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On measures invariant under tori on
quotients of semisimple groups

By Manfred Einsiedler and Elon Lindenstrauss

Abstract

We classify invariant and ergodic probability measures on arithmetic

homogeneous quotients of semisimple S-algebraic groups invariant under a

maximal split torus in at least one simple local factor and show that the

algebraic support of such a measure splits into the product of four homoge-

neous spaces: a torus, a homogeneous space on which the measure is (up to

finite index) the Haar measure, a product of homogeneous spaces on each

of which the action degenerates to a rank one action, and a homogeneous

space in which every element of the action acts with zero entropy.

1. Introduction

1.1. Background. It is well known that orbits of one-parameter diagonal

groups such as the group ®Ç
s

s−1

å
: s ∈ R×

´
on the quotient space SL(2,Z)\ SL(2,R) can have very irregular closures (this

remains true even if one assumes the orbits are bounded), as well as the closely

interlinked fact that this action has a profusion of invariant probability mea-

sures. This phenomenon occurs more generally for actions of rank one R-split

tori (embeddings of the multiplicative group of R in an R-algebraic group G)

on quotient spaces Γ\G(R) (see, e.g., [18]) as well as for Qp-groups.

This situation changes dramatically for the action of higher rank tori,

and implicitly this has been observed already in the 1950’s by Cassels and

Swinnerton-Dyer [1] (though in a different, dual, language). In particular, [1,

Hypothesis A] is equivalent to the existence of a bounded but nonperiodic

orbit of the rank two diagonal group A < SL(3,R) on SL(3,Z)\SL(3,R), and
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Cassels and Swinnerton-Dyer state that they “tend rather to believe” that

this hypothesis is false. (An interesting account of this insightful paper, as

well as its connection to Margulis’ proof of the Oppenheim Conjecture, has

been given by Margulis [22].) This phenomenon was independently discovered

and investigated by Furstenberg, who studied subsets of R/Z invariant under

nonvirtually cyclic multiplicative semigroups of integers [12]. Furstenberg also

posed (though not in print) an influential conjecture regarding the possible

invariant measures for such actions, a conjecture that is still open.

One of the highlights of the theory of flows on homogeneous spaces is

the work of Ratner on the action of groups H generated by Ad-unipotent one-

parameter subgroups (e.g., [29], [30], [31]), which was later extended by Ratner

[32] and by Margulis and Tomanov [23] to the S-algebraic setting we consider

in this paper. This important work has had numerous applications in number

theory, geometry, and other areas in mathematics. The cornerstone of Ratner’s

approach to the study of the action of such groups H on quotient spaces Γ\G
is the study of H-invariant and ergodic probability measures on such spaces,

and in a series of papers culminating in [30] she gives a complete classification

of these measures. Using this classification, Ratner has been able to resolve in

full Raghunathan’s Conjecture on orbit closures for the action of such groups,

as well as establish the equidistribution of individual orbits for one-parameter

unipotent groups [31]. Special cases of Raghunathan’s Conjecture were estab-

lished earlier by purely topological methods by Dani and Margulis, such as in

the paper [2].

With regards to the action of higher rank tori and, in particular, the

conjecture of Cassels and Swinnerton-Dyer quoted above, the most significant

progress to date has also been achieved via the study of invariant measures,

though to date a full classification of invariant measures remains elusive.

The first substantial results regarding measures invariant under higher

rank abelian actions were in the context of actions on R/Z. Rudolph [34]

(following some results of Lyons [21]) showed that Lebesgue measure is the

only probability measure on R/Z invariant and ergodic under the action of

the multiplicative semigroup of integers generated by two relatively prime in-

tegers, which has positive ergodic theoretic entropy with respect to one of the

generators of the semigroup. (His result was subsequently generalized to any

nonvirtually cyclic semigroup by Johnson [14].) This result is substantial in

part because the condition of having entropy larger than some given positive

lower bound is stable under weak∗ limits, which allows one to deduce interest-

ing corollaries from this partial measure classification results; perhaps the first

instance where the strategy was utilized was in Johnson and Rudolph’s paper

[15]. By now there are several genuinely different proofs of Rudolph’s theorem;

all require in a crucial way the entropy assumption.
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Katok and Spatzier [16], [17] were the first to give a partial measure clas-

sification result for the action of higher rank groups on homogeneous spaces,

using an argument that is related to Rudolph’s. However, in the context of

homogeneous spaces these techniques seem to give less than they give on R/Z,

and so in addition to an entropy assumption Katok and Spatzier needed to as-

sume some mixing properties for the flow, an assumption that does not behave

nicely under weak∗ limits.

The purpose of this paper is to give a meaningful, and usable, classification

of measures invariant under higher-rank tori. This extends our earlier work

with A. Katok [5] on measures invariant under the diagonal group in Γ\G for

G = SL(n,R) and Γ = SL(n,Z), as well as the work of the second author [20]

that treated the case of G = SL(2,Z) × H. Both of these results have had

applications beyond the theory of flows on homogeneous spaces: we mention

in particular the proof of Arithmetic Quantum Unique Ergodicity in [20], an

estimate on the dimension of the set of exception to Littlewood’s Conjecture

in [5], as well as extensions of results of Linnik and Duke to number fields of

higher degree by Michel, Venkatesh and the authors [10], [11].

The classification we provide is less complete than that given by Ratner

because of two main reasons, one of which is inherent to the action of higher

rank tori, the other due to our inability to say anything meaningful about zero

entropy measures:

• Rank one subactions. As mentioned above, there can be no meaningful mea-

sure classification for the action of rank one tori. Even if we are considering

the action of higher rank tori on a quotient of a simple algebraic group we

can encounter a situation in which the action essentially degenerates into a

rank one action if the measure is not fully supported, as was pointed out

first by M. Rees [33] [3, §] who constructed irregular orbit closures for the

action of the full diagonal group on a compact quotient of SL(3,R).

• Zero entropy subactions. Similarly, even if there is some element of the acting

group that acts with positive entropy, the measure may be supported on a

product of homogeneous spaces on one of which there may be an exotic zero

entropy measure.

1.2. Statement of main results. Before stating our main theorem we need

to set up some notations. Let G be a semisimple linear algebraic group defined

over Q. Let S be a finite set of places including ∞ if G(R) is noncompact.

We define G = G(QS) =
∏
σ∈S G(Qσ), where G(Qσ) is the group of Qσ-points

of G for σ ∈ S and Q∞ = R. Furthermore, let Γ < G(Q) be a lattice in G

commensurable with G(OS) with OS denoting the ring Z[1
p : p ∈ S]. We define

the homogeneous space X to be the quotient X = Γ\G.

For every σ ∈ S, we suppose G considered over Qσ has the almost direct

Qσ-almost simple factors Gσ,f for f ∈ Fσ. (We use G,L, . . . to denote algebraic
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groups defined over the global field Q and G,L, . . . to denote algebraic groups

defined over a local field.) Take F =
⊔
σ∈S Fσ to be the disjoint union of the

index sets. We simply write Gf for the almost direct factor of G over Qσ
(with σ = σ(f) ∈ S uniquely determined by the index f). Moreover, we write

Gf = Gf (Qσ) for the group of Qσ-points of Gf for any f ∈ F .

Now let F ′ ⊂ F be a nonempty subset of the set of factors. Let Af ⊂ Gf ,

for f ∈ F ′, be a subgroup of finite index of the group of Qσ-points of a maximal

Qσ-split torus Af < Gf . We define A =
∏
f∈F ′ Af and define the rank of A

as
rank(A) =

∑
f∈F ′

dimQσ(f)(Af ).

We consider A as a subgroup of G — in particular, A acts by right translation

on X.

Theorem 1.1. Let G be a semisimple linear algebraic group over Q, and

let S,Γ, X, F, F ′ ⊂ F , and A be as above. Let µ be an A-invariant and ergodic

probability measure on X , and let p ∈ G be such that Γp ∈ suppµ. Then

there exists a reductive linear algebraic subgroup L defined over Q so that the

following holds :

(S) (Support). The measure µ is supported on the periodic orbit ΓL(QS)p,

and L is the smallest Q-group1 so that some right translate of ΓL(QS)

supports µ.

(D) (Decomposition). As an algebraic group, the group L is the almost di-

rect product of a Q-anisotropic Q-torus LT and semisimple algebraic Q-

subgroups LI ,LR,LZ (where some of the subgroups may be trivial). Fur-

thermore, if we set for t ∈ {T, I,R, Z} the group At to be A∩p−1Lt(QS)p,

then
Ă = ATAIARAZ

has finite index in A.

(T) (Torus). The quotient (LT (QS) ∩ Γ)\LT (QS) is a compact abelian group,

and there exists a closed subgroup T ⊂ LT (QS) containing pAT p
−1 so

that µ is p−1Tp-invariant and (T ∩ Γ)\T is compact.

(I) (Invariance). There exists a finite index subgroup LI < p−1LI(QS)p that

is normalized by AI such that µ is LI-invariant and for µ-almost every x,

the orbit xLI is periodic.

(R) (Rank one factor). The algebraic subgroup LR is an almost direct product

LR =
∏
i LR,i of Q-almost simple algebraic groups, and AR contains the

product of the subgroups AR,i = A∩p−1LR,i(QS)p as a finite-index subgroup

and rank(AR,i) = 1 for all i.

(Z) (Zero entropy). hµ(a) = 0 for all a ∈ AZ .

1Reductive or not.
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Using the information provided by Theorem 1.1, it is possible to provide

a more explicit description of the possible A-invariant measures µ on Γ\G:

Corollary 1.2. Under the conditions of Theorem 1.1, and with nota-

tions as in the statement of that theorem, there are for t ∈ {T, I,R, Z} proba-

bility measures µt on (Lt(Q)∩Γ)\Lt(QS), invariant and ergodic under pAtp
−1,

with

(T) There is a closed subgroup T ⊂ LT (QS) containing pAT p
−1 so that µT is

T -invariant, supported on a single T -orbit ;

(I) µI is pLIp
−1-invariant, supported on a single pLIp

−1-orbit ;

(Z) hµZ (a) = 0 for any a ∈ pAZp−1

so that µ is (up to translations) an almost direct product of µT , µI , µR, µZ .

More precisely, for t ∈ {T, I,R, Z} let µ̃t be the natural2 lift of µt to

Lt(QS). Let µ̃′ denote the push forward of the product measure µ̃T×µ̃I×µ̃R×µ̃Z
on the direct product LT (QS)×LI(QS)×LR(QS)×LZ(QS) to L(QS)p via the

map (gT , gI , gR, gZ) 7→ gT gIgRgZp. Then the natural lift µ̃ of µ to L(QS)p

satisfies

µ̃ =
1

[A : Ă]

∑
a∈A/Ă

µ̃′a.

Note that (T) and (I) above are not symmetrical: we have less control

over the closed subgroup T ⊂ LT (QS) than we have on LI , which we know

(after conjugation) is a finite index subgroup of LI(QS). Determining which

subgroups T may occur is linked with difficult Diophantine questions, closely

connected to the conjectures discussed in [25]; see also [38, §4.4].

We shall deduce Theorem 1.1 from the following pleasantly concise special

case of that theorem.

Theorem 1.3. Let G be a Q-almost simple linear algebraic group, and

let S,Γ, X, F, F ′ ⊂ F , and A be as above. Let µ be an A-invariant and ergodic

probability measure on X . Suppose in addition that

(1) µ is not supported on any periodic orbit ΓL(QS)p for any p ∈ G and

reductive Q-subgroup L � G;

(2) rank(A) ≥ 2;

(3) hµ(a) > 0 for some a ∈ A.

Then there is a finite index subgroup LI < G so that µ is LI-invariant and

supported on a single LI-orbit.

2That is, left Γ ∩ Lt(Q)-invariant.
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Remark. For some groups G and Qσ, it may occur that there are restric-

tions on the possible reductive subgroup L < G with the same Qσ-rank as G
and with Q-anisotropic center that may simplify the statements of the results

above. The nicest situation is when any such L < G will be Q-almost simple.

