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On the fibration method for zero-cycles
and rational points
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Abstract

Conjectures on the existence of zero-cycles on arbitrary smooth projec-

tive varieties over number fields were proposed by Colliot-Thélène, Sansuc,

Kato and Saito in the 1980’s. We prove that these conjectures are compat-

ible with fibrations, for fibrations into rationally connected varieties over

a curve. In particular, they hold for the total space of families of homo-

geneous spaces of linear groups with connected geometric stabilisers. We

prove the analogous result for rational points, conditionally on a conjecture

on locally split values of polynomials which a recent work of Matthiesen

establishes in the case of linear polynomials over the rationals.

1. Introduction

Let X denote a smooth and proper algebraic variety over a number field k.

It is customary to embed the set X(k) of rational points of X diagonally

into the space of adelic points X(Ak) =
∏
v∈ΩX(kv). In his foundational

paper [Man71], Manin combined local class field theory, global class field theory

and Grothendieck’s theory of Brauer groups of schemes to define a natural

closed subset X(Ak)
Br(X) of X(Ak) which contains the image of X(k). The

absence of any rational point on X is in many examples explained by the

vacuity of X(Ak)
Br(X). The following conjecture, first formulated by Colliot-

Thélène and Sansuc in 1979 in the case of surfaces, posits a partial converse.

Conjecture 1.1 ([CT03, p. 174]). For any smooth, proper, geometrically

irreducible, rationally connected variety X over a number field k, the set X(k)

is dense in X(Ak)
Br(X).

By “rationally connected,” we mean that for any algebraically closed

field K containing k, two general K-points of X can be joined by a rational

curve. (For example, geometrically unirational varieties are rationally con-

nected; see [Kol96, Chap. IV] for more on this notion.)
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In a parallel development, a conjecture concerning the image of the Chow

group CH0(X) of zero-cycles up to rational equivalence in the product of the

groups CH0(X⊗kkv) over the places v of k was put forward by Colliot-Thélène,

Sansuc, Kato and Saito (for rational surfaces in [CTS81, §4], for arbitrary

varieties in [KS86, §7] and in [CT95, §1]). Let us recall its statement. Denote

by Ωf (resp. Ω∞) the set of finite (resp. infinite) places of k and by CH0,A(X)

the group

(1.1) CH0,A(X) =
∏
v∈Ωf

CH0(X ⊗k kv)×
∏

v∈Ω∞

CH0(X ⊗k kv)
Nkv/kv

(CH0(X ⊗k kv))
.

By the reciprocity law of global class field theory, the pairings

−,− v : Br(X ⊗k kv)× CH0(X ⊗k kv)→ Br(kv) ↪→ Q/Z

for v ∈ Ω, characterised by the property that α, P v is the local invariant of

α(P ) ∈ Br(kv(P )) whenever P is a closed point of X ⊗k kv, fit together in a

complexŸ�CH0(X) //¤�CH0,A(X)

∑
v∈Ω −,− v

// Hom(Br(X),Q/Z),(1.2)

where we denote M̂ = lim←−n≥1
M/nM for any abelian group M . In the formu-

lation given by van Hamel [vH03, Th. 0.2], the above-mentioned conjecture is

then the following.

Conjecture 1.2 ([KS86, §7], [CT95, §1]; see also [Wit12, §1.1]). For any

smooth, proper, geometrically irreducible variety X over a number field k, the

complex (1.2) is exact.

Rationally connected varieties which satisfy Conjecture 1.1 over every

finite extension of k are known to satisfy Conjecture 1.2 (cf. [Lia13a]).

Two general methods were elaborated to attack Conjectures 1.1 and 1.2.

The descent method (see [CTS87], [Sko99], [Sko01]; see [Sal03] for an adap-

tation to the context of zero-cycles) generalises the classical descent theory of

elliptic curves to arbitrary varieties. The fibration method, with which we are

concerned in the present paper, consists, under various sets of hypotheses, in

exploiting the structure of a fibration f : X → Y to establish the conjectures

for X when they are known for Y and for the fibers of f .

Our aim in this paper is twofold. First, in Sections 2–8, we prove the

following general fibration theorem for the existence of zero-cycles, which is

the main result of the paper.

Theorem 1.3. Let X be a smooth, proper, geometrically irreducible

variety over a number field k, and let f : X → P1
k be a dominant morphism

with rationally connected geometric generic fiber. If the smooth fibers of f

satisfy Conjecture 1.2, then so does X .
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The precise results we prove on zero-cycles are stated in Section 8. They

generalise Theorem 1.3 in the following respects:

(1) the base of the fibration is allowed to be any variety birationally equivalent

to the product of a projective space with a curve C which satisfies

Conjecture 1.2;

(2) only the smooth fibers of f above the closed points of a Hilbert subset

(for instance, of a dense open subset) of the base are assumed to satisfy

Conjecture 1.2;

(3) instead of requiring that the geometric generic fiber be rationally con-

nected, it is enough to assume that it is connected, that its abelian étale

fundamental group is trivial and that its Chow group of zero-cycles of

degree 0 is trivial over any algebraically closed field extension;

(4) when the geometric generic fiber is rationally connected, the assumption

that the smooth fibers (above the closed points of a Hilbert subset) satisfy

Conjecture 1.2 may be replaced with the assumption that they satisfy

Conjecture 1.1.

We note that a smooth, proper, geometrically irreducible curve C satisfies

Conjecture 1.2 as soon as the divisible subgroup of the Tate–Shafarevich

group of its Jacobian is trivial, by a theorem of Saito [Sai89] (see [Wit12,

Rems. 1.1(iv)]). At least when C(k) 6= ∅, this condition is even equivalent to

Conjecture 1.2 (see [Mil06, Ch. I, Th. 6.26(b)]).

To illustrate Theorem 1.3, let us consider the very specific example of the

affine n-dimensional hypersurface V given by

(1.3) NK/k(x1ω1 + · · ·+ xnωn) = P (t),

where P (t) ∈ k[t] is a nonzero polynomial and where the left-hand side is the

norm form associated to a finite extension K/k and to a basis (ω1, . . . , ωn) of

the k-vector space K. The study of the arithmetic of a smooth and proper

model X of V has a long history. Conjecture 1.2 was previously known for X

only when K/k is cyclic (see [CTSSD98], which builds on [Sal88]), when K/k

has prime degree or degree pq for distinct primes p, q (see [Wei14a, Th. 4.3]

and [Lia15, Exam. 3.1, Rem. 3.7]), when K/k is quartic or is abelian with

Galois group Z/nZ× Z/nZ under certain assumptions on P (t) (see [Wei14a],

[DSW15], [Lia14b, Cor. 2.3] and [Lia15, Exam. 3.9]) and, finally, for arbi-

trary K/k, when P (t) = ctm(1 − t)n for some c ∈ k∗ and some integers m,n

(see [SJ13], which builds on [HBS02] and [CTHS03] and applies descent theory

and the Hardy–Littlewood circle method to establish Conjecture 1.1 for X over

every finite extension of k, and see [Lia15, Exam. 3.10]). By contrast, it follows

uniformly from Theorem 1.3 that X satisfies Conjecture 1.2 for any K/k and

any P (t). Indeed, on the one hand, the generic fiber of the projection map

V → A1
k given by the t coordinate is a torsor under the norm torus associated
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to the finite extension K/k, and on the other hand, smooth compactifica-

tions of torsors under tori satisfy Conjecture 1.1. (See [Sko01, Th. 6.3.1] and

use (4) above; alternatively, smooth compactifications of torsors under tori

satisfy Conjecture 1.2, by [Lia13a].) One can even go further and replace

the “constant” field extension K/k with an arbitrary finite extension K/k(t):

Theorem 1.3 implies Conjecture 1.2 for smooth and proper models of the affine

n-dimensional hypersurface defined by NK/k(t)(x1ω1 + · · · + xnωn) = P (t)

if (ω1, . . . , ωn) now denotes a basis of the k(t)-vector space K.

More generally, we obtain the following result as a corollary of Theo-

rem 1.3. This covers, in particular, all fibrations into toric varieties, into

Châtelet surfaces or into Châtelet p-folds in the sense of [VAV12]. See Sec-

tion 8.1 for a more detailed discussion.

Theorem 1.4. Let X be a smooth, proper, irreducible variety over a

number field k. Let Y be an irreducible variety over k, birationally equivalent

to either Pn
k , or C , or Pn

k × C , for some n ≥ 1 and some smooth, proper,

geometrically irreducible curve C over k which satisfies Conjecture 1.2. Let

f : X → Y be a dominant morphism whose generic fiber is birationally

equivalent to a homogeneous space of a connected linear algebraic group, with

connected geometric stabilisers. Then X satisfies Conjecture 1.2.

We then proceed to rational points in Section 9. We propose in Section 9.1

a conjecture on locally split values of polynomials in one variable (“locally

split” means that the values are required to be products of primes which split

in a given finite extension L/k) and prove, in Section 9.3, that this conjecture

implies a general fibration theorem for the existence of rational points.

Theorem 1.5. Let X be a smooth, proper, geometrically irreducible

variety over a number field k, and let f : X → P1
k be a dominant morphism with

rationally connected geometric generic fiber. Suppose Conjecture 9.1 holds. If

the smooth fibers of f above the rational points of P1
k satisfy Conjecture 1.1,

then so does X .

Theorem 1.5 admits various generalisations similar to those of Theorem 1.3

outlined in (1)–(4) above. See Corollaries 9.23 and 9.25 for precise statements.

Various cases of Conjecture 9.1 can be established by algebro-geometric

methods, by sieve methods or by additive combinatorics. We discuss these

cases in Section 9.2 as well as the relation between Conjecture 9.1 and

Schinzel’s hypothesis (H). The most significant result towards Conjecture 9.1

is Matthiesen’s recent work [Mat15], which renders Theorem 1.5 unconditional

when k = Q and the singular fibers of f lie above rational points of P1
Q. More

precisely, we obtain the following theorem in Section 9.4.
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Theorem 1.6. Let X be a smooth, proper, geometrically irreducible

variety over Q. Let f : X → P1
Q be a dominant morphism with rationally

connected geometric generic fiber, whose nonsplit fibers all lie over rational

points of P1
Q. If Xc(Q) is dense in Xc(AQ)Br(Xc) for every rational point c of

a Hilbert subset of P1
Q, then X(Q) is dense in X(AQ)Br(X).

This unconditional case of Theorem 1.5 was previously known only

under the quite strong assumption that every singular fiber of f contains an

irreducible component of multiplicity 1 split by an abelian extension of Q

and that the smooth fibers of f above the rational points of P1
Q satisfy weak

approximation (see [HSW14]), or otherwise under the assumption that f has a

unique nonsplit fiber (see [Har97]). We note that the work [Mat15] relies on the

contents of a recent paper of Browning and Matthiesen [BM13] which applied

the descent method and additive combinatorics to prove Conjecture 1.1 for a

smooth and proper model of the hypersurface (1.3) when k = Q and P (t) is a

product of linear polynomials, the number field K being arbitrary (a case now

covered by Theorem 1.6).

The oldest instance of the use of the structure of a fibration to establish

a particular case of Conjecture 1.1 or of Conjecture 1.2 can be traced back

to Hasse’s proof of the Hasse–Minkowski theorem for quadratic forms in four

variables with rational coefficients starting from the case of quadratic forms in

three variables with rational coefficients. It was based on Dirichlet’s theorem on

primes in arithmetic progressions and on the global reciprocity law. In 1979,

Colliot-Thélène and Sansuc [CTS82] noticed that a variant of Hasse’s proof

yields Conjecture 1.1 for a large family of conic bundle surfaces over P1
Q if one

assumes Schinzel’s hypothesis (H), a conjectural generalisation of Dirichlet’s

theorem. Delicate arguments relying on the same two ingredients as Hasse’s

proof later allowed Salberger [Sal88] to settle Conjecture 1.2 unconditionally

for those conic bundle surfaces over P1
k whose Brauer group is reduced to

constant classes. At the same time, building on the ideas of [CTSSD87],

an abstract formalism for the fibration method was established in [Sko90b]

in the case of fibrations, over An
k , whose codimension 1 fibers are split and

whose smooth fibers satisfy weak approximation. Further work of Serre [Ser92]

and of Swinnerton-Dyer [SD94] on conic and two-dimensional quadric bundles

over P1
k led to the systematic study of fibrations, over the projective line and

later over a curve of arbitrary genus or over a projective space, into varieties

which satisfy weak approximation (see [CTSD94], [CTSSD98], [CT00], [Fro03],

[vH03], [Wit12], [Lia13b], [HSW14]).

To deal with nonsplit fibers, all of these papers rely on the same reciprocity

argument as Hasse’s original proof, at the core of which lies the following

well-known fact from class field theory: if L/k is a finite abelian extension
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of number fields, an element of k which is a local norm from L at all places

of k except at most one must be a local norm at the remaining place too

(see [AT09, Ch. VII, §3, Cor. 1, p. 51]). The failure of this statement

for non-abelian extensions L/k turned out to be a critical hindrance to the

development of the fibration method. On the one hand, it caused all of the

papers mentioned in the previous paragraph to assume that every singular

fiber of f over A1
k contains an irreducible component of multiplicity 1 split

by an abelian extension of the field over which the fiber is defined. (We note,

however, that a trick allowing one to deal with a few very specific non-abelian

extensions whose Galois closure contains a nontrivial cyclic subextension, e.g.,

cubic extensions, appeared in [Wei14a, Th. 3.5] and [HSW14, Th. 4.6].) On the

other hand, it led to the restriction that the smooth fibers should satisfy weak

approximation. Harari [Har94], [Har97] was able to relax this condition only in

the following two situations: fibrations over P1
k all of whose fibers over A1

k are

geometrically irreducible, and fibrations, over more general bases, which admit

a rational section. Further results in this direction were obtained in [Sme15]

and in [Lia14b] but were always limited by the assumption that some field

extension built out of the splitting fields of the irreducible components of the

fibers and of the residues, along these components, of a finite collection of

classes of the Brauer group of the generic fiber, should be abelian.

The proofs of Theorems 1.3 and 1.5 given below do not rely on Dirichlet’s

theorem on primes in arithmetic progressions or on any variant of it. As a

consequence, they bypass the reciprocity argument alluded to in the previous

paragraph, whose only purpose was to gain some control over the splitting

behaviour of the unspecified prime output by Dirichlet’s theorem. They bypass

the ensuing abelianness assumptions as well. We replace Dirichlet’s theorem by

a simple consequence of strong approximation off a place for affine space minus

a codimension 2 closed subset (see Lemma 5.2), or, in the context of rational

points, by a certain conjectural variant of this lemma (see Conjecture 9.1,

Proposition 9.9 and Corollary 9.10). Given a finite Galois extension L/k,

these two statements directly give rise to elements of k which, outside a finite

set of places of k, have positive valuation only at places splitting in L. To be

applicable, however, they require that certain hypotheses be satisfied; the rest

of the proofs of Theorems 1.3 and 1.5 consists in relating these hypotheses to

the Brauer–Manin condition, with the help of suitable versions of the Poitou–

Tate duality theorem and of the so-called “formal lemma,” a theorem originally

due to Harari [Har94].

The paper is organised as follows. In Section 2, we give simple definitions

for the groups Pic+(C) and Br+(C) first introduced in [Wit12, §5] and recall

their properties and a consequence of the arithmetic duality theorem which

they satisfy (Theorem 2.5). The group Pic+(C) lies halfway between the
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usual Picard group Pic(C) and Rosenlicht’s relative Picard group Pic(C,M)

associated to a curve C endowed with a finite closed subset M . It plays a

central role in the proof of Conjecture 1.2 for fibrations over a curve C of

positive genus. When C = P1
k, one could equally well work with the algebraic

tori which are implicit in the definition of Pic+(C) (see (2.1) below), but the

formalism of Pic+(C) and Br+(C) turns out to be very convenient also in

this case. In Section 3, we state and prove a version of the formal lemma

for zero-cycles on a variety X fibered over a curve C of positive genus in

which the zero-cycles under consideration are required to lie over a fixed linear

equivalence class of divisors on C. In Section 4, we give a short proof of a

theorem of Harari on the specialisation maps for the Brauer groups of the

fibers of a morphism f : X → P1
k whose geometric generic fiber satisfies

H1(Xη̄,Q/Z) = 0 and H2(Xη̄,OXη̄) = 0 and we adapt it to fibrations over

a curve of positive genus. Building on the contents of Sections 2–3, we

then prove in Section 5 the core existence theorem for effective zero-cycles

on fibrations over curves from which Theorem 1.3 and all its refinements will

be deduced (Theorem 5.1). In Section 6, we show that Theorem 5.1 remains

valid if the arithmetic assumption on the smooth fibers is replaced by the

same assumption over the closed points of a Hilbert subset of the base. To

prove Conjecture 1.2, one needs to deal not only with effective cycles as in

Theorem 5.1 but more generally with elements of completed Chow groups;

the reduction steps required to bridge this gap are carried out in Section 7.

Our main results on zero-cycles, including Theorem 1.3, are stated, established

and compared with the literature in Section 8. Finally, we devote Section 9

to rational points. Conjecture 9.1 is stated in Section 9.1. Its relations with

additive combinatorics, with Schinzel’s hypothesis, with strong approximation

properties and with sieve methods are all discussed in Section 9.2. Various

results on rational points are deduced in Sections 9.3–9.4.

Acknowledgements. Lilian Matthiesen’s paper [Mat15] plays a significant

role in Section 9. We are grateful to her for writing it up. We also

thank Tim Browning for pointing out the relevance of Irving’s work [Irv14]

to Conjecture 9.1 and Jean-Louis Colliot-Thélène, David Harari and the

anonymous referees for their careful reading of the manuscript. The results

of [BM13] provided the initial impetus for the present work.

Notation and conventions. All cohomology groups appearing in this paper

are étale (or Galois) cohomology groups. Following [Sko96], a variety X over

a field k is said to be split if it contains a geometrically integral open subset.

If X is a quasi-projective variety over k, we denote by SymX/k the disjoint

union of the symmetric products Symd
X/k for d ≥ 1. For any variety X over k,

we denote by Z0(X) the group of zero-cycles on X and by CH0(X) its quotient
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by the subgroup of cycles rationally equivalent to 0. When X is proper, we

let A0(X) = Ker (deg : CH0(X)→ Z). We write Supp(z) for the support of

z ∈ Z0(X) and denote by

−,− : Br(X)× Z0(X)→ Br(k)(1.4)

the pairing characterised by β, P = Coresk(P )/k(β(P )) if P is a closed point

of X and β ∈ Br(X) (see [Man71, Déf. 7]). If X is proper, this pairing factors

through rational equivalence and induces a pairing Br(X)×CH0(X)→ Br(k),

which we still denote −,− (see loc. cit., Proposition 8).

For any abelian group M , we set M̂ = lim←−n≥1
M/nM .

When k is a number field, we let Ω denote the set of its places and Ωf

(resp. Ω∞) the subset of finite (resp. infinite) places. For v ∈ Ω, we denote

by kv the completion of k at v and by Ov the ring of integers of kv. For a

finite subset S ⊂ Ω, we denote by OS the ring of S-integers of k (elements of k

which are integral at the finite places not in S). If X is a variety over k, we

denote by Z0,A(X) the subset of
∏
v∈Ω Z0(X⊗k kv) consisting of those families

(zv)v∈Ω such that if X is a model of X over OS for some finite subset S ⊂ Ω

(i.e., a faithfully flat OS-scheme of finite type with generic fiber X), the Zariski

closure of Supp(zv) in X ⊗O Ov is a finite Ov-scheme for all but finitely many

places v of k. (This property does not depend on the choice of X and S.)

Note that Z0,A(X) =
∏
v∈Ω Z0(X ⊗k kv) when X is proper. The sum of the

local pairings −,− : Br(X ⊗k kv) × Z0(X ⊗k kv) → Br(kv) followed by the

invariant map invv : Br(kv) ↪→ Q/Z of local class field theory gives rise to a

well-defined pairing

Br(X)× Z0,A(X)→ Q/Z.(1.5)

If X is smooth and proper, we let CH0,A(X) denote the group defined in (1.1)

and, for ease of notation, set

Piĉ(X) = ◊�Pic(X), CH0̂ (X) =Ÿ�CH0(X), CH0̂,A(X) = ¤�CH0,A(X).

The pairing (1.5) factors through rational equivalence and gives rise, as Br(X)

is a torsion group for smooth X, to a pairing

Br(X)× CH0̂,A(X)→ Q/Z.(1.6)

When X is a smooth curve, we write PicA(X) and PicÂ(X) for CH0,A(X)

and CH0̂,A(X).

A reduced divisor on a smooth curve is a divisor all of whose coefficients

belong to {0, 1}.
If f : X → Y is a morphism of schemes and Y is integral, we write

Xη̄ = X×Y η̄ for the geometric generic fiber of f , where η̄ is a geometric point

lying over the generic point of Y .
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If X is a variety over a field k, endowed with a morphism f : X → C

to a smooth proper curve over k, we denote by Zeff,red
0 (X) the set of effective

zero-cycles z on X such that f∗z is a reduced divisor on C. If k is a number

field, we let Zeff,red
0,A (X) = Z0,A(X) ∩∏v∈Ω Zeff,red

0 (X ⊗k kv). If, in addition, a

class y ∈ Pic(C) is fixed, we denote by Zeff,red,y
0 (X ⊗k kv) the inverse image

of y ⊗k kv by the push-forward map Zeff,red
0 (X ⊗k kv) → Pic(C ⊗k kv) for

v ∈ Ω and by Zeff,red,y
0,A (X) the inverse image of y by the push-forward map

Zeff,red
0,A (X) → PicA(C). In other words, the set Zeff,red,y

0,A (X) consists of those

collections of local effective zero-cycles (zv)v∈Ω such that zv is integral for all

but finitely many v ∈ Ω, such that f∗zv is reduced for all v ∈ Ω, such that f∗zv
is linearly equivalent to y ⊗k kv for all v ∈ Ωf and such that f∗zv is linearly

equivalent to y ⊗k kv up to a norm from kv for all v ∈ Ω∞.

For brevity, we adopt the following terminology.

Definition 1.7. A smooth and proper variety X over a number field k

satisfies (E) if the complex (1.2) associated to X is exact; it satisfies (E1) if

the existence of a family (zv)v∈Ω ∈
∏
v∈Ω Z0(X⊗kkv) orthogonal to Br(X) with

respect to (1.5) and such that deg(zv) = 1 for all v ∈ Ω implies the existence

of a zero-cycle of degree 1 on X.

