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Finite complex reflection
arrangements are K(π, 1)

By David Bessis

Abstract

Let V be a finite dimensional complex vector space and W ⊆ GL(V )

be a finite complex reflection group. Let V reg be the complement in V of

the reflecting hyperplanes. We prove that V reg is a K(π, 1) space. This

was predicted by a classical conjecture, originally stated by Brieskorn for

complexified real reflection groups. The complexified real case follows from

a theorem of Deligne and, after contributions by Nakamura and Orlik-

Solomon, only six exceptional cases remained open. In addition to solving

these six cases, our approach is applicable to most previously known cases,

including complexified real groups for which we obtain a new proof, based

on new geometric objects. We also address a number of questions about

π1(W\V reg), the braid group of W . This includes a description of periodic

elements in terms of a braid analog of Springer’s theory of regular elements.
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Notation

We save the letter i for indexing purposes and denote by
√
−1 a complex

square root of −1 fixed once and for all. If n is a positive integer, we denote

by ζn the standard n-th root of unity exp(2
√
−1π/n).

Many objects depend on a complex reflection group W , e.g., the braid

group B(W ). We often drop the explicit mention of W and write B for B(W ).

When n is an integer, we denote by Bn the braid group on n strings, together

with its standard generating set σ1, . . . ,σn−1; it is isomorphic to the braid

group of Sn in its permutation reflection representation (see Section 3). The

groups B and Bn appear simultaneously and should not be confused.

Introduction

Let V be a finite dimensional complex vector space and W ⊆ GL(V ) be a

complex reflection group. (All reflection groups considered here are assumed

to be finite.)

Let V reg be the complement in V of the reflecting hyperplanes. In the

case when W is a type A reflection group, Fadell and Neuwirth proved in the

early 1960s that V reg is a K(π, 1) space. (This is an elementary use of fibration

exact sequences; see [33].) Brieskorn conjectured in 1971 [17] that the K(π, 1)

property holds when W is a complexified real reflection group. It is not clear

who first stated the conjecture in the context of arbitrary complex reflection

groups. It may be found, for example, in Orlik-Terao’s book:

Conjecture 0.1 ([47, pp. 163, 259]). The universal cover of V reg is

contractible.

Our main result is a proof of this conjecture. It is clearly sufficient to

consider the case when W is irreducible, which we assume from now on. Irre-

ducible complex reflection groups have been classified by Shephard-Todd [53].

The complexified real case (i.e., Brieskorn’s conjecture) was quickly set-

tled by Deligne [29]. The rank 2 complex case is trivial. The case of the

infinite family G(de, e, n) was solved in 1983 by Nakamura [44]. (Here again,

the monomiality of the group allows an efficient use of fibrations.) A few

other cases immediately follow from the observation by Orlik-Solomon [46]

that certain discriminants of nonreal complex reflection groups are isomorphic

to discriminants of complexified real reflection groups.
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Combining all previously known results, the conjecture remained open for

six exceptional types: G24, G27, G29, G31, G33 and G34. We complete the

proof of the conjecture by dealing with these cases.

Let d1 ≤ · · · ≤ dn be the degrees of W . Let d∗1 ≥ · · · ≥ d∗n = 0 be the

codegrees of W . We say that W is a duality group if di + d∗i = dn for all i.

(By analogy with the real case, we then say that dn is the Coxeter number of

W , denoted by h.) We say that W is well generated if it may be generated

by n reflections. Orlik-Solomon observed, by inspecting the classification of

Shephard-Todd, that

W is a duality group ⇔W is well generated.

The first ten sections of this article are devoted to the proof of the following

theorem.

Theorem 0.2. Let W be a well-generated complex reflection group. The

universal cover of V reg is contractible.

The proof relies on combinatorial and geometric objects that are specific

to well-generated groups. It is essentially “case-free,” although a few combina-

torial lemmas still require some limited use of the Shephard-Todd classification.

Five of the six open cases are well generated: G24, G27, G29, G33 and G34.

The theorem also applies to the complexified real case, for which we obtain a

new proof, not relying on [29].

The remaining case, G31, is not well generated: it is an irreducible complex

reflection group of rank 4 that cannot be generated by less than 5 reflections.

Fortunately, we may view it as the centralizer of a 4-regular element (in the

sense of Springer [55]) in the group G37 (the complexification of the real group

of type E8). By refining the geometric and combinatorial tools introduced in

the study of the duality case, one obtains a relative version of Theorem 0.2:

Theorem 0.3. Let W be a well-generated complex reflection group. Let

d be a Springer regular number, let ζ be a primitive complex d-th root of unity,

and let w ∈W be a ζ-regular element. Let V ′ := ker(w− ζ), and let W ′ be the

centralizer of w in W , viewed as a complex reflection group acting on V ′ (see

[55]). Let V ′ reg be the associated hyperplane complement. The universal cover

of V ′ reg is contractible.

In particular, this applies to G31 and, based on earlier results, completes

the proof of the K(π, 1) conjecture.

Note that the case d = 1 in Theorem 0.3 is precisely Theorem 0.2. We

state the two results separately because it better reflects the organization of

the paper.

As by-products of our construction, we obtain new cases of several stan-

dard conjectures about the braid group of W , defined by

B(W ) := π1(W\V reg).
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Proving Theorem 0.2: general strategy. The general architecture of our

proof is borrowed from Deligne’s original approach, but the details are quite

different. Every construction here is an analogue of a construction from [29] but

relies on different combinatorial and geometric objects. As in [29], one studies

a certain braid monoid M , whose structure expresses properties of reduced

decompositions in W , and one proves that it is a lattice for the divisibility

order. (This amounts to saying that the monoid is Garside.) As in [29], one

uses semi-algebraic geometry to construct an open covering of the universal

cover of V reg, with the property that nonempty intersections are contractible.

This implies that the universal cover is homotopy equivalent to the nerve of the

covering. As in [29], one interprets this nerve as a certain flag complex obtained

from M . As in [29], the contractibility of the nerve follows from the lattice

property for M . However, our proof does not use the classical braid monoid

but rather a dual braid monoid ([3], [6]), whose construction is generalized

to all well-generated complex reflection groups. The construction of the open

covering is the most problematic step: by contrast with the real case, one

cannot rely on the notions of walls and chambers. The idea here is to work in

W\V reg and to use a generalization of the Lyashko-Looijenga morphism. This

morphism allows a description of W\V reg by means of a ramified covering of a

type A reflection orbifold. Classical objects like walls, chambers and galleries

can somehow be “pulled back,” via the Lyashko-Looijenga morphism, to give

semi-algebraic objects related to the dual braid monoid.

Lyashko-Looijenga coverings. The quotient map π : V reg � W\V reg is a

regular covering. Once a system of basic invariants (f1, . . . , fn) is chosen, the

quotient space W\V reg identifies with the complement in Cn of an algebraic

hypersurface H, the discriminant, of equation ∆ ∈ C[X1, . . . , Xn]. If W is an

irreducible duality complex reflection group, it is possible to choose (f1, . . . , fn)

such that

∆ = Xn
n + α2X

n−2
n + · · ·+ αn,

where α2, . . . , αn ∈ C[X1, . . . , Xn−1]. Let Y := SpecC[X1, . . . , Xn−1], together

with the natural map p : W\V reg → Y . We have an identification W\V '
Cn ∼→ Y × C sending the orbit v of v ∈ V to (p(v), fn(v)). The fiber of p over

y ∈ Y is a line Ly that intersects H at n points (counted with multiplicities).

Generically, the n points are distinct. Let K be the bifurcation locus, i.e., the

algebraic hypersurface of Y consisting of points y such that the intersection has

cardinality < n. Classical results from invariant theory of complex reflection

groups make it possible (and very easy) to generalize a construction by Looi-

jenga and Lyashko: the map LL (for “Lyashko-Looijenga”) sending y ∈ Y −K
to the subset {x1, . . . , xn} ⊆ C such that p−1(y)∩H = {(y, x1), . . . , (y, xn)} is

a regular covering of degree n!hn/|W | of the (centered) configuration space of
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n points in C. In particular, Y − K is a K(π, 1). This observation, which is

apparently new in the nonreal case, already allows a refinement of our earlier

results ([2], [8]) on presentations for the braid group of W .

The dual braid monoid. When W is complexified real, a dual braid monoid

was constructed in [3] (generalising the construction of Birman-Ko-Lee [11];

similar partial results were independently obtained by Brady and Watt [14]).

The construction was later generalized in [6] to the complex reflection group

G(e, e, n). Let R be the set of all reflections in a well-generated group W .

The idea is that the pair (W,R) has some “Coxeter-like” features. Instead of

looking at relations of the type

sts · · ·︸ ︷︷ ︸
ms,t

= tst · · ·︸ ︷︷ ︸
ms,t

,

one considers relations of the type

st = tu,

where s, t, u ∈ R. Let S be the set of all relations of this type holding in W .

In general, B(W ) 6' 〈R |S 〉, but it is possible to find natural subsets Rc ⊆ R

and Sc ⊆ S such that B(W ) ' 〈Rc |Sc 〉. (If W is complexified real, Rc = R.)

The elements of Sc are called dual braid relations. The choices of Rc and Sc
are natural once a Coxeter element c has been chosen. (The notion of Coxeter

element generalizes to the nonreal well-generated groups in terms of Springer’s

theory of regular elements.) Since the relations are positive, one may view

the presentation as a monoid presentation, defining a monoid M(W ). The

crucial property of this monoid is that it is a lattice for the divisibility order

or, more precisely, a Garside monoid. Following Deligne, Bestvina, T. Brady

and Charney-Meier-Whittlesey, the Garside structure provides a convenient

simplicial Eilenberg-McLane K(B(W ), 1) space ([29], [10], [13], [23]). The

earlier results on the dual braid monoid are improved here in two directions:

• The construction is generalized to the few exceptional cases (G24, G27, G29,

G33 and G34) not covered by [3] and [6].

• A new geometric interpretation is given, via the Lyashko-Looijenga cover-

ing. This interpretation is different from the one given in [3, §4].

The second improvement is the most important. It relies (so far) on a

counting argument, following and extending a property that, for the complexi-

fied real case, was conjectured by Looijenga and proved in a letter from Deligne

to Looijenga [30].

Tunnels. The classical theory of real reflection groups combines a “com-

binatorial” theory (Coxeter systems) and a “geometric” theory (expressed in

the language, invented by Tits, of walls, chambers, galleries, buildings . . . ).
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We expect the dual braid monoid approach to eventually provide effective sub-

stitutes for much of this classical theory. A first step in this direction is the

notion of a tunnel, which is a rudimentary geometric object replacing the clas-

sical notion of minimal gallery between two chambers. An important difference

with the classical geometric language is that tunnels are naturally visualized

in W\V (instead of V ). A tunnel T is a path in W\V reg drawn inside a single

line Ly (for some y ∈ Y ) and with constant imaginary part. It represents

an element bT of the dual braid monoid M . An element of M is simple if it

is represented by a tunnel. This notion coincides with the notion of a sim-

ple element associated with the Garside structure. In the classical approach,

for any chamber C, there are as many equivalence classes of minimal galleries

starting at C as simple elements. (This number is |W |.) Here the situation is

different: in a given Ly, not all simple elements are represented. The simple

elements represented in different Ly’s may be compared thanks to a huge “fat

basepoint” U that is both dense in W\V reg and contractible.

Proving Theorem 0.3. The strategy is the same as for Theorem 0.2. With

the notation of the theorem, the quotient space W ′\V ′ reg may be identified

with (W\V reg)µd for the natural action of the cyclic group µd. This action

induces an automorphism of B(W ) that, unfortunately, does not preserve the

dual braid monoid. However, it is possible to replace B(W ) by a sort of cate-

gorical barycentric subdivision, its d-divided Garside category Md, on which µd
acts by diagram automorphisms. This construction is explained in my separate

article [5] and recalled in Appendix B. The fixed subcategory Mµd
d is again

a Garside category. It should be thought of a dual braid category for B(W ′)

and gives rise to a natural simplicial space, whose realization is an Eilenberg-

MacLane space. As before, one shows that (W\V reg)µd is homotopy equivalent

to this simplicial model by studying the nerve of a certain open covering of

a certain model of the universal cover of (W\V reg)µd , very similar to the one

used for W\V reg (except that one has to replace the contractible “basepoint”

U by a family of nonoverlapping contractible “basepoints,” one for each object

of Mµd
d ). This involves replacing tunnels by a suitable notion of circular tun-

nels. Section 11 focuses the geometric aspects of the proof of Theorem 0.3; it

is probably fair to say that the true explanation lies in the properties of Md

and in the general theorems about periodic elements in Garside groupoids that

are explained in [5].

By-products.

Theorem 0.4. Braid groups of well-generated complex reflection groups

are Garside groups.

In the situation of Theorem 0.3, we prove that the braid group B(W ′) is

a weak Garside group, which is almost as good.



FINITE COMPLEX REFLECTION ARRANGEMENTS 815

In particular, B(W ) is torsion-free, admits nice solutions to the word and

conjugacy problems, is biautomatic, admits a finite K(π, 1) (our construction

provides an explicit one), and much more; see [26] for a quite complete refer-

ence. None of this was known for the six exceptional groups mentioned above.

Theorem 0.5 (Theorem 12.8). The center of the braid group of an irre-

ducible complex reflection group is cyclic.

Again, the cases of G24, G27, G29, G31, G33 and G34 are new. This settles

a conjecture by Broué-Malle-Rouquier [20].

For B(G29), B(G31), B(G33) and B(G34), no presentations were known

until now, although some conjectures made in [8] were supported by strong

evidence.

Theorem 0.6. The conjectural presentations for B(G29), B(G31), B(G33)

and B(G34) given in [8] are correct.

Combined with [7] and [8], this completes the longstanding task of finding

presentations for all generalized braid groups associated with finite complex

reflection groups. Theorem 0.6 is much easier than the previously mentioned

results and only relies on a minor improvement over [2] and [8]. However, the

material presented here allows for a more conceptual proof.

Periodic elements in braid groups. In connection with their work on

Deligne-Lusztig varieties (see [18] for more details), Broué-Michel predicted

the existence of an analog for braid groups of Springer’s theory of regular

elements. This amounts to a conjectural description of periodic elements (ele-

ments with a central power) and their centralizers. When W is the symmetric

group, periodic elements in B(W ) may be understood thanks to Kerékjártó’s

theorem on periodic homeomorphisms of the disk. In the more general setting

of spherical type Artin groups, finding a simple description of periodic elements

was an open question. We are able to solve these problems when W is well

generated: Theorem 12.4 contains a complete description of the roots of the

generator of the center of the pure braid group P (W ) and of their centralizers.

As for Theorem 0.3, the main conceptual ingredient towards the proof

of Theorem 12.4 is a general property of Garside categories, explained in our

separate paper [5]. What is done here is the minor step consisting of re-

interpreting the general Kerékjártó theorem for Garside categories from [5] in

terms of the S1-structure on the regular orbit space W\V reg.

Noncrossing partitions. A combinatorial by-product of our approach is a

general construction of generalized noncrossing partitions, associated to each

type of well-generated complex reflection groups.

In the classical cases An, Bn, Dn and, more generally, G(e, e, n), the

structure of M(W ) is understood in terms of suitable notions of noncrossing
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partitions ([1], [6], [7]). The dual braid monoid of an irreducible well-generated

complex reflection W gives rise to a lattice of generalized noncrossing parti-

tions, whose cardinal is the generalized Catalan number

Cat(W ) :=
n∏
i=1

di + dn
di

.

(The term “partition” should not be taken too seriously: except for the clas-

sical types, lattice elements do not have natural interpretations as actual

set-theoretic partitions.) It is likely that this combinatorial object has some

representation-theoretic interpretation. In the “badly-generated” case, Cat(W )

may fail to be an integer, and the natural substitute for NCP(W ) is the graph

of simple elements of the dual braid category.

1. Complex reflection groups, discriminants, braid groups

Let V be a vector space of finite dimension n. A reflection group in GL(V )

is a subgroup W generated by (generalized) reflections, i.e., elements whose

fixed subspace is a hyperplane. When the base field of V is C, we say that W

is a complex reflection group. We are only interested in finite reflection groups

and will always assume finiteness, unless otherwise specified.

Let W ⊆ GL(V ) be a complex reflection group. A system of basic invari-

ants for W is an n-tuple f = (f1, . . . , fn) of homogeneous generators of OWV ,

the algebra of W -invariant polynomial functions on V . A classical theorem

of Shephard-Todd [53] asserts that such tuples exist and that they consist of

algebraically independent terms. Set di := deg fi; these numbers are the de-

grees of W . Up to reordering, we may assume that d1 ≤ d2 ≤ · · · ≤ dn. The

sequence (d1, . . . , dn) is then independent of the choice of f .

Choosing a system of basic invariants f amounts to choosing a graded

algebra isomorphism OWV ' C[X1, . . . , Xn], fi 7→ Xi, where the indeterminate

Xi is declared homogeneous with degree di. Geometrically, this isomorphism

identifies the categorical quotient W\V with the affine space Cn.

Further features of the invariant theory of complex reflection groups in-

volve invariant vector fields and invariant differential forms on V .

Theorem 1.1 ([47, Lemma 6.48]). The OWV -modules (OV ⊗ V )W and

(OV ⊗ V ∗)W are free of rank n.

If f = (f1, . . . , fn) is a system of basic invariants, df := (df1, . . . , dfn) is

a OWV -basis for (OV ⊗ V ∗)W . Being homogeneous, the module (OV ⊗ V )W

admits a homogeneous basis.

Definition 1.2. A system of basic derivations for W is a homogeneous OWV -

basis ξ = (ξ1, . . . , ξn) of (OV ⊗ V )W , with deg(ξ1) ≥ deg(ξ2) ≥ · · · ≥ deg(ξn).

The sequence (d∗1, . . . , d
∗
n) := (deg(ξ1), . . . ,deg(ξn)) is the sequence of

codegrees of W . (It does not depend on the choice of ξ.)
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Note that, as in [2], we label codegrees in decreasing order, which is slightly

unusual. When W is a complexified real reflection group, we have V ' V ∗ as

W -modules; thus d∗i = dn−i+1 − 2 for all i. This relation is specific to the real

situation and is not relevant here.

The Euler vector field on V is invariant and of degree 0. Thus d∗n = 0.

Invariant vector fields define vector fields on the quotient variety. Let f

be a system of basic invariants and ξ be a system of basic derivations. For

j ∈ {1, . . . , n}, the vector field ξj defines a vector field ξj on W\V . Since
∂
∂f1

, . . . , ∂
∂fn

is a OWV -basis of the module of polynomial vector fields on W\V ,

we have

ξj =
n∑
i=1

mi,j
∂

∂fi
,

where the mi,j are uniquely defined elements of OWV .

Definition 1.3. The discriminant matrix of W (with respect to f and ξ)

is M := (mi,j)i,j .

By weighted homogeneity, one has

Lemma 1.4. For all i, j, wt(mi,j) = di + d∗j .

The vector space V decomposes as a direct sum
⊕

i Vi of irreducible rep-

resentations of W . Denote by Wi the irreducible reflection group in GL(Vi)

generated by (the restriction of) the reflections in W whose hyperplanes con-

tain
⊕

j 6=i Vj . We have W ' ∏
iWi. Viewing W and the Wi’s as reflection

groups, i.e., groups endowed with a reflection representation, it is natural to

actually write W =
⊕
iWi.

We denote by A the arrangement of W , i.e., the set of reflecting hyper-

planes of reflections in W . We set

V reg := V −
⋃
H∈A

H.

Denote by p the quotient map V �W\V . Choose a basepoint v0 ∈ V reg.

Definition 1.5 ([20]). The braid group ofW is B(W ) :=π1(W\V reg, p(v0)).

Later on, when working with well-generated reflection groups, we will

slightly upgrade this definition by replacing the basepoint by a convenient

contractible subspace of W\V reg (see Definition 6.4).

To write explicit equations, one chooses a system of basic invariants f . The

discriminant ∆(W, f) ∈ C[X1, . . . , Xn] is the reduced equation of p(
⋃
H∈AH)

via the identification OWV ' C[X1, . . . , Xn].

One easily sees that B(W ) ' ∏iB(Wi). More generally, all objects stud-

ied here behave “semi-simply,” and we may restrict our attention to irreducible

complex reflection groups.
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Since B(W ) is the fundamental group of the complement of an alge-

braic hypersurface, it is generated by particular elements called generators-

of-the-monodromy or meridians. (See, for example, [20] or [2].) They map

to reflections under the natural epimorphism B(W ) → W . The diagrams

given in [20] symbolize presentations whose generators are generators-of-the-

monodromy (except for the six exceptional types for which no presentation

was known).

Definition 1.6. The generators-of-the-monodromy of B(W ) are called braid

reflections.

This terminology was suggested by Broué. It is actually tempting to sim-

ply call them reflections: since they generate B(W ), the braid group appears

to be some sort of (infinite) “reflection group.” This guiding intuition is quite

effective.

Another natural feature of B(W ) is the existence of a natural length func-

tion, which is the unique group morphism

l : B(W )→ Z
such that, for all braid reflection s ∈ B(W ), l(s) = 1.

Consider the intersection lattice L(A) := {⋂H∈AH|A ⊆ A}. Elements of

L(A) are called flats. It is standard to endow L(A) with the reversed-inclusion

partial ordering:
∀L,L′ ∈ L(A), L ≤ L′ :⇔ L ⊇ L′.

For L ∈ L(A), we denote by L0 the complement in L of the flats strictly

included in L. The (L0)L∈L(A) form a stratification S of V . We consider the

partial ordering on S defined by L0 ≤ L′0 :⇔ L ≤ L′. This is a degeneracy

relation:
∀L ∈ L(A), L0 = L =

⋃
S∈S,L0≤S

S.

Since W acts on A, it acts on L(A) and we obtain a quotient stratification

S of W\V called discriminant stratification.

Proposition 1.7 ([47, Cor. 6.114]). Let v ∈ V . The tangent space

to the stratum of S containing v is spanned by the vectors ξ1(v), . . . , ξn(v).

The tangent space to the stratum of S containing v is spanned by the vectors

ξ1(v), . . . , ξn(v).

Another chapter of the classical invariant theory of complex reflection

groups is Springer’s theory of regular elements:

Definition 1.8. Let W ⊆ GL(V ) be a complex reflection group. Let ζ be a

complex root of unity. An element w ∈W is ζ-regular if ker(w−ζ)∩V reg 6= ∅.

The eigenvalue ζ is then called a regular eigenvalue for W and its order called

a regular number for W .
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Note that, since W acts freely on V reg, a ζ-regular element must have the

same order as ζ. The regularity of ζ only depends on its order d since the k-th

power of a ζ-regular element is ζk-regular.

The following theorem compiles some of the main features.

Theorem 1.9. Let W ⊆ GL(V ) an irreducible complex reflection group,

with degrees d1, . . . , dn and codegrees d∗1, . . . , d
∗
n.

(1) Let d be a positive integer. Set

A(d) := {i = 1, . . . , n| d|di} and B(d) := {i = 1, . . . , n| d|d∗i }.

Then |A(d)| ≤ |B(d)|, and d is regular if and only if |A(d)| = |B(d)|.
(2) Let w be a ζ-regular element of order d. Let V ′ := ker(w − ζ). The cen-

tralizer W ′ := CW (w), viewed in its natural representation in GL(V ′), is

a complex reflection group with degrees (di)i∈A(d) and codegrees (d∗i )i∈B(d).

(3) Let w be ζ-regular element of order d. Then W ′\V ′ ' (W\V )µd and

W ′\V ′ reg ' (W\V reg)µd (where the µd-action is the quotient action of the

scalar multiplication on V ).

Statement (2) was proved by Springer in his seminal paper [55] (except

for the part about codegrees, first observed by Denef-Loeser [31] and then

conceptually proved by Broué [19, 5.19 (4)]). Statement (3) was proved inde-

pendently by Lehrer and Denef-Loeser. Statement (1) was initially observed

by Lehrer-Springer on a case-by-case basis; a conceptual proof was given by

Lehrer-Michel [40].

Example 1.10. Let W := G37 = W (E8). It is a well-generated complex

reflection group in GL8(C), whose degrees are

2, 8, 12, 14, 18, 20, 24, 30.

By duality, the codegrees are

0, 6, 10, 12, 16, 18, 22, 28.

The integer 4 is regular. The centralizer W ′ is a complex reflection group of

type G31 . Its degrees are

8, 12, 20, 24,

while the codegrees are

0, 12, 16, 28.

It is not a duality group, and it is not well generated (see next section).
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2. Well-generated complex reflection groups

Irreducible complex reflection groups were classified fifty years ago by

Shephard and Todd [53]. There is an infinite family G(de, e, n), where d, e, n

are positive integers, and 34 exceptions G4, . . . , G37. Let us distinguish three

subclasses of complex reflection groups:

• (complexified) real reflection groups, obtained by scalar extension from

reflection groups of real vector spaces;

• 2-reflection groups, generated by reflections of order 2;

• well-generated reflection groups, complex reflection groups W ⊆ GL(V )

that can be generated by dimC V/V
W reflections, where V W := {v ∈

V |∀w ∈W,wv = v}.

Real reflection groups are both 2-reflection groups and well generated. For

nonreal groups, any combination of the other two properties may hold.

As far as the K(π, 1) conjecture and properties of braid groups are con-

cerned, it is enough to restrict one’s attention to 2-reflection groups:

Definition 2.1. Let W ⊆ GL(V ) and W ′ ⊆ GL(V ′) be complex reflection

groups. We say that W and W ′ are isodiscriminantal if one may find systems of

basic invariants f (resp. f ′) for W (resp. W ′) such that ∆(W, f) = ∆(W ′, f ′).

When this happens, W\V reg 'W ′\V ′ reg and B(W ) ' B(W ′).

Theorem 2.2. Any complex reflection group is isodiscriminantal to a

complex 2-reflection group.

