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On torsion in the cohomology of locally
symmetric varieties

By Peter Scholze

Abstract

The main result of this paper is the existence of Galois representations

associated with the mod p (or mod pm) cohomology of the locally symmet-

ric spaces for GLn over a totally real or CM field, proving conjectures of

Ash and others. Following an old suggestion of Clozel, recently realized by

Harris-Lan-Taylor-Thorne for characteristic 0 cohomology classes, one real-

izes the cohomology of the locally symmetric spaces for GLn as a boundary

contribution of the cohomology of symplectic or unitary Shimura varieties,

so that the key problem is to understand torsion in the cohomology of

Shimura varieties.

Thus, we prove new results on the p-adic geometry of Shimura varieties

(of Hodge type). Namely, the Shimura varieties become perfectoid when

passing to the inverse limit over all levels at p, and a new period map to-

wards the flag variety exists on them, called the Hodge-Tate period map. It

is roughly analogous to the embedding of the hermitian symmetric domain

(which is roughly the inverse limit over all levels of the complex points of

the Shimura variety) into its compact dual. The Hodge-Tate period map

has several favorable properties, the most important being that it com-

mutes with the Hecke operators away from p (for the trivial action of these

Hecke operators on the flag variety), and that automorphic vector bundles

come via pullback from the flag variety.
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1. Introduction

This paper deals with p-adic questions in the Langlands program. To

put things into context, recall the global Langlands (— Clozel — Fontaine —

Mazur) conjecture.

Conjecture 1.0.1. Let F be a number field, p some rational prime, and

fix an isomorphism C ∼= Qp. Then for any n ≥ 1, there is a unique bijection

between

(i) the set of L-algebraic cuspidal automorphic representations of GLn(AF );

and

(ii) the set of (isomorphism classes of ) irreducible continuous representations

Gal(F/F )→ GLn(Qp) that are almost everywhere unramified and de Rham

at places dividing p,

such that the bijection matches Satake parameters with eigenvalues of Frobenius

elements.

Here, an L-algebraic automorphic representation is defined to be one for

which the (normalized) infinitesimal character of πv is integral for all infinite

places v of F . Also,

AF =
∏
v

′
Fv

denotes the adèles of F , which is the restricted product of the completions Fv
of F at all (finite or infinite places) of F . It decomposes as the product AF =

AF,f × (F ⊗Q R) of the finite adèles AF,f and F ⊗Q R =
∏
v|∞ Fv ∼= Rn1 ×Cn2 ,

where n1, resp. n2, is the number of real, resp. complex, places of F .

For both directions of this conjecture, the strongest available technique is

p-adic interpolation. This starts with the construction of Galois representations

by p-adic interpolation (cf., e.g., [64], [59]), but much more prominently it

figures in the proof of modularity theorems, i.e., the converse direction, where

it is the only known technique since the pioneering work of Wiles and Taylor-

Wiles, [65], [60].
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For these techniques to be meaningful, it is necessary to replace the notion

of automorphic forms (which is an analytic one, with C-coefficients) by a notion

of p-adic automorphic forms, so as to then be able to talk about p-adic families

of such. The only known general way to achieve this is to look at the singular

cohomology groups of the locally symmetric spaces for GLn over F . Recall that

for any (sufficiently small) compact open subgroup K ⊂ GLn(AF,f ), these are

defined as

XK = GLn(F )\[D ×GLn(AF,f )/K],

where D = GLn(F ⊗Q R)/R>0K∞ is the symmetric space for GLn(F ⊗Q R),

with K∞ ⊂ GLn(F ⊗Q R) a maximal compact subgroup. Then one can look

at the singular cohomology groups

H i(XK ,C),

which carry an action by an algebra TK of Hecke operators. By a theorem

of Franke, [31], all Hecke eigenvalues appearing in H i(XK ,C) come (up to a

twist) from L-algebraic automorphic representations of GLn(AF ). Conversely,

allowing suitable coefficient systems, all regular L-algebraic cuspidal automor-

phic representations will show up in the cohomology of XK . Unfortunately,

nonregular L-algebraic cuspidal automorphic representations will not show up

in this way, and it is not currently known how to define any p-adic analogues

for them, and thus how to use p-adic techniques to prove anything about them.

The simplest case of this phenomenon is the case of Maass forms on the com-

plex upper half-plane whose eigenvalue of the Laplace operator is 1/4 (which

give rise to L-algebraic cuspidal automorphic representations of GL2(AQ)). In

fact, for them, it is not even known that the eigenvalues of the Hecke operators

are algebraic, which seems to be a prerequisite to a meaningful formulation of

Conjecture 1.0.1.1

It is now easy to define a p-adic, or even integral, analogue of H i(XK ,C),

namely H i(XK ,Z). This discussion also suggests to define a mod-p-auto-

morphic form as a system of Hecke eigenvalues appearing in H i(XK ,Fp). One

may wonder whether a mod-p-version of Conjecture 1.0.1 holds true in this

case, and it has been suggested that this is true; see, e.g., the papers of Ash,

[4], [5].

Conjecture 1.0.2. For any system of Hecke eigenvalues appearing in

H i(XK ,Fp), there is a continuous semisimple representation Gal(F/F ) →
GLn(Fp) such that Frobenius and Hecke eigenvalues match up.

1Although, of course, Deligne proved the Weil conjectures by simply choosing an isomor-

phism C ∼= Qp, and deducing algebraicity of Frobenius eigenvalues only a posteriori.
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There is also a conjectural converse, generalizing Serre’s conjecture for

F = Q, n = 2; cf., e.g., [6], [7]. It is important to note that Conjecture 1.0.2

is not a consequence of Conjecture 1.0.1, but really is a complementary con-

jecture. The problem is that H i(XK ,Z) has, in general, a lot of torsion, so

that the dimension of H i(XK ,Fp) may be much larger than H i(XK ,C), and

not every system of Hecke eigenvalues in H i(XK ,Fp) is related to a system

of Hecke eigenvalues in H i(XK ,C) (which would then fall into the realm of

Conjecture 1.0.1). In fact, at least with nontrivial coefficient systems, there

are precise bounds on the growth of the torsion in H i(XK ,Z), showing ex-

ponential growth in the case that n = 2 and F is imaginary-quadratic (while

H i(XK ,C) stays small); cf. [11], [49]. In other words, Conjecture 1.0.2 predicts

the existence of many more Galois representations than Conjecture 1.0.1.

The main aim of this paper is to prove Conjecture 1.0.2 for totally real or

CM fields:

Theorem 1.0.3. Conjecture 1.0.2 holds true if F is CM and contains an

imaginary-quadratic field. Assuming the work of Arthur, [3], it holds true if F

is totally real or CM.

In fact, we also prove a version for H i(XK ,Z/pmZ), which in the inverse

limit over m gives results on Conjecture 1.0.1:

Theorem 1.0.4. There are Galois representations associated with regular

L-algebraic cuspidal automorphic representations of GLn(AF ) if F is totally

real or CM.

The second theorem was recently proved by Harris-Lan-Taylor-Thorne,

[34]. For the precise results, we refer the reader to Section 5.4.

In a recent preprint, Calegari and Geraghty, [16], show how results on

the existence of Galois representations of the kind we provide may be used

to prove modularity results, generalizing the method of Taylor-Wiles to GLn
over general number fields. This is conditional on their [16, Conj. B], which

we prove over a totally real or CM field (modulo a nilpotent ideal of bounded

nilpotence degree), except that some properties of the constructed Galois rep-

resentations remain to be verified. Once these extra properties are established,

Conjecture 1.0.1 might be within reach for regular L-algebraic cuspidal auto-

morphic representations (corresponding to Galois representations with regular

Hodge-Tate weights) over totally real or CM fields, at least in special cases or

‘potentially’ as in [9].

To prove our results, we follow Harris-Lan-Taylor-Thorne to realize the co-

homology of XK as a boundary contribution of the cohomology of the Shimura

varieties attached to symplectic or unitary groups (depending on whether F is

totally real or CM). In particular, these Shimura varieties are of Hodge type.
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Our main result here is roughly the following. Let G be a group giving

rise to a (connected) Shimura variety of Hodge type (thus, we allow Sp2g, not

only GSp2g), and let SK , K ⊂ G(Af ) be the associated Shimura variety over

C.2 Recall the definition of the (compactly supported) completed cohomology

groups for a tame level Kp ⊂ G(Apf ),‹H i
c,Kp = lim←−

m

lim−→
Kp

H i
c(SKpKp ,Z/pmZ).

The statement is roughly the following; for a precise version, see Theorem 4.3.1.

Theorem 1.0.5. All Hecke eigenvalues appearing in ‹H i
c,Kp can be p-

adically interpolated by Hecke eigenvalues coming from classical cusp forms.

In fact, only very special cusp forms are necessary, corresponding to cus-

pidal sections of tensor powers of the natural ample line bundle ωK on SK .

Combining this with known results on existence of Galois representations

in the case of symplectic or unitary Shimura varieties (using the endoscopic

transfer, due to Arthur, [3] (resp. Mok, [47], in the unitary case)),3 one sees

that there are Galois representations for all Hecke eigenvalues appearing in‹H i
c,Kp in this case. By looking at the cohomology of the boundary, this will

essentially give the desired Galois representations for Theorem 1.0.3, except

that one gets a 2n+ 1-, resp. 2n-, dimensional representation, from which one

has to isolate an n-dimensional direct summand. This is possible and is done

in Section 5.3.

Thus, the key automorphic result of this paper is Theorem 1.0.5. The first

key ingredient in its proof is a comparison result from p-adic Hodge theory with

torsion coefficients proved in [53]. Here, it is important that this comparison

result holds without restriction on the reduction type of the variety — we

need to use it with arbitrarily small level at p, so that there will be a lot of

ramification in the special fibre. The outcome is roughly that one can compute

the compactly supported cohomology groups as the étale cohomology groups

of the sheaf of cusp forms of infinite level.

Fix a complete and algebraically closed extension C of Qp, and let SK be

the adic space over C associated with SK (via base change C ∼= Qp ↪→ C).

Then the second key ingredient is the following theorem.

Theorem 1.0.6. There is a perfectoid space SKp over C such that

SKp ∼ lim←−
Kp

SKpKp .

2We need not worry about fields of definition by fixing an isomorphism C ∼= Qp.
3These results are still conditional on the stabilization of the twisted trace formula, but

compare the recent work of Waldspurger and Moeglin, [46]. In the unitary case, there are

unconditional results of Shin, [57], which make our results unconditional for a CM field

containing an imaginary-quadratic field; cf. Remark 5.4.6.
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Thus, the Shimura variety becomes perfectoid as a p-adic analytic space

when passing to the inverse limit over all levels at p. In fact, one needs a

version of this result for the minimal compactification; cf. Theorem 4.1.1. One

can then use results on perfectoid spaces (notably a version of the almost purity

theorem) to show that the étale cohomology groups of the sheaf of cusp forms

of infinite level can be computed by the Cech complex of an affinoid cover

of (the minimal compactification of) SKp . The outcome of this argument is

Theorem 4.2.1, comparing the compactly supported completed cohomology

groups with the Cech cohomology of the sheaf of cusp forms of infinite level.

Besides the applications to Theorem 1.0.5, this comparison result has direct

applications to vanishing results. Namely, the Cech cohomology of any sheaf

vanishes above the dimension d = dimC SK of the space. Thus,

Theorem 1.0.7. For i > d, the compactly supported completed cohomol-

ogy group ‹H i
c,Kp vanishes.

By Poincaré duality, this also implies that in small degrees, the (co)-

homology groups are small, confirming most of [17, Conj. 1.5] for Shimura

varieties of Hodge type; cf. Corollary 4.2.3.

Thus, there is a complex, whose terms are cusp forms of infinite level on

affinoid subsets, which computes the compactly supported cohomology groups.

To finish the proof of Theorem 1.0.5, one has to approximate these cusp forms

of infinite level, defined on affinoid subsets, by cusp forms of finite level that

are defined on the whole Shimura variety, without messing up the Hecke eigen-

values. The classical situation is that these cusp forms are defined on the

ordinary locus, and one multiplies by a power of the Hasse invariant to remove

all poles. The crucial property of the Hasse invariant is that it commutes with

all Hecke operators away from p, so that it does not change the Hecke eigen-

values. Thus, we need an analogue of the Hasse invariant that works on almost

arbitrary subsets of the Shimura variety. This is possible using a new period

map, which forms the third key ingredient.

Theorem 1.0.8. There is a flag variety F` with an action by G, and a

G(Qp)-equivariant Hodge-Tate period map of adic spaces over C ,

πHT : SKp → F`,

that commutes with the Hecke operators away from p, and such that (some)

automorphic vector bundles come via pullback from F` along πHT. Moreover,

πHT is affine.

For a more precise version, we refer to Theorem 4.1.1. In fact, this result

is deduced from a more precise version for the Siegel moduli space (by em-

bedding the Shimura variety into the Siegel moduli space, using that it is of
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Hodge type). In that case, all semisimple automorphic vector bundles come

via pullback from F`; cf. Theorem 3.3.18. For a more detailed description of

these geometric results, we refer to the introduction of Section 3. We note that

the existence of πHT is new even for the moduli space of elliptic curves.

In particular, the ample line bundle ωKp on SKp comes via pullback from

ωF` on F`. Any section s ∈ ωF` pulls back to a section of ωKp on SKp that

commutes with the Hecke operators away from p and thus serves as a substitute

for the Hasse invariant. As πHT is affine, there are enough of these fake-Hasse

invariants. In fact, in the precise version of this argument, one ends up with

some integral models of the Shimura variety together with an integral model of

ω (constructed in Section 2.1), such that the fake-Hasse invariants are integral

sections of ω and are defined at some finite level modulo any power pm of

p. Interestingly, these integral models are not at all related to the standard

integral models of Shimura varieties; e.g., there is no family of abelian varieties

above the special fibre. Perhaps this explains why the existence of these fake-

Hasse invariants (or of πHT) was not observed before — they are only defined

at infinite level, and if one wants to approximate them modulo powers of p,

one has to pass to a strange integral model of the Shimura variety.

Finally, let us give a short description of the content of the different sec-

tions. In Section 2, we collect some results that will be useful later. In partic-

ular, we prove a version of Riemann’s Hebbarkeitssatz for perfectoid spaces,

saying roughly that bounded functions on normal perfectoid spaces extend

from complements of Zariski closed subsets. Unfortunately, the results here

are not as general as one could hope, and we merely manage to prove exactly

what we will need later. In Section 3, which forms the heart of this paper, we

prove that the minimal compactification of the Siegel moduli space becomes

perfectoid in the inverse limit over all levels at p and that the Hodge-Tate

period map exists on it, with its various properties. In Section 4, we give the

automorphic consequences of this result to Shimura varieties of Hodge type,

as sketched above. Finally, in Section 5, we deduce our main results on Galois

representations.
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2. Preliminaries

This chapter provides various foundational statements needed in the main

part of the paper.

In Section 2.1, we recall how one can construct formal models of rigid

spaces starting from suitable affinoid covers. This will be used in the proof of

Theorem 4.3.1 to construct new formal models of Shimura varieties, on which

the ‘fake-Hasse invariants’ are defined. In the context of Lemma 2.1.1, these

are given by the sections s̄i.

In Section 2.2, we define Zariski closed embeddings of perfectoid spaces

and prove various basic properties about this notion. In fact, this notion comes

in two flavours, called Zariski closed, and strongly Zariski closed, respectively,

and both notions are useful later. The most important property here is that

something Zariski closed in a perfectoid space is again perfectoid. This is used

later to deduce that Hodge-type Shimura varieties are perfectoid at infinite

level once this is known for the Siegel case. On the other hand, it will be

important to know that the boundary of the Shimura variety is strongly Zariski

closed. Intuitively, this says that the boundary is ‘infinitely ramified’: One

extracts lots of p-power roots of defining equations of the boundary.

Finally, in Section 2.3, we prove a version of Riemann’s Hebbarkeitssatz for

perfectoid spaces, saying roughly that bounded functions on normal perfectoid

spaces extend from complements of Zariski closed subsets.4 This section is,

unfortunately, extremely technical, and our results are just as general as needed

later. The most important use of the Hebbarkeitssatz in this paper is to show

the existence of the Hodge-Tate period map. A priori, we can only construct

it away from the boundary, but the Hebbarkeitssatz guarantees that it extends

to the boundary. However, there is a second use of the Hebbarkeitssatz in

Section 3.2.5. Here, the situation is that one wants to show that a certain

space is perfectoid, by showing that it is the untilt of an (obviously perfectoid)

4For a version of Riemann’s Hebbarkeitssatz in the setting of usual rigid geometry, see

[10].
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space in characteristic p. This is easy to show away from boundary; to deduce

the result, one needs the Hebbarkeitssatz to control the whole space in terms

of the complement of the boundary.

2.1. Constructing formal models from affinoid covers. Let K be a com-

plete algebraically closed nonarchimedean field with ring of integers OK , and

choose some nonzero topologically nilpotent element $ ∈ OK . We will need

the following result on constructing formal models of rigid-analytic varieties.

Lemma 2.1.1. Let X be a reduced proper rigid-analytic variety over K ,

considered as an adic space. Let L be a line bundle on X . Moreover, let

X =
⋃
i∈I Ui be a cover of X by finitely many affinoid open subsets Ui =

Spa(Ri, R
+
i ).5 For J ⊂ I , let UJ =

⋂
i∈J Ui = Spa(RJ , R

+
J ). Assume that on

each Ui, one has sections

s
(i)
j ∈ H

0(Ui,L)

for j ∈ I , satisfying the following conditions :

(i) for all i ∈ I , s
(i)
i is invertible, and

s
(i)
j

s
(i)
i

∈ H0(Ui,O+
X );

(ii) for all i, j ∈ I , the subset Uij ⊂ Ui is defined by the condition

|
s

(i)
j

s
(i)
i

| = 1;

(iii) for all i1, i2, j ∈ I ,

|
s

(i1)
j

s
(i1)
i1

−
s

(i2)
j

s
(i1)
i1

| ≤ |$|

on Ui1i2 .

Then for J ⊂ J ′, the map Spf R+
J ′ → Spf R+

J is an open embedding of formal

schemes, formally of finite type. Gluing them defines a formal scheme X over

OK with an open cover by Ui = Spf R+
i ; define also UJ =

⋂
i∈J Ui = Spf R+

J .

The generic fibre of X is given by X .

Moreover, there is a unique invertible sheaf L on X with generic fibre L,

and such that

s
(i)
j ∈ H

0(Ui,L) ⊂ H0(Ui,L) = H0(Ui,L)[$−1],

5Here, R+
i = R◦i is the subset of powerbounded elements.
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with s
(i)
i being an invertible section. There are unique sections

s̄j ∈ H0(X,L/$)

such that for all i ∈ I , s̄j = s
(i)
j mod $ ∈ H0(Ui,L/$).

Furthermore, X is projective and L is ample.

Proof. By [13, §6.4.1, Cor. 5], R+
J is topologically of finite type over OK .

By assumption (i), there is some f ∈ R+
J such that UJ ′ ⊂ UJ is defined by

|f | = 1. One formally checks that this implies thatR+
J ′ is the$-adic completion

of R+
J [f−1]. In particular, Spf R+

J ′ → Spf R+
J is an open embedding. One gets

X by gluing, and its generic fibre is X . As X is proper, it follows that X is

proper; cf. [37, Rem. 1.3.18(ii)].6

To define L, we want to glue the free sheaves Li = s
(i)
i OUi of rank 1 on Ui.

Certainly, Li satisfies the conditions on L|Ui and is the unique such invertible

sheaf on Ui. To show that they glue, we need to identify Li|Uij with Lj |Uij .
By (ii), Li|Uij is freely generated by s

(i)
j . Also, by (iii) (applied with i1 = j,

i2 = i), Lj |Uij is freely generated by s
(i)
j , giving the desired equality.

To show that there are the sections s̄j ∈ H0(X,L/$), we need to show

that for all i1, i2 and j,

s
(i1)
j ≡ s(i2)

j mod $ ∈ H0(Ui1i2 ,L/$).

Dividing by s
(i1)
i1

translates this into condition (iii).

It remains to prove that L is ample. For this, it is enough to prove

that L/$ is ample on X ×Spf OK SpecOK/$. Here, the affine complements

Ui×Spf OK SpecOK/$ of the vanishing loci of the sections s̄i cover, giving the

result. �

We will need a complement on this result, concerning ideal sheaves.

Lemma 2.1.2. Assume that in the situation of Lemma 2.1.1, one has a

coherent ideal sheaf I ⊂ OX . Then the association

Ui 7→ H0(Ui, I ∩ O+
X )

extends uniquely to a coherent OX-module I, with generic fibre I .

Proof. From [14, Lemma 1.2(c), Prop. 1.3], it follows that H0(Ui, I ∩O+
X )

is a coherent R+
i -module. One checks that as UJ ′ ⊂ UJ for J ⊂ J ′ is defined

by the condition |f | = 1 for some f ∈ R+
J , H0(UJ ′ , I ∩ O+

X ) is given as the

$-adic completion of H0(UJ , I ∩ O+
X )[f−1]. Thus, these modules glue to give

6Note that there is only one notion of a proper rigid space; i.e., in [37, Rem. 1.3.19(iv)],

conditions (a) and (b) are always equivalent, not only if the nonarchimedean field is discretely

valued. This follows from the main result of [61].
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the desired coherent OX-module I. From the definition, it is clear that the

generic fibre of I is I. �

2.2. Closed Embeddings of perfectoid spaces. Let K be a perfectoid field

with tilt K[. Fix some element 0 6= $[ ∈ K[ with |$[| < 1, and set $ =

($[)] ∈ K. Let X = Spa(R,R+) be an affinoid perfectoid space over K.

Definition 2.2.1. A subset Z ⊂ |X | is Zariski closed if there is an ideal

I ⊂ R such that

Z = {x ∈ X | |f(x)| = 0 for all f ∈ I}.

Lemma 2.2.2. Assume that Z ⊂ X is Zariski closed. There is a universal

perfectoid space Z over K with a map Z → X for which |Z| → |X | factors

over Z . The space Z = Spa(S, S+) is affinoid perfectoid, the map R→ S has

dense image, and the map |Z| → Z is a homeomorphism.

As the proof uses some almost mathematics, let us recall that an OK-

module M is almost zero if it is killed by the maximal ideal mK of OK . The

category of almostOK-modules, orOaK-modules, is by definition the quotient of

the category of OK-modules by the thick subcategory of almost zero modules.

There are two functors from OaK-modules to OK-modules, right and left adjoint

to the forgetful functor. The first is

M 7→M∗ = HomOaK (OaK ,M),

and the second is
M 7→M! = mK ⊗OK M∗.

The existence of left and right adjoints implies that the forgetful functor

N 7→ Na commutes with all limits and colimits. For this reason, we are some-

what sloppy in the following on whether we take limits and colimits of actual

modules or almost modules if we are only interested in an almost module in

the end. For more discussion of almost mathematics, cf. [32] and, for a very

brief summary, [52, §4].

Proof. One can write Z ⊂ |X | as an intersection Z =
⋂
Z⊂U U of all

rational subsets U ⊂ X containing Z. Indeed, for any f1, . . . , fk ∈ I, one has

the rational subset

Uf1,...,fk = {x ∈ X | |fi(x)| ≤ 1, i = 1, . . . , k},
and Z is the intersection of these subsets. Any Uf1,...,fk =Spa(Rf1,...,fk , R

+
f1,...,fk

)

is affinoid perfectoid, where

Rf1,...,fk = R〈T1, . . . , Tk〉/(Ti − fi).
In particular, R→ Rf1,...,fk has dense image. Let S+ be the $-adic completion

of lim−→R+
f1,...,fk

; thus,

S+/$ = lim−→R+
f1,...,fk

/$.
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It follows that Frobenius induces an isomorphism (S+/$1/p)a ∼= (S+/$)a, so

that (S+/$)a is a perfectoid (OK/$)a-algebra. Thus, S+a is a perfectoid

OaK-algebra and S = S+[$−1] is a perfectoid K-algebra; cf. [52, §5]. Let

Z = Spa(S, S+). All properties are readily deduced. �

Remark 2.2.3. More precisely, for any affinoidK-algebra (T, T+) for which

T+ ⊂ T is bounded, and any map (R,R+)→ (T, T+) for which Spa(T, T+)→
Spa(R,R+) factors over Z, there is a unique factorization (R,R+)→ (S, S+)→
(T, T+). This follows directly from the proof, using that T+ is bounded in

proving that the map

lim−→R+
f1,...,fk

→ T+

extends by continuity to the $-adic completion S+.

We will often identify Z = Z and say that Z → X is a (Zariski) closed

embedding.

Remark 2.2.4. We caution the reader that in general, the map R → S is

not surjective. For an example, let R = K〈T 1/p∞〉 for some K of characteris-

tic 0, and look at the Zariski closed subset defined by I = (T − 1).

Lemma 2.2.5. Assume that K is of characteristic p and that

Z = Spa(S, S+)→ X = Spa(R,R+)

is a closed embedding. Then the map R+ → S+ is almost surjective. (In

particular, R→ S is surjective.)

Proof. One can reduce to the case that Z is defined by a single equation

f = 0 for some f ∈ R. One may assume that f ∈ R+. Consider the K◦a/$-

algebra

A = R◦a/($, f, f1/p, f1/p2
, . . .).

We claim that A is a perfectoid K◦a/$-algebra. To show that it is flat over

K◦a/$, it is enough to prove that

R◦a/(f, f1/p, f1/p2
, . . .)

is flat over K◦a, i.e., has no $-torsion. Thus, assume some element g ∈ R◦
satisfies $g = f1/pmh for some m ≥ 0, h ∈ R◦. Then we have

$1/png = ($g)1/png1−1/pn = f1/pm+n
h1/png1−1/pn ∈ (f, f1/p, f1/p2

, . . .).

Thus, g is almost zero in R◦/(f, f1/p, f1/p2
, . . .), as desired. That Frobenius

induces an isomorphism A/$1/p ∼= A is clear.

Thus, A lifts uniquely to a perfectoid K◦a-algebra T ◦a for some perfectoid

K-algebra T . The map R◦a → T ◦a is surjective by construction. Also, f maps

to 0 in T . Clearly, the map R◦a/$ → S◦a/$ factors over A; thus, R → S

factors over T . Let T+ ⊂ T be the integral closure of the image of R+; then
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Spa(T, T+)→ Spa(R,R+) factors over Z (as f maps to 0 in T ), giving a map

(S, S+) → (T, T+) by the universal property. The two maps between S and

T are inverse; thus, S = T . Almost surjectivity of R+ → S+ is equivalent to

surjectivity of R◦a → S◦a = T ◦a, which we have just verified. �

Definition 2.2.6. A map Z = Spa(S, S+) → X = Spa(R,R+) is strongly

Zariski closed if the map R+ → S+ is almost surjective.

Of course, something strongly Zariski closed is also Zariski closed (defined

by the ideal I = ker(R→ S)).

Lemma 2.2.7. A map Z = Spa(S, S+) → X = Spa(R,R+) is strongly

Zariski closed if and only if the map of tilts Z[ → X [ is strongly Zariski

closed.

Proof. The map R+ → S+ is almost surjective if and only if R+/$ →
S+/$ is almost surjective. Under tilting, this is the same as the condition

that R[+/$[ → S[+/$[ is almost surjective, which is equivalent to R[+ → S[+

being almost surjective. �

By Lemma 2.2.5, Zariski closed implies strongly Zariski closed in charac-

teristic p. Thus, a Zariski closed map in characteristic 0 is strongly Zariski

closed if and only if the tilt is still Zariski closed. For completeness, let us

mention the following result that appears in the work of Kedlaya-Liu, [43]; we

will not need this result in our work.

Lemma 2.2.8 ([43, Prop. 3.6.9(c)]). Let R → S be a surjective map of

perfectoid K-algebras. Then R◦ → S◦ is almost surjective.

In other words, for any rings of integral elements R+ ⊂ R, S+ ⊂ S for

which R+ maps into S+, the map R+ → S+ is almost surjective. Finally, let

us observe some statements about pulling back closed immersions.

Lemma 2.2.9. Let

Z ′ = Spa(S′, S′+)

��

// X ′ = Spa(R′, R′+)

��
Z = Spa(S, S+) // X = Spa(R,R+)

be a pullback diagram of affinoid perfectoid spaces (recalling that fibre products

always exist, cf. [52, Prop. 6.18]).

(i) If Z → X is Zariski closed, defined by an ideal I ⊂ R, then so is Z ′ → X ′,
defined by the ideal IR′ ⊂ R′.
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(ii) If Z → X is strongly Zariski closed, then so is Z ′ → X ′. Moreover, if we

define I+ = ker(R+ → S+), I ′+ = ker(R′+ → S′+), then the map

I+/$n ⊗R+/$n R
′+/$n → I ′+/$n

is almost surjective for all n ≥ 0.

Proof. Part (i) is clear from the universal property. For part (ii), observe

that (by the proof of [52, Prop. 6.18]) the map

S+/$ ⊗R+/$ R
′+/$ → S′+/$

is an almost isomorphism. Thus, if R+/$ → S+/$ is almost surjective, then

so is R′+/$ → S′+/$, showing that if Z → X is strongly Zariski closed,

then so is Z ′ → X ′. For the result about ideals, one reduces to n = 1. Now,

tensoring the almost exact sequence

0→ I+/$ → R+/$ → S+/$ → 0

with R′+/$ over R+/$ gives the desired almost surjectivity. �

2.3. A Hebbarkeitssatz for perfectoid spaces.

2.3.1. The general result. Let K be a perfectoid field of characteristic p,

with ring of integers OK ⊂ K and maximal ideal mK ⊂ OK . Fix some nonzero

element t ∈ mK ; then mK =
⋃
n t

1/pnOK . Let (R,R+) be a perfectoid affinoid

K-algebra, with associated affinoid perfectoid space X = Spa(R,R+). Fix an

ideal I ⊂ R, with I+ = I ∩ R+. Let Z = V (I) ⊂ X be the associated Zariski

closed subset of X .

Recall the following lemma, which holds true for any adic space over a

nonarchimedean field.

Lemma 2.3.1. The stalk of O+
X /t at a point x ∈ X with completed residue

field k(x) and valuation subring k(x)+ ⊂ k(x) is given by k(x)+/t.

In particular, if Ok(x) ⊂ k(x) denotes the powerbounded elements (so that

k(x)+ ⊂ Ok(x) is an almost equality), then the stalk of (O+
X /t)

a is given by

Oak(x)/t.

Proof. There is a map O+
X ,x → k(x)+ with a dense image. To prove the

lemma, one has to see that if I denotes the kernel of this map, then I/t = 0.

If f ∈ I, then f ∈ O+
X (U) for some neighborhood U of x, with f(x) = 0. Then

|f | ≤ |t| defines a smaller neighborhood V of x, on which f becomes divisible

by t as an element of O+
X (V ). �

Proposition 2.3.2. There is an isomorphism of almost OK-modules

HomR+(I+1/p∞ , R+/t)a ∼= H0(X \ Z,O+
X /t)

a.
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For any point x ∈ X \ Z , this isomorphism commutes with evaluation

H0(X \ Z,O+
X /t)

a → Oak(x)/t

at x, where k(x) is the completed residue field of X at x:

HomR+(I+1/p∞ , R+/t)a → HomOk(x)
(I

+1/p∞

k(x) ,Ok(x)/t)
a = Oak(x)/t.

Remark 2.3.3. Recall that the global sections of (O+
X /t)

a are (R+/t)a (cf.

[52, Th. 6.3(iii), (iv)]). Also, note that if x ∈ X\Z, then the image I+
k(x) ⊂ Ok(x)

of I+ is not the zero ideal, so that I
+1/p∞

k(x) is almost equal to Ok(x). Finally,

the requirement of the lemma pins down the map uniquely, as for any sheaf F
of almost OK-modules on a space Y , the map H0(F)→ ∏

y∈Y Fy is injective.

Proof. Assume first that I is generated by an element f ∈ R; we may

assume that f ∈ R+. In that case, I+1/p∞ is almost equal to f1/p∞R+ =⋃
n f

1/pnR+. Indeed, one has to see that the cokernel of the inclusion f1/p∞R+

→ I+1/p∞ is killed by mK . Take any element g ∈ I+1/p∞ ; then g ∈ I+1/pm for

some m, so g = f1/pmh for some h ∈ R. There is some n such that tnh ∈ R+.

For all k ≥ 0, we have

tn/p
k
g = tn/p

k
g1/pkg1−1/pk = f1/pm+k

(tnh)1/pkg1−1/pk ∈ f1/pm+k
R+,

giving the result.

Thus, we have to see that

HomR+(f1/p∞R+, R+/t)a ∼= H0(X \ V (f),O+
X /t)

a.

Consider the rational subsets Un = {x ∈ Spa(R,R+) | |f(x)| ≥ |t|n} ⊂ X ; then

X \ V (f) =
⋃
n Un. Moreover, by [52, Lemma 6.4(i)] (and its proof), one has

H0(Un,O+
X /t)

a ∼= R+/t[u1/p∞
n ]/(∀m : u1/pm

n f1/pm − tn/pm)a.

Let

Sn = R+/t[u1/p∞
n ]/(∀m : u1/pm

n f1/pm − tn/pm),

and let S
(k)
n ⊂ Sn be the R+-submodule generated by uin for i ≤ 1/pk. One

gets maps

f1/pk : S(k)
n → im(R+/t→ Sn),

as f1/pkuin = f1/pk−if iuin = f1/pk−itni for all i ≤ 1/pk. Also, we know that

H0(X \ V (f),O+
X /t)

a = lim←−
n

H0(Un,O+
X /t)

a = lim←−
n

San,

and direct inspection shows that for fixed n and k, the map Sn′ → Sn factors

over S
(k)
n for n′ large enough. It follows that

lim←−
n

Sn = lim←−
n

S(k)
n
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for any k, and then also

lim←−
n

Sn = lim←−
n,k

S(k)
n .

Via the maps f1/pk : S
(k)
n → im(R+/t→ Sn), one gets a map of inverse systems

(in n and k),

S(k)
n → im(R+/t→ Sn),

where on the right-hand side, the transition maps are given by multiplication

by f1/pk−1/pk
′
. The kernel and cokernel of this map are killed by f1/pk , and

thus by tn/p
k

= f1/pku
1/pk
n . Taking the inverse limit over both n and k (the

order does not matter, so we may first take it over k, and then over n), one

sees that the two inverse limits are almost the same.

On the other hand, there is a map of inverse systems (in n and k),

R+/t→ im(R+/t→ Sn).

Again, transition maps are multiplication by f1/pk−1/pk
′
. Clearly, the maps

are surjective. Assume a ∈ ker(R+/t → Sn). Then, for any sufficiently large

m, one can write

a = (u1/pm

n f1/pm − tn/pm)
∑
i

aiu
i
n

in R+/t[u
1/p∞
n ]. Comparing coefficients, we find that

a = −tn/pma0, f
1/pma = −t2n/pma1/pm , . . . , f

`/pma = −t(`+1)n/pma`/pm

for all ` ≥ 0. In particular, f `/p
m
a ∈ tn`/pmR+/t for all `,m ≥ 0 (a priori only

for m large enough, but this is enough). Assume that n = pn
′

is a power of p

(which is true for a cofinal set of n); then, setting ` = 1, m = n′, we find that

f1/na = 0 ∈ R+/t.

As the transition maps are given by f1/pk−1/pk
′

and we may take the

inverse limit over k and n also as the inverse limit over the cofinal set of (k, n)

with n = pk+1, one finds that the kernel of the map of inverse systems

R+/t→ im(R+/t→ Sn)

is Mittag-Leffler zero. It follows that the inverse limits are the same. Finally,

we have a map

HomR+(f1/p∞R+, R+/t)→ lim←−
k

R+/t

given by evaluating a homomorphism on the elements f1/pk ∈ f1/p∞R+. Let

M be the direct limit of R+ along multiplication by f1/pk−1/pk
′
. Then

lim←−
k

R+/t = HomR+(M,R+/t);
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it is enough to see that the surjective map M → f1/p∞R+ (sending 1 in the

k-th term R+ to f1/pk) is injective. For this, if a ∈ ker(f1/pk : R+ → R+),

then by perfectness of R+, also a1/pf1/pk+1
= 0, so af1/pk+1

= 0; it follows

that a gets mapped to 0 in the direct limit M .

This handles the case that I is generated by a single element. The general

case follows: Filtering I by its finitely generated submodules, we reduce to the

case that I is finitely generated. Thus, assume that I = I1 + I2, where I1 is

principal and I2 is generated by fewer elements. Clearly,

X \ V (I) = (X \ V (I1)) ∪ (X \ V (I2))

and

(X \ V (I1)) ∩ (X \ V (I2)) = (X \ V (I1I2)).

By using the sheaf property, one computes H0(X \ V (I),O+
X /t)

a in terms of

the others. Note that by induction, we may assume that the result is known

for I1, I2, and I1I2. Also,

0→ (I1I2)+1/p∞ → I
+1/p∞

1 ⊕ I+1/p∞

2 → (I1 + I2)+1/p∞ → 0

is almost exact. Injectivity at the first step is clear. If (f, g) lies in the kernel

of the second map, then f = g ∈ R+, and f = f1/pg(p−1)/p ∈ (I1I2)+1/p∞ ,

showing exactness in the middle. If h ∈ (I1 + I2)+1/p∞ , then we may write

h = f + g for certain f ∈ I1/p∞

1 , g ∈ I1/p∞

2 . After multiplying by a power tk

of t, we have tkf, tkg ∈ R+. But then also

tk/p
m
h = (tkh)1/pmh1−1/pm

= (tkf)1/pmh1−1/pm + (tkg)1/pmh1−1/pm ∈ I+1/p∞

1 + I
+1/p∞

2 .

This gives almost exactness of

0→ (I1I2)+1/p∞ → I
+1/p∞

1 ⊕ I+1/p∞

2 → (I1 + I2)+1/p∞ → 0,

and applying HomR+(−, R+/t)a will then give the result. �

For applications, the following lemma is useful.

Lemma 2.3.4. Let R be a perfectoid K-algebra, I ⊂ R an ideal, and R′ a

perfectoid K-algebra, with a map R→ R′; let I ′ = IR′. Then

I+1/p∞ ⊗R+ R′+ → I ′+1/p∞

is an almost isomorphism.

