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Uniqueness of blowups and
Lojasiewicz inequalities
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We dedicate this article to Leon Simon in recognition
of his fundamental contributions to analysis and geometry.

Abstract

Once one knows that singularities occur, one naturally wonders what the
singularities are like. For minimal varieties the first answer, already known
to Federer-Fleming in 1959, is that they weakly resemble cones. For mean
curvature flow, by the combined work of Huisken, Ilmanen, and White,
singularities weakly resemble shrinkers. Unfortunately, the simple proofs
leave open the possibility that a minimal variety or a mean curvature flow
looked at under a microscope will resemble one blowup, but under higher
magnification, it might (as far as anyone knows) resemble a completely
different blowup. Whether this ever happens is one of the most fundamental
questions about singularities. It is this long standing open question that
we settle here for mean curvature flow at all generic singularities and for
mean convex mean curvature flow at all singularities.

0. Introduction

We show that at each generic singularity of a mean curvature flow the
blowup is unique; that is, it does not depend on the sequence of rescalings. This
settles a major open problem that was open even in the case of mean convex
hypersurfaces where it was known that all singularities are generic. Moreover,
it is the first general uniqueness theorem for blowups to a Geometric PDE at
a noncompact singularity.

Uniqueness of blowups is one of the most fundamental questions that
one can ask about singularities and implies regularity of the singular set; see
[CM14c], [CM15].
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To prove our uniqueness result, we prove two completely new infinite di-
mensional Lojasiewicz type inequalities. Infinite dimensional Lojasiewicz in-
equalities were pioneered thirty years ago by Leon Simon. However, unlike
all other infinite dimensional Lojasiewicz inequalities we know of, ours do not
follow from a reduction to the classical finite-dimensional Lojasiewicz inequal-
ities from the 1960s from algebraic geometry, rather we prove our inequalities
directly and do not rely on Lojasiewicz’s arguments or results.

It is well known that to deal with noncompact singularities requires en-
tirely new ideas and techniques as one cannot argue as in Simon’s work, and
all the later work that uses his ideas. Partly because of this, we expect that
the techniques and ideas developed here have applications to other flows. Our
results hold in all dimensions.

This paper focuses on mean curvature flow (or MCF) of hypersurfaces.
This is a nonlinear parabolic evolution equation where a hypersurface evolves
over time by locally moving in the direction of steepest descent for the volume
element. It has been used and studied in material science for almost a century'
to model things like cell, grain, and bubble growth.? Unlike some of the other
earlier papers in material science both von Neumann’s 1952 paper and Mullins
1956 paper had explicit equations. In his paper von Neumann discussed soap
foams whose interface tend to have constant mean curvature whereas Mullins
is describing coarsening in metals, in which interfaces are not generally of
constant mean curvature. Partly as a consequence, Mullins may have been
the first to write down the MCF equation in general. Mullins also found some
of the basic self-similar solutions like the translating solution now known as
the Grim Reaper. To be precise, suppose that M; C R"*! is a one-parameter
family of smooth hypersurfaces; then we say that M; flows by the MCF if

(01) Tt — -H n,

'See, e.g., the early work in material science from the 1920s, 1940s, and 1950s of T. Sutoki,
[Sut28], D. Harker and E. Parker, [HP45], J. Burke, [Bur49], P.A. Beck, [Bec52], J. von
Neumann, [vN52], and W.W. Mullins, [Mul56].

2For instance, annealing, in metallurgy and materials science, is a heat treatment that
alters a material to increase its ductility and to make it more workable. It involves heating
material above its critical temperature, maintaining a suitable temperature, and then cooling.
Annealing can induce ductility, soften material, relieve internal stresses, refine the structure
by making it homogeneous, and improve cold working properties. The three stages of the
annealing process that proceed as the temperature of the material is increased are: recovery,
recrystallization, and grain growth. Grain growth is the increase in size of grains (crystallites)
in a material at high temperature. This occurs when recovery and recrystallisation are
complete and further reduction in the internal energy can only be achieved by reducing the
total area of grain boundary (by mean curvature flow).
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where H and n are the mean curvature and unit normal, respectively, of M;
at the point z.

To understand singularities past the first singular time, we need weak
solutions of MCF. The weak solutions that we will use are the Brakke flows
considered by White in [Whi05].3 By Theorem 7.4 in [Whi05], this includes
flows starting from any closed embedded hypersurface.

0.1. Tangent flows. By definition, a tangent flow is the limit of a sequence
of rescalings at a singularity, where the convergence is on compact subsets.*
For instance, a tangent flow to M; at the origin in space-time is the limit of a
sequence of rescaled flows 5% M 521 where 0; — 0. A priori, different sequences
0; could give different tangent flows, and the question of the uniqueness of
the blowup — independent of the sequence — is a major question in many
geometric problems. By a monotonicity formula of Huisken, [Hui90], and an
argument of Ilmanen and White, [Ilm95], [Whi05], tangent flows are shrinkers,
i.e., self-similar solutions of MCF that evolve by rescaling. The only generic
shrinkers are round cylinders by [CM12].

We will say that a singular point is cylindrical if at least one tangent flow
is a multiplicity one cylinder S¥ x R**. Our main application of our analytical
inequalities is the following theorem that shows that tangent flows at generic
singularities are unique:

THEOREM 0.2. Let M; be an MCF in R". At each cylindrical singular
point the tangent flow is unique. That is, any other tangent flow is also a
cylinder with the same RF factor that points in the same direction.

This theorem solves a major open problem; see, e.g., page 534 of [Whi02].
Even in the case of the evolution of mean convex hypersurfaces where all
singularities are cylindrical, uniqueness of the axis was unknown; see [HS99a,
[HS99b], [Whi03], [SS93], [And12], [Bre], and [HK13].5

In recent joint work with Tom Ilmanen, [CIM13], we showed that if one
tangent flow at a singular point of an MCF is a multiplicity one cylinder, then
all are. However, [CIM13] left open the possibility that the direction of the
axis (the R¥ factor) depended on the sequence of rescalings. Our proof of
Theorem 0.2 and, in particular, our first Lojasiewicz type inequality, has its

3That is, Brakke flows in the class S(\o,n,n + 1) defined in Section 7 of [Whi05] for some
Ao > 1.

“This is analogous to a tangent cone at a singularity of a minimal variety; cf. [FF60].

5Our results not only give uniqueness of tangent flows but also a definite rate where the
rescaled MCF converges to the relevant cylinder. The distance to the cylinder is decaying to
zero at a definite rate over balls whose radii are increasing at a definite rate to infinity.
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roots in some ideas and inequalities from [CIM13] and in fact implicitly use
that cylinders are isolated among shrinkers by [CIM13].

Uniqueness is a key question for the regularity of Geometric PDE’s. Two
of the most prominent early works on uniqueness of tangent cones are Leon
Simon’s hugely influential paper [Sim83] from 1983, where he proves uniqueness
for tangent cones of minimal varieties with smooth cross section. The other is
Allard-Almgren’s 1981 paper [AA81], where uniqueness of tangent cones with
smooth cross section is proven under an additional integrability assumption on
the cross section; see also [Sim08], [Har97], [CM14b] for additional references.

Our results are the first general uniqueness theorems for tangent flows to a
geometric flow at a noncompact singularity. (In fact, not only are the singulari-
ties that we deal with here noncompact but they are also nonintegrable; see Sec-
tion 3.) Some special cases of uniqueness of tangent flows for MCF were previ-
ously analyzed assuming either some sort of convexity or that the hypersurface
is a surface of rotation; see [Hui90], [Hui93|, [HS99a], [HS99b], [Whi03], [SS93],
[AAGI5], Section 3.2 in the book [GGS10], and [GK13], [GKS11], [GS09]. In
contrast, uniqueness for blowups at compact singularities is better understood;
cf. [AA81], [Sim83], [Hui84], [Sch14], [Ses08], [Tay73], and [Whi98].

In fact, using the results of this paper we showed in [CM14c] that, for
a MCF of closed embedded hypersurfaces in R"*! with only cylindrical sin-
gularities, the space-time singular set is contained in finitely many compact
embedded (n — 1)-dimensional Lipschitz submanifolds together with a set of
dimension at most n — 2. In particular, if the initial hypersurface is mean con-
vex, then all singularities are generic and the results apply. In fact, in [CM14c]
we showed that the entire stratification of the space-time singular set is rec-
tifiable in a very strong sense; cf., e.g., [Sim95a], [Sim96], [Sim95b], [BCL86],
and [HL89].

One of the significant difficulties that we overcome in this paper, setting it
apart from all other work we know of, is that our singularities are noncompact.
This causes major analytical difficulties, and to address them requires entirely
new techniques and ideas. This is not so much because of the subtleties of anal-
ysis on noncompact domains, though this is an issue, but crucially because the
evolving hypersurface cannot be written as an entire graph over the singularity
no matter how close we get to the singularity. Rather, the geometry of the
situation dictates that only part of the evolving hypersurface can be written
as a graph over a compact piece of the singularity.®

5In the end, what comes out of our analysis is that the domain the evolving hypersurface
is a graph over is expanding in time and at a definite rate, but this is not all all clear from
the outset; see also footnote 5.
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0.2. Lojasiewicz inequalities. The main technical tools that we prove are
two Lojasiewicz—type inequalities.

In real algebraic geometry, the Lojasiewicz inequality, [Loj65], named after
Stanislaw Lojasiewicz, gives an upper bound for the distance from a point to
the nearest zero of a given real analytic function. Specifically, let f: U — R
be a real-analytic function on an open set U in R”, and let Z be the zero locus
of f. Assume that Z is not empty. Then for any compact set K in U, there
exist o > 2 and a positive constant C' such that, for all x € K,

(0.3) inf o —2[* < C|f(2)].

Here o can be large.

Lojasiewicz, [Loj65], also proved the following inequality:” With the same
assumptions on f, for every p € U, there is a possibly smaller neighborhood
W of p and constants 3 € (0,1) and C > 0 such that for all z € W,

(0.4) 1f(z) = fp)I° < C|Vefl.

Note that this inequality is trivial unless p is a critical point for f.
An immediate consequence of (0.4) is that every critical point of f has a
neighborhood where every other critical point has the same value.?

0.3. Lojasiewicz inequalities for noncompact hypersurfaces and MCF. The
infinite dimensional Lojasiewicz-type inequalities that we prove are for the F
functional on the space of hypersurfaces.

The F-functional is given by integrating the Gaussian over a hypersurface
¥ C R™*!. This is also often referred to as the Gaussian surface area and is
defined by

||

(0.5) F(X) = (4m)~"/? /E e 3 du.

The entropy A\(X) is the supremum of the Gaussian surface areas over all centers
and scales.
It follows from the first variation formula that the gradient of F is

(0.6) Vs F(¥) :/E (H— <x2n>) pe .
(z.0)

Thus, the critical points of F' are shrinkers, i.e., hypersurfaces with H = =5

The most important shrinkers are the generalized cylinders C; these are the
generic ones by [CM12]. The space C is the union of Cy for k > 1, where Cj, is

"Lojasiewicz called this inequality the gradient inequality.
8This consequence of (0.4) for the F functional near a cylinder is implied by the rigidity
result of [CIM13].
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the space of cylinders S¥ x R"*, where the S* is centered at 0 and has radius
V/2k and we allow all possible rotations by SO(n + 1).

A family of hypersurfaces X5 evolves by the negative gradient flow for the
F-functional if it satisfies the equation

(0.7) (Osx)t = —Hn 4 2 /2.
This flow is called the rescaled MCF since Y is obtained from an MCF M;
by setting 3s = \/%—tMt, s = —log(—t), t < 0. By (0.6), critical points for

the F-functional or, equivalently, stationary points for the rescaled MCF, are
the shrinkers for the MCF that become extinct at the origin in space-time. A
rescaled MCF has a unique asymptotic limit if and only if the corresponding
MCF has a unique tangent flow at that singularity.

We will prove versions of the two Lojasiewicz inequalities for the F' func-
tional on a general hypersurface 3. Roughly speaking, we will show that

(0.8) dist(%,0)* < C |VsF|,
(0.9) (F(2) - F(C))7 < C |VsF|.

Equation (0.8) will correspond to Lojasiewicz’s first inequality whereas (0.9)
will correspond to his second inequality. The precise statements of these in-
equalities will be much more complicated than this, but they will be of the
same flavor.

0.4. First Lojasiewicz with a = 2 implies the second with 8 = % In this
subsection we will explain how the second Lojasiewicz inequality for a function
f in a neighborhood of an isolated critical point follows from the first when
the first holds for Vf and with o = 2. (We will later extend this argument to
infinite dimensions.)

Suppose that f : R"™ — R is smooth function with f(0)=0 and V f(0)=0;
without loss of generality we may assume that at 0 the Hessian is in diagonal
form, and we will write the coordinates as © = (y, z) where y are the coor-
dinates where the Hessian is nondegenerate. By Taylor’s formula in a small
neighborhood of 0, we have that

(0.10) f(2) = 5 v} + O(laf),
(0.11) fu(@) = aiyi + O(leP),
(0.12) Ji(@) = O(laf?).

It follows from this that the second of the two Lojasiewicz inequalities holds
for f and 8 = % provided that |z|? < e|y| for some sufficiently small & > 0.
Namely, if |z|? < e |y|, then

_ 3
(0.13) Clyl < [Vaf| and |f(2)] < O™ yl?
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for some positive constant C' and, hence,
2
(0.14) [f(@)]5 < CIVafl.

Therefore, we only need to prove the second Lojasiewicz inequality for f in the
region |z|2 > e|y|. We will do this using the first Lojasiewicz inequality for
V f. Since 0 is an isolated critical point for f, the first Lojasiewicz inequality
for Vf gives that

(0.15) Vo f] > Clal.

By assumption on the region and the Taylor expansion for f, we get that in
this region

(0.16) [f(@) < Clyf +C 2> <Oz < Claf’.
Combining these two inequalities gives
(0.17) F@)]5 < Claf® < [Vafl.

This proves the second Lojasiewicz inequality for f with 8 = %

In Section 4, we extend the above argument to general Banach spaces.

Lojasiewicz used his second inequality to show the “Lojasiewicz theorem”:
If f:R"™ — R is an analytic function, x = z(t) : [0,00) — R™ is a curve with
2'(t) = =V f and z(t) has a limit point z, then the length of the curve is
finite and lim;_,o (t) = Too. Moreover, x is a critical point for f.

Even in R?, it is easy to construct smooth functions where the Lojasiewicz
theorem does not hold, but instead there are negative gradient flow lines with
multiple limits.

We will discuss the Lojasiewicz theorem in a slightly more general setting
at the end of the next subsection after briefly discussing infinite dimensional
Lojasiewicz inequalities.

0.5. Infinite dimensional Lojasiewicz inequalities and applications. Infi-
nite dimensional versions of Lojasiewicz inequalities were proven in a celebrated
work of Leon Simon, [Sim83], for the area and related functionals and used,
in particular, to prove a fundamental result about uniqueness of tangent cones
with smooth cross section of minimal surfaces. Simon’s proof of the Lojasiewicz
inequality is done by reducing the infinite dimensional version to the classical
Lojasiewicz inequality by a Lyapunov-Schmidt reduction argument. Infinite
dimensional Lojasiewicz inequalities proven using Lyapunov-Schmidt reduc-
tion, as in the work of Simon, have had a profound impact on various areas
of analysis and geometry and are usually referred to as Lojasiewicz-Simon
inequalities.
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As already mentioned, we will also prove two infinite dimensional Lojasiewicz
inequalities and use them to prove uniqueness of blowups for MCF (or, equiv-
alently, convergence of the rescaled flow). However, unlike all other infinite
dimensional Lojasiewicz inequalities we know of, ours do not follow from a
reduction to the classical Lojasiewicz inequalities; rather we prove our inequal-
ities directly and do not rely on Lojasiewicz’s arguments or results. In fact, we
prove our infinite dimensional analog of the first Lojasiewicz inequality directly
and use this together with an infinite dimensional analog of the argument in
the previous subsection to show our second Lojasiewicz inequality. The reason
why we cannot argue as in Simon’s work, and all the later work that make use
his ideas, comes from that our singularities are noncompact. In particular, even
near the singularities, the evolving hypersurface cannot be written as an entire
graph over the singularity. Rather, only part of the evolving hypersurface can
be written as a graph over a compact piece of the singularity.

