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Properly embedded
minimal planar domains

By William H. Meeks III, Joaqúın Pérez, and Antonio Ros

Abstract

In 1997, Collin proved that any properly embedded minimal surface in

R3 with finite topology and more than one end has finite total Gaussian

curvature. Hence, by an earlier result of López and Ros, catenoids are the

only nonplanar, nonsimply connected, properly embedded, minimal planar

domains in R3 of finite topology. In 2005, Meeks and Rosenberg proved

that the only simply connected, properly embedded minimal surfaces in R3

are planes and helicoids. Around 1860, Riemann defined a one-parameter

family of periodic, infinite topology, properly embedded, minimal planar

domains Rt in R3, t ∈ (0,∞). These surfaces are called the Riemann

minimal examples, and the family {Rt}t has natural limits being a vertical

catenoid as t → 0 and a vertical helicoid as t → ∞. In this paper we

complete the classification of properly embedded, minimal planar domains

in R3 by proving that the only connected examples with infinite topology

are the Riemann minimal examples. We also prove that the limit ends

of Riemann minimal examples are model surfaces for the limit ends of

properly embedded minimal surfaces M ⊂ R3 of finite genus and infinite

topology, in the sense that such an M has two limit ends, each of which has

a representative that is naturally asymptotic to a limit end representative

of a Riemann minimal example with the same associated flux vector.
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1. Introduction

The history of minimal surfaces in R3 begins with the discovery of the

classical examples found in the 18-th and 19-th centuries. The first important

result in this direction is due to Euler [16], who proved in 1741 that when a

small arc on the catenary x1 = coshx3 is rotated around the x3-axis, then one

obtains a surface that minimizes area among all surfaces of revolution with the

same boundary circles. The entire surface of revolution of x1 = coshx3 was

initially called the alysseid but since Plateau’s time, called the catenoid.

In 1776, Meusnier [41] observed that the plane, the catenoid and the

helicoid all have zero mean curvature. In this same paper, he proved that the

condition on the mean curvature of the graph G of a function u = u(x, y) over

a domain in the plane to vanish identically can be expressed by the following
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quasilinear, second order, elliptic partial differential equation. This equation

was found in 1762 by Lagrange1 [28], who proved that it is equivalent to G

being a minimal surface, i.e., a critical point of the area functional with respect

to variations fixing the boundary of the graph:

(1) (1 + u2
x)uyy − 2uxuyuxy + (1 + u2

y)uxx = 0.

It follows that the plane, the catenoid and the helicoid are examples of properly

embedded, minimal planar domains in R3. (A planar domain is a connected

surface that embeds in the plane, or equivalently that is noncompact, connected

and has genus zero.)

Around 1860, Riemann discovered (and posthumously published, Hatten-

dorf and Riemann [47], [48]) other interesting examples of properly embedded,

periodic, minimal planar domains in R3. These examples, called the Riemann

minimal examples, appear in a one-parameter familyRt, t ∈ (0,∞), and satisfy

the property that, after a rotation, each Rt intersects every horizontal plane

in a circle or in a line. The Rt have natural limits being a vertical catenoid as

t→ 0 and a vertical helicoid as t→∞. The main theorem of this manuscript

states that these beautiful surfaces of Riemann are unique in a particularly

simple way. This result, which was conjectured in [35], is motivated by our

earlier proof of it under the additional hypothesis that the minimal planar do-

main is periodic [34] and by partial results in our previous papers [37], [38],

[35], [36].

Theorem 1.1. After a homothety and a rigid motion, any connected,

properly embedded, minimal planar domain in R3 with an infinite number of

ends is a Riemann minimal example.

Understanding properly embedded minimal surfaces in R3 is the key for

understanding the local structure of embedded minimal surfaces in any Rie-

mannian three-manifold. Inside this family of surfaces, the case of genus zero is

the most important, both because it is the starting point for the general theory

and because it gives the local picture for any finite genus minimal surface in

a three-manifold away from a finite collection of points where the genus con-

centrates. Since we will focus on surfaces with genus zero, the only topological

information comes from the ends (i.e., the ways to go to infinity). For example,

the plane and the helicoid have only one end, the catenoid is topologically a

cylinder and thus has two ends, and the Riemann minimal examples are topo-

logically cylinders with a periodic set of punctures and thus have infinitely

many ends.

1In reality, Lagrange arrived at a slightly different formulation, and equation (1) was

derived five years later by Borda [3].
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Meeks and Rosenberg [40] proved that the only simply connected, properly

embedded, minimal planar domains in R3 are planes and helicoids. Earlier

results of Collin [12] and of López and Ros [30] demonstrated that the only

nonsimply connected, properly embedded, minimal planar domains in R3 with

a finite number of ends are catenoids. Consequently, Theorem 1.1 gives the

following final classification result.

Theorem 1.2 (Classification Theorem for Minimal Planar Domains). Up

to scaling and rigid motion, any connected, properly embedded, minimal planar

domain in R3 is a plane, a helicoid, a catenoid or one of the Riemann minimal

examples. In particular, for every such surface there exists a foliation of R3 by

parallel planes, each of which intersects the surface transversely in a connected

curve that is a circle or a line.

In a series of pioneering papers, Colding and Minicozzi [7], [8], [9], [10]

gave a rather complete local description of properly embedded minimal disks

in a ball, showing that any such surface is either graphical (like the plane) or

contains a double-spiral staircase (like the helicoid). Building on these results

by Colding-Minicozzi, Meeks and Rosenberg [40] characterized the plane and

the helicoid as the only simply connected, properly embedded, minimal surfaces

in R3. The present paper relies on Colding-Minicozzi theory, which will be used

to reduce the proofs of Theorems 1.1 and 1.2 to Assertion 1.3 below. This

reduction is based on our previously published papers [35] and [36], where

we appealed to certain results in the series [7], [8], [9], [10] and to further

structure results by Colding-Minicozzi for genus-zero surfaces that appear in

the fifth paper of their series [11]. Besides these crucial applications of results

by Colding-Minicozzi in our papers [35] and [36], no other use will be made

in the present paper of their results. We will make clear in Section 3 which

results of Colding-Minicozzi theory are needed and where in [35] and [36] they

are applied.

The results of Collin [12], López-Ros [30] and Meeks-Rosenberg [40] not

only lead to the classification of all properly embedded, minimal planar do-

mains in R3 of finite topology, but these results and work of Bernstein and

Breiner [2] also characterize the asymptotic behavior of the annular ends of any

properly embedded minimal surface in R3; namely, each such end contains a

representative that is asymptotic to the end of a plane, a catenoid or a helicoid.

We will apply Theorem 1.1 to obtain in Theorem 8.1 a similar characterization

of the asymptotic behavior of any properly embedded minimal surface in R3

with finite genus and infinite topology. We remark that Hauswirth and Pac-

ard [23] have found many interesting examples of such surfaces for any finite

positive genus.
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We next outline the organization of the paper and at the same time de-

scribe the strategy for proving Theorems 1.1 and 1.2. In Section 2 we give a

brief geometric and analytic description of the Riemann minimal examples and

present images of some of these surfaces. In Section 3 we outline the basic def-

initions and theory that reduce the proof of Theorem 1.2 to Theorem 1.1, and

the proof of Theorem 1.1 to Assertion 1.3 below; see Theorems 3.1 and 3.2 for

these reductions, which are crucial in the proof of our main results and which

depend on our previously published papers [35], [36]; in particular, these re-

ductions depend in an essential manner on Colding-Minicozzi theory.

Before stating Assertion 1.3, it is worth introducing some notation. Sup-

pose that M ⊂ R3 is a properly embedded minimal planar domain with two

limit ends (limit ends are defined in Section 3.3), such as one of the Riemann

minimal examples. After a possible rotation of the surface, any horizontal

plane P intersects M in a simple closed curve or in a proper Jordan arc γP .

(See Theorem 3.1 for this property.) If we let η denote the unitary upward

pointing conormal to M along γP , then the flux vector of M is defined to be

FM =

∫
γP

η ds

(here ds stands for the length element), and FM is independent of the choice

of P . We proved in [35] that, after a rotation around the x3-axis and a homo-

thety, FM can be assumed to be (h, 0, 1) for some h > 0. We remark that in

our definition of the Riemann minimal examples, FRt = (t, 0, 1).

Assertion 1.3. LetM be the space of properly embedded, minimal planar

domains M ⊂ R3 with two limit ends, normalized so that every horizontal plane

intersects M in a simple closed curve or a proper arc and that the flux vector

is FM = (h, 0, 1) for some h = h(M) > 0. Then, M is the set of Riemann

minimal examples {Rt}t∈(0,∞).

The strategy to prove Assertion 1.3 is by means of the classical Shiff-

man function, which is a Jacobi function that adapts particularly well to the

problem under consideration. Since minimal surfaces can be viewed as critical

points for the area functional A, the nullity of the hessian of A at a minimal

surface M contains valuable information about the geometry of M . Normal

variational fields for M can be identified with functions (we will always con-

sider orientable surfaces), and the second variation of area tells us that the

functions in the nullity of the hessian of A coincide with the kernel of the

Schrödinger operator ∆ − 2K (called the Jacobi operator), where ∆ denotes

the intrinsic Laplacian on M and K is the Gaussian curvature function on

M . Any function v satisfying ∆v − 2Kv = 0 on M is called a Jacobi function

and corresponds to an infinitesimal deformation of M by minimal surfaces. A

particularly useful Jacobi function in our proof of Assertion 1.3 is the Shiffman
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function SM , defined for any surface M ∈ M. In Section 4 we will study the

Shiffman function, as well as basic properties of Jacobi functions on a mini-

mal surface which will be applied in our paper. In the 1950s, Shiffman [52]

defined and applied SM to detect when a minimal surface is foliated by circles

and straight lines in parallel planes; this remarkable property was known to

characterize the surfaces Rt since Riemann’s times [47], [48]. By [47], [52], SM
vanishes for a surface M ∈M if and only if M is a Riemann minimal example.

Thus, a possible approach to proving Assertion 1.3 would be to verify that

SM vanishes for any M ∈ M, although we will not prove this fact directly.

Instead, we will demonstrate that SM is linear (i.e., it is the normal part of a

parallel vector field in R3), a weaker property that is enough to conclude M is

a Riemann minimal example (Proposition 6.2).

The desired linearity of SM for every M ∈ M will follow from the fact

that SM can always be integrated in the following sense. For an arbitrary

M ∈ M, there exists a one-parameter family {Mt}t ⊂M with M0 = M such

that the normal part of the variational vector field for this variation, when

restricted to each Mt, is the Shiffman Jacobi function SMt multiplied by the

unit normal vector field to Mt. Moreover, in our integration of SM by {Mt}t,
the parameter t can be extended to be a complex parameter, and t 7→Mt can

be viewed as the real part of a complex valued holomorphic curve in a certain

complex variety; we will refer to this integrability property by saying that the

Shiffman function can be holomorphically integrated. (See Definition 5.12 and

Remark 5.13.)

Assume for the moment that SM can be holomorphically integrated for

any M ∈ M; we will explain why SM is linear. The basic idea is to fix a

flux vector F = (h, 0, 1) and then extremize the spacing between the planar

ends among all examples in MF = {M ∈ M | FM = F}. (This requires

a compactness result in MF that uses the uniform geometric estimates from

Section 3.) Then one considers the complex deformation t 7→ Mt around

an extremizer M0 ∈ MF , given by holomorphic integration of the Shiffman

function SM0 of M0, and proves that the entire deformation is contained inMF

and that the spacing between planar ends depends harmonically on the complex

parameter t; this harmonic dependence together with the maximum principle

for harmonic functions applies to give that the spacing remains constant along

the deformation t 7→ Mt, which can be interpreted as the linearity of the

Shiffman function of M0. From here we conclude that any minimizer and any

maximizer of the spacing between planar ends in MF is a Riemann minimal

example. As there is only one Riemann minimal example with each flux, then

the maximizer and minimizer are the same, and thus every surface in MF is

both a maximizer and minimizer, which implies that MF consists of a single
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surface that is a Riemann minimal example. The purpose of Section 6 is to

give the details of the arguments in this paragraph.

To finish our overview of the proof of Assertion 1.3, it remains to briefly

explain how the Shiffman function SM can be holomorphically integrated for

any M ∈M, which will be the main task of Section 5. The approach is through

the Korteweg-de Vries (KdV) equation and its hierarchy. A change of variables

transforms the holomorphic integration of the Shiffman function into solving

a Cauchy problem for a meromorphic KdV equation on the cylinder. The key

step for the solvability of this meromorphic KdV Cauchy problem amounts

to proving that the initial data is an algebro-geometric potential for KdV,

which is a finiteness condition in the hierarchy associated to the KdV equation

that will be established in Corollary 5.10. This finiteness condition depends

crucially on the fact that the space J∞(M) of bounded Jacobi functions on any

surface M ∈ M is finite dimensional. Finite dimensionality of J∞(M) could

be deduced from a paper by Colding, de Lellis and Minicozzi [6], although we

will include a self-contained proof in Appendix 1.

In Section 7 we will prove that all functions in J∞(R) are linear for any

Riemann minimal example R. This result could be seen as the linearization

of our main classification theorem, although it does not directly follow from

the uniqueness of the Riemann minimal examples as there might be a bounded

Jacobi function on R that does not integrate to an actual variation. Finally,

in Section 8, we will apply this characterization of J∞(R) and Theorem 1.1 to

prove Theorem 8.1, which describes the asymptotic behavior of the limit ends

of properly embedded minimal surfaces in R3 with finite genus.

The authors would like to thank the referee for his valuable comments and

suggestions to improve the exposition.

2. Analytic definition of the Riemann minimal examples

In [48], Riemann classified the compact minimal annuli in R3 that are

foliated by circles in some family of horizontal planes. He proved that besides

the catenoid and after a homothety and a translation of R3, each such annulus

is contained in a properly embedded, minimal planar domain R(t) for some

t ∈ (0,∞), described as follows. Consider the rectangular torus Tt = C/Λt,
where Λt = {tm + in | m,n ∈ Z} and i =

√
−1, and let Pt denote the

Weierstrass P-function on Tt. Let σt : C/〈i〉 → Tt denote the related Z-cover of

Tt, where 〈i〉 = iZ. Let gt denote the meromorphic function atPt ◦σt : C/〈i〉 →
C ∪ {∞}, where at > 0 is chosen so that the branch values of gt are 0,∞ and

one pair of antipodal points on the real axis; a simple calculation shows that

at = (
»
−Pt(i/2)Pt(t/2))−1. Let dz be the holomorphic differential on C/〈i〉

coming from the coordinate z = x+ iy in C.
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In order to complete our description of R(t), it is convenient to use the

fact that C/〈i〉 is isometric to the cylinder S1×R ⊂ R2×R, where S1 = iR/〈i〉
is considered to be the circle of circumference one centered at the origin in R2.

Let Zt be the set of zeroes of gt, Pt be the set of poles of gt and Et = Zt ∪ Pt.
With this meromorphic data and with z0 = 0+ 1

2 i ∈ C/〈i〉, the minimal planar

domain R(t) is defined analytically to be the image of the conformal harmonic

map Xt : (S1 × R) − Et → R3 defined at z = x + iy ∈ (C/〈i〉) − Et by the

Weierstrass formula given in equation (4) of Section 4:

Xt(z) = <
∫ z

z0

Å
1

2

Å
1

gt
− gt
ã
,
i

2

Å
1

gt
+ gt

ã
, 1

ã
dz,

where <(w) is the real part of a complex vector w ∈ C3.

