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Indecomposable vector bundles
and stable Higgs bundles over

smooth projective curves

By Olivier Schiffmann

Abstract

We prove that the number of geometrically indecomposable vector bun-

dles of fixed rank r and degree d over a smooth projective curve X defined

over a finite field is given by a polynomial (depending only on r, d and the

genus g of X) in the Weil numbers of X. We provide a closed formula —

expressed in terms of generating series- for this polynomial. We also show

that the same polynomial computes the number of points of the moduli

space of stable Higgs bundles of rank r and degree d over X. This en-

tails a closed formula for the Poincaré polynomial of the moduli spaces of

stable Higgs bundles over a compact Riemann surface, and hence also for

the Poincaré polynomials of the twisted character varieties for the groups

GL(r).
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1. Introduction

Overview. The aim of this paper is to compute the Betti numbers of the

moduli spaces of stable Higgs bundles of fixed rank and degree over compact

Riemann surfaces of arbitrary genus. These moduli spaces (and the corre-

sponding moduli stacks), introduced by Hitchin in the late 80’s ([Hit87b]),

have since played an important role in the study of moduli spaces of connec-

tions on Riemann surfaces, integrable systems, and more recently in number

theory and in the theory of automorphic forms in connection with Ngo’s proof

of the Fundamental Lemma (see [Ngô06], [LN08]). We refer to Section 1.3

for the history of the problem of computing the Poincaré polynomial of these

moduli spaces and, in particular, for the relation between this work and some

conjectures of Hausel, Rodriguez-Villegas ([HRV08]) and Mozgovoy ([Moz12]).

In order to determine the Betti numbers of these moduli spaces and following

a strategy put forward by T. Hausel, we count the number of points of the

same moduli spaces for curves defined over finite fields and then use the Weil

conjectures. This point counting is done in two steps. First, by a geometric

deformation argument inspired by the work of Crawley-Boevey and Van den

Bergh in the context of quivers ([CBVdB04]) we relate the number of stable

Higgs bundles of rank r and degree d on a curve X to the number Ar,d(X) of

geometrically indecomposable vector bundles of the same rank r and degree d

over X, counted up to isomorphism. The second step is to explicitly calculate

the number of such indecomposable vector bundles. Counting isomorphism

classes of vector bundles (more generally, coherent sheaves) of rank r and de-

gree d amounts to computing the volume of the inertia stack of the stack

Cohr,d parametrizing such coherent sheaves on X. Unfortunately, this inertia

stack is of infinite volume. To circumvent this difficulty, we introduce a suit-

able truncation Coh≥0
r,d of the stack Cohr,d based on the Harder-Narasimhan

stratification, whose inertia stack is of finite volume. Using some now classi-

cal techniques developped by Harder and others, we reduce the computation

of that volume to the computation of the integral of some Eisenstein series

over the truncated stack Coh≥0
r,d . The actual explicit evaluation of that inte-

gral is then performed using the language and tools provided by the theory

of Hall algebras, which seems the most convenient here. This yields an ex-

plicit formula for the number A≥0
r,d(X) of isomorphism classes of geometrically

indecomposable vector bundles of rank r and degree d in Coh≥0
r,d . Using the

obvious relation Ar,d(X) = Ar,d+r(X) (which comes from the action of the

Picard group) and the fact that A≥0
r,d(X) = Ar,d(X) for d � 0, we obtain the

desired formula for the number of geometrically indecomposable vector bun-

dles in Cohr,d, and hence also a computation of the number of stable Higgs

bundles of rank r and degree d over X.
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We also have another motivation in mind for computing the number of

isomorphism classes of geometrically indecomposable vector bundles, coming

from the analogy between vector bundles on a (smooth) curve and representa-

tions of a quiver. Indeed, as shown by Kac and Stanley (see [Kac82], [Kac83,

3.15]), the number of geometrically indecomposable Fq-representations of a

given dimension d of a quiver Q is given by a polynomial AQ,d(q) in q, the

so-called Kac’s A-polynomial. This polynomial carries a lot of very interest-

ing Lie-theoretic information related to the Kac-Moody algebra associated to

Q (at least when Q has no edge loops) and its Yangian; see, for instance,

[Hau10], [Oko13]. It is natural to expect similar Lie-theoretic interpretations

for the polynomials counting indecomposable vector bundles on curves. (See

Section 8.3 for some conjectures in that direction.)

In the remainder of this introduction we describe our results in more

details and point the reader to the corresponding sections of this paper.

1.1. Let g ≥ 0, and let X be a smooth projective geometrically con-

nected curve of genus g defined over a finite field Fq. Let l be a prime num-

ber not dividing q, and let σ1, . . . , σ2g stand for the associated Weil num-

bers of X (i.e., the eigenvalues of the Frobenius acting on H1(X,Ql), where

X = X×Spec(Fq) Spec(Fq)). Fixing an embedding ι : Ql → C we may view the

σi as complex numbers satisfying σ2i−1 = σ2i and σ2i−1σ2i = q for i = 1, . . . , g.

Consider the torus

Tg = {(α1, . . . , α2g) ∈ G2g
m | α2i−1α2i = α2j−1α2j ∀ i, j}.

The groupWg=Sgn(S2)g naturally acts on Tg, and the collection {σ1, . . . , σ2g}
defines a canonical element σX in the quotient Tg(C)/Wg. We denote by the

same letter q the size of the finite field Fq and the element q = α2i−1α2i ∈
Q[Tg]

Wg , hoping that this will not create any confusion. Let Kg be the local-

ization of Q[Tg]
Wg at the multiplicative set generated by {ql − 1 | l ≥ 1}.

1.2. For r > 0 and d ∈ Z, let Ar,d(X) stand for the number of geo-

metrically indecomposable vector bundles on X (i.e., vector bundles V over X

such that V ⊗Fq Fq is indecomposable) of rank r and degree d. The finiteness

of Ar,d(X) results from standard arguments based on the Harder-Narasimhan

filtration; see, e.g., Section 2.1. Observe that Ar,d(X) only depends on the

residue of d modulo r as the set of geometrically indecomposable bundles is

stable under tensoring by any line bundle.

The first main result of this paper is the following:

Theorem 1.1. For any fixed genus g and any pair (r, d) ∈ N × Z, there

exists a unique element Ag,r,d ∈ Kg such that for any smooth projective geo-

metrically connected curve X of genus g defined over a finite field, we have

Ar,d(X) = Ag,r,d(σX).



300 OLIVIER SCHIFFMANN

Conjecturally, Ag,r,d belongs to Q[Tg]
Wg and there is no need to consider

the localization Kg (see Corollary 1.5 and Conjecture 1.7). The proof of The-

orem 1.1 is effective; i.e., we can explicitly compute the polynomial Ag,r,d. We

postpone giving the (rather involved) explicit formula until Section 1.4; see

Theorem 1.6. Theorem 1.1 is proved in Section 4.

1.3. Let us now assume that r and d are relatively prime. Let Higgsst
r,d(X)

stand for the moduli space of stable Higgs bundles over X (see Section 6.2).

This is a (smooth, quasi-projective, cohomologically pure) variety defined over

Fq, and we may consider its set of Fq-rational points Higgsst
r,d(X)(Fq).

The second main result of this paper, whose proof is very much inspired

by the work of Crawley-Boevey and Van den Bergh (see [CBVdB04]), is the

following:

Theorem 1.2. Let (r, d) be relatively prime. There exists an (explicit)

constant C = C(r, d) such that for any smooth projective geometrically con-

nected curve X of genus g defined over Fq with char(Fq) > C , we have

|Higgsst
r,d(X)(Fq)| = q1+(g−1)r2Ar,d(X).

The proof which we provide for the above theorem is geometric and relies

on the symplectic structure of Higgsst
r,d(X). In the companion paper [MS14]

written in collaboration with S. Mozgovoy, we give a different proof of the

above theorem based on Hall-theoretic methods which works in all character-

istics, as well as a generalization to the case of the moduli spaces of twisted (or

meromorphic) Higgs bundles. Combining Theorems 1.1 and 1.2, we see that

the number of Fq-rational points of Higgsst
r,d(X) is given by some explicit poly-

nomial in Kg. Note that the existence of such a polynomial is already known

from the work of Garcia-Prada, Heinloth and Schmitt; see [GPH13, Th. 1.],

[GPHS14].

Theorems 1.1 and 1.2 have the following corollary:

Corollary 1.3. Let (r, d) be relatively prime.

(i) For any smooth, geometrically connected projective curve X of genus g

defined over a field Fq of characteristic p > C(r, d), we have∑
n

(−1)ndim Hn
c (Higgsst

r,d(X),Ql)t
n = t2(1+(g−1)r2)Ag,r,d(t, t, . . . , t).

(ii) Let XC be a compact Riemann surface of genus g. Then∑
n

(−1)ndim Hn
c (Higgsst

r,d(XC),Q)tn = t2(1+(g−1)r2)Ag,r,d(t, t, . . . , t),

where Hn
c denotes singular cohomology with compact support.
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The Poincaré polynomial of the moduli space of stable Higgs bundles

on a compact Riemann surface XC of genus g has been computed in rank 2

by Hitchin ([Hit87a, Th. 7.6]), in rank 3 by Gothen (see [Got94, Th. 1.2])

and in rank 4 by Garcia-Prada, Heinloth and Schmitt (see [GPHS14, Th. 2]).

Hausel and Rodriguez-Villegas ([HRV08, Conj. 4.2.1]) derived in a conjectural

formula for the mixed Hodge polynomial of the genus g twisted character va-

riety for the group GLr. The latter being homeomorphic to Higgsst
r,d(XC)

their formula yields, in particular, a conjectural formula for the Betti num-

bers dim Hn
c (Higgsst

r,d(XC),Q). This conjecture was extended by Mozgovoy

(cf. [Moz12, Conj. 2]) to a conjectural formula for the motive of Higgsst
r,d(XFq

),

where XFq
is now a smooth projective curve of genus g defined over Fq. Our

formula (see Theorem 1.6 below) bears a strong similarity to the formula con-

jectured by Hausel-Rodriguez-Villegas and to its extension by Mozgovoy: it

essentially differs from theirs by the presence of the rational functions Hλ(z)

(although of course if the main conjectures of [HRV08] and [Moz12] are true,

then these formulas and ours compute the same numbers).

Theorems 1.1 and 1.2 have the following two other corollaries. Let µ :

Higgsst
r,d → A be the Hitchin map (see, e.g., [Hit87a]), and let Λst

r,d denote the

zero fiber of µ (the stable global nilpotent cone). It is known that Λst
r,d is a

projective (in general, singular) lagrangian subvariety of Higgsst
r,d. It is never-

theless cohomologically pure, and its number of points is (by [GPH13, Th. 1],

[GPHS14]) again given by a certain polynomial in the Weil numbers of X.

Corollary 1.4. Let r, d be relatively prime. Let X be a smooth projective

and geometrically connected curve of genus g defined over the field k. The

following hold :

(i) (k = Fq). We have

|Λst
r,d(Fq)| = Ag,r,d(σX),

where Ag,r,d(z1, . . . , z2g) = q2(1+(g−1)r2Ag,r,d(z
−1
1 , . . . , z−1

2g ) is the Poincaré

dual of Ag,r,d.

(ii) (k = Fq,C). We have

dim H1+(g−1)r2(Λst
r,d,C) = dim H1+(g−1)r2(Higgsst

r,d,C) = Ag,r,d(0).

In other words, the number of irreducible components of Λst
r,d is equal to

Ag,r,d(0).

Corollary 1.5. Let r, d be relatively prime. Then

Ag,r,d ∈ Im(N[−z1, . . . ,−z2g]
Wg → Rg).
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Moreover, Ag,r,d is unitary and of degree 2(1+(g−1)r2), i.e., Ag,r,d = q1+(g−1)r2

+ · · · , where · · · stands for terms of degree strictly less than 2(1 + (g − 1)r2)

in the variables z1, . . . , z2g .

It would be a consequence of Conjecture 1.7 below that Corollary 1.5 holds

without the coprimality assumption, thus yielding a global analog of Kac’s

positivity conjecture for A-polynomials of quivers. (The latter has recently

been proved in [HLRV13]. )

Theorem 1.2 and Corollaries 1.3, 1.4, and 1.5 are proved in Section 6.

1.4. Let us now give the precise expression for the polynomials Ag,r,d.

This requires first introducing some notation.

Partitions. Let λ = (λ1 ≥ λ2 ≥ · · · ≥ λl > 0) be a partition. The

Young diagram associated to λ is the set of boxes with integer coordinates

(i, j) with 1 ≤ i ≤ λj . For a box s ∈ λ, we denote by a(s) (armlength), resp.

l(s) (leglength), the number of boxes in λ lying strictly to the right of (resp.

strictly above) s. Here is an example for the partition (10, 93, 6, 32):

s

l

a
a(s) = 5
l(s) = 2

Figure 1. Notations for partitions.

If λ, µ are partitions, then we set 〈λ, µ〉 =
∑
i λ
′
iµ
′
i, where λ′, µ′ are the

conjugate partitions of λ, µ.

Plethystic operators. Consider the space Kg[[z, T ]] of power series in the

variables z, T . For l ≥ 1, we define the l-th Adams operator ψl as the Q-algebra

map

ψl : Kg[[z, T ]]→ Kg[[z, T ]], αi 7→ αli, z 7→ zl, T 7→ T l.

Set Kg[[z, T ]]+ = zKg[[z, T ]] + TKg[[z, T ]]. The plethystic exponential and

logarithm functions are inverse maps

Exp : Kg[[z, T ]]+ −→ 1 +Kg[[z, T ]]+, Log : 1 +Kg[[z, T ]]+ −→ Kg[[z, T ]]+

respectively defined by

Exp(f) = exp

(∑
k

1

k
ψk(f)

)
, Log(f) =

∑
k≥1

µ(k)

k
ψk (log(f)) ,
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where µ stands for the Mőbius function. These operators satisfy the usual

properties, i.e., Exp(f + g) = Exp(f)Exp(g) and Log(fg) = Log(f) + Log(g).

We refer, e.g., to [Moz06, §2] for more on these plethystic operators. Observe

that Exp(z) = 1/(1− z).

Zeta function of the curve. We will need several versions of the zeta func-

tion of a curve. Recall that the zeta function is defined as

ζX(z) = exp

Ñ∑
k≥1

|X(Fqk)|z
k

k

é
=

∏
i(1− σiz)

(1− z)(1− qz)
.

This can be nicely expressed in terms of the plethystic exponential. Namely,

set

(1.1) ζ(z) = Exp

(
(1−

∑
i

αi + q)z

)
=

∏
i(1− αiz)

(1− z)(1− qz)
.

Then ζX(z) = ζ(z)(σX). We will also need the following variants of ζ(z) :

(1.2)

ζ̃(z) = z1−gζ(z),

ζ∗(q−uzv) =


ζ(q−uzv) if (u, v) 6∈ {(1, 0), (0, 0)},∏
i(1− α−1

i )/(1− q−1) if (u, v) = (1, 0),∏
i(1− αi)/(1− q) if (u, v) = (0, 0).

Iterated residues. Let f(z) ∈ K(z) be a rational function over some field

K, and let u ∈ K. Write

f(z) =
∑
l

al(1− u−1z)l

for the Laurent expansion of f around z = u, and set Resz=uf(z) = a−1 ∈ K.

This notation is a little bit nonstandard as f(z) is a function rather than a dif-

ferential form. We may apply this to a function g(zk, . . . , z1) ∈ C(zk, . . . , z1),

viewed as an element of C(zk−1, . . . , z1)(zk) and u ∈ C(zk−1, . . . , z1). In

that case, Reszk=ug(zk, . . . , z1) ∈ C(zk−1, . . . , z1). Now let f(zn, . . . , z1) ∈
C(zn, . . . , z1) be a rational function in variables zn, . . . , z1, and let (u2, . . . , un)

∈ Cn−1 be arbitrary complex numbers. We define the iterated residue of f

along the collection of hyperplanes
zn
zn−1

= un,
zn−1

zn−2
= un−1, . . . ,

z2

z1
= u2

as follows:

Res zn
zn−1

=un,...,
z2
1

=u2
f(zn, . . . , z1) = Resz2=z1u2 ◦ · · · ◦Reszn=zn−1unf(zn, . . . , z1).

The result is an element of C(z1). The result in general depends on the order

in which the residues are taken. We will write Resz=uf(z)dz for the (usual)

residue of the differential form f(z)dz at z = u.
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We are now ready to introduce the ingredients entering in the explicit

computation of Ag,r,d. Let λ = (1r12r2 . . . trt) be a partition. Let us set

Jλ(z) =
∏
s∈λ

ζ∗X(q−1−l(s)za(s)).

Next, write n = l(λ) =
∑
i ri, and

r<i =
∑
k<i

rk, r>i =
∑
k>i

rk, r[i,j] =
j∑
k=i

rk,

and consider the multi-variable rational function

L(zn, . . . , z1) =
1∏

i<j ζ̃
Ä
zi
zj

ä ∑
σ∈Sn

σ

∏
i<j

ζ̃
Ä zi
zj

ä
· 1∏

i<n

Ä
1− q zi+1

zi

ä · 1

1− z1

 .
Denote by Resλ the operator of successively taking the iterated residue along

zn
zn−1

= q−1,
zn−1

zn−2
= q−1, · · · , z2+r<t

z1+r<t

= q−1,

...
...

...

zr1
zr1−1

= q−1,
zr1−1

zr1−2
= q−1, · · · , z2

z1
= q−1.

The result of such an operation is a function of z1+r<t , . . . , z1+r<i , . . . , z1. Put‹Hλ(z1+r<t , . . . , z1+r<i , . . . , z1) = ResλL(zn, . . . , z1)

and finally

Hλ(z) = ‹Hλ(ztq−r<t , . . . , ziq−r<i , . . . , z).

Note that if ri = 0 for some i, then the function ‹Hλ is independent of its i-th

argument.

Theorem 1.6. Define rational functions Ag,r(z) ∈ Kg(z) by the relation

(1.3)
∑
r≥1

Ag,r(z)T
r = (q − 1)Log

(∑
λ

q(g−1)〈λ,λ〉Jλ(z)Hλ(z)T |λ|
)
.

Then for any d ∈ Z, we have

Ag,r,d = −
∑
ξ∈µr

ξ−dResz=ξ

Å
Ag,r(z)

dz

z

ã
,

where µr stands for the set of r-th roots of unity.
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Examples. We list below the polynomials Ag,r,d for r ≤ 2:

Ag,1,d =
2g∏
i=1

(1− αi),

Ag,2,d =
2g∏
i=1

(1− αi) ·
Ç ∏

i(1− qαi)
(q − 1)(q2 − 1)

−
∏
i(1 + αi)

4(1 + q)

+

∏
i(1− αi)

2(q − 1)

[
1

2
− 1

q − 1
−
∑
i

1

1− αi

])
.

Conjecture 1.7. The polynomial Ag,r,d does not depend on d.

In view of Theorem 1.6, this conjecture may be recast in purely combina-

torial terms as follows:

Conjecture 1.8. The rational function Ag,r(z) is regular at nontrivial

r-th roots of unity.

It follows from the proof of Theorem 1.6 that Ag,r(z) is regular outside

of µr and has at most simple poles. Thus the above conjecture says that

(1− z)Ag,r(z) belongs to Kg[z], in which case we would simply have

Ag,r,d = [(1− z)Ag,r(z)]|z=1 ∀ d.

Conjecture 1.7 is, by Theorems 1.2 and 1.6, essentially equivalent to a

conjecture by Hausel and Thaddeus (see [Hau05, Conj. 3.2]) claiming that

the motive of Higgsst
r,d is independent of d. As supporting evidence, we prove

Conjecture 1.7 by direct computation when r is prime; see Appendix C.

