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Abstract

Recently the second and fourth authors developed an iterative scheme

for obtaining rough solutions of the 3D incompressible Euler equations in

Hölder spaces. The motivation comes from Onsager’s conjecture. The con-

struction involves a superposition of weakly interacting perturbed Beltrami

flows on infinitely many scales. An obstruction to better regularity arises

from the errors in the linear transport of a fast periodic flow by a slow

velocity field.

In a recent paper the third author has improved upon the methods, in-

troducing some novel ideas on how to deal with this obstruction, thereby

reaching a better Hölder exponent — albeit weaker than the one conjec-

tured by Onsager. In this paper we give a shorter proof of this final result,

adhering more to the original scheme of the second and fourth authors

and introducing some new devices. More precisely we show that for any

positive ε, there exist periodic solutions of the 3D incompressible Euler

equations that dissipate the total kinetic energy and belong to the Hölder

class C1/5−ε.

0. Introduction

In what follows T3 denotes the 3-dimensional torus, i.e., T3 = S1×S1×S1.

In this note we give a proof of the following theorem.

Theorem 0.1. Assume e : [0, 1]→ R is a positive smooth function and ε

a positive number. Then there are a continuous vector field v ∈ C1/5−ε(T3 ×
[0, 1],R3) and a continuous scalar field p ∈ C2/5−2ε(T3× [0, 1],R) that solve the

incompressible Euler equations

(1)

∂tv + div (v ⊗ v) +∇p = 0,

div v = 0

in the sense of distributions and such that

(2) e(t) =

ˆ
|v|2(x, t) dx ∀t ∈ [0, 1].
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Results of this type are associated with the famous conjecture of Onsager.

In a nutshell, the question is about whether or not weak solutions in a given

regularity class satisfy the law of kinetic energy conservation or not. For clas-

sical solutions (say, v ∈ C1), we can multiply (1) by v itself, integrate by parts

and obtain the energy balance

(3)

ˆ
T3

|v(x, t)|2 dx =

ˆ
T3

|v(x, 0)|2 dx for all t > 0.

On the other hand, for weak solutions (say, merely v ∈ L2) (3) might be vi-

olated, and this possibility has been considered for a rather long time in the

context of 3-dimensional turbulence. In his famous note [21] about statisti-

cal hydrodynamics, Onsager considered weak solutions satisfying the Hölder

condition

(4) |v(x, t)− v(x′, t)| ≤ C|x− x′|θ,

where the constant C is independent of x, x′ ∈ T3 and t. He conjectured that

(a) Any weak solution v satisfying (4) with θ > 1
3 conserves the energy;

(b) For any θ < 1
3 , there exist weak solutions v satisfying (4) that do not

conserve the energy.

This conjecture is also very closely related to Kolmogorov’s famous K41 the-

ory [19] for homogeneous isotropic turbulence in 3 dimensions. We refer the

interested reader to [15], [22], [14]. Part (a) of the conjecture is by now fully

resolved: it was first considered by Eyink in [13] following Onsager’s original

calculations and proved by E. Constantin and Titi in [3]. Slightly weaker as-

sumptions on v (in Besov spaces) were subsequently shown to be sufficient for

energy conservation in [12], [2].

In this paper we are concerned with part (b) of the conjecture. Weak

solutions violating the energy equality have been constructed for a long time,

starting with the seminal work of Scheffer [23] and Shnirelman [24]. In [8], [9]

a new point of view was introduced, relating the issue of energy conservation

to Gromov’s h-principle; see also [10]. In [11] and [7] the first constructions of

continuous and Hölder-continuous weak solutions violating the energy equality

appeared. In particular, in [7] the authors proved Theorem 0.1 with Hölder

exponent 1/10− ε (replacing the exponent 1/5− ε in this paper).

The threshold exponent 1
5 has been recently reached by the third author

in [18] (although strictly speaking the result of [18] is a variant of Theorem 0.1,

since it shows the existence of nontrivial solutions that are compactly supported

in time, rather than prescribing the total kinetic energy). Our aim in this note

is to give a shorter proof of this improvement in the Hölder exponent and

isolate the main new ideas of [18] compared to [11], [7]. We observe in passing

that the arguments given here can be easily modified to produce nontrivial
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solutions with compact support in time but losing control on the exact shape

of the energy. The question of producing a solution matching an energy profile

e that might vanish is subtler. A similar issue has been recently treated in the

paper [6].

0.1. Euler-Reynolds system and the convex integration scheme. Let us

now outline the principal ideas of the present scheme. The scheme will be

based on the constructions given in [11], [7]. We will also make use of some of

the novel ideas introduced in [18].

The proof is achieved through an iteration scheme. At each step q ∈ N
we construct a triple (vq, pq, R̊q) solving the Euler-Reynolds system (see [11,

Def. 2.1]):

(5)

∂tvq + div (vq ⊗ vq) +∇pq = div R̊q,

div vq = 0.

The 3 × 3 symmetric traceless tensor R̊q is related to the so-called Reynolds

stress, a quantity that arises naturally when considering highly oscillatory so-

lutions of the Euler equations or, equivalently, when taking weak limits of

solutions of (1). (We refer the reader to [10] for a thorough discussion.)

The size of the perturbation

wq := vq − vq−1

will be measured by two parameters: δ
1/2
q is the amplitude and λq the frequency.

More precisely, denoting the (spatial) Hölder norms by ‖ · ‖k (see Section C for

precise definitions),

‖wq‖0 ≤Mδ
1/2
q ,(6)

‖wq‖1 ≤Mδ
1/2
q λq,(7)

and similarly,

‖pq − pq−1‖0 ≤M2δq,(8)

‖pq − pq−1‖1 ≤M2δqλq,(9)

where M is a constant depending only on the function e = e(t) in the theorem.

In constructing the iteration, the new perturbation wq will be chosen so as

to balance the previous Reynolds error R̊q−1 in the sense that (cf. equation (5))

we have ‖wq ⊗ wq‖0 ∼ ‖R̊q−1‖0. To make this possible, we then inductively

claim the estimates

‖R̊q‖0 ≤ ηδq+1,(10)

‖R̊q‖1 ≤Mδq+1λq,(11)
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where η will be a small constant, again only depending on e = e(t) in the

theorem.

Along the iteration we will have

δq → 0 and λq →∞

at a rate that is at least exponential. On the one hand (6), (8) and (10) will

imply the convergence of the sequence vq to a continuous weak solution of the

Euler equations. On the other hand, the precise dependence of λq on δq will

determine the critical Hölder regularity. Finally, equation (2) will be ensured

by

(12)

∣∣∣∣e(t)(1− δq+1)−
ˆ
|vq|2(x, t) dx

∣∣∣∣ ≤ 1

4
δq+1e(t).

Note that, being an expression quadratic in vq, this estimate is consistent

with (10).

Estimates of type (6)–(11) appear already in the paper [7]: although the

bound claimed for R̊q was ‖R̊q‖1 ≤ Mδ
1/2
q λq, which had been done for ease of

notation (cf. [7, Prop 2.2]: λq here corresponds to (Dδ/δ̄2)1+ε there), the actual

bound achieved in the proof does in fact correspond to (11) (cf. Step 4 in Sec-

tion 9). Using (6)–(11) one can obtain some improvement on the exponent 1
10

from the same construction. However, this improvement is of fairly limited in-

terest, in particular, because the frequencies are still required to grow at a much

greater than exponential rate, which is a basic obstruction to higher regularity

that was only overcome in [18] using new ideas, which we will describe below.

As for the explicit form of the perturbation, it will consist essentially of a

finite sum of modulated Beltrami modes (see Section 1 below), so that

(13) wq(x, t) =
∑
k

ak(x, t)φk(x, t)Bke
iλqk·x,

where ak is the amplitude, φk is a phase function (i.e., |φk| = 1) and Bke
iλqk· x

is a complex Beltrami mode at frequency λq. In fact, a lower order correction

to this Ansatz is needed in order to ensure that wq is divergence free.

Next, the Reynolds stress R̊q and the pressure pq are chosen so that (5)

holds. In particular, since (5) is linear in the Reynolds stress, this can be

achieved by separately solving the three equations

divR−∇pq = div (wq ⊗ wq + R̊q−1)−∇pq−1,

divR = ∂twq + vq−1 · ∇wq,
divR = wq · ∇vq−1

(although the actual decomposition used in the proof is more complicated).

The most involved part of the scheme is then to show that such equations can

be solved while maintaining the estimates (10)–(11).



ANOMALOUS DISSIPATION FOR 1/5-HÖLDER EULER FLOWS 131

Having a perturbation of the form (13) ensures that the “oscillation part

of the error”

(14) div (wq ⊗ wq + R̊q−1)

can be absorbed into the pressure; see [11]. (In [18] this term is called “high-

high interference term.”)

The main analytical part of the argument goes into choosing ak and φk
correctly in order to deal with the so-called transport part of the error

∂twq + vq−1 · ∇wq.

In [11], [7] a second large parameter µ(= µq) was introduced to deal with this

term. In some sense the role of µ is to interpolate between errors of order 1 in

the transport term and errors of order λ−1
q in the oscillation term.

The approach of [18] begins in parallel with an ansatz for the correction

that allows for nonlinear phase functions ξI(t, x)

wq(x, t) =
∑
I

eiλqξI(t,x)vI(x, t),

where here vI plays a similar role to the vector fields akBk given in (13).1

Substituting this ansatz into the equation leads to a transport equation for the

phase functions ξI(t, x) in a way similar to the appearance of Hamilton-Jacobi

equations in geometric optics. However, in order to control the high-frequency

terms that occur in (14), it is necessary to introduce sharp time cutoffs that

restrict the lifespan of the oscillatory waves to time intervals where the phase

functions ξI remain linear and the correction remains close to the form of (13).

(The application of time cutoffs is comparable to the use of CFL conditions

(cf. [5]) employed in numerical analysis to study evolutionary equations; see

Remark 2.)

The construction in [18] can therefore be viewed as well in terms of the

Ansatz (13), but with two more ingredients compared to [11], [7], which ad-

here more closely to the transport structure of the equation. First, the phase

functions φk are defined using the flow map of the vector field vq, whereas in

[11], [7] they were functions of vq itself. With the latter choice, the threshold

1/5 seems beyond reach. Secondly, a new set of estimates, complementing,

(6)–(12), are introduced. Their purpose is to control the advective derivative

of the Reynolds error:

(15) ‖∂tR̊q + vq · ∇R̊q‖0 ≤ δq+1δ
1/2
q λq.

1Note, however, that unlike the vector field akBk, the direction of vI is allowed to vary in

spacetime.
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This bound implies that the advective derivative of R̊q must satisfy a better

estimate compared to the bounds that hold for either pure spatial or pure tem-

poral derivatives. Maintaining this additional control becomes more involved,

as it is important to construct the amplitudes ak in a way that is compatible

with the transport structure, and also to take advantage of the bounds for the

pressure and transport estimates from the Euler-Reynolds system to close the

argument. These ingredients also play a key role in the proof of Theorem 0.1

given here; however, compared to [18], we improve upon the simplicity of their

implementation. For instance, since the perturbations in [18] use a nonlinear

phase rather than the simple stationary flows used here, a “microlocal” version

of the Beltrami flows is needed. This also leads to the necessity of appealing

to nonlinear stationary phase lemmas — whereas in the present work linear

stationary phase lemmas suffice.

Our purpose here is to show that, although the other ideas exploited in

[18] are of independent interest and might also, in principle, lead to better

bounds in the future, with the additional control in (15), a scheme much more

similar to the one introduced in [11] provides a substantially shorter proof of

Theorem 0.1. To this end, we introduce some new devices that greatly simplify

the relevant estimates:

(a) We regularize the maps vq and R̊q in space only and then solve locally in

time the free-transport equation in order to approximate R̊q.

(b) Our maps ak are then elementary algebraic functions of the approximation

of R̊q.

(c) The estimates for the Reynolds stress are still carried on based on simple

stationary “linear” phase arguments.

(d) The proof of (15) is simplified by one commutator estimate that, in spite

of having a classical flavor, deals efficiently with one important error term.

Analogously to the scheme presented in [18], we also employ time cutoffs

in order to restrict the lifespan of the oscillatory waves. For comparison, it is

worth noting that there is a rough correspondence between the family of param-

eters (λq, δq, δq+1, λq+1, µ) and the parameters (Ξ, ev, eR, NΞ, τ−1) employed in

[18]. As we go along, we will also make further references and comparisons to

parallel aspects of the proof in [18].

0.2. The main iteration proposition and the proof of Theorem 0.1. Having

outlined the general idea above, we proceed with the iteration, starting with the

trivial solution (v0, p0, R̊0) = (0, 0, 0). We will construct new triples (vq, pq, R̊q)

inductively, assuming the estimates (6)–(15).

Proposition 0.2. There are positive constants M and η depending only

on e such that the following holds. For every c > 5
2 and b > 1, if a is sufficiently
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large, then there is a sequence of triples (vq, pq, R̊q) starting with (v0, p0, R̊0) =

(0, 0, 0), solving (5) and satisfying the estimates (6)–(15), where δq := a−b
q
,

λq ∈ [acb
q+1
, 2acb

q+1
] for q = 0, 1, 2, . . . . In addition, we claim the estimates

(16) ‖∂t(vq − vq−1)‖0 ≤ Cδ
1/2
q λq and ‖∂t(pq − pq−1)‖0 ≤ Cδqλq.