Proof. This may be observed on the classification and was certainly known

to experts. In [20], Broué-Malle-Rouquier associate to each complex reflection

group a diagram symbolizing a presentation by generators and relations; they

notice that the degrees and codegrees are invariants of the underlying braid

diagram (removing torsion relations from the presentation). Actually, the braid

diagrams are invariants of isodiscriminantality classes. (Compare [20] with

[46].) So the theorem can be rephrased as: for any diagram in the tables of

Broué-Malle-Rouquier, the diagram with the same braid relations but where

all torsion relations have order 2 is also in the tables; this is an easy check.

�

Remark 2.3. The work of Couwenberg-Heckman-Looijenga [25] could pos-

sibly be adapted to provide a direct argument. Let us sketch a conjectural way

to proceed. All references and notation are from [25]. Assume that W is not

a 2-reflection group. For each H ∈ A, let eH be the order of the pointwise

stabilizer WH and set κH := 1− eH/2. Consider the Dunkl connection ∇ with

connection form
∑
H∈A ωH ⊗κHπH , as in Example 2.5. Since eH ≥ 2, we have

κH ≤ 0. In particular, κ0 = 1/n
∑
H∈A κH ≤ 0 (Lemma 2.13) and we are in

the situation of loc. cit., Section 5. In many cases, this suffices to conclude.
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The problem is that, even though at least some eH have to be > 2, it is possible

that A contains several orbits, some of them with eH = 2. To handle this, one

has to enlarge the “Schwarz symmetry group” of loc. cit., Section 4.

The importance of the distinction between well-generated and “badly-

generated” groups was first pointed out by Orlik-Solomon, who observed in

[45] a coincidence with invariant-theoretical aspects. Their observations may

be refined and completed as follows.

Theorem 2.4. Let W be an irreducible complex reflection group. The

following assertions are equivalent :

(i) W is well generated.

(ii) For all i ∈ {1, . . . , n}, di + d∗i = dn.

(iii) For all i ∈ {1, . . . , n}, di + d∗i ≤ dn.

(iv) For any system of basic invariants f , there exists a system of basic deriva-

tions ξ such that the discriminant matrix decomposes as M = M0 +XnM1,

where M0,M1 are matrices with coefficients in C[X1, . . . , Xn−1] and M1 is

lower triangular with nonzero scalars on the diagonal.

(v) For any system of basic invariants f , we have ∂n∆(W,f)
(∂Xn)n ∈ C×. (That is,

∆(W,f), viewed as a polynomial in Xnwith coefficients in C[X1, . . . , Xn−1],

is monic of degree n.)

The matrix M1 from assertion (iv) is an analogue of the matrix J∗ from

[52, p. 10]. Assertion (iv) itself generalizes the nondegeneracy argument for

J∗, which is an important piece of the construction of Saito’s “flat structure.”

Proof. (i)⇒ (ii) was observed in [45] inspecting the classification. We still

have no good explanation.

(ii) ⇒ (iii) is trivial.

(iii) ⇒ (v). Let h := dn. A first step is to observe that, under as-

sumption (iii), h is a regular number. Indeed, condition (iii) implies, for any

i = 1, . . . , n− 1, that 0 < di < h and 0 < d∗i < h, thus that exactly one

degree (dn) and one codegree (d∗n) are multiples of h, thus h is regular (The-

orem 1.9(1)). Since h is regular and divides only one degree, we may use [2,

Lemma 1.6(ii)] to obtain assertion (v): the discriminant is Xn-monic, and by

weighted-homogeneity it must be of degree n.

(iii) ⇒ (iv) is a refinement of the previous discussion. Each entry mi,j of

the matrix M is weighted-homogeneous of weight di + d∗j ≤ dn + d∗1 = 2h− d1

< 2h; since Xn has weight h, degXnmi,j ≤ 1. This explains the decomposition

M = M0 + XnM1, where M0 and M1 have coefficients in OY . If i < j and

di < dj , then di + d∗j < dj + d∗j = h; thus degXnmi,j = 0. The matrix M1

is almost lower triangular, i.e., lower triangular except that there could be

nonzero terms above the diagonal in square diagonal blocks corresponding to
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successive equal degrees. (Successive degrees may indeed be equal, as in the

example of type D4, where the degrees are 2, 4, 4, 6.)

Let i0 < j0 such that di0 = di0+1 = · · · = dj0 . (Looking at the classi-

fication, one may observe that this forces j = i + 1; this observation is not

used in the argument below.) For all i, j ∈ {i0, . . . , j0}, we have di + d∗j = h.

By weighted homogeneity, this implies that the corresponding square block of

M1 consists of scalars. The basic derivations ξi0 , . . . , ξj0 all have the same de-

gree; thus one is allowed to perform Gaussian elimination on the corresponding

columns of M . Thus, up to replacing ξ by another system of basic derivations

ξ′, we may assume that M1 is lower triangular.

The diagonal terms of M1 must be scalars, once again by weighted homo-

geneity. Assuming (iii), we already know that (v) holds. The determinant of

M is ∆(X, f); (v) implies that the coefficient of Xn
n is nonzero. This coefficient

is the product of the diagonal terms of M1. We have proved (iv).

(iv) ⇒ (v) is trivial.

(v) ⇒ (i) follows from the main result in [2]. �

The following notion was considered in [50] for real reflection groups.

Definition 2.5. A system of basic derivations is flat (with respect to f)

if the discriminant matrix may be written M = M0 + Xn Id, where M0 is a

matrix with coefficients in C[X1, . . . , Xn−1].

Corollary 2.6. Let W be a well-generated irreducible reflection group,

together with a system of basic invariants f . There exists a flat system of basic

derivations.

Proof. Let ξ be any system of basic derivations. Write M = M0 +XnM1,

as in characterization (iv) from the above theorem. The matrix M1 is invertible

in GLn(C[X1, . . . , Xn−1]). The matrix M−1
1 M = M−1

1 M0 + Xn Id represents

a flat system of basic derivations. (Weighted homogeneity is preserved by the

Gaussian elimination procedure.) �

Contrary to what happens with real reflection groups, we may not use the

identification V ' V ∗ to obtain a “flat system of basic invariants.”

Irreducible groups that are not well generated may always be generated

by dimV +1 reflections. This fact has been observed long ago, by case-by-case

inspection, but no general argument is known. In some sense, these badly-

generated groups should be thought of as affine groups. The simplest example

of a non-well-generated group is the group G(4, 2, 2), generated byÇ
−1 0

0 1

å
,

Ç
0 1

1 0

å
,

Ç
0 −i
i 0

å
.

Among high-dimensional exceptional complex reflection groups, only G31 is

badly generated (see Example 1.10).
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2-reflection groups Other well-generated groups

Real G(1, 1, n) (An−1) G4, G8, G16, G25, G32

series G(2, 1, n) (Bn−1) G(d, 1, n), G5, G10, G18, G26

Real/complex

series
G(e, e, n) (contains Dn and I2(e)) G6, G9, G14, G17, G20, G21

Real G23 (H3), G28 (F4), G30 (F4)

exceptions G35 (E6), G36 (E7), G37 (E8)

Complex

exceptions
G24, G27, G29, G33, G34

Table 1. Irreducible well-generated complex reflection groups.

In the sequel, several arguments are case-by-case. The list of irreducible

well-generated complex reflection groups is given in Table 1. The actual num-

ber of cases to consider depends on the type of result:

• Thanks to Theorem 2.2, for any statement about W\V reg and its topol-

ogy, one may restrict one’s attention to groups generated by involutive

reflections, which are listed in the first column of the table.

• Some results involve the actual structure of W (e.g., Proposition 7.6),

and groups with higher order reflections have to be considered. These

cases are listed in the second column of the table, on the same line as the

corresponding 2-reflection groups (see Theorem 2.2).

Lemma 2.7. Let W ⊆ GL(V ) be a well-generated complex reflection group.

Let v ∈ V . Let

Vv :=
⋂

H∈A, v∈H
H,

Wv := {w ∈W |wv = v}.

Then Wv may be generated by dimC V/Vv reflections. In particular, Wv is

again a well-generated complex reflection group.

Proof. The fact that Wv is again a complex reflection group is a classical

theorem due to Steinberg. The fact that Wv is again well generated is easy

to check on the classification. (It follows, for example, from Broué-Malle-

Rouquier’s observation that their diagrams in [20] provide generating systems

for representatives of all conjugacy classes of Wv; when W is real, no case-by-

case is needed, since Wv is again real and thus well generated.) �

3. Symmetric groups, configurations spaces

and classical braid groups

This section introduces some basic terminology and notation. Everything

here is classical and elementary.
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Let n be a positive integer. The symmetric group Sn may be viewed as a

reflection group, acting on Cn by permuting the canonical basis. This repre-

sentation is not irreducible. Let H be the hyperplane of equation
∑n
i=1Xi = 0

(where X1, . . . , Xn is the dual canonical basis of Cn). It is preserved by Sn,

which acts on it as an irreducible complex reflection group.

We have C[X1, . . . , Xn]Sn = C[σ1, . . . , σn] and OSn
H = C[σ1, . . . , σn]/σ1,

where σ1, . . . , σn are the elementary symmetric functions on X1, . . . , Xn. Set

En := Sn\Cn = SpecC[σ1, . . . , σn]

and

En := Sn\H = SpecC[σ1, . . . , σn]/σ1.

These spaces have more convenient descriptions in terms of multisets.

Recall that a multiset is a set S (the support of the multiset) together

with a map m : S → Z≥1 (the multiplicity). The cardinality of such a multiset

is
∑
s∈Sm(s). (It lies in Z≥0 ∪ {∞}.) If (S,m) and (S′,m′) are two multisets

and if S, S′ are subsets of a common ambient set, then we may define a mul-

tiset (disjoint) union (S,m) ∪ (S′,m′), whose support is S ∪ S′ and whose

multiplicity is m+m′ (where m, resp. m′, is extended by 0 outside S, resp S′).

If (s1, . . . , sn) is a sequence of elements of a given set S, we use the notation

{{{s1, . . . , sn}}} (with brackets in bold font) to refer to the multiset
⋃n
i=1({si}, 1),

i.e., the multiset consisting of the si’s “taken with multiplicities.”

Let (x1, . . . , xn) ∈ Cn. The associated Sn-orbit is uniquely determined

by {{{x1, . . . , xn}}}. This identifies E′n with the set of multisets of cardinality n

with support in C. (Such multisets are called configurations of n points in

C.) The subvariety En, defined by σ1 = 0, consists of centered configurations,

i.e., configurations {{{x1, . . . , xn}}} satisfying
∑n
i=1 xi = 0. The natural inclusion

En ⊆ E′n admits the retraction ρ defined by

ρ({{{x1, . . . , xn}}}) :=

®®®
x1 −

n∑
i=1

xi/n, . . . , xn −
n∑
i=1

xi/n

´́́
.

Algebraically, this corresponds to the identification of C[σ1, . . . , σn]/σ1 with

C[σ2, . . . , σn].

We find it convenient to use configurations in E′n to represent elements of

En, implicitly working through ρ. For example, in the proof of Proposition 9.3,

it makes sense to describe a deformation retraction of a subspace of En to

a point in terms of arbitrary configurations because the construction, which

only implies the relative values of the xi’s, is compatible with ρ. We adopt

this viewpoint from now on, without further justifications. (Compatibility will

always be obvious.)
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Consider the lexicographic total ordering of C: if z, z′ ∈ C, we set

z ≤ z′ :⇔

re(z) < re(z′) or

re(z) = re(z′) and im(z) ≤ im(z′).

Definition 3.1. The ordered support of an element of En is the unique

sequence (x1, . . . , xk) such that the set {x1, . . . , xk} is the support and x1 <

x2 < · · · < xk.

We may uniquely represent an element of En by its ordered support

(x1, . . . , xk) and the sequence (n1, . . . , nk) of multiplicities at x1, . . . , xk.

The regular orbit space Ereg
n := Sn\Hreg consists of those multisets whose

support has cardinality n (or, equivalently, whose multiplicity is constantly

equal to 1). More generally, the strata of the discriminant stratification of En
are indexed by partitions of n: the stratum Sλ associated with a partition λ =

(λ1, λ2, . . . , λk), where the λj ’s are integers with λ1 ≥ λ2 ≥ · · · ≥ λk > 0 and∑k
j=1 λj = n, consists of configurations whose supports have cardinality k and

whose multiplicity functions take the values λ1, . . . , λk (with multiplicities).

The braid group Bn associated with Sn is the usual braid group on n

strings. We need to be more precise about our choice of basepoint. For this

purpose, we define

Egen
n

as the subset of Ereg
n consisting of configurations of n points with distinct real

parts. (This is the first in a series of definitions of semi-algebraic nature.) It

is clear that

Lemma 3.2. Egen
n is contractible.

Using our topological conventions, we set

Bn := π1(Ereg
n , Egen

n ).

This group admits a standard generating set (the one considered by Artin), con-

sisting of braid reflections σ1, . . . ,σn−1 defined as follows. (We used bold fonts

to avoid confusion with the elementary symmetric functions.) Let (x1, . . . , xn)

be the ordered support of a point in Egen
n . Then σi is represented by the

following motion of the support:

• • • • •
•

•xi xi+1x1 xn

--mm

Artin’s presentation for Bn is

Bn = 〈σ1, . . . ,σn−1 |σiσi+1σi = σi+1σiσi+1,σiσj = σjσi if |i− j| > 1〉 .

The following definition requires a compatibility condition, which is a classical

elementary consequence of the above presentation.
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Definition 3.3. Let G be a group. The (right) Hurwitz action of Bn on

Gn is defined by

(g1, . . . , gi−1, gi, gi+1, gi+2, . . . , gn) · σi
:= (g1, . . . , gi−1, gi+1, g

−1
i+1gigi+1, gi+2, . . . , gn)

for all (g1, . . . , gn) ∈ Gn and all i ∈ {1, . . . , n− 1}.

This action preserves the fibers of the product map Gn → G, (g1, . . . , gn)

7→ g1 · · · gn.

4. The affine Van Kampen method

This sections contains some generalities about Zariski-Van Kampen tech-

niques. Let P ∈ C[X1, . . . , Xn] be a reduced polynomial. What we have in

mind is that P is the discriminant of a complex reflection group, but it does

not cost more to work in a general context. Let H be the hypersurface of

Cn defined by P = 0. Van Kampen’s method is a strategy for computing a

presentation of

π1(Cn −H).

We assume that P actually involves Xn and write

P = α0X
d
n + α1X

d−1
n + α2X

d−2
n + · · ·+ αd,

where d is a positive integer (the degree in Xn) and α0, . . . , αd are elements of

C[X1, . . . , Xn−1], with α0 6= 0. We say that P is Xn-monic if α0 is a scalar;

when one is only interested in the hypersurface defined by P , it is convenient to

then renormalize P to have α0 = 1. We denote by DiscXn(P ) the discriminant

of P with respect to Xn, i.e., the resultant of P and ∂P
∂Xn

.

This discriminant is a nonzero element of C[X1, . . . , Xn−1] and defines a

hypersurface K in Y := SpecC[X1, . . . , Xn−1] ' Cn−1. Let p be the natural

projection SpecC[X1, . . . , Xn]� Y .

Definition 4.1. The bifurcation locus of P (with respect to the projection p)

is the algebraic hypersurface K ⊆ Y defined by the equation DiscXn(P ) = 0.

Definition 4.2. A point y ∈ Y is said to be generic if it is not in K; a

generic line of direction Xn is the fiber Ly of p over a generic point y ∈ Y .

We represent points of Cn by pairs (y, z), where z is the value of the Xn

coordinate and y is the image of the point under p. Let E := p−1(Y − K) ∩
(Cn −H). The projection p restricts to a locally trivial fibration E → Y −K,

whose fibers are complex lines with d points removed. Choose a basepoint

(y, z) ∈ E, and let F be the fiber containing (y, z).

The following basic lemma was brought to my attention by Deligne and

should certainly have been included in my earlier paper [2].
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Lemma 4.3. If P is Xn-monic, the fibration p : E → Y −K is split.

Proof. Assume α0 = 1. Consider φ : Y → C, y 7→ 1 +
∑d
i=1 |αi(y)|.

Then the map Y − K → E, y 7→ (y, φ(y)) is a splitting since by construction

P (y, φ(y)) is always nonzero. �

As a consequence, the fibration long exact sequence breaks into split short

exact sequences. Consider the commutative diagram

1 // π1(F, (y, z))
ι∗ //

α ))

π1(E, (y, z))
p∗ //

β

��

π1(Y −K, y) // 1

π1(Cn −H, (y, z)),

whose first line is a split exact sequence (the end of the fibration exact se-

quence); β comes from the inclusion of spaces.

We are in the context of [2, Th. 2.5], from which we conclude that α

is surjective. We can actually be more precise and write a presentation for

π1(Cn−H, (y, z)). The semi-direct product structure of π1(E, (y, z)) defines a

morphism Φ : π1(Y −K, y)→ Aut(π1(F, (y, z))).

Theorem 4.4 (Van Kampen presentation). Let f1, . . . , fd be generators of

π1(F, (y, z)) ' Fd (the free group on d generators). Let g1, . . . , gm be generators

of π1(Y −K, y) with associated automorphisms φj := Φ(gj). We have

π1(Cn −H, (y, z)) ' 〈f1, . . . , fd |fi = φj(fi), 1 ≤ i ≤ d, 1 ≤ j ≤ m〉 .

Proof. Using the semi-direct product structure, we have the presentation

π1(E, (y, z)) ' 〈f1, . . . , fd, g1, . . . , gm |gjfi = φj(fi)gj , 1 ≤ i ≤ d, 1 ≤ j ≤ m〉 .

One concludes by observing that g1, . . . , gm may be chosen to be meridi-

ans (“generators-of-the-monodromy”) around the irreducible components of

p−1(K); by [2, Lemma 2.1.(ii)], kerβ is generated as a normal subgroup by

those meridians. �

Corollary 4.5 (The explicit Zariski 2-plane section). Let P be a reduced

polynomial in C[X1, . . . , Xn]. Let a1, . . . , an−2 ∈ C. Assume that

(i) P is Xn-monic.

(ii) The coefficients of DiscXn(P ) viewed as polynomials with variable Xn−1

and coefficients in C[X1, . . . , Xn−2] are altogether coprime. (In particular,

this holds when DiscXn(P ) is Xn−1-monic.)

(iii) DiscXn−1(DiscXn(P ))(a1, . . . , an−2) 6= 0.

Let H be the hypersurface of Cn with equation P = 0, and let Π be the affine

2-plane in Cn defined by X1 = a1, . . . , Xn−2 = an−2. Then the map Π∩ (Cn−
H) ↪→ Cn −H is a π1-isomorphism.
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Proof. Consider the affine line p(Π) ⊆ Y . Condition (iii) expresses that

p(Π) is a generic line of direction Xn−1 in Y and, under condition (ii), [2,

Th. 2.5], the injection p(Π)∩ (Y −K) ↪→ Y −K is π1-surjective. In particular,

in Theorem 4.4, we can choose loops drawn in Π ∩ E to represent the lifted

generators of π1(Y −K). �

Combined with our earlier work with Jean Michel, this corollary suffices

to prove Theorem 0.6, since the 2-plane sections described in [8] satisfy condi-

tions (i)–(iii). Presentations for π1(Π ∩ (Cn −H)) were obtained in [8], using

our software package VKCURVE. At this stage, Theorem 0.6 relies on brutal

computations. The sequel will provide a much more satisfying approach at

least for W 6= G31.

5. Lyashko-Looijenga coverings

Let W be an irreducible well-generated complex reflection group, together

with a system of basic invariants f and a flat system of basic derivations ξ with

discriminant matrix M0 +Xn Id. Expanding the determinant, we observe that

∆f = det(M0 +Xn Id) = Xn
n + α2X

n−2
n + α3X

n−3
n + · · ·+ αn,

where αi ∈ C[X1, . . . , Xn−1]. Since ∆f is weighted homogeneous of total weight

nh for the system of weights wt(Xi) = di, each αi is weighted homogeneous of

weight ih.

Definition 5.1. The (generalized) Lyashko-Looijenga morphism is the mor-

phism LL from Y = SpecC[X1, . . . , Xn−1] to En ' SpecC[σ2, . . . , σn] defined

by σi 7→ (−1)iαi.

This is of course much better understood in the following geometric terms.

Via the choice of a system of basic invariants, we have chosen an isomorphism

W\V ' Y × C.
Let v ∈ V . The orbit v ∈W\V is represented by a pair

(y, z) ∈ Y × C,
where z = fn(v) and y is the point in Y with coordinates (f1(v), . . . , fn−1(v)).

This encoding of points in W\V will be used throughout this article. As in

the previous section, we study the space W\V ' Y ×C according to the fibers

of the the projection p : W\V → Y, (y, z) 7→ y.

Definition 5.2. For any point y in Y , we denote by Ly the fiber of the

projection p : W\V → Y over y.

For any y ∈ Y , the affine line Ly intersects the discriminant H in n points

(counted with multiplicities), whose coordinates are

(y, x1), . . . , (y, xn),
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where {{{x1, . . . , xn}}} is the multiset of solutions in Xn of ∆f = 0 where each αi
has been replaced by its value at y. We have

LL(y) = {{{x1, . . . , xn}}}.

The bifurcation locus K ⊆ Y (see the previous section) corresponds pre-

cisely to those y such that LL(y) contains multiple points.

The main theorem of this section generalizes earlier results from [42]:

Theorem 5.3. The polynomials α2, . . . , αn ∈ C[X1, . . . , Xn−1] are al-

gebraically independent, and C[X1, . . . , Xn−1] is a free graded C[α2, . . . , αn]-

module of rank n!hn/|W |. As a consequence, LL is a finite morphism. It

restricts to an unramified covering Y −K� Ereg
n of degree n!hn/|W |.

I thank Eduard Looijenga for precious help with the theorem. A prior

version of this text contained a gap (the key Lemma 5.6), and the very nice

argument below is due to him.

Lemma 5.4. Let v ∈ V with image v ∈W\V . Let

Vv :=
⋂

H∈A, v∈H
H.

The multiplicity of H at v is dimC V/Vv .

Proof. At v=0, the multiplicity is the valuation of ∆f , which is indeed n.

When v 6= 0, we consider the parabolic subgroup Wv := {w ∈W |wv = v}.
By Lemma 2.7, Wv is again a well-generated complex reflection group. The

quotient map
⋃
H∈AH � H = W\(⋃H∈AH) factors through

⋃
H∈AH �

Wv\(
⋃
H∈AH). Because Wv\(

⋃
H∈AH)�W\(⋃H∈AH) is unramified over v,

the multiplicity of H at v coincides with the multiplicity of Wv\(
⋃
H∈AH) at

the image ṽ of v. Around ṽ, Wv\(
⋃
H∈AH) is the same as Wv\(

⋃
H∈A, v∈H H).

This hypersurface is a direct product of Vv with the discriminant of Wv. The

multiplicity at ṽ is the multiplicity at the origin of the discriminant of Wv.

After reduction to the irreducible case, we apply the already solved case: the

multiplicity is the rank of Wv or, in other words, dimC V/Vv. �

Remark 5.5. As was suggested by Referee #4, Lemma 5.4 is actually

a characterization of well-generated reflection groups: as pointed out in [2,

Prop. 4.2], the minimum number of reflections needed to generate an irre-

ducible complex reflection group is equal to the valuation of the discriminant

(i.e., the degree of the smallest degree monomial), which is the same as the

multiplicity at 0: so when W is not well generated, the multiplicity at 0 is

greater than dimC(V ).

Lemma 5.6. LL−1(0) = {0}.

In this statement, the 0 on the left denotes the multiset with n copies of 0.
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Proof. Let C be the tangent cone to H in Cn ' Y × C. It is a closed

subvariety of the tangent bundle to Cn. Because H is quasi-homogeneous and

for all i ∈ {1, . . . , n − 1},wt(Xn) > wt(Xi), the cone C is “horizontal” at 0.

In particular, the (fiber over 0 of the tangent cone to the) “vertical” line L0 of

equation X1 = · · · = Xn−1 = 0 is not in C.

Let y = (x1, . . . , xn−1) ∈ LL−1(0), i.e., such that the line Ly with X1 =

x1, . . . , Xn−1 = xn−1 intersects H in only one point, (y, 0) ∈ Y × C. We want

to prove that y = 0. Because H is quasi-homogeneous, it is enough to work

in a neighborhood of the origin. In particular, we may assume that y is close

enough to 0 for Ly to still be outside C. Using a refined Bézout theorem ([34,

Cor. 12.4]), we have

i((y, 0), Ly.H;Cn) = m(y,0)(H),

where

• i((y, 0), Ly.H;Cn) is the intersection multiplicity of H and Ly at (y, 0).

This is the order of 0 as a root of the polynomial ∆f |X1=x1,...,Xn−1=xn−1 .

By assumption, this is n.

• m(y,0)(H) is the multiplicity of H at (y, 0). Let v be a preimage of (y, 0)

in V . By Lemma 5.4, m(y,0)(H) = dimC V/Vv.

Thus dimC V/Vv = n, Vv = 0, Wv = W and v = 0. �

Because LL is quasi-homogeneous, Lemma 5.6 implies that LL is a finite

(= quasi-finite and proper) morphism or, in other words, that C[X1, . . . , Xn−1]

is a finite graded C[α2, . . . , αn]-module. In particular, α2, . . . , αn are alge-

braically independent.

Because C[X1, . . . , Xn−1] is Cohen-Macaulay and finite over C[α2, . . . , αn],

it is a free C[α2, . . . , αn]-module. The rank may be computed by comparing

Hilbert series. Since eachXi has weight di, the Hilbert series of C[X1, . . . , Xn−1]

is
∏n−1
i=1

1
1−tdi . Since each αi has weight ih, the Hilbert series of C[α2, . . . , αn]

is
∏n
i=2

1
1−tih . The rank is the limit at t → 1 of the quotient of these series,

equal to
n−1∏
i=1

(i+ 1)h

di
=

n!hn−1

d1 . . . dn−1
=
n!hn

|W |
.

Theorem 5.3 now follows from the following generalization of [42, Th. 1.4].