Proof. Writing I as the filtered direct limit of its finitely generated sub-

modules, one reduces to the case that I is finitely generated. Arguing by

induction on the minimal number of generators of I as at the end of the proof

of the previous proposition, one reduces further to the case that I is principal,

generated by some element 0 6= f ∈ R+. In that case, I+1/p∞ is almost the
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same as f1/p∞R+, which is the same as lim−→R+, where the transition maps are

given by f1/pk−1/pk+1
; cf. the description of M in the previous proof. The same

applies for I ′+1/p∞ , and the latter description obviously commutes with base

change. �

2.3.2. A special case. There will be a certain situation where we want

to apply the Hebbarkeitssatz (and where it takes its usual form saying that

anything extends uniquely from X \ Z to X ). Let A0 be normal, integral,

and of finite type over Fp, and let 0 6= f ∈ A0. Let K = Fp((t1/p
∞

)), let

S = A
1/p∞

0 ⊗̂FpK be the associated perfectoid K-algebra, and let S+ = S◦ =

A
1/p∞

0 ⊗̂FpOK . Then (S, S+) is a perfectoid affinoid K-algebra, and let Y =

Spa(S, S+).

Inside Y, consider the open subset X = {y ∈ Y | |f(y)| ≥ |t|}, and let

(R,R+) = (OY(X ),O+
Y (X )). Note that

R+a/t ∼= (A
1/p∞

0 ⊗Fp OK/t)[u1/p∞ ]/(∀m : u1/pmf1/pm − t1/pm)a.

Finally, fix an ideal 0 6= I0 ⊂ A0, let I = I0R, and let Z = V (I) ⊂ X be the

associated closed subset of X .

In the application, SpecA0 will be an open subset of the minimal compact-

ification of the Siegel moduli space, the element f will be the Hasse invariant,

and the ideal I0 will be the defining ideal of the boundary.

In this situation, Riemann’s Hebbarkeitssatz holds true, at least under a

hypothesis on resolution of singularities. In the application, this exists by the

theory of the toroidal compactification.

Corollary 2.3.5. Assume that SpecA0 admits a resolution of singular-

ities, i.e., a proper birational map T → SpecA0 such that T is smooth over

Fp. Then the map

H0(X ,O+
X /t)

a → H0(X \ Z,O+
X /t)

a

is an isomorphism of almost OK-modules.

Proof. Arguing as at the end of the proof of Proposition 2.3.2, we may

assume that I is generated by one element 0 6= g ∈ A0. We have to show that

the map

R+a/t→ HomR+(g1/p∞R+, R+/t)a

is an isomorphism. Note that we may rewrite

R+a/t = (A
1/p∞

0 ⊗Fp Fp[t1/p
∞

]/t)[u1/p∞ ]/(∀m : u1/pmf1/pm − t1/pm)a

∼= A
1/p∞

0 [u1/p∞ ]/(uf)a;
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thus, we may replace R+/t by A = A
1/p∞

0 [u1/p∞ ]/(uf), with the almost struc-

ture given by (u1/p∞f1/p∞). Also,

HomR+(g1/p∞R+, R+/t)a ∼= HomR+/t(g
1/p∞R+/t,R+/t)a

∼= HomA(g1/p∞A,A)a

∼= Hom
A

1/p∞
0

(g1/p∞A
1/p∞

0 , A)a.

In the last step, we use that the kernel of the surjective map g1/p∞A
1/p∞

0 ⊗
A

1/p∞
0

A→ g1/p∞A is almost zero. Given the formula

A =
⊕

0≤i<1,i∈Z[1/p]

A
1/p∞

0 · ui ⊕
⊕

i≥1,i∈Z[1/p]

(
A

1/p∞

0 /f
)
· ui,

this reduces to showing that the kernel of

g1/p∞A
1/p∞

0 /fg1/p∞A
1/p∞

0 → A
1/p∞

0 /fA
1/p∞

0

is almost zero with respect to the ideal generated by all f1/pm , m ≥ 0. But if

a ∈ g1/p∞A
1/p∞

0 is of the form a = fb for some b ∈ A1/p∞

0 , then

f1/pma = f1/pma1−1/pma1/pm = f1/pmf1−1/pmb1−1/pma1/pm

= fa1/pmb1−1/pm ∈ fg1/p∞A
1/p∞

0 ,

whence the claim.

It remains to see that the map

A→ Hom
A

1/p∞
0

(g1/p∞A
1/p∞

0 , A)

is almost an isomorphism. Again, using the explicit formula for A, and using

the basis given by ui, this reduces to the following lemma. �

Lemma 2.3.6. Let A0 be normal, integral, and of finite type over Fp, such

that SpecA0 admits a resolution of singularities. Let 0 6= f, g ∈ A0. Then the

two maps

A
1/p∞

0 → Hom
A

1/p∞
0

(g1/p∞A
1/p∞

0 , A
1/p∞

0 ),

A
1/p∞

0 /f → Hom
A

1/p∞
0

(g1/p∞A
1/p∞

0 , A
1/p∞

0 /f)

are almost isomorphisms with respect to the ideal generated by all f1/pm , m ≥ 0.

Remark 2.3.7. In fact, the first map is an isomorphism, and the second

map injective, without assuming resolution of singularities for SpecA0. Res-

olution of singularities is only needed to show that the second map is almost

surjective. It may be possible to remove the assumption of resolution of sin-

gularities by using de Jong’s alterations.
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Proof. First, as A0, and thus A
1/p∞

0 is a domain, the map

A
1/p∞

0 → Hom
A

1/p∞
0

(g1/p∞A
1/p∞

0 , A
1/p∞

0 )

is injective, and the right-hand side injects into A
1/p∞

0 [g−1] ⊂ L, where L is

the quotient field of A
1/p∞

0 . If x ∈ L lies in the image of the right-hand side,

then g1/pnx ∈ A1/p∞

0 for all n. As A0 is normal and noetherian, one can check

whether x ∈ A
1/p∞

0 by looking at rank-1-valuations. If x would not lie in

A
1/p∞

0 , then there would be some rank-1-valuation taking absolute value > 1

on x; then for n sufficiently large, also g1/pnx has absolute value > 1, which

contradicts g1/pnx ∈ A1/p∞

0 . Thus,

A
1/p∞

0
∼= Hom

A
1/p∞
0

(g1/p∞A
1/p∞

0 , A
1/p∞

0 ).

In particular, it follows that

A
1/p∞

0 /f ↪→ Hom
A

1/p∞
0

(g1/p∞A
1/p∞

0 , A
1/p∞

0 /f).

Now assume first that A0 is smooth. Then A
1/p
0 is a flat A0-module; it

follows that A
1/p∞

0 is a flat A0-module. First, observe that for any A0-module

M and 0 6= x ∈ M , there is some n such that 0 6= g1/pnx ∈ A
1/p∞

0 ⊗A0 M .

Indeed, assume not; then replacing M by the submodule generated by x (and

using flatness of A
1/p∞

0 ), we may assume that M = A0/J for some ideal J ⊂ A0

and that g1/pn : M = A0/J → A
1/p∞

0 ⊗A0 M = A
1/p∞

0 /JA
1/p∞

0 is the zero map

for all n ≥ 0. This implies that g ∈ JpnA1/p∞

0 ∩A0 = Jp
n

(by flatness of A
1/p∞

0

over A0) for all n ≥ 0, so that g = 0 by the Krull intersection theorem, as A0

is a domain, which is a contradiction.

In particular, we find that⋂
n

(f, g1−1/pn)A
1/p∞

0 = (f, g)A
1/p∞

0 .

Indeed, an element x of the left-hand side lies in A
1/pm

0 for m large enough; we

may assume m = 0 by applying a power of Frobenius. Then x reduces to an

element of M = A0/(f, g) such that for all n ≥ 0,

0 = g1/pnx ∈ A1/p∞

0 ⊗A0 M = A
1/p∞

0 /(f, g).

Therefore, 0 = x ∈ A0/(f, g), i.e., x ∈ (f, g)A0 ⊂ (f, g)A
1/p∞

0 .

Now recall that

Hom
A

1/p∞
0

(g1/p∞A
1/p∞

0 , A
1/p∞

0 /f)

can be computed as the inverse limit of A
1/p∞

0 /f , where the transition maps

(from the k-th to the k′-th term) are given by multiplication by g1/pk−1/pk
′
.
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Let M = R1 lim←−A
1/p∞

0 , with the similar transition maps. Then there is an

exact sequence

0→ A
1/p∞

0
f→ A

1/p∞

0 → Hom
A

1/p∞
0

(g1/p∞A
1/p∞

0 , A
1/p∞

0 /f)→M
f→M.

Thus, it remains to see that kernel of f : M → M is killed by f1/pm for all

m ≥ 0. Recall that

M = coker
( ∏
n≥0

A
1/p∞

0 →
∏
n≥0

A
1/p∞

0

)
,

where the map is given by (x0, x1, . . .) 7→ (y0, y1, . . .) with

yk = xk − g1/pk−1/pk+1
xk+1.

Thus, take some sequence (y0, y1, . . .), and assume that there is a sequence

(x′0, x
′
1, . . .) with fyk = x′k−g1/pk−1/pk+1

x′k+1. We claim that x′0 ∈ (f, g)A
1/p∞

0 .

By the above, it is enough to prove that x′0 ∈ (f, g1−1/pk)A
1/p∞

0 for all k ≥ 0.

But

x′0 = fy0 + g1−1/px′1 = fy0 + g1−1/pfy1 + g1−1/p2
x′2

= · · · = f(y0 + g1−1/py1 + · · ·+ g1−1/pk−1
yk−1)

+ g1−1/pkx′k ∈ (f, g1−1/pk)A
1/p∞

0 ,

giving the claim. Similarly, x′k ∈ (f, g1/pk)A
1/p∞

0 for all k ≥ 0. Fix some

k0 ≥ 0. We may add g1/pkz to x′k for all k for some z ∈ A1/p∞

0 ; thus, we may

assume that x′k0
∈ fA1/p∞

0 . It follows that

g1/pk0−1/pkx′k ∈ fA
1/p∞

0

for all k ≥ k0 (and x′k ∈ fA
1/p∞

0 for k < k0). We claim that there is an integer

C ≥ 0 (depending only on A0, f and g) such that this implies

x′k ∈ f1−C/pk0
A

1/p∞

0 .

Indeed, this is equivalent to a divisibility of Cartier divisors f1−C/pk0 |x′k. As

A0 is normal, this can be translated into a divisibility of Weil divisors. Let

x1, . . . , xr ∈ SpecA0 be the generic points of V (f), and v1, . . . , vr the associated

rank-1-valuations on A
1/p∞

0 , normalized by v(f) = 1. Then, the condition

f1−C/pk0 |x′k is equivalent to vi(x
′
k) ≥ 1 − C/pk0 for i = 1, . . . , r. As g 6= 0,

there is some C <∞ such that vi(g) ≤ C for i = 1, . . . , r. As

g1/pk0−1/pkx′k ∈ fA
1/p∞

0 ,

we know that
(1/pk0 − 1/pk)C + vi(x

′
k) ≥ 1,

thus
vi(x

′
k) ≥ 1− C/pk0 ,

as desired.
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Thus, taking k0 large enough, we can ensure that all x′k are divisible by

f1−1/pn , which shows that f1/pn(y0, y1, . . .) = 0 ∈ M , whence the claim. This

finishes the proof in the case that A0 is smooth.

In general, take a resolution of singularities π : T → SpecA0 (which we

assumed to exist). It induces a map π1/p∞ : T 1/p∞ → SpecA
1/p∞

0 . The result

in the smooth case implies that

HomO
T1/p∞ (g1/p∞OT 1/p∞ ,OT 1/p∞/f)← OT 1/p∞/f

is an almost isomorphism of sheaves over T 1/p∞ . Note that by Zariski’s main

theorem, π∗OT = OSpecA0 . Moreover, R1π∗OT is a coherent OSpecA0-module,

so there is some n such that fn kills all f -power torsion in R1π∗OT . Passing to

the perfection, this implies that onR1π
1/p∞
∗ OT 1/p∞ , the kernel of multiplication

by f is also killed by f1/pn for all n ≥ 0. Therefore, the map

O
SpecA

1/p∞
0

/f → π
1/p∞
∗ (OT 1/p∞/f)

is injective, with cokernel almost zero. Also,

g1/p∞OT 1/p∞ = π1/p∞∗(g1/p∞O
SpecA

1/p∞
0

),

as g is a regular element in A0 and OT . Thus, adjunction shows that

HomO
SpecA

1/p∞
0

(g1/p∞O
SpecA

1/p∞
0

,O
SpecA

1/p∞
0

/f)

→ HomO
SpecA

1/p∞
0

(g1/p∞O
SpecA

1/p∞
0

, π
1/p∞
∗ OT 1/p∞/f)

→ π
1/p∞
∗ HomO

T1/p∞ (g1/p∞OT 1/p∞ ,OT 1/p∞/f)

← π
1/p∞
∗ OT 1/p∞/f ← O

SpecA
1/p∞
0

/f

is a series of almost isomorphisms, finally finishing the proof by taking global

sections. �

2.3.3. Lifting to (pro-)finite covers. As the final topic in this section, we

will show how to lift a Hebbarkeitssatz to (pro-)finite covers. In the application,

we will first prove a Hebbarkeitssatz at level Γ0(p∞) using the result from the

previous subsection. After that, we need to lift this result to full Γ(p∞)-level.

This is the purpose of the results of this subsection.

The following general definition will be useful.

Definition 2.3.8. Let K be a perfectoid field (of any characteristic), and

let 0 6= t ∈ K with |p| ≤ |t| < 1. A triple (X ,Z,U) consisting of an affinoid

perfectoid space X over K, a closed subset Z ⊂ X , and a quasi-compact open

subset U ⊂ X \ Z is good if

H0(X ,O+
X /t)

a ∼= H0(X \ Z,O+
X /t)

a ↪→ H0(U ,O+
U /t)

a.
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One checks easily that this notion is independent of the choice of t and is

compatible with tilting. Moreover, if (X ,Z,U) is good, then for any t ∈ OK ,

possibly zero, one has

H0(X ,O+
X /t)

a ∼= H0(X \ Z,O+
X /t)

a ↪→ H0(U ,O+
U /t)

a.

In particular, the case t = 0 says that bounded functions from X \ Z extend

uniquely to X .

In the application, X will be an open subset of the minimal compactifi-

cation, Z will be the boundary, and U the locus of good reduction. Knowing

that such a triple is good will allow us to verify statements away from the

boundary, or even on the locus of good reduction.

Now we go back to our setup so, in particular, K is of characteristic p. Let

R0 be a reduced Tate K-algebra topologically of finite type, X0 = Spa(R0, R
◦
0)

the associated affinoid adic space of finite type over K. Let R be the completed

perfection of R0, which is a p-finite perfectoid K-algebra, and X = Spa(R,R+)

with R+ = R◦ the associated p-finite affinoid perfectoid space over K.

Moreover, let I0 ⊂ R0 be some ideal, I = I0R ⊂ R, Z0 = V (I0) ⊂ X0, and

Z = V (I) ⊂ X . Finally, fix a quasi-compact open subset U0 ⊂ X0 \ Z0, with

preimage U ⊂ X \ Z.

In the following lemma, we show that the triple (X ,Z,U) is good under

suitable conditions on R0, I0, and U0.

Lemma 2.3.9. Let A0 be normal, of finite type over Fp, admitting a res-

olution of singularities, let

R0 = (A0⊗̂FpK)〈u〉/(uf − t)

for some f ∈ A0 that is not a zero-divisor, and let I0 = JR0 for some ideal

J ⊂ A0 with V (J) ⊂ SpecA0 of codimension ≥ 2. Moreover, let U0 = {x ∈
X0 | |g(x)| = 1 for some g ∈ J}. If K = Fp((t1/p

∞
)), then the triple (X ,Z,U)

is good.

Proof. We may assume that A0 is integral. Corollary 2.3.5 implies that

H0(X ,O+
X /t)

a ∼= H0(X \ Z,O+
X /t)

a.

Moreover, using notation from the proof of Corollary 2.3.5, H0(X ,O+
X /t)

a =

A
1/p∞

0 [u1/p∞ ]/(uf)a, and for any g ∈ J , one has

H0(Ug,O+
X /t)

a = A
1/p∞

0 [g−1][u1/p∞ ]/(uf)a

by localization, where Ug = {x ∈ X | |g(x)| = 1}. Thus, using the basis given

by the ui, the result follows from

H0(SpecA0,OSpecA0) = H0(SpecA0 \ V (J),OSpecA0)
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and

H0(SpecA0,OSpecA0/f) ↪→ H0(SpecA0 \ V (J),OSpecA0/f),

where the latter holds true because the depth of OSpecA0/f at any point of

V (J) is at least 2− 1 = 1. �

In the next lemma, we go back to the abstract setup before Lemma 2.3.9.

Lemma 2.3.10. Assume that (X ,Z,U) is good. Assume moreover that R0

is normal and that V (I0) ⊂ SpecR0 is of codimension ≥ 2. Let R′0 be a finite

normal R0-algebra that is étale outside V (I0), and such that no irreducible

component of SpecR′0 maps into V (I0). Let I ′0 = I0R
′
0, and U ′0 ⊂ X ′0 the

preimage of U0. Let R′, I ′, X ′, Z ′, U ′ be the associated perfectoid objects.

(i) There is a perfect trace pairing

trR′0/R0
: R′0 ⊗R0 R

′
0 → R0.

(ii) The trace pairing from (i) induces a trace pairing

trR′◦/R◦ : R′◦ ⊗R◦ R′◦ → R◦

that is almost perfect.

(iii) For all open subsets V ⊂ X with preimage V ′ ⊂ X ′, the trace pairing

induces an isomorphism

H0(V ′,O+
X ′/t)

a ∼= HomR◦/t(R
′◦/t,H0(V,O+

X /t))
a.

(iv) The triple (X ′,Z ′,U ′) is good.

(v) If X ′ → X is surjective, then the map

H0(X ,O+
X /t)→ H0(X ′,O+

X ′/t) ∩H
0(U ,O+

X /t)

is an almost isomorphism.

Proof. (i) There is an isomorphism of locally free OSpecR0\V (I0)-modules

f∗OSpecR′0\V (I′0) → HomOSpecR0\V (I0)
(f∗OSpecR′0\V (I′0),OSpecR0\V (I0))

induced by the trace pairing on SpecR0 \ V (I0), as the map

f : SpecR′0 \ V (I ′0)→ SpecR0 \ V (I0)

is finite étale. Now take global sections to conclude, using that R0 and R′0 are

normal and V (I0) ⊂ SpecR0, V (I ′0) ⊂ SpecR′0 are of codimension ≥ 2.

(ii) By part (i) and Banach’s open mapping theorem, the cokernel of the

injective map

R′◦0 → HomR◦0
(R′◦0 , R

◦
0)

is killed by tN for some N . Passing to the completed perfection implies that

R′◦ → HomR◦(R
′◦, R◦)

is almost exact, as desired.
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(iii) If V = X , this follows from part (ii) by reduction modulo t. In general,

V is the preimage of some V0 ⊂ X0, which we may assume to be affinoid. One

can then use the result for V0 in place of X0, noting that

HomR◦/t(R
′◦/t,H0(V,O+

X /t))
a

= HomH0(V,O+
X /t)

(H0(V,O+
X /t)⊗R◦/t R

′◦/t,H0(V,O+
X /t))

a

= HomH0(V,O+
X /t)

(H0(V ′,O+
X /t), H

0(V,O+
X /t))

a,

by the formula for fibre products in the category of perfectoid spaces; cf. [52,

Prop. 6.18].

(iv) This follows directly from part (iii) and the assumption that (X ,Z,U)

is good.

(v) By surjectivity of X ′ → X , H0(X ,O+
X /t)

a ↪→ H0(X ′,O+
X /t)

a. Assume

h is an almost element of H0(X ′,O+
X ′/t)

a∩H0(U ,O+
X /t)

a. Then, via the trace

pairing, h gives rise to a map

(R′◦/t)a → (R◦/t)a.

We claim that this factors over the (almost surjective) map

tr(R′◦/t)a/(R◦/t)a : (R′◦/t)a → (R◦/t)a.

As (R◦/t)a ↪→ H0(U ,O+
X /t)

a, it suffices to check this after restriction to U ;

there it follows from the assumption h ∈ H0(U ,O+
X /t). This translates into

the statement that h is an almost element of H0(X ,O+
X /t)

a, as desired. �

Finally, assume that one has a filtered inductive system R
(i)
0 , i ∈ I, as in

Lemma 2.3.10, giving rise to X (i), Z(i), U (i). We assume that all transition

maps X (i) → X (j) are surjective. Let X̃ be the inverse limit of the X (i) in the

category of perfectoid spaces over K, with preimage Z̃ ⊂ X̃ of Z and Ũ ⊂ X̃
of U .

Lemma 2.3.11. In this situation, the triple (X̃ , Z̃, Ũ) is good.

Proof. As X̃ and Ũ are qcqs, one may pass to the filtered direct limit to

conclude from the previous lemma, part (iv), that

H0(X̃ ,O+
X̃ /t)

a ↪→ H0(Ũ ,O+
X̃ /t)

a.

Moreover,

H0(X (i),O+
X (i)/t)

a ↪→ H0(X̃ ,O+
X̃ /t)

a

for all i ∈ I, as X̃ surjects onto X (i). The same injectivity holds on open

subsets. Also,

H0(X (i),O+
X (i)/t)

a = H0(X̃ ,O+
X̃ /t)

a ∩H0(U (i),O+
X (i)/t)

a,
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by passing to the filtered direct limit in the previous lemma, part (v). Let

R̃ = H0(X̃ ,OX̃ ), R̃+ = R̃◦, and Ĩ = I0R̃ ⊂ R̃. Then the general form of the

Hebbarkeitssatz says that

H0(X̃ \ Z̃,O+
X̃ /t)

a = HomR̃+(Ĩ+1/p∞ , R̃+/t)a = HomR+(I+1/p∞ , R̃+/t)a,

also using Lemma 2.3.4. The latter injects into

HomR+(I+1/p∞ , H0(Ũ ,O+
X̃ /t))

a = H0(Ũ \ Z̃,O+
X̃ /t)

a = H0(Ũ ,O+
X̃ /t)

a.

The latter is a filtered direct limit. If an almost element h of H0(X̃ \Z̃,O+
X̃ /t)

a

is mapped to an almost element of

H0(U (i),O+
X (i)/t)

a ⊂ H0(Ũ ,O+
X̃ /t)

a,

then the map
(I+1/p∞)a → (R̃+/t)a

corresponding to h will take values in (R̃+/t)a∩H0(U (i),O+
X (i)/t)

a = (R(i)+/t)a,

and thus it gives rise to an almost element of

HomR+(I+1/p∞ , R(i)+/t)a = H0(X (i) \ Z(i),O+
X (i)/t)

a.

But (X (i),Z(i),U (i)) is good, so the Hebbarkeitssatz holds there, and h extends

to X (i), and thus to X̃ . �

In particular, one can use this to generalize Lemma 2.3.9 slightly:

Corollary 2.3.12. Lemma 2.3.9 holds under the weaker assumption

that K is the completion of an algebraic extension of Fp((t1/p
∞

)).

Proof. For a finite extension, this follows from Lemma 2.3.10. Then the

general case follows from Lemma 2.3.11. �

3. The perfectoid Siegel space

3.1. Introduction. Fix an integer g ≥ 1 and a prime p. Let (V, ψ) be the

split symplectic space of dimension 2g over Q. In other words, V = Q2g with

symplectic pairing

ψ((a1, . . . , ag, b1, . . . , bg), (a
′
1, . . . , a

′
g, b
′
1, . . . , b

′
g)) =

g∑
i=1

(aib
′
i − a′ibi).

Inside V , we fix the self-dual lattice Λ = Z2g. Let GSp2g/Z be the group of

symplectic similitudes of Λ, and fix a compact open subgroup Kp ⊂ GSp2g(A
p
f )

contained in {γ ∈ GSp2g(Ẑp) | γ ≡ 1 mod N} for some integer N ≥ 3 prime

to p.

Let Xg,Kp over Z(p) denote the moduli space of principally polarized

g-dimensional abelian varieties with level-Kp-structure. As g and Kp remain

fixed throughout, we will write X = Xg,Kp . The moduli space X can be

interpreted as the Shimura variety for the group of symplectic similitudes
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GSp2g = GSp(V, ψ), acting on the Siegel upper half space. Let Fl over Q
be the associated flag variety, i.e., the space of totally isotropic subspaces

W ⊂ V (of dimension g). Over Fl, one has a tautological ample line bundle

ωFl = (
∧gW )∗.

Moreover, we have the minimal (Baily-Borel-Satake) compactification X∗

= X∗g,Kp over Z(p), as constructed by Faltings-Chai, [28]. It carries a natural

ample line bundle ω, given (on Xg,Kp) as the determinant of the sheaf of

invariant differentials on the universal abelian scheme; in fact, if g ≥ 2, then

X∗g,Kp = Proj
⊕
k≥0

H0(Xg,Kp , ω⊗k).

Moreover, for any compact open subgroup Kp ⊂ GSp2g(Qp), we have XKp =

Xg,KpKp over Q, which is the moduli space of principally polarized g-dimen-

sional abelian varieties with level-Kp-structure and level-Kp-structure, with a

similar compactification X∗Kp = X∗g,KpKp . We will be particularly interested in

the following level structures.

Definition 3.1.1. In all cases, the blocks are of size g × g:

Γ0(pm) = {γ ∈ GSp2g(Zp) | γ ≡ ( ∗ ∗0 ∗ ) mod pm, det γ ≡ 1 mod pm},

Γ1(pm) = {γ ∈ GSp2g(Zp) | γ ≡ ( 1 ∗
0 1 ) mod pm},

[1pt]Γ(pm) = {γ ∈ GSp2g(Zp) | γ ≡ ( 1 0
0 1 ) mod pm}.

We note that our definition of Γ0(pm) is slightly nonstandard in that we

put the extra condition det γ ≡ 1 mod pm.

Let X ∗Kp denote the adic space over Spa(Qp,Zp) associated with X∗Kp for

any Kp ⊂ GSp2g(Qp). Similarly, let F` be the adic space over Spa(Qp,Zp)
associated with Fl, with ample line bundle ωF`. Let Qcycl

p be the completion of

Qp(µp∞). Note that X∗Γ0(pm) lives naturally over Q(ζpm) by looking at the sym-

plectic similitude factor. The following theorem summarizes the main result;

for a more precise version, we refer to Theorem 3.3.18.

Theorem 3.1.2. Fix any Kp ⊂ GSp2g(A
p
f ) contained in the level-N -con-

gruence subgroup for some N ≥ 3 prime to p.

(i) There is a unique (up to unique isomorphism) perfectoid space

X ∗Γ(p∞) = X ∗g,Γ(p∞),Kp

over Qcycl
p with an action of GSp2g(Qp),

7 such that

X ∗Γ(p∞) ∼ lim←−
Kp

X ∗Kp ,

equivariant for the GSp2g(Qp)-action. Here, we use ∼ in the sense of [55,

Def. 2.4.1].

7Of course, the action does not preserve the structure morphism to Spa(Qcycl
p ,Zcycl

p ).
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(ii) There is a GSp2g(Qp)-equivariant Hodge-Tate period map

πHT : X ∗Γ(p∞) → F`

under which the pullback of ω from X ∗Kp to X ∗Γ(p∞) gets identified with

the pullback of ωF` along πHT. Moreover, πHT commutes with Hecke

operators away from p (when changing Kp) for the trivial action of these

Hecke operators on F`.
(iii) There is a basis of open affinoid subsets U ⊂ F` for which the preimage

V = π−1
HT(U) is affinoid perfectoid, and the following statements are true.

The subset V is the preimage of an affinoid subset Vm ⊂ X ∗Γ(pm) for m

sufficiently large, and the map

lim−→
m

H0(Vm,OX ∗
Γ(pm)

)→ H0(V,OX ∗
Γ(p∞)

)

has dense image.

These results, including the Hodge-Tate period map, are entirely new even

for the modular curve, i.e., g = 1. Let us explain in this case what πHT looks

like. One may stratify each

X ∗K = X ∗ord
K

⊔
X ss
K

into the ordinary locus X ∗ord
K (which we define for this discussion as the clo-

sure of the tubular neighborhood of the ordinary locus in the special fibre) and

the supersingular locus X ss
K . Thus, by definition, X ss

K ⊂ X ∗K is an open sub-

set, which can be identified with a finite disjoint union of Lubin-Tate spaces.

Passing to the inverse limit, we get a similar decomposition

X ∗Kp = X ∗ord
Kp

⊔
X ss
Kp .

On the flag variety F` = P1 for GSp2 = GL2, one has a decomposition

P1 = P1(Qp)
⊔

Ω2,

where Ω2 = P1 \ P1(Qp) is Drinfeld’s upper half-plane. These decompositions

correspond, i.e.,

X ∗ord
Kp = π−1

HT(P1(Qp)), X ss
Kp = π−1

HT(Ω2).

Moreover, on the ordinary locus, the Hodge-Tate period map

πHT : X ∗ord
Kp → P1(Qp)

measures the position of the canonical subgroup. On the supersingular locus,

one has the following description of πHT, using the isomorphism MLT,∞ ∼=
MDr,∞ between the Lubin-Tate and the Drinfeld tower (cf. [27], [30], [55]):

πHT : X ss
Kp =

⊔
MLT,∞ ∼=

⊔
MDr,∞ → Ω2.
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Contrary to the classical Gross-Hopkins period mapMLT → P1, which depends

on a trivialization of the Dieudonné module of the supersingular elliptic curve,

the Hodge-Tate period map is canonical. It commutes with the Hecke operators

away from p (as it depends only on the p-divisible group, and not the abelian

variety), and extends continuously to the whole modular curve.

Let us give a short summary of the proof. Note that a result very similar

in spirit was proved in joint work with Jared Weinstein, [55] for Rapoport-

Zink spaces. Unfortunately, for a number of reasons, it is not possible to use

that result to obtain a result for Shimura varieties (although the process in

the opposite direction does work). The key problem is that Rapoport-Zink

spaces do not cover the whole Shimura variety. For example, in the case of the

modular curve, the points of the adic space specializing to a generic point of

the special fibre will not be covered by any Rapoport-Zink space. Also, it is

entirely impossible to analyze the minimal compactification using Rapoport-

Zink spaces.

For this reason, we settle for a different and direct approach. The key

idea is that on the ordinary locus, the theory of the canonical subgroup gives a

canonical way to extract p-power roots in the Γ0(p∞)-tower. The toy example

is that of the Γ0(p)-level structure for the modular curve; cf. [24]. Above the

ordinary locus, one has two components, one mapping down isomorphically

and the other mapping down via the Frobenius map. It is the component that

maps down via Frobenius that we work with. Going to a deeper Γ0(pm)-level,

the maps continue to be Frobenius maps, and in the inverse limit, one gets

a perfect space. Passing to the tubular neighborhood in characteristic 0, one

has the similar picture, and one will get a perfectoid space in the inverse limit.

It is then not difficult to go from Γ0(p∞)- to Γ(p∞)-level, using the almost

purity theorem; only the boundary of the minimal compactification causes

some trouble, which can however be overcome.

Note that we work with the anticanonical tower, and not the canonical

tower: The Γ0(p)-level subgroup is disjoint from the canonical subgroup. It

is well known that any finite level of the canonical tower is overconvergent;

cf., e.g., [45], [42], [1], [2], [23], [29], [33], [51], [62]. However, not the whole

canonical tower is overconvergent. By contrast, the whole anticanonical tower

is overconvergent. This lets one deduce that on a strict neighborhood of the

anticanonical tower, one can get a perfectoid space at Γ0(p∞)-level and then

also at Γ(p∞)-level.

Observe that the locus of points in X ∗Γ(p∞) that have a perfectoid neigh-

borhood is stable under the GSp2g(Qp)-action. Thus, to conclude, it suffices to

see that any abelian variety is isogenous to an abelian variety in a given strict

neighborhood of the ordinary locus. Although there may be a more direct way

to prove this, we deduce it from the Hodge-Tate period map. Recall that the
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Hodge-Tate filtration of an abelian variety A over a complete and algebraically

closed extension C of Qp is a short exact sequence

0→ (LieA)(1)→ TpA⊗Zp C → (LieA∗)∗ → 0,

where TpA is the p-adic Tate module of A. Moreover, (LieA)(1) ⊂ TpA⊗Zp C

is a Qp-rational subspace if and only if (the abelian part of the reduction of) A

is ordinary; this follows from the classification of p-divisible groups over OC ,

[55, Th. B], but it can also easily be proved directly. One deduces that if the

Hodge-Tate filtration is close to a Qp-rational point, then A lies in a small

neighborhood of the ordinary locus (and conversely); cf. Lemmas 3.3.8 and

3.3.15. As under the action of GSp2g(Qp), any filtration can be mapped to one

that is close to any given Qp-rational point (making use of Up-like operators),

one gets the desired result.

In fact, observe that by [55, Th. B], the C-valued points of F` are in

bijection with principally polarized p-divisible groups G over OC , with a triv-

ialization of their Tate module. Thus, πHT is, at least on C-valued points

of the locus of good reduction, the map sending an abelian variety over OC
to its associated p-divisible group. We warn the reader that this picture is

only clean on geometric points; the analogue of [55, Th. B] fails over general

nonarchimedean fields or other base rings.

Most subtleties in the argument arise in relation to the minimal compact-

ification. For example, we can prove existence of πHT a priori only away from

the boundary. To extend to the minimal compactification, we use a version of

Riemann’s Hebbarkeitssatz, saying that any bounded function has removable

singularities. This result was proved in Section 2.3, in the various forms that

we will need. In Section 3.2, we prove the main result on a strict neighborhood

of the anticanonical tower. As we need some control on the integral structure

of the various objects, we found it useful to have a theory of the canonical

subgroup that works integrally. As such a theory does not seem to be available

in the literature, we give a new proof of existence of the canonical subgroup.

The key result is the following. Note that our result is effective and close to

optimal (and works uniformly even for p = 2).

Lemma 3.1.3. Let R be a p-adically complete flat Zcycl
p -algebra, and let

A/R be an abelian variety. Assume that the pm−1
p−1 -th power of the Hasse in-

variant of A divides pε for some ε < 1
2 . Then there is a unique closed subgroup

C ⊂ A[pm] such that C = kerFm mod p1−ε.

Our proof runs roughly as follows. Look at G = A[pm]/ kerFm over R/p.

By the assumption on the Hasse invariant, the Lie complex of G is killed by pε.

The results of Illusie’s thesis (cf. [40, §3]) imply that there is a finite flat group

scheme G̃ over R such that G̃ and G agree over R/p1−ε. Similarly, the map

A[pm]→ G over R/p1−ε lifts to a map A[pm]→ G̃ over R that agrees with the



ON TORSION IN THE COHOMOLOGY OF LOCALLY SYMMETRIC VARIETIES 975

original map modulo R/p1−2ε. Letting C = ker(A[pm] → G̃) proves existence

(up to a constant); uniqueness is proved similarly. All expected properties of

the canonical subgroup are easily proved as well. In fact, it is not necessary to

have an abelian variety for this result; a (truncated) p-divisible group would

be as good.

As regards subtleties related to the minimal compactification, let us men-

tion that we also need a version of (a strong form of) Hartog’s extension

principle (cf. Lemma 3.2.10) and a version of Tate’s normalized traces (cf.

Lemma 3.2.21). In general, our approach is to avoid any direct analysis of the

boundary. This is mainly due to laziness on our side, as we did not wish to

speak about the toroidal compactification, which is needed for most explicit

arguments about the boundary.8 Instead, for all of our arguments, it is enough

to know that all geometric fibres (over SpecZp) of the minimal compactifica-

tion are normal, with boundary of codimension g (which is ≥ 2 at least if g ≥ 2;

the case g = 1 is easy to handle directly). However, the price to pay is that

one has to prove a rather involved series of lemmas in commutative algebra.

Finally, in Section 3.3 we construct the Hodge-Tate period map (first

topologically, then as a map of adic spaces) and extend the results to the

whole Siegel moduli space, finishing the proof of Theorem 3.1.2.

3.2. A strict neighborhood of the anticanonical tower.

3.2.1. The canonical subgroup. We need the canonical subgroup. Let us

record the following simple proof of existence, which appears to be new. It

depends on the following deformation-theoretic result, proved in Illusie’s thesis,

[39, Th. VII.4.2.5].

Theorem 3.2.1. Let A be a commutative ring, and G, H be flat and

finitely presented commutative group schemes over A, with a group morphism

u : H → G. Let B1, B2 → A be two square-zero thickenings with a morphism

B1 → B2 over A. Let Ji ⊂ Bi be the augmentation ideal. Let G̃1 be a lift of G

to B1, and G̃2 the induced lift to B2. Let K be a cone of the map ˇ̀
H → ˇ̀

G of

Lie complexes.

(i) For i = 1, 2, there is an obstruction class

oi ∈ Ext1(H,K
L
⊗ Ji)

that vanishes precisely when there exists a lifting (H̃i, ũi) of (H,u) to a

flat commutative group scheme H̃i over Bi, with a morphism ũi : H̃i → G̃i
lifting u : H → G.

8In a recent preprint, Pilloni and Stroh, [50], give such an explicit description of the

boundary.
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(ii) The obstruction o2∈Ext1(H,K
L
⊗ J2) is the image of o1∈Ext1(H,K

L
⊗ J1)

under the map J1 → J2.

Proof. Part (i) is exactly [39, Th. VII.4.2.5(i)] (except for a different con-

vention on the shift in K), where the A from loc. cit. is taken to be Z and the

base ring T = Z. Part (ii) follows from [39, Rem. VII.4.2.6(i)]. �

Recall that Zcycl
p contains elements of p-adic valuation a

(p−1)pn for any

integers a, n ≥ 0. In the following, pε ∈ Zcycl
p denotes any element of valuation

ε for any ε; we always assume implicitly that ε is of the form a
(p−1)pn for some

a, n ≥ 0. In all the following results, Zcycl
p could be replaced by any sufficiently

ramified extension of Zp.

Corollary 3.2.2. Let R be a p-adically complete flat Zcycl
p -algebra. Let

G be a finite locally free commutative group scheme over R, and let C1 ⊂
G⊗RR/p be a finite locally free subgroup. Assume that for H = (G⊗RR/p)/C1,

multiplication by pε on the Lie complex ˇ̀
H is homotopic to 0, where 0 ≤

ε < 1
2 . Then there is a finite locally free subgroup C ⊂ G over R such that

C ⊗R R/p1−ε = C1 ⊗R/p R/p1−ε.

Proof. In Theorem 3.2.1, we take A = R/p, B1 = R/p2−ε, and

B2 = {(x, y) ∈ R/p2−2ε ×R/p | x = y ∈ R/p1−ε}.