Next we will explain how the second Lojasiewicz inequality is typically
used to show uniqueness. Before we do that, observe first that in the second
inequality we always work in a small neighborhood of p so that, in particu-
lar, |f(z) — f(p)] < 1 and hence smaller powers on the left-hand side of the
inequality imply the inequality for higher powers. As it turns out, we will see
that any positive power strictly less than 1 would do for uniqueness.

Suppose now that X is a Banach space and f : X — R is a Fréchet
differentiable function. Let x = z(t) be a curve on X parametrized on [0, co)
whose velocity ' = —V f. We would like to show that if the second inequality
of Lojasiewicz holds for f with a power 1 > 8 > 1/2, then the Lojasiewicz
theorem mentioned above holds. That is, if 2(¢) has a limit point ., then the
length of the curve is finite and lim;_,oc () = Too. Since o is a limit point of
z(t) and f is nonincreasing along the curve, z~, must be a critical point for f.

To see that x(t) converges to z, assume that f(z~) = 0 and note that if
we set f(t) = f(x(t)), then f’ = —|V f|?. Moreover, by the second Lojasiewicz
inequality, we get that f’ < — f27 if x(t) is sufficiently close to 2. (Assume for
simplicity below that z(¢) stays in a small neighborhood z., for ¢ sufficiently
large so that this inequality holds; the general case follows with trivial changes.)
Then this inequality can be rewritten as (f1=2%) > (28—1), which integrates to

(0.18) flt) < cto,

We need to show that (0.18) implies that [;° |V f|ds is finite. This shows
that x(t) converges to o as t — co. To see that [7° |V f|ds is finite, observe
by the Cauchy-Schwarz inequality that

1

(0.19) /100]Vf\ds:/100\/—7f’ds§ (—/IOOJ”’SHECZS>é</1oos15als>2
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It suffices therefore to show that

T
(0.20) - / f'siteds
1

is uniformly bounded. Integrating by parts gives

T T
(0.21) / st ds = |f s — (1 + 5)/ f s ds.
1 1

If we choose € > 0 sufficiently small depending on 3, then we see that this is
bounded independent of T and hence [5°|V f|ds is finite.

We will use an extension of this argument where the assumption f2°(t) <
—f!(t) is replaced by the assumption that f2°(t) < f(t — 1) — f(t + 1); see
Lemma 6.9. This assumption is exactly what comes out of our analog for the
rescaled MCF of the gradient Lojasiewicz inequality, i.e., out of Theorem 0.26.

0.6. The two Lojastewicz inequalities. We now state the two Lojasiewicz-
type inequalities for the F' functional on the space of hypersurfaces.

Suppose that ¥ Cc R™! is a hypersurface, and fix some small gg > 0.
(This will be chosen small enough to satisfy Lemmas 2.5 and 4.3.) Given an
integer ¢ and constant Cy, we let ry(X) be the maximal radius so that

® B, (x)NX is the graph over a cylinder in Cy, of a function u with [[u[|c2.. < &g
and |VYA| < Cy.

The parameters £ and C; will be left free until the proof of the main theorem
(Theorem 0.2) and will then be chosen large.

In the next theorem, we will use a Gaussian L? distance d¢(R) to the space
Ci in the ball of radius R. To define this, given Xj, € Cy, let wy, : R 5 R
denote the distance to the axis of ¥ (i.e., to the space of translations that
leave Y invariant). Then we define

(0.22)

2 s . 2 _ _ 9 _l=I7
dB(R) = nk, s, = VE [ = nk, [ (s, = VIR

2
=]

The Gaussian LP norm on the ball Bp is Hu||’£p(BR) = [, lulPe” .
Given a general hypersurface ¥, it is also convenient to define the function
¢ by

(0.23) L
2
so that ¢ is minus the gradient of the functional F'.
The main tools that we develop here are the following two analogs for non-
compact hypersurfaces of the well-known Lojasiewicz’s inequalities for analytic
functions on R™:

_H’
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THEOREM 0.24 (Lojasiewicz inequality for noncompact hypersurfaces).
If ¥ C R is a hypersurface with A\(X) < Ao and R € [1,1(X) — 1], then

b by R
(0.25) B(R) < O R {Héf?H]fi(BR)+6 ; }

where C = C(n,l,Cy, X\o), p=p(n) and by, € (0,1) satisfies limy_,oo by p, = 1.

The theorem bounds the L? distance to Cy by a power of ||@||z1, with an
error term that comes from a cutoff argument since ¥ is noncompact and is not
globally a graph of the cylinder.” This theorem is essentially sharp. Namely,
the estimate (0.25) does not hold for any exponent by, larger than one, but
Theorem 0.24 lets us take by, arbitrarily close to one.

We will also see that the above inequality implies the following gradient
type Lojasiewicz inequality. This inequality bounds the difference of the F
functional near a critical point by two terms. The first is essentially a power
of VF, while the second (exponentially decaying) term comes from that ¥ is
not a graph over the entire cylinder.

THEOREM 0.26. (A gradient Lojasiewicz inequality for noncompact hy-
persurfaces). If ¥ C R is a hypersurface with \(X) < o, 8 € [0,1), and
R e [1,ry(X) — 1], then

(0.27)

Cn GHOR® (345)(ro1)2

c nM _n i R
F(S) - F(CY)| < C R? {||¢|y;2’(5§6 T I }

where C' = C(n,¢,Cy, \o), p= p(n) and cir, € (0,1) satisfies limy_,o cp = 1.

When we apply the theorem, the parameters 8 and ¢ will be chosen to
make the exponent greater than one on the VF' term, essentially giving that
|F'(X) — F(Cg)| is bounded by a power greater than one of |[VF|. A separate
argument will be needed to handle the exponentially decaying error terms.

We will show that when >; are flowing by the rescaled MCF, then both
terms on the right-hand side of (0.27) are bounded by a power greater than
one of ||¢||z2. (The corresponding statement holds for Theorem 0.24.) Thus,
we will essentially get the inequalities

(0.28) d3 < C |Vs,F|,
2
(0.29) (F (%) = F(C))s < C |Vx, FI.
9This is a Lojasiewicz inequality for the gradient of the F functional. (¢ is the gradient

of F.) This follows since, by [CIM13], cylinders are isolated critical points for F' and, thus,
dc locally measures the distance to the nearest critical point.
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These two inequalities can be thought of as analogs for the rescaled MCF of
Lojasiewicz inequalities from real algebraic geometry; cf. (0.8) and (0.9).

Throughout the paper C' will denote a constant that can change from line
to line. Given a hypersurface ¥ ¢ R"*!, n will be the outward pointing unit
normal and the second fundamental form A is given by A(V,W) = (Vy W, n)
for tangent vectors V and W. The mean curvature H is then defined by
H=->",A(e;e;) where {e1,...,e,} is an orthonormal frame for ¥. With
this convention, H is  on the sphere of radius R.

Outline of the paper. The first two sections prove the first Lojasiewicz
inequality that bounds the distance to the space of cylinders by a power VF.
Section 1 proves cylindrical estimates for a general hypersurface, showing that
the tensor % is almost parallel if H is positive on a large set and V F' is small. In
Section 2, we prove the first Lojasiewicz inequality by bounding the distance
to a cylinder in terms of the covariant derivatives of % and then using the
estimate in the previous section.

The next two sections show that our first Lojasiewicz inequality implies a
gradient Lojasiewicz inequality for F. The idea is essentially the one given in
Section 0.4 for a similar reduction for functions on R", but there are analytic
difficulties to deal with coming from the infinite dimensions and from the
noncompactness of the cylinder. Section 3 proves the analytic facts on the
cylinder that we will need, while Section 4 uses this to extend the argument
from Section 0.4.

Section 5 deals with one of the major issues of the paper: the cylinders
are not compact so the “nearby” surfaces cannot be written as graphs over
the entire cylinder. The two Lojasiewicz inequalities assume a lower bound for
the scale where the hypersurface is a graph over a cylinder. (We call this the
cylindrical scale.) Section 5 gets a lower bound for the cylindrical scale for a
rescaled MCF in terms of the space-time integral of VF'.

Section 6 combines the previous results to prove the main uniqueness
theorem.

There are two technical appendices. The first computes geometric quanti-
ties on a normal exponential graph and computes VF on a graph. The second
proves interpolation inequalities that will allow us to control pointwise bounds
by integral bounds and bounds on higher derivatives.

See [CM14a] for a survey on Lojasiewicz inequalities and their applica-
tions, and see [CMP15] for a general survey on MCF.

1. Cylindrical estimates for a general hypersurface

In this section, we will prove estimates for a general hypersurface ¥ C
R"*!. The main results are bounds for V% when the mean curvature H is
positive on a large set.
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1.1. A general Simons equation. In this subsection, we will show that the
second fundamental form A of ¥ satisfies an elliptic differential equation similar
to Simons’ equation for minimal surfaces. The elliptic operator will be the L
operator from [CM12] given by

(1.1) L=L4 AP+ 5 =0Vt AP+,

Namely, we will prove the following proposition:
PROPOSITION 1.2. If ¢ = 2(z,n) — H, then

(1.3) L A=A+ Hessy + ¢ A%,

where the tensor A? is given in orthonormal frame by (Az)ij = Ajk Ag;.

Note that ¢ vanishes precisely when ¥ is a shrinker and, in this case, we
recover the Simons’ equation for A for shrinkers from [CM12].

We will use the following general version of Simons’ equation for the second
fundamental form of a hypersurface:

LEMMA 1.4. The second fundamental form A satisfies
(1.5) (A+]AP?) A= —H A% — Hessy.

See, e.g., [CM11] for a proof.
The next lemma computes the Hessian of the support function (z,n).

LEMMA 1.6. The Hessian of (x,n) is given by
(1.7) Hess(, ny = —V,rA— A — A% (z,n).

Proof. Fix a point p € X. Let e; be a local orthonormal frame for 3 with
Vgej =0 at p for every ¢ and j. Thus, at p, we have

(18) Veiej = Aij n.

Finally, using this and V., n = —A;j;, e;, (which holds at all points), we compute
at p

Hess(, n)(€i; €5) = (,0)i5 = (2, Ven)j = — (Aig (2, ex))
(1.9) = —Ajij (z,ex) — Ak O — Air(x, Ajpn)
= — (VyrA) (ei e5) — Ales, ) — (z,m) A% (es, ¢5),
where the last equality used the Codazzi equation A;; = A;jx. [l

Proof of Proposition 1.2. Since L = L+ |[A? + 3 and £L = A — JV,r,
Lemma 1.4 gives

1 1 1 1
(1.10) LA = (A+|AP?) A+5 A=o VA= —H A’~Hessy+5 A—2 V,r A,
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On the other hand, Lemma 1.6 gives

1 1 1 1
(1.11) Hessy = §Hess<17n> — Hessy = —Hessy — ivaA - §A - §A2 (x,m),
so we have L A — Hess, = A + ¢ A2 O

1.2. An integral bound when the mean curvature is positive. We will show
that the tensor 7 = A/H is almost parallel when H is positive and ¢ is small.
This generalizes an estimate from [CIM13] in the case where ¥ is a shrinker
(i.e.,  =0) with H > 0.

Given f > 0, define a weighted divergence operator div; and drift Lapla-
cian Ly by

(1.12) div, (V) = che|I2/4 divs, (fe V),
(1.13) Lyu=divy(Vu) = Lu+ (Viog f, Vu).

Here u may also be a tensor; in this case the divergence traces only with V.
Note that £ = £;. We recall the quotient rule (see Lemma 4.3 in [CIM13]):

LEMMA 1.14. Given a tensor T and a function g with g # 0, then
LT—TL Lt—7L
(1.15) Ll 92T T29 927729
g g g
ProrosITION 1.16. On the set where H > 0, we have

2 2
(117) Ly & - Hesso 047 A A0+ 91AF)

H H H2
AP AP (Hessg + ¢ A% A) AP (Ag+ ¢ AP
118) £ 0 o |G APy, Bt 9404 |, A (86 +914P),

Proof. The trace of Proposition 1.2 (H is minus the trace of A by conven-
tion) gives
(1.19) LH=H-A¢—¢|A]?,
where we also used that the trace of A% is |A|? since A is symmetric. Us-

ing the quotient rule (Lemma 1.14) and the equations for LH and LA (from
Proposition 1.2) gives

, A_HLA-ALH H (A+Hessg+¢ A%)— A (H—Ap—p | Al?)
H2 75 — =

(1.20) H H? H?
_ Hessy+¢ A? N A(Ap+9|AP)
H H? ’
giving the first claim. The second claim follows from the first since %—'22 =
<%, %) and
2
(1.21) %ﬁHz <§, %> = <£H2 %, %> + ‘V; U
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The next proposition gives exponentially decaying integral bounds for
V(A/H) when H is positive on a large ball. It will be important that these
bounds decay rapidly.

PROPOSITION 1.22. If BRNY is smooth with H > 0, then for s € (0, R),

AP o =2 _ 4 2
/ H<e § — sup |A]*Vol(BRN¥)e
Br_sNX

vi
82 BrNX
‘2
2 { |¢|}
BrNE

H
Proof. Set T = A/H and u = ]7\2 |A|2/H?. Tt will be convenient within
this proof to use square brackets [-] to denote Gaussian integrals over Br N'%,

e, [f] =[x feTlol/4

Let 9 be a function with support in Br. Using the divergence theorem,
the formula from Proposition 1.16 for Lpy2u, and the absorbing inequality
dab < a® + 4b%, we get

0= [divge (¥° Vu) H*|=[ (¢ Lyzu + 20(Ve), Vu)) H?]

_ sz 72 +2¢2<<Hessq>+¢A2,A> Mt <A¢+¢|A|2>)

_(R- s>2

(1.23) AP |A|4
(Hessg, A) + —— Agf)

(A% A) +

H? H3
+ 4ap(Vp, T - w)} HQ}
> [(¢* V72 = 4|7 [Vy|?) H?]

+2 [ (Hessy + ¢ A%, A)] +2 {W

A2 (A + ¢ |AP?)
H b

from which we obtain
(2 [Vr? H?] <4 |V |A]?] — 2 [¢? (Hessy + ¢ A%, A)]

(1.24) |AJ2

A
{¢2A¢ +y? cb’ * }

The proposition follows by choosing ¥ = 1 on Br_; and going to zero linearly
on 0Bg. O

We record the following corollary:
COROLLARY 1.25. If BR N ¥ is smooth with H > § > 0 and |A| < C1,
then there exists Ca = Ca(n,d, Cy) so that for s € (0, R), we have

A 2 212 _6)?2
(1.26) / Vil e < CQ 2 Vol(BrNS)e 1
Br_sN%

H

|z |2
+02/ {[Hessy| + |6} e~
BrNY
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Remark 1.27. Corollary 1.25 essentially bounds the distance squared to
the space of cylinders by ||¢||;:1. This is sharp: it is not possible to get the
sharper bound where the powers are the same. This is a general fact when
there is a nonintegrable kernel. Namely, if we perturb in the direction of the
kernel, then ¢ vanishes quadratically in the distance.

The next corollary combines the Gaussian L? bound on V7 from Corol-
lary 1.25 with standard interpolation inequalities to get pointwise bounds on
V7 and V2.

COROLLARY 1.28. If BpO is smooth with H >6>0, |A|+|V+14| <Gy,
and A\(X) < Xo, then there exists C3 = C3(n, Ao, 9, £, C1) so that for ]y|+ﬁ|y| <
R — 1, we have

|y

A 2 on | —dy, 02 Yo L=
(1.29) Vﬁ (y) + |V y) < CsR e den 3 +H¢HL1(BR) e s,

vl
where the exponent dyp,, € (0,1) has limy_,oo dgn, = 1.