Lemma 5.7. LL is étale on Y −K.

Proof. As mentioned in [42, (1.5)], the result will follow if we prove that for

all y ∈ Y −K with LL(y) = {x1, . . . , xn}, the hyperplanes H1, . . . ,Hn tangent

to H at the n distinct points (y, x1), . . . , (y, xn) are in general position.

To prove this, we use Proposition 1.7. Each Hi is spanned by ξ1(y, xi), . . . ,

ξn(y, xi). Let (ε1, . . . , εn) be the basis of (W\V )∗ dual to ( ∂
∂X1

, . . . , ∂
∂Xn

). Let
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li =
∑
j λj,iεj be a nonzero vector in (W\V )∗ orthogonal to Hi. This amounts

to taking a nonzero column vector (λj,i)j=1,...,n in the kernel of M(y, xi) or,

equivalently, an eigenvector of M0(y) associated to the eigenvalue −xi. By

assumption, the xi are distinct. The eigenvectors are linearly independent. �

The theorem has the following corollary (which we will not use).

Corollary 5.8. The space Y −K is a K(π, 1).

For the sake of clarity, let us also mention

Corollary 5.9. Let v ∈ V . Denote by (y, z) ∈ Y × C (identified with

W\V ) the image of v. The following integers coincide:

(i) the multiplicity of z in LL(y);

(ii) the intersection multiplicity of Ly with H at (y, z);

(iii) the multiplicity of H at (y, z);

(iv) the rank dimC V/Vv of the parabolic subgroup Wv .

Proof. The integer defined by (i) and (ii) are the same by their very defi-

nition. The identity between (iii) and (iv) is Lemma 5.4. The argument used

to prove Lemma 5.6 also shows the identity between (ii) and (iii). �

The discriminant stratification of En yields a natural stratification of Y :

when λ is a partition of n, the stratum Yλ consists of points y such that the

multiplicities of LL(y) are distributed according to λ. Applying the corollary,

one sees that the stratification Y =
⊔
λ|=n Yλ is the “shadow” of the discrimi-

nant stratification restricted to H.

6. Tunnels, labels and the Hurwitz rule

Let W be an irreducible well-generated complex reflection group. We keep

the notation from the previous section. Let y ∈ Y . Let Uy be the complement

in Ly of the vertical imaginary half-lines below the points of LL(y) or, in more

formal terms,

Uy := {(y, z) ∈ Ly|∀x ∈ LL(y), re(z) = re(x)⇒ im(z) > im(x)}.

Here is an example where the support of LL(y) consists of four points and

Uy is the complement of three half-lines:

Uy

•
•

•
•

“Generically,” Uy is the complement of n vertical half-lines. We have to

be careful about what “generically” means here. A prerequisite is that LL(y)
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should consist of n distinct points, which amounts to y ∈ Y −K or, equivalently,

LL(y) ∈ Ereg
n ,

but this is not enough: one needs these points to be on distinct vertical lines

or, equivalently, that

LL(y) ∈ Egen
n .

Definition 6.1. We set Y gen := LL−1(Egen
n ).

This space, being the “fiber” of the covering LL over the “basepoint” of

the basespace Ereg
n , is equipped with a Galois action of Bn := π1(Ereg

n , Egen
n ).

Definition 6.2. The fat basepoint of W\V reg is the subset U defined by

U :=
⋃
y∈Y

Uy

or, equivalently, by

U := {(y, z) ∈ Y × C|∀x ∈ LL(y), re(z) = re(x)⇒ im(z) > im(x)}.

This definition calls for a few comments:

• First, as we will see if the next lemma and Definition 6.4 below, the subset

U can and will be used “as if” it was a genuine basepoint.

• Note also that the definition implicitly relies on the choice of a preferred

direction in the complex line. The fat basepoint is a truly semi-algebraic

object and, geometrically, all constructions below depend on the choice of

a preferred element in the unit circle S1.

Lemma 6.3. The fat basepoint U is dense in W\V reg, open and con-

tractible.

Proof. The first two statements are clear. Define a continuous function

β : Y → R by

β(y) := max{im(x)|x ∈ LL(y)}+ 1.

Points of W\V are represented by pairs (y, z) ∈ Y × C, or equivalently by

triples (y, a, b) ∈ Y × R × R, where a = re(z) and b = im(z). For t ∈ [0, 1],

define φt : W\V →W\V by

φt(y, a, b) :=

 (y, a, b) if b ≥ β(y),

(y, a, b+ t(β(y)− b)) if b ≤ β(y).

Each φt preserves U , and the homotopy φ restricts to a deformation retraction

of U to ⋃
y∈Y
{(y, z) ∈ Ly| im(z) ≥ β(y)}.
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The latter is a locally trivial bundle over the contractible space Y , with con-

tractible fibers. (The fibers are half-planes.) Thus it is contractible. �

As explained in Appendix A, we may (and will) use U as “basepoint” for

W\V reg and refine our definition of B(W ):

Definition 6.4. The braid group of W is B(W ) := π1(W\V reg,U).

As for other notions actually depending on W , we often write B instead

of B(W ), since most of the time we implicitly refer to a given W .

Remark 6.5. We will need to consider a natural projection π : B → W .

Recall that such a morphism is part of the fibration exact sequence

1 //π1(V reg) //π1(W\V reg)
π //W //1.

For this exact sequence to be well defined, one has to make consistent choices of

basepoints in V reg and in W\V reg. We have already described our “basepoint”

U in W\V reg. Choose u ∈ U , and choose a preimage ũ of u in V reg. If u′ ∈ U is

another choice and if γ is a path in U from u to u′, then γ lifts to a unique path

γ̃ starting at ũ; since U is contractible, the fixed-endpoint homotopy class of γ̃

(and, in particular, its final point) does not depend on γ. In other words, once

we have chosen a preimage of one point of U , we have a natural section Ũ of U in

V reg, as well as a transitive system of isomorphisms between (π1(V reg, ũ))ũ∈Ũ .

From now on, we assume we have made such a choice, and we define the pure

braid group as π1(V reg, Ũ). This selects one particular morphism π. (The |W |
possible choices yield conjugate morphisms.)

Definition 6.6. A semitunnel is a triple T = (y, z, L) ∈ Y ×C×R≥0 such

that (y, z) ∈ U and the affine segment [(y, z), (y, z + L)] lies in W\V reg. The

path γT associated with T is the path t 7→ (y, z + tL). The semitunnel T is a

tunnel if in addition (y, z + L) ∈ U .

Uy

•
•

•
•
//z z+L

The distinction between tunnels and semitunnels should be understood in

light of our topological conventions: if T is a tunnel, γT represents an element

bT ∈ π1(W\V reg,U),

while semitunnels will be used to represent points of the universal cover

(UniCover(W\V reg,U))U ;

see Section 10.
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Definition 6.7. An element b ∈ B is simple if b = bT for some tunnel T .

The set of simple elements in B is denoted by S.

Remark 6.8. Later on (Corollary 7.9), we will show that S is finite. This

might be disconcerting at first sight, as S is stable under particular conjugacy

operations and one might be misled into believing that S is a union of conjugacy

classes, which it is not. The finiteness of S and its direct description in terms

of the combinatorics of the finite group W (Proposition 8.5) is a key ingredient

of this paper.

Each tunnel lives in a single Ly, which is isomorphic to a complex line,

and where the tunnel may be represented by the constant imaginary part

affine segment [z, z + L]. The triple (y, z, L) may be uniquely recovered from

[(y, z), (y, z + L)]. A frequent abuse of terminology will consist of using the

term tunnel (or semitunnel) to designate either the triple (y, z, L), or the

segment [(y, z), (y, z+L)], or the pair (y, [z, z+L]), depending on the context.

(In particular, when intersecting tunnels with geometric objects, the tunnels

should be understood as affine segments.)

Let y ∈ Y . Let (x1, . . . , xk) be the ordered support of LL(y). The space

px((Ly ∩W\V reg)−Uy) is a union of k disjoint open affine intervals I1, . . . , Ik,

where

Ii :=

(xi −
√
−1∞, xi) if i = 1 or (i > 1 and re(xi−1) < re(xi)),

(xi−1, xi) otherwise.

(By (xi−
√
−1∞, xi), we mean the open vertical half-line below xi.) In the first

case (when Ii is not bounded), we say that xi is deep. In the picture below,

there are three deep points, x1, x3 and x4.

•
•

•
•

x1

x2

x3

x4

I1

I2

I3
I4

Choose a system of elementary tunnels for y. By this, we mean the choice,

for each i = 1, . . . , k, of a small tunnel Ti in Ly crossing Ii and not crossing

the other intervals; let si := bTi be the associated element of B.

•
•

•
•

//
s1

//
s2

//
s3

//
s4

These elements depend only on y and not on the explicit choice of elemen-

tary tunnels.
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Definition 6.9. The sequence lbl(y) := (s1, . . . , sk) is the label of y. Let

i1, i2, . . . , il be the indices of the successive deep points of LL(y). The deep

label of y is the subsequence (si1 , . . . , sil).

In the above example, the deep label is (s1, s3, s4). The length of the label

is n if and only if y ∈ Y − K. In this case, the deep label coincides with the

label if and only if y ∈ Y gen.

Later on, it will appear that the pair (LL(y), lbl(y)) uniquely determines

y (Theorem 7.20).

Remark 6.10. When y is generic, lbl(y) is an n-tuple of braid reflections.

(Because an elementary tunnel crossing the interval below a point in LL(y)

is essentially the same as a small circle around this point; when y is generic,

the points in LL(y) correspond to smooth points of the discriminant, and the

elementary tunnels represent generators of the monodromy.)

Consider the case y = 0 (given by the equations X1 = 0, . . . , Xn−1 = 0).

The multiset LL(y) has support {0} with multiplicity n.

Definition 6.11. We denote by δ the simple element such that lbl(0) = (δ).

This element plays the role of Deligne’s element ∆. Choose v ∈ V reg such

that the W -orbit v lies in L0. Broué-Malle-Rouquier consider the element

(denoted by π, [20, Notation 2.3]) in the pure braid group P (W ) represented

by the loop

[0, 1]−→ V reg

t 7−→ v exp(2
√
−1πt).

We prefer a different notation:

Definition 6.12. We call this element of P (W ) full-twist and denote it

by τ .

They observe that this element lies in the center of B ([20, Th. 2.24]) and

conjecture that it generates the center of P .

SinceXn has weight h, δh coincides with τ . More precisely, δ is represented

by the loop that is the image in W\V reg of the path in V reg

[0, 1]−→ V reg

t 7−→ v exp(2
√
−1πt/h).

In particular,

Lemma 6.13. The element τ = δh is central in B(W ) and lies in P (W ).

The image of δ in W is ζh-regular, in the sense of Springer (see Definition 1.8).

See Theorem 12.3 for a description of the center of B(W ). Each tunnel

lives in a single fiber Ly. Let us now explain how simple elements represented

by tunnels living in different fibers may be compared. The idea is that, since
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being a tunnel is an open condition, one may perturb y without affecting the

simple element:

Definition 6.14. Let T = (y, z, L) be a tunnel. A T -neighborhood of y is

a path-connected neighborhood Ω of y in Y such that, for all y′ ∈ Ω, T ′ :=

(y′, z, L) is a tunnel.

Such neighborhoods clearly exist for all y ∈ Y .

Lemma 6.15 (The Hurwitz rule). Let T = (y, z, L) be a tunnel, repre-

senting a simple element s. Let Ω be a T -neighborhood of y. For all y′ ∈ Ω,

T ′ := (y′, z, L) represents s.

Proof. This simply expresses that the tunnels (y′, z, L) and (y, z, L) rep-

resent homotopic paths, which is clear by definition of Ω. �

Remark 6.16. Let T1, . . . , Tk be a system of elementary tunnels for y. Let

Ωi be a Ti-neighborhood for y. A standard neighborhood of y could be defined

as a path-connected neighborhood Ω of y inside ∩ki=1Ωi. These standard neigh-

borhoods form a basis for the topology of Y . A consequence of the Hurwitz

rule is that the label of y may uniquely be recovered once we know the label of

a single y′ ∈ Ω. Distinct y′ ∈ Ω correspond to different “desingularizations” of

y, and their labels are obtained by further factorizing terms in the label of y.

Among them are full desingularizations (corresponding to factorizations in n

terms), corresponding to choosing y′ in the nonempty intersection Ω ∩ Y gen.

The remainder of this section consists of various consequences of the Hur-

witz rule.

Corollary 6.17. Let y ∈ Y . Let (x1, . . . , xk) be the ordered support of

LL(y), and let (n1, . . . , nk) be the multiplicities. For any i, the natural length

of si is given by

l(si) =
∑

j s.t. re(xi)=re(xj) and im(xi)≤im(xj)

nj .

Proof. The case y ∈ Y gen is a consequence of Remark 6.10. The general

case follows by perturbing and applying the Hurwitz rule. �

Corollary 6.18. Let y ∈ Y . Let (si1 , . . . , sil) be the deep label of y. We

have si1 · · · sil = δ.

Proof. Any tunnel T deep enough and long enough represents si1 · · · sil .

•
•

•
•11

((
YYoo

//
s1s3s4

The origin 0 ∈ Y lies in a T -neighborhood of y. To conclude, apply the Hurwitz

rule. �
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Let us recall the following standard notion.

Definition 6.19 (The Hurwitz action). Let G be a group, and let Bn be

the braid group on n strings with its usual system of generators σ1, . . . ,σn−1.

The Hurwitz action of Bn on Gn, denoted as a multiplication on the right, is

the unique group right action such that

(g1, . . . , gn) · σi = (g1, . . . , gi−1, gigi+1g
−1
i , gi, gi+2, . . . , gn).

In the following corollary, the notation y · β refers to the covering action

of π1(Ereg
n , x) on LL−1(x).

Corollary 6.20. Let x ∈ Egen
n . Let β ∈ π1(Ereg

n , x), y ∈ LL−1(x) and

y′ := y · β. Let (b1, . . . , bn) be the label of y and (b′1, . . . , b
′
n) be the label of y′.

Then

(b′1, . . . , b
′
n) = (b1, . . . , bn) · β,

where β acts by right Hurwitz action.

Proof. It suffices to prove this for a standard generator σi. Let (x1, . . . , xn)

be the ordered support of x. By the Hurwitz rule, we may adjust the imaginary

parts of the xi’s without affecting the label; in particular, we may assume that

im(xi) < im(xi+1). We may find tunnels T− = (y, z−, L) and T+ = (y, z+, L)

as in the picture below:

• • •
•

•
•

•
xi

xi+1x1 xn
oo

//

//
T−

T+

The path in Ereg
n where xi+1 moves along the dotted arrow and all other points

are fixed represents σi. Applying the Hurwitz rule to T+, we obtain b′i = bi+1;

applying the Hurwitz rule to T−, we obtain b′ib
′
i+1 = bibi+1. The result follows.

�

Corollary 6.21. Let y ∈ Y gen. The cardinality of the Hurwitz orbit

lbl(y) ·Bn is at most n!hn/|W |, and there is an equivalence between

(i) | lbl(y) ·Bn| = n!hn/|W |;
(ii) the orbits y ·Bn and lbl(y) ·Bn are isomorphic as Bn-sets ;

(iii) the map Y gen → En ×Bn, y 7→ (LL(y), lbl(y)) is injective.

In the next section, we will prove that conditions (i)–(iii) actually hold.

This is not a trivial statement.

Proof. Let G be a group and Ω,Ω′ be two G-sets, together with a G-set

morphism ρ : Ω → Ω′. Assume that Ω′ is transitive. Then ρ is surjective.

Assume in addition that Ω is finite. Then Ω′ is finite, |Ω′| ≤ |Ω| and

|Ω′| = |Ω| ⇔ ρ is injective⇔ ρ is an isomorphism.
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By the previous corollary, one has lbl(y · β) = lbl(y) · β. In other words,

the map lbl extends to a Bn-set morphism y ·Bn → lbl(y) ·Bn. We apply our

discussion toG := Bn, Ω := y·Bn and Ω′ := lbl(y)·Bn. Both Bn-sets are clearly

transitive. Since y ∈ Y − K, we have |LL−1(LL(y))| = |y · Bn| = n!hn/|W |
(Theorem 5.3). We deduce that | lbl(y) ·Bn| ≤ n!hn/|W | and (i)⇔ (ii).

Assertion (iii) amounts to saying that, for all y ∈ Y gen, lbl is injective on

the fiber of LL containing y. This fiber is precisely the orbit y ·Bn. Under this

rephrasing, it is clear that (ii)⇔ (iii). �

Corollary 6.22. Let s be a simple element. There exist y ∈ Y gen and

i ∈ {1, . . . , n} such that s = s1 · · · si, where (s1, . . . , sn) := lbl(y).

Proof. Let T be a tunnel representing s. Any T -neighborhood of y con-

tains generic points. Up to perturbing y, we may assume that y ∈ Y gen. The

picture below explains, on an example, how to move certain points (following

the dotted paths) of the underlying configuration to reach a suitable y′:

•

•
•

•
//T

.....
.......... . . . .. . . .... .//

.................//

This path in Ereg
n lifts, via LL, to a path in a T -neighborhood of y whose final

point y′ satisfies the conditions of the lemma. �

7. Reduced decompositions of Coxeter elements

7.1. From braids to elements of W .

Definition 7.1. Let W be an irreducible well-generated complex reflection

group. An element c ∈W is a (generalized) Coxeter element if it is ζh-regular.

More generally, if W is a well-generated complex reflection group decomposed

as a sum W =
⊕

iWi of irreducible groups, a Coxeter element in W is a

product c =
∏
i ci of Coxeter elements in each Wi.

Lemma 7.2. When W is irreducible, a Coxeter element c in W has no

nontrivial fixed point.

Proof. As shown by Springer [55], the eigenvalues of a ζ-regular element

are ζ1−d1 , . . . , ζ1−dn . Applying this to ζ = ζh and noting that 0 ≤ d1 ≤ · · · ≤
dn = h, we obtain the desired result. �

When W is irreducible, we may use the constructions from the previous

section and the morphism π : B(W )� W to obtain typical Coxeter elements

(see Definition 6.11):
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Lemma 7.3. When W is irreducible, the element c := π(δ) is a Coxeter

element in W .

Proof. This is a rephrasing of Lemma 6.13. �

The other Coxeter elements, which are conjugates of c, appear when con-

sidering other basepoints over U (see Remark 6.5).

More generally, we have

Lemma 7.4. Let y ∈ Y . Let (x1, . . . , xk) be the ordered support of LL(y),

and let (n1, . . . , nk) be the multiplicities. Assume that re(x1) < · · · < re(xk).

Let (s1, . . . , sk) := lbl(y).

For all i, set ci := π(si). Then there exists a preimage vi ∈ V of (y, xi) ∈
Y ×C 'W\V such that ci is a Coxeter element in the parabolic subgroup Wvi .

In particular, if ni = 1, then ci is a reflection.

Proof. When ni = n (thus i = k = 1), the result is Lemma 7.3. When

ni = 1, as pointed out in Remark 6.10, the element si is represented by a small

loop around a smooth point in the discriminant; thus it is a braid reflection

and maps to a reflection in W .

The general case is similar: locally near (y, xi), the discriminant is a direct

product of Vvi with the discriminant ofWvi . (See the proof of Lemma 5.4.) This

local structure provides a specific morphism B(Wvi) → B(W ) such that the

element “δi” in B(Wvi) (the product of the δ’s associated with each irreducible

components of Wvi) maps to si. The lemma follows. �

The assumption re(x1) < · · · < re(xk) may be removed at the cost of

replacing π(si) by π(si−1)−1π(si) when re(xi−1) = re(xi). This is behind Defi-

nition 7.14 below.

Let R be the set of all reflections in W . As in [3], for all w ∈W , we denote

by RedR(w) the set of reduced R-decompositions of w, i.e., minimal length

sequences of elements of R with product w. Since R is closed under conjugacy,

RedR(c) is stable under Hurwitz action. We also consider the length function

lR : W → Z≥0, whose value at w is the common length of the elements of

RedR(w), and two partial orderings of W defined as follows. For all w,w′ ∈W ,

we set

w 4R w
′ :⇔ lR(w) + lR(w−1w′) = lR(w′)

and

w′ <R w :⇔ lR(w′w−1) + lR(w) = lR(w′).

Since R is invariant by conjugacy, we have w 4R w′ ⇔ w′ <R w.

Let y ∈ Y gen, let (r1, . . . , rn) := (π(s1), . . . , π(sn)) = πn(lbl(y)), and

let (s1, . . . , sn) := lbl(y). By Lemma 7.4, since all multiplicities are 1, the

factorization (r1, . . . , rn) expressed c as a product of n reflections. Because the
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fixed-point set of c is trivial (Lemma 7.2), c cannot expressed as the product

of less than n reflections, so the factorization has minimal length and it lies in

RedR(c).

The key result of this section is

Theorem 7.5. Let y ∈ Y gen. The maps

y ·Bn
lbl−→ lbl(y) ·Bn

πn−→ πn(lbl(y)) ·Bn

are isomorphisms of Bn-sets, where y · Bn is the Galois orbit of y and where

lbl(y) ·Bn and πn(lbl(y)) ·Bn are Hurwitz orbits.

The theorem implies that conditions (i)–(iii) from Corollary 6.21 actually

hold.

In the real case, this was initially conjectured by Looijenga [42, (3.5)] and

proved in a letter from Deligne to Looijenga (crediting discussions with Tits

and Zagier) [30]; an equivalent property ([3, Fact 2.2.4]) was independently

used in our earlier construction of the dual braid monoid.

These proofs for the real case are based on case-by-case numerology: be-

cause the Bn-sets are transitive, it suffices to prove that the cardinality of

y · Bn (which is by construction the degree of LL) coincides with that of

(r1, . . . , rn) · Bn. This is an enumeration problem in W and may be tackled

by case-by-case analysis. (The infinite family are easy to deal with, computers

can take care of the exceptional types.)

This enumerative approach carries on to our setting: Theorem 7.5 imme-

diately follows from the following propositino.

Proposition 7.6. Let W be a well-generated complex reflection group.

Let c be a Coxeter element in W . The Hurwitz action is transitive on RedR(c).

When W is irreducible, one has |RedR(c)| = n!hn/|W |.

Proof. The proposition clearly reduces to the case when W is irreducible:

in the reducible case, reduced decompositions of Coxeter elements are “shuf-

fles” of reduced decompositions of the Coxeter elements of the irreducible sum-

mands.

We prove the result case-by-case. (See Table 1 in Section 2 for the list of

cases to be considered.) The complexified real case is studied in [30]. (Transi-

tivity is easy and does not require case-by-case; see, e.g., [3, Prop. 1.6.1].) The

G(e, e, r) case combines two results from [6]: Proposition 6.1 (transitivity) and

Theorem 8.1 (cardinality).

The case of G(d, 1, r) goes as follows. For all integers i, j with 1 ≤ i <

j ≤ n, denote by τi,j the permutation matrix associated with the transposition

(i j) ∈ Sn = G(1, 1, n) ↪→ G(d, 1, r). For all ζ ∈ µd and all i ∈ {1, . . . , n},
denote by ρi,ζ the diagonal matrix Diag(1, . . . , 1, ζ, 1, . . . , 1), where ζ is in i-th
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position. There are two types of reflections in G(d, 1, n): long reflections are

elements of the form ρi,ζ , with ζ 6= 1; short reflections are elements of the

form τ ζi,j := ρ−1
i,ζ τi,jρi,ζ , with ζ ∈ µd and 1 ≤ i < j ≤ n. A typical Coxeter

element is c := ρ1,ζdτ1,2τ2,3 · · · τn−1,n. Since Coxeter elements form a single

conjugacy class, and since R is invariant under conjugacy, it suffices to prove

the claims for this particular c. Let (r1, . . . , rn) ∈ RedR(c). Let us prove that

it is Hurwitz equivalent to (ρ1,ζd , τ1,2, τ2,3, . . . , τn−1,n). Consider the morphism

G(d, 1, n) → G(1, 1, n), g 7→ g sending a monomial matrix to the underlying

permutation matrix. This map sends τ ζi,j to τi,j and ρi,ζ to 1. The element c is a

Coxeter element inG(1, 1, n). One deduces that there is a unique long reflection

ri0 among r1, . . . , rn and that (r1, . . . ,”ri0 , . . . , rn) is a reduced R-decomposition

of c in G(1, 1, n). Up to applying suitable Hurwitz moves, we may assume that

i0 = 1. Using the transitivity result already known in the type G(1, 1, n)

case, we see that (r1, . . . , rn) is Hurwitz equivalent to (ρi,ζ , τ
α1
1,2, . . . , τ

αn−1

n−1,n),

where i ∈ {1, . . . , n}, ζ ∈ µe − {1} and α1, . . . , αn1 ∈ µd. By considering the

determinant, we see that ζ = ζd. A direct computation shows that, if i > 1,

ρi,ζτ
α1
1,2 · · · τ

αi−1

i−1,i = τα1
1,2 · · · τ

αi−1

i−1,iρi−1,ζ .

One may use this relation to construct an explicit sequence of Hurwitz moves

showing that (r1, . . . , rn) is equivalent to (ρ1,ζd , τ
α′1
1,2, . . . , τ

α′n−1

n−1,n). One concludes

by observing that τ
α′1
1,2 · · · τ

α′n−1

n−1,n = τ1,2 · · · τn−1,n forces α′1 =α′2 = · · ·=α′n−1 = 1.

The claim about cardinality is not difficult once it is observed that an element

of RedR(c) is uniquely determined by (1) the position of the long reflection

ρi,ζ , (2) the integer i, (3) a reduced R-decomposition of the Coxeter element c.

There remains a finite number of exceptional types that are treated by

computer. �

Until the end of this section, we assume that W is irreducible.

Lemma 7.7. Let y ∈ Y gen, with label (s1, . . . , sn). Let i ∈ {1, . . . , n}.
Then

lR(π(s1 · · · si)) = i.