When we view R(t) as being parametrized by the punctured flat cylinder

(S1×R)−Et, then the level set circle S1×{s} at a height s different from nt or

(n+ 1
2)t for n ∈ Z has image curve in R3 that is a circle in the horizontal plane

at height s. Note that Ln = Xt[(S1 × {nt}) − {(0, nt)}] is a line parallel to

the x2-axis, placed at height nt. (Here we identify S1 with iR/〈i〉.) Similarly,

L
1
2
n = Xt[(S1 × {(n + 1

2)t}) − {( i2 , (n + 1
2)t)}] is a line parallel to the x2-axis

and placed at height (n + 1
2)t. The isometry group of R(t) is generated by

the reflection in the (x1, x3)-plane and the rotations of angle π around the

lines Ln, L′n, where L′n is the line parallel to Ln that is equidistant to Ln and

L
1
2
n (L′n intersects R(t) orthogonally at two points), n ∈ Z. In particular, the

surface R(t) is periodic under the orientation-preserving translation vt given

by the composition of the rotation by angle π around L0 with rotation by angle

π around L
1
2
0 . Thus, vt lies in the (x1, x3)-plane and has vertical component t;

see Figure 1.

With respect to the above parametrization Xt : (C/〈i〉)−Et → R(t) ⊂ R3,

the points in Et correspond to those ends of R(t) that can be represented by

annuli asymptotic to horizontal planes at heights in Ht = {nt, (n+ 1
2)t | n ∈ Z}.

Since C/〈i〉 is naturally conformally C − {0} ⊂ C ∪ {∞} = S2, we see that

R(t) is conformally diffeomorphic to S2−E(R(t)), where E(R(t)) is the union

of the set of planar ends Et of R(t) with e−∞ (resp. e∞), corresponding to the

bottom (resp. top) end of the cylinder C/〈i〉 = S1×R viewed as being the south

(resp. north) pole of S2. The set of points E(R(t)) ⊂ S2 with the subspace

topology can be naturally identified with the space of ends of the surface R(t).

By the topological classification of noncompact genus-zero surfaces, R(t) is the

unique (up to homeomorphism) planar domain with two limit ends. Finally,

we remark that the holomorphic function gt|(C/〈i〉)−Et can be identified with

the stereographic projection of the Gauss map of R(t) when we view the Gauss

map as being defined on the parameter space (C/〈i〉)− Et.
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We now are in position to define a normalization of the Riemann minimal

examples that we will use in the sequel. For any s, let η be the upward pointing,

unitary conormal vector along the boundary curve γs of R(t)∩ {x3 ≤ s}. The

flux of R(t) is

FR(t) =

∫
γs

η ds

and has the form (h(t), 0, 1) for some positive h(t). It turns out that h(t)

determines the Riemann minimal example R(t) and, moreover, h(t) → ∞ as

t→ 0 and h(t)→ 0 as t→∞. Define Rt = R(h−1(t)) for each t > 0; thus the

flux of Rt is (t, 0, 1). Then we obtain the normalization {Rt}t>0 of the family

of Riemann minimal examples to which we will we refer throughout this paper.

With this notation, the limit of suitable translations of the Rt as t → 0 is a

vertical catenoid, and the limit of suitable translations and homotheties of the

Rt as t→∞ is a vertical helicoid; see Figure 2.

3. Reduction of the proof of Theorem 1.2

to the case of two limit ends

Before proceeding with a discussion of the theoretical results that reduce

the proof of Theorem 1.2 to the case of two-limit-end examples of genus zero,

we make a few comments that can suggest to the reader a visual idea of what

is going on. The most natural motivation for understanding this theorem and

other results presented in this section is to try to answer the following general

question: What are the possible shapes of a complete embedded surface M ⊂ R3

that satisfies a variational principle and has a given topology? In our case, the

Figure 1. Two Riemann minimal examples (courtesy of M. Weber).



482 WILLIAM H. MEEKS III, JOAQUÍN PÉREZ, and ANTONIO ROS

variational equation expresses the critical points of the area functional. We

will describe the situation according to the topology of M .

3.1. Properly embedded minimal surfaces with finite topology and one end.

If the requested topology for M is the simplest one of a disk, then the classifi-

cation theorem of Meeks and Rosenberg [40] states that the possible shapes for

complete examples are the trivial one given by a plane and (after a rotation)

an infinite double-spiral staircase, which is a visual description of a vertical

helicoid. A more precise description of the double-spiral staircase nature of

a vertical helicoid is that this surface is the union of two infinitely sheeted

multigraphs, which are glued along a vertical axis. Crucial in the proof of this

classification result are the results of Colding and Minicozzi [7], [8], [9], [10]

that describe both the local structure of compact, embedded minimal disks as

essentially being modeled by either graphs or pairs of finitely sheeted multi-

graphs glued along an “axis,” and global properties of limits of these shapes.

More generally, if we allow our complete minimal surface M ⊂ R3 to be

topologically a disk with a finite positive number of handles, then it turns out

that M is conformally a closed Riemann surface M of positive genus punc-

tured in a single point; see Bernstein and Breiner [2] and also see Meeks and

Pérez [33], where they prove that M is asymptotic to a helicoid and that it

can be defined analytically in terms of meromorphic data on M . Using differ-

ent approaches, Hoffman, Weber and Wolf [54] and Hoffman and White [26]

proved the existence of such a genus-one helicoid; also see Hoffman, Traizet

and White [25], where they construct properly embedded minimal surfaces with

arbitrary positive genus g ∈ N and one end. Meeks and Rosenberg [40] have

conjectured that there exists a unique genus g helicoid for each positive finite g.

3.2. Properly embedded minimal surfaces with finite topology and more

than one end. We now describe the special geometry of any properly embedded

Figure 2. Two views of a Riemann minimal example close to the

helicoidal limit. Two vertical helicoids are forming at opposite

sides of the vertical plane of symmetry. (For the reader’s con-

venience, we have also represented vertical cylinders containing

significant parts of the forming helicoids.)
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minimal surface M ⊂ R3 that has finite topology and more than one end. In

this situation we find many beautiful examples and even large dimensional

families of examples, and so it is not possible to obtain a general classification

result for all of these surfaces. However, the asymptotic behavior of the ends of

M is well understood by Collin’s Theorem [12], which states that each end of

M is asymptotic to the end of a plane or catenoid. In particular, we find that

M is conformally a compact Riemann surface M punctured in a finite number

of points and, by a theorem of Osserman [43], M can be defined analytically

in terms of meromorphic data on M . For example, one sees by a simple

application of Picard’s theorem that the stereographic projection of the Gauss

map g : M → C∪ {∞} extends to a meromorphic function G : M → C∪ {∞}.
The Gauss-Bonnet formula then implies that the degree of G is equal to the

absolute total curvature of M divided by 4π.

A fundamental classification theorem of López and Ros [30] states that

the plane and the catenoid are the only complete, embedded, minimal planar

domains in R3 with finite total curvature. Thus, Collin’s theorem and the

López-Ros theorem together imply that the catenoid is the only connected,

properly embedded, minimal planar domain of finite topology in R3 with more

than one end. Summarizing, the plane, the helicoid and the catenoid are the

only properly embedded, minimal planar domains in R3 with finite topology.

In order to better understand the asymptotic behavior of general finite

topology examples with more than one end (i.e., finite genus not necessar-

ily zero), it is helpful to consider the following question: What is the visual

picture for a connected, properly embedded minimal surface M ⊂ R3 with fi-

nite topology and at least two ends? By Collin’s theorem, each end of M is

asymptotic to the end of a catenoid or to a plane. It then follows from the em-

beddedness of M that after a fixed rotation of M and for some large RM > 0,

M ∩{(x1, x2, x3) | x2
1 +x2

2 ≥ R2
M} consists of a finite number E1, E2, . . . , En of

graphs over the annulus A(RM ) = (R2 ×{0})−{(x1, x2, x3) | x2
1 + x2

2 < R2
M}.

These graphs have logarithmic growths λ1 ≤ λ2 ≤ · · · ≤ λn, which are linearly

ordered by the relative heights of the graphs over A(RM ), and the collection

{E1, E2, . . . , En} represents the (annular) ends of M . Note that when λi = 0,

then Ei is asymptotic to a horizontal plane. The Half-space Theorem by Hoff-

man and Meeks [24] implies that M cannot be contained in a half-space of

R3, and so λ1 < 0 and 0 < λn. After this rotation, to have graphical ends on

the exterior of a disk on the (x1, x2)-plane, M is said to have horizontal limit

tangent plane at infinity.

As in the case of one-ended minimal surfaces of finite topology, there is a

precise conjecture on the topological types allowed in the class of properly em-

bedded minimal surfaces with finite topology and more than one end. In 1982,

Hoffman and Meeks conjectured that a necessary and sufficient condition for a
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surface with finite genus g and a finite number k>2 of ends to admit a proper

minimal embedding into R3 is that g+2≥k. The case k=1 reduces to the plane,

and Schoen [50] proved that if k = 2, then the surface is a catenoid (hence

g=0). López-Ros [30] proved that g = 0 implies that the surface is a catenoid

or a plane, and hence the last inequality also holds in this case. In the remain-

ing cases, this conjecture is supported by existence theorems of Traizet [53]

and of Weber and Wolf [55]. Along these lines, the authors proved that for

each fixed genus g, there is an upper bound k(g) for the number of ends of a

properly embedded minimal surface with genus g and finitely many ends [37].

3.3. Properly embedded minimal surfaces with finite genus and an infinite

number of ends. Any properly embedded minimal surface M ⊂ R3 with more

than one end has an associated plane passing through the origin, which is

called the limit tangent plane at infinity of M , defined as follows. Firstly, it

can be shown that R3 −M contains the end E of a plane or catenoid. Such

an end E has a limiting normal vector vE at infinity, which turns out to not

depend on the choice of E in R3−M . The plane passing through the origin and

orthogonal to vE is the limit tangent plane at infinity to M ; see [4] for further

details. We will generally assume that the limit tangent plane at infinity to

M is horizontal, or equivalently, it is the (x1, x2)-plane. A fundamental aid in

discussing the asymptotic geometry of M is the Ordering Theorem of Frohman

and Meeks [18], which states that the space of ends E(M) of M has a natural

linear ordering by their relative heights over the (x1, x2)-plane, similar to the

way in which the ends of a finite topology minimal surface with more than on

end can be linearly ordered.

With this linear ordering on E(M) in mind and using the fact that E(M)

has a natural topology induced by an order preserving embedding as a compact,

totally disconnected subspace of the unit interval [0, 1] (see Section 2.7 in [32]),

we find that there exist unique elements eT , eB ∈ E(M) that are maximal and

minimal elements in the linear ordering on E(M), respectively. eT is called

the top end and eB the bottom end of M . The other ends in E(M)− {eB, eT }
are called the middle ends of M . By a result of Collin, Kusner, Meeks and

Rosenberg [13], the only possible limit ends of M (limit points of E(M) in its

natural topology) are eB or eT .

The above discussion implies that the classification of the properly em-

bedded minimal planar domains in R3 reduces to the classification of examples

with two limit ends and to ruling out the case of one limit end. We will start

by describing the geometry of any surface in the two limit end case. Note that

Theorem 3.1 below uses the notation in Assertion 1.3.

Theorem 3.1. Given any M ∈M, we have
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(1) M can be conformally parametrized by the cylinder C/〈i〉 punctured at an

infinite discrete set of points {pj , qj}j∈Z.

(2) The stereographically projected Gauss map of M , considered to be a mero-

morphic function g on C/〈i〉 after attaching the planar ends of M , has

order-two zeros at the points pj and order-two poles at the qj .

(3) The height differential of M is dh = dz, and so its height function is

x3(z) = <(z). In particular, the middle ends pj , qj of M are planar, and

they are naturally ordered by heights by <(pj) < <(qj) < <(pj+1) for

all j ∈ Z, with <(pj) → ∞ (resp. <(pj) → −∞) when j → ∞ (resp.

j → −∞).

(4) Every horizontal plane intersects M in a simple closed curve when its

height is not in H = {<(pj),<(qj) | j ∈ Z} and in a single properly

embedded arc when its height is in H ; in particular, the principal divisor

of g is (g) =
∏
j∈Z p

2
jq
−2
j .

(5) M has bounded Gaussian curvature, and this bound only depends on an

upper bound of h. (Recall that the flux of M along a compact horizontal

section is FM = (h, 0, 1) with h > 0.)

(6) The vertical spacings between consecutive ends are bounded from above

and below by positive constants that only depend on h. Also, M admits an

embedded regular neighborhood of fixed radius r = r(h) > 0.

(7) For every divergent sequence {zk}k ⊂ C/〈i〉, there exists a subsequence of

the meromorphic functions gk(z) = g(z + zk) that converges uniformly on

compact subsets of C/〈i〉 to a nonconstant meromorphic function g∞ : C/〈i〉
→ C ∪ {∞}. In fact, g∞ corresponds to the Gauss map of a surface

M∞ ∈M, which is the limit of a related subsequence of translations of M

by vectors whose x3-components are <(zk).

Proof. Most of the arguments in this proof can be found in our previous

paper [35]; for the sake of completeness and also in order to clarify the de-

pendence of the results in [35] on Colding-Minicozzi theory, we will include

some details about this proof. By Theorem 1.1 in [13], the middle ends of

M are not limit ends. As M has genus zero, then these middle ends can be

represented by annuli. By Collin’s theorem [12], every annular end of M is

asymptotic to the end of a plane or catenoid. By Theorem 3.5 in [13], there

exists a sequence of horizontal planes {Pi}i∈N with increasing heights such

that M intersects each plane Pi transversely in a compact set, every middle

end of M has an end representative that is the closure of the intersection of

M with the slab bounded by Pi ∪ Pi+1, and every such slab contains exactly

one of these middle end representatives. By the Halfspace Theorem [24], the

restriction of the harmonic third coordinate function x3 to the portion M(+)

of M above P0 is not bounded from above and extends smoothly across the
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middle ends. By Theorem 3.1 in [13], M(+) has a parabolic conformal struc-

ture. After compactification of M(+) by adding its middle ends and their limit

point p∞ corresponding to the top end in M(+), we obtain a conformal pa-

rameterization of this compactification defined on the unit disk D = {|z| ≤ 1},
so that p∞ = 0, the middle ends in M(+) correspond to a sequence of points

pi ∈ D−{0} converging to zero and x3|M(+)(z) = −λ ln |z|+c for some λ, c ∈ R,

λ > 0. Also note that different planar ends cannot have the same height above

P0 (since they lie in different slabs bounded by the planes Pi). In particular,

M(+) intersects every plane P ′ above P0 in a simple closed curve if the height

of P ′ does not correspond to the height of any middle end, while P ′ intersects

M(+) in a Jordan arc when the height of P ′ equals the height of a middle end.

This implies that the zeros and poles of the stereographically projected Gauss

map g of M at the middle ends of M(+) have order two. Since the behavior of

M(−) = M − [M(+) ∪ P0] can be described analogously, then items (1), (2),

(3) and (4) of the theorem are proved.

The fact that the Gaussian curvature KM of M is bounded with the bound

depending only on an upper bound of the horizontal part of the flux vector FM
(item (5) of the theorem) was proven in Theorem 5 of [35] in the more general

case of a sequence {M(i)}i ⊂M such that {h(i)}i is bounded, where FM(i) =

(h(i), 0, 1) for each i ∈ N. In this setting, the conclusion of Theorem 5 of [35] is

that the sequence of Gaussian curvature functions {KM(i)}i of the M(i) is uni-

formly bounded. Since later we will use this stronger version of the curvature

estimates (namely, in Proposition 6.3), we now sketch its proof. The argument

is by contradiction, so assume that {KM(i)}i is not uniformly bounded.

