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A complete complex hypersurface
in the ball of CN

By Josip Globevnik

Abstract

In 1977, P. Yang asked whether there exist complete immersed com-

plex submanifolds ϕ : Mk → CN with bounded image. A positive answer is

known for holomorphic curves (k = 1) and partial answers are known for the

case when k > 1. The principal result of the present paper is a construction

of a holomorphic function on the open unit ball BN of CN whose real part

is unbounded on every path in BN of finite length that ends on bBN . A con-

sequence is the existence of a complete, closed complex hypersurface in BN .

This gives a positive answer to Yang’s question in all dimensions k, N, 1 ≤
k < N , by providing properly embedded complete complex manifolds.

1. Introduction and the main result

Denote by ∆ the open unit disc in C and by BN the open unit ball in

CN , N ≥ 2.

In 1977 P. Yang asked whether there exist complete immersed complex

submanifolds ϕ : Mk → CN with bounded image [Yan77b], [Yan77a]. The first

answer was obtained by P. Jones [Jon79] who constructed a bounded com-

plete immersion ϕ : ∆ → C2 and a complete proper holomorphic embedding

ϕ : ∆→ B4. Since then there has been a series of results on bounded complete

holomorphic curves (k = 1) immersed in C2 [MUY09], [AL13], [AF13] the most

recent being that every bordered Riemann surface admits a complete proper

holomorphic immersion to B2 and a complete proper holomorphic embedding

to B3 [AF13]. The more difficult complete embedding problem for k = 1 and

N = 2 has been solved only very recently by A. Alarcón and F. J. López [AL]

who proved that every convex domain in C2 contains a complete, properly

embedded complex curve.

In the present paper we are interested primarily in the higher dimensional

case (k > 1) where there are partial answers that are easy consequences of

the results for complete curves. For instance, it is known that for any k ∈ N,

there are complete bounded embedded complex k-dimensional submanifolds of
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C2k, and it is an open question whether, in this case, N = 2k is the minimal

possible dimension [AL]. In the present paper we consider the case where ϕ is

a proper holomorphic embedding. In this case ϕ(Mk) is a closed submanifold.

We restate the definition of completeness for this case:

Definition 1.1. A closed complex submanifold M of BN is complete if

every path p : [0, 1)→M such that |p(t)| → 1 as t→ 1 has infinite length.

Note that this coincides with the standard definition of completeness since

the paths p : [0, 1) → M such that |p(t)| → 1 as t → 1 are precisely the paths

that leave every compact subset of M as t→ 1.

Here is our main result.

Theorem 1.1. Let N ≥ 2. There is a holomorphic function f on BN
such that <f is unbounded on every path of finite length that ends on bBN .

So our function f has the property that if p : [0, 1]→ BN is a path of finite

length such that |p(t)| < 1 (0 ≤ t < 1) and |p(1)| = 1, then t → <
Ä
f(p(t)

ä
is

unbounded on [0, 1).

The following corollary answers the question of Yang in all dimensions k

and N by providing properly embedded complete complex manifolds.

Corollary 1.2. For each k,N, 1 ≤ k < N, there is a complete, closed,

k-dimensional complex submanifold of BN .

Proof. We first prove the corollary for k = N − 1; that is, we first prove

the existence of the hypersurface mentioned in the title. Let f be the function

given by Theorem 1.1. By Sard’s theorem one can choose c ∈ C such that

the level set M = {z ∈ BN : f(z) = c} is a closed submanifold of BN . Let

p : [0, 1) → M be a path such that p(t) → bBN as t → 1. Assume that p

has finite length. Then there is a point w on bBN such that limt→1 p(t) = w.

By the properties of f , <f is unbounded on p([0, 1)). On the other hand,

f((p(t)) = c (0 ≤ t < 1), a contradiction. So p must have infinite length.

This proves that M is complete and so completes the proof of the corollary

for k = N − 1. Assume now that 1 ≤ k ≤ N − 2. By the first part of the

proof there is a complete, closed, k-dimensional complex submanifold M of

Bk+1 ⊂ BN . Clearly M is a complete, closed k-dimensional manifold of BN .

This completes the proof. �

Remark. If we want to have a connected, complete closed complex sub-

manifold of BN , then we simply take a connected component of M as above.

Note also that the same function f gives many complete closed complex mani-

folds of BN since, by Sard’s theorem, one can use the same reasoning for almost

every c in the range of f .
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2. Outline of the proof of Theorem 1.1

Let M ∈ N. For x ∈ RM \ {0} and α ∈ R, write

H(x, α) = {y ∈ RM : 〈y|x〉 = α}, K(x, α) = {y ∈ RM : 〈y|x〉 ≤ α}.
Assume that xi ∈ RM \ {0} (1 ≤ i ≤ n) and that

(2.1) P =
n⋂
i=1

K(xi, 1)

is a bounded set. Then P is a convex polytope, that is, the convex hull of a finite

set. So P is a compact convex set that contains the origin in its interior. A

convex subset F of P is called a face of P if any closed segment with endpoints

in P whose relative interior meets F is contained in F . A k-face is a face

F with dimF = k; that is, the affine hull of F is k-dimensional. A face of

dimension M − 1 is called a facet of P . Let P be a convex polytope such that

the representation (2.1) is irreducible; that is,

P 6=
n⋂

i=1,i 6=k
K(xi, 1) for each k, 1 ≤ k ≤ n.

Then

bP =
n⋃
i=1

H(xi, 1) ∩ P

and the sets Fi = H(xi, 1) ∩ P, 1 ≤ i ≤ n, are precisely the facets of P . See

[Brø83] for the details.

Given a convex set G, denote by ri(G) the relative interior of G in the

affine hull of G. What remains of the boundary of a convex polytope P after

we have removed relative interiors of all facets Fi, 1 ≤ i ≤ n, we call the

skeleton of P (or more precisely, the (M − 2)-skeleton of P , the union of all

(M − 2)-dimensional faces of P ) and denote by skel(P ). Thus

skel(P ) =
n⋃
i=1

î
Fi \ ri(Fi)

ó
.

To prove Theorem 1.1 we first prove

Theorem 2.1. Let B be the open unit ball of RM , M ≥ 3. There is a

sequence of convex polytopes Pn, n ∈ N, such that

P1 ⊂ IntP2 ⊂ P2 ⊂ IntP3 ⊂ · · · ⊂ B,
∞⋃
j=1

Pj = B,

such that if wj ∈ skel(Pj) (j ∈ N), then

(2.2)
∞∑
j=1

|wj+1 − wj | =∞;

that is, the series in (2.2) diverges.
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In the proof of Theorem 1.1 we shall use the following

Corollary 2.2. Let Pn, n ∈ N be the sequence of convex polytopes from

Theorem 2.1. Let θn be a decreasing sequence of positive numbers such that∑∞
n=1 θn <∞. For each n ∈ N, let Un ⊂ bPn be the θn-neighborhood of skel(Pn)

in bPn; that is, Un = {w ∈ bPn : dist(w, skel(Pn)) < θn}. Let p : [0, 1) → B
be a path such that |p(t)| → 1 as t → 1 and such that for all sufficiently large

n ∈ N, p([0, 1)) meets bPn only at Un. Then p has infinite length.

Once we have proved Corollary 2.2 we prove Theorem 1.1 as follows. Let

BN be the open unit ball of CN , N ≥ 2. Let Pn, n ∈ N, be a sequence of

convex polytopes as in Theorem 2.1 with M = 2N , and let Un, n ∈ N, be as

in Corollary 2.2. Given εn > 0 and Ln < ∞ we use an idea from [GS82] to

construct a function fn, holomorphic on BN , such that |fn| < εn on Pn−1 and

such that <fn > Ln on bPn \ Un. By choosing Ln and εn inductively in the

right way, we then see that f =
∑∞
n=1 fn has all the required properties.

3. Beginning of the proof of Theorem 2.1

Let wn be a sequence in B such that |wn| → 1 as n → ∞. If wn does

not converge, then (2.2) holds, and so to prove Theorem 2.1 it is enough to

consider only the convergent sequences wn.

First, we try to explain the idea of the most important part of the proof.