Proof. Set 7 = A/H, and note that ‘VZ—HT‘ is bounded by a constant
depending on 4, £, and C;. Define the ball BY and constant ¢, by

(1.30) B'=B_: (y) and 5y:/ s
+lyl BYNY

Applying Lemma B.1 on BY (see also remarks (1) and (2) after the lemma)
gives

Vrl(y) < " { B0y + 0y IV 7| b < © (R 6, + 6,7}
V27l(y) < O { R 8y + 8, IV i b < € {RM 8, + 8,

where the powers are given by ay, =5 E +n and by ,
To get the bound on d,, observe that

2M_n,aundC' C(n,d,¢,Cy).

(1.31) infe" 2 >e 4 1
BY
so that Cauchy-Schwarz gives
n  —lul? “lwl® 9
(1.32) (I1+|y))" e = y <Ced V|
BYNY
||
<cC V7[> e™ 3 < Gy,
BYNY.

where the last inequality is Corollary 1.25, Co = Cy(n, Ao, 6, C1), and 7 is
(R— 1)2

|z|2
+ {|Hessg| + |p|} e 2.
Br_1/2N%

To bound the Hessian term, first choose balls B = B_ 1 (z;) so that

14z

(1.33) = R"e”
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® Bp_1/2 MY is contained in the union of the half-balls %Bi.
e Each point is in at most ¢ = c( ) of the balls.

To simplify notation, set r; = Applying Lemma B.1 on B’ gives

1+\z |

(1.34) sup [Hessol < € {2 [ ol + ([ 101) "},
i B e

where ¢g,, € (0,1) goes to one as £ — co. Note that the Gaussian weight has
bounded oscillation on B?. (This is why the radius r; was chosen.) It follows
that

Jz2 Con 212
Hessyle™ 1 < C { / + (/ ) } e
Jyo sl S [ el () 1o

(1.35) <R ol +C X ([ 161) " e

< C R (6]l (3 + C 10155,

IS

where the last inequality uses the Holder inequality for sums and the bound
for F(X). Since ||¢]|1 is bounded (we are interested in the case where it is
much less than one), the lower power is dominant and we conclude that

(1.36) 2<Cyy<CR"e + C R? |85

LY(Br)"
Arguing similarly and using this in the bounds for V1 gives

y2—(rR—1)2

2 ln ag,n
(131 Vel <CR s < CRYE [ LM g 8 A

2—(r-1)2 |y

b[,n
(139) [V se R < 0 R (T e ol b

O

2. Distance to cylinders and the first Lojasiewicz inequality

In this section, we will prove the first Lojasiewicz inequality that bounds
the distance squared to the space Cj, of all rotations of the cylinder S’f/ﬁ xRk
by a power close to one of the gradient of the F' functional. This will follow

A

from the bounds on the tensor 7 = 7 in the previous section together with

the following proposition:
PROPOSITION 2.1. Given n, § > 0 and C1, there exist eg > 0, &1 > 0 and
C so that if ¥ € R""! is a hypersurface (possibly with boundary) that satisfies

(1) H>06>0 and |A|+|VA| < Cy on BRN3,
(2) By 5, N Y is eo C2-close to a cylinder in Cy, for some k > 1,
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then, for any r € (5v/2n, R) with

(2:2) r? sup (|g]+|Vg|) +r® sup (|V7| + [V?7]) < &1,
Bsx/% Br

we have that B, /z—; N X is the graph over (a subset of) a cylinder in Ci of u

with

(2.3) lu| + |[Vul] < C {r2 sup (|¢| + |[Vo|) +7° sup (]V7'| + |V27)} .
By 5 B,

This proposition shows that ¥ must be close to a cylinder as long as H
is positive, ¢ is small, 7 is almost parallel, and ¥ is close to a cylinder on a
fixed small ball. Together with Tom Ilmanen, we proved a similar result in
Proposition 2.2 in [CIM13] in the special case where ¥ is a shrinker (i.e., when
¢ = 0), and this proposition is inspired by that one.

We will prove the proposition over the next two subsections and then turn
to the proof of the first Lojasiewicz inequality.

2.1. Ingredients in the proof of Proposition 2.1. This subsection contains
the ingredients for the proof of Proposition 2.1. The first is the following result
from [CIM13] (see Corollary 4.22 in [CIM13]):

COROLLARY 2.4 ([CIM13]). If ¥ C R™! is a hypersurface (possibly with
boundary) with
e 0<d<Honyx;
e the tensor T = A/H satisfies V1|4 |V?7| <e < 1;
e at the point p € X, 7, has at least two distinct eigenvalues k1 # Ko,
then

| < 2¢ < 1 N 1 )
R1R2| &S <+ .
02 \|k1 — k2| |k — ko?

We will use two additional lemmas in the proof of Proposition 2.1. The
next lemma shows that ¢ controls the distance to the shrinking sphere in a
neighborhood of the sphere. This, of course, implies that the shrinking sphere
is isolated in the space of shrinkers. The proof uses that the linearized operator
is invertible.

LEMMA 2.5. Given k and o > 0, there exist ¢g > 0 and C so that if
Yo C RFL is the graph of a C*® function u over S]f/ﬂ with ||u||c2 < eo, then

(2.6) [ullg2e < Cllglloa -

Proof. On the sphere, the linearized operator L for ¢ is given by L = A+1
since |A|? = 1/2 and the drift term vanishes. The eigenvalues for A on the
sphere of radius one occur in clusters with the m-th cluster at m? + (k — 1) m.
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Scaling this to the sphere of radius v/ 2k, the m-th cluster is now at

m?2+ (k—1)m
2k

(2.7)
and, thus, the first three eigenvalues for L = A 4+ 1 occur at —1, —%,
%. In particular, 0 is not an eigenvalue and, thus, L is invertible and, by the
Schauder estimates, we have

and

(2.8) [ullg2e < O Lullce,

where C depends only on k and a. The lemma follows from this and the fact
that the linearization of ¢ is L and the error is quadratic (cf. Lemma 4.10
below) so we have

(2.9) I = Lullga < Cllullc [[ullc2a,

where C again depends only on k and «. Combining the last two inequalities
gives

(2.10)  ullcze < Clldllca + Cllullc2 [ullc2e < Clldllca + Ceollufc2e,

which gives the claim after choosing g > 0 so that C' gy = % O

The next lemma shows if ¥ has an approximate translation and is almost
a shrinker, then slicing 3. orthogonally to the translation gives a submanifold
Yo of one dimension less that is also almost a shrinker. We will use this to
repeatedly slice an almost cylinder to get down to the almost sphere. We let

$o be the ¢ of £y (so ¥g C R” is a shrinker when ¢g = 0).

LEMMA 2.11. Let ¥ C R*¥* be a hypersurface, ¥g = {xp41 = 0} N X,
and x € X a point where X intersects the hyperplane {xi11 = 0} transversely.
If we have

. ‘vTka] >1—c>1/2
. ‘VT VTka’ <e

o JA(, VT akp0)| +

(VA) (-, VTap)| <,

then at x,
(2.12) |0 — do| + [V, (d — ¢o)| <24e {1+ 8] +[Vel}.
Proof. Set v =VTz, 1 = 8]?“. Let e1,...,er_1 be an orthonormal frame

for Xg, so that

v
(213) €1y Ch_1, 7
[0]
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gives an orthonormal frame for ¥. If n € R*"! and ny € R¥ denote the
normals to ¥ and Yy, respectively, then

(2.14) n = |v|ng + (Ok+1,0) Opy1.

(To see this, check that this unit vector is orthogonal to the frame (2.13).)
Since (Ve €5, 0g+1) = 0, the expression for n gives (V¢ e;,n) = |[v| (Ve,ej, ng).
It follows that

Alej,ej) = (Ve,ej,n) = |v] (Ve,e5,n0) = |[v| Ag(es, €5).

Therefore, since H is minus the trace of A and Hy is minus the trace of Ao,
we have

H—Hy=— {A(ei, e;)+A (“ |Z‘>}+Ao(ei, &)

|v]”
(2.15) = {A(ei, e;) + A (,5’ ’Z|>} + |11)‘ Ae, &)

1— -1 1
:!ﬂA@Mw_A(v,v>:MH_A<v7v)‘
v v]" o] v [l \Jv]" [v]

Similarly, given z € ¥y, we have x+1 = 0 and, thus,

(2.16) (1) — (20,00) = (x,n) — (, n0) = |“"v_| Ly

Combining the last two equations gives for x € ¥y that

6= b0 = 5 ((z0) = (w0, m0)) — (H — Hy)

(2.17) - e - ()
M—1¢+1A(v,v>
|v] of -\ o] o]
Since |v| > 1/2 and 1 — |v| < ¢, it follows that
(2.18) |6 — gol < 2¢[¢] +8 [A(v,v)| < 2¢|¢| + Be.
Similarly, we bound the derivative by
V(6 — do)| < 21— [o]) [V9] +2 V0] 6] + 4 (1 — o] Vo] g
(2.19) + 16 Vo] |A(v,v)| + 8 |[VA(v,v)| + 16 |A(v, V)|
<2e|V¢|+4elgp| + 16e. O

2.2. The proof of Proposition 2.1.

Proof of Proposition 2.1. Within the proof, it will be convenient to set
(2.20) ex(r) = Sup (IV7] +[V?7]) and eg(r) = SUp (Il +1Vel).
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Step 1: The approzimate translations. Using the C?-closeness in (2), at
every p in ¥ N By 5. there are n — k orthonormal eigenvectors

U1 (p)7 s Un—k’(p)

of A with eigenvalues Ky, ... k,_x with absolute value less than 1/4/100n, plus
k > 1 eigenvectors with eigenvalues o1,...0; with absolute value at least
1/+/4n. By (1), we can apply Corollary 2.4 to obtain

(2.21) lkj(p)| < Cer(5vV2n),  j=1,....n—k,

where C' depends only on n and J.
Now fix some p in ¥N B, s, and define n — k linear functions f; on R"*!
and tangential vector fields v; on X by

filw) = (vi(p),z) and v; = V' fi = vi(p) — (vs(p), n) n.

Step 2: Extending the bounds away from p. For each v > 5v/2n, let 2,
denote the set of points in B, N Y that can be reached from p by a path in
B,.NY of length at most 3r. The v;’s have the following three properties on €2,

(2.22) lvi —vi(p)| < Cr? er(r),
(2.23) IT(v;)| < Cr2er(r),
(2.24) Vo, Al < Cr?er(r),

where C depends only on n, § and C.

To prove (2.22) and (2.23), suppose that v : [0,3r] — X is a curve with
v(0) = p and |7/| < 1 and that w is a parallel unit vector field along v with
w(0) = v;(p). Therefore, the bound on V7 gives |V, 7(w)| < e,(r) and, thus,

(2.25) |T(w)] < 3rer(r)+ |Tp(vi(p))| < (C+3r)er(r) < Cre (r).
In particular, we also have
(2.26) [A(w)| = |H| |T(w)| < Creg(r).

Therefore, since Vﬁ“lw = A(y/,w)n, the fundamental theorem of calculus
gives

3r
2.27)  Jw(@) —vip)| = lw(t) —w(0)] < /0 [A(w(s))|ds < Cr?er(r).
Since w(t) is tangential, we see that |[(v;(p),n)| < Cr?e.(r), giving (2.22).
Similarly, (2.27) gives that
(228 Ju(t) - vl = @) — )] < w(t) - vlp)| < Cr?er(r).
If we combine this (and the boundedness of 7) with (2.25), the triangle in-
equality gives
(2.29) [m(vi)] < ()] + |7 (w = vi)| < Crer(r),

where we used the lower bound on 7 to bound r by r2. This gives (2.23).
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We will see that (2.23) implies (2.24). Namely, given unit vector fields x
and y, the Codazzi equation gives

[(Vo, A) (2, 9)] = (V2 A) (vi, y)| = [(Va(H 7)) (vi, )]
(2.30) = |H (Vo) (v, )| + (Vo H) 7(vi,y)| < Cer(r) + Crler,

where the last inequality used that |H| and |VH| are bounded by (1). This
gives (2.24).

Step 3: The sphere. From the gq closeness to Cy, in By, s in (2), we know
that

EoEB5mm2ﬁ{f1:"':fn7k:0}

is a compact topological S¥ of radius fixed close to v/2k. Using (2.22)-(2.24),
we can apply Lemma 2.11 (n — k) times to get that X has

(2.31) [pollcr < C (er +¢4),

where e, and €4 are evaluated at r = 5v/2n. We can now apply Lemma 2.5 to
get that g is a graph over S'f/ﬁ of a function ug with

(2.32) [uollcze < C (27 +24) -

Step 4: The translations and extending the bound. Let yi,...,yx+1 be an
orthonormal basis of linear functions orthogonal to the f;’s. Define the function
w by

(2.33) w? = Z vZ,
so that w would be identically equal to v2k if ¥ was in C. In our case, it
follows from (2.32) that the restriction wp of w to Xy satisfies

(2.34) [wo — V2kl|g2a(sy) < C (e +€4) .-

We will use the v;’s to extend the bounds away from ¥g inside €2,.. Namely,
for each y; and v; and any point in £2,., we have

(2.35) V., V"y, < |A(vj, )] < Cr2e,(r),

= |V, Vi

where the last inequality used (2.23) and the positive lower bound for H.
We will extend the bounds by constructing a “radial flow.” First, define
a function f by

n—k
=1
=1
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and then define the vector field v by
vTy
VTSP
Thus, the flow by v preserves the level sets of f. Note that

VT f; i i i
(2.36) VTfZX:fffZZ§Ui:Z§Ui(p)+Z§(Uz

Since the v;(p)’s are orthonormal and > (ﬁ)Q =1, it follows that

E5uo]=

Combining this with the triangle inequality and (2.22) gives that

(2.37) Sgl)lp ‘1—‘VTfH §Z|Ui(p)—vi| <Cr?e.(r),

where C' depends only on n, §, and C;. We will assume from now on that r
satisfies

(2.38) Crie.(r) <

l\D\H

so that ‘1 — ‘VTfH < % and, thus, that supg, [v| < 2. Since v is in the span
of the v;’s and |v| < 2, it follows from (2.35) that

< Ore (r).

(2.39) sup ‘VUVTyi
Q

Since (Vy;,v;) = 0 at p and |v; — v;(p)| < Cr?e.(r) on Q, by (2.22), we know
that

< Cr?e.(r) on Q,.

‘viji

Hence, since v is in the span of the v;’s and |v] < 2, |[V,y;| < C12e,(r) on Q.
Combining this and (2.39) gives

sup ‘V viw? =2 sup ‘V WiV i)

(2.40) <20k + 1) sup { Vol V73l + || [VoV 70
Qr

j

< Cr3e (r).

We will now define a subset €2, ¢ of €2, given by flowing Yy outwards along
the vector field v. To do this, let ®(q,t) to be the flow by v at time ¢ starting
from ¢ and set

(241) Q5= {@(q,t) |q € Xo, t* <r? — 3k and ®(q, s) € Q, for all s < t} .
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By integrating (2.40) up from X, we conclude that

(2.42) sup ‘VTw2‘ < sup ‘VTwQ‘ + 67 sup ‘VvVTwZ‘ < Cegp+Crie(r).
Q. DN Q,

Integrating (2.42) from ¥, gives that

(2.43) Ss)up w? — 2]{:‘ < Crey+Crie(r).
"

Observe next that as long as

(2.44) Cres+Crle (r) <k,
then we can conclude that

(2.45) Qp={fA<r?-3k}n%.