The first step consists of finding points p(i) ∈ M(i) and positive num-

bers λ(i)→∞ such that after passing to a subsequence, the surfaces M ′(i) =

λ(i)(M(i)−p(i)) converge uniformly on compact subsets of R3 with multiplic-

ity one to a vertical helicoid H passing through the origin ~0, with |KH | ≤ 1

and |KH |(~0) = 1. This is done in Lemma 5 of [35], whose proof uses a standard

blow-up argument on the scale of curvature; this blow-up process creates a sub-

sequential limit of the M ′(i), which is simply connected by a flux argument.

(Nonzero fluxes of the limit surface must come from nonzero arbitrarily small

fluxes on the M(i), which is impossible.) This limit of the M ′(i) is a helicoid H

by the classification by Meeks and Rosenberg of the simply connected, properly

embedded minimal surfaces [40]. (We remind the reader that this classification

depends on Colding-Minicozzi results contained in [7], [8], [9], [10].) The axis

of H is vertical as the Gauss maps of the M(i) omit the vertical directions

by the already proven item (3) of the theorem, and the normalization of KH

follows directly from construction. This finishes the first step.

The second step consists of renormalizing the surfaces M ′(i) by rescaling

and rotation around the x3-axis, so that
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(P1) ~0 ∈M ′(i).
(P2) The horizontal section of M ′(i) at height zero is a simple closed curve.

(P3) {M ′(i)}i converges on compact subsets of R3 to a vertical helicoid with

axis passing through ~0.

Property (P3) above insures that one can find an open arc α′(i) ⊂ M ′(i) ∩
{x3 = 0} centered at ~0 so that the Gauss map of M ′(i) takes values at the end

points of α′(i) in different hemispheres determined by the horizontal equator.

By continuity, this allows us to find a point q′(i) ∈ [M ′(i) ∩ {x3 = 0}] − α′(i)
closest to the origin where the Gauss map of M ′(i) is horizontal and then

to renormalize the M ′(i) by rescaling and rotation around the x3-axis to de-

fine new surfaces M̃(i) so that q′(i) is independent of i and has the form

q̃ = (0, 6τ, 0) ∈ M̃(i), where τ > τ0 is fixed but arbitrary, and τ0 > 1 is defined

by the following auxiliary property. (This is Lemma 4 in [35], whose proof only

uses the curvature estimates for stable minimal surfaces by Schoen [49].)

(P4) There exists τ0 > 1 such that given a properly embedded, noncompact,

orientable, stable minimal surface ∆ contained in a horizontal slab of

width not greater than 1, and such that the boundary ∂∆ lies inside a

vertical cylinder of radius 1, the portion of ∆ at distance greater than τ0

from the axis of the cylinder consists of a finite number of graphs over

the complement of a disk of radius τ0 in the (x1, x2)-plane.

The third step consists of finding embedded closed curves δ(τ, i) ⊂ M̃(i)

so that the flux of M̃(i) along δ(τ, i) decomposes as

(2) Flux
Ä
M̃(i), δ(τ, i)

ä
= V (τ, i) +W (τ, i),

where V (τ, i),W (τ, i) ∈ R3 are vectors such that limi→∞ V (τ, i) = (12τ, 0, 0)

and ‖W (r, i)‖ is bounded by a constant independent of i, τ . Assuming equa-

tion (2), the desired contradiction that will give item (5) of the theorem comes

from the fact that the angle between the flux vector FM(i) of the M(i) and

its horizontal projection h(i) is invariant under translations, homotheties and

rotations around the x3-axis. But (2) implies that the corresponding angles

for the flux vectors of the surfaces M̃(i) tend to zero as i → ∞ and τ → ∞,

which contradicts that the h(i) were assumed to be bounded. To finish this

sketch of the proof of item (5) of Theorem 3.1 we will give details on how to

construct the connection loops δ(τ, i). Each of these connection loops consists

of four consecutive arcs α1(τ, i), L(τ, i), α2(τ, i), L̃(τ, i) contained in M̃(i) with

the following properties:

(P5) α1(τ, i) is a short curve close to the axis of the highly sheeted vertical he-

licoid that is forming nearby ~0 by property (P3) above, which goes down

exactly one level in the double staircase structure occurring around ~0.
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(P6) L(τ, i), L̃(τ, i) are approximations of a horizontal segment from ~0 to q̃,

whose extrema near ~0 coincide with the extrema of α1(τ, i), and such

that L̃(τ, i) lies directly above L(τ, i). These almost segments L(τ, i),

L̃(τ, i) are defined in pages 23, 24 of [35], and their existence is insured

by Lemma 8 in [35], which is a delicate application of Colding-Minicozzi

theory; this lemma asserts that the sequence {M̃(i)}i is uniformly simply

connected in R3 (ULSC), which means that there exists r > 0 such that

every component of the intersection of M̃(i) with any ball in R3 of radius

r is a disk. This property allows one to use Theorem 0.9 in Colding and

Minicozzi [11] to conclude that after passing to a subsequence, the M̃(i)

converges to the foliation L of R3 by horizontal planes with singular set

of convergence S(L) = Γ∪Γ′ being the x3-axis Γ and the vertical straight

line Γ′ passing through q̃. Once this limit foliation result is established,

the almost-straight-line, almost-horizontal segments L(τ, i), L̃(τ, i) sat-

isfying (P6), as well as the fourth arc α2(τ, i) in δ(τ, i) satisfying the

following property, are easy to construct; for similar constructions, see

the Lamination Metric Theorem by Meeks (Theorem 2 in [31]).

(P7) α2(τ, i) is an embedded arc connecting the end points of L(τ, i), L̃(τ, i)

nearby q̃, with length bounded from above by a constant that does not

depend either on i or on τ .

Assuming the connection loops δ(τ, i) = α1(τ, i)∪L(τ, i)∪α2(τ, i)∪ L̃(τ, i)

are constructed verifying (P5), (P6), (P7), then the decomposition in (2) re-

duces to defining V (τ, i) as the flux of M̃(i) along L(τ, i)∪L̃(τ, i), andW (τ, i) as

the flux of M̃(i) along α1(τ, i)∪α2(τ, i). In summary, to conclude the proof of

item (5) of Theorem 3.1 one needs to check that the sequence {M̃(i)}i satisfies

the hypotheses of Theorem 0.9 in [11] (i.e., that {M̃(i)}i is ULSC on every com-

pact subset of R3; see equation (0.1) in [11] for this notion). This proof of this

property starts by demonstrating the following statement (Lemma 6 in [35]):

(P8) There exist a(i) < 0 < b(i) such that for every extrinsic ball B of radius

1, the intersection of M̃(i) with the portion of B inside a horizontal slab

S(a(i), b(i)) = {(x1, x2, x3) | a(i) < x3 < b(i)} is simply connected.

It is worth explaining how the numbers a(i), b(i) in (P8) are chosen in order

to understand why property (P8) holds. We denote by

B(x0, r) = {x ∈ R3 | ‖x− x0‖ ≤ r}

the closed Euclidean ball centered at x0 ∈ R3 with radius r > 0. We choose

a(i) < 0 < b(i) so that M̃(i)∩B(~0, 1) contains an open arc β(i) passing through
~0 connecting {x3 = a(i)}∩∂B(~0, 1) to {x3 = b(i)}∩∂B(~0, 1), and M̃(i)∩B(q̃, 1)

contains another open arc passing through q̃ connecting {x3 = a(i)}∩ ∂B(q̃, 1)



PROPERLY EMBEDDED MINIMAL PLANAR DOMAINS 489

to {x3 = b(i)}∩∂B(q̃, 1), and S(a(i), b(i)) is maximal with this property. State-

ment (P8) is proven by contradiction: the existence of a homotopically non-

trivial curve γ(i) ⊂ M̃(i)∩S(a(i), b(i))∩B for some extrinsic ball B of radius 1

and a standard area-minimization construction using M̃(i) as a barrier allows

us to find a properly embedded, noncompact, orientable stable minimal surface

∆(i) in S(a(i), b(i))− M̃(i) with ∂∆(i) = γ(i). As the distance from ~0 to q̃ is

6τ > 6τ0 (this τ0 was defined in Property (P4)), then the distance from B to at

least one of the vertical cylinders C(~0, 1), C(q̃, 1) of radius 1 with axes passing

through ~0, q̃ respectively, is larger than τ0. (We can assume dist(B,C(~0, 1)) >

τ0 as the other case can be solved similarly.) By Property (P4), ∆(i)∩C(~0, 1)

is a union of horizontal graphs, all contained in S(a(i), b(i)). These graphs

cross the arc β(i), which is a contradiction that proves Property (P8).

With Property (P8) in hand, the next step shows that there exists some

ε > 0 independent of i so that S(−ε, ε) = {(x1, x2, x3) : |x3| < ε} is con-

tained in S(a(i), b(i)) (Lemma 7 in [35]); this is essentially a consequence of

the one-sided curvature estimates in [10]. From here we conclude

(P9) The origin is a singular point for the sequence {M̃(i)}i (i.e., the Gaussian

curvatures of the M̃(i) near ~0 blow-up) and there exist constants r, δ > 0

so that for every extrinsic ball B of radius r whose center is closer than

δ from ~0, the intersection of M̃(i) with B consists of compact disks with

boundary in ∂B. With the notation in Colding-Minicozzi [11], this can

be abbreviated by saying that ~0 ∈ Sulsc.

In this situation one can apply the no mixing Theorem 0.4 in [11] to conclude

that every singular point for the sequence {M̃(i)}i is in Sulsc, which in turn

implies by Theorem 0.9 in [11] the desired convergence of the M̃(i) to the

foliation L of R3 by horizontal planes with singular set consisting of Γ ∪ Γ′.

We remark that in order to apply Theorem 0.9 in [11], one needs to check

that some component of the intersection of M̃(i) with a ball of fixed size cen-

tered at ~0 is not a disk; this property holds since otherwise, Theorem 0.1 in [10]

would lead to the convergence of (a subsequence of) the M̃(i) to the same hori-

zontal foliation L, but with singular set consisting solely of Γ. This contradicts

that the tangent plane of the M̃(i) at q̃ is vertical for every i.

We also remark that the above argument does not really need that {M̃(i)}i
is ULSC in R3, but only that {M̃(i)}i is ULSC on every compact subset of R3, as

defined in equation (0.1) in [11]; our argument in [35] to prove that {M̃(i)}i is

ULSC in R3 is different from the one presented here, as it does not use the Non-

Mixing Theorem 0.4 in [11] but instead, uses a blow-up argument on the scale

of topology to produce a new limit object of a blow-up sequence of the M̃(i)

and then finds a contradiction in all possible such limits (proof of Assertion 2

of [35]). This finishes our sketch of the proof of item (5) of Theorem 3.1.
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As for the proof of item (6) of the theorem, the fact that the Gaussian cur-

vature function KM of a surface M ∈M is bounded implies that M admits an

embedded regular neighborhood of radius 1/ sup
»
|KM | (see Meeks and Rosen-

berg [39]). This clearly gives that the vertical spacing between consecutive ends

is bounded from below. To see why the spacing is bounded from above, one

first checks that for every two consecutive ends of M asymptotic to horizontal

planes Πn,Πn+1, there exists a point pn ∈M∩{x3(Πn) < x3 < x3(Πn+1)} such

that the tangent plane to M at pn is vertical. Next one shows that given ε > 0

fixed and sufficiently small, there exists a point qn ∈ M at intrinsic distance

less than 2 from pn such that |KM (qn)| > ε. (This is a flux argument, since

the tangent plane at pn is vertical and the vertical component of the flux of M

is normalized to be 1.) As M has bounded Gaussian curvature and admits an

embedded regular neighborhood of fixed radius, then the translated surfaces

M − qn converge (after passing to a subsequence) with multiplicity one to a

connected, nonflat, properly embedded minimal planar domain M∞, whose

(nonconstant) Gauss map omits the vertical directions. If the spacing between

consecutive middle ends of M is unbounded, then one can produce such a limit

surface M∞ with a top or bottom end that is of catenoidal type with vertical

limiting normal vector; this implies that M∞ has vertical flux, and in this sit-

uation one can use a variation of the López-Ros deformation argument [30] on

M to find a contradiction. For details, see page 36 of [35]. Similar reasoning

shows that the spacing between consecutive ends for a sequence of surfaces

{Mn}n ⊂M can be bounded from above and below by positive constants that

only depend on upper and nonzero lower bounds of the horizontal component

of the flux vector of the Mn. Now item (6) of the theorem is proved.

Finally, we explain the proof of item (7) of the theorem. Take a divergent

sequence {zk}k ⊂ C/〈i〉, and call gk(z) = g(z+zk), where g is the stereograph-

ically projected extension of the Gauss map of a surface M ∈ M. Recall that

the family of functions {gk}k is normal if and only if on every compact set C

of C/〈i〉, the sequence of numbers {Sk(C)}k is bounded from above, where

Sk(C) = sup

®
|g′k(z)|

1 + |gk(z)|2
| z ∈ C

´
.

As the height differential of M is dz, then the spherical derivative |g′(z)|
1+|g(z)|2 of

g is, up to a constant, the square root of the Gaussian curvature of M at the

point corresponding to z, which is bounded by item (5) of the theorem. Thus,

there exists a meromorphic function g∞ : C/〈i〉 → C∪ {∞} so that after pass-

ing to a subsequence, the gk converge uniformly on compact subsets of C/〈i〉
to g∞. Note that g∞ cannot be constant since the zk is at bounded distance

in C/〈i〉 from consecutive ends of M by item (6), where g has zeros and poles.



PROPERLY EMBEDDED MINIMAL PLANAR DOMAINS 491

As g∞ is not constant, then g∞ has only second order zeros and poles by Hur-

witz’s theorem. The fact that g∞ corresponds to the Gauss map of a surface

M∞ ∈M is straightforward; in fact, M∞ is a limit of an appropriately chosen

sequence of translations of M . This completes our discussion of the proof of

Theorem 3.1. �

Coming back to our discussion of minimal planar domains in R3, we must

rule out the case of one limit end. This was done in Theorem 1 of [36], which

we state below.

Theorem 3.2. If M is a connected, properly embedded minimal surface

in R3 with finite genus, then one of the following possibilities holds :

(1) M is a plane;

(2) M has one end and is asymptotic to the end of a helicoid ;

(3) M has a finite number of ends greater than one, has finite total curvature

and each end of M is asymptotic to a plane or to the end of a catenoid ;

(4) M has two limit ends.

Furthermore, M has bounded Gaussian curvature and is conformally diffeo-

morphic to a compact Riemann surface punctured in a countable closed subset

that has exactly two limit points if the subset is infinite.

The proof of Theorem 3.2 depends on the previous Theorem 3.1, as well

as on the Limit Lamination Theorem 0.9 of Colding and Minicozzi [11].

The discussion in this section completes the reduction of the proof of the

main Theorem 1.2 to that of Assertion 1.3.