The constant term of Ag,r,d can be described by a generating series formula

similar to (1.3):

Corollary 1.9. The values of Ag,r,d(0) are computed from the following

generating series. Set

(1.4)
∑
r

A0
g,r(z)T

r = −Log

(∑
λ

z(g−1)〈λ,λ〉−l(λ)Kλ(z)T |λ|
)
,

where for λ = (1r1 , 2r2 , . . .), we have set

Kλ(z) =
1∏

i
∏ri
j=1(1− z−j)

.

Then

Ag,r,d(0) =
∑
ξ∈µr

ξ−dResz=ξ

Å
A0
g,r(z)

dz

z

ã
.



306 OLIVIER SCHIFFMANN

Examples. We list below the values Ag,r,d(0) for r ≤ 4:

Ag,1,d(0) = 1, Ag,2,d(0) =

Ç
g

1

å
, Ag,3,d = 4

Ç
g

2

å
+

Ç
g

1

å
,

Ag,4,d = 32

Ç
g

3

å
+ 20

Ç
g

2

å
+

Ç
g

1

å
.

It is easy to see that for any r ≥ 1, Ag,r,d(0) is a polynomial in g of degree

r − 1.

Remarks. (i) Just like Ag,r(z), the rational function A0
g,r(z) has at most

simple poles at r-th roots of unity and is conjectured to be regular outside of

z = 1.

(ii) Let Σg be the quiver with one vertex and g loops, and let AΣg ,r ∈
N[q] be Kac’s A-polynomial counting geometrically indecomposable represen-

tation of Σg over Fq of dimension r (see [Kac82]). It is conjectured that

Ag,r,d(0) = AΣg ,r(1) — this, for instance, would follow from the main con-

jecture in [HRV08]. However, just as our formula (1.3) slightly differs from

that conjectured in [HRV08], so does (1.4) slightly differ from Hua’s formula

computing AΣg ,r(1); see [Hua00, Th. 4.9]. (In the latter case, the difference is

only in the extra term −l(λ) in (1.4) !)

Theorem 1.6 is proved in Section 5, as is Corollary 1.9.

1.5. In Sections 7 and 8, we point towards two types of possible exten-

sions of the above results: counting indecomposable vector bundles equipped

with quasi-parabolic structures along some (fixed) divisor D of X, and count-

ing indecomposables with a prescribed Harder-Narasimhan polygon. We also

propose an analog, in our context, of the famous conjecture of Kac (proved

by Hausel — see [Hau10]) relating the constant terms of the Kac polynomials

associated to a quiver Q with no edge loop to the dimensions of the root spaces

of the corresponding Kac-Moody algebra.

2. Stacks of pairs and the Harder-Narasimhan truncation

2.1. We fix a smooth projective curve X over a finite field Fq as in 1.1. In

this section we reduce the problem of counting geometrically indecomposable

coherent sheaves on X to the computation of the volume of certain stacks, the

truncated stacks of pairs. The truncation is defined in terms of the Harder-

Narasimhan filtration. Let us first recall some standard notation. Denote by

Coh(X) the category of coherent sheaves on X. By the class of a sheaf F we

will mean the pair

[F ] = (rank(F),deg(F)) ∈ (Z2)+ = {(r, d) ∈ N× Z | d > 0 if r = 0}.
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If α = (r, d), then we put rk(α) = r, deg(α) = d. Let K0(Coh(X)) stand for the

Grothendieck group of the category Coh(X), and let 〈 , 〉 : K0(X) ⊗Z K0(X)

→ Z be the Euler form, defined by 〈F ,G〉 = dim Hom(F ,G)−dim Ext1(F ,G).

The form 〈F ,G〉 only depends on the classes [F ], [G] and is given by

〈(r, d), (r′, d′)〉 = (1− g)rr′ + (rd′ − r′d).

We let ( , ) stand for the symetrized Euler form, i.e., (α, β) = 〈α, β〉+ 〈β, α〉,
so that

((r, d), (r′, d′)) = 2(1− g)rr′.

For α ∈ (Z2)+, we denote by Cohα(X) the subcategory of coherent sheaves

of class α. We consider the standard slope function µ(F) = deg(F)/rank(F),

and for any ν ∈ Q t {∞}, we denote by Coh(ν)(X) the (abelian) subcategory

of Coh(X) consisting of semistable sheaves of slope ν. From now on, unless

there is some risk of confusion, we will drop the symbol X from the notation.

More generally, given a collection α1 = (r1, d1), . . . , αt = (rt, dt) of el-

ements of (Z2)+ satisfying µ(α1) > · · · > µ(αt), we denote by Coh(α1,...,αt)

the full subcategory of Cohα1+···+αt consisting of objects F with a Harder-

Narasimhan filtration F1 ⊂ · · · ⊂ Ft = F satisfying [Fi/Fi−1] = αi for all i.

The Harder-Narasimhan filtration is stable under field extensions; see [HL10,

Th. 1.3.7]. Observe that the number of isomorphism classes of coherent sheaves

in Coh(α1,...,αt) is finite, since the number of semistable sheaves of any given

class is finite, and dim Ext1(H,G) <∞ for any (H,G).

Let Coh≥ν be the subcategory of sheaves F whose Harder-Narasimhan

filtration

F1 ⊂ F2 ⊂ · · · ⊂ Ft = F
satisfies

µ(F1) > µ(F2/F1) > · · · > µ(F/Ft−1) ≥ ν,
i.e., sheaves F for which µmin(F) ≥ ν. We will write Coh≥να for the full

subcategory of Coh≥ν consisting of objects belonging to Cohα. The categories

Coh≤ν are defined in a similar fashion, using the condition µmax(F) ≤ ν. We

will mostly be interested in the category Coh≥0. A sheaf belongs to Coh≥0 if

and only if it belongs to some Coh(α1,...,αt) with µ(α1) > · · · > µ(αt) ≥ 0. For

any given α, let us put

D(α) = {(α1, . . . , αt) | α =
∑

αi, µ(α1) > · · · > µ(αt) ≥ 0}.

The set D(α) is finite; therefore for any given α, the number of isomorphism

classes of coherent sheaves in Coh≥0 of class α is finite.

The full subcategory Coh≥0 is stable under quotients and extensions. In

particular, an object of Coh≥0 is isomorphic to a direct sum of indecomposable

objects, all of which belong to Coh≥0. The category Coh≥0 is also preserved

in a natural sense by extension of the base field. The relevance of Coh≥0
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to our problem of computing the number of indecomposables stems from the

following observation. Let us denote by A≥0
α (X) the number of geometrically

indecomposable coherent sheaves in Coh≥0 of class α.

Proposition 2.1. Assume that d > (g − 1)r(r − 1). Then any indecom-

posable vector bundle of rank r and degree d lies in Coh≥0, i.e.,

A≥0
r,d(X) = Ar,d(X).

Proof. Let F be any coherent sheaf of rank r and degree d, and let us

denote by α1 = (r1, d1), . . . , αt = (rt, dt) its Harder-Narasimhan type, that is,

F ∈ Coh(α1,...,αt). By Serre duality, any sequence

0 // A // B // C // 0

with A ∈ Coh≥ν , C ∈ Coh≤ν
′

and ν−ν ′ > 2g−2 splits since then Ext1(C,A) =

Hom(A, C ⊗ ΩX) = 0. In particular, if µ(αi) − µ(αi+1) > 2g − 2 for some i,

then F is decomposable. The proposition follows. �

2.2. Let us denote by Endnil(F) ⊂ End(F) the set of nilpotent endomor-

phisms of a coherent sheaf F . We consider the stacks

Nilα = 〈(F , θ) | F ∈ Cohα, θ ∈ Endnil(F)〉

where an isomorphism j : (F , θ) ∼→ (G, φ) is an isomorphism j : F ∼→ G such

that jθ = φj.

The stack Nilα is of infinite volume as soon as rk(α) > 0, i.e., the sum∑
(F ,θ)∈Obj(Nilα)/∼

1

|Aut((F , θ))|
=

∑
F∈Obj(Cohα)/∼

|Endnil(F)|
|Aut(F)|

diverges. However, the full substack

Nil≥0
α = 〈(F , θ) ∈ Nilα | F ∈ Coh≥0

α 〉

is of finite volume

vol(Nil≥0
α ) =

∑
F∈Obj(Coh≥0

α )/∼

|Endnil(F)|
|Aut(F)|

<∞

because there are only finitely many sheaves in Coh≥0
α up to isomorphism.

Observe that Nil≥0
α is empty if deg(α) < 0.

The relation between the stack Nil≥0
α and the problem of counting inde-

composable coherent sheaves is described by Propositions 2.1 and 2.2 below.

Proposition 2.2. The following relation holds in the ring Q[[z(1,0), z(0,1)]]:

∑
α

vol(Nil≥0
α )zα = exp

Ñ∑
l≥1

1

l

∑
α

A≥0
α (X ⊗ Fql)

ql − 1
zlα

é
.
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Proof. We begin by collecting a few standard results on indecomposable

coherent sheaves (see, e.g., [Ati56, Th. 2, Lemmata 6,7]).

Lemma 2.3. The following statements hold :

(i) Coh(X) is a Krull-Schmidt category ; i.e., every coherent sheaf M is iso-

morphic to a direct sum

M = M⊕n1
1 ⊕ · · · ⊕M⊕nss ,

where the Mi are distinct indecomposables. The (Mi, ni) are uniquely

determined up to permutation.

(ii) Let M be indecomposable. Then kM := End(M)/rad(End(M)) is a field.

(iii) Let M,M ′ be distinct indecomposables. Then any composed map M →
M ′ →M lies in rad(End(M)).

Lemma 2.4. Let M1, . . . ,Ms be distinct indecomposables and n1, . . . , ns
∈ N. Put M =

⊕
iM

⊕ni
i . Then

(2.1) rad(End(M)) =
⊕
i 6=j

Hom(M⊕nii ,M
⊕nj
j )⊕

⊕
i

rad(End(Mi))
⊕ni .

Proof. Let U denote the right-hand side of (2.1). It follows from Lemma

2.3(ii) that U is a nilpotent ideal in End(M) and End(M)/U ' ∏i gl(ni, kMi)

is a semisimple algebra. �

Corollary 2.5. Let M be as in Lemma 2.4. Then we have

(2.2)
|End nil(M)|
|Aut(M)|

=
∏
i

|kMi |ni(ni−1)

|GL(ni, kMi)|
.

Proof. Put A=End(M), and denote by p : A→ A/rad(A)'∏i gl(ni, kMi)

the natural projection. Then Endnil(M) = p−1(
∏
iNni,kMi ), where Nn,k ⊂

gl(n, k) denotes the nilpotent cone. Similarly, Aut(M) = p−1(
∏
i GL(ni, kMi)).

The result now follows from Lemma 2.4 and the well-known formula |Nn,k| =
|k|n(n−1) (see [FH58, Th. 1]). �

We now start the proof of Proposition 2.2. We first introduce some useful

notation. Let Ind≥0 stand for the set of isomorphism classes of indecom-

posables in Coh≥0. We choose a representative Mι in each class ι and set

lι = [kMι : Fq]. We have an obvious partition Ind≥0 =
⊔
α Ind≥0

α according to

the class α ∈ (Z2)+. Note that Ind≥0
α is empty if α 6∈ N2. By Lemma 2.3(i)

the set of isoclasses of objects in Coh≥0 is

Obj(Coh≥0)/∼ =

® ⊕
ι∈Ind≥0

M⊕nιι | nι = 0 for almost all ι

´
.
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Let Θ = {(nι) ∈ NInd≥0 | nι = 0 for almost all ι}. Then, by Corollary 2.5,

∑
α

vol(Nil≥0
α )zα =

∑
M∈Obj(Coh≥0)/∼

|Endnil(M)|
|Aut(M)|

z[M ]

=
∑

(nι)∈Θ

®∏
ι

q−lιnι

(1− q−lιnι) · · · (1− q−lι)
z
∑

ι nι[Mι]

´
=

∏
ι∈Ind≥0

Ç∑
n≥0

q−lιn

(1− q−lιn) · · · (1− q−lι)
zn[Mι]

å
.

Note that the infinite product converges in the ring Q[[z(0,1), z(1,0)]] because

any element in N2 may be written in only finitely many different ways as a

sum
∑
ι nι[Mι]. (Recall that each Ind≥0

α is of finite cardinality.)

Applying Heine’s formula

∑
n≥0

un

(1− vn) · · · (1− v)
= exp

Ç∑
l≥1

ul

l(1− vl)

å
we get ∑

α

vol(Nil≥0
α )zα = exp

Ç∑
l≥1

∑
ι∈Ind≥0

zl[Mι]

l(qllι − 1)

å
.

To prove Proposition 2.2 it only remains to show the next lemma:

Lemma 2.6. The following relation holds :

(2.3)
∑
l≥1

∑
ι∈Ind≥0

zl[Mι]

l(qllι − 1)
=
∑
l≥1

∑
α

A≥0
α (X ⊗ Fql)

l(ql − 1)
zlα.

Proof. Let us denote by Ind≥0
α,l the set of elements ι ∈ Ind≥0

α satisfying

lι = l. If ι ∈ Ind≥0
α,l , then Mι ⊗ Fq splits as a direct sum of l geometrically

indecomposable coherent sheaves N1, . . . , Nl by Lemma 2.4.

The group G := Gal(Fq/Fq) acts naturally on the set of isoclasses of inde-

composable coherent sheaves on X = X ⊗Fq of class α, preserving the subset

of sheaves in Coh≥0. We denote by (σ, L) 7→ Lσ this action. For σ ∈ G and

M,M ′ ∈ Coh(X), we write M 'σ M ′ if there exists a σ-semilinear isomor-

phism M
∼→ M ′. Let us fix an indecomposable coherent sheaf N ∈ Coh(X)

and define an equivalence relation on G as follows: σ ∼ τ if N τ 'στ−1 Nσ.

The equivalence class HN containing 1 is a subgroup of G, and the other

classes are the (right or left) HN -translates. Because N is coherent, the coset

G/HN is finite, and we will call Galois orbit (of N) a collection of sheaves

{Nσ1 , . . . , Nσr} with σ1, . . . , σr a set of representatives of G/HN . This con-

struction yields a partition of the set of isomorphism classes of indecomposable
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coherent sheaves in Coh≥0
α (X) into Galois orbits. Let ξα,d stand for the set of

Galois orbits of size d. We claim that

(2.4) |ξα,d| = |Ind≥0
dα,d|

and

(2.5) A≥0
α (X ⊗ Fql) =

∑
d|l
d|ξα,d|.

Indeed, let {N1, . . . , Nd} be a Galois orbit in ξα,d, and set M =
⊕

iNi . For any

σ ∈ G, there is a σ-semilinear isomorphism fσ : M
∼→Mσ. The automorphism

group Aut(M) is a connected algebraic group defined over Fq (it is an open

subset of the Fq-vector space End(M)) which is solvable because M is a direct

sum of nonisomorphic indecomposable coherent sheaves (see Lemma 2.3(ii)).

By Steinberg’s and Grothendieck’s theorems (see [Ser94, III.2.4, Cor. 3] and

[Spr66, Th. 3.5]), the Galois cohomology groups H i(G,Aut(M)) are trivial

(resp. neutral) for i = 1, 2. It follows that there exists a unique (up to iso-

morphism) effective descent data (f̃σ : M
∼→ Mσ)σ∈G and thus a unique (up

to isomorphism) object M0 ∈ Coh(X) such that M ' M0 ⊗ Fq. The sheaf

M0 is indecomposable, as M does not contain any proper submodule M ′ ⊂M
satisfying M ′ 'σ M ′σ for all σ ∈ G. Therefore M0 ∈ Ind≥0

dα,d. The map

ξα,d → Ind≥0
dα,α, {N1, . . . , Nd} 7→M0

thus constructed is a bijection, and (2.4) follows. This also implies that Ind≥0
α,d

is empty unless d divides α.

For similar reasons, there is a bijection between isomorphism classes of

geometrically indecomposable coherent sheaves of class α over X ⊗ Fql and

isomorphism classes of indecomposable coherent sheaves of class α over X

satisfying M 'σ Mσ for all σ ∈ Gal(Fq/Fql). Equation (2.5) follows. Using

(2.4) and (2.5), we compute

∑
l≥1

∑
ι∈Ind≥0

zl[Mι]

l(qllι − 1)
=
∑
l≥1

∑
β

∑
d|β

|Ind≥0
β,d|

l(qdl − 1)
zlβ =

∑
l≥1

∑
α

∑
d≥1

|Ind≥0
dα,d|

l(qdl − 1)
zdlα

=
∑
l≥1

∑
α

∑
d≥1

|ξα,d|
l(qdl − 1)

zldα =
∑
l′≥1

∑
α

∑
d|l′

d|ξα,d|
l′(ql′ − 1)

zl
′α

=
∑
l′≥1

∑
α

A≥0
α (X ⊗ Fql′ )

l(ql′ − 1)
zl
′α

as wanted. Lemma 2.6 and Proposition 2.2 are proved. �



312 OLIVIER SCHIFFMANN

Remark. In view of the definition of the plethystic exponential, Proposi-

tion 2.2 may heuristically be interpreted as the equality∑
α

vol(Nil≥0
α )zα = Exp

Ç∑
α

A≥0
α (X)

q − 1
zα
å
.

Of course, this only makes sense a posteriori, once we know that A≥0
α (X) is a

polynomial in the Weil numbers of X.

3. Jordan stratification

3.1. By Propositions 2.1 and 2.2, computing Aα(X) (for all α and for all

base field extensions of X) amounts to computing the volumes of the stacks

Nil≥0
α . We will achieve this by first stratifying Nilα according to Jordan types.

The computation of the volume of each piece will be carried out in Section 5

Let (F , θ) ∈ Nilα, and let s be such that θs = 0, θs−1 6= 0. There are two

natural filtrations

Ker(θ) ⊂ Ker(θ2) ⊂ · · · ⊂ Ker(θs) = F ,

Im(θs−1) ⊂ Im(θs−2) ⊂ · · · ⊂ Im(θ0) = F

and a sequence of epimorphisms induced by θ

(3.1) F/Im(θ)
d1 // // Im(θ)/Im(θ2)

d2 // // · · ·
ds−1 // // Im(θs−1).

We define the Jordan type of the pair (F , θ) as follows:

J(F , θ) = (α1, . . . , αs),

where αi = [Ker(di)]. Note that we have

[Im(θi−1)]− [Im(θi)] = αi + αi+1 + · · ·+ αs, (i = 1, . . . , s),∑
i

iαi = α
(3.2)

and that some of the αi may be zero, but αs 6= 0.

The Jordan type of a pair (F , θ) contains more information than the Jor-

dan type (in the usual sense) of θ over the generic point of X, as it also keeps

track of the degrees of the kernels of powers of θ. We put

Jgen(F , θ) = (rk(α1), . . . , rk(αt)),

where t is the largest index for which rk(αt) 6= 0.

It may be helpful to visualize the pair (F , θ) as a Young diagram. For

instance, when θ3 = 0 we view F as shown in Figure 2, in which θ maps every

box onto the box lying below it. Every region R which is saturated in the south

and west directions corresponds to a canonical θ-stable subsheaf FR of F .

For instance, in Figure 2, the subsheaf Ker(θ) + (Ker(θ2) ∩ Im(θ)) corre-

sponds to the region shown in Figure 3.
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α1

α2

α2α3

α3

α3

Figure 2. Jordan type of a nilpotent endomorphism.

α1α2α3

α3

Figure 3. A canonical subsheaf.

For α = (α1, . . . , αr), we denote by Nilα the stack consisting of pairs

(F , θ) with J(F , θ) = α. Hence we have a stratification

Nilα =
⊔
|α|=α

Nilα,

where we have set |α| = ∑
i iαi.

We introduce several more stacks: Cohβ denotes the stack of coherent

sheaves on X of class β; Coh≥0
β is the full substack of Cohβ consisting of

coherent sheaves which belong to Coh≥0; for β = (β1, . . . , βs), we denote byflCohβ the stack whose objects are pairs (H,H•), where H is a coherent sheaf

on X of class β1 + · · ·+ βs and where H• is a filtration

H1 ⊂ H2 ⊂ · · · ⊂ Hs = H

satisfying [Hi] = β1 + · · · + βi for i = 1, . . . , s; finally, we let flCoh
≥0

β stand for

the full substack of flCohβ consisting of pairs (H,H•) with H ∈ Coh≥0.