Proof. Since y ∈ Y gen, each sj is a braid reflection, mapped under π to a

reflection rj ∈ R. Thus lR(π(s1 · · · si)) ≤ i and lR(π(si+1 · · · sn)) ≤ n−i. Since

π(s1 · · · si)π(si+1 · · · sn) is a Coxeter element (Lemma 7.3), it has length n.

This forces both inequalities to be equalities. �

Lemma 7.8. The restriction of π to the set S of simple elements is injective.

Proof. Let s and s′ be simple elements such that π(s) = π(s′). By Corol-

lary 6.22, we may find y, y′ ∈ Y gen, with lbl(y) = (s1, . . . , sn) and lbl(y′) =

(s′1, . . . , s
′
n), and i, j ∈ {0, . . . , n} such that s = s1 · · · si and s′ = s′1 · · · s′j . Both
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LL(y) and LL(y′) consists of n distinct points with distinct real parts; the naive

affine homotopy from LL(y) to LL(y′) can be lifted to a homotopy from y to y′′

such that LL(y′′) = LL(y′) and, thanks to the Hurwitz rule, lbl(y) = lbl(y′′).

So, up to replacing y with y′′, we can assume that LL(y) = LL(y′). By

Lemma 7.7, we must have i = j. Applying Proposition 7.6 to w = π(s), we

may find β ∈ Bi such that (π(s1), . . . , π(si)) ·β = (π(s′1), . . . , π(s′i)). Similarly,

we find β′ ∈ Bn−i such that (π(si+1), . . . , π(sn)) · β′ = (π(s′i+1), . . . , π(s′n)).

View Bi ×Bn−i as a subgroup of Bn (the first factor braids the first i strings,

the second factors braids the n − i last strings), and set β′′ := (β, β′) ∈ Bn.

We have πn(lbl(y)) ·β′′ = πn(lbl(y′)). Applying Theorem 7.5, this implies that

lbl(y) ·β′′ = lbl(y′). Clearly, β′′ does not modify the product of the first i terms

of the labels. Thus s = s′. �

Corollary 7.9. The set of simple elements S is finite.

7.2. Simplicial Hurwitz structures.

Definition 7.10. Let k be a positive integer. We set

Dk(δ) := {(s1, . . . , sk) ∈ Sk|δ = s1 · · · sk},
D•(δ) := (Dk(δ))k∈Z≥0

,

Dk(c) := {(w1, . . . , wk) ∈W k|c = w1 . . . wk and lR(c) =
∑
i

lR(wi)},

D•(c) := (Dk(c))k∈Z≥0
.

The definition of D•(δ) is a particular case of Definition B.15, but this an-

ticipates what will be discussed in the next section (dual braid monoid Garside

structure).

As often with graded objects, it is convenient to view D•(δ) and D•(c) as

disjoint unions of their graded components.

Let t = (t1, . . . , tk) be a sequence in either D•(δ) or D•(c). We may

consider

• faces of t, sequences of the form

(t1, . . . , ti−1, titi+1, ti+2, . . . , tk);

• degeneracies of t, sequences of the form

(t1, . . . , ti, 1, ti+1, . . . , tk).

This equips both D•(δ) and D•(c) with a simplicial set structure (see

Appendix B). But there is an additional structure on both sets, provided by

“graded Hurwitz action”: each Bk acts on Dk.

Remark 7.11. There are obvious compatibility rules between graded Hur-

witz action and simplicial structure. The two structures combine in a fantastic
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algebraic package — I do not have any good name for it (“simplicial Hur-

witz structure,” “stratified Hurwitz set”?) — that faithfully encodes both the

monodromy theory and the ramification theory of the Lyashko-Looijenga cov-

ering. By just considering the action of the “Coxeter element” braid in Bk,

combined with the simplicial structure, we obtain the “helicoidal” structure of

Remark B.17 in Appendix B (a generalization of cyclic structures, in the sense

of Connes [24]). But the simplicial Hurwitz structure provides more than that.

(In a way, it is a “parabolically helicoidal structure.”)

Theorem 7.12. The projection maps (s1, . . . , sk) 7→ (π(s1), . . . , π(sk))

induce an isomorphism of simplicial sets

D•(δ)
∼−→ D•(c).

Proof. Clearly, the map is well defined and compatible with both faces

and degeneracies. Injectivity is an obvious consequence of Lemma 7.8.

Surjectivity. Any (c1, . . . , ck) ∈ D•(c) can be obtained by applying a

sequences of face maps and degeneracy maps starting from an element in

RedR(c). (Start by concatenating reduced decompositions of nontrivial ci’s;

it is obvious how to get from there back to (c1, . . . , ck).) By compatibility, it is

enough to show that elements of RedR(c) are in the image. As Hurwitz action

is transitive on RedR(c) (Proposition 7.6) and compatible with projection, it is

enough to show that one element of RedR(c) is in the image, which is obvious:

just take a generic y; the projection of lbl(y) lies in RedR(c). �

Remark 7.13. It is very tempting, and very convenient too, to identify

D•(δ) with D•(c) and S with its image in W . In particular, we will say that w ∈
W is a simple element if it lies in the image of S. Very often, when considering

labels, we will consider those as factorizations of c in W . This viewpoint helps

remembering that computations involving labels are about combinatorics in a

finite group and that small examples can be worked out by hand.

7.3. Reduced labels and trivialization of Y . This following variation on the

notion of label was introduced by Vivien Ripoll [49] after he noticed unneces-

sary complications in earlier versions of the current paper.

Definition 7.14. Let y ∈ Y with label (s1, . . . , sk). Let (x1, . . . , xk) be the

ordered support of LL(y). The reduced label of x is the sequence rlbl(y) =

(s′1, . . . , s
′
k) defined by

s′i :=

 si if i = k or re(xi) < re(xi+1),

sis
−1
i+1 if i < k and re(xi) = re(xi+1).
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One way to geometrically understand reduced labels is to see them as

braids represented by small loops around points in the support:

•
•

•
•

//
s1

//
s2

//
s3

//
s4

•
•

•
•ll

s′1

ll
s′2

ll
s′3

ll
s′4

Alternately, the reduced label of y can be viewed as the label of a generic

y′ obtained by applying a small clockwise rotation to y:

Lemma 7.15. For all y ∈ Y , there exists a real number α > 0, such that

for all ε such that 0 < ε < α, the reduced label of y coincides with the label

of e−
√
−1πεy. As a consequence, the reduced label of y is a sequence of simple

elements, with product δ.

Note. This result is better understood in light of the general study of the

C×-action; see Section 11 and, in particular, the basic Lemma 11.1.

Proof. Obvious consequence of the Hurwitz rule. �

Rephrasing Corollary 6.18 in terms of reduced labels, we also get

Lemma 7.16. For all y ∈ Y , rlbl(y) ∈ D•(c).

(As announced in Remark 7.13, we choose to work in D•(c) rather than

D•(δ).)

Definition 7.17. Let x ∈ En with ordered support (x1, . . . , xk) and ordered

multiplicity (n1, . . . , nk). Let σ = (s1, . . . , sl) ∈ D•(c) be a factorization of c

into l simple elements.

Both (n1, . . . , nk) and (lR(s1), . . . , lR(sk)) are compositions of n (finite

integral sequences that add up to n). If (n1, . . . , nk) = (lR(s1), . . . , lR(sk)), we

say that x and σ are compatible.

We denote by En � D•(c) the set of compatible pairs. In other words, it

is the pullback

En �D•(c) //

��

D•(c)

��
En // {compositions of n}.

Clearly, if x and σ are compatible, then σ must be nondegenerate. So

the pullback map En � D•(c) → D•(c) is not surjective. People finding this

annoying may want to introduce a specific notation for the set of nondegenerate

factorizations (factorizations not containing the trivial element).
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Definition 7.18. If σ, τ ∈ D•(c), we say that τ is a face of σ, and we write

σ ` τ

if each term in τ is the partial product of consecutive terms in σ. (In other

words, τ is obtained from σ by consecutive simplicial face operators.)

For all σ ∈ D•(c), we set

Fσ := {ρ ∈ RedR(c)|ρ ` σ}.

Lemma 7.19. If σ = (c1, . . . , ck) ∈ D•(c) is nondegenerate, then Fσ 6= ∅
and consists of a single Hurwitz orbit for the natural subgroup Bl(c1)×· · ·×Bl(ck)

of the braid group Bn.

Proof. Elements of Fσ are obtained by concatenating reduced decomposi-

tions of c1, . . . , ck. Each ci is a parabolic Coxeter element (Lemma 7.4) whose

factorizations form a single Bl(ci)-orbit (Proposition 7.6). �

Theorem 7.20 (trivialization of Y ). The map LL×rlbl induces a bijection

LL× rlbl : Y
∼−→ En �D•(c).

Proof. That the image of rlbl lies in D•(c) is Lemma 7.16. That the image

of LL × rlbl lies in En � D•(c) follows from Corollary 6.17. By Theorem 7.5,

LL× rlbl restricts to a bijection Y reg ∼→ Ereg
n �D•(c). What remains at stake

is the behavior in the singular part of the covering.

Surjectivity of LL × rlbl. Let (e, σ) ∈ En � D•(c). Let (em)m∈Z≥0
be a

sequence of points in Egen
n converging to e. (Because Egen

n is dense in En,

such a sequence exists.) Let σ′ ∈ Fσ (which is nonempty by Lemma 7.19).

By Theorem 7.5, there exists a unique sequence (ym(σ′))m∈Z≥0
of points in Y

such that, for all m, LL(ym) = em and rlbl(ym(σ′)) = σ′. This sequence lies in

LL−1({e}∪⋃m{em}), a compact subset of Y (a finite morphism, LL is proper;

the pre-image of a compact subset under a proper morphism is compact) and

admits an adherence value y such that LL(y) = e. Applying the Hurwitz rule,

one observes that rlbl(y) = σ.

Note that the above argument also shows that the ramification degree

of LL at y is |Fσ|, as each LL−1(em) consists of the |Fσ| distinct points

{ym(σ′)|σ′ ∈ Fσ}.

Injectivity of LL× rlbl. Let e ∈ En. As LL is a finite morphism of degree

|RedR(c)|, the ramification formula over e says that

|RedR(c)| =
∑

y∈LL−1(e)

d(y),
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where d(y) is the ramification degree at y. (See, for example, [34, Exam. 4.3.7].)

By grouping according to rlbl(y), we get

|RedR(c)| =
∑

σ∈D•(c)
σ compatible with e

|LL−1(e) ∩ rlbl−1(σ)| · |Fσ|.

Clearly, each element of RedR(c) lies in Fσ for exactly one σ ∈ D•(c) such that

σ is compatible with e. (This σ is obtained by multiplying consecutive terms

according to the multiplicity pattern defined by e.) So

|RedR(c)| =
∑

σ∈D•(c)
σ compatible with e

|Fσ|.

To conclude, we observe that the surjectivity part of theorem implies that,

for each σ compatible with e, |LL−1(e) ∩ rlbl−1(σ)| ≥ 1. This forces each

|LL−1(e) ∩ rlbl−1(σ)| to be equal to 1. �

We can equip En � D•(c) with a natural topology that turns the bi-

jection of Theorem 7.20 into a homeomorphism. This topology is as fol-

lows. Let (x, (c1, . . . , cm)) ∈ En � D•(c). Choose a system of elementary

tunnels (T1, . . . , Tm) (as introduced above Definition 6.9). Neighborhoods for

(x,(c1, . . . , cm)) are obtained by considering all compatible pairs (x′,(d1, . . . ,dl))

as follows:

(1) We choose Ω, a small enough neighborhood of x in En such that (the

projections in C of) the tunnels T1, . . . , Tm do not intersect any point in

any configuration x′′ ∈ Ω. That such neighborhoods exist and form a basis

for the topology of En is obvious (and is the analog in En of the notion of

T -neighborhood from Definition 6.14).

(2) We allow x′ to be any point in Ω.

(3) Combining (1) and (2), we get Hurwitz rule equations for T1, . . . , Tm, ex-

pressing relations between the dj ’s to the ci’s that must be satisfied.

Remark 7.21. In the previous section, we used the homotopy lifting prop-

erty of the unramified part of LL to lift paths in Ereg
n to paths in Y . In general,

if γ is a path [0, 1]→ En, there may be more than one way to lift γ to a path

γ̃ such that LL ◦ γ̃ = γ, even if one fixes the initial point γ̃(0). However, a

consequence of Theorem 7.20 and the above discussion is that if γ has non-

decreasing ramification (i.e., if points can be merged but not unmerged when

t increases), then there exists a unique continuous lift γ̃ once γ̃(0) has been

fixed. This will be very useful for constructing explicit retractions in the next

sections.
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Remark 7.22. Charting the various geometric constructions, we get

⋃
H∈AH //

��

V

W\
��

H // W\V Y × C

Saito
��

K

��

// Y

LL

��

rlbl //

7.20

D•(c)

HAn−1
// En En �D•(c)oo

OO

⋃
1≤i<j≤nHi,j

//

OO

Cn.

Sn\

OO

Here is what we have done so far. We set out to study the higher homotopy

groups of V reg = V −⋃H∈AH. Because W has no ramification on V reg, we may

work in the quotient W\V reg, which we view as a singular fibration over Y .

Individually, the generic fibers (outside K) and degenerated fibers (above K)

are fairly easy to control: they all are punctured complex lines.

Most of the hard work happens in the base space Y , which controls how

fibers are glued together (degeneracy, monodromy, etc.). To visualize Y and

perform computations in it, we compare it via LL with a classical configuration

space En. The trivialization Theorem 7.20 gives a neat description, in terms

of the combinatorics of W , of both generic and singular fibers of LL.

One way to see D•(c) is think of it as the “Galois group” of LL — except

that LL is not a Galois covering. Metaphorically, LL : Y → En is a virtual

reflection group: like the quotient map V → W\V , it is a finite algebraic

morphism between two affine spaces; when such a map is Galois, the theorem of

Chevalley-Shephard-Todd says that it must be the quotient map of a complex

reflection group.

7.4. A variation : trivializing W\V and W\V reg. The way from W\V reg

to En �D•(c), as summarized in Remark 7.22, is a bit long and complicated.

This can be simplified thanks to variations on the definitions of LL and En:

Definition 7.23 (extended Lyashko-Looijenga morphism). Let (y, z) be a

point in W\V ' Y ×C. We denote by LL((y, z)) the configuration LL(y)− z,
obtained by shifting by −z all points in LL(y).

Note that the image of LL lies in En (the space of not necessarily centered

configurations) rather than just En (the space of centered configurations).
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Definition 7.24. We denote by E
◦
n the subspace of En consisting of con-

figurations not containing 0.

For (y, z) ∈ W\V , we also set rlbl((y, z)) := rlbl(y). The notion of com-

patible pairs in En×D•(c) carries on to En×D•(c), and we define En�D•(c).

Theorem 7.25. The map

LL× rlbl : W\V −→En ×D•(c)

(y, z) 7−→ (LL(y)− z, rlbl(y))

is a homeomorphism. It induces by restriction a homeomorphism

LL× rlbl : W\V reg ∼−→ E
◦
n �D•(c).

Proof. Consider the map

W\V −→C× (En �D•(c))

(y, z) 7−→ (z, LL(y), rlbl(y)).

Using Theorem 7.20 and the subsequent discussion, we see that it is an home-

omorphism. Now observe that

C× En−→E

(z,{{{x1, . . . , xn}}}) 7−→{{{x1 − z, . . . , xn − z}}}

is a homeomorphism: indeed, z can be recovered from {{{x1 − z, . . . , xn − z}}} as

its barycenter. The theorem follows easily. �

The next three sections rely on the trivialization of Theorem 7.20, but it

is possible to rephrase them using Theorem 7.25 instead. Theorem 7.25 will

be especially useful in Section 11, where we will focus on rotational motions

(rather than the translational motions used in the next three sections).

8. The dual braid monoid

Here again, W is an irreducible well-generated complex reflection group.

For simplicity, we further assume, in this section and in the following ones,

that W is generated by 2-reflections: by Theorem 2.2, this suffices to address

the K(π, 1) conjecture. We restrict ourselves to 2-reflection groups not because

the construction would otherwise fail (it does work), but because some case-

by-case arguments (especially Lemma 8.6) would need to be more extensively

detailed.

We keep the notation from the previous sections. Recall that an element

b ∈ B is simple if b = bT for some tunnel T and that the set of simple elements

is denoted by S.
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Definition 8.1. The dual braid monoid is the submonoid M of B generated

by S.

Consider the binary relation 4 defined on S as follows. Let s and s′ be

simple elements. We write s 4 s′ if and only if there exist (y, z) ∈ W\V reg,

L,L′ ∈ R≥0 with L ≤ L′ such that (y, z, L) is a tunnel representing s and

(y, z, L′) is a tunnel representing s′.

We write s ≺ s′ when s 4 s′ and s 6= s′.

This section is devoted to the proof of

Theorem 8.2. The monoid M is a Garside monoid, with a set of simple

elements S and Garside element δ. The relation 4 defined above on S is the

restriction to S of the left divisibility order in M .

The monoid M generates B, which inherits a structure of Garside group.

A survey of Garside theory is provided in Appendix B.

Remark 8.3. The theorem blends two results of distinct natures: one is

about the Garside structure of a certain monoid M(Pc) (see Lemma 8.8 for

a presentation of M(Pc)); the other one identifies M with M(Pc). The latter

essentially amounts to writing a presentation for B. It is a substitute for

Brieskorn’s presentation theorem [16] except that our presentation involves

dual braid relations instead of Artin-Tits braid relations.

Several results mentioned in the introduction follow from this theorem.

Theorem 0.4 does not assume irreducibility, but follows immediately from the

irreducible case since direct products of Garside groups are Garside groups.

Another important consequence of Theorem 8.2 is that one obtains a nice

simplicial complex, gar(G,Σ) (see Definition B.11), that is both contractible

(Theorem B.14) and acted on by B. This complex will serve as a simplicial

model for the universal cover of W\V reg. The strategy of proof of Theorem 8.2

is very similar to the one in [6].

Proposition 8.4. For all s∈S, we have l(s)= lR(π(s)). For all s, s′∈S,

the following statements are equivalent :

(i) s 4 s′;
(ii) ∃s′′ ∈ S, ss′′ = s′;

(iii) π(s) 4R π(s′).

Proof. The first statement follows from Lemma 7.7.

(i) ⇒ (ii). Assume that s 4 s′, and choose (y, z) ∈ W\V reg and L ≤ L′

such that (y, z, L) is a tunnel representing s and (y, z, L′) is a tunnel repre-

senting s′. Then (y, z + L,L′ − L) is a tunnel representing s′′ ∈ S such that

ss′′ = s′.

(ii) ⇒ (iii). The natural length function l is additive on B. Thus, under

(ii), we have l(s) + l(s′′) = l(s′). On the other hand, for all σ ∈ S, l(σ) =
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lR(π(σ)). Thus lR(π(s)) + lR(π(s′′)) = lR(π(s′)). Since π(s′′) = π(s)−1π(s′),

this implies that π(s) 4R π(s′).

(iii) ⇒ (i). We may find y, y′ ∈ Y gen, with lbl(y) = (s1, . . . , sn) and

lbl(y′) = (s′1, . . . , s
′
n) such that s = s1s2 · · · sl(s) and s′ = s′1s

′
2 · · · s′l(s′). Set w :=

π(s), w′ := π(s′) and, for i = 1, . . . , n, set ri := π(si) and r′i := π(s′i). Assuming

(iii), we may find r′′1 , . . . , r
′′
l(s′)−l(s) ∈ R such that r1 · · · rl(s)r′′1 · · · r′′l(s′)−l(s) =

r′1 · · · r′l(s′). The sequences

(r1, . . . , rl(s), r
′′
1 , . . . , r

′′
l(s′)−l(s))

and
(r′1, . . . , r

′
l(s′))

both lie in RedR(w′). Since w′ 4 c, both sequences lie in the same Hurwitz

orbit (Proposition 7.6). Thus

(r′1, . . . , r
′
n)

and
(r1, . . . , rl(s), r

′′
1 , . . . , r

′′
l(s′)−l(s), r

′
l(s′)+1, . . . , r

′
n)

are transformed one onto the other by Hurwitz action of a braid β ∈ Bn only

braiding the first l(s′) strands. The Hurwitz transform of

lbl(y′) = (s′1, . . . , s
′
n)

by β is the label
(s′′1, . . . , s

′′
n)

of some y′′ ∈ Y gen. Since the braid only involves the first l(s′) strands,

s′′1 · · · s′′l(s′) = s′1 · · · s′l(s′) = s′. One has π(s′′i ) = ri for i = 1, . . . , l(s); thus

π(s′′1 · · · s′′l(s)) = π(s1 · · · sl(s)). By Lemma 7.8, this implies that s′′1 · · · s′′l(s) =

s1 · · · sl(s) = s. For x with small enough real and imaginary parts, one may find

real numbers L,L′ with 0 < L ≤ L′ such that (y′′, x, L) is a tunnel with asso-

ciated simple s′′1 · · · s′′l(s) = s and (y′′, x, L′) is a tunnel with associated simple

s′′1 · · · s′′l(s′) = s′. �

Proposition 8.5. The map π restricts to an isomorphism (S,4)
∼→

([1, c],4R). In particular, 4 is an order relation on S.

Proof. The previous proposition, applied to s′ = δ, proves that π(S) ⊆
[1, c]. It also proves that π induces a morphism of sets with binary relations

(S,4)→([1, c],4R). The injectivity is Lemma 7.8.

Surjectivity : Choose y ∈ Y gen. Let (s1, . . . , sn) := lbl(y). Let ri := π(si).

We have (r1, . . . , rn) ∈ RedR(c). Let w ∈ [1, c]. We may find (r′1, . . . , r
′
n) ∈

RedR(c) such that r′1 · · · r′lT (w) = w. By Proposition 7.6, (r′1, . . . , r
′
n) is a

Hurwitz transformed of (r1, . . . , rn); thus there exists y′ ∈ Y gen such that

π∗(lbl(y′)) = (r′1, . . . , r
′
n). The simple element that is the product of the first

l(w) terms of lbl(y′) is in π−1(w). �
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We have the following key lemma.

Lemma 8.6. The poset ([1, c],4R) is a lattice.

Proof. The real case is done in [3]; a recent beautiful case-free argument

has been found by Brady-Watt [15]. The case of G(e, e, r) is done in [6]. The

remaining cases have been checked by computer. �

Definition 8.7. The dual braid relations with respect to W and c are all

the formal relations of the form

rr′ = r′r′′,

where r, r′, r′′ ∈ R are such that r 6= r′, rr′ ∈ [1, c], and the relation rr′ = r′r′′

holds in W .

Clearly, dual braid relations only involve reflections in R∩ [1, c]. When W

is complexified real, R ⊆ [1, c]. This does not hold in general. (See the tables

at the end of the article.)

As in [3] (see also [5, §1] and Appendix B), one endows [1, c] with a partial

product and obtains a monoid M(Pc).

From Lemma 8.6, we will deduce that M(Pc) is a Garside monoid. We will

also identify M(Pc) with M . The following lemma generalizes [3, Th. 2.1.4].

Lemma 8.8. Let Rc := R ∩ [1, c]. The monoid M(Pc) admits the monoid

presentation
M(Pc) ' 〈Rc | dual braid relations〉 .

Remark 8.9. When viewed as a group presentation, the presentation of

the lemma is a presentation for G(Pc). As soon as we prove Theorem 8.2,

Lemma 8.8 will give an explicit presentation for B. A way to reprove Theo-

rem 0.6 for groups different from G31 is by simplifying the (redundant) pre-

sentation given by the lemma. This does not involve any computer-assisted

monodromy computation.

Proof of Lemma 8.8. By definition, M(Pc) admits the presentation with

generators Rc and a relation r1 · · · rk = r′1 · · · r′k for each pair (r1, . . . , rk),

(r′1, . . . , r
′
k) of reduced R-decompositions of the same element w ∈ [1, c]. Call

these relations Hurwitz relations. By transitivity of the Hurwitz action on

RedR(c) (Proposition 7.6), the Hurwitz relations are consequences of the dual

braid relations. The dual braid relations clearly hold in M(Pc). (To see this,

complete (r, r′) to an element (r, r′, r3, . . . , rn) ∈ RedR(c).) This proves the

lemma. �

Proof of Theorem 8.2. Set Rc := R ∩ [1, c]. We are in the situation of

Section 0.4 in [3]: (W,Rc) is a generated group and c is balanced. (One first

observes that {w|w 4Rc c}={w|w 4R c} and {w|c <Rc w}={w|c <R w}; one

concludes noting that c is balanced with respect to (W,R), which is immediate
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since R is invariant by conjugacy.) By Lemma 8.6 and [3, Th. 0.5.2], the

premonoid Pc := [1, c] (together with the natural partial product) is a Garside

premonoid. We obtain a Garside monoid M(Pc).

By Proposition 8.5, the restriction of π is a bijection from S to Pc. Let

φ be the inverse bijection. Let w,w′ ∈ Pc. Assume that the product w.w′ is

defined in Pc. Let w′′ be the value of this product. One has w 4R w′′, thus

φ(w) 4 φ(w′′) (using again Proposition 8.5), and we may find b′ in S such that

φ(w)b′ = φ(w′′) (Proposition 8.4).

Claim. b′ = φ(w′). Indeed, b′ and φ(w′) are two simple elements whose

image by π is w−1w′′; one concludes using Lemma 7.8. This proves that

φ induces a premonoid morphism Pc → S (where S is equipped with the

restriction of the monoid structure) and thus induces a monoid morphism

M(Pc)→M and a group morphism Φ : G(Pc)→ B.

Let use prove that Φ is an isomorphism. Choose a basepoint y ∈ Y gen. Let

γ1, . . . , γn be generators of π1(Y −K, y). Let (s1, . . . , sn) be the label of y. Let

us reinterpret the presentation from Theorem 4.4 in terms of Hurwitz action.