Suppose for a moment that we have a sequence Pn of convex polytopes with

the desired properties and that there is an increasing sequence Rn of positive

numbers converging to 1 such that

bPn ⊂ RnB \Rn−1B (n ∈ N).

Let W = U × (1− ν, 1 + ν) be a small open neighborhood of z = (0, 0, . . . , 0, 1)

in RM , where U is a small open ball in RM−1 centered at the origin and ν > 0

is small. Assume that U × {1− ν} ⊂ R1B.

Let π be the orthogonal projection onto RM−1, so

π(x1, . . . , xM ) = (x1, . . . , xM−1).

For each n, consider Cn, the part of bPn ∩W consisting of the facets of Pn
contained in W . The projection π is one-to-one on Cn, and for each of these

facets, its image under π is a convex polytope in U that is a cell of a partition of

π(Cn) into convex polytopes. Call this partition Ln, and notice that as n→∞,

π(Cn) tends to U . If we remove from each cell of Ln its relative interior, then we

get what we call the skeleton of Ln, denoted by skel(Ln). Clearly π(skel(Pn)∩
Cn) = skel(Ln). Since, by our assumption at the moment, every sequence

wn contained in W that meets skel(Pn) for all sufficiently large n must satisfy

(2.2), looking at zn = π(wn) we conclude that every sequence zn ∈ U such that
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zn ∈ skel(Ln) for all sufficiently large n must satisfy
∑∞
n=1 |zn+1 − zn| = ∞.

The idea now is to reverse the direction of reasoning. Let R0 be so close to

1 that U × {1 − ν} ⊂ R0B. In a typical induction step of constructing our

polytopes the data will be a partition L of RM−1 into convex polytopes and ρ

and r, R0 < ρ < r < 1. Denote by C the union of those cells of the partition L
that are contained in U , and let V be the set of their vertices. We will “lift”

V to b(rB) by putting V = (π|W ∩ b(rB))−1(V). We want V to be the set of

vertices of a convex polyhedral surface C such that π(C) = C and such that π

maps the facets of C precisely onto the cells of C. We will do this in such a way

that C stays out of ρB — for this, the cells of C, and consequently the cells

of C will have to be sufficiently small, of size proportional to
√
r − ρ. Then we

will construct a convex polytope P such that C will be a part of its boundary

bP and such that ρB ⊂ IntP ⊂ P ⊂ rB.

There is a potential problem already at the first step. Namely, the points

of V need not be the vertices of a convex surface C. For this to happen we will

need two things: L will have to be a true Delaunay partition of RM−1, and

the ball U in the definition of W will have to be sufficiently small so that the

part of b(rB) contained in W will be sufficiently flat.

4. A Delaunay tessellation of RM−1

Perturb the canonical orthonormal basis in RM−1 a little to get an (M−1)-

tuple of vectors e1, e2, . . . , eM−1 in general position so that the lattice

(4.1) Λ =
{M−1∑
i=1

niei : ni ∈ Z, 1 ≤ i ≤M − 1
}

will be generic and, in particular, no more than M points of Λ will lie on the

same sphere.

For each point x ∈ Λ, there is the Voronei cell V (x) consisting of those

points of RM−1 that are at least as close to x as to any other y ∈ Λ, so

V (x) = {y ∈ RM−1 : dist(y, x) ≤ dist(y, z) for all z ∈ Λ}.

In our case it is easy to see how to get V (0). Consider the finite set E =

{∑M−1
j=1 niei : −1 ≤ ni ≤ 1, 1 ≤ i ≤ M − 1}, and for each x ∈ E \ {0}, look at

K(x, |x|2/2), that is, at the halfspace that contains the origin and is bounded

by the hyperplane passing through x/2 that is perpendicular to x. Then

V (0) =
⋂

x∈E\{0}
K(x, |x|2/2).

This is a convex polytope. It is known that the Voronei cells form a tessellation

of RM−1 and in our case they are all congruent, of the form V (0) + x, x ∈ Λ

[CS88].
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There is a Delaunay cell for each point that is a vertex of a Voronei cell.

It is the convex polytope that is the convex hull of the points in Λ closest to

that point — these points are all on a sphere centered at this point. In our

case, when there are no more than M points of Λ on a sphere, Delaunay cells

are (M − 1)-simplices. Delaunay cells form a tessellation of RM−1 [CS88]. It

is a true Delaunay tessellation; that is, for each cell, the circumsphere of each

cell S contains no other points of Λ than the vertices of S. We shall denote

by D(Λ) the family of all simplices — cells of the Delaunay tessellation for the

lattice Λ.

By periodicity there are only finitely many simplices S1, . . . , S` such that

every other simplex of D(Λ) is of the form Si +w where w ∈ Λ and 1 ≤ i ≤ `.
It is then clear by periodicity that there is an η > 0 such that for every simplex

S ∈ D(Λ) in η-neighborhood of the closed ball bounded by the circumsphere

of S, there are no other points of Λ than the vertices of S.

We shall typically replace the lattice Λ by the lattice Λ+q = {x+q : x ∈ Λ}
where q ∈ RM−1 or, more generally, by the lattice σ(Λ+q) where σ > 0 is small.

Again, we shall denote by D(σ(Λ + q)) the family of all simplices - cells of the

Delaunay tessellation for σ(Λ+q). These are the simplices of the form σ(S+q)

where S ∈ D(Λ). Passing from Λ to σ(Λ + q) everything in the reasoning will

change proportionally. In particular, for every simplex S ∈ D(σ(Λ + q)) in

(ση)-neighborhood of the closed ball bounded by the circumsphere of S, there

will be no other points of σ(Λ + q) than the vertices of S. We shall also need

the notion of the skeleton of the Delaunay tessellation for σ(Λ + q). This is

what remains after we remove the interiors of all S ∈ D(σ(Λ + q)), hence

skel
Ä
D(σ(Λ + q))

ä
=

⋃
S∈D(σ(Λ+q))

î
S \ IntS

ó
= RM−1 \

î ⋃
S∈D(σ(Λ+q))

IntS
ó
.

The author is grateful to John M. Sullivan who suggested the use of a

generic lattice for our purpose here.

5. Lifting the lattice from RM−1 to the sphere

Let z, W = U × (1− ν, 1 + ν) and π be as in Section 3. Let Λ ⊂ RM−1 be

as in (4.1).

Fix R0, 0 < R0 < 1, so large that U × {1 − ν} ⊂ R0B, and assume that

R0 < ρ < r < 1. The part of the sphere b(rB) in W can now be written as a

graph of a real analytic function, call it ψr, so

b(rB) ∩W = {(x, ψr(x)) : x ∈ U},
where

(5.1) ψr(x) = ψr(x1, . . . , xM−1) =
(
r2 −

M−1∑
j=1

x2
j

)1/2
.

Note that (grad ψr)(0) = 0, R0 < r < 1.
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The map π maps W ∩ b(rB) in a one-to-one way onto U . We shall “lift”

(σΛ) from U to b(rB)∩W by the inverse of this map, that is, by the map x 7→
(x, ψr(x)). We want to get a convex polyhedral surface C with vertices w =

(v, ψr(v)), where v are the vertices of those cells of the Delaunay tessellation for

σΛ that are contained in U , and we want that π maps the facets of the surface

C precisely onto the Delaunay cells of σΛ contained in U . Let us describe the

conditions for this to happen. Let S be a simplex of the Delaunay tessellation

for σΛ. Let v1, . . . , vM be the vertices of S. We want that the simplex with

vertices wj = (vj , ψ(vj)), 1 ≤ j ≤M , is a facet of a convex poyhedral surface.

For this to happen, all other points w = (v, ψr(v)), v ∈ σΛ∩U , v 6= v1, . . . , vM ,

must lie in the open halfspace bounded by the hyperplane Π through wj , 1 ≤
j ≤ M , which contains the origin; that is, they must lie on b(rB) outside the

“small” sphere Γ = Π∩ b(rB). Since π|W ∩ b(rB) is one-to-one, this happens if

and only if the points v ∈ σΛ that are the vertices of the Delaunay cells of σΛ

contained in U and are different from v1, . . . , vM , are outside the projection

π(Γ), an ellipsoid in RM−1.