One has the map B1 → B2 sending x to (x, x). Both augmentation ideals

Ji ⊂ Bi are isomorphic to R/p1−ε, and the transition map is given by multi-

plication by pε. Moreover, one has the group scheme G ⊗R R/p2−ε over B1

and the morphism C1 ↪→ G ⊗R R/p over A, giving all necessary data. From

Theorem 3.2.1 and the assumption that pε is homotopic to 0 on ˇ̀
H = K, it

follows that o2 = 0. In other words, one gets a lift from A to B2. But lifting

from A to B2 is equivalent to lifting from R/p1−ε to R/p2−2ε. Thus, everything

can be lifted to R/p2−2ε, preserving the objects over R/p1−ε. As 2 − 2ε > 1

by assumption, continuing will produce the desired subgroup C ⊂ G. �

Remark 3.2.3. The reader happy with larger (but still explicit) constants,

but trying to avoid the subtle deformation theory for group schemes in [39],

may replace the preceding argument by an argument using the more elementary

deformation theory for rings in [38]. In fact, one can first lift the finite locally

free scheme H to R by a similar argument, preserving its reduction to R/p1−ε.

Next, one can deform the multiplication morphism H × H → H, preserving

its reduction to R/p1−2ε, as well as the inverse morphism H → H. The

multiplication will continue to be commutative and associative, and the inverse

will continue to be an inverse, if ε is small enough. This gives a lift of H to a

finite locally free commutative group scheme over R, agreeing with the original
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one modulo p1−2ε. Next, one can lift the morphism of finite locally free schemes

G⊗R R/p→ H to a morphism over R, agreeing with the original one modulo

p1−3ε. Again, this will be a group morphism if ε is small enough. Finally, one

takes the kernel of the lifted map.

Lemma 3.2.4. Let R be a p-adically complete flat Zcycl
p -algebra. Let X/R

be a scheme such that Ω1
X/R is killed by pε for some ε ≥ 0. Let s, t ∈ X(R) be

two sections such that s̄ = t̄ ∈ X(R/pδ) for some δ > ε. Then s = t.

Proof. By standard deformation theory, the different lifts of s̄ to R/p2δ

are a principal homogeneous space for

Hom(Ω1
X/R ⊗OX R/p

δ, R/pδ),

where the tensor product is taken along the map OX → R/pδ coming from s̄.

Similarly, the different lifts of s̄ to R/p2δ−ε are a principal homogeneous space

for

Hom(Ω1
X/R ⊗OX R/p

δ, R/pδ−ε),

and these identifications are compatible with the evident projection R/pδ →
R/pδ−ε. As M = Ω1

X/R⊗OXR/p
δ is killed by pε, any map M → R/pδ has image

in pδ−εR/pδ and thus has trivial image in Hom(Ω1
X/R ⊗OX R/pδ, R/pδ−ε). It

follows that any two lifts of s̄ to R/p2δ induce the same lift to R/p2δ−ε, so that

s, t ∈ X(R) become equal in X(R/p2δ−ε). Continuing gives the result. �

Let us recall the Hasse invariant. Let S be a scheme of characteristic p,

and let A→ S be an abelian scheme of dimension g. Let A(p) be the pullback

of A along the Frobenius of S. The Verschiebung isogeny V : A(p) → A induces

a map V ∗ : ωA/S → ωA(p)/S
∼= ω⊗pA/S , i.e., a section Ha(A/S) ∈ ω⊗(p−1)

A/S , called

the Hasse invariant. We recall the following well-known lemma.

Lemma 3.2.5. The section Ha(A/S) ∈ ω⊗(p−1)
A/S is invertible if and only if

A is ordinary ; i.e., for all geometric points x̄ of S, A[p](x̄) has pg elements.

Proof. The Hasse invariant is invertible if and only if the Verschiebung

V : A(p) → A is an isomorphism on tangent spaces. This is equivalent to

Verschiebung being finite étale, which in turn is equivalent to the condition

that the kernel kerV of V has pg distinct geometric points above any geometric

point x̄ of S (as the degree of V is equal to pg). But V F = p : A→ A, and F

is purely inseparable, so A[p](x̄) = (kerV )(x̄). �

Corollary 3.2.6. Let R be a p-adically complete flat Zcycl
p -algebra, and

let A→ SpecR be an abelian scheme, with reduction A1 → SpecR/p. Assume

that Ha(A1/ Spec(R/p))
pm−1
p−1 divides pε for some ε < 1

2 . Then there is a unique

closed subgroup Cm ⊂ A[pm] (flat over R) such that Cm = kerFm ⊂ A[pm]
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modulo p1−ε. For any p-adically complete flat Zcycl
p -algebra R′ with a map

R→ R′, one has

Cm(R′) = {s ∈ A[pm](R′) | s ≡ 0 mod p(1−ε)/pm}.

Proof. Let H1 = ker(V m : A
(pm)
1 → A1), which is a finite locally free group

scheme over R/p. Then one has a short exact sequence

0→ kerFm → A1[pm]→ H1 → 0.

Moreover, the definition of H1 and the fact that the Lie complex transforms

short exact sequences into distinguished triangles compute the Lie complex

of H1,

ˇ̀
H1 = (LieA

(pm)
1 → LieA1).

Using the definition of the Hasse invariant, the determinant of this map is

easily computed to be

Ha(A1/(SpecR/p))
pm−1
p−1 ∈ ω⊗(pm−1)

A1/(SpecR/p)

by writing it as a composite of m Verschiebung maps, contributing

Ha(A1/(SpecR/p))p
i
, i = 0, . . . ,m− 1.

As multiplication by the determinant is null-homotopic (using the adjugate

matrix), our assumptions imply that multiplication by pε is homotopic to zero

on ˇ̀
H1 . Thus, existence of Cm follows from Corollary 3.2.2, with G = A[pm].

For uniqueness, it is enough to prove that the final formula holds for any

Cm ⊂ A[pm] with Cm = kerFm modulo p1−ε. We may assume R′ = R. Cer-

tainly, if s ∈ Cm(R), then s1−ε ∈ Cm(R/p1−ε) lies in the kernel of Fm, as Cm =

kerFm modulo p1−ε. As the action of F is given by the action on R/p1−ε, this

translates into the condition s = 0 ∈ Cm(R/p(1−ε)/pm). Conversely, assume

s ∈ A[pm](R) reduces to 0 modulo p(1−ε)/pm . Following the argument in re-

verse, we see that s1−ε ∈ Cm(R/p1−ε) ⊂ A[pm](R/p1−ε). Let H = A[pm]/Cm.

We see that the image t ∈ H(R) of s is 0 modulo p1−ε. Also, H and H1 have the

same reduction to R/p1−ε; in particular, Ω1
H/R is killed by pε. By Lemma 3.2.4,

we find that t = 0 ∈ H(R), showing that s ∈ Cm(R), as desired. �

Definition 3.2.7. Let R be a p-adically complete flat Zcycl
p -algebra. We say

that an abelian scheme A → SpecR has a weak canonical subgroup of level

m if Ha(A1/ Spec(R/p))
pm−1
p−1 divides pε for some ε < 1

2 . In that case, we call

Cm ⊂ A[pm] the weak canonical subgroup of level m, where Cm is the unique

closed subgroup such that Cm = kerFm mod p1−ε.
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Moreover, if Ha(A1/ Spec(R/p))p
m

divides pε, then we say that Cm is a

canonical subgroup.9

The definition of a (strong) canonical subgroup is made to ensure that the

following basic properties are true.

Proposition 3.2.8. Let R be a p-adically complete flat Zcycl
p -algebra, and

let A,B → SpecR be abelian schemes.

(i) If A has a canonical subgroup Cm ⊂ A[pm] of level m, then it has a

canonical subgroup Cm′ ⊂ A[pm
′
] of any level m′ ≤ m, and Cm′ ⊂ Cm.

(ii) Let f : A → B be a morphism of abelian schemes. Assume that both A

and B have canonical subgroups Cm ⊂ A[pm], Dm ⊂ B[pm] of level m.

Then Cm maps into Dm.

(iii) Assume that A has a canonical subgroup Cm1 ⊂ A[pm1 ] of level m1. Then

B = A/Cm1 has a canonical subgroup Dm2 ⊂ B[pm2 ] of level m2 if and

only if A has a canonical subgroup Cm ⊂ A[pm] of level m = m1 + m2.

In that case, there is a short exact sequence

0→ Cm1 → Cm → Dm2 → 0,

commuting with 0→ Cm1 → A→ B → 0.

(iv) Assume that A has a canonical subgroup Cm ⊂ A[pm] of level m, and let

x̄ be a geometric point of SpecR[p−1]. Then Cm(x̄) ∼= (Z/pmZ)g , where

g is the dimension of the abelian variety over x̄.

Proof. (i), (ii) These assertions follow directly from the displayed formula

in Corollary 3.2.6.

(iii) Observe that

Ha(B1−ε/ Spec(R/p1−ε)) = Ha(A1−ε/ Spec(R/p1−ε))p
m1
.

This implies that B has a canonical subgroup of level m2 if and only if A has

a canonical subgroup of level m. In order to verify the short exact sequence,

it suffices to check that Cm maps into Dm2 . After base change to the global

sections of Cm, it suffices to show that Cm(R) maps into Dm2(R). Take a

section s ∈ Cm(R). Look at the short exact sequence 0 → Dm2 → B[pm2 ] →
H → 0. We need to check that s maps to 0 in H(R). By Lemma 3.2.4, it is

enough to check that s maps to 0 in H(R/p1−ε). But modulo p1−ε, we have

the short exact sequence

0→ kerFm1
A → kerFmA → kerFm2

B → 0.

(iv) First, we reduce to the case that R = OK is the ring of integers in an

algebraically closed complete nonarchimedean field K of mixed characteristic.

9For emphasis, we sometimes call it a strong canonical subgroup.
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The subset of SpecR[p−1] where the statement is true is open and closed.

Assume that there is a point x ∈ SpecR[p−1] with a geometric point x̄ above x

where the statement is not true, and fix a maximal ideal x′ ∈ SpecR specializ-

ing x; in particular, x′ lies in SpecR/p. Take a valuation v on R with support

x and such that the local ring Rx′ is contained in the valuation subring of v.

Applying the specialization mapping from [36, Prop. 2.6], we get a continuous

valuation v′ on R, such that its support y ∈ SpecR is still of characteristic 0,

and is a specialization of x. It follows that the desired statement is also false

at y. This gives a map R → OK to the ring of integers OK of a complete

nonarchimedean field K of mixed characteristic. We may assume that K is

algebraically complete and replace R by OK .

Assume that Cm(K) 6∼= (Z/pmZ)g. As Cm(K) ⊂ A[pm](K) ∼= (Z/pmZ)2g

and Cm(K) has pmg elements, it follows from a consideration of elementary

divisors that (Cm ∩ A[p])(K) has more than pg elements; in particular, there

is an element s ∈ (Cm ∩ A[p])(K) such that s 6∈ C1(K). By projection, this

gives a nonzero section t of H = A[p]/C1. Take ε < 1
2 as in Definition 3.2.7.

As Cm is finite, s extends to a section s ∈ Cm(OK), giving a section s1−ε ∈
Cm(OK/p1−ε); similarly, we have t ∈ H(OK). But modulo p1−ε, Cm = kerFm,

so it follows that

Fm(s1−ε) = 0 ∈ Cm(OK/p1−ε).

The action of F is given by the action on OK/p1−ε, so we see that

s(1−ε)/pm = 0 ∈ Cm(OK/p(1−ε)/pm).

By projection, this gives t(1−ε)/pm = 0 ∈ H(OK/p(1−ε)/pm). Now we use

Lemma 3.2.4, with δ = (1− ε)/pm and ε′ = ε/pm (which works for the group

H). Note that

ε′ = ε/pm < δ = (1− ε)/pm.

It follows that t = 0 ∈ H(OK), which contradicts s 6∈ C1(OK), as 0 → C1 →
A[p]→ H → 0 is exact. �

Moreover, one has compatibility with duality and products, but we will

not need this.

3.2.2. Canonical Frobenius lifts. In this section, we will repeatedly apply

Hartog’s extension principle. Let us first recall what we will refer to as ‘classical

algebraic Hartog’ below.

Proposition 3.2.9. Let R be normal and noetherian, and let Z ⊂ SpecR

be a subset everywhere of codimension ≥ 2. Then

R = H0(SpecR \ Z,OSpecR).
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Proof. By Serre’s criterion, the depth of OSpecR,x is at least 2 for all

x ∈ Z. This implies vanishing of local cohomology groups in degrees ≤ 1 by

SGA2 III, Exemple 3.4. This, in turn, implies the desired extension by SGA2

I, Proposition 2.13. �

In particular, this applies to an open subset SpecR of the minimal com-

pactification of the Siegel moduli space, and its boundary Z if g ≥ 2. However,

we will need to work with an admissible blowup of the minimal compactifica-

tion, corresponding to a strict neighborhood of the ordinary locus. Thus, we

will also need a slightly nonstandard version of Hartog’s extension principle,

given by the following lemma, where in the application f will be a lift of the

Hasse invariant.

Lemma 3.2.10. Let R be a topologically finitely generated flat p-adically

complete Zp-algebra such that R = R/p is normal. Let f ∈ R be an element

such that f ∈ R is not a zero divisor. Take some 0 ≤ ε ≤ 1, and consider the

algebra
S = (R⊗̂ZpZcycl

p )〈u〉/(fu− pε).
Then S is a flat p-adically complete Zcycl

p -algebra, and u is not a zero divisor.

Fix a closed subset Y ⊂ SpecR of codimension ≥ 2; let Z ⊂ Spf S be the

preimage of Y , and let U ⊂ Spf S be the complement of Z . Then

H0(U,OSpf S) = H0(Spf S,OSpf S) = S.

Remark 3.2.11. It may be helpful to illustrate how this relates to the

classical theorem of Hartog over C. In that case, inside the 2-dimensional

open complex unit disc D = {(z1, z2) | |z1| < 1, |z2| < 1}, consider the open

subset
U = {(z1, z2) ∈ D | 1− ε < |z1| < 1 or |z2| < ε}.

Then Hartog’s theorem states that all holomorphic functions on U extend

uniquely to D. This is easily seen to be equivalent to the following statement.

Let D′ ⊂ D be the locus |z2| > ε/2. Then holomorphic functions extend

uniquely from U ∩D′ to D′.

In the lemma, take R = Zp〈T1, T2〉, f = T2, and ε = 1, say. Moreover,

take Y = {T1 = T2 = 0} ⊂ SpecR. Then the generic fibre of Spf S is the

rigid-analytic space of pairs (t1, t2) with |t1| ≤ 1, and |p| ≤ |t2| ≤ 1. The

generic fibre of U is given by

Uη = {(t1, t2) ∈ (Spf S)η | |t1| = 1 or |t2| = 1}.

The lemma asserts that holomorphic functions extend uniquely from Uη to

(Spf S)η (and the natural integral subalgebras are preserved). The relation to

Hartog’s principle becomes most clear when one sets z1 = t1 and z2 = p
t2

. The

analogue of D′ ⊂ D is given by (Spf S)η, and the analogue of U ∩D′ is given

by Uη. (In rigid-analytic geometry, one replaces strict inequalities by nonstrict
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inequalities. Moreover, the inequalities 1− ε < |z1| < 1 become contracted to

|z1| = 1; similarly, ε/2 < |z2| < ε becomes contracted to |z2| = p.)

Proof. The first assertions are standard. First, we check that

H0(Spf S,OSpf S)→ H0(U,OSpf S)

is injective. Since H0(Spf S,OSpf S) is p-adically separated, it suffices to prove

the same for SpecSε, where Sε = S/pε (and analogous notation is used below).

Let W ⊂ SpecSε be the preimage of V = V (f) ⊂ SpecR; then W = V ×SpecFp
A1
Zcycl
p /pε

is affine. There is a section SpecRε → SpecSε given by setting u = 0.

Since Sε is the scheme-theoretical union of the loci {u = 0} and {f = 0}, one

has

H0(U,OSpecSε) = {(f1, f2) |f1 ∈ H0(U ∩ SpecRε,OSpecRε),

f2 ∈ H0(U ∩W,OW ),

f1 = f2 ∈ H0(U ∩ V,OV )⊗Fp Zcycl
p /pε}.

One has a similar description for H0(SpecSε,OSpecSε). As

H0(U ∩ SpecRε,OSpecRε) = Rε

by the classical algebraic version of Hartog’s extension principle (⊗FpZcycl
p /pε),

it is enough to prove that

H0(W,OW )→ H0(U ∩W,OW )

is injective. As both W and U come from V and U ∩ V via a product with

A1
Zcycl
p /pε

, it is enough to prove that

H0(V,OV )→ H0(U ∩ V,OV )

is injective. For any point x ∈ Y , the depth of OV at x is ≥ 1. (As R is normal,

by Serre’s criterion, R has depth ≥ 2 at x, and thus R/f has depth ≥ 1.) As

Y contains the complement of U ∩ V in V , this gives the desired statement.

Now take any section f ∈ H0(U,OSpf S). Let Ŝu be the u-adic completion

of S. Clearly, S injects into Ŝu. Moreover, as u divides pε, the (p, u)-adic ring

Ŝu is actually u-adic, and f induces a section f̂u ∈ H0(U∩Spf Ŝu,OSpf Ŝu
). The

special fibre of Spf Ŝu is given by SpecRε. Thus, U ∩ Spf Ŝu = U ∩ SpecRε ⊂
SpecRε is of codimension ≥ 2, and the classical algebraic version of Hartog’s

extension principle ensures that

f̂u ∈ H0(Spf Ŝu,OSpf Ŝu
) = Ŝu.

It remains to see that f̂u ∈ S. It suffices to check modulo pε (by a successive

approximation argument). Thus, f induces a section f2 ∈ H0(U ∩W,OW ),

and we have to check that it extends to H0(W,OW ). But

H0(U ∩W,OW ) =
⊕
i≥0

(H0(U ∩ V,OV )⊗Fp Zcycl
p /pε)ui,
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and we have to check that all coefficients of ui lie in H0(V,OV ) ⊗Fp Zcycl
p /pε.

This can be checked after u-adic completion, finishing the proof. �

Now let us go back to Shimura varieties. Recall that X = Xg,Kp over

Z(p) is the Siegel moduli space. We let X be the formal scheme over Zcycl
p that

is the p-adic completion of X ⊗Z(p)
Zcycl
p . Occasionally, we will use that X is

already defined over Zp; we let XZp denote the p-adic completion of X, so that

X = XZp ×Spf Zp Spf Zcycl
p . The same applies for the minimal compactification.

In general, formal schemes will be denoted by fractal letters.

We let X be the generic fibre of X as an adic space over Qcycl
p . Moreover,

for any Kp of the form Γ0(pm), Γ1(pm), or Γ(pm), we let Xad
Kp

be the adic space

associated with the scheme XKp ⊗Q(ζpm ) Qcycl
p , using the tautological element

ζpm ∈ Qcycl
p and ζpm ∈ OXKp , given by the symplectic similitude factor. Let

XKp ⊂ Xad
Kp

be the preimage of X ⊂ Xad. This is the locus of good reduction.

Again, similar notation applies for the minimal compactification. In general,

adic spaces will be denoted by calligraphic letters.

We warn the reader that our notation conflicts slightly with the notation

from the introduction. Indeed, X ∗Kp now denotes an adic space over Qcycl
p . It is

the base change of the space X ∗Kp , Kp ∈ {Γ0(pm),Γ1(pm),Γ(pm)}, considered

in the introduction along Qp(ζpm) ↪→ Qcycl
p . As in the inverse limit over m, the

difference goes away, we will forget about this difference.10

Recall that the Hasse invariant defines a section Ha ∈ H0(XFp , ω
⊗(p−1)).

The sheaf ω extends to the minimal compactification X∗. If g ≥ 2, then

classical Hartog implies that Ha extends to Ha ∈ H0(X∗Fp , ω
⊗(p−1)), as the

boundary of the minimal compactification is of codimension g. For g = 1, the

Hasse invariant extends by direct inspection.

Definition 3.2.12. Let 0 ≤ ε < 1 such that there exists an element pε ∈
Zcycl
p of p-adic valuation ε. Let X∗(ε)→ X∗ over Spf Zcycl

p be the functor send-

ing any p-adically complete flat Zcycl
p -algebra S to the set of pairs (f, u), where

f : Spf S → X∗ is a map, and u ∈ H0(Spf S, f∗ω⊗(1−p)) is a section such that

uHa(f̄) = pε ∈ S/p,

where f̄ = f ⊗Zp Fp, up to the following equivalence. Two pairs (f, u), (f ′, u′)

are equivalent if f = f ′ and there exists some h ∈ S with u′ = u(1 + p1−εh).

The following lemma explains the choice of the equivalence relation. After

choosing a lift ›Ha of Ha locally, one parametrizes ũ with ũ›Ha = pε ∈ S. The

point of our definition is to make clear that X∗(ε) is independent of the choice

of the local lift.

10A better solution would be to associate the spaces over Qcycl
p with Kp∩Sp2g(Qp) instead.
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Lemma 3.2.13. The functor X∗(ε) is representable by a formal scheme

that is flat over Zcycl
p . Locally over an affine Spf(R⊗̂ZpZcycl

p ) ⊂ X∗ (com-

ing via scalar extension from Spf R ⊂ X∗Zp), choose a lift ›Ha ∈ ω⊗(p−1) of

Ha ∈ ω⊗(p−1)/p. Then

X∗(ε)×X∗ Spf(R⊗̂ZpZcycl
p ) = Spf((R⊗̂ZpZcycl

p )〈u〉/(u›Ha− pε)).

In particular, X∗(ε)→ X∗ is an admissible blowup in the sense of Raynaud.

Proof. By Lemma 3.2.10, the right-hand side is flat, so it suffices to prove

the equality. Clearly, the right-hand side represents the functor of pairs (f, ũ)

with ũ ∈ H0(Spf S, f∗ω⊗(1−p)) such that ũ›Ha = pε ∈ S. Any such pair gives

a pair (f, u). We need to show that conversely, for any pair (f, u), there is a

unique pair (f, ũ) equivalent to it, with ũ›Ha = pε.

Note that u›Ha = pε + ph for some h ∈ H0(S,OS). Thus, u›Ha =

pε(1 + p1−εh), and setting ũ = u(1 + p1−εh)−1 gives an equivalent (f, ũ) with

ũ›Ha = pε.

If ũ′ = ũ(1 + p1−εh′) is equivalent to ũ, and also satisfies ũ′›Ha = pε, then

pε = ũ′›Ha = ũ›Ha + p1−εh′ũ›Ha = pε + ph′.

As we restricted the functor to flat Zcycl
p -algebras, it follows that h′ = 0, as

desired. �

By pullback, we get formal schemes X(ε) and A(ε), where A→ X denotes

the universal abelian scheme. Note that on generic fibres, X (ε) ⊂ X is the

open subset where |Ha| ≥ |p|ε; similarly for X ∗(ε) ⊂ X ∗ and A(ε) ⊂ A.11

For any formal scheme Y over Zcycl
p and a ∈ Zcycl

p , let Y/a denote Y⊗Zcycl
p

Zcycl
p /a.

Lemma 3.2.14. Let 0 ≤ ε < 1. There is a natural commutative diagram

(1)

A(p−1ε)/p

F
(A(p−1ε)/p)/(Zcycl

p /p)
//

��

(A(p−1ε)/p)(p)
∼= //

��

A(ε)/p

��
X(p−1ε)/p

F
(X(p−1ε)/p)/(Zcycl

p /p)
//

��

(X(p−1ε)/p)(p)
∼= //

��

X(ε)/p

��
X∗(p−1ε)/p

F
(X∗(p−1ε)/p)/(Zcycl

p /p)
// (X∗(p−1ε)/p)(p)

∼= // X∗(ε)/p.

Here, F denotes the relative Frobenius map.

11Again, it is understood that this condition is independent of the choice of a local lift of

Ha.
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Proof. The diagram lives over a corresponding diagram for A/p→ X/p ↪→
X∗/p. Then relative to that base diagram, one adds a section u of ω⊗(1−p) such

that uHa = pp
−1ε on the left-hand side and a section u′ of ω⊗(1−p) such that

u′Ha = pε on the right-hand side.12 As Ha gets raised to the p-th power

under division by the kernel of Frobenius, one can map u′ to u(p) considered

as a section of (ω⊗(1−p))(p) over (X∗(p−1ε)/p)(p) (which pulls back to up on the

left-hand side); this gives the desired canonical maps. �

In this section, we prove the following result.

Theorem 3.2.15. Let 0 ≤ ε < 1
2 .

(i) There is a unique diagram

(2) A(p−1ε)
F̃A(p−1ε) //

��

A(ε)

��
X(p−1ε)

F̃X(p−1ε) //

��

X(ε)

��
X∗(p−1ε)

F̃X∗(p−1ε) // X∗(ε)

that gets identified with (1) modulo p1−ε.

(ii) For any m ≥ 0, the abelian variety A(p−mε)→ X(p−mε) admits a canon-

ical subgroup Cm ⊂ A(p−mε)[pm] of level m. This induces a morphism

on the generic fibre

X (p−mε)→ XΓ0(pm)

given by the pair (A(p−mε)/Cm,A(p−mε)[pm]/Cm). This morphism ex-

tends uniquely to a morphism X ∗(p−mε) → X ∗Γ0(pm). These morphisms

are open immersions. Moreover, for m ≥ 1, the diagram

X ∗(p−m−1ε) //

(F̃X(p−m−1ε))
ad
η

��

X ∗Γ0(pm+1)

��
X ∗(p−mε) // X ∗Γ0(pm)

is commutative and cartesian.

12To check this, choose a local lift H̃a of Ha. Then one parametrizes ũ with ũH̃a = pε on

the right-hand side, over any ring. As we are working modulo p, the choice of H̃a does not

matter.
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(iii) There is a weak canonical subgroup C ⊂ A(ε)[p] of level p. Also write

C ⊂ A(ε)[p] for its generic fibre, and let XΓ0(p)(ε)→ X (ε) be the pullback

of XΓ0(p) → X . Then the diagram

X (p−1ε) //

(F̃X(p−1ε))
ad
η

��

XΓ0(p)(ε)

��
X (ε)

= // X (ε)

is commutative and identifies X (p−1ε) with the open and closed subset

XΓ0(p)(ε)a ⊂ XΓ0(p)(ε) parametrizing those D ⊂ A(ε)[p] with D∩C = {0}.

Remark 3.2.16. The letter ‘a’ stands for anticanonical, indicating that D

is a complement of the (weak) canonical subgroup C.

Proof. First, we handle the assertions in the good reduction case. Thus, we

are considering X(ε). By Definition 3.2.7, there is a strong canonical subgroup

C ⊂ A(p−1ε)[p] of level 1. On X(p−1ε), the p-th power of the Hasse invariant

divides pε, with ε < 1
2 . Note that on X(ε), one still has a weak canonical sub-

group of level 1. In particular, we get a second abelian variety A(p−1ε)/C over

X(p−1ε). By uniqueness of C, C is totally isotropic; in particular, A(p−1ε)/C

is naturally principally polarized. Also, it carries a level-Kp-structure. Thus,

it comes via pullback X(p−1ε)→ X. This morphism lifts uniquely to

F̃X(p−1ε) : X(p−1ε)→ X(ε)

by a calculation of Hasse invariants. By construction, one has a map F̃A(p−1ε) :

A(p−1ε) → A(ε) above this map of formal schemes. Moreover, by definition

of C, these maps reduce to the relative Frobenius maps modulo p1−ε. This

constructs the maps in part (i). Uniqueness is immediate from uniqueness of

the canonical subgroup.

Let us observe that it follows that F̃X(p−1ε) and F̃A(p−1ε) are finite and

locally free of degree g(g + 1)/2. For part (ii), the existence of the canonical

subgroup Cm ⊂ A(p−mε)[pm] follows from Definition 3.2.7 and Corollary 3.2.6.

That it induces a morphism

X (p−mε)→ XΓ0(pm)

follows from Proposition 3.2.8(iv) (using that Cm is totally isotropic, by unique-

ness). Commutativity of the diagram (in parts (ii) and (iii)) follows from

Proposition 3.2.8(iii).

Next, observe that the composite

X (p−mε)→ XΓ0(pm) → X ,
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where the latter map sends a pair (A,D) to A/D (with its canonical principal

polarization, and level-N -structure), is just the forgetful map X (p−mε) → X .

Indeed, the maps send A(p−mε) to (A(p−mε)/Cm,A(p−mε)[pm]/Cm) and then

to

(A(p−mε)/Cm)/(A(p−mε)[pm]/Cm) = A(p−mε)/A(p−mε)[pm] ∼= A(p−mε).

Therefore the composite map

X (p−mε)→ XΓ0(pm) → X

is an open embedding; moreover, the second map is étale. It follows that the

first map is an open embedding, as desired. Now it follows that the diagram

in part (ii) is cartesian on the good reduction locus. Both vertical maps are

finite étale of degree pg(g+1)/2 (using that m ≥ 1). The same argument works

in part (iii) as soon as we have checked that X (p−1ε) maps into XΓ0(p)(ε)a.

Thus, take some Spf R ⊂ X(p−1ε) over which one has an abelian scheme

AR → SpecR. By assumption, the Hasse invariant divides pp
−1ε. This gives

a (strong) canonical subgroup C0 ⊂ AR[p] of level 1, and A′R = AR/C0 has a

weak canonical subgroup C ⊂ A′R[p]. We have to see that

C ∩ (AR[p]/C0) = {0}.

Take a section s ∈ AR[p](S) for some p-adically complete p-torsion free R-

algebra S. If s maps into C, then s modulo p1−ε lies in the kernel of Frobenius

on A′R[p], and thus s modulo p(1−ε)/p is 0 in A′R[p]. This means that s modulo

p(1−ε)/p lies in C0. Let H = AR[p]/C0. Then s gives a section t ∈ H(S),

with t = 0 modulo p(1−ε)/p. Moreover, as the Hasse invariant of AR kills Ω1
H/S

and the Hasse invariant of AR divides pε/p, one can use Lemma 3.2.4 with

δ = (1− ε)/p and ε′ = ε/p to conclude that t = 0 ∈ H(R). This finally shows

that C ∩ (AR[p]/C0) = {0}, as desired.

Now we can extend to the minimal compactification. The case g = 1 is

easy and left to the reader. (It may be reduced to the case g > 1 by embed-

ding the modular curve into the Siegel 3-fold via E 7→ E×E, but one can also

argue directly.) If g ≥ 2, we use our version of Hartog’s extension principle.

Indeed, Lemma 3.2.10, applied with R the sections of an affine subset of X∗

and f = Ha (which is not a zero divisor as the ordinary locus is dense), implies

that the maps F̃X(p−1ε) extend uniquely to F̃X∗(p−1ε). One gets the commuta-

tive diagram in (i), and it reduces to (1) (using that restriction of functions

from Spf S to U in Lemma 3.2.10 is injective even on the special fibre).

Essentially the same argument proves that the maps to X ∗Γ0(pm) extend.

For this, use that if in the situation of Lemma 3.2.10, one has a finite normal

Y → (Spf S)ad
η and a section Uad

η → Y that is an open embedding, then it

extends uniquely to an open embedding (Spf S)ad
η → Y. Indeed, extension is
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automatic by Lemma 3.2.10 (as Y is affinoid), and it has to be an open embed-

ding as the section (Spf S)ad
η → Y is finite and generically an open embedding,

and thus an open and closed embedding as Y is normal. The diagram in part

(ii) is commutative and cartesian, by using Hartog’s principle once more. �

For any Kp, let XKp(ε) ⊂ XKp be the preimage of X (ε) ⊂ X . Similarly,

define X ∗Kp(ε).
For m ≥ 1, we define XΓ0(pm)(ε)a ⊂ XΓ0(pm) as the image of X (p−mε), and

similarly for X ∗. Observe that XΓ0(pm)(ε)a ⊂ XΓ0(pm)(ε) is open and closed,

and is the locus where the universal totally isotropic subgroup D ⊂ A(ε)[pm]

satisfies D[p] ∩ C = {0} for C ⊂ A(ε)[p] the weak canonical subgroup; cf.

Theorem 3.2.15(ii), (iii).

In fact, also on the minimal compactification, X ∗Γ0(pm)(ε)a ⊂ X
∗
Γ0(pm)(ε) is

open and closed: open by Theorem 3.2.15, and closed because X ∗Γ0(pm)(ε)a
∼=

X ∗(p−mε)→ X ∗(ε) is finite.

Thus, we get a tower

· · · → X ∗Γ0(pm+1)(ε)a → X
∗
Γ0(pm)(ε)a → · · · → X

∗
Γ0(p)(ε)a,

which is the pullback of the tower

· · · → X ∗Γ0(pm+1) → X
∗
Γ0(pm) → · · · → X

∗
Γ0(p)

along the open embedding X ∗Γ0(p)(ε)a ⊂ X
∗
Γ0(p). Moreover, we have integral

models for the first tower, such that the transition maps identify with the

relative Frobenius maps modulo p1−ε. Also, we have the abelian schemes

AΓ0(pm)(ε)a → XΓ0(pm)(ε)a by pullback and the similar situation there.

Let us state one last result in this subsection.

Lemma 3.2.17. Fix some 0 ≤ ε < 1
2 . Then for m sufficiently large,

X ∗Γ0(pm)(ε)a is affinoid.

Proof. There is some integer m such that H i(X∗, ω⊗p
m(p−1)) = 0 for all

i > 0. In that case, one can find a global lift ›Ha
pm

of Hap
m

. The condition

|Ha| ≥ |p|p−mε is equivalent to |›Ha
pm

| ≥ |p|ε. As ›Ha
pm

is a section of an ample

line bundle, this condition defines an affinoid space X ∗(p−mε) ∼= X ∗Γ0(pm)(ε)a.

�

3.2.3. Tilting. Fix an element t ∈ (Zcycl
p )[ such that |t| = |t]| = |p|; one

can do this in such a way that t admits a p− 1-th root. In that case, one gets

an identification (Zcycl
p )[ = Fp[[t1/(p−1)p∞ ]]. Let X′ be the formal scheme over

Fp[[t1/(p−1)p∞ ]] given by the t-adic completion of Xg,Kp ⊗Z(p)
Fp[[t1/(p−1)p∞ ]].

We denote by X ′ over Fp((t1/(p−1)p∞)) the generic fibre of X′. The same applies

for X′∗ and A′, with generic fibres X ′∗ and A′.
In characteristic p, one can pass to perfections.
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Definition 3.2.18.

(i) Let Y be a flat t-adic formal scheme over Fp[[t1/(p−1)p∞ ]]. Let Φ : Y→ Y

denote the relative Frobenius map. The inverse limit

lim←−
Φ

Y = Yperf

is representable by a perfect flat t-adic formal scheme over Fp[[t1/(p−1)p∞ ]].

Locally,

(Spf R)perf = Spf(Rperf),

where Rperf is the t-adic completion of lim−→Φ
R.

(ii) Let Y be an adic space over Fp((t1/(p−1)p∞)). There is a unique perfectoid

space Yperf over Fp((t1/(p−1)p∞)) such that

Yperf ∼ lim←−
Φ

Y,

where we use ∼ in the sense of [55, Def. 2.4.1]. Locally,

Spa(R,R+)perf = Spa(Rperf , Rperf+),

where Rperf+ is the t-adic completion of lim−→Φ
R+, and Rperf = Rperf+[t−1].

One checks directly that the two operations are compatible; in other words,

(Yperf)ad
η = (Yad

η )perf . We get perfectoid spaces X ′perf , X ′∗perf and A′perf over

Fp((t1/(p−1)p∞)).

Corollary 3.2.19. Let 0 ≤ ε < 1
2 . There are unique perfectoid spaces

XΓ0(p∞)(ε)a, X ∗Γ0(p∞)(ε)a and AΓ0(p∞)(ε)a over Qcycl
p such that

XΓ0(p∞)(ε)a ∼ lim←−
m

XΓ0(pm)(ε)a,

and similarly for X ∗Γ0(p∞)(ε)a and AΓ0(p∞)(ε)a. Moreover, the tilt X ∗Γ0(p∞)(ε)
[
a

identifies naturally with the open subset X ′∗perf(ε) ⊂ X ′∗perf where |Ha| ≥ |t|ε.
Similarly, AΓ0(p∞)(ε)

[
a gets identified with the open subset A′perf(ε) ⊂ A′perf

where |Ha| ≥ |t|ε.

Proof. We give only the proof in the case of X ; the other statements are

entirely analogous. Note that XΓ0(pm)(ε)a ∼= X (p−mε) has the integral model

X(p−mε). On the tower of the X(p−mε), the transition maps agree with the

relative Frobenius map modulo p1−ε. Define

XΓ0(p∞)(ε)a = lim←−X(p−mε),

where the inverse limit is taken in the category of formal schemes over Zcycl
p .

Over an affine subset Spf Rm0 ⊂ X(p−m0ε) with preimages Spf Rm ⊂ X(p−mε)

for m ≥ m0, we get a corresponding open affine subset Spf R∞ ⊂ XΓ0(p∞)(ε)a,

where R∞ is the p-adic completion of lim−→m
Rm. In particular, R∞ is flat over
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Zcycl
p . Moreover, using that the transition maps Rm/p

1−ε → Rm+1/p
1−ε agree

with the relative Frobenius map, we find that (absolute) Frobenius induces an

isomorphism

R∞/p
(1−ε)/p = lim−→

m

Rm+1/p
(1−ε)/p ∼= lim−→

m

Rm/p
1−ε = R∞/p

1−ε.

Thus, by [52, Def. 5.1(ii)], Ra∞ is a perfectoid Zcycla
p -algebra; in particular,

R∞[p−1] is a perfectoid Qcycl
p -algebra (cf. [52, Lemma 5.6]). Thus, the generic

fibre of XΓ0(p∞)(ε)a is a perfectoid space XΓ0(p∞)(ε)a over Qcycl
p , with

XΓ0(p∞)(ε)a ∼ lim←−
m

XΓ0(pm)(ε)a;

cf. [55, Def. 2.4.1, Prop. 2.4.2] and, for uniqueness, cf. [55, Prop. 2.4.5].

Now we analyze the tilt. We may define a characteristic p-analogue X′∗(ε)

of X∗(ε), which relatively over X′∗ parametrizes sections u ∈ ω⊗(1−p) such that

uHa = tε.