3.2. There is a natural functor

πα : Nilα → Cohα1 × · · · ×Cohαs

sending a pair (F , θ) to the tuple (F1, . . . ,Fs) where

Fi = Ker(di), i = 1, . . . , s,

with (d1, . . . , ds) being defined as in (3.1).

The functor πα factors as the composition πα = π′′α◦π′α of the two functors

π′α : Nilα →flCohα and π′′α : flCohα → Cohα1×· · ·×Cohαs respectively defined

by

π′α(F , θ) = (H,H•),
H = F/Im(θ), H1 = Ker(d1), H2 = Ker(d2 ◦ d1), . . .
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and

π′′α(H,H•) = (H1,H2/H1, . . . ,H/Hs−1).

Recall that 〈 , 〉, resp. ( , ), stands for the Euler form, resp. symetrized

Euler form (see Section 2.1). If φ : A → B is a functor between groupoids

and B′ ⊂ B is a full sub-groupoid, then φ−1(B′) is by definition the full sub-

groupoid of A whose objects satisfy the following condition: φ(A) ' B for

some B ∈ B′. This next proposition is crucial for us.

Proposition 3.1. The following hold :

(i) for any (F1, . . . ,Fs) ∈ Cohα1 × · · · ×Cohαs , we have

vol
Ä
π−1
α (F1, . . . ,Fs)

ä
= qd(α),

where

d(α) = −
®∑

i

(i− 1)〈αi, αi〉+
∑
i<j

i(αi, αj)

´
;

(ii) for any (F1, . . . ,Fs) ∈ Cohα1 × · · · ×Cohαs , we have

vol
Ä
(π′′α)−1(F1, . . . ,Fs)

ä
= qd

′′(α),

where

d′′(α) = −
∑
i<j

〈αj , αi〉;

(iii) for any (H,H•) ∈flCohα, we have

vol
Ä
(π′α)−1(H,H•)

ä
= qd

′(α),

where d′(α) = d(α)− d′′(α);

(iv) we have

(π′α)−1
ÄflCoh

≥0

α

ä
= Nil≥0

α .

Proof. The proofs of statements (i)–(iii) are completely analogous to

[GPHS14, Prop. 3.1, Cor. 3.2]. The fiber of πα over (F1, . . . ,Fs) classifies

successive extensions between the sheaves Fi, hence it is isomorphic to a suit-

able iteration of stack bundles of the form RHom(Fi,Fj). (Recall that Coh(X)

is of global dimension one so the complex RHom(Fi,Fi) may only have coho-

mology in degrees 0 and 1.) One finds that the stack bundle RHom(Fi,Fj)
occurs exactly j times if j < i, i − 1 times if j = i and i times if j > i. The

stack bundle RHom(Fi,Fj) being of dimension 〈αi, αj〉, one obtains the given

expression for the dimension d(α) of π−1
α (F1, . . . ,Fs). Statements (ii) and (iii)

are proved in the same way. We refer to [MS14, Prop. 5.1], where a more

detailed argument is given.

We turn to (iv). Given (F , θ) ∈ Nilα, we have to show that F ∈ Coh≥0

if and only if F/Im(θ) ∈ Coh≥0. As Coh≥0 is closed under quotients, F ∈
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Coh≥0 ⇒ F/Im(θ) ∈ Coh≥0. To get the reverse implication, recall the se-

quence of surjective morphisms F/Im(θ) � Im(θ)/Im(θ2) � · · · � Im(θs−1).

Hence if F/Im(θ) ∈ Coh≥0, then so do Im(θi)/Im(θi+1) for i = 1, . . . , s − 1.

But as Coh≥0 is also stable under extensions, this implies that F ∈ Coh≥0.

Proposition 3.1 is proved. �

Corollary 3.2. We have

vol
Ä
Nil≥0

α

ä
= qd

′(α)vol
ÄflCoh

≥0

α

ä
.

4. Hall algebras of curves

4.1. As we will show in Section 5, the volume of flCoh
≥0

α may be com-

puted using some standard techniques in the theory of automorphic functions

over function fields for the groups GL(n). We will use the language of Hall

algebras, which seems the most convenient here and which we briefly recall in

this section. We refer, e.g., to [Kap97], [KSV12] or [Sch12, Lect. 4] for details.

This will also yield a proof of Theorem 1.1.

For any γ ∈ (Z2)+, we set Iγ = Obj(Cohγ)/ ∼, and we let Hγ =

Fun(Iγ ,C) be the C-vector space of all functions Iγ → C. There is a nat-

ural convolution diagram

Cohγ2 ×Cohγ1
flCohγ2,γ1

poo s // Cohγ1+γ2 ,

where p(H,H1 ⊂ H) = (H/H1,H1) and s(H,H1 ⊂ H) = H. This induces

maps

mγ2,γ1 : Hγ2 ⊗Hγ1 → Hγ1+γ2

f ⊗ g 7→ q
1
2
〈γ2,γ1〉s∗p

∗(f � g)

and

∆′γ2,γ1 : Hγ1+γ2 → Fun(Iγ2 × Iγ1 ,C)

h 7→ q
1
2
〈γ2,γ1〉p∗s

∗(h).

The exponent 〈γ2, γ1〉 of q1/2 occurring in these definitions is (up to a sign)

the dimension of the smooth fibration p; it is an analogue of a cohomological

Tate shift.

Note that Fun(Iγ2×Iγ1 ,C) is a natural completion of Hγ2⊗Hγ1 . We will

denote this completion by Hγ2⊗̂Hγ1 . Taking the direct sum over all γ yields an

algebra and a (topological) coalgebra structure on H′ =
⊕

γ Hγ . As defined,

this is not a bi-algebra in a strict sense (i.e., ∆′ is not a morphism of algebras).

Let K =
⊕

γ∈Z2 Ckγ be the group algebra of Z2. The (extended) Hall algebra

of X is the semidirect tensor product H = H′ ⊗K with respect to the action

kγfk−γ = q
1
2

(γ,α)f for f ∈ Hα.
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It is equipped with a comultiplication satisfying

∆(kγ) = kγ ⊗ kγ ,

∆(f) =
∑

γ1+γ2=γ

∆′γ2,γ1(f) · (kγ1 ⊗ 1) for f ∈ Hγ .

By a general theorem of Green (see [Gre95, Th. 1]), H is a (topological) bi-

algebra. We will occasionally write ∆r,s for the component of ∆ of rank (r, s)

(hence letting the degrees vary). Observe that k(0,1) is central. When it bears

no consequence, it is sometimes convenient to omit the degree in the notation

(for instance, writing simply k1 for k1,d). We hope that that the reader will

not find this slight abuse of notation too confusing.

Let Hfin ⊂ H be the subalgebra of H consisting of functions with finite

support. The algebra Hfin is equipped with a nondegenerate symmetric pairing

defined by

(kγ | kδ) = q
1
2

(γ,δ), (1F | 1G) =
δF ,G

|Aut(F)|
,

which satisfies the Hopf property

(ab | c) = (a⊗ b | ∆(c)) ∀ a, b, c ∈ Hfin.

4.2. We will use the following notation: for γ ∈ (Z2)+, we denote by

1γ , 1
vec
γ , 1≥0

γ the characteristic functions of Cohγ of the substack Bunγ of Cohγ
parametrizing vector bundles and of Coh≥0

γ respectively. Thus,

(1γ | 1γ) = vol(Cohγ), (1vec
γ | 1vec

γ ) = vol(Bunγ), (1≥0
γ | 1≥0

γ ) = vol(Coh≥0
γ ).

Moreover, it is easy to see from the definitions that if γ = (r, d) with r ≥ 1,

then

1γ =
∑
l≥0

q−
1
2
l1vec
γ−(0,l)10,l.

Unraveling the definitions we have that for any α = (α1, . . . , αs),

(4.1) vol

ÅflCoh
≥0

α

ã
= q−

1
2

∑
i>j
〈αi,αj〉

(
1αs · · · 1α1 | 1

≥0∑
αi

)
.

Theorem 4.1. We have

(i) if γ = (r, d) with r > 0, then

(1vec
γ | 1vec

γ ) =
q(g−1)(r2−1)

q − 1
|Pic0(X)|ζX(q−2) · · · ζX(q−r);

(ii)
∑
l≥0

(10,l | 10,l)s
l = Exp

Ç
|X(Fq)|
q − 1

s

å
=
∞∏
i=1

ζX(q−is);
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(iii) if γ = (r, d) with r > 0, then

(1γ | 1γ) =
q(g−1)(r2−1)

q − 1
|Pic0(X)|

∞∏
i=2

ζX(q−i).

Proof. The first statement is known as the Siegel formula; see [HN75,

Prop. 2.3.4] and also [BD07, §6] for a motivic analog. The second statement is

also known, but we indicate a proof in the appendix as we have not been able

to locate a precise reference. The last statement is an easy consequence of (i)

and (ii) together with the fact that

vol(Cohγ) =
∑
l≥0

q−rlvol(Bunγ−(0,l))vol(Coh0,l),

this last equality coming from the stratification of Cohγ according to the length

of the torsion part. We note that the cohomology (together with the action of

the Frobenius) of the moduli stacks Cohγ have been determined for all γ by J.

Heinloth (see [Hei12, Th. 1]); the above formulas (ii) and (iii) may alternatively

be deduced from loc. cit. using Behrend’s trace formula. �

For any r > 0, we set

volr = vol(Bunr,d(X)).

This is independent of d, given explicitly in Theorem 4.1(i).

4.3. Our computation uses some well-known properties of Eisenstein se-

ries, which we recall in this paragraph. Several statements concern infinite

series in several variables. If f(z1, . . . , zs) ∈ Q(z1, . . . , zs) is a rational func-

tion, then by its expansion in the region z1 � z2 � · · · � zs we mean its

expansion in the Laurent series ring

(4.2) Q[z±1
1 , . . . , z±1

s ]⊗Q[z1,...,zs] Q
ññ
z2

z1
, . . . ,

zs
zs−1

ôô
.

For any r ≥ 0, let us consider the series

Er(z) =
∑
d∈Z

1r,dz
d, Evec

r (z) =
∑
d∈Z

1vec
r,d z

d,

which both belong to
∏
d∈Z(Hr,d[z±1]). The unicity of the torsion part of a

coherent sheaf implies

(4.3) Er(z) = Evec
r (z)E0(q−

1
2
rz).

Note also that E0(z) = 1 +
∑
d>0 10,dz

d is an invertible series. We consider the

Eisenstein series

Ers,...,r1(zs, . . . , z1) = Ers(zs) · · ·Er1(z1) ∈
∏
d∈Z

(Hr,d[[z±1
s , . . . , z±1

1 ]]),
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where r =
∑
i ri, and we define Evec

rs,...,r1(zs, . . . , z1) likewise. It was shown by

Harder (see [Har74, Th. 1.6.6]) that for any coherent sheaf F of rank r, the

value of Evec
rs,...,r1(zs, . . . , z1) on F is the expansion in the region z1 � z2 �

· · · � zs of a rational function. The fact that this coefficient belongs to the

space (4.2) is a consequence of the Harder-Narasimhan reduction theory: the

slope of possible subsheaves of a given sheaf F is bounded above, and the

number of subsheaves of a given class is finite. Whenever there is no risk of

confusion, we will abbreviate Ers,...,r1(zs, . . . , z1) by Er(z).

We summarize the properties of the Eisenstein series which we will use in

the following theorem.

Theorem 4.2 (Harder). The following hold :

(i) E0(z)E0(w) = E0(w)E0(z);

(ii) for any r ≥ 1, we have

E0(z)Evec
r (w) =

(
r−1∏
i=0

ζ

Å
q−

r
2

+i z

w

ã)
Evec
r (w)E0(z),

where the rational function
∏
i ζX
Ä
q−

r
2

+i z
w

ä
is expanded in the region

w � z;

(iii) for any r ≥ 0, we have

∆′(Er(z)) =
∑
s+t=r

q
1
2
st(g−1)Es(q

t
2 z)⊗ Et(q−

s
2 z),

∆′(Evec
r (z)) =

∑
s+t=r

q
1
2
st(g−1)Evec

s (q
t
2 z)E0(q

t−s
2 z)E−1

0 (q−
t+s
2 z)⊗ Evec

t (q−
s
2 z);

(iv) for r ≥ 1, we have

Evec
r (q

1
2

(1−r)z1) = C · Res zr
zr−1

=
zr−1
zr−2

=···= z2
z1

=q−1 (Evec
1 (zr) · · ·Evec

1 (z1)) ,

where

C = q−
1
4

(g−1)r(r−1)vol−r1 volr.

Proof. The first statement simply expresses the commutativity of Hecke

operators, while the second expresses the fact that the constant functions are

Hecke eigenfunctions; see, e.g., [SV11, Th. 6.3] for a proof in the language of

Hall algebras. (The proof is given there when gX = 1, but the same proof

works for an arbitrary curve.) The first statement (iii) is the formula for

the constant term of the constant function; see, e.g., [SV11, Prop. 6.2]. The

second statement of (iii) is a consequence of the first and the factorization (4.3).

Finally, (iv) is the formula expressing the constant function on BunGL(r)(X) as

an iterated residue of an Eisenstein series; see [Har74, Th. 2.2.3] and Section 1.4

for our conventions concerning iterated residues. �
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Corollary 4.3. For any tuple (r1, . . . , rs) and any coherent sheaf F of

rank r1 + · · ·+ rs, the coefficient Ers,...,r1(zs, . . . , z1)(F) is the expansion in the

region z1 � · · · � zs of a rational function.

Proof. Indeed, this follows from the analogous statement for the series

Evec
rs,...,r1(zs, . . . , z1) using the factorization (4.3) and the Hecke relations (i) and

(ii) in Theorem 4.2. Observe that the coefficient of any torsion sheaf T in a

rank zero Eisenstein series E0,...,0(ws, . . . , w1) is a polynomial in w1, . . . , ws. �

4.4. We will need some appropriate truncations of the series Er(z) and

Evec
r (z). Put

1≥0
r,d = 1

Coh≥0
r,d
, 1vec,≥0

r,d = 1
Bun≥0

r,d
, 1<0

r,d = 1Bun<0
r,d
,

where Bun<0
r,d is the full subgroupoid of Bunr,d whose objects are vector bun-

dles belonging to Coh<0. We also set

E≥0
r (z) =

∑
d∈Z

1≥0
r,dz

d, Evec,≥0
r (z) =

∑
d∈Z

1vec,≥0
r,d zd, E<0

r (z) =
∑
d∈Z

1<0
r,dz

d.

The unicity of the Harder-Narasimhan filtration yields the following relations:

Er(z) =
∑
s+t=r
s,t≥0

q
1
2

(g−1)stE<0
s (q

t
2 z)E≥0

t (q−
1
2
sz),

Evec
r (z) =

∑
s+t=r
s,t≥0

q
1
2

(g−1)stE<0
s (q

t
2 z)Evec,≥0

t (q−
1
2
sz),

E≥0
r (z) = Evec,≥0

r (z)E0(q−
1
2
rz).

(4.4)

4.5. Let Hsph ⊂ Hfin be the subalgebra generated by K and the char-

acteristic functions 1vec
1,d and 10,d of the connected components of Pic(X) and

Coh0(X), the stack of torsion sheaves on X. This subalgebra is studied in

[SV12] and [Sch11]. In particular, it is shown in [Sch11, Thm 3.1] that the

characteristic function 1Coh(α1,...,αt) of any HN strata Coh(α1,...,αt) belongs to

Hsph. One nice feature of Hsph is that it possesses an integral (or generic)

form in the following sense. Let us fix a genus g ≥ 0, put Rg = Q[Tg]
Wg and

recall that Kg is the localization of Rg at the set {ql − 1 | l ≥ 1}, where by

definition q(σ1, . . . , σ2g) = σ2i−1σ2i for any 1 ≤ i ≤ g. (see Section 1.1). For

any choice of smooth projective curve X of genus g, there is a natural map

Kg → C, f 7→ f(σX).

Theorem 4.4 ([SV12], [Sch11]). There exists an Rg-Hopf algebra RHsph

equipped with a Hopf pairing

( ) : RHsph ⊗ RHsph → Kg,
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generated by elements R10,l,R1vec
1,d , l≥1, d∈Z, containing elements R1Cohα1,...,αt

for any HN strata Coh(α1,...,αt) and having the following property : for any

smooth connected projective curve X of genus g defined over a finite field Fq

there exists a specialisation morphism of Hopf algebras

ΨX : RHsph ⊗Rg C � Hsph
X

such that

ΨX(R1Coh(α1,...,αt)) = 1Coh(α1,...,αt)

for any HN strata Coh(α1,...,αt).

Proof. The existence of RHsph is shown in [SV12, 1.11]. The existence of

the elements R1Coh(α1,...,αt) is proved in exactly the same fashion as in [Sch11,

Th. 3.1]. �

Corollary 4.5. For any tuple α = (α1, . . . , αs), there exists an element

B≥0
g,α ∈ Kg such that

vol

ÇflCoh
≥0

α (X)

å
= B≥0

g,α(σX)

for any X .

Proof. By (4.1) and Theorem 4.4 it is enough to show that the pairing

(4.5) (1αs · · · 1α1 | 1
≥0∑

αi
)

may be expressed as a pairing between certain explicit polynomials in elements

1Coh(β1,...,βt) . On the one hand, we have

1≥0∑
αi

=
∑
β

1
Coh

(β) ,

where β ranges among the (finite) set of all HN types (β1, . . . , βt) such that∑
βi =

∑
αi and µ(β1) ≥ 0. On the other hand, we have

(4.6) 1αs · · · 1α1 =
∑

β
s
,...,β

1

1
Coh

(β
s
) · · · 1

Coh
(β

1
)

where the sum ranges over all tuples (β
s
, . . . , β

1
) of HN types of respective

class αs, . . . , α1. Write

β
i

= (β
(i)
1 , . . . , β

(i)
ti ), (1 ≤ i ≤ s).

We claim that the pairing (1
Coh

(β
s
) · · · 1

Coh
(β

1
) | 1≥0∑

αi
) may be nonzero only

when

(4.7) µ(αs + · · ·+ αi+1 + β
(i)
1 + · · ·+ β

(i)
l ) ≥ 0

for all possible choices of i and l. Indeed, if (4.7) does not hold, then there ex-

ists a coherent sheaf F ∈ Coh≥0 satisfying (1
Coh

(β
s
) · · · 1

Coh
(β

1
) | F) 6= 0 having
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some quotient of negative slope. Observe that condition (4.7) reduces the num-

ber of summands in (4.6) contributing to (4.5) to a finite set. We are done. �

From the above corollary one deduces that for any α ∈ (Z2)+, there exist

an element C≥0
g,α ∈ Kg such that

vol

Ç
Nil≥0

α (X)

å
= C≥0

g,α(σX)

for any X. Therefore using Proposition 2.2 we obtain the relation

(4.8)
∑
l≥1

1

l

∑
α

A≥0
α (X ⊗ Fql)

ql − 1
zlα = log

Ç∑
α

C≥0
g,αz

α

å
.

This implies that for any α, there exists an element A≥0
g,α ∈ Kg such that

A≥0
α (X) = A≥0

g,α(σX) for any X. Indeed, this follows immediately from (4.8)

for α = (r, d) with r and d relatively prime and from there by an easy induction

on gcd(r, d) for an arbitrary pair α. Using Proposition 2.1 we therefore have

Corollary 4.6. For any g and any α, there exists an element Ag,α ∈ Kg

such that Aα(X) = Ag,α(σX) for any smooth projective curve X of genus g.

4.6. To finish the proof of Theorem 1.1 it remains to prove the unicity

of A≥0
g,α. For this, let us fix a prime number l, an embedding ι : Ql → C and

consider the collection Xg of all smooth projective geometrically connected

curves X of genus g defined over some finite field Fq with l not dividing q.

