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Finsler metrics and Kobayashi
hyperbolicity of the moduli spaces of

canonically polarized manifolds

By Wing-Keung To and Sai-Kee Yeung

Abstract

We show that the base complex manifold of an effectively parametrized

holomorphic family of compact canonically polarized complex manifolds

admits a smooth invariant Finsler metric whose holomorphic sectional cur-

vature is bounded above by a negative constant. As a consequence, we

show that such a base manifold is Kobayashi hyperbolic.

1. Introduction

In the study of the moduli space Mg (and the Teichmüller space Tg) of

compact Riemann surfaces of genus g ≥ 2, the Weil-Petersson metric plays an

important role, and it has been widely studied. In particular, Ahlfors ([Ahl61],

[Ahl62]) showed that the Weil-Petersson metric on Tg is a Kähler metric whose

Ricci and holomorphic sectional curvatures are negative. Royden [Roy75] later

proved that the holomorphic sectional curvature of the Weil-Petersson metric

is bounded away from zero. Subsequently Wolpert [Wol86] showed that the

Weil-Petersson metric is of holomorphic sectional curvature bounded above by

− 1
2π(g−1) . One immediate consequence of Wolpert’s result isMg is Kobayashi

hyperbolic. It is interesting and natural to ask whether similar results hold for

the moduli spaces of higher dimensional manifolds.

An n-dimensional compact complex manifold M is said to be canonically

polarized if its canonical line bundle KM is ample. It follows from results of

Aubin [Aub76] and Yau [Yau78] that every compact complex manifold with

ample canonical line bundle admits a Kähler-Einstein metric of negative Ricci

curvature, which is unique up to a positive multiplicative constant. As such,
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one can identify the moduli space of canonically polarized manifolds with that

of Kähler-Einstein manifolds of negative Ricci curvature. (See [NS68], [Vie95]

and the references therein for existence and quasi-projectivity results on the

moduli space of canonically polarized manifolds.) The first breakthrough in

the computation of the curvature for the Weil-Petersson metric on the moduli

space of such higher dimensional manifolds is given by Siu [Siu86], which we

recall here briefly. Let π : X → S be a holomorphic family of compact canoni-

cally polarized complex manifolds over a complex manifold S, i.e., π : X → S is

a surjective holomorphic map of maximal rank between two complex manifolds

X and S, and each fiber Mt := π−1(t), t ∈ S, is a compact complex manifold

such that KMt is ample. When the family π : X → S is effectively parametrized

(i.e., the Kodaira-Spencer map ρt : TtS → H1(Mt, TMt) is injective for each

t ∈ S), the Weil-Petersson metric on S induced from the Kähler-Einstein met-

rics on the fibers is a nondegenerate Kähler metric (cf. (2.5)). In [Siu86],

Siu computed the curvature of the Weil-Petersson metric arising from such

families. (See also [Sch93] for a simplified formula under the additional as-

sumption that the Kodaira-Spencer map ρt : TtS → H1(Mt, TMt) is surjective

for each t ∈ S.) It turns out that, in general, one cannot decide the sign of the

holomorphic sectional curvature of the Weil-Petersson metric except in some

restrictive cases, say, when H2(Mt,
∧2 TMt) = 0 for all fibers Mt of the family.

Nonetheless, we show in this article that the base manifold of any effectively

parametrized holomorphic family of canonically polarized manifolds admits a

Finsler metric with appropriate curvature property, which will imply that such

a base manifold is necessarily Kobayashi hyperbolic. We state our main result

as follows.

Theorem 1. Let π : X → S be an effectively parametrized holomor-

phic family of compact canonically polarized complex manifolds over a complex

manifold S. Then S admits a C∞ Aut(π)-invariant Finsler metric whose

holomorphic sectional curvature is bounded above by a negative constant. As a

consequence, S is Kobayashi hyperbolic.

We refer the reader to Section 3 for the definition of an “Aut(π)-invariant

Finsler metric whose holomorphic sectional curvature is bounded above by a

negative constant.” We also recall that a complex manifold (or more generally

a complex space) X is said to be Kobayashi hyperbolic if its Kobayashi pseudo-

distance function dX is a distance function on X (i.e., dX(x, y) > 0 for all

x 6= y ∈ X). Here dX can be characterized as the largest among all the

pseudo-distance functions δX on X satisfying δX(f(a), f(b)) ≤ d∆(a, b) for all

holomorphic maps f : ∆ → X and a, b ∈ ∆, where ∆ is the unit disc in C
and d∆ is the hyperbolic distance function on ∆. (See, e.g., [Kob98] for other

equivalent definitions of dX .)
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We remark that Theorem 1 improves an earlier result of Viehweg and

Zuo [VZ03], which implies that S is Brody hyperbolic; that is, there exists

no nonconstant holomorphic function from the complex plane C to S. (See

also [Kov97], [Kov00] and [Mig95] for related algebraic versions of such re-

sult, namely, that algebraic morphisms from abelian varieties or C∗ to S are

necessarily constant, and that when S ⊂ P1, the cardinality of P1 \ S is at

least three.) Here we recall the well-known fact that a complex manifold (or

more generally a complex space) X is necessarily Brody hyperbolic if it is

Kobayashi hyperbolic, and these two notions of hyperbolicity coincide when X

is compact. Nonetheless, there are examples of noncompact Brody hyperbolic

complex manifolds which are not Kobayashi hyperbolic. (See, e.g., [Kob98,

p. 104] for such an example.) The approach in [VZ03] depends on positivity

results for direct images of certain associated sheaves, and it is quite different

from ours. We also remark that as in [VZ03], Theorem 1 can be regarded as a

result on the moduli stacks associated to the coarse moduli spaces of canoni-

cally polarized manifolds. As suggested by one of the referees, we will indicate

some underlying parallel ingredients in the respective approaches of [VZ03]

and this paper. (See Remark 10 at the end of this paper.)

We describe briefly our approach as follows. The starting point is the cur-

vature computation of the usual Weil-Petersson metric h1 in [Siu86]. (See the

curvature formula in (2.6) in Section 2.) We may regard this as the first level

computation. The curvature expression of h1 encompasses a good term which

is negative and a bad term which is nonnegative. We observe that the bad term

can be expressed as a ratio h2/h1, where h2 is some Finsler pseudometric on

the the tangent space TS of the parameter space S, which is induced through

the diagonal embedding of TS into the symmetric product S2(TS) endowed

with a generalized Weil-Petersson Finsler pseudometric (which, for simplicity,

is also denoted here by h2). The second level computation is the technical

derivation of the curvature of h2. A prototype of this computation is the first

level computation which was done in [Siu86]. The key point of our argument is

to group the resulting curvature terms of h2 into a good term involving h2/h1

and a bad term involving h3/h2, where h3 can be interpreted as another Finsler

pseudometric on TS arisen similarly. The process is repeated. Hence for each

` ≥ 1, we construct at the `-th level a generalized Weil-Petersson Finsler pseu-

dometric h` on S measuring the `-th symmetric power of a tangent vector on

the base and corresponding to the `-th composition of the Kodaira-Spencer

map associated to a given tangent vector. We derive the key estimate that the

curvature of h` is expressed as the sum of a good term involving h`/h`−1 and

a bad term involving h`+1/h`. (See Proposition 6 in Section 8.) Our strategy

is to control the bad term at the (`− 1)-th level by the good term at the `-th
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level. This process terminates after a finite number of steps because of the fol-

lowing simple observation: Since h` is given by the L2-norms of the harmonic

representatives of the cohomology classes in H`(Mt,∧`TMt) corresponding to

the image of the `-th iteration of the Kodaira-Spencer map, it follows that

the bad term at the n-th level must vanish, where n = dimCMt. We remark

that the iterated Kodaira-Spencer maps (and similar cohomological vanishing

results as mentioned above) play an important role in the study of variation

of Hodge structures, and they have also been used in [Mig95], [Kov00] and

[VZ03]. To carry out our plan, we construct the final Finsler metric h as a

suitable finite linear combination of the h
1/`
` ’s. From a simple direct compu-

tation which corresponds to a Gauss equation type argument, we show that

the curvature of h is bounded from above by a linear combination involving

the h`’s and their curvatures. Finally, by carefully adjusting the coefficients of

the h
1/`
` ’s in the definition of h pertaining to the comparison of arithmetic and

geometric means, we show that the curvature estimates of the h`’s at various

levels can be combined together to conclude that the holomorphic sectional

curvature of h is bounded above by a negative constant. (See Proposition 7 in

Section 9.)

We may break up our proof of Theorem 1 into three steps. In terms of the

above description, the first step of the current paper is a direct generalization

of the curvature formula for ` = 1 to the cases of higher values of `, resulting

in Proposition 4 in Section 8. The proof of this step follows closely the original

formulation of Siu [Siu86]. The second step is to observe that the first term

on the right-hand side of the expression in Proposition 4 allows us to use a

telescopic argument to estimate the bad term of the curvature of the generalized

Weil-Petersson metric h` in terms of the good term in the curvature expression

of h`+1. The third step is the careful choice of a suitable combination of the

h`’s to make sure that a negative upper bound of the holomorphic sectional

curvature can be obtained. For the sake of a clear, self-contained presentation,

we include all necessary details in the computations.

The approach in this article is motivated in part from [SY96] and [SY97], in

which higher order jets and the appropriate Schwarz lemma are used to handle

situations where the use of the first order jet is not sufficient for hyperbolicity

of the manifold. Nonetheless, in this article, instead of higher order jets, we

make use of symmetric powers of the first order jet of the base manifold S and

their cohomological images along the fibers arising from the Kodaira-Spencer

map. The expression of the curvature estimates in Proposition 6 given in terms

of a good and a bad term is motivated by Ahlfors work on associated curves

[Ahl41] and also the proof of the Schwarz Lemma in [SY96, Lemma 4.4.1]. The

formulation of Proposition 6 is crucial for a telescopic argument in the proof

of Proposition 7.
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After we had completed this work, our attention was drawn to a recent

preprint (arXiv 1002.4858) by Schumacher (which has appeared subsequently

as [Sch12]), which, among other results, gives rise to Finsler metrics of negative

holomorphic sectional curvature on relatively compact subsets of S (see [Sch12,

Prop. 14]). But this does not lead to Kobayashi hyperbolicity or Brody hyper-

bolicity of S itself, except in the case when S is compact. (See Remark 11 at the

end of this paper for more retrospective remarks on the respective approaches

of the two papers.)

The organization of this paper is as follows. In Section 2, we give some

background materials and introduce some notations. In Section 3, we introduce

the generalized Weil-Petersson Finsler pseudometrics, whose curvatures are

computed in Sections 4-8. In Section 9, we give the construction of the desired

Finsler metric, which leads to the Kobayashi hyperbolicity of S.

The authors would like to express their thanks to Professor Yum-Tong Siu

for his suggestions and inspirations to study the topic treated in this paper.

The authors would also like to thank Professor Ngaiming Mok for his interest

in this work. Part of this research was done while the authors were visiting

the Institute of Mathematical Research at the University of Hong Kong, and

the authors would like to express their gratitude to the institute for their

hospitality. The authors are also indebted to the referees for helpful comments

and suggestions.

2. Background materials and the Weil-Petersson metric

Let π : X → S be an effectively parametrized holomorphic family of

n-dimensional compact canonically polarized complex manifolds over an

m-dimensional complex manifold S. Let Mt := π−1(t) for each t ∈ S. Since

the canonical line bundle KMt of each Mt is ample, it follows from a well-

known result of Yau [Yau78] that Mt admits a Kähler-Einstein metric g(t) of

constant Ricci curvature k < 0. It is easy to see that k can be chosen to

be independent of t ∈ S, and with such a choice of k, g(t) is uniquely deter-

mined and g(t) varies smoothly with t. Denote the Kähler form of g(t) by

ω(t) for each t ∈ S. Consider the relative canonical line bundle on X given by

KX|S := KX ⊗ (π∗KS)−1, so that KX|S

∣∣∣∣
Mt

= KMt for each t ∈ S. The volume

forms associated to the ω(t)’s defines a Hermitian metric λ on K−1
X|S , and one

obtains a d-closed (1, 1)-form on X given by

(2.1) ωX :=
2π

k
c1(K−1

X|S , λ)

such that ωX
∣∣∣
Mt

= ω(t) for each t ∈ S.

http://www.arxiv.org/abs/1002.4858
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We will adopt the following notation throughout this article, unless stated

otherwise. We will use (z, t) = (z1, . . . , zn, t1, . . . , tm) to denote local holomor-

phic coordinate functions on some coordinate open subset of X , so that π

corresponds to the coordinate projection map (z, t) → t, and t = (t1, . . . , tm)

also forms local holomorphic coordinate functions on some coordinate open

subset of S. As such, for fixed t, z = (z1, . . . , zn) also forms local holomorphic

coordinate functions on some open subset of the fiber Mt. We will index com-

ponents of tensors on Mt in the holomorphic tangential directions by Greek

symbols α, β, etc (with the range 1, 2, . . . , n), while those in the complexified

tangential directions are indexed by lower case Latin letters a, b, c, d, etc. (with

the range 1, 2, . . . , n, 1̄, 2̄, . . . , n̄). On the other hand, the components of ten-

sors along the base directions will be indexed by the letters i, j (with the range

1, 2, . . . ,m), etc. We also adopt the Einstein summation notation for indices

along the fibers. We denote ∂α := ∂
∂zα and ∂ᾱ := ∂

∂zα for α = 1, . . . , n, and

∂i := ∂
∂ti

for i = 1, . . . ,m, etc.

The Ricci tensor of g(t) is locally given by Rαβ̄(t)=−∂α∂β̄ log(det(gγδ̄(t))),

and the Kähler-Einstein condition means that Rαβ̄(t) = kgαβ̄(t) on each Mt.