As we shall see, this will happen for all such simplices S if the ball U ⊂
RM−1 centered at the origin is small enough so that the the gradient of ψr and

thus the Lipschitz constant of ψr is small enough on U . The choice of U will

depend only on η from Section 4, and the same reasoning will work for any

σ > 0.

Lemma 5.1. Let π : RM → RM−1 be the standard projection

π(x1, . . . , xM ) = (x1, . . . , xM−1).

Let Λ be the lattice in RM−1 as in (4.1), and let η > 0. There is a constant ω >

0 such that for every σ > 0, the following holds. Let S ⊂ RM−1 be a simplex

belonging to D(σΛ). Suppose that ψ is a Lipschitz function in a neighborhood

of S with Lipschitz constant ≤ ω. Let v1, . . . , vM be the vertices of S, and let

w1, . . . , wM be the points in RM given by wj = (vj , ψ(vj)), 1 ≤ j ≤ M . Let

Π be the hyperplane in RM containing the points w1, . . . , wM and let Γ be the

sphere in Π containing these points ; that is, let Γ be the circumsphere of the

(M − 1)-simplex in Π with vertices w1, . . . , wM . Then π(Γ) is contained in the

(ση)-neighborhood of the circumsphere of the simplex S.

6. Proof of Lemma 5.1

Let S ∈ D(Λ), and let η > 0. If we replace ψ with ψ + c, where c is a

constant, Π will change to Π + (0, c), Γ to Γ + (0, c), and consequently π(Γ)

will not change. Thus, π(Γ) remains unchanged if we subtract ψ(vM ) from

each ψ(vj), 1 ≤ j ≤ M . Thus, π(Γ) will be determined precisely once we

know β1 = ψ(v1) − ψ(vM ), . . . , βM−1 = ψ(vM−1) − ψ(vM ). We shall show

that π(Γ) changes continuously with (β1, · · · , βM−1) near (0, 0, . . . , 0) if w1 =
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(v1, β1), . . . , wM−1 = (vM−1, βM−1) and wM = (vM , 0). Note that when β1 =

· · · = βM−1 = 0, then Γ = π(Γ) is the circumsphere of S in RM−1. Let

w0 = (w01, . . . , w0,M−1, 1) be the vector in RM perpendicular to Π whose last

component equals 1. So w0 must be perpendicular to wj−wM , 1 ≤ j ≤M−1,

so 〈wj − wM |w0〉 = 0 (1 ≤ j ≤ M − 1) which, if vj = (vj1, . . . , vj,M−1), 1 ≤
j ≤M − 1, is the system of linear equations

(vj1 − vM1)w01 + · · ·+ (vj,M−1 − vM,M−1)w0,M−1 = −βj (1 ≤ j ≤M − 1).

This is a system of M−1 linear equations for M−1 unknowns w01, . . . , w0,M−1

whose matrix is nonsingular since, S being a (M − 1)-simplex, the vectors

vj − vM , 1 ≤ j ≤ M − 1, are linearly independent. Its solution depends

linearly on (β1, . . . , βM−1). When β1 = · · · = βM−1 = 0 the solution is the

zero vector. In this case w0 = (0, . . . , 0, 1). Let z = (z1, . . . , zM ) be the center

of the sphere in Π that contains w1, . . . , wM . Then z is in Π, and so

(6.1) 〈z − wM |w0〉 = 0.

Further, for each i, 1 ≤ i ≤M − 1, z is at equal distance from wi and wM , so

z is contained in the hyperplane in RM that passes through the midpoint of

the segment joining wi and wM , and it is perpendicular to this segment, so z

must satisfy

〈[z − (wi + wM )/2]|[wi − wM ]〉 = 0.

Thus,

〈z|[wi − wM ]〉 = (1/2)〈[wi + wM ]|[wi − wM ]〉 (1 ≤ i ≤M − 1).

Together with (6.1) this becomes the following system of linear equations for

z1, . . . , zM :

z1(vi1 − vM1) + · · ·+ zM−1(vi,M−1 − vM,M−1) + zMβi

= (|wi|2 − |wM |2)/2 (1 ≤ i ≤M − 1),

z1w01 + · · ·+ zM−1w0,M−1 + zM = vM1w01 + · · ·+ vM,M−1w0,M−1.

Its matrix 
v11 − vM1 . . . v1,M−1 − vM,M−1 β1

· · ·
vM−1,1 − vM1 . . . vM−1,M−1 − vM,M−1 βM−1

w01 . . . w0,M−1 1


is nonsingular for β1 = · · · = βM−1 = 0 when w01 = · · · = w0,M−1 = 0.

The matrix depends continuously on (β1, . . . , βM−1) and so do the right sides

(1/2)(|vi|2 − |vM |2 + β2
i ), 1 ≤ i,≤ M − 1, and, since w0 depends continu-

ously on (β1, . . . , βM−1), also vM1w01 + · · · + vM,M−1w0,M−1 depends contin-

uously on (β1, . . . , βM−1). So the solution z = (z1, . . . , zM ), the center of

the sphere Γ, depends continuously on (β1, . . . , βM−1) near (0, 0, . . . , 0) and so
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does its radius |z − wM | =
Ä
(z1 − v1)2 + · · · + (zM−1 − vM−1)2 + z2

M )1/2.

Recall that Π passes through wM = (vM , 0) and its perpendicular direc-

tion w0 changes continuously with (β1, . . . , βM−1) so Π changes continuously

with (β1, . . . , βM−1). We have seen that the center z of the sphere Γ in Π

and its radius also change continuously with (β1, . . . , βM−1) near (0, 0, . . . , 0).

Thus, π(Γ) changes continuously with (β1, . . . , βM−1) near the origin where

π(Γ) = Γ is the circumsphere of S when β1 = β2 = · · · = βM−1 = 0.

Thus, π(Γ) is contained in the η-neighborhood of the circumsphere of the

simplex S in RM−1 provided that ψ(v1) − ψ(vM ), . . . , ψ(vM−1) − ψ(vM ) are

small enough. If ψ is a Lipschitz function with the Lipschitz constant ω, then

|ψ(vi)−ψ(vM )| ≤ ω|vi− vM |, 1 ≤ i ≤M − 1, so there is an ω such that if ψ is

a Lipschitz function with the Lipschitz constant not exceeding ω, then π(Γ) is

contained in the η-neighborhood of the circumsphere of the simplex S. Recall

that every simplex in D(Λ) is of the form Si + x, 1 ≤ i ≤ `, x ∈ Λ. Repeating

the reasoning above for each Si, 1 ≤ i ≤ `, we get the Lipschitz constant that

works for every simplex S in D(Λ). This completes the proof for σ = 1.

Now, let σ > 0 be arbitrary and let S ⊂ RM−1 be a simplex in D(σΛ).

Let ψ be a Lipschitz function with Lipschitz constant not exceeding ω in a

neighborhood of S, so its graph is given by xM = ψ(x1, . . . , xM−1). Introduce

new coordinates X1, . . . , XM in RM by xj = σXj , 1 ≤ j ≤ M . In new coor-

dinates we have σXM = ψ(σX1, . . . , σXM−1), so XM = Ψ(X1, . . . , XM−1) =

(1/σ)ψ(σX1, . . . , σXM−1). Both ψ and Ψ are Lipschitz functions with the

same Lipschitz constants, so in new coordinates Ψ is a Lipschitz function in a

neighborhood of S which, in new coordinates, belongs to D(Λ). Thus, apply-

ing the first part of the proof we see that in new coordinates π(Γ) is contained

in the η-neighborhood of the circumsphere of S. In follows that in old coor-

dinates π(Γ) is contained in the (ση)-neighborhood of the circumsphere of S.

This completes the proof.

7. Polyhedral convex surface contained in a spherical shell

Let Λ be as in (4.1), let η > 0 be as in Section 4, and let ω be the

one given by Lemma 5.1. Again let W = U × (1 − ν, 1 + ν), where ν > 0

is small and U is a small open ball centered at the origin in RM−1, and let

R0 < 1 be so large that U × {1 − ν} ⊂ R0B. For every r, R0 < r < 1,

W ∩ b(rB) = {(x, ψr(x)) : x ∈ U}, where the function ψr is as in (5.1). We

have (grad(ψr))(x) = −(r2 − |x|2)−1/2x (x ∈ U) so we may, passing to a

smaller U if necessary, assume that |(gradψr)(x)| ≤ ω (x ∈ U, R0 < r < 1) so

that for each r, R0 < r < 1, ψr is a Lipschitz function on U with Lipschitz

constant not exceeding ω.

