iC′

−→ F
∣∣∣
D+iC

, D′ ≤ D, C ′ ≤ C,

F[C,D] = F
∣∣∣
[C,D]

, γF[C′,D′],[C,D] : F[C′,D′] −→ F[C,D], [C ′, D′] ≤ [C,D].

We use similar notation for the case when F is an S(ν)-smooth complex. In

this case the stalks are complexes of vector spaces and we can assume, by using
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Proposition 1.8(c), that the generalization maps are morphisms of complexes

forming a representation of the poset of cells.

3.B. From S(1)-smoothness to S(0)-smoothness. We will need to compare

the conditions of smoothness with respect to different stratifications.

Definition 3.2. An inclusion of s(1)-cells [C ′, D′] ≤ [C,D] will be called

elementary if one of the two following cases hold:

(1) C ′ ≤ C and D′ = D, so we have a flag C ′ ≤ C ≤ D.

(2) C = D, L(D) = L(D′), dim(C ′) = dim(D′) − 1, and C ′ ≤ D. In other

words, C ′ is a codimension 1 “wall” separating D and D′.

Proposition 3.3. Let F be an S(1)-smooth sheaf. The following are

equivalent :

(i) F is S(0)-smooth ;

(ii) the map γF[C′,D′],[C,D] is an isomorphism for each elementary inclusion

[C ′, D′] ≤ [C,D].

Proof. The tautological equivalent of (i) is

(iii) The map γF[C′,D′],[C,D] is an isomorphism for each inclusion [C ′, D′] ≤
[C,D] such that L(D′) = L(D).

Indeed, by Proposition 2.10(b), inclusions in (iii) are precisely all inclusions

of s(1)-cells in the same s(0)-stratum. Clearly (iii) is stronger than (ii). So we

need to prove that (ii) implies (iii).

To prove (iii), it is enough to fix L ∈ L and to concentrate on inclusions

with L(D) = L(D′) = L. For this, we do not need to consider any faces outside

L, so we can and will assume that L = Rn and D and D′ are n-dimensional,

i.e., are chambers.

Let δ(D,D′) be the chamber distance between D and D′, i.e., the minimal

length of a sequence

D = D0, D1, · · · , Dl = D′

such that each Di is a chamber and each Dp, Dp+1 have a codimension 1 face

in common. Thus δ(D,D′) = 0 means that D′ = D.

Let us prove (iii) by induction on δ(D,D′). If δ(D,D′) = 0, i.e., D′ = D,

then our inclusion is of type (1). Consider now an arbitrary inclusion

[C ′, D′] ≤ [C,D], C ′ ≤ C, C ◦D′ = D,

with D′, D being chambers (open faces).

Take generic points c ∈ C, d′ ∈ D′, and form the straight line interval

[c, d′] oriented towards d′. By Proposition 2.3(b), this interval, after leaving

C, first hits D = C ◦D′. Since D′ is a chamber, our interval will, after leaving

D, hit some cell C1 ≥ C ′ of positive codimension, then a chamber D1 ≥ C1,
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•

•c

C

C1· · ·

•d
′ D

D1D′

C ′

Figure 1. Reduction of an inclusion [C ′, D′] ≤ [C,D].

and so on, see Figure 1. Note, that by choosing d′ in a generic enough way, we

can ensure that C1 is of codimension 1, which we will assume. Note also that

δ(D1, D
′) < δ(D,D′).

We then have a commutative square in (the category corresponding to)

the poset (S(1),≤):

[C ′, D′]

q

��

p // [C1, D1]

r

��
[C,D]

s
// [D,D].

In this square, q is our inclusion in question, p is an inclusion with smaller δ,

while r is an inclusion of type (2), and s is an inclusion of type (1). Now, the

generalization maps for F can be seen as a functor γF : (S(1),≤)→ Vectk, so

the above square gives a commutative square of vector spaces. By (ii) and our

inductive assumption, p, r, s are taken by γF into isomorphisms. It remains to

deduce that γF takes q to an isomorphism, invoking the following obvious

Lemma 3.4. If, in a commutative square of morphisms in any category,

three out of four arrows are isomorphisms, then the fourth arrow is an isomor-

phism as well.

Proposition 3.3 is proved. �

3.C. Complexes of cohomology with support and their linear algebra data.

Let F ∈ Db
S(0) ShCn . Define

(3.5) R•F = RΓRn(F)[n] ∈ Db
C(ShRn).

This is a cellular complex on Rn (with respect to C, the stratification by faces

of H). Therefore it can be defined by the linear algebra data consisting of

complexes and generalization maps

(3.6) E•C = E•C(F) = RΓ(C,R•F ), γC′C : E•C′ → E•C , C ′ ≤ C ∈ C
forming a representation of (C,≤) in complexes of vector spaces.
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More generally, let C ∈ C be a face of codimension d. Consider the “tube

face”

(3.7) jC : Rn + iC ↪→ Cn,

and form the complex

(3.8) E•C = E•C(F) = RΓRn+iC(F)[d] = jC∗j
!
C(F)[d].

Thus E•C is an R-constructible complex on Cn, supported on the closure Rn+iC.

We denote by pC , pC the composite projections

(3.9)
Rn + iC

<−→ Rn −→ Rn/L(C),

Rn + iC
<−→ Rn −→ Rn/L(C).

Proposition 3.10. The complex E•C , considered as a complex of sheaves

on Rn + iC has the form p∗CE
•,red
C , where E•,red

C is a complex on Rn/L(C)

cellular with respect to the stratification by faces of the quotient arrangement

H/L(C).

Proof. It is enough to show that j!
CF has the form p∗CE

•,red
C for some E•,red

C

as above, since the derived direct image extension from Rn + iC to Rn + iC

will then proceed along the directions in which p∗CE
•,red
C is constant.

In the remainder of the proof the word “manifold” will mean a C∞-

manifold. For a complex of sheaves G on a manifold X, we denote by SS(G) ⊂
T ∗X the micro-support of G; see [25, Ch. V]. Our desired result about j!

CF
can be reformulated by saying that

(3.11)

SS(j!
CF) ⊂

⋃
Λ∈LH/L(C)

T ∗
p−1
C (Λ)

(Rn + iC)

=
⋃

L∈L, L⊃C
T ∗L+iC(Rn + iC) =

⋃
L∈L, L⊃C

(L+ iC)× L⊥,

where L⊥ ⊂ Rn∗ is the orthogonal to L. We recall the estimate for the micro-

support of the direct image [25, Cor. 6.4.4] specialized to the case of a locally

closed embedding.

For a locally closed submanifold M of a manifold X and a subset S ⊂ X,

we denote by KM (S) the normal cone to S along M ; see [25, Def. 4.1.1]. It

is a closed conic subset of TMX, the normal bundle to M in X. We note the

following properties:

(3.12) KM (S1 ∪ S2) = KM (S1) ∪KM (S2), Sν ⊂ X, ν = 1, 2;

(3.13)
KM1×M2(S1 × S2) = KM1(S1)×KM2(S2) ⊂ TM1(X1)× TM2(X2)

= TM1×M2(X1 ×X2), Mν , Sν ⊂ Xν .
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Given a locally closed embedding of manifolds f : Y → X, the conormal bundle

T ∗YX is a Lagrangian submanifold in T ∗X, and so its normal bundle there can

be written as

TT ∗YX(T ∗X) ' T ∗(T ∗YX).

In particular, the projection T ∗YX → Y gives a closed embedding

T ∗Y ⊂ T ∗(T ∗YX) ' TT ∗YX(T ∗X).

For a complex of sheaves F on X, Corolarry 6.4.4 and Proposition 6.2.4 of [25]

give

(3.14) SS(f !F) ⊂ KT ∗YX
(SS(F)) ∩ T ∗Y,

the intersection inside TT ∗YX(T ∗X).

We now specialize this to

f = jC : Y = Rn + iC −→ Cn = X.

By our assumptions on F ,

SS(F) ⊂
⋃
L∈L

T ∗LCC
n =

⋃
L∈L

LC × L⊥C ⊂ Cn × Cn∗ = T ∗Cn = T ∗X.

We further have

T ∗YX = T ∗Rn+iCCn = (Rn + iC)× iL(C)⊥ ⊂ Cn × Cn∗ = T ∗X.

Therefore

TT ∗YX(T ∗X) =
Ä
(Rn + iC)× iL(C)⊥

ä
×
Ä
i(Rn/L(C))× (Rn∗ + iL(C)∗)

ä
,

in which T ∗Y = T ∗(Rn + iC) is embedded as the product of all the factors

except iL(C)⊥ and i(Rn/L(C)), the coordinates corresponding to these factors

being put to 0. Applying (3.12), we find

(3.15) KT ∗YX
(SS(F)) ⊂

⋃
L∈L

K(Rn+iC)×iL(C)⊥(LC × L⊥C ).

Lemma 3.16. For L ∈ L, we have one of two possibilities :

(1) LC ∩ (Rn + iC) = ∅,
(2) L ⊃ C .

Assuming the lemma, we note that in case (1), LC × L⊥C does not meet

(Rn + iC)× iL(C)⊥ and so will not contribute to the union in (3.15). In case

(2), we write, using (3.13):

K(Rn+iC)×iL(C)⊥(LC × L⊥C ) = K(Rn+iC)×(0+iL(C)⊥)

Ä
(L+ iL)× (L⊥ + iL⊥)

ä
=
Ä
KRn(L) + iKC(L)

ä
×
Ä
K0(L⊥) + iKL(C)⊥(L⊥)

ä
=
Ä
L+ i(C × (L/L(C)))

ä
×
Ä
iL⊥ + (L⊥ × {0})

ä
,

since L⊥ ⊂ L(C)⊥.
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Now, putting the coordinates from iL(C)⊥ and i(Rn/L(C)) to be 0, we

get (L+ iC)×L⊥, which is the contribution of L ⊃ C into (3.11). This proves

Proposition 3.10 modulo Lemma 3.16. �

Proof of Lemma 3.16. By taking intersections, the lemma reduces to the

case when L = H is a hyperplane from H, which we now assume. Let fH :

Rn → R be a linear equation of H. If (1) does not hold for H, then there are

b ∈ Rn, c ∈ C such that

0 = fH(b+ ic) = fH(b) + ifH(c).

Since fH(b), fH(c) ∈ R, this implies that fH(c) = 0 and so fH |C = 0 and

H ⊃ C. Lemma 3.16 and Proposition 3.10 are proved. �

Since E•,red
C is a cellular complex, it is determined by linear algebra data,

which we denote by

(3.17) EC•D , D ∈ CH/L(C), γCD′D : EC•D′ −→ EC•D , D′ ≤ D.

Proposition 3.18. We have canonical identifications (quasi-isomorph-

isms of complexes of k-vector spaces compatible with the maps γ)

EC•D ' E•π−1
C (D)

⊗k or(C), γCD′D = γπ−1
C (D′),π−1

C (D) ⊗ Id .

Here πC is the isomorphism of posets from (2.2).

Proof. Let K = π−1
C (D), so K ≥ C. We start with recalling the definitions

of EC•D and E•K side-by-side. First, we recall the notation d = codimRn(C).

Also let Rn≥C =
⋃
K′≥C K

′, which is an open subset of Rn.

The natural projection π : K → D has contractible fibers. The cohomol-

ogy sheaves of the complex RΓRn+iC(F)[d] are constant on K + iC, while the

cohomology sheaves of RΓRn(F)[n] are constant on K. Set

G′ = RΓRn+iL(C)(F)[d], G = G′|Rn≥C+iL(C).

Because C is open in L(C) and Rn≥C in Rn, we have

EC•D = E•,red
C |D = RΓRn+iC(F)[d]

∣∣∣
K+iC

= G
∣∣∣
K+iC

(restriction of a cellular complex to a cell, considered as a complex of vector

spaces). On the other hand, we have

E•K = RF |K = RΓRn(F)[n]
∣∣∣
K

= RΓRnG′[n− d]
∣∣∣
K

= RΓRn≥C
G[n− d]

∣∣∣
K
.