When no confusion arises, we sometimes drop the parameter t, and we simply

write Rαβ̄ for Rαβ̄(t), etc. We also write the (1, 1)-form in (2.1) as ω =√
−1gIJ̄(z, t)dwI ∧ dw̄J , where w can be z or t and the indices I, J can be

i or α, etc. In particular, one has gαβ̄ = gαβ̄(t) along each fiber Mt.

Next we recall the “horizontal lifting” of vector fields as defined by Schu-

macher in [Sch93]. First one notes that the orthogonal complement of Ker(π∗ :

TX → TS) in TX with respect to ω defines a smooth “horizontal” vector sub-

bundle THX ⊂ TX . For t ∈ S and a local tangent vector field u (of type (1, 0))

on an open subset U of S, one easily sees that there exists a unique lifting of

u to a smooth vector field vu (of type (1, 0)) on π−1(U) such that π∗vu = u

and vu(z, t) ∈ THX for each (z, t) ∈ π−1(U). Such vu is called the horizontal

lifting of u (with respect to ω). With respect to the family π : X → S, let

ρt : TtS → H1(Mt, TMt) denote the associated Kodaira-Spencer map for each

t ∈ S. For each fixed t ∈ U , it follows from standard deformation theory that

Φ(u(t)) := ∂̄vu
∣∣∣
Mt
∈ A0,1(Mt) is a Kodaira-Spencer representative of ρt(u(t)),

i.e., ρt(u(t)) =
î
Φ(u(t))

ó
in H1(Mt, TMt). By [Sch93, p. 342, Prop. 1.1], one

knows that Φ(u(t)) is harmonic with respect to the ∂̄-Laplacian � = ∂̄∂̄∗+ ∂̄∗∂̄

on Mt. In particular, the horizontal lifting vu of u is actually a (special type

of) “canonical lifting” in the sense of Siu in [Siu86], which refers to any lifting

of u such that Φ(u(t)) is the harmonic representative of ρt(u(t)) for each t.

When u = ∂/∂ti is a coordinate vector field, we will simply denote its hor-

izontal lifting by vi := v∂/∂ti and the associated harmonic Kodaira-Spencer

representative by Φi := Φ(∂/∂ti). Write Φi = (Φi)
α
β̄
∂α ⊗ dz̄β. It is easy to see
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that vi and the (Φi)
α
β̄
’s are given locally by

vi = ∂i + vαi ∂α, where vαi := −gβ̄αgiβ̄,(2.2)

and

(Φi)
α
β̄ = ∂β̄v

α
i = −∂β̄(gγ̄αgiγ̄);(2.3)

see [Sch93, p. 342, eq. (1.2)]. Here gβ̄α denotes the components of the inverse of

gαβ̄ (and not that of gIJ̄ , which may not be invertible). For a given tensor T of

covariant degree 1 and of contravariant degree 1, we recall that the components

(along the fiber direction) of its Lie derivative LviT with respect to vi are given

locally by

(2.4) (LviT )ba = ∂i(T
b
a) + T bc ∂av

c
i − T ca∂cvbi

(see, e.g., [Siu86, p. 268]), and a similar formula holds for tensors of higher

degree. We recall that the Weil-Petersson metric h(WP ) =
∑n
i,j=1 h

(WP )

ij̄
dti⊗dt̄j

on S is defined by

(2.5) h
(WP )

ij̄
(t) :=

∫
Mt

〈Φi,Φj〉
ωn

n!
,

where 〈Φi,Φj〉 := (Φi)
γ
ᾱ(Φj)δβ̄gγδ̄g

ᾱβ denotes the pointwise Hermitian inner

product on tensors, possibly of mixed types, with respect to ω. (We note that

the definition of h(WP ) in [Siu86, p. 273] differs from (2.5) by a factor of 4.)

We remark that it follows from the assumption on the injectivity of ρt that

h(WP ) is positive definite on each TtS. It follows from Koiso’s result [Koi83]

that h(WP ) is Kähler. Let R(WP ) denote the curvature tensor of h(WP ). By

[Siu86, p. 296], the components of R(WP ) with respect to normal coordinates

(of h(WP )) at a point t ∈ S are given by

R
(WP )

ij̄k ¯̀ (t) = k

∫
Mt

((�− k)−1〈Φi,Φj〉) · 〈Φk,Φ`〉
ωn

n!
(2.6)

+ k

∫
Mt

((�− k)−1〈Φk,Φj〉) · 〈Φi,Φ`〉
ωn

n!

+ k

∫
Mt

〈(�− k)−1LviΦk,LvjΦ`〉
ωn

n!

+

∫
Mt

〈H(Φi ? Φk), H(Φj ? Φ`)〉
ωn

n!
.

Here by normal coordinates of h(WP ) at the point t ∈ S, we mean h
(WP )

ij̄
(t) =

δij , and ∂kh
(WP )

ij̄
(t) = ∂k̄h

(WP )

ij̄
(t) = 0. (See [Siu86, p. 275]). Also, H(Φi?Φk)

is some harmonic ∧2T 1,0Mt-valued (0, 2)-form constructed from Φi and Φk (see

(3.3), (3.4) and (3.10) for the general definition.)
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Remark 1. As remarked in [Siu86, p. 297], when i = j and k = `, the first

term on the right-hand side of (2.6) is negative, while the second and third

terms are semi-negative. However, the fourth term is semi-positive, which

hitherto poses a big obstacle in trying to deduce hyperbolicity properties of the

moduli space by using the Weil-Petersson metric (except under some restrictive

conditions amounting to the vanishing of the fourth term).

3. Generalized Weil-Petersson Finsler pseudo-metrics

Throughout Section 3, we let π : X → S be an effectively parametrized

holomorphic family of n-dimensional compact canonically polarized complex

manifolds over an m-dimensional complex manifold S as in Theorem 1. Let

Mt := π−1(t) for each t ∈ S. In this section, we are going to construct some

Finsler pseudo-metrics on S via constructions similar to (2.5). To facilitate

our subsequent discussion, we first recall some standard definitions.

A Finsler pseudo-metric h on the complex manifold S is simply a continu-

ous function h : TS → R such that h(u) ≥ 0 for all u ∈ TS and h(cu) = |c|h(u)

for all u ∈ TS and c ∈ C. If, in addition, h(u) > 0 for all 0 6= u ∈ TS, then we

say that h is a Finsler metric on S. A Finsler pseudo-metric h is said to be

C∞ (resp. C` for a nonnegative integer `) if for any open subset U ⊂ S and

any nonvanishing C∞ section ut of TS
∣∣∣
U

, h(ut) is a C∞ (resp. C`) function on

U . For a C2 Finsler metric h on S, a point t ∈ S and a nonzero tangent vector

u ∈ TtS, the holomorphic sectional curvature K(u) of h in the direction u is

simply given by

(3.1) K(u) = sup
R
K(R, h

∣∣∣
R

)(t),

where the supremum is taken over all local one-dimensional complex subman-

ifolds R of S satisfying t ∈ R and TtR = Cu, and K(R, h
∣∣∣
R

)(t) is the sectional

curvature of (the Riemannian metric) (R, h
∣∣∣
R

) at t (cf. (9.13)). We say that the

holomorphic sectional curvature of the Finsler metric h on S is bounded above

by a negative constant if there exists a constant C > 0 such that K(u) < −C
for all 0 6= u ∈ TS. We remark that in the special case when the Finsler

metric h arises as the length function of a Hermitian metric, the holomorphic

sectional curvature of h (as a Finsler metric) agrees with that of the associated

Hermitian metric. For the family π : X → S as above, we say that a Finsler

pseudometric (or Finsler metric) h on S is Aut(π)-invariant if f∗h = h for any

pair of automorphisms (F, f) ∈ Aut(X )×Aut(S) satisfying f ◦π = π◦F . Here

Aut(X ) denotes the group of self-biholomorphisms on X , etc.

Next we introduce some definitions on the fibers Mt’s of π : X → S. For

integers p, q, r, s ≥ 0 and t ∈ S, let Φ ∈ A0,p(∧rTMt) and Ψ ∈ A0,q(∧sTMt)
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be given by

Φ =
1

p!r!

∑
1≤α1,...,αr≤n
1≤β1,...,βp≤n

Φα1···αr
β1···βp

∂α1 ∧ · · · ∧ ∂αr ⊗ dz̄β1 ∧ · · · ∧ dz̄βp ,(3.2)

Ψ =
1

q!s!

∑
1≤γ1,...,γs≤n
1≤δ1,...,δq≤n

Ψγ1···γs
δ1···δq

∂γ1 ∧ · · · ∧ ∂γs ⊗ dz̄δ1 ∧ · · · ∧ dz̄δq , with

Φ
σ(α1)···σ(αr)

τ(β1)···τ(βp)
= sgn(σ) · sgn(τ) · Φα1···αr

β1···βp
for all σ ∈ Sr, τ ∈ Sp, etc.

Here Sp denotes the permutation group on p elements, and sgn(σ) denotes the

signature of the permutation σ, etc. Now we define Φ ? Ψ ∈ A0,p+q(∧r+sTMt)

given by

Φ ? Ψ :=
1

p!q!r!s!

∑
Φα1···αr
β1···βp

·Ψγ1···γs
δ1···δq

∂α1 ∧ · · · ∧ ∂αr ∧ ∂γ1 ∧ · · · ∧ ∂γs(3.3)

⊗ dz̄β1 ∧ · · · ∧ dz̄βp ∧ dz̄δ1 ∧ · · · ∧ dz̄δq ,

where the summation is taken over all 1 ≤ α1, . . . , αr, β1, . . . , βp, γ1, . . . , γs,

δ1, . . . , δq ≤ n. Thus the operator ? means taking wedge product on the level

of forms as well as that of tangent vectors. It is easy to check that

Φ ? Ψ =
1

(p+ q)!(r + s)!

∑
A,B

Ä
Φ ? Ψ

äA
B
∂A ⊗ dz̄B with(3.4) Ä

Φ ? Ψ
äA
B

=
∑

σ∈Sr+s
τ∈Sp+q

sgn(σ) · sgn(τ)

p!q!r!s!
Φ
σ(α1)···σ(αr)

τ(β1)···τ(βp)
·Ψσ(αr+1)···σ(αr+s)

τ(βp+1)···τ(βp+q)
,

where A = (α1, . . . , αr+s), B = (β1, . . . , βp+q), ∂A := ∂α1 ∧ · · · ∧ ∂αr+s , dz̄B :=

dz̄β1 ∧ · · · ∧ dz̄βp+q , and the summation in the first line of (3.4) runs through

all integral values of A, B satisfying 1 ≤ α1, . . . , αr+s, β1, . . . , βp+q ≤ n. We

will skip the easy checking that for any Φ ∈ A0,p(∧rTMt), Ψ ∈ A0,q(∧sTMt)

and Υ ∈ A0,c(∧dTMt), one has

Φ ? Ψ = (−1)pq+rsΨ ? Φ,(3.5)

∂(Φ ? Ψ) = ∂Φ ? Ψ + (−1)pΦ ? ∂Ψ,(3.6)

and

Φ ? (Ψ ? Υ) = (Φ ? Ψ) ? Υ.(3.7)

In particular, we may write Φ ? Ψ ? Υ unambiguously.

Remark 2.

(i) When p = r and q = s, one has Φ ? Ψ = Ψ ? Φ.

(ii) When q = s = 0 (so that Ψ is a scalar-valued function on Mt), Φ ? Ψ is

simply given by pointwise multiplication of Φ by the function Ψ.
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(iii) From (3.6), one easily sees that if Φ and Ψ are ∂-closed, then Φ?Ψ is also

∂-closed. If, in addition, either Φ or Ψ is ∂-exact, then Φ ? Ψ is ∂-exact.

In particular, the operator ? induces a homomorphism on the associated

cohomology groups, which we denote by the same symbol. Explicitly, we

have

? : H0,p(∧rTMt)⊗H0,q(∧sTMt)→ H0,p+q(∧r+sTMt)

given by

[Φ] ? [Ψ] := [Φ ? Ψ]

for any classes [Φ] ∈ H0,p(∧rTMt) and [Ψ] ∈ H0,q(∧sTMt) represented by

Φ ∈ A0,p(∧rTMt) and Ψ ∈ A0,q(∧sTMt) respectively.

For a cohomology class µ ∈ H0,p(∧rTMt), we denote by H(µ) the unique

harmonic representative of µ. In particular, for any ∂-closed representative

Φ(∈ A0,p(∧rTMt)) of µ, one easily sees that H(µ) = H(Φ), where H(Φ)

denotes the harmonic projection of Φ (with respect to ω(t)).

For the rest of this section, we fix an integer ` satisfying 1 6 ` 6 n. Let

Φ,Ψ ∈ A0,`(∧`TMt) with components as given in (3.2) (with p=q=s=r=`).

Their pointwise inner product is given by

(3.8) 〈Φ,Ψ〉 :=
1

(`!)2
Φα1···α`
β1···β`

Ψ
α′1···α

′
`

β
′
1···β

′
`

gα1α
′
1
· · · gα`α′`g

β1β
′
1 · · · gβ`β

′
` ,

and their L2-inner product on Mt is given by

(3.9) (Φ,Ψ) =

∫
Mt

〈Φ,Ψ〉ω
n

n!
.

We denote by ‖Φ‖2 :=
»

(Φ,Φ) the fiberwise L2-norm of Φ. Then for each

t ∈ S and u1, . . . , u`, u
′
1, . . . , u

′
` ∈ TtS, we define, in terms of (3.9),

(u1 ⊗ · · · ⊗ u`, u′1 ⊗ · · · ⊗ u′`)WP(3.10)

:= (H(ρt(u1) ? · · ·? ρt(u`)), H(ρt(u
′
1) ? · · ·? ρt(u

′
`)))

= (H(Φ(u1) ? · · ·? Φ(u`)), H(Φ(u′1) ? · · ·? Φ(u′`))).