Proof of Theorem 0.1. Choose any c > 5
2 and b > 1, and let (vq, pq, R̊q) be

a sequence as in Proposition 0.2. It follows then easily that {(vq, pq)} converge

uniformly to a pair of continuous functions (v, p) such that (1) and (2) hold.

We introduce the notation ‖ · ‖Cϑ for Hölder norms in space and time. From

(6)–(9), (16) and interpolation, we conclude

‖vq+1 − vq‖Cϑ ≤Mδ
1/2
q+1λ

ϑ
q+1 ≤ Cab

q+1(2cbϑ−1)/2,(17)

‖pq+1 − pq‖C2ϑ ≤M2δq+1λ
2ϑ
q+1 ≤ Cab

q+1(2cbϑ−1).(18)

Thus, for every ϑ < 1
2bc , vq converges in Cϑ and pq in C2ϑ. �

0.3. Plan of the paper. In the rest of the paper we will use ∂t for differ-

entiation in the time variable. For the spatial gradient of scalars, we will use

the notation ∇, whereas for the full spatial derivative of vectors and tensors,

we will instead use D. The notation ∇ will also be employed for directional

derivatives of the form v · ∇ =
∑3
i=1 vi

∂
∂xi

for scalars, vectors and tensor fields

alike. Finally, by considering maps from T3 to T3 as periodic R3-valued maps,

we will use the notation just described for their derivatives.

After recalling in Section 1 some preliminary notation from the paper

[11], in Section 2 we give the precise definition of the maps (vq+1, pq+1, R̊q+1)

assuming the triple (vq, pq, R̊q) to be known. Sections 3, 4 and 5 will focus on

estimating, respectively, wq+1 = vq+1 − vq,
´
|vq+1|2(x, t) dx and R̊q+1. These

estimates are then collected in Section 6, where Proposition 0.2 will be finally

proved. In the last section we discuss a recent result [1] that adapts the present

work in order to prove a weak version of Onsager’s conjecture. The appendix

collects several technical (and, for the most part, well-known) estimates on

the different classical PDEs involved in our construction, i.e., the transport

equation, the Poisson equation and the biLaplace equation.
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1. Preliminaries

1.1. Geometric preliminaries. In this paper we denote by Rn×n, as usual,

the space of n× n matrices, whereas Sn×n and Sn×n0 denote, respectively, the
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corresponding subspaces of symmetric matrices and of trace-free symmetric

matrices. The 3×3 identity matrix will be denoted with Id. For definitiveness

we will use the matrix operator norm |R| := max|v|=1 |Rv|. Since we will deal

with symmetric matrices, we have the identity |R| = max|v|=1 |Rv · v|.

Proposition 1.1 (Beltrami flows). Let λ̄ ≥ 1, and let Ak ∈ R3 be such

that
Ak · k = 0, |Ak| = 1√

2
, A−k = Ak

for k ∈ Z3 with |k| = λ̄. Furthermore, let

Bk = Ak + i
k

|k|
×Ak ∈ C3.

For any choice of ak ∈ C with ak = a−k, the vector field

(19) W (ξ) =
∑
|k|=λ̄

akBke
ik·ξ

is real-valued, divergence-free and satisfies

(20) div (W ⊗W ) = ∇|W |
2

2
.

Furthermore,

(21) 〈W ⊗W 〉 =

 
T3

W ⊗W dξ =
1

2

∑
|k|=λ̄

|ak|2
Ç

Id− k

|k|
⊗ k

|k|

å
.

The proof of (20), which is quite elementary and is included in Appendix A

(see also [11]), is based on the following algebraic identity, which we state

separately for future reference.

Lemma 1.2. Let k, k′ ∈ Z3 with |k| = |k′| = λ̄, and let Bk, Bk′ ∈ C3 be

the associated vectors from Proposition 1.1. Then we have

(22) (Bk ⊗Bk′ +Bk′ ⊗Bk)(k + k′) = (Bk ·Bk′)(k + k′).

Proof. The proof is a straight-forward calculation. Indeed, since Bk · k =

Bk′ · k′ = 0, we have

(Bk ⊗Bk′+Bk′ ⊗Bk)(k + k′) = (Bk′ · k)Bk + (Bk · k′)Bk′
= −Bk × (k′ ×Bk′)−Bk′ × (k ×Bk) + (Bk ·Bk′)(k + k′)

= iλ̄(Bk ×Bk′ +Bk′ ×Bk) + (Bk ·Bk′)(k + k′),

where the last equality follows from

k ×Bk = −iλ̄Bk and k′ ×Bk′ = −iλ̄Bk′ . �

Another important ingredient is the following geometric lemma, also taken

from [11]. For the reader’s convenience, we give a different proof in Appendix B,

following [18].
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Lemma 1.3 (Geometric lemma). For every N ∈ N, we can choose r0 > 0

and λ̄ > 1 with the following property. There exist pairwise disjoint subsets

Λj ⊂ {k ∈ Z3 : |k| = λ̄} j ∈ {1, . . . , N}
and smooth positive functions

γ
(j)
k ∈ C

∞ (Br0(Id)) j ∈ {1, . . . , N}, k ∈ Λj

such that

(a) k ∈ Λj implies −k ∈ Λj and γ
(j)
k = γ

(j)
−k;

(b) for each R ∈ Br0(Id), we have the identity

(23) R =
1

2

∑
k∈Λj

(
γ

(j)
k (R)

)2
Ç

Id− k

|k|
⊗ k

|k|

å
∀R ∈ Br0(Id).

1.2. The operator R. Following [11], we introduce the following operator

in order to deal with the Reynolds stresses.

Definition 1.4. Let v ∈ C∞(T3,R3) be a smooth vector field. We then

define Rv to be the matrix-valued periodic function

Rv :=
1

4

Ä
DPu+ (DPu)T

ä
+

3

4

Ä
Du+ (Du)T

ä
− 1

2
(div u)Id,

where u ∈ C∞(T3,R3) is the solution of

∆u = v −
 
T3

v in T3

with
ffl
T3 u = 0 and P is the Leray projection onto divergence-free fields with

zero average.

Lemma 1.5 (R = div−1). For any v ∈ C∞(T3,R3), we have

(a) Rv(x) is a symmetric trace-free matrix for each x ∈ T3,

(b) divRv = v −
ffl
T3 v.

The proof is elementary; we include it for the reader’s convenience.

Proof. It is obvious by inspection that Rv is symmetric. Since divPv = 0,

for the trace we obtain

tr(Rv) =
3

4
(2div u)− 3

2
div u = 0.

Similarly, we have

(24) div (Rv) =
1

4
∆(Pu) +

3

4
(∇div u+ ∆u)− 1

2
∇div u.

On the other hand, recall that Pu = u−∇φ−
ffl
u = u−∇φ, where ∆φ = div u.

Therefore ∆(Pu) = ∆u−∇div u. Plugging this identity into (24), we obtain

div (Rv) = ∆u,

and since u solves ∆u = v −
ffl
v, (b) follows readily. �
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2. The inductive step

In this section we specify the inductive procedure that allows us to con-

struct (vq+1, pq+1, R̊q+1) from (vq, pq, R̊q). Note that the choice of the sequences

{δq}q∈N and {λq}q∈N specified in Proposition 0.2 implies that, for a sufficiently

large a > 1, depending only on b > 1 and c > 5/2, we have

(25)
∑
j≤q

δjλj ≤ 2δqλq, 1 ≤
∑
j≤q

δ
1/2
j λj ≤ 2δ

1/2
q λq,

∑
j

δj ≤
∑
j

δ
1/2
j ≤ 2.

Since we are concerned with a single step in the iteration, with a slight abuse

of notation we will write (v, p, R̊) instead of (vq, pq, R̊q) and (v1, p1, R̊1) instead

of (vq+1, pq+1, Rq+1). Our inductive hypothesis then implies the following set

of estimates:

‖v‖0 ≤ 2M, ‖v‖1 ≤ 2Mδ
1/2
q λq,(26)

‖R̊‖0 ≤ ηδq+1, ‖R̊‖1 ≤Mδq+1λq,(27)

‖p‖0 ≤ 2M2, ‖p‖1 ≤ 2M2δqλq,(28)

and

(29) ‖(∂t + v · ∇)R̊‖0 ≤Mδq+1δ
1/2
q λq.

The new velocity v1 will be defined as a sum

v1 := v + wo + wc,

where wo is the principal perturbation and wc is a corrector. The “principal

part” of the perturbation w will be a sum of Beltrami flows

wo(t, x) :=
∑
|k|=λ0

ak(t, x)φk(t, x)Bke
iλq+1k·x,

where Bke
iλq+1k·x is a single Beltrami mode at frequency λq+1, with phase

shift φk = φk(t, x) (i.e., |φk| = 1) and amplitude ak = ak(t, x). In the following

subsections we will define ak and φk.

2.1. Space regularization of v and R. We fix a symmetric nonnegative

convolution kernel ψ ∈ C∞c (R3) and a small parameter ` (whose choice will be

specified later). Define v` := v ∗ ψ` and R̊` := R̊ ∗ ψ`, where the convolution is

in the x variable only. Standard estimates on regularizations by convolution

lead to the following:

‖v − v`‖0 ≤ CM δ
1/2
q λq`,(30)

‖R̊− R̊`‖0 ≤ CM δq+1λq`,(31)
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and for any N ≥ 1, there exists a constant C = C(N) so that

‖v`‖N ≤ CM δ
1/2
q λq`

1−N ,(32)

‖R̊`‖N ≤ CM δq+1λq`
1−N .(33)

2.2. Time discretization and transport for the Reynolds stress. Next, we

fix a smooth cutoff function χ ∈ C∞c ((−3
4 ,

3
4)) such that∑

l∈Z
χ2(x− l) = 1

and a large parameter µ ∈ N \ {0}, whose choice will be specified later.

For any l ∈ [0, µ], we define

ρl :=
1

3(2π)3

Å
e(lµ−1) (1− δq+2)−

ˆ
T3

|v|2(x, lµ−1) dx

ã
.

Note that (12) implies

1

3(2π)3
e(lµ−1)(3

4δq+1 − δq+2) ≤ ρl ≤
1

3(2π)3
e(lµ−1)(5

4δq+1 − δq+2).

Recalling that b and c are fixed, whereas a is chosen large, since δq = a−b
q
, we

will assume δq+2 ≤ 1
2δq+1 so that we obtain

(34) C−1
0 (min e)δq+1 ≤ ρl ≤ C0(max e)δq+1,

where C0 is an absolute constant.

Finally, define R`,l to be the unique solution to the transport equation

(35)

∂tR̊`,l + v` · ∇R̊`,l = 0,

R̊`,l(x,
l
µ) = R̊`(x,

l
µ),

and set

(36) R`,l(x, t) := ρlId− R̊`,l(x, t).

2.3. The maps v1, w, wo and wc. We next consider v` as a 2π-periodic

function on R3 × [0, 1] and, for every l ∈ [0, µ], we let Φl : R3 × [0, 1]→ R3 be

the solution of

(37)

∂tΦl + v` · ∇Φl = 0,

Φl(x, lµ
−1) = x.

Observe that Φl(·, t) is the inverse of the flow of the periodic vector-field v`,

starting at time t = lµ−1 as the identity. Thus, if y ∈ (2πZ)3, then Φl(x, t)−
Φl(x + y, t) ∈ (2πZ)3: Φl(·, t) can be thought as a diffeomorphism of T3 onto

itself and, for every k ∈ Z3, the map T3 × [0, 1] 3 (x, t)→ eiλq+1k·Φl(x,t) is well

defined.
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We next apply Lemma 1.3 with N = 2, denoting by Λe and Λo the cor-

responding families of frequencies in Z3, and we set Λ := Λo + Λe. For each

k ∈ Λ and each l ∈ Z ∩ [0, µ], we then set

χl(t) := χ
(
µ(t− l)

)
,(38)

akl(x, t) :=
√
ρlγk

Ç
R`,l(x, t)

ρl

å
,(39)

wkl(x, t) := akl(x, t)Bke
iλq+1k·Φl(x,t).(40)

The “principal part” of the perturbation w consists of the map

wo(x, t) :=
∑

l odd,k∈Λo

χl(t)wkl(x, t) +
∑

l even,k∈Λe

χl(t)wkl(x, t).(41)

From now on, in order to make our notation simpler, we agree that the pairs

of indices (k, l) ∈ Λ × [0, µ] that enter in our summations always satisfy the

following condition: k ∈ Λe when l is even and k ∈ Λo when l is odd.

It will be useful to introduce the “phase”

(42) φkl(x, t) = eiλq+1k·[Φl(x,t)−x],

with which we obviously have

φkl · eiλq+1k·x = eiλq+1k·Φl .

Since R`,l and Φl are defined as solutions of the transport equations (35) and

(37), we have

(∂t + v` · ∇)akl = 0 and (∂t + v` · ∇)eiλq+1k·Φl(x,t) = 0,(43)

and hence also

(44) (∂t + v` · ∇)wkl = 0.