In such a case, if A has rank ≥ 2 and contains a maximal Qσ-split torus in

G(Qσ), the statements of Theorem 1.1 and Corollary 1.2 simplify consider-

ably: indeed, in such a case, if µ is an A-invariant and ergodic measure on

Γ\G(QS) so that hµ(a) > 0 for some a ∈ A, then LT ,LR,LZ are all trivial,

and the measure µ is L-invariant and supported on a single periodic orbit of

L. This happens in particular for G = SL(n) for all Qσ, or more generally

for G = SL(k,D) where D is a division algebra of degree ` over Q for all Qσ
for which D is unramified (i.e., D⊗Qσ ∼= M`×`(Qσ)). These are precisely the

cases considered in [5], [10]; cf. also [37].

1.3. Some remarks about the proofs, and relation to prior works. A key

construction that was first used in the context of measure classification for

diagonalizable actions by Katok and Spatzier [16], [17] (though implicitly can

be found also in the proof of Rudolph’s theorem [34] on invariant measures on

R/Z) is the construction of leafwise measures for a measure µ on X: a system

of measures that can be defined for orbits of arbitrary subgroups of G [20],

but that is particularly informative for the orbits of A-normalized unipotent

groups U that are contracted by some a ∈ A. Whether these systems of

measures degenerate and become trivial is closely connected to the positivity

of entropy of µ, and this is precisely why the condition of positive entropy is

so useful.

In broad outline, our argument is similar to that of our joint paper with

Katok [5]. Using the leafwise measures, one is able to isolate the contribution

of each nondivisible root α of G to the entropy using the leafwise measures

for the group Uα corresponding to the roots α and possibly 2α (if 2α is also a

root). If there are noncommuting roots α, β that contribute nontrivially to the

entropy (the “high entropy” case), then the work of Katok and the first author

[3], [4] gives that µ is invariant under some one-parameter unipotent group (in

which case one can then apply Ratner’s Measure Classification Theorem or its

S-algebraic extensions).

If, however, there is a root α that contributes nontrivially to the entropy

but the high entropy assumption is not satisfied (the “low entropy” case), a

completely different argument is used that uses nonmeasure preserving (even

non measure-class preserving!) dynamics along Uα, using ideas developed in

earlier works of Ratner on rigidity of horocycle flows [26], [27], [28] (where of

course the unipotent flow was measure preserving). The measure preserving

action of the group A merely exists in the background and ensures suitable
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regularity. This argument was first applied in the paper [20] by the second

author and was combined with the high entropy argument in our joint paper

with Katok [5].

The most difficult part of extending the measure classification result of [5]

to the substantially more general case we consider here is that in the case of

the R-split torus action on a quotient of SL(n,R), the groups Uα correspond-

ing to the roots were one dimensional, whereas in our case these groups Uα

are multidimensional and even (if we have double roots) noncommutative. As

there is no invariance under the Uα, one cannot reduce to the one-dimensional

case, and a detailed analysis of the leafwise measures on the Uα is needed. In

the paper [4] the high entropy argument was generalized to the case of multi-

dimensional root groups. Generalizing the low entropy argument proved to be

quite tricky and was carried out, specifically for this purpose, in our paper [8],

which should be considered as a technical first part of the present paper.

The tools we use give some information also for more general higher rank

abelian actions on homogeneous spaces. In particular, in [4] (using only the

high entropy argument) it is shown that in many cases any measure invariant

and ergodic under a higher rank abelian action with entropy sufficiently close

to that of uniform measure must coincide with the uniform measure on this

homogeneous space. However, we believe we have pushed these tools to the

limit if one wants to get relatively sharp measure classification results such as

Theorem 1.1 and Corollary 1.2. Beyond the class of actions we consider here,

new ideas are needed.

The results of this paper were announced (in slightly different, less arith-

metic form) in [6]. We thank the Clay Institute for Mathematics for the gener-

ous support it provided to the authors during the time the ideas of this paper

were obtained. This paper was finalized while both authors were Fellows of

the Israel Institute of Advanced Studies special program on Arithmetic and

Dynamics.

We thank the anonymous referees for their careful reading and useful

comments.

2. Some reductions

The purpose of this section is to show how Theorem 1.1 can be reduced

to its special case Theorem 1.3. We achieve this gradually in several steps.

2.0. Reduction to the case Γe in the support of µ. Mostly for notational

convenience, by replacing µ with µp−1 (i.e., the push forward of µ under the

map x 7→ xp−1) and A with pAp−1 for p ∈ G with Γp ∈ suppµ, we may assume

that Γe ∈ suppµ.
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2.1. Passage to finite index subgroups. We continue our reduction by show-

ing how Theorem 1.1 for some group A =
∏
f∈F ′ Af can be deduced from know-

ing that this theorem holds for a finite index subgroup A′ =
∏
f∈F ′ A

′
f < A.

Suppose µ is a measure on Γ\G invariant and ergodic under A. Then we

may write µ as

(2.1) µ =
1

[A : A′]

∑
a∈A/A′

µ′a,

with µ′ invariant and ergodic under A′. Here and throughout the paper we use

the suggestive notation µ′a for the push forward of µ′ under right multiplication

by a ∈ A.

Applying Theorem 1.1 to µ′ and A′ we obtain Q-groups L, LT , LI , LR,

LZ and finite index subgroups LI < LI(QS) as in that theorem.

It follows from Theorem 1.1(S) applied to µ′ that A′ < L(QS). Recall that

for any f ∈ F ′ both Af and A′f are finite index subgroups of the Qσ(f)-points of

a maximally Qσ(f)-split torus Af of Gf . As A′f is Zariski dense in Af we may

conclude that Af (hence A) are contained in L(QS). Equation (2.1) implies

that µ also satisfies Theorem 1.1(S) for the same L.

Theorem 1.1(D) and Theorem 1.1(R) are purely algebraic statements that

do not involve µ′, and moreover the validity of these statements for A′ implies

elementarily that they are valid for A as well. Using the relation between µ and

µ′ given in (2.1) and basic properties of the ergodic theoretic entropy it is easy

to see that Theorem 1.1(Z) for µ′ and A′ implies the same for µ and A. Indeed,

for any a ∈ AZ = A∩LZ(QS) there exists some n ≥ 1 such that a′ = an ∈ A′,
hence also in A′Z = A′ ∩ LZ(QS). From (2.1) and hµ′(a

′) = 0 it follows that

hµ(a′) = 0, hence hµ(a) = 0.

Theorem 1.1(T) for µ and A again follows from the same statement for µ′

and A′ — we only have to note that A commutes with LT .

Thus it only remains to verify Theorem 1.1(I) for µ and A. We note

that if LI satisfies Theorem 1.1(I) for µ′ and A′, then so does any finite index

subgroup of LI . Hence by replacing LI with

(2.2)
⋂

a∈A/A′
aLIa

−1,

we may assume that LI is normalized not just by A′I but by AI . Moreover

since for µ′-almost every x, the orbit xLI is periodic, it follows from (2.1) that

the same holds for µ-almost every x.

2.2. Reduction to the case of G a Q-almost simple group. Suppose G is

not Q-almost simple. We reduce Theorem 1.1 for G from the Q-almost simple

case by writing G as an almost direct product
∏M
i=1H(i) of Q-almost simple

groups H(i) and passing to the space Γ̃\G̃(QS), where G̃ is the direct product
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of the groups H(i) and Γ̃ is the product of the lattices Γ∩H(i)(QS) in H(i)(QS).

We also assume as we may (see Section 2.0) that Γe ∈ suppµ.

Let ψ : G̃ → G be the obvious isogeny. Setting G̃ = G̃(QS), it is clear

that ψ also induces finite-to-one maps G̃ → G and Γ̃\G̃ → Γ\G that will

also be denoted by ψ. To avoid confusion, we make a notational distinction

between the algebraic Q-subgroup H(i) of G and the isomorphic subgroup H̃(i)

of G̃. By construction, Section 2.1, and after relabeling indices if necessary,

we may assume that the group A can be written as an almost direct product

group
∏M ′
i=1A(i) with A(i) a nontrivial subgroup of H(i)(QS). Let Ã be the

corresponding direct product group in G̃. Note that while in general ψ(G̃)

may have finite index in G, the way things have been set up assures that

ψ(Ã) = A. Since µ is A-ergodic and A ⊂ ψ(G̃) it follows that µ is supported

on a single orbit of ψ(G̃). Since Γe ∈ suppµ we conclude that suppµ ⊂ Γψ(G̃).

The collection of probability measures ν on Γ̃\G̃ with ψ∗ν = µ is a convex

compact set, which is clearly nonempty since µ is supported on Γψ(G̃). By

averaging over Følner sets in Ã and taking a limit, we can find inside this

collection an Ã-invariant measure, and by taking an ergodic component we

deduce that there is an Ã-ergodic and invariant probability measure µ̃ on Γ̃\G̃
so that ψ∗µ̃ = µ. Since µ̃ is ergodic under the action of a product group of

a product space, it must be of the form µ̃ = µ̃(1) × · · · × µ̃(M) with µ̃(i) for

i ≤M ′ an Ã(i)-ergodic and invariant measure on Γ̃(i)\H̃(i)(QS) and µ̃(i) atomic,

supported on a single point for i > M ′.

Assuming that Theorem 1.1 has been established for Q-almost simple

groups, we have for each i ≤M ′ four Q-groups L̃(i)
t of H̃(i) for t ∈ {T, I,R, Z}

that satisfy all the conditions of Theorem 1.1 for µ̃(i) on Γ̃(i)\H(i)(QS). The

Q-groups Lt = ψ(
∏M ′
i=1 L̃

(i)
t ) for t ∈ {T, I,R, Z} are now natural candidates for

satisfying the conditions of Theorem 1.1 for G.

Verifying that this choice satisfies (S), (D), (T), (I), (R) of Theorem 1.1 is

straightforward. (For (I), and in obvious notations, AI may contain ψ(
∏
i Ã

(i)
I )

as a nontrivial finite index subgroup and hence may hypothetically fail to

normalize LI := ψ(
∏
i L̃

(i)
I ), but replacing LI by a finite index subgroup if

necessary as in (2.2) alleviates this minor nuisance.)

To see that (Z) holds, i.e., that for every a ∈ AZ the entropy hµ(a) = 0,

we note first that it is enough to check this for a in the (at worst) finite index

subgroup ψ(
∏
iA

(i)
Z ), i.e., for a = ψ((a1, . . . , aM ′ , e, . . . , e)) with ai ∈ Ã

(i)
Z .

Since ψ : Γ̃\G̃ 7→ Γ\G is finite-to-one and ψ∗µ̃ = µ,

hµ(a) = hµ̃((a1, . . . , aM ′ , e, . . . , e)) =
M ′∑
i=1

hµ̃(i)(ai) = 0,

where we used µ̃ = µ̃(1) × · · · × µ̃(M), ai ∈ Ã
(i)
Z and the fact that µ̃(i) satisfies

Theorem 1.1(Z).
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2.3. Completing the reduction. Our strategy in deducing Theorem 1.1

from Theorem 1.3 is simple: we find in G a minimal reductive subgroup L
over Q so that ΓL(QS)p supports µ for some p ∈ G. Assuming as we may

that Γe ∈ suppµ, it is enough to take p = e. We show that L does not have

any Q-characters, split L into an almost direct product of a torus LT and a

semisimple group Lss, and reduce the study of µ to the study of an A∩Lss(QS)-

ergodic component of µ on (Γ∩Lss(Q))\Lss(QS), which we show also satisfies

the assumptions of Theorem 1.1.

Lemma 2.1. Let G be a semisimple Q-group, A, G, S and Γ as in The-

orem 1.1 and µ an A-invariant and ergodic probability measure on Γ\G with

Γe ∈ suppµ. Let L be a Q-subgroup of G so that µ(ΓL(QS)) = 1. Then

there is a normal Q-subgroup L′CL, without Q-characters, for which suppµ ⊂
ΓL′(QS).

In particular, note that since normal algebraic subgroups of reductive

algebraic groups are reductive, Lemma 2.1 implies that if L is the smallest re-

ductive Q-group so that suppµ ⊂ ΓL(QS), then L does not have Q-characters.

For later purposes, we also stress that in the statement of the above lemma, L
is not assumed to be reductive.

Proof. Suppose χ is a Q-character of L, and let L = L(QS). If ` =

(`σ)σ∈S ∈ L with `σ ∈ L(Qσ), define

|χ| (`) =
∏
σ∈S
|χ(`σ)|σ .