Here each Φ(ui) is the harmonic representative of ρt(ui) as given in Section 2. It

is easy to see that (3.10) extends to a positive semi-definite Hermitian bilinear

form on ⊗`TtS, which varies smoothly in t. We simply call it the generalized

Weil-Petersson pseudo-metric on ⊗`TS.
Now for each t ∈ S and u ∈ TtS, we define

(3.11) ‖u‖WP,` := (u⊗ · · · ⊗ u︸ ︷︷ ︸
`-times

, u⊗ · · · ⊗ u︸ ︷︷ ︸
`-times

)
1
2`
WP .
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It is easy to see that each ‖ · ‖WP,` is a Finsler pseudo-metric on S, i.e.,

‖u‖` > 0 and ‖cu‖WP,` = |c|‖u‖WP,` > 0 for all c ∈ C and u ∈ TS. We simply

call ‖ · ‖WP,` the `-th generalized Weil-Petersson Finsler pseudo-metric on S.

Remark 3.

(i) We remark that ‖ ‖WP,1 is simply the norm function of the Weil-Petersson

metric defined in (2.5) and is positive definite under the assumption that

each ρt is injective.

(ii) For a pair of automorphisms (F, f) ∈ Aut(X )×Aut(S) satisfying f ◦ π =

π ◦ F , one easily sees that the restriction of F to the fibers are isome-

tries with respect to the Kähler-Einstein metrics on the fibers; i.e., one

has (F
∣∣∣
Mt

)∗g(f(t)) = g(t) for all t ∈ S. This follows readily from the

Aut(Mt)-invariance of the Kähler-Einstein metric g(t) on each Mt. As a

consequence, one easily sees that each ‖ ‖WP,` is Aut(π)-invariant.

(iii) In Section 9, we will use the ‖ ‖WP,`’s to construct a Finsler metric on

S whose holomorphic sectional curvature is bounded above by a negative

constant. For this purpose, we will need to compute
√
−1∂∂ log ‖u‖2WP,`,

which is the main content of the next few sections.

4. Computation of curvature

In Sections 4-8, we are going to study the generalized Weil-Petersson

Finsler pseudometrics on S. More specifically, we will estimate the holomor-

phic sectional curvatures of the restrictions of these pseudometrics to local

one-dimensional complex submanifolds of S (at those points where the restric-

tions are nondegenerate). In the process, we will make some computations of

considerable independent interest and in a slightly more general setting.

We fix a coordinate open subset U ⊂ S with coordinate functions t =

(t1, . . . , tm) such that the origin t = 0 lies in U . For each t ∈ S and each coor-

dinate tangent vector ∂
∂ti

, we recall the horizontal lifting vi and the harmonic

representative Φi of ρt(
∂
∂ti

) on Mt as given in (2.2) and (2.3) respectively. Fix

an integer ` satisfying 1 6 ` 6 n, and let J = (j1, . . . , j`) be an `-tuple of

integers satisfying 1 6 jd 6 m for each 1 6 d 6 `. We denote by

(4.1) ΨJ := H(Φj1 ? · · ·? Φj`) ∈ A
0,`(∧`TMt)

the harmonic projection of Φj1 ? · · · ? Φj` . As t varies, we still denote the

resulting family of tensors by ΨJ (suppressing its dependence on t) when no

confusion arises. We are going to compute ∂i∂i log ‖ΨJ‖22 (as a function on U)

wherever ΨJ 6≡ 0 on Mt. For this purpose, we will need to consider families of

tensors on the fibers (or in short, relative tensors) arising from restrictions of

tensors on X to the fibers. We will sometimes adopt the semicolon notation

to denote covariant derivatives of tensors on Mt, so that (Φi)
β
α;γ := ∇γ(Φi)

β
α
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(= (∇ ∂
∂zγ

Φi)
β
α), etc. Also the raising and lowering of indices for components of

tensors on Mt are with respect to ω(t), so that (Φi)α,β = gγβ(Φi)
γ
α, etc, unless

stated otherwise. First we have

Lemma 1.

(i) [vi, ∂α] = −(Φi)
β
α∂β.

(ii) For a smooth (n, n)-form Υ on X , one has

∂

∂ti

∫
Mt

Υ =

∫
Mt

LviΥ and
∂

∂t
i

∫
Mt

Υ =

∫
Mt

LviΥ.

(iii) [vi, vj ] = gγα∂γ(gvivj )∂α − gβγ∂γ(gvivj )∂β.

(iv) (Φi)α,β = (Φi)β,α for all α, β.

(v) Lvi(gαβdz
α ∧ dzβ) = (Φi)β,γdz

β ∧ dzγ = 0. In particular, one has

Lvi(ωn) = 0 (as relative tensor).

Here [·, ·] denote the Lie bracket of two vector fields.

Proof. (i) follows readily from (2.2) and (2.3). (ii), (iii), (iv) and (v) can

be found [Sch93, Lemmas 2.1, 2.6, Prop. 1.1, and Lemma 2.2] respectively. �

Next we generalize the constructions in (3.8) and (3.9) to (relative) tensors

of mixed type. Let A`(Mt) (resp. Aq,p(Mt)) denote the space of C∞ `-forms

(resp. (q, p)-forms) on Mt. It is easy to see that there exists a unique pointwise

Hermitian bilinear pairing 〈 , 〉1 on A`(Mt) satisfying the identity on (n, n)-

forms on Mt given by

〈φ, ψ〉1
ω(t)n

n!
= (−1)

`(`−1)
2 φ ∧ ψ ∧ ω(t)n−`

(n− `)!
for φ, ψ ∈ A`(Mt).

Together with the identity Lvi(φ∧ψ) = (Lviφ)∧ψ+φ∧(Lviψ) and Lemma 1(v),

one easily checks that

(4.2) Lvi〈φ, ψ〉1 = 〈Lviφ, ψ〉1 + 〈φ,Lviψ〉1.

Now we consider the decomposition A`(Mt) = ⊕q+p=`Aq,p(Mt), and we let

CW,1 be the corresponding (linear) Weil operator on A`(Mt) which acts by

scalar multiplication by (
√
−1)q−p on each summand Aq,p(Mt). It is easy to

check that the (positive definite) L2-inner product on A`(Mt) with respect to

ω(t) is given by

(4.3) (φ, ψ) =

∫
Mt

〈CW,1(φ), ψ〉1
ωn

n!
.

Next we consider the space C∞(∧`′TCMt) (resp. C∞(∧rTMt∧∧sTMt)) of C∞

`′-complexified vector fields (resp. (r, s)-vector fields) on Mt, where TCMt =

TMt ⊗R C denotes the complexified tangent bundle of Mt. With respect to
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the decomposition C∞(∧`′TCMt) = ⊕r+s=`′C∞(∧rTMt ∧ ∧sTMt), we de-

note by CW,2 the corresponding Weil operator on C∞(∧`′TCMt) given by

scalar multiplication by (
√
−1)r−s on each summand C∞(∧rTMt ∧ ∧sTMt).

Then by using the standard identity Lvi(φ(η)) = (Lviφ)(η) + φ(Lviη) for

φ ∈ A`′(Mt) and η ∈ C∞(∧`′TCMt), one easily sees that 〈 , 〉1 (with ` re-

placed by `′) induces a Hermitian bilinear pairing 〈 , 〉2 on C∞(∧`′TCMt)

satisfying a Leibniz rule similar to (4.2) and such that the (positive def-

inite) L2-inner product on C∞(∧`′TCMt) with respect to ω(t) can be de-

fined in terms of 〈 , 〉2 and CW,2 as in (4.3) (with the subscript 1 replaced

by 2). Finally we consider the space A`(∧`′TCMt) with the decomposition

A`(∧`′TCMt) = ⊕q+p=`,r+s=`′Aq,p(∧rTMt ∧ ∧sTMt) and the corresponding

Weil operator CW given by scalar multiplication by (
√
−1)q−p+r−s on each

summand Aq,p(∧rTMt ∧ ∧sTMt). As before, we denote the (positive definite)

L2-inner product and the corresponding L2-norm on A`(∧`′TCMt) with respect

to ω(t) by ( , ) and ‖ ‖2 respectively. Then one easily checks that the tensor

product of 〈 , 〉1 with 〈 , 〉2 gives rise to a Hermitian bilinear pairing 〈 , 〉 on

A`(∧`′TCMt) such that for all Υ,Υ′ ∈ A`(∧`′TCMt), one has

Lvi〈Υ,Υ′〉 = 〈LviΥ,Υ′〉+ 〈Υ,LviΥ′〉(4.4)

and

(Υ,Υ′) =

∫
Mt

〈CW (Υ),Υ′〉ω
n

n!
.(4.5)

Remark 4. We note that the expression 〈CW ( ), 〉 in (4.5) is the pointwise

(positive definite) inner product on A`(∧`′TCMt) induced by ω(t). Also, for

a given integer `, CW simply restricts to the identity map on A0,`(∧`TMt), so

that the formulas in (3.9) and (4.5) agree with each other.

For our application in Section 9, we will be interested in the expression

∂i∂i log ‖ΨJ‖22 with j1 = j2 = · · · = j` = i. Nonetheless, here we will consider

∂i∂i log ‖ΨJ‖22 in the general case when the j`’s can be different. Note that

∂i∂i log ‖ΨJ‖22 = ∂i

Ç
∂i‖ΨJ‖22
‖ΨJ‖22

å
(4.6)

=
∂i∂i‖ΨJ‖22
‖ΨJ‖22

−
(∂i‖ΨJ‖22)(∂i‖ΨJ‖22)

‖ΨJ‖42
.

From direct computation using Lemma 1(i) and (v), (4.4) and (4.5) (noting

that CW (ΨJ) = ΨJ (cf. Remark 4)), one has

∂i‖ΨJ‖22 =
∂

∂ti

∫
Mt

〈ΨJ ,ΨJ〉
ωn

n!
(4.7)

=

∫
Mt

〈LviΨJ ,ΨJ〉
ωn

n!
+

∫
Mt

〈ΨJ ,LviΨJ〉
ωn

n!
.
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We will see from Lemma 3 in Section 5 that the component of LviΨJ in

A0,`(∧`TMt) is ∂-exact on Mt. Together with the harmonicity of ΨJ , it follows

that

(4.8)

∫
Mt

〈ΨJ ,LviΨJ〉
ωn

n!
= 0

as a function on the base manifold. Thus we have

∂i‖ΨJ‖22 =

∫
Mt

〈LviΨJ ,ΨJ〉
ωn

n!
, and similarly,(4.9)

∂i∂i‖ΨJ‖22 = ∂i∂i‖ΨJ‖22 =
∂

∂t
i

∫
Mt

〈LviΨJ ,ΨJ〉
ωn

n!

=

∫
Mt

〈LviLviΨJ ,ΨJ〉
ωn

n!
+

∫
Mt

〈LviΨJ ,LviΨJ〉
ωn

n!
.

Upon differentiating the complex conjugate of (4.8), one gets, as in (4.9),

0 =
∂

∂ti

∫
Mt

〈LviΨJ ,ΨJ〉
ωn

n!
(4.10)

=

∫
Mt

〈LviLviΨJ ,ΨJ〉
ωn

n!
+

∫
Mt

〈LviΨJ ,LviΨJ〉
ωn

n!
.

Together with (4.9) and the identity LviLvi = LviLvi + L[vi,vi], one has

∂i∂i‖ΨJ‖22 = I + II + III,(4.11)

where

I : = −
∫
Mt

〈LviΨJ ,LviΨJ〉
ωn

n!
,(4.12)

II : =

∫
Mt

〈L[vi,vi]ΨJ ,ΨJ〉
ωn

n!
= (L[vi,vi]ΨJ ,ΨJ),

III : =

∫
Mt

〈LviΨJ ,LviΨJ〉
ωn

n!
= (LviΨJ ,LviΨJ).

Here the last equality in the second line of (4.12) follows from the fact that only

the component of L[vi,vi]ΨJ in A0,`(∧`TMt) (on which CW is the identity map-

ping) will contribute towards the integral in that line. Likewise, the last equal-

ity in the third line of (4.12) follows from the fact that LviΨJ ∈ A0,`(∧`TMt),

which can be verified easily by a direct calculation using (2.4). In the next few

sections, we will compute the terms I, II and III separately.

5. Computation of I

For the computation of the expression I in (4.12), we begin with some pre-

liminary discussions. For a relative tensor Υ ∈ ⊕p,q,r,sAq,p(∧rTMt ∧ ∧sTMt),

we denote by Υ
(q,p)
(r,s) the component of Υ in Aq,p(∧rTMt ∧ ∧sTMt).
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Lemma 2. Let K ∈ A0,p(∧rTMt) be a relative tensor. Then we have

(5.1) ∂((LviK)
(0,p)
(r,0)) = (Lvi(∂K))

(0,p+1)
(r,0) .

Proof. By linearity, we just need to verify (5.1) for the special case when

K is locally given by a single term, i.e., K = f ∂α1 ∧· · ·∧∂αr ⊗dzβ1 ∧· · ·∧dzβp
for some function f and some integers α1, . . . , αr, β1, . . . , βp. Then

∂K = (∂σf)∂α1 ∧ · · · ∧ ∂αr ⊗ dzσ ∧ dzβ1 ∧ · · · ∧ dzβp .