Any variety satisfying (E) also satisfies (E1); see [Wit12, Rems. 1.1(iii)].

Following Lang [Lan83, Chap. 9, §5], we say that a subset H of an

irreducible variety X is a Hilbert subset if there exist a dense open subset

X0 ⊆ X, an integer n ≥ 1 and irreducible finite étale X0-schemes W1, . . . ,Wn

such that H is the set of points of X0 above which the fiber of Wi is irreducible

for all i ∈ {1, . . . , n}. We stress that H is not a subset of X(k); for example,

the generic point of X belongs to every Hilbert subset. Hilbert subsets in this

sense have also been referred to as generalised Hilbert subsets in the literature

(see [Lia12]).

Finally, for the sake of completeness, we include a proof of the following

lemma, which was observed independently by Cao and Xu [CX14, Prop. 3.6]

and by Wei [Wei14b, Lemma 1.1] and which will be used in Section 5.1 below.

If v0 is a place of a number field k, we say that a variety X over k satisfies

strong approximation off v0 if either X(kv0
) = ∅ or the following condition is

satisfied: for any finite subset S ⊂ Ω containing Ω∞ ∪ {v0} and any model X
of X over OS , the diagonal map X (OS) → ∏

v∈S\{v0}X(kv) ×
∏
v/∈S X (Ov)

has dense image.

Lemma 1.8. Let n ≥ 1 be an integer, let k be a number field, let v0 be a

place of k and let F ⊆ An
k be a closed subset of codimension ≥ 2. The variety

U = An
k \ F satisfies strong approximation off v0.
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Proof, after [Wei14b]. Let us fix a finite set of places S ⊂ Ω containing

Ω∞ ∪ {v0}, a model U of U over OS and a family (Pv)v∈Ω ∈
∏
v∈S U(kv) ×∏

v/∈S U (Ov). Using weak approximation, we fix Q ∈ U(k) arbitrarily close

to Pv for v ∈ S. Let S′ ⊂ Ω be a finite subset, containing S, such that

Q ∈ U (OS′). Let Q′ ∈ U(k) be arbitrarily close to Pv for v ∈ S′\S and general

enough, in the Zariski topology, that the line L ⊂ An
k passing through Q and Q′

is contained in U . As L satisfies strong approximation off v0 and as the Zariski

closure L of L in U possesses an OS′-point (namely Q) and an Ov-point for

each v ∈ S′ \ S (namely Q′), there exists P ∈ L (OS) arbitrarily close to Q,

and hence to Pv, at the places of S \ {v0}. �

2. Reminders on the groups Pic+(C) and Br+(C)

The groups we denote Pic+(C) and Br+(C) were defined in [Wit12, §5]

as étale hypercohomology groups of certain explicit complexes. We give down-

to-earth definitions of these groups in Section 2.1 and recall in Section 2.2

a corollary of an arithmetic duality theorem established in loc. cit. which

we shall use in Section 5 and in Section 9 and for the proof of which the

hypercohomological point of view seems unavoidable when C has positive

genus.

2.1. Over an arbitrary field. Let C be a smooth, proper, geometrically

irreducible curve over a field k of characteristic 0. Let C0 ⊆ C be a dense open

subset. Let M = C \ C0. For each m ∈ M , let Lm be a nonzero finite étale

algebra over the residue field k(m) of m. (In all of the applications considered

in this paper, the algebra Lm will be a finite field extension of k(m) whenever k

is a number field.)

Definition 2.1. To the data of C, of M and of the finite k(m)-algebras Lm,

we associate two groups, denoted Pic+(C) and Br+(C):

• the group Pic+(C) is the quotient of Div(C0) by the subgroup of principal

divisors div(f) such that for every m ∈ M , the rational function f is in-

vertible at m and its value f(m) belongs to the subgroup NLm/k(m)(L
∗
m) ⊆

k(m)∗;

• the group Br+(C) is the subgroup of Br(C0) consisting of those classes

whose residue at m belongs to the kernel of the restriction map

H1(k(m),Q/Z)
rm−−−→ H1(Lm,Q/Z)

for every m ∈M .

Thus Pic+(C) and Br+(C) depend on M and on the algebras Lm, though

this dependence is not made explicit in the notation. The group Pic+(C) fits
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into a natural exact sequence

(2.1) k∗ //
⊕
m∈M

k(m)∗/NLm/k(m)(L
∗
m)

δ // Pic+(C) // Pic(C) // 0,

where δ sends the class of (am)m∈M ∈
⊕
m∈M k(m)∗ to the class in Pic+(C) of

div(f) for any rational function f on C, invertible in a neighbourhood of M ,

such that f(m) = am for every m ∈M . (The existence of such f follows from

the vanishing of H1(U,OU (−M)) for an affine open neighbourhood U of M .)

Similarly, there is a natural exact sequence

(2.2) 0 // Br(C) // Br+(C) //
⊕
m∈M

Ker(rm) // H3(C,Gm)

(see [Wit12, p. 2148]).

Remarks 2.2. (i) The group Pic+(C) is a quotient of the relative Picard

group Pic(C,M), first considered by Rosenlicht. Recall that Pic(C,M) may

be defined either as the quotient of Div(C0) by the subgroup of principal

divisors div(f) such that f(m) = 1 for all m ∈M or, in cohomological terms,

as Pic(C,M) = H1(C,Ker(Gm → i∗Gm)), where i : M ↪→ C denotes the

inclusion of M in C (see [SV96, §2]).

(ii) As Ker(rm) is finite for each m ∈ M , the quotient Br+(C)/Br(C) is

finite. The finiteness of this quotient will play a crucial role in Sections 5 and 9,

as the “formal lemma” (see Section 3) can only be applied to a finite subgroup

of the Brauer group. This is the main reason why Pic+(C) is needed in this

paper instead of the more classical Pic(C,M). Using the latter would entail

dealing with the usually infinite quotient Br(C0)/Br(C).

(iii) The groups Pic+(C) and Br+(C) were defined in a slightly more

general context in [Wit12, §5], where the input was, for each m ∈ M , a finite

collection (Km,i)i∈Im of finite extensions of k(m) together with a collection of

integers (em,i)i∈Im . The more restrictive situation considered here, in which Im
has cardinality 1 and em,i = 1 for all m, suffices for our purposes.

It is also possible to give cohomological definitions for the groups Pic+(C)

and Br+(C). Namely, let j : C0 ↪→ C and ρ : C → Spec(k) denote the

canonical morphisms, and for m ∈M , let im : Spec(Lm)→ C denote the map

induced by the k(m)-algebra Lm and by the inclusion of m in C. Endow

the category of smooth k-schemes with the étale topology. Let E be the

object of the bounded derived category of sheaves of abelian groups, on the

corresponding site, defined by E = τ≤1Rρ∗
î
j∗Gm →

⊕
m∈M im∗Z

ó
, where the

brackets denote a two-term complex placed in degrees 0 and 1.

Proposition 2.3. There are canonical isomorphisms

Pic+(C) = H0(k,RHom(E ,Gm)) and Br+(C) = H2(k,E ).
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Proof. The second isomorphism is obtained in [Wit12, Rems. 5.2(i)]. For

the first isomorphism, we note that

Pic(C,M) = H0(k,RHom(τ≤1Rρ∗(j∗Gm),Gm)),

as follows from Deligne’s universal coefficient formula [Wit12, (5.4)], from the

cohomological definition of Pic(C,M) and from the exact sequence

0→ Gm → j∗Gm → i∗Z→ 0,

where i denotes the inclusion of M in C. The natural distinguished triangle

E // τ≤1Rρ∗(j∗Gm) //
⊕
m∈M

(ρ ◦ im)∗Z
+1
//(2.3)

then presents H0(k,RHom(E ,Gm)) as the desired quotient of Pic(C,M). �

The next proposition is an immediate consequence of Proposition 2.3

(see [KS06, Th. 18.6.4 (vii)]). The interested reader may also deduce it directly

from Definition 2.1 as an amusing exercise.

Proposition 2.4. The natural pairing

−,− : Br(C0)×Div(C0)→ Br(k)

induces a pairing Br+(C)× Pic+(C)→ Br(k).

2.2. Over a number field. Let us now assume that k is a number field.

We shall denote by Pic+(C ⊗k kv), Br+(C ⊗k kv) the groups associated to the

curve, the open subset, and the finite algebras obtained by scalar extension

from k to kv. Let

Pic+,A(C) =
∏
v∈Ωf

′
Pic+(C ⊗k kv)

×
∏

v∈Ω∞

Coker
(
Nkv/kv

: Pic+(C ⊗k kv)→ Pic+(C ⊗k kv)
)
,

where the symbol
∏′ denotes the restricted product with respect to the

subgroups Im(Pic+(C ⊗ Ov) → Pic+(C ⊗k kv)) for a model C of C over a

dense open subset of the spectrum of the ring of integers of k (see [Wit12,

§5.3]). Composing the pairing Pic+(C ⊗k kv)× Br+(C ⊗k kv)→ Br(kv) given

by Proposition 2.4 with the local invariant map invv : Br(kv) ↪→ Q/Z of local

class field theory, and then summing over all v ∈ Ω, yields a well-defined pairing

Br+(C)× Pic+,A(C)→ Q/Z,(2.4)

since Br(Ov) = 0 for v ∈ Ωf (see loc. cit.). By the global reciprocity law, the

image of Pic+(C) in Pic+,A(C) is contained in the right kernel of (2.4). Thus
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we obtain a complex of abelian groups

Pic+(C) // Pic+,A(C) // Hom(Br+(C),Q/Z).(2.5)

For topological reasons, this complex fails to be exact when C has positive

genus. (Indeed, assuming, for simplicity, that C(k) 6= ∅ and that Lm = k(m)

for all m ∈ M , the group Pic+(C) = Pic(C) is finitely generated by the

Mordell–Weil theorem, so that its degree 0 subgroup often fails to be closed

in the group of adelic points of the Jacobian of C and therefore also in

Pic+,A(C) = PicA(C).) The exactness of an analogous complex where the

groups Pic+(C) and Pic+,A(C) are replaced with suitable completions is

investigated in [Wit12, Th. 5.3]; we shall only need the following corollary

of this result.

Theorem 2.5 ([Wit12, Cor. 5.7]). Any element of Pic+,A(C) which is

orthogonal to Br+(C) with respect to (2.4) and whose image in PicA(C) comes

from Pic(C) is itself the image of an element of Pic+(C).

When C = P1
k, Theorem 2.5 is a simple consequence of Poitou–Tate

duality for the norm 1 tori associated to the étale algebras Lm/k(m); see [Mil06,

Ch. I, Th. 4.20] for the relevant statement.

3. A version of the formal lemma over a curve

The name “formal lemma” refers to a theorem of Harari according to

which if X0 is a dense open subset of a smooth variety X over a number field k

and B ⊂ Br(X0) is a finite subgroup, adelic points of X0 orthogonal to B are

dense in the set of adelic points of X orthogonal to B ∩ Br(X) (see [Har94,

Cor. 2.6.1], [CTSD94, §3.3], [CTS00, Prop. 1.1], [CT03, Th. 1.4]). This result

plays a key role in all instances of the fibration method. In this section, we

establish a variant of this theorem for effective zero-cycles on the total space

of a fibration over a curve, in which the zero-cycles are constrained to lie over

a fixed linear equivalence class of divisors on the curve.

Proposition 3.1. Let C be a smooth, proper and geometrically irre-

ducible curve of genus g over a number field k. Let y ∈ Pic(C) be such that

deg(y) > 2g + 1. Let X be a smooth and irreducible variety over k. Let

f : X → C be a morphism with geometrically irreducible generic fiber. Let

X0 ⊆ X be a dense open subset and B ⊂ Br(X0) be a finite subgroup. For any

(zv)v∈Ω ∈ Zeff,red,y
0,A (X0) orthogonal to B ∩Br(X) with respect to (1.5) and any

finite subset S ⊂ Ω, there exists (z′v)v∈Ω ∈ Zeff,red,y
0,A (X0) orthogonal to B with

respect to (1.5) such that z′v = zv for v ∈ S.

Proof. We start with two lemmas.

Lemma 3.2. Let X 0 be a model of X0 over OS for some finite subset

S ⊂ Ω. There exists a finite subset S′ ⊂ Ω containing S ∪ Ω∞ such that for
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any v ∈ Ω\S′, any finite closed subset M ′ ⊂ C⊗kkv and any y0 ∈ Pic(C⊗kkv)
with deg(y0) > 2g, there exists an effective zero-cycle z0 on X0⊗k kv satisfying

the following conditions :

• the divisor f∗z0 is reduced and supported outside M ′,

• the class of f∗z0 in Pic(C ⊗k kv) is equal to y0,

• the Zariski closure of Supp(z0) in X 0 ⊗OS
Ov is finite over Ov .

Proof. This is a consequence of the moving lemma [Wit12, Lemme 4.2],

of the Lang–Weil–Nisnevich estimates (cf. [LW54], [Nis54]) and of Hensel’s

lemma. See the proof of [Wit12, Lemme 4.3]. �

Lemma 3.3. Let β ∈ Br(X0). If β does not belong to the subgroup

Br(X) ⊆ Br(X0), then the map Zeff,red,y
0 (X0 ⊗k kv) → Br(kv), z 7→ β, z

is nonzero for infinitely many v ∈ Ω.

Proof. Choose a model X 0 of X0 over OS for some finite subset S ⊂ Ω.

After enlarging S, we may assume that β comes from Br(X 0). Let S′ be given

by Lemma 3.2. According to [Har94, Th. 2.1.1], there are infinitely many v ∈ Ω

such that β(a) 6= 0 for some a ∈ X0(kv). Pick v /∈ S′ and a ∈ X0(kv) such

that β(a) 6= 0, and let y0 ∈ Pic(C ⊗k kv) denote the class y − f(a). By the

definition of S′, there exists an effective zero-cycle z0 on X0 ⊗k kv satisfying

the conditions of Lemma 3.2 with M ′ = {f(a)}. Letting z = z0 + a, we have

z ∈ Zeff,red,y
0 (X0 ⊗k kv) and β, z = β, z0 + β(a). As β comes from Br(X 0)

and the closure of Supp(z0) in X 0⊗OS
Ov is finite over Ov, we have β, z0 = 0,

so β, z 6= 0. �

Proposition 3.1 follows from Lemma 3.3 by the formal argument used in

the proof of [Har94, Cor. 2.6.1]. For the convenience of the reader, we reproduce

it briefly. Let B∗ = Hom(B,Q/Z). For v ∈ Ω, let ϕv : Zeff,red,y
0 (X0⊗kkv)→ B∗

be defined by ϕv(z)(β) = invv β, z . Let Γ ⊆ B∗ be the subgroup generated

by those elements which belong to the image of ϕv for infinitely many v ∈ Ω.

Recall that we are given a finite set S and a family (zv)v∈Ω in the statement

of Proposition 3.1. After enlarging S, we may assume that ϕv takes values

in Γ for any v /∈ S and that ϕv(zv) = 0 for v /∈ S. Consider the natural

pairing B × B∗ → Q/Z. Any element of B which is orthogonal to Γ belongs

to B ∩ Br(X) by Lemma 3.3 and therefore is orthogonal to w =
∑
v∈S ϕv(zv).

As Pontrjagin duality is a perfect duality among finite abelian groups, it follows

that w ∈ Γ. Hence there exist a finite set T ⊂ Ω disjoint from S and a family

(z′v)v∈T ∈
∏
v∈T Zeff,red,y

0 (X0 ⊗k kv) such that w = −∑v∈T ϕv(z
′
v). Letting

z′v = zv for v ∈ Ω \ T gives the desired family (z′v)v∈Ω. �
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4. Specialisation of the Brauer group

The following result is a theorem of Harari when C = P1
k (see [Har97,

Th. 2.3.1]; see also [Har94, §3]). The arguments of [Har97] still apply when C

is an arbitrary curve, once one knows that H3(k(C),Gm) = 0. For the sake of

completeness, we nevertheless include a shorter, self-contained proof. In the

next statement, we denote by η the generic point of C, we identify h and η

with Spec(k(h)) and Spec(k(C)) and we denote by fh : Xh → Spec(k(h)) the

fiber of f above h.

Proposition 4.1. Let C be a smooth irreducible curve over a number

field k. Let X be an irreducible variety over k and f : X → C be a morphism

whose geometric generic fiber Xη̄ is smooth, proper and irreducible and satisfies

H1(Xη̄,Q/Z) = 0 and H2(Xη̄,OXη̄) = 0. Let C0 ⊆ C be a dense open subset,

let X0 = f−1(C0) and let B ⊆ Br(X0) be a subgroup. If the natural map

B → Br(Xη)/f
∗
ηBr(η) is surjective, there exists a Hilbert subset H ⊆ C0 such

that the natural map B → Br(Xh)/f∗hBr(h) is surjective for all h ∈ H .

Proof. By shrinking C, we may assume that C0 = C and that f is smooth

and proper. Let V ⊆ H2(X,Q/Z(1)) be the inverse image of B by the second

map of the exact sequence

0 // Pic(X)⊗Z Q/Z // H2(X,Q/Z(1)) // Br(X) // 0(4.1)

(see [Gro68, II, Th. 3.1]). Let Gal(η̄/η) and Gal(h̄/h) denote the absolute

Galois groups of k(C) and of k(h), respectively, and consider the commutative

diagram

H2(Xη,Q/Z(1))/f∗ηH
2(η,Q/Z(1))

αη
// H2(Xη̄,Q/Z(1))Gal(η̄/η)

V

βη

OO

βh
��

// H0(C,R2f∗Q/Z(1))

γη
OO

γh
��

H2(Xh,Q/Z(1))/f∗hH
2(h,Q/Z(1))

αh // H2(Xh̄,Q/Z(1))Gal(h̄/h)

for h ∈ C, where γη and γh are pull-back maps. By comparing (4.1) with the

analogous exact sequence for Xη, we note that the surjectivity of the natural

maps B → Br(Xη)/f
∗
ηBr(η) and Pic(X) → Pic(Xη) implies the surjectivity

of βη. We shall now deduce the existence of a Hilbert subset H ⊆ C such

that βh is surjective for all h ∈ H.

Lemma 4.2. The group Gal(η̄/η) acts on H2(Xη̄,Q/Z(1)) through a finite

quotient.
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Proof. By [Gro68, II, §3.5], the group H2(Xη̄,Q/Z(1)) is an extension of

Br(Xη̄), which is finite as H2(Xη̄,OXη̄) = 0 (see, e.g., [CTS13, Lemma 1.3]), by

NS(Xη̄)⊗ZQ/Z, on which Gal(η̄/η) acts through a finite quotient since NS(Xη̄)

is finitely generated. �

Lemma 4.3. There exists a Hilbert subset H ⊆ C such that γh is an

isomorphism for every h ∈ H . In particular, the map γη is an isomorphism.

Proof. As f is smooth and proper, the étale sheaf R2f∗Q/Z(1) is a direct

limit of locally constant sheaves with finite stalks (see [Mil80, Ch. VI, Cor. 4.2]).

Therefore it gives rise, for any h ∈ C, to an action of the profinite group

π1(C, h̄) on H2(Xh̄,Q/Z(1)). In terms of this action, the map γh can be

naturally identified with the inclusion

H2(Xh̄,Q/Z(1))π1(C,h̄) ⊆ H2(Xh̄,Q/Z(1))Gal(h̄/h);

see [Mil80, p. 156]. By Lemma 4.2, the group π1(C, η̄) acts on H2(Xη̄,Q/Z(1))

through the automorphism group of some irreducible finite Galois cover

π : D → C. The map γh is then an isomorphism for any h ∈ C such that

Gal(h̄/h) surjects onto the quotient of π1(C, h̄) corresponding to π, i.e., for

any h ∈ C such that π−1(h) is irreducible. �

By [CTP00, Lemma 2.6], we have H3(η,Q/Z(1)) = 0. On the other hand,

we have assumed that H1(Xη̄,Q/Z) = 0, from which it follows, by the smooth

base change theorem [Mil80, Ch. VI, Cor. 4.2], that H1(Xh̄,Q/Z) = 0. From

these three vanishings and from the Hochschild–Serre spectral sequence, we

deduce that αη is surjective and αh is injective. (These two maps are in fact

isomorphisms.) If H is given by Lemma 4.3, we conclude that for all h ∈ H,

the surjectivity of βh, and hence of the natural map B → Br(Xh)/f∗hBr(h),

follows from that of βη. �

Remark 4.4. Proposition 4.1 and its proof go through for fibrations over an

arbitrary base as long as the natural map H3(η,Q/Z(1)) → H3(Xη,Q/Z(1))

is injective.

5. Existence of zero-cycles

The goal of Section 5 is to establish the following existence result for

zero-cycles on the total space of a fibration over a curve of arbitrary genus.

Theorem 5.1. Let C be a smooth, projective and geometrically irreducible

curve over a number field k. Let X be a smooth, projective, irreducible variety

over k and f : X → C be a morphism with geometrically irreducible generic

fiber and no multiple fiber (in the sense that the greatest common divisor of the

multiplicities of the irreducible components of each fiber is 1). Let C0 ⊆ C be a

dense open subset over which f is smooth. Let X0 = f−1(C0). Let B ⊂ Br(X0)

be a finite subgroup. Let y ∈ Pic(C) and (zv)v∈Ω ∈ Zeff,red,y
0,A (X0). Let S ⊂ Ωf
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be a finite subset. Let U ⊆ ∏v∈S SymX0/k(kv) be a neighbourhood of (zv)v∈S .

Assume that

(i) the family (zv)v∈Ω is orthogonal to (B + f∗ηBr(η)) ∩ Br(X) with respect

to (1.5);

(ii) deg(y) ≥ deg(M) + 2g + 2, where M = C \ C0 and g denotes the genus

of C ;

(iii) for each real place v of k, there exists a smooth, proper, geometrically

irreducible curve Zv ⊂ X ⊗k kv which contains the support of zv and

dominates C , such that deg(y) ≥ [kv(Zv) : kv(C)] deg(M) + 2gv + 2,

where gv denotes the genus of Zv .