Let σ > 0 be small, and let R0 < r < 1. Let ψr be as in (5.1). Then

x 7→ Ψr = (x, ψr(x)) is a one-to-one map from U onto W ∩ b(rB). We now
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look at the points Ψr(x), x ∈ (σΛ) ∩ U and want to see them as vertices of a

convex polyhedral hypersurface in RM .

Consider a simplex S ∈ D(σΛ) that is contained in U . Let v1, . . . , vM be

its vertices. We can extend the restriction of the function ψr to this set of

vertices to a function ϕr on all S by putting

ϕr
( M∑
j=1

αjvj
)

=
M∑
j=1

αjψr(vj)
(
0 ≤ αj ≤ 1, 1 ≤ j ≤M,

M∑
j=1

αj = 1
)

to get an affine function ϕr on S so that x 7→ Φr(x) = (x, ϕr(x)) is an affine

map mapping S to Φr(S), the simplex with vertices Ψr(v1), . . . ,Ψr(vM ). We

do this for every simplex S ∈ D(σΛ) that is contained in U . Thus, we get a

piecewise linear function ϕr on the union of the simplices S ∈ D(σΛ) contained

in U and so the union Cr(σ) of all these Φr(S), the graph of the function ϕr, is

then a polyhedral surface in RM . We shall show that the function ϕr is convex

so that Cr(σ) is a convex polyhedral surface. Later we shall show that the part

of Cr(σ) contained in W0 = U0 ∩ (1− ν, 1 + ν) with U0 being a ball in RM−1

centered at the origin, strictly smaller than U , is a part of the boundary bP of

a suitable convex polytope P .

Given S ∈ D(σΛ), S ⊂ U , let Π be the hyperplane in RM that contains

Φr(S). Then Π ∩ b(rB) is the sphere in Π that is the circumsphere of Φr(S),

which was denoted by Γ in Section 5. By Lemma 5.1, π(Γ) is contained in

the (ση)-neighborhood of the circumsphere of S in RM−1. We know that the

ση-neighborhood of the closed ball in RM−1 bounded by the circumsphere of

S contains no other points of σΛ than the vertices of S, which implies that all

points of Ψr(U ∩ (σΛ)) other than the vertices of Φr(S) lie outside of the small

“spherical cap” that Π cuts out of b(rB), that is, outside of the “small” part

of b(rB) bounded by Γ. This shows that all other vertices of the simplices in

Cr(σ) that are not the vertices of Φr(S) are contained in the open halfspace of

RM bounded by Π that contains the origin. Thus, Φr(S) is a facet of Cr(σ).

Since this holds for every S ∈ D(σΛ), S ⊂ U , it follows that the surface Cr(σ)

is convex.

The simplices Φr(S) where S ∈ D(σΛ), S ⊂ U , have all their vertices on

b(rB). We want to estimate how far into rB they reach. To do this, we need

the following

Proposition 7.1. Let 0 < r < 1, let a ∈ b(rB), and let A ⊂ b(rB) be a

set such that |x − a| ≤ γ for all x ∈ A, where γ < r. Then the convex hull of

A misses ρB where ρ = r − γ2

2r .

Proof. A is contained in {x ∈ b(rB) : |x − a| ≤ γ}. With no loss of

generality assume that a = (r, 0, . . . , 0). Then
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A ⊂ {x ∈ b(rB) : (x1 − r)2 + x2
2 + · · ·+ x2

M ≤ γ2}

⊂ {x ∈ b(rB) : r2 − 2x1r + r2 ≤ γ2}

= {x ∈ b(rB) : 2r2 − 2x1r < γ2}

=

®
x ∈ b(rB) : x1 > r − γ2

2r

´
⊂
®
x ∈ rB : x1 > r − γ2

2r

´
.

The last set is a convex set that contains A and misses ρB, which completes

the proof. �

Denote by d the length of the longest edge of simplices in D(Λ) so that

σd is the length of the longest edge of the simplices in D(σΛ). Since ψr is

a Lipschitz function with the Lipschitz constant not exceeding ω, the length

of the longest edge of the simplices Φr(S) where S ∈ D(σΛ), S ⊂ U , does

not exceed
√

1 + ω2σd. Now, we use Proposition 7.1. If R0 < r < 1, then

r − γ2

2r > r − γ2

2R0
. Thus, putting

λ =
(1 + ω2)d2

2R0
,

we get the following

Proposition 7.2. If R0 < r < 1, then the simplices Φr(S), where S ⊂
D(σΛ), S ⊂ U, miss ρB where ρ = r − σ2λ.

8. A convex polytope with a prescribed part of the boundary

We keep the meaning of R0, U, d and λ. Recall that U is an open ball in

RM−1 centered at the origin. Let µ be its radius. Let 0 < µ0 < µ1 < µ2 <

µ3 < µ, and let Ui = {x ∈ RM−1 : |x| < µi}, Wi = Ui×(1−ν, 1+ν), 0 ≤ i ≤ 3.

Choose σ0 > 0 so small that

(8.1) σ0d < min{µ− µ3, µ3 − µ2, µ2 − µ1, µ1 − µ0}.

Then, since the maximal edge length of simplices in D(σΛ) equals σd, it follows

that if 0 < σ < σ0, then

• the simplices S ∈ D(σΛ) that meet U0 are contained in U1,

• the simplices S ∈ D(σΛ) that are contained in U cover U3.

Proposition 8.1. There is a κ > 0 such that whenever R0 ≤ R ≤ 1 and

R < R′ < R+κ, then each hyperplane in RM that meets W2 ∩
Ä
R′B \RB

ä
and

misses W3 ∩RB misses RB.
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Proof. Suppose that there is no such κ > 0. Then there are a sequence

Rn, R0 ≤ Rn ≤ 1 (n ∈ N), and a sequence xn ∈ W2, such that |xn| >
Rn (n ∈ N) and such that |xn| − Rn → 0 as n → ∞, and for each n, a

hyperplane Hn through xn that misses W3 ∩RnB and meets RnB \W3. Since

|xn| − Rn → 0 as n → ∞ we may, passing to subsequences if necessary, with

no loss of generality assume that Rn converges to an R and xn converges to

x ∈ b(RB) ∩W2. Since for each n, Hn misses W3 ∩ RnB, it follows that Hn

converges to H, the hyperplane through x tangent to b(RB) at x. In particular,

H ∩ (RB \W3) is empty, so for sufficiently large n, Hn ∩ (RnB \W3) must be

empty, a contradiction. This completes the proof. �

With no loss of generality, passing to a smaller σ0 if necessary, we may

assume that σ2
0λ < κ. Suppose now that 0 < σ < σ0, and let R0 ≤ ρ < r < 1

where ρ = r − σ2λ.

We know that the union Cr(σ) of the simplices Φr(S), where S ∈ D(σΛ),

S ⊂ U, is a convex polyhedral surface that, by Proposition 7.2, is contained

in rB \ ρB. Each of these simplices Φr(S) is contained in a hyperplane H.

We want that these hyperplanes miss ρB. Note that by (8.1) the simplices in

D(σΛ), contained in U , cover U3. So the function ϕr is well defined on U3

and its graph Cr(σ) ∩W3 is contained in W3 ∩ (rB \ ρB). The function ϕr
is piecewise linear and convex. Thus, if S ∈ D(σΛ) meets U2 then, by (8.1),

S ⊂ U3 and by the convexity of ϕr, the graph of ϕr|U3 lies on one side of the

hyperplane H that contains Φr(S) which, in particular, implies that H misses

W3 ∩ ρB and thus, by Proposition 8.1, H misses ρB. This shows that the part

of Cr(σ) contained in W2 can be described in terms of the hyperplanes that

miss ρB. So we find x1, . . . , xn ∈ bB and α1, . . . , αn, ρ < αi ≤ r (1 ≤ i ≤ n),

such that

G1 = {x ∈ B : 〈x|xi〉 ≤ αi, 1 ≤ i ≤ n}

is a convex set containing ρB in its interior, and is such that W2 ∩ bG1 =

W2 ∩ Cr(σ).