To compare these, we note that K = K + i0 lies in K + iC but not in K + iC

proper. We use the following

Lemma 3.19. For any K ′ ≥ C , the cohomology sheaves of G are constant

on the whole of K ′ + iL(C). (Hence the restriction of G to K ′ + iL(C) is

quasi-isomorphic to a constant complex of sheaves.)
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This is a consequence of the following analog of Lemma 3.16.

Lemma 3.20. Let H be a hyperplane from H and K ′ ≥ C . Then HC
meets K ′ + iL(C) if and only if HC contains K ′ + iL(C).

Proof of Lemma 3.20. If fH(k′+ iy) = 0 for some k′ ∈ K, y ∈ L(C), then

by taking the real part, we find fH(k′) = 0, and therefore (fH)|K′ = 0. Now,

since C ≤ K ′, (fH)|C = 0 as well and therefore (fH)|L(C) = 0. Therefore

fH(k′ + iy) = fH(k′) + ifH(y) = 0 for each k′ ∈ K ′ and y ∈ L(C). �

Consider now the Cartesian square of embeddings (transverse intersection)

K + iL(C)
v // Rn≥C + iL(C)

K = K + i0

u

OO

t
// Rn≥C = Rn≥C + i0.

s

OO

Lemma 3.19 implies that s is noncharacteristic for G, and therefore we have

“local Poincaré duality” s!G ' s∗G⊗or(C)[d−n];see [25, Cor. 5.4.11]. Therefore

we identify

E•K = Γ(K, t∗s!G[n− d]) ' Γ(K, t∗s∗G ⊗ or(C))

= Γ(K,u∗v∗G ⊗ or(C))
(3.19)

= Γ(K + iL(C), v∗G ⊗ or(C)) = EC•D ⊗ or(C).

Identification of the maps γCD′D is done similarly. Proposition 3.18 is proved.

�

Remark 3.21. Let us indicate another, perhaps more geometric, view on

Proposition 3.18. Let x ∈ C and T be a small transversal slice to L(C) at x,

i.e., a subset of the form S+x where S is a small open ball in a linear subspace

M ⊂ Rn such that M ⊕L(C) = Rn. Thus T fits into a diagram of embeddings

T
ε−→ Rn j0−→ Cn.

The composition of ε with the projection q : Rn → Rn/L(C) is an embedding

of a small ball into Rn/L(C). Proposition 3.18 can be reformulated by saying

that

(qε)∗E•,red
C = ε∗RF ⊗k or(C).

Both sides of this proposed isomorphism can be identified as certain complexes

of cohomology with support. First, by transversality and Poincaré duality,

ε∗RF = ε!RF ⊗k or(C)[n− d],

and so, since RF = j!
0F [n],

ε∗RF = (j0ε)
!F ⊗k or(C)[2n− d].
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Second, take another point y ∈ C and let T ′ = T + iy ⊂ Cn be the translation

of T by iy, fitting into the diagram of embeddings

T ′
ε′−→ Rn + iC

jC−→ Cn.

Then T ′ is transversal to the fibers of pC , and therefore (qε)∗E•,red
C is identified

with (ε′)∗E•C , after identification of T with T ′ via the shift. Again, by transver-

sality of T ′ to the fibers of pC (and the fact that they are canonically oriented,

being complex manifolds), we find that

(ε′)∗E•C = (ε′)!E•C [2n− 2d] = (jCε
′)!F [2n− d].

Using the canonical identification or(C)⊗2 = k, the proposition thus reduces to

the claim that the complexes of cohomology with support in T and T ′ for F are

identified. Further, Lemma 3.20 can be seen as identifying the stratifications

induced by H on T and T ′ and so allows one to prove the desired claim by a

homotopy argument, deforming y to 0.

Corollary 3.22.

(a) The complex E•C of sheaves on Cn is smooth with respect to the stratification

S(1) (and therefore to S(2)).

(b) The stalks and generalization maps of E•C on cells of S(2) are given by

E•C
∣∣∣
iC1+D

=

E•C◦D ⊗ or(C) if C1 ≤ C,
0 otherwise,

γ
E•C
iC′1+D′,iC1+D = γC◦D′,C◦D ⊗ Id, C ′1 ≤ C1 ≤ C, D′ ≤ D.

(c) The stalks of E•C on cells of S(1) are given by

E•C
∣∣∣
[C1,D]

=

E•C◦D ⊗ or(C) if C1 ≤ C,
0 otherwise.

Further, if [C ′1, D
′] ≤ [C1, D] is an inclusion of two S(1)-cells in the support

of E•C , then C ◦D′ ≤ C ◦D, and the corresponding generalization map for

E•C has the form

γ
E•C
[C′1,D

′],[C1,D] = γC◦D′,C◦D ⊗ Id .

In particular, putting C1 = D = {0} in part (b) of the corollary, we get

quasi-isomorphisms

(3.23)
RΓ(Cn, E•C) ' RΓ(Rn/L(C), E•,red

C )

' EC•0 = E•C ⊗ or(C).

At the very right we have the complexes appearing in the description of the

cellular complex R•F .
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Proof of Corollary 3.22. Part (a) follows from Proposition 3.18, because

cells of S(1) are the the lifts of cells of the quotient arrangements, by their

definition in Section 2.D. Part (b) is a simple translation of Proposition 3.18

by using the interpretation of the ◦ operation in Proposition 2.6. The inclusion

C ◦D′ ≤ C ◦D in part (c) is proved as follows.

By Proposition 2.10(d), the condition [C ′1, D
′] ≤ [C1, D] means C ′1 ≤ C1

and C1 ◦D′ ≤ D. The inclusion C1 ≤ C implies that C ◦ C1 = C. Since the

operation ◦ is associative and monotone in the second argument, we then have

C ◦D′ = (C ◦ C1) ◦D′ = C ◦ (C1 ◦D′) ≤ C ◦D.

Once this inclusion is established, part (c) becomes a reformulation of part

(b) using the explicit relation between strata of S(2) and S(1) as given in

Proposition 2.10(c). �

4. Perverse sheaves and double quivers

4.A. The Cousin complex. We keep the notations of the previous section.

Put X = Cn, and consider the filtration of X by closed subspaces

(4.1) Xd =
⋃

dim(C)≤d
Rn + iC,

so that

Yd = Xd \Xd−1 =
⊔

dim(C)=d

Rn + iC.

Let F ∈ Db
S(0) ShCn be an S(0)-constructible complex. We consider the corre-

sponding homological Postnikov system for F . The associated complex in the

derived category with total object F has the form

(4.2) E•• = E••(F) =

® ⊕
codim(C)=0

E•C
δ̃−→

⊕
codim(C)=1

E•C
δ̃−→ · · · δ̃−→ E•0

´
.

Here E•C has been defined in (3.8). In particular, by applying the functor

RΓ(Cn,−), we get a Postnikov system in Db Vectfd
k whose associated complex

with total object RΓ(Cn,F) has the form

(4.3)
⊕

codim(C)=0

E•C⊗or(C)
δ̃−→

⊕
codim(C)=1

E•C⊗or(C)
δ̃−→ · · · δ̃−→ E•0⊗or(0).

We will call (4.3) the Cousin complex of F . In particular, the differential δ̃ of

this complex splits into matrix elements

δ̃CC′ : E•C ⊗ or(C) −→ E•C′ ⊗ or(C ′), C ′ <1 C.
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Note that for a codimension 1 face C ′ of a convex polyhedron C, we have a

canonical coorientation, i.e., a canonical trivialization of or(C)∗⊗or(C ′), which

allows us to write the matrix elements as maps

(4.4) δCC′ = δFCC′ : E•C −→ E•C′ , C ′ <1 C.

Proposition 4.5. The maps of complexes δCC′ commute, i.e., extend

to a contravariant representation of the poset (C,≤) in complexes of k-vector

spaces.

Proof. Indeed, the condition δ̃2 = 0 implies that the δ̃CC′ anticommute, so

the δCC′ commute by the antisymmetry of the orientation isomorphisms. �

Proposition 4.6. We have canonical isomorphisms E•C(FF) ' E•C(F)∗

(dual complexes and adjoint maps) in the derived category of vector spaces.

Further, under these isomorphisms the morphisms of complexes δF
F

CC′ (consid-

ered as morphisms in the derived category) are dual to (γFC′C).

Proof. Since the stratification given byHC is invariant under the C∗-action

on Cn, we can use cohomology with support in iRn instead of Rn to define RF
and RFF . More precisely, for t ∈ R, let jt : Rn → Cn be the embedding given

by the multiplication with eit ∈ C∗. Then the sheaves RF ,t = j!
tF [n] on Rn

for t ∈ [0, π/2] are canonically identified with each other because they unite

into a sheaf on [0, π/2]×Rn locally constant (and therefore constant) on each

interval [0, π/2] × {x}, x ∈ Rn. So we denote by j = jπ/2 the embedding of

iRn and use j! to define RFF .

Since Verdier duality interchanges j! and j∗, we have a canonical quasi-

isomorphism

(RFF)F =
Ä
RΓiRn(FF)[n]

äF ' F|iRn .
Now, F|iRn can be understood by restricting to iRn the homological Postnikov

system corresponding to the filtration (4.1). This gives a complex in derived

category with total object F|iRn obtained by restricting E••(F) to iRn which,

after identifying iRn back with Rn, gives the following:

(4.7)
⊕

codim(C)=0

E•C ⊗ or(C)
C

(δ̃CC′ )−→
⊕

codim(C)=1

E•C ⊗ or(C)
C

(δ̃CC′ )−→ · · · .

Indeed, for any C, we find from Corollary 3.22(b) that

E•C |iRn = E•C ⊗ or(C)
iC
.

On the other hand, by its original definition (involving cohomology with sup-

port in Rn), RFF is given by complexes of vector spaces E•C(FF) and gener-

alization maps γF
F

C′C . So by Proposition 1.11 the shifted Verdier dual (RFF)F
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is the complex

(4.8)

⊕
codim(C)=0

E•C(FF)∗ ⊗ or(C)
C

(γF
F

C′C”
)∗

−−−−−→
⊕

codim(C)=1

E•C(FF)∗ ⊗ or(C)
C

(γF
F

C′C”
)∗

−−−−−→ · · · .

Comparing (4.7) and (4.8), we get our statement. �

4.B. Perverse sheaves. Let Perv(Cn,H) ⊂ Db
S(0) ShCn be the full sub-

category of perverse sheaves. We choose the following normalization of the

perversity conditions for a complex F (differing by a shift from that of [25,

§10.3]):

(P−) for each p, the sheaf Hp(F) is supported on a closed complex subspace

of codimension ≥ p;
(P+) if l : Z → X is a locally closed embedding of a smooth analytic sub-

manifold of codimension p, then the sheaf Hq(l!F) = Hq
Z(F)|Z is zero

for q < p.

With respect to this definition, a constant sheaf on Cn is perverse if put in

degree 0. The normalized Verdier duality functor F interchanges (P−) and

(P+) and preserves Perv(Cn,H).

Proposition 4.9.

(a) If F is perverse, then each E•C(F) is quasi-isomorphic to one vector space

EC(F) in degree 0.

(b) For any C ∈ C, the functor

EC : Perv(Cn,H) −→ Vectfd
k , F 7→ EC(F)

is an exact functor of abelian categories.

Proof. The functor

E•C : Db
HC ShCn −→ Db Vectfd

k , F 7→ E•C(F)

is an exact functor of triangulated categories. So (b) will follow from (a), and

we concentrate on (a).

Because of Proposition 4.6, it is enough to show that H iE•C(F) vanishes

for i > 0, since vanishing for i < 0 will then follow by duality. Since the E•C(F)

are the linear algebra data describing the cellular complex RF = RΓRn(F)[n],

we need to show that

Hp
Rn(F) = 0, p > n.

From the spectral sequence

H i
Rn(Hj(F)) ⇒ Hi+j

Rn (F)
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we see that it is enough to show that

H i
Rn(Hj(F)) = 0 for i > n− j.

But by (P+), the sheaf Hj(F) is supported on the union of complex flats LC
of H of codimension ≥ j, i.e., of dimension ≤ n− j. So our statement follows

from the next lemma.