This is a group homomorphism L → R×, and moreover |χ| (γ) = 1 for every

γ ∈ L(OS). Since ΓL := Γ ∩ L(Q) is commensurable with L(OS), we see that

ΓL is in the kernel of |χ|; hence |χ| is defined on the points3 of ΓL. The group

A has to be in the kernel of |χ| since if there were an element a0 ∈ A with

|χ(a0)| > 1, then for any x ∈ ΓL, we would have |χ| (xan0 )→∞ contradicting

Poincare recurrence. It follows that χ itself must be trivial on A ∩ G(Qσ)

for every σ ∈ S, and hence A is contained in the proper normal Q-subgroup

L′ = (L∩ kerχ)CL. By ergodicity of µ, it follows that µ has to be supported

on a single orbit ΓL′(QS)p = ΓpL′(QS) for some p ∈ L, establishing the

lemma. �

We now continue with the reduction. Suppose L is a minimal reductive Q-

group with µ(ΓL(QS)) = 1. We split this reductive Q-group L as the semi-

direct product of aQ-torus LT and a semisimpleQ-group Lss. By the discussion

3We identify ΓL with the L-orbit of the identity coset Γe in Γ\G; note that it is isomorphic

to (L ∩ Γ)\L.
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following the statement of Lemma 2.1 the group L has no Q-characters; hence

the torus LT is Q-anisotropic.

We aim to establish two important facts about how A lies in the product

LT (QS)Lss(QS):

(1) AT := A ∩ LT (QS) and Ass := A ∩ Lss(Qss) satisfy that ATAss is a finite

index subgroup of A.

(2) If we decompose for each σ ∈ S the group Lss, considered now as a

Qσ-group, as the almost direct product of almost simple Qσ-groups Lj
with j ∈ Jσ and set J =

⊔
σ∈S Jσ the group∏

j∈J

Ä
A ∩ Lj(Qσ(j))

ä
is a finite index subgroup of Ass satisfying the conditions of Theorem 1.1

for Lss.

It will be helpful to make a notational distinction between the Q-group L
and the same group considered as a Qσ-group, which we denote by L (and sim-

ilarly for LT etc.); to make notation less cumbersome we keep the dependence

on σ implicit.

For any f ∈ F , let σ ∈ S be the associated valuation and consider the Qσ-

group Gf ∩L. Since Gf is normal in G, this intersection is a normal algebraic

subgroup of a reductive algebraic group and hence reductive. Moreover, its

decomposition into torus and semisimple parts is given by

(2.3) Gf ∩ L = (Gf ∩ LT ) · (Gf ∩ Lss).

Indeed, decompose Gf ∩ L as a product of a Qσ-torus L̃T and a semisimple

Qσ-group L̃ss. The group Lss ∩ Gf is a normal subgroup of a semisimple

group, hence semisimple, and hence Lss ∩Gf ⊂ L̃ss. On the other hand, L̃ss is

generated by commutators of elements L̃ss ⊂ L and hence is contained in Lss,

and we conclude that Lss ∩Gf = L̃ss. Similarly LT ∩Gf commutes with L̃ss

and hence is contained in L̃T ; on the other hand, L̃T commutes with Lss ∩Gf

as well as with all Gf ′ for f ′ ∈ Fσ \ {f}, hence L̃T commutes with Lss, hence

is contained in LT , and (2.3) follows.

Suppose now that f ∈ F ′ and that σ = σ(f) is the appropriate place. Let

Af be a maximal Qσ-split torus in Gf as in the setup of Theorem 1.1. By

definition of L (and the assumptions that Γe ∈ suppµ) it follows that Af <

L∩Gf . Equation (2.3) allows us to project4 Af to split Qσ-tori in LT ∩Gf and

4Formally there is only a projection from Gf ∩L to Gf ∩Lt/Z for t ∈ {T, ss} where Z =

(Gf ∩LT )∩ (Gf ∩Lss) is a finite subgroup of the center. The projected torus is then defined

as the connected component of the preimage in Gf ∩ Lt of the projection to (Gf ∩ Lt)/Z

for t ∈ {T, ss}.
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Lss∩Gf ; since Af is a maximal split torus, it must coincide with the product of

these projections; hence (Af ∩LT )(Af ∩Lss) has finite index in Af . Taken over

all f ∈ F ′ this implies Claim (1) above. Similarly, for every f ∈ F ′, and taking

Jf ⊂ Jσ(f) to be the indices of all almost simple Qσ(f)-groups appearing in the

decomposition of Lss ∩Gf , it follows from the maximality of rank of Af that∏
j∈Jf

Ä
Af ∩ Lj(Qσ(f))

ä
is a finite index subgroup of Af ∩ Lss, and moreover

each Af ∩ Lj is a maximal split Qσ(f)-torus in Lj , establishing Claim (2).

In view of Claims (1) and (2) and Section 2.1, we may as well assume that

A = ATAss and that Ass =
∏
j∈J
Ä
A ∩ Lj(Qσ(j))

ä
. Let µ =

∫
X µ
E
x dµ(x) be the

decomposition of µ into its ergodic components with respect to Ass. For any

a0 ∈ A, the action of Ass on the measure µEx is measure theoretically conjugate

to the action on the translated measure µExa0; moreover, by uniqueness of

ergodic decomposition, we have that µ-almost surely, µExa0 = µExa0. It follows

that for any a ∈ Ass, we have almost everywhere an equality of entropies

hµEx (a) = hµExa0
(a).

Hence by ergodicity of µ and using the fact that entropy is an affine function

on the measure, i.e., hµ(a) =
∫
hµEx (a) dµ(x), we have that for any a ∈ Ass,

(2.4) hµEx (a) = hµ(a) µ-a.e.

As a function of a, for any Ass-invariant measure ν on X, the entropy hν(a) is

continuous,5 and hence there is a x0 ∈ suppµ so that x0A is dense in suppµ

and for which (2.4) holds for all a ∈ Ass.

Decomposing L as an almost direct product of groups H(i) as in Section 2.2

(with L taking the role of G), and by applying the reduction in that section to

µEx0 , we obtain measures fl(µEx0)
(j)

on Γ̃(i)\H̃(i)(QS) that are not supported on

orbits of smaller reductive algebraic groups over Q — for if one of them were

supported on an orbit of a smaller reductive algebraic group, this and x0A =

suppµ would contradict our assumption that L was already chosen minimally.

If this measure fl(µEx0)
(j)

on the quotient Γ̃(i)\H̃(i)(QS) does not satisfy the

second or third assumption to Theorem 1.3, it satisfies Theorem 1.1 trivially

(by setting one of the group in (R) or (Z) equal to H(i)). Assuming Theorem 1.3

has already been established, applying it to µEx0 we get groups L̃T , L̃I , L̃R, L̃Z .

Using (2.4) it is easy to verify that LT ·L̃T , L̃I , L̃R, L̃Z satisfy Theorem 1.1 for µ.

5This is not an abstract property of entropy of individual element in a commutative group

but is a well-known consequence of the relation between entropy and dimension of leafwise

measures, a connection explained in Section 4.
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2.4. Proof of Corollary 1.2. Corollary 1.2 follows from Theorem 1.1 us-

ing very similar arguments to those that were used above in the reduction of

Theorem 1.1 to Theorem 1.3.

To begin with, it is clear that without loss of generality we may assume

that p = e and L = G in both Corollary 1.2 and Theorem 1.1. Let Ă be as in

(D) of Theorem 1.1. Since [A : Ă] <∞, we may write µ as

µ =
1

[A : Ă]

∑
a∈A/Ă

µ′a,

with µ′ an Ă-ergodic and invariant measure. Define for t ∈ {T, I,R, Z} the

discrete group Γt = Lt(Q) ∩ Γ; as in Section 2.2, it is possible to lift µ′ to an

Ă-invariant and ergodic measure µ′′ on∏
t∈{T,I,R,Z}

(Γt\Lt(QS)) .

Since Ă =
∏
t∈{T,I,R,Z}At is a product group acting ergodically on a product

space, it follows that µ′′ is a product of At-invariant and ergodic measure µ′′t
on Γt\Lt(QS) where t ∈ {T, I,R, Z}.

The quotient ΓT \LT (QS) is a finite dimensional compact abelian group,

and an AT invariant and ergodic measure has to be the periodic measure on

a single periodic orbit of a closed (but not necessarily algebraic) subgroup of

LT (QS). Since every a ∈ AZ acts with zero entropy on µ, hence on µ′, hence on

µ′′, the measure µ′′Z has entropy zero with respect to every a ∈ AZ . Regarding

µ′′I we already know it is invariant under a finite index subgroup LI < LI(QS);

since AI ∩ LI is of finite index in AI , we can find a finite index subgroup

L′I < LI normalized by AI and then µ′′I will be invariant under the group

AI ·L′I . By AI -ergodicity of µ′′I , the measure µ′′I is supported on a single orbit

of this group. This decomposition we have established for µ′′ is equivalent to

the statement of the corollary (where in order to avoid passing to a finite index

subgroup of Γ ∩ L(Q), the structure on µ was given in terms of its lift µ̃ to

L(QS)).

2.5. Some variations. The reader may wonder why we insist on working

over the minimal local fields R or Qp (and not over C or finite field extensions

of Qp). The following example shows that Theorem 1.1 and Corollary 1.2 as

stated do not hold over larger local fields; indeed, essentially the best way to

understand the action of these bigger tori is by reducing to the R or Qp case.

Example 2.2. LetX = SL(k,Z[i])\SL(k,C), let T be the group of diagonal

matrices, and let A ⊂ T be the subgroup of real diagonal matrices. Let ν be

the Haar measure of XR = SL(k,Z)\ SL(k,R). We view XR as a subset of X,

so that ν is a measure on X. Let M ⊂ T be the maximal compact subgroup
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that consists of all diagonal matrices with entries of absolute values one along

the diagonal. Then µ =
∫
M νhdmM (h) is a T -invariant and ergodic measure.

Note that SL(k,R)M is not a subgroup of SL(k,C).

Of course, this situation is not drastically different from that of Corol-

lary 1.2. Instead of the finite average we had to take in that corollary, in

Example 2.2 one takes an average over a compact group that commute with

the R-split torus A.

The analysis of this seemingly more general scenario is easily achieved by

restriction of scalars — simply treating, e.g., in this particular case the group

SL(k,C) as an algebraic group over R. Then T becomes the group of R-points

of a maximal torus in SL(k,C) defined over R and A becomes the group of

R-points of a maximal R-split subtorus. In this formulation the above example

also shows why we restrict ourselves to the maximal R-split subtorus.

We conclude that the classification of A-invariant and T -invariant mea-

sures are essentially equivalent: Any A-invariant and ergodic measure gives

rise to a T -invariant and ergodic measure just as in the example, and any

T -invariant and ergodic measure can be decomposed into A-invariant and er-

godic measures, and a relatively straightforward analysis shows that these er-

godic components fit together into a measure of a type similar to that presented

in Example 2.2.

3. Semi-simple linear algebraic groups and their roots

3.1. Semi-simple linear algebraic groups. We recall some basic properties

of algebraic groups and refer the reader to [35]. We use this theory as a natural

framework that makes no distinction between the real and p-adic numbers.

Let Q∞ = R, and let σ be ∞ or a prime p so that Qσ is either R or Qp.
Let | · |σ denote the absolute value if σ =∞ or the p-adic norm if σ = p.

Let Gσ = G(Qσ) be the Qσ-points of a semisimple linear algebraic group

G defined over Qσ, and let Aσ ⊂ Gσ be the subgroup of Qσ-points of a maximal

Qσ-split torus in G. Then Aσ ∼= (Q×σ )k, where k is the Qσ-rank of G and the

group of rational characters χ : Aσ → Q×σ is isomorphic to Zk. A subgroup

U < Gσ is unipotent if for every g ∈ U , g−e is a nilpotent matrix, i.e., for some

n, (g − e)n = 0, where e is identity. A subgroup H is said to be normalized

by g ∈ Gσ if gHg−1 = H; H is normalized by L < Gσ if it is normalized by

every g ∈ L; and the normalizer NGσ(H) of H is the group of all g ∈ Gσ
normalizing it. Furthermore, N1

Gσ
(H) denotes the subgroup of the normalizer

that in addition also preserves the Haar measure on H. Similarly, g centralizes

H if gh = hg for every h ∈ H, and we set CGσ(H), the centralizer of H in Gσ,

to be the group of all g ∈ Gσ centralizing H.