Proposition 8.2. Let R0 < r < 1, let 0 < σ < σ0, and let ρ = r − σ2λ

> R0. There is a convex polytope P which contains ρB in its interior, such

that bP ⊂ rB \ ρB, and such that every Φr(S) where S ∈ D(σΛ), S ⊂ U1, is a

facet of P .

Proposition 8.2 implies, in particular, that

W0 ∩ skel(P ) = Φr

Ä
U0 ∩ skel(D(σΛ))

ä
so that

π
Ä
W0 ∩ skel(P )

ä
= U0 ∩ skel

Ä
D(σΛ)

ä
.
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Proof. To prove Proposition 8.2 we will find another convex set G2 whose

boundary outside W2 will be a polyhedral convex surface approximating b(rB)

and such that W1 ∩ bG2 = W1 ∩ rB and then put P = G1 ∩ G2. To do this

we first choose ρ1 < r so close to r that if H is a hyperplane in RM passing

through a point x ∈ b(ρ1B)\W2 tangent to b(ρ1B), then H ∩W1∩ rB = ∅. We

will now use a finite number of these hyperplanes to modify the part of b(rB)

outside W1 to get a convex polyhedral hypersurface contained in rB\ρ1B that

will be a part of bG2. To do this, we need

Proposition 8.3. Let x, y ∈ bB. Suppose that ry is in the halfspace {z ∈
RM : 〈z|x〉 ≤ ρ1}, that is, in the halfspace bounded by the hyperplane through

ρ1x, tangent to b(ρ1B) that contains the origin. Then |x− y| ≥
»

2(1− ρ1/r).

Proof. Our assumption implies that 〈ry|x〉 ≤ ρ1 so 〈x|y〉 ≤ ρ1/r, and so

|y−x|2 = 2−2〈x|y〉 ≥ 2−2ρ1/r = 2(1−ρ1/r), which completes the proof. �

Note that if z ∈ bB, then {y : 〈y|z〉 ≤ ρ1} is the halfspace bounded by the

hyperplane through ρ1z tangent to b(ρ1B) that contains the origin.

Proposition 8.4. Let S be a subset of bB. Let 0 < ρ1 < r, and let

0 < δ <
»

2(1− ρ1/r). Assume that z1, . . . , zm ∈ S are such that

(8.2) S ⊂ ∪mj=1(zj + δB).

Then the convex polyhedron

Q =
m⋂
j=1

{y : 〈y|zj〉 ≤ ρ1}

does not meet rS .

Proof. Suppose that y ∈ S is such that ry ∈ Q; that is, 〈ry|zj〉 ≤ ρ1 for all

j, 1 ≤ j ≤ m. By Proposition 8.3 it follows that |y − zj | ≥
»

2(1− ρ1/r) > δ

for all j, 1 ≤ j ≤ m, which contradicts (8.2). This completes the proof. �

We now proceed to finish the proof of Proposition 8.2. Let T = b(rB)\W2.

Choose δ, 0 < δ <
»

2(1− ρ1/r), and then choose z1, . . . , zm ∈ bB such that

1

r
T ⊂ ∪mj=1(zj + δB).

Set

G2 = {y ∈ rB : 〈y|zj〉 ≤ ρ1 (1 ≤ j ≤ m)},
and let P = G1 ∩G2, so

P = {x ∈ B : 〈x|xi〉 ≤ αi, 1 ≤ i ≤ n, 〈x|zj〉 ≤ ρ1, 1 ≤ j ≤ m}.

By construction, P contains ρB in its interior. Moreover, it is easy to see that

P = {x ∈ RM : 〈x|xi〉 ≤ αi, 1 ≤ i ≤ n, 〈x|zj〉 ≤ ρ1, 1 ≤ j ≤ m},
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so P is a convex polytope contained in rB and, by construction, is such that

every Φr(S) where S ∈ D(σΛ), S ⊂ U1, is a facet of P . Proposition 8.2 is

proved.

It is clear that all we have done so far will work in the same way for any

lattice σ(Λ + q). Summing up what we have proved so far we get our main

Lemma 8.5. Recall that π(z1, . . . , zM ) = (z1, . . . , zM−1).

Lemma 8.5. There are R0, 0 < R0 < 1, ν > 0, σ0 > 0, λ > 0, and a

small open ball U0 ⊂ RM−1 centered at the origin, such that U0×{1−ν} ⊂ R0B
and such that if W0 = U0 × (1 − ν, 1 + ν), then the following holds : For each

σ, 0 < σ < σ0, for each r such that

R0 < r − λσ2 < r < 1,

and for each q ∈ RM−1, there is a convex polytope P contained in rB and

containing (r − λσ2)B in its interior and such that π maps W0 ∩ skel(P ) onto

U0 ∩ skel(D(σ(Λ + q))).

9. Small blocks of convex polytopes

Let Λ be as in (4.1), and let E(Λ) be the fundamental parallelotope for

Λ; that is,

E(Λ) = {θ1e1 + · · ·+ θM−1eM−1 : 0 ≤ θi < 1, 1 ≤ i ≤M − 1}.

Given q ∈ RM−1, define S(q) = skel(D(Λ+q)). Clearly S(q) = S(0)+q. Recall

that all our tessellations are periodic so

S(q) +
M−1∑
j=1

njej = S(q)

for every q ∈ RM−1 and every nj ∈ Z, 1 ≤ j ≤ M − 1. Thus, if w ∈ S(q1) ∩
S(q2), there are nj , 1 ≤ j ≤M − 1 such that if w0 = w−∑M−1

j=1 njej ∈ E(Λ),

then w0 ∈ E(Λ)∩S(q1)∩S(q2). Thus, if S(0)∩S(q1)∩· · ·∩S(qM−1)∩E(Λ) = ∅,
then S(0) ∩ S(q1) ∩ · · · ∩ S(qM−1) = ∅.

Proposition 9.1. Given ε > 0, there are q1, . . . , qM−1, |qi| < ε, 1 ≤ i ≤
M − 1, such that S(0) ∩ S(q1) ∩ · · · ∩ S(qM−1) = ∅ .

We need the following

Proposition 9.2. Let H be a hyperplane in RM−1. Let H̃ be the hyper-

plane in RM−1 parallel to H that passes through the origin, and assume that

q ∈ RM−1, q 6∈ H̃ . Let L be a k-plane in RM−1 where 1 ≤ k ≤ M − 2. Then

either L ⊂ H + tq for some t ∈ R or else L intersects H + tq transversely for

every t ∈ R.

Proof. Obvious. �



A COMPLETE COMPLEX HYPERSURFACE IN THE BALL OF CN 1081

We shall say that a k-plane L is transverse to a hyperplane G if it is

not contained in G. In this case either L misses G or else L intersects G

transversely (and L ∩G is a (k − 1)-plane). So the proposition says that L is

transverse to the hyperplane H + tq for each t except for perhaps one value

of t.

Proof of Proposition 9.1. Take a large ball B centered at the origin, and

consider the family of all those hyperplanes that contain a facet of a simplex

S ∈ D(Λ) contained in B. There are finitely many of these hyperplanes.

Denote them by L1, . . . , Lp and their union by L. For each j, 1 ≤ j ≤ p, let L̃j
be the hyperplane parallel to Lj passing through the origin. Choose q ∈ RM−1

so that q belongs to no L̃j , 1 ≤ j ≤ p. Let ε > 0. By the dicussion at the

beginning of this section the proposition will be proved once we have proved

that there are tj , ε > t1 > · · · > tM−1 > 0 such that

L ∩ (L+ t1q) ∩ · · · ∩ (L+ tM−1q) = ∅,

and then we put qj = tjq, 1 ≤ j ≤M − 1.