This gives a positive lower bound for w on €2,y so the bound on VTw? then
gives

(2.46) sup ‘VTw‘ < Ceg+Crie(r),
Q.

so the C! bound on w, and thus also on w, hold as claimed. O

2.3. Proving the first Lojasiewicz inequality. In this subsection, we will
prove Theorem 0.24. The proof not only gives the L? closeness to a cylinder,
but it also gives pointwise closeness on a scale that depends on ¢ and the initial
graphical scale of 3.

Proof of Theorem 0.24. We have that Bgr N ¥ is a smooth graph over a
cylinder of a function @ with ||@[|c2.« < e and |V%a| < Cp and that ¥ satisfies
(1) H>06>0and |A|+|VA| <Cion BRNE,

(2) By NYis gg C2-close to a cylinder in Cj for some k > 1.

The starting point is Proposition 2.1, which gives that for any r € (5v/2n, R)
with

(2.47) r? sup (|¢] +|Ve|) +r° sup (|V7| +[V?7|) <ei,
B5m By

we have that B ;2—; N ¥ is the graph over (a subset of) a cylinder in Cy, of u
with

(2.48)  |u|+|Vu| < C {7“2 sup (|p| + |[V|) + r® sup <|VT| + |V27'|)} )
By om By
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Using the a priori bounds and assuming that / is large enough,'” we can use
the interpolation inequalities of Lemma B.1 to get that

3
(2.49) sup (161 +1V9]) < Cu 611515,
Bsyam
where Cy = Cy(n) and L'(Bg) denotes the Gaussian L' norm on Bg.
To get bounds on V7 and V27, we apply Corollary 1.28 to get C3 =
C3(n, N, £, Cy) so that for r + 17_1Hn < R — 1, we have

T

d
n B (R l,n i
(2.50) Sgp(\VT|+|V27'\)§C'3R2 {e den ||¢>HL1(BR)} g

where the exponent dg, € (0,1) has limy_,o dg, = 1.
Thus, we see that B, ;2= N X is the graph over (a subset of) a cylinder
Y € Cp, of u with

d 774
ul + [Va| < € {r2\|¢||3 Iy {d S Pl } }
= Lt Li(Bg)

—1)2 dn 2
ol | 7

where C = C(n, o, ¥, Cy), and this holds so long as the right-hand side is at
most €1 > 0. Define the radius B; < R — 1 to be the maximal radius where
this holds.

To get the L? bound, we first use (2.51) on Bp, to get

_l=|” n — ; den
(2.52) / ‘wzk \ﬁ’ < ¢ Ron+10 { dy + 16115y }7

(2.51)

< CR2n+5 {e—dg’n

and we then use that ’wgk V2 ‘ ) < |z|? to get that

[ o
Br\Brg,

(2.53) 2

< CRn+2 e_Tl < CR5n+12 {e—d(g’n ||¢||C£ZIRBR)}
where the last inequality is the definition of R;. Combining these completes
the proof. O

We will later also need a variation on this, where we assume bounds on
A and H on a large scale and conclude that X is a graph over a cylinder on a
large set.

10We will take ¢ large later; we could replace 3/4 by any constant less than one by taking
0 larger.
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THEOREM 2.54. There exist Ry,ly and § > 0 so that if ¥ C R"! has
A(X) < Ao and

(1) for some R > Ry, we have on Br N'Y that |A| + |[V?A| < Cy and H >
do > 0;

(2) Br,NY is a C? graph over some cylinder in Cy with norm at most J,

then there is a cylinder ¥ € Cy, so that

(3) Br,_2NY is the graph of u over ¥ with ||ul|c2.a < €0,

where Ry is given by
(R—1)2 beg.n 2 .
(2.55) Ry =max {rgR — 1| R (e%m =y +\|¢”L12<3R>) .- §C}7

the exponent by, ,, € (0,1) satisfies limyg, o0 byy.n = 1, and C = C’(n, Ao, 90, Co).-
Proof. We follow the proof of Theorem 0.24 up through (2.51) to get

Y € C; and a function u so that Bpr,—1 N X is the graph of u over ¥, R; is
defined by (2.55), and

(2.56) lu| + |Vu| < 26.

Finally, we use interpolation and the V% A bound to get the desired C%>® bound
when § > 0 is sufficiently small. O

3. Analysis on the cylinder

In this section, we will prove estimates for the £ and L operators on a
cylinder ¥ € Cy with k € {1,...,n — 1}. These estimates will be used in the
next section to prove our second Lojasiewicz inequality. Note that L = £+ 1

on ¥ since |A|? = 1.
lz|?
We will use the Gaussian L?-norm ||ul|2, = [u? e~ 1, as well as the

associated Gaussian W12 and W22 norms
2
2 2 2y~
(- :/(u + V) e
||

(3.1)
[ull ez = / (u2 + |Vul* + ]Hessu|2) e 4.

3.1. Symmetry, the spectrum of L and a Poincaré inequality. The starting
point is the following elementary lemma that summarizes the key properties
of the £ operator on X € Cy:

LEMMA 3.2. The operator L on Y is symmetric on W2 with

2
=]

(3.3) /uﬁve*% = —/(Vu, Vu)e 2.
b s
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The space W2 embeds compactly into L? and L has discrete spectrum with
finite multiplicity on W22 with a complete basis of smooth L?*-orthonormal
etgenfunctions.

Proof. The first claim follows from integration by parts. The second fol-
lows from [BE85] since ¥ has positive Bakry-Emery Ricci curvature and finite
weighted volume. Finally, the last claim is a consequence of the first two (cf.
Theorem 10.20 in [Gri09]). O

We will also use the following Gaussian Poincaré inequality on 3 = S]f/@ X
R"*. The middle term does not use the full gradient, but only the gradient
in the translation directions.

LEMMA 3.4. There exists C = C(k,n) so that if ¥ € Cy and u € W2,
then

(3.5) llzlulfz < C (llullZe + | VRn-sullf2) < C lullfye.

Proof. Let y be coordinates on the R"~* factor, so that

(3.6) T =y and |z|* = |y|* + 2k.
We compute
lef2 o a2 2 2 |?/|2
e 4 divy (u ye 4 )zQu(Vu,y>+(n—k)u —ut
(3.7) )
<4 |Vgnrul* + (n — k) u® — u? ’*Z,

where the inequality used the absorbing inequality 2ab < % + 462
By approximation, we can assume that « has compact support on ¥ and,
thus, Stokes’ theorem gives
2 2
(38) = / I / {(n—k)u? +4 [Vyarul’} ¢
4 /s b
The lemma follows since u? |z|> = u? (Jy|*> + 2k). O

3.2. Estimates for the projection onto the kernel of L. Let K be the kernel
of L:

(3.9) K={veWw??| Lv=0}

Given any u € W22, we let ux denote the L?-orthogonal projection of u onto
K and

(3.10) ut = u— ux

the projection onto the L?-orthogonal complement of .
The next lemma shows that L is bounded from W22 to L?, L is uniformly
invertible on K+, and the projection onto K is bounded from L? to W?2?2.
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LEMMA 3.11. Given n, there exist C' and > 0 so that on Cg,

(3.12) [Lullr2 < Cluflw22,
(3.13) pllutlwee < | Lull 2,
(3.14) Jukllw22 < Cllul 2.

Proof. Since L = A — %VIT + 1 on the cylinder, we have

(3.15) 1 Zulze < l[Aullzs + 2 + 5 el [Vl 2

The first claim follows from this and using Lemma 3.4 to get the bound

(3.16) llz| [Vull[2 < Cll[Vulllwr2 < C {[l[Vull[ 12 + [[Hessy| 2} -
To get the second claim, we will need the “Gaussian elliptic estimate”

(3.17) [ollwz2 < C ([[o]lL2 + Lol L2),

where C' depends on n and the estimate holds for any v € W22, To prove
(3.17), we first integrate by parts to get

1 1
(3.18) IVollZe = (v, £o) 2] < [lollz2 1£o]l 2 < §IIUH%2 + §IIEUH%2-

Thus, we see that [|v|y1,2 is bounded by the right-hand side of (3.17). It
remains to bound the L? norm of the Hessian of v. This will follow from what
we have done and the divergence theorem since
|2 22\ 1
e 4 divy <{Uij1}i — (Lv) Uj}e_T) :55 IV|? — (Lv)? — (VLw, Vo)
> ]Hessv|2 — (.CU)Q,

where the last inequality used the Bochner formula for the drift Laplacian on
the cylinder.!!

The second claim now follows by first applying Lemma 3.2 to get po > 0
so that

(3.21) po llutllzz < || Lut| 2 = || Lul| 2

(3.19)

and then using (3.17) to bound the W22 norm.
The final claim follows from the trivial projection bound |lug||z2 < |Jul|z2
and the bound

(3.22) ullwz2 < Cllux| 2.

"' The Bochner formula for the drift Laplacian Afu = Au — (Vf, Vu) is
1
(3.20) iAf |Vu|® = [Hessu|” + (VA ju, Vu) + Ricy (Vu, Vu).

Here Ricy = Ric + Hessy is the Bakry—Emery Ricci curvature.
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To see (3.22), first use the equation Lux = —ux to get ||Vux||r2 = ||uxl 2,
and then use the Bochner formula as in (3.19) to bound the Hessian of ux in
terms of ||uic||yyi.2. O

We will also need the next lemma, which bounds the Gaussian L? norm of
a quadratic expression in u, Vu, Hess,, that bounds the error term in the linear
approximation of the gradient of the F' functional. When u € K, the bound is
the square of the Gaussian L? norm'? while we obtain a weaker bound when
u is orthogonal to /.

LEMMA 3.23. There erxist Cix = Cg(n) and Cy = Cp(n) so that if u €
W22, then

2
up + |Vug|* + ‘Hessu,c(‘, R”fk)‘

+ (1 + |z]) ! [Hessy, |”

(3.24) 12

< Ok |lukc| 72,

+(1+ |x\)_1 \Hessu¢|2

2
(uh)? + [Vt P + [Hess, . (, R* )|

(3.25) L2

< Co llullez [[u™[lw2.

The key for proving both claims is an explicit description of K. Namely,
KC is generated by multiplying a polynomial eigenfunction of Lgn—+ times a

spherical eigenfunction of Agr . To state this, let y; be coordinates on the
V2k

R™* factor and let 6 be in the S* factor.

LEMMA 3.26. Fach v € K can be written as

(3.27) v(y,0) = qly) + Z yifi(0) + ¢,

where q is a homogeneous quadratic polynomial on R"™* each f; is an eigen-
function on S\/ﬁ with eigenvalue 5, and c is a constant.

Proof. The operator L splits as
(3.28) L=L+1=Ag+Ly+1,

where Ay is the Laplacian on Sf/ﬁ and L, is the drift operator on Rk,

12This would be obvious if the C? norm of v were bounded by the L? norm, but this is
not the case.
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The first observation is that differentiating with respect to y; lowers the
2
eigenvalue by % Thus, if we set v; = % and v;; = %gyj, then

1
(3.29) Lv; = =S,

(3.30) ﬁ’UU =0.

Since every L? L£-harmonic function must be constant, we conclude that v;j is
constant. As a consequence, the function v can be written as

(3.31) v="> agyiy;+ Y fi(0) yi + 9(0),
ij i
where a;; € R, each f; is a function on S’f/ﬁ’ and ¢ is a function on Slf/ﬂ‘
Note that
1
(3.32) Lyy; = =35 Y
(3.33) Ly (yiyj) = 20i5 — viy;-

Using this and the decomposition of L from (3.28), we get that

1
(3.34) 0=Lv=> ay (26;)+ > {yz Agfi(0) + §fi(9) yi| +(Qg +1)g(0).
ij i
Observe first that only the middle terms depend on y. Setting these equal to
zero, we conclude that each f; satisfies

(3.35) Mofi=—31:

It follows that g +2 " ay; is an S]\"’/ﬂ eigenfunction with eigenvalue one, i.e.,

However, one is not an eigenvalue of Ay (the eigenvalues jump from 1/2 to
(k+1)/k; see (2.7)), so we have g = =2 3" ay;. O

It is interesting to note that the y; f; part of X corresponds to rotations of
the cylinder and, thus, these infinitesimal variations integrate to one-parameter
families in the space of shrinkers. However, by [CIM13], every shrinker that is
sufficiently close to a cylinder on a large enough set must be a cylinder. Thus,
any one-parameter families of shrinkers through a cylinder consists of cylin-
ders. Therefore, the infinitesimal variations given by a quadratic polynomial
plus a constant (i.e., Y a;;y:y; —2 > a;;) cannot be generated by one-parameter
families of shrinkers. In particular, the kernel K contains nonintegrable func-
tions.

As a corollary of Lemma 3.26, we get C? pointwise estimates for functions
in the kernel of L that grow at most quadratically in |y|:
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COROLLARY 3.37. There exists C depending on n so that if v € IC, then

(3.38) sup [v] < O (1+[y[*) [|v]l 2,
(3.39) sup [V < C (1 +[yl) [[v] 12,
(3.40) sup ‘Hessy(-,R”_k)‘ < C|vlz,

(3.41) sup |Hess,| < C (1 + |y|) ||v] 2.

Remark 3.42. The point of (3.40) is that, as opposed to (3.41), we get a
better bound, which does not grow in y, if we restrict to the Hessian in the
Euclidean factor. This is useful later.

Proof of Corollary 3.37. Since K is finite dimensional, estimates (3.38)—
(3.41) will follow for all of K from the squared triangle inequality once we
show that there is an orthogonal basis for IC where each element in the basis
satisfies (3.38)—(3.41).

The key for this is Lemma 3.26, which shows that I can be written as

(3.43) K =K1 ® Ky, where

e each v; € K is given by >, y; fi, where f; is an S’f/ﬂ eigenfunction with

eigenvalue %;
e cach vy € Ky is a constant plus a homogeneous quadratic polynomial in y.

In particular, (3.43) is an L2-orthogonal decomposition.

Case 1. If f;, f; are S’If/ﬂ eigenfunctions with eigenvalue %, then

(3.44) Wi fisyj fi)p2 = 0if @ # 4,

so we get an orthogonal basis for K consisting of a single y; times an f.
Suppose that

(345) V1 =Y f7
where f is an S’f/ﬁ eigenfunction with eigenvalue % Note that

2 . 2 o W2 2
(3.46) loallzz = e [ FlLz yiew 4 dy = Ci | fl|72,

6 JRn—k 0
where the constant Cj, > 0 depends only on k£ and the sub 6 denotes the norms
k

on S\/ﬂ’

Using elliptic estimates for the compact manifold S’f/ﬂ, we have ¢y = ¢o(k)
so that

(3.47) 1fllez < collllzz-
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Therefore, at each point, we have that

(3.48) o1 = w7 2 < @ |1 F1I72

(3.49) IVoi* =97 [Vof P+ 2 < ¢ (1+47) I£1172.
(3.50) |Hessy, |* =y} [Hess;|” < f 7 I£11Z2,

(3.51) [Hess,, (. R*H)[* < Vo[> < b,

giving the desired bounds in this case. (The first bound is even better than
needed.)

Case 2. 1t is easy to see that an orthogonal basis for Iy is given by

(3.52) {yiy; — 20i i < j}.
Therefore, it suffices to show (3.38)—(3.41) when
(353) Vy = yiyj — 252J

However, this follows immediately since the L? norms are nonzero and vy is
a quadratic polynomial in y. (In this case, the Hessian bound is even better
than needed.) O

We will now use the estimates from the corollary to prove Lemma 3.23.
Proof of Lemma 3.23. To simplify notation, set
’2

(3.54)  |[v|l2 = |[v* + |Vo|]? + ’Hessv(-, R"F)

+ (14 |z[) 7! |Hess, |?
L2

Given a € R, note that ||av|2 = a®||v||z.
We will show that there is a constant C'ic so that

(3.55) Ck = sup {HwHQ ’ w e K and ||w|| ;2 = 1} < 0.