Hence

(Lvi(∂K))
(0,p+1)
(r,0)(5.2)

= (∂i∂σf + vγi ∂γ∂σf)∂α1 ∧ · · · ∧ ∂αr ⊗ dzσ ∧ dzβ1 ∧ · · · ∧ dzβp

+ (∂σf)(∂γvσi )∂α1 ∧ · · · ∧ ∂αr ⊗ dzγ ∧ dzβ1 ∧ · · · ∧ dzβp

+
p∑
`=1

(∂σf) · (∂γvβ`i )∂α1 ∧ · · · ∧ ∂αr

⊗ dzσ ∧ dzβ1 ∧ · · · ∧ dzβ`−1 ∧ dzγ ∧ dzβ`+1 ∧ · · · ∧ dzβp .

Similarly,

(LviK)
(0,p)
(r,0)

= (∂if + vγi ∂γf)∂α1 ∧ · · · ∧ ∂αr ⊗ ∧dzβ1 ∧ · · · ∧ dzβp

+
p∑
`=1

f(∂γv
β`
i )∂α1 ∧ · · · ∧ ∂αr ⊗ dzβ1 ∧ · · · ∧ dzβ`−1 ∧ dzγ ∧ dzβ`+1 ∧ · · · ∧ dzβp .

Hence

∂((LviK)
(0,p)
(r,0))(5.3)

= (∂σ∂if+∂σv
γ
i ∂γf+vγi ∂σ∂γf)∂α1 ∧· · ·∧∂αr ⊗ dzσ∧dzβ1 ∧· · ·∧dzβp

+
p∑
`=1

((∂σf) · (∂γvβ`i )+f ∂σ∂γv
β`
i ) · ∂α1 ∧· · ·∧∂αr

⊗ dzσ∧dzβ1 ∧· · ·∧dzβ`−1 ∧dzγ∧dzβ +̀1 ∧· · ·∧dzβp .

We may now compare the right-hand sides of the identities (5.2) and (5.3).

The first and the fourth terms of (5.2) corresponds to the first and the fourth

terms of (5.3) respectively. The second term of (5.2) corresponds to the third

term of (5.3) and vice versa. The fifth term of the right-hand side of (5.3)

vanishes, since ∂σ∂γv
γ`
i is symmetric in σ, γ, but dzσ ∧ dzβ1 ∧ · · · ∧ dzβ`−1 ∧

dzγ ∧ dzβ`+1 ∧ · · · ∧ dzβp is anti-symmetric in σ, γ. The lemma follows. �

Lemma 3. The relative tensor (LviΨJ)
(0,`)
(`,0) is ∂-exact on each Mt.
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Proof. Since ΨJ is the harmonic projection of Φj1 ? · · ·? Φj` on each Mt,

it follows that

(5.4) ΨJ = Φj1 ? · · ·? Φj` + ∂K

for some relative tensor K ∈ A0,`−1(∧`TMt). Thus

(LviΨJ)
(0,`)
(`,0) = (Lvi(Φj1 ? · · ·? Φj`))

(0,`)
(`,0) + (Lvi(∂K))

(0,`)
(`,0).

By a direct calculation similar to Lemma 2, one easily sees that

(Lvi(Φj1 ? · · ·? Φj`))
(`,0)
(0,`)(5.5)

=
∑̀
s=1

Φj1 ? · · ·? Φjs−1 ? (LviΦjs)
(1,0)
(0,1) ? Φjs+1 ? · · ·? Φj` .

By [Siu86, pp. 281–282], for each js, there exists a relative tensor Kjs ∈
A0,1(TMt) such that (LviΦjs)

(1,0)
(0,1) = ∂Kjs on each Mt. Note that each rel-

ative tensor Φjs, 1 6 s 6 `, is harmonic and thus ∂-closed on each Mt. Thus

by Remark 2(iii), each term of the right-hand side of (5.5) is ∂-exact on Mt.

Hence (Lvi(Φj1 ? · · ·?Φj`) is ∂-exact on each Mt. By Lemma 2, (Lvi(∂K))
(`,0)
(0,`)

is also ∂-exact on each Mt. Thus (LviΨJ)
(`,0)
(0,`) is ∂-exact on each Mt. �

Let Φi · ΨJ ∈ A0,`−1(∧`−1TMt) be the relative tensor with components

given by

(5.6) (Φi ·ΨJ)
α1···α`−1

β1···β`−1
= (Φi)σγ · (ΨJ)

γα1···α`−1

σβ1···β`−1
.

Lemma 4. Let Φi and ΨJ be as in (4.1). Then for any Υ∈A0,`−1(∧`−1TMt),

we have

(5.7) 〈Φi ·ΨJ ,Υ〉 = 〈ΨJ ,Φi ? Υ〉.

Proof. To prove (5.7), we need to verify that, in terms of normal coordi-

nates,

(5.8)
1

((`− 1)!)2
(Φi)σγ(ΨJ)

γα1···α`−1

σβ1···β`−1
·Υβ1···β`−1

α1···α`−1
=

1

(`!)2
(ΨJ)

γα1···α`−1

σβ1···β`−1
·(Φi ? Υ)

σβ1···β`−1

γα1···α`−1
;

cf. Remark 4. Note that

(Φi ? Υ)
σβ1···β`−1

γα1···α`−1
=

1

((`− 1)!)2

∑
τ,κ∈G`

sgn(τ)sgn(κ) · (Φi)
τ(σ)

κ(γ)
Υ
τ(β1)···τ(β`−1)

κ(α1)···κ(α`−1)
,
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where G` is the set of all permutations of ` elements. Thus the right-hand side

of (5.8) is equal to

1

(`!)2
· 1

((`− 1)!)2

∑
τ,κ∈S`

sgn(τ)sgn(κ)(ΨJ)
γα1···α`−1

σβ1···β`−1
(Φi)

τ(σ)

κ(γ)
Υ
τ(β1)···τ(β`−1)

κ(α1)···κ(α`−1)

=
1

(`!)2
· 1

((`− 1)!)2

∑
τ,κ∈S`

(ΨJ)
κ(γ)κ(α1)···κ(α`−1)

τ(σ)τ(β1)···f(β`−1)
(Φi)

τ(σ)

κ(γ)
Υ
τ(β1)···τ(β`−1)

κ(α1)···κ(α`−1)

=
1

(`!)2
· (`!)2

((`− 1)!)2
(ΨJ)

γα1···α`−1

σβ1···β`−1
(Φi)σγΥ

β1···β`−1

α1···α`−1
,

where the numerator (`!)2 arises from the pairs (τ, κ) ∈ S` ×S`. This verifies

(5.8). �

Lemma 5. We have ∂
∗
(Φi ·ΨJ) = 0.

Proof. For any Υ ∈ A0,`−2(∧`−1TMt), we have

(∂
∗
(Φi ·ΨJ),Υ) = (Φi ·ΨJ , ∂Υ)

=

∫
Mt

〈Φi ·ΨJ , ∂Υ〉ω
n

n!
(cf. (4.5) and Remark 4)

=

∫
Mt

〈ΨJ ,Φi ? ∂Υ〉ω
n

n!
(by Lemma 4)

=

∫
Mt

〈ΨJ , ∂(Φi ? Υ)〉ω
n

n!
(since ∂Φi = 0)

= (∂
∗
ΨJ ,Φi ? Υ)

= 0 (since ΨJ is harmonic),

which gives the lemma. �

For Υ ∈ A0,p(∧rTMt), we denote D2
∗
Υ ∈ A0,p(∧r−1TMt), given by

(D2
∗
Υ)

α1···αr−1

β1···βp
= −∇σΥ

σα1···αr−1

β1···βp
;

cf. [Siu86, p. 288] and Section 7. Following the argument of [Siu86, pp. 280–

281], we have

Lemma 6. The tensor D2
∗
((LviΨJ)

(0,`)
(`,0)) is ∂-exact. Explicitly, we have

(5.9) ∇σ(LviΨJ)
σα1···α`−1

β1···β`
= (∂(Φi ·ΨJ))

α1···α`−1

β1···β`
.

Proof. To verify (5.9), we first note that

(LviΨJ)
σα1···α`−1

β1···β`
= (∂i + vγi ∂γ)(ΨJ)

σα1···α`−1

β1···β`
+
∑̀
s=1

∂βsv
γ
i (ΨJ)

σα1···α`−1

β1···βs−1γβs+1···β`
.

In normal coordinates, the first partial derivatives of the metric tensor all

vanish. Upon interchanging the order of the partial derivatives and using
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(2.3), we have

∇σ(LviΨJ)
σα1···α`−1

β1···β`

= (∂σ∂i + ∂σv
γ
i ∂γ + vγi ∂σ∂γ)(ΨJ)

σα1···α`−1

β1···β`

+
∑̀
s=1

{∂σ∂βsv
γ
i (ΨJ)

σα1···α`−1

β1···βs−1γβs+1···β`
+ ∂βsv

γ
i ∂σ(ΨJ)

σα1···α`−1

β1···βs−1γβs+1···β`
}

= (∂i∂σ + (Φi)
γ
σ∂γ + vγi ∂γ∂σ)(ΨJ)

σα1···α`−1

β1···β`

+
∑̀
s=1

{∂βs(Φi)
γ
σ(ΨJ)

σα1···α`−1

β1···βs−1γβs+1···β`
+ ∂βsv

γ
i ∂σ(ΨJ)

σα1···α`−1

β1···βs−1γβs+1···β`
}.

The first, the third and the fifth terms vanish from the identity ∂
∗
Ψ = 0 (as a

relative tensor). Hence we have

∇σ(LviΨJ)
σα1···α`−1

β1···β`
= (Φi)

γ
σ∂γ(ΨJ)

σα1···α`−1

β1···β`

+
∑̀
s=1

∂βs
(Φi)

γ
σ · (ΨJ)

σα1···α`−1

β1···βs−1γβs+1···β`
,

which, together with the identity ∂ΨJ = 0, is easily seen to be equal to the

right-hand side of (5.9). �

Now we proceed to compute I. First we note from (2.3) and (2.4) that

LviΨJ = (LviΨJ)
(0,`)
(`,0)

+
1

(`− 1)!`!

∑
(Φi)σδ (ΨJ)α1···α`

σβ1···β`−1
∂α1 ∧ · · · ∧ ∂α` ⊗ dz

δ ∧ dzβ1 ∧ · · · ∧ dzβ`−1

− 1

(`− 1)!`!

∑
(Φi)

γ
σ(ΨJ)

α1···α`−1σ

β1···β`
∂α1 ∧ · · · ∧ ∂α`−1

∧ ∂γ ⊗ dzβ1 ∧ · · · ∧ dzβ` ,

where the last term involves the use of the equality (ΨJ)
σα1···α`−1

β1···β`
∂γ∧∂α1∧· · ·∧

∂α`−1
= (ΨJ)

α1···α`−1σ

β1···β`
∂α1 ∧ · · · ∧ ∂α`−1

∧ ∂γ . Let Φi ↘ ΨJ ∈ A1,`−1(∧`TMt)

and Φi ↗ ΨJ ∈ A0,`(∧`−1TMt ∧ TMt) be given by

(Φi ↘ ΨJ)α1···α`
δβ1···β`−1

:= (Φi)σδ (ΨJ)α1···α`
σβ1···β`−1

,(5.10)

(Φi ↗ ΨJ)
α1···α`−1γ

β1···β`
:= (Φi)

γ
σ(ΨJ)

α1···α`−1σ

β1···β`

respectively, so that we have (LviΨJ)
(1,`−1)
(`,0) = Φi ↘ ΨJ and (LviΨJ)

(0,`)
(`−1,1) =

−Φi ↗ ΨJ . Note that from consideration of type, one has

CW ((LviΨJ)
(0,`)
(`,0)) = (LviΨJ)

(0,`)
(`,0), CW (Φi ↘ ΨJ) = −Φi ↘ ΨJ ,

CW (Φi ↗ ΨJ) = −Φi ↗ ΨJ .
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Together with (4.5), it follows readily that

∫
Mt

〈LviΨJ ,LviΨJ〉
ωn

n!
= ((LviΨJ)

(0,`)
(`,0), (LviΨJ)

(0,`)
(`,0))

(5.11)

− (Φi ↘ ΨJ ,Φi ↘ ΨJ)− (Φi ↗ ΨJ ,Φi ↗ ΨJ).

To compute the first term on the right-hand side of (5.11), we first recall from

Lemma 3 that there exists some K ∈ A0,`−1(∧`TMt) such that

(5.12) ∂K = (LviΨJ)
(0,`)
(`,0).

Lemma 7. Let K be as in (5.12). Suppose that ∂
∗
K = 0. Then

D2
∗
K = −�(�− k)−1(Φi ·ΨJ).

Proof. The proof is similar to [Siu86, p. 282]. First we have

∇σ(∂K)
σα1···α`−1

β1···β`
(5.13)

=∇σ(
∑̀
s=1

(−1)s+1∇βsK
σα1···α`−1

β1···βs−1βs+1···β`
)

=
∑̀
s=1

(−1)s+1
î
∇βs∇σK

σα1···α`−1

β1···βs−1βs+1···β`

+
∑̀

r=1,r 6=s
R γ

σβs βr
K
σα1···α`−1

β1···βr−1γβr+1···βs−1βs+1···β`

+R σ
σβsτ

K
τα1···α`−1

β1···βs−1βs+1···β`
+

`−1∑
r=1

R αr
σβsγ

K
σα1···αr−1γαr+1···α`−1

β1···βs−1βs+1···β`

ó
.