Let g be the Lie algebra of Gσ, and let

Adg : g→ g for g ∈ Gσ
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be the adjoint representation of Gσ on g. Let Φ denote the set of restricted

roots, i.e., all nontrivial characters α : Aσ → Q×σ such that there exists a

nontrivial (restricted) root space uα ⊂ g with

Ada(u) = α(a)u for u ∈ uα and a ∈ Aσ.

We write g0 for the Lie algebra of the centralizer of Aσ, so that

g = g0 ⊕
⊕
α∈Φ

uα.

Since Qσ is not algebraically closed, it may happen, as for instance for the

algebraic group SU(n, 1) over R with n ≥ 2, that α, 2α ∈ Φ are roots; see

also [35, 15.3.9]. We say a root α is indivisible if 1
2α is not a root. For any

indivisible root α, there exists an algebraic unipotent subgroup Uα whose Lie

algebra is the sum of the root spaces uα ⊕ u2α (where u2α = {0} is allowed);

see [35, 15.4].

By embedding the group of characters into a real vector space V of dimen-

sion k as a lattice, we can identify the roots with elements of V . Furthermore,

we equip V with an inner product (·, ·) such that the natural action of the Weyl

group W = W (Gσ, Aσ) of Gσ and Aσ leaves (·, ·) invariant. We need a few

more fundamental properties of the Weyl group W . The Weyl group W acts

naturally on Aσ, which induces an action on the characters of Aσ. (The action

on V is the linear extension of this action.) The set Φ of roots is invariant.

For every root α, there is an associated element sα ∈W ; its action on V is an

orthogonal reflection defined by

(3.1) sα(v) = v − 2(α, α)−1(α, v)α for v ∈ V.

For α 6= β ∈ Φ with (α, β) > 0, the number m = 2(α, α)−1(α, β) is an integer

and β, β − α, . . . , β −mα = sα(β) ∈ Φ are all roots. As is known (and we will

recall below) that every root comes naturally with a subtorus of Aσ of which

we will use one element as described in the next lemma, which will be proved

in Section 3.3.

Lemma 3.1. For every root α ∈ Φ, there exists an element aα ∈ Aσ with

log |β(aα)|σ = cα(α, β) (for some constant cα > 0). In fact, one can find a

homomorphism φ from SL2 into G defined over Qσ so that a given element of

uα is the image of an upper nilpotent element of sl2 and so that aα ∈ Aσ is the

image of a diagonal elementÇ
t 0

0 t−1

å
∈ SL2(Qσ)

with the first eigenvalue t satisfying |t|σ > 1.
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3.2. The Lie algebra and the exponential map. In this section we recall

standard facts and notation from [19] (which as phrased below also hold for

p-adic Lie groups). Let

[·, ·] : g2 → g

be the Qσ-bilinear Lie bracket satisfying

(3.2) Adg([u, v]) = [Adg u,Adg v]

for all g ∈ Gσ and u, v ∈ g. Since Qσ is a local field of characteristic zero, the

exponential map exp(·) is a local homeomorphism between the Lie algebra g

and Gσ such that

(3.3) g exp(u)g−1 = exp(Adg(u))

whenever both sides are defined. Write log(·) for the locally defined inverse

map. Furthermore, we define adu(v) = [u, v] for any u, v ∈ g. Then

(3.4) Adexpu = exp(adu)

whenever both sides are defined; here the exponential map on the right is

defined for sufficiently small endomorphisms of g.

Recall that

(3.5) [uα, uβ] ⊂ uα+β

for any roots α, β (which follows easily from (3.2)). If α ∈ Φ is a root, then

the exponential map is actually a polynomial map and so can be uniquely

extended to the whole of uα ⊕ u2α such that (3.3) and (3.4) still hold. The

image Uα = exp(uα ⊕ u2α) is the unipotent subgroup mentioned earlier. More

generally, let Ψ ⊂ Φ be a set of roots such that (Ψ+Ψ)∩Φ ⊂ Ψ and |α(a)|σ > 1

for all α ∈ Ψ and some fixed a ∈ Aσ. Then

uΨ =
∑
α∈Ψ

uα

is a Lie algebra, exp(·) can be uniquely extended to uΨ such that (3.3) holds,

and UΨ = exp uΨ is a unipotent subgroup (that is generated by the subgroups

Uα for α ∈ Ψ). We say that a subgroup U ′ ⊂ UΨ is connected if there exists a

Lie subalgebra u′ ⊂ uΨ such that U ′ = exp(u′). Note that in the real case this

notion agrees with the subgroup being connected with respect to the Hausdorff

topology and that in general it is equivalent to U ′ being Zariski closed (and

Zariski connected).
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3.3. The image of iterates of adv for v ∈ uα. We now formulate and prove

a corollary of the structure of semisimple groups and their maximal Qσ-split

subtori. This will be the most important use of the assumption that Aσ is

maximal — the structure provided by this result is crucial to our approach.

For any subset R ⊂ V , we define

uR =
⊕
α∈R

uα ⊂ g,

where uα = {0} if α /∈ Φ.

Proposition 3.2. Let Aσ ⊂ Gσ be the subgroup of Qσ-points of a max-

imal Qσ-split torus in a semisimple linear algebraic group G defined over a

local field Qσ of characteristic zero. Let α be a root, and let v ∈ uα \{0}. Then

for any root β with (β, α) > 0 and sα(β) = β −mα, the restriction of admv to

usα(β) is bijective.

Proof of Lemma 3.1 and Proposition 3.2. Let v ∈ uα be nonzero. As v is

a nonzero nilpotent element in the semisimple part of the Lie algebra of G, the

Jacobson-Morozov theorem (see, e.g., [13, III, Lemma 7 and Th. 17]) implies

that v must be one element of an sl2-triple. More precisely, there exists some

h and w so that [h, v] = 2v, [h,w] = −2w, and [v, w] = h (which implies that

the Lie algebra generated by v, h, w is isomorphic to sl2). We claim that we

may assume that h belongs to the Lie algebra of Aσ.

To see the claim, let h = h0 + h1 be a decomposition of h into an element

h0 ∈ g0 and an element h1 that belongs to the sum of the root spaces. By

assumption, [h, v] = 2v, so that 2v = [h0, v] + [h1, v]. However, by (3.5) this

implies that [h1, v] = 0. We also have that h = [v, w] = h0 + h1 ∈ Im(ad(v)).

By (3.5) we see that the image Im(ad(v)) is invariant under the adjoint action

of Aσ, which implies that h0 ∈ Im(ad(v)). However, this implies again by the

Jacobson-Morozov theorem [13, III, Lemma 7] that there exists some w′ such

that (v, h0, w
′) is an sl2-triple. If w′ /∈ u−α, then we can split w′ into two

components w−α + w′′, with w−α ∈ u−α and w′′ belonging to the remaining

weight spaces. Since

[h0, w
′] = −2w′ = [h0, w

−α + w′′] = −2(w−α + w′′),

by comparing components from different weight spaces we get [h0, w
−α] =

−2w−α. Moreover, [v, w′] = h0 = [v, w−α + w′′], which by comparing compo-

nents also implies [v, w−α] = h0. Therefore, (v, h0, w
−α) is an sl2-triple (and

now one can show that actually w′ = w−α).

From the existence of the above sl2-triple it follows that there exists an

algebraic subgroup L defined over Qσ (defined, e.g., by the Zariski-closure of

the image of a neighborhood of 0 in the span of the sl2-triple under exp) with

the span of the sl2-triple as its Lie algebra. The subgroup L contains the

split torus T = L ∩ CG(Aσ) whose Lie algebra is spanned by the element h0.
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However, as T commutes with Aσ and is split, this implies that T(Qσ) ⊆ Aσ.

To summarize and to simplify the notation, we have shown that there exists an

sl2-triple (v, h, w) for which h belongs to the Lie algebra of Aσ and w ∈ u−α.

If now β ∈ Φ is a root and m ≥ 0 for which β + α, β − (m+ 1)α /∈ Φ but

β−α, . . . , β−mα ∈ Φ, then u{β,...,β−mα} is a finite-dimensional representation

for L (resp. its Lie algebra). Hence uβ is an eigenspace for adh with eigenvalue

k for some k and uβ−mα an eigenspace of eigenvalue −k, which must then equal

k − 2m. By the discussion preceding Lemma 3.1,

k = m = 2
(α, β)

(α, α)
.

Since α is fixed, we may also phrase this by saying that the eigenvalue of adh
on uβ equals the multiple of (α, β) by the constant cα = 2

(α,α) . This clearly

extends also to all roots β′ = β− `α and hence holds for all roots β ∈ Φ. Thus

we have established the proposition.

In order to establish Lemma 3.1, we note that if a ∈ T(Qσ) is the image

of
Ä
t 0
0 t−1

ä
∈ SL2(Qσ) under the map induced by the sl2-triple, then Ada has

the eigenvalue tcα(α,β) on uβ. In particular, if we take |t|σ > 1, then this

element will satisfy the claim in Lemma 3.1. �

3.4. The S-algebraic group G and the locally homogeneous spaces X . Re-

call from the introduction and from Section 2 that we may assume G is a

Q-almost simple algebraic Q-group. Let S be a finite set of places (finite primes

and the symbol∞), and define for every σ ∈ S the group Gσ = G(Qσ). If G(R)

is not compact, we require that∞ ∈ S. We also define G = G(QS) =
∏
σ∈S Gσ

and suppose that Γ < G is an arithmetic lattice, i.e., a lattice commensurable

with G(OS) as in the introduction.

The quotient X = Γ\G is a locally homogeneous space; let d(·, ·) be a left

invariant metric on GS , and denote the induced metric on X also by d(·, ·).
The group G acts on X by right translations, i.e., g.x = xg−1 for g ∈ G, x ∈ X.

For every σ ∈ S, we can write the algebraic group G considered as an

algebraic group overQσ as an almost direct product ofQσ-almost simple groups∏
f∈Fσ Gf . We define F =

⊔
σ∈S Fσ, and if f ∈ Fσ, we shall say that σ is the

place attached to f ; often, when it is clear which f we discuss, σ will be

implicitly assumed to be the attached place to f . We also write gf for the Lie

algebra of Gf .

Let F ′ ⊂ F , and for every f ∈ F ′, fix a maximal Qσ-split torus Af .

Furthermore, we choose for every f ∈ F ′ a finite index subgroup Af of the

group of Qσ-points of this torus. As in the introduction we set A =
∏
f∈F ′ Af .

For a root α of Gf0 for f0 ∈ F ′, we define an associated Lyapunov root to

be the group homomorphism A→ R+ given by

a = ((af )f∈F ′) 7→ log |α(af0)|σ0 ,
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where σ0 is the place corresponding to f0 and the absolute value is taken in

Qσ0 . We write Φf0 for the set of Lyapunov roots of Gf0 .

We denote by Φ′ =
⋃
f∈F ′ Φf the set of all Lyapunov roots obtained in

this way and will continue to use Greek letters to denote Lyapunov roots —

in fact we will not distinguish between the root and its associated Lyapunov

root. As discussed in Section 3.1, for every f ∈ F ′, the Lyapunov roots for

Gf span a vector space Vf over R with a natural Euclidean inner product that

is preserved by the Weyl group; we define the inner product on the product

of these Euclidean spaces so that the individual subspaces Vf for f ∈ F ′ are

orthogonal. The orthogonal reflections sα for α ∈ Φ′ are naturally extended to

all of V , acting as the identity on the orthogonal complement of the subspace

where sα was originally defined.

For a Lyapunov root α ∈ Φf , we will write Uα and uα for the subgroup of

Gf resp. the Lie subalgebra of gf corresponding to the root as in Section 3.1.

Furthermore, we define g0 =
∑
f∈F ′ g

0
f+

∑
f∈F\F ′ gf (which has the structure of

an additive group, but for |S| ≥ 2 is no longer a Lie algebra in the usual sense).

Finally we say a subgroup U < GS is unipotent and connected if U is a

direct product of unipotent (Zariski) connected subgroups Uσ < Gσ for σ ∈ S.

For instance, we can define for the subset Ψ = {α ∈ Φ′ : α(a) < 0} the

connected unipotent Zariski-closed subgroup

UΨ =
∏
f∈F ′

UΨ∩Φf ,

where UΨ∩Φf < Gf is the unipotent subgroup over Qσ associated to all roots

that are contracted by af . It will also be convenient to notice the following

simple fact.