By Proposition 9.2, for each j, 1 ≤ j ≤ p, and for each t, 0 < t < ε,

except perhaps finitely many, Lj + tq is transverse to each Lk, 1 ≤ k ≤ p. So

there is a t1, 0 < t1 < ε, that works for all Lj , 1 ≤ j ≤ p, so that L∩ (L+ t1q)

is a union of finitely many (M − 3)-planes. Suppose that 1 ≤ ` ≤ M − 3,

and suppose that we have found t1, . . . , t`, ε > t1 > t2 > · · · > t` > 0,

such that L ∩ (L + t1q) ∩ · · · ∩ (L + t`q) is a finite union of (M − 2 − `)-

planes. Applying Proposition 9.2 we find t`+1, 0 < t`+1 < t`, such that

L ∩ (L+ t1q) ∩ · · · ∩ (L+ t`+1q) is a finite union of (M − 3− `)-planes. Thus,

step-by-step we arrive at the point where L ∩ (L+ t1q) ∩ · · · ∩ (L+ tM−2q) is

a finite set of points whose intersection with L+ tM−1q with a suitable chosen

tM−1, 0 < tM−1 < tM−2 is empty. This completes the proof. �

Lemma 9.3. Let q0 = 0, and let q1, . . . , qM−1 be as in Proposition 9.1.

Let

Si = skel
Ä
D(Λ + qi)

ä
(0 ≤ i ≤M − 1).

There is a µ > 0 such that whenever xi ∈ Si, 0 ≤ i ≤M − 1, we have

(9.1) |x1 − x0|+ |x2 − x1|+ · · ·+ |xM−1 − xM−2| ≥ µ.

Proof. Assume that there is no µ > 0 such that (9.1) holds whenever xi ∈
Si, 0 ≤ i ≤M − 1. Then there are sequences xi,n ∈ Si, 0 ≤ i ≤M − 1, n ∈ N
such that

(9.2) |x1n − x0,n|+ |x2n − x1n|+ · · ·+ |xM−1,n − xM−2,n|
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tends to zero as n→∞. Notice that Si are periodic, that is,

Si = Si +
M−1∑
k=1

mkek (0 ≤ i ≤M − 1)

whenever mk ∈ Z, 1 ≤ k ≤ M − 1. Thus, adding for each n a suitable∑M−1
k=1 mk,nek to all x0n, x1n, . . . , xM−1,n where mk,n ∈ Z, 1 ≤ k ≤M −1 (note

that doing this, the sum (9.2) remains unchanged), we may, with no loss of

generality, assume that x0n ∈ E(Λ) for all n. Therefore, by compactness, we

may, after passing to a subsequence if necessary, assume that x0n converges to

some x0. Since S0 is closed, x0 ∈ S0. Since (9.2) tends to zero as n → ∞, it

follows that for each j, 0 ≤ j ≤M − 1, the sequence xjn ∈ Sj converges to the

same limit x0 that must be in Sj since Sj is closed. Thus, x0 is contained in

the intersection S0 ∩ · · · ∩ SM−1, contradicting the fact that this intersection

is empty. This completes the proof. �

Let qi, 0 ≤ i ≤M − 1 be as in Lemma 9.3. For each σ > 0, we have

skel
Ä
D(σ(Λ + q))

ä
= σskel

Ä
D(Λ + q)

ä
,

so by Lemma 9.3 it follows that if σ > 0 and if xi ∈ skel
Ä
D(σ(Λ + qi))

ä
,

0 ≤ i ≤M − 1, then

|x1 − x0|+ |x2 − x1|+ · · ·+ |xM−1 − xM−2| ≥ σµ.

Lemma 9.4. Let 0 < σ < σ0, and suppose that

R0 < r −Mσ2λ < r < 1.

There are convex polytopes Qj , 0 ≤ j ≤M − 1, such that

((r −Mσ2λ)B ⊂ IntQ0 ⊂ IntQ1 ⊂ · · · ⊂ QM−1 ⊂ rB

such that for each j, 0 ≤ j ≤M − 1,

π(W0 ∩ skel(Qj)) = U0 ∩ skel(D(σ(Λ + qj)).

Thus,

(9.3)

if xj ∈W0 ∩ skel(Qj) (0 ≤ j ≤M − 1), then

|x1 − x0|+ · · ·+ |xM−1 − xM−2| ≥ σµ.

Proof. Let 0 ≤ j ≤ M − 1. By Lemma 8.5 there is a convex polytope Qj
containing

Ä
r − (M − j)σ2λ

ä
B in its interior and contained inÄ

r − (M − (j + 1))σ2λ
ä
B

such that π maps W0∩ skel(Qj) onto U0∩ skel
Ä
D(σ(Λ + qj))

ä
. Thus, if xj , 0 ≤

j ≤M − 1, are as in (9.3), then π(xj) ∈ skel
Ä
D(σ(Λ + qj))

ä
(0 ≤ j ≤M − 1),
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and hence by the discussion preceding Lemma 9.4, we have

|π(x1)− π(x0)|+ · · ·+ |π(xM−1 − π(xM−2)| ≥ σµ

so

|x1 − x0|+ · · ·+ |xM−1 − xM−2| ≥ σµ.
This completes the proof. �

We shall call the family {Q0, Q1, . . . , QM−1} as above a small block of con-

vex polytopes with boundaries contained in rB \ (r−Mσ2λ)B. More generally,

if A : RM → RM is a rotation, that is, A ∈ SO(M), then we will call the family

{A(Q0), A(Q1), . . . , A(QM−1)} also a small block of convex polytopes.

10. Large blocks of convex polytopes

In previous section we constructed a small block of convex polytopes;

that is, given ρ, R0 < ρ −Mσ2λ < ρ < 1, we constructed convex polytopes

Qj , 0 ≤ j ≤M − 1, such that

(ρ−Mσ2λ)B ⊂ IntQ0 ⊂ Q0 ⊂ · · · ⊂ IntQM−1 ⊂ QM−1 ⊂ ρB

and such that (9.3) holds. An analogous statement holds if we apply a rotation

A to all polytopes Qj , 1 ≤ j ≤ M − 1, to get a new small block of convex

polytopes Rj = A(Qj), 0 ≤ j ≤ M − 1, that have the property that if xj ∈
A(W0) ∩ skel(Rj) (0 ≤ j ≤M − 1), then

|x1 − x0|+ · · ·+ |xM−1 − xM−2| ≥ σµ.

It is perhaps appropriate to mention that different convex polytopes Q′ and

Q′′ in the family of convex polytopes that we are constructing always have

their boundaries in disjoint spherical shells so that if Q′ ⊂ IntQ′′ and if A is a

rotation, then A(Q′) ⊂ IntQ′′.

We now choose rotations A1 = Id, A2, . . . , AL so that the open sets

(10.1) W0j = Aj(W0), 1 ≤ j ≤ L, cover bB; that is, bB ⊂
L⋃
j=1

W0j .

We now construct what we call a large block of convex polytopes that will have a

property analogous to (9.3) for a sequence xj , 0 ≤ j ≤M−1 contained in any of

the sets W0j , 1 ≤ j ≤ L. Roughly speaking, we shall take ρ0 < ρ1 < · · · < ρL,

and for each spherical shell Sk = ρkB \ ρk−1B, 1 ≤ k ≤ L, we shall construct a

small block Bk of convex polytopes with boundaries contained in Sk that has

the property (9.3) for Qj ∈ Bk, 0 ≤ j ≤ M − 1. Then we will rotate each Bk
by Ak to form an L-tuple of smal blocks A1(B1), A2(B2), . . . , AL(BL) and then

arrange all the convex polytopes of these Aj(Bj) into a single sequence. Here

is the exact formulation.
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Lemma 10.1. Given σ, 0 < σ < σ0, and r such that

R0 < r −MLσ2λ < r < 1,

there is a family of convex polytopes Cj , 0 ≤ j ≤ML− 1, such that

(r −MLσ2λ)B ⊂ IntC0 ⊂ C0 ⊂ IntC1 ⊂ · · · ⊂ IntCML−1 ⊂ CML−1 ⊂ rB,

which has the property that if 1 ≤ k ≤ L and if xj ∈ W0k ∩ skelCj , 0 ≤ j ≤
ML− 1, then

|x1 − x0|+ |x2 − x1|+ · · ·+ |xML−1 − xML−2| ≥ σµ.