Once we have this, then for a general v € IC, we set w = W so that
L

(3.56) [vll2 = [H[vll 2 wllz = ]2 [lwll2 < Cr [0]1Z2,

giving the first claim (3.24).
To establish (3.55), apply Corollary 3.37 to get C' = C(n) so that

(3.57) lw|* 4 |Vw|* + [Hessy|* < C (1 + Jy>)*.

Integrating this polynomially growing bound against the exponential decaying
Gaussian weight gives the desired uniform bound on |Jw/3.

To prove (3.25), we will show that
(Col

2
’ and

[Vt |

‘HQSSUL (,R"F)

(3.58) 2’ L2’ 12

H(l + |z[)7! \Hessuqz’

L2
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are each bounded by Cj ||u|c2 ||| 22 for a constant Cy depending only on
the dimension n. The key point will be the bounds (3.38)—(3.41) on ux from
Corollary 3.37.

For the first term, we use (3.38) to get
(3.59) (uh)? = (u—ug)ut < ([lulloo + C (1 + |2 ) [Jurcl|2) Jut|
< Clulleo (1+ J2f?) [ut],

where the last inequality used the projection inequality |luxl/zz < |Jul/zz and
the trivial inequality ||ul|z2 < C'||ul|co that follows since ¥ has finite Gaussian
area. Integrating and applying Lemma 3.4 twice gives

(3.60) 1(w™)?l 22 < Cllulleo |1+ [22) wtll 2 < Cllullgo llu™ [l
For the second term, we use the triangle inequality and (3.39) to get
Vurt [ < (V] + [Vux]) [V
(3.61) < (luller + O+ |2]) [furc z2) V]
< Cllullor (L + |2l) [Vu],

where the last inequality follows as above. Integrating and applying Lemma 3.4
gives

(3:62)  [IVu P2 < Cllulles |(1+ [2]) [Vut |l g2 < Cllullen [[u [lwee
For the third term, we use the triangle inequality and (3.40) to get
2
‘HeSSUL(-,R”*k)‘ < {‘Hessu(-,R”*k)‘
+ [Hessy, (-, R"7%)| | |Hess, . (-, R")
(3.63) ’ UK H ‘ u ‘
< {llullce + C [lul| 2} |Hess, . (- R )|

< Cullez

Hess,, 1 (-, R”_k)) )
Integrating this gives
2
(3.64) H‘HessuL(-, R™H)| H < C'|lullge | Hess, .|| 2.
L2

Finally, for the fourth (last) term, we use the triangle inequality and (3.41)
to get
(1 + |z)) 7! [Hess,|* < (14 |&]|) ™" (|Hess,| + |Hessy,|) [Hess,, . |
(3.65) < (L[ H{llulle2 + C (1 + |2]) [Jux|| L2} [Hess, 1 |
< C|ul|c2 |Hess,1| .
To bound the last term and complete the proof of (3.25), we integrate this to get

H(l + |z)7t |HessuL|2‘

L2 < C|ul|c2 ||Hessy || 2 O
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4. The gradient Lojasiewicz inequality for F'

In this section, we will prove a gradient Lojasiewicz inequality for F' in a
neighborhood of a cylinder ¥ € Cg. The inequality will hold for graphs over
part of ¥ with small C? norm. The key technical ingredient is the next propo-
sition, which shows that our first Lojasiewicz implies our gradient Lojasiewicz
inequality.

PROPOSITION 4.1. There ezist C = C(n, \o) and € = &(n) > 0 so that if
A(X) < Xo and BN Y is the graph of 4 over a cylinder in Cy with |||lc2 < €,
then for any B € [0,1),

_ B48)(R-1)? 348
16

348 ~ -
(4.2) |F(2)—F(Cy)| < CllchLS(BR)JrC(l—i—R"’l)e +C’HuH;(ﬁBé).

The proof of Proposition 4.1 is an infinite dimensional version of the model
argument using Taylor expansion given in Subsection 0.4. The simple model
was done with 5 = 0 but would have worked with any € [0,1). However, the
simple model did not include a cutoff and, to bound the exponential term in
(4.2), we will need to choose 3 close to one.'?

4.1. The linearization of the gradient of the F' functional. Given a graph
Y, of a function u over a cylinder ¥ € Ci, we let F(u) = F(X,) and then
let M(u) be the gradient of F. The next lemma gives linear and quadratic
approximations for M and F', respectively.

LEMMA 4.3. There exists Cy so that if the C? norm of u is sufficiently
small and u is defined on the entire cylinder, then

[M(w) = Lul| 2
<1 u? + [Vl + [Veae| ul + (1 + [2]) ™" [Hess, ||

L2’

F(w) = (@) = 5 (u. L)

u? + |Vul? + [Vgooi [Vl > + (1 + |2)) 7! yHessuﬂ

(4.5)
< C1 ullr2

LQ

The bound in the first inequality in Lemma 4.3 is essentially quadratic
in u. For example, it is bounded by C ||lul|c2 ||u|ly22. Ideally, we would have
liked the bound to be quadratic in ||u||y2.2, but the exponential decay in the
Gaussian norm makes this impossible and, thus, leads to technical complica-
tions.

We will prove Lemma 4.3 in this subsection. The starting point is the
next lemma computing M(u) in terms of u, Vu and Hess,,.

348 348
13The ||¢>||L22(BR) term is fine for any 8 > 0, and the HﬂHzf}(ﬁBé) term is fine if 8 < 1.
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LEMMA 4.6. If ¥ is a cylinder in Ci and p € X, then

~

M(u)(p) = f(u(p), Vu(p)) + (p, V(u(p), Vu(p)))

4.7
(4.7) + B (u(p), Vu(p)) Uap (),

where f, V and ®*° depend smoothly on (s,y) for |s| small.

Lemma 4.6 is proven in Appendix A.

The next lemma shows, for a general map u — M(u) of the form (4.7),
that the linearization gives a good approximation up to quadratic error. To
state this precisely, consider a general map N (u) of the form

(4.8)  N(u)(p) = f(p,u(p), Vup)) + 2 (p, u(p), Vu(p)) uas(p),

where f and ®*? are smooth functions of (p, s,y) where p is the point, s € R,
and ¥ is a tangent vector at p. The linearization of N at u is defined to be

d
(4.9) Lyv=—

dt‘t:ON(u +tv)=fsv+ fyava—i-(I)aﬁ Vo +Uas (CIJ?'B v+@§f UAY),

where all functions are evaluated at the same point p and we have left out the
obvious dependence of f and ® on (p,u(p), Vu(p)).

LEMMA 4.10. If N'(u) is given by (4.8), then we get at each point p that
(4.11) [N (u+v) — N(u) — Lyw| < Cy ([v] + [V])24Cy ([v] + |[Vu]) [Hess, |,
where the constants C1 = C1(p) and Cy = Ca(p) are given by

(4.12)  Cy =Lip,(fs) + [tag| Lip, (®57) + Lip,(fy,) + |uas| Lip, (#57),
(4.13)  Cp = |997| + |@57| + Lip, (7).

Here Lip,, denotes the Lipschitz norm at p with respect to the s and y variables.

Proof. Using (4.9), we get at p that for any w,

| Lytwv — Lyv| < | fs(p,u+ w, Vu+ Vw) — fs(p,u, Vu)| |v]
+ ‘(uaﬁ + Wag) PP (p,u + w, Vu + Vw) — uas®? (p, u, Vu)‘ v
(4.14) T lfeapu+w, Vut Vw) = fy, (p,u, Vu)| |val
+ ‘(uag +wag) D97 (pu+ w, Vu+ V) — uqg® (p, u, vu)] 0, |

+ |2 (b, u+ w, Vu + Vw) = 2% (p, u, V)| [vag]
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Bounding these terms gives

| Ly w¥ — Ly v
< {[Lip, (£ + luas| Lip, (229)] (| + Vo)) + foas | 237} o]
+{[Lipy () + itas] i, (857)] (o] + Vo)) + was] [ 857 } 0]
+Lip, (27) (Jwl +|Vew]) [vag]

(4.15)

The fundamental theorem of calculus in one variable gives

(4.16)  N(u+v) - N(u) = /

1 /4 1
( ‘ N(u+ tv)> dt = / Lyt v dt.
0 =0 0

dt
Finally, combining this with (4.15) gives that (again at p)

IN(u+v) = N(u) — Lyv| < sup |Lyttp v — Ly v
te[0,1]

< {'@35\ +|@5?| + Lip, (@)} (o] + [Vo]) [Hess, |
(4.17) + {Lip, (f:) + |uas| Lip, (957)
+ Lipy(fy,) + [uas] Lip, (®7) } (jv] +[Ve))*. O

Proof of Lemma 4.3. By Lemma 4.6, M(u) is of the form (4.8) with

~

(4.18) f(p,s,y) = f(s,9) + (0, V(s,9)).

Since 0 is a critical point for F', we have M(0) = 0. Therefore, Lemma 4.10
gives

(4.19) |M(u) — Lu| < Cy ([ul + [Vul)? + Co (|u] + |Vul) [Hess,|,

where the constant C1 = C1(z) is bounded by C (1 + |z|) and C3 is bounded
independent of z € 3. The bounds on Ci and Cy come from Lipschitz bounds
for f and ®; the bound for C] is worse because the Lipschitz norm of the last

term in (4.18) grows linearly.
Integrating in space (against the Gaussian weight) gives

IM(w) = Lull 2 < C (11 + le) u®[l g2 + (1 + |2]) [Vul*| 12)
+ Co [ (Ju] + [Vul) [Hessy|[| 2

< C (I + 2D w2 + (1 + |al) [Vul?|12)
+ O+ |2]) ™" [Hessu|*| 2,

(4.20)

where the last inequality used the absorbing inequality
(4.21) 2 (Jul + |Vul) [Hessy| < (14 |z) (Jul + [Vul)* + (1 + |a]) " [Hessy|*
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To get rid of the |z|’s in the first two terms, we use Lemma 3.4 to get
(4.22) ] u?[lz2 < Cllullwrz < C lu? + [Vul?|| 2,

(4.23) 2l [Vul?llz2 < C[Vul® + [Vea-r [ Vul | 2.

To get the first claim, we substitute these bounds back into (4.20)

(4.24)
IM(u) = Lul| 2 < C ||u? + |Vuf? + [Vguee|Vul* + (14 [o]) 7 [Hess, ||

L2’
To get the second claim, we first use the fundamental theorem of calculus
and the definition of the gradient to get

1
F(u) — F(Ck) — = (u, Lu 12 = /

d t2
2

— |F(tu) — — (u, Lu) 2| dt
(4.25) dt 2 ' }

_ /01<u,./\/l(tu) —t Lu) e dt.

The second claim now follows from the first since the Cauchy-Schwarz inequal-
ity bounds the integrand by ||ul|z2 | M (tu) — ¢ Lu|| 2. O

4.2. The gradient Lojasiewicz inequality. We will prove Proposition 4.1
and then use it to prove our gradient Lojasiewicz inequality using our first
Lojasiewicz inequality.

Proof of Proposition 4.1. Step 1: Cutting off to get a compactly supported
perturbation of the cylinder. Unlike this proposition, both Lemma 4.3 and the
results of the previous section are for entire graphs over a cylinder. Thus, we
fix a cutoff function ¢ with 0 < <1 that is one on Bj_, and zero outside of
Bp and set

(4.26) u=1).

Observe that u has |Julc2 < Oy ||@|lc2 < Cy g0, where C,, depends on the C?
norm of ¢ and, thus, depends only on n. Since 1 is supported in Bj and
|| <1, we have

(4.27) lullZe < llallZ2g,).

Finally, using the exponential decay of the Gaussian, we see that

(R-1)2
4

(4.28) |F(¥) — F(Graph, )] < C AR te 1 |

_ (B-1)?

(4.29) [M(u)llz2 < C0llpaqg) + Cne 5,

where ¢ here is the ¢ for ¥ and C, C,, depend only on n.
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Step 2: The gradient Lojasiewicz inequality for the compact perturbation.
To simplify notation, define Fy(u) by
(4.30) Fy(u) = F(Graph,) — F(Cy)

and, given a function v, set

(4.31)  |lvll2 =

2
v? + | Vol + ’Hessy(-, R"*k)’

+(1+ |a;\)*1 \Hessv]2
L2

Assuming that |lul|c2 is sufficiently small, then Lemma 4.3 gives C} so that

(L1) [IIM(@)]z2 = | Lull2| < Cy [Jull,
(L2) [Fo(w) — 3 (u, L) 12| < C1 flull 2 [Jull2.

Here we also used the Kato inequality

2
(4.32) |Vgn—r| V0| < ‘Hessv(~,R"*k)‘ .

We will divide into cases depending on the projection of w to the kernel
K of L. Let Cy be the constant from (L1) and (L2).

Case 1. Suppose first that u satisfies

(4.33) lucllz < & [lut (|22,

where ¢ > 0 will be chosen below and § € [0,1). Using the squared triangle
inequality and then (4.33) plus'* Lemma 3.23 gives

(4.34) lullz < 2 fluxcll2 + 2 [lu' |2 < 2 (e + Collullc2) [lu™[lw2.-

Using (L1) and (3.13) and then using (4.34) gives

(4.35) IM(u)|[ g2 > || Lull 2 = Cu [lulls > p [Ju* w22 = C1 [lull2

> (1 =2C1 [e + Collullc2]) lut [l

We now choose € > 0 and a bound for ||ul|c2 so that 2C [ + Collul|c2] < §
and, thus,

1
(4.36) IM@)lz2 > 5 [lu*[lwee.

We will show that Fy(u) is higher order in ||u™||jy22. Since L is symmetric
and Lux = 0, Cauchy-Schwarz and the bound on L from W22 to L? by (3.12)
give

(4.37) [, Lo 2] = [, L) 12| < € a2 e

L8, <tz

" Note that ||u’]|yy 2.2 is small so ||ui||W2'2 <
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Substituting this into (L2), using that |luls < C|lut|y22 (by (4.34)), and
applying the triangle inequality |lu 2 < ||ux|/z2 + ||ut||z2 gives
[Fo(u)| < Cllu™p2 lu™llwez + C llull 2 [lull2

(4.38)
< Cllut |2 lutlwee + C llullz2 [[u (w2

The first term on the right side is trivially bounded by C'|Ju™|[?52. To bound
the last term, we use that the cylinder has finite Gaussian area so that

(4.39) lux|lF2 < Cllui )2 < O flukcll
to get that

L 3L 15
(4.40) Jull Lz [u™ w22 < Cllucl3 [lu™llwzz < Cllu [y,

where the last inequality used (4.33). Putting all of this together (and noting
that ||u’||yy22 is bounded) gives

3+8 3+8
(4.41) [Fo(u)| < C llut|lyz < C [IM(u)ll,3

where equation last inequality is (4.36). Combining this with the bound on
M (u)]| 12 from (4.29) gives
48 _ B4/ (R-1)?
(442) ’Fg(u)’ < CH¢||L2(BR) +Ce 16 .
Case 2. Suppose now that u satisfies

(4.43) luxcllz > e llut 52

Lemma 3.23 gives Cjy so that

_1
(4.44) lutll2 < Collullez lu™ llwee < Cllucly™,

where the last inequality is (4.43). Using the squared triangle inequality and
(4.44) gives

1
(4.45) lullz < 2 luxcll2 + 2 [lu™ |2 < C fluxlly™,

where the last inequality uses that ||ux||2 is bounded. Using (L2) and (3.12),
then (4.43) and (4.45) (and the projection inequality ||u™|z2 < |lul|z2), we get

_1
(4.46)  |[Fo(u)| < C llut||zz [lutllwzz + O [lull g2 ullz < 2C [lull g2 [Juc]l .