The corrector wc is then defined in such a way that w := wo+wc is divergence

free:

wc :=
∑
kl

χl
λq+1

curl

Ç
iaklφkl

k ×Bk
|k|2

å
eiλq+1k·x(45)

=
∑
kl

χl
( i

λq+1
∇akl − akl(DΦl − Id)k

)
× k ×Bk
|k|2

eiλq+1k·Φl .

Remark 1. To see that w = wo+wc is divergence-free, just note that since

k ·Bk = 0, we have k × (k ×Bk) = −|k|2Bk and hence w can be written as

(46) w =
1

λq+1

∑
(k,l)

χl curl

Ç
iakl φkl

k ×Bk
|k|2

eiλq+1k·x
å
.
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For future reference it is useful to introduce the notation

(47) Lkl := aklBk +
( i

λq+1
∇akl − akl(DΦl − Id)k

)
× k ×Bk
|k|2

,

so that the perturbation w can be written as

(48) w =
∑
kl

χl Lkl e
iλq+1k·Φl .

Moreover, we will frequently deal with the transport derivative with respect to

the regularized flow v` of various expressions, and we will henceforth use the

notation

(49) Dt := ∂t + v` · ∇.

2.4. Determination of the constants η and M . In order to determine η,

first of all recall from Lemma 1.3 that the functions akl are well defined provided∣∣∣∣∣R`,lρl − Id

∣∣∣∣∣ ≤ r0,

where r0 is the constant of Lemma 1.3. Recalling the definition of R`,l, we

easily deduce from the maximum principle for transport equations (cf. (132)

in Proposition D.1) that ‖R̊`,l‖0 ≤ ‖R̊‖0. Hence, from (10) and (34), we obtain∣∣∣∣∣R`,lρl − Id

∣∣∣∣∣ ≤ C0
η

min e
,

and thus we will require that

C0
η

min e
≤ r0

4
.

The constant M in turn is determined by comparing the estimate (6) for

q+1 with the definition of the principal perturbation wo in (41). Indeed, using

(38)–(41) and (34) we have ‖wo‖0 ≤ C0|Λ|(max e)δ
1/2
q+1. We therefore set

M = 2C0|Λ|(max e),

so that

(50) ‖wo‖0 ≤
M

2
δ
1/2
q+1.

2.5. The pressure p1 and the Reynolds stress R̊1. We set

R̊1 = R0 +R1 +R2 +R3 +R4 +R5,
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where

R0 = R (∂tw + v` · ∇w + w · ∇v`) ,(51)

R1 = Rdiv
(
wo ⊗ wo −

∑
l

χ2
lR`,l −

|wo|2
2 Id

)
,(52)

R2 = wo ⊗ wc + wc ⊗ wo + wc ⊗ wc − |wc|
2+2〈wo,wc〉

3 Id,(53)

R3 = w ⊗ (v − v`) + (v − v`)⊗ w − 2〈(v−v`),w〉
3 Id,(54)

R4 = R̊− R̊`,(55)

R5 =
∑
l

χ2
l (R̊` − R̊l,`).(56)

Observe that R̊1 is indeed a traceless symmetric tensor. The corresponding

form of the new pressure will then be

(57) p1 = p− |wo|
2

2
− 1

3
|wc|2 −

2

3
〈wo, wc〉 −

2

3
〈v − v`, w〉.

Recalling (36) we see that
∑
l χ

2
l trR`,l is a function of time only. Since

also
∑
l χ

2
l = 1, it is then straightforward to check that

div R̊1 −∇p1 = ∂tw + div (v ⊗ w + w ⊗ v + w ⊗ w) + div R̊−∇p
= ∂tw + div (v ⊗ w + w ⊗ v + w ⊗ w) + ∂tv + div (v ⊗ v)

= ∂tv1 + div (v1 ⊗ v1).

The following lemma will play a key role.

Lemma 2.1. The following identity holds :

(58) wo ⊗ wo =
∑
l

χ2
lR`,l +

∑
(k,l),(k′,l′),k 6=−k′

χlχl′wkl ⊗ wk′l′ .

Proof. Recall that the pairs (k, l), (k′, l′) are chosen so that k 6= −k′ if l

is even and l′ is odd. Moreover, χlχl′ = 0 if l and l′ are distinct and have the

same parity. Hence the claim follows immediately from our choice of akl in

(39) and Proposition 1.1 and Lemma 1.3 (cf. [11, Prop. 6.1(ii)]). �

2.6. Conditions on the parameters — hierarchy of length-scales. In the

next couple of sections we will need to estimate various expressions involving

v` and w. To simplify the formulas that we arrive at, from now on we will

assume the following conditions on µ, λq+1 ≥ 1 and ` ≤ 1:

(59)
δ
1/2
q λq`

δ
1/2
q+1

≤ 1,
δ
1/2
q λq
µ

+
1

`λq+1
≤ λ−βq+1 and

1

λq+1
≤
δ
1/2
q+1

µ
.



ANOMALOUS DISSIPATION FOR 1/5-HÖLDER EULER FLOWS 141

These conditions imply the following orderings of length scales, which will be

used to simplify the estimates in Section 3:

(60)
1

δ
1/2
q+1λq+1

≤ 1

µ
≤ 1

δ
1/2
q λq

and
1

λq+1
≤ ` ≤ 1

λq
.

One can think of these chains of inequalities as an ordering of various length

scales involved in the definition of v1.

Remark 2. The most relevant and restrictive condition is δ
1/2
q λq ≤ µ. In-

deed, this condition can be thought of as a kind of CFL condition (cf. [5]), re-

stricting the coarse-grained flow to times of the order of ‖∇v‖−1
0 ; cf. Lemma 3.1

and in particular, (62) below. Assuming only this condition on the parame-

ters, essentially all the arguments for estimating the various terms would still

follow through. The remaining inequalities are only used to simplify the many

estimates needed in the rest of the paper, which otherwise would have a much

more complicated dependence upon the various parameters.

3. Estimates on the perturbation

Lemma 3.1. Assume (59) holds. For t in the range |µt− l| < 1, we have

‖DΦl‖0 ≤ C ,(61)

‖DΦl − Id‖0 ≤ C
δ
1/2
q λq
µ

,(62)

‖DΦl‖N ≤ C
δ
1/2
q λq
µ`N

, N ≥ 1.(63)

Moreover,

‖akl‖0 + ‖Lkl‖0 ≤ Cδ
1/2
q+1,(64)

‖akl‖N ≤ Cδ
1/2
q+1λq`

1−N , N ≥ 1(65)

‖Lkl‖N ≤ Cδ
1/2
q+1`

−N , N ≥ 1(66)

‖φkl‖N ≤ Cλq+1
δ
1/2
q λq
µ`N−1

+ C

(
δ
1/2
q λqλq+1

µ

)N
(67)

≤ CλN(1−β)
q+1 N ≥ 1.

Consequently, for any N ≥ 0,

‖wc‖N ≤ Cδ
1/2
q+1

δ
1/2
q λq
µ

λNq+1,(68)

‖wo‖1 ≤
M

2
δ
1/2
q+1λq+1 + Cδ

1/2
q+1λ

1−β
q+1 ,(69)

‖wo‖N ≤ Cδ
1/2
q+1λ

N
q+1, N ≥ 2,(70)
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where the constants in (61)–(62) depend only on M , the constant in (63) de-

pends on M and N , the constants in (64) and (69) depend on M and e and

the remaining constants depend on M , e and N .

Proof. The estimates (61) and (62) are direct consequences of (135) in

Proposition D.1, together with (60), whereas (136) in Proposition D.1 com-

bined with the convolution estimate (32) implies (63).

Next, (33) together with (132), (133) and (134) in Proposition D.1 and

(60) leads to

‖R`,l‖0 ≤ Cδq+1,(71)

‖R`,l‖N ≤ Cδq+1λq`
1−N , N ≥ 1.(72)

The estimate (64) is now a consequence of (71), (62) and (34), whereas by

(129) we obtain

‖akl‖N ≤ Cδ
−1/2
q+1 ‖R`,l‖N ≤ Cδ

1/2
q+1λq`

1−N ≤ Cδ1/2q+1`
−N .(73)

Similarly, we deduce (66) from

‖Lkl‖N ≤ C‖akl‖N + Cλ−1
q+1‖akl‖N+1

+ C (‖akl‖N‖DΦl − Id‖0 + ‖akl‖0‖DΦl‖N ) ,

once again using (60).

In order to prove (67) we apply (130) with m = N to conclude

‖φkl‖N ≤ Cλq+1‖DΦl‖N−1 + λNq+1‖DΦl − Id‖N0 ,

from which (67) follows using (62), (63) and (59).

Using the formula (45) together with (62), (63), (64) and (66) we conclude

‖wc‖0 ≤
C

λq+1
‖akl‖1 + C‖akl‖0‖DΦl − Id‖0 ≤ C

δ
1/2
q λq
µ

and, for N ≥ 1,

‖wc‖N ≤ C
∑
kl

χl

Ç
1

λq+1
‖akl‖N+1 + ‖akl‖0‖DΦl‖N + ‖akl‖N‖DΦl − Id‖0

å
+ C‖wc‖0

∑
l

χl
Ä
λNq+1‖DΦl‖N0 + λq+1‖DΦl‖N−1

ä
(60)

≤ Cδ
1/2
q+1λ

N
q+1

(
λq
λq+1

+
δ
1/2
q λq
µ

)
≤ C δ

1/2
q λq
µ

λNq+1.

This proves (68). The estimates for wo follow analogously, using in addition

the choice of M and (50). �
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Lemma 3.2. Recall that Dt = ∂t + v` · ∇. Under the assumptions of

Lemma 3.1, we have

‖Dtv`‖N ≤ Cδqλq`−N ,(74)

‖DtLkl‖N ≤ Cδ
1/2
q+1δ

1/2
q λq`

−N ,(75)

‖D2
tLkl‖N ≤ Cδ

1/2
q+1δqλq`

−N−1,(76)

‖Dtwc‖N ≤ Cδ
1/2
q+1δ

1/2
q λqλ

N
q+1,(77)

‖Dtwo‖N ≤ Cδ
1/2
q+1µλ

N
q+1.(78)

Proof. Estimate on Dtv`. Note that v` satisfies the inhomogeneous trans-

port equation

∂tv` + v` · ∇v` = −∇p ∗ ψ` + div (R̊` − (v ⊗ v) ∗ ψ` + v` ⊗ v`).

By hypothesis, ‖∇p∗ψ`‖N ≤ C‖p‖1`−N ≤ Cδqλq`−N and analogously ‖div R̊∗
ψ`‖ ≤ Cδq+1λq`

−N . On the other hand, by Proposition E.1,

‖div ((v ⊗ v) ∗ ψ` − v` ⊗ v`) ‖N ≤ C`1−N‖v‖21 ≤ C`1−Nδqλ2
q .

Thus (74) follows from (60).

Estimates on Lkl. Recall that Lkl is defined as

Lkl := aklBk +
( i

λq+1
∇akl − akl(DΦl − Id)k

)
× k ×Bk
|k|2

.

Using that

Dtakl = 0, DtΦl = 0,(79)

Dt∇akl = −DvT` ∇akl, DtDΦl = −DΦlDv`,

we obtain

DtLkl =

Ç
− i

λq+1
DvT` ∇akl + aklDΦlDv`k

å
× k ×Bk
|k|2

.

Consequently, for times |t− l| < µ−1 and N ≥ 0, we have

‖DtLkl‖N ≤ Cδ
1/2
q+1δ

1/2
q λq`

−N
(

λq
λq+1

+ λq`+
δ
1/2
q λq
µ

+ 1

)
≤ Cδ1/2q+1δ

1/2
q λq`

−N ,

where we have used (127), Lemma 3.1 and (60). Taking one more derivative

and using (79) again, we obtain

D2
tLkl =

(
− i

λq+1
(DtDv`)

T∇akl +
i

λq+1
DvT` Dv

T
` ∇akl

− aklDΦlDv`Dv`k + aklDΦlDtDv`k
)
× k ×Bk
|k|2

.
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Note that DtDv` = DDtv` −Dv`Dv`, so that

‖DtDv`‖N ≤ ‖Dtv`‖N+1 + ‖Dv`‖N‖Dv`‖0
≤ Cδqλq`−N−1 (1 + λq`) ≤ Cδqλq`−N−1.

It then follows from the product rule (127) and (60) that

‖D2
tLkl‖N ≤ Cδ

1/2
q+1δqλq`

−N−1

(
λq
λq+1

+
λ2
q`

λq+1
+ λq`+ (λq`)

2 +
δ
1/2
q λq
µ

+ 1

)
≤ Cδ1/2q+1δqλq`

−N−1.

Estimates on wc. Observe that wc =
∑
χl(Lkl− aklBk)eiλq+1k·Φl (see (45)

and (47)). Differentiating this identity, we then conclude

Dtwc =
∑
kl

χl (DtLkl) e
iλq+1k·Φl + (∂tχl) (Lkl − aklBk) eiλq+1k·Φl

=
∑
kl

χl(DtLkl)φkle
iλq+1k·x+

+
∑
kl

(∂tχl)

Ç
i∇akl
λq+1

− akl (DΦl − Id) k

å
× k ×Bk
|k|2

φkle
iλq+1k·x.