Then there exist a family (z′v)v∈Ω ∈ Z0,A(X0) and an effective divisor c on C0

whose class in Pic(C) is y, such that

(1) f∗z
′
v = c in Div(C0 ⊗k kv) for each v ∈ Ω;

(2) the family (z′v)v∈Ω is orthogonal to B with respect to (1.5);

(3) z′v is effective for each v ∈ S and (z′v)v∈S belongs to U ;

(4) for each real place v of k and each connected component B of X0(kv), if

we write zv − z′v =
∑
x∈X0⊗kkv nxx, then

∑
x∈B nx is even.

Furthermore, if every fiber of f possesses an irreducible component of multi-

plicity 1, one can ensure that z′v is effective for all v ∈ Ω.

Let us emphasise that as per the conventions spelled out in Section 1, the

notation Zeff,red,y
0,A (X0) in the above statement refers to the morphism X0 → C

induced by f . Thus, for v ∈ Ωf , the linear equivalence class of f∗zv is assumed

to coincide with y in Pic(C⊗kkv), not solely in Pic(C0⊗kkv) (and similarly, up

to norms, for v ∈ Ω∞). Moreover, let us stress that in (4), we identify X0(kv)

with a subset of X0 ⊗k kv. Thus, for x ∈ X0 ⊗k kv, one has x ∈ B if and only

if kv(x) = kv and the corresponding kv-point of X0 belongs to B.

The proof of Theorem 5.1 occupies Sections 5.1–5.5. We shall deal with

curves C of arbitrary genus directly, without reducing to the case of genus 0,

using the Riemann–Roch theorem in a spirit closer to [CT00] than to [Wit12].

5.1. A consequence of strong approximation. Lemma 5.2 below, which

we state with independent notation, will play a decisive role in the proof of

Theorem 5.1. It should be compared with Dirichlet’s theorem on primes in

arithmetic progressions for general number fields. According to the latter,

given a finite set S of finite places of k and elements tv ∈ k∗v for v ∈ S, there

exists a totally positive t ∈ k∗ arbitrarily close to tv for v ∈ S such that t is

a unit outside S except at one place, at which it is a uniformiser (see [Neu86,

Ch. V, Th. 6.2]).

Lemma 5.2. Let L/k be a finite extension of number fields. Let S be a

finite set of places of k. For v ∈ S, let tv ∈ k∗v . Suppose tv is a norm from

(L ⊗k kv)∗ for every v ∈ S. Then there exists t ∈ k∗, arbitrarily close to tv
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for v ∈ S, such that for any finite place v /∈ S, either t is a unit at v or L

possesses a place of degree 1 over v. In addition, if v0 is a place of k, not

in S, over which L possesses a place of degree 1, then one can ensure that t is

integral outside S ∪ {v0}.
Proof. The complement of the quasi-trivial torus RL/k(Gm,L) in the affine

space RL/k(A
1
L) is a divisor with normal crossings (geometrically isomorphic

to the union of all coordinate hyperplanes). We denote it by D, we let F be its

singular locus and setW =RL/k(A
1
L)\F . Similarly, we let T =ROL/Ok

(Gm,OL
),

D =ROL/Ok
(A1

OL
)\T and W =ROL/Ok

(A1
OL

)\F , where F denotes the singular

locus of D .

Letting tv = 1 for v /∈ S, we may enlarge S and assume that L/k

is unramified outside S. For each v ∈ S, fix xv ∈ (L ⊗k kv)∗ such that

tv = NL⊗kkv/kv(xv). For v /∈ S, let xv = 1. This defines an adelic point

(xv)v∈Ω ∈W (Ak) which, with respect to W , is integral outside S.

Let v0 denote a place of k, not in S, over which L possesses a place

of degree 1. If v0 is not given, we fix it by Chebotarev’s density theorem.

(See [Mum08, p. 250, Lemma 5] for an elementary proof of the existence of v0

splitting completely in L.)

Being the complement of a codimension 2 closed subset in an affine

space, the variety W satisfies strong approximation off any given place (see

Lemma 1.8). We can thus find a point x ∈ W (k), arbitrarily close to xv for

v ∈ S, which is integral, with respect to W , outside S∪{v0}. Let us consider x

as an element of L∗ and set t = NL/k(x). Let v be a finite place of k, not in S,

such that t has nonzero valuation at v. We need to check that L possesses

a place of degree 1 over v. If v = v0, there is nothing to prove. Otherwise

x ∈ W (Ov). On the other hand, as v(t) 6= 0, we have x /∈ T (Ov). Thus the

reduction of x mod v lies in (D \F )(Fv), which, by Hensel’s lemma, implies

that (D \F )(kv) 6= ∅. This, in turn, implies that L embeds k-linearly into kv,

as the structure morphism D \ F → Spec(k) factors through Spec(L). �

5.2. Reduction to adelic zero-cycles orthogonal to B. We resume the

notation of Theorem 5.1 and keep it until the end of Section 5.

The fibers of f over C0 are geometrically connected (see [Gro66, Prop.

15.5.9(ii)]) and hence geometrically irreducible, as they are smooth.

For m ∈ M , let (Xm,i)i∈Im denote the family of irreducible components

of Xm. Let em,i denote the multiplicity of Xm,i in Xm. For each m ∈ M

and i ∈ Im, choose a finite extension Em,i/k(Xm,i) such that the residue of

any element of B at the generic point of Xm,i belongs to the kernel of the

restriction map H1(k(Xm,i),Q/Z) → H1(Em,i,Q/Z). Let Lm,i denote the

algebraic closure of k(m) in Em,i. Let Lm/k(m) be a finite Galois extension in

which Lm,i/k(m) embeds for all i ∈ Im.
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Let Pic+(C) and Br+(C) denote the groups associated in Definition 2.1

to the curve C, to the finite set M ⊂ C and to the finite extensions Lm/k(m)

for m ∈M .

Lemma 5.3. We have the inclusion

(B + f∗ηBr(η)) ∩ Br(X) ⊆ B + f∗Br+(C)

of subgroups of Br(X0). Moreover, the quotient

((B + f∗ηBr(η)) ∩ Br(X))/f∗Br(C)

is finite.

Proof. The second assertion, which will be used in Sections 6 and 9,

follows from the first one and from Remark 2.2(ii). To prove the first, it

suffices to check that if β ∈ B and γ ∈ Br(η) satisfy β + f∗η γ ∈ Br(X), then

γ ∈ Br+(C). Fix m ∈ C. Let ∂γ ∈ H1(k(m),Q/Z) denote the residue of γ

at m. As the fibers of f over C0 are smooth and geometrically irreducible and

as f∗η γ ∈ Br(X0), we have ∂γ = 0 if m ∈ C0. Suppose now m ∈M . For i ∈ Im,

the residue of β + f∗η γ at the generic point of Xm,i is trivial and its image in

H1(Em,i,Q/Z) coincides with the image of em,i∂γ (see [CTSD94, Prop. 1.1.1]).

Therefore em,i∂γ vanishes in H1(Lm,i,Q/Z) and hence in H1(Lm,Q/Z). As

the greatest common divisor of (em,i)i∈Im is equal to 1, it follows that ∂γ
vanishes in H1(Lm,Q/Z). �

Lemma 5.4. There exists a family (z1
v)v∈Ω ∈ Zeff,red,y

0,A (X0) orthogonal to

B + f∗Br+(C) with respect to (1.5) such that z1
v = zv for v ∈ S ∪ Ω∞.

Proof. As the group Br+(C) is torsion and the quotient Br+(C)/Br(C) is

finite (see Remark 2.2(ii)), there exists a finite subgroup Λ ⊂ Br+(C) such that

Br+(C) = Λ + Br(C). The lemma then follows from Proposition 3.1 applied

to the subgroup B + f∗Λ ⊂ Br(X0), in view of the fact that any element of

Zeff,red,y
0,A (X0) is orthogonal to f∗Br(C). �

It follows from Lemmas 5.3 and 5.4 that in order to establish Theorem 5.1,

we may assume that (zv)v∈Ω is orthogonal to B + f∗Br+(C) ⊆ Br(X0) with

respect to (1.5). From now on we make this additional assumption.

5.3. Construction of c1 and choice of v0. We are now in a position to pin-

point the class, in Pic+(C), of the desired effective divisor c. The construction

of c itself will ultimately rely on an application of strong approximation off a

place, say v0, on an affine space over k. The goal of Section 5.3 is to define

this place v0.

The condition that (zv)v∈Ω is orthogonal to f∗Br+(C) with respect to (1.5)

implies that the class of (f∗zv)v∈Ω in Pic+,A(C) is orthogonal to Br+(C) with

respect to the pairing (2.4). By Theorem 2.5, we deduce that there exists a
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divisor c1 ∈ Div(C0) whose class in Pic(C) is y and whose class in Pic+,A(C)

coincides with that of (f∗zv)v∈Ω.

After enlarging the finite subset S ⊂ Ωf , we may assume that β, zv = 0

for all v ∈ Ωf \ S and all β ∈ B, that the order of the finite group B

is invertible in OS , that Pic(OS) = 0, that the finite extensions Lm/k for

m ∈M are unramified outside S, that C and X extend to smooth and proper

OS-schemes C and X and that f : X → C extends to a flat morphism, which

we still denote f : X → C .

For m ∈ M , we let ‹m denote the Zariski closure of m in C . Let M̃

denote the Zariski closure of M in C . Let C 0 = C \ M̃ and X 0 = X ×C C 0.

Whenever D is a divisor on C, we denote by ‹D the horizontal divisor on C
which extends D, i.e., the unique divisor on C whose support is flat over OS
and whose restriction to C is D. For m ∈ M and i ∈ Im, we write Xm̃,i for

the Zariski closure of Xm,i in X , endowed with the reduced scheme structure,

and we set Xm̃ = X ×C ‹m. For each m ∈ M and i ∈ Im, let Ym̃,i ⊆ Xm̃,i

be a dense open subset. Let Em̃,i denote the normalisation of Ym̃,i in the finite

extension Em,i/k(Xm,i). By shrinking Ym̃,i, we may assume that the finite

morphism Em̃,i → Ym̃,i is étale and that the scheme (Xm̃)red is smooth over ‹m
at the points of Ym̃,i.

By enlarging S further, we may assume that the equality of effective

divisors on X

Xm̃ =
∑
i∈Im

em,iXm̃,i

holds for each m ∈ M , that X 0 is smooth over C 0, that B ⊂ Br(X 0), that

Supp(‹c1) is disjoint from M̃ and that M̃ is étale over OS . In particular, M̃ is

a regular scheme, so that we may (and will freely) identify, for m ∈M , the set

of finite places of k(m) which do not lie above S with the set of closed points

of ‹m.

After a final enlargement of S, we may assume, thanks to the Lang–Weil–

Nisnevich bounds [LW54], [Nis54], that the following statements hold:

• the fiber of f above any closed point of C 0 contains a rational point;

• for any m ∈M , any i ∈ Im and any closed point w ∈ ‹m which, as a place

of k(m), splits completely in Lm,i, the fiber of Em̃,i → ‹m above w contains

a rational point.

By shrinking the subset U ⊆ ∏
v∈S SymX0/k(kv), we may assume that

β, z′v = β, zv for any v ∈ S, any β ∈ B and any (z′v)v∈S ∈ U .

We now fix a place v0∈Ωf \S which splits completely in Lm for all m∈M .

5.4. Construction of c. As the classes of c1 and of (f∗zv)v∈Ω in Pic+,A(C)

are equal and the divisors f∗zv for v∈S are effective, we can find, for each v∈S,

a rational function hv ∈ H0(C⊗k kv,OC(c1)) such that div(hv) = f∗zv−c1 and
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such that hv(m) ∈ NLm⊗kkv/k(m)⊗kkv((Lm⊗k kv)
∗) for all m ∈M . At the infi-

nite places v of k, we fix hv ∈ H0(C ⊗k kv,OC(c1)) using the following lemma.

Lemma 5.5. For each v ∈ Ω∞, there exist a rational function hv ∈
H0(C ⊗k kv,OC(c1)) and a zero-cycle z2

v ∈ Zeff,red,y
0 (X0 ⊗k kv) satisfying the

following conditions :

(a) div(hv) = f∗z
2
v − c1;

(b) hv(m) ∈ NLm⊗kkv/k(m)⊗kkv((Lm ⊗k kv)
∗) for all m ∈M ;

(c) for each connected component B of X0(kv), if we write

zv − z2
v =

∑
x∈X0⊗kkv

nxx,

then
∑
x∈B nx is even.

Proof. The existence of hv and z2
v for complex v is clear as c1 is a very

ample divisor on C. (Recall that deg(y) ≥ 2g+1.) Let us fix a real place v. By

the definition of c1, there exist h1
v ∈ kv(C)∗ and ξv ∈ Div(C0 ⊗k kv) such that

div(h1
v) = f∗zv−c1+Nkv/kv

(ξv) and such that h1
v(m) ∈ (k(m)⊗kkv)∗ is a norm

from (Lm ⊗k kv)∗ for every m ∈M . Let Zv ⊂ X ⊗k kv denote the curve given

by assumption (iii) of Theorem 5.1. Let Z0
v = Zv ×C C0 and Mv = Zv ×C M .

By lifting ξv to Div(Z0
v ⊗kv kv), we can find z1

v ∈ Div(Z0
v ) such that zv − z1

v is

a norm from Div(Z0
v ⊗kv kv) and such that div(h1

v) = f∗z
1
v − c1. According to

assumption (iii) and to Serre duality, we have H1(Zv,OZv(z
1
v −Mv)) = 0 and

hence there exists a rational function ηv ∈ H0(Zv,OZv(z
1
v)) whose restriction

to Mv is equal to 1. We have div(ηv) = z2
v−z1

v for some effective z2
v ∈ Div(Z0

v ).

By choosing ηv general enough in the sense of the Zariski topology, we may

assume that f∗z
2
v is reduced (see the proof of [CT00, Lemme 3.1]) and hence

that z2
v ∈ Zeff,red,y

0 (X0 ⊗k kv). Let hv = Nkv(Zv)/kv(C)(ηv)h
1
v. Conditions (a)

and (b) are clearly satisfied. (Note that hv(m) = h1
v(m) for m ∈ M .)

Condition (c) also holds because on the one hand, zv − z1
v is a norm from kv

and on the other hand, z1
v − z2

v is the divisor, on Zv, of a rational function

which takes positive values at the kv-points of Mv. (The sign of a rational

function on a smooth real algebraic curve changes exactly at the points where

the function has a pole or zero of odd order.) �

For each m ∈ M , applying Lemma 5.2 to the finite extension Lm/k(m)

and to the set of places of k(m) which lie above S now produces an element

tm ∈ k(m)∗ arbitrarily close to hv(m) ∈ (k(m)⊗k kv)∗ for v ∈ S ∪Ω∞, integral

at the places of k(m) which do not lie above S∪{v0}, such that tm has nonzero

valuation only at places of k(m) which lie above S and at places of k(m) which

split completely in Lm. (Recall that Lm/k(m) is Galois.)

Thanks to assumption (ii) and to Serre duality, if ρ : C → Spec(OS)

denotes the structure morphism, we have R1ρ∗OC (‹c1 − M̃) = 0 (see [Mum08,
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Ch. II, §5, Cor. 2]). As Spec(OS) is affine, it follows that H1(C ,OC (‹c1−M̃))=0

and hence that the natural sequence of OS-modules

0 // H0(C ,OC (‹c1 − M̃)) // H0(C ,OC (‹c1))
r // H0

Ä
M̃,O

M‹ä // 0

(5.1)

is exact. These modules are free since they are finitely generated and torsion-

free over the principal ideal domain OS . (Recall that Pic(OS) = 0.) Choosing

an OS-linear section s of r and using strong approximation off v0 in the free

OS-module H0(C ,OC (‹c1−M̃)), we can find h0∈H0(C⊗OS
OS∪{v0},OC (‹c1−M̃))

arbitrarily close to hv−s(r(hv))∈H0(C⊗kkv,OC(c1−M)) for v∈S∪Ω∞. Note

that
⊕

m∈M tm ∈ H0(M̃,O
M‹) ⊗OS

OS∪{v0} lies, by construction, arbitrarily

close to r(hv)∈H0(M⊗kkv,OM ) for v∈S∪Ω∞. Letting h=h0+s
Ä⊕

m∈M tm
ä
,

we therefore obtain h ∈ H0(C,OC(c1)) arbitrarily close to hv ∈ H0(C ⊗k kv,
OC(c1)) for v ∈ S ∪ Ω∞, such that h(m) = tm for m ∈M and such that h, as

a rational function on C , has no pole outside Supp(‹c1) ∪ (C ⊗OS
Fv0

).

Let c ∈ Div(C0) be the effective divisor defined by div(h) = c− c1. It re-

mains to check the existence of a family (z′v)v∈Ω ∈ Z0,A(X0) satisfyinga (1)–(4).

5.5. Construction of (z′v)v∈Ω. The next lemma takes care of (3) and (4).

Lemma 5.6. There exists (z′v)v∈S∪Ω∞ ∈
∏
v∈S∪Ω∞ SymX0/k(kv) such that

(z′v)v∈S ∈ U , such that f∗z
′
v = c in Div(C0 ⊗k kv) for v ∈ S ∪ Ω∞ and such

that (4) holds.

Proof. Note that for each v ∈ S (resp. for each real place v of k), the

divisor c is arbitrarily close to f∗zv (resp. to f∗z
2
v) as a point of SymC0/k(kv).

As f∗zv (resp. f∗z
2
v) is a reduced divisor for any v ∈ S (resp. for any real v), the

morphism f∗ : SymX0/k → SymC0/k is smooth at zv (resp. at z2
v) for such v.

Thus the existence of (z′v)v∈S∪Ω∞ satisfying the required conditions follows

from the inverse function theorem. �

Let us turn to (1) and (2). To construct z′v for v ∈ Ωf \ S, we shall need

to consider the reduction of f−1(Supp(c))→ Supp(c) modulo v.

For v ∈ Ωf \ S, the divisor c⊗k kv on C0 ⊗k kv decomposes uniquely as

c⊗k kv = cv,0 +
∑
m∈M

∑
w∈m̃
w|v

cw,m,

where cv,0 and the cw,m are effective divisors on C0⊗kkv satisfying the following

properties: for any m ∈M , any w ∈ ‹m⊗OS
Fv and any yv ∈ Supp(c⊗k kv), the

point yv belongs to Supp(cw,m) if and only if its Zariski closure in C ⊗OS
Ov

contains w; the closure of Supp(cv,0) in C ⊗OS
Ov is contained in C 0 ⊗OS

Ov.

This is, in fact, a partition of the support of c⊗k kv. The points of Supp(cv,0)

are those above which the fiber of f has good reduction in X , while for each m
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and each w, the points of Supp(cw,m) are those above which the fiber of f has

the same reduction modulo v as Xm modulo w.

Lemma 5.7. Let m ∈ M and w ∈ ‹m be a closed point. If w ∈ Supp(c̃),

then w, as a place of k(m), splits completely in Lm.

Proof. If w divides v0, then w splits completely in Lm since v0 does.

Assume now that w does not divide v0. Then the rational function h on C
is regular in a neighbourhood of w, since ‹m ∩ Supp(‹c1) = ∅ and h has no

pole outside Supp(‹c1) ∪ (C ⊗OS
Fv0

). As w ∈ Supp(c̃), this regular function

moreover vanishes at w. Thus, the function obtained by restricting h to ‹m
vanishes at w. In other words, h(m) has positive valuation at the place w. It

follows that w splits completely in Lm, since h(m) = tm. �

According to Lemma 5.7 and to the assumptions made at the end of Sec-

tion 5.3, we can choose, for each m∈M , each i∈Im and each w∈‹m∩Supp(c̃),

a rational point of the fiber of Em̃,i → ‹m above w. Let ξw,m,i denote its image

in Ym̃,i.

As the fibers of f : X → C above the closed points of C 0 are smooth and

contain rational points, we can lift such rational points by Hensel’s lemma and

find, for each v ∈ Ωf \ S, an effective zero-cycle z′v,0 ∈ Z0(X0 ⊗k kv) such that

f∗z
′
v,0 = cv,0 in Div(C0 ⊗k kv). By the next lemma, we can also find, for each

v ∈ Ωf \S, each m ∈M , each i ∈ Im and each w ∈ ‹m∩Supp(c̃) which divides v,

an effective zero-cycle z′w,m,i ∈ Z0(X0⊗k kv) such that f∗z
′
w,m,i = em,icw,m and

such that the Zariski closure of Supp(z′w,m,i) in X ⊗OS
Ov meets X ⊗OS

Fv
only at the point ξw,m,i.

Lemma 5.8. Let v ∈ Ωf \S, let m ∈M , let i ∈ Im, let w ∈ ‹m be a closed

point which divides v and let ξ be a rational point of the fiber of Ym̃,i → ‹m
above w. Let yv ∈ C0⊗k kv be a closed point whose Zariski closure in C ⊗OS

Ov
contains w. There exists an effective zero-cycle xv ∈ Z0(X0 ⊗k kv) such that

f∗xv = em,iyv in Div(C0 ⊗k kv) and such that the Zariski closure of Supp(xv)

in X ⊗OS
Ov meets X ⊗OS

Fv only at the point ξ.

Proof. Let R denote the completion of OC,w. Let p ∈ Ov be a uniformiser

and s ∈ R be a generator of the ideal of ‹m ×C Spec(R) ⊂ Spec(R). Let U ⊂
X ×C Spec(R) be an affine open neighbourhood of ξ. Letting U = Spec(A),

we choose U small enough that the ideal of A defined by the (reduced) closed

subscheme Xm̃,i ×C Spec(R) ⊂ U is principal. Let t ∈ A be a generator of

this ideal. As (Xm̃)red is smooth over ‹m at ξ and ‹m is étale over OS , the

ring OU,ξ/(p, t) is regular, hence there exist n ≥ 0 and f1, . . . , fn ∈ mU,ξ such

that (p, t, f1, . . . , fn) is a regular system of parameters for OU,ξ (see [Gro64,

Prop. 17.1.7]). The image of s in OU,ξ can be written as utem,i for some

u ∈ O∗U,ξ. By shrinking U , we may assume that f1, . . . , fn ∈ A and u ∈ A∗. On
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the other hand, as ‹m is étale over OS , the sequence (p, s) is a regular system

of parameters for R; hence the fiber above the closed point of Spec(R) of the

finite type R-scheme T = Spec(A/(f1, . . . , fn)) contains ξ as an isolated point,

with multiplicity em,i. Thus we may assume, after further shrinking U , that T

is a closed subscheme of X ×C Spec(R), finite and flat over R of degree em,i
(see [Gro61, Prop. 6.2.5], [Gro64, Prop. 15.1.21]). Pulling it back by the natural

map ỹv → Spec(R), where ỹv denotes the Zariski closure of yv in C ⊗OS
Ov,

yields a closed subscheme of X ×C ỹv, finite and flat of degree em,i over ỹv,

whose special fiber consists of the point ξ with multiplicity em,i. �

For each m∈M , we choose integers (fm,i)i∈Im such that
∑
i∈Im em,ifm,i=1

and we set z′w,m,i = 0 for any i ∈ Im and any closed point w ∈ ‹m which does

not belong to Supp(c̃). Finally, for each v ∈ Ωf \ S, we let

z′v = z′v,0 +
∑
m∈M

∑
i∈Im

∑
w∈m̃
w|v

fm,iz
′
w,m,i.