Setting

W = {σX | X ∈ Xg} ⊂ Tg/Wg,

we see that the unicity statement of Theorem 1.1 boils down to the following

fact, whose proof is given in the appendix:

Proposition 4.7. The set W is Zariski dense in Tg/Wg .

5. Volume of the stack of pairs

5.1. The aim of this section is to perform the computation of the pairing(
1αs · · · 1α1 | 1

≥0∑
αi

)
(and hence of the volume of flCoh

≥0

α ) and to prove Theorem 1.6. To this aim,

let us introduce the following generating series:

G≥0
rs,...,r1(zs, . . . , z1;w) :=

Ç
Ers,...,r1(zs, . . . , z1)

∣∣∣∣∣ E≥0
n (w)

å
,

where n =
∑
i ri. Note that we allow some of the ri to be zero. By Corollary 4.5,

G≥0
rs,...,r1(zs, . . . , z1;w) belongs to the vector space C

îî
zs
zs−1

, zs−1

zs−2
, . . . , z2z1 , z1, w

óó
.

In addition, for any l ≥ 0, the coefficient of wl is the expansion in the region

z1 � · · · � zs of some rational function in z1, . . . , zs. Indeed, there are only
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finitely many sheaves G in Coh≥0
n,l up to isomorphism, and by Harder’s theorem,

Er(z)(G) is the expansion of a rational function (see Corollary 4.3).

Proposition 5.1. For any rs, . . . , r1, we have

G≥0
rs,...,r1(zs, . . . , z1;w) = Xr1,...,rs(zs, . . . , z1;w) · Y ≥0

rs,...,r1(zr, . . . , z1;w),

where

Y ≥0
rs,...,r1(zs, . . . , z1;w) =

(
Evec
rs,...,r1(zs, . . . , z1)

∣∣∣ E≥0
n (w)

)

and

Xrs,...,r1(zs, . . . , z1;w)

= Exp

Ñ
|X(Fq)|
q − 1

∑
i

q−
1
2

(n+ri)ziw +
∑
i>j

zi
zj

Ä
q
rj
2 − q−

rj
2

ä
q−

ri
2

é .

Proof. Let us abbreviate r = (rs, . . . r1) and z = (zs, . . . , z1). From the

third relation in (4.4) and using (twice) the Hopf property of the pairing, we

get

G≥0
r (z;w) =

Ä
∆rs,0(Ers(zs)) · · ·∆r1,0(Er1(z1)) | Evec,≥0

n (w)⊗ E0(q−
n
2w)
ä

=
(Ä
Ers(zs)k0 ⊗ E0(q−

rs
2 zs)

ä
· · ·
Ä
Er1(z1)k0 ⊗ E0(q−

r1
2 z1)

ä
| Evec,≥0

n (w)⊗ E0(q−
n
2w)

)
=
(
Ers(zs) · · ·Er1(z1)ks0 ⊗ E0(q−

rs
2 zs)

· · ·E0(q−
r1
2 z1) | Evec,≥0

n (w)⊗ E0(q−
n
2w)

)
=
Ä
Er(z) | Evec,≥0

n (w)
ä
·
(∏

i

E0(q−
ri
2 zi) | E0(q−

n
2w)

)

=
Ä
Er(z)) | Evec,≥0

n (w)
ä
·
∏
i

(
E0(q−

ri
2 zi) | E0(q−

n
2w)

)

=
Ä
Er(z) | Evec,≥0

n (w)
ä
· Exp

(
|X(Fq)|
q − 1

∑
i

q−
1
2

(n+ri)ziw

)
.

(5.1)
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The last step of the above calculation uses Theorem 4.1(ii). Using (4.3) and

the Hecke relations (see Theorem 4.2(i), (ii)) we getÄ
Er(z) | Evec,≥0

n (w)
ä

=
(
Evec
rs (zs)E0(q−

rs
2 zs)E

vec
rs−1

(zs−1) · · ·Evec
r1 (z1)E0(q−

r1
2 z1) | Evec,≥0

n (w)
)

=
∏
i>j

rj−1∏
l=0

ζ

Ç
q−

rj
2

+lq−
ri
2
zi
zj

å
·
(
Evec
r (z)

s∏
i=1

E0(q−
ri
2 zi) | Evec,≥0

n (w)

)

= Exp

Ñ
|X(Fq)|
q − 1

∑
i>j

zi
zj

Ä
q
rj
2 − q−

rj
2

ä
q−

ri
2

é · ÄEvec
r (z) | Evec,≥0

n (w)
ä
.

(5.2)

Above we have made use of the fact that the vector bundle part of the product

Evec
r (z)

∏s
i=1E0(q−

ri
2 zi) is equal to Evec

r (z) together with the relation

n−1∏
l=0

ζ
Ä
q−

n
2

+lu
ä

= Exp

Ç
|X(Fq)|
q − 1

u
Ä
q
n
2 − q−

n
2

äå
.

Combining (5.1) and (5.2) yields the proposition. �

5.2. In order to compute the series Y ≥0
r (z;w) we introduce some further

generating series

Y ∗r (z;w) :=

Ç
Evec
r (z)

∣∣∣∣∣ E∗r (w)

å
,

where r =
∑
ri and where the symbol ∗ is either empty or belongs to the set

{≥ 0, < 0}. As before, these series belong to the vector space of formal sums

C[[z±1
s , . . . , z±1

1 , w±1]]. By construction, the coefficient (1rs,ds · · · 1r1,d1 | 1∗r,d)

of zdss · · · z
d1
1 wd in Y ∗rs,...,r1(zs, . . . , z1;w) is nonzero only if d =

∑
i di. We claim

that

Y ≥0
rs,...,r1(zs, . . . , z1;w) ∈ C

ññ
zs
zs−1

,
zs−1

zs−2
, . . . ,

z2

z1
, z1, w

ôô
,

Y <0
rs,...,r1(zs, . . . , z1;w) ∈ z−1

1 C
ññ
z−1
s ,

zs
zs−1

,
zs−1

zs−2
, . . . ,

z2

z1
, w−1

ôô
.

(5.3)

Indeed, by definition, a coherent sheaf G in Coh≥0
r,d is of positive degree and

may only have positive degree quotient sheaves, hence any filtration

G1 ⊂ G2 ⊂ · · · ⊂ Gs−1 ⊂ Gs = G

satisfies deg(G/Gi−1) =
∑i+1
l=s deg(Gl/Gl−1) ≥ 0. This yields the first inclusion

in (5.3). The second one is proved in an analogous fashion. Note that the co-

efficients in w of Y ≥0
r (z;w) are expansions of some rational functions (because

the same holds for G≥0
r (z;w)). This also applies to Y <0

r (z;w).
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To unburden the notation we will simply write Y ∗r (z;w) when the values

of the ri are understood and there is no risk of confusion. We will also write,

as in Section 1.3,

r<i =
∑
k<i

rk, r>i =
∑
k>i

rk, r[i,j] =
j∑
k=i

rk, etc.

5.3. As (4.1) and Proposition 5.1 show, the volume of the moduli spacesflCoh
≥0

α (X) are essentially computed by the generating series Y ≥0
r (z;w) for

suitable choices of rs, . . . .r1. In order to determine these series, we will actually

calculate all three types of series and use some induction process. We begin

with the series Yr(z;w), which is easy to compute.

Lemma 5.2. Assume that ri ≥ 1 for all i. Then

Yr(z;w) = q
1
2

(g−1)
∑

i>j
rirj

∏
i

volri
∏
i

®∑
l∈Z

zliw
lq

1
2
l(r<i−r>i)

´
.

Proof. This is a direct consequence of Proposition 3.1(iii). Alternatively,

we provide the details of a proof. We have

Yr(z;w) =

Ç
Evec
rs (zs) · · ·Evec

r1 (z1)
∣∣∣ Er(w)

å
=

Ç
Evec
rs (zs)⊗ · · · ⊗ Evec

r1 (z1)
∣∣∣ ∆′rs,...,r1(Er(w))

å
.

By Theorem 4.2(iii),

∆′rs,...,r1(Er(w)) = q
1
2

(g−1)
∑

i>j
rirjErs(q

1
2
r<sw)

⊗ · · · ⊗ Eri(q
1
2

(r<i−r>i)w)⊗ · · · ⊗ Er1(q−
1
2
r>1w).

The lemma follows since by definition, (1vec
r,d | 1r,d) = (1vec

r,d | 1vec
r,d ) = volr for

any r ≥ 1 and any d. �

5.4. Our next task is to determine explicitly the series Y ∗1,...,1(zs, . . . , z1;w),

which we will simply abbreviate Y ∗1 (z;w) when no confusion is likely. To begin,

note that by Lemma 5.2,

Y1(z;w) = q
1
2

(g−1)
s(s−1)

2 vols1

·
∑

l1,...,ls∈Z

Ç
zl11 · · · z

ls
s w
∑

liq
∑

1
2
li(2i−s−1)

å
.

(5.4)
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Proposition 5.3. For any s ≥ 1, we have

Y ≥0
1 (z;w) =

q
1
4

(g−1)s(s−1)vols1∏
i<j ζ̃

Ä
zi
zj

ä
·
∑
σ∈Ss

σ

∏
i<j

ζ̃
Ä zi
zj

ä
· 1∏

i<s

Ä
1− q zi+1

zi

ä · 1

1− q
1−s
2 z1w

(5.5)

and

Y <0
1 (z;w) = (−1)s

q
1
4

(g−1)s(s−1)vols1∏
i<j ζ̃

Ä
zi
zj

ä
·
∑
σ∈Ss

σ

∏
i<j

ζ̃
Ä zi
zj

ä
· 1∏

i<s

Ä
1− q−1 zi

zi+1

ä · 1

1− q
s−1
2 zsw

 ,
(5.6)

where the rational functions are expanded in the regions z1 � z2 � · · · � zs,

w � 1 and z1 � z2 � · · · � zs, w � 1 respectively, (i.e., in power series in

the zi+1

zi
and w, resp. w−1).

Proof. The proof proceeds by induction on s, using formulas (4.4) and

(5.4). When s = 1, we have Evec,≥0
s (w) =

∑
d≥0 1vec

1,d , E
<0
s (w) =

∑
d<0 1vec

1,dw
d,

and hence

Y ≥0
1 (z1;w) =

∑
d≥0

(1vec
1,d | 1vec

1,d )(z1w)d =
vol1

1− z1w
,

Y <0
1 (z1;w) =

∑
d<0

(1vec
1,d | 1vec

1,d )(z1w)d = − vol1
1− z1w

,

where we expand the rational functions in the regions w � 1 and w � 1

respectively. Next, fix s > 1 and assume that the proposition is proved for all

s′ < s. Using (4.4), we have

Y1(zs, . . . , z1;w) = Y ≥0
1 (z;w) + Y <0

1 (z;w)

+
∑
u+t=s
u,t>0

q
1
2

(g−1)ut
(
∆u,t(E

vec
1 (z)) | E<0

u (q
t
2w)⊗ E≥0

t (q−
u
2w)

)
.

(5.7)

Observe that in the above equation, the term Y ≥0
1 (z;w) only contains positive

powers of w while the term Y <0
1 (z;w) only contains strictly negative powers

of w. This will make it possible to inductively extract simultaneously Y ≥0
1 (z;w)
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and Y <0
1 (z;w) from (5.7). Now, from Theorem 4.2(iii),

∆(Evec
1 (zs, . . . , z1)) = ∆(Evec

1 (zs)) · · ·∆(Evec
1 (z1))

=
→∏
i

Ç
Evec

1 (zi)⊗ 1 + E0(q
1
2 zi)E0(q−

1
2 zi)

−1k1 ⊗ Evec
1 (zi)

å
.

(5.8)

Expanding (5.8) yields an expression of ∆(Evec
1 (z)) as a sum

∆(Evec
1 (z)) =

∑
σ

Xσ

parametrized by maps σ : {1, . . . , s} → {1, 2}, with

Xσ =
→∏
i

Cσ(i)(zi),

where

C1(z) = Evec
1 (z)⊗ 1, C2(z) = E0(q

1
2 z)E0(q−

1
2 z)−1k1 ⊗ Evec

1 (z).

The component ∆u,t(E
vec
1 (z)) of ∆(Evec

1 (z)) is equal to the same sum, this

time ranging over the set of maps σ : {1, . . . , s} → {1, 2} such that |σ−1(1)| =
u, |σ−1(2)| = t. We will denote this set of maps Shu,t, for (u, t)-shuffles. From

Theorem 4.2 and the defining commutation relations involving k1 (see Sec-

tion 4.1), we derive

Xσ = Hσ(z)

Ñ
→∏

i,σ(i)=1

Evec
1 (zi)

→∏
j,σ(j)=2

E0(q
1
2 zj)E0(q−

1
2 zj)

−1kt1

é
⊗

∏
j,σ(j)=2

Evec
1 (zj),

where

Hσ(z) =
∏

(i,j),j>i,
σ(i)=1,σ(j)=2

ζ̃
Ä
zj
zi

ä
ζ̃
Ä
zi
zj

ä .
Putting all the pieces together yields the following recursion formula:

Y1(zs, . . . , z1;w) = Y ≥0
1 (zs, . . . , z1;w) + Y <0

1 (zs, . . . , z1;w)

+
∑
u+t=s
u,t>0

∑
σ∈Shu,t

Yσ(zs, . . . , z1;w),(5.9)

with

Yσ(zs, . . . , z1;w)

= q
1
2

(g−1)utHσ(z)Y <0
1 (ziu , . . . , zi1 ; q

t
2w)Y ≥0

1 (zjt , . . . , zj1 ; q−
u
2w),

(5.10)
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where (iu, . . . , i1) (resp. (jt, . . . , j1)) are the reordering (in decreasing order) of

the sets σ−1(1) (resp. σ−1(2)). Note that the factor
∏
j E0(q

1
2 zj)E0(q−

1
2 zj)

−1kt1
does not contribute as it does not change the vector bundle part, and hence

does not change the scalar product with E<0
u (q

t
2w).

Equation (5.9) takes place in the vector space C[[z±1
s , . . . z±1

1 , w±1]]. Sup-

pose that we have already determined the series Y <0
1 (zu, . . . , z1;w) and

Y ≥0
1 (zt, . . . , z1;w) for all u, t < s. Then from (5.9) and (5.4), we may de-

rive Y ≥0
1 (zs, . . . , z1;w) and Y <0

1 (zs, . . . , z1;w) — recall that Y ≥0
1 (zs, . . . , z1;w)

is a power series in w while Y <0
1 (zs, . . . , z1;w) is a power series in w−1. In

order to establish the statement of Proposition 5.3 for s, it therefore suffices

to show that (5.9) holds with Y ≥0
1 (zs, . . . , z1;w) and Y <0

1 (zs, . . . , z1;w) respec-

tively given by (5.5) and (5.6). For this, let us consider the coefficients

Y ≥0
1 (z;w) =

∑
n≥0

y≥0
n (z)wn, Y <0

1 (z;w) =
∑
n<0

y<0
n (z)wn,

Yσ(z;w) =
∑
n

yσ,n(z)wn.

Note that y≥0
n (z) is zero for n < 0 while y<0

n (z) is zero when n ≥ 0. Observe

that, by construction of Yσ (see (5.7)), yσ,n(z) belongs to the subspace of

C[[z±1
s , . . . , z±1

1 ]] of formal series converging in the asymptotic region

Uσ := {(zs, . . . , z1) | zi1 � zi2 � · · · � ziu � zj1 � · · · � zjt}.

Similarly, y<0
n (z) and y≥0

n (z) both belong to the subspace of C[[z±1
s , . . . , z±1

1 ]]

of formal series converging in the asymptotic region

U1 := {(zs, . . . , z1) | z1 � z2 � · · · � zs}.

The part of (5.9) in which w appears with the exponent n reads

(5.11)

q
1
2

(g−1)
s(s−1)

2 vols1
∑

l1,...,ls∈Z,∑
i
li=n

zl11 · · · z
ls
s q
∑

1
2
li(2i−s−1) = y≥0

n (z)+y<0
n (z)+

∑
u,σ

yσ,n(z).

Denote by y≥0
n (z),y<0

n (z) and yσ,n(z) the rational functions of which

y≥0
n (z), y<0

n (z) and yσ,n(z) are the expansion (each in its respective region).

We would like to deduce from equation (5.11) a relation between these ra-

tional functions. First observe that the left-hand side of (5.11) may also be

written as a sum of Laurent series, each of which is the expansion in a suitable

asymptotic direction of some rational function. Indeed, setting δ(z) =
∑
l∈Z z

l,

we have ∑
l1,...,ls∈Z,∑

i
li=n

zl11 · · · z
ls
s q
∑

ili = zn1 · δ
Å
q
z2

z1

ã
· · · δ

Ç
q
zs
zs−1

å
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We can split each delta function δ(z) as δ(z) = δ+(z)+δ−(z) with δ+(z) (resp.

δ−(z)) converging in the region z � 1 (resp. z � 1) to the function (1− z)−1

(resp. −(1− z)−1). Any product

δε1

Å
q
z2

z1

ã
· · · δεs−1

Ç
q
zs
zs−1

å
with εi ∈ {1,−1} converges to the rational function

fε1,...,εs−1 =
s−1∏
i=1

εi
1

1− qzi+1/zi

in the asymptotic region

Uγ = {(zs, . . . , z1) | zγ(1) � zγ(2) � · · · � zγ(s)},

where γ ∈ Ss is any permutation satisfying γ−1(i) < γ−1(i + 1) if εi = 1 and

γ−1(i) > γ−1(i+ 1) if εi = −1. Note that

(5.12)
∑
ε

fε1,...,εs−1 = 0.

We are in the situation of the following lemma:

Lemma 5.4. Let C[z±1
s , . . . , z±1

1 ]loc be the localization of C[z±1
s , . . . , z±1

1 ]

at the set of linear polynomials zi − czj for c ∈ C. For any γ ∈ Ss, let

τγ : C[z±1
s , . . . , z±1

1 ]loc ↪→ C[[z±1
s , . . . , z±1

1 ]]

be the expansion map in the region

Uγ = {(zs, . . . , z1) | zγ(1) � zγ(2) � · · · � zγ(s)}.

Assume given elements fγ ∈ C[z±1
s , . . . , z±1

1 ]loc satisfying
∑
γ τγ(fγ) = 0. Then∑

γ fγ = 0.

Proof. Write fγ = Rγ/Qγ with Rγ , Qγ ∈ C[z±1
s , . . . , z±1

s ]. Let Q =
∏
γ Qγ .

Then 0 = Q
∑
γ τγ(fγ) =

∑
γ τγ(Qfγ) =

∑
γ Qfγ , since τγ is a morphism of

C[z±1
s , . . . , z±1

1 ]-modules. Hence
∑
γ fγ = 0. �

By Lemma 5.4 and (5.12), we have

y≥0
n (z) = −

∑
σ

yσ,n(z), (n ≥ 0),

y<0
n (z) = −

∑
σ

yσ,n(z), (n < 0).
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Using the induction hypothesis and the expansions

1

1− q
u−1
2 ziuq

t
2w

= −
∑
n−<0

(q
s−1
2 ziuw)n− ,

1

1− q
1−t
2 zj1q

−u
2w

=
∑
n+≥0

(q
1−s
2 zj1w)n− ,

we arrive at

Yσ(zs, . . . , z1;w) = Zσ(zs, . . . , z1)

·
∑

σ1∈Su
σ1

 ∏
l<h≤u

ζ̃
Ä zil
zih

ä
· 1∏

l<u(1− q−1 zil
zil+1

)

∑
n−<0

Ä
q
s−1
2 wziu

än−
·
∑
σ2∈St

σ2

 ∏
k<m≤t

ζ̃
Ä zjk
zjm

ä
· 1∏

k<t(1− q
zjk+1

zjk
)

∑
n+≥0

Ä
q

1−s
2 wzj1

än+

 ,
(5.13)

where

Zσ(zs, . . . , z1) = (−1)u−1q
1
4

(g−1)s(s−1)vols1
∏

(i,j),i<j,
σ(i)=1,σ(j)=2

ζ̃
Ä
zj
zi

ä
ζ̃
Ä
zi
zj

ä
·
∏

l<h≤u

1

ζ̃
Ä zil
zih

ä · ∏
k<m≤t

1

ζ̃
Ä zjk
zjm

ä
and all the denominators are to be expanded in the region Uσ.