Hence we obtain (77) as a consequence of Lemma 3.1 and (75).

Estimates on wo. Using (79), we have

Dtwo =
∑
k,l

χ′laklφkle
iλq+1k·x.

Therefore (78) follows immediately from Lemma 3.1. �

4. Estimates on the energy

Lemma 4.1 (Estimate on the energy).

(80)

∣∣∣∣e(t)(1− δq+2)−
ˆ
T3

|v1|2 dx
∣∣∣∣ ≤ 1

µ
+ C

δq+1δ
1/2
q λq
µ

+ C
δ
1/2
q+1δ

1/2
q λq

λq+1
.

Proof. Define

ē(t) := 3(2π)3
∑
l

χ2
l (t)ρl.

Using Lemma 2.1, we then have

|wo|2 =
∑
l

χ2
l trR`,l +

∑
(k,l),(k′,l′),k 6=−k′

χlχl′wkl · wk,l′(81)

= (2π)−3ē+
∑

(k,l),(k′,l′),k 6=−k′
χlχk′aklak′l′φklφk′l′e

iλq+1(k+k′)·x.
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Observe that ē is a function of t only and that, since (k + k′) 6= 0 in the sum

above, we can apply Proposition G.1(i) with m = 1. From Lemma 3.1 we then

deduce ∣∣∣∣ˆ
T3

|wo|2 dx− ē(t)
∣∣∣∣ ≤ C δq+1δ

1/2
q λq
µ

+ C
δq+1λq
λq+1

.(82)

Next we recall (46), integrate by parts and use (64) and (67) to reach

(83)

∣∣∣∣ˆ
T3

v · w dx
∣∣∣∣ ≤ C δ

1/2
q+1δ

1/2
q λq

λq+1
.

Note also that by (68), we have

ˆ
T3

|wc|2 + |wcwo| dx ≤ C
δq+1δ

1/2
q λq
µ

.(84)

Summarizing, so far we have achieved

∣∣∣∣ˆ
T3

|v1|2 dx−
Å
ē(t) +

ˆ
T3

|v|2 dx
ã∣∣∣∣ (83)

≤
∣∣∣∣ˆ

T3

|w|2 dx− ē(t)
∣∣∣∣+ C

δ
1/2
q+1δ

1/2
q λq

λq+1

(85)

(84)

≤
∣∣∣∣ˆ

T3

|wo|2 dx− ē(t)
∣∣∣∣+ C

δ
1/2
q+1δ

1/2
q λq

λq+1
+ C

δq+1δ
1/2
q λq
µ

(82)

≤ C
δ
1/2
q+1δ

1/2
q λq

λq+1
+ C

δq+1δ
1/2
q λq
µ

.

Next, recall that

ē(t) = 3(2π)3
∑
l

χ2
l ρl

= (1− δq+2)
∑
l

χ2
l e

Å
µ

l

ã
−
∑
l

χ2
l

ˆ
T3

|v(x, lµ−1)|2 dx.

Since
∣∣∣t− l

µ

∣∣∣ < µ−1 on the support of χl and since
∑
l χ

2
l = 1, we have∣∣∣∣∣∣e(t)−∑l χ2

l e

Å
l

µ

ã∣∣∣∣∣∣ ≤ µ−1.

Moreover, using the Euler-Reynolds equation, we can computeˆ
T3

Å
|v(x, t)|2 −

∣∣∣v Äx, lµ−1
ä∣∣∣2ã dx =

ˆ t

l
µ

ˆ
T3

∂t|v|2

=−
ˆ t

l
µ

ˆ
T3

div
Ä
v
Ä
|v|2 + 2p

ää
+ 2

ˆ t

l
µ

ˆ
T3

v · div R̊ = −2

ˆ t

l
µ

ˆ
T3

Dv : R̊.
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Thus, for
∣∣∣t− l

µ

∣∣∣ ≤ µ−1, we conclude

∣∣∣∣ˆ
T3

|v(x, t)|2 −
∣∣∣v(x, lµ−1)

∣∣∣2 dx∣∣∣∣ ≤ C δq+1δ
1/2
q λq
µ

.

Again using
∑
χ2
l = 1, we then conclude

(86)

∣∣∣∣e(t)(1− δq+2)−
Å
ē(t) +

ˆ
T3

|v(x, t)|2 dx
ã∣∣∣∣ ≤ 1

µ
+ C

δq+1δ
1/2
q λq
µ

.

The desired conclusion (80) follows from (85) and (86). �

5. Estimates on the Reynolds stress

In this section we bound the new Reynolds Stress R̊1. The general pattern

in estimating derivatives of the Reynolds stress is that

• the space derivative gets an extra factor of λq+1 (when the derivative falls

on the exponential factor),

• the transport derivative gets an extra factor µ (when the derivative falls on

the time cutoff).

In fact the transport derivative is slightly more subtle, because in R0 a second

transport derivative of the perturbation w appears, which leads to an addi-

tional term (see (97)). Nevertheless, we organize the estimates in the following

proposition according to the above pattern.

Proposition 5.1. For any choice of small positive numbers ε and β,

there is a constant C (depending only upon these parameters and on e and M )

such that, if µ, λq+1 and ` satisfy the conditions (59), then we have

‖R0‖0 +
1

λq+1
‖R0‖1 +

1

µ
‖DtR

0‖0 ≤ C
δ
1/2
q+1µ

λ1−ε
q+1

+
δ
1/2
q+1δqλq

λ1−ε
q+1µ`

,(87)

‖R1‖0 +
1

λq+1
‖R1‖1 +

1

µ
‖DtR

1‖0 ≤ C
δq+1δ

1/2
q λqλ

ε
q+1

µ
,(88)

‖R2‖0 +
1

λq+1
‖R2‖1 +

1

µ
‖DtR

2‖0 ≤ C
δq+1δ

1/2
q λq
µ

,(89)

‖R3‖0 +
1

λq+1
‖R3‖1 +

1

µ
‖DtR

3‖0 ≤ Cδ
1/2
q+1δ

1/2
q λq`,(90)

‖R4‖0 +
1

λq+1
‖R4‖1 +

1

µ
‖DtR

4‖0 ≤ C
δq+1δ

1/2
q λq
µ

+ Cδq+1λq`,(91)

‖R5‖0 +
1

λq+1
‖R5‖1 +

1

µ
‖DtR

5‖0 ≤ C
δq+1δ

1/2
q λq
µ

.(92)
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Thus

‖R̊1‖0 +
1

λq+1
‖R̊1‖1 +

1

µ
‖DtR̊1‖0(93)

≤ C

Ñ
δ
1/2
q+1µ

λ1−ε
q+1

+
δq+1δ

1/2
q λqλ

ε
q+1

µ
+ δ

1/2
q+1δ

1/2
q λq`+

δ
1/2
q+1δqλq

λ1−ε
q+1µ`

é
and, moreover,

‖∂tR̊1 + v1 · ∇R̊1‖0(94)

≤ Cδ1/2q+1λq+1

Ñ
δ
1/2
q+1µ

λ1−ε
q+1

+
δq+1δ

1/2
q λqλ

ε
q+1

µ
+ δ

1/2
q+1δ

1/2
q λq`+

δ
1/2
q+1δqλq

λ1−ε
q+1µ`

é
.

Proof. Estimates on R0. We start by calculating

∂tw + v` · ∇w + w · ∇v` =
∑
kl

(
χ′lLkl + χlDtLkl + χlLkl · ∇v`

)
eik·Φl .

Define Ωkl := (χ′lLkl + χlDtLkl + χlLkl · ∇v`)φkl, and write (recalling the

identity φkle
iλq+1k·x = eiλq+1k·Φl)

(95) ∂tw + v` · ∇w + w · ∇v` =
∑
kl

Ωkle
iλq+1k·x.

Using Lemmas 3.1 and 3.2 and (60),

‖Ωkl‖0 ≤ Cδ
1/2
q+1µ

(
1 +

δ
1/2
q λq
µ

)
≤ Cδ1/2q+1µ

and similarly, for N ≥ 1,

‖Ωkl‖N ≤ Cδ
1/2
q+1µ

Ä
`−N + ‖φkl‖N

ä
≤ Cδ1/2q+1µλ

N(1−β)
q+1 .

Moreover, observe that although this estimate has been derived for N integer,

by the interpolation inequality (128) it can be easily extended to any real

N ≥ 1. (Besides, this fact will be used frequently in the rest of the proof.)

Applying Proposition G.1(ii) we obtain

‖R0‖0 ≤
∑
kl

Ä
λε−1
q+1‖Ωkl‖0 + λ−N+ε

q+1 [Ωkl]N + λ−Nq+1[Ωkl]N+ε

ä
(96)

≤ Cδ1/2q+1µ
Ä
λ−1+ε
q+1 + λ−Nβ+ε

q+1

ä
.

It suffices to choose N so that Nβ ≥ 1 in order to achieve

‖R0‖0 ≤ Cδ
1/2
q+1µλ

ε−1
q+1.

As for ‖R0‖1, we differentiate (95). We therefore conclude

∂jR
0 = R

(∑
kl

(iλq+1kjΩkl + ∂jΩkl)e
iλq+1k·x

)
.
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Applying Proposition G.1(ii) as before, we conclude ‖R0‖1 ≤ Cδ
1/2
q+1µλ

ε
q+1.

Estimates on DtR
0. We start by calculating

Dt (∂tw + v` · ∇w + w · ∇v`) =
∑
kl

(
∂2
t χlLkl + 2∂tχlDtLkl + χlD

2
tLkl

+ ∂tχlLkl ·Dv` + χlDtLkl ·Dv` + χlLkl ·DDtv` − χlLkl ·Dv` ·Dv`
)
eik·Φl

=:
∑
kl

Ω′kle
iλq+1k·x.

As before, we have

‖Ω′kl‖0 ≤ Cδ
1/2
q+1µ

Ç
µ+

δqλq
µ`

+ δ
1/2
q λq +

δqλ
2
q

µ

å
≤ Cδ1/2q+1µ

Å
µ+

δqλq
µ`

ã
(97)

and, for any N ≥ 1,

‖Ω′kl‖N ≤ Cδ
1/2
q+1µ`

−N
Ç
µ+

δqλq
µ`

+ δ
1/2
q λq +

δqλ
2
q

µ

å
+ ‖Ω′kl‖0‖φkl‖N

≤ Cδ1/2q+1µ

Å
µ+

δqλq
µ`

ã Ä
`−N + ‖φkl‖N

ä
≤ Cδ1/2q+1µ

Å
µ+

δqλq
µ`

ã
λ
N(1−β)
q+1 .

Next, observe that we can write

DtR
0 =

(
[Dt,R] +RDt

)
(∂tw + v` · ∇w + w · ∇v`)

=
(
[v`·,R]D +RDt

)
(∂tw + v` · ∇w + w · ∇v`) ;

as is customary, [A,B] denotes the commutator AB −BA of two operators A

and B; the operator [v`·,R] is applied to derivatives DΛ of tensors Λ, and it

gives

(98) [v`·,R]DΛ =
3∑
j=1

ñ
(v`)jR

Ç
∂Λ

∂xj

å
−R

Ç
(v`)j

∂Λ

∂xj

åô
.

Using this convention we then compute

DtR
0 =

∑
kl

(
[v`·,R](DΩkle

iλq+1k·x)

+ iλq+1[v` · k,R](Ωkle
iλq+1k·x) +R(Ω′kle

iλq+1k·x)
)
.
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Using the estimates for Ω′kl derived above, and applying Proposition G.1(ii),

we obtain

‖R(Ω′kle
iλq+1k·x)‖0 ≤

‖Ω′kl‖0
λ1−ε
q+1

+
[Ω′kl]N

λN−εq+1

+
[Ω′kl]N+ε

λNq+1

≤ C
δ
1/2
q+1µ

λ1−ε
q+1

Å
µ+

δqλq
µ`

ã Ä
1 + λ1−Nβ

q+1

ä
.

Furthermore, applying Proposition H.1 we obtain

∥∥∥[v`·,R](DΩkle
iλq+1k·x)

∥∥∥
0
≤ C

λ2−ε
q+1

‖v`‖1‖Ωkl‖1

+
C

λN−εq+1

N−1∑
i=0

‖Ωkl‖1+i+ε‖v`‖N−i+ε ≤ C
δ
1/2
q λqδ

1/2
q+1µ

λ1−ε
q+1

Ä
λ−βq+1 + λ1+2ε−Nβ

q+1

ä
and, similarly,

λq+1

∥∥∥[v` · k,R](Ωkle
iλq+1k·x)

∥∥∥
0
≤ C

δ
1/2
q λqδ

1/2
q+1µ

λ1−ε
q+1

Ä
1 + λ1+2ε−Nβ

q+1

ä
.

By choosing N ∈ N sufficiently large so that Nβ ≥ 1 + 2ε, we deduce

‖DtR
0‖0 ≤ C

δ
1/2
q+1µ

λ1−ε
q+1

Å
µ+ δ

1/2
q λq +

δqλq
µ`

ã
.

Taking into account that δ
1/2
q λq ≤ µ, this concludes the proof of (87).