We have now defined a family (z′v)v∈Ω ∈
∏
v∈Ω Z0(X0 ⊗k kv). When Xm

contains an irreducible component of multiplicity 1 for each m ∈ M , we can

choose fm,i ∈ {0, 1} for all m and all i, so that z′v is effective for all v. In any

case, the family (z′v)v∈Ω satisfies (1); as a consequence, it belongs to Z0,A(X0).

Let us check that (2) is also satisfied.

Lemma 5.9. Let v ∈ Ωf \S. For any β ∈ B, any m ∈M , any i ∈ Im and

any w ∈ ‹m which divides v, we have invv β, z′v,0 = 0 and invv β, z′w,m,i = 0.

Proof. As B ⊂ Br(X 0), as the Zariski closure of Supp(z′v,0) in X ⊗OS
Ov

is contained in X 0 ⊗OS
Ov and as the Brauer group of any finite Ov-algebra

vanishes (see [Gro68, III, Prop. 1.5, Th. 11.7 (2)]), we have β, z′v,0 = 0. Let

us now fix m, i and w as in the statement. If w /∈ Supp(c̃), then z′w,m,i = 0.

Otherwise, let R′ denote the completion of OX, ξw,m,i and set V = Spec(R′)

and V 0 = X 0 ×X V . The natural morphism Supp(z′w,m,i) → X 0 factors

through the projection σ : V 0 → X 0 since the Zariski closure of Supp(z′w,m,i)

in X ⊗OS
Ov meets X ⊗OS

Fv only at ξw,m,i. To prove that β, z′w,m,i = 0

for β ∈ B, it therefore suffices to check that B is contained in the kernel of

σ∗ : Br(X 0) → Br(V 0). As the order n of B is invertible in OS , the class

β ∈ Br(X 0) has a well-defined residue ∂β ∈ H1(Ym̃,i,Z/nZ), represented

by a cyclic étale cover of Ym̃,i through which Em̃,i → Ym̃,i factors. Recall

that the fiber of Em̃,i → Ym̃,i above ξw,m,i possesses a rational point, by

the definition of ξw,m,i. Hence ∂β(ξw,m,i) = 0 in H1(ξw,m,i,Z/nZ). As

H1(Ym̃,i ×X V,Z/nZ) = H1(ξw,m,i,Z/nZ), it follows that the residue of

σ∗β ∈ Br(V 0) along Ym̃,i×X V vanishes as well, so that σ∗β ∈ Br(V ) ⊂ Br(V 0).

Finally, we have Br(V ) = 0 (see loc. cit.) and hence the lemma is proved. �
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Let β ∈ B. We have β, z′v = β, zv for all v ∈ S ∪ Ω∞ in view of (4)

and of the fact that (z′v)v∈S ∈ U (see Section 5.3). On the other hand, we

have β, zv = 0 and β, z′v = 0 for all v ∈ Ωf \ S, by the assumptions

made in Section 5.3 and by Lemma 5.9 respectively. As the family (zv)v∈Ω

is orthogonal to B with respect to (1.5) (see Section 5.2), we conclude that∑
v∈Ω invv β, z′v = 0, as desired.

6. Hilbert subsets

The following lemma was noted by Swinnerton-Dyer in the case where h

is a rational point (see [Sme15, Prop. 6.1]).

Lemma 6.1. Let V be a normal quasi-projective variety over a number

field k. Let H ⊆ V be a Hilbert subset. Let h ∈ H be a closed point. For any

finite subset S ⊂ Ω, there exist a finite subset T ⊂ Ω disjoint from S and a

neighbourhood V ⊂ ∏
v∈T SymV/k(kv) of h such that any effective zero-cycle

on V corresponding to a point of SymV/k(k)∩ V is in fact a closed point of V

and belongs to H .

Proof. Let V 0 ⊆ V and Wi → V 0, for i ∈ {1, . . . , n}, be the open subset

and the irreducible étale covers defining the Hilbert subset H. Let π : E → U

denote the universal family of reduced effective zero-cycles of degree deg(h)

on V 0. (Thus U is an open subscheme of SymV 0/k and E is a reduced closed

subscheme of U ×k V 0; the morphism π is finite étale of degree deg(h).) Let

Ei = E ×V 0 Wi, and let πi : Ei → U denote the projection to E composed

with π. By assumption, the fibers of π, π1, . . . , πn above the k-point of U

corresponding to h are irreducible. As U is normal and irreducible and the

morphisms π, π1, . . . , πn are finite and étale, it follows that E, E1, . . . , En
are themselves irreducible. Applying [Sme15, Prop. 6.1] (whose statement is

identical to Lemma 6.1 with the additional assumption that h is a rational

point) to the Hilbert subset of U defined by these n+1 irreducible étale covers

of U now concludes the proof. �

Building on Lemma 6.1, we now strengthen the conclusion of Theorem 5.1.

Theorem 6.2. Let us keep the notation and assumptions of Theorem 5.1.

For any Hilbert subset H ⊆ C , the conclusion of Theorem 5.1 still holds if the

effective divisor c ∈ Div(C0) is required, in addition, to be a closed point of C

belonging to H .

Proof. As deg(y) ≥ 2g, the complete linear system |y| has no base point.

Composing the morphism to projective space defined by |y| with projection

from a general codimension 2 linear subspace yields a finite map π : C → P1
k,

the linear equivalence class of whose fibers is y. According to Hilbert’s
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irreducibility theorem applied to the irreducible covers of P1
k obtained by

composing π with the covers of C which define H, we can find a rational

point of P1
k whose inverse image by π is a closed point h of C0 belonging to H.

By Lemma 5.3, there exists a finite subgroup B0 ⊂ Br(X) such that

(B + f∗ηBr(η)) ∩ Br(X) = B0 + f∗Br(C).

Let S′ ⊂ Ω be a finite subset containing S ∪Ω∞, large enough that Xh(k(h)w)

be nonempty for any place w of k(h) which does not divide a place of S′

(see [LW54], [Nis54]) and large enough that β, uv = 0 for any v ∈ Ω \S′, any

β ∈ B0 and any uv ∈ Z0(X ⊗k kv).
Let T ⊂ Ω \ S′ and V ⊂ ∏v∈T SymC/k(kv) be the finite subset and the

neighbourhood of h given by Lemma 6.1. For each v ∈ T , as v /∈ S′, we

can choose an effective zero-cycle z1
v ∈ Z0(X0 ⊗k kv) such that f∗z

1
v = h in

Div(C0 ⊗k kv). For v ∈ Ω \ T , we let z1
v = zv. As the class of h in Pic(C)

is y, this defines a family (z1
v)v∈Ω ∈ Zeff,red,y

0,A (X0). This family is orthogonal

to B0 with respect to the pairing (1.5) since S′ ∩ T = ∅ and (zv)v∈Ω is

orthogonal to B0. As any element of Zeff,red,y
0,A (X0) is orthogonal to f∗Br(C),

we deduce that (z1
v)v∈Ω is orthogonal to (B + f∗ηBr(η)) ∩ Br(X). We can

therefore apply Theorem 5.1 to the family (z1
v)v∈Ω. This yields c ∈ Div(C0)

and (z′v)v∈Ω ∈ Z0,A(X0) satisfying (1)–(4), with c effective, and z′v effective and

arbitrarily close to z1
v for v ∈ T . By choosing z′v close enough to z1

v for v ∈ T ,

we can ensure that c ∈ V , so that c must be a closed point belonging to H. �

7. From completed Chow groups to effective cycles

Theorem 5.1 takes, as input, a collection of local effective zero-cycles. On

the other hand, the statement of Conjecture 1.2 involves elements of CH0̂,A(X).

Theorem 7.1 will allow us to bridge the gap between CH0̂,A(X) and CH0,A(X)

and to reduce to effective cycles.

Theorem 7.1. Let C be a smooth, projective and geometrically irreducible

curve over a number field k. Let X be a smooth, projective, irreducible variety

over k and f : X → C be a morphism whose geometric generic fiber Xη̄ is

irreducible and satisfies H1(Xη̄,Q/Z) = 0 and A0(Xη̄ ⊗ K) = 0, where K

denotes an algebraic closure of the function field of Xη̄ . Fix a dense open

subset X0 ⊆ X , a map Φ : N2 → N and an element ẑA ∈ CH0̂,A(X) such

that f∗ẑA belongs to the image of the natural map Piĉ(C)→ PicÂ(C). There

exist classes y ∈ Pic(C), ẑ ∈ CH0̂ (X), zeff
A = (zv)v∈Ω ∈ Zeff,red,y

0,A (X0), a finite

subset S ⊂ Ωf and a neighbourhood U ⊆ ∏v∈S SymX0/k(kv) of (zv)v∈S such

that

• ẑA = zeff
A + ẑ in CH0̂,A(X);
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• for all v ∈ Ω∞, the support of zv is contained in a smooth, proper,

geometrically irreducible curve Zv ⊂ X ⊗k kv which dominates C and

satisfies deg(y) ≥ Φ(gv, dv), where gv denotes the genus of Zv and dv =

[kv(Zv) : kv(C)];

• for any z′A = (z′v)v∈Ω ∈ Z0,A(X0) such that the images of f∗z
′
A and of y

in PicA(C) coincide and such that properties (3) and (4) of Theorem 5.1

are satisfied, the equality zeff
A = z′A holds in CH0,A(X).

We shall prove Theorem 7.1 in Section 7.2, by combining preliminary

reduction steps for general fibrations established in Section 7.1 with the

results of [Wit12, §2] on the kernel and the cokernel of the natural map

f∗ : CH0(X ⊗k kv)→ Pic(C ⊗k kv) for fibrations whose generic fiber is subject

to the hypotheses of Theorem 7.1. For ease of reference, we summarise these

results in the next theorem. They rely on a variant of the “decomposition of

the diagonal” argument for families of varieties and on theorems of Kato, Saito

and Sato about Chow groups of zero-cycles over finite and local fields. (See

loc. cit. for more details.)

Theorem 7.2 ([Wit12, Th. 2.1, Lemmes 2.3, 2.4]). Let f : X → Y be a

proper dominant morphism between smooth, irreducible varieties over a field k.

(i) There exists an integer n > 0 such that for any field extension k′/k, the

cokernel of f∗ : CH0(X ⊗k k′)→ CH0(Y ⊗k k′) is killed by n.

(ii) Assume that the geometric generic fiber Xη̄ of f is smooth and irreducible

and satisfies A0(Xη̄ ⊗K) = 0, where K denotes an algebraic closure of

the function field of Xη̄ . Then there exists an integer n > 0 such that for

any field extension k′/k, the kernel of f∗ : CH0(X⊗k k′)→ CH0(Y ⊗k k′)
is killed by n.

(iii) Assume, in addition, that H1(Xη̄,Q/Z) = 0, that Y is a proper curve and

that k is a number field. Then the map f∗ : CH0(X⊗kkv)→ CH0(Y ⊗kkv)
is an isomorphism for all but finitely many places v of k.

We shall also need a few results on abelian groups essentially contained

in [Wit12].

Lemma 7.3. Let h : A→ B be a homomorphism of abelian groups whose

cokernel has finite exponent. Letting ĥ : “A→ “B denote the map induced by h,

we have

(i) the natural map Coker(h)→ Coker(ĥ) is injective;

(ii) if the N -torsion subgroup of B is finite for all N > 0, the natural map◊�Ker(h)→ Ker
(
ĥ
)

is surjective and the abelian group Coker
(
Ker(h)→ Ker

(
ĥ
))

is divisible.
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Proof. The first assertion is [Wit12, Lemma 1.11]. The proof of [Wit12,

Lemme 1.12] is in fact a proof of the first half of (ii). The second half of (ii)

follows from the first half and from [Wit12, Lemme 1.10]. �

7.1. General reductions. For the whole of Section 7.1, we fix a smooth,

projective, irreducible variety X over a number field k, a smooth, projective,

geometrically irreducible curve C over k and a morphism f : X → C with geo-

metrically irreducible generic fiber. We shall not make any other assumption on

the generic fiber of f until Section 7.2. The goal of Section 7.1 is to perform two

general reduction steps towards Theorem 7.1, stated as Proposition 7.4 (from

completed Chow groups to Chow groups) and Proposition 7.5 (from cycles to

effective cycles).

Proposition 7.4. Let ẑA ∈ CH0̂,A(X) be such that f∗ẑA ∈ PicÂ(C)

belongs to the image of the natural map Piĉ(C)→ PicÂ(C). For any n > 0,

there exist zA ∈ CH0,A(X), ẑ ∈ CH0̂ (X), ξ̂A ∈ CH0̂,A(X) such that the

equality

ẑA = zA + n(ẑ + ξ̂A)(7.1)

holds in CH0̂,A(X) and such that

(1) f∗ξ̂A = 0 in PicÂ(C);

(2) f∗zA∈PicA(C) belongs to the image of the natural map Pic(C)→PicA(C).

Proof. Let Z ⊂ X be a proper irreducible curve dominating C, and let

d = [k(Z) : k(C)]. As a consequence of the projection formula f∗(f
∗y · [Z]) =

y ·f∗[Z] = dy (see [Ful98, Exam. 8.1.7]), the cokernels of the maps CH0̂ (X)→
Piĉ(C) and CH0,A(X)→ PicA(C) induced by f are killed by d. On the other

hand, the natural map Pic(C) → Piĉ(C) has a divisible cokernel. (Apply

Lemma 7.3(ii) with A = Pic(C) and B = 0.) Thus, the cokernel of the map

Pic(C)× CH0̂ (X)→ Piĉ(C), (y, ẑ) 7→ y + nf∗ẑ

is at the same time divisible and killed by d, hence it vanishes. As f∗ẑA
belongs to the image of Piĉ(C), we conclude that there exist y0 ∈ Pic(C) and

ẑ ∈ CH0̂ (X) such that f∗ẑA = y0 + nf∗ẑ in PicÂ(C).

Let ϕ denote the map CH0,A(X)→ PicA(C) induced by f . As Coker(ϕ)

is killed by d, the natural map Coker(ϕ) → Coker(ϕ̂) is injective (see

Lemma 7.3(i)). As the image of y0 in Coker(ϕ̂) vanishes, we deduce the

existence of z0,A ∈ CH0,A(X) such that f∗z0,A = y0 in PicA(C). We then have

ẑA = z0,A + nẑ + ξ̂0,A(7.2)

for some ξ̂0,A ∈ Ker(ϕ̂). As the groups Coker(Nkv/kv
: Pic(C ⊗k kv) →

Pic(C⊗k kv)) for real places v of k and the N -torsion subgroup of Pic(C⊗k kv)
for v ∈ Ωf and N > 0 are all finite and the group Coker(f∗ : CH0(X ⊗k kv)→
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Pic(C ⊗k kv)) is killed by d for all v ∈ Ω, Lemma 7.3(ii) applied to the v-adic

component ϕv of ϕ for each v implies that Coker(Ker(ϕ)→ Ker(ϕ̂)) is divisible,

since ϕ̂ =
∏
v∈Ω ϕ̂v. Thus there exist ξ̂A ∈ Ker(ϕ̂) and z1,A ∈ Ker(ϕ) such that

ξ̂0,A = nξ̂A +z1,A. Letting zA = z0,A +z1,A, we now have ẑA = zA +n(ẑ+ ξ̂A)

and f∗zA = y0. �

Proposition 7.5. Let zA ∈ CH0,A(X) be such that f∗zA ∈ PicA(C)

belongs to the image of the natural map Pic(C) → PicA(C). For any dense

open subset X0 ⊆ X , any finite subset S ⊂ Ω, any map Φ : N2 → N and any

n > 0, there exist y ∈ Pic(C), zeff
A = (zv)v∈Ω ∈ Zeff,red,y

0,A (X0), z ∈ CH0(X),

ξA ∈ CH0,A(X) such that the equality

zA = zeff
A + z + ξA(7.3)

holds in CH0,A(X) and such that

(1) f∗ξA = 0 in PicA(C);

(2) the v-adic component of the family ξA is zero for all v ∈ S;

(3) for all v ∈ S, the support of zv is contained in a smooth, proper,

geometrically irreducible curve Zv ⊂ X ⊗k kv which dominates C and

satisfies deg(y) ≥ Φ(gv, dv), where gv denotes the genus of Zv and dv =

[kv(Zv) : kv(C)].

Proof. Let X 0 be a model of X0 over OS . Let S′ ⊂ Ω be the finite subset

containing S ∪ Ω∞ given by Lemma 3.2. Let P ∈ X0 be a closed point. For

v ∈ S′, let z0
v ∈ Z0(X⊗k kv) be a representative of the v-adic component of zA.

According to [CT00, Lemmes 3.1 et 3.2] (see also [Wit12, Lemme 4.4]), there

exist an integer n0 and, for each v ∈ S′, a smooth, proper and geometrically

irreducible curve Zv ⊂ X ⊗k kv which dominates C and contains both P and

the support of z0
v , such that for any n ≥ n0 and any v ∈ S′, there exists an

effective divisor zv ∈ Div(Zv) satisfying the following condition:

(∗) zv is an effective divisor linearly equivalent to z0
v + nP on Zv, its support

is contained in X0 ⊗k kv and f∗zv is a reduced divisor on C ⊗k kv.
We fix y0 ∈ Pic(C) such that f∗zA = y0 and choose an integer n ≥ n0 such

that

deg(y0) + n deg(P ) > 2g, deg(y0) + n deg(P ) ≥ Φ(gv, dv)(7.4)

for all v ∈ S′, where dv = [kv(Zv) : kv(C)] and where g and gv denote the

genera of C and of Zv respectively. Let y ∈ Pic(C) be the class of y0 + nf∗P .

For each v ∈ S′, let us fix a divisor zv on Zv satisfying (∗). For each v ∈ Ω\S′,
we fix an effective zv ∈ Z0(X0 ⊗k kv) such that f∗zv is reduced, such that

the class of f∗zv in Pic(C ⊗k kv) is equal to the image of y and such that the

Zariski closure of Supp(zv) in X 0⊗OS
Ov is finite over Ov. (See the conclusion

of Lemma 3.2.) The family zeff
A = (zv)v∈Ω ∈

∏
v∈Ω Z0(X0 ⊗k kv) then belongs
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to Zeff,red,y
0,A (X0) and the desired equality (7.3) holds if we let z = −nP and

ξA = (z0
v − zv + nP )v∈Ω ∈ CH0,A(X). �

7.2. Proof of Theorem 7.1. Theorem 7.1 will be proved by combining

Propositions 7.4 and 7.5 and Theorem 7.2. We henceforth assume, as in the

statement of Theorem 7.1, that H1(Xη̄,Q/Z) = 0 and A0(Xη̄ ⊗K) = 0. Ac-

cording to Theorem 7.2, there exists a finite subset S ⊂ Ωf such that the map

f∗ : CH0(X ⊗k kv)→ Pic(C ⊗k kv)(7.5)

is an isomorphism for all v ∈ Ω \ (S ∪ Ω∞).

Lemma 7.6. There exists an integer n > 0 such that the natural map

(7.6) Ker

Å
CH0,A(X)

f∗−→ PicA(C)

ã
→ CH0,A(X)/nCH0,A(X)

is injective. Moreover, the kernel of f∗ : CH0̂,A(X) → PicÂ(C) has finite

exponent.

Proof. For v ∈ S, the kernel of (7.5) and the torsion subgroup of

Pic(C⊗kkv) have finite exponent, by Theorem 7.2(ii) and [Mat55] respectively.

Let N > 0 be an even integer which kills these two groups for all v ∈ S. The

map (7.6) is then injective for n = N2. The second assertion follows from the

definition of S and from Lemma 7.3(ii) applied to the map (7.5) for v ∈ S. �

Using Lemma 7.6, we choose an integer n > 0 such that (7.6) is injective

and such that Ker(f∗ : CH0̂,A(X) → PicÂ(C)) is killed by n. Let us apply

Proposition 7.4 to ẑA and n and Proposition 7.5 to the resulting class zA and

to X0, S ∪ Ω∞, Φ, n. This yields y, zeff
A = (zv)v∈Ω, z, ẑ, ξA and ξ̂A satisfying

the conclusions of Propositions 7.4 and 7.5. By properties (1) and (2) of

Proposition 7.5 and by the definition of S, we have ξA = 0. By property (1)

of Proposition 7.4 and by the definition of n, we also have nξ̂A = 0. We thus

obtain the decomposition ẑA = zeff
A +(z+nẑ), and it only remains to check that

the classes of zeff
A and z′A in CH0,A(X) are equal for any z′A as in the statement

of Theorem 7.1 if the neighbourhood U is chosen small enough. At the places

v /∈ S ∪ Ω∞, this holds by the definition of S. At the places v ∈ S, this

follows from [Wit12, Lemme 1.8], in view of the injectivity of (7.6). Finally,

for v ∈ Ω∞, condition (4) of Theorem 5.1 implies that the class of zv − z′v
in CH0(X ⊗k kv) is a norm from CH0(X ⊗k kv); see [CTI81, Prop. 3.2(ii)]

or [Wit12, Lemme 1.8].

8. Main theorems on zero-cycles

We now have at our disposal all of the required tools to prove that if X is a

smooth, proper, irreducible variety over a number field k and if f : X → P1
k is

a dominant morphism with rationally connected geometric generic fiber whose

smooth fibers satisfy (E), then X satisfies (E) (Theorem 1.3). As discussed in
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Section 1, the results we obtain refine this statement in several ways: P1
k is

replaced with a curve of arbitrary genus satisfying (E), the hypothesis on the

smooth fibers is restricted to the fibers over a Hilbert subset, etc. Our main

theorem on zero-cycles is Theorem 8.3 below. We give its precise statement

and compare its corollaries with the existing literature in Section 8.1 before

proceeding to the proofs in Sections 8.2–8.4.