Lemma 4.10. Let G be an S(0)-smooth sheaf on Cn, with dimC(Supp(G))

≤ q. Then Hr
Rn(G) = 0 for r > q.

Proof. Since any S(0)-smooth sheaf is S(2)-smooth, G has a filtration with

quotients of the form j!L, where j is the embedding of a stratum of S(2) and

L is a local system on this stratum. So it is enough to show that for any such

quotient, we have Hr
Rn(j!L) = 0 for r > q.

Now, a stratum of S(2) is a product cell A+ iB where A,B are cells of H
whose dimensions we denote by a, b. We note the following:

(1) By our assumptions on G, each product cell A+ iB for which j!L can

appear as a quotient of a filtration of G satisfies a, b ≤ q. We therefore assume

this.

(2) As A + iB is a cell, a local system L on it must be trivial. So it is

enough to assume that L = kA+iB, where a, b ≤ q by (1).

(3) The local cohomology sheaves Hr
Rn(j!kA+iB) vanish for r 6= b. Indeed,

denote by ε : Rn → Cn the embedding. Then RΓRn(j!kA+iB) can be written

as ε!j!kA+iB, which is Verdier dual to

ε∗j∗D(kA+iB) ' ε∗j∗(kA+iB[a+ b])

(isomorphism depending on a choice of orientation of A + iB that we fix).

But j∗kA+iB = kA+iB is the constant sheaf on the closed cell, and therefore

ε∗j∗kA+iB = kA, the constant sheaf on the closed cell A, considered as a sheaf

on Rn. Therefore (choosing a co-orientation of A in Rn), we identify

ε!j!kA+iB = D(kA[a+ b]) ' jA!kA[−b], jA : A ↪→ Rn,

which has only one cohomology sheaf, namely jA!kA in degree b. This proves

the lemma and Proposition 4.9. �

Corollary 4.11.

(a) If F ∈ Perv(Cn,H), then each complex E•C(F) is quasi-isomorphic to a

single sheaf EC(F) in degree 0, and

E•(F) =

® ⊕
codim(C)=0

EC
δ̃−→

⊕
codim(C)=1

EC
δ̃−→ · · · δ̃−→ E0

´
is a complex of sheaves on Cn in the usual sense, quasi-isomorphic to F .
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(b) For any C ∈ C, the functor

EC : Perv(Cn,H) −→ ShCn , F 7→ EC(F)

is an exact functor of abelian categories.

We will call E•(F) the Cousin resolution of F .

Proof. (a) follows from Propositions 4.9(a) and 3.18. Part (b) follows,

similarly to Proposition 4.9(b), from the exactness of F 7→ E•C(F) on the

derived category. �

Definition 4.12. By a double representation of the poset (C,≤) we mean

a datum Q = (EC , γC′C , δCC′) consisting of finite-dimensional k-vector spaces

EC , C ∈ C and linear maps

γC′C : EC′ → EC , δCC′ : EC → EC′ , C ′ ≤ C,

so that (γC′C) is a covariant representation and (δCC′) is a contravariant rep-

resentation of (C,≤).

Double representations of C form an abelian category, which we denote by

Rep(2)(C). This category has a perfect duality

Q 7→ Q∗ = (E∗C , δ
∗
CC′ , γ

∗
C′C).

The results of this sections imply that we have an exact functor

(4.13)
Q : Perv(Cn,HC) −→ Rep(2)(C),

F 7→ Q(F) =
Ä
EC(F), γFC′C”, δ

F
CC′

ä
,

commuting with duality. We will call Q(F) the double quiver associated to the

perverse sheaf F .

Let us note the following converse to Proposition 4.9.

Proposition 4.14. Let F ∈ Db
S(0) ShCn be an S(0)-constructible complex

such that each E•C(F), C ∈ C, is quasi-isomorphic to a single vector space in

degree 0. Then F is perverse.

Proof. Our assumptions imply that we have a Cousin resolution E•(F)

of F as in Corollary 4.11. So it is enough to show that E•(F) satisfies (P−)

and (P+). By construction, Ep(F) is supported on the union of the Rn + iC

for C ∈ C, codim(C) = p. Therefore Hp(E•(F)) is supported on the union

of complex flats LC, L ∈ L, that are contained in the above union of the

Rn + iC. Each such L must have codimension ≥ p. So E•(F) ∼ F satisfies

(P−). Now, look at FF. The double quiver corresponding to FF, being, by

Proposition 4.6, identified with Q(F)∗, also consists of single vector spaces in

degree 0. Therefore the above reasoning shows that F? satisfies (P−), and so

F satisfies (P+) and so is perverse. �
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4.C. Relation to earlier works.

4.C.1. Suppose that k (our coefficient field for perverse sheaves) is equal

to C. By the Riemann-Hilbert correspondence, any F ∈ Perv(Cn,H) can be

represented as the solution sheaf of a holonomic D-module M on Cn:

F = RHomDCn (M,OCn).

In this case one can give another, analytic, proof of Proposition 4.9. Indeed,

the complex R•F can be written as

R•F = RHomDCn (M, RΓRn(OCn))[n].

By the classical result of Sato [34]

RΓRn(OCn)[n] ∼ Hn
Rn(OCn) = j∗BRn ⊗C or(Rn), j : Rn ↪→ Cn

reduces to the sheaf of hyperfunctions BRn , so

R•F = RHomDCn (M, j∗BRn)⊗C or(Rn)

is the complex of hyperfunction solutions of M. The fact that this complex

reduces to a single sheaf follows from the result of Lebeau [28] (see [21] for the

proof of a more general statement) that implies that under our assumptions,

ExtqDCn
(M, j∗BRn) = 0 for q > 0. So R•F is quasi-isomorphic to the sheaf of

hyperfunction solutions of M in the nonderived sense.

In particular, E0(F) = (RF )0 = Γ(Rn,RF ) is the space of global hyper-

function solutions of M, and its dimension was found by Takeuchi [39] to be

the sum of multiplicities of F (orM) along all the possible components of the

characteristic variety:

dimCE0(F) =
∑
L∈L

multT ∗LC
Cn F .

This generalizes the classical index formula of Kashiwara-Komatsu in dimen-

sion 1; see [24, Th. 4.2.7] [27]. See also [38, Th. 1.2] for a generalization to

arrangements of nonlinear analytic subvarieties.

More generally, for any C ∈ C, we deduce, by passing to the transverse

slice to L(C), that

dim EC(F) =
∑

L∈L s.t. C⊂L
multT ∗LC

Cn F .

See Section 9 for a discussion of low-dimensional cases and identification of the

EC(F) in these cases in terms of the standard functors of nearby and vanishing

cycles.
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4.C.2. The vector spaces EC(F) are the same as the spaces of “gener-

alized vanishing cycles” introduced in [3, Part I, §3.3]. Our Proposition 4.9

corresponds to Theorem 3.9 of [3, Part I], which says that the complexes of

generalized vanishing cycles reduce to single vector spaces, while the part of

Proposition 4.6 pertaining to the spaces EC corresponds to Theorem 3.5 of [3,

Part I]. Note that in our approach the more immediate maps among the EC
are the γC′C , while in [3, Part I, §3.11] it is the δCC′ (the “variation maps”).

This is due to the fact that the definition of op. cit. is ”Verdier dual” to ours:

the spaces there are our EC(F∗)∗.

5. Functorialities of the double quiver

5.A. Hyperbolic restriction. Let L ∈ L be a flat of H of codimension d.

Consider the embeddings

LC = L+ iL
k−→ Rn + iL

j−→ Cn.

Recall that L carries the induced arrangementH∩L with poset of faces CH∩L '
C≤L naturally a subposet of C = CH. Therefore we have the restriction functor

Rep(2)(C) −→ Rep(2)(C≤L), Q 7→ Q≤L,

which takes a double quiver Q = (EC , γC′C , δCC′) to its subdiagram involving

only C ′, C that are contained in L.

Proposition 5.1. Let F ∈ Perv(Cn,H) be an S(0)-smooth perverse sheaf

with double quiver Q. Then k∗j!F [d] is an object of Perv(LC,H ∩ L), and its

associated double quiver is Q≤L.

Remark 5.2. The statement about perversity of k∗j!F [d] can be seen as

a real analytic analog of the main result of Braden [8]. (See also [12] for a

more in-depth treatment.) Extending the terminology of [8], we will call the

perverse sheaf k∗j!F [d] the hyperbolic restriction of F to LC.

Proof of Proposition 5.1. First, we notice that k∗j!F is an S(0)-smooth

constructible complex on LC. This follows at once from the estimate (3.14)

for the singular support of the inverse image. Thus k∗j!F [d] can be described

by a double quiver of complexes of vector spaces, and we analyze this double

quiver.

Recall that F is represented by its Cousin resolution E• = E•(F) with Ep
being the direct sum of cellular sheaves EC for C running over faces of H of

codimension p.

If C ⊂ L, then Rn + iC, the support of EC , is contained in Rn + iL, the

source of j. Therefore j!EC = j∗EC , and so

k∗j!EC = k∗j∗EC = (EC)|LC .
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Recall that EC = p∗CEred
C , where Ered

C is a cellular sheaf on Rn/L(C) given by

the spaces EK ,K ≥ C from Q and their γ-maps. So the restriction (EC)|LC is

a similar pullback of the restriction of Ered
C to L/L(C), which is given by the

EK for C ≤ K ⊂ L, so the proposition is true in the case C ⊂ L.

If C 6⊂ L, then C ∩ L = ∅, and so

∅ //

��

Rn + iC

jC
��

Rn + iL
j

// Cn

is a Cartesian square. Therefore, j!EC = j!jC∗(j
!
CF) = 0 by base change [25,

Prop. 3.1.9].

We conclude that k∗j!E•[d] is an S(0)-constructible complex given by the

double quiver Q≤L. Since Q≤L consists of single vector spaces (not just com-

plexes), Proposition 4.14 implies that k∗j!F [d] is perverse. �

5.B. Transversal slice. Let L ∈ L be as before. The normal bundle NL/Rn

is canonically trivialized, with fiber Rn/L. Recall that Rn/L carries the quo-

tient arrangement H/L. Choose a face C ⊂ L open in L. Then the projection

πC : C≥C → CH/L identifies CH/L with the subposet C≥C ⊂ C. This leads to

another restriction functor

Rep(2)(C) −→ Rep(2)(C≥C), Q 7→ Q≥C ,

defined similarly to that in Section 5.A

As before, suppose we are given a perverse sheaf F ∈ Perv(Cn,H) with

double quiver Q. We then have the specialization SpLC(F); see [25] for back-

ground. It is a perverse sheaf on (the total space of) the normal bundle

NLC/Cn = LC × (Cn/LC). Choose some point c ∈ C (this choice will be

immaterial), and let Nc ' Cn/LC be the fiber of the above normal bundle

over c. We can think of Nc as a transversal slice to LC at c. Note that Nc is

transverse to the characteristic variety of SpLC(F), and so we have the perverse

sheaf

F|Nc := SpLC(F)|Nc ∈ Perv(Cn/LC,H/L).

Proposition 5.3. The double quiver of F|Nc is identified with Q≥C .

Proof. Let T ⊂ Rn be an affine subspace forming a transversal slice to L

at c. We consider T as an R-vector space with origin c. Then the composition

T ↪→ Rn → Rn/L is an isomorphism of vector spaces. To understand the spe-

cialization SpLC(F) and the perverse sheaf F|Nc , we use the Cousin resolution

E• = E•(F) and analyze SpLC(EK) for each summand EK of each term of E•.
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We claim that

(5.4) SpLC(EK) =

EπC(K)(SpLC(F)) if K ≥ C,
0 otherwise.

Indeed, the small neighborhood of the origin in TC meets only those closures

of tube cells Rn + iK for which K ≥ C. If K ≥ C, the statement follows

from the fact that TC is transversal to the characteristic varieties of all the

sheaves involved and therefore taking cohomology with support commutes with

restriction to TC.

Now, the statement about the double quiver of F|Nc follows from (5.4)

immediately. �

6. The double quiver determines a perverse sheaf

The goal of this section is to prove the following preliminary result.

Theorem 6.1. The functor Q : Perv(Cn,H) → Rep(2)(C) from (4.13) is

fully faithful.