Assume n ≥ 0. Collecting terms in (5.13) with n = n+ + n− yields

yσ,n(zs, . . . , z1) = −Zσ(zs, . . . , z1)q
1−s
2
n

·
∑
σ1,σ2

σ1 � σ2


∏
l<h≤u ζ̃

Ä zil
zih

ä
·∏k<m≤t ζ̃

Ä zjk
zjm

ä
∏
l<u(1− q−1 zil

zil+1
) ·∏k<t(1− q

zjk+1

zjk
)
·

znj1
1− qs−1 ziu

zj1

 ,
where we used the following expansion in Uσ:

znj1q
1−s
2
n
∑
n−<0

z
n−
iu
z
−n−
j1

q(s−1)n− = −
znj1

1− qs−1 ziu
zj1

.

Fixing (u, t) and letting σ vary we obtain a sum involving all permutations

τ ∈ Ss. Namely, there is a bijection

Shu,t ×Su ×St 7→ Ss, (σ, σ1, σ2) 7→ τ,

where

τ(1, 2, . . . , s) = (jσ2(1), jσ2(2), . . . , iσ1(1), . . . , iσ1(u)).
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This yields (for a fixed (u, t))∑
σ∈Shu,t

yσ,n(z) = au,n
∑

σ,σ1,σ2

∏
σ(i)=1,
σ(j)=2

ζ̃
Äzj
zi

ä
·
∏
i<j

ζ̃
Ä zi
zj

ä−1
σ1 � σ2


∏
l<h≤u ζ̃

Ä zil
zih

ä
·∏k<m≤t ζ̃

Ä zjk
zjm

ä
∏
l<u(1− q−1 zil

zil+1
) ·∏k<t(1− q

zjk+1

zjk
)
·

znj1
1− qs−1 ziu

zj1


= au,n

∏
i<j

ζ̃
Ä zi
zj

ä−1 ∑
τ∈Ss

τ

 ∏
i<j ζ̃

Ä
zi
zj

ä
∏
t<k<s(1− q−1 zk

zk+1
) ·∏l<t(1−q

zl+1

zl
)
· zn1

1− qs−1 zs
z1

,
where

au,n = (−1)uq
1
4

(g−1)s(s−1)+ 1−s
2
nvols1.

Then, summing over the set of pairs (u, t), we get

y≥0
n (z) := −

∑
u,σ

yσ,n(z)

= vols1
∏
i<j

1

ζ̃
Ä
zi
zj

ä · q 1
4

(g−1)s(s−1)+ 1−s
2
n ·

∑
τ∈Ss

τ

∏
i<j

ζ̃
Ä zi
zj

ä
· zn1 ·

s−1∑
u=1

Tu(z)

,
where

Tu(z) = (−1)u−1 1∏
l<t(1− q

zl+1

zl
) ·∏t<k<s(1− q−1 zk

zk+1
) · (1− qs−1 zs

z1
)
.

Now,

s−1∑
u=1

(−1)uTu(z) =
1∏

l<s(1− q
zl+1

zl
)(1− qs−1 zs

z1
)

·
®

(1− q zs
zs−1

) + q
zs
zs−1

(1− q zs−1

zs−2
) + · · ·+ qs−2 zs

z2
(1− q z2

z1
)́

=
1∏

l<s(1− q
zl+1

zl
)(1− qs−1 zs

z1
)

Ä
1− qs−1 zs

z1

ä
=

1∏
l<s(1− q

zl+1

zl
)
.

Summing now over n ≥ 0 we obtain∑
n≥0

y≥0
n (z)wn

=
q

1
4

(g−1)s(s−1)vols1∏
i<j ζ̃

Ä
zi
zj

ä ∑
τ∈Ss

τ

∏
i<j

ζ̃
Ä zi
zj

ä
· 1∏

i<s

Ä
1− q zi+1

zi

ä · 1

1− q
1−s
2 z1w
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as wanted. This shows (5.5) for s. The computations of yσ,n(z) and y<0
n (z) for

n < 0 and hence the proof of (5.6) for s are entirely similar. Proposition 5.3 is

proved. �

5.5. Proposition 5.3 allows us to compute the value of Y ≥0
r (z;w) (and

hence also G≥0
r (z;w)) for an arbitrary sequence of nonnegative integers r = (ri)

by considering appropriate residues. Namely, by Theorem 4.2(iv), we have

Y ≥0
r (q

1
2

(1−rt)z
(t)
1 , . . . , q

1
2

(1−r1)z
(1)
1 ;w)

= qa(r)vol−n1

∏
i

volri · Resr
[
Y ≥0

(1n)(z
(t)
rt , z

(t)
rt−1, . . . , z

(t)
1 , z(t−1)

rt−1
, . . . , z

(1)
1 ;w)

]
,

(5.14)

where Resr =
∏t
i=1 Res(i), Res(i) being the operator of taking the iterated

residue along
z

(i)
ri

z
(i)
ri−1

=
z

(i)
ri−1

z
(i)
ri−2

= · · · = z
(i)
2

z
(i)
1

= q−1

and where
a(r) = −1

4
(g − 1)

∑
i

ri(ri − 1).

In an effort to unburden the notation let us rename the variables (z
(t)
rt , . . . , z

(1)
1 )

as (zn, zn−1, . . . , z1). In particular,

z
(i)
1 = z1+r<i ∀ i = 1, . . . , t.

Using Proposition 5.3 we get

Y ≥0
r (q−

1
2
rtz

(t)
1 , . . . , q−

1
2
r1z

(1)
1 ;w) = qb(r)

∏
i

volri

· Resr

 1∏
i<j ζ̃

Ä
zi
zj

ä ∑
σ∈Sn

σ

∏
i<j

ζ̃
Ä zi
zj

ä
· 1∏

i<n

Ä
1− q zi+1

zi

ä · 1

1− q−
n
2 z1w


,

(5.15)

where
b(r) =

1

2
(g − 1)

∑
i<j

rirj .

Of course taking appropriate residues in (5.6) yields similar formulas for

Y <0
r (q−

1
2
rtz

(t)
1 , . . . , q−

1
2
r1z

(1)
1 ;w).

5.6. Fix some r ≥ 0. By a generic Jordan type of weight r we will mean

a finite (possibly empty) sequence r = (r1, . . . , rt) of nonnegative integers such

that
∑
i iri = r and rt 6= 0. Observe that the assignment

(r1, . . . , rt) 7→ (1r12r2 . . . trt)

sets up a bijection between the set Jgen(r) of generic Jordan types of weight

r and the set of partitions of r. A Jordan type of weight (r, d) is a sequence



332 OLIVIER SCHIFFMANN

α = (α1, . . . , αs) such that
∑
i iαi = (r, d) and αs 6= 0. We denote by J(r, d)

the set of Jordan types of weight (r, d). There is a natural forgetful map

π :
⊔
d

J(r, d)→ Jgen(r).

Let us fix a generic Jordan type r = (r1, . . . , rt) of weight r ≥ 0. We will now

compute the sum

Ξr(z) =
∑

α∈π−1(r)

vol(Nil≥0
α )z

∑
iαi

=
∑

α∈π−1(r)

qd
′(α)− 1

2

∑
i>j
〈αi,αj〉

(
1αs · · · 1α1 | 1

≥0∑
αi

)
z
∑

iαi .

Let us fix some s ≥ t and let Ξsr(z) be the restriction of the sum to the subset

of Jordan types α = (α1, . . . , αs′) in π−1(r) for which s′ ≤ s. To unburden the

notation, we set

T = z(1,0), z = z(0,1), n =
∑

ri.

We obtain

Ξsr(z) = qe(r)
∑

d1,...,ds∈Z
q

1
2

∑
i di(r>i−r<i)

(
1rs,dsz

sds · · · 1r1,d1zd1 | 1
≥0
n,
∑

di

)
T r

= qe(r)G≥0
0s−t,rt,...,r1

(xs, . . . , x1; 1)T r,

where

e(r) = (g − 1)

∑
i

(i− 1)r2
i +

∑
i<j

(2i− 1

2
)rirj


and xl = zlq

1
2

(r>l−r<l) for l = 1, . . . , s. Using Proposition 5.1, we have

Ξsr(z) = qe(r)Exp

(
|X(Fq)|
q − 1

[
s∑
i=1

q−
1
2

(n+ri)xi

+
∑
i>j

xi
xj

(q
rj
2 − q−

rj
2 )q−

ri
2

éY ≥0
rt,...,r1(xt, . . . , x1; 1)T r

(5.16)

since, clearly, Y ≥0
0s−t,rt,...,r1

(xs, . . . , x1; 1) = Y ≥0
rt,...,r1(xt, . . . , x1; 1). The number of

isomorphism classes of pairs (F , θ) ∈ Nil≥0
α being finite for any fixed α = (r, d),

the stack Nil≥0
α is empty for almost all α. In particular, the coefficient of T rzd

in Ξsr stabilizes for any fixed d as s tends to infinity, since the possible length

of the torsion part of a coherent sheaf in Coh≥0
α is bounded (by d). Taking the
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limit s→∞ in (5.16) of the sums inside the bracket, we obtain

Ξr(z) = qe(r)Exp

Ñ
|X(Fq)|
q − 1

∑
i,l≥1

q−r[i,i+l](qri+l − 1)zl

+
z

1− z

éY ≥0
rt,...,r1(xt, . . . , x1; 1)T r.

(5.17)

Let λ = (1r12r2 · · · trt) be the partition associated to r. Let λ◦ denote the the

set of boxes s ∈ λ satisfying a(s) > 0.

Lemma 5.5. We have

Exp

Ñ
|X(Fq)|
q − 1

∑
i,l≥1

q−r[i,i+l](qri+l − 1)zl

é =
∏
s∈λ◦

ζX(q−1−l(s)za(s)).

Proof. A direct verification using the formula

Exp(|X(Fq)|q−uzv) = ζX(q−uzv). �

Observing (see Theorem 4.1(i)) that

q−
∑

i
r2i
∏
i

volri =
∏

s∈λ\λ◦
ζ∗X(q−1−l(s)za(s)),

and using (5.15), (5.17) and Lemma 5.5 we arrive at the following expression:

(5.18)

Ξr(z) = q(g−1)〈λ,λ〉 ·
∏
s∈λ

ζ∗X(q−1−l(s)za(s)) ·Hr(z) · Exp

Ç
|X(Fq)|
q − 1

· z

1− z

å
T r,

where

〈λ, λ〉 =
∑
k

(λ′)2
k =

∑
i

ir2
i +

∑
i<j

2irirj ,

Hr(z) = ‹Hr(z
tq−r<t , . . . , ziq−r<i , . . . , z)

and‹Hr(z1+r<t , . . . , z1+r<i , . . . , z1)

= Resr

 1∏
i<j ζ̃

Ä
zi
zj

ä ∑
σ∈Sn

σ

∏
i<j

ζ̃
Ä zi
zj

ä
· 1∏

i<n

Ä
1− q zi+1

zi

ä · 1

1− z1


 .

5.7. Taking the sum over all generic Jordan types r, using Proposition 2.2

and Corollary 4.6 and setting in accordance with Section 1.3,

Jλ(z) =
∏
s∈λ

ζ∗X(q−1−l(s)za(s)), Hλ(z) = Hr(z),
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when λ = (1r12r2 · · · ), we get the following complicated but nevertheless ex-

plicit generating formula for the numbers A≥0
r,d :

exp

Ñ∑
l≥1

1

l

∑
r,d

A≥0
r,d(X ⊗Fq Fql)

ql − 1
zldT lr

é
=
∑
λ

¶
q(g−1)〈λ,λ〉Jλ(z)Hλ(z)T |λ|

©
· Exp

Ç
|X(Fq)|
q − 1

· z

1− z

å
.

(5.19)

In the above, all the rational functions in z are expanded in the region z � 1,

i.e., in C[[z]]. Observe that A≥0
0,d(X ⊗Fq Fql) = |X(Fql)| since a geometrically

indecomposable torsion sheaf on X ⊗Fq Fql is the indecomposable d-fold self

extension of the structure sheaf of a rational point in X(Fql). It follows that

exp

Ñ∑
l≥1

1

l

∑
d

A≥0
0,d(X ⊗Fq Fql)

ql − 1
zld

é
= Exp

Ç
|X(Fq)|
q − 1

· z

1− z

å
,

and (5.19) simplifies to

(5.20)

exp

Ñ∑
l≥1

1

l

∑
r>0,d

A≥0
r,d(X ⊗Fq Fql)

ql − 1
zldT lr

é
=
∑
λ

¶
q(g−1)〈λ,λ〉Jλ(z)Hλ(z)T |λ|

©
.

Recall from Section 4.6 that the elements A≥0
g,r,d ∈ Kg defined by (4.8)

are uniquely characterized by the property that A≥0
g,r,d(σX) = Ar,d(X) for all

smooth projective curves X. As a consequence we have the following equality

in Kg[[T, z]]:

(5.21) Exp

Ñ∑
r>0,d

A≥0
g,r,d

q − 1
zdT r

é
=
∑
λ

¶
q(g−1)〈λ,λ〉Jλ(z)Hλ(z)T |λ|

©
.

5.8. Tensoring by a line bundle of degree one induces a bijection between

the set of geometrically indecomposable vector bundles on a curve X of rank r

and degrees d and d+ r respectively. Therefore Ar,d(X), and hence Ag,r,d only

depend on the class of d in Z/rZ. By Proposition 2.1 the integers A≥0
g,r,d(σX)

are eventually periodic in d as d → ∞, with period r. Thus so are the A≥0
g,r,d.

This means that if we consider the generating function

A≥0
g,r(z) =

∑
d≥0

A≥0
g,r,dz

d,

then we have

(5.22) A≥0
g,r(z) = Pg,r(z) +

r−1∑
d=0

Ag,r,dz
d

1− zr
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for some polynomial Pg,r(z) ∈ Kg[z]. As a consequence of (5.22), the polyno-

mials Ag,r,d are expressed as

Ag,r,d = −
∑

l∈Z/rZ
Resz=ξl

Å
Ag,r(z)

dz

z

ã
ξ−ld

for ξ a primitive r-th root of unity. This concludes the proof of Theorem 1.6.

5.9. To finish this section, we provide the proof of Corollary 1.9.

Proof of Corollary 1.9. We need to specialize (1.3) to α1 = · · · = α2g = 0.

To this end we rewrite the terms entering (1.3) as follows:

q(g−1)〈λ,λ〉Jλ(z) =
∏
s∈λ�

∏
i(αiq

1+l(s) − za(s))

(q1+l(s) − za(s))(ql(s) − za(s))
·
∏

s∈λ\λ�

∏
i(αi − 1)

q − 1
,

where λ� denotes the set of s ∈ λ satisfying a(s) > 0 or l(s) > 0. This

expression is regular at the point α1 = · · · = α2g = 0 and evaluates to

q(g−1)〈λ,λ〉Jλ(z)|αi=0 =
∏
s∈λ�

z2(g−1)a(s) ·
∏
s∈λ�
l(s)=0

1

1− z−a(s)
· (−1)|λ\λ

�|

= (−1)|λ\λ
�|z(g−1)(

∑
i
λ2i−
∑

λi)
∏
s∈λ�
l(s)=0

1

1− z−a(s)
.

Next, we have

L(zn, . . . , z1) =
∑
σ∈Sn

ε(σ)
∏
k<l

σ−1(k)>σ−1(l)

Å
zl
zk

ã−g ∏i(1− αi zlzk ) · ( zlzk − q)∏
i(
zl
zk
− αi) · (1− q zlzk )

· 1∏
j<n(1− q zσ(j+1)

zσ(j)
) · (1− zσ(1))

,

where ε(σ) is the sign character. We see that for σ 6= Id, the evaluation of the
quantity

Resλ

 ∏
k<l

σ−1(k)>σ−1(l)

Å
zl
zk

ã−g ∏
i(1− αi zlzk ) · ( zlzk − q)∏
i(
zl
zk
− αi) · (1− q zlzk )

· 1∏
j<n(1− q zσ(j+1)

zσ(j)
) · (1− zσ(1))


at z1+r<i = ziq−r<i for i = 1, . . . , t is a rational function of α1, . . . , α2g with

coefficients in Q(z) which is regular and vanishes at the point α1 = · · · =

α2g = 0. As a consequence, if we write λ = (1r1 , 2r2 , . . .) and denote by
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i1 < i2 < · · · < is the integers satisfying rij 6= 0, then

Hλ(z)|αi=0 =
1

(1− zi1)(1− zi2−i1) · · · (1− zis−is−1)

= (−1)s
z−is

(1− z−i1)(1− zi1−i2) · · · (1− zis−1−is)
.

Observing that s = |λ\λ�|, we get

(5.23) q(g−1)〈λ,λ〉Jλ(z)Hλ(z) = z(g−1)(〈λ′,λ′〉−|λ′|)−l(λ′)Kλ′(z).

Finally, observe that since Ag,r(z) has at most simple poles at r-th roots of

unity, the same holds for Ag,r(z)|αi=0, and hence the residue at r-th roots of

unity is unchanged upon rescaling by a factor of z−r. This allows us to remove

the term z−
∑

i
λi = z−r in (5.23). We are done. �

6. Relation to the number of points of Hitchin moduli spaces

6.1. In this section, we relate the number of indecomposable vector bun-

dles of a given class α to the number of stable Higgs bundles of the same class,

under the assumption that the characteristic p of the field is large enough (with

an explicit bound, depending on the genus g of X and the class α), thereby

proving Theorem 1.2. Our method is directly inspired by that of Crawley-

Boevey, Van den Bergh [CBVdB04] and Nakajima (appendix to loc. cit.) in

the context of moduli spaces of representations of quivers, and it hinges on the

construction of a smooth deformation Y → A1 of the moduli space of stable

Higgs bundles

Higgsst
r,d

//

��

Y

��

Y ′oo

��
{0} // A1 A1\{0}oo

preserving the number of Fq-rational points and equipped with a projection

map p : Y → Bunr,d whose restriction to any fiber Yt with t 6= 0 is a fibration

over the constructible substack Indecr,d ⊂ Bunr,d of indecomposable vector

bundles. The construction of Y itself may appear slightly noncanonical as it

involves an explicit local presentation of the stack Higgsst
r,d in terms of quot

schemes. In doing so, we borrow some techniques developed in [ÁCK07].

6.2. Let us fix a smooth projective, geometrically connected curve X of

genus g defined over k = Fq, and let ΩX be the canonical line bundle of X. A

Higgs sheaf of rank r and degree d is a pair (V, θ) with V a coherent sheaf of

rank r and degree d and θ ∈ Hom(V,V ⊗ΩX). A Higgs subsheaf of (V, θ) is by

definition a subsheaf W ⊆ V such that θ(W) ⊆ W ⊗ΩX . A Higgs sheaf (V, θ)
is called semistable (resp. stable) if for any proper Higgs subsheaf W ⊂ V, we



KAC POLYNOMIALS FOR CURVES 337

have µ(W) ≤ µ(V) (resp. µ(W) < µ(V)). A Higg subsheaf W ⊂ V satisfying

µ(W) > µ(V) is called destabilizing. It is clear that as soon as r > 0, a

semistable Higgs sheaf (V, θ) is necessarily a Higgs bundle; i.e., V is a vector

bundle.

Let Higgsr,d(X) and Cohr,d(X) respectively stand for the moduli stacks

of Higgs sheaves and coherent sheaves over X of rank r and degree d. These are

algebraic stacks defined over k, locally of finite type, of respective dimensions

2(g − 1)r2 and (g − 1)r2. If (r, d) are coprime, we let Higgsst
r,d(X) be the

open substack of Higgsr,d(X) parametrizing stable Higgs bundles. The stack

Higgsst
r,d(X) is a Gm-gerbe over a smooth connected scheme over k, which we

denote by Higgsst
r,d.