Since LL : Y −K → Ereg
n is a covering, π1(Y −K, y) may be identified with a

subgroup H ⊆ Bn. The generators f1, . . . , fn in Theorem 4.4 may be chosen to

be s1, . . . , sn, and the monodromy automorphism φ1, . . . , φm are obtained by

Hurwitz action on s1, . . . , sn. Let h ∈ H. Let (s′1, . . . , s
′
n) := h(s1, . . . , sn); by

this, we mean the Hurwitz action of h on the free group generated by s1, . . . , sn;

the s′i’s are words in the si’s. Call Van Kampen relations the relations of the

type s′i = si, for any i ∈ {1, . . . , n}, h ∈ H, and s′i obtained as above. We have

B ' 〈s1, . . . , sn | Van Kampen relations〉.

The map π induces a bijection from A := π−1(Rc) ⊆ S to Rc. Let r1, . . . , rn
be the images of s1, . . . , sn. By transitivity of Hurwitz action on RedR(c),

the group G(Pc) is generated by r1, . . . , rn, the remaining generators in the

presentation of Lemma 8.8 appearing as conjugates of r1, . . . , rn (by successive

use of dual braid relations). Our generating sets are compatible, and the

morphism

Φ : G(Pc) ' 〈Rc | dual braid relations〉
→ B ' 〈s1, . . . , sn | Van Kampen relations〉

is defined by ri 7→ si. Add to the presentation of B formal generators indexed

by

A− {s1, . . . , sn}
as well as the dual braid relations π(r)π(r′) = π(r′)π(r′′). Since the relations

already hold in G(Pc), they hold in B, and we obtain a new presentation:

B ' 〈A | Van Kampen relations on {s1, . . . , sn}, dual braid relations on A〉 .



FINITE COMPLEX REFLECTION ARRANGEMENTS 853

To conclude that Φ is an isomorphism, it is enough to observe that the dual

braid relations encode the full Hurwitz action of Bn of (s1, . . . , sn), while the

Van Kampen relations encode the action of H ⊆ Bn: thus Van Kampen rela-

tions are consequences of dual braid relations, and G(Pc) and B are given by

equivalent presentations.

Since Φ is an isomorphism and M(Pc) naturally embeds in G(Pc) (this is

a crucial property of Garside monoids [26]), M(Pc) is isomorphic to its image

M in B. The rest of theorem is clear. �

As mentioned earlier, one may view B as a “reflection group,” generated

by the set R of all braid reflections. An element of M is in R if and only

if it has length 1 for the natural length function or, equivalently, if it is an

atom (i.e., an element that has no strict divisor in M except the unit). By

Proposition 7.6 and Theorem 7.5, there is a bijection between RedR(c) and the

image of lbl : Y gen → Rn. This image is clearly contained in RedR(δ). The

conjecture below claims an analogue in B of the transitivity of the Hurwitz

action on RedR(c). (δ is the natural substitute for a Coxeter element in B.) It

implies that any element in RedR(δ) is the label of some y ∈ Y gen.

Conjecture 8.10. The Hurwitz action of Bn on RedR(δ) is transitive.

9. Chains of simple elements

Here again, W is an irreducible well-generated complex reflection group,

and the notation from the previous section is still in use. For k = 0, . . . , n, we

denote by Ck the set of (strict) chains in S − {1} of cardinal k, i.e., the set of

k-tuples (c1, . . . , ck) in Sk such that

1 ≺ c1 ≺ · · · ≺ ck
or, equivalently, the set of k-tuples (c1, . . . , ck) in Mk such that

1 ≺ c1 ≺ · · · ≺ ck 4 δ.
It is convenient to write {1 ≺ c1 ≺ · · · ≺ ck} instead of (c1, . . . , ck).

We set C :=
⊔n
k=0 Ck. Let C := {1 ≺ c1 ≺ · · · ≺ ck} ∈ C. We say that

y ∈ Y represents C if there exist x ∈ Uy and real numbers L1, . . . , Lk such that

0 < L1 < · · · < Lk and, for i = 1, . . . , k, (y, x, Li) is a tunnel representing Ci.

Example. If LL(y) is as in the illustration below and (s1, . . . , s5) = lbl(y),

y represents 1 ≺ s1 ≺ s1s3 ≺ s1s3s4 ≺ s1s3s4s5, 1 ≺ s2 ≺ s2s4 ≺ s2s4s5,

1 ≺ s2 ≺ s2s5 and their subchains, but does not represent 1 ≺ s2 ≺ s2s3 nor

1 ≺ s3 ≺ s3s5.

•

•

•

•
•x5

x1

x2

x3

x4
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Definition 9.1. For all C ∈ C, we set YC := {y ∈ Y |y represents C}.

To illustrate this notion, we observe that implication (ii)⇒ (i) from Propo-

sition 8.4 expresses that for all C ∈ C2, YC is nonempty. Based on the results

from the previous sections, this easily generalizes to

Lemma 9.2. For all C ∈ C, the space YC is nonempty.

The goal of this section is to prove

Proposition 9.3. For all C ∈ C, the space YC is contractible.

This technical result will be used in Section 10, when studying the nerve

of an open covering of the universal cover of W\V reg: we will need to prove

that certain nonempty intersections of open sets are contractible, and these

intersections will appear as fiber bundles over some YC , with contractible fibers.

The proposition is not very deep nor difficult but somehow inconvenient

to prove since the retraction will be described via LL, through ramification

points. The following particular cases are easier to obtain:

• If C is the chain 1 ≺ δ, then YC = Y ' Cn−1.

• More significantly, let W be a complex reflection group of type A2. Up

to renormalization, the discriminant is X2
2 + X3

1 . Identify Y with C. For

all y ∈ C, LL(y) = {±(−y)3/2}. In particular, LL(1) = {±
√
−1}. Let s

be the simple element represented by the tunnel with y = 1, x = −1 and

L = 2. Let C be the chain 1 ≺ s. Then YC is the open cone consisting of

nonzero elements of C with argument in the open interval (−2π/3, 2π/3).

• Assume that C ∈ Cn. All points in YC are generic. Consider the map

Y gen → Cn×En sending y to the pair ({1 ≺ s1 ≺ s1s2 ≺ · · · ≺ s1s2 · · · sn =

δ},LL(y)), where (s1, . . . , sn) = lbl(y). This map is a homeomorphism.

The (YC)C∈Cn are the connected components of Y gen. Each of these com-

ponents is homeomorphic to Egen
n , which is contractible. These (YC)C∈Cn

are some analogues of chambers.

In the following proposition, if A ⊆ LL(y) is a submultiset, the deep label

of A is the sequence (t1, . . . , tp) of labels (with respect to y) of points in the

support of A that are deep with respect to A. (Since these points may not be

deep in LL(y), the deep label of A is not necessarily a subsequence of the deep

label of y.)

Lemma 9.4. Let y ∈ Y . Let T = (y, z, L) and T ′ = (y, z′, L′) be two tun-

nels in Ly such that bT = bT ′ . Then T and T ′ cross the same intervals among

I1, . . . , In. (In other words, T and T ′ are homotopic as tunnels drawn in Ly .)

Proof. Up to perturbing y, we may assume that y ∈ Y gen. Let (s1, . . . , sn)

:= lbl(y) and (r1, . . . , rn) := πn(lbl(y)). Let i1, . . . , il (resp. j1, . . . , jm) be the
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successive indices of the intervals among I1, . . . , In crossed by T (resp. T ′).

We have bT = si1 · · · sil and bT ′ = sj1 · · · sjm . Assuming that bT = bT ′ , we

obtain si1 · · · sil = sj1 · · · sjm and ri1 · · · ril = rj1 · · · rjm . Let w := ri1 · · · ril .
By Lemma 7.7, l = m; both (ri1 , . . . , ril) and (ri1 , . . . , ril) are reduced decom-

positions of w and we have

(∗) ker(w − 1) =
l⋂

k=1

ker(rik − 1) =
l⋂

k=1

ker(rjk − 1).

Assume that (i1, . . . , il) 6= (j1, . . . , jl). We may find j ∈ {j1, . . . , jl} such

that, for example, i1 < · · · < ik < j < ik+1 < . . . il. Noting that the element

ri1 · · · rikrjrik+1
· · · ril is a parabolic Coxeter element, we deduce that ker(rj−1)

6⊇ ker(w − 1). This contradicts (∗). �

Proposition 9.5. Let C = {1 ≺ c1 ≺ c2 ≺ · · · ≺ cm} be a chain in Cm.

Let y ∈ Y , let (x1, . . . , xk) be the ordered support of LL(y) and (s1, . . . , sk) be

the label of y. The following assertions are equivalent :

(i) y ∈ YC .

(ii) There exists a partition of LL(y) into m+ 1 submultisets A0, . . . , Am such

that

(a) For all i, j ∈ {1, . . . ,m} with i < j, for all x ∈ Ai and all x′ ∈ Aj ,
we have re(x) < re(x′);

(b) for all x ∈ A0, one has

re(x) < min
x′∈A1∪···∪Am

re(x′)

or

im(x) < min
x′∈A1∪···∪Am

im(x′)

or

re(x) > max
x′∈A1∪···∪Am

re(x′);

(c) for all i ∈ {1, . . . ,m}, the product of the deep label of Ai is c−1
i−1ci

(where one sets c0 = 1).

Moreover, in situation (ii), the partition LL(y) = A0 t · · · t Am is uniquely

determined by y and C .

The picture below illustrates the proposition for particular y and C. Here

lbl(y) = (s1, . . . , s5) and the considered chain is

C = {1 ≺ s2 ≺ s2s4}.
We have chosen tunnels T1 = (y, x, L1) and T2 = (y, x, L2), with L1 < L2,

such that bT1 = s2 and bT2 = s2s4. The dotted lines represent these tunnels

as well as the vertical half-lines above x, x + L1 and x + L2. They partition

the complex line into three connected components; the partition A0 tA1 tA2

is the associated partition of LL(y). It is clear that the possibility of drawing
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the tunnels is subject precisely to the conditions on A0 tA1 tA2 expressed in

the proposition.

A0 A1 A2

•

•

•

•
•x5

x1

x2

x3

x4

Proof. (i) ⇒ (ii): Let (y, z, L1), . . . , (y, z, Lm) be tunnels representing the

successive nontrivial terms of C = {1 ≺ c1 ≺ · · · ≺ cm}. Set z0 := z and, for

i = 1, . . . ,m, zi := z + Li. We have

re(z0) < re(z1) < · · · < re(zm)

and

im(z0) = im(z1) = · · · = im(zm).

For i ∈ {1, . . . ,m}, let Ai be the submultiset of LL(y) consisting of points

x such that re(zi−1) < re(x) < re(zi) and im(x) > im(z0). Let A0 be the

complement in LL(y) of A1 ∪ · · · ∪Am. One easily checks (a), (b) and (c).

(ii) ⇒ (i): Conversely, assume we are given a partition A0 tA1 t · · · tAm
satisfying conditions (a) and (b).

One may recover tunnels (y, z, L1), . . . , (y, z, Lm) such that the above con-

struction yields the partition A0 t A1 t · · · t Am. Condition (c) then implies

that the tunnels represent the elements of C and thus that y ∈ YC .

Uniqueness of the partition. This is a consequence of condition (c) and

Lemma 9.4. �

Lemma 9.6. Let C = {1 ≺ c1 ≺ c2 ≺ · · · ≺ cm} ∈ C. Define Y 0
C as the

subspace of YC consisting of points y whose associated partition A0, . . . , Am
(from Proposition 9.5(ii)) satisfies the following conditions :

• for i = 0, . . . ,m, the support of Ai is a singleton {ai}; and

• re(a0) = mini=1,...,m re(ai)− 1 and im(a0) = mini=1,...,m im(ai)− 1.

Then Y 0
C is contractible.

Proof. Let y ∈ Y 0
C . The support (x0, . . . , xm) of LL(y) is generic; thus the

label (s0, . . . , sm) of y coincides with the deep label, and we have s0 · · · sm =

δ (Corollary 6.18). By Proposition 9.5, Condition (ii)(c), we have, for i =

1, . . . ,m, si = c−1
i−1ci (where c0 = 1). Thus s0 = δc−1

m . We have proved that

the label of any y ∈ Y 0
C must be (δc−1

m , c−1
0 c1, . . . , c

−1
m−1cm). A consequence

of Theorem 7.20 is that the map Y 0
C → Egen

m sending y to (x1, . . . , xm) is a

homeomorphism. One concludes with Lemma 3.2. �

We may now proceed to the proof of Proposition 9.3. Let C = {1 ≺ c1 ≺
· · · ≺ cm} ∈ C. Let y ∈ YC . Let (x1, . . . , xk) be the ordered support of LL(y),
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and (n1, . . . , nk) be the multiplicities. Let A0, . . . , Am be the partition of LL(y)

described in Proposition 9.5(ii).

The picture below gives an idea of the retraction of YC onto Y 0
C that will

be explicitly constructed. It illustrates the motion of a given point y ∈ YC ;

the black dots indicate the support of LL(y), and the arrows indicate how this

support moves during the retraction.

a0

a1 a2

A0 A1 A2

•

•

•

•••
• •

��ff88 gg''

�� OO ��oo

For i = 1, . . . ,m, consider the multiset mass center

ai :=

∑
x∈Ai x

|Ai|
.

(In this expression, Ai is viewed as a multiset: each xj in Ai is taken nj times,

and |Ai| is the multiset cardinal, i.e., the sum of the nj such that xj ∈ Ai.)
For each t ∈ [0, 1], let

γy(t) := A0 ∪
m⋃
i=1

{(1− t)x+ tai|x ∈ Ai}.

(Here again, we consider the multiset union; in particular, the multicardinal

of γy(t) is constant, equal to n — i.e., γy(t) ∈ En.) This defines a path in En.

As explained in Remark 7.21, the path γy uniquely lifts to a path γ̃y in

Y such that γ̃y(0) = y. An easy consequence of Proposition 9.5 is that γ̃y is

actually drawn in YC .

Let y′ := γ̃y(1). Let

R := min
i=1,...,m

re(ai) = re(a1)

and

I := min
i=1,...,m

im(ai).

For all x ∈ A0, we have re(x) < R or im(x) < I or re(x) > re(am); denote by

x′ the complex number with the same real part as x and imaginary part I − 1;

let a0 := R− 1 +
√
−1(I − 1). Consider the path βx : [0, 1]→ C defined by

βx(t) :=

(1− 2t)x+ 2tx′ if t ≤ 1/2,

(2− 2t)x′ + (2t− 1)a0 if t ≥ 1/2.

For all t ∈ [0, 1], one has re(βx(t)) < R or im(βx(t)) < I or re(βx(t)) > re(am).

The path γ′y : [0, 1]→ En defined by

γ′y(t) := {a1, . . . , a1︸ ︷︷ ︸
|A1| times

} ∪ · · · ∪ {am, . . . , am︸ ︷︷ ︸
|Am| times

} ∪
⋃
x∈A0

βx(t)
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lifts to a unique path γ̃′y in Y such that γ̃′y(0) = y′. Once again, a direct

application of Proposition 9.5 ensures that γ̃′y is actually in YC . The endpoint

y′′ := γ̃′y(1) lies in the subspace Y 0
C of Corollary 9.6.

The map

ϕ : YC × [0, 1]−→ YC

(y, t) 7−→ (γ̃′y ◦ γ̃y)(t)

is a retraction of YC onto its contractible subspace Y 0
C . Thus YC is contractible.

10. The universal cover of W\V reg

The main result of this section is

Theorem 10.1. The universal cover of W\V reg is homotopy equivalent

to gar(B,S).

Combined with Theorem B.14, this proves our main result Theorem 0.2

in the irreducible case. The reducible case follows.

To prove this theorem, we construct an open covering (“Ub)b∈B such that

intersections of (“Ub)b∈B are either empty or contractible (Proposition 10.7).

Under these assumptions, a standard theorem from algebraic topology ([36,

4G.3]) shows that the universal cover is homotopy equivalent to the nerve, i.e.,

the simplicial space determined by nonempty intersections. By showing that

the nerve is gar(B,S) (Proposition 10.6), we obtain the desired result.

As explained in Definition A.5, our “basepoint” U provides us with a

model denoted

UniCover(W\V reg,U)

for the universal cover of W\V reg. Recall that, to any semitunnel T , one asso-

ciates a path γT whose source is in U and thus a point in UniCover(W\V reg,U).

Moreover, we have a left action ofB=π1(W\V reg,U) on UniCover(W\V reg,U).

With these conventions, our open covering is very easy to define:

Definition 10.2. The set “U1 is the subset of UniCover(W\V reg,U) of ele-

ments represented by semitunnels. For all b ∈ B, we set “Ub := b“U1.

Two semitunnels represent the same point in UniCover(W\V reg,U) if and

only if they are equivalent in the following sense:

Definition 10.3. Two semitunnels T = (y, x, L) and T ′ = (y′, x′, L′) are

equivalent if and only if y = y′, x + L = x′ + L′ and the affine segment

[(y, x), (y, x′)] is included in U .

Let T = (y, x, L) be a semitunnel. The point of “U1 determined by T , or

in other words the equivalence class of T , is uniquely determined by y, x+ L
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and

λ(T ) := inf
{
λ′ ∈ [0, L]

∣∣[(y, x), (y, x+ L− λ′)] ⊆ U
}
.

The number λ is the infimum of the length of semitunnels in the equivalence

class of T . This infimum may not be a minimum, since (y, x+L−λ(T ), λ(T ))

may not be a semitunnel (unless T is included in U).

We consider the following subsets of “U1:

(U1) If λ(T ) = 0 = min {λ′ ∈ [0, L] |[x, x+ L− λ′] ⊆ Uy }, then T is a tunnel,

equivalent to (y, x+L, 0). Elements of “U1 represented by such tunnels of

length 0 form an open subset denoted by U1. This subset is actually a

sheet over U of the universal covering, corresponding to the trivial lift of

the “basepoint.”

(U1) We denote by U1 the subset consisting of points represented by semitun-

nels with λ(T ) = 0 (but without requiring that the “inf” is actually a

“min”). We obviously have U1 ⊆ U1, and U1 is contained in the closure

of U1. It is readily seen that, whenever λ(T ) = 0, then the semi-open

interval [x, x + L) lies in Uy, and that x + L ∈ Uy if and only if the

associated point lies in U1.

Similarly, for all b ∈ B, we set

Ub := bU1, Ub := bU1.

Also, for any y ∈ Y , we denote by “Ub,y (resp. Ub,y, resp. Ub,y) the intersec-

tion of “Ub (resp. Ub, resp. Ub) with the fiber over y of the composed map

UniCover(W\V reg,U)→W\V reg → Y .

Lemma 10.4. The family (Ub)b∈B is a partition of UniCover(W\V reg,U).

Proof. We first prove that Ub ∩ U1 6= ∅ ⇒ b = 1. Let p ∈ bU1 ∩ U1. Let

T = (y, x, L) be a semitunnel with λ(T ) = 0 representing p. Let T ′ = (y′, x′, L′)

be a semitunnel with λ(T ′) = 0 representing b−1(p). Let γ be a path from y

to y′ representing b. The paths T and γT ′ represent the same point p in the

universal cover; hence they are homotopic. By looking at the projection onto

the base space, we see that x+ L = x′ + L′ and y = y′.

• If L = 0 or L′ = 0, then x + L = x′ + L′ lies in Uy = Uy′ . This is implies

that both [x, x + L] ⊆ Uy and [x′, x′ + L′] ⊆ Uy′ , thus γ is homotopic to

the trivial path and b = 1.

• If both L > 0 and L′ > 0, then for ε small enough (i.e., such that 0 < ε <

min(L,L′)),

– T is the concatenation of T0 = (y, x, L− ε) and Tε = (y, x+L− ε, ε);
– T ′ is the concatenation of T ′0 = (y′, x′, L′ − ε) and T ′ε = (y′, x′ + L′

− ε, ε) = Tε.
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Since λ(T ) = λ(T ′) = 0, T0 and T ′0 are tunnels representing the trivial

braid. From T ∼ γT ′, we deduce T0Tε ∼ γT ′0Tε and T0 ∼ γT ′0, which

shows that b = 1.

Using the B-action, this implies that Ub ∩ Ub′ 6= ∅⇒ b = b′.

To conclude, it suffices to show that the projection U1 → W\V reg is

bijective. Any point in z ∈W\V reg is the target of a unique equivalence class

of semitunnels T with λ(T ) = 0; depending on whether z ∈ U or not, the

associated point will be in U1 or in U1 − U1. �

In particular, (“Ub)b∈B is a covering of UniCover(W\V reg,U).

Lemma 10.5. For all b ∈ B, “Ub is open and contractible.

Proof. It is enough to deal with b = 1. That “U1 is open is easy. Let T be

the space of semitunnels and ∼ the equivalence relation. As a set, “U1 ' T / ∼.

Consider the map

φ : T × [0, 1]−→T
(T = (y, x, L), t) 7−→ (y, x, L− tλ(T )).

If T ∼ T ′, then for all t, φ(T, t) ∼ φ(T ′, t). Thus φ induces a map φ : “U1 ×
[0, 1]→ “U1. This map is continuous (this follows from the fact that λ induces

a continuous function on “U1) and φ(T, t) = T if T ∈ U1 or if t = 0. We have

proved that “U1 retracts to U1. We are left with having to prove that U1 is

contractible. Inside U1 lies U1 that is contractible since it is a standard lift of

the contractible space U .

We conclude by observing that U1 and U1 are homotopy equivalent. There

is probably a standard theorem from semialgebraic geometry applicable here,

but I was unable to find a proper reference. Below is a “bare-hand” argument:

it explains how U1 may be “locally retracted” inside U1. (Constructing a global

retraction seems difficult.)

Both spaces have homotopy type of CW-complexes, and to prove homo-

topy equivalence it is enough to prove that any continuous map f : Sk → U1

(where Sk is a sphere) may be homotoped to a map Sk → U1. Assume that

there is a semitunnel T = (y, z, L) such that (T/ ∼) ∈ f(Sk) ∩ (U1 − U1).

We have L > 0. For any ε > 0, let Bε(y) be the open ball of radius ε in Y

around y, and let Iε(z) be the affine interval (z−
√
−1ε, z+

√
−1ε). For ε small

enough, there is a unique continuous function Lε : Bε(y)×Iε(z)→ R such that

Lε(y, z) = L and for all (y′, z′) ∈ Bε(y) × Iε(z), (y′, z′, Lε(y
′, z′)) represents a

point in U1 − U1. The “half-ball”

Hε := {(y′, z′, L′) ∈ Bε(y)× Iε(z)× R|0 ≤ L′ ≤ Lε(y′, z′)}

is a neighborhood of T/ ∼ in U1. Working inside this neighborhood, one may

homotope f to f ′ such that f ′(Sk)∩ (U1−U1) ⊆ f(Sk)∩ (U1−U1)−{T/ ∼}.
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Compactness of f(Sk)∩ (U1−U1) guarantees that one can iterate this process

a finite number of times to get rid of all f(Sk) ∩ (U1 − U1). �

Proposition 10.6. The nerve of (“Ub)b∈B is gar(B,S).

Proof. Let b, b′ ∈ B such that “Ub ∩ “Ub′ 6= ∅. Let T = (y, x, L) and

T ′ = (y′, x′, L′) be semitunnels, representing points z and z′ in “U1, such that

bz = b′z′. The image of z (resp. z′) in W\V reg is (y, x+L) (resp. (y′, x′+L′)).

Thus x + L = x′ + L′ and y = y′. Up to permuting b and b′, we may assume

that L ≥ L′. Since x′ = x + L − L′ is in Uy, T
′′ := (y, x, L − L′) is a tunnel,

representing a simple element b′′. The tunnel T is a concatenation of T ′′ and

T ′. This implies that z = b′′z′ and b′z′ = bz = bb′′z′. By faithfulness of the

B-action on the orbit of z, we conclude that bb′′ = b′.

We have proved that the 1-skeletons of the nerve and of gar(B,S) coincide.

To conclude, it remains to check that the nerve is a flag complex. Let C ⊆ B

be such that for all b, b′ ∈ C, either b−1b′ or b′−1b is simple. Note that, unless

b = b′, b−1b′ and b′−1b cannot both be simple (because Garside monoids are

cancellative); in this setup, we write b 4 b′ for b−1b′ ∈ S. This defines a total

ordering on C that, when both b and b′ are in M , coincides with the previously

defined left prefix ordering.

We have to prove that
⋃
b∈C “Ub 6= ∅. Let c0, . . . , cm be the elements of C,

numbered according to the total ordering on C induced by 4:

c0 ≺ c1 ≺ c2 ≺ · · · ≺ cm 4 c0δ.

Up to left-dividing each term by c0, we may assume that c0 =1. Let y∈YC .

We may find x, L1, . . . , Lm such that (y, x, Li) represents ci for all i. The point

of the universal cover represented by (y, x, Lm) belongs to
⋃
b∈C “Ub. �

Proposition 10.7. Let C be a subset of B such that
⋂
b∈C “Ub 6= ∅. Then⋂

b∈C “Ub is contractible.

Proof. As in the previous proof, we write C = {c0, c1, . . . , cm} with

c0 ≺ c1 ≺ c2 ≺ · · · ≺ cm 4 c0δ

and assume without loss of generality that c0 = 1.

The case m = 0 is Lemma 10.5.

Assume that m ≥ 1. Let T = (y, z, L). The point represented by T lies

in
⋂
b∈C “Ub if and only if there exists L1, . . . , Lm with 0 < L1 < · · · < Lm < L

such that, for all i, Ti := (y, z, Li) is a tunnel representing ci. Given y ∈ Y , it

is possible to find such L1, . . . , Lm if and only if y ∈ YC . This justifies⋂
b∈C

“Ub,y 6= ∅⇔ y ∈ YC .
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For a given y ∈ YC , let us study the intersection
⋂
b∈C “Ub,y. Let (x1, . . . , xk)

be the ordered support of LL(y). Let A0, . . . , Am be the associated partition

of LL(y), defined in Proposition 9.5. Let

R+(y, C) := max{re(z)|z ∈ Am},
R−(y, C) := min{re(z)|z ∈ A1},
I+(y, C) := min{im(z)|z ∈ A1 ∪ · · · ∪Am},

and

I−(y, C) = sup{im(z)|z ∈ A0 and R− ≤ re(z) ≤ R+}.