6.A. Orthogonality relations. For an abelian category A, let CbA be the

abelian category formed by bounded complexes over A and morphisms of com-

plexes (not homotopy classes) in the usual sense. We start with

Proposition 6.2. The Cousin resolution functor

E• : Perv(Cn,H) −→ Cb ShCn , F 7→ E•(F)

is fully faithful.

Proof. Let I be the image of the functor E•, i.e., the full subcate-

gory in Cb ShCn consisting of complexes of sheaves of the form E•(F) for

F ∈ Perv(Cn,H). Thus we need to show that E• : Perv(Cn,H) → I is an

equivalence of categories. Define the functor Ξ : I → Perv(Cn,H) to fit into

the commutative diagram of functors

I

emb′

��

Ξ // Perv(Cn,H)

emb′′

��
Cb ShCn can

// Db ShCn .

Here emb′ is the embedding of I into the abelian category of complexes, emb′′ is

the embedding of Perv(Cn,H) into the derived category, and can is the canon-

ical functor from the abelian category of complexes to the derived category.

Thus Ξ(G) for G ∈ I is defined as the image of G in the derived category. We

know this image to be a perverse sheaf, i.e., an object of Perv(Cn,H). Indeed,
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since G ∈ I, we have that G = E•(F) for some F ∈ Perv(Cn,H), and we know

that E•(F) is quasi-isomorphic to F by Corollary 4.11.

We now prove that the functors Perv(Cn,H)
E• // I
Ξ

oo are quasi-inverse to

each other. First, for F ∈ Perv(Cn,H), we notice that Ξ(E•(F)) is canonically

identified with F by Corollary 4.11. Further, for G ∈ I we prove that E•(Ξ(G))

is canonically isomorphic to G in the abelian category of complexes. This is an

immediate consequence of the following “orthogonality relations.”

Lemma 6.3. Let F ∈ Perv(Cn,HC). For any C,C ′ ∈ C we have

RΓRn+iC′EC(F) =

EC(F) if C ′ = C,

0 if C ′ 6= C.

Proof. If C ′ = C, the statement of the lemma is obvious. If C ′ 6= C, then

C ′ ∩ C = ∅, and so

∅ //

��

Rn + iC

jC
��

Rn + iC ′
jC′

// Cn

is a Cartesian square. So base change [25, Prop. 3.1.9] implies that j!
C′jC∗G = 0

for any G ∈ Db ShRn+iC . In particular,

RΓRn+iC′EC(F) = jC′∗j
!
C′jC∗j

!
CF = 0.

Lemma 6.3 and Proposition 6.2 are proved. �

6.B. Recovery of E•(F) from Q(F). We prove Theorem 6.1 by the argu-

ment similar to that in the proof of Proposition 6.2. That is, as a first step,

we explain how to “recover” the entire complex E•(F) from the double quiver

Q(F). Next, the second step is to consider the image J ⊂ Rep(2)(C) of the

functor Q and to interpret the “recovery” procedure by constructing a functor

Θ : J → Perv(Cn,H) quasi-inverse to Q : Perv(Cn,H)→ J .

The first step proceeds as follows. By Proposition 3.18, each sheaf EC(F)

is recovered from the data of ED(F), D ≥ C and of γD′D, C ≤ D′ ≤ D. So the

only remaining data are the matrix elements of the differentials. Eliminating

the orientation torsors as in (4.4), we write these matrix elements as morphisms

of sheaves

(6.4) δCC′ : EC(F) −→ EC′(F), C ′ <1 C.

Similarly to Proposition 4.5, we have the following fact.

Proposition 6.5. The morphisms of sheaves δCC′ commute, i.e., extend

to a contravariant representation of (C,≤) in ShCn .
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In other words, we have a well-defined map δCC′ for any inclusion C ′ < C,

not necessarily of codimension 1 obtained by composing the “elementary” maps

corresponding to codimension 1 inclusions.

The data contained in δCC′ are precisely the induced morphisms on stalks

of the sheaves EC , EC′ over all the cells D + iC ′, D ∈ C, which are linear maps

(6.6) δCC′|D : EC◦D −→ EC′◦D.

So it is enough to express each δCC′|D through the γ and δ maps of the double

quiver Q = Q(E). We start with the following statement.

Proposition 6.7. For each C ′ ≤ C , we have γC′C ◦ δCC′ = IdEC . In

particular, each γC′C is surjective, each δCC′ is injective and dim(EC′) ≥
dim(EC).

Proof. It is enough to prove the statement for C ′ <1 C, which we assume.

We use the fact that the maps of stalks induced by the morphism of sheaves

δCC′ commute with the generalization maps from C ′ + iC ′ to C + iC ′. This

translates into the commutativity of

EC |C′+iC′ = EC

Id
��

δCC′=δCC′|C′ // EC′ = EC′ |C′+iC′

γC′C
��

EC |C+iC′ = EC
δCC′|C

// EC = EC′ |C+iC′ .

Here the vertical Id is the generalization map for EC and γC′C is the general-

ization map for EC′ . Our statement follows therefore from the next lemma.

Lemma 6.8. The map δCC′|C is equal to IdEC .

Proof of the lemma. Recall the identifications of stalks

EC |C+iC′
α−→ EC , EC′ |C+iC′

α′−→ EC

given in the proof of Proposition 3.18. Let d = codim(C). In the notation

of 3.18, we take K = C and form the complex G = RΓRn+iL(C)(F)[d], so we

have

(1) the restriction of G on C + iL(C) reduces to a constant sheaf in degree 0,

denote it N ;

(2) EC |C+iC′ = G|C+iC′ , while EC = RΓRn+i0(G)[n− d]|C+i0, and α is induced

by the local Poincaré duality for N .

In the same way, α′ is induced by the local Poincaré duality for the constant

sheaf N ′ obtained as the restriction to C + iL(C ′) of

G′ = RΓRn+iL(C′)(F)[d+ 1] = RΓRn+iL(C′)(G)[1].
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The last equality above means that

N ′ = H1
C+iL(C′)(N ),

which we interpret, by codimension 1 local Poincaré duality, as

(6.9) N ′ ' k∗N ⊗ or(C ′/C)
∼−→ k∗N .

Here k : C + iL(C ′) ↪→ C + iL(C) is the embedding, and the last isomorphism

comes from the identification of orientation torsors given by the codimension

1 inclusion C ′ <1 C. Now, δCC′ is the coboundary map

Hd
Rn+iC(F) −→ Hd+1

Rn+iC′(F).

This means that, under our identifications, its stalk at C + iC ′ becomes equal

to the stalk, also at C + iC ′, of the coboundary map for N , which we write as

(j∗j
∗N )|C+iC′

δ−→ H1
C+iC′(N ) = (j′)∗N ′ (6.9)

= l∗N .

Here

j : C+iC ↪→ C+iL(C), j′ : C+iC ′ ↪→ C+iL(C ′), l : C+iC ′ ↪→ C+iL(C)

are the embeddings. So our statement reduces to the following elementary

fact. (“Codimension 1 Poincaré duality is given by the coboundary map.”)

Lemma 6.10. Let ε : M0 → M be a closed codimension 1 embedding

of C∞-manifolds and J : M+ → M an open embedding such that the clo-

sure J(M+) is a manifold with boundary M0 (and so gives a trivialization of

the orientation torsor orM0/M ). For any locally constant sheaf K on M , the

coboundary map

ε∗J∗J
∗K δ−→ H1

M0
(K)

corresponds, after the identification ε∗J∗J
∗K = ε∗K and the Poincaré duality

H1
M0

(K) ' ε∗K, to the identity of ε∗K.

This finishes the proof of Lemma 6.8 and Proposition 6.7. �

We now let C,C ′, D be three arbitrary faces such that C ′ ≤ C. Put

(6.11) K = C ◦D ≥ C, K ′ = C ′ ◦D ≥ C ′.

By the associativity of the operation ◦, we have C ◦K ′=K and C ′ ◦K ′=K ′.

Note that because EC and EC′ are pullbacks of sheaves on Rn/L(C), resp.

Rn/L(C ′), we have

(6.12) δCC′|D = δCC′|K′ .

That is,

δCC′|D : EC◦D = EK −→ CC′◦D = EK′

is equal to

δCC′|K′ : EC◦K′ = EK −→ EC′◦K′ = EK′ .
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To complete the recovery procedure of F from Q(F), we prove

Proposition 6.13. In the described situation, we have

δCC′|D = γC′K′ δKC′ : EK −→ EK′ .

Proof. We first use that the maps of stalks induced by the morphism of

sheaves δCC′ commute with the generalization maps from C ′+ iC ′ to K ′+ iC ′.

This gives the commutativity of

EC

γCK
��

δCC′ // EC′

γC′K′

��
EK

δCC′|K′
// EK′ ,

i.e., the equality

δCC′|K′ γCK = γC′K′ δCC′ .

We precompose this equality with δKC :

δCC′|K′ γCK δKC = γC′K′ δCC′ δKC .

Now, using Proposition 6.7 on the left and using the fact that the δ maps form

a contravariant representation of (C,≤) on the right, and also invoking (6.12),

we get the desired statement. �

Corollary 6.14. In the above situation, we also have

δCC′|D = γ0K′ δK0.

6.C. End of proof of Theorem 6.1. We now perform the second step out-

lined at the beginning of Section 6.B by interpreting the above in a more

categorical language. So we denote by J ⊂ Rep(2)(C) the image of the functor

Q and construct a functor Θ as in the diagram

Perv(Cn,H)
Q // J
Θ

oo

so that the two functors are quasi-inverse. Explicitly, let Q = (EC , γC′C , δCC′)

be a double quiver from J . For each C ∈ C, we define the sheaf EC(Q) by

postulating the formulas of Corollary 3.22(b), i.e., by setting

(6.15)
EC(Q)

∣∣∣
iC1+D

=

EC◦D if C1 ≤ C,
0 otherwise,

γ
EC(Q)
iC′1+D′,iC1+D = γC◦D′,C◦D ⊗ Id, C ′1 ≤ C1 ≤ C, D′ ≤ D.
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Next, for any C ′ <1 C, we define a morphism of sheaves

δCC′ : EC(Q) −→ EC′(Q)

by postulating the formulas of Proposition 6.13, i.e., by defining the action on

the stalk over D + iC ′, D ∈ C, to be

(6.16) δCC′|D = γC′K′ δKC′ : EC◦D = EK −→ EK′ = EC′◦D,

where K and K ′ are defined by (6.11). Since we know that Q ∈ J , i.e.,

Q = Q(F) for some F ∈ Perv(Cn,H), the results of n◦ B imply that these maps

of stalks commute with generalization maps and so indeed define morphisms

of sheaves δCC′ . Further, for the same reason (Q ∈ J ), these morphisms

commute and so assemble into a complex of sheaves

Θ(Q) =

® ⊕
codim(C)=0

EC(Q)⊗or(C)
δ→

⊕
codim(C)=1

EC(Q)⊗or(C)
δ→ · · · δ→ E0(Q)́

which, moreover, lies in Perv(Cn,H). This defines the functor Θ, and the

results of n◦ B mean that QΘ is naturally isomorphic to the identity functor of

J , while ΘQ is naturally isomorphic to the identity functor of Perv(Cn,H). �

7. Algebraic relations in the double quiver

7.A. The transitivity relations. Let

(7.1) Q =
Ä
(EC)C∈C , (γC′C , δCC′)C′≤C

ä
∈ Rep(2)(C)

be a double representation of C. In this section we find algebraic relations

among the maps γC′C , δCC′ that are necessary forQ to have the formQ = Q(F)

for some F ∈ Perv(Cn,H).

Call Q monotone if γC′C δCC′ = Id for any C ′ ≤ C. By Proposition 6.7,

any Q(F) is monotone.

Given a monotone Q, for any A,B ∈ C, we define the transition map

(7.2) φAB = γMB δAM : EA −→ EB, M ≤ A,B.

By monotonicity, the choice of M is immaterial; for example, one can take

M = 0. Note that φAB is equal to γAB if A ≤ B and to δAB if A ≥ B.