8.1. Statements. To state Theorem 8.3, we shall need to consider the

following condition, which depends on the choice of a smooth and proper

variety V over a number field k.

Condition 8.1. The image of CH0̂ (V ) in CH0̂,A(V ) contains the image

of V (Ak)
Br(V ) in the same group.

Condition 8.1 clearly holds if V satisfies (E). The following lemma records

another interesting condition which implies it.

Lemma 8.2. Condition 8.1 holds if V (k) is dense in V (Ak)
Br(V ) and V

is rationally connected.

Proof. For any n ≥ 1 and any finite set S of places of k, the image of the

natural map

CH0(V ) −→
∏
v∈S

CH0(V ⊗k kv)/nCH0(V ⊗k kv)

contains the image of V (Ak)
Br(V ) as V (k) is dense in V (Ak)

Br(V ) (see [Wit12,

Lemme 1.8]). On the other hand, as V is rationally connected, the group

A0(V ⊗k kv) vanishes for all but finitely many places v and has finite exponent

for every v; see [KS03] or Theorem 7.2. The lemma follows from these two

facts (see [Wit12, Rems 1.1(ii)]). �

We are now in a position to state the main result on zero-cycles obtained

in this paper.

Theorem 8.3. Let C be a smooth, proper and geometrically irreducible

curve over a number field k. Let X be a smooth, proper and irreducible variety

over k. Let f : X → C be a morphism whose geometric generic fiber Xη̄ is

irreducible and satisfies H1(Xη̄,Q/Z) = 0 and A0(Xη̄ ⊗ K) = 0, where K

denotes an algebraic closure of the function field of Xη̄ .

(1) If C satisfies (E) and the smooth fibers of f above the closed points of a

Hilbert subset of C satisfy (E), then X satisfies (E).

(2) If the smooth fibers of f above the closed points of a Hilbert subset of C

satisfy (E), the complex

CH0(X/C) // CH0,A(X/C) // Hom(Br(X)/f∗Br(C),Q/Z)
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is an exact sequence, where CH0(X/C) and CH0,A(X/C) denote the

kernels of f∗ : CH0(X) → CH0(C) and of f∗ : CH0,A(X) → CH0,A(C)

respectively.

(3) If every fiber of f possesses an irreducible component of multiplicity 1,

assertions (1) and (2) above remain valid when the smooth fibers of f

above the closed points of a Hilbert subset of C are only assumed to satisfy

Condition 8.1 instead of (E).

(4) If there exists a family (zv)v∈Ω ∈ Z0,A(X) orthogonal to Br(X) with respect

to (1.5), such that deg(zv) = 1 for all v ∈ Ω and such that the class of

(f∗zv)v∈Ω in PicÂ(C) belongs to the image of Piĉ(C), and if the smooth

fibers of f above the closed points of a Hilbert subset of C satisfy (E1),

then X possesses a zero-cycle of degree 1.

We recall that C satisfies (E) if C = P1
k or more generally if the divisible

subgroup of the Tate–Shafarevich group of the Jacobian of C is trivial, by a

theorem of Saito [Sai89] (see [Wit12, Rems 1.1(iv)]). In this case, the condition,

in (4), that the class of (f∗zv)v∈Ω in PicÂ(C) should belong to the image

of Piĉ(C) automatically holds.

An easy induction argument will allow us to deduce a version of Theo-

rem 8.3 over some simple higher-dimensional bases.

Corollary 8.4. Let X be a smooth, proper, irreducible variety over a

number field k. Let Y be an irreducible variety over k, birationally equivalent

to either Pn
k , or C , or Pn

k × C , for some n ≥ 1 and some smooth, proper,

geometrically irreducible curve C over k which satisfies (E). Let f : X → Y

be a morphism whose geometric generic fiber Xη̄ is irreducible and satisfies

H1(Xη̄,Q/Z) = 0 and A0(Xη̄ ⊗K) = 0, where K denotes an algebraic closure

of the function field of Xη̄ .

(1) If the smooth fibers of f above the closed points of a Hilbert subset of Y

satisfy (E), then X satisfies (E).

(2) If the smooth fibers of f above the closed points of a Hilbert subset

of Y satisfy Condition 8.1 and the fibers of f above the codimension 1

points of Y possess an irreducible component of multiplicity 1, then X

satisfies (E).

By the generalised Bloch conjecture, the vanishing of A0(Xη̄ ⊗K) should

be equivalent to that ofH i(Xη̄,OXη̄) for all i > 0. We refer the reader to [Voi11,

§4] for a discussion of this condition and for some nontrivial examples of simply

connected surfaces of general type which satisfy it (Barlow surfaces).

When the geometric generic fiber of f is rationally connected, both of

the assumptions H1(Xη̄,Q/Z) = 0 and A0(Xη̄ ⊗ K) = 0 hold. (See [Deb01,
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Cor. 4.18(b)] for the first.) In particular, Theorem 1.3 follows from Theo-

rem 8.3(1). Moreover, in this case, every fiber of f above a codimension 1

point of Y contains an irreducible component of multiplicity 1 (see [GHS03]).

Combining Corollary 8.4 with Lemma 8.2 and with Borovoi’s theorem on the

rational points of homogeneous spaces of linear groups [Bor96, Cor. 2.5], we

thus obtain the following corollary.

Corollary 8.5. Let X be a smooth, proper, irreducible variety over a

number field k. Let Y be an irreducible variety over k, birationally equivalent

to either Pn
k , or C , or Pn

k × C , for some n ≥ 1 and some smooth, proper,

geometrically irreducible curve C over k which satisfies (E). Let f : X → Y

be a dominant morphism whose generic fiber is birationally equivalent to

a homogeneous space of a connected linear algebraic group, with connected

geometric stabilisers. Then X satisfies (E).

Corollary 8.5 applies to arbitrary families of toric varieties. Even this

particular case of the corollary suffices to cover all of the examples of varieties

satisfying (E) or (E1) dealt with in [Lia15, §3], [Wei14a], [CL14], [Lia14b].

Corollary 8.5 also applies to fibrations into Châtelet surfaces over Y , or, more

generally, into Châtelet p-folds in the sense of [VAV12], since the total space of

such a fibration is birationally equivalent to the total space of a fibration into

torsors under tori over Y ×k P1
k. Such fibrations were considered in [Poo10].

This answers the question raised at the very end of [CT10, Rem. 3.3]. (The

case of fibrations into Châtelet surfaces all of whose fibers are geometrically

integral was previously treated in [Lia12]; see also [Lia13b, Prop. 7.1].) In the

situation of a fibration into Châtelet surfaces over a curve of positive genus,

Theorem 8.3(4) immediately implies the unconditional result [CT10, Th. 3.1].

A similar application of Corollary 8.5 is the validity of (E) for the total space of

any fibration into del Pezzo surfaces of degree 6 over Y . (Recall that degree 6

del Pezzo surfaces are toric [Man66].)

By applying Corollary 8.5 to the trivial fibration V × P1
k → P1

k (a trick

first used in [Lia13a]), we recover Liang’s theorem (proved in op. cit.) that

varieties V birationally equivalent to a homogeneous space of a connected

linear algebraic group, with connected geometric stabilisers, satisfy (E).

We note, finally, that Theorem 8.3 and Corollary 8.4 also subsume

[CTSD94, §§5–6], [CTSSD98, §4], [CT00], [Fro03], [vH03], [Wit12], [Lia12],

[Lia14a], [Sme15, §5] and [Lia13b]. In these papers, one can find versions of

Corollary 8.4 in which every fiber of f is assumed to contain an irreducible

component of multiplicity 1 split by an abelian extension of the field over

which the fiber is defined, and in which the Brauer group of the generic fiber

is assumed to be generated by classes which are unramified along the singular
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fibers of f . Both of these assumptions turn out to be quite restrictive for

applications.

8.2. Preliminaries. Let us first recall some well-known implications be-

tween the geometric conditions appearing in the statements of Theorems 8.3,

6.2, 5.1 and of Proposition 4.1.

Lemma 8.6. The properties

(a) Xη̄ is rationally connected ;

(b) A0(Xη̄ ⊗ K) = 0, where K denotes an algebraic closure of the function

field of Xη̄ ;

(c) H i(Xη,OXη) = 0 for all i > 0;

(d) H2(Xη,OXη) = 0;

(e) if H1(Xη̄,Q/Z) = 0, the quotient Br(Xη)/f
∗
ηBr(η) is finite;

(f) the greatest common divisor of the multiplicities of the irreducible compo-

nents of each fiber of f is 1

satisfy the implications (a)⇒ (b)⇒ (c)⇒ (d)⇒ (e) and (c)⇒ (f).

Proof. The implication (b) ⇒ (c) may be checked by decomposing the

diagonal in Hodge theory. (See [CL04, p. 141]; see also Lemma 8.11 below.)

See [CTS13, Lemma 1.3(i)] for the implication (d) ⇒ (e) and [CTV12,

Prop. 7.3(iii)] or [ELW15, Prop. 2.4] for (c)⇒ (f). �

The next proposition, which combines the contents of Sections 2–7, is the

core result from which the four assertions of Theorem 8.3 will be deduced.

Proposition 8.7. Let us keep the notation and assumptions of Theo-

rem 8.3. Fix a Hilbert subset H ⊆ C and an element ẑA ∈ CH0̂,A(X)

orthogonal to Br(X) with respect to (1.6), such that f∗ẑA belongs to the image

of the natural map Piĉ(C)→ PicÂ(C). There exist an element ẑ ∈ CH0̂ (X),

a closed point c of H and a family z′A ∈ Z0,A(Xc) orthogonal to Br(Xc) with

respect to the pairing (1.5) relative to Xc, such that z′A, when considered as

an element of Z0,A(X), satisfies f∗z
′
A = c in Z0,A(C) and ẑA = z′A + ẑ in

CH0̂,A(X). Furthermore, if every fiber of f possesses an irreducible component

of multiplicity 1, one can ensure that z′A is a family of effective zero-cycles.

Proof. By Chow’s lemma and Hironaka’s theorem, there exist an irre-

ducible, smooth projective variety X ′ and a birational morphism π : X ′ → X.

The induced morphism πc : X ′c → Xc is a birational equivalence for all but

finitely many c ∈ C. As the groups H1(V,Q/Z), Br(V ), CH0(V ) and A0(V )

are birational invariants of smooth and proper varieties V over a field of

characteristic 0 (see [Gro71, Cor. 3.4], [Gro68, III, §7], [Ful98, Exam. 16.1.11])

and as the existence of an irreducible component of multiplicity 1 in every fiber
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of f is equivalent to the existence of an irreducible component of multiplicity 1

in every fiber of f ◦ π (see [Sko96, Cor. 1.2] and [Nis55]), we may replace X

with X ′ to prove Proposition 8.7. Thus, from now on, we assume that X is

projective, which allows us to use Theorem 7.1.

Thanks to Lemma 8.6, we can choose a finite subgroup B ⊂ Br(Xη)

which surjects onto the quotient Br(Xη)/f
∗
ηBr(η). Let C0 ⊆ C be a dense

open subset above which f is smooth, small enough that B ⊂ Br(X0), where

X0 = f−1(C0). By Proposition 4.1, there exists a Hilbert subset H ′ ⊆ C0 such

that the natural map

B → Br(Xc)/f
∗
c Br(c)(8.1)

is surjective for all c ∈ H ′. We define a map Φ : N2 → N by Φ(g, d) =

deg(M)d + 2g + 2, where M = C \ C0, and apply Theorem 7.1. This yields

classes y ∈ Pic(C), ẑ ∈ CH0̂ (X), zeff
A = (zv)v∈Ω ∈ Zeff,red,y

0,A (X0) and subsets

S ⊂ Ωf and U ⊆ ∏v∈S SymX0/k(kv) satisfying the conclusion of Theorem 7.1.

Note that zeff
A is orthogonal to Br(X) with respect to (1.5) since ẑA = zeff

A + ẑ

in CH0̂,A(X) and ẑA and ẑ are both orthogonal to Br(X). We can therefore

apply Theorem 6.2 and obtain a closed point c of H ∩ H ′ and a family

z′A = (z′v)v∈Ω ∈ Z0,A(X0) satisfying conditions (1)–(4) of Theorem 5.1. By

condition (1), we may regard z′A as an element of Z0,A(Xc). By condition (2)

and the surjectivity of (8.1), this element is orthogonal to Br(Xc) with

respect to the pairing (1.5). By conditions (3) and (4) and the conclusion

of Theorem 7.1, we have ẑA = z′A + ẑ in CH0̂,A(X). �

8.3. Proof of Theorem 8.3.

8.3.1. Assertion (1). Let ẑA ∈ CH0̂,A(X) be orthogonal to Br(X) with

respect to (1.6). By functoriality, its image f∗ẑA ∈ PicÂ(C) is orthogonal

to Br(C). As C satisfies (E), it follows that f∗ẑA belongs to the image of the

natural map Piĉ(C) → PicÂ(C). We may therefore apply Proposition 8.7

to ẑA and to a Hilbert subset H ⊆ C such that for every closed point c of H,

the fiber Xc = f−1(c) is smooth and satisfies (E). The class in CH0̂,A(Xc)

of the resulting family z′A is then the image of an element of CH0̂ (Xc). As a

consequence, its image in CH0̂,A(X) is the image of an element of CH0̂ (X).

8.3.2. Assertion (2). By the Mordell–Weil theorem, the group Pic(C) is

finitey generated. Moreover, by Theorem 7.2, the kernel and the cokernel of

the map f∗ : CH0(X) → Pic(C) have finite exponent. By Lemma 7.3(ii), we

deduce that the natural complex

CH0(X/C) // CH0̂ (X) // Piĉ(C)(8.2)

is exact. Let zA ∈ CH0,A(X/C) be orthogonal to Br(X)/f∗Br(C) with

respect to (1.5). The argument of Section 8.3.1 shows that the image of zA
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in CH0̂,A(X) comes from CH0̂ (X). As the natural maps Piĉ(C)→ PicÂ(C)

and CH0,A(X/C) → CH0̂,A(X) are injective (see [Wit12, Rems. 1.1(v)] and

Lemma 7.6) and the complex (8.2) is exact, we conclude that zA is the image

of an element of CH0(X/C).

8.3.3. Assertion (3). According to the last sentence of Proposition 8.7,

one can ensure, in Sections 8.3.1 and 8.3.2, that z′A is a family of effective

zero-cycles. As f∗z
′
A = c in Z0,A(C), it follows that z′A ∈ Xc(Ak(c)); hence

Condition 8.1 can be applied.

8.3.4. Assertion (4). By assumption there exists a Hilbert subset H ⊆ C
such that for every closed point c of H, the fiber Xc is smooth and satisfies (E1).

Applying Proposition 8.7 to zA = (zv)v∈Ω, we find a closed point c of H, a

family z′A ∈ Z0,A(Xc) orthogonal to Br(Xc) and a class ẑ ∈ CH0̂ (X) such

that f∗z
′
A = c in Z0,A(C) and zA = z′A + ẑ in CH0̂,A(X). Considering z′A as a

collection of local zero-cycles of degree 1 on the variety Xc over k(c), we deduce

from (E1) that Xc possesses a zero-cycle z′ of degree 1 over k(c). Regarding z′

as a zero-cycle on X, we have deg(z′ + ẑ) = 1 in Ẑ, hence the degree map

CH0̂ (X) → Ẑ is surjective. By Lemma 7.3(i), the degree map CH0(X) → Z

is surjective as well.

8.4. Proof of Corollary 8.4. When Y is a curve, this is Theorem 8.3(1)

and (3). In general, we argue by induction on the dimension of Y . As the

hypotheses and the conclusion of Corollary 8.4 are invariant under birational

equivalence over k (see [Wit12, Rems. 1.1(vi)]), we may assume, when Y is

not a curve, that Y = Pn
k × C for some n ≥ 1 (setting C = P1

k in the first

of the three cases considered in the statement). Let g : X → C denote the

composition of f with the second projection. For c ∈ C, let Xc = g−1(c). For

the sake of brevity, we introduce the following definition.

Definition 8.8. We shall say that a proper variety V over an algebraically

closed field satisfies (∗) if it is integral, if H1(V,Q/Z) = 0 and if A0(V ⊗K) = 0

for an algebraic closure K of the function field of V .

Lemma 8.9. The geometric generic fiber of g satisfies (∗).

Proof. Let ξ̄ denote the geometric generic point of C and fξ̄ : Xξ̄ → Pn
k(ξ̄)

the morphism induced by f . The geometric generic fiber Xξ̄ of g is smooth

and irreducible. The geometric generic fiber V of fξ̄ satisfies (∗) since it is

isomorphic to the geometric generic fiber of f .

Letting K denote an algebraic closure of the function field of Xξ̄, we

deduce from Theorem 7.2(ii) applied to fξ̄ that the abelian group A0(Xξ̄ ⊗K)

has finite exponent. It is also divisible, as K is algebraically closed (see [Blo80,

Lemma 1.3]); hence A0(Xξ̄ ⊗K) = 0.
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It remains to check that H1(Xξ̄,Λ) = 0 for any finite abelian group Λ.

The morphism fξ̄ has no multiple fiber in codimension 1 since V satisfies (∗)
(see Lemma 8.6(b)⇒(f)). As a consequence, the fundamental group of V

surjects onto the fundamental group of the geometric fiber of fξ̄ above any

codimension 1 point of Pn
k(ξ̄)

(see [Ray70, Prop. 6.3.5]). The constructible

sheaf R1(fξ̄)∗Λ must therefore be supported on a closed subset F ⊂ Pn
k(ξ̄)

of

codimension ≥ 2. Letting U = Pn
k(ξ̄)
\F , we have H1(U, (fξ̄)∗Λ) = H1(U,Λ)=0

since (fξ̄)∗Λ = Λ (see [Gro66, Prop. 15.5.3]). The Leray spectral sequence

for fξ̄ now shows that H1(f−1
ξ̄

(U),Λ) = 0. As H1(Xξ̄,Λ) ⊆ H1(f−1
ξ̄

(U),Λ),

the proof is complete. �

Lemma 8.10. There exists a dense open subset C0 ⊆ C such that for all

c ∈ C0, the geometric generic fiber of the morphism fc : Xc → Pn
k(c) induced

by f satisfies (∗).

Proof. It suffices to prove the existence of a dense open subset Y 0 ⊆ Y

such that for any geometric point y of Y 0, the variety V = f−1(y) satisfies (∗).
As f is proper, the restriction of the étale sheaf R1f∗Q/Z to any open

subset of Y over which f is smooth is a direct limit of locally constant

sheaves (see [Mil80, Ch. VI, Cor. 4.2]). Its geometric generic stalk vanishes;

thus H1(V,Q/Z) vanishes for any geometric fiber V of f along which f is

smooth.

To check that the condition A0(V ⊗K) = 0 for the generic fiber of f implies

the same condition for the fibers of f over a dense open subset of Y , we use

an argument known as decomposition of the diagonal (see [Blo80, appendix to

Lecture 1]), summarised in the next lemma.

Lemma 8.11. Let V be a geometrically integral variety of dimension d

over an arbitrary field. Let v ∈ V be a closed point. Let K be an algebraic

closure of the function field of V . Let [∆] ∈ CHd(V × V ) denote the class of

the diagonal. The group A0(V ⊗K) vanishes if and only if for some N ≥ 1,

one has a decomposition

N [∆] = [Γ1] + [Γ2](8.3)

in CHd(V × V ) for some cycle Γ1 supported on V × {v} and some cycle Γ2

supported on D × V for a closed subset D ⊂ V of codimension ≥ 1.

Proof. Letting N [∆] act on A0(V ⊗K) as a correspondence, we see that

A0(V ⊗K) is killed by N if the diagonal can be decomposed as above. On the

other hand, the group A0(V ⊗ K) is divisible since K is algebraically closed

(see [Blo80, Lemma 1.3]). This proves a half of the desired equivalence. The

other half is established in [BS83, Prop. 1]. �
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Any rational equivalence which gives rise to the decomposition (8.3) on

the generic fiber of f extends and specialises to the fibers of f over a dense

open subset of Y . Thus, applying Lemma 8.11 twice concludes the proof of

Lemma 8.10. �

We can now complete the proof of Corollary 8.4. Let C0 ⊆ C be a

dense open subset satisfying the conclusion of Lemma 8.10, small enough

that Xc is smooth and irreducible for all c ∈ C0 and that if the codimension 1

fibers of f contain an irreducible component of multiplicity 1, then so do the

codimension 1 fibers of fc : Xc → Pn
k(c) for c ∈ C0.

According to the next lemma, which we state with independent notation,

there exists a Hilbert subset H ⊆ C0 such that for every closed point c of H,

the smooth fibers of fc above the closed points of a Hilbert subset of Pn
k(c)

satisfy (E) in case (1) and satisfy Condition 8.1 in case (2).

Lemma 8.12. Let V1 and V2 be geometrically irreducible varieties over a

number field k. Let H ⊆ V1 ×k V2 be a Hilbert subset. There exists a Hilbert

subset H2 ⊆ V2 such that for every h ∈ H2, the set H ∩ (V1 ×k {h}) contains

a Hilbert subset of V1 ×k {h} (where {h} denotes Spec(k(h))).

Proof. Let W1, . . . ,Wn denote irreducible étale covers of a dense open

subset of V1 ×k V2 which define H. By [Wit07, Lemme 3.12], there exists a

Hilbert subset H2 ⊆ V2 such that for any h ∈ H2, the scheme Wi ×V2
{h} is

irreducible for all i ∈ {1, . . . , n}. The projections Wi×V2
{h} → V1×k {h} then

define a Hilbert subset of V1 ×k {h} contained in H. �

We deduce from the induction hypothesis applied to fc thatXc satisfies (E)

for every closed point c of H. In view of Lemma 8.9, and noting that the fibers

of g contain an irreducible component of multiplicity 1 if the codimension 1

fibers of f do, we may now apply Theorem 8.3 to g and conclude that X

satisfies (E).

9. Rational points in fibrations

The goal of this last part of the paper is to explore the counterpart, in the

context of rational points, of the ideas which enter into the proof of the main

theorems of Section 8. The main unconditional result here is Theorem 9.28,

stated as Theorem 1.6 in the introduction.