However, since Lemma 3.23 and the projection inequality ||ux||z2 < ||u|| ;2 give
that

(4.47) Jullz < Ck lluxll7> < Ck l[ull72,
we conclude that
(4.48) [Fo(u)] < Cllull 2" < Cllall2p,),

where the last inequality is the Gaussian L? bound on u from (4.27).
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If we now combine the bounds from the two cases, then we see that

348 _ 4B (A-1)? e
(4.49) [Fo(uw)] < ClIgll Zpy +Ce™ 1 +Clll i,

Finally, we use the triangle inequality to combine this with the bound (4.28)
on the F' functional from Steps 2 and 3 to complete the proof. (]

We will use the following elementary lemma to control graphical bounds
when we write a surface as a graph over two nearby cylinders.

LEMMA 4.50. There ezists eg = eo(n) > 0 so that if ¥1,%9 € Cg, 5v2n <
Ry < Ry and
e Br, NX is the graph of ui over X1 with |uy| + |Vui| < &g,
e Bpr, NXY is the graph of uy over Yo with ||uz|c2.e < €o,
then we get for R = min{2 Ry, Ry} that
e BrNX is the graph of uy over ¥y with |luy||c2 < €.

Proof. Since Br,NY is 9 C'-close to ¥ and g close to X, we get that the
distance between ¥; and ¥y in Bp, is at most 2g¢. Since the distance between
cylinders grows linearly in the radius, we conclude that the distance between
31 and Yo in Bpg is at most 4eg. The lemma follows easily from this. O

Proof of Theorem 0.26. The result will follow by combining the L? close-
ness to a cylinder given by the first Lojasiewicz inequality and Proposition 4.1.
Note that we can assume that R is large and |¢||12(p,) is small since the
inequality is otherwise trivially true.

Step 1: Fixing the nearby cylinder. The Lojasiewicz inequality of Theo-
rem 0.24 gives a cylinder ¥y € Ci so that Bz N X is the graph of @ over X
with [|@]|c1 < g, where by, € (0,1) satisfies limy_,o0 bep, = 1, and!®

_ 2 ben -2 N
(4.51) R = max {r <R ‘ RS {ebm 5+ \|¢||Lg(BR)} es < C} :

where C depends on n, Ay, £, Cy. Combining this with Lemma 4.50, we extend
@ out to R = min {2R, R} so that
(1) BN X is the graph of @ over ¥ with ||tz <€,
12 bZ n _ bl,n R2
() il < C R {015+ 5

where C' = C(n, ¢, Cy, \o) and p = p(n).

1%We choose R to make ||i||c1 small by (2.51).
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Step 2: Using the first Lojasiewicz to get the second. Proposition 4.1 gives
(4.52)

3+ 1y BEB(R-1)? =L
F) = FEOI < O el + (0 B0 e 0 pa )

R

where C'= C(n, A\g). To bound the last term in (4.52), we use (x2) to get

+ —— n R A —
(4.53) @l 2p,) < C R H¢HL2 te U

To deal with the exponential term in (4.52), we consider two cases. Sup-
pose first that R < R, so that R = 2R and the definition of R gives

bon B -
(454) s {eotin 4 ol 55, f o = C.

Since R = 2R in this case, we have

=2 5274
(4‘55) e—% — {e—%} S CRBn-i—ZO{ —bpn -5 + qunil;z nBR }

_ 5122
We can assume that R > 4 so that (@) > 1/2. Raising (4.55) to the

R
BN 2
# (%) > 3+B power, we bound the exponential term in (4.52) by a

constant times a power of R times

(3+ 3+8)

316 (3+8)(R—1)2

_ bon—5— _ B+B)(R=1)7 by m
(4.56) e b +ollass <e o +lgllsisS

where the last inequality used also that be,n is close to one and, in particular,

at least 1/2. We proved this inequality in the case where R < R, but it also
obviously holds in the case when R = R (and the ¢ term is unnecessary).

Putting it all together, |F(X) — F(Ci)| is bounded by C' R?" times
318 , 38 by, (3+5) R (3+8)(R—1) by, BB
Emt @wh2ww+eMW)}+{e|m%BR}

where we have grouped terms together based on where they came from in
(4.52). Finally, the first and fifth terms can be absorbed in the second term. [

5. Compatibility of the shrinker and cylindrical scales

One of the main difficulties in this paper is that the singularities are not
compact and, thus, surfaces cannot generally be written as entire graphs over
a cylinder. As a result, our estimates include “error terms” coming from cutoff
functions. Thus, a surface is close to the cylinder if a large part of it can be
written as a small graph over the cylinder.

Given a hypersurface ¥ ¢ R"t!, we will prove a lower bound for the scale
on which it is “roughly cylindrical” in Theorem 5.3 below. This essentially
bounds the error terms in our Lojasiewicz inequalities by a power greater than
one of [Vx F|, which is crucial in the next section when we prove uniqueness of
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tangent flows. It will also imply that the size of the graphical region is growing
at a definite rate under the rescaled MCF.

5.1. The cylindrical scale and the shrinker scale. Recall that the cylindri-
cal scale ry(X) is the largest radius where ¥ can be written as a small C*®
graph over a cylinder with a uniform bound on VA. Namely, given a fixed
g0 > 0, an integer ¢ and a constant Cy, ry(X) is the maximal radius where

e B, (x)NX is the graph over a cylinder in Cy, of a function u with |[u[|c2.. < eo
and |V*A| < Cy.
The constant ¢g is fixed, but we have yet to choose ¢ and Cy. (The constant ¢
will be chosen large to get good bounds on lower derivatives by interpolation,
and then Cy will be chosen.)
The point of this section is to prove that these cylindrical scales are large
enough that the error terms in our Lojasiewicz inequalities can be absorbed.

2
The scale R that we have to beat'® is roughly given by S |Vs F|. Thus,
we define a “shrinker scale” R(X) by

_RY(®)

(5.1) e” 2 =|VsF|?

with the convention that R(X) is infinite when ¥ is a complete shrinker. When
Y flows by the rescaled MCF, we define the shrinker scale (also denoted by
R(%4)) to be
_RAy) !

2

+1
=/ Vs, F|?ds = F(3_1) — F(S¢41).

(5.2) e

The main result of this section is the following theorem, which shows that
the cylindrical scale is a fixed factor larger than the shrinker scale:

THEOREM 5.3. There exist u > 0 and C so that if 3, flows by the rescaled
MCF and A\(2;) < Ao then, given any ¢, there exists Cy (depending on £) so
that

. < i .
(5.4) (L+WRE) <, min (D) +C

To understand this, observe that Theorem 2.54 gives uniform graphical es-
timates on any scale less than R(X). To apply Theorem 2.54, we need uniform
curvature bounds and a lower bound for H on this larger scale. We will estab-
lish these uniform bounds on the larger scale by an extension and improvement
argument, where Theorem 2.54 gives uniform bounds on larger scales. (This
is the improvement part.) Roughly speaking, the extension argument will use

16To see this, note that the larger exponentially decaying term on the right in Theorem 0.26
2
is essentially e~ . We need to bound this by a power greater than one of |VsF| = ||¢| 2.
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curvature estimates for MCF to get bounds on a larger scale forward in time,
and then use the bounds on ¢ to pull these bounds backwards in time under
the rescaled MCF. Repeating this gets us as close as we want to the scale R(X)
and gets us uniform curvature bounds on a larger scale than R(X). The final
step is to get graphical estimates on a larger scale too; for this, we cannot use
Theorem 2.54. Rather, we get these graphical estimates from estimates for
MCF and a scaling argument to relate MCF and rescaled MCF.!7

5.2. Backward curvature estimates. Recall that, when ¥ c R"*! is a
hypersurface, ¢ is defined to be ¢ = w — H, so that X; flows by the rescaled
MCEF if 0yx = ¢n and

_le?
(55) VP = o} = [ 6fe

The next proposition proves a curvature estimate backward in time in a
region where the evolving hypersurface is almost a shrinker and has a forward
curvature estimate. The forward curvature estimate gives a bound for the
Gaussian areas on a fixed scale, the fact that it is almost a shrinker extends
these Gaussian bounds backward in time, and finally Brakke’s theorem at
the earlier time (applied to the corresponding MCF) will give the backward
curvature estimate.

PROPOSITION 5.6. Given n, Ao, there exist s > 2 and § > 0 so that the
following holds: Given 1/2 > 1 > 0, there exists > 0 such that if ¥y flows by
the rescaled MCF, A\g > \(X), to > t1 + 7, g € Br—s, and

(R+2)2

to |2 HQ e 1
5.7 / / Zem 1 < ,
( ) t1 BR+2ﬁEt ¢ R2 (t2 - t]_ + 1)
(5.8) sup |A|2 <571,
BS\/;(xo)ﬂEtQ

then for all t € [t; —log(1 — 77/8),t1 —log(1l — 7)] and any ¢,

2 C
(5.9) sup {lap++¢ v} < 2,
Lt—tq) T
Bﬁ (eQ( 1 Io)ﬁzt
3

where Cy depends on n and £.

We will need the following elementary lemma:

7This final step cannot be iterated since it has a loss in the estimates and we can no
longer apply Theorem 2.54 to get rid of the loss.
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LEMMA 5.10. If ¥, flows by the rescaled MCF and 0 < n <1 is a smooth
compactly-supported function on R"*1, then for t; <ty and 7 > 0,

t2 |z—zg2 t2 _le—zg|?
(5.11) = (Vn,n) e 17 / / (o, m) ™
t1

3t
1 t2 oz t2 lz—ag?
T —/ S
T/ Jy Jx, 2 Iy

Proof. If f € R — R is a smooth function with compact support, then

d
fe_T = | (V/f,m) fore T
(5.12) dt 2t / ,
= [ (Viogfmyo fe —/ ¢ feF.
St DY
If we set f(z) = nemTI2 e M , then

— 1 1
(5.13) Vlogszlogn—kz—:C xO:VIogn—f—@—i—i(l——) x.

2 2T 2T T
Therefore
r—T - z—zq|2
i | T()l _/ V77, ¢e 4‘rol / <x0’n>¢77€7| 470\
dt w, 2T
(5:14) 1 (x,n) _lz—ag? |z—zgl?
n T—T, T—T
R e
T/ Js, 2
The lemma now follows by integrating from ¢; to ts. O

COROLLARY 5.15. Given € > 0, 1 > 7 > 0, and \g, there exists p =
wle, 7,X0) > 0, s = s(e, \o) > 2 such that if X flows by the rescaled MCF,
Ao > )\(Et), xg € Br_s, and to >t

_ (R+2)?

(5.16) /m/ P o e T

' t BR+202t T RX(ta—t1+ 1)’
(5.17) (4n7) "3 /E X ke
then

r—x 2
5.18 Arr) "% s
(
»
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Proof. Observe first that by the entropy bound A\(X;) < Ao, there exists
s > 0 such that for all y € R"! and all ¢,

2
lz—y| 15

(5.19) (4m)*%/ e” o <.
Zi\By7(y) 4

If we choose a nonnegative function n with n <1, [Vn| < 1,7 =1 on Bpg, and
1n = 0 outside Bpr4o, then Lemma 5.10 gives

lz—aq? lz—aq? lz—zq|?
/ e A< per o < e” A
BrNSt, b)) BRri2aNSiy

t1

_lz—gzg)?
| e 4T

/BR+2\BR)PIE,5

t2 >] _la— 900|2
(5.20) (— - 1) / / ¢le”
t1 BR+QﬂZt
Z0, _lz—agf?
o0 et
tl BR+QmEt 27—

t2 l2—=q|?
+ / P2e” A .
t1 BR+gﬂEt

Combining the terms that are linear in ¢ gives

/ 7\x7m0|2 / 7‘&071’0‘2
e 4T S e 4T
BrNXy, BRr12NXi,
o] 1
By (2 —1 (R+2) t2 \ac:cl
+ <1 4+ T (’T ) / / ‘(b‘ =
2 t1 BpryoNXt

2
|z—zg|

to
+ / ¢* < / e AT
t1 JBprioNXt BRri2NZt,

R+2 t2 |$710\2 to
— 2
220 gl = [T
T t1 BRryoNXy t1 BryaNX

By the entropy bound A(X;) < ¢ and the Cauchy-Schwarz inequality, we have

N/ e
T ar
tl BR+QmEt
1
t2 _le—agl? ) 2 =
(/ / = ) VEr)E (2 — 1) ho
tl BR+QmEt
1
- to 2
<\/47TT§ tg—tl))\()(/ / ¢2>
tl BR+2mEt

1
m (R+2)2 t2 e\ 2
<\/47T7’5 tg—tl))\oe 8 (/ / ¢2e 4) .
t1 Bri2NXt

(5.21)

(5.22)
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We can therefore bound the two last terms in (5.21) as follows:

R42 t2 _ |I*IO\2
|ple”
T t1 BR+gﬂEt BR+2ﬂEt

= <R+2>2 t2 |22 2
\/ 47‘1’7’ 5 t2 — 1 (/ / 4 >
(5.23) t1 BR+2ﬁEt

M t2 _lz?
+e 4 / / ¢2e 4
t1 JBgr42N3t

C (u/7+ ).
Using (5.19), (5.21), and (5.23) we get that

a2 e
(4%7)_%/ e_lz 47;0‘ = (4#7)_%/ e_lac o
¥ BRmEtl

t1

(5.24) + (4m7) "2 / e” A -

Etl \BR

n lz—= |
S(47r7')*5/ e ar —l—C(,u/T—F,u)—i-Z
Sty

Choosing p sufficiently small gives the corollary. O

We will apply this corollary in combination with Brakke’s regularity result
to get curvature estimates at an earlier time-slice in terms of curvature esti-
mates at a later time-slice. By White’s [Whi05] version of Brakke’s regularity
result [Bra78|, there exist constants ¢ and Cp depending on n and A¢ such
that if M, C R"™! flow (s < 0) by the MCF, A\(My) < Ao, and for some sy < 0

n |lx—x \2
(5.25) (—4msg)” 2 / e B0 <1l+e¢,
My,
then for all s € [-22,0],
C
(5.26) sup AP <=2
MyBy (o) —s0

We can use the correspondence between MCF and rescaled MCF to translate
this into a similar curvature estimate for rescaled MCF. Namely, if ¥; is a
rescaled MCF with entropy at most A\¢ and there is some 7 € (0,1/2) so that

n |z —zq|®
(5.27) (477)"2 / e A <1l+e,
S
then for all t € [tg — log(1 — 37/4),to — log(1 — 7)], we have
C
(5.28) sup AP < =2,
T

1
Ethﬁ (ef (t*t()):ro)
27
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This is proven by writing the rescaled flow ¥; as e (t=to) \f s where s = 1 —
eto~t — r and M, is the MCF with M_, = Y- (Here we have used that the
result of Brakke/White is uniform in ¥ or more precise uniform in the point
xo where it is centered as for the rescaled MCF when the point zq is fixed this
mean that the original “fixed” point zy for the MCF evolves by e3 (t_to)xo.)

Proof of Proposition 5.6. Combining the above consequence of Brakke’s
theorem with Corollary 5.15 gives the |A| bound in Proposition 5.6 for ¢ in the
time interval

(5.29) [t1 —log(l —37/4),t1 — log(1 —7)].
The bounds on higher derivatives of A then follow from this and the
interior estimates of Ecker and Huisken, [EH91]. O
5.3. A mean value inequality. In the next lemma, we will use that if ¥,

flow by the rescaled MCF, then (see Section 2 of [CIMW13])

(5.30) (0 — L)é =0 where L — £ + \A|2+%.

Hence,

(5.31) (0, —L)¢* =2¢ (0, — L) —2|Ve|* = ¢* 2|A]* + 1) — 2|Vo|*.