Serre duality provides a canonical isomorphism

Ext1(V,W)∗ ' Hom(W,V ⊗ ΩX)

for any pair of coherent sheaves (V,W). Hence, the moduli stack Higgsr,d(X)

may alternatively be defined as the stack parametrizing pairs (V, ν) with V a

coherent sheaf over X of rank r and degree d and ν ∈ Ext1(V,V)∗. A Higgs

subsheaf of such a pair (V, ν) is a subsheaf W ⊆ V satisfying the following

condition:

(6.1) a(ν) ∈ b(Ext1(W,W)∗),

where a, b are the canonical maps in the sequence

Ext1(V,V)∗
a // Ext1(V,W)∗ Ext1(W,W)∗

boo .

The stack Higgsst
r,d(X) thus parametrizes pairs (V, ν) as above such that any

proper Higgs subsheaf W ⊂ V verifies µ(W) < µ(V) = d
r .

6.3. In this section we recall the definition and basic properties of quot

schemes. These will be used in the next section to make explicit the construc-

tion of the stacks Cohr,d(X) and Higgsr,d(X).

We say that a vector bundle F is strongly generated by another vector bun-

dle G if Ext1(G,F) = 0 and the canonical map G⊗Hom(G,F)→ F is surjective.

By definition, if F is strongly generated by G, then dim(Hom(G,F)) = 〈G,F〉.
Observe that the notion of being ‘strongly generated by’ is transitive: if F1 is

strongly generated by F2, which is itself strongly generated by F3, then F1 is

strongly generated by F3.

Given a vector bundle V over X and a pair α = (r, d), the quot scheme

Quot(V, α) is the k-scheme representing the functor quotV,α : (Aff/k) → Sets

which assigns to an affine k-scheme S the set of equivalence classes of epimor-

phisms

φS : V �OS � F ,



338 OLIVIER SCHIFFMANN

where F is an S-flat coherent sheaf over X × S such that for any closed point

s ∈ S, the sheaf F|s over X is of rank r and degree d. Here, two epimorphisms

φS , φ
′
S are equivalent if Ker(φS) = Ker(φ′S). The quot scheme Quot(V, α) is a

(generally singular) projective scheme. The tangent space to Quot(V, α) at a

point φ : V � F is equal to Hom(Ker(φ),F).

One constructs an explicit closed embedding in a projective variety as

follows. There exists a line bundle L of sufficiently negative degree so that for

any φ : V � F with F of rank r and degree d, the sheaf Ker(φ) is strongly

generated by L. Put

a = dim(Hom(L,V)) = 〈L,V〉, b = 〈L,V − α〉,

and let Gr(a, b) stand for the Grassmanian of b-dimensional subspaces of ka.

Fixing an identification Hom(L,V) ' ka we obtain a map j : Quot(V, α) →
Gr(a, b) by assigning to a point φ : V � F the subspace Hom(L,Ker(φ)) ⊂
Hom(L,V). This is a closed embedding (see, e.g., [LP97, Th. 4.4.5.]).

6.4. Let us fix a class α = (r, d) with r > 0, and r, d coprime. We

will now give a construction of the stacks Cohr,d and Higgsr,d, or at least of

suitable open subset of these stacks. For reasons that will become clear later

(see Section 6.7), we will use a variant of the standard construction, based on

the choice of two line bundles instead of one, which we borrow from [ÁCK07].

Lemma 6.1. There exists a pair of line bundles (L1,L2) ∈ Pic−d1(X) ×
Pic−d2(X) such that the following hold :

(a) any semistable Higgs bundle (V, θ) of class α is strongly generated by L1;

(b) any indecomposable vector bundle V of class α is strongly generated by L1;

(c) for any unstable Higgs sheaf (F , θ) of class α there exists a destabilizing

Higgs subsheaf G ⊂ F which is strongly generated by L1;

(d) for any coherent sheaf V of class α and any epimorphism φ : L1⊗V � V ,

Ker(φ) is strongly generated by L2;

(e) L1 is strongly generated by L2.

In particular, any sheaf strongly generated by L1 is also strongly generated

by L2.

Proof. We first show the existence of a line bundle L1 satisfying (a), (b)

and (c). The minimal slope µmin(F) of an indecomposable vector bundle F
of class α is bounded below by some constant ν which only depends on α (see

Proposition 2.1). An argument in all points similar shows that the minimal

slope µmin(F) of the vector bundle underlying a semistable Higgs bundle of

class α is likewise bounded below by a constant ν ′ which again only depends

on α. Let (F , θ) be an unstable Higgs sheaf of class α. By definition there

exists a semistable Higgs subsheaf G ⊂ F of slope µ(G) > µ(α) and rank
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rk(G) ≤ rk(α). Tensoring by a line bundleO(−nx) for some x ∈ X, if necessary

we may assume that µ(α) < µ(G) ≤ µ(α) + 1. Because rank(G) ≤ r, there are

only finitely many possibilities for the class G of such a sheaf, and therefore

by b) the family of all such semistable Higgs sheaves is also bounded. In

particular, there exists a constant ν ′′′ which only depends on α, such that any

unstable Higgs sheaf of class α contains a destabilizing subsheaf G satisfying

µmin(G) ≥ ν ′′′. For any ν ∈ Q, there exists n ∈ Z such that any semistable

sheaf of slope σ ≥ ν is strongly generated by any line bundle of degree m ≤ n.

It suffices to take n as above for ν = min{ν ′, ν ′′, ν ′′′}. This proves the existence

of a line bundle L1 satisfying (a), (b) and (c). Let us now fix such a line bundle.

The set of HN types of sheaves F of class α which are generated by L1 is finite,

as is the set of HN types of kernels of epimorphisms L1 ⊗ V � F . Therefore

there exists L2 such that any such kernel is strongly generated by L2. We may

of course also assume that L1 is strongly generated by L2. We are done. �

Set

l1 =〈L1, α〉=(1−g+d1)r+d, l2 =〈L2, α〉=(1−g+d2)r+d, Vi=kli , i = 1, 2.

Consider the quot schemes

QL1,L2 = Quot((L1 ⊗ V1)⊕ (L2 ⊗ V2), α), QL1 = Quot(L1 ⊗ V1, α).

Points of QL1,L2 correspond to epimorphisms φ : (L1 ⊗ V1) ⊕ (L2 ⊗ V2) � F ;

we will usually write φi = φ|Li⊗Vi for i = 1, 2. Denote by Q◦,◦L1,L2 the open

subscheme of QL1,L2 parametrizing epimorphisms φ : (L1⊗V1)⊕(L2⊗V2) � F
for which the canonical maps

φi∗ : Vi → Hom(Li,F), i = 1, 2

are isomorphisms. (This implies, in particular, that F is strongly generated by

L1 and hence by L2.) We define Q◦L1 ⊂ QL1 in the same fashion. The schemes

Q◦,◦L1,L2 and Q◦L1 are smooth. The group G := GL(V1)×GL(V2) naturally acts

on QL1,L2 and preserves Q◦,◦L1,L2 . Similarly, the group GL(V1) acts on QL1 and

preserves Q◦L1 . The natural restriction map

[φ : (L1 ⊗ V1)⊕ (L2 ⊗ V2) � F ] 7→ [φ1 : (L1 ⊗ V1) � F ]

is a principal GL(V2)-bundle Q◦,◦L1,L2 → Q◦L1 . By Lemma 6.1(d), the stack quo-

tient [Q◦,◦L1,L2/G] (and hence [Q◦L1/GL(V1)]) is isomorphic to the open substack

Coh>L1r,d (X) of Cohr,d(X) parametrizing coherent sheaves V of class α which

are strongly generated by L1 (see, e.g., [LP97]).

For later purposes, we introduce the locally closed subscheme Q◦L1,L2 of

QL1,L2 which parametrizes epimorphisms φ : (L1 ⊗ V1) ⊕ (L2 ⊗ V2) � F for

which φ2∗ : V2 → Hom(L2,F) is an isomorphism and for which the restriction

of φ to L1⊗ V1 is still an epimorphism. There is a natural map Q◦L1,L2 → QL1
which is a principal GL(V2)-bundle.
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The cotangent space T ∗φQL1,L2 to QL1,L2 at a point φ : (L1⊗V1)⊕(L2⊗V2)

� F is identified with Hom(Ker(φ),F)∗. If φ ∈ QL1,L2 , then the restriction of

the moment map

µ : T ∗Q◦,◦L1,L2 → g∗ = gl(V1)∗ × gl(V2)∗

to T ∗φQL1,L2 is the composition µφ = νφ ◦ κφ of the canonical restriction map

Hom(Ker(φ),F)∗ → Hom((L1 ⊗ V1)⊕ (L2 ⊗ V2),F)∗

arising from the long exact sequence

0 −→ Ext1(F ,F)∗ −→ Hom(Ker(φ),F)∗

κφ−−−→ Hom((L1 ⊗ V1)⊕ (L2 ⊗ V2),F)∗
j−−→ End(F)∗ −→ 0

(6.2)

with the map

νφ : Hom((L1⊗V1)⊕(L2⊗V2),F)∗ =
⊕
i

Hom(Vi,Hom(Li,F))→
⊕
i

End(Vi)
∗

induced by composition with φ∗i ∈ Hom(Vi,Hom(Li,F)).

The stack [µ−1(0)/G] is isomorphic to the open substack Higgs>L1r,d (X)

of Higgsr,d(X) parametrizing Higgs bundles (F , θ) with F of class α strongly

generated by L1. In particular, by Lemma 6.1(b) the stack [µ−1(0)/G] contains

Higgsst
r,d(X) as an open substack.

6.5. We will now relate some appropriate fibers of the moment map µ :

T ∗Q◦,◦L1,L2 → g∗ to indecomposable vector bundles. This explains why we

considered the quot scheme construction with two line bundles instead of one.

Recall that we have assumed r and d to be coprime. It easily follows that we

may pick d1, d2 and L1,L2 verifying the hypothesis (a)–(e) of Lemma 6.1 in

such a way that l1 and l2 are also coprime. Consider the element λ ∈ g∗ =

gl(V1)∗ × gl(V2)∗ defined by

λ(u1, u2) = l2Tr(u1)− l1Tr(u2).

From now on, we will assume that p > l1l2. By construction we have

(i) λ(Id, Id) = 0;

(ii) λ(e1, e2) 6= 0 for any nontrivial pair of projectors (e1, e2) ∈ gl(V1)× gl(V2).

Lemma 6.2. Let φ : (L1 ⊗ V1) ⊕ (L2 ⊗ V2) � F be a k-point of Q◦,◦L1,L2 .

We have kλ ⊂ Im(µφ) if and only if F is indecomposable.

Proof. By (6.2) we have kλ ∈ Im(µφ) if and only if j(λ) = 0 if and only if

λ(f ◦φ) = 0 for all f ∈ End(F). Let us assume that F is decomposable, and let

us fix a nontrivial decomposition F = G⊕H. As F ∈ C>0, we have G,H ∈ C>0.

In particular, Ext1(Li,G) = Ext1(Li,H) = {0} and we have decompositions

Hom(Li,F) = Hom(Li,G)⊕Hom(Li,H).
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Let f be the projector onto G along H. Thus f ◦ φ is the projector onto

Hom(L1,G) ⊕ Hom(L2,G) along Hom(L1,H) ⊕ Hom(L2,H). By (ii) above,

λ(f ◦ φ) 6= 0 hence λ 6∈ Im(µφ).

Next let us assume that F is indecomposable (and thus also geometrically

indecomposable as (r, d) are coprime). By Fitting’s lemma, End(F) is a local

k-algebra with End(F)/rad(End(F)) = k, and therefore every endomorphism

is of the form f = cId + n for some nilpotent n. But then f ◦ φ = c(Id, Id) +

(n1, n2) for some nilpotent n1, n2. Using (i), we deduce that

λ(f ◦ φ) = cλ(Id, Id) + λ(n1, n2) = 0.

It follows that λ ∈ Im(µφ). �

6.6. Our next goal will be to construct and study the symplectic quotient

of Q◦,◦L1,L2 by the group G. This will be done in Section 6.7. In the present

section, following [ÁCK07] we embed Q◦,◦L1,L2 as a locally closed subvariety of

the representation variety of an appropriate Kronecker quiver. Namely, put

h = dim(Hom(L2,L1)) = (1−g) +d2−d1 and let Kr stand for the quiver with

vertex set {1, 2} and h arrows from 1 to 2:

1
•

h // 2
•
.

Set

V = Hom(L2,L1), E = Hom(V1 ⊗ V, V2).

The group G acts on E by conjugation, and the quotient stack [E/G] is the

moduli stack of representations of Kr of dimension (l1, l2). There is a natural

map j : Q◦,◦L1,L2 → E sending the point φ : (L1 ⊗ V1) ⊕ (L2 ⊕ V2) � F to the

induced map

V1 ⊗ V Hom(L2,L1 ⊗ V1)
φ1 // Hom(L2,F)

φ−1
2∗ // V2.

Lemma 6.1(d) guarantees that this defines an embedding of Q◦,◦L1,L2 in E as a

smooth locally closed subvariety. Observe that the embedding j extends to an

embedding Q◦L1,L2 → E. In fact, set

E◦ = {u ∈ E | Im(u) = V2}.

This is a principal GL(V2)-bundle over the Grassmanian Gr(hl1, l2). We have

the following diagram:

(6.3) Q◦,◦L1,L2
// Q◦L1,L2

j //

��

E◦

��
QL1

j′ // Gr(hl1, l2)
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in which the two vertical maps are GL(V2)-bundles and the horizontal maps

are embeddings, with j′ being the closed embedding described in Section 6.3.

Using the trace pairing, we may identify the cotangent space T ∗E = E×E∗
with the representation space of the double Kr of Kr (that is, the quiver with

vertex set {1, 2}, h arrows from 1 to 2 and h arrows from 2 to 1) of dimension

(l1, l2):

1
•

h //
2
•

h
oo

so that

T ∗E ' Hom(V1 ⊗ V, V2)×Hom(V2 ⊗ V∗, V1).

Fixing dual bases {v1, . . . , vh} and {v∗1, . . . , v∗h} of V,V∗, we may write an

element of T ∗E as a pair (x, y) with x = (x1, . . . , xh), y = (y1, . . . , yh) and

xi ∈ Hom(V1, V2), yi ∈ Hom(V2, V1). Using this identification, and identifying

g with g∗ via the usual trace pairing, the moment map for the action of G on

T ∗E reads

µ : T ∗E → g∗, µ(x, y) =

(
h∑
i=1

yixi,−
h∑
i=1

xiyi

)
.

The Zariski closure P = Q◦,◦L1,L2 of Q◦,◦L1,L2 in E is a (possibly singular)

affine variety. Of course, since Q◦,◦L1,L2 is dense in Q◦L1,L2 , we have P = Q◦L1,L2 .

We will denote by j : Q◦,◦L1,L2 → P and i : P → E the open, resp. closed,

embeddings. There is a canonical projection π : P × E∗ → T ∗P whose fibers

are affine spaces. Namely, over a point x ∈ P , the map π is the natural

projection

E∗ = T ∗xE → T ∗xE/(TxP )⊥ = T ∗xP.

The map π restricts to an affine fibration π◦ : Q◦,◦L1,L2 × E
∗ → T ∗Q◦,◦L1,L2 . The

moment maps on T ∗Q◦,◦L1,L2 , T
∗P and T ∗E fit in a commutative diagram

Q◦,◦L1,L2 × E
∗ j×Id //

π◦

��

P × E∗ i×Id //

π

��

T ∗E

µ

��

T ∗Q◦,◦L1,L2
µ

**

d∗j // T ∗P
µ

##
g∗,

where d∗j is the open embedding induced by j.

For the reader’s convenience, we make explicit the map d∗j. We begin

with the differential djφ : TφQ
◦,◦
L1,L2 → Tj(φ)P at a point φ :

⊕
i(Li ⊗ Vi) � F .
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Recall that we have canonical identifications

TφQ
◦,◦
L1,L2 = Hom(Ker(φ),F),

Tj(φ)P ⊂ Tj(φ)E = E = Hom(V1 ⊗ V, V2)

' Hom(Hom(L2,L1 ⊗ V1),Hom(L2,F)).

Consider the exact sequences

0 // Ker(φ1) // Ker(φ)
ρ2 // L2 ⊗ V2

// 0,(6.4)

0 // Ker(φ2) // Ker(φ)
ρ1 // L1 ⊗ V1

// 0.(6.5)

The first exact sequence (6.4) is split as Ext1(L2,Ker(φ1))=0 by Lemma 6.1(d).

It follows that

dim(Hom(L2,Ker(φ))) = dim(V2) + dim(Hom(L2,Ker(φ2)))

= 〈L2, α〉+ 〈L2,L1 ⊗ V1 − α〉
= 〈L2,L1 ⊗ V1〉
= dim(Hom(L2,L1 ⊗ V1)).

(6.6)

On the other hand, the exact sequence (6.5) gives rise to a sequence

0 // Hom(L2,Ker(φ2)) // Hom(L2,Ker(φ))
ρ1∗ // Hom(L2,L1 ⊗ V1) ,

and since Hom(L2,Ker(φ2)) = 0, this yields by (6.6) a canonical isomorphism

ρ1∗ : Hom(L2,Ker(φ)) → Hom(L2,L1 ⊗ V1). The map djφ is equal to the

composition

Hom(Ker(φ),F)
q−→ Hom(Hom(L2,Ker(φ)),Hom(L2,F))
ρ1∗−→ Hom(Hom(L2,L1 ⊗ V1),Hom(L2,F)),

(6.7)

with

q : Hom(Ker(φ),F)→Hom(Hom(L2,Ker(φ)),Hom(L2,F), u 7→ (a 7→ u ◦ a).

Because j : Q◦,◦L1,L2 → P is an open embedding, djφ : TφQ
◦,◦
L1,L2 → Tj(φ)P is

an isomorphism. The map d∗jφ is the transpose isomorphism T ∗φQ
◦,◦
L1,L2 →

E∗/(Tj(φ)P )⊥.

6.7. We may now consider GIT quotients of the various above spaces,

following the method in [Kin94]. We will consider the stability condition asso-

ciated to the character

γ : G→ k∗, (g1, g2) 7→ det(g1)l2det(g2)−l1 .
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Let (T ∗E)ss, (T ∗P )ss, (P × E∗)ss denote the open sets of γ-semistable points,

and let T ∗E//G, (T ∗P )//G and (P × E∗)//G denote the affine quotients. Be-

cause T ∗E, T ∗P and P × E∗ are all affine varieties, there are proper maps

p : (T ∗E)ss//G→ (T ∗E)//G, p′ : (P × E∗)ss//G→ (P × E∗)//G,
p′′ : (T ∗P )ss//G→ (T ∗P )//G.

We have

(T ∗E)ss//G = Proj

Ñ⊕
l≥0

k[T ∗E]γ,l

é
, (T ∗E)//G = Spec(k[T ∗E]G),

where

k[T ∗E]γ,l = {f ∈ k[T ∗E] | g · f = γ(g)lf ∀ g ∈ G},
and there are similar descriptions in the cases of P ×E∗ and T ∗P . Finally, the

closed embedding i× Id : P ×E∗ ↪→ T ∗E and the surjective map π : P ×E∗ →
T ∗P give rise to maps

(T ∗P )//G (P × E∗)//G i×Id //πoo (T ∗E)//G .

Note that π is surjective while i× Id is a closed embedding.

Recall that a subrepresentation of a representation (x, y) ∈ T ∗E is a pair

of subspaces (W1 ⊆ V1,W2 ⊆ W2) such that xi(W1) ⊆ W2, yi(W2) ⊆ W1 for

all i. Similarly, we will call subrepresentation of some (x, y) ∈ T ∗P a pair of

subspaces (W1 ⊆ V1,W2 ⊆ W2) such that xi(W1) ⊆ W2 and yi ∈ pW /(TxP )⊥,

where pW = {u ∈ Hom(V2, V1) | u(W2) ⊆W1}.