4. Jacobi functions on a minimal surface

The first variation of area allows one to consider a minimal surfaceM ⊂ R3

to be a critical point for the area functional acting on compactly supported

(normal) variations. The second variation of area is governed by the stability

or Jacobi operator L = ∆ + |σ|2 = ∆ − 2K, where ∆ denotes the intrinsic

Laplacian on M , |σ|2 is the square of the norm of its second fundamental form

and K is its Gaussian curvature function. L is a linear Schrödinger operator

whose potential |σ|2 = |∇N |2 is associated to the Gauss map N : M → S2

of M . The holomorphicity of N is crucial in understanding the functions in

the kernel J (M) of L (so-called Jacobi functions), which correspond to normal

parts of infinitesimal deformations of M through minimal surfaces. In terms of

the stereographically projected Gauss map g of M , the Jacobi equation Lv = 0

can be written as

(3) vzz + 2
|g′|2

(1 + |g|2)2
v = 0,
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where z is a local conformal coordinate on M . Note that since N : M → S2 is

harmonic, then ∆N + |∇N |2N = 0 and thus, J (M) always contains the space

L(N) of linear functions of the components of N (which we will refer to as

linear Jacobi functions):

L(N) = {〈N, a〉 | a ∈ R3} ⊂ J (M).

Next we briefly recall some well-known facts about the Weierstrass rep-

resentation; see, e.g., Osserman [43], [44]. Besides the (meromorphic) stere-

ographic projection g of the Gauss map, we can associate to every minimal

surface M ⊂ R3 a holomorphic differential dh (not necessarily exact) so that

M can be parametrized as X : M → R3, X(z) = <
∫ z Ψ, where

(4) Ψ =

Å
1

2

Å
1

g
− g
ã
,
i

2

Å
1

g
+ g

ã
, 1

ã
dh;

we call (g, dh) the Weierstrass pair of M . The so-called period problem for

(g, dh) amounts to checking that <
∫

Γ Ψ = 0 for each closed curve Γ ⊂ M . A

simple algebraic calculation demonstrates that this vanishing period condition

is equivalent to the following one for all closed curves Γ ⊂M :

(5)

∫
Γ

dh

g
=

∫
Γ
g dh, <

∫
Γ
dh = 0.

Suppose that t 7→ Mt is a (smooth) deformation of M0 = M by minimal

surfaces. Away from the set B(N) of branch points of the Gauss map of M ,

we can use g as a local conformal coordinate for Mt, which gives a Weierstrass

pair (g, dh(t)) with dh(0) = dh. Since the set of meromorphic differentials

on M − B(N) is a linear space and the C3-valued differential form Ψ in (4)

depends linearly on dh, a formal derivation in (4) with respect to t at t = 0

gives rise to a Weierstrass pairÇ
g,

_̇
dh=

d

dt

∣∣∣∣
0
dh(t)

å
.

The pair (g,
_̇
dh) turns out to solve the period problem, defining a branched

minimal immersion Xv (possibly constant) with the same Gauss map as M .

After identification of the space of infinitesimal deformations of M by minimal

surfaces with the space J (M) of Jacobi functions, we have a correspondence

(6) v ∈ J (M) 7→ Xv = <
∫ z Å1

2

Å
1

g
− g
ã
,
i

2

Å
1

g
+ g

ã
, 1

ã
_̇
dh .
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This correspondence was studied by Montiel and Ros [42] (see also Ejiri and

Kotani [15]), who wrote down explicitly Xv,
_̇
dh in terms of v as

(7)

Xv = vN +
1

|Nz|2
{vzNz + vzNz} : M −B(N)→ R3,

_̇
dh =

g

g′

Ç
vzz +

Ç
2gg′

1 + |g|2
− g′′

g′

å
vz

å
dz,


where z is any local conformal coordinate onM . The Gauss map ofXv isN and

its support function 〈Xv, N〉 is v. Linear Jacobi functions v ∈ L(N) produce

constant maps Xv (and vice versa), and the correspondence v 7→ Xv is a linear

isomorphism from the linear space of Jacobi functions on M modulo L(N)

onto the linear space of all branched minimal immersions X : M −B(N)→ R3

with Gauss map N modulo the constant maps.

A direct consequence of the derivation in t = 0 of (4) is that the map

v ∈ J (M) 7→ Xv behaves well with respect to fluxes, as stated in the following

lemma. Note that since the flux of a minimal surface is a homological invariant,

we can take the curve Γ described below away from the branch points of the

Gauss map.

Lemma 4.1. In the above setting, let {ψt : M → R3}|t|<ε be a smooth

deformation of M by minimal surfaces, and denote by v ∈ J (M) the normal

part of its variational field. For any fixed closed curve Γ ⊂M , we have

(8)
d

dt

∣∣∣∣
t=0

Flux(ψt,Γ) = Flux(Xv,Γ).

Definition 4.2. Given a minimal surface M , the conjugate Jacobi function

v∗ of a Jacobi function v ∈ J (M) is defined (locally) as the support function

〈(Xv)
∗, N〉 of the conjugate minimal immersion (Xv)

∗. Recall that such a con-

jugate minimal immersion is an isometric minimal immersion of the underlying

Riemannian surface, whose coordinate functions are the harmonic conjugates

to the ones of Xv. Note that v∗ is defined up to additive constants, and v∗ is

globally well defined precisely when (Xv)
∗ is globally well defined. We define

JC(M) = {v + iv∗ | v ∈ J (M) and v∗ is globally defined}.

In other words, JC(M) is the space of support functions 〈X,N〉 of holo-

morphic maps X : M − B(N) → C3 whose real and imaginary parts are or-

thogonal to N . (Now 〈X,N〉 denotes the usual bilinear complex product on

C3.) Since (Xv)
∗∗ = −Xv, we deduce that the conjugate Jacobi of v∗ is −v,

which endows JC(M) with a structure of complex vector space. A simple ob-

servation is that if v ∈ L(N), then Xv is constant, which means that (Xv)
∗

is also constant and so v∗ is a (globally defined) function in L(N). In other
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words,

(9) LC(N) := {〈N, a〉 | a ∈ C3} ⊆ JC(M).

For a general v ∈ J (M), the map (Xv)
∗ is globally well defined provided

that all its period vectors along closed curves on M vanish (equivalently, when

Flux(Xv,Γ) = 0 for all closed curves Γ ⊂ M). As a direct consequence of

Lemma 4.1, we have the following statement.

Lemma 4.3. Given a minimal surface M ⊂ R3 and v ∈ J (M), the conju-

gate Jacobi function v∗ of v is globally defined on M if and only if v preserves

infinitesimally the flux vector along every closed curve on M .

Remark 4.4. As we will see in Sections 4.1 and 4.2, if M is a minimal

surface satisfying the hypotheses of Assertion 1.3 and M is not a Riemann

minimal example, then it admits a nonzero Jacobi function called its Shiffman

function SM , whose Jacobi conjugate S∗M is globally defined. In particular, if

there exists a smooth deformation Mt of M by minimal surfaces such that for

every t, Mt also admits a Shiffman function SMt and the normal part of d
dtMt

equals the Shiffman function SMt , then the flux of Mt along any closed curve

will be independent of t.

4.1. The Shiffman Jacobi function. Next we recall the definition and some

basic properties of the Shiffman function. In 1956, Shiffman [52] introduced a

Jacobi function that incorporates the curvature variation of the parallel sec-

tions of a minimal surface. This function can be defined locally: assume that

(g(z), dh = dz) is the Weierstrass data of a minimal surface M ⊂ R3, where z

is a local conformal coordinate in M . (In particular, g has no zeros or poles

and any minimal surface admits such a local representation around a point

with nonvertical normal vector.) The induced metric ds2 by the inner product

of R3 is ds2 = Λ2|dz|2, where Λ = 1
2(|g| + |g|−1). The horizontal level curves

x3 = c correspond to zc(y) = c + iy in the z-plane (here z = x + iy with

x, y ∈ R), and the planar curvature of this level curve is

(10) κc(y) =

ñ
|g|

1 + |g|2
<
Ç
g′

g

åô∣∣∣∣∣
z=zc(y)

,

where the prime stands for derivative with respect to z.

Definition 4.5. We define the Shiffman function of M as

(11) SM = Λ
∂κc
∂y

= =
[

3

2

Ç
g′

g

å2

− g′′

g
− 1

1 + |g|2

Ç
g′

g

å2
]
,

where = stands for imaginary part.
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Since Λ is a positive function, the zeros of SM coincide with the critical

points of κc(y). Thus, SM vanishes identically if and only if M is foliated

by pieces of circles and straight lines in horizontal planes. In a posthumously

published paper, Riemann [47], [48] classified all minimal surfaces with such a

foliation property: they reduce to the plane, catenoid, helicoid and the one-

parameter family of surfaces defined in Section 2. A crucial property is that

∆SM + |σ|2SM = 0; i.e., SM is a Jacobi function on M . Shiffman himself

exploited this property when he proved that if a minimal annulus M is bounded

by two circles in parallel planes, thenM is foliated by circles in the intermediate

planes; see also Fang [17] for other applications of the Shiffman function.

Coming back to our properly embedded minimal surface M ⊂ R3 in the

family M described in Assertion 1.3, we deduce from Theorem 3.1 (with the

notation in that theorem) that M intersects transversally every horizontal

plane and hence, its Shiffman function SM can be defined globally on M =

(C/〈i〉)−{pj , qj}j . Expressing g locally around a zero pj , it is straightforward

to check that SM is bounded around pj , with continuous extension SM (pj) =

−1
6=
Å
g(5)(pj)
g′′(pj)

ã
, and a similar result holds for poles of g. Hence SM can be

viewed as a continuous function on the cylinder C/〈i〉. Since v = SM solves

the Jacobi equation (3) and when expressed around pj or qj the Jacobi equation

has the form ∆v + qv = 0 for q smooth (here ∆ refers to the Laplacian in the

flat metric on C/〈i〉), elliptic regularity implies that SM extends smoothly to

C/〈i〉. In fact, Corollary 4.15 below implies that SM is bounded on C/〈i〉.

4.2. The space of allowed Gauss maps and their infinitesimal deforma-

tions. Our method to prove that every M ∈ M is a Riemann minimal exam-

ple is based on the fact that the Shiffman function can be integrated at any

M ∈ M, in a similar manner as a vector field on a manifold admits integral

curves passing through any point. To construct a framework in which this last

sentence makes sense, we need some definitions. Since surfaces M ∈ M have

Weierstrass data (g, dz) on C/〈i〉, all the information we need for understand-

ing M is contained in its Gauss map g. We start by defining the appropriate

space of functions where these Gauss maps naturally reside.

Definition 4.6. A meromorphic function g : C/〈i〉 → C∪{∞} will be called

quasiperiodic if it satisfies the following two conditions:

(1) There exists a constant C > 0 such that the distance between any two

distinct points in g−1({0,∞}) ⊂ C/〈i〉 is at least C and given any p ∈
g−1({0,∞}), there exists at least one point in g−1({0,∞})−{p} of distance

less than 1/C from p.

(2) For every divergent sequence {zk}k ⊂ C/〈i〉, there exists a subsequence of

the meromorphic functions gk(z) = g(z + zk) that converges uniformly on
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compact subsets of C/〈i〉 to a nonconstant meromorphic function g∞ : C/〈i〉
→ C ∪ {∞}. (In particular, g∞ is quasiperiodic as well.)

Remark 4.7. A direct consequence of the last definition is that if g :

C/〈i〉 → C ∪ {∞} is a quasiperiodic meromorphic function, then there is a

bound on the order of the zeros and a bound on the order of the poles of g, as

well as uniform bounds away from zero and from above for the coefficients of

zk (resp. z−k) in the series expansion of g and its derivatives around any zero

(resp. pole) of order k of g.

We consider the space of meromorphic functions

W =

g : C/〈i〉 → C ∪ {∞} quasiperiodic : (g) =
∏
j∈Z

p2
jq
−2
j

 ,
where (g) denotes the divisor of zeros and poles of g on C/〈i〉. Statement (7)

of Theorem 3.1 implies that the Gauss map of every M ∈ M lies in W. We

endow W with the topology of uniform convergence on compact sets of C/〈i〉.
Given g ∈ W, it follows from Remark 4.7 that any limit g∞ of (a subsequence

of) gk(z) = g(z + zk) with {zk}k ⊂ C/〈i〉 being a divergent sequence satisfies

that g∞ lies in W. If g ∈ W has divisor of zeros Z =
∏
j p

2
j , then the set {pj}j

is quasiperiodic in the sense that for every divergent sequence {zk}k ⊂ C/〈i〉,
there exists a subsequence of {Z+zk}k that converges in the Hausdorff distance

on compact subsets of C/〈i〉 to a divisor Z∞ in C/〈i〉 (analogously for poles).

Reciprocally, two disjoint quasiperiodic divisors Z =
∏
j p

2
j , P =

∏
j q

2
j in

C/〈i〉 define a unique quasiperiodic meromorphic function g (up to multiplica-

tive nonzero constants) whose principal divisor is (g) = Z/P : existence follows

from Douady and Douady [14]:

g(z) =
∏
n∈Z

c(n)
cosh

2πz−pj
2 cosh

2πz−pj+1

2

sinh2 2πz−qj
2

,

where c(n) is a nonzero complex number such that the above infinite product

converges, while uniqueness can be shown as follows. Suppose g1, g2 ∈ W have

(g1) = (g2). Then the function f = g1/g2 is holomorphic and has no zeros

in C/〈i〉. If f is unbounded on C/〈i〉, then there exists {zk}k ⊂ C/〈i〉 such

that f(zk) diverges. Furthermore, {zk}k is a divergent sequence since f has

no poles. By quasiperiodicity of g1 and g2, after extracting a subsequence we

can assume that fk(z) = f(z + zk) converges uniformly on compact subsets of

C/〈i〉 to a meromorphic function f∞ : C/〈i〉 → C ∪ {∞} that is not constant

infinity. Then f∞ has no poles by Hurwitz’s theorem, but fk(0) = f(zk)→∞
as k → ∞, which is a contradiction. Thus f must be bounded, and so f is

constant by Liouville’s theorem.

To each g ∈ W we associate the quasiperiodic set of its zeros pj and poles

qj in C/〈i〉 (we choose an ordering for this set of zeros and poles), together
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with the value of g at a prescribed point z0 ∈ (C/〈i〉) − g−1({0,∞}). The

bijective correspondence

(12) g 7→ (pj , qj , g(z0)) ∈ [Πj∈Z (C/〈i〉)]× (C− {0})

allows us to identify W (endowed with the uniform topology on compact sets

on C/〈i〉) as the space [Πj∈Z (C/〈i〉)]× (C−{0}) (endowed with its metrizable

product topology).

Given ε > 0, we denote by D(ε) = {t ∈ C | |t| < ε}. We say that a

curve t ∈ D(ε) → gt ∈ W with g0 = g is holomorphic if the corresponding

functions pj(t), qj(t), gt(z0) depend holomorphically on t. In this case, the

function ġ : C/〈i〉 → C∪{∞} given by z ∈ C/〈i〉 7→ d
dt

∣∣∣
t=0

gt(z) is meromorphic

on C/〈i〉. We will call ġ the infinitesimal deformation of g associated to the

curve t 7→ gt.

If ġ is the infinitesimal deformation of g = g0 ∈ W associated to the curve

t 7→ gt and g has principal divisor (g) =
∏
j p

2
jq
−2
j , then the principal divisor

of ġ clearly satisfies

(13) (ġ) ≥
∏
j

pjq
−3
j .

In particular, if ġ is constant, then ġ = 0. Reciprocally, if f is a meromorphic

function on C/〈i〉 and its principal divisor verifies (f) ≥ ∏j pjq
−3
j , then f is the

infinitesimal deformation of g associated to a holomorphic curve t 7→ gt ∈ W
with g0 = g. (Construct gt up to a multiplicative constant a(t) ∈ C−{0} from

its quasiperiodic principal divisor (gt) =
∏
j pj(t)

2qj(t)
−2, where pj(t), qj(t) are

holomorphic curves in C/〈i〉 such that pj(0) = pj , qj(0) = qj and the order of

t 7→ pj(t) at pj is chosen according to the order of f at pj for each j; then choose

the constant a(t) depending holomorphically on t such that a(0) = g(z0).)