Remark 3. The estimate on DtR
0
t could be improved by keeping track,

along the iteration, of ‖pq‖2 and ‖R̊q‖2: such quantities can indeed be used to

get a better control of ‖Dtv‖1. This observation, which is used already in [18],

plays an important role in [1] (cf. Section 7 below).

Estimates on R1. Using Lemma 2.1, we have

div

(
wo ⊗ wo −

∑
l

χ2
l R̊`,l −

|wo|2

2
Id

)

=
∑

(k,l),(k′,l′)

k+k′ 6=0

χlχl′div

Å
wkl ⊗ wk′l′ −

wkl · wk′l′
2

Id

ã
= I + II,
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where, setting fklk′l′ := χlχl′aklak′l′φklφk′l′ ,

I =
∑

(k,l),(k′,l′)

k+k′ 6=0

Ä
Bk ⊗Bk′ − 1

2(Bk ·Bk′)Id
ä
∇fklk′l′eiλq+1(k+k′)·x,

II =iλq+1

∑
(k,l),(k′,l′)

k+k′ 6=0

fklk′l′
Ä
Bk ⊗Bk′ − 1

2(Bk ·Bk′)Id
ä

(k + k′)eiλq+1(k+k′)·x.

Concerning II, recall that the summation is over all l ∈ Z∩[0, µ] and all k ∈ Λe

if l is even and all k ∈ Λo if l is odd. Furthermore, both Λe,Λo ⊂ λ̄S2∩Z3 satisfy

the conditions of Lemma 1.3. Therefore we may symmetrize the summand in

II in k and k′. On the other hand, recall from Lemma 1.2 that

(Bk ⊗Bk′ +Bk′ ⊗Bk)(k + k′) = (Bk ·Bk′)(k + k′).

From this we deduce that II = 0.

Concerning I, we first note, using the product rule, (64) and (65), that

[fklk′l′ ]N ≤ Cδq+1

Ä
λq`

1−N + ‖φklφk′l′‖N
ä

for N ≥ 1.

By Lemma (67) and (59) (cf. (60)) we then conclude

[fklk′l′ ]1 ≤ Cδq+1

(
λq + λq+1

δ
1/2
q λq
µ

)
≤ Cδq+1λq+1

δ
1/2
q λq
µ

,

[fklk′l′ ]N ≤ Cδq+1λ
N(1−β)
q+1 , N ≥ 2.

Applying Proposition G.1(ii) to I, we obtain

‖R1‖0 ≤
∑

(k,l),(k′,l′)

k+k′ 6=0

Ä
λε−1
q+1[fklk′l′ ]1+λ−N+ε

q+1 [fklk′l′ ]N+1+λ−Nq+1[fklk′l′ ]N+1+ε

ä
(99)

≤ Cδq+1

(
λεq+1

δ
1/2
q λq
µ

+ λ1−Nβ+ε
q+1

)
.

By choosing N sufficiently large, we deduce

‖R1‖0 ≤ C
δq+1δ

1/2
q λqλ

ε
q+1

µ

as required. Moreover, differentiating we conclude ∂jR
1 = R(∂jI) where

∂jI =
∑

(k,l),(k′,l′)

k+k′ 6=0

Ä
Bk ⊗Bk′ − 1

2(Bk ·Bk′)Id
ä

(100)

· (iλq+1(k + k′)j∇fklk′l′ + ∂j∇fklk′l′)eiλq+1(k+k′)·x.

Therefore we again apply Proposition G.1(ii) to conclude the desired estimate

for ‖R1‖1.
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Estimates on DtR
1. As in the estimate for DtR

0, we again make use of

the identity DtR = [v`·,R]D +RDt in order to write

DtR
1 =

∑
(k,l),(k′,l′)

k+k′ 6=0

Ä
[v`·,R]

Ä
DUklk′l′e

iλq+1(k+k′)·x
ä

+ iλq+1[v` · (k + k′),R]
Ä
Uklk′l′e

iλq+1(k+k′)·x
ä

+ R
Ä
U ′klk′l′e

iλq+1(k+k′)·x
ää
,

where we have set Uklk′l′ =
Ä
Bk ⊗Bk′ − 1

2(Bk ·Bk′)Id
ä
∇fklk′l′ and

Dtdiv
Ä
wo ⊗ wo −

∑
l

χ2
l R̊`,l −

|wo|2

2
Id
ä

=
∑

(k,l),(k′,l′)

k+k′ 6=0

U ′klk′l′e
iλq+1(k+k′)·x.

In order to further compute U ′klk′l′ , we write

∇fklk′l′ eiλq+1(k+k′)·x = χlχl′ (akl∇ak′l′ + ak′l′∇akl) eiλq+1(k·Φl+k′·Φl′ )

+iλq+1χlχl′aklak′l′
(
(DΦl − Id)k + (DΦl′ − Id)k′

)
eiλq+1(k·Φl+k′·Φl′ )

and hence, using (79),

Dt

Ä
∇fklk′l′ eiλq+1(k+k′)·x

ä
= (χlχl′)

′ (akl∇ak′l′ + ak′l′∇akl) eiλq+1(k·Φl+k′·Φl′ )

+ iλq+1(χlχl′)
′aklak′l′

(
(DΦl − Id)k + (DΦl′ − Id)k′

)
eiλq+1(k·Φl+k′·Φl′ )

− χlχl′
Ä
aklDv

T
` ∇ak′l′ + ak′l′Dv

T
` ∇akl

ä
eiλq+1(k·Φl+k′·Φl′ )

− iλq+1χlχl′aklak′l′
Ä
DΦlDv

T
` k +DΦl′Dv

T
` k
′
ä
eiλq+1(k·Φl+k′·Φl′ )

=:
Ä
Σ1
klk′l′ + Σ2

klk′l′ + Σ3
klk′l′ + Σ4

klk′l′

ä
eiλq+1(k·Φl+k′·Φl′ )

=: Σklk′l′e
iλq+1(k·Φl+k′·Φl′ ).

Ignoring the subscripts we can use (127), Lemma 3.1 and Lemma 3.2 to esti-

mate

‖Σ‖N ≤ Cδq+1λq`
−N (µ+ λq+1δ

1/2
q + δ

1/2
q λq + λq+1δ

1/2
q )

(60)

≤ Cδq+1λq+1δ
1/2
q λq`

−N .

We thus conclude

‖U ′klk′l′‖N ≤ C‖Σklk′l′‖N + C‖Σklk′l′‖0‖φklφk′l′‖N
≤ Cδq+1λq+1δ

1/2
q λq

(
`−N + λ

N(1−β)
q+1

)
≤ Cδq+1δ

1/2
q λqλ

1+N(1−β)
q+1 .

The estimate on ‖DtR
1‖0 now follows exactly as above for DtR

0 applying

Proposition H.1 to the commutator terms. This concludes the verification

of (88).
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Estimates on R2 and DtR
2. Using Lemma 3.1, we have

‖R2‖0 ≤ C(‖wc‖20 + ‖wo‖0‖wc‖0) ≤ Cδq+1
δ
1/2
q λq
µ

,

‖R2‖1 ≤ C(‖wc‖1‖wc‖0 + ‖wo‖1‖wc‖0 + ‖wo‖0‖wc‖1) ≤ Cδq+1
δ
1/2
q λq
µ

λq+1.

Similarly, with the Lemmas 3.1 and 3.2 we achieve∥∥∥DtR
2
∥∥∥

0
≤ C ‖Dtwc‖0 (‖wo‖0 + ‖wc‖0) + C‖Dtwo‖0‖wc‖0 ≤ Cδq+1δ

1/2
q λq.

Estimates on R3 and DtR
3. The estimates on ‖R3‖0 and ‖R3‖1 are

a direct consequence of the mollification estimates (30) and (32) as well as

Lemma 3.1. Moreover,

‖DtR
3‖0 ≤ ‖v − v`‖0‖Dtw‖0 + (‖Dtv‖0 + ‖Dtv`‖)‖w‖0(101)

= ‖v − v`‖0 (‖Dtwc‖0 + ‖Dtwo‖) + (‖Dtv‖0 + ‖Dtv`‖)‖w‖0.

Concerning Dtv, note that, by our inductive hypothesis

‖Dtv‖0 ≤ ‖∂tv + v · ∇v‖0 + ‖v − v`‖0‖v‖1
≤ ‖pq‖1 + ‖R̊q‖1 + Cδqλ

2
q` ≤ Cδqλq.

Thus the required estimate on DtR
3 follows from Lemma 3.2.

Estimates on R4 and DtR
4. From the mollification estimates (31) and

(33), we deduce

‖R4‖0 ≤ C‖R̊‖1` ≤ Cδq+1λq`,

‖R4‖1 ≤ 2‖R̊‖1 ≤ Cδq+1λq.

As for DtR
4, observe first that, using our inductive hypothesis,

‖DtR̊‖0 ≤ ‖∂tR̊+ v · ∇R̊‖0 + ‖v` − v‖0‖R̊‖1 ≤ Cδq+1δ
1/2
q λq + Cδq+1δ

1/2
q λ2

q`.

Moreover,

DtR̊` = (DtR̊) ∗ ψ` + v` · ∇R̊` − (v` · ∇R̊) ∗ ψ`
(102)

= (DtR̊) ∗ ψ` + div
Ä
v` ⊗ R̊` − (v ⊗ R̊) ∗ ψ`

ä
+[(v − v`) · ∇R̊] ∗ ψ`,

where we have used that div v = 0. Using Proposition E.1, we deduce

‖v` ⊗ R̊` − (v ⊗ R̊) ∗ ψ`‖1 ≤ Cδq+1δ
1/2
q λqλq`.(103)

Gathering all the estimates we then achieve

‖DtR
4‖0 ≤ ‖DtR̊‖0 + ‖DtR̊`‖0 ≤ Cδq+1λqδ

1/2
q .

The estimate (91) follows now using (60).
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Estimates on R5. Recall that DtR̊`,l = 0. Therefore, using the arguments

from (102),

‖Dt(R̊` − R̊`,l)‖0 = ‖DtR̊`‖0 ≤ Cδq+1δ
1/2
q λq.

On the other hand, using again the identity (102) and Proposition E.1,

‖Dt(R̊` − R̊`,l)‖1 = ‖DtR̊`‖1 ≤ C`−1‖DtR̊‖0 + ‖v` ⊗ R̊` − (v ⊗ R̊) ∗ ψ`‖2
+ C`−1‖v − v`‖0‖R̊‖1 ≤ Cδq+1δ

1/2
q λq`

−1.

Since R̊`,l(x, tµ
−1) = R̊`(x, tµ

−1), the difference R̊`− R̊`,l vanishes at t = lµ−1.

From Proposition D.1 we deduce that, for times t in the support of χl (i.e.,

|t− lµ−1| < µ−1),

‖R̊` − R̊`,l‖0 ≤ Cµ−1‖Dt(R̊` − R̊`,l)‖0 ≤ Cµ−1δq+1δ
1/2
q λq,

‖R̊` − R̊`,l‖1 ≤ Cµ−1‖Dt(R̊` − R̊`,l)‖1 ≤ Cµ−1δq+1δ
1/2
q λq`

−1.

The desired estimates on ‖R5‖0 and ‖R5‖1 then follow easily using (60).

Estimate on DtR
5. In this case we compute

DtR
5 =

∑
l

2χl∂tχl(R̊` − R̊`,l) +
∑
l

χ2
lDtR̊`.

The second summand has been estimated above and, since ‖∂tχl‖0 ≤ Cµ, the

first summand can be estimated by Cµδq+1δ
1/2
q λqµ

−1 (again appealing to the

arguments above).

Proof of (94). To achieve this last inequality, observe that

‖∂tR̊1 + v1 · ∇R̊1‖0 ≤ ‖DtR̊1‖0 + (‖v − v`‖0 + ‖w‖0) ‖R̊1‖1.

On the other hand, by (30) and (59), ‖v−v`‖0 ≤ Cδ
1/2
q λq` ≤ δ

1/2
q+1. Moreover, by

(50), (68) and (60), ‖w‖ ≤ ‖wo‖0 +‖wc‖0 ≤ Cδ
1/2
q+1. Thus, by (93) we conclude

‖∂tR̊1 + v1 · ∇R̊1‖0 ≤ C
(
µ+ δ

1/2
q+1λq+1

)Ñ
δ
1/2
q+1µ

λ1−ε
q+1

+
δq+1δ

1/2
q λqλ

ε
q+1

µ
+ δ

1/2
q+1δ

1/2
q λq`+

δ
1/2
q+1δqλq

λ1−ε
q+1µ`

é
.

Since by (60) µ ≤ δ1/2q+1λq+1, (94) follows easily. �

5.1. A remark on the bounds for R5 and DtR
0. By approximating the

error with the solution to a transport equation, we have saved a lot of work in

obtaining the estimate for ‖DtR
0‖ in (87) compared to the approach of [18].

The price we have paid here is introducing the additional error term R5, which

represents a new degree of freedom in the construction that had not previously

been exploited. The estimate (92) for R5 is among the maximal bounds in the

argument and it is thus one of the obstructions to going beyond 1
5 . It should
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be noticed that it is not clear which error terms must be improved in order to

reach the conjectural exponent 1
3 . For instance, in the paper [1] (cf. Section 7)

the error estimate (92) is not an obstruction to get the Hölder regularity in

space on the set of “good times.” On the other hand, in the approach of [18]

such an error term does not appear, and it is of interest to review it here.