Lemma 6.3. The following hold :

(i) a point (x, y) ∈ T ∗E is γ-semistable (resp. γ-stable) if and only if for any

subrepresentation W = (W1,W2) of (x, y), we have l1dim(W2)−l2dim(W1)

≥ 0 (resp. > 0),

(ii) a point (x, y) ∈ T ∗P is γ-semistable (resp. γ-stable) if and only if for any

subrepresentation W = (W1,W2) of (x, y), we have l1dim(W2)−l2dim(W1)

≥ 0 (resp. > 0).

Proof. The first statement is well known and follows from the Hilbert-

Mumford numerical criterion (see [Kin94, Prop. 3.1]). The second one can be

proved along the same lines, or deduced from (i) together with the fact that

P is closed in E. Note that the Hilbert-Mumford criterion is stated in [Kin94]

for algebraically closed fields, but it holds over an arbitrary perfect field; see

[Kem78, Cor. 4.3]. (Recall that the notion of semistability of representations

of quivers (or of coherent sheaves) is stable under field extension; see [HL10,

Th. 1.3.7].) �

Set (T ∗Q◦,◦L1,L2)ss = T ∗Q◦,◦L1,L2 ∩ (d∗j)−1 ((T ∗P )ss).
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Lemma 6.4. We have (T ∗P )ss = d∗j((T ∗Q◦,◦L1,L2)ss), i.e., (T ∗P )ss ⊂
d∗j(T ∗Q◦,◦L1,L2).

Proof. Let ρ : T ∗P → P be the natural projection. Observe that (T ∗P )ss

⊆ ρ−1(P ∩E◦). Indeed, if (x, y) ∈ T ∗P with Im(x) ( V2, then the subrepresen-

tation W = (V1, Im(x)) violates the semistability condition of Lemma 6.3(ii).

Similarly, if x ∈ E satisfies
⋂
i Ker(xi) 6= {0}, then (x, y) is not semistable

for any y since the subspace W = (
⋂
i Ker(xi), 0) violates the semistability

condition. By diagram (6.3), P ∩ E◦ = Q◦L1,L2 . Moreover, by construction, if

P ∩ E◦ 3 x = j(φ : (L1 ⊗ V1) ⊕ (L2 ⊗ V2) � F) satisfies
⋂
i Ker(xi) = {0},

then the map φ1∗ : V1 → Hom(L1,F) is injective, hence bijective as dim(V1) =

dim(Hom(L1,F)). This implies that (T ∗P )ss ⊂ ρ−1(Q◦,◦L1,L2). The lemma is

proved. �

6.8. Put A = kλ ⊂ g∗ and

X = µ−1(A) ⊂ T ∗P, Xt = µ−1({tλ}), X ′ = X\X0.

The idea is now to consider a GIT quotient Y of X and view the family of

smooth varieties Y → A as a deformation of the moduli space of stable Higgs

bundles of rank r and degree d. Because the moment map µ : T ∗P → g∗ is

G-equivariant, we still have a map µ : (T ∗P )ss//G→ A. We set

Y = µ−1(A), Yt = µ−1({tλ}), Y ′ = Y\Y0.

By construction, Y = X ss//G, where X ss = X ∩ (T ∗P )ss. Observe that by

Lemma 6.4 we have X ss ⊂ T ∗Q◦,◦L1,L2 .

Lemma 6.5. The k-schemes Y,Y ′ and Yt for t ∈ k are smooth. In addi-

tion, X ′ ⊂ X ss.

Proof. Because l1, l2 are relatively prime, we have l2dim(W1)− l1dim(W2)

6= 0 for any proper pair of subspaces W1 ⊂ V1,W2 ⊂ V2. This implies

that the notions of semistability and stability coincide in T ∗P . The action

of PG := G/Gm on (T ∗P )ss thus has finite stabilizers. On the other hand,

the stabilizer for the action of G on any representation (x, y) ∈ T ∗E is the

automorphism group Aut((x, y)) which is open in End((x, y)) and hence con-

nected. We deduce that the action of PG on T ∗P has no finite stabilizers

and, in particular, that the action of PG on (T ∗P )ss is free. It follows that

(T ∗P )ss//G =
Ä
(T ∗P )ss ∩ T ∗Q◦,◦L1,L2

ä
//G is smooth. The first statement will

be proved once we show that the map µ : (T ∗P )ss//G → g∗ is submersive.

This is a consequence of [CBVdB04, Lemma 2.1.5]. (Note that the hypoth-

esis that the field be algebraically closed is not used in the proof there.)

We turn to the second statement. Let u = (x, y) ∈ X ′, and let us assume

that u is not semistable. Thus, by Lemma 6.3 there exists a subrepresen-

tation (W1,W2) of u such that l2dim(W1) − l1dim(W2) > 0. There exists
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a lift u′ = (x, y′) ∈ P × E∗ of u for which (W1,W2) is also a subrepre-

sentation. Moreover, we have µ(u′) = µ(u) = tλ with t 6= 0. But then

0 = Tr(µ(u′)|W1⊕W2
) = t(l2dim(W1)− l1dim(W2)) in contradiction with prop-

erty (ii) of λ (see Section 6.5). �

Proposition 6.6. There is a canonical isomorphism of schemes Y0 '
Higgsst

r,d(X).

Proof. Let us fix a pair (φ, θ) ∈ µ−1(0) ⊂ T ∗Q◦,◦L1,L2 with

φ : (L1 ⊗ V1)⊕ (L2 ⊗ V2) � V.

We will say that (φ, θ) is µ-stable if (V, θ) is a stable Higgs bundle (as in

Section 6.2). We will say that (φ, θ) is γ-stable if d∗j((φ, θ)) ∈ (T ∗P )ss (i.e., is

γ-semistable). Recall (see Section 6.4) that Higgsst
r,d ⊂ [µ−1(0)/G]. The proof

of Proposition 6.6 boils down to showing that (φ, θ) ∈ µ−1(0) is µ-stable if and

only if it is γ-stable.

Let us denote by SX the (finite) set of subsheavesW⊂V which are strongly

generated by L1. We will also denote by S ′X the subset of SX consisting of

Higgs subsheaves. Likewise, let us denote by SKr and S ′6 the (finite) sets of

submodules of j(φ) and d∗j(φ, θ) respectively. There is a natural injective map

ψ : SX → SKr,

W 7→ (Hom(L1,W),Hom(L2,W)) ⊆ (Hom(L1,V),Hom(L2,V))'(V1, V2).

Lemma 6.7. We have W ∈ S ′X if and only if ψ(W) ∈ S ′Kr; i.e., ψ−1(S ′Kr)

= S ′X .

Proof. By definition a Higgs subsheaf of (V, θ) is a subsheaf W ⊂ V satis-

fying (6.1). For a subsheaf W ⊂ V which is strongly generated by L1, we have

a commutative diagram

0 // Ker(φ) // ⊕
i Li ⊗ Vi

∼ // ⊕
i Li ⊗Hom(Li,V) // V // 0

0 // Ker(φW)

OO

// ⊕
i Li ⊗Wi

OO

∼ // ⊕
i Li ⊗Hom(Li,W) //

OO

W //

OO

0,

where the upward arrows are canonical embeddings and where the subspaces
Wi ⊂ Vi are defined as φ−1

i∗ (Hom(Li,W)). This gives rise to a commutative
diagram

Ext1(V,V)∗

a��

i // Hom(Ker(φV),V)∗

a′��

Hom(Hom(L2,Ker(φV)),Hom(L2,V))∗

��

πoo

Ext1(V,W)∗
i′ // Hom(Ker(φV),W)∗ Hom(Hom(L2,Ker(φV)),Hom(L2,W))∗

π′oo

Ext1(W,W)∗

b

OO

i′′ // Hom(Ker(φW),W)∗
b′
OO

Hom(Hom(L2,Ker(φW)),Hom(L2,W))∗.

OO

π′′oo
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The maps i, i′, i′′ are injective while the maps π, π′, π′′ are surjective. This

diagram may be completed with an extra column of identifications

Hom(Hom(L2,Ker(φV)),Hom(L2,V))∗
∼ //

��

Hom(V1, V2 ⊗ V∗)∗

a′′

��
Hom(Hom(L2,Ker(φV)),Hom(L2,W))∗

∼ // Hom(V1,W2 ⊗ V∗)∗

Hom(Hom(L2,Ker(φW)),Hom(L2,W))∗
∼ //

OO

Hom(W1,W2 ⊗ V∗)∗
b′′

OO

in which the horizontal arrows are induced by the isomorphisms

Hom(L2,Ker(φV)) ' Hom(L2,L1 ⊗ V1), Hom(L2,V) ' V2

(see Section 6.5) and the similar isomorphisms with W instead of V. Observe

that π is identified with the projection

T ∗j(φ)E
// T ∗j(φ)P

∼

d∗j−1
|φ

// T ∗φQ
◦,◦
L1,L2

(see (6.7)).

The subsheafW is a Higgs subsheaf if and only if a(θ) ∈ b(Ext1(W,W)∗).

Now consider the morphism of exact sequences

0 // Ext1(V,W)∗
i′ // Hom(Ker(φV),W)∗

s′ // Hom(LV ,W)∗

0 // Ext1(W,W)∗
i′′ //

b

OO

Hom(Ker(φW),W)∗
s′′ //

b′

OO

Hom(LW ,W)∗

c

OO

in which we have set for simplicity LV =
⊕

i Li ⊗ Vi and LW =
⊕

i Li ⊗Wi.

Note that the map c is injective since LW is a direct summand of LV . It follows

that a(θ) ∈ b(Ext1(W,W)∗) if and only if i′(a(θ)) ∈ b′(Hom(Ker(φW),W)∗),

and this holds if and only i(θ) can be lifted to an element y ∈ Hom(V1, V2⊗W)∗

satisfying a′′(y) ∈ b′′(Hom(W1,W2⊗V)∗). But this last condition is equivalent

to the fact that (W1,W2) is a subrepresentation of d∗j(φ, θ). The lemma is

proved. �

Lemma 6.8. Let W ∈ SX and (W1,W2) = ψ(W). Then µ(W) > µ(α) if

and only if l1dim(W2) < l2dim(W1).

Proof. This is a straightforward computation (see, e.g., [ÁCK09, Lemma

3.2]). �

Let (φ, θ) ∈ µ−1(0) be µ-unstable. Then by the defining property (d) of

(L1,L2) there exists a destabilizing subsheafW ∈ S ′X (see Section 6.4). There-

fore ψ(W) is a destabilizing subrepresentation of d∗j(φ, θ). Conversely, assume
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that d∗j(φ, θ) is γ-unstable. Following the authors of [ÁCK07] we will call tight

a subrepresentation (W1,W2) of d∗j(φ, θ) satisfying the following condition: if

(W ′1,W
′
2) is a subrepresentation of d∗j(φ, θ) such that W1 ⊆W ′1 and W2 ⊇W ′2,

then W ′1 = W1 and W ′2 = W2. Clearly, there exists a tight destabilizing sub-

representation (W1,W2) of d∗j(φ, θ).1 Observe that (W1,W2) is also tight as a

submodule of the (nondoubled) Kronecker representation j(φ). Using [ÁCK07,

Lemma 5.5.] we conclude that the submodule (W1,W2) is equal to ψ(W) for

some W ∈ SX . By Lemmas 6.7 and 6.8 it follows that W is a destabilizing

Higgs subsheaf of (φ, θ) and thus that (φ, θ) is µ-unstable. The proposition is

proved. �

6.9. Let us consider the action of Gm on T ∗E given by

z · (x, y) = (x, zy).

This action preserves P ×E∗ and descends to an action of Gm on T ∗P , which

in turn preserves T ∗Q◦,◦L1,L2 . Since the map µ : T ∗Q◦,◦L1,L2 → g∗ is equivariant

(for the standard weight-one action of Gm on g∗), this action preserves X and

thus induces a Gm-action on Y. Observe that the schemes Yt with t 6= 0

are transformed into each other by the Gm-action and, in particular, are all

isomorphic.

Proposition 6.9. The Gm-action on Y is contracting, i.e., for any y∈Y ,

the action map Gm → Y, z 7→ z · y extends to a map A1 → Y .

Proof. It is enough to prove that the Gm-action on 3

(T ∗P )ss//G = (T ∗Q◦,◦L1,L2)ss//G

is contracting since Y is closed in (T ∗Q◦,◦L1,L2)ss//G. Because the map p′′ :

(T ∗P )ss//G → (T ∗P )//G is proper, it is in turn enough to prove that the

Gm-action on (T ∗P )//G is contracting. It is clear that the Gm-action on

(T ∗E)//G is contracting. Since (P×E∗)//G is a Gm-invariant closed subvariety

of (T ∗E)//G, the Gm-action on (P ×E∗)//G is contracting as well. But there

is a surjective Gm-equivariant morphism (P ×E∗)//G→ (T ∗P )//G, and hence

the Gm-action on (T ∗P )//G is also contracting. The proposition is proved. �

We may now apply the method of Nakajima in [Nak04]. For the reader’s

convenience, we repeat the argument here. Denote by Z the scheme of Gm-fixed

points in Y, a smooth subscheme of Y0. An explicit description of Z is given

and studied in [GPHS14] (the so-called moduli of chains on X). Let Z =
⊔
iZi

denote the decomposition of Z into connected components. The tangent space

to Y at a point z ∈ Z splits as a direct sum

TzY = TzY+ ⊕ TzZ ⊕ TzY−,

1Such a representation may be thought of as a maximally destabilizing subrepresentation

of d∗j(φ, θ).
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where TzY+, resp. TzY−, stands for the subspace over which the Gm-action is

of strictly positive (resp. strictly negative) weight. Let ni be the dimension of

TzY+ for z ∈ Zi. Replacing Y by Y0, one similarly defines integers n′i. Observe

that n′i = ni − 1 as ν is Gm-equivariant and Gm acts on L ' A1 with weight

one.

By Lemma 6.5(i) and Proposition 6.9, the Hesselink-Byaliniki-Birula de-

composition for Y and Y0 provide locally closed partitions

(6.8) Y =
⊔
i

Wi, Y0 =
⊔
i

W ′i,

where Wi (resp. W ′i) is an Ani-fibration (resp. an An′i-fibration) over Zi; see

[Hes81, Th. 5.7].

The decompositions (6.8) and the fibrations Wi → Zi, W ′i → Zi are all

defined over k. It follows on the one hand that

|Y(k)| = |Y0(k)|+ (q − 1)|Y1(k)|

and on the other hand that

|Y(k)| =
∑
i

qni |Zi(k)|, |Y0(k)| =
∑
i

qni−1|Zi(k)|.

We deduce that |Y0(k)| = |Y1(k)|. By Lemma 6.2,

|Y1(k)| =
∑
F∈Ir,d

qdim(Ext1(F ,F))|{φ ∈ Q | φ : L⊕l11 ⊕ L⊕l22 � F}|/|PG(k)|,

where Ir,d stands for the set of indecomposable (and hence geometrically inde-

composable) vector bundles of rank r and degree d over X. For such a bundle,

we have

|{φ ∈ Q | φ : L⊕l11 ⊕ L⊕l2 � F}|/|PG(k)| = (q − 1)/|Aut(F)| = q/|End(F)|,

from which we deduce that

|Y1(k)| =
∑
F∈Ir,d

qdim(Ext1(F ,F))−dim(End(F))+1 = q1−〈α,α〉|Ir,d| = q1+(g−1)r2 |Ir,d|

as wanted. This finishes the proof of Theorem 1.2.

6.10. In this section we provide the (standard) proof of Corollary 1.3.

Proof of Corollary 1.3. We will first provide an independent proof of the

following fact (due to [GPH13, Th. 1], [GPHS14]):

(a) The Frobenius eigenvalues in Hn
c (Higgsst

r,d(X ⊗Fq),Ql) are all of the form

λ =
∏
j

σ
nj
j ,

∑
ni = n,

where σX = (σ1, . . . , σ2g).
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So let Ci = {ci,j | j ∈ Ki} be the collection of Frobenius eigenvalues in

H i
c(Higgsst

r,d(X),Ql), counted with multiplicity. It is known that Higgsst
r,d(X)

is cohomologically pure. (See, e.g., [HRV13, Cor. 1.2.3] for the similar case of

the mixed Hodge structure on the moduli space of stable Higgs bundles over

a complex curve, or see Section 6.11 below.) Therefore |ci,j | = qi/2 for all

j ∈ Ki. By Theorems 1.1 and 1.2 there exist a polynomial Br,d ∈ Q[Tg]
Wg and

a unitary polynomial R(q) ∈ Z[q] such that for any l ≥ 1,

(6.9) Br,d(σ
l
1, . . . , σ

l
2g) =

Ñ∑
i,j

(−1)icli,j

é
R(ql),

where σX = (σ1, . . . , σ2g). Multiplying Br,d by some positive integer N if

necessary and repeating each ci,j N times accordingly, we may assume that

Br,d ∈ Z[Tg]
Wg . Expanding the product

Ä∑
i,j(−1)icli,j

ä
R(ql) and gathering

together terms with the same sign, we may write (6.9) as an equality

(6.10)
∑
a∈A

ula =
∑
b∈B

vlb,

where ua, vb are either some monomials of the form σi11 · · ·σ
i2g
2g or of the form

qnci,j for some i and j ∈ Ki. Because (6.10) holds for all l, we deduce that

{ua | a ∈ A} = {vb | b ∈ B}. We may decompose the sets {ua}, {vb} according

to the complex norm, yielding for each n an equality

{ua | a ∈ A, |ua| = n} = {vb | b ∈ B, |vb| = n}.

Let d be the degree of R(q), so that R(q) = qd + P (q) with deg(P ) < d.

Set l = max {l | Kl 6= ∅}. Depending on the parity of l, the monomials

of the form qdcl,j either all belong to {ua | a ∈ A, |ua| = qd+l/2} or all be-

long to {vb | b ∈ B, |vb| = qd+l/2}. This implies that the cl,j , j ∈ Kl are

all equal to monomials σi11 · · ·σ
i2g
2g with

∑
k ik = l. Canceling from (6.10)

all the terms arising in the products cl,jR(q) for j ∈ Kl and arguing by in-

duction, we deduce that the same holds for the ci,j with j ∈ Ki and i ar-

bitrary. This proves (a). In fact, the above argument shows the following.

Write Ag,r,d =
∑
i1,...,i2g ai1,...,i2g(−z1)i1 · · · (−z2g)

i2g . Then the multiplicity of

the eigenvalue σi11 · · ·σ
i2g
2g is equal to ai1,...,i2g . In particular, this implies that

ai1,...,i2g ∈ N for any i1, . . . , i2g. Statement (i) of Corollary 1.3 easily follows.

Let us now turn to statement (ii). Let XQ be a smooth projective curve of

genus g defined over Q, and let XR be a spreading out of XQ defined over some

ring R = Z[ 1
N ]. Consider the R-scheme π : Higgsst

r,d(XR)→ Spec(R). The com-

plex Rπ!(Ql) is locally constant over an open subset U ⊆ Spec(R). For any field

k and any point jk : Spec(k)→ Spec(R), the proper base change theorem pro-

vides an isomorphism j∗kRπ!(Ql) ' Rπk,!(Ql), where πk : Higgsst
r,d(XR ⊗ k) →
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Spec(k). If jFq ∈ U , then j∗FqRπ!(Ql) ' j∗QRπ!(Ql) ', where jQ : Spec(Q) →
Spec(R) is the generic point. As jFq ∈ U for q � 0, this yields an equality∑
n

dim(Hn
c (Higgsst

r,d(XR⊗Fq),Ql))t
n =

∑
n

dim(Hn
c (Higgsst

r,d(XR⊗Q),Ql))t
n.

Finally, by the Artin-Grothendieck comparison theorem,∑
n

dim(Hn
c (Higgsst

r,d(XR⊗Q),Ql))t
n=

∑
n

dim(Hn,sing
c (Higgsst

r,d(XR⊗C),C))tn.