9.1. A conjecture on locally split values of polynomials over number fields.

We propose the following conjectural variant of Lemma 5.2. Its statement

parallels the consequence of Schinzel’s hypothesis (H) first formulated by

Serre in [Ser92] and referred to as Hypothesis (H1) in [CTSD94]. Lemma 5.2

corresponds to the case n = 1, deg(P1) = 1, b1 = 1 of Conjecture 9.1, the

only difference between the two statements being that the element t output
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by Lemma 5.2 is required to be integral outside S ∪ {v0}, while no integrality

condition on t0 appears in Conjecture 9.1 (see also Remark 9.12). In fact,

the absence of any integrality condition makes it more accurate to compare

Conjecture 9.1 with the homogeneous variant (HH1) of Schinzel’s hypothesis,

first considered by Swinnerton-Dyer [SD99, §2], than with (H1) itself (see

especially [HSW14, Prop. 2.1]). We refer the reader to Section 9.2.1 for more

details on (HH1).

Conjecture 9.1. Let k be a number field. Let n ≥ 1 be an integer and

P1, . . . , Pn ∈ k[t] denote pairwise distinct irreducible monic polynomials. Let

ki = k[t]/(Pi(t)), and let ai ∈ ki denote the class of t. For each i ∈ {1, . . . , n},
suppose given a finite extension Li/ki and an element bi ∈ k∗i . Let S be a

finite set of places of k containing the real places of k and the finite places

above which, for some i, either bi is not a unit or Li/ki is ramified. Finally,

for each v ∈ S, fix an element tv ∈ kv . Assume that for every i ∈ {1, . . . , n}
and every v ∈ S, there exists xi,v ∈ (Li ⊗k kv)∗ such that

bi(tv − ai) = NLi⊗kkv/ki⊗kkv(xi,v)

in ki ⊗k kv . Then there exists t0 ∈ k satisfying the following conditions :

(1) t0 is arbitrarily close to tv for v ∈ S;

(2) for every i∈{1, . . . , n} and every finite place w of ki such that w(t0−ai)>0,

either w lies above a place of S or the field Li possesses a place of degree 1

over w.

Conjecture 9.1 will be applied in Section 9.3 to the study of weak

approximation on the total space of a fibration over P1
k. When one is only

interested in the existence of a rational point or in weak approximation “up

to connected components at the archimedean places” (as considered in [Sto07,

§2, p. 351]), the following weaker variant of Conjecture 9.1 suffices.

Conjecture 9.2. Same as Conjecture 9.1, except that (1) is weakened to

(1′) t0 is arbitrarily close to tv for finite v ∈ S; in addition, for every real place v

of k, if i denotes an element of {1, . . . , n} and w denotes a real place of ki
dividing v, the sign of (t0−ai)(tv−ai) at w is independent of w and of i.

Remarks 9.3. (i) Suppose all of the fields Li are isomorphic, over k, to the

same Galois extension L/k. This condition can be assumed to hold at no cost

in all of the applications that we shall consider in this paper. Assertion (2) of

Conjecture 9.1 may then be reformulated as follows: for every i ∈ {1, . . . , n},
the value Pi(t0) ∈ k has nonpositive valuation at all places v /∈ S, except

perhaps at places v which split completely in L. Thus, Conjecture 9.1 may be

regarded as a conjecture about locally split values of polynomials.

(ii) In order to prove Conjectures 9.1 and 9.2, one may assume, without

loss of generality, that tv = 0 for all v ∈ S and ai 6= 0 for all i ∈ {1, . . . , n}.
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Indeed, one can choose τ ∈ k arbitrarily close to tv for v ∈ S and perform

the change of variables t 7→ t + τ . Thanks to this remark, we see that

Conjectures 9.1 and 9.2 for k = Q imply the same conjectures for arbitrary k

(compare [CTSD94, Prop. 4.1]).

(iii) In order to prove Conjectures 9.1 and 9.2, one is free to adjoin any

finite number of places to S. To see this, it is enough to check that for any

finite v /∈ S, there exists tv ∈ kv such that bi(tv−ai) is a norm from (Li⊗k kv)∗
for every i and such that w(tv − ai) ≤ 0 for every i and every place w of ki
dividing v. As bi is a unit above v and Li/ki is unramified above v, the

first condition is satisfied as soon as w(tv − ai) is a multiple of [Li : ki] for

every place w of ki dividing v. Thus, for finite v /∈ S, any tv ∈ kv with

valuation −N ∏n
i=1[Li : ki] will satisfy the desired properties if N is a large

enough positive integer.

(iv) The reader interested in a more geometric (albeit less elementary)

formulation of Conjecture 9.1 will find one in Proposition 9.9 below.

9.2. Known cases and relation with Schinzel ’s hypothesis. In this section,

we collect some results which lend support to Conjectures 9.1 and 9.2 (see

Theorems 9.6, 9.11, 9.14 and 9.15).

9.2.1. Relation with Schinzel ’s hypothesis. We prove that when the ex-

tensions Li/ki are abelian, Conjecture 9.1 is a consequence of Schinzel’s hy-

pothesis (H). Extensive numerical evidence for (H) can be found in [BH62],

[BH65]. Exploiting a trick first used by Colliot-Thélène in the context of cubic

extensions (see [Wei14a, Th. 3.5], [HSW14, Th. 4.6]), we deal, slightly more

generally, with extensions which are “almost abelian” in the following sense.

Definition 9.4. Let k be a number field, with algebraic closure k. A finite

extension L/k is almost abelian if it is abelian or if there exist a prime number p

and a bijection Spec(L⊗k k) ' Fp such that the natural action of Gal(k/k) on

Spec(L⊗k k) gives rise, by transport of structure, to an action on Fp by affine

transformations, i.e., transformations of the form x 7→ ax+b for a ∈ F∗p , b ∈ Fp.

Examples 9.5. Cubic extensions are almost abelian. For any c ∈ k and

any prime p, the extension k(c1/p)/k is almost abelian.

Theorem 9.6. Assume Schinzel ’s hypothesis (H). If the extensions

L1/k1, . . . , Ln/kn are almost abelian, the statement of Conjecture 9.1 holds

true.

In the proof of Theorem 9.6, we use (H) via the following homogeneous

variant of Schinzel’s hypothesis, which makes sense over an arbitrary number

field.

Hypothesis (HH1). Let k be a number field, n ≥ 1 be an integer and

P1, . . . , Pn ∈ k[λ, µ] be irreducible homogeneous polynomials. Let S be a
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finite set of places of k containing the archimedean places, large enough that

for any v /∈ S, there exists (λv, µv) ∈ Ov × Ov such that v(P1(λv, µv)) =

· · · = v(Pn(λv, µv)) = 0. Suppose given (λv, µv) ∈ kv × kv for v ∈ S, with

(λv, µv) 6= (0, 0) when v is archimedean. There exists (λ0, µ0) ∈ k×k such that

(1) (λ0, µ0) is arbitrarily close to (λv, µv) ∈ kv×kv for each finite place v ∈ S;

(2) [λ0 : µ0] is arbitrarily close to [λv : µv] ∈ P1(kv) for each archimedean

place v ∈ S;

(3) λ0λv + µ0µv > 0 for each real place v ∈ S;

(4) λ0 and µ0 are integral outside S;

(5) for each i ∈ {1, . . . , n}, the element Pi(λ0, µ0) ∈ k is a unit outside S

except at one place, at which it is a uniformiser.

We refer to [SD11, Lemma 7.1] for a proof that Schinzel’s hypothesis (H)

implies (HH1) (noting that γ, in the proof of loc. cit., can be chosen totally

positive, so that (3) holds).

Remark 9.7. From the work of Heath-Brown and Moroz [HBM04] on

primes represented by binary cubic forms, it is easy to deduce the validity

of (HH1) when k = Q, n = 1 and deg(P1) = 3. Thus Conjecture 9.1 holds

when n = 1, k = Q, [k1 : Q] = 3 and L1/k1 is almost abelian.

Proof of Theorem 9.6. Let Pi(λ, µ)=µdeg(Pi)Pi(λ/µ). By Remark 9.3(iii),

we may assume that S is large enough for (HH1) to be applicable and that ai
is integral outside S for all i. Let I = {i ∈ {1, . . . , n};Li/ki is abelian} and

J = {1, . . . , n} \ I. Thus J = ∅ if the extensions L1/k1, . . . , Ln/kn are all

abelian; the reader interested in this case only may simply skip the next lemma

and the paragraph which follows it.

Lemma 9.8. For every j ∈ J , there exists a nontrivial cyclic subextension

Ej/kj of the Galois closure of Lj/kj such that for any place w of kj which is

unramified in Lj , either w splits completely in Ej or Lj possesses a place of

degree 1 over w.

Proof. As Lj/kj is almost abelian but is not abelian, its degree is a prime

number p and the Galois group Gj of its Galois closure L′j/kj embeds into the

group G = FpoF∗p of affine transformations of Fp. Let Ej be the subfield of L′j
fixed by Hj = Gj ∩ Fp. As Gj is not abelian, it is not contained in Fp, hence

its image in F∗p is nontrivial. Thus Gj is an extension of a nontrivial subgroup

of F∗p by Hj . As a consequence, the extension Ej/kj is cyclic and nontrivial.

Let w be a place of kj which is unramified in Lj , and let F ∈ Gj denote the

Frobenius automorphism at w (well defined up to conjugacy). If the image

of F in F∗p is trivial, then w splits completely in Ej . Otherwise, the action

of F on Spec(Lj⊗kj L
′
j) admits a fixed point. (Any affine transformation of Fp
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which is not a translation admits a fixed point.) Such a fixed point corresponds

to a place of Lj of degree 1 over w. �

By Chebotarev’s density theorem, for every j ∈ J , there exist infinitely

many places w of kj of degree 1 over k which are inert in Ej . (Recall that the

set of places of kj of degree 1 over k has Dirichlet density 1; see, e.g., [Lan94,

Ch. VIII, §4].) If v denotes the trace on k of any such place w, there exists

tv ∈ kv satisfying the following properties:

(i) tv−aj is a uniformiser at w and is a unit at all places of kj above v different

from w;

(ii) tv − ai is a unit at all places of ki above v for all i ∈ {1, . . . , n} \ {j}.
By adjoining to S finitely many places v as above and choosing tv subject to (i)

and (ii) at these places, we may thus assume that

(9.1)
∑
v∈S

∑
w|v

invw(Ej/kj , tv − aj) 6= 0

for all j ∈ J , where the second sum ranges over the places w of kj dividing v

and the symbol (Ej/kj , tv − aj) denotes a cyclic algebra over (kj)w.

For v ∈ S, let λv = tv and µv = 1. Let (λ0, µ0) ∈ k × k be given

by (HH1). By choosing (λ0, µ0) close enough to (λv, µv) at the finite places

v ∈ S and [λ0 : µ0] close enough to [λv : µv] ∈ P1(kv) at the real places v ∈ S,

we may assume, in view of the fact that λ0λv + µ0µv > 0 for real v, that

bi(λ0−aiµ0) ∈ (ki⊗k kv)∗ is a norm from (Li⊗k kv)∗ for all i ∈ {1, . . . , n} and

all v ∈ S and that

(9.2)
∑
v∈S

∑
w|v

invw(Ej/kj , λ0 − ajµ0) 6= 0

for all j ∈ J . For i ∈ {1, . . . , n}, let vi denote the unique finite place of k

outside S at which Pi(λ0, µ0) is not a unit. As λ0, µ0 and ai are integral

outside S, as vi(Pi(λ0, µ0)) = 1 and as Pi(λ0, µ0) = Nki/k(λ0 − aiµ0), there

exists a unique place wi of ki above vi such that wi(λ0− aiµ0) > 0. Moreover,

we have wi(λ0 − aiµ0) = 1 and w(λ0 − aiµ0) = 0 for any place w of ki which

does not lie above S ∪ {vi}.
Let t0 = λ0/µ0. If w is a place of ki which does not lie above S and

if w(t0 − ai) > 0, then w(λ0 − aiµ0) > 0, since w(µ0) ≥ 0; hence w = wi.

Therefore it only remains to be shown that Li possesses a place of degree 1

over wi for every i ∈ {1, . . . , n}.
Suppose first i ∈ I. As bi is a unit outside S and Li/ki is unramified

outside S, the previous paragraphs imply that bi(λ0 − aiµ0) ∈ (ki)
∗
w is a norm

from (Li⊗ki(ki)w)∗ for every place w of ki different from wi. As Li/ki is abelian,

it follows, by the reciprocity law of global class field theory, that bi(λ0 − aiµ0)

is a local norm from (Li ⊗ki (ki)wi)
∗ as well (see [AT09, Ch. VII, §3, Cor. 1,
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p. 51]). As wi(bi(λ0−aiµ0)) = 1 and Li/ki is Galois, we conclude that wi must

split completely in Li.

Suppose now i∈J . The reciprocity law of global class field theory, together

with (9.2), implies that invwi(Ei/ki, λ0−aiµ0) 6= 0. It follows that wi does not

split completely in Ei, so that Li must possess a place of degree 1 over wi. �

9.2.2. A geometric criterion and cases of small degree. Fix k, n, and ki/k,

Li/ki, ai, bi, for i ∈ {1, . . . , n}, as in the statement of Conjecture 9.1. (We

do not fix S or the tv’s.) To this data we associate an irreducible quasi-

affine variety W over k endowed with a smooth morphism p : W → P1
k with

geometrically irreducible generic fiber, as follows.

For i ∈ {1, . . . , n}, let Fi denote the singular locus of the variety

RLi/k(A
1
Li

) \RLi/k(Gm,Li). This is a codimension 2 closed subset of the affine

space RLi/k(A
1
Li

). Let W denote the fiber, above 0, of the morphismÄ
A2
k \ {(0, 0)}

ä
×

n∏
i=1

Ä
RLi/k(A

1
Li) \ Fi

ä
→

n∏
i=1

Rki/k(A
1
ki)

defined by (λ, µ, x1, . . . , xn) 7→ (bi(λ− aiµ)−NLi/ki(xi))1≤i≤n, where λ, µ are

the coordinates of A2
k and xi denotes a point of RLi/k(A

1
Li

). Finally, denote by

p : W → P1
k the composition of projection to the first factor with the natural

map A2
k \ {(0, 0)} → P1

k.

Varieties closely related to W (in fact, partial compactifications of W )

first appeared in the context of descent in [Sko96, §3.3]; see also [CTS00,

p. 391], [Sko01, §4.4]. We now state an equivalent, more geometric form of

Conjecture 9.1, in terms of W . We shall use it as a criterion to prove a few

cases of Conjecture 9.1 in Theorem 9.11 below.

Proposition 9.9. For c ∈ P1(k), let Wc = p−1(c). The statement of

Conjecture 9.1 holds true for all S and all (tv)v∈S satisfying its hypotheses if

and only if
⋃
c∈P1(k)Wc(Ak) is dense in W (Ak).

Proof. Let us first verify that the second condition is sufficient for Conjec-

ture 9.1 to hold. Let S and (tv)v∈S be as in the statement of Conjecture 9.1.

We assume that Ω∞ ⊆ S. For all but finitely many finite places v of k, there

exists tv ∈ kv such that w(tv−ai) = 0 for every i ∈ {1, . . . , n} and every place w

of ki dividing v. By Remark 9.3(iii), we may assume, after enlarging S, that

such tv’s exist for v /∈ S; let us fix them. For each i ∈ {1, . . . , n} and each v ∈ Ω,

let us then fix xi,v ∈ (Li ⊗k kv)∗ such that bi(tv − ai) = NLi⊗kkv/ki⊗kkv(xi,v).

When v /∈ S, we may ensure that xi,v is a unit at every place of Li dividing v.

Let Qv ∈ W (kv) denote the point with coordinates (tv, 1, x1,v, . . . , xn,v).

We have defined an adelic point (Qv)v∈Ω ∈W (Ak). By assumption, there exist

c ∈ A1(k) and an adelic point (Q′v)v∈Ω ∈Wc(Ak) arbitrarily close to (Qv)v∈Ω.
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Let (λ′v, µ
′
v, x
′
1,v, . . . , x

′
n,v) denote the coordinates of Q′v. By choosing (Q′v)v∈Ω

close enough to (Qv)v∈Ω for the adelic topology, we may assume that v(µ′v) ≥ 0

for every v ∈ Ω\S and that the projection of Q′v to RLi/k(A
1
Li

)\Fi extends to

an Ov-point of ROLi/Ok
(A1

OLi
)\Fi for every i ∈ {1, . . . , n} and every v ∈ Ω\S,

where Fi denotes the Zariski closure of Fi. As we have seen in the proof of

Lemma 5.2, this implies that x′i,v is a unit at every place of Li dividing v except

at most at one place, which must then have degree 1 over v.

We now check that the coordinate t0 ∈ k of c satisfies the conclusion

of Conjecture 9.1. We have t0 = λ′v/µ
′
v, hence t0 is arbitrarily close to tv

for v ∈ S. Fix i ∈ {1, . . . , n} and a place w of ki whose trace v on k does

not belong to S. As v(µ′v) ≥ 0 and w(bi) = 0, the condition w(t0 − ai) > 0

implies w(bi(λ
′
v−aiµ′v)) > 0 and hence w(NLi⊗kkv/ki⊗kkv(x

′
i,v)) > 0, so that Li

possesses a place of degree 1 over w according to the previous paragraph.

Conversely, if one assumes Conjecture 9.1, the density of
⋃
c∈P1(k)Wc(Ak)

in W (Ak) is an immediate consequence of Theorem 9.17 below applied with

B = 0 and M ′′ = ∅, in view of the remark that the inverse image map

Br(k) → Brvert(W/P
1
k) is onto. (Recall that the vertical Brauer group is

defined as Brvert(W/P
1
k) = Br(W ) ∩ p∗ηBr(η) if η denotes the generic point

of P1
k.) To prove this remark, we first note that the morphism p : W → P1

k

is smooth and that its fibers are irreducible. Let mi ∈ P1
k be the closed point

defined by Pi(t) = 0. The fibers of p over P1
k \ {m1, . . . ,mn} are geometrically

irreducible, while for each i ∈ {1, . . . , n}, the algebraic closure of ki = k(mi) in

the function field of p−1(mi) is Li. These observations on the fibers of p imply

that any element of Brvert(W/P
1
k) can be written as p∗ηγ, where γ ∈ Br(η) has

the shape

γ =
n∑
i=1

Coreski(t)/k(t)(bi(t− ai), χi) + δ

for some δ ∈ Br(k) and some χi ∈ Ker
Ä
H1(ki,Q/Z) → H1(Li,Q/Z)

ä
, i ∈

{1, . . . , n} satisfying
∑n
i=1 Coreski/k(χi)=0 (see [CTSD94, Props. 1.1.1, 1.2.1]).

Now we have bi(t − ai) = bi(λ − aiµ)/µ in ki(W ), and bi(λ − aiµ) is a norm

from Li(W ) according to the defining equations of W . Thus

(bi(t− ai), χi) = −(µ, χi)

in Br(ki(W )) and hence p∗ηγ=−
Ä
µ,
∑n
i=1 Coreski/k(χi)

ä
+δ=δ, as required. �

Corollary 9.10. Suppose W satisfies strong approximation off v0 for

any finite place v0 of k. Then the statement of Conjecture 9.1 holds true for

all S and all (tv)v∈S satisfying its hypotheses.

Proof. Fix an integral model W of W . A glance at the definition of W

shows that the map p : W (Ov) → P1(Ov) is onto for all but finitely many of

the places v of k which split completely in Li for all i. Let (Qv)v∈Ω ∈W (Ak).



ON THE FIBRATION METHOD 273

Let S be a finite set of places of k. We must prove that there exist c ∈ P1(k)

and (Q′v)v∈Ω ∈ Wc(Ak) with Q′v arbitrarily close to Qv for v ∈ S and Q′v
integral with respect to W for v /∈ S. Fix a place v0 /∈ S for which

p : W (Ov0
)→ P1(Ov0

) is onto. By assumption, we can find a point Q ∈W (k)

arbitrarily close to Qv for v ∈ S and integral with respect to W for v /∈ S∪{v0}.
We then let c = p(Q), choose an arbitrary Q′v0

∈ W (Ov0
) such that p(Q′v0

) = c

and let Q′v = Q for v ∈ Ω \ {v0}. �

Thanks to Corollary 9.10, we can prove Conjecture 9.1 for non-abelian

extensions Li/ki when
∑n
i=1[ki : k] is small. The underlying geometric

arguments run parallel to those used in the proofs of [CTS00, Ths. A and B]

(which themselves originate from [Sko90a]).

Theorem 9.11. Conjecture 9.1 holds under each of the following sets of

assumptions :

(i)
∑n
i=1[ki : k] ≤ 2,

(ii)
∑n
i=1[ki : k] = 3 and [Li : ki] = 2 for every i.

Proof. When
∑n
i=1[ki : k] ≤ 2, one checks that W is isomorphic to the

complement of a codimension 2 closed subset in an affine space. (Specifically,

when
∑n
i=1[ki : k] = 2, the projection W → ∏n

i=1RLi/k(A
1
Li

) is an open

immersion and the complement of its image has codimension 2.) As a

consequence, the variety W satisfies strong approximation off any place of k

(see Lemma 1.8), so that Corollary 9.10 applies. Suppose now
∑n
i=1[ki : k] = 3

and [Li : ki] = 2 for every i. In this case, just as in [CTS00, p. 392], the

variety W is the punctured affine cone over the complement of a closed subset

of codimension 2 in a smooth projective quadric of dimension 4. (The smooth

projective quadric in question is the Zariski closure of the image of W in the

projective space of lines of the six-dimensional vector space
∏n
i=1RLi/k(A

1
Li

).)

The same argument as in the proof of Lemma 1.8, with smooth projective

conics replacing affine lines, shows that the complement of a codimension 2

closed subset in a smooth projective quadric satisfies strong approximation.

We may therefore apply [CTX13, Prop. 3.1] and deduce that W satisfies

strong approximation off any place of k. Applying Corollary 9.10 concludes

the proof. �

Remark 9.12. In hindsight, one may reinterpret the arguments of Sec-

tion 5.4 as follows. Let A(V ) denote the affine space whose underlying vector

space is V = H0(C,OC(c1)), and let P(V ) denote the projective space of lines

in A(V ). Let W be the fiber, above 0, of the morphism

(A(V ) \ {0})×
∏
m∈M

Ä
RLm/k(A

1
Lm) \ Fm

ä
→

∏
m∈M

Rk(m)/k(A
1
k(m))
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defined by (h, (xm)m∈M ) 7→ (h(m) − NLm/k(m)(xm))m∈M , where Fm stands

for the singular locus of RLm/k(A
1
Lm

) \ RLm/k(Gm,Lm). Let p : W → P(V )

denote the map induced by the first projection. Let wA ∈W (Ak) be an adelic

point whose image in (A(V ) \ {0})(kv), for each v ∈ S, is the function hv
of Section 5.4. The choice of a splitting of (5.1) determines an isomorphism

between W and the complement of a codimension 2 closed subset in an affine

space; therefore W satisfies strong approximation off any given place. In

particular, by the same argument as in Corollary 9.10, one can approximate wA

by an adelic point of p−1(c) for some rational point c of P(V ). This c, viewed

as an effective divisor on C, is the divisor constructed in Section 5.4.