The difficulty in bounding DtR
0 is that the transport term R0 by itself

involves the advective derivative of the amplitudes ak, which in turn depend on

the input stress R̊ by (39). Consequently, DtR
0 essentially involves the second

advective derivative D2
t R̊, whereas we have only assumed control over the first

advective derivative DtR̊. This difficulty is tackled in [18] by introducing a

“mollification along the flow” for the definition of R̊`, which is then used to form

the amplitudes ak as in (36), (39). This procedure consists of first averaging

in space to construct R̊`x = R̊ ∗ ψ`x and then using the one-parameter group

Ξs(x, t) generated by the space-time vector field ∂t + v` · ∇ to average in time

R̊`(x, t) =

ˆ
R̊`x(Ξs(x, t))ψ`t(s) ds.(104)

That is, Ξs(x, t) = (Xt(x, t + s), t + s), where Xt(x, t + s) denotes the flux of

v` starting as the identity at time t, as in Appendix D. The tensor R̊`(x, t) is

thus an average of R̊ over an `x-neighborhood of the time |s| ≤ `t trajectory

that passes through (x, t) along the flow of v`.

The mollification (104) behaves like a standard mollification in that, be-

cause Dt commutes with pullback by Ξs, the derivative Dt commutes with the

average along the flow

DtR̊`(x, t) =

ˆ
[DtR̊`x ](Ξs(x, t))ψ`t(s) ds(105)

=

ˆ
d

ds
R̊`x(Ξs(x, t))ψ`t(s) ds.

Integrating by parts in (105), each additional advective derivative incurs a

cost `−1
t , which provides the estimate on D2

t R̊` that is applied to the transport

term DtR
0. The error R̊− R̊` can also be bounded in terms of `t and `x using

the control we have assumed on ‖R̊‖1 and ‖(∂t + v · ∇)R̊‖0.2 But unlike a

standard mollification, bounding the derivatives ‖R̊`‖N is more involved and

requires control over the geometry of the flow Ξs that obeys a nonlinear ODE.

The bounds for [Ξs]N are then similar to those in Appendix D, having factors

that grow exponentially after time ‖∇v‖−1
0 from Gronwall’s inequality. After

all these estimates are established, it turns out that the bounds for D2
t R̊` and

2For the present results, one can essentially take `t proportional to the time scale µ−1

above, while obtaining a better exponent would require this parameter to be smaller (e.g.,

the choice made in [18] where `t ∼ δ
−1/2
q+1 λ−1

q+1 would correspond to a 1/3 scheme).
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R̊ − R̊` all appear to be (just barely) compatible with a scheme aimed at

proving the conjectured 1/3 exponent. Overall though, it appears that 1/5 is

the limit of our current method and that any improvement on this exponent

would require further new ideas.

6. Conclusion of the proof

In Sections 2–5 we showed the construction for a single step, referring to

(vq, pq, R̊q) as (v, p, R̊) and to (vq+1, pq+1, R̊q+1) as (v1, p1, R̊1). From now on

we will consider the full iteration again, hence using again the indices q and

q + 1.

In order to proceed, recall that the sequences {δq}q∈N and {λq}q∈N are

chosen to satisfy

δq = a−b
q
, acb

q+1 ≤ λq ≤ 2acb
q+1

for some given constants c > 5/2 and b > 1 and for a > 1. Note that this has

the consequence that if a is chosen sufficiently large (depending only on b > 1),

then

δ
1/2
q λ

1/5
q ≤ δ

1/2
q+1λ

1/5
q+1, δq+1 ≤ δq, and λq ≤ λ

2
b+1

q+1.(106)

6.1. Choice of the parameters µ and `. We start by specifying the param-

eters µ = µq and ` = `q: we determine them optimizing the right-hand side of

(93). More precisely, we set

(107) µ := δ
1/4
q+1δ

1/4
q λ

1/2
q λ

1/2
q+1

so that the first two expressions in (93) are equal and then, having determined

µ, set

(108) ` := δ
−1/8
q+1 δ

1/8
q λ−

1/4
q λ

−3/4
q+1

so that the last two expressions in (93) are equal (up to a factor λεq+1).

In turn, these choices lead to

‖R̊q+1‖0 +
1

λq+1
‖R̊q+1‖1 ≤ Cδ

3/4
q+1δ

1/4
q λ

1/2
q λ

ε−1/2
q+1 + Cδ

3/8
q+1δ

5/8
q λ

3/4
q λ

ε−3/4
q+1

(109)

= Cδ
3/4
q+1δ

1/4
q λ

1/2
q λ

ε−1/2
q+1

Ö
1 +

Ñ
δ
1/2
q λ

1/3
q

δ
1/2
q+1λ

1/3
q+1

é3/4
è

(106)

≤ Cδ
3/4
q+1δ

1/4
q λ

1/2
q λ

ε−1/2
q+1 .

Observe also that by (94), we have

(110) ‖∂tR̊q+1 + vq+1 · ∇R̊q+1‖0 ≤ Cδ
1/2
q+1λq+1

(
δ
3/4
q+1δ

1/4
q λ

1/2
q λ

ε−1/2
q+1

)
.
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Let us check that the conditions (59) are satisfied for some β > 0. (Re-

member that β should be independent of q.) To this end we calculate

δ
1/2
q λq`

δ
1/2
q+1

=

Ñ
δ
1/2
q λ

3/5
q

δ
1/2
q+1λ

3/5
q+1

é5/4

,
δ
1/2
q λq
µ

=

Ñ
δ
1/2
q λq

δ
1/2
q+1λq+1

é1/2

,

1

`λq+1
=

Ñ
δ
1/2
q+1λq

δ
1/2
q λq+1

é1/4

,
µ

δ
1/2
q+1λq+1

=

Ñ
δ
1/2
q λq

δ
1/2
q+1λq+1

é1/2

.

Hence the conditions (59) follow from (106) choosing β = b−1
5b+5 .

6.2. Proof of Proposition 0.2. Fix the constants c > 5
2 and b > 1 and also

an ε > 0 whose choice, like that of a > 1, will be specified later. The propo-

sition is proved inductively. The initial triple is defined to be (v0, p0, R̊0) =

(0, 0, 0). Now given (vq, pq, R̊q) satisfying the estimates (6)–(15), we claim

that the triple (vq+1, pq+1, R̊q+1) constructed above satisfies again all the cor-

responding estimates.

Estimates on R̊q+1. Note first of all that, using the form of the estimates

in (93) and (94), the estimates (11) and (15) follow from (10). On the other

hand, in light of (109), (10) follows from the recursion relation

Cδ
3/4
q+1δ

1/4
q λ

1/2
q λ

ε−1/2
q+1 ≤ ηδq+2.

Using our choice of δq and λq from Proposition 0.2, we see that this inequality

is equivalent to

C ≤ a
1
4
bq(1+3b−2cb+(2c−4−4εc)b2)

which, since b > 1, is satisfied for all q ≥ 1 for a sufficiently large fixed constant

a > 1, provided Ä
1 + 3b− 2cb+ (2c− 4− 4εc)b2

ä
> 0.

Factorizing, we obtain the inequality (b − 1)((2c − 4)b − 1) − 4εcb2 > 0. It is

then easy to see that for any b > 1 and c > 5/2, there exists ε > 0 so that

this inequality is satisfied. In this way we can choose ε > 0 (and β above)

depending solely on b and c. Consequently, this choice will determine all the

constants in the estimates in Sections 2–5. We can then pick a > 1 sufficiently

large so that, by (109) and (110), the inequalities (10), (11) and (15) hold for

R̊q+1.

Estimates on vq+1 − vq . By (50), Lemma 3.1 and (59), we conclude

‖vq+1 − vq‖0 ≤ ‖wo‖0 + ‖wc‖0 ≤ δ
1/2
q+1

Å
M

2
+ λ−βq+1

ã
,(111)

‖vq+1 − vq‖1 ≤ ‖wo‖1 + ‖wc‖1 ≤ δ
1/2
q+1

Å
M

2
+ λ−βq+1

ã
.(112)

Since λq+1 ≥ λ1 ≥ acb
2
, for a sufficiently large we conclude (6) and (7).
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Estimate on the energy. Recall Lemma 4.1, and observe that, by (59),
δ
1/2
q+1δ

1/2
q λq

λq+1
≤ δ

1/2
q+1µ

λq+1
. Moreover,

δq+1δ
1/2
q λq = a−b

q+1−bq/2+cbq+1
= ab

q((c−1)b−1/2) ≥ a ≥ 1.

So the right-hand side of (80) is smaller than C
δq+1δ

1/2
q λq
µ +C

δ
1/2
q+1µ

λq+1
, i.e., smaller

(up to a constant factor) than the right-hand side of (93). Thus, the argument

used above to prove (10) also gives (12).

Estimates on pq+1 − p1. From the definition of pq+1 in (57) we deduce

‖pq+1 − pq‖0 ≤
1

2
(‖wo‖0 + ‖wc‖0)2 + C`‖vq‖1‖w‖0.

As already argued in the estimate for (6), ‖wo‖ + ‖wc‖ ≤ Mδ
1/2
q . Moreover,

C`‖v1‖1‖w‖0 ≤ CMδ
1/2
q+1δ

1/2
q λq`, which is smaller than the right-hand side of

(93). Having already argued that such quantity is smaller than ηδq+2, we

can obviously bound C`‖vq‖1‖w‖0 with M2

2 δq+1. This shows (8). Moreover,

differentiating (57), we achieve the bound

‖pq+1 − pq‖1 ≤ (‖wo‖1 + ‖wc‖1)(‖wo‖0 + ‖wc‖0) + Cδ
1/2
q+1δ

1/2
q λqλq+1`,

and arguing as above we conclude (9).

Estimates (16). Here we can use the obvious identity ∂twq = Dtwq−(vq)` ·
∇wq together with Lemmas 3.1 and 3.2 to obtain ‖∂tvq+1−∂tvq‖0 ≤ Cδ

1/2
q+1λq+1.

Then, using (25), we conclude ‖∂tvq‖0 ≤ Cδ
1/2
q λq.

To handle ∂tpq+1 − ∂tpq, observe first that, by our construction,

‖∂t(pq+1 − pq)‖0 ≤ (‖wc‖0 + ‖wo‖0)(‖∂twc‖0 + ‖∂two‖0)

+ 2‖w‖0‖∂tvq‖0 + `‖vq‖1‖∂tw‖0.

As above, we can derive the estimates ‖∂two‖0 + ‖∂twc‖0 ≤ Cδ
1/2
q+1λq+1 from

Lemmas 3.1 and 3.2. Hence

‖∂t(pq+1 − pq)‖0 ≤ Cδq+1λq+1 + Cδ
1/2
q+1δ

1/2
q λq + Cδ

1/2
q λq`δ

1/2
q+1λq+1.(113)

Since ` ≤ λ−1
q and δ

1/2
q λq ≤ δ

1/2
q+1λq+1, the desired inequality follows. This

concludes the proof.

7. Onsager’s conjecture almost everywhere in time

In recent work [1] by the first author, a variant of the present scheme was

presented in order to prove the existence of nontrivial Euler flows with compact

temporal support that belong to the Hölder class C1/3−ε almost everywhere in

time. Specifically, the following theorem was proved.
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Theorem 7.1. There exists a nontrivial vector field

v ∈ C1/5−ε(T3 × (−1, 1),R3)

with compact support in time and a scalar field

p ∈ C2/5−2ε(T3 × (−1, 1))

with the following properties :

(i) The pair (v, p) solves the incompressible Euler equations (1) in the sense

of distributions.

(ii) There exists a set Ω ⊂ (−1, 1) of Hausdorff dimension strictly less than 1

such that if t /∈ Ω, then v(·, t) is Hölder C1/3−ε continuous and p is Hölder

C2/3−2ε continuous.3

The construction of the convex iteration scheme in [1] follows very closely

the scheme presented here with two main deviations:

(1) Unlike in the present work, the solutions constructed will not obey any

prescribed energy profile, but rather simply satisfy the property of having

compact support in time.4

(2) The time cutoff functions {χq,l}5 are modified in such a way that the

Hausdorff dimension of the set

(114) Ω′ :=
∞⋂
q=1

∞⋃
q′=q

⋃
l

support(χ′q′,l)

is strictly less than 1.

The proof of the above theorem then relies heavily on the estimates given

in the present work with the addition of sharper, time localized estimates.

The set Ω is taken to be a slight enlargement of Ω′ with identical Hausdorff

dimension. With the help of these additional estimates, it is shown that for

any time t ∈ (−1, 1) outside the set Ω, there exists an N = N(t) such that,

suppressing dependence on t, we obtain the following estimates:

‖wq‖0 +
1

λq
‖∂twq‖0 +

1

λq
‖wq‖1 ≤ λ−

1/3+ε0
q ,(115)

‖pq − pq−1‖0 +
1

λq
‖∂t(pq − pq−1)‖0 +

1

λ2
q

‖pq − pq−1‖2 ≤ λ
−2/3+2ε0
q ,(116)

∥∥∥R̊q∥∥∥
0

+
1

λq

∥∥∥R̊q∥∥∥
1
≤ λ−2/3+2ε0

q+1(117)

3More precisely, the Hausdorff dimension d is such that 1 − d > Cε2 for some positive

constant C.
4This approach is also taken in [18].
5Here we include the subscript q to indicate the iteration in which the cutoff is defined.
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for every q ≥ N and some 0 < ε0 < ε. The ability to obtain such estimates is

intimately related to the property Ω′ ⊂ Ω.