Obviously, there are transition maps X′∗(p−1ε) → X′∗(ε) given by the

relative Frobenius map. Moreover, the inverse limit lim←−mX′∗(p−mε) is repre-

sentable by a perfect flat formal scheme over Fp[[t1/(p−1)p∞ ]], which is nat-

urally the same as X′∗(ε)perf . Its generic fibre is thus a perfectoid space

over Fp((t1/(p−1)p∞)) that is identified with the open subset of X ′∗perf where

|Ha| ≥ |t|ε.
On the other hand, by Theorem 3.2.15(i), one has a canonical identifica-

tion

X′∗(p−mε)/t1−ε = X∗(p−mε)/p1−ε,

compatible with transition maps. Thus, for an open affine Spf Rm0 ⊂ X∗(p−mε)

with preimage Spf Rm, one gets an open affine subset Spf Sm ⊂ X′∗(p−mε),

with Sm/t
1−ε = Rm/p

1−ε. Let R∞ be the p-adic completion of lim−→m
Rm as

above and S∞ the t-adic completion of lim−→m
Sm. Then Spf R∞ ⊂ XΓ0(p∞)(ε)a

and Spf S∞ ⊂ X′∗(ε)perf give corresponding open subsets, and

R∞/p
1−ε = lim−→

m

Rm/p
1−ε = lim−→

m

Sm/t
1−ε = S∞/t

1−ε.

From [52, Th. 5.2], it follows that R∞[p−1] and S∞[t−1] are tilts, as desired. �

Corollary 3.2.20. The space X ∗Γ0(p∞)(ε)a is affinoid perfectoid, and the

boundary

ZΓ0(p∞)(ε)a ⊂ X ∗Γ0(p∞)(ε)a

is strongly Zariski closed.

Proof. It suffices to check the same assertions for the tilts in characteristic

p (cf. Lemma 2.2.7). In characteristic p, the open subset X ′∗(ε) ⊂ X ′∗ given

by |Ha| ≥ |t|ε is affinoid, and the boundary Z ′(ε) ⊂ X ′∗(ε) is Zariski closed.
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Passing to the perfection, one gets affinoid perfectoid spaces, and a Zariski

closed embedding, which is strongly Zariski closed by Lemma 2.2.5. �

3.2.4. Tate’s normalized traces. We need Tate’s normalized traces to re-

late the situation at Γ0(p∞)-level to the situation at some finite Γ0(pm)-level.

More precisely, we will use them to extend Hartog’s extension principle to

Γ0(p∞)-level and finite covers thereof.

Lemma 3.2.21. Let R be a p-adically complete flat Zp-algebra. Fix ele-

ments Y1, . . . , Yn∈R, and take P1, . . . , Pn∈R〈X1, . . . , Xn〉 such that P1, . . . , Pn
are topologically nilpotent. Let

S = R〈X1, . . . , Xn〉/(Xp
1 − Y1 − P1, . . . , X

p
n − Yn − Pn).

(i) The ring S is a finite free R-module, with basis given by Xi1
1 · · ·Xin

n , where

0 ≤ i1, . . . , in ≤ p− 1.

(ii) Let Ii ⊂ R be the ideal generated by the coefficients of Pi, and let I =

(p, I1, . . . , In) ⊂ R. Then trS/R(S) ⊂ In.

Proof. (i) Note that I is finitely generated. By assumption, IN is con-

tained in pR for N large, so R is I-adically complete. Modulo I, the assertion

is clear; moreover, the presentation gives a regular embedding of SpecS/I into

affine n-space over SpecR/I. Thus, the Koszul complex C1 forR/I[X1, . . . , Xn]

and the functions fi = Xp
i − Yi − Pi is acyclic in nonzero degrees, and its co-

homology in degree 0 is S/I, which is finite free over R/I. In particular, C1

is a perfect complex of R/I-modules. Looking at the Koszul complex Ck for

R/Ik[X1, . . . , Xn] and the functions fi, one has

Ck ⊗L
R/Ik R/I = C1,

which is a perfect complex of R/I-modules. It follows that Ck is a perfect

complex of R/Ik-modules; cf., e.g., [58, Tag 07LU]. Moreover, C1 is acyclic in

nonzero degrees, which implies that Ck is also acyclic in nonzero degrees, e.g.

by writing it as a successive extension of

Ck ⊗L
R/Ik I

j/Ij+1.

Thus, Ck is quasi-isomorphic to a finite projective R/Ik-module in degree 0,

which is finite free modulo I with the desired basis; thus, Ck itself is quasi-

isomorphic to a finite free R/Ik-module with the desired basis. As S/Ik is the

cohomology of Ck in degree 0, we get the result modulo Ik and then in the

inverse limit over k for S itself.

(ii) We make some preliminary reductions. First, we may assume that

each Yi = W p
i is a p-th power; this amounts to a faithfully flat base change.

Replacing Xi by Xi−Wi+ 1, we may assume in fact that Yi = 1. In that case,

all Xi are invertible.
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Next, it is enough to show trS/R(X1) ∈ In. Indeed, it is enough to prove

the statement for the basis Xi1
1 · · ·Xin

n . If all ik = 0, the result is clear.

Otherwise, set X ′1 = Xi1
i · · ·Xin

n and choose an invertible n×n-matrix over Fp
with first row i1, . . . , in. This gives elements X ′2, . . . , X

′
n such that X1, . . . , Xn

may be expressed in terms of X ′1, . . . , X
′
n and X±p1 , . . . , X±pn . (Here, we use

that all Xi are invertible.) This means that X ′1, . . . , X
′
n generate S/I over R/I,

and thus they generate S over R. Moreover, the equations are of the similar

form, as one sees after reduction modulo I.

Replacing all Xi by Xi − 1, one may then assume that all Yi = 0 instead.

One sees easily that one still has to prove trS/R(X1) ∈ In. We may also assume

that all Pi have only monomials of degree ≤ p− 1 in all Xi’s. Finally, we can

reduce to the case

R = Zp[[ai,i1,...,in ]],

where 1 ≤ i ≤ n and 0 ≤ i1, . . . , in ≤ p− 1, and

Pi =
∑

i1,...,in

ai,i1,...,inX
i1
1 · · ·X

in
n .

(In that case, the Pi are not topologically nilpotent for the p-adic topology,

but the conclusion of part (i) is still satisfied, and it is enough to prove the

analogue of (ii) in this case, as all other cases arise via base change.)

Now, ⋂
0≤k≤n−1,{j1,...,jk}⊂{2,...,n}

(pkI1 + Ij1 + · · ·+ Ijk) ⊂ In.

Assume x ∈ R is in the left-hand side, but not in the right-hand side. Thus,

there exists a monomial

a
i(1),i

(1)
1 ,...,i

(1)
n
· · · a

i(m),i
(m)
1 ,...,i

(m)
n

whose coefficient in x is not divisible by pn−m in R (m ≥ 0). Enumerate the j’s

between 2 and n that do not occur as an i(·) as j1, . . . , jk. Thus k ≥ n−m−1,

and k ≥ n−m if 1 is among the i(·)’s. Now, using that x ∈ pkI1 +Ij1 + · · ·+Ijk ,

we see that 1 has to be among the i(·)’s and that the desired coefficient is

divisible by pk. As k ≥ n−m, we get the desired contradiction.

We claim that for all k ≥ 0 and {j1, . . . , jk} ⊂ {2, . . . , n}, trS/R(X1) ∈
pkI1 + Ij1 + · · · + Ijk . For this, we may assume that {j1, . . . , jk} = {n − k +

1, . . . , n} (by symmetry) and then divide by the ideal In−k+1 + · · ·+ In; thus,

we may assume Pn−k+1 = · · · = Pn = 0. In that case, all Xn−k+1, . . . , Xn

are nilpotent. Let S̄ = S/(Xn−k+1, . . . , Xn). One finds that trS/R(X1) =

pktrS̄/R(X1), so we may assume that k = 0. In that case, we have to prove

trS/R(X1) ∈ I1. We can compute the trace by using the basis Xi1
1 · · ·Xin

n ,

0 ≤ i1, . . . , in ≤ p− 1. If i1 < p− 1, then multiplication by X1 maps this to a
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different basis element, so that it does not contribute to the trace. If i1 = p−1,

then

X1 · (Xi1
1 · · ·X

in
n ) = P1X

i2
2 · · ·X

in
n ,

which contributes an element of I1 to the trace. �

Corollary 3.2.22. Let R be a p-adically complete Zp-algebra topologi-

cally of finite type, formally smooth of dimension n, and let f ∈ R such that

f ∈ R = R/p is not a zero divisor. For 0 ≤ ε < 1, define

Rε = (R⊗̂ZpZcycl
p )〈uε〉/(fuε − pε).

Let ϕ : Rε → Rε/p be a map of Zcycl
p -algebras such that ϕ mod p1−ε is given

by the map

(R⊗Fp Zcycl
p /p1−ε)[uε]/(fuε − pε)→ (R⊗Fp Zcycl

p /p1−ε)[uε/p]/(fuε/p − pε/p)

that is the Frobenius on R and sends uε to upε/p. We assume that ε < 1
2 .

(i) The map ϕ[1
p ] : Rε[

1
p ]→ Rε/p[

1
p ] is finite and flat.

(ii) The trace map

trRε/p[ 1
p

]/Rε[
1
p

] : Rε/p[
1
p ]→ Rε[

1
p ]

maps Rε/p into pn−(2n+1)εRε.

Proof. All assertions are local on Spf R. Thus, we may assume that there

is an étale map Spf R → Spf Zp〈Y1, . . . , Yn〉. In particular, regarding R as

an R-module via Frobenius, it is free with basis given by Y i1
1 · · ·Y in

n , 0 ≤
i1, . . . , in ≤ p− 1.

(i) Consider the Zcycl
p -algebra

R′ε/p = (R⊗̂ZpZcycl
p )〈vε〉/(fpvε − pε).

There is a map τ : R′ε/p → Rε/p by mapping vε to upε/p. After inverting

p, τ becomes an isomorphism, the inverse being given by mapping uε/p to

p−(p−1)ε/pfp−1vε. As R′ε/p is p-torsion free by Lemma 3.2.10, it follows that τ

is injective. As p(p−i)ε/puiε/p = fp−ivε for i = 1, . . . , p− 1, the cokernel of τ is

killed by p(p−1)ε/p; in particular, by pε.

We claim that ϕ : Rε → Rε/p factors over a map ψ : Rε → R′ε/p. As

ε < 1− ε, this can be checked after reduction modulo p1−ε. By assumption, ϕ

mod p1−ε factors as a composite

(R⊗Fp Zcycl
p /p1−ε)[uε]/(fuε − pε)→ (R⊗Fp Zcycl

p /p1−ε)[vε]/(f
pvε − pε)

τ→ (R⊗Fp Zcycl
p /p1−ε)[uε/p]/(fuε/p − pε/p),

where the first map is the Frobenius on R and sends uε to vε, and the second

map is τ mod p1−ε. This gives the desired factorization.
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Moreover, the kernel of τ mod p1−ε is killed by pε, as the kernel comes

from a Tor1-term with coefficients in the cokernel of τ . It follows that ψ

mod p1−2ε agrees with the map

(R⊗Fp Zcycl
p /p1−2ε)[uε]/(fuε − pε)→ (R⊗Fp Zcycl

p /p1−2ε)[vε]/(f
pvε − pε)

that is the Frobenius on R and sends uε to vε. This is finite free with basis

Y i1
1 · · ·Y in

n , 0 ≤ i1, . . . , in ≤ p − 1. It follows that the same is true for ψ, as

desired.

(ii) It suffices to show that

trR′
ε/p

/Rε : R′ε/p → Rε

has image contained in pn−2nεRε. But we can write

R′ε/p = Rε〈X1, . . . , Xn〉/(Xp
1 − Y1 − P1, . . . , X

p
n − Yn − Pn),

where P1, . . . , Pn ∈ p1−2εRε〈X1, . . . , Xn〉. Applying Lemma 3.2.21 gives the

result. �

Corollary 3.2.23. Fix 0 ≤ ε < 1
2 , and consider the formal scheme

XΓ0(p∞)(ε)a = lim←−
m

X(p−mε)

over Zcycl
p . Fix some m ≥ 0. For m′ ≥ m, the maps

1/p(m′−m)g(g+1)/2tr : OX(p−m′ε)[p
−1]→ OX(p−mε)[p

−1]

are compatible for varying m′ and give a map

trm : lim−→
m′
OX(p−m′ε)[p

−1]→ OX(p−mε)[p
−1].

The image of lim−→m′
OX(p−m′ε) is contained in p−CmOX(p−mε) for some constant

Cm, with Cm → 0 as m→∞. Thus, trm extends by continuity to a map

trm : OXΓ0(p∞)(ε)a [p−1]→ OX(p−mε)[p
−1],

called Tate’s normalized trace. Moreover, for any x ∈ OXΓ0(p∞)(ε)a [p−1],

x = lim
m→∞

trm(x).

Proof. We only need to prove existence of Cm, with Cm → 0 as m→∞.

Observe that by Theorem 3.2.15(i), the transition maps

F̃X(p−m−1ε) : X(p−m−1ε)→ X(p−mε)

are of the type considered in Corollary 3.2.22 for ε′ = p−mε, with n = g(g +

1)/2. It follows that

1/pg(g+1)/2tr : OX(p−m−1ε)[p
−1]→ OX(p−mε)[p

−1]
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maps OX(p−m−1ε) into p−(g2+g+1)ε/pmOX(p−mε). As the sum of (g2 +g+1)ε/pm
′

over all m′ ≥ m exists, one gets the existence of Cm; moreover, Cm → 0 as

m→∞. �

3.2.5. Conclusion. Recall that we have proved that a strict neighborhood

of the anticanonical locus becomes perfectoid at Γ0(p∞)-level. Our goal in this

section is to extend this result to full Γ(p∞)-level. This is done in two steps:

from Γ0(p∞)-level to Γ1(p∞)-level, and from Γ1(p∞)-level to Γ(p∞)-level. The

second part is easy and follows from almost purity, as there is no ramification

at the boundary.

More critical is the transition from Γ0(p∞)-level to Γ1(p∞)-level. The

issue is that it is very hard to understand what happens at the boundary. Our

strategy is to first guess what the tilt of the space is and then prove that our

guess is correct. Away from the boundary, it is clear which finite étale cover

to take. In characteristic p, one can build a candidate by taking the perfection

of the normalization. One can take the untilt of this space, and we want to

compare this with the spaces in characteristic 0. Away from the boundary,

this can be done. To extend to the whole space, we need two ingredients:

the Hebbarkeitssatz for the candidate space in characteristic p, and Hartog’s

extension principle for the space in characteristic 0.

Assume that g ≥ 2 until further notice. We start by proving the version of

Hartog’s extension principle that we will need. This follows from a combination

of the earlier version of Hartog (which is a statement at finite level) with Tate’s

normalized traces.

Lemma 3.2.24. Let Y∗m → X ∗Γ0(pm)(ε)a be finite, étale away from the

boundary, and assume that Y∗m is normal and that no irreducible component of

Y∗m maps into the boundary. In particular, Ym → XΓ0(pm)(ε)a is finite étale,

where Ym ⊂ Y∗m is the preimage of XΓ0(pm)(ε)a ⊂ X ∗Γ0(pm)(ε)a. For m′ ≥ m, let

Y∗m′ → X ∗Γ0(pm′ )
(ε)a be the normalization of the pullback, with Ym′ ⊂ Y∗m′ . Let

Y∞ be the pullback of Ym to XΓ0(p∞)(ε)a, which exists as Ym → XΓ0(pm)(ε)a is

finite étale.

Observe that as X ∗
Γ0(pm′ )

(ε)a is affinoid for m′ sufficiently large (cf. Lemma

3.2.17), all Y∗m′ = Spa(Sm′ , S
+
m′) (with S+

m′ = S◦m′) are affinoid for m′ suffi-

ciently large.

(i) For all m′ sufficiently large,

S+
m′ = H0(Ym′ ,O+

Ym′
).

(ii) The map

lim−→
m′

S+
m′ → H0(Y∞,O+

Y∞)
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is injective with dense image. Moreover, there are canonical continuous

retractions

H0(Y∞,OY∞)→ Sm′ .

(iii) Assume that S∞ = H0(Y∞,OY∞) is a perfectoid Qcycl
p -algebra ; define

Y∗∞ = Spa(S∞, S
+
∞),

where S+
∞ = S◦∞. Then Y∗∞ is an affinoid perfectoid space over Qcycl

p ,

Y∗∞ ∼ lim←−m′ Y
∗
m′ , and S+

∞ is the p-adic completion of lim−→m′
S+
m′ .

Proof. (i) We may assume m = m′, so that Lemma 3.2.17 applies. Let

S = Sm, R = H0(X ∗Γ0(pm)(ε)a,OX ∗Γ0(pm)
(ε)a).

Then S is a finite R-module and R and S are normal and noetherian. Let

Z ⊂ SpecR denote the boundary, which is of codimension ≥ 2, with preimage

Z ′ ⊂ SpecS, again of codimension ≥ 2 (by the assumption on irreducible

components). Thus, S = H0(SpecS \ Z ′,OSpecS) and R = H0(SpecR \ Z,
OSpecR). Away from Z, the map is finite étale, so that one has a trace map

trS/R : S → R (a priori only on the structure sheaf away from the boundary,

but then by taking global sections on S). Moreover, the trace pairing

S ⊗R S → R : s1 ⊗ s2 7→ trS/R(s1s2)

induces an isomorphism S → HomR(S,R): If s1 ∈ S is in the kernel, it

still lies in the kernel of the pairing away from the boundary. There, it is

perfect (as the map is finite étale), thus s1 vanishes away from the boundary,

thus is 0. Similarly, given an element of HomR(S,R), it comes from a unique

element of S away from the boundary, thus from an element of S, as S =

H0(SpecS \ Z ′,OSpecS).

Arguing as in the proof of Lemma 2.3.10(iii) (i.e., repeating the argument

after pullback to affinoid open subsets of X ∗Γ0(pm)(ε)a), we see that for all open

subsets U ⊂ X ∗Γ0(pm)(ε)a with preimage V ⊂ Y∗m, the trace pairing gives an

isomorphism

H0(V,OY∗m) ∼= HomR(S,H0(U ,OX ∗
Γ0(pm)

(ε)a)).

Thus, the desired statement follows from

H0(XΓ0(pm)(ε)a,OX ∗
Γ0(pm)

(ε)a) = H0(X ∗Γ0(pm)(ε)a,OX ∗Γ0(pm)
(ε)a),

which is a consequence of Lemma 3.2.10.

(ii) Use Tate’s normalized traces (Corollary 3.2.23) (and part (i)) to pro-

duce the retractions (proving injectivity). Moreover, Tate’s normalized traces

for varying m′ converge to the element one started with, giving the density.

(iii) This is immediate from (ii). �
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First, we deal with the case of adjoining a Γ1(pm)-level structure. Assume

first that g ≥ 2; the case g = 1 can be handled directly — cf. below. Note that

on the tower XΓ0(pm)(ε)a, we have the tautological abelian variety AtΓ0(pm)(ε)a
(which are related to each other by pullback) as well as the abelian varieties

AΓ0(pm)(ε)a = A(p−mε) over XΓ0(pm)(ε)a ∼= X (p−mε). They are related by an

isogeny

AΓ0(pm)(ε)a → AtΓ0(pm)(ε)a,

whose kernel is the canonical subgroup Cm ⊂ AΓ0(pm)(ε)a[p
m] of level m. One

gets an induced subgroup

Dm = AΓ0(pm)(ε)a[p
m]/Cm ⊂ AtΓ0(pm)(ε)a.

Let DmΓ0(pm′ ) be the pullback of Dm to XΓ0(pm′ )(ε)a for m′ ≥ m. One has

DmΓ0(pm′ ) = Dm′ [p
m]. Also, the Dm give the Γ0(pm)-level structure.

Let DmΓ0(p∞) denote the pullback of Dm to XΓ0(p∞)(ε)a; since the map

Dm → XΓ0(pm)(ε)a is finite étale, DmΓ0(p∞) is a perfectoid space.

Lemma 3.2.25. The map

AΓ0(p∞)(ε)a[p
m]→ DmΓ0(p∞)

is an isomorphism of perfectoid spaces.

Proof. Let (R,R+) be a perfectoid affinoid Qcycl
p -algebra. Then

AΓ0(p∞)(ε)a[p
m](R,R+) = lim←−

m′
AΓ0(pm′ )(ε)a[p

m](R,R+).

The transition map

AΓ0(pm′+m)(ε)a[p
m]→ AΓ0(pm′ )(ε)a[p

m]

kills the canonical subgroup Cm, so that it factors as

AΓ0(pm′+m)(ε)a[p
m]→ AΓ0(pm′+m)(ε)a[p

m]/Cm

= DmΓ0(pm′+m) → AΓ0(pm′ )(ε)a[p
m].

This shows that the projective limit is the same as the projective limit

DmΓ0(p∞)(R,R
+) = lim←−

m′
DmΓ0(pm′ )(R,R

+). �

Let D′m → X ′(ε) ⊂ X ′ denote the quotient A′(ε)[pm]/C ′m, where C ′m de-

notes the canonical subgroup on the ordinary locus in characteristic p. Note

that all abelian varieties over Fp((t1/(p−1)p∞)) parametrized by X ′(ε) are ordi-

nary, as the Hasse invariant divides tε, and thus is invertible.13

13Of course, the abelian varieties need not have good ordinary reduction.
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Lemma 3.2.26. The tilt of DmΓ0(p∞) identifies canonically with the per-

fection of D′m.

Proof. As the kernel of Frobenius (i.e., C ′m) gets killed under perfection,

we have

(D′m)perf = A′(ε)[pm]perf .

By Corollary 3.2.19, the right-hand side is the tilt of AΓ0(p∞)(ε)a[p
m], so ap-

plying the previous lemma finishes the proof. �

Let Xord∗ ⊂ X∗ ⊗Z(p)
Fp be the locus where the Hasse invariant is in-

vertible; thus, Xord∗ is affine over Fp. Let Xord ⊂ X ⊗Z(p)
Fp be the preim-

age, which is the ordinary locus, and let Dord
m → Xord be the quotient of

the pm-torsion of the universal abelian variety by the canonical subgroup.

Now, let Xord
Γ1(pm) → Xord parametrize isomorphisms Dord

m
∼= (Z/pmZ)g. Then

Xord
Γ1(pm) → Xord is a finite map of schemes over Fp. Recall that we are assuming

g ≥ 2; thus, we find that setting

Xord∗
Γ1(pm) = SpecH0(Xord

Γ1(pm),OXord
Γ1(pm)

),

the map Xord∗
Γ1(pm) → Xord∗ is a finite map of affine schemes over Fp, such that

Xord
Γ1(pm) is the preimage of Xord. Also, Xord∗

Γ1(pm) is normal.

Let X ′∗Γ1(pm)(ε) be the open locus of the adic space associated with Xord∗
Γ1(pm)

⊗ Fp((t1/(p−1)p∞)) where |Ha| ≥ |t|ε. Then

X ′∗Γ1(pm)(ε)→ X
′∗(ε)

is finite and étale away from the boundary. In particular, the base change

X ′Γ1(pm)(ε)→ X
′(ε) ⊂ X ′∗(ε) is finite étale, parametrizing isomorphisms D′m

∼=
(Z/pmZ)g.

Let Z ′∗(ε) ⊂ X ′∗(ε) denote the boundary, with pullback Z ′∗Γ1(pm)(ε) ⊂
X ′∗Γ1(pm)(ε).

Lemma 3.2.27. The triple (X ′∗(ε)perf ,Z ′∗(ε)perf ,X ′(ε)perf) is good (cf.

Definition 2.3.8), i.e.,

H0(X ′∗(ε)perf ,O◦/t)a ∼= H0(X ′∗(ε)perf \ Z ′∗(ε)perf ,O◦/t)a

↪→ H0(X ′(ε)perf ,O◦/t)a.

Proof. Recall that X ′∗(ε) is the generic fibre of the formal scheme

X′∗(ε)→ X′∗

parametrizing u with uHa = tε. It is enough to prove that for any open affine

formal subscheme U ⊂ X′∗, the corresponding triple one gets by pullback is
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good. This follows from Lemma 2.3.9 (with t replaced by tε); cf. also Corol-

lary 2.3.12. Observe that X∗⊗Z(p)
Fp admits a resolution of singularities, given

by the toroidal compactification; cf. [28]. �

Corollary 3.2.28. The triple

(X ′∗Γ1(pm)(ε)
perf ,Z ′∗Γ1(pm)(ε)

perf ,X ′Γ1(pm)(ε)
perf)

is good.

Proof. This follows from the previous lemma and Lemma 2.3.10. �

Now fix m ≥ 1, and consider Y∗m = X ∗Γ1(pm)(ε)a → X
∗
Γ0(pm)(ε)a. We use

notation as in Lemma 3.2.24.

Lemma 3.2.29. The tilt of Y∞ identifies with X ′Γ1(pm)(ε)
perf .

Proof. As Ym→XΓ0(pm)(ε)a is finite étale, Y∞→XΓ0(p∞)(ε)a is finite étale

and parametrizes isomorphisms DmΓ0(p∞)
∼= (Z/pmZ)g. Using Lemma 3.2.26,

one sees that the tilt will parametrize isomorphisms (D′m)perf ∼= (Z/pmZ)g.

This moduli problem is given by X ′Γ1(pm)(ε)
perf → X ′(ε)perf . �

Note that Y∗m \ ∂ → X ∗Γ0(pm)(ε)a \ ∂ is finite étale, where ∂ denotes the

boundary of any of the spaces involved. By pullback (and abuse of notation

— Y∗∞ is not defined yet), we get a perfectoid space Y∗∞ \ ∂ → X ∗Γ0(p∞)(ε)a \ ∂.

Lemma 3.2.30. The tilt of Y∗∞ \ ∂ identifies with X ′∗Γ1(pm)(ε)
perf \ ∂.

Proof. Let X ′∗Γ1(pm)(ε)
perf = Spa(T, T+), and let (U,U+) be the untilt of

(T, T+). By the previous lemma, we get a map

U+ → H0(Y∞,O+
Y∞) = S+

∞,

and by Lemma 3.2.24, the right-hand side is the p-adic completion of lim−→m
S+
m.

From the latter statement, it follows that there is a map of adic spaces in the

sense of [55, Def. 2.1.5] Y∗m \ ∂ → Spa(S∞, S
+
∞). Combining, we get a map

Y∗m \ ∂ → Spa(U,U+). After restricting to the complement of the boundary,

both spaces are perfectoid and finite étale over X ∗Γ0(p∞)(ε)a\∂. Thus, using the

previous lemma and Lemma 3.2.27, the result follows from the next lemma. �

Lemma 3.2.31. Let K be a perfectoid field, X , Y1, Y2 be perfectoid spaces

over K , Y1,Y2 → X two finite étale maps, and f : Y1 → Y2 a map over X .

Let U ⊂ X be an open subset such that H0(X ,OX ) ↪→ H0(U ,OU ). Assume

that f |U is an isomorphism. Then f is an isomorphism.

Proof. The locus of X above which f is an isomorphism is open and closed:

As the maps are finite étale, this reduces to the classical algebraic case. Thus, if

f is not an isomorphism, there is a nontrivial idempotent e ∈ H0(X ,OX ) that
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is equal to 1 on the locus where f is an isomorphism. In particular, e|U = 1.

But as H0(X ,OX ) ↪→ H0(U ,OU ), e = 1, as desired. �

Lemma 3.2.32. The ring S∞ = H0(Y∞,OY∞) is perfectoid, and the tilt

of Y∗∞ = Spa(S∞, S
+
∞) identifies with X ′∗Γ1(pm)(ε)

perf .

Proof. Recall that in the proof of Lemma 3.2.30, we constructed a map

U+ → S+
∞; we need to show that it is an isomorphism. From the equation

S+
∞ = H0(Y∞,O+

Y∞), we know that

S+
∞/p ↪→ H0(Y∞,O+

Y∞/p).

Using Corollary 3.2.28,

(U+/p)a = H0(X ′∗Γ1(pm)(ε)
perf ,O+/t)a ↪→ H0(X ′Γ1(pm)(ε)

perf ,O+/t)a

= H0(Y∞,O+/p)a,

so U+/p → S+
∞/p is almost injective, and the map U+ → S+

∞ is injective. To

prove surjectivity, observe that there is a map

(S+
∞/p)

a ↪→ H0(Y∗∞ \ ∂,O+/p)a ∼= H0(X ′∗Γ1(pm)(ε)
perf \ ∂,O+/t)a

∼= H0(X ′∗Γ1(pm)(ε)
perf ,O+/t)a = (U+/p)a

by Lemma 3.2.30 and Corollary 3.2.28. This gives almost surjectivity, thus

S∞ = U , and then also S+
∞ = S◦∞ = U◦ = U+. �

Summarizing the discussion, we have proved the following.

Proposition 3.2.33. For any m ≥ 1, there exists a unique perfectoid

space X ∗Γ1(pm)∩Γ0(p∞)(ε)a over Qcycl
p such that

X ∗Γ1(pm)∩Γ0(p∞)(ε)a ∼ lim←−
m′
X ∗

Γ1(pm)∩Γ0(pm′ )
(ε)a.

Moreover, X ∗Γ1(pm)∩Γ0(p∞)(ε)a and all X ∗
Γ1(pm)∩Γ0(pm′ )

(ε)a for m′ sufficiently

large are affinoid, and

lim−→
m′

H0(X ∗
Γ1(pm)∩Γ0(pm′ )

(ε)a,O)→ H0(X ∗Γ1(pm)∩Γ0(p∞)(ε)a,O)

has dense image.

Let ZΓ1(pm)∩Γ0(p∞)(ε)a ⊂ X ∗Γ1(pm)∩Γ0(p∞)(ε)a denote the boundary and

XΓ1(pm)∩Γ0(p∞)(ε)a the preimage of XΓ0(p)(ε)a ⊂ X ∗Γ0(p)(ε)a. Then the triple

(X ∗Γ1(pm)∩Γ0(p∞)(ε)a,ZΓ1(pm)∩Γ0(p∞)(ε)a,XΓ1(pm)∩Γ0(p∞)(ε)a)

is good. �

In fact, the proposition is also true for g = 1. In that case, X ∗Γ1(pm)(ε)a →
X ∗Γ0(pm)(ε)a is finite étale, and the boundary is contained in the ordinary locus.

Note that Lemma 2.3.9 holds true if the codimension of the boundary is 1

when the boundary V (J) does not meet V (f). Also, Lemma 2.3.10 holds
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true if the codimension of the boundary is 1 when the map is finite étale.

Certainly, one can pull back the finite étale map X ∗Γ1(pm)(ε)a → X
∗
Γ0(pm)(ε)a to

get X ∗Γ1(pm)∩Γ0(p∞)(ε)a → X
∗
Γ0(p∞)(ε)a and arrive at all desired properties.

Passing to the inverse limit over m and using Lemma 2.3.11, we get the

following proposition.

Proposition 3.2.34. There is a unique perfectoid space X ∗Γ1(p∞)(ε)a over

Qcycl
p such that

X ∗Γ1(p∞)(ε)a ∼ lim←−
m

X ∗Γ1(pm)(ε)a.

Moreover, X ∗Γ1(p∞)(ε)a and all X ∗Γ1(pm)(ε)a for m sufficiently large are affinoid,

and
lim−→
m

H0(X ∗Γ1(pm)(ε)a,O)→ H0(X ∗Γ1(p∞)(ε)a,O)

has dense image.

Let ZΓ1(p∞)(ε)a ⊂ X ∗Γ1(p∞)(ε)a denote the boundary, and XΓ1(p∞)(ε)a the

preimage of XΓ0(p)(ε)a ⊂ X ∗Γ0(p)(ε)a. Then the triple

(X ∗Γ1(p∞)(ε)a,ZΓ1(p∞)(ε)a,XΓ1(p∞)(ε)a)

is good.

The case of Γ(pm)-level structures is now easy, using [52, Th. 7.9(iii)], and

the following lemma.

Lemma 3.2.35. For any m ≥ 1, the map

X ∗Γ(pm)(ε)a → X
∗
Γ1(pm)(ε)a

is finite étale.

Proof. We leave the case g = 1 to the reader. Thus, assume g ≥ 2. First,

we check the assertion in the case ε = 0, i.e., on the ordinary locus. In that

case, we claim that it decomposes as

X ∗Γ(pm)(0)a ∼=
⊔

Γ1(pm)/Γ(pm)

X ∗Γ1(pm)(0)a → X ∗Γ1(pm)(0)a.

By Hartog’s principle (cf. Lemma 3.2.24), it suffices to check that

XΓ(pm)(0)a ∼=
⊔

Γ1(pm)/Γ(pm)

XΓ1(pm)(0)a → XΓ1(pm)(0)a.

The left-hand side parametrizes abelian varieties A with good ordinary re-

duction, with a symplectic isomorphism α : A[pm] ∼= (Z/pmZ)2g such that

D1 = (α mod p)−1(Fgp ⊕ 0g) ⊂ A[p] satisfies D1 ∩ C1 = {0}, where C1 ⊂ A[p]

is the canonical subgroup of level 1. Similarly, XΓ1(pm)(0) parametrizes abelian

varieties A with good ordinary reduction, together with a totally isotropic
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subgroup Dm ⊂ A[pm] and an isomorphism α0 : Dm
∼= (Z/pmZ)g, such that

D1 = Dm[p] satisfies D1 ∩ C1 = {0}.
Note that A has good ordinary reduction and thus a canonical subgroup

Cm ⊂ A[pm]. Moreover, Cm ⊕Dm = A[pm], as follows from C1 ⊕D1 = A[p].

The map of functors is given by α 7→ (Dm, α0), where Dm = α−1((Z/pmZ)g

⊕ 0g) and α0 = α|Dm . But α also gives rise to a totally isotropic subspace

Σ = α(Cm) ⊂ (Z/pmZ)2g, with

Σ⊕ ((Z/pmZ)g ⊕ 0g) = (Z/pmZ)2g.

One checks that Γ1(pm)/Γ(pm) acts simply transitively on the set of such Σ

and that the datum of (Dm, α0,Σ) is equivalent to α. This finishes the proof

in case ε = 0.

In general, there is a description of the boundary strata, and the induced

map, of X ∗Γ(pm) → X
∗
Γ1(pm) in terms of lower-dimensional Siegel moduli spaces.

In particular, above any locally closed stratum meeting X ∗Γ1(pm)(0)a, the map

is finite étale, as it is so generically. As any locally closed stratum that meets

X ∗Γ1(pm)(ε)a will also meet X ∗Γ1(pm)(0)a, we get the conclusion. �

Using Lemmas 2.3.10 and 2.3.11 once more, we get the following theorem.

Theorem 3.2.36. There is a unique perfectoid space X ∗Γ(p∞)(ε)a over

Qcycl
p such that

X ∗Γ(p∞)(ε)a ∼ lim←−
m

X ∗Γ(pm)(ε)a.

Moreover, X ∗Γ(p∞)(ε)a and all X ∗Γ(pm)(ε)a for m sufficiently large are affinoid,

and
lim−→
m

H0(X ∗Γ(pm)(ε)a,O)→ H0(X ∗Γ(p∞)(ε)a,O)

has dense image.

Let ZΓ(p∞)(ε)a ⊂ X ∗Γ(p∞)(ε)a denote the boundary and XΓ(p∞)(ε)a the

preimage of XΓ0(p)(ε)a ⊂ X ∗Γ0(p)(ε)a. Then the triple

(X ∗Γ(p∞)(ε)a,ZΓ(p∞)(ε)a,XΓ(p∞)(ε)a)

is good.

Summarizing our efforts so far, we have proved that a strict (and explicit)

neighborhood of the ordinary locus in the minimal compactification becomes

affinoid perfectoid in the inverse limit and that Riemann’s Hebbarkeitssatz

holds true with respect to the boundary. We will now extend these results to

the whole Shimura variety by using the GSp2g(Qp)-action.

3.3. The Hodge-Tate period map. The next task is to extend the result of

the previous section to all of X ∗Γ(p∞) and to construct the Hodge-Tate period

map
πHT : X ∗Γ(p∞) → F`.
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In fact, the two tasks will go hand in hand. As we are always working over

Qcycl
p , we can ignore all Tate twists in the following.

3.3.1. On topological spaces. We need a version of [54, Prop. 4.15] for the

case of bad reduction.

Proposition 3.3.1. Let C be an algebraically closed and complete ex-

tension of Qp with ring of integers OC . Let A/C be an abelian variety with

connected Néron model G/OC . Let Ĝ be the p-adic completion of G (as a

formal scheme over Spf OC); then there is an extension

0→ T̂ → Ĝ→ B̂ → 0,

where T is a split torus over OC and B is an abelian variety over OC . Thus,

Ĝ[p∞] defines a p-divisible group over OC , which has a Hodge-Tate filtration

0→ Lie Ĝ⊗OC C(1)→ TpĜ⊗Zp C → (Lie Ĝ[p∞]∗)∗ ⊗OC C → 0.

Also, A has its Hodge-Tate filtration

0→ LieA(1)→ TpA⊗Zp C → (LieA∗)∗ → 0.

The diagram

Lie Ĝ⊗OC C(1)

=
��

// TpĜ⊗Zp C� _

��
LieA(1) // TpA⊗Zp C

commutes.

Proof. The proof is identical to the proof of [54, Prop. 4.15]. �

In the situation of the proposition, we need a comparison of Hasse invari-

ants.

Lemma 3.3.2. In the situation of Proposition 3.3.1, assume that A comes

from a point x ∈ X(C) = Xg,Kp(C). By properness of X∗g,Kp , it extends to a

point x ∈ X∗g,Kp(OC).

(i) The pullback x∗ωX∗
g,Kp

is canonically isomorphic to ωG.

(ii) Let x̄ ∈ X∗g,Kp(OC/p) be the reduction modulo p of x. Then there is an

equality

Ha(x̄) = Ha(B ⊗OC OC/p)⊗ (ωcan
T )p−1 ∈ ω⊗(p−1)

G /p ∼= ω
⊗(p−1)
B /p⊗ ω⊗(p−1)

T /p.

Here, ±ωcan
T ∈ ωT denotes the canonical differential, given by d log(Z1) ∧

· · · ∧ d log(Zm) on the split torus T ∼= SpecOC [Z±1
1 , . . . , Z±1

m ].14

14The sign ambiguity goes away when taking the p− 1-th power if p 6= 2; if p = 2, then it

goes away modulo p.
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Proof. Let f : Xg,Kp → X∗g,Kp be a (smooth projective) toroidal compact-

ification, as constructed in [28]. Over Xg,Kp , one has a family of semiabelian

varieties Guniv → Xg,Kp . In particular, one has the invertible sheaf ωGuniv over

Xg,Kp , and by construction of X∗g,Kp , ωGuniv = f∗ωX∗
g,Kp

. Pulling back to x

gives part (i).