The second term on the right-hand side of (5.13) is zero, because of the

symmetry of R γ

σβs βr
in r and s and the skew-symmetry of the expression

(−1)s+1K
σα1···α`−1

β1···βr−1γβr+1···βs−1βs+1···β`
in r and s. The fourth term on the right-

hand side of (5.13) is also zero, because of the symmetry of R αr
σβsγ

in σ and γ

and the skew symmetry of K
σα1···αr−1γαr+1···α`−1

β1···βs−1βs+1···β`
in σ, γ. Together with (5.12)

and the identity R σ
σβsτ

= kδβsτ from Kähler-Einstein condition, we have

∇σ(LviΨJ)
σα1···α`−1

β1···β`
=
∑̀
s=1

(−1)s+1∇βs∇σK
σα1···α`−1

β1···βs−1βs+1···β`
(5.14)

+ k
∑̀
s=1

(−1)s+1K
βsα1···α`−1

β1···βs−1βs+1···β`
.
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Combining (5.14) with Lemma 6, we have

(∂(Φi ·ΨJ))
α1···α`−1

β1···β`
= −(∂(D2

∗
K))

α1···α`−1

β1···β`
+ k Γ

α1···α`−1

β1···β`
,(5.15)

where

Γ
α1···α`−1

β1···β`
:=
∑̀
s=1

(−1)s+1K
βsα1···α`−1

β1···βs−1βs+1···β`
.(5.16)

In particular, the tensor Γ ∈ A0,`(∧`−1TMt) with components given as in (5.16)

is ∂-exact. Thus we may write Γ = ∂‹F for some ‹F ∈ A0,`−1(∧`−1TMt). With-

out loss of generality, we may choose ‹F such that ∂
∗‹F = 0. Upon rewriting

(5.15), we have

(5.17) ∂(Φi ·ΨJ +D2
∗
K − k‹F ) = 0.

In normal coordinates, we have, from (5.16),

(∂
∗
Γ)
α1···α`−1

β1···β`−1
= −(∂σΓ)

α1···α`−1

σβ1···β`−1

= −∂σK
σα1···α`−1

β1···β`−1
+

`−1∑
s=1

(−1)s+1∂σK
βsα1···α`−1

σβ1···βs−1βs+1···β`−1
.

Since ∂
∗
K = 0, it follows that ∂σK

βsα1···α`−1

σβ1···βs−1βs+1···β`−1
= 0. Thus we have

(∂
∗
Γ)
α1···α`−1

β1···β`−1
= (D2

∗
K)

α1···α`−1

β1···β`−1
. Together with (5.17), we have

(5.18) ∂(Φi ·ΨJ + ∂
∗
Γ− k‹F ) = 0.

Let

(5.19) Q := Φi ·ΨJ + ∂
∗
Γ− k‹F .

By Lemma 5, Φi · ΨJ is ∂
∗
-exact. Recall also that ∂

∗‹F = 0. Thus all three

terms on the right-hand side of (5.19) are ∂
∗
-closed. Hence we have ∂

∗
Q = 0.

Together with (5.18), it follows thatQ is harmonic. Since Γ = ∂‹F and ∂
∗‹F = 0,

one easily sees that

�‹F = (∂
∗
∂ + ∂∂

∗
)‹F = ∂

∗
Γ,

which, together with (5.19), gives

(5.20) Q = Φi ·ΨJ + (�− k)‹F .
Let F := ‹F + Q

k . Then it follows from (5.20) and the harmonicity of Q that

Φi ·ΨJ + (�− k)F = 0.

Thus, F = −(�− k)−1(Φi ·ΨJ). Hence we have

D2
∗
K = ∂

∗
Γ = �‹F = �F = −�(�− k)−1(Φi ·ΨJ). �
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Our main result in this section is the following

Proposition 1. We have∫
Mt

〈LviΨJ ,LviΨJ〉
ωn

n!
= k((�− k)−1(Φi ·ΨJ),Φi ·ΨJ) + (Φi ·ΨJ ,Φi ·ΨJ)

− (Φi ↘ ΨJ ,Φi ↘ ΨJ)− (Φi ↗ ΨJ ,Φi ↗ ΨJ).

Proof. First we compute ((Lvi(ΨJ)
(0,`)
(`,0), (Lvi(ΨJ)

(0,`)
(`,0)). Let K be as in

(5.12), so that ∂K = (LviΨJ)
(0,`)
(`,0). Without loss of generality, we may choose

K so that ∂
∗
K = 0, so that Lemma 7 is applicable to K. Now, in normal

coordinates, we have∫
Mt

(LviΨJ)λ1···λ`α1···α`(LviΨJ)α1···α`
λ1···λ`

ωn

n!

=

∫
Mt

(∂K)λ1···λ`α1···α`(LviΨJ)α1···α`
λ1···λ`

ωn

n!

=−
∫
Mt

Kλ1···λ`
α2···α`∇α1(LviΨJ)α1···α`

λ1···λ`

ωn

n!

=−
∫
Mt

Kλ1···λ`
α2···α`(∂(Φi ·ΨJ))α2···α`

λ1···λ`

ωn

n!
(by Lemma 6)

=

∫
Mt

∇α1K
α1λ2···λ`
α2···α` (Φi ·ΨJ)α2···α`

λ2···λ`

ωn

n!

=

∫
Mt

(�(�− k)−1(Φi ·ΨJ))λ1···λ`α2···α`(Φi ·ΨJ)α2···α`
λ2···λ`

ωn

n!
(by Lemma 7).

This implies that

((LviΨJ)
(0,`)
(`,0), (LviΨJ)

(0,`)
(`,0))

= (�(�− k)−1(Φi ·ΨJ),Φi ·ΨJ)

= k((�− k)−1(Φi ·ΨJ),Φi ·ΨJ) + (Φi ·ΨJ ,Φi ·ΨJ).

Together with (5.11), one obtains the proposition readily. �

6. Computation of II

We recall the following

Lemma 8 ([Sch93, Lemma 2.8]). One has

(�− k)(〈vi, vj〉) = 〈Φi,Φj〉.

Similar to [Sch93, Lemma 2.7], one has

Proposition 2.

(L[vi,vi]ΨJ ,ΨJ) =−(〈Φi,Φi〉, 〈ΨJ ,ΨJ〉)− k((�− k)−1〈Φi,Φi〉, 〈ΨJ ,ΨJ〉).
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Proof. By Lemma 1(iii) and direct calculation, one has

(L[vi,vi]ΨJ)α1···α`
β1···β`

= −〈vi, vi〉;σ∂σ(ΨJ)α1···α`
β1···β`

+ 〈vi, vi〉;δ∂δ(ΨJ)α1···α`
β1···β`

(6.1)

+
∑̀
s=1

∂γ(〈vi, vi〉;αs)(ΨJ)
α1···αs−1γαs+1···α`
β1···β`

+
∑̀
s=1

∂βs(〈vi, vi〉
;δ)(ΨJ)α1···α`

β1···βs−1δβs+1···β`
.

By pairing the first term on the right-hand side of (6.1) with ΨJ , we have

−〈vi, vi〉;σ∂σ(ΨJ)α1···α`
β1···β`

(ΨJ)β1···β`α1···α` = −〈vi, vi〉;σ∂σ
Ä
(ΨJ)α1···α`

β1···β`
(ΨJ)β1···β`α1···α`

ä
+ 〈vi, vi〉;σ(ΨJ)α1···α`

β1···β`
∂σ(ΨJ)β1···β`α1···α` .(6.2)

Since ∂ΨJ = 0, we have

(6.3) ∂σ(ΨJ)β1···β`α1···α` =
∑̀
s=1

(−1)s+1∂αs(ΨJ)β1···β`α1···αs−1σαs+1···α` .

This is substituted into the last term of (6.2). We also substitute (6.3) (with

the running index σ replaced by δ) into the second term on the right-hand side

of (6.1). Then one easily sees that the L2-pairing of the resulting expression

of (6.1) with ΨJ is given by∫
Mt

(L[vi,vi]ΨJ)α1···α`
β1···β`

(ΨJ)β1···β`α1···α`
ωn

n!
= II1 + II2 + II3 + II4 + II5,

where

II1 : =−
∫
Mt

〈vi, vi〉;σ∂σ
Ä
(ΨJ)α1···α`

β1···β`
(ΨJ)β1···β`α1···α`

äωn
n!
,

II2 : =
∑̀
s=1

(−1)s+1
∫
Mt

〈vi, vi〉;σ(ΨJ)α1···α`
β1···β`

∂αs(ΨJ)β1···β`α1···αs−1αs+1···α`
ωn

n!
,

II3 : =
∑̀
s=1

(−1)s+1
∫
Mt

〈vi, vi〉;δ∂βs(ΨJ)β1···βs−1δβs+1···β`(ΨJ)β1···β`α1···α`
ωn

n!
,

II4 : =
∑̀
s=1

∫
Mt

∂γ(〈vi, vi〉;αs)(ΨJ)
α1···αs−1γαs+1···α`
β1···β`

(ΨJ)β1···β`α1···α`
ωn

n!
,

II5 : =
∑̀
s=1

∫
Mt

∂βs(〈vi, vi〉
;δ)(ΨJ)α1···α`

β1···βs−1δβs+1···β`
(ΨJ)β1···β`α1···α`

ωn

n!
.

Upon integrating by parts, one easily sees that

II1 = −
∫
Mt

(�〈vi, vi〉) · 〈ΨJ ,ΨJ〉
ωn

n!
.
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In II4 and for each fixed s, we rename the running index αs by σ and then

replace γ by αs. This gives

II4 =
∑̀
s=1

∫
Mt

∂αs(〈vi, vi〉;σ)(ΨJ)
α1···αs−1αsαs+1···α`
β1···β`

(ΨJ)β1···β`α1···αs−1σαs+1···α`
ωn

n!
.

Then one easily seen that

II2 + II4 =

∫
Mt

(ΨJ)α1···α`
β1···β`

(∂Υ)β1···β`α1···α`
ωn

n!
,

where

Υβ1···β`
α1···α`−1

:= 〈vi, vi〉;σ(ΨJ)β1···β`σα1···α`−1
.

Since ∂
∗
ΨJ = 0, it follows that II2 + II4 = 0. Similarly, one checks that

II3 + II5 =

∫
Mt

(∂“Υ)α1···α`
β1···β`

(ΨJ)β1···β`α1···α`
ωn

n!
= 0,

where “Υα1···α`
β1···β`−1

:= 〈vi, vi〉;δ(ΨJ)α1···α`
δβ1···β`−1

.

Summarizing the above discussion and using Lemma 8, one has

(L[vi,vi]ΨJ ,ΨJ)

= −(�〈vi, vi〉, 〈ΨJ ,ΨJ〉)

= −(�(�− k)−1〈Φi,Φi〉, 〈ΨJ ,ΨJ〉)

= −(〈Φi,Φi〉, 〈ΨJ ,ΨJ〉)− k((�− k)−1〈Φi,Φi〉, 〈ΨJ ,ΨJ〉). �

7. Computation of III

Our main result in this section is the following

Proposition 3. We have

(LviΨJ ,LviΨJ) =− k((�− k)−1(LviΨJ),LviΨJ) + (Φi ? ΨJ ,Φi ? ΨJ)

− (H(Φi ? ΨJ), H(Φi ? ΨJ)).

We are going to prove Proposition 3 by generalizing the arguments in

[Siu86, pp. 287–295]. Let ` be a fixed integer satisfying 1 6 ` 6 n. Simi-

lar to [Siu86, p. 288], we denote by X(`) the space of (relative) tensors Ξ ∈
A(⊗`T ∗Mt⊗⊗`T ∗Mt) with components Ξα1···α`,β1···β` possessing the following

three properties:

(P-i) Ξα1···α`,β1···β` is skew-symmetric in any pair of indices αi, αj for i < j,

i.e.,

Ξ
α1···(αj)i···(αi)j ···α`,β1···β`

= −Ξα1···α`,β1···β` ,

where (αi)j means that the i-th index αi is replaced by αj , etc.
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(P-ii) Ξα1···α`,β1···β` is symmetric in the two `-tuples of indices (α1, . . . , α`) and

(β1, . . . , β`), i.e.,

Ξα1···α`,β1···β` = Ξβ1···β`,α1···α` .

(P-iii) For given indices α1, . . . , α`−1, and β1, . . . , β`+1, one has

`+1∑
ν=1

(−1)νΞ
α1···α`−1βν ,β1···“βν ···β`+1

= 0,

where β̂ν means that the index βν is omitted.

As in [Siu86, p. 289], for s = 1, 2, we let Ds denote the operator X(`)

given by taking ∂ to the s-th `-tuple of skew-symmetric indices, and we let

Ds
∗

denote the adjoint operator of Ds. Also, we denote �s = Ds
∗
Ds+DsDs

∗
,

and we denote by Hs the harmonic projection operator on X(`) with respect

to �s. The Green’s operator on X(`) with respect to �s is denoted by Gs.

Lemma 9. For any Ξ ∈ X(`), we have

(a) D1D2Ξ = D2D1Ξ;

(b) D1
∗
D2Ξ = D2D1

∗
Ξ;

(c) D1
∗
D2
∗
Ξ = D2

∗
D1
∗
Ξ;

(d) D1D2
∗
Ξ = D2

∗
D1Ξ;

(e) �1Ξ ∈ X(`);

(f) �1Ξ = �2Ξ;

(g) if D1Ξ = 0, then (�1 − k)−1D2
∗
Ξ = D2

∗
G2Ξ.

Proof. The proofs of the above properties of X(`) follow mutatis mutandis

from those in [Siu86, pp. 289–292], which treated the case when ` = 2. We will

leave the details to the reader. �

Remark 5. (i) Let Y (`) denote the space of smooth covariant tensors Ξ

with two `-tuples of skew-symmetric indices of anti-holomorphic type; i.e., the

components of Ξ ∈ Y (`) are of the form Ξα1···α`,β1···β` , and they satisfy (P-i).