Definition 7.3. Three faces A,B,C ∈ C are called collinear if there are

a ∈ A, b ∈ B, c ∈ C such that b ∈ [a, c]; i.e., b lies on the straight line segment

between a and c.

Collinearity is recovered from the oriented matroid corresponding to H.

More precisely,

Proposition 7.4. Let us introduce a total order � on {+,−, 0} that is

induced by the standard order on R, i.e., by − � 0 � +. Then the following

are equivalent :
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(i) the faces A,B,C are collinear;

(ii) for each H ∈ H, the sequence of sign vectors (AH , BH , CH) is monotone

increasing or decreasing : either AH � BH � CH , or CH � BH � AH .

Proof. (i)⇒(ii) is obvious. To see the converse, suppose that three cells

A,B,C are not collinear. Then there is a hyperplane H ∈ H such that B

lies on one side of H and A,C lie on the other side. This contradicts the

monotonicity of (AH , BH , CH). �

Theorem 7.5 (Transitivity relations). Let Q = Q(F) for some F ∈
Perv(Cn,H). Then for any collinear faces A,B,C , we have

φAC = φBC φAB : EA −→ EC .

The proof will be given after Example 7.9.

Remark 7.6 (Transitivity: long form). By marking all the faces meeting

[a, c], we get a face path (alternating sequence of inclusions)

A = B1 ≥ B′1 < B2 < B′2 > · · · < Bm−1 > B′m−1 ≤ Bm = C.

(There are four possibilities as to whether A = B′1 or B′m−1 = C.) By iterating

Theorem 7.5, we can reformulate in the equivalent form:

φAC = γB′m−1Bm
δBm−1B′m−1

· · · γB′1B2
δB1B′1

.

Note that it may be possible that A and C can be connected by a straight line

segment in more than one inequivalent way, in which case φAC can be express-

ible through the γ and δ maps in more than one way, producing additional

algebraic relations in Q; see Example 7.9.

Example 7.7 (Base change). It is sometimes convenient to view the poset C
as a category, that is, to write an inclusion C ′ ≤ C as a morphism u : C ′ → C.

Then a double representation Q can be viewed as a “bivariant theory” on C:
for a morphism u as above, we write

u∗ = γC′C , u
∗ = δCC′ .

In this language, a simplest instance of Theorem 7.5 can be viewed as a “base

change property”: we consider a (necessarily commutative) square of face in-

clusions

(7.8) D

v2
��

v1 // A

u1
��

C
u2
// B.
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The condition that A,B,C are collinear means that the square is coCartesian

in the categorical sense: B is the minimal face containing A and C in its

closure. In this case, Theorem 7.5 says that

v2∗v
∗
1 = u∗2u1∗ : EA −→ EC .

Indeed, the left-hand side is φAC , while u1∗ = γAB = φAB and u∗2 = δBC =

φBC .

Example 7.9 (Zifferblatt relations). Another extreme instance of Theo-

rem 7.5 corresponds to the case when C = −A is the opposite cell to A. Sup-

pose dim(A) ≥ 2, and let L be a 2-dimensional subspace such that dim(L∩A) =

2. The arrangement H ∩ L then cuts L \ {0} into some even number 2m of

2-dimensional open cones, which we number cyclically B1, . . . , B2m and the

same number of 1-dimensional open rays B
′
1, . . . , B

′
2m. Let Bν , B

′
ν be the faces

of C that intersect L in Bν , B
′
ν ; see Figure 2.

Note that there are two inequivalent ways to join a point of A with a point

of C by a straight line segment inside L not passing through 0, represented by

the segments [a, c] and [a′, c′] in Figure 2. So the long form of the transitivity

relations (Remark 7.6) gives the Zifferblatt relation (we borrow the term from

[30]):

γB′m,C δBm,B′m γB′m−1,Bm
· · · δB2,B′2

γB′1,B2
δA,B′1

= γB′m+1,C
δBm+2,B′m+1

γB′m+2,Bm+2
· · · δB2m,B′2m−1

γB′2m,B2m
δA,B′2m .

(Both sides of this equality are equal to φA,C = γ0,C ◦ δA,0.)

•

B′1

B′2
B′m

B′m+1

B′m+2 B′2m−1

B′2m

· · ·

· · ·

B′m−1

B1 = ABm+1 = C

ac

a′c′

B2Bm

Bm+2 B2m

Figure 2. The Zifferblatt.
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7.B. Proof of Theorem7.5.

Step 1: Base change. We first consider the situation of a coCartesian

square from Example 7.7, as it will serve as an inductive step in treating

more general cases. The assumption that A,B,C are collinear implies that

C ◦A = B.

Lemma 7.10. In the situation of Example 7.7, the map

δAD|C : EA◦C = EB −→ EC = ED◦C

is equal to δBC .

Proof of the lemma. We consider the commutative square of the E-sheaves

corresponding to (7.8) and the corresponding commutative square of stalks over

C + iD. These squares have the form

ED EA
δADoo

EC

δCD

OO

EB,
δBC

oo

δBA

OO EC EB
δAD|Coo

EC

Id

OO

EB,
δBC

oo

Id

OO

whence the lemma. �

To deduce our particular case of Theorem 7.5 from the lemma, we spell

out the condition that the maps of stalks induced by δAD commute with gen-

eralization from D+ iD to C + iD. This gives a commutative square of vector

spaces

EB
δAD|C=δBC // EC

EA

γAB

OO

δAD|D=δAD

// ED

γDC

OO

in which the path through ED gives, as the composite map, φAC while the

path through EB consists of δBC = φBC and γAB = φAB.

Step 2: Case when C 6= −A. In this case the segment [a, c] does not pass

through 0 and so its R-linear span is a 2-dimensional subspace L ⊂ Rn. As in

Example 7.9, we then have an induced arrangement H ∩ L of lines in L, and

there are various possibilities as to whether the faces

A = A ∩ L, B = B ∩ L, C = C ∩ L

have dimension 1 or 2. We first consider the case dim(A) = 2, depicted in

Figure 3. Denote by A
′
1, A

′
2 the two rays bordering A so that A

′
2 meets [a, c].

Further, denote by D the next 2-dimensional face in the direction from a to c.
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• A′1
0

A

A′2
D

C

· · ·

ac b

Figure 3. Case C 6= −A.

Let D,A′1, A
′
2 ∈ C be the faces whose intersections with L are D,A

′
1, A

′
2. Our

assumption that C 6= −A implies that the intersection with L of all the faces

meeting [a, c] lie on the same side of the line L(A
′
1).

Consider the square of inclusions 0 ≤ A′1, A
′
2 ≤ A. Let us write the

corresponding commutative squares of E-sheaves and of stalks of these sheaves

at C = C + i0 = [0, C]. Note that A ◦ C = A, since the interval [a, c] spends,

after leaving a, nonzero time inside A. Therefore the square in question has

the form

EA
∣∣∣
C

= EA

φAD
��

Id // EA = EA′1◦C = EA′1
∣∣∣
C

φAC
��

EA′2
∣∣∣
C

= EA′2◦C = ED
φDC

// E0

∣∣∣
C

= EC ,

so φAC = φDCφAD. Similarly, by considering the commutative square of stalks

over B+i0, we find that φAB = φDBφAD. Therefore we reduce to proving that

φDC = φBCφDB, which can be further reduced in a similar way. So proceeding

by induction, we reduce the situation to the case B = A or B = A′2. If B = A,

there is nothing to prove. If B = A′2, then

φAC = γ0CδA0 = γ0CδB0δAB = φBCδAB = φBCφAB.

This concludes the treatment of the case dim(A) = 2.

The case when dim(A) = 1 is analyzed inductively in a similar way, re-

ducing it to the situation of Example 7.7, which has been analyzed in Step 1.

This concludes the analysis of Step 2.
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Step 3: Case C = −A. In this case we use the notation of Example 7.9.

We consider the segment [a, c]. Note that by Step 2, we have

φB′1B′m := γ0B′m ◦ δB′10 = δBmB′m ◦ γB′m−1Bm
◦ · · · ◦ δB2B′2

◦ γB′1B2
.

Therefore, using the fact that the γ and δ maps commute with compositions

of inclusions, we have

φA,C := γ0,C δA,0 = γB′m,C γ0,B′m δB′1,0 δA,B′1

= γB′m,C
Ä
δBm,B′m γB′m−1,Bm

· · · δB2,B′2
γB′1,B2

ä
δA,B′1 ,

which is the long form of the transitivity relation. The case of the segment

[a′, c′] is treated in the same way.

This concludes the proof of Theorem 7.5. �

8. Equivalence of categories

8.A. The main result. Let H be an arrangement of hyperplanes in Rn,

with the poset of faces C, and Rep(2)(C) be the corresponding category of

double representations Q = (EC , γC′C , δCC′). Let A = AH ⊂ Rep(2)(C) be

the full subcategory of double representations satisfying the following three

conditions:

(Mon) Monotonicity : γC′C δCC′ = IdEC , C ′ ≤ C. This allows us to define

transition maps φAB = γCB δAC : EA → EB, where C is an arbitrary

face ≤ A,B.

(Tran) Transitivity : φAC = φBC φAB for any three collinear faces A,B,C.

(Inv) Invertibility : Let C1, C2 be two faces of the same dimension d with the

same linear span L(C1) = L(C2), which lie on opposite sides of a face

D1 of dimension d−1, so C1 >1 D1 <1 C2. Then φC1C2 = γD1C2 δC1D1 :

EC1 → EC2 is an isomorphism.

The following is the main result of this paper.

Theorem 8.1. The functor F 7→ Q(F) defines an equivalence of cate-

gories Perv(Cn,H)→ A.

In view of Theorem 6.1, it suffices to prove the following statement.

Reformulation 8.2. In order for Q ∈ Rep(2)(C) to have the form Q(F) for

some F ∈ Perv(Cn,H), it is necessary and sufficient that Q satisfies (Mon),

(Tran) and (Inv).

The proof will occupy the remainder of this section.

8.B. Necessity. The necessity of (Mon) and (Tran) has already been proved

in Proposition 6.7 and Theorem 7.5. Let us prove the necessity of (Inv). Be-

cause of Proposition 5.1, it is enough to consider the case when C1 and C2 are
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faces open in Rn, because the general case will then follow by considering the

hyperbolic restriction to LC, where L = L(C1) = L(C2).

Assuming the C1 and C2 are open, consider the Cousin resolution E•
of F . Note that F is S(0)-smooth, while the summands EC of E• are only

S(1)-smooth. Look at the S(0)-smooth sheaf

H0(F) = Ker

® ⊕
C open

EC
δ̃−→

⊕
codim(D)=1

ED
´
.

The S(1)-cells [D1, C2] ≤ [C2, C2] lie in the same stratum (Cn)◦ of S(0). There-

fore the generalization map for H0(F) from [D1, C2] to [C2, C2] must be an

isomorphism. But, applying Corollary 3.22(c), we find that up to tensoring

with or(Rn), we have

H0(F)|[D1,C2] = Ker
¶
EC1 ⊕ EC2

φC1C2
−Id

−→ EC2

©
,

H0(F)[C2,C2] = EC2 ,

and the generalization map is induced by the projection EC1 ⊕EC2 → EC2 . In

order for this projection to restrict to an isomorphism Ker(φC1C2− Id)→ EC2 ,

the map φC1C2 must be an isomorphism.

8.C. Sufficiency : construction of the complex E•. To prove the sufficiency

of the three conditions in Reformulation 8.2, we start with a double represen-

tation Q satisfying them, construct a complex E• = E•(Q) and then prove that

it is a perverse sheaf with double quiver Q.

In this procedure, the construction of the complex E•(Q) will rely only

on the properties (Mon) and (Tran), while (Inv) will be needed to ensure that

this complex is an object of Perv(Cn,H).

The construction will be done by the same procedure as in Section 6.C.

That is, we define the S(2)-smooth sheaves EC = EC(Q) by the formulas (6.15).