We have I−(y, C) < I+. It may happen that I−(y, C) = −∞.

We illustrate this in a picture. In the example, the support of LL(y)

is x1, . . . , x6 and C = {1 ≺ s2 ≺ s2s4}, where (s1, . . . , s6) = lbl(y). The

support of A1 is x2, and the support of A2 is x4. The remaining points are

in A0. The lines im(z) = I−(y, C) and im(z) = I+(y, C) are represented

by full lines. A semitunnel (y, z, L) representing a point in
⋂
b∈C “Ub,y must

cross the intervals I2 and I4 represented by dotted lines. One must have

re(z) < R−(y, C) and I−(y, C) < im(z) < I+(y, C); the final point z + L must

satisfy re(z + L) > R+(y, C). This final point may be any complex number z′

in the rectangle re(z′) > R+(y, C) and I−(y, C) < im(z′) < I+(y, C), except

the points on the closed horizontal half-line to the right of x6 (indicated by a

dashed line), which cannot be reached.

•

•

•

•
•x5

•x6

x1

x2

x3

x4

Generalising the example, one shows that
⋂
b∈C “Ub may be identified with⋃

y∈YC

E(y, C),

where E(y, C) is the open rectangle of C defined by

re(z) > R+(y, C), I−(y, C) < im(z) < I+(y, C)

from which have been removed the possible points of A0 and the horizontal

half-lines to their rights.

Let E(y, C) be the rectangle

re(z) ≥ R+(y, C), I−(y, C) < im(z) < I+(y, C)

from which have been removed the possible points of A0 and the horizontal

half-lines to their rights.
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A homotopy argument similar to the one used in the proof of Lemma 10.5

shows that
⋃
y∈YC E(y, C) and

⋃
y∈YC E(y, C) are homotopy equivalent. (There

might be a nicer argument from semialgebraic geometry.) The latter may be

retracted to the union of open intervals⋃
y∈YC

(I−(y, C), I+(y, C));

on each rectangle, the retraction is

E(y, C)×[0, 1]→ E(y, C), (z, t) 7→ R+(y, C)+t(re(z)−R+(y, C))+
√
−1 im(z).

The union ⋃
y∈YC

(I−(y, C), I+(y, C))

may be retracted to ⋃
y∈YC

[I0(y, C), I+(y, C)),

where I0(y, C) := max( I−(y,C)+I+(y,C)
2 , I+(y, C)−1). The latter space is a fiber

bundle over YC , with fibers intervals. Since the basespace YC is contractible

(Proposition 9.3), this fiber bundle is contractible. So is
⋂
b∈C “Ub. �

11. Centralizers of regular elements

This section is devoted to the proof of Theorem 0.3: if W ′ is the central-

izer of a d-regular element in an irreducible well-generated complex reflection

group W , then the hyperplane complement of W ′ is K(π, 1). To prove this, we

develop a relative version of the tools and constructions presented in the previ-

ous sections, following the same generic pattern of proof, but with a categorical

twist.

Let m be a positive integer. As explained in Appendix B (Theorem B.22),

starting from any Garside structure — we will start from the dual braid monoid

M , with its Garside element δ and Garside automorphism φ — there exists a

groupoid Gm equivalent as a category to B, and admitting a Garside structure

(Mm, δm, φm) where the order of φm is m times the order of φ. Because φm
is compatible with the Garside structure, the fixed subgroupoid Gφmm admits a

Garside structure (Mφm
m , δm, φm).

Our main result so far is that W\V reg is a K(B, 1). While µd naturally

acts on W\V reg, the dual braid monoid M may not have an automorphism of

order d. By replacing M by Md, or by any Mm where m is such that d|mh, we

can obtain a Garside structure with a symmetry of order d. So the categorical

viewpoint provides the algebraic structure that we need.

As B and Gm are equivalent, a K(B, 1) space is homotopy equivalent to a

K(Gm, 1) space. If one could view W\V reg as a K(Gm, 1) in a µd-equivariant

fashion, then the relative K(π, 1) property should follow by simply considering
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fixed points. Although we do not attempt to systematically investigate this

intuition (the connection between the cyclic/helicoidal structure, the nonpos-

itively curved aspects, and geometric constructions such as the Milnor fiber,

would be especially worth studying), it is the true explanation behind the

miracles of the current section.

11.1. A Garside category with symmetry of order d. Since W\V and Y

are defined by graded subalgebras of OV , these varieties are equipped with

quotient actions of C×. There is also a natural C×-action on the configuration

spaces En and E
◦
n, defined by

λ · {{{z1, . . . , zn}}} := {{{λz1, . . . , λzn}}}.

Lemma 11.1. For all (y, z)∈W\V and for all λ∈C×, we have LL(λ(y, z))

= λhLL((y, z)).

Proof. Elementary. �

If d divides h, then (W\V reg)µd is again the regular orbit space of a well-

generated complex reflection group. (Because of Theorem 1.9 (2), the central-

izer W ′ is again a duality group and thus is well generated.) Because we have

already proved the K(π, 1) property in this case, it would be sufficient to focus

on the case when d does not divide h.

Convention 11.2. Until the end of Section 11, we work under the following

assumptions and notation:

• d is a fixed regular number;

• we set

h′ :=
h

h ∧ d
and d′ :=

d

h ∧ d
and, in particular, we have

h′d = hd′ = h′d′(h ∧ d) = h ∨ d.

Note that we do not assume that d′ > 1. Actually, taking d′ = d = 1,

we will obtain an alternate proof that the arrangement of W is K(π, 1). This

alternate proof is geometrically simpler, but a bit more abstract, compared to

the argument provided in the previous two sections.

Lemma 11.3. We have d′ | n.

Proof. Because d is regular, (W\V reg)µd 6= ∅. Let (y, z) ∈ (W\V reg)µd .

Applying Lemma 11.1 to λ = ζd, we see that LL((y, z)) is ζhd -invariant. Note

that ζhd is a primitive d′-th root of unity; orbits under multiplication by prim-

itive d′-th roots of unity have either cardinal d′ or consists only of 0. The

orbit {0} is not permitted as LL((y, z)) ∈ E◦n. Thus n, the cardinality of the

multiset LL(y), is a multiple of d′. �
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Remark 11.4. In the above proof, another consequence of the fact that

LL((y, z)) = LL(y)− z is ζhd -invariant is that its barycenter −z must be 0. We

have LL((y, z)) = LL(y), and (W\V reg)µd can be identified with its image in Y .

To construct a Garside category with a symmetry of order d, we start

with the dual braid monoid M , together with its Garside element δ, Garside

automorphism φ and set of simple elements S.

As explained in Appendix B, all the structure is nicely encoded in the Gar-

side set D•(δ) of factorizations of δ. Through the isomorphism of Theorem 7.12,

we can work instead in D•(c), whose degree k component is

Dk(c) = {(c1, . . . , ck) ∈W k|c1 · · · ck = c and lR(c1) + · · ·+ lR(ck) = lR(c)}.

By reminding us that this is just about combinatorics in a finite group, working

in D•(c) helps reducing the cognitive load. The automorphism φ acts on Dk(c)

by

(c1, . . . , ck) · φ = (c2, . . . , cm, c
c
1).

To distinguish it from the topologically-defined braid group B, we denote

by G the group of fractions of M . (A consequence of Theorem 8.2 is that

G ' B.) As explained in Appendix B, the components of D•(c) whose degrees

are multiples of d′ form, collectively, the Garside set

d′√
D•(c)

of a Garside category Md′ , whose groupoid of fractions Gd′ is equivalent to G

and whose Garside automorphism φd′ , has order d′ times the order of φ.

Definition 11.5 (relative dual Garside set). We set

D′•(c) :=
(
d′√

D•(c)
)φh′

d′ .

The dual Garside category for W ′ relative to the pair (W,W ′) is the fixed

subcategory

M ′ := M
φh
′
d′

d′ .

We denote by G′ the groupoid obtained by formally inverting the morphisms

in M ′.

By functoriality, we have the following commutative diagram:

M ′� _

��

� � // Md′� _

��

κm // // M� _

��
G′ // Gd′

∼ // G

'
��
B.
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The “monomorphism” arrows denote functors that are faithful (injective

on morphisms.) The functor κm, introduced in Definition B.23, is full (sur-

jective on morphisms), as simple elements are in its image. The “∼” arrows

denote equivalence of categories. The morphism from G to B is a true isomor-

phism (Theorem 8.2.)

In Definition 11.23 below, we will define topological groupoids to complete

the bottom line of this diagram.

Theorem 11.6. The category M ′ is a Garside category, with Garside set

D′•(c). As a consequence, G′ is a Garside groupoid.

Proof. See Appendix B and [5]: Md′ is a Garside category, and the fixed

subcategory by an automorphism of a Garside category is a Garside category

(whose Garside set is the fixed subset for the automorphism acting on the

original Garside set). �

As explained in Remark B.18, one can use the low degree components of

D′•(c) to write a presentation by generators and relations for M ′ and G′.

• There is just one element in D′0(c); this element corresponds to the unique

object in M and does not have much algebraic significance for M ′.

• Elements in D′1(c) are φh
′
d′ -invariant factorizations (c1, . . . , cd′) of c. They

correspond to objects in M ′.

• Elements in D′2(c) are φh
′
d′ -invariant factorizations (c1, . . . , c2d′) of c. They

correspond to simple elements in M ′.

The centralizer W ′ (see Theorem 1.9) may be badly generated, but the

category M ′ provides a substitute for the dual braid monoid.

Example 11.7. In the situation of Example 1.10 (W = G37, d = 4, W ′ =

G31), we have d′ = 2 and h′ = 15. The category M2 consists of factorizations

of c as a product c = uv of two elements. The automorphism φ15
2 acts on such

pairs by

(u, v) 7→ (vc
7
, uc

8
).

The object set D′1(c) of M ′, the relative dual Garside category for G31, is

indexed by the solutions (u, v) to the following system of equations:

uv= c,

lR(u) + lR(v) = lR(c) = 8,

u= vc
7
,

v= uc
8
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or, equivalently (since c15 is central, the last two equations are equivalent),

uuc
8

= c,

lR(u) = 4.

Using a computer to sift through all elements of length 4, one finds 88 solutions.

The Garside automorphism φ2 acts on D′1(c) by (u, uc
8
) 7→ (uc

8
, uc). The

object set D′1(c) decomposes into φ2-orbits: one orbit of size 3, 2 orbits of size

5 and 5 orbits of size 15.

Example 11.7 is the only case needed in our proof of theK(π, 1) conjecture,

but it does no harm to study the relative situation in full generality.

11.2. Cyclic labels. Departing from the earlier convention initiated in Def-

inition 3.1, we now enumerate the distinct points of a configuration not con-

taining 0 clockwise, starting from 12 o’clock plus ε seconds, and for points

with identical argument, we enumerate them by increasing modulus, as in the

following example:

•

•

•

• •
•

•

x3

x5

x1

x6 x2

x4

x7

Definition 11.8. Let x ∈ E◦n. The above defined sequence (x1, . . . , xm) of

distinct points in x is the cyclic support of x. For all i, we denote by θi the

unique real number such that 0 < θi ≤ 2π and

e
√
−1θixi =

√
−1|xi|.

(In other words, a rotation with angle θi sends xi to the positive imaginary

half-line.) The nondecreasing sequence (θ1, . . . , θm) is the cyclic argument of x.

The sequence (n1, . . . , nm), where ni is the multiplicity of xi, is the cyclic

multiplicity of x.

The cyclic support (resp. argument, multiplicity) of (y, z) ∈ W\V reg is,

by extension, defined as that of LL((y, z)).

In the above picture, we have θ3 = θ4 = π/2 and θ7 = 2π.

Let x ∈ (W\V reg)µd with associated cyclic support (x1, . . . , xm) and cyclic

argument (θ1, . . . , θm). Let ε > 0. By Lemma 11.1, the point e
√
−1(θi−ε)xi lies

in LL(e
√
−1(θi−ε)/hx); thus it can be associated a simple element si,ε that is
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part of the label of e
√
−1(θi−ε)/hx (in the sense of Definition 6.9). As men-

tioned before, in this section we prefer to view simple elements in W (via

Proposition 8.5).

Using the Hurwitz rule, one readily sees that si,ε does not depends on the

choice of a small enough ε. For example, note that for i = 1, any value of ε

with 0 < ε ≤ θ1 is suitable and yields the same simple element. In particular,

we have a well-defined sequence

(c1, . . . , cm) := (s1,ε, . . . , sm,ε).

Definition 11.9. The cyclic label of (y, z)∈W\V reg is the sequence clbl(y, z)

:= (c1, . . . , cm).

Lemma 11.10. For all x ∈W\V reg, clbl(y, z) ∈ D•(c).

Proof. Consider the path: t 7→ e
√
−1 2π

h
tx. As explained after Defini-

tion 6.11, this loop represents the element δ ∈ B.

This path is the concatenation of topologically trivial paths and of paths

of the form

γy,i,ε : [θi − ε, θi + ε]→W\V reg

t 7→ e
√
−1 tL

h x,

each of which, by the Hurwitz rule, represents the simple element in B corre-

sponding to ci.

The product of these simple elements is δ; thus , after projecting to W ,

c1 · · · cm = c. �

Lemma 11.11. Let x ∈ W\V reg with cyclic support (x1, . . . , xm), cyclic

argument (θ1, . . . , θm) and cyclic label (c1, . . . , cm). Let l ≤ m be the largest

integer such that θ1 = θ2 = · · · = θl. Then

(i) Let (d1, . . . , dm) be the reduced label rlbl(x). Let σ ∈ Sm be the unique

permutation such that the ordered support of LL(x) (in the sense of Def-

inition 3.1) is (xσ(1), . . . , xσ(m)). Then, for all integers i from 1 to l, we

have ci = dσ−1(i).

(ii) e
√
−1

θ1
h x has cyclic argument (θl+1 − θ1, . . . , θm − θ1, 2π, . . . , 2π).

(iii) e
√
−1

θ1
h x has cyclic label (cl+1, . . . , cm, c

c
1, . . . , c

c
l ).

Proof. (i): as θ1 is the first element of the cyclic argument, no point

within (x1, . . . , xl) is passed above by any other point in the support through

a rotation of angle θ1 − ε; using the Hurwitz rule, we see that reduced labels

of those points are preserved throughout the motion used to define the first l

terms of the cyclic label.

(ii) is obvious by construction.
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(iii): By construction and using (ii), we see that the last l terms of

the cyclic label of e
√
−1

θ1
h (y, z) are the first l terms of the cyclic label of

e
√
−1 2π−ε

h e
√
−1

θ1
h (y, z) = e

√
−1

θ1−ε
h e

√
−1 2π

h (y, z). We conclude by observing

that, since the path t 7→ e
√
−1 2π

h
t(y, z) represents c, the cyclic label of of

e
√
−1 2π

h (y, z) is the conjugate label (cc1, . . . , c
c
m). �

Definition 11.12. A configuration x ∈ E
◦
n is cyclically compatible with

(c1, . . . , cm) ∈ D•(c) if the cyclic multiplicity of x is (lR(c1), . . . , lR(cm)). We

denote by

E
◦
n �D•(c)

the subspace of E
◦
n ×D•(c) consisting of cyclically compatible pairs.

Proposition 11.13. The map (LL, clbl) induces a bijection

W\V reg −→E
◦
n �D•(c)

x 7−→ (LL(x), clbl(x)).

Proof. That the image lies in E
◦
n �D•(c) is obvious by construction. Let

x ∈ W\V reg with cyclic argument (θ1, . . . , θm). Consecutive applications of

Lemma 11.11 to

y, e
√
−1

θ1
h x, . . . , e

√
−1

θm−1
h x

show how to recover rlbl(x) from clbl(x), and vice-versa, via a sequence of

permutations and c-conjugacies. (Note that the sequence of operations to get

from rlbl(c) to clbl(c) depends on LL(x), and it is much simpler to define it

recursively using Lemma 11.11 than it is to write down an explicit formula.)

This provides a natural bijection

Φ : E
◦
n �D•(c)→ E

◦
n �D•(c)

that fits in a commutative diagram

E
◦
n �D•(c)

Φ

��

W\V reg

(LL,rlbl)
88

(LL,clbl) &&
E
◦
n �D•(c).

Since the restriction of (LL, rlbl) is bijective (Theorem 7.25), the restriction of

(LL, clbl) is the composition of two bijections; hence it is a bijection. �

In the above proof, the transition bijection Φ : E
◦
n�D•(c)→ E

◦
n�D•(c) is

a mere E
◦
n-dependent change of notation on the D•(c)-component. We equip
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E
◦
n � D•(c) with the topology induced via Φ by that on E

◦
n � D•(c). The

trivialization of Proposition 11.13 is a homeomorphism.

Lemma 11.14. Let x ∈ W\V reg. Assume that LL(x) ∈ (E
◦
n)µd′ . Then

clbl(x) ∈ d′√D•(c) and clbl(ζd′hx) = clbl(x) · φd′ .

Proof. The path t 7→ e
√
−1 2π

d′h tx connects x to ζd′hx. Since LL(x) ∈
(E
◦
n)µd′ , LL(x) consists of d′k distinct points for some integer k. The first

k points have cyclic argument less that 2π/d′. We have

clbl(x) = (c1, . . . , cd′k)

and, by the very construction of clbl, it is obvious that the first d′(k−1) terms

of clbl(ζd′hx) are (ck+1, ck+2, . . . , cd′k). The determination of the final k terms

of clbl(ζd′hx), and the equality clbl(ζd′hx) = clbl(x) · φd′ , is an easy exercise

using the Hurwitz rule and Lemma 11.10. �

Lemma 11.15. For all x ∈ W\V reg, the following assertions are equiva-

lent :

(i) x ∈ (W\V reg)µd ,

(ii) LL(x) ∈ (E
◦
n)µd′ and clbl(x) ∈ D′•(c).

Proof. Assume (i): we have x = ζdx. By Lemma 11.1, LL(ζdx) = ζhdLL(x),

so we have ζhdLL(x) = LL(x). As ζhd is a primitive root of order d′, we deduce

that LL(x) ∈ (E
◦
n)µd′ . We also have clbl(x) = clbl(ζdx) = clbl(ζh

′
d′hx). Using

Lemma 11.14, we deduce that clbl(x) = clbl(x) · φh′d′ .
Conversely, assuming (ii), we conclude that x and ζdx satisfy LL(x) =

LL(ζdx) and, using Lemma 11.14, that clbl(x) = clbl(ζdx). Using Proposi-

tion 11.13, we obtain (i). �

Let us already note that, as a consequence, we obtain a very strong com-

binatorial property of regular numbers:

Corollary 11.16. The object set D′1(c) is nonempty.

By combining Proposition 11.13 and Lemma 11.15, we obtain

Proposition 11.17. The map (LL, clbl) induces a bijection

(W\V reg)µd −→ (E
◦
n)µd′ �D′•(c)

y 7−→ (LL(y), clbl(y)).

11.3. Basepoints and groupoids. As explained in Definition 6.2, the “fat

basepoint” U is the set of pairs (y, z) ∈ Y ×C such that “z is not below a point

in LL(y)” or, equivalently, such that LL((y, z)) does not contain any point in
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the closed half-line
√
−1R≥0:

Uµd ' {x ∈ (W\V reg)µd |LL(x) ∩
√
−1R≥0 = ∅}.

This formula fails to capture the obvious symmetry constraints deduced

from Lemma 11.1: if x is µd invariant, then LL(x) must be (µd)
h-invariant and

hence µd′-invariant. Hence,

Uµd '

x ∈ (W\V reg)µd |LL(x) ∩
⋃
ζ∈µd′

ζ
√
−1R≥0 = ∅

 .
We also introduce

Ud′ :=

x ∈W\V reg|LL(x) ∩
⋃
ζ∈µd′

ζ
√
−1R≥0 = ∅

 .
Clearly,

Uµd ⊆ Ud′ ⊆ U .

An illustration (with d′ = 3) of what LL(x) may look like for some x ∈ Uµd
(left) and for some x ∈ Ud′ − Uµd (right):

•
•

•

•

•

•

•

•

•

•

•

•

•
••

•

•

•

By contrast with U , neither Uµd or Ud′ is connected when d′ > 1. However,

both happen to have contractible connected components (see Lemma 11.22 be-

low), which makes them suitable as “fat groupoid basepoints” (Definition A.4).

Let x ∈ Ud′ . The support of LL(x) can be partitioned into d′ (possi-

bly empty) groups B1, . . . , Bd′ , according to which 2π/d′-sector they lie in:

the group Bj consists of mj points xαj , . . . , xαj+mj with cyclic argument in

(2π
d′ (j − 1), 2π

d′ j).

Definition 11.18. The d′-cyclic content of x ∈ Ud′ is the sequence

ccd′(x) := (cα1 . . . cα1+m1 , . . . , cαd′ . . . cαd′+mj ) ∈
d′√

D1(c)

Note that some of the mj ’s may be 0. Contrary to the cyclic label, which

is always nondegenerate, the cyclic content may contain trivial terms.
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Lemma 11.19. Let x ∈ Ud′ . Consider the path [0, 1] → W\V reg, t 7→
e
√
−1 2π

d′h tx. This path represents in B the simple element associated with the

first terms in ccd′(x).

Proof. Obvious by construction of clbl and cc. �

In the following definition, the existence and uniqueness of the standard

image are guaranteed by Proposition 11.13.

Definition 11.20 (standard image xσ). Let σ = (c1, . . . , cd′k) ∈ d′√D•(c),

with k ≥ 1. The standard image xσ is the unique element of Ud′ such that,

for all j such that cj 6= 1, the point e
√
−1π( 1

2
− 2j−1

d′k ) is in LL(xσ) and the corre-

sponding term in clbl(xσ) is cj .

Here are two examples with d′ = 3, first with k = 1 and (c1, c2, c3) not

containing any trivial term, and then with k = 4 and the trivial terms in

(c1, . . . , c12) being c4 and c7:

••

•

c1c3

c2

•
•

••
•
•
•
•

•
•

c3

c2

c1c12

c11

c10

c9

c8

c6

c5

Lemma 11.21. Let σ = (c1, . . . , cd′k) ∈ d′√D•(c), with k ≥ 1. We have

(i) clbl(xσ) is obtained by removing trivial terms in σ;

(ii) ccd′(xσ) = (c1 · · · ck, . . . , ck(d′−1)+1 . . . ckd′);

(iii) if σ ∈ D′•(c), then xσ ∈ Uµd .

Proof. Obvious by construction. �

Lemma 11.22.

(i) Let C be a connected component of Ud′ (resp. Uµd). The map ccd′ is

constant on C .

(ii) Let C,C ′ be connected components of Ud′ (resp. Uµd). If C 6= C ′, then

ccd′(C) 6= ccd′(C
′).

(iii) The map ccd′ restricts to bijections π0(Ud′) ' d′√D1(c) and π0(Uµd) '
D′1(c).

(iv) The connected components of Ud′ (resp. Uµd) are contractible.
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Proof. (i): Let x and x′ be two points in the same connected component

of Ud′ . Starting from any path connecting x to x′ within Ud′ , Lemma 11.19

produces a homotopy showing that the first term of ccd′(x) coincides with the

first term of ccd′(x
′). Applying the same argument to ζx and ζx′ for ζ ∈ µd,

we see that ccd′(x) = ccd′(x
′).

(ii) and (iv): Let x ∈ Ud′ . Consider the standard element xccd′ (x). We

construct a path γ : [0, 1]→ Ud′ from x to xccd′ (x) by sliding the points in LL(x)

in each region Bj affinely towards the corresponding point in LL(xccd′ (x)), as

in the following picture:

•c1 c2•
•c3

• c5

•c4

B1B3

B2

SShhII��66 ••
c1c2

c3c4c5

This proves that x and xccd′ (x) lie in the same connected component of Ud′
(resp. Uµd , since if x is µd-invariant, so is the path γ). (ii) follows: if x, x′

are such that ccd′(x) = ccd′(x
′), then x and x′ must lie in the same connected

component. Using (i), we also notice that the path γ is part of a deformation-

retraction of the full connected component of x onto the single point xccd′ (x).

This proves (iv).

(iii): combining (i) and (ii), we see that ccd′ induces a bijection from

π0(Ud′) onto its image in d′√D1(c) (resp. from π0(Uµd) onto its image in D′1(c)).

To prove (iii), it suffices to check that, for any decomposition in σ ∈ d′√D1(c)

(resp. D′1(c)), there exists a point x in Ud′ (resp. Uµd) such that ccd′(x) = σ;

the standard image xσ provides a particular example of such a point. �

A consequence of Lemma 11.22(iv) is that we can use Ud′ and Uµd as a

“fat groupoid basepoint” (see Definition A.4):

Definition 11.23. The relative braid category associated with W ′ is the

groupoid

B′ := π1((W\V reg)µd ,Uµd).

We also set

Bd′ := π1(W\V reg,Ud′).
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By functoriality of π1, we have natural functors

B′ // Bd′
∼ // B .

Note that the functor Bd′ → B is an equivalence of categories and not an

isomorphism: it is not injective on objects.

11.4. Circular tunnels and semitunnels.

Definition 11.24. A circular semitunnel is an element T = (x, L) in

Ud′ ×
ï
0,

2π

d′h

ò
.

We say that L is the length of the semitunnel.

The path γT associated with T is the path [0, 1] → (W\V reg)µd , t 7→
e
√
−1tx.

The circular semitunnel T is a circular tunnel if it satisfies the additional

condition

e
√
−1Lx ∈ Ud′ .

Let T = (x, L) be a circular (semi)tunnel. Because LL has degree h, the

angular rotation of LL(γT ) throughout the motion is hL. Here is an example

of tunnel of length π
3h :

•
•

•

•

•

•

��
??

kk
XX

��

//

Definition 11.25. Let σ = (c1, . . . , c2d′) ∈ d′√D2(c). The circular tunnelÅ
xσ,

π

d′h

ã
defines an element of Bd′ , which we denote by bσ.