LEMMA 5.32. There exists a constant C so that if Xy flow by the rescaled
MCF fort € [t1,t2], 7 + 1 < ming, <g<4, r(Es), and 0 < 8 < (t2 — t1)/2, then

(5.33) sefax [V, Flp, < (C+1/8) (F(Sh) - F(S),
Gy [ [ VR < (018 () - P,

Proof. Fix a compactly supported function 7 on R*"*! with 1 <75 <0, n
identically one on B,, n vanishes outside B,11, and |Vn| < 2. If we restrict n
to X, then the flow equation and (5.31) give

O (¢2 772) = (") ¢+ 1° 0”

5.35
(539 = ¢* (VP ,n) +n? (L% + ¢ (2|AP +1) —2|Ve[?) .
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Using this and the equation for the derivative of the weighted measure, and
integrating by parts to take £ off of ¢?, we get

(/¢22—'2') /(;542—'2
2 9 o Lz
+/Et<2|A| +1)gz§77e
2 [ veltnte 4 [ 6t (wata e

2
=]

~ [ (v vite
3t

(5.36)

Using the absorbing inequalities 2¢°1|Vn| < ¢*n?4-¢%|Vn|? and 4 9|6|| V||V )|
< ?|Vo[? + 4¢%|Vn|?, we get

at</ ‘bzn%z‘f)ﬁ/ {21AP +1) 72 + 5[V} 6?5
¢ bop

2|2
(5.37) _/ IVol|?n .
t
lz|? l=|?
<c [ ¢re - [ vePuret
Pt N
Suppose that s € [t; + ,B,tg]. To prove (5.33), we integrate (5.37) to get
/ P nPe 1 min q§2 n?e” + C pre A
t17t1+5] t1 JX,
i1 /5

Finally, to get (5.34), we integrate (5.37) from ¢; + (3 to t2 and use (5.33) to
bound the contributions at the end points. O

5.4. Uniform short time stability of the cylinder. The last result that we
will need for proving Theorem 5.3 is the following elementary short time uni-
form stability of the cylinder under MCF with bounded curvature:

LEMMA 5.39. Given R > v/2n, € > 0 and Cy, there exist § > 0 and 0 > 0
so that if My is an MCF with

(1) Braa N M_q is a C*® graph over ¥ € Cy with norm at most 6,
(2) |A|+HVA|+H|V2A+|V3A| < Cy on BriaNM; forte[—1—1/Co, —14+1/Cy),

then for each t € [-1 — 0,0 — 1], we have that
e BrN M; is a C*> graph over /—t X with norm at most €.
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Proof. Since |A| is bounded, the MCF equation implies that |0,x| is also
bounded. Likewise, the bound on [V A| (and thus on [VH|) and the evolution
equation for the normal (see lemma 7.5 in [HP99]) imply that |O;n| is also
uniformly bounded. Combining these two bounds, it follows that Br41 N M,
remains a graph over ¥ of a function v with a uniform bound

(5.40) |8tU’ + IGtVu\ S Cl for t € [—1 — 90, -1+ 90],

where 6y > 0 and Cj depend on Cp,e,n. Similarly, the higher derivative
bounds on A then yield bounds on higher derivatives of v and the lemma
follows immediately. O

5.5. Proof of Theorem 5.3. We are now prepared to prove Theorem 5.3,
which shows that the cylindrical scale is a fixed factor larger than the shrinker
scale.

Proof of Theorem 5.3. The theorem follows by an extension and improve-
ment argument that is inspired by a similar argument for shrinkers in [CIM13].
The extension argument is modeled on Proposition 2.1 in [CIM13]; the im-
provement is modeled on Proposition 2.2 in [CIM13].

(1) Extending the scale. Given ¢, we will show that there exist 6 > 0,
§>0,60>0, Ry, Co, and Cy so that if

(A1) BRN ¥ is a graph of u; over some 1 € C, with [|u1]|g2.« < 0 for each
s € [to — §,to + 5] for some R € [Ro, R(X4)] and to € [t —1/2,t+ 1 — §]

then, for every s € [ty — S, to + §|, we have
(A2) re(Xs) > (14 6)R and |VESF|QB<1+9)R < Cy (F(Zim1) — F(Zi41)).

The key step is to get estimate A and its derivatives on a larger scale without
any loss in time. The starting point is that the local a priori bounds in (A1)
and entropy bound A < )¢ (which holds by assumption) imply that the local
Gaussian densities on some fixed scale are almost one as in (5.25); cf. the proof
of Proposition 3.5 in [CIM13]. Thus, White’s Brakke estimate [Whi05] gives a
curvature bound for the associated MCF and, thus, for the rescaled flow on a
larger region B(1 4, g with £ > 0 but at the cost of moving forward in time.

This establishes the curvature bound on the larger scale (1 + k)R forward
in time, so it remains to pull this estimate backward in time and get higher
derivative estimates. However, Proposition 5.6 does exactly this while only
coming in by a fired additive amount. As long as R is sufficiently large, the
multiplicative gain beats the additive loss and, thus, the bound on A and its
derivatives extends to a larger scale with no loss in time.

We can now apply Lemma 5.39 on a unit scale but centered at points
out to the extended scale to get the cylindrical estimates on the larger scale.
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Finally, using the curvature bounds, Lemma 5.32 gives the constant Cs so that
Vel n < C2 (F(Sto1) = F(Se41)).

(2) The improvement below the shrinker scale. The Lojasiewicz inequality
of Theorem 2.54 will give an improved bound on the larger scale if we are below
the shrinker scale. Namely, by Theorem 2.54, we get

Given 7 > 0, § > 0, C5, £, and Oy, there exist £1 and R; so that if £ > ¢; and
R € [R1, R(X;)] satisfies

(A3) R < re(S,) and [V, F%, < Cy (F(Sio1) - P(S0s1)),
then
(A4) B(1_r)r N is a graph of uz over some Y € ¢ with |lusl|c2.a < 4.

There are three reasons that we must go from scale R down to scale (1 —7)R.
The first is that Theorem 2.54 comes in by an additive constant and this is
less than 7 R as long R is big. The second is that the lower bound for the
cylindrical scale given by Theorem 2.54 has an extra polynomial term in R;
this is lower order compared to the exponential and is also absorbed by % R.
The third reason is that the bound from Theorem 2.54 has a loss coming from
that by, is less than one; this can be made arbitrarily close to one by taking ¢

large and can thus also be absorbed by % R.

Combining (1) and (2). The point is to choose 7 much smaller than 6, so
that the gain in scale from the extension in (1) beats the loss in scale from the
improvement in (2). We can then apply the two steps iteratively to get a fixed
factor greater than one beyond the shrinker scale, giving the theorem. ([

6. The gradient Lojasiewicz inequality and uniqueness

In this section, we will use the gradient Lojasiewicz inequality of Theo-
rem 0.26 and the compatibility of the shrinker and cylindrical scales of the
previous section to prove a gradient Lojasiewicz inequality for rescaled MCEF.
We will show that this inequality implies uniqueness of the tangent flow at a
cylindrical singularity, thus completing the proof of Theorem 0.2.

6.1. A discrete gradient Lojasiewicz inequality for rescaled MCF. The
next theorem gives a discrete version of a gradient Lojasiewicz inequality for
rescaled MCF.

THEOREM 6.1. Given n and )Xo, there exist constants K, R,e and T €
(1/3,1) so that if ¥4 is a rescaled MCF for s € [t — 1,1 + 1] satisfying
L4 A(ES) S )\07

e BRNY is a C** graph over some cylinder in Cy, with norm at most ¢ for
each s,
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then we have
(6.2) (P(S) = PC)Y™ < K (F(Si1) — F(Sian))
Proof. Given any f € [0,1) and R € [1,r/(2;) — 2], Theorem 0.26 gives

B 2 2 .
(63) |F(S) - F(O)<CRr {||¢||;;ggggg +e—‘3wyn+ei<%},

where C' = C(n,£,Cy, X\o), p = p(n) and ¢, € (0, 1) satisfies limy_,o0 cp = 1.
We will bound each term by a power greater than 1/2 of (F/(X;—1) — F/(2X¢4+1)).
We defined the shrinker scale R(X;) in (5.2) by

7R2(Et) t+1 9
(6.4) o /t Vs P ds = F(Si) = F(Si0).
If we set R+ 2 = min;_; jo<s<¢41 Te(2s), then Theorem 5.3 gives 1 > 0 and C
so that
(6.5) R>(1+4+p)R(X) —C,

as long as we are willing to choose Cy sufficiently large depending on ¢. The
crucial point is that p does not change when we take ¢ larger, although C,
does depend on £.

Lemma 5.32 gives a constant C so that

(6.6) Il1Z2(5nm,) < C (F(Si-1) = F(Se41)) -

We first choose 5 € [0,1) so that

6.7) 1+ (32250

This takes care of the third term in (6.3). Now we choose ¢ large so that

3+
(68) Cin <2—|—2ﬁ) > 1 and (1 +H) Cin > 1.
This takes care of the first two terms. Once we choose ¢, then Theorem 5.3
gives Cy and, thus, determines the multiplicative factor K. O

6.2. An extension of the Lojasiewicz theorem. Lojasiewicz used the gra-
dient Lojasiewicz inequality to prove convergence of flow lines for the neg-
ative gradient flow of an analytic function f. We will prove an analogous
convergence result where the differential inequality f2(t) < —f/(t) (which
follows from the gradient Lojasiewicz) is replaced by the discrete inequality
f28(t) < f(t—1)— f(t+1). This assumption is exactly what comes out of our
analog of the gradient Lojasiewicz inequality, i.e., out of Theorem 0.26.

The extension will rely on the following elementary lemma:
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LEMMA 6.9. If f : [0,00) — [0,00) is a nonincreasing function, €, K > 0,
and fort > 1,

(6.10) K 772 < f(t—1) = f(t+1),

then there exists a constant C such that

(6.11) fy<Ct=.

Moreover, if ¢ < 1, then

(6.12) ST(fG) - fFG+1)E < oc.
7j=1

Proof. After replacing f by f/Cy for some positive constant Cp, we can
assume without loss of generality that 0 < f(0) < 1 and K = 1. Set ¢y =
1

i _1
42° f7¢(0)/e + 2 and C = f(0)t§, then f(0) = Ct, *, and hence (6.11) holds
for all ¢ < ty. Next note that by assumption for all ¢t > 2,

(6.13) FrEw) < -1 < fE-2) - £,
Or, equivalently, for all ¢ > 2,
(6.14) fE=2)= f(t) A+ f°(¢)).

We would like to show that (6.11) holds; so suppose not, and let ¢ be a ¢t where
inequality (6.11) fails. After possibly replacing ¢t by ¢ — 2 a finite number of
times, we may assume that (6.11) fails for ¢ but holds for ¢ — 2. From the
choice of C it follows that ¢ > ¢ty > 2. Moreover,

(6.15) FE—2)> fO)(L+ f5() > Ct s (1+C¢ ).

Combining this with the elementary inequality that (14+h)~¢ < 1-2"1"¢¢ h for
all h < 1 and that both C 5t = f5(0) < land 2717 0 = 2715 ¢ f5(0) ¢y >
2 gives

(6.16)
FEt—2) <0t +Ct Y S <0t -2 1) <O (t—2).

This contradicts that (6.11) holds for ¢ — 2 and, thus, completes the proof of
the first claim.

Suppose now that € < 1, and fix some p € (1,1/¢). Cauchy-Schwarz gives
that

o0

(6.17) {Z (FG) - FG+1))?

j=1 j=1

2s[§<m> FGi+1) sz }
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The last term is finite since p > 1, so it suffices to prove that (f(j)— f(j+1)) 57
is summable. However, this follows from the summation by parts formula

n n—1
(6.18) Z; bj (aj+1 — aj) = [bny1Gn41 — braa] — Z; aj+1 (bj+1 —bj)
with a; = f(];) and b; = jP since the decay (6.11) imi)]ies that
(6.19) (n+ 1P fn+1)<C(n+1)"¢ (n+1)P =0,
6200 S GO - Cp G+ D <.
j=1 j=1

The first inequality in the second line used that [(j+1)P—j7] < p (j+1)P~1. O

6.3. Uniqueness of tangent flows. We are now prepared to prove the unique-
ness of cylindrical tangent flows.

Proof of Theorem 0.2. Let ¥; be the rescaled MCF associated to the cylin-
drical singularity. It follows from the uniqueness theorem of [CIM13] that if a
sequence t; — 00, then there is a subsequence t; — 00 so that Et; converges
with multiplicity one to a cylinder ¥ € Ci. It follows from White’s Brakke-type
theorem, [Whi05], that this convergence is smooth on compact subsets. A pri-
ori, different sequences could lead to different cylinders (i.e., different rotations
of the same cylinder); the point of this theorem is that this does not occur.

Given any fixed large p and small € > 0, it follows from the previous
paragraph that there must be some 7' so that

e For each t > T, there is a cylinder in Ci so that, for each s € [t — 1,t 4+ 1],
B,NY¥sis a C?? graph over this cylinder with norm at most «.
Therefore, we can apply Theorem 6.1 to ¥ for t > T to get K and p € (1/3,1)
so that
(6.21) (F(S0) = PO < K (F(Si-1) — F(Sii1))

This “discrete differential inequality” allows us to apply Lemma 6.9 to conclude
that

[ee]

(6.22) S(F(S)) — F(Sj41))? < ce.
j=1

Using Cauchy-Schwarz and that rescaled MCF is the negative gradient flow
for F', we have

oo o j+1 %
[ 16lsce dts;(F@j) [ dt)
< VE(S0) 3 (F(Z)) ~ F(Z541))

J=1

(6.23)

NI

< 00,
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where the last inequality is (6.22) and the L' and L? norms are all weighted
Gaussian norms. The uniqueness now follows immediately from Lemma A.48.
O

Appendix A. Geometric quantities on a graph

In this appendix, we will prove some technical results for the geometry of
normal exponential graphs over a hypersurface. As one consequence, we will
prove Lemma 4.6, which computes the gradient of the F' functional on graphs
over cylinders.

Throughout this appendix, ¥, will denote the graph of a function u over

a fixed hypersurface ¥ (in most applications ¥ will be a cylinder), where 3,
is given by
(A.1) Yu={z+ulx)n(z)|z e X}
We will assume that |u| is small so 3, is contained in a tubular neighborhood
of ¥ where the normal exponential map is invertible. Let e,41 be the gradient
of the (signed) distance function to ¥; note that e,; equals n on 3.

The geometric quantities that we need to compute on X, are

e the relative area element v, (p) = \/det 945(p)/ \/ det g;;(p), where g;;(p) is
the metric for ¥ at p and g;4(p) is the pull-back metric from the graph of

u at (p +u(p)n(p));

e the mean curvature H,(p) of ¥, at (p + u(p) n(p));

e the support function 7,(p) = (p + u(p) n(p), n,), where n, is the normal

to Xy

e the speed function wy(p) = (en11,ny) "t evaluated at (p + u(p) n(p)).
The mean curvature and the support function directly appear in the shrinker
equation. The speed function enters indirectly when we rewrite the equation
in graphical form; the speed function adjusts for that the normal direction
and vertical directions may not be the same. The relative area element will
be used to compute the mean curvature and to relate the gradient of F' to
¢ = 3(z,n) — H.

A.1. Calculations. The next lemma gives the expressions for the v, 7,
and w, on a graph X, over a general hypersurface ¥. The statement is rather
technical, and it is helpful to keep in mind the special case where ¥ is the
hyperplane R™ and the quantities are given by

u — (p, Vu
(A.2) vy =1+ |Vul]?2 =w, and n, = L

V14 |Vul?
The first part of the lemma gives similar formulas for a general 3. The second
part uses the formulas to compute Taylor expansions of the quantities. Some
of these computations are used to compute linear approximations here, while
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others are not used in this paper but are recorded for future reference and will
be used elsewhere.

LEMMA A.3. There are functions w,v,n depending on (p,s,y) € ¥ x R x
T,% that are smooth for |s| less than the normal injectivity radius of ¥ so that

(A4) wa(p) = w(p, s,y) = V1+ B~ (p,s) (),
(A.5) vu(p) = v(p, 8,y) = w(p, s,y) det (B(p,s)),

n s — -1 S
(A.6) () = 10, 5,9) = 2 (p)>+w(p7<§:£ (,5)(y))

where the linear operator B(p,s) = Id — s A(p). Finally, the functions w, v,
and n satisfy

e w(p,s,0) = 1, dsw(p,s,0) = 0, Iy, w(p,s,0) = 0, and Jy,0y,w(p,0,0) =
0ag-
e v(p,0,0)=1; the nonzero first and second order terms are
d5v(p,0,0) = H(p), 92v(p,0,0) = H*(p) — |AP*(p),
0p,0sv(p,0,0) = Hj(p), Dyo Oy (P, 0,0) = dap-

e 7(p,0,0) = (p,n), dsn(p,0,0) =1, and dy,1(p,0,0) = —pq.