In fact, it follows from the definition that each EC(Q) is S(1)-smooth. We next

define, for any faces C ′ ≤ C and D, the map of the stalks

δCC′|D = δQCC′|D : EC◦D −→ EC′◦D

by the formulas (6.16), that is,

δCC′|D = γC′K′ δKC′ : EC◦D = EK −→ EK′ = EC′◦D,

where K = C ◦D and K ′ = C ′ ◦D. Note that

(8.3) δCC′|D = φC◦D,C′◦D.

Proposition 8.4. The δCC′|D commute with the generalization maps and

so define morphisms of sheaves

δCC′ : EC −→ EC′ , C ′ ≤ C.
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Proof. For any faces C ′ ≤ C and D′ ≤ D, we need to prove the commu-

tativity of the square

(8.5) EC′◦D′

γC′◦D′,C′◦D
��

EC◦D′
δCC′|D′oo

γC◦D′,C◦D
��

EC′◦D EC◦D.
δCC′|D

oo

In order to do this, we use the bivariant notation of Example 7.7 and consider

the diagram of inclusions depicted by arrows

C ′ ◦D′

v′

��

C ◦D′

v

��

C ′

w′
ee

s //

u′yy

C

w
99

u %%
C ′ ◦D C ◦D.

Then

γC′◦D′,C′◦D δCC′|D′ = v′∗(w
′
∗s
∗w∗) = u′∗s

∗w∗ = γC′,C′◦D δC◦D′,C′ = φC◦D′,C′◦D,

δCC′|D γC◦D′,C◦D = (u′∗s
∗u∗)v∗ = φC◦D,C′◦D φC◦D′,C◦D.

In the last identification we used that v∗ = γC◦D′,C◦D is the same as φC◦D′,C◦D.

So the commutativity of (8.5) would follow from (Tran) if we establish the next

lemma.

Lemma 8.6. For any faces C ′≤C and D′≤D, the cells C◦D′, C◦D,C ′◦D
form a collinear triple.

Proof of the lemma. Choose points c′ ∈ C ′, c ∈ C, d′ ∈ D′, d ∈ D. Assume

that they are in general position; i.e., T = Conv{c′, c, d′, d} is a tetrahedron

in an affine 3-space (the case dim(T ) ≤ 2 is analyzed easily). We need to find

points x ∈ C ′ ◦D, y ∈ C ◦D, z ∈ C ◦D′ such that y ∈ [x, z].

To choose a possible x, we can draw the interval from c′ to any point

d1 ∈ (d′, d] (any such d1 satisfies d1 ∈ D) and take any point on this interval

sufficiently close to c′. The supply of x thus obtained contains a neighborhood

of the vertex c′ in the triangle 4(c′d′d), with the edge [c′, d′] removed. See

Figure 4.

To choose a possible y, we can draw the interval from any c2 ∈ (c′, c] to any

d2 ∈ (d′, d] (as any such c2, d2 satisfy c2 ∈ C, d2 ∈ D) and take any point on this

interval sufficiently close to c2. The supply of y thus obtained contains a neigh-

borhood of the edge (c′, c] in T , with the faces 4(cc′d′) and 4(dc′d′) removed.

To choose a possible z, we can similarly draw the interval from any

c3 ∈ (c′, c] to d′ and take any point on this interval sufficiently close to c3.
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c′

d′

c

d

c2

c3

d2

d1

Figure 4. Collinearity of C ◦D′, C ◦D and C ′ ◦D.

The supply of z thus obtained covers a neighborhood of the edge (c′c] in the

triangle 4(d′c′c).

From this description it is clear that one can start from any admissible

x ∈ [c′, d1] and take y ∈ [c2, d2] sufficiently close to c2, very near the face

4(d′c′c). Then the interval [x, y], continued after y, will hit 4(d′c′c) in a point

z very close to the edge [c′, c] 3 c2, so such z will be obtained by the above con-

struction, i.e., will lie in C◦D′. This proves Lemma 8.6 and Proposition 8.4. �

Proposition 8.7. The morphisms of sheaves δCC′ , C
′≤C , commute with

each other, i.e., give rise to a contravariant representation of (C,≤) in ShCn .

Proof. We have to prove the identity

(8.8) φK′1,K′′ φK,K′1 = φK′2,K′′ φK,K′2 : EK −→ EK′′

for any four faces K,K ′1,K
′
2,K

′′ with the following property: there exists a

square of codimension 1 inclusions

C >1 C
′
1, C

′
2 >1 C

′′

and a face D ≥ C ′′ such that

(8.9)
K = C ◦D, K ′′ = C ′′ ◦D,
K ′1 = C ′1 ◦D, K ′2 = C ′2 ◦D.

This would correspond to the commutativity of the stalks of the square

EC
δCC′

2

��

δCC′
1 // EC′1

δC′
1
C′′

��
EC′2 δC′

2
C′′
// EC′′
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over the face [C ′′, D]. Note that the [C ′′, D] for D ≥ C ′′ form a cell decompo-

sition of the tube cell Rn + iC ′′, and the sheaves in question are direct image

extensions of some sheaves from tube cells to their closures, so checking the

commutativity of the above square over

Rn + iC ′′ ⊂ supp(EC′′) = Rn + iC
′′

is enough.

To prove (8.8), we first remark that for any faces A,B the triple A,A◦B,B
is collinear, since A ◦ B is defined in terms of points on the interval [a, b] for

a ∈ A, b ∈ B. We also note that in (8.9) we have K ′′ = D. Consider the

diagram of inclusions

K ′′ = D K ′1 K

C ′′

OO

// C ′1

OO

// C.

OO

In this diagram, C ′1,K
′
1,K

′′ form a collinear triple, sinceK ′1 = C ′1◦D = C ′1◦K ′′.
Therefore by (Tran),

φC′1,K′′ = φK′1,K′′ φC′1,K′1 = φK′1,K′′ γC′1,K′1 .

Now, the left-hand side of the putative equality (8.8) is transformed as follows:

φK′1,K′′ φK,K′1 = φK′1,K′′ γC′1,K′1 δK,C′1
= φC′1,K′′ δK,C′1 = γC′′,K′′ δC′1,C′′ δK,C′1
= γC′′,K′′ δK,C′′ = φK,K′′ .

Considering a similar diagram but with C ′2,K
′
2 instead of C ′1,K

′
1, we find that

the right-hand side of (8.8) is also equal to φK,K′′ . �

8.D. The complex E•(Q) is S(0)-smooth : inclusions of type (1). Proposi-

tion 8.7 implies that we have a complex of sheaves E• = E•(Q) with

Ep(Q) =
⊕

codim(C)=p

EC ⊗ or(C)

and the differential δ̃ given by the δCC′ and satisfying δ̃
2

= 0. By construction,

each summand of E•, and thus E• itself, is S(1)-smooth.

Proposition 8.10. The complex E• is S(0)-smooth.

Proof. By Proposition 3.3, it is enough to show that for any elementary

inclusion [C1, D1] ≤ [C2, D2] of S(1)-cells, the generalization map

γ[C1,D1],[C2,D2] : E•|[C1,D1] −→ E•[C2,D2]
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is a quasi-isomorphism of complexes of vector spaces. We first consider an

inclusion of type (1)

[C1, D] ≤ [C2, D], C1 < C2 ≤ D.

Note that every such inclusion is a composition of inclusions with C1 <1 C2.

(If this condition does not hold, it suffices to choose a maximal chain of faces

C1 = C ′0 <1 C ′1 <1 · · · <1 C ′p = C2 between C1 and C2 and consider the

inclusions [C ′i, D] < [C ′i+1, D].) So we assume C1 <1 C2.

Lemma 8.11. γ[C1,D],[C2,D] is a surjective morphism of complexes of vector

spaces, with kernel

K• =

® ⊕
codim(C)=0
C≥C1,C 6≥C2

EC◦D ⊗ or(C)
δ̃−→

⊕
codim(C)=1
C≥C1,C 6≥C2

EC◦D ⊗ or(C)
δ̃−→ · · ·

´
,

where δ̃ has, as matrix elements, the δCC′ for relevant C,C ′ tensored with the

coorientations of the adjacent faces.

Proof. Recall that we defined the sheaf EC by formulas (6.15). Therefore

the stalk EC |[C1,D] is equal to EC◦D if C ≥ C1 and to 0 if C 6≥ C1, and

similarly for EC |[C2,D]. The generalization maps were also defined by formulas

of Corollary 3.22(c). This implies that the matrix elements of γ[C1,D],[C2,D] are

either Id or 0, whence our statement. �

Therefore we need to prove that K• is an exact complex.

Lemma 8.12. Consider the increasing filtration F of K• by graded sub-

spaces defined by

FdK
p =

⊕
codim(C)=p
C≥C1,C 6≥C2

dim(C◦D)≤d

EC◦D ⊗ or(C).

This filtration is compatible with the differential δ̃.

Proof. The matrix element δ̃CC′ is nonzero only if C ′ ≤ C. In this case

L(C ′◦D)⊂L(C◦D) by Proposition 2.7(b), and so dim(C ′◦D)≤dim(C◦D). �

We are therefore reduced to proving that each grFd K
• is exact.

Lemma 8.13. Fix d ≥ 0, and consider all d-dimensional flats M ∈ L
containing C1. Let

(grFd K)pM =
⊕

codim(C)=p
C≥C1,C 6≥C2

L(C◦D)=M

EC◦D ⊗ or(C).
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Then (grFd K)•M is a subcomplex in grFd K
•, and we have a decomposition into

a direct sum of complexes

grFd K
• =

⊕
M⊃C1

(grFd K)•M .

Proof. Look at a summand EC◦D ⊗ or(C) with

codim(C) = p, C ≥ C1, C 6≥ C2, dim(C ◦D) = d.

The differential in grFd K
• can take this summand only to summands of the

form EC′◦D, where

C ′ <1 C, codim(C) = p+ 1, C ′ ≥ C1, C
′ 6≥ C2, dim(C ′ ◦D) = d.

Since L(C ′ ◦D) ⊂ L(C ◦D) by Proposition 2.7(b) and since dimL(C ′ ◦D) =

dimL(C ◦D), we conclude that L(C ′ ◦D) = L(C ◦D). So the complex grFDK
•

splits into a direct sum of subcomplexes corresponding to all possible values of

M = L(C ◦D). �

Denote G•M = (grFd K)•M . We are therefore reduced to proving that G•M
is exact for each M . So we fix M and note that by the above,

GpM =
⊕

codim(C)=p
M⊃C≥C1, C 6≥C2
C◦D open in M

EC◦D ⊗ or(C).

Note that we can represent G•M as the quotient G•1,M/G
•
2,M , where Gp1,M is the

direct sum as above but without the restriction C 6≥ C2, and Gp2,M is a similar

direct sum but with the additional restriction C ≥ C2. So we are reduced to

proving that the embedding G•2,M ↪→ G•1,M is a quasi-isomorphism.

In order for the summand corresponding to a face C to be present in Gp1,M ,

it is necessary that not only C ⊂M , but also that D ⊂M , since M = L(C◦D)

is the minimal flat of H containing L(C) and L(D). This means that G•1,M (as

well as G•2,M ) is entirely described in terms of faces of H contained in M , i.e.,

in terms of the restricted double quiver Q≤M . So by passing to the restricted

configuration H ∩M , if necessary, we can and will assume that M = Rn, and

we write G•ν = G•ν,Rn , ν = 1, 2. Further, since C runs over faces containing C1,

the G•ν are entirely described in terms of the restricted double quiver Q≥C1 . So

by passing to the quotient configuration if necessary, we can and will assume

that C1 = {0}, and therefore dim(C2) = 1.

Under all these assumptions, let us give a geometric interpretation of the

G•ν . Let CD ⊂ C be the set of faces C such that C ◦D is open in Rn, and let

|CD| be the union of cells from CD.

Lemma 8.14. Let C,D ∈ C. Then the following are equivalent :

(i) C ◦D is open in Rn,

(ii) C does not lie in any hyperplane H ∈ H containing D.



PERVERSE SHEAVES OVER REAL HYPERPLANE ARRANGEMENTS 667

Corollary 8.15.

|CD| = Rn \
⋃
H∈H
H⊃D

H

is the union of convex, hence contractible components labelled by the (open)

chambers of the quotient arrangement H/L(D).