9.2.3. Invariance under change of coordinates. As a test for Conjectures 9.1

and 9.2, it is natural to ask whether they are compatible with linear changes

of coordinates on P1
k. The following lemma expresses such an invariance

property. It will be used in the proofs of Theorems 9.14 and 9.15 below. Its

statement should be read as follows: given any α, β, γ, δ which satisfy (i)–(iii),

Conjectures 9.1 and 9.2 for k, n, ki, Li, ai, bi, S and (tv)v∈S reduce to the

same conjectures for k, n, ki, Li, a
′
i, b
′
i, S

′ and (t′v)v∈S′ .

Lemma 9.13. Let k, n, ki, Li, ai, bi, S and (tv)v∈S satisfy the hypotheses

of Conjecture 9.1. Let α, β, γ, δ ∈ k be such that αδ − βγ 6= 0. We make the

following assumptions :

(i) γai + δ 6= 0 for all i ∈ {1, . . . , n} and γtv + δ 6= 0 for all v ∈ S;

(ii) α and αai + β for i ∈ {1, . . . , n} are units outside of S;

(iii) for every i ∈ {1, . . . , n} and every v ∈ S, there exists yi,v ∈ (Li ⊗k kv)∗
such that (αδ − βγ)/(γtv + δ) = NLi⊗kkv/ki⊗kkv(yi,v).

Set a′i = (αai+β)/(γai+δ) and b′i = bi(γai+δ) for i ∈ {1, . . . , n}. Let S′0 be the

union of S with the set of finite places of k above which one of α, γ, a′1, . . . , a
′
n

is not integral or one of b′1, . . . , b
′
n is not a unit. Let S′ be a finite set of places

of k containing S′0. Set t′v = 0 for v ∈ S′ \ S and t′v = (αtv + β)/(γtv + δ) for

v ∈ S. Finally, when given t′0 ∈ k such that α 6= γt′0, we denote by t0 ∈ k the

unique solution to the equation t′0 = (αt0 + β)/(γt0 + δ). We then have

(1) for every i ∈ {1, . . . , n} and every v ∈ S′, there exists x′i,v ∈ (Li ⊗k kv)∗
such that

b′i(t
′
v − a′i) = NLi⊗kkv/ki⊗kkv(x

′
i,v)

in ki ⊗k kv ;
(2) for v ∈ S, if t′0 is arbitrarily close to t′v , then t0 is arbitrarily close to tv ;

(3) for v ∈ S, if i denotes an element of {1, . . . , n} and w denotes a real place

of ki dividing v, the sign of (t′0 − a′i)(t
′
v − a′i)(t0 − ai)(tv − ai) at w is

independent of w and of i;
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(4) if t′0 is arbitrarily close to t′v for v ∈ S′ \ S, then for every i ∈ {1, . . . , n}
and every finite place w of ki such that w(t0 − ai) > 0, either w lies above

a place of S, or w does not lie above a place of S′ and w(t′0 − a′i) > 0.

Proof. It is straightforward to check (2) and (3), as well as (1) for v ∈ S
by setting x′i,v = yi,vxi,v. To check (1) for v ∈ S′ \ S, we note that above

such v, the element b′i(t
′
v − a′i) = −a′ib′i = −(αai + β)bi is a unit, by (ii), and is

therefore a norm from Li⊗k kv since Li/ki is unramified above v. We now turn

to (4) and fix i and a finite place w of ki such that w(t0 − ai) > 0. It follows

from (ii) that w cannot lie above a place of S′ \ S, as t0 − ai would then have

to be a unit at w, being arbitrarily close to −β/α− ai = −(αai + β)/α. Thus

we may assume that w lies above a place of S′, so that w(bi) = w(b′i) = 0 and

w(α) ≥ 0, w(γ) ≥ 0, w(a′i) ≥ 0. A simple computation shows that

b′i(t
′
0 − a′i) = bi(t0 − ai)(α− γt′0).

As w(t0−ai) > 0, we deduce that if w(t′0−a′i) ≤ 0, then w(α−γt′0) < 0, which

implies that w(t′0 − a′i) = w(t′0) ≤ w(γt′0) = w(α− γt′0), a contradiction. �

9.2.4. Additive combinatorics. The most significant result towards Con-

jecture 9.1 is the following theorem, whose proof relies on the methods initiated

by Green and Tao.

Theorem 9.14 (Matthiesen [Mat15]). Conjecture 9.1 holds when k =

k1 = · · · = kn = Q.

Proof. By Remarks 9.3(ii) and (iii), we may assume that ai is a unit

outside S for all i. For N ∈ N, let (α, β, γ, δ) = (r2N , 0, 0, rN ), where r

denotes the product of the primes belonging to S. Letting N be a large enough

multiple of
∏n
i=1[Li : Q], we may assume, by Lemma 9.13, that ai, bi ∈ Z for

all i ∈ {1, . . . , n}, that v(tv) ≥ 0 for every prime v ∈ S, that bi(tv − ai) is the

norm of an integral element of Li ⊗Q Qv for every i ∈ {1, . . . , n} and every

prime v ∈ S and that S is large enough for the main theorem of [Mat15] to be

applicable. Let t2 ∈ Q be arbitrarily close to tv for v ∈ S. We write t2 = λ2/µ2

with λ2, µ2 ∈ Z. Using strong approximation, we choose α ∈ Q arbitrarily close

to 1/µ2 at the finite places of S, integral outside S and such that αµ2 > 0.

The pair (λ1, µ1) = (αλ2, αµ2) belongs to Z2. It lies arbitrarily close

to (tv, 1) at the finite places of S. Moreover, λ1/µ1 is arbitrarily close to tv
at the real place v of Q, and bi(λ1 − aiµ1), for every i, is a local integral

norm from Li at the finite places of S and a local norm from Li ⊗Q R.

Matthiesen’s theorem [Mat15] applied to the linear forms fi(λ, µ) = bi(λ−aiµ)

∈ Z[λ, µ] for i ∈ {1, . . . , n} and to the vector (λ1, µ1) ∈ Z2 therefore produces

a pair (λ0, µ0) ∈ Z2 arbitrarily close to (λ1, µ1) at the finite places of S,

such that λ0/µ0 is arbitrarily close to λ1/µ1 at the real place and such that
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bi(λ0−aiµ0), for every i, is squarefree outside S and is the norm of an integral

element of Li. The rational number t0 = λ0/µ0 then satisfies all of the desired

conclusions. Indeed, if v is a prime not in S such that v(t0−ai) > 0 for some i,

then, as v(bi) = 0 and v(µ0) ≥ 0, we must have v(bi(λ0 − aiµ0)) = 1, which

implies that Li possesses a place of degree 1 over v since bi(λ0−aiµ0) is a local

integral norm from Li at v and Li/Q is unramified at v. �

9.2.5. Sieve methods. Reformulating the work of Irving [Irv14], which

rests on sieve methods, yields the first known case of Conjecture 9.2 for which∑n
i=1[ki : k] ≥ 4 and ki 6= k for some i. (Here the extensions Li/ki are once

again almost abelian.)

Theorem 9.15. Let K/Q be a cubic extension. Let q ≥ 7 be a prime

number. If K has a unique real place and does not embed into the cyclotomic

field Q(ζq), then Conjecture 9.2 holds for n=2, k=Q, k1 =K , L1 =K(21/q),

k2 =Q and L2 =Q(21/q).

Proof. Let a1, a2, b1, b2, S and (tv)v∈S satisfy the hypotheses of Conjec-

ture 9.2. When v is the real place of Q, we also denote tv by t∞.

Lemma 9.16. By a change of coordinates on P1
k, we may assume, in order

to prove Theorem 9.15, that

b2t∞ < b2a1 < b2a2(9.3)

at any real place of K .

Proof. We choose β ∈ Q such that b2(a2 + β) > 0. After enlarging S, we

may assume, by Remark 9.3(iii), that a1 + β and a2 + β are units outside S.

Then, using weak approximation, we let δ ∈ Q be arbitrarily large at the finite

places of S, arbitrarily close to (but distinct from) a2 at the real place of Q, and

such that δ−a2 has the same sign as (t∞−a1)(t∞−a2)(a2−a1) at the unique

real place of K. By choosing δ large enough at the finite places of S, we may

assume that the image of (δ+β)/(δ−tv) in ki⊗QQv is a norm from (Li⊗QQv)
∗

for all i and all v ∈ S. (At the real place, this condition is empty.) Setting

α = 1 and γ = −1, all of the hypotheses of Lemma 9.13 are now satisfied. In

the notation of that lemma, it is straightforward to check that b′2(t′∞ − a′1) <

0 < b′2(a′2 − a′1) at the real place of K. We may therefore replace ai, bi, S and

(tv)v∈S with a′i, b
′
i, S

′ and (t′v)v∈S′ and assume that (9.3) holds. �

Let c be a nonzero integer such that the binary cubic form

f(x, y) = cqNK/Q

(
b1

Ç
(a2 − a1)x+

1

b2
y

å)
(9.4)

has integral coefficients and the coefficient of x3 is positive. By Remark 9.3(iii),

we may assume, after enlarging S, that a1 is integral outside S, that the
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coefficients of x3 and of y3 and the discriminant of the polynomial f(x, 1) are

units outside S and that S contains all of the primes less than or equal to the

constant denoted by P1 in [Irv14]. (See the end of §2 in op. cit.)

Let τ ∈ Q be arbitrarily close to tv at the finite places of S. We choose

integers λ, µ such that

µ

λ
= b2(τ − a2)(9.5)

and such that λ is a q-th power. We then have

f(λ, µ)

λ3
= cqNK/Q(b1(τ − a1)).(9.6)

The hypothesis of Conjecture 9.2 implies that bi(τ − ai) is a local norm in

Li/ki at the places of S for i ∈ {1, 2}. As λ is a q-th power, it follows, in

view of (9.5) and (9.6), that µ and f(λ, µ) are local norms in Q(21/q)/Q at the

places of S. Note, furthermore, that the real roots of the polynomial f(x, 1)

are negative, by the assumption made in Lemma 9.16. We are therefore in the

situation considered in [Irv14, §3–6] (the integers a0, b0 of loc. cit. being our

λ, µ). Irving proves in [Irv14] the existence of positive integers x0, y0 with

(x0, y0) arbitrarily close to (λ, µ) at the finite places of S, such that y0f(x0, y0)

has no prime factor p /∈ S with p ≡ 1 mod q. In particular, 2 is a q-th power

in Fp for any prime factor p /∈ S of y0f(x0, y0); hence, for any such p and any

place w of K dividing p, the number field L1 (resp. L2) possesses a place of

degree 1 over w (resp. over p).

The unique solution t0 ∈ Q to the equation

(9.7)
y0

x0

= b2(t0 − a2)

is arbitrarily close to tv for v ∈ S ∩ Ωf and satisfies

(9.8)
f(x0, y0)

x3
0

= cqNK/Q(b1(t0 − a1)).

As x0 and y0 are positive, we deduce from (9.3) and (9.7) that b2t∞ < b2a1 <

b2a2 < b2t0. Assertion (1′) of Conjecture 9.2 follows. For any finite place v /∈ S
such that v(t0 − a2) > 0, we have v(y0) > 0, so that L2 possesses a place of

degree 1 over v. Let now w be a finite place of K above a place v /∈ S of Q, such

that w(t0−a1) > 0. We remark that t0 must be integral at p since a1 is integral

above p. As a consequence t0−a1 is integral at every place of K dividing v. It

follows that v(NK/Q(b1(t0 − a1))) > 0 and hence v(f(x0, y0)) > 0, so that L1

possesses a place of degree 1 over w according to the previous paragraph. �

9.3. Consequences for rational points in fibrations. All of the results on

rational points contained in this paper will be deduced from the following theo-

rem. We adopt Poonen’s notation V (Ak)• =
∏
v∈Ωf

V (kv)×
∏
v∈Ω∞ π0(V (kv))

for any proper variety V over a number field k (see [Sto07, §2]).
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Theorem 9.17. Let X be a smooth, irreducible variety over a number

field k, endowed with a morphism f : X → P1
k with geometrically irreducible

generic fiber. Assume that every fiber of f contains an irreducible component

of multiplicity 1. Let U ⊆ P1
k be a dense open subset over which the fibers

of f are split, with ∞ ∈ U . Let B ⊆ Br(f−1(U)) be a finite subgroup. Let

(xv)v∈Ω ∈ X(Ak) be orthogonal to (B + f∗ηBr(η)) ∩ Br(X) with respect to the

Brauer–Manin pairing.

Let M ′ be a nonempty subset of P1
k \ U containing all of the points above

which the fiber of f is not split, large enough that for each m ∈ M ′′ =

(P1
k \ U) \M ′, the map

(9.9) Br
Ä
P1
k \ (M ′ ∪ {m})

ä
−→ H1(k(m),Q/Z)

which sends a class to its residue at m is surjective. Let P1, . . . , Pn ∈ k[t]

denote the irreducible monic polynomials which vanish at the points of M ′.

Assume Conjecture 9.1 for P1, . . . , Pn. (Respectively assume Conjecture 9.2

for P1, . . . , Pn and assume that either M ′′ = ∅ and f is proper or k is totally

imaginary.)

Then there exist c ∈ U(k) and (x′v)v∈Ω ∈ Xc(Ak) such that Xc is smooth

and (x′v)v∈Ω is orthogonal to B with respect to the Brauer–Manin pairing and

is arbitrarily close to (xv)v∈Ω in X(Ak) (resp. in X(Ak)•).

Remarks 9.18. (i) The reader who is willing to assume Conjectures 9.1 and

9.2 for the whole collection of polynomials vanishing on the points of P1
k \ U

may take M ′ = P1
k \ U . This makes the hypothesis on (9.9) trivially satisfied

and also leads to simplifications in the proof of Theorem 9.17.

(ii) The map (9.9) is surjective for any m as soon as M ′ contains a rational

point or k is totally imaginary. This follows from the Faddeev exact sequence

(see [CTSD94, §1.2]), in view of the surjectivity of the corestriction map

H1(k′,Q/Z) → H1(k,Q/Z) for any finite extension k′/k of totally imaginary

number fields. (See [Gra03, Note, p. 327], and note that H1(k,Q/Z) is

Pontrjagin dual to the group denoted Ck/Dk in loc. cit.)

(iii) Write M ′ = {m1, . . . ,mn} and ki = k(mi). When B = 0, the finite

extension Li/ki to which Conjectures 9.1 and 9.2 are applied in the proof below

can be taken for every i ∈ {1, . . . , n} to be the algebraic closure of ki in the

function field of an irreducible component of multiplicity 1 of f−1(mi).

Proof of Theorem 9.17. Let us write M ′ = {m1, . . . ,mn} and M ′′ =

{mn+1, . . . ,mN}, with N = n when M ′′ = ∅. For each i ∈ {1, . . . , N}, let

ki = k(mi) and Xi = f−1(mi), choose an irreducible component Yi ⊆ Xi of

multiplicity 1, with the requirement that Yi should be geometrically irreducible

over ki whenever i > n, and choose a finite abelian extension Ei/k(Yi) such

that the residue of any element of B at the generic point of Yi belongs to the

kernel of the restriction map H1(k(Yi),Q/Z)→ H1(Ei,Q/Z).
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Thanks to our assumption on (9.9), for each i ∈ {n + 1, . . . , N}, we can

choose a finite subgroup Γi ⊂ Br
(
P1
k \ (M ′ ∪ {mi})

)
which surjects, by the

residue map at mi, onto the kernel of the restriction map H1(ki,Q/Z) →
H1(Ei,Q/Z). Put Γ =

∑N
i=n+1 Γi ⊂ Br(U).

For i ∈ {1, . . . , N}, let Ki denote the algebraic closure of ki in Ei. For

i ∈ {n+ 1, . . . , N}, set Li = K ′i = Ki, and note that this is an abelian

extension of ki as ki is algebraically closed in k(Yi) for such values of i.

For i ∈ {1, . . . , n}, fix a finite abelian extension K ′i of ki such that the

residue at mi of any element of Γ belongs to the kernel of the restriction

map H1(ki,Q/Z) → H1(K ′i,Q/Z), and let Li/ki be a compositum of the

extensions Ki/ki and K ′i/ki. Finally, choose a finite extension L∞/k such that

the fields L1, . . . , LN embed k-linearly into L∞.

Let C0 = U \{∞}. Let X0 = f−1(C0). Let Pic+(P1
k) and Br+(P1

k) denote

the groups associated in Definition 2.1 to the curve P1
k, to the finite set M =

{m1, . . . ,mN ,∞} ⊂ P1
k and to the finite extensions L1/k1, . . . , LN/kN , L∞/k.

By Remark 2.2(ii), the subgroup B+f∗Br+(P1
k) ⊆ Br(X0) is finite modulo

the inverse image of Br(k). Thus, by Harari’s formal lemma, there exists

(x′′v)v∈Ω ∈ X0(Ak) orthogonal to B + f∗Br+(P1
k) with respect to (1.5) and

arbitrarily close to (xv)v∈Ω in X(Ak) (see [CT03, Th. 1.4]). By the inverse

function theorem, we may assume that x′′v belongs to a smooth fiber of f for

each v. As (x′′v)v∈Ω is orthogonal to f∗Br+(P1
k), the class of (f(x′′v))v∈Ω in

Pic+,A(P1
k) is orthogonal to Br+(P1

k) with respect to the pairing (2.4). By

Theorem 2.5, we deduce that there exists a divisor c1 ∈ Div(C0), necessarily

of degree 1, whose class in Pic+,A(P1
k) coincides with that of (f(x′′v))v∈Ω. As

Pic+(P1
C) = Pic(P1

C) = Z and deg(c1) = deg(f(x′′v)), the classes of c1 and

of f(x′′v) in Pic+(P1
kv

) must in fact be equal for all v ∈ Ω, finite or infinite.

Let us write A1
k = Spec(k[t]). For v ∈ Ω, let tv ∈ kv denote the value

of t at f(x′′v) ∈ A1
kv

. For i ∈ {1, . . . , N}, let ai ∈ ki denote the value of t

at mi ∈ A1
k. Evaluating the invertible function t − ai ∈ Gm(C0 ⊗k ki) along

the divisor −c1⊗kki ∈ Div(C0⊗kki) yields an element of k∗i which we denote bi
(see [Ser75, Ch. III, §1.1]).

Lemma 9.19. For every i ∈ {1, . . . , N} and every v ∈ Ω, there exists

xi,v ∈ (Li⊗k kv)∗ such that the equality bi(tv−ai) = NLi⊗kkv/ki⊗kkv(xi,v) holds

in ki ⊗k kv .

Proof. For any i, any v and any place w of ki dividing v, we must show

that bi(tv − ai), as an element of (ki)w, is a norm from Li ⊗ki (ki)w. Let

us fix i, v and w. As the classes of c1 and of f(x′′v) in Pic+(P1
kv

) are equal,

there exists a rational function hv ∈ kv(t)
∗ such that div(hv) = f(x′′v) − c1

and such that the value of hv at any (ki)w-point of mi ∪ {∞} is a norm

from Li ⊗ki (ki)w. (Recall that Li embeds into L∞.) Thus, evaluating hv
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along the divisor of the rational function t− ai on P1
(ki)w

yields an element of

NLi⊗ki (ki)w/(ki)w
((Li⊗ki (ki)w)∗). By Weil’s reciprocity law (see [Ser75, Ch. III,

§1.4, Prop. 7]), the lemma follows. �

Let S be a finite set of places of k containing the infinite places of k, the

places at which we want to approximate (xv)v∈Ω and the finite places above

which, for some i, either bi is not a unit or Li/ki is ramified. We choose S

large enough that the order of B is invertible in OS , that β(x′′v) = 0 for all

v ∈ Ω\S and all β ∈ B+f∗Γ, that X extends to a smooth scheme X over OS
and that f : X → P1

k extends to a flat morphism f : X → P1
OS

. For m ∈ P1
k,

let ‹m denote the Zariski closure of m in P1
OS

. For each i, let Xi and Yi
denote the Zariski closures of Xi and Yi in X , endowed with the reduced

scheme structures, let Y 0
i ⊆ Yi be a dense open subset and let Ei denote the

normalisation of Y 0
i in the finite extension Ei/k(Yi). By shrinking Y 0

i , we may

assume that Ei is finite and étale over Y 0
i and that Y 0

i is smooth over OS . Let

U = P1
OS
\
Ä⋃N

i=1 ‹mi

ä
. Finally, for i ∈ {n+ 1, . . . , N}, let Gi = Gal(Ei/k(Yi))

and Hi = Gal(Ei/k(Yi)Ki) ⊆ Gi.
After enlarging S, we may assume that B ⊆ Br(f−1(U )), that Γ ⊆

Br(U ), that the Zariski closure M̃ of M in P1
OS

is étale over OS and, by

the Lang–Weil–Nisnevich bounds [LW54], [Nis54] and by a geometric version

of Chebotarev’s density theorem [Eke90, Lemma 1.2], that the following

statements hold:

• the fiber of f above any closed point of U contains a smooth rational point;

• for any i ∈ {1, . . . , n} and any place w of ki which does not lie above a place

of S, if Li possesses a place of degree 1 over w then the fiber of Ei → ‹mi

above the closed point corresponding to w contains a rational point;

• for any i ∈ {n + 1, . . . , N}, the closed fibers of Y 0
i → ‹mi contain rational

points;

• for any i ∈ {n + 1, . . . , N} and any place w of ki which splits completely

in Li and which does not lie above a place of S, any element of Hi can

be realised as the Frobenius automorphism of the irreducible abelian étale

cover Ei → Y 0
i at some rational point of the fiber of Y 0

i → ‹mi above the

closed point corresponding to w.