We shall call the family C = {C0, C1, . . . , CML−1} as above a large block

of convex polytopes with boundaries contained in rB \ (r −MLσ2λ)B.

Proof. Let

ρj = r −M(L− j)σ2λ (0 ≤ j ≤ L).

For each j, 1 ≤ j ≤ L, there is a small block Bj of convex polytopes with

boundaries contained in ρjB \ ρj−1B such that (9.3) holds.

Let Aj , 1 ≤ j ≤ L, be rotations of RM satisfying (10.1). For each j, 1 ≤
j ≤ L, form a new small block

Aj = {Aj(P ) : P ∈ Bj} = {Cj0, Cj1, . . . , Cj,M−1},

where

ρj−1B ⊂ Int(Cj0) ⊂ Int(Cj1) ⊂ · · · ⊂ Cj,M−1 ⊂ ρjB

such that if

xi ∈W0k ∩ skel(Cki) , 0 ≤ i ≤M − 1,

then

|x1 − x0|+ · · ·+ |xM−1 − xM−2| ≥ σµ.

Now, write all Cji into a single sequence

C10, C11, . . . , C1,M−1, C20, . . . , C2,M−1, . . . , CL0, CL1, . . . , CL,M−1;

in other words,

C(j−1)M+i = Cji (1 ≤ j ≤ L, 0 ≤ i ≤M − 1).

It is easy to see that the convex polytopes C0, C1, · · · , CLM−1 have all the

required properties. This completes the proof. �
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11. Completion of the proof of Theorem 2.1

and the proof of Corollary 2.2

We keep the meaning of R0 and σ0. Recall that by (10.1) the open sets

W0j = Aj(W0), 1 ≤ j ≤ L, cover bB. Thus

(11.1)

if xn ∈ B converges to x ∈ bB, then there are n0

and j, 1 ≤ j ≤ L, such that xn ∈W0j (n ≥ n0).

To complete the proof of Theorem 2.1 we shall construct a sequence rj , R0 <

r1 < · · · < rj < · · · < 1, converging to 1, and for each j ∈ N, we shall construct

a large block Cj = {Cj0, Cj1, . . . , Cj,LM−1} of convex polytopes such that

(11.2)

rjB ⊂ IntCj0 ⊂ Cj0 ⊂ Int Cj1 ⊂ · · · ⊂ IntCj,LM−1 ⊂ Cj,LM−1 ⊂ rj+1B

so that writing all polytopes of all large blocks into a single sequence, i.e.,

(11.3) P(j−1)LM+k = Cjk (0 ≤ k ≤ LM − 1, j ∈ N),

we get our sequence Pn of convex polytopes with the desired properties. To do

this, choose r1, R0 < r1 < 1, and a decreasing sequence of positive numbers

σj , σ1 < σ0, such that

(11.4)
∞∑
j=1

σ2
j =

1− r1

MLλ
and such that

∞∑
j=1

σj diverges,

and then let rj+1 = rj + MLσ2
jλ (j ∈ N). Note that the equality in (11.4)

means that the sequence rj converges to 1 as j →∞.

Use Lemma 10.1 to show that for each j ∈ N, there is a large block

Cj = {Cj0, Cj1, . . . , Cj,LM−1}

of convex polytopes satisfying (11.2) and having the property that

(11.5)if for some k, 1 ≤ k≤L, x`∈W0k ∩ skel(Cj`) for each `, 0 ≤ ` ≤ LM − 1,

then |x1 − x0|+ |x2 − x1|+ · · ·+ |xLM−1 − xLM−2| ≥ σjµ.

Define the sequence Pn of convex polytopes by writing all polytopes Cjk into

a single sequence as in (11.3). Obviously

P0 ⊂ IntP1 ⊂ P1 ⊂ · · · ⊂ B,
∞⋃
j=0

Pj = B.

Now, let wn ∈ skel(Pn) (n ∈ N). To complete the proof of Theorem 2.1 we

must show (2.2). We know that it is enough to show this for sequences wn that

converge. So assume that wn converges. The properties of Pn imply that the

limit of the sequence wn is contained in bB. By (11.1) there are k, 1 ≤ k ≤ L,

and n0 such that wn ∈W0k (n ≥ n0). Let j0 be so large that j0ML ≥ n0. By
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(11.5), for each j ≥ j0, the large block of polytopes Cj adds at least σjµ to the

sum of the absolute values of differences of consequtive wj-s; that is, for each

j ≥ j0, we have

|w(j−1)ML+1 − w(j−1)ML|+ · · ·+ |wjML−1 − wjML−2| ≥ σjµ.

It follows that for each j ≥ j0, there is a N(j) <∞ such that

N(j)∑
i=1

|wi − wi−1| ≥
j∑

k=j0

σkµ.

The fact that the series
∑∞
i=1 σj diverges implies (2.2). The proof of Theo-

rem 2.1 is complete.

Proof of Corollary 2.2. Let p : [0, 1) → B be a path such that |p(t)| → 1

as t→ 1 and such that for all sufficiently large n ∈ N, p([0, 1)) meets bPn only

at Un. Since |p(t)| → 1 as t → 1, it follows that p(t) has to leave each Pn so

there are an n0 and a sequence tj ,

tn0 < tn0+1 < · · · < 1, lim
n→∞

tn = 1,

such that p(tn) ∈ bPn for each n ≥ n0. Thus, by our assumption, passing to a

larger n0 if necessary, we may assume that p(tn) ∈ Un for each n ≥ n0. Thus,

for each n ≥ n0, there is an xn ∈ skel(Pn) such that |xn − p(tn)| < θn. For

n ≥ n0, we have |p(tn+1)−p(tn)| ≥ |xn+1−xn|−|p(tn+1−xn+1|−|p(tn)−xn| ≥
|xn+1 − xn| − θn+1 − θn. It follows that

∞∑
n=n0

|p(tn+1)− p(tn)| ≥
∞∑

n=n0

|xn+1 − xn| − 2
∞∑

n=n0

θn.

Since, by Theorem 2.1, the series
∑∞
n=n0

|xn+1 − xn| diverges and since the

series
∑∞
n=n0

θn converges, it follows that the series

(11.6)
∞∑

n=n0

|p(tn+1)− p(tn)|

diverges. Since the sequence tm increases, it follows that the length of p([tn0 , 1))

is bounded from below by the sum of the series (11.6). Since this series diverges,

it follows that p has infinite length. This completes the proof of Corollary 2.2.

�

12. Proof of Theorem 1.1

As we know, every convex polytope P ⊂ RM that contains the origin in

its interior can be written as

(12.1) P =
n⋂
i=1

K(xi, 1) =
n⋂
i=1

{y ∈ RM : 〈y|xi〉 ≤ 1},
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with xi ∈ RM \ {0} , 1 ≤ i ≤ n. We assume that the representation (12.1) is

irreducible, so

bP =
n⋃
i=1

H(xi, 1) ∩ P =
n⋃
i=1

{y ∈ RM : 〈y|xi〉 = 1} ∩ P,

and the sets Fj = H(xj , 1)∩P, 1 ≤ j ≤ n, are precisely the facets of P . Recall

that skel(P ) =
⋃n
i=1[Fi \ ri(Fi)].

Proposition 12.1. Let P be as above. Let θ > 0. There is an η > 0

such that for each i, 1 ≤ i ≤ n, the set

bP ∩ {y ∈ RM : 1− η < 〈y|xi〉 < 1}

is contained in the θ-neighborhood of skel(P ) in bP .