We will denote the set of infinitesimal deformations of g associated to

holomorphic curves by

TgW =

f : C/〈i〉 → C ∪ {∞} meromorphic | (f) ≥
∏
j

pjq
−3
j

 .
By the above arguments, TgW is a complex linear space.

Remark 4.8. Note that g, g′ ∈ TgW are respectively the infinitesimal de-

formations at t = 0 associated to the holomorphic curves t 7→ (t + 1)g(z),

t 7→ g(z + t). (From now on, we will denote by prime ′ the derivation with

respect to the conformal coordinate z.)

Let γ = {it | t ∈ [0, 1]} be the generator of the homology of the cylin-

der C/〈i〉. Given g ∈ W, the pair (g, dh = dz) is the Weierstrass data of a

complete, immersed minimal surface in R3 with embedded horizontal planar

ends (each one considered separately) at the zeros and poles of g if and only
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if the corresponding period problem (5) can be solved. In our setting, this is

equivalent to solving the following equations:

(14)

∫
γ

dz

g
=

∫
γ
g dz, Respj

Å
dz

g

ã
= Resqj (g dz) = 0 ∀j ∈ Z.

The above equalities suggest defining the period map Per: W → C2×CZ×CZ

by

(15) Per(g) =

(∫
γ

dz

g
,

∫
γ
g dz,

®
Respj

Å
dz

g

ã´
j

, {Resqj (g dz)}j

)
.

Inside W we have the space of immersed minimal surfaces, i.e., those g ∈ W
such that (g, dz) solves the period problem:

(16) Mimm = Per−1{(a, a, 0, 0) | a ∈ C}.

Definition 4.9. A quasiperiodic, immersed minimal surface of Riemann

type is a minimal surface M ⊂ R3 that admits a Weierstrass pair of the form

(g, dz) on (C/〈i〉)− g−1({0,∞}) where g lies in Mimm.

Remark 4.10. Since Residuepj (
dz
g ) = −2

3
g′′′(pj)
g′′(pj)2 and Residueqj (g dz) =

−2
3

(1/g)′′′(qj)
(1/g)′′(qj)2 , the fact that the pair (g, dz) closes the period at a zero pj (resp. at

a pole qj) of g can be stated equivalently as g′′′(pj) = 0 (resp. (1/g)′′′(qj) = 0).

Definition 4.11. A Jacobi function associated to an element g ∈ W is a

map v : (C/〈i〉) − g−1({0,∞}) → R that satisfies equation (3) on (C/〈i〉) −
g−1({0,∞}). The linear space of real-valued Jacobi functions associated to g

will be denoted by J (g). By equations (6) and (7), every v ∈ J (g) gives rise to

a branched minimal immersion Xv : (C/〈i〉)−B(g)→ R3 with (complex) Gauss

map g, where B(g) is the branch locus of g. The conjugate Jacobi function v∗

of v ∈ J (g) is the (locally defined) support function of the conjugate minimal

immersion (Xv)
∗ of Xv.

We consider the complex linear space

JC(g) = {v + iv∗ | v ∈ J (g) and v∗ is globally defined}.

JC(g) is the space of support functions 〈X,N〉 of holomorphic maps

X : (C/〈i〉)−B(g)→ C3

whose real and imaginary parts are orthogonal to N =
(

2g
|g|2+1

, |g|
2−1

|g|2+1

)
∈ C ×

R ≡ R3. The linear functions of g form a complex linear subspace of JC(g):

LC(g) := {〈N, a〉 | a ∈ C3} ⊆ JC(g).

For later purposes, it is useful to recognize a basis of LC(g). Writing a =

(a1, a2, a3) with ai ∈ C and using that g is the stereographic projection of N
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from the north pole, we have

〈N, a〉 =
2

1 + |g|2
[a1<(g) + a2=(g)] + a3

|g|2 − 1

|g|2 + 1
(17)

=
1

|g|2 + 1
(Ag +Bg) + a3

|g|2 − 1

|g|2 + 1
,

where A,B ∈ C are determined by the equations 2a1 = A+B, 2a2 = i(A−B).

In particular, g
|g|2+1

, g
|g|2+1

, |g|
2−1

|g|2+1
is a basis of LC(g). We will use this fact in

the proof of Corollary 4.15 below.

Definition 4.12. A Jacobi function v ∈ J (g) (resp. JC(g)) is said to

be quasiperiodic if for every divergent sequence {zk}k ⊂ C/〈i〉, there exists a

subsequence of the functions vk(z) = v(z + zk) that converges uniformly on

compact subsets of (C/〈i〉) − g−1
∞ ({0,∞}) to a function v∞, where g∞ ∈ W

is the limit of (a subsequence of) {gk(z) = g(z + zk)}k, which exists since g

is quasiperiodic. Note that v∞ ∈ J (g∞) (resp. JC(g∞)) and that if v∞ is

constant, then v∞ = 0.

Next we give a condition for a Jacobi function to have a globally defined

conjugate Jacobi function.

Proposition 4.13. Given g ∈Mimm, we have

(1) Let h : C/〈i〉 → C ∪ {∞} be a meromorphic function that is a rational

expression of g and its derivatives with respect to z up to some order such

that

(18) ġ(h) =

Ç
g3h′

2g′

å′
belongs to TgW . Then, the map

(19) f(h) =
g2h′

g′
+

2gh

1 + |g|2

lies in JC(g), is quasiperiodic and bounded on C/〈i〉. Furthermore, for

every closed curve Γ ⊂ C/〈i〉,

(20)

∫
Γ

ġ(h)

g2
dz =

∫
Γ
ġ(h) dz = 0.

(2) Reciprocally, if ġ ∈ TgW satisfies (20), then there exists a meromorphic

function h on C/〈i〉 such that (18) holds.

Proof. We first demonstrate item (1). Since ġ(h) ∈ TgW, there exists

a holomorphic curve t 7→ gt ∈ W such that g0 = g and d
dt

∣∣∣
t=0

gt = ġ(h).
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Therefore 〈 ddt
∣∣∣
0

∫ z Ψt, N〉 ∈ JC(g), where Ψt =
Ä

1
2( 1
gt
− gt), i2( 1

gt
+ gt), 1

ä
dz

and N =
(

2<(g)
|g|2+1

, 2=(g)
|g|2+1

, |g|
2−1

|g|2+1

)
.

A simple calculation gives

(21)

∫ z ġ(h)

g2
dz =

gh′

2g′
+ h,

∫ z

ġ(h) dz =
g3h′

2g′

up to additive complex numbers, and then for some a ∈ C3, we have≠
d

dt

∣∣∣∣
0

∫ z

Ψt, N

∑
=

≠∫ z (
1
2(− ġ(h)

g2 − ġ(h)), i2(− ġ(h)
g2 + ġ(h)), 0

)
dz,N

∑
=
〈(

1
2(−gh′

2g′ − h−
g3h′

2g′ ), i2(−gh′

2g′ − h+ g3h′

2g′ ), 0
)
, N
〉

+ 〈a,N〉

=
1

|g|2 + 1

〈Ä
gh′

2g′ + h
ä

(−1,−i, 0) + g3h′

2g′ (−1, i, 0), (<(g),=(g), 0)
〉

+ 〈a,N〉

=
1

|g|2 + 1

ñ
−
Ç
gh′

2g′
+ h

å
g − g3h′

2g′
g

ô
+ 〈a,N〉 = −1

2
f(h) + 〈a,N〉 .

In summary,

(22)

≠
d

dt

∣∣∣∣
0

∫ z

Ψt, N

∑
= −1

2
f(h) + 〈a,N〉.

From (22) we deduce that f is a Jacobi function and lies in JC(g). Quasi-

periodicity of f(h) follows directly from the quasiperiodicity of g since h is

a rational function of g and its derivatives. In order to prove that f(h) is

bounded on C/〈i〉, we first check that f(h) is bounded around every zero and

pole of g and around every zero of g′.

(A) Suppose z = 0 is a zero of g. It suffices to prove that g2h′

g′ +2gh is bounded

around z = 0. Since g2h′

g′ + 2gh = (g2h)′

g′ , we must check that (g2h)′

has a zero at z = 0. From equation (18) we have h′ = 2g′

g3 Ġ, where

Ġ is a primitive of ġ(h) defined in a neighborhood of z = 0. Thus, h =∫ z 2g′

g3 Ġ dz = − 1
g2 Ġ+

∫ z ġ(h)
g2 and (g2h)′ = −ġ(h)+

(
g2
∫ z ġ(h)

g2 dz
)′

. As ġ(h)

vanishes at z = 0 (here we are using that ġ(h) ∈ TgW and formula (13)),

it suffices to show that
(
g2
∫ z ġ(h)

g2 dz
)′

vanishes at z = 0, which clearly

follows from the fact that g has an order-two zero and ġ(h) vanishes at

z = 0. (Also note that this property does not depend on the constant of

integration since g(0) = 0.)

(B) Suppose z = 0 is a pole of g. Since ġ(h) ∈ TgW, then (13) implies that(
g3h′

2g′

)′
has at most a order-three pole at z = 0. Thus, g2h′

g′ is bounded

at z = 0 and so h′ vanishes at z = 0. Now we deduce that 2gh
1+|g|2 also

vanishes at z = 0.
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(C) Suppose g(0) 6= 0 and g′(0) = 0. Then (13) implies that
(
g3h′

2g′

)′
is holo-

morphic at z = 0. Hence the branching order of h at z = 0 is not less

than the branching order of g at the same point. Then trivially both g2h′

g′ ,
2gh

1+|g|2 are bounded at z = 0.

The discussion in items (A), (B) and (C) shows that if we consider the discrete

set A = g−1({0,∞}) ∪ (g′)−1(0), then for every Qj ∈ A, there exist a disk

D(Qj) ⊂ C/〈i〉 and a positive number Cj such that |f(h)| ≤ Cj in D(Qj). The

quasiperiodicity of g and Remark 4.7 insure that both Cj and the radius of

D(Qj) can be taken independently of j. Hence to deduce that f(h) is bounded

on C/〈i〉, it suffices to prove that f(h) is bounded in (C/〈i〉)−∪jD(Qj). This

last property holds because g is quasiperiodic, h is a rational expression of g

and its derivatives, and f is given in (C/〈i〉) − ∪jD(Qj) in terms of g, h by

the formula (19). Hence, f(h) is bounded on C/〈i〉. Finally, (20) is a direct

consequence of (21), and item (1) of the proposition is proved.

Concerning item (2), equation (21) together with the hypothesis (20) allow

us to find a meromorphic function h on C/〈i〉 such that (18) holds. This finishes

the proof. �

Remark 4.14.

(1) Equation (20) could be interpreted as the fact that ġ lies in the kernel of

the differential dPerg of the period map at g ∈Mimm, defined as in (15).

(2) If one takes h = c1 + c2
g2 in (18) with c1, c2 ∈ C, then ġ(h) = 0 (and vice

versa). Furthermore, f(h) is a complex linear combination of g
1+|g|2 ,

g
1+|g|2 ,

which can be viewed as a horizontal linear function of the “Gauss map” g.

Taking h = 1
g in (18), then ġ(h) = −1

2g
′ and f(h) = 1−|g|2

1+|g|2 , which is a

vertical linear function of g.

Corollary 4.15. Let M be a quasiperiodic, immersed minimal surface of

Riemann type. Then, its Shiffman function SM given by (11) admits a globally

defined conjugate Jacobi S∗M , and SM + iS∗M = f is given by equation (19) for

(23) h = hS =
i

2

(g′)2

g3
.

In particular,

(1) Both SM , S
∗
M are bounded on the cylinder M ∪ g−1({0,∞}).

(2) The corresponding infinitesimal deformation ġS = ġ(hS) ∈ TgW is given

by

(24) ġS =
i

2

Ç
g′′′ − 3

g′g′′

g
+

3

2

(g′)3

g2

å
.

(3) If ġS = 0 on M , then both SM , S
∗
M are linear.
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Proof. Note that h defined by (23) is a rational expression of g and g′. A

direct computation gives that plugging (23) into (18) we obtain (24), and that

this last expression has the correct behavior expressed in (13). In particular, ġS
is the tangent vector associated to a holomorphic curve in W passing through

g at t = 0, i.e., ġS ∈ TgW. Using Proposition 4.13, we deduce item 1 of this

corollary. It only remains to check item (3): If ġ(hS) = 0, then (18) gives

hS = b − c
g2 for b, c ∈ C. After substitution in (19), we obtain SM + iS∗M =

2c g
1+|g|2 + 2b g

1+|g|2 . Hence, both SM , S
∗
M are linear. �

5. Holomorphic integration of the Shiffman function

In this section we prove that the Shiffman function SM of a quasiperi-

odic, immersed minimal surface M of Riemann type can be holomorphically

integrated (Theorem 5.14 below), in the sense that M can be deformed by a

complex family t 7→ Mt where t moves in a disk D(ε) ⊂ C centered at the

origin, M0 = M , such that each Mt is a quasiperiodic, immersed minimal sur-

face of Riemann type and at any t ∈ D(ε) ∩ R, the normal component of the

variational field of t 7→ Mt is the Shiffman function of Mt. This property will

be crucial in our proof of Assertion 1.3.

The approach to prove the holomorphic integration of SM is by means of

meromorphic KdV theory, as we next briefly explain. By Corollary 4.15, we can

associate to SM an infinitesimal deformation ġS given by equation (24), which

can be considered to be an evolution equation in complex time t involving

certain quasiperiodic meromorphic functions in the cylinder C/〈i〉 (namely,

elements in the space W). The change of variables

(25) u = −3(g′)2

4g2
+
g′′

2g

transforms (24) into the meromorphic KdV equation

(26) u̇ = −u′′′ − 6uu′.

In Remark 5.6 we will motivate the reason for the change of variables (25),

which could seem to be mysterious at first sight. Therefore, we are interested in

finding a solution u(z, t) of (26) with initial data u(z, 0) = u(z) given by (25).

KdV theory insures that this Cauchy problem admits a unique solution if the

initial data u(z) is an algebro-geometric potential for KdV. (See the paragraph

just before Theorem 5.1 for this notion.) Although this integrability result

appears to be rather standard in KdV theory, the reader interested in minimal

surface theory might be unfamiliar with it. Since to our knowledge this is the

first time that this theory is applied to minimal surfaces, we will include a

self-contained proof of the integrability of the Cauchy problem for KdV with

algebro-geometric initial data (Proposition 5.3).
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Suppose for the moment that the meromorphic function u(z) given by

(25) for g ∈ Mimm is algebro-geometric, and so the solution u(z, t) of (26)

with u(z, 0) = u(z) exists. In order to construct the desired complex family Mt

of quasiperiodic, immersed minimal surfaces of Riemann type, or equivalently,

their Gauss maps gt ∈ Mimm, we argue as follows. First note that g =

1/y2 defines a meromorphic function y(z) on C and that (25) implies that the

following Schrödinger equation in the variable z is satisfied:

(27) y′′ + uy = 0.

Now replace u(z) by u(z, t) in (27), with the unknown y(z, t). We will couple

this Schrödinger equation with an evolution equation in y in such a way that

the integrability condition of the corresponding system of PDEs is that u(z, t)

satisfies (26). Thus, there exists a solution y(z, t) of this coupled system of

PDEs with y(z, 0) = y(z). It turns out that letting gt(z) = 1/y(z, t)2, then gt
solves (24). Of course, there are many technical aspects of this construction

that must be taken into account in order for gt to define an element inMimm.