Lemma 3.3. Any A-normalized closed subgroup U < UΨ is a product of

Zariski-closed Zariski-connected unipotent subgroups Uf for f ∈ F ′.
This lemma can be deduced from the argument in the proof of Proposi-

tion 6.2 in [4]; for completeness we provide a proof below.

Proof. Let u = (uf )f∈F ′ ∈ U < UΨ. For any fixed f ′ ∈ F ′, we can

find some a ∈ A that acts trivially in the factor corresponding to f ′ and

contracts UΨ ∩ Gf for all f ∈ F ′ \ {f ′}. Conjugating u by an and taking the

limit we see that the element u′ with u′f = e for all f ∈ F ′ \ {f ′} and u′f ′ = uf ′

also belongs to U . Therefore, U =
∏
f∈F (U ∩Gf ) is a direct product.

Hence it remains to study the case where U < UΨ ∩Gf for some f ∈ F ′.
Suppose first that Gf is a real Lie group (i.e., σ(f) = ∞) and u is the Lie

algebra of the connected component of U . Choose some a ∈ Af that con-

tracts UΨ and only has positive eigenvalues. Using that U is normalized

by a we see that u =
∑J
j=1 u ∩ gj where Ada acts on gj with eigenvalue λj

and 1 > λ1 > λ2 > · · · > λJ > 0. Let now u ∈ U be arbitrary and
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consider v = log u =
∑
j vj where vj ∈ gj . Suppose v1 = · · · = vk−1 = 0

but vk 6= 0. Considering mAdna(v) ∈ logU for m ∈ Z and n→∞ we may con-

clude that vk ∈ u. Replacing u by u exp(−vk) we obtain a new element in the

same connected component as the original element (with an increased value

of k). By induction it follows that u ∈ exp u, and since u ∈ U was arbitrary,

we see that U is connected. Since exp is a polynomial map on the Lie algebra

of the unipotent group UΨ, it follows that U is a Zariski closed and Zariski

connected subgroup of UΨ.

Suppose now that Gf is a p-adic Lie group (i.e., σ(f) = p). Note that for

any u ∈ U , we automatically have exp(t log(u)) ∈ U for all t ∈ Z and so also

for all t ∈ Zp. Let us write uΨ for the Lie algebra of UΨ and define the Lie

subalgebra u = {v ∈ uΨ : exp(Qpv) ⊂ U}. Choose some a ∈ A for which uΨ

is expanded under Ada and all eigenvalues are positive powers of λp ∈ Qp
with |λp|p > 1. Hence we get a decomposition uΨ =

∑J
j=1 gj such that Ada

restricted to gj equals multiplication by λjp for all j = 1, . . . , J . Let u ∈ U

be arbitrary, and let v = log u ∈ uΨ =
∑J
j=1 vj with vj ∈ gj for all j ≥ 1.

Suppose vk 6= 0 but vk+1 = vk+2 = · · · = 0. We now consider the elements

tAdna(v) =
k∑
j=1

tλnjp vj ∈ logU

for t ∈ Zp and n ≥ 1. Letting n → ∞ and choosing t = sλ−nkp for some

arbitrary s ∈ Qp gives vk ∈ u.

Setting up an induction, we assume that v = log u =
∑J
j=1 vj for some u ∈

U , and vj ∈ gj for j = 1, . . . , J implies vj ∈ u for all j = k, . . . , J . Note that

the case k = J follows at once from the above. As in the real case we may

now consider the element u exp(−vk) ∈ U . By the Campbell-Baker-Hausdorff

Formula, this element can be written as

log(u exp(−vk)) =
k−1∑
j=1

vj +
J∑

j=k+1

v′j ,

where we must allow for v′j ∈ gj being nonzero for j > k. However, by the

inductive assumption we can deduce that v′k+1 ∈ u and may consider

u exp(−vk) exp(−v′k+1),

and so on. Thus we obtain that

exp

Ñ
k−1∑
j=1

vj

é
∈ U,

and hence by the preceding paragraph we have that vk−1 ∈ u, completing the

induction. As u ∈ U was arbitrary, we see that U = exp(u); hence the group

U is once more the image under a polynomial map of the Lie subalgebra u,

from which we may conclude it is Zariski closed and Zariski connected. �
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4. Leaf-wise measures and entropy

Leafwise measures (which are also referred to as conditional measures on

leaves of a foliation) were used in this context the first time by Katok and

Spatzier in their pioneering work [16], [17], though implicitly they can also

be found hidden in the arguments Rudolph’s original paper on the subject

[34]. A fairly general construction of leafwise measures is presented in [20, §3].

A self-contained and comprehensive construction of these measures (though

somewhat less general, as it only treats the case of foliations whose leaves are

given by orbits of groups) as well as the relation of these leafwise measures

to entropy is given in [9]. Here we only summarize without proofs the main

properties of these leafwise measures.

4.1. Basic properties. We will be working with connected subgroups of

UΨ for Ψ ⊂ Φ′ with (Ψ + Ψ) ∩ Φ′ ⊂ Ψ and α(a) < 0 for some fixed a ∈ A
and all Lyapunov roots α ∈ Ψ. These subgroups are automatically unipotent.

If U < GS is normalized by A, then for every x ∈ X and a ∈ A, a.(U.x) =

xUa−1 = xa−1U = U.(a.x), so that the foliation of X into U -orbits is invariant

under the action of A. We will say that a ∈ A expands (contracts) the U -leaves,

or simply U , if the absolute values of all eigenvalues of Ada restricted to the

Lie algebra of U are greater (smaller) than one.

For any locally compact metric space Y , let M∞(Y ) denote the space of

Radon measures on Y equipped with the weak∗ topology, i.e., all locally finite

Borel measures on Y with the coarsest topology for which ρ 7→
∫
Y f(y) dρ(y)

is continuous for every compactly supported continuous f . For two Radon

measures ν1 and ν2 on Y , we write

ν1 ∝ ν2 if ν1 = Cν2 for some C > 0

and say that ν1 and ν2 are proportional.

We let BY
ε (y) (or Bε(y) if Y is understood) denote the ball of radius ε

around y ∈ Y ; if H is a group, we set BH
ε = BH

ε (e); and if H acts on X and

x ∈ X, we let BH
ε (x) = BH

ε .x.

Let µ be an A-invariant probability measure on X. For any unipotent

subgroup U < UΨ < GS normalized by A, one has a system
¶
µUx
©
x∈X of

Radon measures on U and a co-null set X ′ ⊂ X with the following properties:

(1) The map x 7→ µUx is measurable.

(2) For every ε > 0 and x ∈ X ′, it holds that µUx (BU
ε ) > 0.

(3) For every x ∈ X ′ and u ∈ U with u.x ∈ X ′, we have that µx,U ∝ (µUu.x)u,

where (µUu.x)u denotes the push forward of the measure µUu.x under the map

v 7→ vu for all v ∈ U .

(4) For every a ∈ A, and x, a.x ∈ X ′, µUa.x ∝ (θa)∗(µ
U
x ), where the latter is the

push forward of the leafwise measure under the conjugation map θa(u) =

aua−1.
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In general, there is no canonical way to normalize the leafwise measures µUx ; we

fix a specific normalization by requiring that µx,U (BU
1 ) = 1 for every x ∈ X ′.

This implies the next crucial property.

(5) If U ⊂ C(a) = {g ∈ GS : ga = ag} is centralized by a ∈ A, then µUa(x) = µUx
whenever x, a(x) ∈ X ′.

(6) µ is U -invariant if, and only if, µUx is a Haar measure on U almost every-

where (see [20, Prop. 4.3]).

The other extreme to invariance as above is where µUx is atomic. If µ

is A-invariant, then outside some set of measure zero if µUx is atomic, then

it is supported on the single point e ∈ U , in which case we say that µUx is

trivial. The leafwise measures for the unipotent subgroup Uα associated to a

Lyapunov root α ∈ Φ′ we denote by µαx , and more generally we write µΨ
x for

the leafwise measures on UΨ when Ψ ⊂ Φ′ is a set of Lyapunov roots such that

UΨ is a unipotent subgroup.

Fundamental to us is the following characterization of positive entropy

for the action of an element a ∈ A on an A-invariant and ergodic probability

measure µ:

(7) Let Ψ = {α ∈ Φ′ : α(a) < 0} so that UΨ is the horospherical stable

subgroup defined by a. Then the measure theoretic entropy hµ(a) is

positive if and only if the leafwise measures µΨ
x are nonatomic almost

everywhere.

Hence positive entropy implies that certain leafwise measures are nontrivial

almost everywhere.

4.2. Entropy contribution. In this section we refine property (7) from

above to a more quantitative statement; for more details see [23, §9], [4, §9] or

[9, §7].

Let U be a connected subgroup normalized by A such that a ∈ A con-

tracts U . We let

θa(g) = aga−1

be the inner automorphism defined by a. Then for any a-invariant probability

measure µ on X, the limit

(4.1) volµ(a, U, x) = − lim
n→+∞

logµUx
Ä
θna (BU

1 )
ä

n

exists for almost every x ∈ X by [4, Lemma 9.1]. Furthermore, if µUx is

supported by a subgroup P ⊆ U that is connected and normalized by A, then

(4.2) volµ(a, U, x) ≤ mod(a, P ) =
∑
α∈Φ′

α(a)− dimQσ(α)

Ä
p∩ uα

ä
for almost every x ∈ X by [9, Th. 7.9]. Here we write r− = max(0,−r),
p for the Lie algebra of P and Qσ(α) for the field over which the Lyapunov
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root α ∈ Φ′ is defined. Note that p is a direct sum of its subspaces p ∩ uα

since P is normalized by A. In fact, mod(a, P ) is the negative logarithm of

the module of the restriction of θa to P . Using property (4) of the leafwise

measures it is easy to check that volµ(a, U, ·) is A-invariant and thus constant

for an A-ergodic measure. We define

hµ(a, U) =

∫
X

volµ(a, U, x)dµ(x)

and will refer to hµ(a, U) as the entropy contribution of U .

In the case where U = Uα < Gf for α ∈ Φf as in Section 3.2, the map

a 7→ volµ(a, U, x) restricted to the half space α(a) ≤ 0 can be extended to

a homomorphism of groups from A to the additive group on R. To see this,

note first that θna (BU
1 ) only depends on the value of nα(a) since a, a′ ∈ A

and m,n ∈ Z with nα(a) < mα(a′) < 0 implies θna (BU
1 ) ⊂ θma′ (BU

1 ). Therefore,

there exists δαµ ≥ 0 with

(4.3) hµ(a, Uα) = δαµα(a)− for all a ∈ A with α(a) ≤ 0;

we refer to δαµ as the dimension of µ along Uα. Now (4.2) is equivalent to

(4.4) δαµ ≤ dimQσ
Ä
p∩ uα

ä
+ 2 dimQσ

Ä
p∩ u2α

ä
,

where we agree to set the second term to zero if 2α is not a root.

A σ-algebra A of Borel subsets of X is subordinate to U if A is countably

generated, for every x ∈ X the atom [x]A of x with respect to A is contained

in the leaf Ux, and for almost every x

BU
ε x ⊆ [x]A ⊆ BU

ρ x for some ε > 0 and ρ > 0.

A σ-algebra A is a-decreasing if a−1A ⊆ A. By [4, Lemma 9.3] we have

Hµ(A|a−1A) =

∫
volµ(a, U, x) dµ

whenever A is an a-decreasing σ-algebra that is subordinate to U .

It has been shown in [23, Prop. 9.3] that there exists an a-decreasing

σ-algebra A subordinate to U provided µ is a-ergodic. Moreover, if U is the

horospherical stable subgroup defined by a, then hµ(a) = Hµ(A|a−1A) by [23,

Prop. 9.3(iii)]. This can be used to show that the entropy equals the entropy

contribution of the horospherical stable subgroup

(4.5) hµ(a) = hµ(a, U)

even if µ in not a-ergodic; see [4, Prop. 9.4].
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4.3. The structure of leafwise measures for the horospherical subgroup.

We recall and slightly simplify [4, Ths. 8.4, 8.5], which describe the structure

of the leafwise measure µUx for the horospherical stable subgroup U defined

by a. Under the assumption that µ is an A-ergodic and invariant probability

measure on X, these theorems simplify to the following statements due to the

fact that the adjoint action restricted to A has its eigenvalues in Qσ.