Proof. Assume that Proposition 12.1 does not hold so that there are i, 1 ≤
i ≤ n, and θ > 0 such that for each η > 0, there is some y ∈ bP such

that 1 − η < 〈y|xi〉 < 1 and dist(y, skel(P )) ≥ θ. So there is a sequence

yn ∈ bP such that 〈yn|xi〉 < 1 (n ∈ N), 〈yn|xi〉 → 1 as n → ∞ and such

that dist(yn, skel(P ) ≥ θ for all n. By compactness we may, after passing

to a subsequence if necessary, assume that yn converges to y0 ∈ bP . Clearly

y0 ∈ H(xi, 1). Since y0 ∈ bP , it follows that y0 belongs to the facet Fi =

P ∩ H(xi, 1). Since dist(y0, skel(P )) ≥ θ, it follows that y0 ∈ ri(Fi). On the

other hand, since yn ∈ bP \ Fi, it follows that yn ∈ ∪j=1,j 6=iFj . Passing to

a subsequence if necessary we may assume that there is a j 6= i, such that

yn ∈ Fj for all n. Since Fj is closed, it follows that y0 ∈ Fj . Thus y0, a

relative interior point of the facet Fi, belongs to a different facet Fj , which is

impossible. This completes the proof. �

Remark. Note that if U is the θ-neighborhood of skel(P ) and if η is as

above, then for each j, 1 ≤ j ≤ n, the set {y ∈ RM : 〈y|xj〉 ≤ 1− η} contains

∪ni=1,i 6=j [Fi \ U ].

We now move to CN = R2N and denote by 〈 | 〉 the Hermitian inner

product in CN . Note that <(〈 | 〉) is then the standard inner product in R2N .

Lemma 12.2. Let P be a convex polytope in CN , and let K ⊂ Int(P ) be

a compact set. Let θ > 0, and let U ⊂ bP be the θ-neighborhood of skel(P ) in

bP . Given ε > 0 and L <∞, there is a polynomial f : CN → C such that

<(f(z)) ≥ L (z ∈ bP \ U) and |f(z)| < ε (z ∈ K).

Proof. With no loss of generality assume that the origin is an interior

point of P . There are n ∈ N and w1, w2, . . . , wn ∈ CN \ {0} such that

(12.2) P =
n⋂
i=1

{z ∈ CN : <(〈z|wi〉) ≤ 1},
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where we may assume that the representation (12.2) is irreducible so that

bP =
⋃n
i=1 Fi, where Fi = {z ∈ CN : <(〈z|wi〉) = 1} ∩ P (1 ≤ i ≤ n) are the

facets of P .

Since P is compact, there is an R <∞ such that

(12.3) |〈z|wi〉| ≤ R (z ∈ P, 1 ≤ i ≤ n).

By Proposition 12.1 there is an η > 0 such that for each j, 1 ≤ j ≤ n,

bP ∩ {z ∈ CN : 1− η < <(〈z|wj〉) < 1} ⊂ U .

Passing to a smaller η if necessary we may assume that

(12.4) K ⊂ {z ∈ CN : <(〈z|wj〉) ≤ 1− η} for each j, 1 ≤ j ≤ n.

By the remark following Proposition 12.1, for each j, 1 ≤ j ≤ n, we have

(12.5)
n⋃

i=1,i 6=j
[Fi \ U ] ⊂ {z ∈ CN : <(〈z|wj〉) ≤ 1− η}.

Let ε > 0 and L <∞. By the Runge theorem there is a polynomial Φ: C→ C
such that

|Φ(ζ)− (L+ ε)| < ε/n (ζ ∈ R∆, <(ζ) ≥ 1),(12.6)

|Φ(ζ)| < ε/n (ζ ∈ R∆, <(ζ) ≤ 1− η).(12.7)

For each j, 1 ≤ j ≤ n, consider the polynomial fj(z) = Φ(〈z|wj〉). By (12.4),

(12.8) |fj(z)| < ε/n (z ∈ K),

and by (12.5) and (12.7),

(12.9) |fj(z)| < ε/n
(
z ∈

n⋃
i=1,i 6=j

Fi \ U
)
.

Further, if z ∈ Fj , then <(〈z|wj〉) = 1, and so by (12.6),

(12.10) |fj(z)− (L+ ε)| < ε/n (z ∈ Fj).

Now, let f =
∑n
j=1 fj . If 1 ≤ j ≤ n and if z ∈ Fj \ U , then by (12.9) and

(12.10),

|f(z)− (L+ ε| ≤ |fj(z)− (L+ ε)|+
∣∣∣∣ n∑
i=1,i 6=j

fi(z)

∣∣∣∣ ≤ ε/n+ (n− 1)ε/n = ε,

which implies that

<(f(z) ≥ L (z ∈ Fj \ U , 1 ≤ j ≤ n)

so <(f(z)) ≥ L (z ∈ bP \ U). Finally, by (12.8), |f(z)| < ε (z ∈ K). This

completes the proof. �
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Proof of Theorem 1.1. Let Pn be the sequence of convex polytopes from

Theorem 2.1, and let θn be a decreasing sequence of positive numbers such that∑∞
n=1 θn < ∞. For each n, let Un ⊂ bPn be the θn-neighborhood of skel(Pn)

in bPn. The theorem will be proved once we have constructed a holomorphic

function f on BN such that

(12.11) <(f(z)) ≥ n (z ∈ bPn \ Un, n ∈ N).

To see this, let f satisfy (12.11) and suppose that p : [0, 1) → BN is a path

such that limt→1 |p(t)| = 1. Suppose that f is bounded on p([0, 1)). By (12.11)

there is some n0 such that for each n ≥ n0, p([0, 1)) meets bPn only at Un. By

Corollary 2.2 it follows that p has infinite length.

We shall construct a sequence fn of polynomials from CN to C such that

for each n ∈ N,

(i) <(fn(z)) ≥ n+ 1 on bPn \ Un,
(ii) |fn+1(z)− fn(z)| ≤ 1/2n+1 on Pn.

Suppose that we have done this. By (ii) the sequence converges uniformly on

compacta in BN so the limit f is holomorphic on BN . If z ∈ bPn \ Un, then we

have

f(z) = fn(z) +
∞∑
j=n

[fj+1(z)− fj(z)].

So by (ii), |f(z)−fn(z)|<1 on bPn\Un, and therefore <(f(z))≥<(fn(z))−1≥n
on bPn \ Un so that f satisfies (12.11).

We construct fn by induction. Clearly there is a polynomial f1 that

satisfies (i) for n = 1. Suppose that for some m ∈ N we have constructed a

polynomial fm that satisfies

<(fm(z)) ≥ m+ 1 on bPm \ Um.

Choose T <∞ so large that

(12.12) <(fm(z)) + T ≥ m+ 2 on bPm+1.

By Lemma 12.2 there is a polynomial g such that

(12.13) <(g(z)) ≥ T on bPm+1 \ Um+1

and

(12.14) |g(z)| ≤ (1/2)m+1 on Pm.

Put fm+1 = fm + g. By (12.13), we have

<(fm+1) = <(fm+g) = <(fm)+<(g) ≥ <(fm)+T ≥ m+2 on bPm+1 \Um+1,

and by (12.14), we have |fm+1−fm|<(1/2)m+1 on Pm. Theorem 1.1 is proved.

�
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13. Concluding remarks

We have proved Theorem 2.1 in RM with M ≥ 3. Theorem 2.1 holds also

in R2 where the proof is much simpler. One can use a sequence of pairs of

regular polygons.

Having in mind the length of the proof of Theorem 2.1 one could say that

the principal result of the present paper is Theorem 2.1. It belongs to con-

vex geometry and is not related to complex analysis. In its complex analysis

consequence, Theorem 1.1, the real part of the holomorphic function f is un-

bounded on every path of finite length in BN that ends on bBN . Notice that

by the maximum principle the zero sets of (real) pluriharmonic functions on

BN , N ≥ 2, have no compact components. Applying Sard’s theorem to the

real part of the function f obtained in Theorem 1.1 we get

Theorem 13.1. Given N ≥ 2, there is a complete, closed, real hypersur-

face of BN that is the zero set of a (real) pluriharmonic function on BN .

In the special case when k = 1 and N = 2, our Corollary 1.2 provides

the existence of a complete, properly embedded complex curve in B2. The

existence of such a curve also follows from a recent paper of Alarcón and

López [AL]. Their proof is completely different from the one presented here.

However, neither of the proofs provides any information about the topology of

the curve so the following question remains open:

Question 13.1. Does there exist a complete proper holomorphic embedding

f : ∆→ B2?

Knowing now that for each N ≥ 2 there are complete closed complex

hypersurfaces in BN , one may also ask

Question 13.2. Given N ≥ 2, does there exist a complete proper holomor-

phic embedding f : BN → BN+1?
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