We finish this summary of the results in this section by indicating why

u = u(z) given by (25) for g ∈ Mimm is an algebro-geometric potential for

KdV. Equation (26) is just the second term in a sequence of infinitesimal

flows, called the KdV hierarchy. By definition, u(z) is algebro-geometric for

KdV if this hierarchy stops at some level in the sense that the n-th flow in the

hierarchy is a linear combination of the preceding flows. The idea here is to

associate to each flow in the KdV hierarchy a bounded Jacobi function on the

initial surface M associated to g ∈Mimm (Theorem 5.8). Then, the fact that

u(z) is algebro-geometric for KdV will follow from the finite dimensionality of

the linear space of bounded Jacobi functions on M , a result that will be proven

in Appendix 1. (This finite dimensionality also follows from the more general

results in [6].)

5.1. Algebro-geometric potentials of the KdV equation. We first introduce

some background properties of the Korteweg-de Vries equation KdV. A pre-

sentation of the KdV theory close to the viewpoint we will need here can be

found in Gesztesy and Weikard [19] and Joshi [27]. For a quick introduction,

one can read Goldstein and Petrich [21], where the related mKdV equation

(modified Korteweg-de Vries) is interpreted as a flow of the curvature of a pla-

nar curve; for other applications of the KdV equation in geometry, see Chern

and Peng [5]. In the literature one can find different normalizations of the KdV

equation (given by different coefficients for u′′′, uu′ in equation (28) below); all

of them are equivalent up to a change of variables. We will follow here the

normalization that appears in [27].
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Given a meromorphic function u(z), where z belongs to an open setO ⊂ C,

we consider the KdV infinitesimal flow, which is the infinitesimal deformation

(28)
∂u

∂t
= −u′′′ − 6uu′,

where as usual, u′, u′′, u′′′, u(4), . . . denote the successive derivatives of u with

respect to z. Associated to (28) we have the KdV equation, an evolution

equation where we look for a meromorphic function u(z, t), with z ∈ O and

t ∈ D(ε) = {t ∈ C | |t| < ε}, satisfying (28). The Cauchy problem for the KdV

equation consists of finding a solution u(z, t) of (28) with prescribed initial

condition u(z, 0) = u(z). In fact, the KdV infinitesimal flow is one of the

terms in a sequence of infinitesimal flows of u, called the KdV hierarchy:

(29)

ß
∂u

∂tn
= −∂zPn+1(u)

™
n≥0

,

where Pn+1(u) is a differential operator given by a polynomial expression of

u and its derivatives up to order 2n. These operators are defined by the

recurrence law ∂zPn+1(u) = (∂zzz + 4u ∂z + 2u′)Pn(u),

P0(u) = 1
2 .

(30)

In particular, the first operators and infinitesimal flows of the KdV hierarchy

are given by

(31)

P1(u)=u

P2(u)=u′′+3u2 (KdV)

P3(u)=u(4)+10uu′′+5(u′)2+10u3

...

∣∣∣∣∣∣∣∣∣∣∣∣

∂u
∂t0

=−u′

∂u
∂t1

=−u′′′ − 6uu′ (KdV)

∂u
∂t2

=−u(5) − 10uu′′′ − 20u′u′′ − 30u2u′

...

The Cauchy problem for the n-th equation of the KdV hierarchy consists of

finding a solution u(z, t) of ∂u
∂tn

= −∂zPn+1(u) with prescribed initial condition

u(z, 0) = u(z).

A function u(z) is said to be an algebro-geometric potential of the KdV

equation (or simply algebro-geometric) if there exists an infinitesimal flow ∂u
∂tn

that is a linear combination of the lower order infinitesimal flows:

(32)
∂u

∂tn
= c0

∂u

∂t0
+ · · ·+ cn−1

∂u

∂tn−1
,

with c0, . . . , cn−1 ∈ C. The next statement collects some important properties

of algebro-geometric potentials.

Theorem 5.1. Let u(z) be an algebro-geometric potential. Then

(1) u extends to a meromorphic function u : C→ C ∪ {∞}.
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(2) If u has a pole at z = z0, then its Laurent expansion around z0 is given by

u(z) =
−k(k + 1)

(z − z0)2
+ holomorphic(z)

for a suitable positive integer k.

(3) All the solutions of the linear Schrödinger equation y′′+u y = 0 are mero-

morphic functions y : C→ C ∪ {∞}.

Item (1) is due to Segal and Wilson [51] and can be found also in Weikard

[56] and Gesztesy and Weikard [19]. Items (2) and (3) are proved in [19]

and [56].

Another fundamental property of algebro-geometric potentials is that the

Cauchy problem for any infinitesimal flow of the KdV hierarchy is uniquely

solvable in the class of algebro-geometric potentials (with fixed coefficients cj
in equation (32)). This integrability follows from the commutativity of any

two infinitesimal flows of the KdV hierarchy. We now give a direct proof of

this well-known fact in the particular case of the KdV infinitesimal flow (28),

which we will use later.

The infinitesimal flow ∂u
∂tn

defines naturally a differential operator ∂
∂tn

that

acts on differential expressions of u and its derivatives. For instance, we have

∂

∂tn

(
u′
)

=

Å
∂u

∂tn

ã′
and

∂

∂tn

Ç
u′′

u
+ u2

å
=

1

u

Å
∂u

∂tn

ã′′
+

Ç
2u− u′′

u2

å
∂u

∂tn
.

Lemma 5.2. The KdV infinitesimal flow ∂
∂t = ∂

∂t1
commutes with any

other infinitesimal flow ∂
∂tn

in the KdV hierarchy :

(33)
∂

∂t

∂u

∂tn
=

∂

∂tn

∂u

∂t
.

Sketch of the proof. The proof is by induction on n. The lemma clearly

holds for n = 1. Assuming that ∂
∂t commutes with ∂

∂tn−1
, we want to prove

(33). We will simply write Pn instead of Pn(u). It follows from equations (29)

and (31) that

(34)
∂u

∂t
= −(u′′ + 3u2)′.

Thus, the induction hypothesis implies that the two expressions below have

the same value:

∂

∂tn−1

∂u

∂t
= − ∂

∂tn−1
(u′′ + 3u2)′ = −

ÇÇ
∂u

∂tn−1

å′′
+ 6u

∂u

∂tn−1

å′
,

∂

∂t

∂u

∂tn−1
= − ∂

∂t
P ′n = −

Å
∂

∂t
Pn
ã′
.
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Therefore, there exists c ∈ C such that ∂
∂tPn = ( ∂u

∂tn−1
)′′ + 6u ∂u

∂tn−1
+ c. We

claim that c = 0: since Pn is a polynomial expression of u and its derivatives,

if we differentiate Pn with respect to t and we make the substitution ∂u
∂t =

−u′′′ − 6u′, we will obtain another polynomial expression in the variables u

and its derivatives without independent term, which gives our claim. Therefore
∂
∂tPn =

Ä
∂u

∂tn−1

ä′′
+ 6u ∂u

∂tn−1
which, using that ∂u

∂tn−1
= −P ′n, transforms into

(35)
∂

∂t
Pn = −P ′′′n − 6uP ′n.

We are now ready to prove the commutativity at the n-th level: Using

equations (29) and (30), we have

∂

∂t

∂u

∂tn
= − ∂

∂t

[(
∂zzz + 4u∂z + 2u′

)
Pn
]

= −
(
∂zzz + 4u∂z + 2u′

) ∂Pn
∂t
− 4

∂u

∂t
P ′n − 2

Å
∂u

∂t

ã′
Pn.

Substituting (34) and (35) in the last expression, we find a polynomial expres-

sion E1 of u, Pn and their derivatives with respect to z, for ∂
∂t

∂u
∂tn

. On the

other hand, (34) gives

∂

∂tn

∂u

∂t
= − ∂

∂tn

î
(u′′ + 3u2)′

ó
= −

Å
(
∂u

∂tn
)′′ + 6u

∂u

∂tn

ã′
,

which combined with the recurrence law ∂u
∂tn

= −(∂zzz + 4u∂z + 2u′)Pn gives

a polynomial expression E2 in the variables u, Pn and its derivatives, too.

Comparing both expressions E1, E2, a lengthy but direct computation shows

that
∂

∂t

∂u

∂tn
− ∂

∂tn

∂u

∂t
= 0,

which proves the lemma. 2

Next we prove the integrability of the KdV infinitesimal flow for an algebro-

geometric initial condition.

Proposition 5.3. Let u = u(z) : C → C ∪ {∞} be an algebro-geometric

potential of the KdV equation so that ∂u
∂tn

= c0
∂u
∂t0

+ · · · + cn−1
∂u

∂tn−1
. Then,

there exist ε > 0 and a unique map u = u(z, t) : C×D(ε)→ C∪{∞} such that

the following properties hold :

(1) u(z, 0) = u(z), and ut(z) = u(z, t) is algebro-geometric for each t ∈ D(ε).

(2) u(z, t) is holomorphic in {(z, t) ∈ C × D(ε) : |u(z, t)| < ∞} and is a

solution of the system of partial differential equations

(36)

(A-G)
∂u

∂tn
− c0

∂u

∂t0
− · · · − cn−1

∂u

∂tn−1
= 0,

(KdV)
∂u

∂t
= −u′′′ − 6uu′


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where, as usual, prime denotes derivative with respect to z.

(3) If there exists ω ∈ C such that u(z + ω) = u(z) for all z ∈ C, then

u(z + ω, t) = u(z, t) for all z ∈ C.

(4) If the jet

J(z0) =
Ä
u(z0), u′(z0), . . . , u(2n)(z0)

ä
∈ C2n+1

is bounded by a constant C > 0, then there exist δ>0 and C1 =C1(δ, C) > 0

such that u(z, t), u′(z, t) and ∂u
∂t (z, t) are holomorphic functions bounded

by C1 in {z ∈ C : |z − z0| < δ} × D(δ).

Proof. We will use the notation ∂
∂s = ∂

∂tn
− c0

∂
∂t0
−· · ·− cn−1

∂
∂tn−1

. Hence

the system (36) can be equivalently written as
∂u

∂s
= 0,

∂u

∂t
= −u′′′ − 6uu′.

(37)

According to the Frobenius Theorem, the integrability condition of (37) is given

by the commutativity ∂
∂s

∂u
∂t = ∂

∂t
∂u
∂s , which follows from Lemma 5.2. Therefore

given any z0 ∈ C that is not a pole of u(z), there exists a positive number δ

and a unique solution u(z, t), (z, t) ∈ {|z− z0| < δ)}×D(δ) of the system (36)

with initial conditions

(38)
∂ku

∂zk
(z0, 0) = u(k)(z0), k = 0, . . . , 2n.

(Note that the operator ∂
∂s involves derivatives with respect to z up to order

2n + 1.) As ut satisfies (A-G), then it is algebro-geometric. Thus part (1) of

Theorem 5.1 insures that ut extends meromorphically to the whole plane C.

As equation (A-G) is an ODE in the variable z and ∂u
∂tn

involves derivatives

with respect to z up to order 2n+ 1, it follows from the initial condition (38)

that u(z, 0) = u(z). This proves items (1) and (2) of Proposition 5.3.

Item (3) of the proposition follows easily from the uniqueness part, and

the local estimate in item (4) is the standard dependence of the solution of an

initial value problem on the initial data. �

Our next result describes the evolution in time of the poles of a solution of

the Cauchy problem for the KdV equation for a special case that we will find

when applying this machinery to a quasiperiodic, properly immersed minimal

surface of Riemann type.

Theorem 5.4. Let u = u(z) : C/〈i〉 → C∪{∞} be a quasiperiodic algebro-

geometric potential on the cylinder, whose Laurent expansion around each pole

z0 of u is given by

(39) u(z) =
−2

(z − z0)2
+ holomorphic(z).
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Let u = u(z, t) : C/〈i〉 × D(ε) → C ∪ {∞} be the solution of the system (36)

with initial data u(z). Then, the following properties hold :

(1) u(z, t) is meromorphic (as a function of two variables), and ut(z) = u(z, t)

is quasiperiodic for each t.

(2) Given a pole z0 of u(z), there exists a holomorphic curve t ∈ D(ε) 7→ z0(t)

with z0(0) = z0 such that in a neighborhood of (z0, 0), we have

(40) u(z, t) =
−2

(z − z0(t))2
+ holomorphic(z, t).

Moreover, all the poles of ut(z) are obtained in this way.

Proof. Since u(z) is algebro-geometric, Proposition 5.3 gives a unique so-

lution of (36) with u(z, 0) = u(z), z ∈ C. Furthermore, u(z, t) is holomorphic

in {(z, t) ∈ C× D(ε) : |u(z, t)| <∞} and ut(z) = u(z, t) descends to C/〈i〉.
We next prove that every pole z0 of u(z) propagates holomorphically in t

to a curve of poles z0(t) of ut(z) with the desired Laurent expansion. Let D

be a closed disk centered at z0 such that u(z) does not vanish in D−{z0}. By

continuity, ut(z) has no zeros in ∂D for |t| sufficiently small. Recall that ut is

meromorphic in C since it is algebro-geometric. By the argument principle,

(41) #(u−1
t (∞)∩D)−#(u−1

t (0)∩D) = #(u−1(∞)∩D)−#(u−1(∞)∩D) = 1.

Let a1, . . . , am be the poles of ut in D. (Both m and the aj may depend on t.)

As ut is algebro-geometric, part (2) of Theorem 5.1 insures that there exist

positive integers k1, . . . , km such that

ut(z) =
−kj(kj + 1)

(z − aj)2
+ holomorphic(z, t)

in a neighborhood of aj . Since the residue of ut at aj is zero for all j, there

exists a meromorphic function vt(z) defined on D such that v′t = ut in D.

Moreover, vt is unique up to an additive constant, which we choose so that

vt has value 1 at some point p0 ∈ ∂D and vt|∂D has no zeros. The Laurent

expansion of vt around its poles is

vt(z) =
kj(kj + 1)

z − aj
+ holomorphic(z, t).

Since S(t) =
∑
j kj(1 + kj) = 1

2πi

∫
∂D vt(z)ds is continuous and integer-valued,

S(t) is constant. As S(0) = 2, we conclude that vt has just one pole that is

simple; i.e., m = 1 and k1 = 1. Thus, ut has just one pole z0(t) in D (which has

order two) with the coefficient −2 for the term in (z − z0(t))−2 in its Laurent

expansion; i.e., equation (40) holds. By (41), ut has no zeros in D for |t| < ε.

Next we prove that the curve t 7→ z0(t) is holomorphic. (Note that we can-

not use the implicit function theorem since the function w below is not known
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to be holomorphic as a function of two variables around (z0, 0).) Consider the

function

w(z, t) =
1

vt(z)
, (z, t) ∈ D × D(ε).

Note that w(z, t) is holomorphic in z since vt does not vanish in D. (This

follows because A(t) = #(v−1
t (∞)) −#(v−1

t (0)) is constant, A(0) = 1 and vt
has a unique pole in D counted with multiplicities.) For t fixed, w(·, t) has a

unique zero z0(t) in D, and z0(0) = z0. As a function of two variables, w(z, t)

is holomorphic outside {(z0(t), t) | t ∈ D(ε)}. Now the holomorphicity of

t 7→ z0(t) is a consequence of the following observation. The function wt(z) =

w(z, t) is holomorphic in the closure D of D, has a simple zero at z0(t) ∈ D
and no more zeros in D. Hence,

zw′t(z)
wt(z)

dz is a meromorphic differential in D

with a simple pole at z = z0(t) and thus,∫
∂D

zw′t(z)

wt(z)
dz = 2πi Resz0(t)

Ç
zw′t(z)

wt(z)
dz

å
= 2πiz0(t).