If σ ∈ D′2(c), then the circular tunnel also represents an element of B′,

which we denote by b′σ.

Later on, we will prove that the natural map B′ → Bd′ is injective, which

will allow us to identify b′σ with bσ, but at this stage we are not supposed to

know this.
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•

••

•

• •

c2

c1c6

c5

c4 c3

source of b′σ

•

••

•

• •

c2

c1c6

c5

c4 c3

b′σ

oo

��

�� //

FF

XX

•

••

•

• •

c3

c2cφ1

c6

c5 c4

target of b′σ

Lemma 11.26.

(i) The map d′√D2(c)→ Bd′ , σ 7→ bσ extends to a groupoid morphism

ψ : Gd′ −→ Bd′ .

(ii) The map D′2(c)→ B′, σ 7→ b′σ extends to a groupoid morphism

ψ : G′ −→ B′.

Proof. (i): The groupoid Gd′ has a presentation with generators indexed

by d′√D2(c) and relations indexed by d′√D3(c). Let ρ = (c1, . . . , c3d′) ∈ d′√D3(c).

It corresponds to the relation στ = µ, where

σ = (c1, c2c3, c4, c5c6, . . . , c3d′−2, c3d′−1c3d′),

τ = (c2, c3c4, c5, c6c7, . . . , c3d′−1, c3d′c
φ
1 ),

µ = (c1c2, c3, c4c5, c6, . . . , c3d′−2c3d′−1, c3d′).
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Consider the standard element xρ:

•
••

•

•

•
•

•

•

c2

c1c9

c8

c7

c6
c5

c4

c3

The needed relation bσbτ = bµ follows from the following easy observations:

• the circular tunnel Tσ := (xρ,
2π

3d′h) represents bσ;

• the circular tunnel Tτ := (ζ3d′hxρ,
2π

3d′h) represents bτ ;

• the circular tunnel Tµ := (xρ,
4π

3d′h) represents bµ;

• Tµ is the composition of Tσ and Tµ.

(ii). In the above construction, if ρ ∈ D′3(c), then σ, τ, µ ∈ D′2(c) and the

same argument applies. �

Lemma 11.27. Let σ = (c1, . . . , c2d′) ∈ d′√D2(c). Then the image of bσ
via the natural functor Bd′ → B is the simple element corresponding to c1.

(Using the notation introduced in Definition B.23; it is the image of κm(σ)

under the natural embedding M ↪→ B.)

Proof. This is obvious by definition of clbl. �

We have a commutative diagram of functors:

M ′� _

��

� � // Md′� _

��

κm // // M� _

��
G′

ψ′

��

� � // Gd′
∼ //

ψ

��

G

'
��

B′ // Bd′
∼ // B.

Theorem 11.28. The morphism ψ : Gd′ → Bd′ is a groupoid isomor-

phism. It restricts to a groupoid isomorphism ψ′ : G′ → B′.
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Proof. Let o, o′ be objects in Gd′ . Since we have category equivalences

Gd′ ∼ G and Bd′ ∼ B, we have a commutative diagram of set-theoretic maps:

HomGd′ (o, o
′)

' //

ψ

��

G

'
��

HomBd′ (ψ(o), ψ(o′))
' // B,

which shows that ψ is an equivalence of categories.

By Lemma 11.22(iii), both ψ and ψ′ are bijective on objects. In particular,

ψ is an isomorphism of categories.

The subdiagram

G′

ψ′

��

� � // Gd′

'
��

B′ // Bd′

shows that ψ′ is faithful.

We are left with having to prove that ψ′ is full. This follows from a generic

position argument. Let b′ a morphism in B′. It can be represented by a path

γ : [0, 1] → (W\V reg)µd , and we can assume that at any given t ∈ [0, 1], at

most one point in LL(γ(t)) lies on the vertical half-line
√
−1R≥0 (as points

not satisfying this form a subspace of real codimension 2 in (W\V reg)µd); this

expresses γ as a concatenation of paths homotopic to circular tunnel paths

in B′. �

Remark 11.29. Using Theorem 11.28, one can write down a presentation

by generators and relations for B′ and deduce a presentation and relations for

the braid group of W ′.

11.5. The universal cover. Let us choose a base object o ∈ D′1(c). By

Lemma 11.22(iii), it corresponds to a connected component of Uµd which, by

abuse of notation, we still denote by o. By Lemma 11.22(iv), this component is

contractible and, using Definition A.5, we get a model UniCover((W\V reg)µd ,o)

for the universal cover of (W\V reg)µd .

Definition 11.30. Let g ∈ obj(o ↓ B′) or, in other words, let g be a

morphism in B′ with source o. Let o′ be the target of g. Let γ be a path

(W\V reg)µd representing g. Let T = (x, L) be a circular semitunnel such that

x lies in the connected component (corresponding to) o′. Then γ and γT can be

composed (up to homotopically trivial glue binding them) and γγT represents

a point p ∈ UniCover((W\V reg)µd , o). We denote by

Vg
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the subspace of UniCover((W\V reg)µd , o) consisting of points p that can be

obtained this way, by concatenating a path representing g with a circular

semitunnel.

The following result is a variation on Proposition 9.3.

Lemma 11.31. Let σ be a nondegenerate element of D′•(c). Then the

subspace Uσ ⊆ Uµd consisting of points x such that clbl(x) ` σ is contractible.

The notation ` was introduced in Definition 7.18.

Proof. Write σ = (c1, . . . , cmd′). Clearly, xσ ∈ Uσ, so Uσ 6= ∅.

Let x ∈ Uσ. We have clbl(x) = (d1, . . . , dpd′), with p ≥ m. Each

cj is the product of consecutive dα(j) . . . dα(j)+β(j). This defines a mapping

{1, . . . , pd′} → {1, . . . ,md′}, mapping each i to the unique j such that α(j) ≤
i ≤ α(j)+β(j). By moving the point i-th point in LL(x) continuously towards

the j-th point in LL(xσ), one obtains a deformation-retraction of Uσ onto the

single point xσ.

In the illustration below, we have chosen p = 5 and m = 3:

••

••

•

ee^^��

zz

^^

•
•

•
•

•

��

99

''





•
• • •

• 8833ff
PP33

x

•
••

•

•

•
•

•

•

c2

c1c9

c8

c7

c6
c5

c4

c3

xσ
�

Theorem 11.32.

(1) For all g ∈ obj(o ↓ B′), the space Vg is open.

(2) We have

UniCover((W\V reg)µd , o) =
⋃

g∈obj(o↓B′)
Vg.

(3) The nerve of the open covering (Vg)g∈obj(o↓B′) is gar(B′, S′, o).

(4) For all simplex {g0, . . . , gk} ∈ gar(B′, S′, o), the intersection
⋂
i Vgi is con-

tractible.

The complex gar is introduced in Definition B.11. Before proving the the-

orem, we observe that it implies Theorem 0.3 and, by addressing the remaining

case of G31, completes the proof of the K(π, 1) conjecture.

Corollary 11.33. The space (W\V reg)µd is a K(π, 1) space.
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Proof of Corollary 11.33. Using [36, 4G.3], we deduce from Theorem 11.32

that

UniCover((W\V reg)µd , o)

is homotopy equivalent to | gar(B′, S′, o)|. By Theorem B.14, | gar(B′, S′, o)| is
contractible. �

Proof of Theorem 11.32. (1): Consider a point in Vg associated with γ

and γT , where T = (x, L) is a circular semitunnel; for a neighborhood Ω of

x in Uµd , concatenating γ with the circular semitunnels ((x′, L))x′∈Ω yields a

neighborhood of the original point in Vg.
(2): Consider a point p in UniCover((W\V reg)µd , o), associated with a

path γ in (W\V reg)µd with source in o. If γ(1) ∈ Uµd , then taking T the

trivial circular semitunnel of length 0 starting at γ(1) shows that p ∈ Vg,
where g is the element associated with γ. In the general case, we may find

ε > 0 arbitrarily small such that e
√
−1εγ(1) lies in Uµd ; p is then represented by

e
√
−1εγ concatenated with the path associated with a small circular semitunnel

Tε: we see that p ∈ Vg, where g is the element associated with e
√
−1εγ.

(3) (rank 2): Assume that Vg ∩ Vg′ 6= ∅. Then p ∈ Vg ∩ Vg′ can be

represented by both γγT (where γ represents g and T = (x, L) is a circular

semitunnel) and γ′γT ′ (where γ′ represents g′ and T ′ = (x′, L′) is a circular

semitunnel). Up to exchanging g and g′, we may assume that L ≥ L′. Let T ′′

be the shortened circular semitunnel (x, L−L′), and let T ′′′ be the remaining

chunk (e
√
−1(L−L′)x, L′). The paths γγT and γ′γT ′ are homotopic; so are γT

and γT ′′γT ′′′ . Because they have the same target and because they both are

scalar rotations, the paths γT ′′′ and γT ′ are homotopic. We conclude that

γγT ′′ and γ′ are homotopic. In particular, T ′′ is a circular tunnel, representing

a simple element s′′, and we have gs′′ = g′. Conversely, it is clear that if s′

is a simple element such that gs′′ = g′, we can explicitly construct a point in

Vg ∩ Vg′ .
(3) (higher rank): The same argument still works, after noting that a

nerve simplex {g0, . . . , gk} can be ordered in such a way that each gi is rep-

resented by γiγTi=(xi,Li) and L0 ≥ · · · ≥ Lk. Considering for each i ≤ j

the truncated circular semitunnel T ′′i,j = (xi, Li − Lj) and remaining chunk

T ′′′i,j = (e
√
−1(Li−Lj)xi, Lj), we see that T ′′i,j is actually a circular tunnel, repre-

senting a simple element s′′i,j such that gis
′′
i,j = gj .

(4) First, we consider individual Vg. By retracting the circular semitunnel

part to length 0, we easily see that each Vg is contractible. (This is the analog

of Lemma 10.5.)

Now we have to prove the analog of Proposition 10.7, and we need to con-

sider nonempty nontrivial intersections
⋂n
j=0 Vgj . The proof of (3) provides the

basis for an explicit description of these. We keep the same conventions and
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notation. A point p in
⋂n
j=0 Vgj can be represented by γ0γT , where T = (x, L)

is a circular semitunnel such that each truncation T ′′0,j = (x0, L0 − Lj) is a

circular tunnel representing s′′0,j := g−1
0 gj . Interestingly, changing γ0 to an-

other path representing g0 yields the same p, because there is only one ho-

motopy class of such paths. In other words,
⋂n
j=0 Vgj is indexed by circu-

lar semitunnels T = (x, L) such that there exists a nondecreasing sequence

0 ≤ L′1 ≤ · · · ≤ L′k ≤ L such that, for each j, the truncation (x, L′j) repre-

sents g−1
0 gj . When T satisfies this condition, we say that it represents the

sequence (g−1
0 g1, . . . , g

−1
0 gk). Actually,

⋂n
j=0 Vgj is homotopy equivalent to the

space of circular semitunnels representing (g−1
0 g1, . . . , g

−1
0 gk), equipped with

the product topology. (This is the analog of Proposition 9.5.)

We say that x ∈ Uµd represents (g−1
0 g1, . . . , g

−1
0 gk) if there exists a nonde-

creasing sequence 0 ≤ L′1 ≤ . . . L′k ≤
2π
d′h such that, for each j, the truncation

(x, L′j) represents g−1
0 gj . An obvious retraction argument (onto the particular

choice L = 2π
d′h for the length) shows that the space of circular semitunnels

representing (g−1
0 g1, . . . , g

−1
0 gk) is homotopy-equivalent to the space of points

x ∈ Uµd representing (g−1
0 g1, . . . , g

−1
0 gk).

To conclude, we are down to proving that the space of points x ∈ Uµd
representing

(g−1
0 g1, . . . , g

−1
0 gk)

is contractible. This is Lemma 11.31. �

Conjecture 11.34. The methods of this section can be adapted to work

in the context of Lehrer-Springer theory (an extension of Springer theory ; see

[41].) The combinatorics of the associated categorical Garside structure follow

Armstrong ’s variant of the cyclic sieving phenomenon. (See [39, Th. 2, p. 204].)

12. Periodic elements in B(W )

As before, W is an irreducible well-generated complex reflection group,

τ ∈ P (W ) is the full-twist and δ ∈ B(W ) is the Garside element of the dual

braid monoid M(W ). The image of δ in W is a Coxeter element c.

Definition 12.1. An element of B(W ) is periodic if it admits a central

power.

The goal of this section is to prove that the center ZB(W ) is cyclic,

and to establish a correspondence between periodic elements in B(W ) and

regular elements in W . As with the previous section, the real substance of the

arguments lies more in the algebraic tools from [5] than in the easy geometric

interpretation.
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Lemma 12.2. The intersection of the subgroup 〈c〉 ⊆W with the interval

[1, c] is {1, c}.

Proof. [32, Prop. 4.2] gives an argument for the real case that, as pointed

out by J. Michel, applies verbatim. We include it for the convenience of the

reader. Let 2 ≤ d1, . . . , dn = h be the reflection degrees. Because c is regular,

its eigenvalues are ζ1−di
d ([55, Th. 4.2(v)]). Assume that some power ck lies in

[1, c] and thus that

lR(ck) + lR(c1−k) = n.

By Proposition 8.4 and Lemma 7.4, n− lR(ck) is the number of eigenvalues of

ck distinct from 1; thus

lR(ck) = n−#{i|(1− di)k ≡ 0[h]}.

Using the same formula for c1−k, we deduce that

#{i|(1− di)k ≡ 0[h]}+ #{i|(1− di)(1− k) ≡ 0[h]} = n.

For a given i, (1 − di)k and (1 − di)(1 − k) cannot simultaneously divide h.

The identity then forces that, for all i, either (1 − di)k or (1 − di)(1 − k) is a

multiple of h. But, when 2 ≤ k ≤ h− 1, neither (1− h)k nor (1− h)(1− k) is

a multiple of h. �

Theorem 12.3. Let h′ := h
gcd(d1,...,dn) . The centers of B(W ) and W are

cyclic, generated respectively by δh
′

and ch
′
.

Proof. That ZW is cyclic of order gcd(d1, . . . , dn) is classical; any central

element is regular; because ch
′

is regular and has the right order, it must

generate ZW .

Let us study the conjugacy action of δ. Write a given b ∈ B(W ) in Garside

normal form b = δks1 · · · sl, where k ∈ Z and s1, . . . , sl ∈ [1, c] − {1, c}. The

normal form of bδ is δksc1 · · · scl .
Because ch

′
is the smallest central power of c in W , δh

′
is the smallest cen-

tral power of δ in B(W ). Moreover, if b ∈ ZB(W ), then it must commute with

δ and any simple term si in its normal form δks1 · · · sl must commute with c.

Because c is Coxeter element, the centralizer of c in W is 〈c〉. (This follows

from Theorem 1.9 and, actually, extends Corollary 4.4 in [55].) Combining this

with Lemma 12.2, we see that l = 0, i.e., that b ∈ 〈δ〉. �

Because of Theorem 12.3, an element γ ∈ B(W ) is periodic if and only if

it is commensurable with τ (or δ), i.e., if there exists p, q such that

γq = τp.

To simplify notation, we restrict our attention to the situation where

γd = τ
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and call such a periodic γ a d-th root of τ . The theory works the same way for

other (p, q).

When d is regular and x0 is a ζd-regular eigenvector, we may consider the

standard d-th root of τ represented by

[0, 1]−→W\V reg

t 7−→ e2π
√
−1 t

dx0

and denoted by d
√
τ . This of course involves choosing a particular basepoint,

but because the statements below are “up to conjugacy,” one should not worry

too much about this.

A particular case is
h
√
τ = δ.

Theorem 12.4 (Springer theory in braid groups). Let d be a positive

integer.

(i) There exist d-th roots of τ if and only if d is regular.

(ii) When d is regular, there is a single conjugacy class of d-th roots of τ in

B(W ). In particular, all d-th roots of τ are conjugate to d
√
τ .

(iii) Let ρ be a d-th root of τ . Let w be the image of ρ in W . Then w is

ζd-regular, and the centralizer CB(W )(ρ) is isomorphic to the braid group

B(W ′) of the centralizer W ′ := CW (w).

Proof. (i) A consequence of [5, Cor. 10.4] is that, if τ = δh admits d-th

roots, then M
φhd
d is nonempty. By Lemma 11.15, this implies that d is regular.

The converse is obvious. (We may consider the particular root d
√
τ .)

(ii) Using [5, Cor. 10.4] and [5, Prop. 9.8], we see that conjugacy classes of

d-th roots of τ are in one-to-one correspondence with connected components of

the category G′. Because it is equivalent to a group, this category is connected.

(iii) That w is regular follows from (ii) because it is conjugate to the

image in W of d
√
τ , whose image in W has a x0 as ζd-regular eigenvector.

The assertion about the centralizer follows from its categorical rephrasing in

Md, where it is trivial (the conjugacy action being a power of the diagram

automorphism of the Garside structure). �

Remark 12.5. This answers many questions and conjectures by Broué,

Michel and others. (See [18] for more details.) Particular cases of (i) were

obtained by Broué-Michel and, independently, by Shvartsman, [21], [54]. As-

sertion (ii) can be viewed either as a Kerékjártó type theorem (“all periodic

elements are conjugate to a rotation”; see [5]) or as a Sylow type theorem

(“all CB(W )(ρ) are conjugate”). The type A case of (ii) actually follows from

Kerékjártó’s theorem on periodic homeomorphism of the disk ([37]; see also [5]

for a more complete bibliography). The type A case of (iii) was proved in [7].
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Of course, the most natural interpretation is to view the theorem as pro-

viding a braid analog of Theorem 1.9.

Remark 12.6. Let W ′ be the centralizer of a regular element in W . Let

W ′′ be the centralizer of a regular element in W ′. In terms of orbit varieties,

W ′\V ′ = (W\V )µd and W ′′\V ′′ = (W\V )µde . Regular elements of W ′ are

regular in W . It should be possible, by applying Theorem 12.4 to the pair

(W,W ′′), to generalize the result to the pair (W ′,W ′′).

Corollary 12.7. The center of the braid group B(G31) is cyclic.

Proof. Let W be G37, the well-generated reflection group of type E8. The

degrees are

2, 8, 12, 14, 18, 20, 24, 30,

and the codegrees are

0, 6, 10, 12, 16, 18, 22, 28.

The number 4 is regular, with centralizer W ′ of type G31.

By Theorem 1.9 (1), we see that 24 is also regular. Let ρ be a 24-th root

of τ . The centralizer is the rank 1 reflection group of type A1, with braid

group Z.

Applying Theorem 12.4 to ρ6, we recognize the braid group of G31 as a

centralizer in B(W ):

B(G31) ' CB(W )(ρ
6).

Applying Theorem 12.4 to ρ, we see that

CB(W )(ρ) ' B(A1) ' Z.

Clearly, ρ ∈ CB(W )(ρ
6). In particular, any z ∈ ZB(G31) must commute

with ρ and hence lie in CB(W )(ρ) ' Z. �

Combining Theorem 12.3 and Corollary 12.7, we complete the proof of

Theorem 12.8 (Theorem 0.5). The center of the braid group of an irre-

ducible complex reflection group is cyclic.

Indeed, Broué-Malle-Rouquier conjectured this in [20], and proved it for

all cases but six exceptional types: five of these exceptions are well-generated

and covered by Theorem 12.3, the remaining case being G31.

13. Generalized noncrossing partitions

Here again, W is an irreducible well-generated complex reflection group

generated by reflections of order 2.
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When W is of type An−1, the lattice (S,4) is isomorphic to the lattice of

noncrossing partitions of a regular n-gon ([7], [13]). Following [48], [3] and [6],

we call lattice of generalized noncrossing partitions of type W the lattice

(S,4)

and Catalan number of type W the number

Cat(W ) :=
n∏
i=1

di + h

di
.

The operation sending s 4 t to s−1t is an analogue of the Kreweras com-

plement operation. The map s 7→ s−1δ is an anti-automorphism of the lattice.

In the Coxeter case, Chapoton (see [22]) discovered a general formula for

the number ZW (N) of weak chains s1 4 s2 4 · · · 4 sN−1 of length N − 1 in

(S,4) or, equivalently (by Lemma B.16), for the cardinality of DN (c). This

formula continues to hold, though we are only able to prove this case-by-case.

(See [1] and [22] for the Coxeter types; the G(e, e, n) case was done in [6]; the

remaining types are done by computer.)

Proposition 13.1. We have, for all N ,

ZW (N) =
n∏
i=1

di + (N − 1)h

di
.

Corollary 13.2. We have |S| = Cat(W ).

Another interesting numerical invariant is the Poincaré polynomial

Poin(S) :=
∑
s∈S

tl(s).

The numerical data for the exceptional types (real and nonreal) is sum-

marised in Table 2. The coefficient of t in the Poincaré polynomial is the

cardinal of Rc. One observes that

R = Rc ⇔W is real.

In the Weyl group case, Poin(S) may be interpreted as the Poincaré poly-

nomial of the cohomology of a toric variety related to cluster algebras ([22]).

When W ′ is the (not necessarily well-generated) centralizer of a d-regular

element in a well-generated W , the natural substitute for ZW (N) is the car-

dinality Z ′W ′(N) of D′N (c). In a joint work with Vic Reiner, we conjectured

that the µd-action exhibits a cyclic sieving phenomenon: the number of fixed

points should be the value at ζd of a q-analog of the number of chains; the

conjecture has now been proved by Krattenthaler-Müller:
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W degrees |R| Cat(W ) Poin(S) |RedR(c)|
G23 (H3) 2, 6, 10 15 32 1 + 15t+ 15t2 + t3 50

G24 4, 6, 14 21 30 1 + 14t+ 14t2 + t3 49

G27 6, 12, 30 45 42 1 + 20t+ 20t2 + t3 75

G28 (F4) 2, 6, 8, 12 24 105 1 + 24t+ 55t2 + 24t3 + t4 432

G29 4, 8, 12, 20 40 112 1 + 25t+ 60t2 + 25t3 + t4 500

G30 (H4) 2, 12, 20, 30 60 280 1 + 60t+ 158t2 + 60t3 + t4 1350

G33 4, 6, 10, 12, 18 45 308
1 + 30t+ 123t2

+123t3 + 30t4 + t5
4374

G34
6, 12, 18,

24, 30, 42
126 1584

1 + 56t+ 385t2 + 700t3

+385t4 + 56t5 + t6
100842

G35 (E6)
2, 5, 6,

8, 9, 12
36 833

1 + 36t+ 204t2 + 351t3

+204t4 + 36t5 + t6
41472

G36(E7)
2, 6, 8, 10,

12, 14, 18
63 4160

1 + 63t+ 546t2 + 1470t3

+1470t4 + 546t5 + 63t6 + t7
1062882

G37 (E8)
2, 8, 12, 14,

18, 20, 24, 30
120 25080

1 + 120t+ 1540t2

+6120t3 + 9518t4 + 6120t5

+1540t6 + 120t7 + t8
37968750

Table 2. Numerical invariants of generalized noncrossing partitions.

Theorem 13.3 (Conjecture 6.5 in [9], proved in [39]). Let q be an inde-

terminate. For any a ∈ Z≥1, set [a]q := 1 + q + · · ·+ qa−1. Then

n∏
i=1

[di + (Nd′ − 1)h]q
[di]q

is a polynomial in q whose value at q = ζd is Z ′W ′(N).

When N = 1, the formula gives the number of objects in M ′. For G31, we

have 88 objects (see Example 11.7).

Appendix A. The fat basepoint trick

A.1. Fundamental groupoids. Let E be a topological space. Let γ be a

path in E, i.e., a continuous map [0, 1]→ E. We say that γ is a path from γ(0)

to γ(1) — or that γ(0) is the source and γ(1) the target. The concatenation

rule is as follows. If γ, γ′ are paths such that γ(1) = γ′(0), the product γγ′ is

the path mapping t ≤ 1/2 to γ(2t) and t ≥ 1/2 to γ′(2t− 1).

We denote by π1(E) the fundamental groupoid of E: its elements are

homotopy classes of paths in E, with composition rule as above. As a category,

its object set is E.
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For any “basepoint” e ∈ E, the fundamental group of E with respect to e

is

π1(E, e) := Homπ1(E)(e, e).

When E is a path-connected space or, equivalently, when π1(E) is a con-

nected groupoid, all fundamental groups of E, with respect to all possible

basepoints, are isomorphic. However, they are not canonically isomor-

phic: any element g ∈ Homπ1(E)(e, e
′) yields an isomorphism:

φg : π1(E, e)
∼−→ π1(E, e′)

f 7−→ g−1fg,

but there is no natural way to make consistent choices of such g’s and build a

transitive systems of isomorphisms connecting

(π1(E, e))e∈E .

In other words, there is no legitimate way to drop the reference to a specific

basepoint and talk about the fundamental group of E.

Let A ⊆ E. Consider the natural functor ι : π1(A)→ π1(E).

Lemma A.1. When A is simply connected, then

(φι(g))g∈π1(A)

is a transitive system of isomorphisms connecting (π1(E, a))a∈A.

Proof. The space A is simply connected if and only if the category π1(A)

is equivalent to the trivial category. In a category equivalent to the trivial cat-

egory, transitivity comes for free: (φg)g∈π1(A) is transitive, and by functoriality

so is (φι(g))g∈π1(A). �

This legitimates the following definition.

Definition A.2 (fat basepoint trick, group version).The fundamental group

of E with respect to a simply-connected subspace A is the transitive limit

π1(E,A) = lim
−→
a∈A

π1(E, a)

with respect to the transitive system of isomorphisms (φι(g))g∈π1(A).

Remark A.3. Instead of constructing the group π1(E,A) as a transitive

limit of fundamental groups, one can choose to equip the set of relative homo-

topy classes with a group structure; there is no difference, except in language.