We conclude using the fact that the all the complex varieties Higgsst
r,d(X) as

X runs through the set of Riemann surface of genus g are diffeomorphic (and

all diffeomorphic to the genus g twisted character variety for the group GL(r);

see [HRV08]). �

6.11. Finally, let us prove Corollaries 1.4 and 1.5.

Proof of Corollary 1.4. Assume that k = Fq. We first recall the proof that

the variety Λst
r,d is cohomologically pure and that the Frobenius eigenvalues in

H i(Λst
r,d,Ql) are all of the form

∏
j α

lj
j with

∑
i lj = i. Consider the Gm-action

on Higgsst
r,d defined by ρ(z)(V, θ) = (V, zθ). Observe that the Hitchin map µ is

naturally Gm-equivariant for the weight-one action of Gm on the Hitchin base.

Since µ is proper, it follows (as in Section 6.9) that this action is contracting.

Let Z = (Higgsst
r,d)

Gm be the be the fixed point subvariety and Z =
⊔
i Zi its

decomposition into connected components. Each Zi is a smooth subvariety of

Higgsst
r,d which is included in Λst

r,d and hence is projective. The tangent space

of Higgsst
r,d at a point zi ∈ Zi decomposes according to the Gm-character as

TziHiggsst
r,d = T>0

zi ⊕ TziZi ⊕ T
<0
zi .

We have Byalinicki-Birula-Hesselink decompositions (for ρ and ρ−1 respec-

tively)
Higgsst

r,d =
⊔
i

Y +
i , Λst

r,d =
⊔
i

Y −i ,

where Y +
i is a locally trivial An

+
i -fibration over Zi and Y −i is a locally trivial

An
−
i -fibration over Zi, where

n+
i = dim T>0

zi , n−i = dim T<0
zi ;

see [Hes81, Th. 5.7]. (This is independent of the choice of zi.) Because Λst
r,d

is lagrangian and Zi is included in the smooth locus of Λst
r,d, we have n+

i =
1
2dim Higgsst

r,d = 1 + (g − 1)r2. The varieties Zi being smooth and projective,

they are pure, and hence so are the Y +
i , Y

−
i (for the compactly supported

cohomology). This implies that Λst
r,d and Higgsst

r,d are pure as well and that

there is an equality in the Grothendieck group of Gal(k/k)-modules

(6.11) Hn
c (Higgsst

r,d,Ql) '
⊕
i

Hn−1−(g−1)r2

c (Zi,Ql)((1− g)r2 − 1),
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where ( ) denotes a Tate twist. Similarly, there is an isomorphism

(6.12) Hn
c (Λst

r,d,Ql) '
⊕
i

H
n−n<0

i
c (Zi,Ql)(−n<0

i ).

By Poincaré duality,

(6.13) H2dim Zi−l
c (Zi,Ql)

∗(−dim Zi) ' H l
c(Zi,Ql).

Observe that dim Zi = 1+(g−1)r2−n<0
i . Combining (6.11), (6.12) and (6.13)

and taking the trace with respect to the Frobenius element yields statement (i).

Statement (ii) for k = Fq follows by considering the appropriate cohomological

degrees, and for k = C by the same type of arguments as in the proof of

Corollary 1.5. �

Proof of Corollary 1.5. The first statement was shown in the course of

the proof of Corollary 1.3. The second statement is a direct consequence of

the fact that the moduli space Higgsst
r,d(XC) is connected and of dimension

2(1 + (g − 1)r2). �

7. Extension to the parabolic case

7.1. There is a result analogous to Theorem 1.1 for vector bundles with

(quasi)-parabolic structure. As before, let X be a smooth projective curve

defined over a finite field Fq. Fix an effective divisor D =
∑N
i=1 pixi where for

simplicity we assume that the xi are Fq-rational points of X. By definition

a quasi-parabolic vector bundle (V, F •) on (X,D) is a vector bundle V on X

equipped with a collection of filtrations

F
(i)
1 ⊆ F (i)

2 ⊆ · · · ⊆ F (i)
pi = V|xi

for i = 1, . . . , N . The sequence (dim(F
(i)
1 ),dim(F

(i)
2 ), . . . ,dim(F

(i)
pi )) is called

the dimension type of (V, F •) at xi.

Given r > 0, d ∈ Z and fixed dimension types d(i) = d
(i)
1 ≤ · · · ≤ d

(i)
pi = r

for i = 1, . . . , N , we let Ar,d,d(1),...,d(N)(X) stand for the number of geomet-

rically indecomposable quasi-parabolic bundles on (X,D) of rank r, degree d

and dimension type d(i) at xi for all i. Again the finiteness of such number is

a consequence of the existence of Harder-Narasimhan filtrations.

Theorem 7.1. For any g ≥ 0, any positive integer N ≥ 0, any collection

of positive integers p = (p1, . . . , pN ) and any tuple α = (r, d,d(1), . . . ,d(N))

satisfying

(r, d) ∈ N× Z,

d(i) = (d
(i)
1 ≤ · · · ≤ d

(i)
pi = r) ∀i,
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there exists a unique polynomial Ag,p,α ∈ Q[Tg]
Wg such that for any smooth

projective curve X of genus g defined over a finite field, for any divisor D =∑
i pixi with xi ∈ X(Fq), we have

Aα(X) = Ag,p,α(σX).

When g = 0, the above theorem settles Conjecture 9.2(ii) in [Sch04].

7.2. The proof of Theorem 7.1 is completely parallel to that of Theo-

rem 1.1, using the spherical Hall algebra of the category of D-parabolic co-

herent sheaves over X in place of the spherical Hall algebra of X. Shuffle

presentations for such Hall algebras are studied in [Lin15]. There is also an

effective version of Theorem 7.1, whose proof is again similar to that of The-

orem 1.6. This would then provide an answer to a question raised by Deligne

in the context of the counting of the number of irreducible l-adic local systems

on a curve defined over a finite field (see [DF13] or [Del15]). It is natural to

expect that the results and methods of Section 6 extend to the parabolic set-

ting as well. These extensions to the parabolic setting will be the subject of a

companion paper.

8. Refinements and conjectures

To finish, we state a few refinements of the results of this paper and

propose some conjectures, in particular, on the possible Lie-theoretic interpre-

tations of the polynomials Ag,r,d.

8.1. Let ν ∈ Q. Denote by A≥νr,d (X), resp. A≤νr,d (X), the number of ab-

solutely indecomposable vector bundles over X of class (r, d) lying in Coh≥ν ,

resp. Coh≤ν . The proof of Theorem 1.1 yields the following:

Corollary 8.1. Fix g ≥ 0 and ν ∈ Q. For any (r, d) ∈ (Z2)+, there

exist polynomials A≥νg,r,d, A
≤ν
g,r,d ∈ Kg such that for any smooth projective curve

X of genus g defined over a finite field, we have

A≥νr,d (X) = A≥νg,r,d(σX), A≤νr,d (X) = A≤νg,r,d(σX).

Remarks. (i) When µ((r, d)) = ν we have Cohr,d(X)∩Coh≥ν = Cohr,d(X)

∩Coh(ν). The above result thus implies that there exist polynomials counting

the number of geometrically indecomposable semistable sheaves of any given

slope ν.

(ii) We have Coh≥0 ⊃ Coh≥1 ⊃ · · · . Thus for a given (r, d) with r > 0,

d ≥ 0, there is (for each curve X) a decreasing sequence of positive integers

A≥0
r,d(X) ≥ A≥1

r,d(X) ≥ · · · ≥ A≥
d
r

r,d (X).

Of course, taking d � 0, we have A≥0
r,d(X) = Ar,d(X). It is natural to hope

that

A≥ig,r,d −A
≥i+1
g,r,d ∈ Im(N[−zi]

Wg

i → Rg), for i ≥ 0.
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When (r, d) are coprime it would be interesting to interpret the ensuing term-

wise decreasing sequence

Ag,r,d(t, . . . , t) ≥ · · · ≥ A
≥ d
r

g,r,d(t, . . . , t)

of single variable polynomials as corresponding to some natural filtration in

the cohomology of moduli spaces of Higgs bundles over complex curves (or of

twisted character varieties).

(iii) The above remarks (i) and (ii) can be made also in the case of vec-

tor bundles equipped with quasi-parabolic structures (for any choice of slope

function).

8.2. From Corollary 8.1, it seems natural to make the following conjec-

ture. For (α1, . . . , αt) a Harder-Narasimhan type, let us denote by Aα1,...,αt(X)

the number of absolutely indecomposable vector bundles over X which belong

to Coh(α1,...,αt).

Conjecture 8.2. For any g ≥ 0 and for any Harder-Narasimhan type

(α1, . . . , αt), there exists a polynomial Ag,α1,...,αt ∈ Q[Tg]
Wg such that for any

smooth projective curve X of genus g defined over a finite field, we have

Aα1,...,αt(X) = Ag,α1,...,αt(σX).

Again, one may formulate an entirely similar conjecture in the case of

vector bundles equipped with quasi-parabolic structures (for any choice of slope

function). One may likewise formulate exactly the same conjecture in the

context of representations of quivers.

8.3. In the context of quivers Kac conjectured (see [Kac83, Conj. 1]),

and Hausel proved in general, that the constant term Ad(0) of the Kac poly-

nomial attached to a quiver Q with no edge loop and a dimension vector d is

equal to the multiplicity of the root
∑
i diαi in the Kac-Moody Lie algebra gQ

canonically associated to Q; see [Hau10, §3] for details.

In the context of a smooth projective curve one is therefore led to seek an

analog of the Kac-Moody Lie algebra gQ. Motivated by Ringel’s theorem relat-

ing Hall algebras and quantum groups, we suggest the following construction.

Let X be a smooth projective curve of genus g defined over an algebraically

closed field, and let Hχν be the space of all C-valued constructible functions

on the moduli stack Cohν . The space Hχ :=
⊕

ν Hχν has the structure of a

co-commutative Hopf algebra (see, e.g., [Lus91, §10.20] or [BTL12, Th. 4.3])

and is sometimes called the χ-Hall algebra of X. Let Hχ,sph stand for the sub

Hopf algebra generated by the constant functions on Coh0,d and Bun1,l for

d ≥ 0 and l ∈ Z. This Hopf algebra may be thought of as an αi = 1 limit of the

spherical Hall algebra Hsph of a curve of genus g defined over a finite field. We

define the spherical Hall Lie algebra hsph
X of X as the Lie algebra of primitive
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elements in Hχ,sph. We conjecture that this Lie algebra is independent of the

choice of X and has finite dimensional Z2 graded components. The analog of

Kac’s conjecture may now be formulated as follows:

Conjecture 8.3. For any (r, d) ∈ (Z2)+, we have Ag,r,d(0) = dim hsph
(r,d).

In addition, one may formulate a version of Kac’s conjecture directly in

terms of the spherical Hall algebra Hsph of the curve X itself (and its inte-

gral form RHsph), which are natural analogs in the context of curves of the

quantum enveloping algebra Uq(nQ). These algebras are (Z2)+-graded but

with graded components of infinite dimension in general. In order to circum-

vent this difficulty, let us denote by Hsph,≥0
ν the subspace of Hsph

ν consisting of

those functions on Cohν which are supported on the substack Coh≥0
ν . It is

easy to check that Hsph,≥0 =
⊕
ν Hsph,≥0

ν is an (N2)-graded algebra with finite

dimensional graded components.

Conjecture 8.4. The following equality holds in the ring of power series

N[[z(0,1), z(1,0)]]: ∑
ν

dim(Hsph,≥0
ν )zν = Exp

Ç∑
ν

A≥0
g,r,d(0)zν

å
.

These conjectures may be directly checked for g = 0, 1 using the results

in [Kap97], [BS12] respectively.

Remark. By [SV12, Th. 3.1], the spherical Hall algebra Hsph of X is iso-

morphic to the spherical part of the K-theoretic Hall algebra

Kg =
⊕
r≥0

KGLr×Tg(Cg,r)

of the commuting variety Cg =
⊔
r Cg,r, where

Cg,r =

{
(x1, y1 . . . , xg, yg) ∈ glr(C)2g |

∑
i

[xi, yi] = 0

}
.

We do not know how to geometrically describe the subalgebra K≥0
g of

Kg corresponding to Hsph,≥0. However, one may expect the existence of a

degeneration from K≥0
g to the cohomological Hall algebra

Cg =
⊕
r≥0

H•GLr×Tg(Cg,r).

(See [SV13, §7], where such a degeneration is performed (algebraically) in the

case of g = 1.) In particular, one may consider an analog of Conjecture 8.4 in

which Hsph,≥0 is replaced by the spherical part of Cg. (This suggests a relation

between Ag,r,d(0) and the Donaldson-Thomas invariants of the 2g-loop quiver,

with preprojective relations.)
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Appendix A. Volume of moduli stacks of torsion sheaves

Proof of Theorem 4.1(ii). Let Coh
(x)
0,d be the substack of Coh0,d para-

metrizing torsion sheaves of degree d supported at a closed point x of X, and

let 1
(x)
0,d stand for the characteristic function of Coh

(x)
0,d. Observe that 1

(x)
0,d = 0

unless deg(x) | d and

vol(Coh
(x)
0,n deg(x)) = (1

(x)
0,n deg(x) | 1

(x)
0,n deg(x)) =

|Nn(kx)|
|GLn(kx)|

=
qn(n−1)deg(x)

(qn deg(x) − 1) · · · (qn deg(x) − q(n−1)deg(x))
,

where kx ' Fqdeg(x) is the residue field at x. Moreover,

∑
d≥0

10,ds
d =

∏
x∈X

Ñ∑
n≥0

1
(x)
(0,n deg(x))s

n deg(x)

é
and ∑

l≥0

(10,l | 10,l)s
l =

∏
x∈X

∑
n≥0

(1
(x)
0,n deg(x) | 1

(x)
0,n deg(x))s

n deg(x).

Using Heine’s formula, we obtain

∑
n≥0

(1
(x)
0,n deg(x) | 1

(x)
0,n deg(x))s

n deg(x) = exp

Ñ∑
l≥1

(sq−1)deg(x)

l(1− q−ldeg(x))

é
.

Using the relation ∑
d | l

∑
x

deg(x)=d

d = |X(Fql)|,

we finally obtain

∑
d≥0

(10,d | 10,d)s
d = exp

Ñ∑
l≥1

|X(Fql)|
l(ql − 1)

sl

é
= Exp

Ç
|X(Fq)|
q − 1

s

å
as wanted.
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Appendix B. Density of Weil numbers of smooth projective curves

Proof of Proposition 4.7. The set W is constructed as the collection of

Weil numbers (in the l-adic cohomology) of smooth projective curves defined

over finite fields, allowing both the curve and the finite field to vary (as long

as the characteristic is different from l). Let us fix a finite field Fq with l not

dividing q, a square root q
1
2 of q in Ql and let us denote by Wq the set of all

(collections of) Weil numbers of smooth projective curves defined over Fq. For

any Fq-scheme U , we write π1(U), resp. πgeom
1 (U), for the fundamental group

(resp. geometric fundamental group) of U .

In [KS99, §10.1, 10.2], Katz and Sarnak constructed a family ρ : X→ Ug of

smooth projective curves over Fq of genus g, satisfying the following property.

Set F = R1ρ!(Ql)(1/2), a pure lisse sheaf of weight zero whose stalk at a

point Spec(Fqn) → Ug corresponding to a curve X defined over Fqn is equal

to H1(X ⊗ Fq,Ql)(1/2). Let us also denote by ρ : π1(U) → GL(2g,Ql) the

representation associated to F (well defined up to conjugation). Then the

Zariski closure of ρ(πgeom
1 (Ug)) is equal to Sp(2g,Ql) (see [KS99, Ths. 10.1.16

and 10.2.2]). Moreover, ρ(π1(Ug)) ⊂ Sp(2g,Ql).

To every point x : Spec(Fqn)→ Ug, there corresponds a map π1(Spec(Fqn))

→ π1(Ug), and hence a Frobenius element ρ(Frx,n) ∈ Sp(2g,Ql) (well defined

up to conjugation). Let ρ(Frx,n)ss stand for the semi-simple part of ρ(Frx,n).

Using the embedding ι : Ql → C, we may view ρ(Frx,n)ss as a semisimple con-

jugacy class in Sp(2g,C). Because F is pure of weight zero, the eigenvalues of

ρ(Frx,n)ss are all unitary; i.e., the conjugacy class of ρ(Frx,n)ss intersects the

maximal compact subgroupK ⊂ Sp(2g,C) in aK-conjugacy class which we de-

note by Cx,n. If x : Spec(Fqn)→ Ug corresponds to a curve X defined over Fqn ,

then Cx,n is the conjugacy class whose eigenvalues are (q−n/2σ1, . . . , q
−n/2σ2g),

where (σ1, . . . , σ2g) are the Weil numbers of X. By Deligne’s equidistribution

theorem (see [Del74, 3.5.3] and [KS99, Th. 9.2.6]), the set of conjugacy classes

C≤n := {Cx,m | m ≤ n, x ∈ Ug(Fqm)} becomes equidistributed for the Haar

measure as n tends to infinity.

The maximal torus T of K is equal to

T = {(z1, . . . , z2g) ∈ (C∗)2g | |zi| = 1, z2i−1z2i = 1 ∀ i} ' (S1)g.

Set W ′q =
⋃
n≥1W ′q,n, where

W ′q,n = {q−n/2σX = (q−n/2σ1, . . . , q
−n/2σ2g) | X ∈ Ug(Fqn)}.

Deligne’s equidistribution theorem implies that W ′q,n is equidistributed in

T/Wg as n tends to infinity. In particular, W ′q is dense in T (for the analytic

topology). We claim2 that this implies that Wq =
⋃
n≥1Wq,n is Zariski dense

2We thank Gaëtan Chenevier for providing us the argument.
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in Tg/Wg. Indeed let f ∈ C[Tg]
Wg be a polynomial function vanishing on

WqWg. Consider the (real) algebraic map r : T ×R∗ → Tg, ((z1, . . . , z2g), t) 7→
(tz1, . . . , tz2g). The image of r contains WqWg and is Zariski dense in Tg.

Assume that f 6= 0 so that r∗f 6= 0, and let us write r∗f(z, t) =
∑
i hi(z)t

i.

Rescaling by a power of t if necessary, we may assume that h0 6= 0 and hi = 0

for i > 0. Let z ∈ T such that h0(z) 6= 0. Because each W ′q,n is finite and W ′q
is dense in T , there exists a sequence (ωi, ni)i with ωi ∈ W ′q,ni and ni 7→ ∞
such that ωi 7→ z. The functions hi, i < 0 being bounded on the compact

set T , it follows that r∗f(ωi, q
ni/2) 7→ h0(z) 6= 0, in contradiction with our

hypothesis on f . This proves thatWqWg is dense in Tg and thus thatWq (and

a fortiori W) is dense in Tg/Wg. We are done. �

Appendix C. Proof of Conjecture 1.7 when r is prime

This is a straightforward computation. By the proof of Theorem 1.1,

Ag,r(z) may have poles only at r-th roots of unity, and these poles are of

order at most one. If r is assumed to be prime, then all the nontrivial r-th

roots of unity are primitive, and hence only occur as poles of terms in Ag,r(z)

containing a factor (1− zr)−1. Upon inspection, on easily sees that this factor

arises (as a coefficient of T r) on the right-hand side of (1.3) in only two terms,

namely,

q〈(r),(r)〉J(r)(z)H(r)(z)

=

∏
i(αi − 1)(αi − z) · · · (αi − zr−1)

(q − 1)(q − z) · · · (q − zr−1)
· 1

(1− z)(1− z2) · · · (1− zr)
and

µ(r)

r
ψr
Ä
q〈(1),(1)〉J(1)(z)H(1)(z)

ä
= −1

r
·

∏
i(α

r
i − 1)

(qr − 1)(1− zr)
.

The result follows by a simple residue computation.
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