Since the integrand in the left-hand-side of the above formula depends holo-

morphically on t, the same holds for z0(t). This argument proves the following

property, which we state separately for future reference.

Assertion 5.5. Let h(z, t) be a holomorphic function in {(z, t) ∈ D(ε)×
D(ε) : |h(z, t)| < ∞}, such that z 7→ ht(z) = h(z, t) has exactly one zero in

D(ε) counting multiplicities, and h(0, 0) = 0. Then, there exists a holomorphic

curve α(t), |t| < ε, such that the zeros of h in a neighborhood of (0, 0) are given

by the trace of α.

We now return to the proof of Theorem 5.4. To prove the first part of

item (1), we only need to check that u is meromorphic around the points in

Γ = {(z0(t), t) | |t| < ε} where u = ∞. This follows from equation (40): as

u(z, t) + 2(z − z0(t))−2 is holomorphic and bounded outside of the analytic

subset Γ, it extends holomorphically through Γ.

It remains to check that ut(z) is quasiperiodic for |t| sufficiently small.

This fact will hold if we prove the following inequality for the spherical gradient

of ut(z):

(42)
|u′t(z)|

1 + |ut(z)|2
≤ C

for all z ∈ C, where C > 0 is independent of z. Repeating the arguments

above at every pole z0,j of u, we obtain a sequence of pairwise disjoint closed

disks {Dj}j such that each Dj is centered at z0,j , for |t| small (independently

of j), ut(z) has a unique pole at z0,j(t) ∈ Dj , and the curve t 7→ z0,j(t) is holo-

morphic in t. Note that since u(z) is quasiperiodic, the radii of the Dj can be

taken independently of j. Since the jet J(z1) =
Ä
u(z1), u′(z1), . . . , u(2n)(z1)

ä
is
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uniformly bounded in C2n+1 for z1 ∈ (C/〈i〉) − ∪jDj (because u is quasiperi-

odic), part (4) of Proposition 5.3 implies that both u(z, t), u′(z, t) are uniformly

bounded for (z, t) ∈ [(C/〈i〉)− ∪jDj ]×D(ε) for ε sufficiently small. Therefore,

(42) holds outside ∪jDj with C uniform in t. Now consider one of the disks

Dj . For t fixed, ut|Dj omits a neighborhood of zero that is independent of t.

(This property needs estimates for ut in a slightly bigger disk, which we may

assume.) By Montel’s theorem, {ut|Dj}t form a normal family, which implies

that (42) holds for z ∈ D uniformly in t. Now the proof is complete. �

5.2. The Shiffman hierarchy associated to a Riemann type minimal sur-

face. Let M ∈ M be a quasiperiodic, immersed minimal surface of Riemann

type, with Gauss map g ∈ Mimm. In this section we will associate to g a

sequence of infinitesimal deformations ∂g
∂tn

that generalizes the tangent vector

ġS ∈ TgW associated to the complex Shiffman function, which was given in

equation (24). For this reason, we call this sequence the Shiffman hierarchy. In

order to define the Shiffman hierarchy, we will first define a related hierarchy

associated to a linear Schrödinger equation.

Consider meromorphic functions y, u, g : C → C ∪ {∞} related by the

equations

y′′ + u y = 0 and g =
1

y2
.

From these relations we obtain

(43) u = −3(g′)2

4g2
+
g′′

2g
.

Remark 5.6. The reader may wonder why the KdV equation appears in

connection to the Shiffman function. The change of variables x = g′/g trans-

forms the expression (24) for ġS into an equation of mKdV type, namely,

ẋ = i
2(x′′′ − 3

2x
2x′). It is well known that mKdV equations in x can be trans-

formed into KdV equations in u through the so-called Miura transformations,

x 7→ u = ax′ + bx2 with a, b suitable constants (see, for example, [19, p. 273]).

Equation (43) is nothing but the composition of g 7→ x and a Miura transfor-

mation. Since the KdV theory is more standard than the mKdV theory, we

have opted to deal only with the KdV equation and avoid dealing with the

mKdV equation.

The Schrödinger hierarchy is defined as a sequence of infinitesimal flows

of y given by

(44)

ß
∂y

∂tn
= Pn(u)′y − 2Pn(u)y′

™
n≥0

,
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where Pn(u) is the polynomial expression of u and its derivatives given by

equation (30). The connection between the Schrödinger and the KdV hierar-

chies comes from the fact that the integrability conditions for the system of

partial differential equationsy
′′ + uy = 0,

∂y
∂tn

= Pn(u)′y − 2Pn(u)y′
(45)

are precisely that u(z, t) satisfies the n-th equation of the KdV hierarchy; see

Joshi [27]. Both hierarchies are related by

(46)
∂u

∂tn
= − ∂

∂tn

Ç
y′′

y

å
.

If we rewrite these infinitesimal flows in terms of g, we obtain the following

sequence of infinitesimal flows of g, which we call the Shiffman hierarchy :

∂g

∂tn
=

∂

∂tn

Å
1

y2

ã
= − 2

y3

∂y

∂tn
= −2

Pn(u)′y − 2Pn(u)y′

y3
= −2 ∂z

Ç
Pn(u)

y2

å
.

By construction, we have the following statement.

Lemma 5.7. The Shiffman hierarchy is given by

(47)

ß
∂g

∂tn
= −2 ∂z(gPn(u))

™
n≥0

.

If we compute explicitly these infinitesimal flows solely in terms of g (by

substitution of (30) and (43) in (47)), each right-hand-side is a rational expres-

sion in g and its derivatives. The first infinitesimal flow in this hierarchy is the

infinitesimal deformation inW given by translations in the parameter domain,

and the second one is, up to a multiplicative constant, the infinitesimal defor-

mation ġS given by (24), which corresponds to the Shiffman function. (Recall

from Remark 4.8 and Corollary 4.15 that both infinitesimal deformations lie

in TgW.) We also provide the expression for the third infinitesimal flow:

∂g
∂t0

= −g′,

∂g
∂t1

= −g′′′ + 3g
′g′′

g −
3
2

(g′)3

2g2 ,

∂g
∂t2

= −g(5) + 5g
′g(4)

g + 10g
′′g′′′

g − 35
2

(g′)2g′′′

g2 − 55
2
g′(g′′)2

g2 + 95
2

(g′)3g′′

g3 − 135
8

(g′)5

g4 ,

...

Another key reason why we are interested in the KdV equation is that the

associated Shiffman hierarchy provides a sequence of bounded Jacobi functions

on any quasiperiodic, immersed minimal surface of Riemann type, as we now

explain. If we let g ∈ Mimm be the complex Gauss map of such a surface,

observe that g has order-two zeroes and order-two poles without residues. Thus
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there exists a meromorphic function y : C → C ∪ {∞} such that g = 1/y2.

Moreover y is either periodic, y(z+ i) = y(z), or antiperiodic y(z+ i) = −y(z).

The later one is the case for the Riemann minimal examples Rh, h > 0. (This

follows since the Gauss map g ofRh restricts to each compact horizontal section

with degree one.)

Theorem 5.8. If g ∈ Mimm, then each of the infinitesimal flows ∂g
∂tn

in

the Shiffman hierarchy produces a Jacobi function f(hn) ∈ JC(g), which is

bounded and quasiperiodic on C/〈i〉.

Proof. First observe that equation (43) and the fact that Pn(u) is a poly-

nomial expression of u and its derivatives imply that ∂g
∂tn

is meromorphic and

quasiperiodic, with poles only at (some of) the zeroes and poles of g. To prove

the theorem we will use Proposition 4.13; hence it suffices to demonstrate the

following statement.

Assertion 5.9. Under the hypotheses of Theorem 5.8, for any n, there

exists a meromorphic function hn on C/〈i〉 that is a rational expression of g and

its derivatives up to some order (depending on n) such that ∂g
∂tn

= ∂z
(
g3h′n
2g′

)
and ∂g

∂tn
∈ TgW .

Proof of Assertion 5.9. Viewing the equation −2∂z(gPn(u)) = ∂z
(
g3h′n
2g′

)
as an ODE for the unknown hn and substituting g = 1/y2, we have

1

4
h′n = (y2)′Pn(u) + c(y4)′ = (y2Pn(u))′ − y2Pn(u)′ + c(y4)′,

where c ∈ C is a constant of integration. Therefore, the existence of the desired

hn will follow if we see that y2Pn(u)′ has a global primitive on C/〈i〉 that is

meromorphic. By the recurrence law (30) for the operators Pn, rewritten using

the function y instead of u, we have

P ′n = P ′′′n−1 −
4y′′

y
P ′n−1 + 2

y′y′′ − yy′′′

y2
Pn−1.

Hence, by direct computation,

y2P ′n = y2P ′′′n−1 − 4yy′′P ′n−1 + 2(y′y′′ − yy′′′)Pn−1

= ∂z
(
y2P ′′n−1 − 2yy′P ′n−1 + 2((y′)2 − yy′′)Pn−1

)
,

from where we conclude the existence of a global primitive of y2Pn(u)′ in

C/〈i〉. Furthermore, such a global primitive is meromorphic on C/〈i〉 by the

same property that holds for y, u and Pn−1(u). Therefore, the existence of hn
is proved. Since u,Pn(u) are rational expressions of g and its derivatives, then

the same holds for hn. (In particular, h is meromorphic on C/〈i〉.)
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In order to see that the meromorphic function ∂g
∂tn

lies in TgW, we must

check that its principal divisor D satisfies D ≥ ∏j pjq
−3
j , where (g) =

∏
j p

2
jq
−2
j

is the principal divisor of g in C/〈i〉. Since ∂g
∂tn

is holomorphic outside from

zeros and poles of g, we only need to study the behavior of ∂g
∂tn

around the

points pj , qj .

Claim 1: ∂g
∂tn

has a zero at every zero pj of g.

Proof of Claim 1. We may assume pj = 0. Since g ∈ Mimm, the Weier-

strass pair (g, dz) closes periods at pj . Thus g′′′(0) = 0, which gives a series

expansion g(z) = az2 + z4f1(z), where a, b, . . . will denote complex numbers

and f1, f2, . . . will represent holomorphic functions around z = 0 during this

proof and that of Claim 2 below. Using (43), we obtain

(48) u(z) = − 2

z2
+ b+ z2f2(z).

Assume we have proved that Pn(u) has an order-two pole without residue at

each zero of g; i.e.,

(49) Pn(u) =
c

z2
+ f3(z).

Then we conclude that

g(z)Pn(u) = ac+ z2f4(z),

which implies that ∂g
∂tn

= −2∂z(gPn(u)) has a zero at the origin, as we wanted.

It remains to check that Pn(u) has an order-two pole without residue at the

origin, which will be proved by induction. Since P1(u) = u, the case n = 1 fol-

lows from equation (48). Assuming (49) we next study the Laurent expansion

for Pn+1(u) around z = 0. The recurrence law (30), equations (48) and (49)

and a direct computation give

∂zPn+1(u) = (∂zzz + 4u ∂z + 2u′)Pn(u) =
d

z3
+
e

z
+ f5(z).

As the left-hand-side has a well-defined primitive, we obtain e = 0 and thus,

Pn+1(u) has the correct behavior at the origin. Now Claim 1 is proved.

Claim 2: ∂g
∂tn

has at most an order-three pole at every pole qj of g.

Proof of Claim 2. Again we can suppose qj = 0. First observe that, as

g has a pole at z = 0 without residue, then u is holomorphic at z = 0 (direct

computation). Since P1(u) = u and ∂zPn(u) = (∂zzz + 4u ∂z + 2u′)Pn−1(u),

we deduce that ∂zPn(u) is holomorphic at z = 0. It follows that Pn(u) is

holomorphic at z = 0 for all n. As g has an order-two pole at z = 0, we

deduce that ∂g
∂tn

= −2∂z(gPn(u)) has at most an order-three pole at z = 0.

This completes the proofs of Claim 2 and of Theorem 5.8. �
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Corollary 5.10. For every g ∈Mimm, the function u = −3(g′)2

4g2 + g′′

2g is

an algebro-geometric potential of the KdV equation.

Proof. Using Theorems 5.8 and 9.1 in Appendix 1, we deduce that there

exists n ∈ N such that the Jacobi function f(hn) ∈ JC(g) associated to the

infinitesimal flow ∂g
∂tn

is a linear combination of f(h0), . . . , f(hn−1) associated

to ∂g
∂t0
, . . . , ∂g

∂tn−1
, respectively. Note that the linear map h 7→ f(h) given by

equation (19) is injective. Therefore, hn is a linear combination of h0, . . . , hn−1,

and (18) implies that the n-th infinitesimal flow ∂g
∂tn

of the Shiffman hierarchy

is a linear combination of ∂g
∂t0
, . . . , ∂g

∂tn−1
. By equations (46) and (47), each of

the infinitesimal flows ∂u
∂tn

of the KdV hierarchy can be expressed in terms of

the ones of the Shiffman hierarchy as

∂u

∂tn
=

∂

∂tn

Ç
−3(g′)2

4g2
+
g′′

2g

å
,

from where we conclude that ∂u
∂tn

depends linearly on the lower order infinites-

imal flows in the KdV hierarchy. �

Lemma 5.11. Let u : C→ C∪{∞} be a meromorphic function with Lau-

rent expansion given by (39) around any of its poles, and let y : C→ C ∪ {∞}
be a meromorphic solution of the equation y′′ + uy = 0. Then, the following

properties hold :

(1) Outside of the poles of u, the function y is holomorphic and its zeros are

simple.

(2) At a pole of u, the function y has either a simple pole or an order-two zero.

Proof. First suppose that y has a pole of order k ≥ 1 at z = 0. Then

locally y(z) = z−kf(z) with f(0) 6= 0, from where we conclude that

u(z) = −y
′′(z)

y(z)
= −k(k + 1)

z2
+

2kf ′

f

1

z
+ holomorphic(z).

This implies that every pole of y is also a pole of u, which is the first part of

item (1). By equation (39) we have k(k + 1) = 2; thus k = 1, and so all poles

of y are simple.

We now deal with the zeros of y. If y has a zero at a point a where u is

finite, then it must be a simple zero of y (because the solutions of y′′+ uy = 0

are locally determined by (y(a), y′(a))). Thus it suffices to study the behavior

of y at a pole z0 of u such that y is holomorphic around z0. In this case, we

can write locally y(z) = (z−z0)kf(z) for some nonnegative integer k and some

holomorphic function f with f(z0) 6= 0. Then,

u(z) = −y
′′(z)

y(z)
= − k(k − 1)

(z − z0)2
− 2kf ′(z)

(z − z0)f(z)
+ holomorphic(z).
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Again equation (39) implies k(k − 1) = 2; hence k = 2 and the lemma is

proved. �

Definition 5.12. Let M be a quasiperiodic, immersed minimal surface of

Riemann type, with Weierstrass pair (g, dz) on (C/〈i〉) − g−1({0,∞}). Let

(g) =
∏
j∈Z p

2
jq
−2
j be the principal divisor of g and let z0 ∈ C/〈i〉 be a point

different from pj and qj for all j. The Shiffman function SM of M is said

to be holomorphically integrated if there exist ε > 0 and families {pj(t)}j ,
{qj(t)}j ⊂ C/〈i〉, a(t) ∈ C− {0} such that

(i) For each j ∈ Z, the functions t ∈ D(ε) 7→ pj(t), t 7→ qj(t) ∈ C/〈i〉 are

holomorphic with pj(0) = pj , qj(0) = qj . Also, the function t 7→ a(t) is

holomorphic as well.