Let X(`)⊥ denote the orthogonal complement of X(`) in Y (`) with respect to

the L2-inner product on Mt. Then it follows readily from Lemma 9(e) that

�1Ξ ∈ X(`)⊥ if Ξ ∈ X(`)⊥. Thus the spectral decomposition of Y (`) with

respect to �1 induces a corresponding orthogonal decomposition of X(`). Then

it follows easily that H1(Ξ) ∈ X(`) if Ξ ∈ X(`).

(ii) One easily sees from Lemma 9(f) that G1Ξ = G2Ξ (and thus also

H1(Ξ) = H2(Ξ)) for Ξ ∈ X(`).
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Let Φi,ΨJ (with |J | = `) be as in (4.1). By lowering indices of these

objects, we obtain corresponding covariant tensors, which will be denoted by

the same symbols (when no confusion arises). For example, ΨJ also denotes

the covariant tensor with components given by

(ΨJ)α1···α`,β1···β` = gγ1β1 · · · gγ`β`(ΨJ)γ1···γ`α1···α` .

Lemma 10. For each 1 6 ` 6 n, we have ΨJ ∈ X(`) and Φi?ΨJ ∈ X(`+1).

Proof. We are going to prove Lemma 10 by induction on `. Note that

when ` = 1, property (P-i) is void, while property (P-ii) and property (P-iii)

coincide. By Lemma 1(iv), this common property is satisfied by ΨJ = Φj1 ,

where J = (j1). Thus ΨJ = Φj1 ∈ X(1). Moreover, as mentioned in [Siu86,

p. 289], a simple direct verification shows that Φi ? Ψj1 = Φi ? Φj1 ∈ X(2).

Now we make the inductive assumption that ΨJ ′ ∈ X(`−1), when |J ′| = ` − 1

and Φi ? ΨJ ′ ∈ X(`). Then when J = (j1, . . . , j`) with |J | = `, we have,

upon lowering indices, ΨJ = H1(Φj1 ? ΨJ ′), where J ′ = (j2, . . . , j`). By

inductive assumption, since |J ′| = ` − 1, we have Φi ? ΨJ ′ ∈ X(`). Together

with Remark 5(i), it follows that ΨJ ∈ X(`) as well. Thus, it remains to show

that Φi ? ΨJ ∈ X(`+1) (upon lowering indices). Since Φi ? ΨJ is a ∧`+1TMt-

valued (0, ` + 1)-form, it is easy to see that upon lowering indices, Φi ? ΨJ

possesses property (P-i). We have deduced from the inductive assumption that

ΨJ ∈ X(`), and thus it possesses property (P-ii). Together with the symmetry

property of Φi in Lemma 1(iv), one easily sees that Φi?ΨJ possesses property

(P-ii). Next we are going to verify property (P-iii) for Φi?ΨJ . For fixed indices

α1, . . . , α`, β0, . . . , β`+1, and in terms of normal coordinates, we consider the

expression

A =
`+1∑
ν=0

(−1)ν(Φi ? ΨJ)
β0···“βν ···β`+1,βνα1···α`

=
`+1∑
ν=0

(−1)ν(Φi ? ΨJ)
β0···“βν ···β`+1

βνα1···α`

=
`+1∑
ν=0

(−1)ν
∑

σ,τ∈G`+1

sgn(σ)sgn(τ)

(1!)2(`!)2
(Φi)

σ(β0)

τ(βν)
(ΨJ)

σ(β1)···σ(βν−1)σ(βν+1)···σ(β`+1)

τ(α1)···τ(α`)
.

Let G′`+1 (resp. G′′`+1) be the subset of G`+1 consisting of those permuta-

tions which fix the first object (resp. do not fix the first object), so that

(7.1) G`+1 = G′`+1 qG′′`+1.

Then we may write

(`!)2 ·A = B + C,
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where

B :=
∑

τ∈G′
`+1

sgn(τ)

·
Ä ∑
σ∈G`+1

`+1∑
ν=0

(−1)νsgn(σ)(Φi)
σ(β0)

βν
(ΨJ)

σ(β1)···σ(βν−1)σ(βν+1)···σ(β`+1)

τ(α1)···τ(α`)

ä
,

C :=
∑

τ∈G′′
`+1

sgn(τ)

·
Ä ∑
σ∈G`+1

`+1∑
ν=0

(−1)νsgn(σ)(Φi)
σ(β0)
∗ (ΨJ)

σ(β1)···σ(βν−1)σ(βν+1)···σ(β`+1)

∗···βν ···∗

ä
.

Here, each ∗ denotes some αi determined by τ. For a given ν, by considering

those σ ∈ G`+1 such that σ(β0) = βµ ( 6= βν), we have

B =
∑

τ∈G′
`+1

sgn(τ) · `! ·
( `+1∑
ν=0

ν−1∑
µ=0

(−1)ν+µ(Φi)
βµ

βν
(ΨJ)

β0···“βµ···“βν ···β`+1

τ(α1)···τ(α`)

+
`+1∑
ν=0

`+1∑
µ=ν+1

(−1)ν+µ−1(Φi)
βµ

βν
(ΨJ)

β0···“βν ···“βµ···β`+1

τ(α1)···τ(α`)

)
.

From the symmetry property of Φi (cf. Lemma 1(iv)), it is easy to see that

each term of the first double summation above is matched by a corresponding

term of the second double summation, and it follows that B = 0. Similarly,

one has

C =
∑

τ∈G′′
`+1

sgn(τ) · `! ·
`+1∑
ν=0

( ν−1∑
µ=0

(−1)ν+µ(Φi)
βµ
∗ (ΨJ)

β0···“βµ···“βν ···β`+1

∗···βν ···∗

+
`+1∑

µ=ν+1

(−1)ν+µ−1(Φi)
βµ
∗ (ΨJ)

β0···“βν ···“βµ···β`+1

∗···βν ···∗

)
= 0,

where the last equality follows from property (P-iii) for ΨJ , upon re-grouping

the terms with common factor (Φi)
βµ
∗ . �

Lemma 11. We have

(i) D2
∗
(Φi ? ΨJ) = D1(LviΨJ),

(ii) ∂(Φi ? ΨJ) = 0,

(iii) ∂
∗
(LviΨJ) = 0.
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Proof. The proof of (i) is similar to [Siu86, p. 288], and the proof of (iii) is

similar to [Siu86, p. 286]. (ii) follows from Remark 2(ii) and the ∂-closedness

of Φi and ΨJ . �

Now we are ready to give the proof of Proposition 3 by following the

arguments as in [Siu86, pp. 292–293].

Proof of Proposition 3. First we have

(LviΨJ ,LviΨJ)(7.2)

= ((�− k)(�− k)−1(LviΨJ),LviΨJ)

= (�(�− k)−1(LviΨJ),LviΨJ)− k((�− k)−1(LviΨJ),LviΨJ).

Now we consider the first term on the right-hand side of (7.2). Upon lowering

indices, it is given by

(�1(�1 − k)−1(LviΨJ),LviΨJ)

= ((�1 − k)−1�1(LviΨJ),LviΨJ)

= ((�1 − k)−1D1
∗
D1(LviΨJ),LviΨJ)

(since D1
∗
(LviΨJ) = 0 by Lemma 11(iii))

= (D1
∗
(�1 − k)−1D2

∗
(Φi ? ΨJ),LviΨJ) (by Lemma 11(i))

= ((�1 − k)−1D2
∗
(Φi ? ΨJ), D1(LviΨJ))

= (D2
∗
G2(Φi ? ΨJ), D2

∗
(Φi ? ΨJ))

(by Lemma 10, Lemma 11(i), (ii) and Lemma 9(g))

= (D2D2
∗
G2(Φi ? ΨJ),Φi ? ΨJ)

= (�2G2(Φi ? ΨJ),Φi ? ΨJ) (since G2D2 = D2G2

and D2(Φi ? ΨJ) = 0 (by Lemma 11(ii) and Lemma 10))

= (Φi ? ΨJ ,Φi ? ΨJ)− (H1(Φi ? ΨJ), H1(Φi ? ΨJ))

(since H2 = H1 on X(`+1) by Remark 5(ii)).

Upon raising indices and together with (7.2), one obtains Proposition 3 readily.

�

8. The curvature estimates

First we have the following

Lemma 12. One has

(Φi ? ΨJ ,Φi ? ΨJ) = (Φi ·ΨJ ,Φi ·ΨJ) + (〈Φi,Φi〉, 〈ΨJ ,ΨJ〉)
−(Φi ↘ ΨJ ,Φi ↘ ΨJ)− (Φi ↗ ΨJ ,Φi ↗ ΨJ).
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Proof. Recall that

(Φi ? ΨJ ,Φi ? ΨJ)

=
1

((`+ 1)!)2

∫
Mt

(Φi ? ΨJ)
α1···α`+1

β1···β`+1
(Φi ? ΨJ)

β1···β`+1

α1···α`+1

ωn

n!

=
1

((`+ 1)!)2

∫
Mt

∑
σ,τ,σ′,τ ′∈G`+1

sgn(σ)sgn(τ)sgn(σ′)sgn(τ ′)

(`!)4

·(Φi)
σ(α1)

τ(β1)
(ΨJ)

σ(α2)···σ(α`+1)

τ(β2)···τ(β`+1)
(Φi)

τ ′(β1)

σ′(α1)
(ΨJ)

τ ′(β2)···τ ′(β`+1)

σ′(α2)···σ′(α`+1)

ωn

n!
.

By writing σ′ = σ′′ ◦ σ, τ ′ = τ ′′ ◦ τ (so that sgn(σ)sgn(σ′) = sgn(σ′′), etc), one

easily sees that

(Φi ? ΨJ ,Φi ? ΨJ)

=
1

((`+ 1)!)2

∫
Mt

∑
σ,τ∈G`+1

(Φi)
σ(α1)

τ(β1)
(ΨJ)

σ(α2)···σ(α`+1)

τ(β2)···τ(β`+1)

·
Ä ∑
σ′′,τ ′′∈G`+1

sgn(σ′′)sgn(τ ′′)

(`!)4
(Φi)

τ ′′(τ(β1))

σ′′(σ(α1))
(ΨJ)

τ ′′(τ(β2))···τ ′′(τ(β`+1))

σ′′(σ(α2))···σ′′(σ(α`+1))

ä ωn
n!

=

∫
Mt

(Φi)
α1

β1
(ΨJ)

α2···α`+1

β2···β`+1

·
Ä ∑
σ′′,τ ′′∈G`+1

sgn(σ′′)sgn(τ ′′)

(`!)4
(Φi)

τ ′′(β1)

σ′′(a1)
(ΨJ)

τ ′′(β2)···τ ′′(β`+1)

σ′′(α2)···σ′′(α`+1))

ä ωn
n!

(from symmetry of the expression in σ, τ).

Next we consider the partition G`+1 = G′`+1qG′′`+1 as given in (7.1). Then we

may write

(Φi ? ΨJ ,Φi ? ΨJ) = I(G′
`+1

,G′
`+1

) + I(G′
`+1

,G′′
`+1

) + I(G′′
`+1

,G′
`+1

) + I(G′′
`+1

,G′′
`+1

),

where

I(G′
`+1

,G′
`+1

) :=

∫
Mt

(Φi)
α1

β1
(ΨJ)

α2···α`+1

β2···β`+1

·
Ä ∑
σ∈G′

`+1

∑
τ∈G′

`+1

sgn(σ)sgn(τ)

(`!)4
(Φi)

τ(β1)

σ(a1)
(ΨJ)

τ(β2)···τ(β`+1)

σ(α2)···σ(α`+1)

äωn
n!
,

I(G′
`+1

,G′′
`+1

) :=

∫
Mt

(Φi)
α1

β1
(ΨJ)

α2···α`+1

β2···β`+1

·
Ä ∑
σ∈G′

`+1

∑
τ∈G′′

`+1

sgn(σ)sgn(τ)

(`!)4
(Φi)

τ(β1)

σ(a1)
(ΨJ)

τ(β2)···τ(β`+1)

σ(α2)···σ(α`+1)

äωn
n!
,

and I(G′′
`+1

,G′
`+1

), I(G′′
`+1

,G′′
`+1

) are defined similarly. Note that |G′`+1| = `! and

|G′′`+1| = ` · `!. Now for each σ ∈ G′`+1 (as a permutation on (α1, . . . , α`+1)),



FINSLER METRICS AND KOBAYASHI HYPERBOLICITY 575

one has σ(α1) = α1 and sgn(σ) = sgn(σ|(α2,...,α`+1)). Thus,

I(G′
`+1

,G′
`+1

) :=
1

(`!)4

∫
Mt

(Φi)
α1

β1
(ΨJ)

α2···α`+1

α2···α`+1

·
Ä ∑
σ∈G′

`+1

∑
τ∈G′

`+1

(Φi)
β1
a1

(ΨJ)
β2···β`+1

β1···β`+1

äωn
n!

=
1

(`!)4
· (`!)2

∫
Mt

(Φi)
α1

β1
(Φi)

β1
a1
· (ΨJ)

α2···α`+1

β2···β`+1
(ΨJ)

β2···β`+1

α2···α`+1

äωn
n!

= (〈Φi,Φi〉, 〈ΨJ ,ΨJ〉) (cf. (3.8) and (3.9)).