A minor detail to note is that unlike in the present scheme, in [1] one must

keep track of second order estimates on the pressure (as was already observed

in [18]; cf. Remark 3). This is done in order to eliminate the second term

appearing in (87), whose appearance is related to the sub-optimal estimates

(74) and (76). While this term poses no problems in the present work, it seems

to unduly provide restrictions on the mollification parameter `, which in turn

provides an obstruction to proving Theorem 7.1.

Appendix A. Proof of Proposition 1.1

Proof. First of all observe that a−kB−k = akBk. Thus the vector field

defined in (19) is real valued. Next notice that

divW (ξ) =
∑
|k|=λ0

ik ·Bkakeik·ξ = 0,

because k ·Bk = 0 for every k.

In turn we directly compute

div(W ⊗W )(ξ) =
∑
k,k′

i(Bk ⊗B′k) · (k + k′)ei(k+k′)·ξ

(118)

=
∑
k,k′

i

2
(Bk ⊗Bk′ +Bk′ ⊗Bk) · (k + k′)ei(k+k′)·ξ

(22)
=
∑
k,k′

(Bk ·B′k)(k + k′)ei(k+k′)·ξ = ∇1

2

∑
k,k′

Bk ·B′kei(k+k′)·ξ

=
1

2
∇(W ·W ) =

1

2
∇(W · W̄ ) =

1

2
∇|W |2.

Averaging this identity in ξ we infer

〈W ⊗W 〉 =
∑
|k|=λ0

|ak|2Bk ⊗Bk.

However, since Bk = B−k, we get

〈W ⊗W 〉=
∑
|k|=λ0

|ak|2 Re
Ä
Bk ⊗Bk

ä
=

∑
|k|=λ0

|ak|2
Ç
Ak ⊗Ak +

Ç
k

|k|
×Ak

å
⊗
Ç
k

|k|
×Ak

åå
.
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On the other hand, observe that the triple
√

2Ak,
√

2 k
|k| × Ak,

k
|k| forms an

orthonormal basis of R3. Thus,

2Ak ⊗Ak + 2

Ç
k

|k|
×Ak

å
⊗
Ç
k

|k|
×Ak

å
+

k

|k|
⊗ k

|k|
= Id.

This shows (21) and hence completes the proof. �

Appendix B. Proof of Lemma 1.3

The lemma was first proved in [11], where the argument is very close to

the classical decomposition of a Riemannian metric into “primitive ones,” a

fundamental point of Nash’s existence theorem for C1-isometric embeddings;

see [20] and also [17]. The proof reported here is instead closer in spirit to [18]

and gives more explicit formulas for the families of vectors Λj .

In this paper the lemma is applied with N = 2 (compare with [11] and [7]

where it is applied with N = 8). However, the general form might be useful

in different contexts. For instance, in order to handle a general torus R3/Γ, a

larger N and a suitable variant of the lemma seem necessary; see [18] for the

details.

Proof. The case N = 1. Let e1, e2, e3 be the standard basis vectors of R3,

and define the sets

Λ1 = {±(ei ± ej) | 1 ≤ i < j ≤ 3} ⊆ Z3 ∩ {|k| =
√

2}

and

Λ+
1 = {(ei ± ej) | 1 ≤ i < j ≤ 3},

which are integral analogues of the dodecahedron and projective dodecahedron

used in [18]. Note that Λ1 is invariant under the finite reflection group G

generated by the permutations of the basis vectors (e1, e2, e3) together with

the reflections about coordinate planes and coordinate axes, which negate one

or two basis vectors respectively. We have the following properties.

(1) Linear Independence. The tensors

B =

®
Id− k ⊗ k

|k|2
| k ∈ Λ+

1

´
(119)

are linearly independent and hence form a basis for the space of symmetric

matrices, here viewed as bilinear forms.

(2) Symmetry. We have the identity

1

2

∑
k∈Λ1

Ç
Id− k ⊗ k

|k|2

å
= 4 · Id.(120)
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To establish (119), consider a linear dependence relation

∑
k∈Λ+

1

Ck

Ç
Id− k ⊗ k

|k|2

å
= 0.(121)

The space of linear relations of the form (121) gives a linear representation of

the group G, which arises from the action of G on the set B. Since the action

of G is transitive, it suffices to show that Ce1+e2 = 0, which we now prove.

After averaging (121) over the subgroup permuting the set {±(e1 ± e2)}
(which acts transitively on Λ1 \ {±(e1 ± e2)}), we can arrange that all the

coefficients C(ei±e3) = Ĉ are equal for i = 1, 2, and from (121), we obtain

∑
±
C(e1±e2)

Ç
Id− (e1 ± e2)2

|e1 ± e2|2

å
= −Ĉ

∑
k∈Λ+

1 \{e1±e2}

Ç
Id− k ⊗ k

|k|2

å
.(122)

Comparing the equations obtained from taking traces versus applying (122) to

e3 ⊗ e3, we conclude that Ĉ = 0. Then applying (122) to (e1 ± e2)⊗ (e1 ± e2),

we conclude that Ce1±e2 = 0 as desired.

The identity (120) follows from the linear independence of B, which implies

that there are unique coefficients Ck solving

∑
k∈Λ+

1

Ck

Ç
Id− k ⊗ k

|k|2

å
= Id.(123)

By uniqueness, the coefficients Ck must all be equal upon averaging over G.

Equation (120) then follows by comparing traces.

Lemma 1.3 for N = 1 is now an immediate corollary of the properties (119)

and (120). Namely, as long as ε varies among symmetric matrices in some ball

Br0(0), the equation

1

2

∑
k∈Λ1

(
γ

(1)
k

)2
Ç

Id− k ⊗ k
|k|2

å
= Id + ε(124)

has unique, positive solutions γ
(1)
k for which γ

(1)
−k = γ

(1)
k and

γ
(1)
k (Id + ε)− 1

2
= O(|ε|).

The smooth dependence of γ
(1)
k on ε in the ball Br0(0) is also clear.

Remark 4. One can also see equation (120) from the fact that Id is, up

to a constant, the unique, symmetric bilinear form invariant under the action
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of G.6 This approach is closer to the proof in [18], which uses the identity

(120) for the dodecahedron to prove the linear independence (119) through a

symmetry argument.

The case N > 1. Now assume N > 1, and let Λ∗ be the family of integer

vectors constructed from the case N = 1. It suffices to obtain families of

integer vectors Λj , j = 1, 2, . . . , N that all lie on the same sphere and have

the properties (119) and (120). This can be done as follows. By rotating the

family Λ∗, we can easily produce arbitrarily many families of vectors ΛR
j ⊆

R3 ∩ {|k| =
√

2}, j = 1, . . . N that are disjoint from each other and for which

the properties of linear independence (119) and symmetry (120) also hold. For

example, we can use families of the form

ΛR
j = {eθje1×k | k ∈ Λ∗}

that are obtained from the one-parameter group of rotations

eθe1×k =

 1 0 0

0 cos θ − sin θ

0 sin θ cos θ

 k(125)

that rotate Λ∗ about the e1 axis without leaving any member of Λ∗ fixed. For

generic choices of θj ∈ R/(2πZ), j = 1, . . . , N , the families ΛR
j will be pairwise

disjoint but will not contain vectors in Z3. However, for a dense subset of

θj , the values (cos θj , sin θj) will be rational numbers, which can be seen, for

instance, by mapping Q ⊆ R into a dense subset of the circle by the inverse of

the stereographic projection

x 7→
Ç

2x

1 + x2
,
x2 − 1

1 + x2

å
.

Restricting to these choices of θj , we obtain arbitrarily many families

ΛQ
j = {eθje1×k | k ∈ Λ∗} ⊆ Q3 ∩ {|k| =

√
2} j = 1, . . . , N

that are pairwise disjoint and have rational entries. Having chosen N such

ΛQ
j , we obtain the desired Λ1, . . . ,ΛN by scaling Λj = MΛQ

j by an integer M

chosen to ensure Λj ⊆ Z3 ∩ {|k| =
√

2M}. As properties (119) and (120) are

not disturbed by rotation and scaling, this proves Lemma 1.3 with λ =
√

2M

and r0 independent of N . �

6One calculates the dimension of the space of G-invariant symmetric bilinear forms

by taking the trace of the projection operator 1
|G|
∑

g∈G Sym2g and using the identity

tr Sym2g = (tr g2 + (tr g)2)/2.
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Appendix C. Hölder spaces

In the following, m = 0, 1, 2, . . . , α ∈ (0, 1) and β is a multi-index. We in-

troduce the usual (spatial) Hölder norms as follows. First of all, the supremum

norm is denoted by ‖f‖0 := supT3×[0,1] |f |. We define the Hölder seminorms as

[f ]m = max
|β|=m

‖Dβf‖0,

[f ]m+α = max
|β|=m

sup
x 6=y,t

|Dβf(x, t)−Dβf(y, t)|
|x− y|α

,

where Dβ are space derivatives only. The Hölder norms are then given by

‖f‖m =
m∑
j=0

[f ]j ,

‖f‖m+α = ‖f‖m + [f ]m+α.

Moreover, we will write [f(t)]α and ‖f(t)‖α when the time t is fixed and the

norms are computed for the restriction of f to the t-time slice.

Recall the following elementary inequalities:

(126) [f ]s ≤ C
Ä
εr−s[f ]r + ε−s‖f‖0

ä
for r ≥ s ≥ 0, ε > 0 and

(127) [fg]r ≤ C
Ä
[f ]r‖g‖0 + ‖f‖0[g]r

ä
for any 1 ≥ r ≥ 0. From (126) with ε = ‖f‖

1
r
0 [f ]

− 1
r

r we obtain the standard

interpolation inequalities

(128) [f ]s ≤ C‖f‖
1− s

r
0 [f ]

s
r
r .

Next we collect two classical estimates on the Hölder norms of composi-

tions. These are also standard, for instance, in applications of the Nash-Moser

iteration technique.

Proposition C.1. Let Ψ : Ω → R and u : Rn → Ω be two smooth

functions, with Ω ⊂ RN . Then, for every m ∈ N \ {0}, there is a constant C

(depending only on m, N , n) such that

[Ψ ◦ u]m ≤ C([Ψ]1[u]m + ‖DΨ‖m−1‖u‖m−1
0 [u]m),(129)

[Ψ ◦ u]m ≤ C([Ψ]1[u]m + ‖DΨ‖m−1[u]m1 ).(130)
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Appendix D. Estimates for transport equations

In this section we recall some well-known results regarding smooth solu-

tions of the transport equation:

(131)

∂tf + v · ∇f = g,

f |t0 = f0,

where v = v(t, x) is a given smooth vector field. We denote the advective

derivative ∂t + v · ∇ by Dt. We will consider solutions on the entire space R3

and treat solutions on the torus simply as periodic solution in R3.

Proposition D.1. Assume t > t0. Any solution f of (131) satisfies

‖f(t)‖0 ≤ ‖f0‖0 +

ˆ t

t0

‖g(τ)‖0 dτ,(132)

[f(t)]1 ≤ [f0]1e
(t−t0)[v]1 +

ˆ t

t0

e(t−τ)[v]1 [g(τ)]1 dτ(133)

and, more generally, for any N ≥ 2, there exists a constant C = CN so that

[f(t)]N ≤
(
[f0]N + C(t− t0)[v]N [f0]1

)
eC(t−t0)[v]1(134)

+

ˆ t

t0

eC(t−τ)[v]1
(
[g(τ)]N + C(t− τ)[v]N [g(τ)]1

)
dτ.

Define Φ(t, ·) to be the inverse of the flux X of v starting at time t0 as the

identity (i.e., d
dtX = v(X, t) and X(x, t0) = x). Under the same assumptions

as above,

‖DΦ(t)− Id‖0 ≤ e
(t−t0)[v]1 − 1,(135)

[Φ(t)]N ≤ C(t− t0)[v]Ne
C(t−t0)[v]1 ∀N ≥ 2.(136)

Proof. We start with the following elementary observation for transport

equations: if f solves (131), then d
dtf(X(t, x), t) = g(X(t, x), t) and conse-

quently

f(t, x) = f0(Φ(x, t)) +

ˆ t

t0

g(X(Φ(t, x), τ), τ) dτ.

The maximum principle (132) follows immediately. Next, differentiate (131)

in x to obtain the identity

DtDf = (∂t + v · ∇)Df = Dg −DfDv.

Applying (132) to Df yields

[f(t)]1 ≤ [f0]1 +

ˆ t

t0

([g(τ)]1 + [v]1[f(τ)]1) dτ.

An application of Gronwall’s inequality then yields (133).