Proof of Lemma 8.14. We recall the interpretation of C ◦ D in terms of

the projection πC : Rn → Rn/L(C) given in Proposition 2.6. That is, C ◦ D
is the unique face from C≥C that projects onto σ(πC(D)), the cell of H/L(C)

containing πC(D). So for C ◦D to be open in Rn, it is necessary and sufficient

that σ(πC(D)) be open in Rn/L(C). This means that πC(D) does not lie in any

hyperplane of H/L(C); i.e., D does not lie in any hyperplane of H containing

C. In other words, the sets of hyperplanes of H containing C and D must be

disjoint. �

Let us look at an arbitrary matrix element of the differential in G•1,

δ̃CC′ : EC◦D ⊗ or(C) −→ EC′◦D ⊗ or(C ′).

It can be nonzero only if C1 ≤ C ′ <1 C ⊂ M and both C ◦D and C ′ ◦D are

open in M . If these conditions are satisfied, then (8.3)

δ̃CC′ = φC◦D,C′◦D ⊗ εCC′ ,

where εCC′ is the identification of orientation torsors induced by C ′ <1 C.

We note that in this case φC◦D,C′◦D is an isomorphism. Indeed, since both

C ◦ D and C ′ ◦ D are open in M , we can choose generic points x ∈ C ◦ D,

x′ ∈ C ′ ◦D so that the interval [x, x′] ⊂M intersects only flats of H∩M that

have codimension 1 in M . Therefore we can write all the faces intersecting

[x, x′], in the order from x to x′, as

F0 = C ◦D >1 F
′
0 <1 F1 >1 F

′
1 <1 · · · >1 F

′
p−1 <1 Fp = C ◦D′,

where the Fj are open in M , while the F ′j have codimension 1 in M . Therefore

each φFj ,Fj+1 is an isomorphism by (Inv), while

φC◦D,C′◦D = φF0,Fp = φFp−1,Fp · · · φF0,F1

by (Tran) (long form of the transitivity relations).

We now note that the isomorphisms φC◦D,C′◦D define a cellular locally

constant (and therefore, by Corollary 8.15, constant) sheaf G on |CD|, and the

above argument shows that

G•1 = Ccell
n−•(|CD|,G)

is the standard cellular chain complex of G shifted to so as to start in degree 0

(and to have differential of degree −1). Similarly, let C≥C2
D be the subposet in
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CD formed by C satisfying C ≥ C2 and |C≥C2
D | be the union of faces from this

subposet. Then

G•2 = Ccell
n−•(|C

≥C2
D |,G).

Therefore, the acyclicity of G•1/G
•
2 will follow if we prove that the embedding

of spaces |C≥C2
D | ↪→ |CD| is a homotopy equivalence.

Recall that C2 ≤ D, dim(C2) = 1 is, by our assumption, a half-line.

Therefore for any connected component U ⊂ |CD|, the intersection U ∩ |C≥C2
D |

is a nonempty convex set so it is contractible as well. This proves that |C≥C2
D | ↪→

|CD| is a homotopy equivalence and so γ[C1,D],[C2,D] is a quasi-isomorphism.

8.E. Inclusions of type (2). To finish the proof of Proposition 8.10, we

need to consider elementary inclusions of type (2). We write such an inclusion

as [C1, D1] ≤ [D2, D2], where D1, D2 are two faces of the same dimension m,

lying in the same m-dimensional flat L = L(D1) = L(D2) on the opposite side

of an (m− 1)-dimensional cell C1 ≤ D1, D2.

The argument runs very similarly to the case of an inclusion of type (1)

considered in Section 8.D. We indicate the changes, using the same notation

as in 8.D for the intermediate complexes and treating the grading in these

complexes as implicit.

Lemma 8.16. The morphism of complexes γ[C1,D1],[D2,D2] is surjective

with kernel

K• =
⊕
C≥C1
C 6≥D2

EC◦D1 ⊗ or(C),

graded by codim(C).

Proof. By Corollary 3.22(c),

E•[C1,D1] =
⊕
C≥C1

EC◦D1 ⊗ or(C), E•[D2,D2] =
⊕
C≥D2

EC◦D2 ⊗ or(C).

The set of admissible C in the sum for E•[D2,D2] is clearly a subset in the set of

admissible C in the sum for E•[C1,D1], because C1 < D2. Further, for C ≥ D2,

the corresponding summand in E•[C1,D1] is equal to the corresponding summand

in E•[D2,D2]. Indeed, since D1 and D2 are adjacent (have the same dimension m

and lie on the opposite sides of C1 in an m-flat), we have D2 ◦D1 = D2. We

also have C ◦D2 = C since C ≥ D2, so by the associativity of ◦, we find

C ◦D1 = (C ◦D2) ◦D1 = C ◦ (D2 ◦D1) = C ◦D2.

Further, for C ≥ D2, Corollary 3.22(c) shows that the matrix element of

γE
•

[C1,D1],[D2,D2] on the summand corresponding to C is the identity. Recalling

that the matrix elements of γE
•

[C1,D1],[D2,D2] can act only between summands
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labelled by the same C, we conclude that it is the projection onto the direct

sum of summands labelled by C ≥ D2, as claimed. �

Now, as before, we have the increasing filtration F in K• by dim(C ◦D1)

with quotients that split into direct sum over M ∈ L of complexes

G•M =
⊕

C≥C1, C 6≥D2

L(C◦D1)=M

EC◦D1 ⊗ or(C).

So we need to prove that each G•M is exact. As in Section 8.D, we have G•M =

G•1/G
•
2, where G•1 is the direct sum over C ≥ C1 such that L(C ◦D1) = M (so

it is exactly the same complex as in 8.D) and G•2 is the subcomplex formed by

EC◦D1⊗or(C) for C ≥ D2. As before, we can and will assume that C1 = 0 and

M = Rn. Thus D1, D2 are two opposite half-lines of the same line: D2 = −D1.

So G•1 is the cellular chain complex of a local system G on |CD1 | and G•2 is the

chain complex of G on |C≥D2
D1
|. Since D2 = −D1, the subspace |C≥D2

D1
| is again

a union of convex connected components, one inside each convex connected

component of |CD1 |, so the embedding G•2 ↪→ G•1 is a quasi-isomorphism, and

Proposition 8.10 is proved.

8.F. End of the proof of Reformulation 8.2. Given Q ∈ Rep(2)(C) satis-

fying (Mon), (Tran) and (Inv), we have associated to it an S(0)-constructible

complex E•(Q) on Cn. Note that the orthogonality relations of Lemma 6.3

apply to the EC(Q) and imply that the linear data of E•(Q) are given by Q.

Since Q consists of single vector spaces (not just complexes), Proposition 4.14

implies that E•(Q) is a perverse sheaf, with double quiver Q. This proves

Reformulation 8.2 and thus Theorem 8.1.

9. Examples and complements

9.A. The case of dimension 1. Suppose n = 1. The real vector space R
has the unique hyperplane {0}. The arrangement consisting of this hyperplane

will be denoted simply by 0. It has three faces: R+ = {x > 0}, R− = {x < 0}
and {0}. The category Perv(C, 0) consists of perverse sheaves on C smooth

with respect to the stratification consisting of {0} and C \ {0}. The classical

description [15] identifies Perv(C, 0) with the category P of diagrams of finite-

dimensional vector spaces

Φ
v //

Ψ
u
oo , vu+ IdΨ invertible.

The spaces Ψ and Φ associated to F ∈ Perv(C, 0) are canonically identified

with the spaces of nearby and vanishing cycles of F with respect to the standard

coordinate function on C, while vu + IdΨ is the monodromy on the space of

nearby cycles; see [1].
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On the other hand, our description from Theorem 8.1 identifies Perv(C, 0)

with the category A formed by double representations

Q =
¶
E−

δ−
// E0

γ−oo γ+ //
E+

δ+

oo
©

such that

γ−δ− = IdE− , γ+δ+ = IdE+ ,

γ−δ+ : E+ −→ E−, γ+δ− : E− → E+ are invertible.

Let us construct an equivalence between P and A directly. In fact, it is con-

venient to reformulate the definition of A slightly. Given Q ∈ A, consider

endomorphisms

P+ = δ+γ+, P− = δ−γ− ∈ End(E0).

These endomorphisms are idempotent:

P 2
+ = δ+γ+δ+γ+ = δ+ Id γ+ = δ+γ+ = P+,

and similarly for P−. The spaces E± are identified with Im(P±) via δ±. The

conditions of invertibility of γ±δ∓ is expressed by

(9.1)

P− : Im(P+) −→ Im(P−),

P+ : Im(P−) −→ Im(P+)
are isomorphisms.

This establishes the following.

Lemma 9.2. The category A is equivalent to the category B formed by

data (E0, P+, P−) consisting of a finite-dimensional k-vector space E0 and two

idempotents P+, P− : E0 → E0 satisfying (9.1).

So we will construct an equivalence B ' P. Given (E0, P+, P−) ∈ B, we

put

Φ := Ker(P−)
v=P+ //

Ψ := Im(P+).
u=P−−Id
oo

Then vu = P+(P−−Id) is, as an endomorphism of Im(P+), equal to P+P−−P+.

Now, on Im(P+) we have P+ = Id. So vu + Id = P+P− as an endomorphism

of Im(P+), and so it is the composition of two invertible maps

Im(P+)
P−−→ Im(P−)

P+−→ Im(P+)

and hence invertible. This defines a functor F : B → P. Note that the two

maps above have the meaning of half-monodromies from the upper to the lower

half plane, so vu+ Id is the full monodromy.
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Let us also define the functor G : P → B as follows. Given an object

{ Φ
v //

Ψ
u
oo } ∈ P, we put

(9.3) E0 = Φ⊕Ψ, P+ =

Ç
0 0

v 1

å
, P− =

Ç
0 u

0 1

å
.

Then P± are idempotents.

Proposition 9.4. The functors F and G are quasi-inverse to each other.

Proof. Let us find FG. For P± defined above, we have

Im(P+) = Ψ, Ker(P+) =

®Ç
φ

ψ

å ∣∣∣∣∣ vφ+ ψ = 0

´
= Graph of (−v) : Φ→ Ψ,

Im(P−) = Graph of u : Ψ→ Φ, Ker(P−) = Φ.

The map P+ : Ker(P−)→ Im(P+) coincides with v. Further, P−−Id restricted

to Ψ ⊂ Φ ⊕ Ψ gives u : Ψ → Φ. Therefore FG is isomorphic to the identity

functor of P.

Conversely, suppose (E0, P+, P−) ∈ B. We then have two direct sum

decompositions of E0:

E0 = Φ⊕ Im(P−) = Ker(P+)⊕Ψ.

The condition that P− : Im(P+) → Im(P−) is an isomorphism implies that

Im(P+) ∩Ker(P−) = 0 which, by the dimension count, implies that we have a

direct sum decomposition

E0 = Im(P+)⊕Ker(P−) = Ψ⊕ Φ.

With respect to this decomposition, we find that P± are given by the matrices

in (9.3). So GF is isomorphic to the identity functor of B. �

Remark 9.5. Note that the composite equivalence A → B F→ P is compat-

ible with (and so can be considered as induced by) the identifications of A and

P with Perv(C, 0), constructed in [15] and in this paper, respectively. Indeed,

let F ∈ Perv(C, 0). Then, in the original construction of [15], the object of A
corresponding to F is given by:

(9.6) Φ(F) = H1
R≥0

(C,F) = Γ(R≥0,H1
R≥0

(F)), Ψ(F) = Γ(R>0,H1
R≥0

(F)),

and the map v is the generalization map for the R-constructible sheaf H1
R≥0

(F)

on R≥0. On the other hand, the object Q(F) ∈ P corresponding to F by (4.13)

has

(9.7) E0(F) = H1
R(C,F) = Γ(R,H1

R(F)), E±(F) = Γ(R≷0,H1
R(F)),
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and γ± is the generalization map for the R-constructible sheaf H1
R(F) on R.

The functor F sends Q = Q(F) into an object of A with

Φ = ΦQ := Ker(P−) = Ker(γ−), Ψ = ΨQ := Im(P+) = Im(δ+).