Next we consider I(G′
`+1

,G′′
`+1

). For each σ ∈ G′`+1 and τ ∈ G′′`+1 (so that

σ(α1) = α1 and τ(β1) = βµ with µ 6= 1), one easily sees as before that

(Φi)
α1

β1
(ΨJ)

α2···α`+1

β2···β`+1
· sgn(σ)sgn(τ) · (Φi)

τ(β1)

σ(a1)
(ΨJ)

τ(β2)···τ(β`+1)

σ(α2)···σ(α`+1)

= (−1)µ−2(Φi)
α1

β1
(ΨJ)

α2···α`+1

βµβ2···“βµ···β`+1

· (−1)µ−1 · (Φi)
βµ
α1

(ΨJ)
β1···“βµ···β`+1

α2···α`+1

=−`!(`− 1)!〈Φi ↘ ΨJ ,Φi ↘ ΨJ〉 (cf. (3.8) and (5.10)).

Thus,

I(G′
`+1

,G′′
`+1

) :=
1

(`!)4
· `! · (` · `!) · (−`!(`− 1)!) · (〈Φi ↘ ΨJ ,Φi ↘ ΨJ〉)

= −(Φi ↘ ΨJ ,Φi ↘ ΨJ).

Similarly, one easily checks that

I(G′′
`+1

,G′
`+1

) =−(Φi ↗ ΨJ ,Φi ↗ ΨJ),

I(G′′
`+1

,G′′
`+1

) = (Φi ·ΨJ ,Φi ·ΨJ),

and the lemma follows readily. �

Proposition 4. We have

∂i∂i log ‖ΨJ‖22

=
1

‖ΨJ‖22

Ä
− k((�− k)−1(Φi ·ΨJ),Φi ·ΨJ)− k((�− k)−1〈Φi,Φi〉, 〈ΨJ ,ΨJ〉)

− k((�− k)−1(LviΨJ),LviΨJ)−
∣∣∣(LviΨJ ,

ΨJ

‖ΨJ‖2
)
∣∣∣2

− (H(Φi ? ΨJ), H(Φi ? ΨJ))
ä
.

Proof. The proposition follows readily by combining (4.6), (4.9), (4.11),

(4.12), Proposition 1, Proposition 2, Proposition 3 and Lemma 12. �
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Proposition 5. We have

∂i∂i log ‖ΨJ‖22>
1

‖ΨJ‖22

Ä
− k((�− k)−1(Φi ·ΨJ),Φi ·ΨJ)(8.1)

−k((�− k)−1〈Φi,Φi〉, 〈ΨJ ,ΨJ〉)
−(H(Φi ? ΨJ), H(Φi ? ΨJ))

ä
.

Proof. By considering the spectral decomposition of LviΨJ with respect

to �, one easily sees that

(8.2)

− k((�− k)−1(LviΨJ),LviΨJ) > (H(LviΨJ), H(LviΨJ)) = ‖H(LviΨJ)‖22.

On the other hand, since ΨJ is harmonic, one clearly has

(8.3) ‖H(LviΨJ)‖2 >
∣∣∣(LviΨJ ,

ΨJ

‖ΨJ‖2
)
∣∣∣.

By combining (8.2), (8.3) and Proposition 4, one obtains Proposition 5 easily.

�

For a positive integer `, we define the relative tensor

(8.4) H(`) := H(Φi ? · · ·? Φi︸ ︷︷ ︸
`-times

),

so that H(`) = ΨJ with J given by the `-tuple (i, i, . . . , i). Note that H(`)

actually depends on i, but for simplicity, this is suppressed in the notation.

Lemma 13. For each ` ≥ 1, one has

(i) H(Φi ?H(`−1)) = H(`).

(ii) (Φi ·H(`), H(`−1)) = ‖H(`)‖22.

Here we adopt the convention that H(0) is the constant function 1.

Proof. From (5.4), (3.6) and the definition that H(0) is the constant func-

tion 1, one easily sees that Φi ?H(`−1) − Φi ? · · ·? Φi︸ ︷︷ ︸
`-times

is ∂-exact (resp. zero)

when ` ≥ 2 (resp. ` = 1 (cf. Remark 2(ii))). Together with the fact that the

harmonic projection of a ∂-exact form is zero, one obtains (i) immediately.

Next we see from Lemma 4 that

(8.5) 〈Φi ·H(`), H(`−1)〉 = 〈H(`),Φi ?H(`−1)〉.

Upon integrating both sides of (8.5) over Mt and using the harmonicity of H(`)

and (i), one obtains (ii) immediately. �

Remark 6. One easily sees from Lemma 13(i) that on Mt, H
(`) ≡ 0 =⇒

H(`′) ≡ 0 for all `′ > `. Equivalently, ‖H(`)‖2 = 0 =⇒ ‖H(`′)‖2 = 0 for all

`′ > `.
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Now we state the main result in this section which is to be used later on

to prove hyperbolicity of S.

Proposition 6. Let i, `,H(`) be as in (8.4). Suppose ‖H(`)‖2 > 0 (so

that ‖H(`−1)‖2 > 0 (cf. Remark 6)). Then we have

(8.6) ∂i∂i log ‖H(`)‖22 ≥
‖H(`)‖22
‖H(`−1)‖22

− ‖H
(`+1)‖22
‖H(`)‖22

.

Remark 7. As in Lemma 13, in Proposition 6 we adopt the convention

that H(0) ≡ 1, so that by (2.1), ‖H(0)‖22 = Vol(Mt) =
(2π)nKn

Mt
knn! , which is

independent of t ∈ S (since Kn
Mt

is determined by a fixed class in H2n(M,Z),

where M is the underlying topological manifold of the Mt’s).

Proof of Proposition 6. We are going to apply Proposition 5 (with ΨJ given

by H(`)). First we consider the second term on the right-hand side of (8.1).

By Lemma 8 (and with vi as given there), one has

(8.7) − k((�− k)−1〈Φi,Φi〉, 〈H(`), H(`)〉) = −k(〈vi, vi〉, 〈H(`), H(`)〉) ≥ 0,

since the integrand is pointwise nonnegative on Mt. (In fact, since 〈Φi,Φi〉 is

a nonnegative-valued and nonidentically-zero real-analytic function on Mt, it

follows from the arguments in [Siu86, pp. 297–298] that −k((�− k)−1〈Φi,Φi〉
is also a nonnegative-valued and nonidentically-zero real-analytic function;

and together with such property of 〈H(`), H(`)〉, it is easy to conclude that

−k((� − k)−1〈Φi,Φi〉, 〈H(`), H(`)〉) > 0.) For the last term of (8.1), we also

note from Lemma 13(i) that H(Φi ? H(`)) = H(`+1). Thus Proposition 5

implies that

∂i∂i log ‖H(`)‖22(8.8)

>
1

‖H(`)‖22

Ä
− k((�− k)−1(Φi ·H(`)),Φi ·H(`))− ‖H(`+1)‖22

ä
.

For the first term above, we note that Φi · H(`) and H(`−1) are both in

A0,`−1(∧`−1TMt), and H(`−1) is harmonic. Now we take an orthonormal basis

of A0,`−1(∧`−1TMt) consisting of eigensections of � and with 1
‖H(`−1)‖2

H(`−1)

as one of the (harmonic) basis elements. Then by considering the spectral

decomposition of Φi ·H(`) with respect to �, one easily sees that

−k((�− k)−1(Φi ·H(`)),Φi ·H(`)) ≥
∣∣∣ÄΦi ·H(`),

H(`−1)

‖H(`−1)‖2

ä∣∣∣2
=
‖H(`)‖42
‖H(`−1)‖22

(by Lemma 13(ii)).

Together with (8.8), one obtains (8.6) readily. �
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Remark 8. We remark that in the special case when ` = 1, the first two

terms of (8.1) coincide. Then one easily sees from the proof of Proposition 6

that (8.6) in this special case can be strengthened so that the following in-

equality holds:

(8.9) ∂i∂i log ‖H(1)‖22 ≥ 2 · ‖H
(1)‖22

‖H(0)‖22
− ‖H

(2)‖22
‖H(1)‖22

.

In the case of families of Riemann surfaces (i.e., when n = 1), one easily

checks that (8.9) leads readily to the same upper bound given by Wolpert

[Wol86, Lemma 4.6] and mentioned in the beginning of this article. For the

sake of coherence and clarity in our subsequent discussion, we will only use

(8.6) (without incorporating (8.9)), which will already be sufficient for our

purpose.

9. Finsler metric and Kobayashi hyperbolicity

Let π : X → S be an effectively parametrized family of canonically polar-

ized manifolds as in Theorem 1. As before, we let Mt = π−1(Mt) for t ∈ S,

and we denote n = dimCMt and m = dimC S. Without loss of generality, we

assume that n ≥ 2. We are going to construct a (nondegenerate) Finsler metric

on S, whose holomorphic sectional curvature is bounded above by a negative

constant. This will establish the Kobayashi hyperbolicity of S readily. First

we make some preparations.

Let N be a fixed positive integer satisfying N ≥ n, and recall from Re-

mark 7 the following constant (independent of t) given by

(9.1) A := Vol(Mt) =
(2π)nKn

Mt

knn!
.

We first consider the following two sequences of positive numbers {C`}1≤`≤n
and {a`}1≤`≤n given by

C1 : = min
¶

1,
1

A

©
, C` =

C`−1

3
=

C1

3`−1
, 2 ≤ ` ≤ n,(9.2)

a1 : = 1, a` =
Ä3a`−1

C1

äN
=
Ä 3

C1

äN(N`−1−1)
N−1 , 2 ≤ ` ≤ n.(9.3)

Lemma 14. Let N ≥ n ≥ 2, A and {C`}1≤`≤n and {a`}1≤`≤n be as above,

and let κ be an integer satisfying 1 ≤ κ ≤ n. Then for all real numbers

x1, . . . , xκ > 0, we have

(9.4)
a1x

N+1
1

A
+

κ∑
`=2

Äa`
`
·
xN+`
`

x`−1
`−1

− a`−1

`− 1
· xN−`+1

`−1 x``
ä
≥ Cκ ·

κ∑
`=1

xN+1
` .

(When κ = 1, the first summation in (9.4) is understood to be zero.)
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Proof. We are going to prove the inequality in (9.4) by induction on κ.

When κ = 1, (9.4) follows readily from the definition of a1 and C1. For κ ≥ 2,

let Tκ denote the left-hand side of (9.4). Then one has

(9.5) Tκ = Tκ−1 + νκ, where νκ :=
aκ
κ
· x

N+κ
κ

xκ−1
κ−1

− aκ−1

κ− 1
· xN−κ+1

κ−1 xκκ.

Together with the induction hypothesis (that (9.4) holds with κ replaced by

κ− 1), we have

(9.6) Tκ ≥ Cκ−1 ·
κ−1∑
`=1

xN+1
` + νκ.

First we consider the case when xκ ≤ µκxκ−1, where µκ :=
Ä

(κ−1)Cκ
aκ−1

ä 1
κ . From

(9.2) and (9.3), one easily sees that µκ ≤ 1. Thus in this case, we have, from

(9.5) and the definition of µκ,

νκ ≥ −
aκ−1

κ− 1
· xN−κ+1

κ−1 xκκ ≥ −
aκ−1

κ− 1
· µκκxN+1

κ−1 = −CκxN+1
κ−1 and xκ−1 ≥ xκ.

Together with (9.6) and the equality C`−1 = 3C` (cf. (9.2)), we have,

Tκ ≥ 3Cκ ·
κ−1∑
`=1

xN+1
` − CκxN+1

κ−1 ≥ Cκ ·
κ∑
`=1

xN+1
` ,

where the last inequality follows from the inequality xκ−1 ≥ xκ (so that

Cκx
N+1
`−1 ≥ Cκx

N+1
` ). Now it remains to consider the other case when xκ ≥

µκxκ−1. Substituting this into (9.5), one gets

νκ − CκxN+1
κ ≥

Äaκ
κ
· µκ−1

κ − aκ−1

κ− 1
· 1

µN−κ+1
κ

− Cκ
ä
xN+1
κ(9.7)

=
Ä
aκ −

κaκ−1

κ− 1
· 1

µNκ
− κCκ

µκ−1
κ

äµκ−1
κ xN+1

κ

κ
.

Since µκ ≤ 1, we have, from the definition of µκ,

aκ −
κaκ−1

κ− 1
· 1

µNκ
− κCκ

µκ−1
κ
≥ aκ −

κaκ−1

κ− 1
·
Ä aκ−1

(κ− 1)Cκ

äN
κ − κCκ

µκκ

≥ aκ −
κaκ−1

κ− 1
·
Ä 3κ−1aκ−1

(κ− 1)C1

äN
κ − κaκ−1

κ− 1

≥ aκ −
3NaNκ−1

CN1
≥ 0 (by (9.2)),

where the second last inequality can be verified readily by using the inequalities

N ≥ n ≥ κ ≥ 2 and aκ−1 ≥ 1 ≥ C1. Substituting this into (9.7), we get

νκ ≥ Cκx
N+1
κ . Together with (9.6) and the fact that Cκ−1 ≥ Cκ, one obtains

(9.4) readily. �
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The following lemma is well known and follows from a straightforward

computation (see also [Sch12, Lemma 8]).

Lemma 15. Let U be a complex manifold, and let φ`, 1 ≤ ` ≤ r, be

positive C2 functions on U . Then

(9.8)
√
−1∂∂ log(

r∑
`=1

φ`) ≥
∑r
`=1 φ`

√
−1∂∂ log φ`∑r
j=1 φj

.

From now on, we fix N = n! and let {C`}1≤`≤n and {a`}1≤`≤n be the

corresponding sequences as given in (9.2) and (9.3). Now we define a function

h : TS → R given by

(9.9) h(u) =
( n∑
`=1

a`‖u‖2NWP,`

) 1
2N

for u ∈ TtS and t ∈ S.

Here ‖ ‖WP,` is as defined in (3.11).

Lemma 16. h is a Aut(π)-invariant C∞ Finsler metric on S.

Proof. It is obvious that h(cu) = |c|h(u) for all c ∈ C and u ∈ TS.