Using Chebotarev’s density theorem, let us fix pairwise distinct places

vn+1, . . . , vN ∈ Ω \ S such that vi splits completely in Li for each i. For each

i ∈ {n+ 1, . . . , N}, let us also fix a place wi of ki lying over vi and an element

tvi ∈ kvi such that wi(tvi − ai) = 1.

Thanks to Lemma 9.19, we may apply Conjecture 9.1 (resp. Conjec-

ture 9.2) to the polynomials P1, . . . , Pn, to the finite extensions Li/ki for

i ∈ {1, . . . , n} and to the set of places S′ = S ∪ {vn+1, . . . , vN}: there exists
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t0 ∈ k satisfying conditions (1) and (2) (resp. (1′) and (2)) of Section 9.1,

arbitrarily close to tvi for i ∈ {n+ 1, . . . , N}.
Let c ∈ P1(k) denote the point with coordinate t0. As at least one x′′v

belongs to a smooth fiber of f above U , we may assume that c ∈ U(k)

and that Xc is smooth. By the inverse function theorem, for each v ∈ S

(resp. v ∈ S∩Ωf ), we can choose x′v ∈ Xc(kv) arbitrarily close to x′′v . In the case

in which only Conjecture 9.2 is assumed to hold for P1, . . . , Pn, let us define x′v
for v ∈ Ω∞. If v is complex, we let x′v be an arbitrary point of Xc(kv). If v is

real, then k is not totally imaginary; recall that we have assumed, in this case,

thatM ′′ = ∅ and that f is proper. AsM ′′ = ∅, condition (1′) of Conjecture 9.2

implies that c and f(x′′v) belong to the same connected component of U(kv).

As f is flat and proper, the map f−1(U)(kv) → U(kv) induced by f is open

and closed, so that it maps any connected component of f−1(U)(kv) onto a

connected component of U(kv). Thus, we can choose x′v ∈ Xc(kv) such that x′′v
and x′v belong to the same connected component of f−1(U)(kv).

Let us now construct x′v for v ∈ Ω \ S.

For v ∈ Ω \ S, let w ∈ P1
OS

denote the closed point w = c̃ ∩ P1
Fv

. For

i ∈ {1, . . . , N}, we define Ωi to be the set of places v ∈ Ω\S such that w ∈ ‹mi.

The sets Ωi are finite and pairwise disjoint. When v ∈ Ωi, we may view w as a

place of ki dividing v; we then have w(t0− ai) > 0. For i > n, we may assume

that wi(t0−ai) = 1, and hence that vi ∈ Ωi, by choosing t0 close enough to tvi .

For each v ∈ Ω\S which does not belong to any Ωi, we use Hensel’s lemma

to lift an arbitrary smooth rational point of f−1(w) to a kv-point x′v of Xc. For

each i ∈ {1, . . . , n} and each v ∈ Ωi, the field Li possesses a place of degree 1

over w, by condition (2) of Conjecture 9.1. Therefore the fiber of Ei → ‹mi

above w contains a rational point. We fix any such rational point, let ξw,i
denote its image in Y 0

i and use Hensel’s lemma to lift ξw,i to a kv-point x′v
of Xc. For each i ∈ {n+ 1, . . . , N} and each v ∈ Ωi \ {vi}, we fix an arbitrary

rational point ξw,i of the fiber of Y 0
i → ‹mi above w and again lift it to a

kv-point x′v of Xc.

We have now defined x′v for all v ∈ Ω \ {vn+1, . . . , vN}. Let us finally

construct x′v at the remaining places. For i ∈ {1, . . . , N} and v ∈ Ωi, let

nw,i = w(t0 − ai). For i ∈ {n+ 1, . . . , N}, let σi =
∑
v∈Ωi\{vi} nw,iFrξw,i ∈ Gi,

where Frξw,i denotes the Frobenius automorphism of the irreducible abelian

étale cover Ei → Y 0
i at ξw,i.

Lemma 9.20. For each i ∈ {n+ 1, . . . , N}, we have σi ∈ Hi.

Proof. Let us fix i ∈ {n+ 1, . . . , N}. Let γ denote an element of Γi. As c

is arbitrarily close to f(x′′v) for v ∈ S ∩ Ωf , as c and f(x′′v) belong to the

same connected component of U(kv) for v ∈ Ω∞, as
∑
v∈Ω invv γ(f(x′′v)) = 0

and as γ(f(x′′v)) = 0 for v ∈ Ω \ S, we have
∑
v∈S invv γ(c) = 0. As
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γ∈Br(U ) and Br(Ov) = 0 for any finite place v, we have invv γ(c) = 0 for

v ∈ Ω \ (S ∪ Ω1 ∪ · · · ∪ ΩN ). For j ∈ {1, . . . , N} and v ∈ Ωj , we have

(9.10) invv γ(c) = nw,j ∂γ,mj (Frw),

where ∂γ,mj ∈ Ker
Ä
H1(kj ,Q/Z) → H1(K ′j ,Q/Z)

ä
= Hom(Gal(K ′j/kj),Q/Z)

is the residue of γ at mj and Frw ∈ Gal(K ′j/kj) denotes the Frobenius at w,

since γ ∈ Br(U ) (see [Har94, Cor. 2.4.3]). By the global reciprocity law, we

deduce from these remarks that

N∑
j=1

∑
v∈Ωj

nw,j ∂γ,mj (Frw) = 0.(9.11)

We have Frw = 0 when j ≤ n and when v = vj since Lj possesses a place of

degree 1 over w in these two cases. Moreover, by the definition of Γi, we have

∂γ,mj = 0 if j > n and j 6= i. All in all, we conclude that

(9.12)
∑

v∈Ωi\{vi}
nw,i∂γ,mi(Frw) = 0

or, in other words, ∂γ,mi(σi) = 0 if σi denotes the image of σi in Gi/Hi =

Gal(Ki/ki). As ∂γ,mi takes all possible values in Hom(Gal(Ki/ki),Q/Z) when

γ ranges over Γi, we conclude that σi = 0. �

By Lemma 9.20 and our hypotheses on S, we can choose, for each

i ∈ {n + 1, . . . , N}, a rational point ξwi,i of the fiber of Y 0
i → ‹mi above wi

such that Frξwi,i
= −σi and hence

(9.13)
∑
v∈Ωi

nw,iFrξw,i = 0

in Gi. We then lift ξwi,i to a kvi-point x′vi of Xc.

We have thus constructed an adelic point (x′v)v∈Ω ∈ Xc(Ak) arbitrarily

close to (xv)v∈Ω in X(Ak) (resp. in X(Ak)•). It remains to check that

(x′v)v∈Ω is orthogonal to B with respect to the Brauer–Manin pairing. By

the orthogonality of (x′′v)v∈Ω to B and by the definition of S, we have∑
v∈S invv β(x′′v) = 0 for all β ∈ B. On the other hand, as x′v is arbitrarily close

to x′′v for v ∈ S∩Ωf and as x′v and x′′v belong to the same connected component

of f−1(U)(kv) for v ∈ Ω∞, we have β(x′′v) = β(x′v) for all v ∈ S and all β ∈ B,

so that
∑
v∈S invv β(x′v) = 0 for all β ∈ B. For v ∈ Ω \ (S ∪Ω1 ∪ · · · ∪ΩN ), we

have β(x′v) = 0 for all β ∈ B since B ⊆ Br(f−1(U )). For v ∈ Ω1 ∪ · · · ∪ Ωn,

the existence of a rational point in the fiber of Ei → Y 0
i above ξw,i implies, by

the same argument as in Lemma 5.9, that β(x′v) = 0 for all β ∈ B. Thus

(9.14)
∑
v∈Ω

invv β(x′v) =
N∑

i=n+1

∑
v∈Ωi

invv β(x′v)
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for all β ∈ B. Now, as β ∈ Br(f−1(U )), we have invv β(x′v) = nw,i∂β,Yi(Frξw,i)

for any β∈B, any i∈{n+ 1, . . . , N} and any v∈Ωi if ∂β,Yi ∈Hom(Gi,Q/Z) ⊂
H1(k(Yi),Q/Z) denotes the residue of β at the generic point of Yi (see [Har94,

Cor. 2.4.3]). In view of (9.13), we conclude that
∑
v∈Ω invv β(x′v) = 0 for all

β ∈ B. �

Remark 9.21. The rather delicate arguments applied in the proof of

Theorem 9.17 to deal with the split fibers f−1(m) for m ∈M ′′ are those used by

Harari in [Har94]. As explained above, these arguments can be avoided entirely

by taking M ′′ = ∅, at the expense of losing some control over the polynomials

to which Conjectures 9.1 and 9.2 are applied in the course of the proof.

Using arguments similar to those of Section 6, we now incorporate a

Hilbert set into the conclusion of Theorem 9.17.

Theorem 9.22. We keep the notation and assumptions of Theorem 9.17.

For any Hilbert subset H ⊆ P1
k, the conclusion of Theorem 9.17 still holds if

the rational point c ∈ U(k) is required, in addition, to belong to H .

Proof. By Lemma 5.3, there exists a finite subgroup B0 ⊂ Br(X) such

that

(B + f∗ηBr(η)) ∩ Br(X) = B0 + f∗Br(k).

Let us fix a rational point h ∈ H ∩ U . Such a point exists by Hilbert’s

irreducibility theorem. Let (xv)v∈Ω ∈ X(Ak) be orthogonal to B0. Let S ⊂ Ω

be a finite subset. We must prove the existence of c ∈ U(k) belonging to H and

of (x′v)v∈Ω ∈ Xc(Ak) orthogonal to B such that x′v is arbitrarily close to xv for

v ∈ S (resp. arbitrarily close to xv for v ∈ S ∩ Ωf and in the same connected

component as xv for v ∈ Ω∞). To this end, we may assume, after enlarging S,

that Xh(kv) 6= ∅ for any v ∈ Ω\S (see [LW54], [Nis54]), that Ω∞ ⊆ S and that

any element of B0 evaluates trivially on X(kv) for any v ∈ Ω\S. For v ∈ Ω\S,

let x′′v be an arbitrary kv-point of Xh. Let x′′v = xv for v ∈ S. By the definition

of B0, the adelic point (x′′v)v∈Ω is orthogonal to (B + f∗ηBr(η)) ∩ Br(X) for

the Brauer–Manin pairing. We may therefore apply Theorem 9.17 to it. The

resulting point c ∈ U(k) will then be arbitrarily close to h in
∏
v∈Ω\S P1(kv),

which implies, by [Sme15, Prop. 6.1], that c ∈ H. �

In the remainder of Section 9.3, we spell out the most significant condi-

tional corollaries of Theorem 9.22.

Corollary 9.23. Let X be a smooth, proper, irreducible variety over a

number field k, endowed with a morphism f : X → P1
k whose geometric generic

fiber Xη̄ is irreducible. Assume that

(1) H1(Xη̄,Q/Z) = 0 and H2(Xη̄,OXη̄) = 0;

(2) every fiber of f contains an irreducible component of multiplicity 1;
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(3) Conjecture 9.1 (resp. Conjecture 9.2) holds ;

(4) there exists a Hilbert subset H ⊆ P1
k such that Xc(k) is dense in

Xc(Ak)
Br(Xc) (resp. in Xc(Ak)

Br(Xc)
• ) for every rational point c of H .

Then X(k) is dense in X(Ak)
Br(X) (resp. in X(Ak)

Br(X)
• ).

Proof. After a change of coordinates on P1
k, we may assume that f−1(∞)

is split. Let U be a dense open subset of P1
k over which the fibers of f are split,

with ∞ ∈ U . After shrinking U , we may assume that U 6= P1
k and that there

exists a finite subgroup B ⊂ Br(f−1(U)) such that B + f∗ηBr(η) = Br(Xη).

Indeed, it follows from (1) that Br(Xη)/f
∗
ηBr(η) is finite (see Lemma 8.6).

By Proposition 4.1, there exists a Hilbert subset H ′ ⊆ U such that the

natural map B → Br(Xc)/f
∗
c Br(k) is surjective for all c ∈ H ′. Applying

Theorem 9.22 to the Hilbert subset H ∩ H ′, to (xv)v∈Ω ∈ X(Ak)
Br(X) and

to any subset M ′ ⊆ P1
k \ U satisfying the hypothesis of Theorem 9.17 (for

instance M ′ = P1
k \ U) produces a rational point c of H ∩H ′ and an element

of Xc(Ak) orthogonal to B, and therefore to Br(Xc), which is arbitrarily close

to (xv)v∈Ω in X(Ak) (resp. in X(Ak)•). In view of (4), we may approximate

in the fiber Xc to conclude the proof. �

Corollary 9.24. Let X be a smooth, proper, irreducible variety over

a number field k, endowed with a morphism f : X → P1
k with geometrically

irreducible generic fiber, such that the hypotheses (1), (2) and (4) of Corol-

lary 9.23 are satisfied and f−1(∞) is split. Let M ′ ⊂ A1
k be a finite closed

subset containing the points with nonsplit fiber. Assume M ′ contains a rational

point or k is totally imaginary. If Conjecture 9.1 holds for the irreducible

monic polynomials which vanish at the points of M ′, then X(k) is dense in

X(Ak)
Br(X).

Proof. Same proof as Corollary 9.23, in view of Remark 9.18(ii). �

Corollary 9.25. Let n ≥ 1. Let X be a smooth, proper, irreducible

variety over a number field k, and let f : X → Pn
k be a dominant morphism

with rationally connected geometric generic fiber. Assume Conjecture 9.1

(resp. Conjecture 9.2) holds. If there exists a Hilbert subset H ⊆ Pn
k such

that Xc(k) is dense in Xc(Ak)
Br(Xc) (resp. in Xc(Ak)

Br(Xc)
• ) for every rational

point c of H , then X(k) is dense in X(Ak)
Br(X) (resp. in X(Ak)

Br(X)
• ).

Proof. We argue by induction on n. If n = 1, Corollary 9.23 applies: its

assumption (1) is satisfied by Lemma 8.6 and by [Deb01, Cor. 4.18(b)] while (2)

follows from the Graber–Harris–Starr theorem [GHS03]. Let us now assume

n > 1. As Pn
k is birationally equivalent to Pn−1

k ×P1
k, we can find a smooth,

proper, irreducible variety X ′ over k, a morphism f ′ : X ′ → Pn−1
k × P1

k

and a Hilbert subset H ′ ⊆ Pn−1
k × P1

k such that the generic fibers of f
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and of f ′ are isomorphic and such that X ′c(k) is dense in X ′c(Ak)
Br(X′c)

(resp. in X ′c(Ak)
Br(X′c)• ) for every rational point c of H ′. Let g : X ′ → P1

k

denote the composition of f ′ with the second projection. Let H1 ⊆ P1
k be

a Hilbert subset satisfying the conclusion of Lemma 8.12 with respect to

the Hilbert subset H ′. After replacing H1 with H1 ∩ U for a small enough

dense open subset U of P1
k, we may assume that for every rational point h

of H1, the variety X ′h = g−1(h) is smooth and irreducible and the morphism

f ′h : X ′h → Pn−1
k is dominant, with rationally connected geometric generic fiber

(see [Kol96, Ch. IV, Th. 3.5.3]). By the definition of H1 and the hypothesis

on H ′, the morphism f ′h : X ′h → Pn−1
k then satisfies all of the assumptions of

Corollary 9.25 if h is a rational point of H1. Thus, by our induction hypothesis,

the set X ′h(k) is dense in X ′h(Ak)
Br(X′h) (resp. in X ′h(Ak)

Br(X′h)
• ) for every

rational point h of H1. Now, according to [GHS03, Cor. 1.3], the geometric

generic fiber of g is a rationally connected variety since it dominates Pn−1 with

rationally connected geometric generic fiber. We may therefore apply the case

n = 1 of Corollary 9.25 to g and conclude that X ′(k) is dense in X ′(Ak)
Br(X′)

(resp. in X ′(Ak)
Br(X′)
• ). The desired result finally follows as X and X ′ are

birationally equivalent and Coker(Br(k) → Br(X)) is finite. (See [CTPS15,

Prop. 6.1(iii)]; for the finiteness assertion, see [CTS13, Lemma 1.3(i)], [Deb01,

Cor. 4.18 (b)], [GHS03, Cor. 1.3].) �

Remark 9.26. In the situation of Corollary 9.23, let us assume that the

generic fiber of f is birationally equivalent to a torsor under a torus T over

the function field of P1
k. In this case, assumptions (1), (2) and (4) are satisfied

(for (4), see [San81]). Thus X(k) is dense in X(Ak)
Br(X) as soon as the

varieties W associated to f in Section 9.2.2 satisfy strong approximation off

any finite place, according to Corollary 9.10. This should be compared with

[Sko15, Th. 1.1], which asserts that when the torus T is defined over k, the

same conclusion can be reached under the sole assumption that the varieties W

satisfy weak approximation.

Combining Theorem 9.17 (with M ′′ = ∅ and B = 0), Theorem 9.6 and

Remark 9.18(iii) also yields the following conditional corollary, which extends

the main results of [CTSSD98, §1] and recovers [Wei14a, Th. 3.5].

Corollary 9.27. Let X be a smooth, proper, irreducible variety over

a number field k, endowed with a morphism f : X → P1
k with geometrically

irreducible generic fiber. We make the following assumptions :

• Schinzel ’s hypothesis (H) holds ;

• for every m ∈ P1
k, the fiber f−1(m) possesses an irreducible component of

multiplicity 1 in the function field of which the algebraic closure of k(m)

is an almost abelian extension of k(m) in the sense of Definition 9.4;
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• the fibers of f above the rational points of a Hilbert subset of P1
k satisfy

weak approximation.

Then X(k) is dense in X(Ak)
Brvert(X/P1

k), where Brvert(X/P
1
k) = Br(X)∩

f∗ηBr(η).

9.4. Some unconditional results. Combining Matthiesen’s Theorem 9.14

with Corollary 9.24 yields the following unconditional result.

Theorem 9.28. Let X be a smooth, proper, irreducible variety over Q

and f : X → P1
Q be a dominant morphism, with rationally connected geometric

generic fiber, whose nonsplit fibers all lie over rational points of P1
Q. Assume

that Xc(Q) is dense in Xc(AQ)Br(Xc) for every rational point c of a Hilbert

subset of P1
Q. Then X(Q) is dense in X(AQ)Br(X).

Theorem 9.28 was previously known when f has a unique nonsplit

fiber (see [Har97]) or when every singular fiber of f contains an irreducible

component of multiplicity 1 split by an abelian extension of Q and the

smooth fibers of f above the rational points of P1
Q satisfy weak approximation

(see [HSW14]).

Thanks to Borovoi’s theorem [Bor96, Cor. 2.5], Theorem 9.28 has the

following corollary, whose statement should be compared with [CT98, Conj. 1].

Corollary 9.29. Let X be a smooth, proper, irreducible variety over Q

endowed with a morphism f : X → P1
Q whose generic fiber is birationally

equivalent to a homogeneous space of a connected linear algebraic group, with

connected geometric stabilisers. If the nonsplit fibers of f lie over rational

points of P1
Q, then X(Q) is dense in X(AQ)Br(X).

Remark 9.30. By the same induction argument as in the proof of Corol-

lary 9.25, it follows from Theorem 9.28 that the statements of Theorem 9.28

and of Corollary 9.29 remain valid when P1
Q is replaced with Pn

Q for some

n ≥ 1 if the nonsplit codimension 1 fibers of f all lie over generic points of

hyperplanes of Pn
Q defined over Q.

Corollary 9.29 applies to the total space of an arbitrary pencil of toric

varieties, as long as the nonsplit members of the pencil are defined over Q.

Thus, Corollary 9.29, together with Remark 9.30, subsumes all of the results

of [BM13], [BMS14], [HSW14, §4], as well as [Sme15, §3.2] and [Sko15,

Cors. 1.2, 1.3]. One should note, however, that Theorem 9.14 builds on the

contents of [BM13], via [Mat15].

Other unconditional results can be obtained by combining Corollary 9.24

with Theorem 9.11. In the following statement, the rank of f is the sum of

the degrees of the closed points of P1
k above which the fiber of f is not split.



ON THE FIBRATION METHOD 287

Theorem 9.31. Let X be a smooth, proper, irreducible variety over a

number field k and f : X → P1
k be a dominant morphism with rationally

connected geometric generic fiber. Assume1 that rank(f) ≤ 2 and that either k

is totally imaginary or the nonsplit fibers of f lie over rational points of P1
k.

If Xc(k) is dense in Xc(Ak)
Br(Xc) for every rational point c of a Hilbert subset

of P1
k, then X(k) is dense in X(Ak)

Br(X).

Theorem 9.31 is due to Harari [Har94], [Har97] when rank(f) ≤ 1.

Fibrations over P1
k with rank 2 had been dealt with (using the descent method)

in [CTS00, Th. A] under the assumption that the fibers above a Hilbert set

of rational points satisfy weak approximation. Theorem 9.31 relaxes this

assumption when k is totally imaginary. When k is not totally imaginary,

one can recover Theorems A and B of op. cit. by combining Theorem 9.22

(with M ′′ = ∅) and Theorem 9.11. Thus, Theorem 9.31 answers the question

raised at the end of [CT98, §2.2]. The results of [CTS00] were also extended

in [HS03, Th. 2.9] to cover the case of Theorem 9.31 in which the nonsplit fibers

of f lie over rational points of P1
k and are split by prime degree extensions of k.

Finally, we note that the statement obtained by combining Theorem 9.15

(a corollary of Irving’s arguments [Irv14]) with Theorem 9.17 (with M ′′=∅)

recovers the main result of [Irv14] on the existence of solutions to the equation

(1.3) for cubic polynomials P (t), and extends it to general fibrations with the

same degeneration data, under the assumption that the cubic field K possesses

a unique real place.
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Math. Res. Not. 2013 (2013), 665–692. MR 3021795. Zbl 1311.14026.

http://dx.doi.org/10.1093/imrn/rns003.

[Lia14a] Y. Liang, Principe local-global pour les zéro-cycles sur certaines fibra-
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[Nis54] L. B. Nisnevič, On the number of points of an algebraic manifold in a

prime finite field, Dokl. Akad. Nauk SSSR 99 (1954), 17–20. MR 0067526.

Zbl 0057.28101.

[Poo10] B. Poonen, Insufficiency of the Brauer-Manin obstruction applied to

étale covers, Ann. of Math. 171 (2010), 2157–2169. MR 2680407.

Zbl 1284.11096. http://dx.doi.org/10.4007/annals.2010.171.2157.
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