Let Ψ = {α ∈ Φ′ : Uα ⊂ U and α is indivisible}. Fix some order of the

elements of Ψ = {α1, . . . , α`}, and define φ :
∏`
i=1 U

αi → U by φ(u1, . . . , u`) =

u1 · · ·u` for any (u1, . . . , u`) ∈
∏`
i=1 U

αi . Here Uα = exp(uα ⊕ u2α); in the

terminology of [4, §4.4], these are precisely the coarse Lyapunov subgroups of

the action of A. Therefore, [4, Th. 8.4] gives

(4.6) µUx ∝ φ∗
Ä
µα1
x × · · · × µα`x

ä
a.e.

This, (4.5) and (4.1) readily imply that the entropy

(4.7) hµ(a) =
∑̀
i=1

hµ(a, Uαi)

is the sum over all entropy contributions of Uα ⊂ U . In particular, positive

entropy implies that there exists an indivisible root α so that the leafwise

measure µαx is nontrivial almost everywhere — indeed, so that the dimension

δαµ of µ along Uα is positive.

The following is a version of the high entropy theorem contained in [4]

(and generalizes [3]); see also [9, §9] for a simplified derivation of this result.

Theorem 4.1. Let µ be an A-invariant and ergodic probability measure

on X = Γ\GS . Let a ∈ A with stable horospherical subgroup U = Ua. Then

there exist two connected A-normalized subgroups H < P < U such that

(1) µUx is supported by P almost everywhere.

(2) µUx is left- and right-invariant under multiplication with elements of H

almost everywhere.

(3) H is a normal subgroup of P . Moreover, setting Pαs = P ∩ Uαs for any

root αs, we have that for any two distinct roots αr and αs, for any elements

g ∈ Pαr and h ∈ Pαs , the cosets gH and hH commute with each other

in P/H .

(4) µαix is left- and right-invariant under multiplication with elements of H ∩
Uαi for i = 1, . . . , ` almost everywhere.

Proof. By [4, Th. 8.5] there exist for almost every x ∈ X two subgroups

Hx < Px < U with properties (1)–(4) of the theorem at the point x. Addition-

ally, these subgroups are connected and their Lie algebras are direct sums of

subspaces of root spaces uα; in the notation of [4, Th. 8.5] this is the same as

Hx and Px allowing a weight decomposition. However, in our case this implies
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that these subgroups are normalized by A. (This would not necessarily be so

if we were working over field extensions of Qσ.) This together with Property

(4) of Section 4.1 shows that for almost every x ∈ X, the subgroups Hx < Px
also satisfy Properties (1)–(4) at a.x for any a ∈ A. Using ergodicity of µ it is

not difficult to find subgroups H and P as in the theorem; see, for instance,

[7, Lemma 3.5] where this has been done for P . �

For the Lie algebras h ⊂ p ⊂ u of H < P < U , we get the following corol-

lary. This actually appears in the proof of [4, Th. 8.5] but is also immediate

from Theorem 4.1.(3) and (3.5).

Corollary 4.2. For any two linearly independent roots α, β with uα,

uβ < U we have [p ∩ uα, p ∩ uβ] ⊂ h ∩ uα+β .

While the subgroup P gives an upper bound for the entropy contribution

as we have seen in (4.2), the subgroup H gives a lower bound as follows.

Lemma 4.3. Let H < U be connected subgroups normalized by A such

that a ∈ A contracts U . If µ is invariant under H , then

hµ(a, U) ≥
∑
α∈Ψ

α(a)− dimQσ
Ä
h∩ uα

ä
,

where h is the Lie algebra of H and Ψ is the set of roots with α(a) < 0.

The lemma follows from the following two observations that only rely on

the definitions: If H < U , then hµ(a,H) ≤ hµ(a, U). If µ is H-invariant, then

µHx is the Haar measure of H for almost every x and hµ(a,H) = mod(a,H) is

the negative logarithm of the module of conjugation by a restricted to H.

5. The high entropy roots

It will be convenient to divide the indivisible roots in Φ′ into three classes

depending on the measure µ:

(1) the roots with no attached entropy, i.e., for which δαµ = 0;

(2) the roots α ∈ Φ′ for which δαµ > 0 but δβµ = 0 for every indivisible root

β 6= ±α with (α, β) 6= 0;

(3) the roots α ∈ Φ′ for which δαµ > 0 and also δβµ > 0 for some indivisible

β 6= ±α with (α, β) 6= 0.

In the second case we say that α is a root of low entropy, and in the third α is

a root of high entropy.

In this section we deal with the high entropy roots and show in particular

that if α is a root of high entropy, then µ is invariant under a subgroup gen-

erated by unipotent elements. We also establish a symmetric property of the

δαµ , namely that δαµ is positive if and only if δ−αµ is.
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Theorem 5.1. Let µ be an A-invariant and ergodic probability measure

on X = Γ\G. Then the dimensions of µ along the subgroups associated to the

roots are symmetric; i.e., δαµ = δ−αµ for any indivisible α ∈ Φ. Moreover, if α

is a high entropy root for µ, then µ is invariant under a nontrivial subgroup

of Uα — in fact, under the unipotent group Pα as in Theorem 4.1, which is

nontrivial as δαµ > 0.

Proof. We first prove δαµ ≤ δ−αµ for an arbitrary indivisible Lyapunov root

α ∈ Φ′, which implies the symmetry. If δαµ = 0, this is trivial. So suppose

δαµ > 0, and choose aα ∈ A as in Lemma 3.1 so that β(aα) = c(α, β) for all

Lyapunov roots β ∈ Φ′ and some c > 0. By (4.7) and (4.3) we can express the

entropy of aα as

(5.1) hµ(aα) = c
∑

β:(α,β)<0

δβµ(α, β)−.

Since hµ(aα) = hµ(a−1
α ), we also have

hµ(aα) = c
∑

β:(α,β)>0

δβµ(α, β).

However, sα : Φ′ → Φ′ maps all the roots β appearing in (5.1) to those ap-

pearing in the second sum without changing the absolute value of the inner

products, and so the last formula can also be written as

(5.2) hµ(aα) = c
∑

β:(α,β)<0

δsα(β)
µ (α, β)−.

We claim that δβµ ≤ δ
sα(β)
µ for any indivisible root β 6∈ 〈α〉 with (α, β) < 0.

Assuming the claim, all terms in the sum in (5.1) are smaller than or equal to

the corresponding terms in (5.2) except for the term corresponding to β = −α.

However, as the sums equal, this exceptional term must satisfy the opposite

inequality δαµ ≤ δ−αµ .

For the proof of the claim fix an indivisible Lyapunov root β and choose

a ∈ A such that
α(a), β(a) < 0,

which is possible since α, β are linearly independent and correspond to char-

acters on Aσ < A. Let U be the stable horospherical subgroup defined by a so

that Uα, Uβ < U . Recall that almost every µUx is the product measure of all the

leafwise measures associated to indivisible roots whose subgroups are contained

in U . Now let H < P < U be as in Theorem 4.1 so that P supports µUx almost

everywhere and both subgroups are normalized by A. Then P∩Uα supports µαx
almost everywhere. Since δαµ > 0, these leafwise measures are nontrivial almost

everywhere and there exists a nonzero v ∈ p∩ uα′ where α′ is either α or 2α.

Note that sα′ = sα. Let m be such that sα′(β) = β+mα′. Define W = p∩ uβ.

Then Proposition 3.2 shows that admv maps W to a subspace of usα(β) of the
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same dimension. By Corollary 4.2 we have admv (W ) ⊂ h∩ usα(β); hence

(5.3) dimQσ p∩ uβ ≤ dimQσ h∩ usα(β) .

The same argument also shows that

dimQσ p∩ u2β ≤ dimQσ h∩ u2sα(β) .

Lemma 4.3 and (4.4) now imply for an indivisible root β 6= α with (α, β) < 0

that

δsα(β)
µ ≥ dimQσ p∩ uβ +2 dimQσ p∩ u2β ≥ δβµ

as claimed. This implies the symmetry of the dimensions δαµ = δ−αµ for all

indivisible roots α.

Suppose now β is a high entropy root and α ∈ Φ′ a distinct indivisible

root with (α, β) 6= 0 and δαµ > 0. We claim that

(5.4) h ∩ (uβ ⊕ u2β) = p ∩ (uβ ⊕ u2β)

from which it follows that Hβ = P β; i.e., µ is P β-invariant. By the symmetry

properties of δαµ , if β is a high entropy root, so is −β; hence µ will also be

P−β-invariant and the theorem follows.

It remains to establish (5.4). By symmetry of the dimensions we may

assume that (α, β) < 0. Then (5.3) implies

dimQσ h ∩ usα(β) ≥ dimQσ p ∩ uβ ≥ dimQσ h ∩ uβ,

and similarly for 2β. Also by symmetry we may apply the above to −α, β to get

dimQσ h ∩ uβ ≥ dimQσ p ∩ usα(β) ≥ dimQσ h ∩ usα(β),

and similarly for 2β. Together these imply (5.4). �

6. The low entropy roots

To deal with the low entropy root, we need to apply the main theorem of

[8]. In order to state this theorem, we first need to introduce some terminology.

Let X be a locally compact metric space with a Borel probability measure

µ, let a : X → X be a measure preserving transformation of (X,µ), and let

H be a locally compact metric group acting continuously and locally free on

X. We denote the action by h.x for h ∈ H and x ∈ X. Let F : X → Y

be a measurable map to a Borel space Y . We say µ is (F,H)-transient if

there exists a set X ′ ⊂ X of full measure such that there are no two different

x, y ∈ X ′ on the same H-orbit H.x = H.y with F (x) = F (y). We say µ

is (F,H)-exceptional if for every ε > 0 and compact neighborhood O of the

identity in H, there exists B ⊂ X with µ(B) > 1− ε and some δ > 0 such that

x, y ∈ B with distance d(x, y) < δ and F (x) = F (y) implies that y = h.x for

some h ∈ O.



1020 M. EINSIEDLER and E. LINDENSTRAUSS

We fix some semisimple a ∈ G that is diagonalizable over the ground field

R resp. Qp. More precisely, we require that the adjoint representation is diag-

onalizable over the ground field and that there are no two distinct eigenvalues

for Ada with the same absolute value, and in particular that 1 is the only

eigenvalue of absolute value one. We assume that a contracts the leaves of the

foliation defined by the U -orbits of some nontrivial closed unipotent subgroup

U < G — in other words, that a normalizes U and anua−n → e for n → ∞
and all u ∈ U . We also assume that U is a direct product of Zariski closed

unipotent subgroups Uσ of Gσ for σ ∈ S.

To be able to apply the results of [8] we will consider the leafwise mea-

sures as a map F (x) = [µUx ] for x ∈ X, where the equivalence is taken up to

proportionality. This map F defines a factor map with respect to the action

of A and U , where A acts by push forward by conjugation (see property (4)

of §4.1) and U acts by push forward by right multiplication (see property (3)

of §4.1). These equivalence classes of leafwise measures can be considered as

elements of a Borel space Y . In fact, the leafwise measures are Radon measures

with some mild control on the growth of the measures of balls (e.g., because

of the analogue of (4.1) for n → +∞), which allows us to find a continuous

function ρ(u) > 0 with
∫
ρ(u) dµUx (u) < ∞ for almost every x ∈ X. We

now let Y = {ν | ν is a locally finite measure with
∫
ρ dν ≤ 1} equipped

with the Borel structure arising from the weak∗-topology and identify [µUx ]

with F (x) =
Ä∫
ρ dµUx

ä−1
µUx ∈ Y .

We are going to use the following abbreviations for the stable respectively

unstable horospherical subgroup:

G− = {g ∈ G : anga−n → e for n→∞},
G+ = {g ∈ G : anga−n → e for n→ −∞},

and the central subgroup

G0 = {g ∈ G : ag = ga}.

Recall that recurrence of U with respect to µ is equivalent to µUx (U) =∞
by [20, Prop. 4.1]. We say µ is faithfully U -recurrent if for almost every x

there does not exist a Zariski closed proper subgroup U ′ < U such that µUx is

supported on U ′. (In other words, we have P = U for the subgroup P as in

Theorem 4.1.)