Moreover, one sees from Remark 3 that h(u) > 0 if u 6= 0. Thus h is a Finsler

metric on S. Next we note that the Aut(π)-invariance of h follows readily from

that of the ‖ ‖WP,`’s (cf. Remark 3). To verify the smoothness of h, we take

a C∞ local section u of TS
∣∣∣
U

over an open subset U of S such that ut 6= 0

for each t ∈ U (here ut denotes the value of u at t), then for each 1 ≤ ` ≤ n,

‖ut‖2`WP,` is a C∞ function in t, since it is given in (3.10) as an integral with the

integrand varying smoothly in t. For each integer ` satisfying 1 ≤ ` ≤ n, since

N/` = n!/` is still a positive integer, it follows that ‖ut‖2NWP,` = (‖ut‖2`WP,`)
N
` is

still a C∞ function in t (even at points t where ‖ut‖2NWP,` = 0). Together with

the fact that h(ut) > 0 for each t ∈ U , it follows readily that h(ut) is a C∞

function in t. �

Remark 9. From the proof of Lemma 16, it is easy to see that as long as

the positive integer N in (9.9) is divisible by 1, 2, . . . , n, the resulting Finsler

metric is still C∞.

Let u ∈ TS and ` be an integer satisfying 1 ≤ ` ≤ n. Similar to (8.4), we

denote

(9.10) H(`)(u) := H(Φ(u) ? · · ·? Φ(u)︸ ︷︷ ︸
`-times

),

where Φ(u) is the harmonic representative of ρt(u) as in Section 2. This gives

rise to a function r : PTS → Z given by

(9.11) r([u]) := max{`
∣∣∣H(`)(u) 6= 0} for 0 6= u ∈ TS,
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where [u] denotes the class of u in PTS. Since ρt is injective for each t ∈ S, it

follows that 1 ≤ r([u]) ≤ n for each [u] ∈ PTS. Now we let R be a local one-

dimensional complex submanifold of S. Then it is easy to see that r induces a

function rR : R→ Z given by

(9.12) rR(t) := r([ut]) for t ∈ R,

where ut is any nonzero vector in TtR. Let κ be an integer satisfying 1 ≤ κ ≤ n.

We say that a point to ∈ R is a κ-stable point of R if there exists an open

neighborhood Uto of to in R such that rR(t) = κ for all t ∈ Uto . We also recall

that the sectional curvature K(R, h
∣∣∣
R

)(to) of h
∣∣∣
R

at a point to ∈ R is given by

(9.13) K(R, h
∣∣∣
R

)(to) = −
∂t∂t̄ log((h( ∂∂t))

2)

(h( ∂∂t))
2

∣∣∣∣
t=to

,

where t denotes a local holomorphic coordinate function on some open subset

of R containing to.

Proposition 7. Let R be a local one-dimensional complex submanifold

of S, and let to ∈ R be a κ-stable point of R for some integer 1 ≤ κ ≤ n. Let

h be the Finsler metric on S as given in (9.9). Then

K(R, h
∣∣∣
R

)(to) ≤ −
Cκ

κ
1
N a

1+ 1
N

κ

,

where aκ and Cκ are as in (9.3) and (9.2) (with N = n!).

Proof. Since to is a κ-stable point of R, there exists an open neighborhood

U of to in R such that for all 0 6= u ∈ TU , one has H(`)(u) = 0 (and thus

‖u‖WP,` = 0) for all ` > κ, and H(`)(u) 6= 0 for all 1 ≤ ` ≤ κ (cf. Remark 6).

In particular, the Finsler metric h on U can be written as

(9.14) h(u) =
( κ∑
`=1

a`‖u‖2NWP,`

) 1
2N

for all u ∈ TU

(recalling that N = n!). Shrinking U if necessary, we may assume that U
is an open coordinate subset of R with coordinate function t. To compute

(9.13), we denote, as in (8.4), the relative tensor on the fibers over U given by

H(`) := H(`)( ∂∂t) for each `. Together with the definition of ‖ ‖WP,` in (3.11),

we may further rewrite (9.14) as

(9.15) h(
∂

∂t
) =

( κ∑
`=1

a`‖H(`)‖
2N
`

2

) 1
2N

on U .
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Then we have

∂t∂t̄ log((h(
∂

∂t
))2) =

1

N
· ∂t∂t̄ log

Ä κ∑
`=1

a`‖H(`)‖
2N
`

2

ä
(9.16)

≥ 1

N
·
∑κ
`=1 a`‖H(`)‖

2N
`

2 · ∂t∂t̄ log
Ä
a`‖H(`)‖

2N
`

2

ä
∑κ
`=1 a`‖H(`)‖

2N
`

2

(by Lemma 15)

=
B∑κ

`=1 a`‖H(`)‖
2N
`

2

,

where

B : =
κ∑
`=1

a`
`
· ‖H(`)‖

2N
`

2 · ∂t∂t̄ log
Ä
‖H(`)‖22

ä
.

By Proposition 6 (and with ‖H(0)‖22 as there), we have

B ≥
κ∑
`=1

a`
`
· ‖H(`)‖

2N
`

2 ·
Ä ‖H(`)‖22
‖H(`−1)‖22

− ‖H
(`+1)‖22
‖H(`)‖22

ä
(9.17)

=
a1‖H(1)‖22
‖H(0)‖22

+
κ∑
`=2

(a`
`
· ‖H

(`)‖
2(N+`)

`
2

‖H(`−1)‖22

− a`−1

`− 1
· ‖H(`−1)‖

2(N−`+1)
`−1

2 · ‖H(`)‖22
)

≥ Cκ ·
κ∑
`=1

‖H(`)‖
2(N+1)

`
2 ,

where the second line is obtained by regrouping the terms of the first line

(involving H(`) and H(`−1) for given `) and using that fact that ‖H(κ+1)‖2 = 0,

and the last inequality follows from Lemma 14 (with x` given here by ‖H(`)‖
2
`
2 ).

By Hölder inequality and using the fact that a` ≥ a`−1, we have
κ∑
`=1

a` · ‖H(`)‖
2N
`

2 ≤
Ä κ∑
`=1

aN+1
`

ä 1
N+1

( κ∑
`=1

‖H(`)‖
2(N+1)

`
2

) N
N+1

=⇒
κ∑
`=1

‖H(`)‖
2(N+1)

`
2 ≥ 1Ä

κaN+1
κ

ä 1
N

·
( κ∑
`=1

a`‖H(`)‖
2N
`

2

)N+1
N
.(9.18)

Combining (9.16), (9.17) and (9.18), we get

∂t∂t̄ log((h(
∂

∂t
))2) ≥ Cκ

κ
1
N a

1+ 1
N

κ

·
( κ∑
`=1

‖a`H(`)‖
2N
`

2

) 1
N

=
Cκ

κ
1
N a

1+ 1
N

κ

· (h(
∂

∂t
))2,

where the last equality follows from (9.15). Together with (9.13), one obtains

the proposition readily. �
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Lemma 17. Let R be a local one-dimensional complex submanifold of S,

and let QR := {t ∈ R
∣∣∣ t is a κ-stable point of R for some 1 ≤ κ ≤ n}. Then

QR is a dense subset of R (with respect to the usual topology).

Proof. We take a point to ∈ R and an open neighborhood U of to in R.

Since the function rR in (9.12) takes values in the discrete set {1, 2, . . . , n},
rR
∣∣∣
U

necessarily attains maximum value, say κ, at some point t1 ∈ U for some

1 ≤ κ ≤ n. Now we take a smooth nonvanishing vector field ut on some open

neighborhood of t1 in U . Then it is easy to see that H(κ)(ut) (as defined in

(9.10)) varies smoothly in t. Since we also have H(κ)(ut1) 6= 0 (as rR(t1) = κ),

it follows that there exists some open neighborhood V of t1 in U such that

H(κ)(ut) 6= 0 (and thus rR(t) ≥ κ) for all t ∈ V . Together with the definition of

κ as the maximum value of rR
∣∣∣
U

, it follows that rR(t) = κ for all t ∈ V . Hence

t1 ∈ QR. Since to and U are arbitrary, one concludes that QR is dense in R. �

We are ready to give the proof of Theorem 1 as follows.

Proof of Theorem 1. Let π : X → S be as in Theorem 1, and let n :=

dimMt. Let h be as in (9.9). From Lemma 16, we know that h is an Aut(π)-

invariant C∞ Finsler metric on S. Take a point t ∈ S, and let R be a local

one-dimensional complex submanifold of S passing through t (i.e. t ∈ R).

By Lemma 17, there exists a sequence of points {tj}∞j=1 in QR such that

limj→∞ tj = t in R. In particular, each tj is a κj-stable point of R for some

integer κj satisfying 1 ≤ κj ≤ n. Let {Cκ}1≤κ≤n and {aκ}1≤κ≤n be as in (9.2)

and (9.3) (with N = n!). By Proposition 7, we have, for each j,

K(R, h
∣∣∣
R

)(tj) ≤ −
Cκj

κ
1
N
j a

1+ 1
N

κj

≤ − Cn

n
1
N a

1+ 1
N

n

,

where the last inequality follows from the facts that Cκ decreases with κ while

aκ increases with κ. Together with the fact that h
∣∣∣
R

is C∞ (cf. Lemma 16),

one concludes readily that

K(R, h
∣∣∣
R

)(t) ≤ − Cn

n
1
N a

1+ 1
N

n

,

where the above upper bound is a negative constant independent of t and R.

Hence the holomorphic sectional curvature of the Finsler metric h on S is

bounded above by a negative constant. Finally it is well known (and follows

from standard arguments involving the usual Ahlfors lemma) that the existence

of a Finsler metric h on S with the above curvature property implies readily

that S is Kobayashi hyperbolic (cf., e.g., [Kob98, p. 112, Th. 3.7.1]). �

Remark 10. Here we indicate some underlying parallel ingredients in the

respective approaches of [VZ03] and this paper. We recall that by taking

direct images of the exterior powers of the relative tangent bundle TX|S , one
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obtains the Higgs bundle
Ä n⊕
i=0

Riπ∗ ∧i TX|S ,
n⊕
i=0

ρi
ä
, where the Higgs field ρi :

TS⊗Riπ∗∧iTX|S → Ri+1π∗∧i+1TX|S is given by the Kodaira-Spencer map. For

each p ≥ 0, the composition of the ρi’s, i = 0, 1, . . . , p−1, also gives rise the p-th

iterated Kodaira-Spencer map ρ(p) : SpTS → Rpπ∗ ∧p TX|S (see, e.g., [VZ03]).

Denote by p0 the maximal number such that ρ(p0) is not the zero map on SpTS .

Then as pointed out by one of the referees, a key ingredient in deriving the

(Brody or Kobayashi) hyperbolicity of S is to show that the locally free part

of the image F (p0) := ρ(p0)(Sp0TS) ⊂ Rp0π∗ ∧p0 TX/S is negatively curved (in a

certain sense) with respect to certain Hermitian metric. In [VZ03], the above

Higgs bundle is embedded in a logarithmic system of Hodge bundles associated

to the Hodge filtration of an auxiliary variation of polarized Hodge structures

constructed by taking the middle dimensional relative de Rham cohomlogy on

the cyclic cover of X ramified along a generic section of suitable multiple of the

relative canonical sheaf. Under such embedding, F (p0) lies in the kernel of the

Kodaira-Spencer map from the corresponding Hodge bundle, and the kernel is

negatively curved from a well-known curvature computation of Hodge metric

by Griffiths (see, e.g., [Gri84]). In this paper, the corresponding ingredient

is the negativity of the curvature of F (p0) with respect to the p0-th Weil-

Petersson pseudometric, which can be seen readily from Proposition 6 (upon

letting ` = p0 in Proposition 6 and noting that the last term of (8.6) is zero

when ` = p0). To derive the Kobayashi hyperbolicity of S, one actually needs

to consider all the components of the Higgs bundle from i = 0 to i = p0, which

is manifested in the Finsler metric in (9.9) (noting that the terms ‖u‖WP,` in

(9.9) are zero for all ` > p0).

Remark 11. Finally we give some retrospective remarks on the respective

approaches of [Sch12] and this paper. As mentioned earlier, the curvature

computation for the Weil-Petersson metric of a family of higher dimensional

manifolds began with the paper of Siu in [Siu86], where Proposition 4 for

` = |J | = 1 was formulated and proved. The result of Siu in [Siu86] was refor-

mulated and reproved by Schumacher in [Sch93]. Both Proposition 4 of this

paper and Theorem V of [Sch12] are generalizations of the result of [Siu86] to

` > 1 following Siu’s approach to various extent. This corresponds to the first

step mentioned in the introduction. In this step, our formulation of Proposi-

tion 4 works directly for our purpose, and our approach and grouping of terms

actually follow closely the original approach of [Siu86]. We provide sufficient

details to make the presentation clear and readily verifiable to the readers.

We remark that in our second step as described in Section 1, we have

utilized the first term on the right-hand side of the expression in Proposition 4

(i.e., −k((� − k)−1(Φi · ΨJ),Φi · ΨJ)) to achieve the estimates in (8.6). This
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is crucial for us to start a telescopic argument to handle the bad term in (8.6)

inductively on ` and set up the stage for the choice of constants for (9.10) in

our third step. In contrast to our work here, [Sch12] utilizes the term corre-

sponding to the second term on the right-hand side of the expression in our

Proposition 4 (i.e., −k((�− k)−1〈Φi,Φi〉, 〈ΨJ ,ΨJ〉)). As such it only leads to

an upper bound of the holomorphic sectional curvature depending on the base

point x in the family, which yields a result on hyperbolicity only if the base

manifold is compact.
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