Now, the identification Ker(γ−) → Φ(F) is obtained from the long exact se-

quence relating (hyper)cohomology with supports in R, R≥0 and R<0. The

identification Im(δ+) → Ψ(F) is obtained by comparing (9.6) and (9.7) and

noting that H1
R≥0

(F) and H1
R(F) are identified on R>0. We leave to the reader

the identification of the arrows between the vector spaces thus identified.

Remark 9.8. In addition to the above equivalence, which we denote here

as F+ : B ∼→ P, there exists another one, F− : B ∼→ P, where for x =

(E0, P+, P−) ∈ B, we set

F−(x) =
{

Φ := Ker(P+)
v=P− //

Ψ := Im(P−)
u=P+−Id
oo

}
.

Furthermore, there are two invertible natural transformations (“half-mono-

dromies”) t± : F±
∼→ F∓ given by

t+(x) = (P+ − Id, P−) : F+(x)
∼→ F−(x)

and

t−(x) = (P− − Id, P+) : F−(x)
∼→ F+(x).

These data define a C∗-local system of equivalences B → P; this is a

particular case of the microlocalization, similar to [14].

The category Perv(C, 0) admits an involution F : Perv(C, 0)→ Perv(C, 0),

which in the classical description looks as follows:

F
{

Φ
v //

Ψ
u
oo } ' { Ψ

u //
Φ

v
oo

}
.

(This involution is close to the geometric Fourier transform but does not

coincide with it; cf. [4, Prop. 4.5].)

We leave to the reader the verification of the following.

Proposition 9.9. In terms of the identification Perv(C, 0) ' B,

F(E0, P1, P2) ' (E0, 1− P1, 1− P2),

and in terms of the identification Perv(C, 0) ' A,

F
{
E−

δ−
// E0

γ−oo γ+ //
E+

δ+

oo
}
'
{

Ker(γ−)
embedding

// E0

Id−δ−γ−oo Id−δ+γ+ //
Ker(γ+)

embedding
oo

}
.
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9.B. Real affine arrangements. Let H be an arrangement of affine hyper-

planes in Rn and HC be the complexified arrangement of affine hyperplanes in

Cn. We have then the category Perv(Cn,H) of H-smooth perverse sheaves on

Cn, similarly to the case of linear arrangements.

Such categories are important for the geometric description of tensor struc-

tures on the categories of quantum group representations [3].

Theorem 8.1 is extended to this case as follows. We have the poset of

faces (C,≤), defined similarly to the linear case. A triple of faces (A,B,C) is

called collinear if

(C1) there exists a face D ≤ A,B,C;

(C2) there exists points a ∈ A, b ∈ B, c ∈ C such that b ∈ [a, c].

Condition (C1) holds automatically in the linear case (take D = 0). As

with any poset, we have the category Rep(2)(C) of double representations

Q = (EC , γC′C , δCC′) of C.
The condition of monotonicity on Q is defined just as in the linear case:

γC′CδCC′ = Id for any C ′ ≤ C. This allows us to define the transition maps

φAB = γCBδAC : EA → EB for any two faces A,B such that there is a face

C ≤ A,B.

The condition of transitivity is defined by requiring that φAC = φBCφAB
for any triple of cases (A,B,C) collinear in the new sense above.

Finally, the condition of invertibility of Q is defined completely similarly

to the linear case.

We denote by A = AH the full subcategory in Rep(2)(C) formed by Q that

are monotone, transitive and invertible.

Theorem 9.10. The category Perv(Cn,HC) is equivalent to AH.

Proof. Locally (in a neighborhood of any point of Rn), an affine arrange-

ment looks like a linear one. Therefore, applying known properties of the linear

case, we establish the following statements:

(1) For F ∈ Perv(Cn,H), the complex RF = RΓRn(F)[n] is reduced to one

sheaf in degree 0, constructible with respect to the (cellular) stratification

C.
(2) Denoting by EC(F) the stalk of RF at C ∈ C, we have a canonical identi-

fication EC(FF) = EC(F)∗.

(3) Denoting by γFC′C : EC′(F) → EC(F), C ′ ≤ C, the generalization maps

for RF , and putting δFCC′ = (γF
F

C′C)∗, we get an object

Q(F) =
Ä
EC(F), γFC′C , δ

F
CC′

ä
∈ Rep(2)(C).

This object lies in A.

Therefore we get a functor Q : Perv(Cn,HC)→ A taking F to Q(F). To

prove that it is an equivalence, we use the fact that perverse sheaves form a
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stack. That is, we upgrade Q to a morphism of stacks of abelian categories

on Rn,
Q : Perv(Cn,H) −→ A,

defined as follows. For an open U ⊂ Rn, the category Perv(Cn,H)(U) consists of

perverse sheaves on U + iRn smooth with respect to the stratification cut out

on U + iRn by H. We further denote by CU ⊂ C the subset of faces meeting U

and extend the concept of collinearity to CU be requiring in (C1) that D ∈ CU .

Then we define A(U) ⊂ Rep(2)(CU ) to be the full subcategory specified by the

conditions of monotonicity, transitivity and invertibility. The same arguments

as before define a functor Q(U) : Perv(Cn,H)(U) → A(U), and these functors

unite into a morphism of stacks Q. Note that Q is obtained from Q by passing

to the categories of global sections. So it is enough to show that Q is an equiv-

alence of stacks, a statement that can be checked locally, at the level of stalks.

But the stalk functor of Q over any point x ∈ Rn is a similar functor Q for the

(essentially) linear configuration formed by hyperplanes from H containing x.

So it is an equivalence by Theorem 8.1. �

The method of using the stacky nature of perverse sheaves to obtain de-

scriptions in new situations was applied by Dupont to the case of smooth toric

varieties [13]. Another approach to proving Theorem 9.10 would be to add a

variable to make an affine arrangement into a linear one.

9.C. The fundamental groupoid of the open stratum. Let us write V = Rn,

so VC = Cn, and let V ◦C ⊂ VC be the open stratum (the complement of all the

hyperplanes LC, for L ∈ H). Let C0 be the set of open faces (chambers) of

H, so each A ∈ C0 is a contractible set contained in V ◦C . Denote π1(V ◦C , C0)

the fundamental groupoid of V ◦C with respect to a set of base points consisting

of one point in each A ∈ C0. The construction of this paper leads to a new

description of this groupoid.

Proposition 9.11. π1(V ◦C , C0) is isomorphic to the groupoid G defined

by generators and relations as follows :

(0) Objects xA, A ∈ C0.

(1) Generating morphisms ϕAB : xA → xB for each ordered pair (A,B) of

chambers. We assume that ϕAA = IdxA .

(2) Relations ϕAC = ϕBCϕAB for any collinear triple (A,B,C) of chambers.

A more familiar description of π1(V ◦C , C0) is the one from the work of

Salvetti [33], which we now recall.

Proposition 9.12. π1(V ◦C , C0) is isomorphic to the groupoid S defined

by generators and relations as follows :

(0) Objects xA, A ∈ C0.
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(1) Generating morphisms ψAB : xA → xB for each ordered pair (A,B) of

chambers that are adjacent, i.e., lie on opposite sides of a codimension 1

face C .

(2) The Zifferblatt relations

ψBm,C ψBm−1,Bm · · · ψA,B2 = ψBm+2,C ψBm+3,Bm+2 · · · ψB2m,B2m−1 ψA,B2m

for any codimension 2 face F and any chamber A > F . Here we num-

ber all the chambers > F around the circle as A = B1, B2, . . . , Bm+1 =

C,Bm+1, . . . , B2m, as in Figure 2.

Proposition 9.12 can be obtained by noticing that S(1)-cells [C,A] for A

being a chamber form a cell decomposition of V ◦C . Among them the cells

[A,A] are precisely the open ones. Therefore one can form the dual CW-

complex. denote it Sal, homotopy equivalent to V ◦C , in which each cell [A,A]

will give rise to a vertex, each cell [C,A] with codim(C) = 1 will give rise to an

edge, and each cell [F,A] with codim(C) = 2 will give rise to a 2m-gon, with

2m = #{B ∈ C0|B > F} and so on. The groupoid S is the groupoid whose

presentation is obtained in the standard way, from the 2-skeleton of Sal; see

[6], [33] for more details.

We now prove Proposition 9.11. Define a functor F : S→ G to be identity

on the objects and to send ψAB (with A,B adjacent) to ϕAB. Note that the

relations of S are satisfied in G (see Example 7.9) so F is well defined. Let us

prove that F is an isomorphism of groupoids.

For this, we define a functor G : G → S, also identical on objects, as

follows. Let A,B be two chambers. Choose any two generic points a ∈ A, b ∈ B
so that the interval [a, b] ⊂ Rn does not intersect any faces of codimension ≥ 2.

Denote the chambers intersecting [a, b], if written in the direction from a to b,

by C1 = A,C2, . . . , Cr = B. Then each (Ci, Ci+1) form an adjacent pair, so

the generator ψCi,Ci+1 of S is defined, and we put

(9.13) G(ϕAB) = ψCr−1,B ψCr−2,Cr−1 · · · ψA,C2 .

Lemma 9.14. The right-hand side of (9.13), considered as an element of

HomS(xA, xB), is independent of the choice of generic points a ∈ A, b ∈ B.

Proof. It is enough to prove that if we keep a and replace b by another

generic point b′ ∈ B, or if we keep b and replace a by another generic point

a′ ∈ A, then the right-hand side of (9.13) will give the same morphism. Let us

consider the first situation; the second one is treated similarly.

Given a, b, b′, consider the plane triangle ∆ = Conv{a, b, b′} inside the

affine 2-plane P spanned by a, b, b′. The side [b, b′] of ∆ lies inside B. Note

that H induces an affine arrangement of lines inside P , and by our assumption,

flats of H of codimension ≥ 3 do not meet P . Each codimension 2 face L of

H intersecting ∆ does so at an interior point of ∆. Now, around each such
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point L ∩∆, we have a Zifferblatt situation. That is, we can deform the path

ξ0 = [a, b′] ∪ [b′, b] into ξ1 = [a, b] in a family of paths (ξt)t∈[0,1], keeping the

endpoints a, b fixed so that at every moment t we cross at most one of the points

L ∩∆. Associating to each intermediate path ξt the product of generators ψ

similar to (9.13), we see that after crossing each L ∩∆, the product remains

unchanged in virtue of the relations of S. �

With the lemma established, we see that G preserves the relations of G

by its very definition: for collinear chambers A,B,C with points a, b, c such

that c ∈ [a, b], we use the intervals [a, b], [b, c], [a, c] to define the values of G

on ϕAB, ϕBC , ϕAC . So G is indeed a functor, and we see that it is inverse to

F by looking at the action of F and G on the generators. Proposition 9.11 is

proved. �
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[26] A. W. Knapp, The Gindikin-Karpelevič formula and intertwining operators, in

Lie Groups and Symmetric Spaces, Amer. Math. Soc. Transl. Ser. 2 210, Amer.

Math. Soc., Providence, RI, 2003, pp. 145–159. MR 2018359. Zbl 1041.22007.

[27] H. Komatsu, On the index of ordinary differential operators, J. Fac. Sci. Univ.

Tokyo Sect. IA Math. 18 (1971), 379–398. MR 0303568. Zbl 0232.34026.

[28] G. Lebeau, Annulation de la cohomologie hyperfonction de certains mod-

ules holonomes, C. R. Acad. Sci. Paris Sér. A-B 290 (1980), A313–A316.

MR 0567756. Zbl 0423.58017.

[29] R. MacPherson and K. Vilonen, Elementary construction of perverse sheaves,

Invent. Math. 84 (1986), 403–435. MR 0833195. Zbl 0597.18005. http://dx.doi.

org/10.1007/BF01388812.

[30] Y. I. Manin and V. V. Schechtman, Arrangements of real hyperplanes

and Zamolodchikov equations, in Group Theoretical Methods in Physics, Vol.

I (Yurmala, 1985), VNU Sci. Press, Utrecht, 1986, pp. 151–165. MR 0919748.

Zbl 0699.58069.

[31] C. Mœglin and J.-L. Waldspurger, Décomposition Spectrale et Séries
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