In [8] we have shown the following dichotomy for µ holds in the low entropy

case.6

6In fact, the main result of [8] is slightly more general than what is quoted above. Note

also that in Theorem 6.1 no assumptions are made regarding the characteristic of the global

field K; we plan to explore positive characteristic analogues of our main theorem elsewhere.
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Theorem 6.1. Suppose X = Γ\G, a ∈ G, and U < G are as above, with

G as in Section 3.4. Assume that

• for every σ ∈ S with aσ 6= e, there is a homomorphism φσ : SL2(Kσ) → Gσ
such that aσ = φσ

Ä
t
t−1

ä
for some t ∈ K×σ with ‖t‖σ < 1 and φσ ( 1 ∗

1 ) ⊂ Uσ .

Then any a-invariant and faithfully U -recurrent probability measure µ on X

satisfies at least one of the following conditions :

(1) µ is not (µUx , CG(U) ∩G−)-transient ;

(2) µ is (µUx , CG(U))-exceptional.

In the context of the proof of Theorem 1.1 the above gives us the following

corollary.

Corollary 6.2. Let X = Γ\G, A, and µ be as in Theorem 1.1. Suppose

µ has low entropy for some indivisible Lyapunov root α ∈ Φ′. Let Pα ⊂ Uα

(P−α ⊂ U−α) be the minimal connected subgroup for which µαx is supported on

Pα (µ−αx is supported on P−α) for almost every x. Then one of the following

conditions must hold :
(1) (Invariance). µ is invariant under a nontrivial Zariski connected subgroup

Hα ⊂ Pα or under a nontrivial connected subgroup H−α ⊂ P−α;

(2) (Exceptional). µ-almost everywhere ergodic component µEx for the action

of A′ = {a′ ∈ A|α(a′) = 0} is concentrated on a single orbit of CG(Pα) ∩
CG(P−α) ⊂ CG(aα), where aα is as in Lemma 3.1.

Here E equals the σ-algebra that consists of A′-invariant sets. With this

definition the conditional measures µEx indeed give the A′-ergodic components

of µ. We say that a probability measure ν is concentrated on a set B ⊂ X if

ν(B) = 1. With some more effort, it is possible to deduce that if (2) does not

hold, both Hα and H−α are nontrivial (cf. [5, §4.1]), though for our purposes

the weaker conclusion given above suffice.

We shall make use of the following definition (cf. [23]).

Definition 6.3. We say that an element a ∈ A is of class A if a ∈ Gσ for

some σ ∈ S and all eigenvalues of aσ are powers of some t ∈ Qσ with |t| 6= 1.

The significance of this condition is that if a is of class A, then for any alge-

braic representation ρ ofGσ on anyQσ-vector space V and any vector v∈V , the

sequence ρ(an)v converges in the projective sense to an eigendirection of ρ(a).

Proof of Corollary 6.2. Let α ∈ Φ′ be as in the corollary. By Theorem 5.1

it follows that δαµ = δ−αµ > 0. Essentially by construction, the subgroup

Pα = P ∩ Uα, with P as in Theorem 4.1, satisfies that µ is faithfully Pα-

recurrent. Indeed, suppose that on a set of positive measure there would

exist smaller subgroups on which µP
α

x = µαx is supported. Let Pαx denote the

smallest Zariski connected subgroup of U that supports µαx . Let a1, . . . , ak ∈ A
be elements of class A such that the group generated by them is Zariski dense
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in A. We claim first that Pαx is A-normalized almost everywhere. If this also

does not hold, then there is a set Z of positive measure and some ai from the

above list such that Pαx is not normalized by ai. Applying (4) from Section 4.1

shows now that Pani .x = ani P
α
x a
−n
i almost everywhere. If x ∈ Z, then ani P

α
x a
−n
i

converges to an ai-invariant subgroup, but this contradicts Poincaré recurrence.

Therefore, Pαx is A-normalized almost everywhere so that Pαa.x = Pαx almost

everywhere. By ergodicity of A this implies that Pαx is constant. Hence we

have Pα = Pαx almost everywhere and µ is faithfully Pα-recurrent.

By Lemma 3.1 and the above discussion it follows that the elements

a = a±α and corresponding unipotent group U = P∓α satisfy the assump-

tion in Theorem 6.1. Therefore, Theorem 6.1 applies and we obtain one of two

possible outcomes:

Case (1) in Theorem 6.1 holds for at least one choice of a = a±α and

U = P∓α. Suppose (1) of Theorem 6.1 holds for a = a−α, U = Pα. Recall

that by assumption on α (i.e., that it is a low entropy root), by (4.6) applied

to G−, and by assumption on Pα (i.e., that it supports µP
α

x ) we have that

the measure µG
−

x is also supported on Pα almost everywhere. Therefore, (3)

from Section 4.1 shows that there exists some set X ′ ⊂ X of full measure

so that x, h.x ∈ X ′ with h ∈ G− implies h ∈ Pα. By assumption, µ is not

(µP
α

x , CG(Pα) ∩ G−)-transient, which together implies now that for every set

of full measure X ′′ ⊂ X, there exist some x ∈ X ′′ and u ∈ CPα(Pα) so that

both x, u.x ∈ X ′′ and µP
α

x = µP
α

u.x. However, by (3) from Section 4.1 again,

this shows that for any set of full measure, there exist some x in that set and

some nontrivial u ∈ CPα(Pα) with µP
α

x ∝ µP
α

x u = uµP
α

x (where the later

equality holds since u centralizes Pα). This actually implies, almost surely,

that in fact µP
α

x = uµP
α

x . There are two ways to show this: if µP
α

x = cuµP
α

x for

c > 1, then for every n, µP
α

a.x = caua−1µP
α

a.x, which can be shown to contradict

Poincaré recurrence for a as anua−n → e (see [4, Lemma 5.10] for details).

Alternatively, µP
α

x = cuµP
α

x for c > 1 implies that the µP
α

x -measure of a ball of

radius t around e ∈ Pα grows exponentially in t, which contradicts [9, Th. 6.29].

Moreover, having found some nontrivial u ∈ Pα preserving µP
α

x from both

sides, we claim that, almost surely, µP
α

x is invariant under left multiplication

by a nontrivial connected A-normalized subgroup Hx ⊂ CPα(Pα). In fact this

follows from [4, Prop. 6.2] (which once more only relies on Poincaré recurrence)

together with the fact that the eigenvalues of the adjoint action of elements

of A belong to Qσ. For the same reason, Hx is normalized by A so that µP
α

a.x

is also invariant under left multiplication by elements of Hx. Using ergodicity

of A, it follows that µP
α

y is invariant under left multiplication by elements of

a nontrivial connected A-normalized subgroup Hα ⊂ CPα(Pα) for almost ev-

ery y. We have shown statement (1) of the corollary for a subgroup Hα ⊂ Pα.

If (1) in Theorem 6.1 holds for the root −α, then this gives as above invariance
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of µ under a nontrivial connected subgroup H−α ⊂ P−α, which implies (1) of

the corollary once more.

Case (2) holds in Theorem 6.1 both for aα and for a−1
α . In other words,

µ is (µP
α

x , CG(Pα))-exceptional and (µP
−α

x , CG(P−α))-exceptional. We claim

that this implies property (2) of the corollary.

Let ε > 0. Now choose O to be a sufficiently small compact neighbor-

hood of the identity in G so that the natural map O → O.x is injective for

x belonging to a set of measure bigger than 1 − ε/3. We also assume that O

is sufficiently small so that O ∩ (CG(Pα) ∩ CG(P−α)) = O ∩ L where we set

L = (CG(Pα) ∩ CG(P−α))◦(QS).

Then by definition of exceptional, there exist δ > 0 and a set B ⊂ X

of measure > 1 − ε/3 so that µP
α

x = µP
α

y with x, y ∈ B and d(x, y) < δ im-

plies y ∈ (O ∩ CG(Pα)).x. Replacing B by an appropriately chosen subset of

measure > 1 − ε, we may assume that the same holds similarly for µP
−α

x and

CG(P−α), and moreover that the map O → O.x is injective for all x ∈ B.

Assume now z is such that µEz (B) > 0, and z ∈ B ∩ supp(µEz |B). Let

V = BX
δ/2(z). Then for µEz -almost every y ∈ V ∩ B, there exists a sequence

a′n ∈ A′ with a′n.y ∈ V ∩ B and a′n.y → x as n → ∞. By property (5) of

Section 4.1 this implies almost surely that µP
α

y = µP
α

a′n.y
and µP

−α
y = µP

−α
a′n.y

.

However, this implies that a′n.y = cn.y for some

cn ∈ O ∩ CG(Pα) ∩ CG(P−α) = O ∩ L.
As a′n.y → x as n → ∞, and since O is compact, we may choose a subse-

quence so that cn → c ∈ L. As Pα ⊂ Uα, we have A′ ⊂ CG(Pα) and similarly

A′ ⊂ CG(P−α) and so A′ ⊂ L. Therefore, µEz -almost every y ∈ V ∩ B be-

long to L.x. This shows that the orbit L.x is an A′-invariant set of positive

µEz -measure. Hence µEz is concentrated on the orbit L.x. Letting ε go to zero,

we obtain that µ-almost everywhere ergodic component with respect to A′ is

concentrated on a single L-orbit.

Finally, note that by Proposition 3.2 the Lie algebra of CG(Pα) is con-

tained in g0⊕∑(β,α)≥0 u
β so the Lie algebra of L is contained in g0⊕∑(β,α)=0 u

β.

It follows that L is centralized by aα. �

7. The exceptional case and rank one factors

In this section we will prove the following step towards Theorem 1.3.

Proposition 7.1. In the setting of Theorem 1.3 we have that (2) of

Corollary 6.2 cannot hold.

Note that the assumption rank(A) ≥ 2 of Theorem 1.3 is essential here,

for otherwise the group A′ considered in Corollary 6 is the trivial group and

(2) of this corollary is satisfied in a degenerate way.
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We will need the following lemmas.

Lemma 7.2. Let G be a Qσ-almost simple algebraic group. Let A be a

maximal Qσ-split subtorus of G, and let α be a Lyapunov root. Let L < G be

an algebraic subgroup that is A-normalized and contains both a one-parameter

subgroup of Uα and a one-parameter subgroup of U−α. Then L also contains

a power of the element aα as in Lemma 3.1. Moreover, conjugation by aα
preserves Haar measure on L.

Proof. As L is A-normalized we may assume that the one-parameter sub-

groups of L∩U±α are also A-normalized, i.e., that they are uniquely defined by

some element v+ of uα
′

with α′ ∈ {1, 2}α, resp. v− of u−α
′′

with α′′ ∈ {1, 2}α.

Let l be the Lie algebra of L, and let Hα be the algebraic subgroup generated

by Uα and U−α.

By Proposition 3.2 we know that for every β with (β, α) > 0 and sα(β) =

β−mα′, the map admv+ restricted to usα(β) is injective. Note that by definition

sα = sα′ = sα′′ are all one and the same involution. It follows from the above

injectivity of admv+ that for any root β with (β, α) > 0,

(7.1) dim(l ∩ usα(β)) ≤ dim(l ∩ uβ).

Applying this same to v− we obtain the opposite inequality; hence equality

holds in (7.1).

In particular, dim(l∩uα) = dim(l∩u−α), and if α is a double root, the same

also holds for 2α. Moreover, ad2
v+ restricted to l∩u−α′ gives a bijection between

this space and l ∩ uα
′
; hence there exists w− ∈ l ∩ u−α

′
with ad2

v+(w−) = v+.

It follows that we can choose the sl2-triple as in the proof of Lemma 3.1 and

Proposition 3.2 within l.

However, since Hα is semisimple with Qσ-rank one (which follows since

A is maximal), we see that the split element [v+, w] ∈ g0 must be in the Lie

algebra of the torus generated by powers of aα. This implies that a power of

aα belongs to L as claimed. The symmetry in dimensions given by (7.1) (with

equality replacing the ≤) implies that aα preserves the Haar measure on L. �

Lemma 7.3. Let G, S, F ′ ⊂ F,A,Γ, µ be as in Theorem 1.1. Suppose µ

is concentrated on the orbit ΓLp, where L = L(QS) for some Q-group L and

Γp ∈ suppµ. Then there is a reductive Q-subgroup L′ ⊆ L with Q-anisotropic

center so that µ is supported on the orbit ΓL′p, where L′ = L′(QS).

Note that we do not assume ΓLp is closed; it follows however from L′
having no Q-characters that ΓL′p will be closed of finite volume.