Practically speaking, π1(E,A) should be thought of as any π1(E, a), for

some a ∈ A, together with an unambiguous recipe thanks to which any path

in A from any a′ ∈ A to any a′′ ∈ A represents a unique element of π1(E, a);
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moreover, one may forget about which a ∈ A was chosen and change it at our

convenience.

In Section 11, we use an extended version of the trick. Let C and C ′

be path-connected components of A. For any g ∈ HomC(c1, c2) and g′ ∈
HomC′(c

′
1, c
′
2), we have an isomorphism

ψ(g, g′) : π1(E, c1, c
′
1)
∼−→ π1(E, c2, c

′
2)

f 7−→ g−1fg′.

When both C and C ′ are simply connected, this provides a transitive system

of isomorphisms (ψ(g, g′))(g,g′)∈π1(C)×π1(C′) thanks to which we can define

HomE(C,C ′) := lim
−→

(c,c′)∈C×C′
HomE(c, c′).

Definition A.4 (fat basepoint trick, groupoid version). The fundamental

groupoid of E with respect to a subspace A whose path-connected components

are simply connected is the groupoid

π1(E,A)

whose objects are path-connected components of A and such that

Homπ1(E,A)(C,C
′) = HomE(C,C ′).

When A is connected, we recover the group version.

A.2. Universal covers. Assume that E is path connected. By Galois the-

ory, there is a correspondence between subgroups of the fundamental group

and topological coverings of E.

Universal covers can be constructed as soon as E is reasonably healthy;

e.g., it is enough to assume that E is locally simply connected (which is trivially

satisfied by all spaces considered here).

A good reference is Hatcher [36, §1.3]. The construction starts with the

choice of a basepoint e ∈ E. As a set, the universal cover ‹Ee has one point per

element in π1(E) with source e. The fundamental groupoid π1(‹Ee) coincides

with the category (e ↓ π1(E)) of objects under e in π1(E), in the sense of Mac

Lane [43, II.6, Comma Categories]. This interpretation actually clarifies why‹Ee is simply connected: the category (e ↓ π1(E)) is equivalent to the trivial

category. (This is the categorical way of being contractible.)

The universal cover construction can thus be rephrased as follows. The

object set of (e ↓ π1(E)) can be equipped with a natural topology. (This is

where the locally simple-connectedness of E comes into play.)

Actually, when G is a groupoid and o is an object of G, then (o ↓ G) should

be viewed as a categorical universal cover for G.
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When A ⊆ E is simply connected, there is a natural transitive system of

isomorphisms connecting

((a ↓ π1(E)))a∈A

and thus a transitive system of bijections connecting

(‹Ea)a∈A.
It is not hard to check that these bijections are homeomorphisms and are

compatible with the covering maps.

Definition A.5 (fat basepoint trick, universal cover version). The universal

cover of E with respect to a simply-connected subspace A is

UniCover(E,A) := lim
−→
a∈A

‹Ea.
Clearly, UniCover(E, a) ' ‹Ea.
Lemma A.6. The natural left-action of π1(E, a) on ‹Ea is compatible with

the transitive system and gives rise to a left-action of π1(E,A) on the universal

cover UniCover(E,A).

In real life, this means: up to topologically trivial paths within A, any

path connecting two points of A (representing an element of π1(E,A)) can

be concatenated with any path with source in A (representing a point in

UniCover(E,A)) to unambiguously yield another point in UniCover(E,A). We

do not care about which exact points in A were chosen, we do not have to give

them names and we can forget about them.

When A is not contractible but has simply-connected components, the

groupoid cover version, blending Definitions A.4 and A.5, is a bit more tedious

to formulate:

• we get a model UniCover(E, o) for each connected component o ⊆ A;

• any g in π1(E,A) with source o and target o′ induces a homeomorphism

from

UniCover(E, o)→ UniCover(E, o′)

subject to obvious compatibility rules.

The latter data is what deserves to be called a groupoid action on the

collection (UniCover(E, o))o∈π0(A). This situation is implicit behind Defini-

tion 11.30.

Appendix B. Garside structures

B.1. Cohomology of groups and groupoids. A groupoid is a (small) cate-

gory where all morphisms are invertible. A group is a groupoid with a single

object.
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A simplicial complex X is a family of subsets of an ambient space S, such

that whenever A ∈ X, any subset B ⊆ A also lies in X. Simplicial complexes

form a category, equipped with a geometric realization functor to the category

of topological spaces.

As explained in [43], a simplicial set is a contravariant functor from

the simplicial category to the category of sets or, equivalently, a collection

(Xn)n∈Z≥0
of sets, together with face maps and degeneracy maps respectively

shifting dimensions by −1 and +1, and subject to obvious compatibility rules.

Simplicial complexes naturally give rises to simplicial sets, but not all

simplicial sets can be obtained that way.

The nerve of a (small) category C is a simplicial set NC whose 0-skeleton

is the object set of C and whose n-simplices, n ≥ 1, are composable sequences

(f1, . . . , fn) of C-morphisms:

x0
f1 // x1

f2 // x2
f3 // x3

// xn−1
fn // xn .

In the simplicial structure on NC, face maps correspond to removing objects

(and composing or dropping morphisms accordingly) and degeneracy maps

correspond to inserting identity morphisms at a given object. An element of

NC is nondegenerate if it does not contain any identity morphism.

Simplicial sets naturally form a category, and the nerve construction is

functorial from the category Cat of small categories to the category SimpSet

of simplicial sets. There is a standard geometric realization functor SimpSet

→ Top, X 7→ |X|, where Top category of topological spaces. See, for example,

[36, appendix, Simplicial CW structures]. The construction actually provides

us, for each abstract simplex x ∈ X, with a singular simplex in |X|, i.e., a

continuous map from a standard affine simplex to X. Actually, the 0-skeleton

X0 is mapped injectively into |X|. We can use X0 as a groupoid fat basepoint

(Definition A.4).

Definition B.1. Let G be a groupoid. A simplicial K(G, 1) is a simplicial

set X such that π1(|X|, X0) ' G and such that connected components of |X|
have no higher homotopy groups.

In particular, X0 must be in bijection with the object set of G.

Theorem B.2 (“bar” resolution, quotient version). The nerve NG of a

groupoid G is a simplicial K(G, 1).

The beauty of the categorical viewpoint is that the theorem comes as a

mostly free by-product of the observation that the nerve realization functor

Cat → Top extends to a functor of 2-categories (mapping natural transfor-

mations to homotopies). See Lemma 7.1 and Proposition 7.3 in [5]. The

underlying combinatorics coincide with that of the standard “bar” resolution

of group cohomology:
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Definition B.3 (“bar” simplicial set). Let o be an object of G. We use the

bar symbol og0[g1| · · · |gk], or simply g0[g1| · · · |gk], to express that (g0, g1, . . . , gk)

is a sequence of composable morphisms in G (i.e., an element of Nk+1G) such

that the source of g0 is o. We denote by

bar(G, o)

the simplicial set whose k-skeleton consists of bar symbols g0[g1| . . . |gk], subject

to the faces and degeneracy maps of Nk+1G (except those involving g0, as we

view g0[g1| . . . |gk] as a k-simplex, not a (k + 1)-simplex).

Theorem B.4 (“bar” resolution, universal cover version). Let G be a

groupoid, and let o be an object of G. The geometric realization of bar(G, o) is

contractible.

Theorems B.2 and B.4 express two flavors of the same result:

UniCover(|NG|, o) ' |bar(G, o)|.

Note that we do not have to assume that G is connected: Theorem B.2 expresses

something about each connected component, while Theorem B.4 sees only one

connected component per choice of o.

B.2. Garside structures. Garside’s approach [35] to the word and conju-

gacy problem in the classical braid group Bn was a key ingredient in Deligne’s

paper [29]. It was later axiomatized as a generic combinatorial group theory

notion [28], rephrased with a geometric group theory viewpoint [10], [23] and

generalized to groupoids [38].

There are many ways to tell the story, and the most general setup involves

quite a lot of technicalities. Under favorable conditions, typically when there is

a natural homogeneous length function (which is the case here), the whole story

could probably fit in a 100 pages graduate-level textbook. In this absence of

this yet-to-be-written account, the only detailed reference at hand is the much

longer book [27], which focuses on word-theoretic axiomatic aspects and does

not cover all aspects explained here.

As far as the current paper is concerned, the notation and results listed

in [5] are more than sufficient — especially, we only consider Garside structure

that are homogeneous, which removes a lot of the technicalities addressed in

[27].

Let C be a (small) category equipped with

• an endofunctor φ, which we write with right-conjugacy notation x 7→ xφ,

f 7→ fφ;

• a natural transformation ∆ from the identity functor to φ.

Example B.5. When C is a monoid M , this simply means that ∆ ∈ M

and φ is the right conjugacy action f 7→ fφ = ∆−1f∆.
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In general, there is a morphism ∆x : x → xφ for each object x, and for

each morphism f from x to y, the following diagram is commutative:

x
∆x //

f

��

xφ

fφ

��
y

∆y

// yφ.

As ∆ is a collection of morphisms, one for each source object, it makes

sense to write “f ∈ ∆” instead of “f is the morphism in ∆ whose source is

the source of f .” It is even tempting to write “f = ∆” instead, an abusive yet

convenient notation inspired by the monoid case (where ∆ consists of a single

element), just like we write “f = 1” instead of “f is the identity morphism

whose source is the source of f .”

Definition B.6. An element of f ∈ C is simple with respect to ∆ if there

exists g ∈ C such that fg = ∆.

An atom is an element a ∈ C such that, for all f, g ∈ C, a = fg ⇒ f =

1 or g = 1.

The category C is homogeneous if there exists a functor l from C to the

monoid (Z≥0,+) such that for all f ∈ C, l(f) = 0⇒ f = 1.

The category C is cancellative if for all f, g, h ∈ C, (fh = gh or hg = hf)

⇒ f = g.

The category C is a lattice if it admits pullbacks and pushouts.

Pushouts and pullbacks are classical concepts from category theory. (See,

for example, [43].) The existence of pushouts means that any two morphisms

f, g with common source admit a right least common multiple. In poset lan-

guage, this means that f and g admit a least upper bound for the prefix

ordering. Pullback is the dual concept.

Definition B.7 (Definition 2.4 in [5]). A Garside structure is a triple

(C,∆, φ) satisfying

(i) C is a category, φ an automorphism of C and ∆ a natural transformation

from the identity functor to φ;

(ii) C is homogeneous and cancellative;

(iii) all atoms are simple with respect to ∆;

(iv) C is a lattice.

This axiom set is more restrictive than necessary, but it was chosen in

[5] to be on the safe side when claiming that existing proofs in the context of

Garside monoids still worked in the categorical contexts.

The crux is axiom (iv). This is where concrete examples of Garside struc-

tures encapsulate deep geometric/topological/combinatorial miracles (such as
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Lemma 8.6 or, in Deligne’s paper, properties of galleries that are specific to

simplicial arrangements).

Let (C,∆, φ) be a Garside structure. The set S of simple elements with

respect to ∆, seen either as an abstract set together with a partial product

structure obtained by restricting the category structure to S (a Garside germ,

in the sense of [5]), or as a subset of C (a Garside family, in the sense of [27]),

is enough to recover the whole structure (C,∆, φ).

As explained in [5], [27], the axiom set can be rewritten in terms of axioms

involving only S. Another interesting invariant of Garside structures is the

Garside set D• introduced below.

Definition B.8. A Garside category is a category C that can be equipped

with a Garside structure. A Garside groupoid is a groupoid G that is the

groupoid of fractions of a Garside category.

Note that Garside groupoids can appear as groupoids of fractions of several

Garside categories that are not equivalent. (For example, finite type Artin

groups admit both the classical and dual Garside structures.)

Let C be a Garside category, with groupoid of fractions G. Key properties

include

• the natural function C → G is faithful;

• the word and conjugacy problems in C and G can be solved;

• G has finite cohomological dimension (Theorem B.10 below);

• in particular, G is torsion-free.

B.3. Cohomology of Garside groups and groupoids.

Definition B.9 (Garside nerve). A simplex (f1, . . . , fn) ∈ NC is simple

with respect to ∆ if the product f1 · · · fn is simple. The set of simple simplices

in NC forms a simplicial set that we denote by NS, the Garside nerve of C
with respect to S .

Theorem B.10 (“gar” resolution, quotient version). Let G be a groupoid,

and let S be a Garside structure on G. The Garside nerve NS is a simplicial

K(G, 1).

Definition B.11 (“gar” flag complex). Let G be a groupoid, and let S be

a Garside structure on G, and let o be an object of G. We denote by

gar(G,S, o)

the simplicial complex with underlying space obj(o ↓ G) (i.e., the set of mor-

phisms in G with source o) and such that {g0, . . . , gk} is a k-simplex if and

only if, for all i, j, g−1
i gj ∈ S or g−1

j gi ∈ S.

When G is a group, we shorten the notation to gar(G,S) as there is only

one possible choice for o.
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In particular, a subset of G spans a simplex if and only if every subpair

spans an edge. Such a simplicial complex is called a flag complex. A flag

complex is uniquely determined by its 1-skeleton.

A variant of Definition B.11 that more closely resembles Definition B.3 is

as follows.

Definition B.12 (“gar” simplicial set). We denote by gar′(G,S, o) the sub-

complex of bar(G, o) consisting of bar symbols g0[g1| · · · |gk] such that

∀i > 0, gi ∈ S and g1 · · · gk ∈ S.

Lemma B.13. The map g0[g1| · · · |gk] 7→ {g0, g0g1, g0g1g2, . . . , g0 . . . gk} in-

duces a bijection between nondegenerate simplices in gar′(G,S, o) and simplices

in gar(G,S, o).
Proof. Because of the natural length function on S, when g, h ∈ G are

distinct, we cannot have both g−1h ∈ S and h−1g ∈ S. Thus any sim-

plex A ⊆ G of gar(G,S, o) admits a unique ordering A = {h0, . . . , hk} such

that i ≤ j ⇔ h−1
i hj ∈ S. The only bar symbol in the preimage of A is

h0[h−1
0 h1|h−1

1 h2| · · · |h−1
k−1hk]. �

By comparing Definitions B.3 and B.11, we see that Garside structures

allow a twofold gain:

• By contrast with bar(G, o), the complex gar(G,S, o) is finite-dimensional:

Garside structures on groupoids bound their cohomological dimension.

• We can replace the abstract simplicial set by a very concrete simplicial

complex (that is actually a flag complex): in this paper, proving theK(π, 1)

property involves interpreting this simplicial complex as the nerve of an

open covering.

Theorem B.14 (“gar” resolution, universal cover version). Let G be a

groupoid, and let S be a Garside structure on G, and let o be an object of G.

The geometric realization of gar(G,S, o) is contractible.

We have slightly departed from results and phrasings that can be found

in the literature, but Theorems B.10 and B.14 are easy categorical variants of

the main results in [23], which themselves are Garside group versions of results

by Bestvina about Artin groups [10], [13]; these variants can be proved using

the same exact strategy.

B.4. Garside sets.

Definition B.15. Let (C,∆, φ) be a Garside structure with set of simple

elements S. The associated Garside set is the collection

D•(∆) := (Dk(∆))k∈Z≥0
,
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where

Dk(∆) := {(f1, . . . , fk) ∈ Sk|f1 · · · fk = ∆},
together with, for all k, the following structure:

• the k face maps d1, . . . , dk : Dk(∆) → Dk−1(∆), such that for all σ =

(f1, . . . , fk) ∈ Dk(∆), we have d1(σ) = (f1f2, f3, . . . , fk), . . . , dk−1(σ) =

(f1, . . . , fk−2, fk−1fk) and dk(σ) = (f2, . . . , fkf
φ
1 );

• the k degeneracy maps s1, . . . , sk : Dk−1(∆)→ Dk(∆) obtained by insert-

ing identities at the k-possible locations in (f1, . . . , fk−1);

• the “screwdriver” map ρ : Dk(∆)→ Dk(∆), (f1, . . . , fk) 7→ (f2, . . . , fk, f
φ
1 ).

When there is no ambiguity on ∆, we write D• instead of D•(∆).

Note the analogy with D•(c) (Definition 7.10) that , by Theorem 7.12,

happens to be isomorphic to the Garside set of the dual braid monoid.

Together, the face and degeneracy maps form a (degree-shifted) simplicial

structure, which is isomorphism to that on NS via the following trivial lemma.

Lemma B.16 (Kreweras map). For all k ≥ 1, the map

(NS)k−1−→Dk(∆)

(f1, . . . , fk−1) 7−→ (f1, . . . , fk−1, (f1 · · · fk−1)−1∆)

is bijective.

Remark B.17 (Helicoidal structure). The are obvious compatibility axioms

between the screwdriver map ρ and the simplicial structure. If φ were to act

trivially on simple elements, these axioms would be that of a cyclic set, in

the sense of [24]. Bökstedt-Hsiang-Madsen provide variant axioms for the case

when ρ has finite order (|ρ|-cyclic sets [12]). As it is interesting to consider

Garside structures where ρ has infinite order (see for example [4]), imposing

conditions on the order of ρ seems a bit artificial. Relaxing the finite order

condition yields a natural notion of helicoidal set, which I have not found in the

literature. (Maybe I did not search well enough.) The geometric realization

of a helicoidal set is equipped with a natural R-action, which for cyclic sets

and d-cyclic sets, factors through a natural S1-action. This S1-action and

its compatibility with the scalar action on V is the true explanation for the

miracles of Section 11.

Remark B.18 (Garside structure from Garside set). Note that the whole

Garside structure can be recovered from D•. Consider the following category

presentation:

(1) The set D1 is, literally, the Garside family ∆. It contains one element per

object in C, and serves as an abstract object set.

(2) The set D2 is in bijection with S. We take D2 as a formal set of generators.
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(3) The elements in D3 are the defining relations of the presentation: the

triple (f1, f2, f3) expresses the relation (f1, f2f3)(f2, f3f
φ
1 ) = (f1f2, f3).

(Indeed, via the Kreweras bijection between D2 and S, this is the relation

f1 · f2 = f1f2.)

This presentation defines an abstract category C(D•) that is isomorphic to

C. In other words, the category C, together with ∆ and S, can be functorially

retrieved from the helicoidal set D•. Note that higher degree elements in

D• express further syzygies but, because of Theorem B.10, they only contain

homotopically trivial stuff.

Exercise B.19. Write down the axioms for a helicoidal set.

Question B.20. Is there a pleasant way to phrase axioms for abstract Gar-

side sets (helicoidal sets H such that C(H) is a Garside category)?

B.5. Divided Garside structures. The main construction in [5] is a kind of

”barycentric subdivision” functor for Garside categories. At the level of cyclic

sets, it coincides with an earlier construction by Bökstedt-Hsiang-Madsen, [12].

Thanks to our index-shifting Lemma B.16, we can describe this construction in

remarkably simple terms. (Note how the Kreweras map allows much simpler

notation compared to those of [12] and [5].)

Definition B.21 (divided Garside set). Let (C,∆, φ) be a Garside struc-

ture. Let m be a positive integer. The m-divided Garside set is the graded set
m
√

D•(∆) = (
m
√

Dk(∆))k∈Z≥0
,

where
m
√

Dk(∆) := Dmk(∆),

equipped with

• faces d′1, . . . , d
′
k : m
√

Dk(∆)→ m
√

Dk−1(∆) defined by

d′i = didi+k . . . di+(d′−1)k

(composed from right to left);

• degeneracy maps s′1, . . . , s
′
k : m
√

Dk−1(∆)→ m
√

Dk(∆) defined by

s′i = siss+k · · · si+(d′−1)k

(composed from right to left);

• the screwdriver map is the restriction of that of D•.

Theorem B.22 (after Section 9 in [5]). Let (C,∆, φ) be a Garside struc-

ture with a set of simple elements S . Let m be a positive integer. Then
m
√

D•(∆) is the Garside set of Garside structure (Cm,∆m, φm) such that Gm,

the groupoid of fractions of Cm, is equivalent as a category to G, the groupoid

of fractions of C.
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Following Remark B.18, the Garside structure (Cm,∆m, φm) is uniquely

determined by its Garside set m
√

D•(∆), and we can write presentations by

generators and relations for Cm and Gm as follows.

The underlying object is m
√

D1(∆) = Dm(∆), and the set of simple ele-

ments Sm is in bijection with m
√

D2(∆) = D2m(∆). It is better to understand

everything in terms of commutative diagrams. An object (f1, . . . , fm) is viewed

as a commutative diagram

•
f1 //

∆

33•
f2 // • // •

fm // •,

where all arrows are in S, whereas a simple morphism (f1, . . . , f2m) in Sm ⊆ Cm
is viewed as a commutative diagram

• //

∆

++

f1
��

• //

f3
��

•
f5
��

•
f2m−1

��

// •
fφ1
��

•
∆

33//

f2
??

•

f4
??

// • • //

f2m
??

•,

where all arrows are in S; its source is the object (f1f2, f3f4, . . . , f2m−1f2m),

and its target is the object (f2f3, f4f5, . . . , f2mf
φ
1 ):

•
f1f2 //

∆

55• // •
f2m−1f2m// •

(f1,f2,...,f2m)
// •

f2f3 //

∆

44• // •
f2mf

φ
1 // •.

These morphisms are subject to defining relations indexed by m
√

D3(∆) =

D3m(∆). The relation (f1, . . . , f3m) can be visualized as

•
∆

++

f1
��

•
f4
��

•
f7
��

•

��

•
fφ1
��

•
f2
��

•
f8
��

•
f5
��

•

��

•
fφ2
��

•

f3

GG

•

f6

GG

• •

f3m

GG

•
and expresses the defining relation

(f1, f2f3, f4, f5f6, . . . ) · (f2, f3f4, f5, f6f7, . . . ) = (f1f2, f3, f4f5, f6, . . . ).

The automorphism φm acts on objects by

(f1, f2, . . . , fm) 7→ (f2, . . . , fm, f
φ
1 )

and on simple morphisms by

(f1, f2, f3, f4, . . . , f2m−1, f2m) 7→ (f3, f4, . . . , f2m−1, f2m, f
φ
1 , f

φ
2 ).
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The Garside element ∆m with source (f1, f2, . . . , fm−1, fm) has target

(f2, f3 . . . , fm, f
φ
1 ) and corresponds to the commutative diagram

•
f1 //

f1
��

•
f2 //

f2
��

•
f3
��

•
fm
��

fm // •
fφ1
��

•
f2

//

1
??

•

1
??

f3

// • •
fφ1

//

1
>>

•.

Definition B.23. The collapse map is

κm :
m
√

D2(∆)−→D2(∆)

(f1, f2, . . . , f2m) 7−→ (f1, f2 · · · f2m).

By inspecting the defining relations of C (Remark B.18) and Cm (just

above), one sees that κm extends to a collapse functor Cm → C. In [5, §9]a less

trivial functor Θm : C → Cm is defined .

Theorem B.24. The functors κm : Cm → C and Θm : C → Cm are such

that κm ◦ Θm = 1C . They induce equivalences of categories κm : Gm → G and

Θm : G → Gm.

Proof. That κm ◦Θm = 1C is obvious by construction. That Θm : G → Gm
is an equivalence of categories is [5, Th. 9.5]. �
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G31 (exceptional group), 11

M (dual braid monoid), 41

M ′ (relative dual braid category for W ′),

57

S (set of simple elements in B), 26

Y , see also Saito quotient

A (reflection arrangement), 9

B′ (relative braid groupoid for W ′), 66

B (braid group of W ), 9

D′• (relative dual Garside set for W ′), 57

D•
D•(c) ' D•(δ), 35

decompositions of Coxeter element c,

34

Garside set, 85

H (discriminant locus), 4

K (bifurcation locus), 18

U (fat basepoint), 24

Ud′ , 63

Û1 (basic patch in the universal cover), 50

Vg (basic patch in the universal cover,

relative version), 69

∆ (discriminant equation), 9

En
(configurations not containing 0) E

◦
n,

40

centered configuration space En, 16

generic centered configuration space

Egen
n , 17

noncentered configuration space En, 16

regular centered configuration space

Ereg
n , 17

LL (Lyashko-Looijenga morphism), 20

LL (extended Lyashko-Looijenga

morphism), 39

UniCover (universal cover model), 80

cc (cyclic content), 64

clbl (cyclic label), 60

δ (dual Garside element), 27

gar(G,S, o) (“gar” flag complex), 84

lbl (label map), 27

4, ≺ (left divisibility in S and M), 41

4R (R-prefix partial ordering in W ), 31

rlbl (reduced label), 36

σ ` τ (τ is a face of σ), 37

c (Coxeter element), 30

f (system of basic invariants), 8

l, see also length function

bifurcation locus, 18

complement is K(π, 1), 23

braid group, 9

braid reflections, 10

Coxeter element, 30

cyclic content, 64

discriminant, 4, 9

it suffices to consider 2-reflection

groups, 12

dual braid monoid, 41

is Garside monoid, 41

fat basepoint, 24

is dense, open and contractible, 24

fat basepoint trick, 78

fundamental groupoid, 78

Garside element, 27

Hurwitz action, 29

conjectural transitivity on braid

factorizations, 45

is transitive on RedR(c), 32

Hurwitz rule, 28

label, 27

cyclic label, 60

reduced label, 36

length function

on B(W ), 10

Lyashko-Looijenga morphism, 20

nerve

of a category, 81

of a Garside structure, 84

of an open covering, 50

reflection arrangement, 9

regular element, see also Springer theory

Saito quotient, 18

decomposition theorem, 37
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simple elements, 26

bijection from B to W , 34

cardinality, 76

Springer theory, 11

braid group version, 74

regular element, 11

yields torsion elements in B/ZB, 27

support (ordered support of a

configuration), 17

tunnels, 25

circular semitunnels, 66

represent simple elements, 26

semitunnels, 25

universal cover

of W\V reg, 50

well-generated reflection groups, 3

admit flat systems of basic derivations,

14

classification, 15

example of a badly-generated group, 14

generalized Catalan numbers, 76

generalized Coxeter element, 30

parabolic subgroups are

well-generated, 15
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