For part (ii), observe that one can define an element Ha′ ∈ H0(Xg,Kp⊗Z(p)

Fp, ω
⊗(p−1)
Guniv ) as follows. The Verschiebung map V : (Guniv)(p) → Guniv in

characteristic p induces a map ωGuniv → ω(Guniv)(p)
∼= ω⊗p

Guniv , i.e., a section

Ha′ ∈ H0(Xg,Kp⊗Z(p)
Fp, ω

⊗(p−1)
Guniv ), as desired. Clearly, Ha = Ha′ onXg,Kp⊗Z(p)

Fp; it follows that Ha′ is the pullback of Ha to Xg,Kp ⊗Z(p)
Fp.

Pulling back to x reduces part (ii) to a direct verification. �

Look at the spectral topological spaces

|X ∗Γ(p∞)| = lim←−
m

|X ∗Γ(pm)|, |ZΓ(p∞)| = lim←−
m

|ZΓ(pm)|, |XΓ(p∞)| = lim←−
m

|XΓ(pm)|.

There is a continuous action of GSp2g(Qp) on these spaces.

Remark 3.3.3. For any complete nonarchimedean field extension K of

Qcycl
p with an open and bounded valuation subring K+ ⊂ K, we define

X ∗Γ(p∞)(K,K
+) = lim←−

m

X ∗Γ(pm)(K,K
+),

and similarly for the other spaces. For any (K,K+), one gets a map

X ∗Γ(p∞)(K,K
+)→ |X ∗Γ(p∞)|.

One checks easily that one has a bijection

|X ∗Γ(p∞)| = lim−→
(K,K+)

X ∗Γ(p∞)(K,K
+).

Note that the direct limit on the right-hand side is not filtered; however, any

point comes from a unique minimal (K,K+).

Lemma 3.3.4. There is a GSp2g(Qp)-equivariant continuous map

|πHT| : |X ∗Γ(p∞)| \ |ZΓ(p∞)| → |F`|,

sending a point x ∈ (X ∗Γ(p∞) \ ZΓ(p∞))(K,K
+), corresponding to a principally

polarized abelian variety A/K and a symplectic isomorphism α : TpA ∼= Z2g
p ,

to the Hodge-Tate filtration LieA ⊂ K2g .

Proof. One can check from Proposition 3.3.1 that the Hodge-Tate filtra-

tion, a priori defined over C = ˆ̄K, is already K-rational, as this is true by
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definition for the Hodge-Tate filtration of p-divisible groups; cf. [30, Ch. 2,

App. C]. Thus, one gets a map

|X ∗Γ(p∞)| \ |ZΓ(p∞)| = lim−→
(K,K+)

(X ∗Γ(p∞) \ ZΓ(p∞))(K,K
+)

→ lim−→
(K,K+)

F`(K,K+) = |F`|.

The GSp2g(Qp)-equivariance is clear.

For continuity, we argue as follows. Consider the smooth adic space S =

X ∗ \ Z, with the universal abelian variety g : AS → S. Then g is a proper

smooth morphism of smooth adic spaces. Applying [53, Th. 1.3], we see that

the map

(R1g∗Z/pnZ)⊗Z/pnZ O+
S /p

n → R1g∗O+
AS
/pn

is an almost isomorphism for all n ≥ 1; by the 5-lemma, this reduces to the

case n = 1. Going to the pro-étale site, passing to the inverse limit over n and

inverting p, we find an isomorphism of sheaves on Sproét,

R1g∗“Qp ⊗Q̂p
ÔS ∼= R1g∗ÔAS .

In particular, we get a map

(R1g∗OAS )⊗OS ÔS → R1g∗ÔAS = R1g∗“Qp ⊗Q̂p
ÔS .

Note that R1g∗OAS is a finite locally free OS-module given by LieAS (using

the principal polarization on AS to identify AS with its dual). Locally, there

is a pro-finite étale cover Ũ → U ⊂ S such that Ũ is affinoid perfectoid. Let

Ũ∞ = Ũ ×S (X ∗Γ(p∞) \ ZΓ(p∞));

as X ∗Γ(p∞) \ ZΓ(p∞) → S is pro-finite étale, Ũ∞ exists and is affinoid perfectoid

over Qcycl
p . Evaluating the map

(R1g∗OAS )⊗OS ÔS → R1g∗ÔAS = R1g∗“Qp ⊗Q̂p
ÔS

on Ũ∞ ∈ Sproét, we get a map

(LieAS)⊗OS OŨ∞ → O
2g

Ũ∞
,

using the tautological trivialization of R1g∗Ẑp over Ũ∞. At all geometric points

of Ũ∞, this identifies with the Hodge-Tate filtration as defined in the statement

of the lemma, using [54, Prop. 4.10]. In particular, (LieAS)⊗OS OŨ∞ ⊂ O
2g

Ũ∞
is totally isotropic and defines a map of adic spaces

Ũ∞ → F`.

By checking on points, we see that the continuous map |Ũ∞| → |F`| factors

over

|U | ×|S| (|X ∗Γ(p∞)| \ |ZΓ(p∞)|)
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and agrees with the map of sets defined previously. As the map

|Ũ∞| → |U | ×|S| (|X ∗Γ(p∞)| \ |ZΓ(p∞)|)

is the realization on topological spaces of a pro-étale and surjective map in

Sproét, and pro-étale maps in Sproét are open, a subset V ⊂ |U | ×|S| (|X ∗Γ(p∞)| \
|ZΓ(p∞)|) is open if and only if its preimage in |Ũ∞| is open. The result follows.

�

Definition 3.3.5.

(i) A subset U ⊂ |X ∗Γ(p∞)| is affinoid perfectoid if it is the preimage of some

affinoid Um = Spa(Rm, R
+
m) ⊂ |X ∗Γ(pm)| for all sufficiently large m, and

(R∞, R
+
∞) is an affinoid perfectoid Qcycl

p -algebra, where R+
∞ is the p-adic

completion of lim−→m
R+
m, and R∞ = R+

∞[p−1].

(ii) A subset U ⊂ |X ∗Γ(p∞)| is perfectoid if it can be covered by affinoid perfec-

toid subsets.

By Theorem 3.2.36, X ∗Γ(p∞)(ε)a is affinoid perfectoid. Also, the condition

of being affinoid perfectoid is stable under the action of GSp2g(Qp). Moreover,

any perfectoid subset of |X ∗Γ(p∞)| has a natural structure as a perfectoid space

over Qcycl
p , by gluing the spaces Spa(R∞, R

+
∞) on affinoid perfectoid subsets.

Our goal is to show that |X ∗Γ(p∞)| is perfectoid.

For ε < 1, recall that X ∗(ε) ⊂ X ∗ denotes the locus where |Ha| ≥ |p|ε
(observing that this is independent of the lift of Ha). Let |X ∗Γ(p∞)(ε)| ⊂ |X

∗
Γ(p∞)|

denote the preimage. Similar notation applies for Z and X ⊂ X ∗.
Note that for ε = 0, one gets the tubular neighborhood of the ordinary

locus in the special fibre.

Lemma 3.3.6. The preimage of F`(Qp) ⊂ |F`| under |πHT| is given by

the closure of |X ∗Γ(p∞)(0)| \ |ZΓ(p∞)(0)|.

Note that |X ∗Γ(p∞)(0)| \ |ZΓ(p∞)(0)| is a retro-compact open subset of the

locally spectral space |X ∗Γ(p∞)| \ |ZΓ(p∞)| (i.e., the intersection with any quasi-

compact open is quasi-compact). In this case, the closure is exactly the set of

specializations.

Proof. Let C be an algebraically closed complete extension of Qp, with an

open and bounded valuation subring C+ ⊂ C, and take a (C,C+)-valued point

x of X ∗Γ(p∞) \ZΓ(p∞). It admits the unique rank-1-generalization x̃ given as the

corresponding (C,OC)-valued point, and x lies in the closure of X ∗Γ(p∞)(0) \
ZΓ(p∞)(0) if and only if x̃ lies in X ∗Γ(p∞)(0)\ZΓ(p∞)(0) itself. Also, by continuity,

x maps into F`(Qp) if and only if x̃ maps into F`(Qp). Thus, we may assume

that x = x̃ is a rank-1-point, with values in (C,OC).
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The point x corresponds to a principally polarized abelian variety A/C

with trivialization of its Tate module. Let G/OC be the Néron model, and

use notation as in Proposition 3.3.1. By Lemma 3.3.2, the point x lies in

X ∗Γ(p∞)(0) \ ZΓ(p∞)(0), i.e., the Hasse invariant is invertible, if and only if B is

ordinary. By Proposition 3.3.1, x maps into F`(Qp) if and only if

Lie Ĝ⊗OC C ⊂ TpĜ⊗Zp C

is a Qp-rational subspace. This, in turn, is equivalent to

LieB ⊗OC C ⊂ TpB ⊗Zp C

being a Qp-rational subspace. Also, B is ordinary if and only if B[p∞] ∼=
(Qp/Zp)g × µgp∞ . One checks directly that in this case, the Hodge-Tate fil-

tration is Qp-rational (and measures the position of the canonical subgroup).

Conversely, all Qp-rational totally isotropic subspaces W ⊂ C2g are in one

GSp2g(Zp)-orbit. By the classification result for p-divisible groups over OC ,

[55, Th. B], it follows that if the Hodge-Tate filtration is Qp-rational, then

B[p∞] ∼= (Qp/Zp)g × µgp∞ . This finishes the proof. �

Remark 3.3.7. Here is a more direct argument for the final step, not re-

ferring to [55], which was suggested by the referee. It is enough to prove the

following assertion. Let C be a complete algebraically closed extension of Qp,

and let G over OC be a p-divisible group. Then the kernel of

αG : TpG→ LieG∗

is given by Tp(G
mult), where Gmult ⊂ G denotes the maximal multiplicative

subgroup. Indeed, if the Hodge-Tate filtration is Qp-rational, this kernel is

g-dimensional, so the multiplicative part is of dimension g, which is equivalent

to the abelian variety B being ordinary.

To prove this, one may split off the multiplicative part, so as to assume

that Gmult = 0. In this case, G∗ is a formal group. Then, for an element

x ∈ TpG corresponding to a morphism of p-divisible group Qp/Zp → G, one

takes the dual map x∗ : G∗ → µp∞ . Then αG(x) is defined as the induced map

on Lie algebras. As G∗ is formal, it follows that if the induced map on Lie

algebras is 0, then x∗ = 0, so that x = 0, proving the desired injectivity.

The following lemma compares the condition that an abelian variety is

close to being ordinary, with the condition that the associated Hodge-Tate

periods are close to Qp-rational (cf. also Lemma 3.3.15). This is one of the

technical key results of this paper and is ultimately the reason that it was

enough to understand some strict neighborhood of the anticanonical tower.
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Lemma 3.3.8. Fix some 0 < ε < 1. There is an open subset U ⊂ F`
containing F`(Qp) such that

|πHT|−1(U) ⊂ |X ∗Γ(p∞)(ε)| \ |ZΓ(p∞)(ε)|.

Proof. We argue by induction on g. For g = 0, there is nothing to show.

We have to show that we can find some U such that for any algebraically closed

and complete extension C of Qp with a principally polarized g-dimensional

abelian variety A/C and a symplectic isomorphism α : TpA ∼= Z2g
p for which

|πHT|(A) ∈ U , one has |Ha| ≥ |p|ε.
If A has bad reduction, then using Proposition 3.3.1 and Lemma 3.3.2, the

result reduces by induction to the case already handled. Thus, assume that

one has an abelian variety A/OC . In particular, we have a point x ∈ |XΓ(p∞)|.
The map

|πHT| : |XΓ(p∞)| → |F`|
is continuous. One has⋂

U⊃F`(Qp)

|πHT|−1(U) = |πHT|−1(F`(Qp)) = |XΓ(p∞)(0)| ⊂ |XΓ(p∞)(ε)|.

The complement |XΓ(p∞)| \ |XΓ(p∞)(ε)| is quasi-compact for the constructible

topology. Thus, there is some U ⊃ F`(Qp) with

|πHT|−1(U) ⊂ |XΓ(p∞)(ε)|,

as desired. �

Before we continue, let us recall some facts about the geometry of F`.

There is the Plücker embedding F` ↪→ P(2g
g )−1

. For any subset J ⊂ {1, . . . , 2g}
of cardinality g, let sJ denote the corresponding homogeneous coordinate on

projective space, and let F`J ⊂ F` denote the open affinoid subset where

|sJ ′ | ≤ |sJ | for all J ′. The action of GSp2g(Zp) permutes the F`J transitively.

As an example that will be important later, F`{g+1,...,2g}(Qp) ⊂ F`(Qp) =

Fl(Zp) parametrizes those totally isotropic direct summands M ⊂ Z2g
p with

(M/p) ∩ (Fgp ⊕ 0g) = {0}; equivalently, M ⊕ (Zgp ⊕ 0g)
∼=→ Z2g

p .

Lemma 3.3.9. For any open subset U ⊂ F` containing a Qp-rational

point, GSp2g(Qp) · U = F`.

Proof. We may assume that U = GSp2g(Qp) ·U . By assumption, F`(Qp)

⊂ U . It suffices to see that F`{1,...,g} ⊂ U . The point x ∈ F`(Qp) de-

fined by Qg
p ⊕ 0g ⊂ Q2g

p lies in U . The action of the diagonal element γ =

(1, . . . , 1, p, . . . , p) ∈ GSp2g(Qp) has the property that γn(y)→ x for n→∞ for

all y ∈ F`{1,...,g}. By quasicompacity, there is some n such that γn(F`{1,...,g}) ⊂
U , i.e., F`{1,...,g} ⊂ γ−n(U) = U , as desired. �
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Lemma 3.3.10. Take any 0 < ε < 1. There are finitely many γ1, . . . , γk ∈
GSp2g(Qp) such that

|X ∗Γ(p∞)| \ |ZΓ(p∞)| =
k⋃
i=1

γi ·
Ä
|X ∗Γ(p∞)(ε)| \ |ZΓ(p∞)(ε)|

ä
.

Proof. Take U as in Lemma 3.3.8. By Lemma 3.3.9 and quasicompacity of

F`, there are finitely many γ1, . . . , γk ∈ GSp2g(Qp) such that F` =
⋃k
i=1 γi ·U .

Taking the preimage of this equality under |πHT| gives the lemma. �

Lemma 3.3.11.With 0 < ε < 1 and elements γ1, . . . , γk ∈GSp2g(Qp) as

in Lemma 3.3.10, one has

|X ∗Γ(p∞)| =
k⋃
i=1

γi · |X ∗Γ(p∞)(ε)|.

Proof. Let V ⊂ |X ∗Γ(p∞)| denote the right-hand side. Thus, V is a quasi-

compact open subset containing |X ∗Γ(p∞)| \ |ZΓ(p∞)|. By quasicompacity, V is

the preimage of some Vm ⊂ X ∗Γ(pm) containing X ∗Γ(pm) \ZΓ(pm). To prove Vm =

X ∗Γ(pm), it suffices to see that they have the same classical points. Thus, assume

x 6∈ Vm is a classical point of X ∗Γ(pm). Then x =
⋂
x∈U U is the intersection of all

open neighborhoods U ⊂ X ∗Γ(pm). As Vm is quasi-compact for the constructible

topology, it follows that U ⊂ X ∗Γ(pm) \ Vm for some open neighborhood U of

x. In particular, U ⊂ ZΓ(pm). This is impossible, as U is open (so that, e.g.,

dimU > dimZΓ(pm)). �

3.3.2. On adic spaces.

Corollary 3.3.12. There exists a perfectoid space X ∗Γ(p∞) over Qcycl
p

such that

X ∗Γ(p∞) ∼ lim←−
m

X ∗Γ(pm).

It is covered by finitely many GSp2g(Qp)-translates of X ∗Γ(p∞)(ε)a for any 0 <

ε < 1
2 .

Proof. Choose any 0 < ε < 1
2 , and use Lemma 3.3.11 and Theorem 3.2.36.

Note that

X ∗Γ(p∞)(ε) = GSp2g(Zp) · X ∗Γ(p∞)(ε)a. �

Let ZΓ(p∞) ⊂ X ∗Γ(p∞) denote the boundary that has an induced structure

as a perfectoid space.

Corollary 3.3.13. There is a unique map of adic spaces over Qp

πHT : X ∗Γ(p∞) \ ZΓ(p∞) → F`

that realizes |πHT| on topological spaces.
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Proof. Uniqueness is clear. For existence, we argue as in the proof of

Lemma 3.3.4, using affinoid perfectoid subsets of X ∗Γ(p∞) \ ZΓ(p∞) in place

of Ũ∞. �

Lemma 3.3.14. The preimage of F`{g+1,...,2g}(Qp) is given by the closure

of X ∗Γ(p∞)(0)a \ ZΓ(p∞)(0)a.

Proof. By Lemma 3.3.6, the preimage is contained in the closure of the

set X ∗Γ(p∞)(0) \ ZΓ(p∞)(0). Also, it is enough to argue with rank-1-points, and

we have to see that a rank-1-point x of X ∗Γ(p∞)(0) \ ZΓ(p∞)(0) is mapped into

F`{g+1,...,2g}(Qp) if and only if x ∈ X ∗Γ(p∞)(0)a. On XΓ(p∞)(0), we can argue as

follows. The point x corresponds to an abelian variety A/OK with ordinary

reduction, with a symplectic isomorphism α : TpA ∼= Z2g
p . The abelian variety

A thus has its canonical subgroup C ⊂ TpA as well as D = α−1(Zgp⊕0g) ⊂ TpA.

We have x ∈ XΓ(p∞)(0)a if and only if C/p ⊕ D/p ∼= A[p], or equivalently

C ⊕D ∼= TpA, or also α(C)⊕ (Zgp⊕ 0g) ∼= Z2g
p . Also, the Hodge-Tate filtration

is given by α(C)⊗Zp K ⊂ K2g. Thus, the result follows from the observation

that F`{g+1,...,2g}(Qp) is the set of those totally isotropic direct summands

M ⊂ Z2g
p that satisfy M ⊕ (Zgp ⊕ 0g)

∼=→ Z2g
p .

To extend to X ∗Γ(p∞)(0)\ZΓ(p∞)(0), use that by Theorem 3.2.36, the triple

(X ∗Γ(p∞)(0)a,ZΓ(p∞)(0)a,XΓ(p∞)(0)a)

is good. Take any point x ∈ F`(Qp) \F`{g+1,...,2g}(Qp), and fix an open affi-

noid neighborhood U ⊂ F` of x with U ∩F`{g+1,...,2g} = ∅. Then F`(Qp) =

U(Qp)
⊔

(F`(Qp) \ U(Qp)) is a decomposition into open and closed subsets.

Taking the preimage under πHT of U gives an open and closed subset of

X ∗Γ(p∞)(0)a \ ZΓ(p∞)(0)a. Because the displayed triple is good, any open and

closed subset of X ∗Γ(p∞)(0)a \ ZΓ(p∞)(0)a extends to an open and closed sub-

set of X ∗Γ(p∞)(0)a. Let V be the open and closed subset corresponding to U .

Then intersecting V with the displayed triple gives another good triple. As-

sume that V is nonempty. As V gives rise to a good triple, it follows that

V ∩XΓ(p∞)(0)a is nonempty. But elements of this intersection map under πHT

into U(Qp) ∩F`{g+1,...,2g}(Qp) = ∅, a contradiction.

Thus, X ∗Γ(p∞)(0)a \ ZΓ(p∞)(0)a maps into F`{g+1,...,2g}(Qp). Assume that

some point

x ∈ (X ∗Γ(p∞)(0) \ X ∗Γ(p∞)(0)a) \ ZΓ(p∞)(0)

maps into F`{g+1,...,2g}(Qp). Applying an element γ ∈ GSp2g(Zp), one can

arrange that γx ∈ X ∗Γ(p∞)(0)a. The subset

X ∗Γ(p∞)(0)a \ γX ∗Γ(p∞)(0)a ⊂ X ∗Γ(p∞)(0)a
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is open and closed, and thus it gives rise to a good triple. By the argument

above, if the element γx of this set maps to some element y∈γF`{g+1,...,2g}(Qp),

then there is some element x′ ∈ XΓ(p∞)(0)a \ γXΓ(p∞)(0)a with πHT(x′) ∈
γF`{g+1,...,2g}(Qp). Thus, γ−1x′ ∈ XΓ(p∞)(0) \ XΓ(p∞)(0)a with πHT(γ−1x′) ∈
F`{g+1,...,2g}(Qp). This contradicts what we proved about the good reduction

locus. �

Lemma 3.3.15. For any open subset U ⊂ F` containing F`(Qp), there is

some ε > 0 such that

X ∗Γ(p∞)(ε) \ ZΓ(p∞)(ε) ⊂ π−1
HT(U).

Proof. The proof is identical to the proof of Lemma 3.3.8, reversing the

quantification of ε and U . Note that one can a priori assume that U is

GSp2g(Zp)-invariant, as such open subsets are cofinal; this facilitates the in-

duction argument. �

Lemma 3.3.16. There exists some 0 < ε < 1
2 such that

X ∗Γ(p∞)(ε)a \ ZΓ(p∞)(ε)a ⊂ π−1
HT(F`{g+1,...,2g}).

Proof. Fix some U ⊂ F` containing F`(Qp) such that U ∩F`{g+1,...,2g}
⊂ U is open and closed; let U ′ ⊂ U be the open and closed complement.

By Lemma 3.3.15, we may assume that X ∗Γ(p∞)(ε)a \ ZΓ(p∞)(ε)a maps into U .

The open and closed preimage of U ′ gives rise to an open and closed subset

Vε ⊂ X ∗Γ(p∞)(ε)a by the goodness part of Theorem 3.2.36. By Lemma 3.3.14,

the intersection of Vε over all ε > 0 is empty. As all Vε are spectral spaces,

thus quasi-compact for the constructible topology, it follows that Vε = ∅ for

some ε > 0. Thus, πHT maps X ∗Γ(p∞)(ε)a \ ZΓ(p∞)(ε)a into U ∩F`{g+1,...,2g} ⊂
F`{g+1,...,2g}, as desired. �

Corollary 3.3.17. There is a unique map of adic spaces

πHT : X ∗Γ(p∞) → F`

extending πHT on X ∗Γ(p∞) \ ZΓ(p∞).

Proof. One checks easily that for any open subset U ⊂ X ∗Γ(p∞), there is

at most one extension of πHT from U \ (ZΓ(p∞) ∩ U) to U . Indeed, we may

assume that U is affinoid perfectoid. Given two functions f, g on U with f = g

on U \ (ZΓ(p∞) ∩U), the subset |f − g| ≥ |p|n is an open subset of U contained

in the boundary; thus, it is empty. Therefore, |f − g| < |p|n for all n, i.e.,

|f − g| = 0. As U is affinoid perfectoid, this implies f = g.

To prove existence, we can now work locally. Clearly, the locus of existence

of πHT is GSp2g(Qp)-equivariant. By Corollary 3.3.12, it suffices to prove that
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πHT extends from

X ∗Γ(p∞)(ε)a \ ZΓ(p∞)(ε)a

to X ∗Γ(p∞)(ε)a for some ε > 0. Using Lemma 3.3.16, we may assume that

the image of X ∗Γ(p∞)(ε)a \ ZΓ(p∞)(ε)a is contained in the open affinoid subset

F`{g+1,...,2g} ⊂ F`. Every function on F`{g+1,...,2g} pulls back to a bounded

function on X ∗Γ(p∞)(ε)a \ ZΓ(p∞)(ε)a and thus extends uniquely to X ∗Γ(p∞)(ε)a
by the goodness part of Theorem 3.2.36. This proves extension of πHT, as

desired. �

3.3.3. Conclusion. Finally, we can assemble everything and prove the

main theorem.

Theorem 3.3.18. For any tame level Kp ⊂ GSp2g(A
p
f ) contained in

{γ ∈ GSp2g(Ẑp) | γ ≡ 1 mod N}

for some N ≥ 3 prime to p, there exists a perfectoid space X ∗Γ(p∞),Kp over Qcycl
p

such that

X ∗Γ(p∞),Kp ∼ lim←−
m

X ∗Γ(pm),Kp .

Moreover, there is a GSp2g(Qp)-equivariant Hodge-Tate period map (of adic

spaces over Qp)

πHT : X ∗Γ(p∞),Kp → F`.

Let ZΓ(p∞),Kp ⊂ X ∗Γ(p∞),Kp denote the boundary. One has the following results :

(i) For any subset J ⊂ {1, . . . , 2g} of cardinality g, the preimage VJ =

Spa(RJ,∞, R
+
J,∞) ⊂ X ∗Γ(p∞),Kp of F`J ⊂ F` is affinoid perfectoid. More-

over, VJ is the preimage of some affinoid VJ,m = Spa(RJ,m, R
+
J,m) ⊂

X ∗Γ(pm),Kp for all sufficiently large m, and R+
J,∞ is the p-adic completion

of lim−→m
R+
J,m.

(ii) The subspace ZΓ(p∞),Kp ∩ VJ ⊂ VJ is strongly Zariski closed.

(iii) For any (Kp)′ ⊂ Kp, the diagram

X ∗Γ(p∞),(Kp)′
πHT //

&&

F`

X ∗Γ(p∞),Kp

πHT

;;

commutes.

(iv) For any γ ∈ GSp2g(A
p
f ) such that γ−1Kpγ is contained in

{γ ∈ GSp2g(Ẑp) | γ ≡ 1 mod N}
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for some N ≥ 3 prime to p, the diagram

X ∗Γ(p∞),Kp

γ

��

πHT

&&
F`

X ∗Γ(p∞),γ−1Kpγ

πHT

88

commutes.

(v) Let WF` ⊂ O2g
F` denote the universal totally isotropic subspace. Over

X ∗Γ(p∞),Kp \ ZΓ(p∞),Kp , one has the locally free module LieAKp given by

the Lie algebra of the tautological abelian variety. There is a natural

GSp2g(Qp)-equivariant isomorphism

LieAKp ∼= (π∗HTWF`)|X ∗
Γ(p∞),Kp

\ZΓ(p∞),Kp
.

It satisfies the obvious analogue of (iii) and (iv).

(vi) Let ωF` = (
∧gWF`)

∗ be the natural ample line bundle on F`. Over

X ∗Γ(p∞),Kp , one has the natural line bundle ωKp (via pullback from any

finite level). There is a natural GSp2g(Qp)-equivariant isomorphism

ωKp ∼= π∗HTωF`,

extending the isomorphism one gets from (v) by taking the dual of the top

exterior power. Moreover, it satisfies the obvious analogue of (iii) and

(iv).

Proof. We have established existence of X ∗Γ(p∞),Kp and πHT.

(i) First, observe that one has the following versions of Lemmas 3.3.6 and

3.3.14.

Lemma 3.3.19. The preimage of F`(Qp) ⊂ F` under πHT is given by the

closure of X ∗Γ(p∞)(0).

Lemma 3.3.20. The preimage of F`{g+1,...,2g}(Qp) ⊂ F` under πHT is

given by the closure of X ∗Γ(p∞)(0)a.

For the first, note that for any open U ⊂ F` containing F`(Qp), π
−1
HT(U) ⊂

X ∗Γ(p∞) is a quasi-compact open containing X ∗Γ(p∞)(ε) \ ZΓ(p∞)(ε) for some

ε > 0 by Lemma 3.3.15; thus, π−1
HT(U) contains X ∗Γ(p∞)(ε). In particular,

π−1
HT(F`(Qp)) contains the closure of X ∗Γ(p∞)(0). The converse is clear by conti-

nuity. The second lemma follows from the first and the proof of Lemma 3.3.14.
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Let x ∈ F`(Qp) correspond to 0g⊕Qg
p ⊂ Q2g

p . Then by the second lemma,

π−1
HT(x) ⊂ X ∗Γ(p∞)(ε)a for any ε > 0. Thus, there is some open neighborhood

U ⊂ F` of x with π−1
HT(U) ⊂ X ∗Γ(p∞)(ε)a. On the other hand, we may choose

ε > 0 such that

X ∗Γ(p∞)(ε)a ⊂ π
−1
HT(F`{g+1,...,2g}).

Let γ ∈ GSp2g(Qp) be the diagonal element (p, . . . , p, 1, . . . , 1). Then

γn(F`{g+1,...,2g}) ⊂ U

for n sufficiently large. Moreover, γn(F`{g+1,...,2g}) ⊂ F`{g+1,...,2g} is a rational

subset. It follows that π−1
HT(γn(F`{g+1,...,2g})) ⊂ X ∗Γ(p∞)(ε)a is a rational subset.

The analogue of the conditions in (i) is satisfied for X ∗Γ(p∞)(ε)a by Theo-

rem 3.2.36. By [54, Prop. 2.22(ii)], the properties are stable under passage to

rational subsets, giving the result for γn(F`{g+1,...,2g}). However, the desired

property is also stable under the GSp2g(Qp)-action, giving it for F`{g+1,...,2g}
itself, and then for all F`J .

(ii) This follows from the constructions in the proof of (i), Corollary 3.2.20

and Lemma 2.2.9.

(iii) Clear by construction.

(iv) It suffices to check on geometric points outside the boundary; cf.

proof of uniqueness in Corollary 3.3.17. Thus, the result follows from Propo-

sition 3.3.1, comparing the Hodge-Tate filtration of the abelian variety with

the Hodge-Tate filtration of the p-divisible group (which depends only on the

abelian variety up to prime-to-p-isogeny).

(v) The isomorphism comes directly from the construction of the Hodge-

Tate period map; cf. Lemma 3.3.4. The commutativity in (iii) is clear, while

the commutativity in (iv) can again be checked on geometric points, where it

follows from Proposition 3.3.1.

(vi) The only nontrivial point is to show that the isomorphism extends to

X ∗Γ(p∞); all commutativity statements will then follow by continuity from the

commutativity in (v). Both ωKp and π∗HTωF` have natural O+-structures ω+
Kp

resp. π∗HTω
+
F`, i.e., sheaves of O+

X ∗
Γ(p∞)

-modules that are locally free of rank 1

and give rise to ωKp resp. π∗HTωF` after inverting p. For ω+
F`, this follows from

the existence of the natural integral model of the flag variety over Zp. For ω+
Kp ,

one gets it via pullback from the integral model X∗ of X ∗. We claim that the

isomorphism ωKp ∼= π∗HTωF` over X ∗Γ(p∞) \ ZΓ(p∞) is bounded with respect to

these integral structures; i.e., there is some constant C (depending only on g)

such that

pCω+
Kp ⊂ π∗HTω

+
F` ⊂ p

−Cω+
Kp

as sheaves over X ∗Γ(p∞) \ ZΓ(p∞). This follows from Proposition 3.3.1 and [30,

Th. II.1.1]. These results show that, in fact, one map is defined integrally and



ON TORSION IN THE COHOMOLOGY OF LOCALLY SYMMETRIC VARIETIES 1015

has an integral inverse up to pg/(p−1), except that the latter theorem was only

proved there for p 6= 2.

Here is an alternative argument to get the desired boundedness. Argue by

induction on g. The locus of good reduction is quasi-compact, so necessarily the

isomorphism is bounded there. By Proposition 3.3.1, the Hodge-Tate period

map near the boundary can be described in terms of the Hodge-Tate period

map for smaller genus; thus, the isomorphism is bounded there by induction.

Let j : X ∗Γ(p∞) \ ZΓ(p∞) → X ∗Γ(p∞) denote the inclusion. Then we have

inclusions

ωKp ↪→ j∗j
∗ωKp ∼= j∗j

∗π∗HTωF` ←↩ π∗HTωF`.

We claim that ωKp and π∗HTωF` agree as subsheaves of j∗j
∗ωKp . First, we check

that ωKp ⊂ π∗HTωF`. By Corollary 3.3.12, this can be checked after pullback to

X ∗Γ(p∞)(ε)a for any given ε. If ε is small enough, then by Lemma 3.3.16, π∗HTω
+
F`

is trivial over X ∗Γ(p∞)(ε)a, as ω+
F` is trivial over F`{g+1,...,2g}. As X ∗Γ(p∞)(ε)a

is affinoid and ωKp is locally free (of rank 1), ωKp restricted to X ∗Γ(p∞)(ε)a is

generated by its global sections. Thus, to check the inclusion ωKp ⊂ π∗HTωF`

over X ∗Γ(p∞)(ε)a, it is enough to check that there is an inclusion

ωKp(X ∗Γ(p∞)(ε)a) ⊂ (π∗HTωF`)(X ∗Γ(p∞)(ε)a).

But any section of the left-hand side is bounded with respect to the integral

structure ω+
Kp , and thus by the above it is also bounded with respect to the

integral structure π∗HTω
+
F`. As π∗HTω

+
F` is isomorphic to O+ over X ∗Γ(p∞)(ε)a,

the desired inclusion follows from the goodness part of Theorem 3.2.36, which

shows that

(π∗HTω
+
F`)(X

∗
Γ(p∞)(ε)a \ ZΓ(p∞)(ε)a) = (π∗HTω

+
F`)(X

∗
Γ(p∞)(ε)a).

In particular, we get a map of line bundles

α : ωKp → π∗HTωF`

defined on all of X ∗Γ(p∞). We claim that it is an isomorphism. Let U =

Spa(R,R+) ⊂ X ∗Γ(p∞) be any affinoid subset over which ω+
Kp and π∗HTω

+
F`

become trivial; thus, ω+
Kp(U) ∼= R+ ·f1, ωKp(U) ∼= R ·f1, π∗HTω

+
F`(U) ∼= R+ ·f2

and π∗HTωF`(U) ∼= R · f2 for certain generators f1, f2. Under the map α,

α(f1) = hf2 for a function h ∈ R. The boundedness of the isomorphism away

from the boundary says that |p|C ≤ |h(x)| for all x ∈ U \ ∂, where ∂ denotes

the boundary. The open subset |h| ≤ |p|C+1 is an open subset of U that does

not meet the boundary; thus, it is empty. It follows that h is bounded away

from 0 and therefore invertible. This shows that α is an isomorphism over U ,

as desired. �
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4. p-adic automorphic forms

Let G be a reductive group over Q. Although there is a tremendous

amount of activity surrounding ‘p-adic automorphic forms,’ a general defini-

tion is missing. There are essentially two approaches to defining such spaces.

The first works only under special hypothesis on G, namely, that there is a

Shimura variety associated with G. More precisely, we will consider the fol-

lowing setup (slightly different from the usual setup). For convenience, assume

that G has simply connected derived group Gder and that there is a G(R)-

conjugacy class D of homomorphisms u : U(1) → Gad
R for which adu(−1) is

a Cartan involution and µ = uC : Gm → Gad
C is minuscule. In particular,

G has a compact inner form, and G(R) is connected. As Gder is simply con-

nected, Gder(R) is connected, and (G/Gder)(R) is a compact, thus connected,

torus. In this situation, D ∼= G(R)/K∞ carries the structure of a hermitian

symmetric domain, where the stabilizer K∞ of any chosen u is a maximal com-

pact subgroup. Moreover, for any (sufficiently small) compact open subgroup

K ⊂ G(Af ), the quotient

XK = G(Q)\[D ×G(Af )/K]

is a complex manifold, which by the theorem of Baily-Borel, [8], has a unique

structure as an algebraic variety over C. By a theorem of Faltings, [26], it is

canonically defined over Q̄, and one might yet further descend to a canonical

model over a number field (depending on K in this generality, however). For

the purpose of this paper, it is however not necessary to worry about fields

of definition. Fix a prime p, an isomorphism C ∼= Q̄p, as well as a complete

algebraically closed extension C of Q̄p; then, via base change, we may get

corresponding algebraic varieties over C.

In fact, we will be interested in the minimal (Satake-Baily-Borel) com-

pactifications

X∗K = G(Q)\[D∗ ×G(Af )/K],

where D∗ ⊃ D is the Satake compactification. These carry a natural struc-

ture as projective normal algebraic varieties over C. By base change, we get

algebraic varieties over C, and we let X ∗K be the associated adic space over

Spa(C,OC). Moreover, one can define a natural ample line bundle ωK on X∗K ,

and sections of

H0(X∗K , ω
⊗k
K )

are certainly complex automorphic forms for any k ≥ 0. Denote by ωK also

the associated line bundle on X ∗K ; then

H0(X ∗K , ω⊗kK )

forms a space of p-adic automorphic forms, in the sense that it is a vector

space over the p-adic field C and that it bears a direct relationship to complex



ON TORSION IN THE COHOMOLOGY OF LOCALLY SYMMETRIC VARIETIES 1017

automorphic forms (so that, e.g., Hecke eigenvalues match up). More general

spaces of p-adic automorphic forms can be defined by looking at (overconver-

gent) sections of ω⊗kK (or other automorphic vector bundles) on affinoid subsets

of X ∗K , such as the ordinary locus.

For general groups G (not having a compact inner form), no such defi-

nition of p-adic automorphic forms is possible. In fact, only the holomorphic

(instead of merely real-analytic) automorphic forms will occur even for those

G that give rise to a Shimura variety; for general G, there are no ‘holomor-

phic’ automorphic forms. It was suggested by Calegari and Emerton, [17], to

consider the ‘completed cohomology groups’ as a working model for the space

of p-adic automorphic forms. Let us recall the definition for any compact open

subgroup Kp ⊂ G(Apf ) (referred to as a tame level):‹H i
Kp(Z/pnZ) = lim−→

Kp

H i(XKpKp ,Z/pnZ)

as well as ‹H i
Kp(Zp) = lim←−

n

‹H i
Kp(Z/pnZ) = lim←−

n

lim−→
Kp

H i(XKpKp ,Z/pnZ).

Here, XK denotes the locally symmetric space associated with G and K ⊂
G(Af ) (which exists for any reductive group G and agrees with the XK defined

previously if G satisfies the above hypothesis). For any (sufficiently small)

Kp ⊂ G(Qp), one has a map

H i(XKpKp ,Qp)→ ‹H i
Kp(Zp)[p−1].

By a theorem of Franke, [31], all Hecke eigenvalues appearing in

H i(XKpKp ,C) = H i(XKpKp ,Qp)⊗Qp C

come from automorphic forms on G (possibly nonholomorphic!). Thus, by the

global Langlands conjectures, one expects to have p-adic Galois representations

associated with these Hecke eigenvalues. However, the space ‹H i
Kp(Zp)[p−1] is

in general much bigger than lim−→Kp
H i(XKpKp ,Qp), because torsion in the coho-

mology for the individual XKpKp may build up in the inverse limit to torsion-

free Zp-modules. Then Calegari and Emerton conjecture that although the

completed cohomology groups have no apparent relation to classical automor-

phic forms, there should still be p-adic Galois representations associated with

them. In fact, this should hold already on the integral level for ‹H i
Kp(Zp) and

thus equivalently for all ‹H i
Kp(Z/pnZ). In the following, we will usually work

at torsion level with ‹H i
Kp(Z/pnZ), as some technical issues go away.