ANOMALOUS DISSIPATION FOR 1/5-HÖLDER EULER FLOWS 165

More generally, differentiating (131) N times yields

(137) ∂tD
Nf + (v · ∇)DNf = DNg +

N−1∑
j=0

cj,ND
j+1f : DN−jv

(where : is a shorthand notation for sums of products of entries of the corre-

sponding tensors).

Also, using (132) and the interpolation inequality (128), we can estimate

[f(t)]N ≤ [f0]N +

ˆ t

t0

Ä
[g(τ)]N + C

Ä
[v]N [f(τ)]1 + [v]1[f(τ)]N

ää
dτ.

Now plugging the estimate (133), Gronwall’s inequality leads — after some

elementary calculations — to (134).

The estimate (136) follows easily from (134) observing that Φ solves (131)

with g = 0 and D2Φ(·, t0) = 0. Next consider Ψ(x, t) = Φ(x, t) − x. First

observe that ∂tΨ + v · ∇Ψ = −v. Since DΨ(·, t0) = 0, we apply (133) to

conclude

[Ψ(t)]1 ≤
ˆ t

t0

e(t−τ)[v]1 [v]1dτ = e(t−t0)[v]1 − 1.

Since DΨ(x, t) = DΦ(x, t)− Id, (135) follows. �

Appendix E. Constantin-E-Titi commutator estimate

Finally, we recall the quadratic commutator estimate from [3] (also cf. [4,

Lemma 1]):

Proposition E.1. Let f, g ∈ C∞(T3×T) and ψ the mollifier of Section 2.

For any r ≥ 0, we have the estimate∥∥∥∥(f ∗ ψ`)(g ∗ ψ`)− (fg) ∗ ψ`
∥∥∥∥
r
≤ C`2−r‖f‖1‖g‖1,

where the constant C depends only on r.

Appendix F. Schauder estimates

Here we recall the following consequences of the classical Schauder esti-

mates (cf. [11, Prop. 5.1]).

Proposition F.1. For any α ∈ (0, 1) and any m ∈ N, there exists a

constant C(α,m) with the following properties. If φ, ψ : T3 → R are the

unique solutions of∆φ = f,ffl
φ = 0

and

∆ψ = divF,ffl
ψ = 0,

then

(138) ‖φ‖m+2+α ≤ C(m,α)‖f‖m,α and ‖ψ‖m+1+α ≤ C(m,α)‖F‖m,α.
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Moreover, we have the estimates

‖Rv‖m+1+α ≤ C(m,α)‖v‖m+α,(139)

‖R(divA)‖m+α ≤ C(m,α)‖A‖m+α.(140)

Proof. The estimates (139) and (140) are easy consequences of (138) and

the definition of the R operator. The estimates (138) are the usual Schauder

estimates; see, for instance, [16, Chap. 4]. The meticulous reader will notice

that the estimates in [16] are stated in Rn for the potential-theoretic solution

of the Laplace operator. The periodic case is, however, an easy corollary. (See

[11] for the details.) �

Appendix G. Stationary phase lemma

We recall the following simple facts here. For completeness, we include

the proof given in [11].

Proposition G.1.

(i) Let k ∈ Z3 \ {0} and λ ≥ 1 be fixed. For any a ∈ C∞(T3) and m ∈ N, we

have

(141)

∣∣∣∣ˆ
T3

a(x)eiλk·x dx

∣∣∣∣ ≤ [a]m
λm

.

(ii) Let k ∈ Z3 \ {0} be fixed. For a smooth vector field a ∈ C∞(T3;R3), let

F (x) := a(x)eiλk·x. Then we have

(142) ‖R(F )‖α ≤
C

λ1−α ‖a‖0 +
C

λm−α
[a]m +

C

λm
[a]m+α,

where C = C(α,m).

Proof. For j = 0, 1, . . . , define

Aj(y, ξ) := −i
[
k

|k|2

Ç
i
k

|k|2
· ∇
åj

a(y)

]
eik·ξ,

Fj(y, ξ) :=

[Ç
i
k

|k|2
· ∇
åj

a(y)

]
eik·ξ.

Direct calculation shows that

Fj(x, λx) =
1

λ
div
î
Aj(x, λx)

ó
+

1

λ
Fj+1(x, λx).

In particular, for any m ∈ N,

a(x)eiλk·x = F0(x, λx) =
1

λ

m−1∑
j=0

1

λj
div
î
Aj(x, λx)

ó
+

1

λm
Fm(x, λx).

Integrating this over T3 and using that |k| ≥ 1, we obtain (141).
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Consider next the solution φλ ∈ C∞(T3) of

∆φλ = fλ in T3

with
´
T3 φλ = 0, where

fλ(x) := a(x)eiλk·x −
 
T3

a(y)eiλk·y dy.

Then for any α ∈ (0, 1) and m ∈ N, we claim the estimate

(143) ‖∇φλ‖α ≤
C

λ1−α ‖a‖0 +
C

λm−α
[a]m +

C

λm
[a]m+α,

where C = C(α,m).

Indeed, using (126) and (127) with the Fj ’s and Aj ’s introduced above,

we have for any j ≤ m− 1,

‖Aj(·, λ·)‖α ≤ C (λα[a]j + [a]j+α)

≤ Cλj+α
Ä
λ−m[a]m + ‖a‖0

ä
and similarly,

‖Fm(·, λ·)‖α ≤ C (λα[a]m + [a]m+α) .

Moreover, according to the standard estimate (138),

‖∇φ‖α ≤ C
Ç

1

λ

m−1∑
j=0

1

λj
‖Aj(·, λ·)‖α +

1

λm
‖Fm(·, λ·)‖α +

∣∣∣∣ 
T3

F0(x, λx) dx

∣∣∣∣
å
,

hence, using (141) for the last term,

‖∇φ‖α ≤
C

λ1−α ‖a‖0 +
C

λm−α
[a]m +

C

λm
[a]m+α,

as required.

Taking into account the definition of R, the estimate (142) follows now

applying (143) and Proposition F.1 above. (Recall also that, if v is a vector

field, its Leray projection P(v) is given by v−
ffl
v−∇φ, where ∆φ = div v.) �

Appendix H. One further commutator estimate

Proposition H.1. Let k ∈ Z3 \ {0} be fixed. For any smooth vector field

a ∈ C∞(T3;R3) and any smooth function b, if we set F (x) := a(x)eiλk·x, we

then have

(144)

‖[b,R](F )‖α ≤ λα−2‖a‖0‖b‖1 + Cλα−m (‖a‖m−1+α‖b‖1+α + ‖a‖α‖b‖m+α) ,

where C = C(α,m).

Proof. Step 1. First of all, given a vector field v, define the operator

S(v) := ∇v + (∇v)t − 2

3
(div v)Id.

First observe that

(145) divS(v) = 0 ⇐⇒ v ≡ const.
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One implication is obvious. Next, assume divS(v) = 0. This is equivalent to

the equations

(146) ∆vj +
1

3
∂jdiv v = 0.

Differentiating and summing in j, we then conclude

4

3
∆div v = 0.

Thus div v must be constant and, since any divergence has average zero, we

conclude that div v = 0. Thus (146) implies that ∆vi = 0 for every i, which in

turn gives the desired conclusion.

From this observation, we conclude the identity

(147) S(v) = R(divS(v)) ∀v ∈ C∞(T3,R3).

Indeed, first observe that R(z) = S(w), where w = 1
4P(u)+ 3

4u for the solution

u of ∆u = z −
ffl
z with

´
u = 0. Thus, applying the argument above, since

both sides of (147) have zero averages, it suffices to show that they have the

same divergence. But since divR(z) = z−
ffl
z, the divergences of the two sides

of (147) obviously coincide.

Step 2. Next, for a ∈ C∞(T3,R3), k ∈ Z3 \ {0} and λ ∈ N \ {0}, consider

S (aeiλk·x) := −S
Ç

3

4

a

λ2|k|2
eiλk·x +

1

4λ2|k|2

Ç
a− (a · k)k

|k|2

å
eiλk·x

å
.

Observe that

(148) S (baeiλk·x)− bS (aeiλk·x) =
aA(b)

λ2
eiλk·x,

where A is an homogeneous differential operator of order one with constant

coefficients (all depending only on k). Moreover,

aeiλk·x − div S (aeiλk·x) =
B1(a)

λ
eiλk·x +

B2(a)

λ2
eiλk·x,

where B1 and B2 are homogeneous differential operators of order 1 and 2

(respectively) with constant coefficients (again all depending only on k).

We use then the identity (147) to write

−[b,R](F ) = R(bF )− bR(F ) = S (baeiλk·x)− bS (aeiλk·x)(149)

+R
Ä
bF − div S (baeiλk·x)

ä
− bR

Ä
F − div S (aeiλk·x)

ä
=
aA(b)

λ2
eiλk·x +R

Ç
B1(ab)

λ
eiλk·x +

B2(ab)

λ2
eiλk·x

å
− bR

Ç
B1(a)

λ
eiλk·x +

B2(a)

λ2
eiλk·x

å
.

Using the Leibniz rule we can write B1(ab) = B1(a)b + aB1(b) and B2(ab) =

B2(a)b+aB2(b)+C1(a)C1(b), where C1 is an homogeneous operator of order 1.
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We can then reorder all terms to write

−[b,R](F ) =
aA(b)

λ2
eiλk·x(150)

+R
Ç
aB1(b)

λ
eiλk·x

å
+R

Ç
aB2(b) + C1(a)C1(b)

λ2
eiλk·x

å
− 1

λ
[b,R]

Ä
B1(a)eiλk·x

ä
− 1

λ2
[b,R]

Ä
B2(a)eiλk·x

ä
.

In the first three summands only derivatives of b appear, but there are no

zero order terms in b. We can then estimate the two terms in the second

line applying Proposition G.1, with m = N − 1 to the first summand and

with m = N − 2 to the second summand. Applying in addition interpolation

identities, we conclude

‖[b,R](F )‖α ≤ C
‖a‖0‖b‖1
λ2−α +C

‖a‖N−1+α‖b‖1+α+‖a‖N−2+α‖b‖2+α

λN−α
(151)

+ C
‖a‖1+α‖b‖N−1+α+‖a‖α‖b‖N+α

λN−α

+
1

λ

∥∥∥[b,R]
Ä
B1(a)eiλk·x

ä∥∥∥
α︸ ︷︷ ︸

II

+
1

λ2

∥∥∥[b,R]
Ä
B2(a)eiλk·x

ä∥∥∥
α
.

(Indeed, the above estimate is slightly sub-optimal up to fractional derivatives

of order α and multiplying factors of order λα.)

Step 3. We can now apply the same idea to the term II in (151), which is

of the form ‖[b,R](F ′)‖α, where F ′(x) = B1(a)(x)eiλk·x and B1(a) are linear

combinations of first order derivatives of a. However, this time we apply it

with N − 1 in place of N and we estimate

‖[b,R](F )‖α ≤ Cλα−2‖b‖1
Ä
‖a‖0 + λ−1‖a‖1

ä(152)

+ C
‖a‖N−1+α‖b‖1+α + ‖a‖N−2+α‖b‖2+α

λN−α

+ C
‖a‖2+α‖b‖N−2+α + ‖a‖1+α‖b‖N−1+α + ‖a‖α‖b‖N+α

λN−α

+
1

λ2

∥∥∥[b,R]
Ä
B′2(a)eiλk·x

ä∥∥∥
α

+
1

λ3

∥∥∥[b,R]
Ä
B′3(a)eiλk·x

ä∥∥∥
α
,

where B′2 = B2 +B1 ◦B1 is a second order operator and B′3 = B2 ◦B1 a third

order operator (both with constant coefficients). Proceeding inductively now,
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we end up with

‖[b,R](F )‖α ≤ Cλα−2‖b‖1
N−2∑
i=1

λ−i‖a‖i + Cλα−N
N−1∑
i=0

‖a‖i+α‖b‖N−i+α(153)

+
1

λN−1

∥∥∥[b,R]
Ä
B′N−1(a)eiλk·x

ä∥∥∥
α

+
1

λN

∥∥∥[b,R]
Ä
B′N (a)eiλk·x

ä∥∥∥
α
,

where B′N−1 and B′N are two linear constant coefficients operators of order

N − 1 and N respectively.

Finally, we apply Proposition G.1 and Proposition F.1 to the final two

terms and interpolate to reach the desired estimate. �

To compare with the proof in [18], estimates analogous to Propositions F.1,

G.1 and H.1 are established through a different approach in Sections 6 and 26

of [18], but there is also an additional section (Section 27) devoted to special

solutions of div R = U obtained by solving a transport equation. This section

corresponds, roughly speaking, to an improved estimate for the final term

in (153). A similar improvement can be reached by observing that, since

[b,R] = 0 when b is a constant, we can assume, without loss of generality, that

b has average 0, from which we conclude the control ‖b‖r ≤ C(r)‖∇b‖r−1 for

all r ≥ 1. Thus we could replace all terms ‖b‖r with ‖∇b‖r−1 in (144). Since

Proposition H.1 is applied to b = vi` (i.e., components of v`), the corresponding

error estimates display a dependence upon ∇v rather than upon v itself, which

is natural in view of the Galilean invariance of the Euler equations (cf. [18]).

We do not keep track of this because it does not improve the main results of

the paper.
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