Proof. Conjugating A if necessary and replacing µ by µp−1 we may as well

assume that p = e. Applying Lemma 2.1, by passing to a normal subgroup of

L if necessary, we may assume that L has no Q-characters, so that ΓL is closed
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of finite volume, and supports µ. It remains, however, to show that L can be

taken to be reductive.

Suppose L has a unipotent radical U, which is automatically defined over

Q. As A < L(QS), we know that A normalizes U(QS) and its (generalized) Lie

algebra. For a given σ ∈ S, this implies that U(Qσ) must be a direct product of

the subgroups U(Qσ)∩Gf with f ∈ F ′∩Fσ and a subgroup U ′ ⊂ ∏
f∈Fσ\F ′ Gf .

Indeed the Lie algebra f of U (considered over Qσ) is Af -normalized for all

f ∈ F ′ ∩ Fσ. Therefore,

f =
∑
α

f ∩ uα + f ∩ g0.

However, f ∩ g0 projected to
∑
f∈F ′ g

0
f must be trivial as the latter cannot

contain the Lie algebra of a unipotent subgroup. Hence f ∩ g0 belongs to∑
f∈Fσ\F ′ gf .

We claim that f∩uα is trivial for all α ∈ Φ′. Suppose this were false. Then

the Lie algebra h = f∩ gf is Af -normalized and the determinant of the adjoint

representation of Af on f must be one (as this determinant is a Q-character of

L, which is assumed to be trivial). However, this enables us to use the same

arguments as in the proof of Theorem 5.1 (which relies on Proposition 3.2) to

show that the dimensions of the intersections f ∩ uα are symmetric. Indeed

if v ∈ f ∩ uα, β ∈ Φ′ and m satisfy (β, α) > 0 and sα(β) = β −mα, then by

Proposition 3.2 we have

admv (f ∩ usα(β)) ⊂ f ∩ uβ

and so

(7.2) dim f ∩ uβ ≥ dim f ∩ usα(β).

As aα expands all root spaces uβ with (α, β) > 0 (including β = α) and resp.

contracts usα(β) by the inverse factor, the fact that the determinant of the

adjoint representation of Af on f is one implies equality must hold in (7.2),

and so in particular f ∩ u−α has to be nontrivial. In view of Proposition 3.2,

this implies that [f ∩ uα, f ∩ u−α] is nontrivial. However, as this is a subset of

f ∩ g0 ∩ gf , we get a contradiction to f ∩ g0 ⊂∑
f ′∈Fσ\F ′ gf ′ .

It follows from the claim we have just established that U(Qσ) ∩Gf must

be trivial for f ∈ F ′ ∩ Fσ and all σ ∈ S; hence U(Qσ) commutes with A. Now

let L′ < L be a Q-Levy subgroup of L and L′ = L(QS). Since L′ is unique up

to conjugation by U and A commutes with U, we see that any choice gives that

L′ contains A. Since ΓL′ is closed and A-invariant, and since we assumed that

Γe ∈ suppµ, it follows from ergodicity of A that µ is supported on ΓL′. �

Proof of Proposition 7.1. Let H = CG(Pα)∩CG(P−α) ⊂ CG(aα) be as in

case (2) of Corollary 6.2. Let x = Γg be a point for which the conclusion of
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the corollary holds. We define Λg = Γ∩ (gHg−1), take Mg to be the connected

component of its Zariski closure, i.e., Mg = (Λ̄g)
◦, and finally define

Lg = [CG(Mg)
◦, CG(Mg)

◦] < CG(Mg).

Note that both Mg and Lg are Zariski connected algebraic groups defined

over Q.

By definition we have that gPαg−1, gP−αg−1 are subgroups of the

Qσ-points of CG(Mg)
◦ with σ ∈ S the place corresponding to the root α,

which implies that a power of gaαg
−1 belongs to CG(Mg)

◦ by Lemma 7.2.

Therefore, gPαg−1, gP−αg−1 < Lg(Qσ) and (again by Lemma 7.2) the same

power of gaαg
−1 also belongs to Lg(Qσ).

Let us study how these Q-groups vary: Since A normalizes Pα and P−α,

it follows that A also normalizes H. Therefore, gHg−1 = (ga)H(ga)−1 for any

a ∈ A. From this we get that Λg = Λga for any g ∈ G, and hence the same

holds for the groups Mg and Lg that are determined by Λg.

Choose in some measurable way a representative gx ∈ G for every x ∈ X
so that x = Γgx. Since G has only countably many Q-subgroups, there is

a subset Z ⊂ X of positive µ-measure on which Mgx ,Lgx are constant, say

Lgx = L and Mgx = M. By ergodicity, for µ-almost every x ∈ X, there is some

a ∈ A for which xa ∈ Z; hence we see that in fact almost every point x can be

written as x = Γg for some g for which M = Mg and L = Lg.
Set A′ = kerα < A. We claim that gA′g−1 < M(QS) almost surely.

Indeed, assume that the A′-ergodic component of µ at x = Γg is concentrated

on the single H-orbit xH = ΓgH as in case (2) in Corollary 6.2 — currently

we do not know whether this orbit is closed. Let a ∈ A′ ∩ Gσ be an element

of class A, and let x ∈ suppµ satisfy Poincaré recurrence applied to a and

neighborhoods of x within the H-orbit. (This condition holds for µ-almost

every x ∈ X by the above assumption on A′-ergodic components.) Then

there exists a sequence γkga
nk = ghk as k → ∞ with γk ∈ Γ, hk ∈ H, and

hk → e as k → ∞. As a ∈ A′ < H, we get γk ∈ Λg = Γ ∩ gHg−1. By

Chevalley’s theorem there exists an algebraic representation ρ of G over Qσ
and a vector v that together define the Zariski closure of Λg as the stabilizer

of the line generated by v. Notice that ρ(ga−nkg−1)v converges projectively to

an eigendirection since a is of class A. As hk converges to the identity, we also

get that ρ(ghka
−nkg−1)v = ρ(γk)v converges projectively to an eigendirection

of ρ(gag−1). However, as ρ(γk)v ∈ Qσv for all k, this shows that v is an

eigenvector of ρ(gag−1) and that gag−1 belongs to the Zariski closure of Λg
as claimed. As this holds for all a ∈ A′ that are of class A, we get gA′g−1 <

M(QS). It follows that g−1CG(M)(QS)g < CG(QS)(A
′), and hence all Lyapunov

roots appearing in the Lie algebra of g−1CG(M)(QS)g must be proportional

to α. As L = [CG(M)◦, CG(M)◦]◦, we see that A′ ∩ g−1L(QS)g is finite.
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Since the group L is defined over Q, so is its unit normalizer N = N1
G(L).

In fact, by its very definition, N fixes a vector in a Q-representation of G
(namely the vector corresponding to the Lie algebra of L in an appropriate

wedge product of the Lie algebra of G). Since Γ is commensurable with G(OS),

it follows that ΓN(QS) is closed in X. Moreover we have seen that gA′g−1

commutes with L(QS) (since it is contained in M) and hence gA′g−1 < N(QS).

We have already noted that ga`αg
−1 ∈ L(QS) for some `, and it follows from

Lemma 7.2 that conjugating by this element preserves Haar measure on L(QS);

hence ga`αg
−1 ∈ N(QS). Thus a cocompact subgroup of gAg−1 is contained in

N(QS), which implies that gAg−1 < N(QS).

Since µ is A-ergodic, we may choose Γg ∈ suppµ such that the A-orbit

of Γg is dense in suppµ while gAg−1 < N(QS), which implies that ΓgA is con-

tained in the closed homogeneous set ΓN(QS)g. Therefore, we may conclude

that µ is supported on ΓN(QS)g. By Lemma 7.3 and the minimality assump-

tion on G in Theorem 1.3, we may conclude that N = G. But L is a nontrivial

normal subgroup of N (it is not equal to N since it does not contain A′), which

contradicts the assumption in Theorem 1.3 that G is almost simple. �

8. Unipotent invariance

In this section we will finish the proof of Theorem 1.3. By Proposition 7.1

we know that case (2) of Corollary 6.2 never takes place. Knowing that µ is

invariant under a unipotent subgroup we are going to use the classification

of measures that are invariant under unipotent one-parameter subgroups as

proven by Ratner [29], [30] and extended by Ratner [32] and Margulis and

Tomanov [23]. In fact, it will be convenient to use a refined version of these

results by Tomanov [36] that is more adapted to the arithmetic case (i.e., when

the lattice Γ is commensurable to G(QS)).

Proof of Theorem 1.3. In the case of a high entropy root α we have seen in

Theorem 5.1 that µ is invariant under a nontrivial subgroup of Uα. In the case

of a low entropy root α by Proposition 7.1 we know that the first possibility

(invariance) in Corollary 6.2 holds, which says that µ is invariant either under

a nontrivial subgroup of Uα or of U−α.

Now let Hu be the subgroup of G generated by all Zariski connected

subgroups of Uα for any α ∈ Φ′ that preserve µ. As Hu is generated by

unipotent one-parameter subgroups, we wish to apply the S-algebraic version

of Ratner’s measure classification theorem. However, we do not know whether

µ is ergodic under the Hu-action, so we have to apply the classification to

the Hu-ergodic components µEx where E is the σ-algebra of Hu-invariant Borel

subsets of X and analyze how this affects the measure µ. (A similar, more

general, analysis can be found in [24]; however, for completeness we include

the argument here.)
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Let x = Γg be such that the conditional measure µEx is an Hu-invariant and

ergodic probability measure. By [32] or [23], µEx is the normalized Lx-invariant

volume measure on a periodic orbit xLx of a closed subgroup Lx < G and [36]

gives us the additional information that there exists a connected Q-group Lg
so that Lx is a finite index subgroup of g−1Lg(QS)g containing Hu. Note that

the group Lx may not be unique as, e.g., a finite index subgroup would have

the same property, but that its (generalized) Lie algebra lx is well defined.

Let us analyze the dependence of the above groups on the base points.

Since Hu is A-normalized, we see that the σ-algebra E is invariant under A

and so the conditional measure µEx is mapped almost surely under a to µEa.x.

This implies that aLxa
−1 is commensurable with La.x and that Ada(lx) = la.x.

Now choose a ∈ A to be of class A and apply Poincaré recurrence. It follows

that along some subsequence lank .x should converge to lx, but since a is of

class A any limit point of lan.x = Adan(lx) has to be normalized by a. Since

A is generated by its elements of class A, we see that lx is constant along the

A-orbit and by ergodicity constant µ-almost everywhere. Let us denote the

common value by l0. This implies that every point x ∈ X has a representative

gx ∈ G so that x = Γgx and such that the Lie algebra of g−1
x Lgx(QS)gx equals

l0; and it is moreover clear that we can make such a choice so that the map

x 7→ gx is measurable. Since there are only countably many Q-subgroups of G,

there is some subset Z ⊂ X of positive µ measure and a connected Q-subgroup

L < G so that Lgx = L for every x ∈ Z. However by definition of gx, the Lie

algebra of g−1
x L(QS)gx equals l0 for every x ∈ Z. Set M = NG(L). Since the

Lie algebra determines the group (for connected algebraic groups), it follows

that gx ∈M(QS)gx′ for every x, x′ ∈ Z.

Since l0 is normalized by A, we have that gxAg
−1
x < M(QS) for x ∈ Z.

Hence fixing some x0 ∈ Z, we conclude that ΓMgx0 is an A-invariant set of pos-

itive µ measure (it contains Z), so by ergodicity µ is concentrated on this set.

Applying Lemma 7.3, and using the minimality condition on G in the

statement of Theorem 1.3, the only possibility that remains is G = M. Since

G is Q-almost simple and L is a nontrivial Q-group with LCM = G, we must

have that L = G.

We conclude that each Hu-ergodic component µEx is invariant under a

finite index subgroup Lx of G(QS). Set

L̃ =
⋂

a∈A/(A∩Lx)

aLxa
−1;

note that the intersection is finite since A ∩Lx is of finite index in A. Then L̃

is also a finite index subgroup of G(QS) and for every a ∈ A, we have that µEa.x
is L̃-invariant; hence by ergodicity µ is L̃ invariant. Since µ is also A-invariant,

µ is L = L̃A-invariant. By ergodicity, µ is supported on a single L-orbit. �
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