We remark that this second approach works uniformly for all reductive

groups G and that the corresponding space of p-adic automorphic forms is

(in general) strictly larger than what one can get from classical automorphic
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forms by p-adic interpolation; i.e., there are genuinely new p-adic phenomena.

We will prove however that if G has an associated Shimura variety (of Hodge

type), then one can get all Hecke eigenvalues in the completed cohomology

groups ‹H i
Kp(Zp) via p-adic interpolation from Hecke eigenvalues appearing in

(the cuspidal subspace of) H0(X ∗KpKp , ω⊗kKpKp) for some Kp ⊂ G(Qp) and k ≥ 0.

4.1. Perfectoid Shimura varieties of Hodge type. In this section, we as-

sume that the pair (G,D) is of Hodge type, i.e., admits a closed embedding

(G,D) ↪→ (Sp2g, DSp2g
) into the split symplectic group Sp2g, with DSp2g

given

by the Siegel upper-half space.15 We fix such an embedding; all constructions

to follow will depend (at least a priori) on this choice.

To lighten notation, write (G′, D′) = (Sp2g, DSp2g
). We continue to denote

by XK and X∗K , K ⊂ G(Af ) the locally symmetric varieties associated with

G, and we denote by YK′ , Y
∗
K′ , K

′ ⊂ G′(Af ) the locally symmetric varieties

associated with G′ = Sp2g. There are natural finite maps

XK → YK′ , X
∗
K → Y ∗K′

for any compact open subgroup K ′ ⊂ G′(Af ) with K = K ′ ∩ G(Af ). By

[25, Prop. 1.15], for any K ⊂ G(Af ), there is some K ′ ⊂ G′(Af ) with K =

K ′∩G(Af ) such that the mapXK → YK′ is a closed embedding. Unfortunately,

it is not known to the author whether the analogous result holds true for

the minimal compactification. We define X∗K → X
∗
K as the universal finite

map over which X∗K → Y ∗K′ factors for all K ′ with K = K ′ ∩ G(Af ). As

everything is of finite type, X
∗
K is the scheme-theoretic image of X∗K in Y ∗K′

for any sufficiently small K ′ with K = K ′ ∩G(Af ). Note that one still has an

action of G(Af ) on the tower of the X
∗
K .

Let X ∗K be the adic space over C associated with X
∗
K . We continue to

denote by F` the adic space over C that is the flag variety of totally isotropic

subspaces of C2g (i.e., the flag variety associated with (G′, D′)16). Let ωK be

the ample line bundle on X ∗K given via pullback from the ample line bundle

ωK′ on Y ∗K′ (given by the dual of the determinant of the Lie algebra of the

universal abelian variety on YK′); also recall that we have ωF`. We get the

following version of Theorem 3.3.18.

Theorem 4.1.1. For any tame level Kp ⊂ G(Apf ) contained in the level-

N -subgroup {γ ∈ G′(Ẑp) | γ ≡ 1 mod N} of G′ for some N ≥ 3 prime to p,

15Sometimes, symplectic groups for general symplectic Q-vector spaces are allowed in the

definition; however, by Zarhin’s trick, the corresponding notions are equivalent.
16There is also a flag variety F`G ⊂ F` for (G,D), and one may conjecture that the

Hodge-Tate period map defined below factors over F`G. We do not address this question

here.
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there exists a perfectoid space X ∗Kp over C such that

X ∗Kp ∼ lim←−
Kp

X ∗KpKp .

Moreover, there is a G(Qp)-equivariant Hodge-Tate period map

πHT : X ∗Kp → F`.

Let ZKp ⊂ X ∗Kp denote the boundary. One has the following results :

(i) For any subset J ⊂ {1, . . . , 2g} of cardinality g, the preimage VJ =

Spa(RJ,∞, R
+
J,∞) ⊂ X ∗Kp of F`J ⊂ F` is affinoid perfectoid. More-

over, VJ is the preimage of some affinoid VJ,Kp = Spa(RJ,Kp , R
+
J,Kp

) ⊂
X ∗KpKp for all sufficiently small Kp, and R+

J,∞ is the p-adic completion of

lim−→Kp
R+
J,Kp

.

(ii) The subset ZKp ∩ VJ ⊂ VJ is strongly Zariski closed.

(iii) For any (Kp)′ ⊂ Kp, the diagram

X ∗(Kp)′
πHT //

""

F`

X ∗Kp

πHT

>>

commutes.

(iv) For any γ ∈ G(Apf ) such that γ−1Kpγ is contained in the level-N -subgroup

of G′ for some N ≥ 3 prime to p, the diagram

X ∗Kp

γ

��

πHT

$$
F`

X ∗γ−1Kpγ

πHT

;;

commutes.

(v) Over X ∗Kp , one has the natural line bundle ωKp (via pullback from any

finite level). There is a natural G(Qp)-equivariant isomorphism

ωKp ∼= π∗HTωF`.

Moreover, it satisfies the obvious analogue of (iii) and (iv).

Proof. First, observe that Theorem 3.3.18 implies the theorem in case G =

Sp2g by tensoring with C over Qcycl
p , and passing to a connected component.
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Next, we prove existence of X ∗Kp . Take any J ⊂ {1, . . . , 2g} of cardinality

g, and let Z(J) ⊂ Z be the inverse image of F`J under πHT for any space Z

mapping via πHT to F`. Then Y∗Kp′(J) = Spa(SKp′ , S+
Kp′) is affinoid perfectoid

by Theorem 3.3.18 for any Kp′ ⊂ G′(Apf ) contained in the level-N -subgroup

for some N ≥ 3 prime to p. It follows that

Y∗Kp(J) = lim←−
Kp⊂Kp′⊂G(Ap

f
)

Y∗Kp′(J) = Spa(SKp , S+
Kp)

is affinoid perfectoid, with S+
Kp being the p-adic completion of lim−→Kp⊂Kp′ S

+
Kp′ .

Next,

(Y∗Kp ×Y∗
K′pKp′

X ∗KpKp)(J) ⊂ Y∗Kp(J)

is defined by some ideal I ⊂ SKp for any sufficiently small K ′pK
p′ ⊂ G′(Af )

with KpK
p = K ′pK

p′ ∩G(Af ). From Lemma 2.2.2, it follows that

(Y∗Kp ×Y∗
K′pKp′

X ∗KpKp)(J) = Spa(RKp,K′pK
p′ , R+

Kp,K′pK
p′)

is affinoid perfectoid again and that the map SKp → RKp,K′pK
p′ has dense

image. Then, finally,

X ∗Kp(J) = lim←−
K′p,K

p⊂Kp′
(Y∗Kp ×Y∗

K′pKp′
X ∗KpKp)(J) = Spa(RKp , R+

Kp)

is affinoid perfectoid and R+
Kp is the p-adic completion of

lim−→
K′p,K

p⊂Kp′
R+
Kp,K′pK

p′ .

This verifies existence of X ∗Kp over π−1
HT(F`J), and by varying J , we get the

result.

Going through the argument, and using part (i) for G′, it is easy to deduce

part (i) for G. The boundary of X ∗Kp(J) is the pullback of the boundary of

Y∗Kp′(J) for Kp′ ⊂ G′(Apf ) sufficiently small with Kp = Kp′ ∩ G(Apf ). Thus,

part (ii) follows from Lemma 2.2.9. All other properties are deduced directly

via pullback from G′. �

4.2. Completed cohomology vs. p-adic automorphic forms. We continue

to assume that (G,D) is of Hodge type and fix the embedding (G,D) ↪→
(G′, D′) = (Sp2g, DSp2g

). Recall the compactly supported completed cohomol-

ogy groups ‹H i
c,Kp(Z/pnZ) = lim−→

Kp

H i
c(XKpKp ,Z/pnZ).

As usual, we assume that Kp is contained in the level-N -subgroup of G′(Apf )

for some N ≥ 3 prime to p.

Let IX ∗
Kp
⊂ OX ∗

Kp
be the ideal sheaf of the boundary, I+

X ∗
Kp

= IX ∗
Kp
∩O+
X ∗
Kp

.
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Theorem 4.2.1. There is a natural isomorphism of almost-OC-modules‹H i
c,Kp(Z/pnZ)⊗Z/pnZ OaC/pn ∼= H i(X ∗Kp , I+a

X ∗
Kp
/pn),

where the cohomology group on the right-hand side is computed on the topolog-

ical space X ∗Kp . Moreover, for Kp
1 ⊂ K

p
2 , the diagrams‹H i

c,Kp
2
(Z/pnZ)⊗Z/pnZ OaC/pn

��

∼= // H i(X ∗
Kp

2
, I+a
X ∗
K
p
2

/pn)

��‹H i
c,Kp

1
(Z/pnZ)⊗Z/pnZ OaC/pn

∼= // H i(X ∗
Kp

1
, I+a
X ∗
K
p
1

/pn)

and ‹H i
c,Kp

1
(Z/pnZ)⊗Z/pnZ OaC/pn

∼= //

tr

��

H i(X ∗
Kp

1
, I+a
X ∗
K
p
1

/pn)

tr

��‹H i
c,Kp

2
(Z/pnZ)⊗Z/pnZ OaC/pn

∼= // H i(X ∗
Kp

2
, I+a
X ∗
K
p
2

/pn)

commute, where the definition of the trace maps is recalled below.

We note that the right-hand side is the cohomology of the sheaf of p-adic

cusp forms modulo pn of infinite level.

Proof. Let jK : X ∗K\ZK ↪→ X ∗K be the open embedding, where ZK denotes

the boundary of X ∗K . By the various comparison results between complex and

algebraic, resp. algebraic and adic, singular and étale cohomology, we have

H i
c(XKpKp ,Z/pnZ) = H i

ét(X
∗
KpKp , jKpKp!Z/pnZ).

Now we use [54, Th. 3.13] to write

H i
ét(X

∗
KpKp , jKpKp!Z/pnZ)⊗Z/pnZ OaC/pn

= H i
ét(X

∗
KpKp , jKpKp!O+a

X ∗
KpKp

\ZKpKp
/pn).

Passing to the inverse limit over Kp and using [52, Cor. 7.18], one gets‹H i
c,Kp(Z/pnZ)⊗Z/pnZ OaC/pn ∼= H i

ét(X
∗
Kp , lim−→

Kp

jKpKp!O+a
X ∗
KpKp

\ZKpKp
/pn).

But

lim−→
Kp

jKpKp!O+a
X ∗
KpKp

\ZKpKp
/pn = jKp!O+a

X ∗
Kp
\ZKp

/pn,
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and there is a short exact sequence

0→ jKp!O+a
X ∗
Kp
\ZKp

/pn → O+a
X ∗
Kp
/pn → O+a

∂ /pn → 0,

where O∂ is (the pushforward of) the structure sheaf of the boundary. By

[52, Props. 6.14, 7.13], analytic and étale cohomology of O+a/pn and O+a
∂ /pn

agree. On affinoid subsets, both vanish in positive degrees (also noting that the

intersection of an open affinoid subset with the boundary is an open affinoid

subset of the boundary by Lemma 2.2.2). Thus,‹H i
c,Kp(Z/pnZ)⊗Z/pnZ OaC/pn ∼= H i(X ∗Kp , jKp!O+a

X ∗
Kp
\ZKp

/pn).

Moreover, as the boundary is strongly Zariski closed by Theorem 4.1.1(ii), one

also an exact sequence of sheaves on the topological space X ∗Kp ,

0→ I+a
X ∗
Kp
/pn → O+a

X ∗
Kp
/pn → O+a

∂ /pn → 0,

so that

jKp!O+a
X ∗
Kp
\ZKp

/pn = I+a
X ∗
Kp
/pn,

and we arrive at the desired isomorphism.17

The commutativity of the first diagram is immediate from functoriality.

Also, the definition of the first trace map is standard (and its various definitions

in the complex, algebraic, and p-adic worlds are compatible). Let jKp : X ∗Kp \
ZKp → X ∗Kp be the open embedding. To define the second trace map, it is

enough to define a trace map

trKp
1/K

p
2

: πKp
1/K

p
2∗O

+a
X ∗
K
p
1

\Z
K
p
1

/pn → O+a
X ∗
K
p
2

\Z
K
p
2

/pn,

where πKp
1/K

p
2

: X ∗
Kp

1
\ ZKp

1
→ X ∗

Kp
2
\ ZKp

2
denotes the finite étale projection.

Locally, this projection has the form Spa(B,B+) → Spa(A,A+), where A

is a perfectoid C-algebra, A+ ⊂ A◦ is open and integrally closed, B is a

finite étale A-algebra, and B+ ⊂ B is the integral closure of A+. From the

almost purity theorem, [52, Th. 7.9(iii)], it follows that B+a/pn is a finite étale

A+a/pn-algebra. In particular, there is a trace map B+a/pn → A+a/pn (cf.

[52, Def. 4.14]), as desired.

17This argument, which appears also in [54], shows that one should think of O+/pn and

related sheaves as being like an ’algebraic topology local system’ and not as being like a

coherent sheaf.
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In order to prove that the second diagram commutes, it is enough to prove

that the diagram

πKp
1/K

p
2∗O

a
C/p

n

��

tr // OaC/pn

��
πKp

1/K
p
2∗O

+a
X ∗
K
p
1

\Z
K
p
1

/pn
tr // O+a

X ∗
K
p
2

\Z
K
p
2

/pn

of étale sheaves on X ∗
Kp

2
\ZKp

2
commutes (as the diagram in the statement of the

theorem comes about by applying H i
ét(X

∗
Kp

2
, jKp

2 !−) to this diagram). As this

can be checked étale locally, one can reduce to the case where the morphism

πKp
1/K

p
2

is a disjoint union of copies of the base, where it is trivial. �

As a first application, we get a vanishing result for (compactly supported)

completed cohomology. Recall that the (usual or compactly supported) coho-

mology groups of XK are nonzero in the range [0, 2d], where d = dimCXK .

The following corollary shows that upon taking the direct limit over all levels

Kp at p, complete cancellation occurs in degrees i > d.

Corollary 4.2.2. The cohomology group ‹H i
c,Kp(Z/pnZ) (and a fortiori‹H i

c,Kp(Zp)) vanishes for i > d.

Proof. We may reduce to the case n = 1 by long exact sequences. It is

enough to prove that ‹H i
c,Kp(Fp) ⊗Fp OC/p is almost zero for i > d. Indeed,

for a nontrivial Fp-vector space V , V ⊗Fp OC/p is flat over OC/p and nonzero.

Thus, if it is killed by the maximal ideal of OC , then it is 0.

By the previous theorem, it suffices to prove that more generally, for any

sheaf F of abelian groups on X ∗Kp , H i(X ∗Kp , F ) = 0 for i > d.

Recall that S = X ∗Kp is a spectral space; we call the minimal i such that

H i+1(S, F ) = 0 for all abelian sheaves F on S the cohomological dimension

of S. Thus, we claim that the cohomological dimension of X ∗Kp is at most

d. Observe that if S = lim←−Sj is a cofiltered inverse limit of spectral spaces

Sj of cohomological dimension ≤ d along spectral transition maps, then S has

cohomological dimension ≤ d. Indeed, any F can be written as a filtered direct

limit of constructible sheaves, constructible sheaves come via pullback from

some Sj , and one computes cohomology on S as a direct limit of cohomology

groups over Sj for increasing j.

As |X ∗Kp | ∼= lim←−Kp |X
∗
KpKp |, it is enough to prove that X ∗KpKp has cohomo-

logical dimension ≤ d. For this, we could either cite [41, Prop. 2.5.8], or write
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X ∗KpKp as the inverse limit of the topological spaces underlying all possible for-

mal models (each of which is of dimension ≤ d) and use Grothendieck’s bound

for noetherian spectral spaces. �

The following corollary implies a good part of [17, Conj. 1.5] in the case

considered here. We freely use notation from [17]. The tame level Kp is fixed,

and all modules are taken with Zp-coefficients.

Corollary 4.2.3. For i > d, ‹HBM
i = 0, and ‹HBM

d is p-torsion free. For

i < d, the codimension (as a module over the Iwasawa algebra) of ‹Hi is ≥ d−i.

If the XK are compact, this implies all of [17, Conj. 1.5], except for non-

strict instead of strict inequalities on the codimensions. (Note that here l0 = d

and q0 = 0. Also observe [17, Th. 1.4].)

Proof. The first two assertions follow from the previous corollary and [17,

Th. 1.1(iii)]. Assume that the last statement was not satisfied. Among all

codimensions of ‹Hi that violate this inequality, choose the maximal one, c.

Among all i < d for which this codimension is achieved, choose the minimal

one. Thus, the codimension of ‹Hi is c < d− i, but the codimension of ‹Hk for

k < i is greater than c. The results of [63] imply that if X is of codimension

c, then Ej(X) = 0 for j < c, Ec(X) is of codimension (exactly) c and Ej(X)

is of codimension ≥ j for j > c.

Now look at the Poincaré duality spectral sequence [17, §1.3]:

Ejk2 = Ej(‹Hk)⇒ ‹HBM
2d−j−k.

For j + k < d, the limit term ‹HBM
2d−j−k vanishes. We look at the diagonal

j+k = i+c < d. In that case, there is a contribution of codimension c, Ec(‹Hi).

For k < i, any term Ej(‹Hk) is of codimension at least the codimension of ‹Hk,

i.e., of codimension ≥ c + 1. For j < c, but j + k < d, all terms Ej(‹Hk) are

zero. If not, the codimension of ‹Hk is ≤ j < c and j+k < d, which contradicts

our choice of c.

It follows that all groups that might potentially cancel the contribution of

Ec(‹Hi) are of codimension > c. As by [63], the notion of codimension is well

behaved under short exact sequences, it follows that a subquotient of Ec(‹Hi) of

codimension c survives the spectral sequence. It would contribute to ‹HBM
2d−j−k

with j + k = i+ c < d, a contradiction. �

4.3. Hecke algebras. We keep the assumption that (G,D) is of Hodge type,

with a fixed embedding (G,D) ↪→ (G′, D′) = (Sp2g, DSp2g
). Moreover, fix some

compact open subgroup Kp ⊂ G(Apf ) contained in the level-N -subgroup of

G′(Apf ) for some N ≥ 3 prime to p.
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Let

T = TKp = Zp[G(Apf )//Kp]

be the abstract Hecke algebra of Kp-biinvariant compactly supported func-

tions on G(Apf ), where the Haar measure gives Kp measure 1. In this section,

we prove the following result, which says roughly that all Hecke eigenvalues

appearing in ‹H i
c,Kp(Zp) come via p-adic interpolation from Hecke eigenvalues

in H0(X ∗KpKp , ω⊗kKpKp ⊗I), where I is the ideal sheaf of the boundary and k is

sufficiently divisible.

Theorem 4.3.1. Fix some integer m ≥ 1. Let Tcl = Tcl,m denote T
equipped with the weakest topology for which all the maps

T→ EndC(H0(X ∗KpKp , ω⊗mkKpKp ⊗ I))

are continuous for varying k ≥ 1 and Kp ⊂ G(Qp), where the right-hand side is

a finite-dimensional C-vector space endowed with the p-adic topology.18 Then

the map

Tcl = T→ EndZ/pnZ(‹H i
c,Kp(Z/pnZ))

is continuous, where the right-hand side is endowed with the weakest topology

that makes

EndZ/pnZ(‹H i
c,Kp(Z/pnZ))× ‹H i

c,Kp(Z/pnZ)→ ‹H i
c,Kp(Z/pnZ)

continuous, where ‹H i
c,Kp(Z/pnZ) has the discrete topology.

Before giving the proof, we recall the definition of the action of T on

H0(X ∗KpKp , ω⊗kKpKp ⊗I). As usual, this boils down to defining trace maps. For

this, take two sufficiently small levels K1 ⊂ K2 ⊂ G(Af ) and look at the map

πK1/K2
: X ∗K1

→ X ∗K2
.

This is locally of the form Spa(B,B+) → Spa(A,A+), where A is normal,

A+ ⊂ A◦ is open and integrally closed (and thus normal itself), B is a finite

normal and generically étale A-algebra, and B+ ⊂ B is the integral closure of

A+. In particular, B+ is also a finite normal and generically étale A+-algebra.

Recall the following lemma.

Lemma 4.3.2. Let R be normal, and let S be a finite and generically

étale R-algebra; i.e., for some nonzero divisor f ∈ R, S[f−1] is a finite étale

R[f−1]-algebra. Then the trace map

trS[f−1]/R[f−1] : S[f−1]→ R[f−1]

18Here, cl stands for classical. Also note that Tcl may not be separated; one might replace

it by its separated quotient without altering anything that follows.
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maps S into R. Moreover, for any integrally closed ideal I ⊂ R with integral

closure J ⊂ S, tr(J) ⊂ I .

Proof. For an element x ∈ R[f−1], the condition x ∈ R can be checked at

valuations of R. Thus, one can assume that R = K+ is the ring of integers of

a field K equipped with some valuation v : K → Γ ∪ {∞}. We may assume

that K is algebraically closed. Also, one may replace S, a finite and generically

étale K+-algebra, by its normalization in S ⊗K+ K. In that case, S is a finite

product of copies of K+, and the claim is clear.

The condition x ∈ I can also be checked using valuations, so the same

argument works in that case. �

In particular, we get trace maps

tr : πK1/K2∗OX ∗K1
→ OX ∗K2

,

tr : πK1/K2∗IX ∗K1
→ IX ∗K2

,

tr : πK1/K2∗O
+
X ∗K1

→ O+
X ∗K2

,

tr : πK1/K2∗I
+
X ∗K1

→ I+
X ∗K2

,

where IX ∗K ⊂ OX ∗K is the ideal sheaf of the boundary and I+ = I ∩ O+. In

particular, by tensoring the trace map for I with a tensor power of the line

bundle ωK2 , we get a trace map

tr : πK1/K2∗(ω
⊗k
K1
⊗ IX ∗K1

) = πK1/K2∗(π
∗
K1/K2

ω⊗kK2
⊗ IX ∗K1

)

= ω⊗kK2
⊗ πK1/K2∗IX ∗K1

→ ω⊗kK2
⊗ IX ∗K2

,

giving the desired trace map by taking global sections.

We will need the following comparison of trace maps. It says, in particular,

that as far as cusp forms of infinite level are concerned, there is no difference

between X ∗K and X ∗K .

Lemma 4.3.3. Fix a subset J ⊂ {1, . . . , 2g} of cardinality g, and let

X ∗Kp(J) ⊂ X ∗Kp

be the preimage of F`J ⊂ F` under the Hodge-Tate period map πHT : X ∗Kp →
F`. Recall that by Theorem 4.1.1(i), X ∗Kp(J) = Spa(RKp , R+

Kp) is affinoid

perfectoid, and the preimage of Spa(RKpKp , R+
KpKp) = X ∗KpKp(J) ⊂ X ∗KpKp for

Kp small enough, with R+
Kp the p-adic completion of lim−→R+

KpKp .

Let

Spa(R̃KpKp , R̃+
KpKp) = X ∗KpKp(J) ⊂ X ∗KpKp

be the preimage of X ∗KpKp(J). Moreover, let I+
KpKp ⊂ R+

KpKp be the ideal of

functions vanishing along the boundary, and let Ĩ+
KpKp ⊂ R̃+

KpKp , I
+
Kp ⊂ R+

Kp
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be defined similarly. Then, for all n ≥ 0,

I+
Kp/p

n = lim−→
Kp

I+
KpKp/p

n = lim−→
Kp

Ĩ+
KpKp/p

n.

For Kp
1 ⊂ K

p
2 and any Kp, the diagram of almost OC-modules

Ĩ+a
KpK

p
1
/pn

(tr mod pn)a
//

��

Ĩ+a
KpK

p
2
/pn

��
I+a
Kp

1
/pn

tr // I+a
Kp

2
/pn

commutes, where the trace map on the lower line is as defined in the proof of

Theorem 4.2.1.

Proof. From Theorem 4.1.1(i), we know that

R+
Kp/p

n = lim−→
Kp

R+
KpKp/p

n.

In particular, the map lim−→Kp
I+
KpKp/pn → I+

Kp/pn is injective. To prove that

it is surjective, it is enough to prove that it is almost surjective. Indeed, if

f ∈ I+
Kp/pn is such that pεf = gKp for some gKp ∈ I+

KpKp and 0 < ε < n
2 ,

then — by considering valuations, using surjectivity of X ∗Kp(J) → X ∗KpKp(J)

— gKp = pεfKp for some fKp ∈ I+
KpKp and fKp ≡ f mod pn−ε. Choosing a

lift f̃ ∈ I+
Kp of f and repeating the argument with f ′ = (f̃ − fKp)/pn−ε gives

the claim.

Recall from the construction that there exists a pullback diagram of affi-

noid perfectoid spaces

ZKp(J) //

��

X ∗Kp(J)

��
ZΓ0(p∞)(ε)a // Y∗Γ0(p∞)(ε)a,

where Y∗Γ0(p∞)(ε)a denotes the inverse limit of the anticanonical Γ0(p∞)-tower

in the Siegel moduli space as in Corollary 3.2.19, with boundary ZΓ0(p∞)(ε)a.

By Corollary 3.2.20 and Lemma 2.2.9(ii), we are reduced to showing that

the ideal in the global sections of O+ defining ZΓ0(p∞)(ε)a ⊂ Y∗Γ0(p∞)(ε)a is

almost generated by functions in O+ coming from finite level and vanishing

along the boundary. This follows from Tate’s normalized traces (observing

that by Lemma 4.3.2, Tate’s normalized traces of a function vanishing along

the boundary will still vanish along the boundary); cf. Corollary 3.2.23.
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Next, we claim that there is a unique map

Ĩ+
KpKp → I+

Kp

commuting with evaluation at points outside the boundary (where there is no

difference between X ∗K and X ∗K). If it exists, it follows by consideration of

valuations that it is injective, with Ĩ+
KpKp/pn ↪→ I+

Kp/pn. Thus, the composite

map

lim−→ I+
KpKp/p

n → lim−→ Ĩ+
KpKp/p

n → I+
Kp/p

n

is an isomorphism and the second map injective; i.e., both maps are isomor-

phisms. To prove existence of Ĩ+
KpKp → I+

Kp , note that for any n, there are

maps

Ĩ+
KpKp/p

n → H0(X ∗KpKp(J), jKpKp!O+/pn)

→ H0(X ∗Kp(J), jKp!O+/pn) = H0(X ∗Kp(J), I+/pn).

Here, jK : X ∗K \ ZK → X ∗K denotes the open embedding. Using Theo-

rem 4.1.1(ii), we see that for any n, the map I+
Kp/pn → H0(X ∗Kp(J), I+/pn) is

almost an isomorphism; in the inverse limit over n, it becomes an isomorphism.

Thus, in the inverse limit over n, we get the desired map Ĩ+
KpKp → I+

Kp .

Finally, we need to check commutativity of the diagram of trace maps. It

is enough to prove commutativity in the inverse limit over n and then after

inverting p. The commutativity can be checked after restricting the functions

to the complement of the boundary; there, both trace maps are given by trace

maps for finite étale algebras, giving the result. �

Proof of Theorem 4.3.1. By Theorem 4.2.1, there is a T-equivariant iso-

morphism ‹H i
c,Kp(Z/pnZ)⊗Z/pnZ OaC/pn ∼= H i(X ∗Kp , I+a/pn).

Also, the map

HomZ/pnZ(M,N)→ HomOC/pn(M ⊗Z/pnZ mC/p
n, N ⊗Z/pnZ mC/p

n)

is injective for any Z/pnZ-modules M , N . One may split up N using short

exact sequences to reduce to the case pN = 0. In that case, one reduces further

to n = 1. But for Fp-vector spaces, the result is clear.

In particular, it is enough to prove that

Tcl = T→ EndOaC/pn(H i(X ∗Kp , I+a/pn))

is continuous, where for an OaC/pn-module M , we endow M! with the discrete

topology and EndOaC/pn(M) with the weakest topology making

EndOaC/pn(M)×M! →M!
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continuous. We remark that M 7→M! is an exact functor commuting with all

colimits. In particular, if M is a colimit of T-modules Mi on which Tcl = T
acts continuously, then Tcl = T acts continuously on M . Moreover, if M = Na

for an actual T⊗OC/pn-module N , on which Tcl = T acts continuously, then

it also acts continuously on M , as M! = mC ⊗OC N . Also, if Tcl = T acts

continuously on M , it acts continuously on any subquotient.

Now we use the Hodge-Tate period map

πHT : X ∗Kp → F` ↪→ P(2g
g )−1

,

using the Plücker embedding. Let N =
(2g
g

)
. The ample line bundle ωF` on

F` is the pullback of O(1) on PN−1. Fix the standard sections s1, . . . , sN ∈
H0(PN−1,O(1)). For i = 1, . . . , N , let Ui ⊂ PN−1 be the open affinoid sub-

set where |sj | ≤ |si| for all j = 1, . . . , N . For J ⊂ {1, . . . , N}, let UJ =⋂
i∈J Ui. Observe that Uij ⊂ Ui is given by the condition | sjsi | = 1, where

sj
si
∈ H0(Ui,O+

Ui).

Let Vi = π−1
HT(Ui) ⊂ X ∗Kp ; by Theorem 4.1.1(i), this is affinoid perfectoid,

Vi = Spa(Ri, R
+
i ). Similarly, one has the VJ = Spa(RJ , R

+
J ) ⊂ X ∗Kp for ∅ 6=

J ⊂ {1, . . . , N}. By Theorem 4.1.1(ii) (and the observation that this property

is stable under passage to affinoid subsets; cf. Lemma 2.2.9), one can compute

H i(X ∗Kp , I+a/pn)

by the Cech complex of almost OC/pn-modules with terms

H0(VJ , I+/pn)a = {f ∈ R+
J /p

n | f = 0 on ZKp}a.

As πHT is equivariant for the Hecke operators away from p (Theorem 4.1.1(iii),

(iv)), all VJ are stable under the action of the Hecke operators away from p.

Thus, T acts on each term of the Cech complex individually. We conclude that

it is enough to prove that

Tcl = T→ EndOaC/pn(H0(VJ , I+/pn)a)

is continuous for all ∅ 6= J ⊂ {1, . . . , N}.
For all Kp ⊂ G(Qp) sufficiently small, all Vi come via pullback from open

affinoid subsets ViKp ⊂ X
∗
KpKp . By Theorem 4.1.1(i) (tensored with a line

bundle), the map

lim−→
Kp

H0(ViKp , ωKpKp)→ H0(Vi, ωKp)

has dense image. Therefore, making Kp smaller, one can assume that there

are sections

s
(i)
j ∈ H

0(ViKp , ωKpKp)



1030 PETER SCHOLZE

satisfying the conditions of Lemma 2.1.1 and such that

|
sj − s(i)

j

s
(i)
i

| ≤ |pn|

on Vi for j = 1, . . . , N . One gets a formal model X
∗
KpKp of X ∗KpKp with an

open cover by ViKp .
19 In fact, we can also take the preimages ṼiKp ⊂ X ∗KpKp

of ViKp ⊂ X
∗
KpKp . Pulling back the sections s

(i)
j will put us into the situation

of Lemma 2.1.1, thus constructing a formal model X∗KpKp of X ∗KpKp . It comes

equipped with an ample line bundle ωint
KpKp , as well as the ideal sheaf I ⊂

OX∗
KpKp

, constructed via Lemma 2.1.2 from the ideal sheaf I ⊂ OX ∗
KpKp

.

One checks directly that all of these objects are independent of the choice

of the s
(i)
j approximating sj on Vi. In particular, G(Apf ) still acts on the tower

of the X∗KpKp with the invertible sheaf ωint
KpKp . Also, the sections

s̄j ∈ H0(X∗KpKp , ωint
KpKp/pn)

are independent of any choice. They commute with the action of G(Apf ) and

will serve as a substitute for the Hasse invariant.

By Lemma 4.3.3, we have for i ∈ {1, . . . , N} (corresponding to a subset

of {1, . . . , 2g} of cardinality g) a T-equivariant equality

H0(Vi, I+a/pn) = lim−→
Kp

H0(ṼiKp , I/p
n)a.

In fact, the same holds true for any subset ∅ 6= J ⊂ {1, . . . , N}. Fix some i ∈ J ,

look at the previous equality, and invert the sections s̄j/s̄i ∈ H0(ṼiKp ,O)/pn

(which commute with the T-action) for all j ∈ J . We see that it is enough to

prove that for any J ⊂ {1, . . . , N} and sufficiently small Kp, the map

Tcl = T→ EndOC/pn(H0(ṼJKp , I/p
n))

is continuous.

For i ∈ J , we have the sections s̄i ∈ H0(X∗KpKp , ωint
KpKp/pn). Let s̄J =∏

i∈J s̄i. As VJKp ⊂ X∗KpKp is the locus where s̄i is invertible for all i ∈ J , it

is also the locus where s̄J is invertible. It follows that

H0(VJKp , I/p
n) = lim−→×s̄J

H0(X∗KpKp , (ωint
KpKp)⊗k|J | ⊗ I/pn),

19This formal model is extremely strange and not at all related to one of the standard

integral models of Shimura varieties. For example, the Newton stratification is not induced

from a stratification of the special fibre of X
∗
KpKp . More specifically, there is a finite set of

points in the special fibre such that all ordinary points of the generic fibre specialize to one

of those points; yet, there are also many nonordinary points in the tubular neighborhood of

these points.
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where all maps are T-equivariant, because s̄J commutes with the action of T.

It remains to prove that for k sufficiently divisible, the action of Tcl = T on

H0(X∗KpKp , (ωint
KpKp)⊗k ⊗ I/pn)

is continuous. By Lemma 2.1.1, ωint
KpKp is ample. Thus, for k sufficiently

divisible,

H1(X∗KpKp , (ωint
KpKp)⊗k ⊗ I/pn) = 0;

it follows that for those k, we have

H0(X∗KpKp , (ωint
KpKp)⊗k ⊗ I/pn) = H0(X∗KpKp , (ωint

KpKp)⊗k ⊗ I)/pn.

Thus, we are reduced to showing that the action of Tcl = T on

H0(X∗KpKp , (ωint
KpKp)⊗k ⊗ I)

is continuous. But this group is p-torsion free, so it is enough to know that

the action of Tcl = T on

H0(X∗KpKp , (ωint
KpKp)⊗k ⊗ I)[p−1] = H0(X ∗KpKp , ω⊗kKpKp ⊗ I)

is continuous, which holds true by assumption. �

5. Galois representations

5.1. Recollections. We recall some results from the literature in the spe-

cific case that we will need. We specialize our group G further. Fix a field F

that is either totally real or CM. In the totally real case, let G = ResF/Q Sp2n.

If F is CM, let F+ ⊂ F be the maximal totally real subfield, let U/F+ (a

form of GL2n) be the quasisplit unitary group with respect to the extension

F/F+, and take G = ResF+/Q U . In both cases, we take the standard conju-

gacy class D of u : U(1) → Gad
R ; observe that in all cases, (G,D) is of Hodge

type. Also, G admits ResF/Q GLn as a maximal Levi. Write F+ = F if F is

totally real, G0 = Sp2n/F
+ if F is totally real, and G0 = U/F+ if F is CM.

Then, in all cases, G = ResF+/QG0. Also, G is a twisted endoscopic group of

H = ResF/QH0, where H0 = GLh/F , with h = 2n+ 1 if F is totally real and

h = 2n if F is CM. Fix the standard embedding η : LG0 ↪→ L ResF/F+ H0 of

L-groups (over F+).

We need the existence of the associated endoscopic transfer, due to Arthur,

[3] (resp. Mok, [47], in the unitary case). These results are still conditional on

the stabilization of the twisted trace formula. However, in the unitary case,

there are unconditional results of Shin, [57].

In fact, the representations we shall be interested in have a specific type

at infinity.
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Proposition 5.1.1. Consider G = Sp2n/R, resp. G = U(n, n)/R, with

maximal compact subgroup K ⊂ G(R). Fix the standard Borel B ⊂ G, with

torus T , and identify X∗(TC) = Zn, resp. X∗(TC) = Z2n, in the usual way (up

to the relevant Weyl groups). Let χ : K → C× be the character given by

χ : K ∼= U(n)→ C× : g0 7→ det(g0), resp.

χ : K ∼= U(n)× U(n)→ C× : (g1, g2) 7→ det(g1) det(g2)−1.

For k > n, resp. k ≥ n, there is a unique discrete series representation πk of

G with minimal K-type χ⊗k, and it has infinitesimal character

(k − 1, k − 2, . . . , k − n) ∈ X∗(TC)R = Rn, resp.

(k − 1
2 , k −

3
2 , . . . , k − n+ 1

2 , n−
1
2 − k, . . . ,

3
2 − k,

1
2 − k) ∈ X∗(TC)R = R2n.

Proof. Fix the standard maximal compact torus Tc ⊂ K, and identify

X∗(TC) = X∗(Tc,C). Let δnc denote the half-sum of the noncompact roots and

δc the half-sum of the compact roots. Let Λk ∈ X∗(Tc,C) denote the restriction

of χ⊗k to Tc. Then

2δnc = (n+ 1, n+ 1, . . . , n+ 1), 2δc = (n− 1, n− 3, . . . , 3− n, 1− n),

Λk = (k, k, . . . , k) ∈ X∗(Tc,C) ∼= Zn, resp.

2δnc = (n, n, . . . , n,−n, . . . ,−n,−n),

2δc = (n− 1, . . . , 3− n, 1− n, n− 1, n− 3, . . . , 1− n),

Λk = (k, k, . . . , k,−k, . . . ,−k,−k) ∈ X∗(Tc,C) ∼= Z2n.

Let λ ∈ X∗(Tc,C)⊗ZR denote a Harish-Chandra parameter of a discrete series

representation. Then the associated minimal K-type has highest weight

Λ = λ+ δnc − δc.

Thus, the minimal K-type Λk determines λ uniquely as

λ = (k − 1, k − 2, . . . , k − n) ∈ X∗(TC)R = Rn, resp.

λ = (k− 1
2 , k−

3
2 , . . . , k−n+ 1

2 , n−
1
2 − k, . . . ,

3
2 − k,

1
2 − k) ∈ X∗(TC)R = R2n.

If k > n, resp. k ≥ n, this parameter is dominant and does not lie on any

wall. Thus, in that case there is a discrete series representation with that

parameter. �

Theorem 5.1.2 ([3], [47]). Let π be a cuspidal automorphic representation

of G0, and fix an integer k > n, resp. k ≥ n. We assume that for v|∞, πv ∼= πk
is the discrete series representation from Proposition 5.1.1.