)

Proof. Let (p, s) be Fermi coordinates on the normal tubular neighborhood
of ¥, so that s measures the signed distance to . If we fix an s and a path
~(t) in X, then applying the normal exponential map for time s sends (t) to
v(t)+sn(v(t)). It follows that the differential is given by the symmetric linear
operator

(A.7) B(p,s) = (Id —sA(p)) : Tp,X — T,%,

where we used that —A is the differential of the Gauss map to differentiate n
and the Gauss lemma to identify 7,2 with the tangent space to the level set
of the distance to X..

We will use this to compute the relative area element for the graph X,,.
Pushing forward an orthonormal frame e; for ¥ at p gives a frame E; for X,

at (p,u(p)):

(A.8) E; = B(p, u)(ei) + ui(p) Os.
Thus, the metric on the graph is given in this frame by
(AQ) gzuj (p) = <Ei7 Ej> = <B(p, u)(ei)v B(p, u)(€])> + Ui Uy

Since the e;’s are orthonormal on ¥, we get

(A.10) v2(p) = det (BQ(p, u(p)) + Vu ® Vu(p)) :
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Similarly, using the frame (A.8), we see that the vector field
(A11) 0s — B~ (p u(p)) (Vu)(p) = ens1 — B~ (p,u(p))(Vu) (p)

is normal to X,. It follows that the speed function is given by

Wa(p) = (ent1,ny) "L = lent1 — B~ (p, u(p))(Vu) (p)]
(A.12) ‘ T (en+1, ent1 — B7H(p,u(p)) (Vu) ()

— 1+ |B~1(p, u(p))(Vu(p))|*.

To rewrite the relative area element, we will need two elementary facts. The
first is that for n x n matrices M7 and Ms, we have

det(M1 Mg) = det(Ml) det(MQ).
The second is that for a vector v € R™, we have
(A.13) det(Id +v®v) =1+ |v]?

Using these two facts, we now rewrite (A.10) as
v2(p) = det { B(p,u(p)) (1d + B~ (p, u(p))(Vu(p))

(A.14) @ B~ (p,u(p))(Vu(p))) B(p, u(p)) }
= [det (B(p, u(p))) wu(p)]*.

To compute the support function 7, first use the formula (A.11) to get

(A15) n, = ot =B @u)VOE) _ ent = BT, ulp) (Vu)(p)

 lent1 = B~ (p, u(p)) (V) (p)] wa ()
where n,, is evaluated at p + u(p) n(p). Thus, the support function is given by

wu(p) 1u(p) = (p + u(p) n(p), ent1 — B~ (p, u(p)) (V) (p))

= (p,n(p)) + u(p) — (p, B~ (p,u(p))(Vu(p))),
where the last equality used that n(p) is equal to e, 1 at the point p + sn(p)
for any s.

We have now established the formulas (A.4), (A.5), and (A.6) for the
functions w, v, and 7. It is clear from the expressions for w, v, and 7 that they

(A.16)

are smooth in the three variables provided that s is sufficiently small.

The next thing is to establish the second set of three claims that give the
second order Taylor expansions for w, v, and 7. The function w appears in
all three expressions, so it is convenient to start there. It follows immediately
that w(p,s,0) = 1. To compute the partials involving y,’s, we get

2.8 (BiQ)QQ (p,5) Yp .

A7 B 5,y) =
( ) Yo U}(p S y) U)(p,s,y)
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It follows that 9,,w(p,s,0) = 0. To get the Hessian, we differentiate (A.17)
again:
(B_2)aﬁ (p7 O)
w(p,0,0)
where the last equality used that B(p,0) = Id.
Using (A.5), we have v(p,s,y) = w(p, s,y) B(p, s), where
(A.19) B(p,s) = det (B(p, s)) = det (Id — s A(p)).

We have B(p,0) = 1 and 9:8(p,0) = —Tr(A(p)) = H(p). This also gives
0s0p; B(p,0) = Hj(p). To get the second derivative in s, observe that

(A.18) Oy, Oy, w(p, 0,0) = = 0aBs

(A.20) 0, logB(p,s)=Tr [B~(p,s) 0sB(p,s)] =—Tr [(Id — s A(p)) " A(p)].
Thus, we see that
(A.21) 92 B(p,0) = (9 B(p,0)) H(p) — B(p,0) |A]*(p) = H*(p) — |A]*(p).

Combining the calculations for B with the earlier ones for w, we can compute
the first three Taylor series terms for v. The constant term is v(p,0,0) = 1.
The first order terms are

(A.22) 0y, v(p,0,0) =0,
(A.23)  Osv(p,0,0) = (9sB(p,0)) w(p,0,0) + (9sw(p,0,0)) B(p,0) = H(p),
(A.24) 0y, v(p,0,0) = (9y,w(p,0,0)) B(p,0) = 0.

The second order terms involving just s and p derivatives are simplified greatly
since w(p, s5,0) = 1. These are 0,0y, v(p,0,0) = 0 and

02 v(p,0,0) = {(82B) w+2 (9;:B) dsw + (92w) B} (p,0,0)

(A.25) ) , )
= 9;B(p,0) = H*(p) — [A[*(p),
O, 05 v(p, 0,0) = { (0:B) Fpw + (0, 05w) B
(A.26) + (8,0sB) w+ (95w) ,,B}(p,0,0)

= Op,0sB(p, 0) = H;(p).
To compute the terms involving y derivatives, it is useful to keep in mind that
B does not depend on y. We get

(A.27) 817]'89(1 v(p,0,0) = {(8pjayaw) B + (9y,w) 8,,].8} (p,0,0) =0,
(A.28) 050y, (p,0,0) = {(0s0y,w) B+ (0y,w) dsB} (p,0,0) =0,
(A29) ayﬁaya l/(pa 0, O) = (0y,36yaw(pa 0, 0)) B(p) O) = 504,3-

Finally, using (A.6) and the fact that the first derivatives of w vanish at (p, 0, 0),
we get the first order expansion for 7. O
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A.2. The mean curvature and its linearization via the first variation. We
will compute the mean curvature H, using the first variation of the area of 3,,.
This gives a divergence form equation in wu.

COROLLARY A.30. The mean curvature H, of ¥, is given by

g

H,(p) = — [0sv — divs; (Oy, V)]
(A.31) "
— (05 = 0. By, — (0:0y,v) ta(p) = (Dys0pa ) ()

where w, v and their derivatives are all evaluated at (p,u(p), Vu(p)).

Proof. By Lemma A.3, the area of the graph ¥, is

(A.32) Area(X,) —/El/u dpx, —/El/(p,u(p),Vu(p))dpg.

Given a one-parameter family of graphs 3,4 with v compactly supported,
differentiating the area gives

o Area(uie) = [ {0 ulp). Tu) v(p)

+ 9y v(p, ulp), Vu(p)) va(p) pdps
—/E{BSV(p,u(p%VU(p))

= divs (g (0, u(p), Vu(p))) fo(v) dps.

(A.33)

On the other hand, the variation vector field on ¥, is given by ve,41 so the
first variation formula (see, e.g., (1.45) in [CM11]) gives

(A.34 Area(Xy 1) = H,(vepi1,ny) = /EHu(p) M dps, ,

)4
where the second equality used the definition of the speed function w, =

(ent1, nu>71-
Equating these two expressions for the derivative of area, we conclude that

v(p, u(p), Vu(p))
w(p, u(p), Vu(p))

This gives the first equality in (A.31); the second equality follows from the
chain rule. 0

(A.35) Hu(p)

=0sv(p, u(p), Vu(p)) —divy, (0y,v(p, u, Vu)).

A.3. The F functional near a cylinder. We now specialize to where 3 is
a cylinder in Cy, and F'(u) is the F' functional of the graph X,,.
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LEMMA A.36. If ¥ € Cy, then the gradient M(u) of the F functional is
given by

1 u 'LL2
(A.37) M(u) = g (Hu - 577) e_2\/ﬁ4 . ,

where v,w,n are all evaluated at (p,u(p), Vu(p)) and Hy is the mean curvature
of Xy

Proof. Since we are using the Gaussian L? inner product, M(u) is defined
by

(A.38) i‘ F(u+tv) = (47)"2 / v M(u) e dus.
dt 1t=0 by

On the other hand, the first variation formula for the F' functional from [CM12]
gives

d _n 1 =
(439) | Flurt) =6 [ (wenan,) (Fu— 3mu0) e dps,,

u

where each quantity is evaluated on ¥,. Given p € X, we have
(A40)  [p+u)n()’ = [p]* + v’ +2u(p,n) = [p]” + v* +2V2ku,

where the last equality used that ¥ € C,. Writing (A.39) as an integral over
> gives

_n v

d 1 2vBRutu® _ IpI?
(A.41) a‘t:OF(u +tv)=(4m)" 2 /Z o (Hu - 577) e 1 ve i dps.
The lemma follows by equating (A.38) and (A.41) O

Proof of Lemma 4.6. By Lemma A.36 and Corollary A.30, M (u) can be

written as

2 V2k utu?
1

M(u)e = Osv — Op, Oy v — (050y,v) ua(p)

— (8yﬁ8ya1/> uap(p) — ﬁ n.

(A.42)

Since the exponential term depends only on u, we have to show that each of
the five terms on the right side can be expressed as either

() flu,Vu), (i) (p,V(u, Vu)) or (iii) @8 (u, V) gy -
The proof will repeatedly use the calculations from Lemma A.3.

The key point is that A is parallel on cylinders and, thus, the linear
operator B(p, s) depends only on s (and not p). In particular, the function
v depends only on s and y (and not p). Thus, the first three terms on the
right side of (A.42) are type (i) and the fourth term is type (iii). Similarly, w
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depends only on s and y; it suffices to show that w7 is a sum of terms of the
three allowed types. Lemma A.3 gives

(A.43) wn = (p,n(p)) + s~ (p, B~ (p,5)(y)).

The first term is constant (so trivially type (i)) and the second is also type (i).
Finally, since B depends only on s, the third term is type (ii). O

A.4. Rescaled MCF near a shrinker. Let ¥ C R"™! be an embedded
shrinker and u(p,t) a smooth function on ¥ x (—¢,¢), giving a one-parameter
family of hypersurfaces ¥,,. We next derive the graphical rescaled MCF equa-
tion.

LEMMA A.44. The graphs X, flow by rescaled MCF if and only if u sat-
isfies

(A45)  Qu(p.1) = wp, u(p. 1), Vulp, 1)) (5 (p.u(p,0), Vulp. 1)) ~ H, ).

Proof. As in [EH91], the rescaled MCF equation z; = (% (x,n) — H) n is

equivalent (up to tangential diffeomorphisms) to the equation

(A.46) ()" = % (z,n) — H.

The variation vector field and unit normal for ¥, are diu(p,t)n(p) and n,,
respectively, at the point p + u(p,t) n(p), so we get the equation

1
(A.47) (n(p), nu) Sru(p, t) = ((Gpulp,t)) n(p), nu) = 51w — Hu.
Finally, multiplying through by w, = (n(p),n,)~! gives the lemma. O

We will use the following lemma bounding the distance between time slices
of a rescaled MCF by the L! norm of the gradient of the F' functional.

LEMMA A.48. Given n, there exist C' and § > 0 so that if 3 € Cp and Xy,
is a graphical solution of rescaled MCF on [t1,ta] with ||u(-,t)||c1 < 0, then

2 to
(a9) [ Julpita) —ulp,tn)] e <0 [
» t1 Zu(tzr)

Proof. By Lemma A.44, u satisfies

- 2
<x,2n) — H‘ e_% dr.

(A50) Dyl t) = wp,ulp,0), Vulp, 1)) (500, ulp, 1), Vulp, ) — Ha).

Since |u| and |Vu| are small, Lemma A.3 gives that both w and the relative
area element v, are uniformly bounded and (A.40) relates the Gaussians on ¥
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and 3, so we get

2 1 )
/|8t“(p’t)’ e 50/ 'QH(p,U(p,t),Vu(p,t))—Hu o
= >
u(p, n|2
(A51) SC// ‘;n(pau(p7t>avu(pat))_Hu Vue_w
b
22
_ / <xzn> H‘e k=2

The lemma follows from integrating this with respect to ¢, using the funda-
mental theorem of calculus and Fubini’s theorem. O

Appendix B. An interpolation inequality

We will use the following interpolation inequality which is well known,
but we are including the short proof since we do not have an exact reference.
Unlike the rest of this paper, the L' norms below are unweighted.

LEMMA B.1. There exists C = C(k,n) so that if u is a C* function on
Bs,. C R", then

(B.2) lullzoe () < € {7 ulla(ay + Il T,y IV F el }
B.3) 7| Vullzees,) < C {r ™l + rllullfils,,, IVl =) |
BA) 72|Vl o, < C {7 Null s,y + 72 ulfiis, ) IVl b
where ag , = ,Hin, brn = l];—n and ¢ = ller;?z

Proof. By scaling, it suffices to prove the case r = 1. The starting point
is the following standard consequence of the Bernstein/Kellogg inequality for
polynomials, [Kel28]:

(K) Given n and d, there exists Cq,, so that if p is a polynomial of degree at
most d on a ball Bs C R™ for some ¢ > 0, then

(B5) Il + 6 Voo + 8 IVl < Cand™ [ 1ol

3
Set m = ||V¥ul| o (p,). Choose x € By where |u| achieves its maximum, and
let p be the degree (k — 1) polynomial giving the first (k — 1) terms of the
Taylor series of u at z. In particular, given any § € (0, 1], Taylor expansion
gives

(B.6) [ u—pl<omen,
Bs(z)
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where C' depends on n and k. Using this in (K) gives

Jallzosy = ole) < €67 [ )
Bs(x)

(B.7) <06 " {/ |ul —|—/ lu —p\}
Bs(x) Bs(x)

< C6 " {llullpr(py) + Cm "t}

We now consider two cases. First, if m < [Jul|z1(p,), then (B.7) with 6 = 1 gives
(B.8) ull oo By < CllullL1(By)-

Next, if m > [[u (), then we set 5+ = el (

and (B.7) gives

which is less than one)

(B.9) [ull oo (By) < C |IUHET'“B ) mrrE.

Thus, we see that (B.2) holds in either case.
We will argue similarly to get the Vu bound. This time, let € By be a
point where |Vu| achieves its maximum. Given ¢ € (0, 1], using (K) gives

(B.10) Vul(z) = [Vl(2) < €61 {Jlullzazy) +Cme™*}.
In the case where m < [lul|z1(p,), we get (B.3) by setting § = 1. On the other

+k _ s,
on — - 2 (

hand, when m > ||lu||z1(p,), then we set which is less than

one) and (B.10) gives

—1

(B.11) Val(@) < C fuljif,y P,
completing the proof of (B.3). The last bound (B.4) follows similarly. O

We will also need two extensions of this result:

(1) The inequalities hold on a hypersurface in R"*! if we have scale-invariant
bounds for A and V¥A on Bs,; the constant C' depends on these bounds,
but the exponents remain the same.

(2) The inequalities in (1) also hold when u is replaced by a tensor 7 on the
hypersurface.

To prove the extension (1), simply use that the hypersurface is locally a graph
with bounded gradient and use the chain rule to relate the derivatives on the hy-
persurface to those on the projection where we can apply the previous lemma.
Extension (2) follows similarly except that we also need to use that A deter-
mines the Christoffel symbols and, thus, the covariant derivative of the tensor.
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