There exist cuspidal automorphic representations Π1, . . . ,Πm of the groups

GLn1/F, . . . ,GLnm/F , integers `1, . . . , `m ≥ 1, with n1`1 + · · · + nm`m = h,

such that

(Π∨1 )c ∼= Π1, . . . , (Π
∨
m)c ∼= Πm,
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where c : F → F denotes complex conjugation if F is CM and c = id : F → F

if F is totally real, and such that the following condition is satisfied. For all

finite places v of F lying over a place v+ of F+ for which πv+ is unramified,

all Πiv are unramified, and

ηv+∗ϕπv+ =
m⊕
i=1

Ä
ϕΠiv | · |(1−`i)/2 ⊕ ϕΠiv | · |(3−`i)/2 . . .⊕ ϕΠiv | · |(`i−i)/2

ä
.

Here, Πi is written as the restricted tensor product of Πiv over all places v

of F ,

ϕπv+ : WF+

v+
→ LG0,v+

is the unramified L-parameter of πv+ , and

ηv+ : LG0,v+ → L ResFv/F+

v+
GLh,v

is the v+-component of η. Thus, ηv+∗(ϕπv+ ) is a map

WF+

v+
→ L ResFv/F+

v+
GLh,v

or, equivalently, a map WFv → LGLh,v , i.e., an h-dimensional representation

of WFv . On the right-hand side,

ϕΠiv : WFv → LGLh,v

denotes the unramified L-parameter of Πiv . Moreover, for v|∞, the represen-

tation Πiv| · |(h−`i)/2 is regular L-algebraic.20

Remark 5.1.3. As regards the last statement, one checks more precisely

from Proposition 5.1.1 and the compatibility of the global and local endoscopic

transfer that for fixed v|∞, the infinitesimal characters of the representations

Πiv| · |(2j−`i−1)/2 for i = 1, ...,m, j = 1, . . . , `i, (considered as (multi-)sets of

real numbers) combine to

(k − 1, k − 2, . . . , k − n, 0, n− k, n− 1− k, . . . , 1− k)

if F is totally real, resp.

(k − 1
2 , k −

3
2 , . . . , k − n+ 1

2 , n−
1
2 − k, . . . ,

3
2 − k,

1
2 − k)

if F is CM.

We combine this theorem with the existence of Galois representation ([22],

[44], [35], [56], [20]; the precise statement we need is stated as [9, Ths. 1.1,

1.2]).21 Recall that we fixed ι : C ∼= Qp.

20Here, we use the definition of L-algebraic automorphic representations from [15]. Reg-

ularity means that the infinitesimal character is regular.
21Curiously, the Galois representations we need are the ones that are hardest to construct:

They are regular, but non-Shin-regular and not of finite slope at p.
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Theorem 5.1.4. Let Π be a cuspidal automorphic representation of the

group ResF/Q GLn such that (Π∨)c ∼= Π and Π| · |k/2 is regular L-algebraic for

some integer k. Then there exists a continuous semisimple representation

σΠ : Gal(F/F )→ GLn(Qp)

such that (σ∨Π)c ∼= σΠχ
k
p , where χp is the p-adic cyclotomic character,22 with

the following property. For all finite places v of F for which Πv is unramified,

σΠ is unramified at v, and

ϕΠv = σΠ|WFv
| · |k/2

up to semisimplification (i.e., Frobenius-semisimplification).

Remark 5.1.5. In the language of [15], this is the Galois representations at-

tached to the L-algebraic cuspidal automorphic representation Π| · |k/2. To ap-

ply the cited result (which is in terms of C-algebraic representations), observe

that Π′ = Π| · |(k+1−n)/2 is regular C-algebraic and satisfies (Π′∨)c ∼= Π′ ⊗ χ,

where χ = | · |n+1−k is a character that comes via pullback from Q.

This discussion leads to the following corollary. Fix a sufficiently small

level K ⊂ G(Af ) = G0(AF+,f ) of the form K = KS+KS+
for a finite set S+ of

finite places of F+ containing all places dividing p and all places over which F

ramifies. Here KS+ ⊂ G0(AF+,S+) and KS+ ⊂ G0(AS+

F+,f ) are compact open,

and KS+
is a product of hyperspecial compact open subgroups Kv ⊂ G0(F+

v )

at all finite places v 6∈ S+. Let

T = T
KS+ =

⊗
v 6∈S+

Tv

be the abstract Hecke algebra, where v runs through finite places outside S+

and

Tv = Zp[G0(F+
v )//Kv]

is the spherical Hecke algebra. Before going on, let us recall the description of

these Hecke algebras and define some elements in these algebras.

Lemma 5.1.6. Fix a place v 6∈ S+. Let qv be the cardinality of the residue

field of F+ at v. Let q
1/2
v ∈ Zp denote the image of the positive square root in

C under the chosen isomorphism C ∼= Qp.

(i) Assume F is totally real. Then the Satake transform gives a canonical

isomorphism

Tv[q1/2
v ] ∼= Zp[q1/2

v ][X±1
1 , . . . , X±1

n ]Snn(Z/2Z)n .

22Note that χ−1
p is the Galois representation attached to the absolute value |·| : Q×\A×Q →

R>0, as we normalize local class-field theory by matching up geometric Frobenius elements

with uniformizers.
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The unramified endoscopic transfer from G0(F+
v ) to GL2n+1(F+

v ) is dual

to the map

Zp[q1/2
v ][Y ±1

1 , . . . , Y ±1
2n+1]S2n+1 → Zp[q1/2

v ][X±1
1 , . . . , X±1

n ]Snn(Z/2Z)n

sending the set {Y1, . . . , Y2n+1} to {X±1
1 , . . . , X±1

n , 1}. Let

Ti ∈ Zp[Y ±1
1 , . . . , Y ±1

2n+1]S2n+1

be the i-th elementary symmetric polynomial in the Yj ’s for i = 1, . . . , 2n

+ 1, and let Ti,v ∈ Tv[q
1/2
v ] be its image in Tv[q

1/2
v ]. Then Ti,v ∈ Tv .

(ii) Assume F is CM and v splits in F ; fix a lift ṽ of v. Then G0(F+
v ) ∼=

H0(Fṽ) ∼= GL2n(Fṽ) and

Tv[q1/2
v ] ∼= Zp[q1/2

v ][X±1
1 , . . . , X±1

2n ]S2n .

The unramified endoscopic transfer is the identity map. Let Ti,ṽ ∈ Tv[q
1/2
v ]

be the i-th elementary symmetric polynomial in X1, . . . , X2n for i =

1, . . . , 2n. Then q
i/2
v Ti,ṽ ∈ Tv .23

(iii) Assume F is CM and v inert (in particular, unramified) in F . Then the

Satake transform gives a canonical isomorphism

Tv[q1/2
v ] ∼= Zp[q1/2

v ][X±1
1 , . . . , X±1

n ]Snn(Z/2Z)n .

The unramified endoscopic transfer from G0(F+
v ) to GL2n(Fv) is dual to

the map

Zp[q1/2
v ][Y ±1

1 , . . . , Y ±1
2n ]S2n → Zp[q1/2

v ][X±1
1 , . . . , X±1

n ]Snn(Z/2Z)n

sending the set {Y1, . . . , Y2n} to {X±1
1 , . . . , X±1

n }. Again, we let Ti,v ∈
Tv[q

1/2
v ] denote the image of the i-th elementary symmetric polynomial in

the Yj ’s for i = 1, . . . , 2n. Then Ti,v ∈ Tv .

Proof. Everything is standard. Note that all occurring groups are unram-

ified over F+
v , thus one can extend them to reductive group schemes over the

ring of integers. As v does not divide p, one can then define a unique Haar

measure with values in Zp on the unipotent radical of the Borel that gives the

integral points measure 1. The normalized Satake transform is defined over

Zp[q
1/2
v ]. The final rationality statements are easily verified. �

Now T acts on the C-vector spaces of cusp forms

H0(X∗K , ω
⊗k
K ⊗ I)⊗C C = H0(X ∗K , ω⊗kK ⊗ I),

where ω is the automorphic line bundle coming via pullback from the standard

automorphic ample line bundle on the Siegel moduli space and I denotes the

ideal sheaf of the boundary (on either space).

23These elements depend on the choice of ṽ; the other choice replaces all Xi by X−1
i .
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Let S be the finite set of finite places v of F that map to a place v+ ∈ S+

of F+, and let GF,S be the Galois group of the maximal extension of F which

is unramified outside S.

Corollary 5.1.7. Fix k > n, resp. k ≥ n (if F is totally real, resp.

CM). Let δ = 0 if F is totally real and δ = 1 if F is CM. Let TK,k be the

image of T in

EndC(H0(X∗K , ω
⊗k
K ⊗ I)⊗C C).

Then TK,k is flat over Zp, and TK,k[p−1] is finite étale over Qp. For any

x ∈ (SpecTK,k)(Qp), there is a continuous semisimple representation

σx : GF,S → GLh(Qp)

such that (σ∨x )c ∼= σxχ
δ
p and such that for any finite place v 6∈ S of F , the

characteristic polynomial24 of the geometric Frobenius Frobv ∈ GF,S is given by

det(1−X Frobv |σx)

= 1− (qδ/2v T1,v)(x)X + (q2δ/2
v T2,v)(x)X2 − · · ·+ (−1)h(qhδ/2v Th,v)(x)Xh,

where qv is the cardinality of the residue field of F at v.

Proof. Flatness of TK,k is clear. The image of T⊗Zp C in

EndC(H0(X∗K , ω
⊗k
K ⊗ I))

is a product of copies of C, because the Petersson inner product defines a

positive-definite hermitian form on H0(X∗K , ω
⊗k
K ⊗ I) for which the adjoint

of a Hecke operator is another Hecke operator. This implies by descent that

TK,k[p−1] is finite étale over Qp.

Now, given x, there exists a cuspidal automorphic representation π of

G0/F
+ such that for all finite places v 6∈ S+, πv is unramified, with Satake

parameter the map

Tv ⊗Zp C→ C
induced by x (and the fixed isomorphism C ∼= Qp), and such that for v|∞,

πv is a discrete series representation with given lowest weight as described in

Proposition 5.1.1, i.e., πv ∼= πk. Thus, by Theorem 5.1.2, we get cuspidal au-

tomorphic representations Π1, . . . ,Πm of GLn1/F, . . . ,GLnm/F , and integers

`1, . . . , `m, with the properties stated there. By Theorem 5.1.4, there exist

Galois representations σi attached to the regular L-algebraic cuspidal auto-

morphic representations Πi| · |(δ+1−`i)/2. We set

σx =
m⊕
i=1

Ä
σi ⊕ σiχ−1

p ⊕ · · · ⊕ σiχ⊗(1−`i)
p

ä
,

24We adopt a nonstandard convention on characteristic polynomials.
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where χp is the p-adic cyclotomic character. The desired statement is a direct

consequence. �

Recall Chenevier’s notion of a determinant [19], which we use as a strength-

ening of the notion of pseudorepresentations as introduced by Taylor, [59].

Roughly, the difference is that a pseudorepresentation is ‘something that looks

like the trace of a representation,’ whereas a determinant is ‘something that

looks like the characteristic polynomials of a representation.’

Definition 5.1.8. Let A be a (topological) ring and G be a (topological)

group. A d-dimensional determinant is an A-polynomial law D : A[G] → A

that is multiplicative and homogeneous of degree d. For any g ∈ G, we call

D(1−Xg) ∈ A[X] the characteristic polynomial of g. Moreover, D is said to

be continuous if the map G→ A[X], g 7→ D(1−Xg) is continuous.25

Remark 5.1.9. We continue to use our nonstandard definition of the char-

acteristic polynomial. Also, slightly more generally, for any A-algebra B, we

call a multiplicative A-polynomial law A[G] → B homogeneous of degree d a

determinant of dimension d (with values in B). In fact, this is equivalent to

a multiplicative B-polynomial law B[G]→ B homogeneous of degree d, i.e., a

determinant over B.

Recall that an A-polynomial law between two A-modules M and N is

simply a natural transformation M ⊗A B → N ⊗A B on the category of

A-algebras B. Multiplicativity means that D commutes with the multipli-

cation morphisms, and homogeneity of degree d means that D(bx) = bdD(x)

for all b ∈ B, x ∈ B[G]. Equivalently, by multiplicativity of D, D(b) = bd for

all b ∈ B. Note that if ρ : G→ GLd(A) is a (continuous) representation, then

D = det ◦ρ : A[G] → Md(A) → A defines a (continuous) d-dimensional deter-

minant. The two notions of characteristic polynomials obviously agree. Also

recall that (by Amitsur’s formula) the collection of characteristic polynomials

determines the determinant; cf. [19, Lemma 1.12(ii)].

Now we go back to Galois representations. Keep the notation from Corol-

lary 5.1.7.

Corollary 5.1.10. There is a unique continuous h-dimensional deter-

minant D of GF,S with values in TK,k, such that

D(1−X Frobv) = 1− qδ/2v T1,vX + q2δ/2
v T2,vX

2 − · · ·+ (−1)hqhδ/2v Th,vX
h

for all finite places v 6∈ S of F .

Proof. This follows from [19, Example 2.32]. �

25Cf. [19, 2.30].
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Corollary 5.1.11. Let Tcl be as defined in Theorem 4.3.1. Then, for

any continuous quotient Tcl → A with A discrete, there is a unique continuous

h-dimensional determinant D of GF,S with values in A, such that

D(1−X Frobv) = 1− qδ/2v T1,vX + q2δ/2
v T2,vX

2 − · · ·+ (−1)hqhδ/2v Th,vX
h

for all finite places v 6∈ S of F .

Proof. If I1, I2 ⊂ T are two ideals such that there exist determinants

with values in T/I1 and T/I2, then there exists a determinant with values in

T/(I1 ∩ I2) by [19, Example 2.32]. As I = ker(Tcl → A) is open, it contains

a finite intersection of ideals IK,k = ker(Tcl → TK,k) by the definition of the

topology on Tcl. The result follows. �

5.2. The cohomology of the boundary. Our primary interest in the specific

groups G is that they contain M = ResF/Q GLn as a maximal Levi. This

implies that the cohomology of the locally symmetric spaces associated with

M contributes to the cohomology of XK . In this section, we recall the relevant

results. Fix a parabolic P ⊂ G with Levi M .

Definition 5.2.1. For a compact open subgroup KM ⊂M(Af ), let

XM
KM

= M(Q)\[(M(R)/R>0K∞)×M(Af )/KM ]

denote the locally symmetric space associated with M . Here, K∞ ⊂ M(R) is

a maximal compact subgroup and R>0 ⊂ M(R) are the scalar matrices with

positive entries. Similarly, for a compact open subgroup KP ⊂ P (Af ), let

XP
KP

= P (Q)\[(P (R)/R>0K∞)× P (Af )/KP ].

Lemma 5.2.2. For a compact open subgroup KP ⊂ P (Af ), the image

KM
P ⊂ M(Af ) of KP in M(Af ) is compact and open. There is a natural

projection

XP
XP
→ XM

XM
P
,

which is a bundle with fibres (S1)k, where k is the dimension of the unipotent

radical of P .

We are using the specific nature of U here: One sees by inspection that

U is commutative, which makes the map an actual torus bundle.

Proof. The projection P (Af ) → M(Af ) is open, so that KM
P is open,

and certainly compact. Let U = ker(P → M) be the unipotent radical of P ,

KU
P = KP ∩ U . Then the fibre of

(P (R)/R>0K∞)× P (Af )/KP → (M(R)/R>0K∞)×M(Af )/KM
P



ON TORSION IN THE COHOMOLOGY OF LOCALLY SYMMETRIC VARIETIES 1039

is given by U(R)× U(Af )/KU
P . One deduces that the fibres of

XP
KP

= P (Q)\[(P (R)/R>0K∞)× P (Af )/KP ]

→ XM
KM
P

= M(Q)\[(M(R)/R>0K∞)×M(Af )/KM
P ]

are given by

U(Q)\(U(R)× U(Af )/KU
P ) ∼= (U(Q) ∩KU

P )\U(R).

The subgroup U(Q)∩KU
P ⊂ U(R) is a lattice, thus the quotient is isomorphic

to (S1)k, where k = dimU . �

Let XBS
K be the Borel-Serre compactification of XK ; cf. [12]. Recall that

we assume that K is sufficiently small. Then XBS
K is a compactification of XK

as a real manifold with corners, and the inclusion XK ↪→ XBS
K is a homotopy-

equivalence. Thus, there is a long exact sequence

· · · → H i
c(XK ,Z/pmZ)→ H i(XK ,Z/pmZ)→ H i(XBS

K \XK ,Z/pmZ)→ · · · .

Moreover, if one looks at the compact open subgroup KP = K ∩ P (Af ) ⊂
P (Af ), one has an open embedding

XP
KP ↪→ XBS

K \XK .

In particular, there are natural maps

H i
c(X

P
KP ,Z/pmZ)→ H i(XBS

K \XK ,Z/pmZ)→ H i(XP
KP ,Z/pmZ).

Recall that we have fixed a finite set of places S+ of F+ containing all

places above p and all places above which F/F+ is ramified, and that K =

KS+KS+
, where KS+ ⊂ G0(AS+

F+,f ) is a product of hyperspecial maximal com-

pact subgroups. Then similarly KP = KP
S+KP,S+

, where KP,S+ ⊂ P0(AS+

F+,f );

here, P0 ⊂ G0 is the parabolic subgroup with P = ResF+/Q P0. Its Levi M0

with M = ResF+/QM0 is given by M0 = ResF/F+ GLn. Let KM ⊂M(Af ) be

the image of KP ; then KM = KM
S+KM,S+

, where KM,S+ ⊂ M0(ASF+,f ) is a

product of hyperspecial maximal compact subgroups.

In the following, we assume that the image KM of KP in M(Af ) agrees

with KP ∩M(Af ). Given any sufficiently small compact open subgroup KM
0 of

M(Af ), one can find a compact open subgroup K ⊂ G(Af ) with this property

and realize KM = KM
0 , e.g., by multiplying KM

0 with small compact open

subgroups of U(Af ) and the opposite unipotent radical.

Consider the (unramified) Hecke algebras

T
KS+ = Zp[G0(AS

+

F+,f )//KS+
],

T
KP,S+ = Zp[P0(AS

+

F+,f )//KP,S+
],

T
KM,S+ = Zp[M0(AS

+

F+,f )//KM,S+
].
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Then restriction of functions defines a map T
KS+ → T

KP,S+ , and integration

along unipotent fibres defines a map T
KP,S+ → T

KM,S+ . The composite is the

(unnormalized) Satake transform

T
KS+ → T

KM,S+ .

Recall also that we assumed that K is sufficiently small. In particular, all

congruence subgroups are torsion-free, and the quotients defining the Borel-

Serre compactification are by discontinuous free group actions. It follows that

T
KS+ acts on H i(XBS

K \XK ,Z/pmZ), giving a map of Zp-algebras

T
KS+ → EndZ/pmZ(H i(XBS

K \XK ,Z/pmZ)).

Also, T
KP,S+ acts on both H i

c(X
P
KP ,Z/pmZ) and H i(XP

KP ,Z/pmZ). By letting

it act on one of them, one gets a map of Zp-modules

T
KP,S+ → HomZ/pmZ(H i

c(X
P
KP ,Z/pmZ), H i(XP

KP ,Z/pmZ));

the map does not depend on whether one lets T
KP,S+ acts on H i

c or H i. Sim-

ilarly, one has a map of Zp-modules

T
KM,S+ → HomZ/pmZ(H i

c(X
M
KM ,Z/pmZ), H i(XM

KM ,Z/pmZ)).

In this last case, define the interior cohomology

H i
! (X

M
KM ,Z/pmZ) = im(H i

c(X
M
KM ,Z/pmZ)→ H i(XM

KM ,Z/pmZ)).

Then one has a map of Zp-algebras

T
KM,S+ → EndZ/pmZ(H i

! (X
M
KM ,Z/pmZ)).

The kernel of

T
KM,S+ → HomZ/pmZ(H i

c(X
M
KM ,Z/pmZ), H i(XM

KM ,Z/pmZ))

agrees with the kernel of T
KM,S+ → EndZ/pmZ(H i

! (X
M
KM ,Z/pmZ)); in particu-

lar, it is an ideal.

Finally, observe that there is a commutative diagram

H i(XBS
K \XK ,Z/pmZ)

**
H i
c(X

P
KP ,Z/pmZ)

44

// H i(XP
KP ,Z/pmZ)

��
H i
c(X

M
KM ,Z/pmZ)

OO

// H i(XM
KM ,Z/pmZ)

of Zp-modules. The only nontautological map is the map

H i(XP
KP ,Z/pmZ)→ H i(XM

KM ,Z/pmZ).
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This map is pullback along the embedding XM
KM → KP

KP (cf. definition of both

spaces), using that KM = KP ∩M(Af ); this forms a section of the projection

XP
KP → XM

KM , implying commutativity of the diagram.

In particular, one gets natural maps of Zp-modules

EndZ/pmZ(H i(XBS
K \XK ,Z/pmZ))

→ HomZ/pmZ(H i
c(X

P
KP ,Z/pmZ), H i(XP

KP ,Z/pmZ))

→ HomZ/pmZ(H i
c(X

M
KM ,Z/pmZ), H i(XM

KM ,Z/pmZ)).

The following lemma is an easy verification from the definitions.

Lemma 5.2.3. The diagram of Zp-modules

T
KS+

��

// EndZ/pmZ(H i(XBS
K \XK ,Z/pmZ))

��
T
KP,S+

��

// HomZ/pmZ(H i
c(X

P
KP ,Z/pmZ), H i(XP

KP ,Z/pmZ))

��
T
KM,S+ // HomZ/pmZ(H i

c(X
M
KM ,Z/pmZ), H i(XM

KM ,Z/pmZ))

commutes. �

Corollary 5.2.4. Let T
KS+ be the image of T

KS+ in

EndZ/pmZ(H i(XBS
K \XK ,Z/pmZ)),

and let T
KM,S+ be the image of T

KM,S+ in

EndZ/pmZ(H i
! (X

M
KM ,Z/pmZ)).

Then there is a commutative diagram

T
KS+ //

��

T
KS+

��
T
KM,S+ // T

KM,S+

of Zp-algebras.

Proof. We need to check that the kernel of T
KS+ → T

KS+ maps trivially

into T
KM,S+ via T

KM,S+ . This follows from the previous lemma, recalling that

the kernels of T
KM,S+ → HomZ/pmZ(H i

c(X
M
KM ,Z/pmZ), H i(XM

KM ,Z/pmZ)) and

T
KM,S+ → EndZ/pmZ(H i

! (X
M
KM ,Z/pmZ)) agree. �
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In order to deduce the correct corollaries, we make the maps on Hecke

algebras explicit again. For a place v+ 6∈ S+ of F+, let

TKM
v+

= Zp[M0(F+
v+)//KM

v+ ],

where KM,S+
=
∏
KM
v+ and KM

v+ ⊂ M0(F+
v+) is a hyperspecial maximal com-

pact subgroup.

Lemma 5.2.5. Fix a place v 6∈ S of F lying above a place v+ 6∈ S+ of F+.

Let qv+ be the cardinality of the residue field of F+ at v+, and let qv be the

cardinality of the residue field of F at v. Let q
1/2
v+ , q

1/2
v ∈ Zp denote the image

of the positive square root in C under the chosen isomorphism C ∼= Qp.

(i) Assume F is totally real (so that v = v+). Then the unnormalized Satake

transform is the map

Tv[q1/2
v ] ∼= Zp[q1/2

v ][X±1
1 , . . . , X±1

n ]Snn(Z/2Z)n

→ TKM
v

[q1/2
v ] ∼= Zp[q1/2

v ][X±1
1 , . . . , X±1

n ]Sn

sending the set {X±1
1 , . . . , X±1

n } to {(q(n+1)/2
v X1)±1, . . . , (q

(n+1)/2
v Xn)±1}.

Recall the elements Ti,v ∈ Tv from Lemma 5.1.6. Let TMi,v ∈ TKM
v

[q
1/2
v ]

be the i-th elementary symmetric polynomial in X1, . . . , Xn. Then the

element q
i(n+1)/2
v TMi,v ∈ TKM

v
and

1− T1,vX + T2,vX
2 − · · · − T2n+1,vX

2n+1

7→(1−X)
(

1− q(n+1)/2
v TM

1,vX + q2(n+1)/2
v TM

2,vX
2 − · · ·+ (−1)nqn(n+1)/2

v TM
n,vX

n
)

×
(

1− q−(n+1)/2
v

TM
n−1,v

TM
n,v

X + q−2(n+1)/2
v

TM
n−2,v

TM
n,v

X2 − · · ·+ (−1)nq−n(n+1)/2
v

1

TM
n,v

Xn
)
.

(ii) Assume F is CM and v+ splits in F , with v̄ the complex conjugate place

of F ; then qv+ = qv . The unnormalized Satake transform is the map

Tv+ [q1/2
v ] ∼= Zp[q1/2

v ][X±1
1 , . . . , X±1

2n ]S2n

→ TKM
v+

[q1/2
v ] ∼= Zp[q1/2

v ][X±1
1 , . . . , X±1

n , Y ±1
1 , . . . , Y ±1

n ]Sn×Sn

sending {X1, . . . , X2n} to {qn/2v X1, . . . , q
n/2
v Xn, q

−n/2
v Y1, . . . , q

−n/2
v Yn}.

Recall the elements q
i/2
v Ti,v∈Tv+ from Lemma 5.1.6. If TMi,v ∈TKM

v+
[q

1/2
v ]

is the i-th elementary symmetric polynomial in X1, . . . , Xn, then the el-

ement q
i(n+1)/2
v TMi,v ∈ TKM

v+
. Moreover, TMi,v̄ ∈ TKM

v+
[q

1/2
v ] is the i-th ele-

mentary symmetric polynomial in Y −1
1 , . . . , Y −1

n , and

1− q1/2
v T1,vX + qvT2,vX

2 − . . .− qnv T2n,vX
2n

7→(1− q(n+1)/2
v TM

1,vX + q2(n+1)/2
v TM

2,vX
2 − · · ·+ (−1)nqn(n+1)/2

v TM
n,vX

n)

×(1− q−(n−1)/2
v

TM
n−1,v̄

TM
n,v̄

X + q−2(n−1)/2
v

TM
n−2,v̄

TM
n,v̄

X2 − · · ·+ (−1)nq−n(n−1)/2
v

1

TM
n,v̄

Xn).
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(iii) Assume F is CM and v is inert (in particular, unramified) in F ; then qv=

q2
v+ and q

1/2
v =qv+ ∈Zp. The unnormalized Satake transform is the map

Tv+ [q
1/2
v+ ] ∼= Zp[q

1/2
v+ ][X±1

1 , . . . , X±1
n ]Snn(Z/2Z)n

→ TKM
v+

[q
1/2
v+ ] ∼= Zp[q

1/2
v+ ][X±1

1 , . . . , X±1
n ]Sn

sending {X±1
1 , . . . , X±1

n } to {(qn/2v X1)±1, . . . , (q
n/2
v Xn)±1}. Recall the el-

ements Ti,v ∈ Tv from Lemma 5.1.6. Let TMi,v ∈ TKM
v+

[q
1/2
v+ ] be the i-th

elementary symmetric polynomial in X1, . . . , Xn. Then TMi,v ∈ TKM
v+

and

1− q1/2
v T1,vX + qvT2,vX

2 − . . .− qnv T2n,vX
2n

7→(1− q(n+1)/2
v TM

1,vX + q2(n+1)/2
v TM

2,vX
2 − · · ·+ (−1)nqn(n+1)/2

v TM
n,vX

n)

×(1− q−(n−1)/2
v

TM
n−1,v

TM
n,v

X + q−2(n−1)/2
v

TM
n−2,v

TM
n,v

X2 − · · ·+ (−1)nq−n(n−1)/2
v

1

TM
n,v

Xn).

Proof. This is an easy computation, left to the reader. �

To organize this information, the following definitions are useful. Using

that M = ResF/Q GLn, one has

T
KM,S+ =

⊗
v 6∈S

TMv ,

with
TMv [q1/2

v ] ∼= Zp[q1/2
v ][X±1

1 , . . . , X±1
n ]Sn ,

where qv is the cardinality of the residue field at v. One has the i-th elementary

symmetric polynomial TMi,v ∈ TMv [q
1/2
v ] in the X1, . . . , Xn, with q

i(n+1)/2
v TMi,v

∈ TMv . Define the polynomials

Pv(X) = 1− q(n+1)/2
v TM1,vX

+ q2(n+1)/2
v TM2,vX

2 − · · ·+ (−1)nqn(n+1)/2
v TMn,vX

n,

P∨v (X) = 1− q−(n+1)/2
v

TMn−1,v

TMn,v
X

+ q−2(n+1)/2
v

TMn−2,v

TMn,v
X2 − · · ·+ (−1)nq−n(n+1)/2

v

1

TMn,v
Xn

in TMv [X]. Note that P∨v (X) is the polynomial with constant coefficient 1

whose zeroes are the inverses of the zeroes of Pv(X). Moreover, if F is totally

real, define

P̃v(X) = (1−X)Pv(X)P∨v (X) ∈ TMv [X] = TKM
v

[X];

if F is CM, define

P̃v(X) = Pv(X)P∨vc(qvX) ∈ TKM
v+

[X],

where vc is the complex conjugate place and v+ is the place of F+ below v.
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Corollary 5.2.6. Let d be the complex dimension of XK . There exists

an ideal

I ⊂ T
KM,S+ = im(T

KM,S+ → EndZ/pmZ(H i
! (X

M
KM ,Z/pmZ)))

with I2(d+1) = 0, such that there exists a continuous h-dimensional determinant

D of GF,S with values in A = T
KM,S+/I , satisfying

D(1−X Frobv) = P̃v(X)

for all finite places v 6∈ S.

Here and in the following, we do not strive to give the best bound on the

nilpotence degree.

Proof. By Corollary 5.2.4 and the computations of Lemma 5.2.5, it is

enough to prove the similar result for

T
KS+ = im(T

KS+ → EndZ/pmZ(H i(XBS
K \XK ,Z/pmZ))).

Using the long exact sequence

· · · → H i(XK ,Z/pmZ)→ H i(XBS
K \XK ,Z/pmZ)→ H i+1

c (XK ,Z/pmZ),

it is enough to prove that in the Hecke algebras

T
KS+ (H i(XK ,Z/pmZ)) = im(T

KS+ → EndZ/pmZ(H i(XK ,Z/pmZ)),

T
KS+ (H i

c(XK ,Z/pmZ)) = im(T
KS+ → EndZ/pmZ(H i

c(XK ,Z/pmZ)),

there are ideals J1, J2 whose d + 1-th powers are 0, such that there are de-

terminants modulo J1, J2. Indeed, one will then get a determinant modulo

J1 ∩ J2, and elements of (J1 ∩ J2)d+1 ⊂ Jd+1
1 ∩ Jd+1

2 will induce endomor-

phisms of H i(XBS
K \XK ,Z/pmZ) that act trivially on the associated graded of

a two-step filtration; thus, (J1 ∩ J2)2(d+1) will give trivial endomorphisms of

H i(XBS
K \XK ,Z/pmZ).

By Poincaré duality, one reduces further to the case of the Hecke algebra

T
KS+ (H i

c(XK ,Z/pmZ)). We may assume that there is a rational prime ` 6= p,

` ≥ 3, such that all places of F+ above ` are in S+ (by adjoining them to S+,

without changing K); the desired result follows by varying `. Thus, we may fix

a normal compact open subgroup KpK
p
S+ ⊂ KS+ for which Kp

S+ is contained

in the level-`-subgroup of G′(Af ). Note that then also Kp
S+ ⊂ KS+ is a closed

normal subgroup. One has the Hochschild-Serre spectral sequence

H i
cont(KS+/Kp

S+ , ‹Hj

c,Kp

S+K
S+ (Z/pmZ))⇒ H i+j

c (XK ,Z/pmZ),
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equivariant for the T
KS+ -action.26 Let T

KS+ ,cl
be the topological ring T

KS+

defined as in Theorem 4.3.1 for m large enough. Then, by Theorem 4.3.1,

T
KS+ ,cl

acts continuously on the E2-term of this spectral sequence. In par-

ticular, it acts continuously on the E∞-term, so that there is a filtration of

H i
c(XK ,Z/pmZ) by at most d + 1 terms (cf. Corollary 4.2.2), such that the

associated action on the graded quotients is continuous. Consider the ideal

J ⊂ T
KS+ (H i

c(XK ,Z/pmZ)) of elements acting trivially on the associated

graded quotients. Then Jd+1 = 0, and we are reduced to showing that there

is a determinant modulo J .

But now A = T
KS+ (H i

c(XK ,Z/pmZ))/J is a discrete quotient of T
KS+ ,cl

,

so one gets the desired determinant from Corollary 5.1.11. �

Let us rephrase this corollary in more intrinsic terms, changing notation

slightly.

Corollary 5.2.7. Let F be a totally real or CM field, with totally real

subfield F+ ⊂ F . Fix an integer n ≥ 1. If F is totally real, define h = 2n+ 1

and d = [F : Q](n2 + n)/2; if F is CM, define h = 2n and d = [F+ : Q]n2.

Let S be a finite set of finite places of F invariant under complex conjugation,

containing all places above p and all places that are ramified above F+. Let

K ⊂ GLn(AF,f ) be a sufficiently small27 compact open subgroup of the form

K = KSK
S , where KS ⊂ GLn(AF,S) is compact open and torsion-free, and

KS =
∏
v 6∈S GLn(OFv) ⊂ GLn(ASF,f ). Let

TF,S =
⊗
v 6∈S

Tv =
⊗
v 6∈S

Zp[GLn(Fv)//GLn(OFv)]

be the abstract Hecke algebra, and let

TF,S(K, i,m) = im(TF,S → EndZ/pmZ(H i
! (XK ,Z/pmZ))).

Here,

XK = GLn(F )\[(GLn(F ⊗Q R)/R>0K∞)×GLn(AF,f )/K]

denotes the locally symmetric space associated with GLn/F , where K∞ ⊂
GLn(F ⊗Q R) is a maximal compact subgroup. Then there is an ideal I ⊂
TF,S(K, i,m) with I2(d+1) = 0, for which there is a continuous h-dimensional

determinant D̃ of GF,S with values in TF,S(K, i,m)/I , satisfying

D̃(1−X Frobv) = P̃v(X)

for all places v 6∈ S.28

26For the equivariance, reduce to a finite cover with group KS+/K′pK
p

S+ , passing to a

colimit afterwards. For a finite cover, equivariance follows from compatibility of trace maps

with base change.
27This can always be ensured by making it smaller at one place v ∈ S not dividing p.
28For the definition of P̃v(X), cf. the paragraph before Corollary 5.2.6.
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Proof. This is Corollary 5.2.6, noting that any K as in the statement can

be realized as a KM in the notation of Corollary 5.2.6. �

5.3. Divide and conquer. Let the situation be as in Corollary 5.2.7. Thus,

F is a number field, which is totally real or CM, p is a prime number, n ≥ 1

some integer, and S is a finite set of finite places of F invariant under complex

conjugation, containing all places dividing p and all places that are ramified

over F+. Moreover, fix a sufficiently small K = KSK
S ⊂ GLn(AF,f ) such that

KS =
∏
v 6∈S GLn(OFv) ⊂ GLn(ASF,f ). Let

TF,S(K, i,m) = im(TF,S → EndZ/pmZ(H i
! (XK ,Z/pmZ))).

In this section, we prove the following theorem.

Theorem 5.3.1. There exists an ideal J ⊂ TF,S(K, i,m), J4(d+1) = 0,

such that there is a continuous n-dimensional determinant D of GF,S with

values in TF,S(K, i,m)/J satisfying

D(1−X Frobv) = Pv(X)

for all places v 6∈ S.

Proof. Note that A0 = TF,S(K, i,m) is a finite ring. Let A = A0 ⊗Zp
W (Fp). It suffices to prove that there is a determinant (with the stated prop-

erties) with values in A/J for some ideal J ⊂ A with J4(d+1) = 0.

By Corollary 5.2.7, there exists a determinant D̃1 with values in A/I1,

I
2(d+1)
1 = 0, satisfying

D̃1(1−X Frobv) = P̃v(X)

for all v 6∈ S. We will use this result for many cyclotomic twists, roughly

following an idea used in [34]. Let χ : GF,S → W (Fp)× be any continuous

character of odd order prime to p. Define

Pv,χ(X) = Pv(X/χ(Frobv)) ∈ A[X].

Let P∨v,χ(X) = P∨v (χ(Frobv)X) be the polynomial with constant coefficient 1

whose zeroes are the inverses of the zeroes of Pv,χ(X). Define

P̃v,χ(X) = (1−X)Pv,χ(X)P∨v,χ(X)

in case F is totally real and

P̃v,χ(X) = Pv,χ(X)P∨vc,χ(qvX)

in case F is CM. We claim that there is a determinant D̃χ with values in A/Iχ,

I
2(d+1)
χ = 0, satisfying

D̃χ(1−X Frobv) = P̃v,χ(X)

for all v 6∈ S.
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Indeed, the character χ : GF,S → W (Fp)× corresponds by class-field the-

ory to a continuous character ψ : F×\A×F →W (Fp)×. As it is odd, it is trivial

at all archimedean primes, i.e., factors through a character ψ : F×\A×F,f →
W (Fp)×. Also, it is unramified away from S, and its order is prime to p. Thus,

one can find a normal compact open subgroup K ′ = K ′SK
S ⊂ K = KSK

S of

index [K : K ′] prime to p, such that ψ is trivial on det(K ′). Because [K : K ′]

is prime to p, the map

H i
! (XK ,Z/pmZ)→ H i

! (XK′ ,Z/pmZ)

is split injective. The ψ-isotypic component

H0(XK′ ,W (Fp))[ψ]

is 1-dimensional (as π0(XK′) ∼= F×\A×F,f/detK ′). The cup-product gives a

map

H i
! (XK ,Z/pmZ)⊗Zp H

0(XK′ ,W (Fp))[ψ]→ H i
! (XK′ ,W (Fp)/pm),

which is injective, as cup-product with H0(XK′ ,W (Fp))[ψ−1] maps this back

to

H i
! (XK ,W (Fp)/pm) ⊂ H i

! (XK′ ,W (Fp)/pm).

Applying Corollary 5.2.7 to the Hecke algebra corresponding to

H i
! (XK ,Z/pmZ)⊗Zp H

0(XK′ ,W (Fp))[ψ] ⊂ H i
! (XK′ ,W (Fp)/pm)

will produce the desired determinant D̃χ with values in (TF,S(K, i,m) ⊗Zp

W (Fp))/Iχ for some ideal Iχ with I
2(d+1)
χ = 0.

Our first aim is to prove that there is an ideal I0 ⊂ A0 with I
4(d+1)
0 = 0

such that there is a continuous function GF,S → A0/I0[X] : g 7→ Pg with

PFrobv = Pv for all v 6∈ S. This will be done in several steps. Let A be

the reduced quotient of A, which is a finite product of copies of Fp. Let

P v(X) ∈ A[X] be the image of Pv(X).

Lemma 5.3.2. There is a finite extension L0/F , Galois over F+ (thus

over F ), such that for all places v 6∈ S that split in L0, P v(X) = P vc(X) =

(1−X)n and qv ≡ 1 mod p in case F is CM.

Proof. Look at the continuous determinant

D̃1 : Fp[GF,S ]→ Fp.

It factors over Gal(L′0/F ) for some finite Galois extension L′0/F (unramified

outside S), which we may assume to be Galois over F+. It follows that for all

v 6∈ S that split in L′0,

(1−X)2n+1 = D̃1(1−X Frobv) = (1−X)P v(X)P
∨
v (X)
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if F is totally real. In particular, P v(X) divides (1 − X)2n+1, has constant

coefficient 1 and is of degree n, thus P v(X) = (1−X)n; we may take L0 = L′0.

If F is CM, then for all v 6∈ S that split in L′0,

(1−X)2n = D̃1(1−X Frobv) = P v(X)P
∨
vc(qvX).

Again, one sees that P v(X) = (1 − X)n. If one takes L0 = L′0(ζp), where ζp
is a primitive p-th root of unity, then for all v that split in L0, one has qv ≡ 1

mod p, so that one gets also P vc(X) = (1−X)n. �

Next, we define I0 ⊂ A0 with I
4(d+1)
0 = 0. For any odd rational prime

` 6= p, let F cycl`/F be the cyclotomic Z`-extension. Let S` = S ∪ {v|`} (and

similarly for any set of rational primes). For any character χ : Z` → W (Fp)×,

we have an ideal Iχ ⊂ A, with I
2(d+1)
χ = 0, such that there is a continuous

determinant D̃χ of GF,S` with values in A/Iχ. The ideal Ĩχ = I1 + Iχ ⊂ A

satisfies Ĩ
4(d+1)
χ = 0. The intersection Ĩ0,χ = Ĩχ ∩ A0 ⊂ A0 is an ideal of the

finite ring A0. Thus, there is some I0,` ⊂ A0 with I
4(d+1)
0,` = 0 such that for

infinitely many χ, Ĩ0,χ = I0,`. Finally, there is some I0 ⊂ A0 with I
4(d+1)
0 = 0

such that I0 = I0,` for infinitely many `.

Now fix any two sufficiently large distinct rational primes `, `′ 6= p with

I0,` = I0,`′ = I0 such that [L0 : F ] is not divisible by ` and `′. Let L∞` be

the maximal pro-p-extension of L0 ·F cycl` that is unramified outside S`. Thus,

there is a quotient GF,S` → Gal(L∞`/F ).

Lemma 5.3.3. For any character χ : Gal(F cycl`/F ) ∼= Z` →W (Fp)×, the

determinant D̃χ of GF,S` factors over Gal(L∞`/F ).

Proof. Over A, the determinant D̃χ corresponds to a continuous semisim-

ple representation

πχ : GF,S` → GLh(A)

by [19, Th. 2.12]. For all g ∈ ker(GF,S` → Gal(L0 · F cycl`/F )), it satisfies

det(1−Xg|πχ) = (1−X)h

by Lemma 5.3.2. It follows that these elements g are mapped to elements of

p-power order, so that πχ factors over Gal(L∞`/F ). Now apply [19, Lemma

3.8]. �

Lemma 5.3.4. There is a unique continuous function

g 7→ Pg : Gal(L∞`/F ) \Gal(L∞`/F cycl`)→ A0/I0[X]

such that PFrobv = Pv for all v 6∈ S`.

Proof. Fix any g ∈ Gal(L∞`/F ) \Gal(L∞`/F cycl`), and fix a character

χ : Gal(F cycl`/F ) ∼= Z` →W (Fp)×
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such that Ĩ0,χ = I0 and χ(g)2j 6= 1 for j = 1, . . . , n. As g 6∈ Gal(L∞`/F cycl`),

only finitely many χ violate the second condition; as infinitely many χ sat-

isfy the first, some suitable χ exists. There is an open neighborhood U ⊂
Gal(L∞`/F ) \Gal(L∞`/F cycl`) of g such that χ and the determinants

D̃1 : A[Gal(L∞`/F )]→ A/I1, D̃χ : A[Gal(L∞`/F )]→ A/Iχ

are constant on U . In particular, the polynomials

P̃v(X) mod I1, P̃v,χ(X) mod Iχ

are constant on U . It is enough to see that Pv(X) mod I0 is constant on U . We

do only the totally real case; the CM case is similar. Recall that if Frobv ∈ U ,

then

P̃v(X) = (1−X)Pv(X)P∨v (X), P̃v,χ(X) = (1−X)Pv(X/χ(g))P∨v (χ(g)X).

Both are constant on U modulo Ĩχ = I1 + Iχ. This implies that

Pv(X)P∨v (X), Pv(X/χ(g))P∨v (χ(g)X)

are constant on U modulo Ĩχ. Let us forget that Qv = P∨v is determined by

Pv. Write

Pv(X) = 1 + a1(v)X + · · ·+ an(v)Xn, Qv(X) = 1 + b1(v)X + · · ·+ bn(v)Xn.

By induction on j, we prove that aj(v) and bj(v) are constant on U modulo Ĩχ.

Calculating the coefficient of Xj in Pv(X)Qv(X) and Pv(X/χ(g))Qv(χ(g)X)

gives only contributions that are constant on U modulo Ĩχ, except possibly

the sum aj(v) + bj(v) in the first product and χ(g)−jaj(v) + χ(g)jbj(v) in the

second product. Thus, aj(v)+bj(v) and χ(g)−2jaj(v)+bj(v) are constant on U

modulo Ĩχ. Taking the difference, we find that (1− χ(g)−2j)aj(v) is constant

on U modulo Ĩχ, which implies that aj(v) is constant on U modulo Ĩχ, as

1−χ(g)−2j is a unit by assumption on χ. Thus, bj(v) = (aj(v) + bj(v))−aj(v)

is also constant on U modulo Ĩχ.

As both aj(v), bj(v) ∈ A0, we find that they are constant modulo A0∩Ĩχ =

Ĩ0,χ = I0, as desired. �

Corollary 5.3.5. There exists a unique continuous function

g 7→ Pg : GF,S → A0/I0[X]

such that PFrobv = Pv for all v 6∈ S.

Proof. Let M/F be the extension for which GF,S`,`′ = Gal(M/F ). Ap-

plying Lemma 5.3.4 for ` and `′ individually, we see that there are continuous

functions

g 7→ Pg : GF,S`,`′ \Gal(M/F cycl`)→ A0/I0[X]
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and

g 7→ Pg : GF,S`,`′ \Gal(M/F cycl`′ )→ A0/I0[X].

By uniqueness, they glue to a continuous function

g 7→ Pg : GF,S`,`′ \Gal(M/F cycl` · F cycl`′ )→ A0/I0[X].

But the map

GF,S`,`′ \Gal(M/F cycl` · F cycl`′ )→ Gal(L∞`/F )

is surjective, as F cycl`′ is linearly disjoint from L∞` (because one extension is

pro-`′, whereas the other is pro-prime-to-`′). To check whether the continuous

function

g 7→ Pg : Gal(L∞`/F ) \Gal(L∞`/F cycl`)→ A0/I0[X]

extends continuously to some g ∈ Gal(L∞`/F cycl`), one can lift g to some

g̃ ∈ GF,S`,`′ \Gal(M/F cycl` · F cycl`′ )

and use that the continuous function g 7→ Pg exists near g̃. This shows that

there is a continuous function

GF,S` → Gal(L∞`/F )→ A0/I0[X]

interpolating PFrobv for v 6∈ S`. Similarly, there is a continuous function

GF,S`′ → A0/I0[X]

interpolating PFrobv for v 6∈ S`′ . By uniqueness, they give the same function

on GF,S`,`′ , which will thus factor over GF,S and interpolate PFrobv for all

v 6∈ S. �

Thus, there exists a finite Galois extension F̃ /F unramified outside S with

Galois group G and a function

g 7→ Pg : G→ A0/I0[X]

such that PFrobv = Pv for all v 6∈ S. By adjoining a primitive p-power root of

1 to F̃ , we may assume that there is also a map g 7→ qg ∈ A0/I0 interpolating

Frobv 7→ qv. Also, in the CM case, we may assume that F̃ /F+ is Galois, so

that there is map g 7→ gc on conjugacy classes in G, given by the outer action

of Gal(F/F+) = {1, c}. Choose some (new) rational prime ` 6= p, ` ≥ 3, such

that ` does not divide [F̃ : F ]; in particular, F̃ is linearly disjoint from F cycl` .

Lemma 5.3.6. There is an ideal I ⊂ A[T±1] containing I0 · A[T±1] with

I4(d+1) = 0 and an h-dimensional determinant (i.e., a multiplicative A-poly-

nomial law, homogeneous of degree h)

D̃I : A[G][V ±1]→ A[T±1]/I
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such that for all g ∈ G, k ∈ Z,

D̃I(1−XV kg) = (1−X)Pg(X/T
k)P∨g (T kX)

if F is totally real, resp.

D̃I(1−XV kg) = Pg(X/T
k)P∨gc(T

kqgX)

if F is CM.

Proof. Embed A[G][V ±1] ↪→ A[G× Z`] by mapping V to (1, 1) ∈ G× Z`,
where 1 ∈ G is the identity and 1 ∈ Z` is the tautological topological generator.

One knows that for any character χ : Z` →W (Fp)×, one has a determinant

A[G][V ±1]→ A[G× Z`] = A[Gal(F̃ · F cycl`/F )]→ A/Iχ

which, if D̃I exists, agrees with the composite of D̃I with A[T±1] → A/Iχ
sending T to χ(1). However, the map

A[T±1]→
∏

χ:Z`→W (Fp)×

Ĩ0,χ=I0

A

is injective. Let I ⊂ A[T±1] be the preimage of
∏
Ĩχ; then I4(d+1) = 0 and

I0 ·A[T±1] ⊂ I. One knows that the determinant

D̃′ : A[G][V ±1]→
∏

χ:Z`→W (Fp)×

Ĩ0,χ=I0

A/Ĩχ

exists and that for all g ∈ G, k ∈ Z,

D̃′(1−XV kg) ∈ (A[T±1]/I)[X] ⊂
∏

χ:Z`→W (Fp)×

Ĩ0,χ=I0

A/Ĩχ[X].

Thus, by [19, Cor. 1.14], D̃′ factors through a determinant D̃ : A[G][V ±1] →
A[T±1]/I, as desired. �

Lemma 5.3.7. There exists an ideal J ⊂ A, I0 · A ⊂ J , with J4(d+1) = 0

and an h-dimensional determinant

D̃ : A[G][V ±1]→ (A/J)[T±1]

such that for all g ∈ G, k ∈ Z,

D̃(1−XV kg) = (1−X)Pg(X/T
k)P∨g (T kX)

if F is totally real, resp.

D̃(1−XV kg) = Pg(X/T
k)P∨gc(T

kqgX)

if F is CM.
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Proof. Take I ⊂ A[T±1] as in the last lemma, giving D̃I . Let a ∈ Z be

any integer, and look at the map A[G][V ±1] → A[G][V ±1] mapping V to V a.

One gets an h-dimensional determinant

D̃I,a : A[G][V ±1]→ A[G][V ±1]→ A[T±1]/I.

Let Ia = {f(T ) ∈ A[T±1] | f(T a) ∈ I}, an ideal of A[T±1]. Then the map

T 7→ T a induces an injection A[T±1]/Ia ↪→ A[T±1]/I, and by checking on

characteristic polynomials and using [19, Cor. 1.14], one sees that D̃I,a factors

through a determinant

D̃Ia : A[G][V ±1]→ A[T±1]/Ia,

which satisfies the relations imposed on D̃. Let I ′ =
⋂
a∈Z Ia. Then one has

an injection

A[T±1]/I ′ →
∏
a

A[T±1]/Ia.

By taking the product, one has a determinant with values in
∏
aA[T±1]/Ia; by

checking on characteristic polynomials and using [19, Cor. 1.14] once more, one

gets a determinant with values in A[T±1]/I ′. Let J ⊂ A be the ideal generated

by all coefficients of elements of I ′. Certainly, one gets a determinant with

values in (A/J)[T±1] by composition. Thus, to finish the proof, it suffices to

see that J4(d+1) = 0. Thus, take any elements f1, . . . , f4(d+1) ∈ I ′ ⊂ A[T±1]

and write

fi(T ) =
∑
j∈Z

ci,jT
j ,

with only finitely many ci,j nonzero. Choose integers a1 � a2 � · · · � a4(d+1).

One knows that fi(T
ai) ∈ I and I4(d+1) = 0; thus,

0 =

4(d+1)∏
i=1

fi(T
ai) =

4(d+1)∏
i=1

(∑
j

ci,jT
aij
)
.

If one has chosen the ai sufficiently generic, every power of T will occur only

once when factoring this out. This implies any product c1,j1 · · · c4(d+1),j4(d+1)
is

zero, showing that J4(d+1) = 0, as desired. �

Finally, we are reduced to the following lemma on determinants, with

R = A/J . �

Lemma 5.3.8. Let G be a group and R be some ring. For any m ∈ Z, let

a map

g 7→ P (m)
g (X) : G→ R[X]

be given, taking values in polynomials of degree nm with constant coefficient 1.

We assume that nm = 0 for all but finitely many m. Let n =
∑
m∈Z nm, and
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assume that there is an n-dimensional determinant

D̃ : R[G][V ±1]→ R[T±1]

such that for all g ∈ G, k ∈ Z,

D̃(1− V kXg) =
∏
m∈Z

P (m)
g (T kmX) ∈ R[T±1][X].

Then for all m ∈ Z, there exists an nm-dimensional determinant D(m) : R[G]

→ R such that for all g ∈ G,

D(m)(1−Xg) = P (m)
g (X).

Remark 5.3.9. Intuitively, the lemma says the following, up to replacing

‘representation’ by ‘determinant.’ Assume you want to construct representa-

tions πm, m ∈ Z, of G, with prescribed characteristic polynomials. Assume

you know that for any character χ of Z, the representation⊕
m∈Z

πm ⊗ χm

of G×Z exists; note that R[G][V ±1] = R[G×Z]. Then all the representations

πm exist.

Proof. We need the following lemma.

Lemma 5.3.10. Let S be a (commutative) ring and Q ∈ S[T±1][[X]] be

any polynomial such that Q ≡ 1 mod X . Then there is at most one way to

write

Q =
∏
m∈Z

Qm

with Qm ∈ S[[XTm]], Qm ≡ 1 mod X , almost all equal to 1. Moreover, if

Q ∈ S[T±1][X], then all Qm ∈ S[XTm].

Proof. Given any two such presentations Q =
∏
Qm =

∏
Q′m, one may

take the quotient and thus reduce to the case Q = 1. Let k be minimal such

that not all Qm are ≡ 1 mod Xk. Then Qm ≡ 1 + (XTm)kam mod Xk+1 for

some am ∈ S, almost all 0. But then

1 = Q =
∏
m∈Z

Qm ≡ 1 +Xk
∑
m∈Z

Tmkam mod Xk+1.

No cancellation can occur, so am = 0 for all m ∈ Z, a contradiction.

For the final statement, one may replace X by XTm0 for some m0, so that

we may assume that Qm = 1 for m < 0. In that case, all Qm ∈ S[[X,T ]], so

the same is true for Q, and we may reduce modulo T . Then one finds that

Q ≡ Q0 mod T so, in particular, Q0 ∈ S[X]. Let Q′ =
∏
m>0Qm. We claim

that Q′ ∈ S[T±1][X]; then an inductive argument will finish the proof.
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Note that Q′ ∈ S[[X,XT ]] so, in particular Q′ ∈ S[T ][[X]], with Q′Q0 ∈
S[T,X]. Writing

Q′ =
∑
a≥0

Q′a(T )Xa,

with Q′a(T ) ∈ S[T ], we see that for a sufficiently large, Q′aQ0 = 0. As Q0 ∈
S[T ] has constant coefficient 1, this implies that Q′a = 0, so indeed Q′ ∈
S[T,X]. �

Lemma 5.3.11. For any R-algebra S, there are unique multiplicative maps

D
(m)
0 : 1 + US[G][[U ]]→ 1 + US[[U ]]

such that for all f(U) ∈ 1 + US[G][[U ]],

D̃(f(XV )) =
∏
m∈Z

D
(m)
0 (f(XTm)) ∈ S[T±1][[X]].

It satisfies

D
(m)
0 (1− Uaxg) = P (m)

g (Uax)

for all a ≥ 1, x ∈ S, and g ∈ G. Moreover, D
(m)
0 maps 1 + US[G][U ] into

1 + US[U ].

Proof. Lemma 5.3.10 implies uniqueness of each value D
(m)
0 (f(U)) indi-

vidually. Moreover, uniqueness implies multiplicativity, by multiplicativity of

D̃. For existence, note that the left-hand side D̃(f(XV )) is multiplicative

in f . It follows that if the desired decomposition exists for two elements f

and f ′, then it also exists for their product. Moreover, the set of elements

for which such a decomposition exists is U -adically closed. As any element

f ∈ 1 + US[G][[U ]] can (nonuniquely) be written as an infinite product

f =
∞∏
j=1

(1− Uajxjgj)

for certain aj ≥ 1, aj →∞, xj ∈ S and gj ∈ G, one reduces to the case that

f = 1− Uaxg

with a ≥ 1, x ∈ S, and g ∈ G. In that case,

D̃(1− (XV )axg) =
∏
m∈Z

P (m)
g ((XTm)ax)

by the defining equation of D̃. This gives the desired decomposition in this

case and proves the formula for D
(m)
0 (1− Uaxg).

The final statement follows from the second half of Lemma 5.3.10. �
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Now, for any R-algebra S, we can define

D(m)(x) = D
(m)
0 (1 + U(x− 1))|U=1 ∈ S

for any x ∈ S[G]. This defines a polynomial map D(m) : R[G]→ R. It satisfies

D(m)(1− xg) = D
(m)
0 (1− Uxg)|U=1 = P (m)

g (Ux)|U=1 = P (m)
g (x)

for x ∈ S, g ∈ G. We claim that D(m) is multiplicative, i.e.,

D(m)((1− x)(1− y)) = D(m)(1− x)D(m)(1− y)

for all x, y ∈ S[G]. The desired equation reads

D
(m)
0 (1− U(x+ y) + Uxy)|U=1 = D

(m)
0 (1− Ux)|U=1D

(m)
0 (1− Uy)|U=1.

Write x =
∑
g∈A xgg, y =

∑
g∈A ygg for some finite subset A ⊂ G. We may

reduce to the universal case S = R[Xg, Yg]g∈A, or also to S = R[[Xg, Yg]]g∈A.

Thus it is enough to do it for all S = R[[Xg, Yg]]g∈A/(Xg, Yg)
n. In other words,

we may assume that the ideal I ⊂ S generated by all xg, yg is nilpotent. In

that case, x, y ∈ S[G] are nilpotent.

In particular, 1−Ux ∈ S[G][U ] is invertible, with inverse 1+Ux+U2x2 +

· · · , where only finitely many terms occur, as x ∈ S[G] is nilpotent. Similarly,

1−Uy ∈ S[G][U ] is invertible. Using multiplicity of D
(m)
0 , the desired equation

reads

D
(m)
0

(
(1− U(x+ y) + Uxy)(1 + Ux+ U2x2 + · · · )

× (1 + Uy + U2y2 + · · · )
)
|U=1 = 1.

Letting f = (1−U(x+y)+Uxy)(1+Ux+U2x2 + · · · )(1+Uy+U2y2 + · · · ) ∈
1 + US[G][U ], one reduces multiplicativity of D(m) to the following lemma.

Lemma 5.3.12. Let I ⊂ S be a nilpotent ideal, and let f ∈ 1 + US[G][U ]

such that f ≡ 1 mod I and f |U=1 = 1. Then

D
(m)
0 (f)|U=1 = 1.

Proof. We claim that any such f can be written as a product of terms

(1− Ua+1zg)/(1− Uazg)

for a ≥ 1, z ∈ I, and g ∈ G. Note that, as before, the inverse of 1 − Uazg ∈
S[G][U ] exists, as z is nilpotent. Assume first that I2 = 0. As f−1 ∈ U ·I[G][U ]

and f |U=1 = 1, we have f − 1 ∈ U(U − 1) · I[G][U ], so we may write

f = 1−
∑
a≥1

∑
g∈G

(Ua+1 − Ua)zg,ag
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with zg,a ∈ I. Using I2 = 0, this rewrites as

f =
∏

a≥1,g∈G
(1− Ua+1zg,ag)/(1− Uazg,ag),

as desired. In general, this shows that after dividing f by terms of the form

(1− Ua+1zg)/(1− Uazg),

one gets an element f ′ with the same properties, and f ′ ≡ 1 mod I2. The

nilpotence degree of I2 is smaller than the nilpotence degree of I, so one gets

the result by induction.

Using multiplicativity of D
(m)
0 , it is now enough to prove that

D
(m)
0

Ä
(1− Ua+1zg)/(1− Uazg)

ä
|U=1 = 1

for all a ≥ 1, z ∈ I, and g ∈ G. But by Lemma 5.3.11,

D
(m)
0 (1− Ua+1zg)|U=1 = P (m)

g (Ua+1z)|U=1 = P (m)
g (z) = P (m)

g (Uaz)|U=1

= D
(m)
0 (1− Uazg)|U=1,

finishing the proof of the lemma. �

It remains to verify that D(m) is homogeneous of degree nm. For this,

observe the following general lemma on determinants, which shows that ho-

mogeneity of some degree is automatic.

Lemma 5.3.13. Let R[G] → R be a multiplicative R-polynomial law.

Then for some integer N , there is a decomposition R = R0×· · ·×RN ×R∞ of

R into direct factors such that for 0 ≤ d ≤ N , the induced multiplicative Rd-

polynomial law Rd[G]→ Rd is homogeneous of degree d, i.e., is a determinant

of dimension d, and such that R∞[G]→ R∞ is constant 0.

Proof. By restriction, we get a multiplicative R-polynomial law R→ R. It

suffices to see that after a decomposition into direct factors, this is of the form

x 7→ xd for some integer d ≥ 0 or constant 0. Applying the polynomial law

to T ∈ R[T ] gives an element f(T ) ∈ R[T ], which by multiplicativity satisfies

f(UT ) = f(U)f(T ). Let

f(T ) = adT
d + ad+1T

d+1 + · · ·+ aNT
N ,

where ad 6= 0. Looking at the coefficient of UdT d in f(UT ) = f(U)f(T )

shows that a2
d = ad, so after a decomposition into a direct product, we may

assume that either ad = 1 or ad = 0. In the second case, we can continue this

argument with a higher coefficient of f to arrive eventually in the case ad = 1

(or f(T ) = 0, in which case the polynomial law is constant 0). Thus, assume

that ad = 1. Looking at the coefficient of UdT d+i in f(UT ) = f(U)f(T ), we

see that 0 = ad+i for all i ≥ 1, thus f(T ) = T d, and the polynomial law is

indeed given by x 7→ xd. �
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Note that the degree of each P
(m)
g (X) is at most nm, but the product∏

m∈Z P
(m)
g (X) has degree exactly n =

∑
m∈Z nm (as it is the characteristic

polynomial of g in D̃); thus, each P
(m)
g (X) has degree exactly nm, and it

follows that D(m) is homogeneous of degree nm. �

5.4. Conclusion. Finally, we can state our main result. Let F be a totally

real or CM field with totally real subfield F+ ⊂ F , n ≥ 1 some integer, p some

rational prime, and S a finite set of finite places of F , stable under complex

conjugation, containing all places above p, and all places that are ramified

over F+. Let GF,S be the Galois group of the maximal extension of F that is

unramified outside S.

Let

K ⊂
∏
v

GLn(OFv) ⊂ GLn(AF,f )

be a compact open subgroup of the form K = KSK
S , where KS is any compact

open subgroup of
∏
v∈S GLn(OFv) is any compact open subgroup and KS =∏

v 6∈S GLn(OFv) ⊂ GLn(ASF,f ). We get the locally symmetric space

XK = GLn(F )\[(GLn(F ⊗Q R)/R>0K∞)×GLn(AF,f )/K],

where K∞ ⊂ GLn(F ⊗Q R) is a maximal compact subgroup. If K is not

sufficiently small, we regard this as a ‘stacky’ object, so that (by definition)

XK′ → XK is a finite covering map of degree [K : K ′] for any open subgroup

K ′ ⊂ K.

Moreover, fix an algebraic representation ξ of ResOF /Z GLn with coeffi-

cients in a finite free Zp-module Mξ. This defines a local system Mξ,K of

Zp-modules on XK for any K as above.

Let

TF,S =
⊗
v 6∈S

Tv, Tv = Zp[GLn(Fv)//GLn(OFv)]

be the abstract Hecke algebra. By the Satake isomorphism, we have a canonical

isomorphism

Tv[q1/2
v ] ∼= Zp[q1/2

v ][X±1
1 , . . . , X±1

n ]Sn ,

where qv is the cardinality of the residue field of F at v. We let Ti,v ∈ Tv[q
1/2
v ] be

the i-th symmetric polynomial in X1, . . . , Xn; then q
i(n+1)/2
v Ti,v ∈ Tv. Define

the polynomial

Pv(X) = 1− q(n+1)/2
v T1,vX

+ q2(n+1)/2
v T2,vX

2 − · · ·+ (−1)nqn(n+1)/2
v Tn,vX

n ∈ Tv[X].

Recall that there is a canonical action of TF,S on

H i(XK ,Mξ,K).
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Theorem 5.4.1. There exists an integer N = N([F : Q], n) depending

only on [F : Q] and n, such that for any compact open subgroup K = KSK
S ⊂

GLn(AF,f ) as above, algebraic representation ξ, and any integers i,m ≥ 0, the

following is true. Let

TF,S(K, ξ, i,m) = im(TF,S → EndZp/pm(H i(XK ,Mξ,K/p
m))).

Then there is an ideal I ⊂ TF,S(K, ξ, i,m) with IN = 0 such that there is

an n-dimensional continuous determinant D of GF,S with values in the Hecke

algebra TF,S(K, ξ, i,m)/I , satisfying

D(1−X Frobv) = Pv(X)

for all v 6∈ S.

Proof. Fix a sufficiently small normal compact open subgroup K ′ ⊂ K

such thatMξ,K′/p
m is trivial; the second condition can be ensured by requiring

that the image of K ′ in
∏
v|p GLn(Fv) is contained in {g ∈ ∏v|p GLn(OFv) |

g ≡ 1 mod pm}. One has the Hochschild-Serre spectral sequence

H i(K/K ′, Hj(XK′ ,Mξ,K′/p
m))⇒ H i+j(XK ,Mξ,K/p

m).

This reduces us to the case that K is sufficiently small and that ξ is trivial. In

that case, Mξ,K/p
m is a direct sum of copies of Z/pmZ.

Thus, we have to consider

TF,S(K, i,m) = im(TF,S → EndZ/pmZ(H i(XK ,Z/pmZ))).

Using the Borel-Serre compactification XBS
K , we have the long exact sequence

of TF,S-modules

· · · → H i
c(XK ,Z/pmZ)→ H i(XK ,Z/pmZ)→ H i(XBS

K \XK ,Z/pmZ)→ · · · .

It is an easy exercise to express H i(XBS
K \XK ,Z/pmZ) in terms of the locally

symmetric spaces for GLn′/F , with n′ < n; cf. [18, §3] for more discussion of

this point. Thus, by induction, the determinants exist for

im(TF,S → EndZ/pmZ(H i(XBS
K \XK ,Z/pmZ)))

and, in particular, for

TF,S(K, i,m, ∂)

= im(TF,S → EndZ/pmZ(im(H i(XK ,Z/pmZ)→ H i(XBS
K \XK ,Z/pmZ)))),

modulo some nilpotent ideal I∂ ⊂ TF,S(K, i,m, ∂) of nilpotence degree bounded

by [F : Q] and n. On the other hand, by Theorem 5.3.1, there is a nilpotent

ideal

I! ⊂ TF,S(K, i,m, !)

= im(TF,S → EndZ/pmZ(im(H i
c(XK ,Z/pmZ)→ H i(XK ,Z/pmZ))))
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of nilpotence degree bounded by [F : Q] and n, such that the determinants

exist with values in TF,S(K, i,m, !)/I!. But the kernel of the map

TF,S(K, i,m)→ TF,S(K, i,m, !)× TF,S(K, i,m, ∂)

is a nilpotent ideal with square 0. Thus, the kernel I of

TF,S(K, i,m)→ TF,S(K, i,m, !)/I! × TF,S(K, i,m, ∂)/I∂

is a nilpotent ideal with nilpotence degree bounded by [F : Q] and n, and by

[19, Cor. 1.14], one finds that the determinant D with values in TF,S(K, i,m)/I

exists. This finishes the proof. �

Let us state some corollaries, where the determinants give rise to actual

representations. We start with the following result on classical automorphic

representations, which has recently been proved by Harris-Lan-Taylor-Thorne,

[34]. Recall that we have fixed an isomorphism C ∼= Qp.

Corollary 5.4.2. Let π be a cuspidal automorphic representation of

GLn(AF ) such that π∞ is regular L-algebraic and such that πv is unramified

at all finite places v 6∈ S. Then there exists a unique continuous semisimple

representation

σπ : GF,S → GLn(Qp)

such that for all finite places v 6∈ S, the Satake parameters of πv agree with the

eigenvalues of σπ(Frobv).

Proof. Note that π′ = π|·|(n+1)/2 is regular C-algebraic, i.e., cohomological

(cf. [21, Th. 3.13, Lemma 3.14]). Thus, there exists some algebraic representa-

tion ξ of ResF/Q GLn with coefficients in C ∼= Qp (which can be extended to an

algebraic representation of ResOF /Z GLn with coefficients in Zp, still denoted

ξ) such that π′ occurs in

H i(X̃K ,Mξ,K)⊗Zp C

for some sufficiently small level K = KSK
S and integer i. Here,

X̃K = GLn(F )\[(GLn(F ⊗Q R)/R>0K
◦
∞)×GLn(AF,f )/K],

where K◦∞ ⊂ K∞ is the connected component of the identity. Thus, X̃K = XK

if F is CM and is a (Z/2Z)[F :Q]-cover if F is totally real. Twisting by a

character A×F → Z/2Z with prescribed components at the archimedean places,

one can arrange that π′ occurs in H i(XK ,Mξ,K)⊗ZpC, which we shall assume

from now on.

Let

TF,S(K, ξ, i) = im(TF,S → EndZp(H
i(XK ,Mξ,K))).
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The kernel of TF,S → TF,S(K, ξ, i) is contained in the kernel of

TF,S →
∏
m≥1

TF,S(K, ξ, i,m),

so by Theorem 5.4.1 (and [19, Example 2.32]), there exists an n-dimensional

continuous determinant D of GF,S with values in TF,S(K, ξ, i)/I for some nilpo-

tent ideal I.29 Composing with the map TF,S(K, ξ, i) → Qp corresponding

to π′, we get an n-dimensional continuous determinant Dπ′ of GF,S with val-

ues in Qp, giving the desired continuous semisimple representation σπ by [19,

Th. 2.12] (continuity follows, e.g., from [59, Th. 1]). �

On the other hand, we can apply Theorem 5.4.1 to characteristic p coho-

mology.

Corollary 5.4.3. Let ψ : TF,S → Fp be a system of Hecke eigenvalues

such that the ψ-eigenspace

H i(XK ,Mξ,K ⊗Zp Fp)[ψ] 6= 0.

Then there exists a unique continuous semisimple representation

σψ : GF,S → GLn(Fp)

such that for all finite places v 6∈ S,

det(1−X Frobv |σψ)

= 1−ψ(q(n+1)/2
v T1,v)X +ψ(q2(n+1)/2

v T2,v)X
2−· · ·+ (−1)nψ(qn(n+1)/2

v Tn,v)X
n.

Proof. This is immediate from Theorem 5.4.1 and [19, Th. 2.12]. �

Corollary 5.4.4. Let ψ : TF,S → Fp be as in Corollary 5.4.3, and

assume that σψ is irreducible. Let m ⊂ TF,S be the maximal ideal that is the

kernel of ψ, and let

TF,S(K, ξ, i) = im(TF,S → EndZp(H
i(XK ,Mξ,K))).

Take N = N([F : Q], n) as in Theorem 5.4.1. Then there exist an ideal

I ⊂ TF,S(K, ξ, i) with IN = 0 and a unique continuous representation

σm : GF,S → GLn(TF,S(K, ξ, i)m/I)

such that for all finite places v 6∈ S,

det(1−X Frobv |σψ)

= 1− q(n+1)/2
v T1,vX + q2(n+1)/2

v T2,vX
2 − · · ·+ (−1)nqn(n+1)/2

v Tn,vX
n.

Here, TF,S(K, ξ, i)m denotes the localization of TF,S(K, ξ, i) at m.

29For this conclusion, it was necessary to know that the nilpotence degree is bounded

independently of m; one also gets that IN = 0.
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Remark 5.4.5. One obtains (with the same proof) a slightly stronger re-

sult, replacing TF,S(K, ξ, i) by

TF,S(K, ξ, i)′ = im(TF,S →
⊕
m

EndZp/pm(H i(XK ,Mξ,K/p
m)))

or

TF,S(K, ξ) = im(TF,S →
⊕
i,m

EndZp/pm(H i(XK ,Mξ,K/p
m))).

Such results were conjectured by Calegari and Geragthy, [16, Conj. B]. In fact,

this proves the existence of the Galois representations of [16, Conj. B] (modulo

a nilpotent ideal of bounded nilpotence degree), but it does not establish all

their expected properties.

Proof. There is an ideal I ⊂ TF,S(K, ξ, i) with IN = 0 such that there

is an n-dimensional continuous determinant with values in TF,S(K, ξ, i)m/I,

reducing to (the determinant associated with) σψ modulo m. As by assumption,

σψ is irreducible, the result follows from [19, Th. 2.22 (i)]. �

Remark 5.4.6. As mentioned previously, these results are based on the

work of Arthur, [3] (resp. Mok, [47]), which are still conditional on the stabi-

lization of the twisted trace formula. Let us end by noting that our results are

unconditional under a slightly stronger hypothesis. Namely, from the result of

Shin, [57] (cf. also the result in the book of Morel, [48, Cor. 8.5.3]), all results

stated in this section are unconditional under the following assumptions:

(i) the field F is CM, and contains an imaginary-quadratic field;

(ii) the set S comes via pullback from a finite set SQ of finite places of Q,

which contains p and all places at which F/Q is ramified.

In particular, if F is imaginary-quadratic, then the results are unconditional

as stated. Note that Shin’s result is stated in terms of unitary similitude

groups. However, Theorem 4.1.1 (and all results in Section 4 deduced from

it) stays true verbatim for usual Shimura varieties of Hodge type (with the

same proof), so that one can apply it to the Shimura varieties associated with

unitary similitude groups. Then the argument of Section 5 goes through as

before.

Using a patching argument (cf. proof of [35, Th. VII.1.9]), Corollary 5.4.2

follows for general totally real or CM fields, but still under the assumption that

S comes via pullback from a finite set SQ of finite places of Q that contains all

places at which F/Q is ramified.
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alité, in Automorphic Forms, Shimura Varieties, and L-Functions, Vol. I (Ann

Arbor, MI, 1988), Perspect. Math. 10, Academic Press, Boston, 1990, pp. 77–159.

MR 1044819. Zbl 0705.11029.

[22] L. Clozel, Représentations galoisiennes associées aux représentations automor-

phes autoduales de GL(n), Inst. Hautes Études Sci. Publ. Math. 73 (1991), 97–

145. MR 1114211. Zbl 0739.11020. http://dx.doi.org/10.1007/BF02699257.

[23] B. Conrad, Higher-level canonical subgroups in Abelian varieties, 2006. Avail-

able at http://math.stanford.edu/∼conrad/papers/subgppaper.pdf.

[24] P. Deligne and M. Rapoport, Les schémas de modules de courbes elliptiques,
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MR 0791585. Zbl 0549.14010.

[27] G. Faltings, A relation between two moduli spaces studied by V. G. Drinfeld, in

Algebraic Number Theory and Algebraic Geometry, Contemp. Math. 300, Amer.

Math. Soc., Providence, RI, 2002, pp. 115–129. MR 1936369. Zbl 1062.14059.

http://dx.doi.org/10.1090/conm/300/05145.

http://www.ams.org/mathscinet-getitem?mr=1202394
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0808.14017
http://dx.doi.org/10.1007/BF01444889
http://dx.doi.org/10.1007/BF01444889
http://www.arxiv.org/abs/1009.0785
https://www2.bc.edu/david-geraghty/files/merge.pdf
https://www2.bc.edu/david-geraghty/files/merge.pdf
http://www.ams.org/mathscinet-getitem?mr=2905536
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1288.11056
http://www.arxiv.org/abs/1409.2158
http://www.ams.org/mathscinet-getitem?mr=3272052
http://www.zentralblatt-math.org/zmath/en/search/?q=an:06266535
http://dx.doi.org/10.4310/CJM.2013.v1.n1.a2
http://www.ams.org/mathscinet-getitem?mr=1044819
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0705.11029
http://www.ams.org/mathscinet-getitem?mr=1114211
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0739.11020
http://dx.doi.org/10.1007/BF02699257
http://math.stanford.edu/~conrad/papers/subgppaper.pdf
http://www.ams.org/mathscinet-getitem?mr=0337993
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0281.14010
http://www.ams.org/mathscinet-getitem?mr=0498581
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0225.14007
http://www.ams.org/mathscinet-getitem?mr=0791585
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0549.14010
http://www.ams.org/mathscinet-getitem?mr=1936369
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1062.14059
http://dx.doi.org/10.1090/conm/300/05145


1064 PETER SCHOLZE

[28] G. Faltings and C.-L. Chai, Degeneration of Abelian Varieties, Ergeb.

Math. Grenzgeb. 22, Springer-Verlag, New York, 1990, with an appendix by

David Mumford. MR 1083353. Zbl 0744.14031. http://dx.doi.org/10.1007/

978-3-662-02632-8.

[29] L. Fargues, La filtration canonique des points de torsion des groupes p-divisibles,
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