(ii) For any t ∈ D(ε), the divisor
∏
j pj(t)

2qj(t)
−2 defines an element gt ∈

Mimm with g0 = g and gt(z0) = a(t). Let Mt be the quasiperiodic,

immersed minimal surface of Riemann type with Weierstrass pair (gt, dz).

(iii) For t ∈ D(ε), the derivative of t 7→ gt with respect to t equals

d

dt
gt =

i

2

Ç
g′′′t − 3

g′tg
′′
t

gt
+

3

2

(g′t)
3

g2
t

å
on C/〈i〉.

Remark 5.13. Definition 5.12 is motivated by the following fact. With the

notation in that definition, suppose that the Shiffman function SM of M can

be holomorphically integrated. Consider the Weierstrass pair (gt, dz), t ∈ C,

|t| < ε. Fix a point z0 ∈ (C/〈i〉) − g−1({0,∞}). Applying equation (22) to

Ψt =
Ä

1
2( 1
gt
− gt), i2( 1

gt
+ gt), 1

ä
dz at every t, we obtain

(50)

Æ
d

dt

∣∣∣∣
t

∫ z

z0

Ψt, Nt

∏
= −1

2
f(ht) + 〈a(t), Nt〉,

where f(ht) = SMt + iS∗Mt
is the (complex valued) Jacobi function of Mt.

Writing t = t1 + t2i with t1, t2 ∈ R and taking real parts in the last displayed

equation at t = t1 + 0i, we obtainÆ
∂

∂t1

∣∣∣∣
t1

<
∫ z

z0

Ψt1 , Nt1

∏
= −1

2
SMt + 〈<(a(t1)), Nt1〉.

Calling ψt1 = <
∫ z
z0

Ψt1 −
∫ t1

0 <(a(s)) ds, we have that the normal component

of the variational field of the deformation t1 7→ ψt1 of M equals (up to a

multiplicative constant) the (real valued) Shiffman function of Mt.

Theorem 5.14. Let M = (C/〈i〉, g, dz) be a quasiperiodic, immersed min-

imal surface of Riemann type (i.e., g ∈ Mimm). Then, its Shiffman function

can be holomorphically integrated. Furthermore, if M is embedded, then its

related surfaces Mt are also embedded for |t| sufficiently small.
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Proof. Choose a meromorphic function y : C→ C∪{∞} such that g(z) =

y(z)−2, and let u : C → C ∪ {∞} be given by u(z) = −y′′(z)/y(z), which is

also meromorphic. Note that y(z + i) = ±y(z) and u(z + i) = u(z) and that

each of the three functions g, y and u is quasiperiodic. By Corollary 5.10, u is

algebro-geometric. A direct computation (using that the zeros and poles of g

have order two) shows that around each pole z0 of u, the Laurent expansion

of u is

u(z) =
−2

(z − z0)2
+ holomorphic(z).

Using Theorem 5.4, we can solve the Cauchy problem for the KdV equation

with initial condition u(z) and we get a meromorphic function ut(z) = u(z, t),

z ∈ C/〈i〉 and |t| < ε, which is quasiperiodic for each t. Moreover the poles of

ut are given by holomorphic curves t 7→ z0(t), and

(51) u(z, t) =
−2

(z − z0(t))2
+ holomorphic(z, t)

around z0(t). Consider the differential system in (45) for n = 1 with unknown

y(z, t), y
′′ + u(z, t)y = 0,

∂y
∂t1

= P1(u)′y − 2P1(u)y′ = u′(z, t)y − 2u(z, t)y′.
(52)

(The second line in (52) corresponds to the Shiffman flow in the Schrödinger

hierarchy.) The compatibility condition of (52) is just the KdV equation for u;

see Appendix A in Joshi [27]. By the Frobenius theorem, (52) admits a unique

solution y = y(z, t) with initial condition y(z, 0) = y(z). Since z 7→ u(z, t) is

algebro-geometric for every t, part (3) of Theorem 5.1 implies that y(z, t) is

defined on C×D(ε) (for some ε > 0) and is meromorphic in z. The uniqueness

of solution of an initial value problem together with the fact that y(z + i) =

±y(z) give that y(z+ i, t) = ±y(z, t), with the same choice of signs as for y(z).

By Lemma 5.11 applied to ut(z) = u(z, t) and yt(z) = y(z, t), we find that

yt is holomorphic with simple zeros outside of the poles of ut and that at a

pole of ut, either yt has a simple pole or yt has an order-two zero. We claim

that this last possibility cannot occur. To see the claim, let D be a closed disk

centered at a pole z0 = z0(0) of u(z), and let ε > 0 such that z0(t) ∈ Int(D) is

the unique pole of ut(z) in D whenever |t| < ε; see the proof of Theorem 5.4

for details. Note that since g(z) has order-two zeros and poles, then the zeros

and poles of y(z) are simple. Since u(z) has a pole at z0 ∈ D, then Lemma 5.11

demonstrates that y(z) has a simple pole at z0. We can also assume without

loss of generality that y(z) has no other zeros or poles in D and, by continuity,

yt(z) has no zeros or poles in ∂D for t sufficiently close to zero. Arguing by

contradiction, assume there exists t̂ with |t̂ | < ε such that y
t̂

has an order-two
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zero at z0(t̂ ). Then,

(53) #(y−1
t (∞) ∩D)−#(y−1

t (0) ∩D) = #(y−1(∞) ∩D)−#(y−1(0) ∩D).

The right-hand-side of (53) is 1, while the left-hand-side for t = t̂ equals −2.

This contradiction proves our claim.

Since the zeros pj(t) and poles qj(t) of yt(z) are simple, Assertion 5.5 in-

sures that pj(t), qj(t) depend holomorphically on t. Furthermore, the fact that

y(z, 0) = y(z) implies that pj(0) = pj , qj(0) = qj , where (y) =
∏
j pjq

−1
j is the

principal divisor of y(z). The same arguments in the proof of Theorem 5.4 now

give that yt(z) is quasiperiodic. Finally, define the quasiperiodic meromorphic

function

g(z, t) =
1

y2(z, t)
, (z, t) ∈ (C/〈i〉)× D(ε).

As a function of z, gt(z) = g(z, t) has only order-two zeros and poles, and

t 7→ gt is a holomorphic curve in W. The complex periods of the Weierstrass

pair ((C/〈i〉) − g−1
t ({0,∞}), gt, dz) along every closed curve Γ ⊂ C/〈i〉 are

constant in t provided that we prove that the following integrals vanish:

(54)
d

dt

∫
Γ

dz

gt
= −

∫
Γ

∂gt
∂t

g2
t

dz,
d

dt

∫
Γ
gt dz =

∫
Γ

∂gt
∂t

dz.

By Assertion 5.9 together with equation (20), both integrals in (54) vanish if

we check that ∂g
∂t = ∂g

∂t1
, where the right-hand-side in the last equation is the

flow of the Shiffman hierarchy for n = 1. Also note that once we know that

the complex periods of (gt, dz) on (C/〈i〉) − g−1
t ({0,∞}) do not depend on t,

we can easily deduce that this pair is the Weierstrass data of a quasiperiodic,

immersed minimal surface of Riemann type Mt ⊂ R3.

Next we prove that ∂g
∂t = ∂g

∂t1
. Since y′′t + utyt = 0 and gt = y−2

t , we have

ut = −3(g′t)
2

4g2
t

+
g′′t
2gt

, which is equation (43) for time t. Using that y(z, t) satisfies

(52) and comparing with (45) and (47), we deduce the desired equality. Note

that ∂g
∂t1

is a constant multiple of the (complex) Shiffman Jacobi function.

Hence, we have proved that the Shiffman function can be holomorphically

integrated on M .

Finally, the fact that Mt is embedded for |t| sufficiently small provided

that M is embedded follows from the previous arguments together with the

maximum principle for minimal surfaces. �

6. The proofs of Theorems 1.1 and 1.2

The goal of this section is to prove Assertion 1.3 stated in the introduc-

tion. Recall from Section 3 that Assertion 1.3 implies our main Theorem 1.1

and its consequence, Theorem 1.2. Our strategy to prove Assertion 1.3 is as

follows. (We follow the notation in that assertion.) First, we will prove in
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Proposition 6.2 that if the Shiffman function SM of a surface M ∈M is linear,

then M is a Riemann minimal example. Second, we show that for every surface

M ∈M, its Shiffman function is linear (item (2) of Proposition 6.3).

6.1. Minimal surfaces of Riemann type whose Shiffman function is linear.

Lemma 6.1. Suppose that the Shiffman function SM of a quasiperiodic,

immersed minimal surface of Riemann type M ⊂ R3 is linear. Then, M

is singly-periodic, and its smallest orientable quotient surface M1 is a torus

punctured in two points with total curvature −8π. Furthermore, M1 is properly

and minimally immersed in R3/〈v〉, where v ∈ R3−{0} is a translation vector

of M , and the punctures of M1 correspond to planar ends of M .

Proof. Let N be the Gauss map of M . Since SM ∈ L(N), its conjugate

Jacobi function S∗M is also linear; thus SM + iS∗M ∈ LC(N). By equations (9)

and (11), this linearity of SM + iS∗M implies that there exists a ∈ C3 such that

(55)
3

2

Ç
g′

g

å2

− g′′

g
− 1

1 + |g|2

Ç
g′

g

å2

= 〈N, a〉.

After writing a = (a1, a2, a3), 2a1 = A+ B, 2a2 = i(A− B) and plugging the

equation (17) into (55), we obtain the following ODE for g:

3

2

Ç
g′

g

å2

− g′′

g
− 1

|g|2 + 1

Ç
g′

g

å2

=
1

|g|2 + 1
(Ag +Bg) + a3

|g|2 − 1

|g|2 + 1
.

An algebraic manipulation in the last expression leads to

g

Ç
3

2

(g′)2

g
− g′′ −B − a3g

å
=
g′′

g
− 1

2

Ç
g′

g

å2

+Ag − a3.

Since g is holomorphic and not constant, we deduce that

3

2

(g′)2

g
− g′′ −B − a3g = 0,

g′′

g
− 1

2

Ç
g′

g

å2

+Ag − a3 = 0.

After elimination of g′′ in both equations, we arrive at (g′)2=g(−Ag2+2a3g+B).

Hence we have a (possibly branched) holomorphic covering π = (g, g′) from

the cylinder M ∪ {planar ends} ≡ C/〈i〉 onto the compact Riemann surface

Σ = {(ξ, w) ∈ (C ∪ {∞})2 | w2 = ξ(−Aξ2 + 2a3ξ +B)}. Clearly, Σ is either a

sphere or a torus. We claim that Σ cannot be a sphere. Otherwise, consider the

meromorphic differential dξ
w on Σ, whose pullback by π is π∗(dξw ) = dg

g′ = dz.

Given a pole P ∈ Σ of dξ
w , choose a point z0 ∈ C/〈i〉 such that π(z0) = P .

The residue of dξ
w at P can be computed as the integral of dξ

w along a small

closed curve ΓP ⊂ Σ that winds once around P . After lifting ΓP through π

locally around z0, we obtain a closed curve Γ̃P ⊂ C/〈i〉 that winds a positive

integer number of times around z0, depending on the branching order of π
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at z0. Hence the residue of dξ
w at P equals a positive integer multiple of the

residue of dz at z0, which is zero. Therefore, dξw has residue zero at all its poles,

and so it is exact on Σ. This implies that dz is also exact on C/〈i〉, which is a

contradiction. Thus, Σ is a torus. Now consider the following Weierstrass pair

on Σ: Å
g1(ξ, w) = ξ, dh1 =

dξ

w

ã
.

The associated metric to this pair is
(

1
2(|ξ|+ |ξ|−1) |dξ||w|

)2
, which can be easily

proven to be positive definite and complete in Σ−{(0, 0), (∞,∞)}. Note that

g1 ◦π = g and π∗(dξw ) = dz. This implies that the Weierstrass pair (g, dz) of M

can be induced on the twice punctured torus Σ− {(0, 0), (∞,∞)}. From here

one easily deduces that M is singly-periodic. Note that since the degree of

the extended Gauss map g1 on Σ is 2, then the total curvature of the quotient

minimal surface is −8π. �

Proposition 6.2. If the Shiffman function SM of an embedded surface

M ∈M is linear, then M is a Riemann minimal example.

Proof. Let M1 ⊂ M be the subset of surfaces that are singly-periodic;

their smallest orientable quotient is a properly embedded, twice-punctured

minimal torus in a quotient of R3 by a translation. By Lemma 6.1, our propo-

sition reduces to proving thatM1 coincides with the family R = {Rt}t of Rie-

mann minimal examples. This result is implied by the main theorem in [34];

see also Appendix 2 for a self-contained proof. Up to this reduction, the propo-

sition is proved. �

6.2. The linearity of the Shiffman function for every surface M ∈ M.

Recall that M is the space of properly embedded, minimal planar domains

M ⊂ R3 with two limit ends and flux F = FM = (h, 0, 1), h = h(M) > 0. M
is endowed with its natural topology of uniform convergence on compact sets.

According to the notation in Theorem 3.1, the heights of the planar ends of

every M ∈M are

(56) · · · < <(p−1) < <(q−1) < <(p0) < <(q0) < <(p1) < <(q1) < · · · .

Recall from Section 4.2 that we view M as a subset of W by the map M 7→ g

that associates to each M ∈ M its meromorphic Gauss map g ∈ W. For

this inclusion to make sense we must identify surfaces in M up to horizontal

translations in R3. (Two elements in W that differ in a vertical translation

are considered as different elements in W, and the same holds for two sur-

faces in M that differ in a vertical translation.) Indeed, M ⊂ Mimm ⊂ W,

where Mimm is defined by (16). This identification of M as a subset of W is

consistent with the topology of both sets (W was equipped with the uniform
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convergence of compact sets of C/〈i〉) because the convergence of surfaces in

M produces convergence of the corresponding Gauss maps in W. (For this

property, one needs to extend uniform convergence across the planar ends

g−1({0}) = {pj}j , g−1({∞}) = {qj}j .) Also recall that the topology of W
is equivalent to the product topology on [Πj∈Z (C/〈i〉)] × (C − {0}) by the

bijection g 7→ (pj , qj , g(z0)) defined in (12).

Next we want to define the functions that map each surface M ∈M to the

relative height of each of its planar ends with respect to the end corresponding

to p0. We define the positive functions hj : M→ R for j ∈ N by

h1(M) = <(q0 − p0), h2(M) = <(p0 − q−1),

h3(M) = <(p1 − p0), h4(M) = <(p0 − p−1) · · · .

Proposition 6.3. Given F = (h, 0, 1) with h > 0, let MF = {M ∈
M | FM = F}. Then

(1) There exists a surface Mmax ∈ MF that maximizes each of the functions

hj+1 in MF (j) = {M ∈ MF (j − 1) | hj(M) = maxMF (j−1) hj} for all

j ≥ 1, where MF (0) = MF . Also, there exists a surface Mmin ∈ MF

that minimizes each hj+1 in ›MF (j) = {M ∈ ›MF (j − 1) | hj(M) =

minM̃F (j−1)
hj} for all j ≥ 1. Furthermore, the Shiffman function of every

such surface Mmin,Mmax is linear.

(2) The Shiffman function of every surface M ∈M is linear.

Proof. By the uniform curvature estimates in Theorem 3.1 and subse-

quent uniform local area estimates, we deduce that MF is compact where

MF is considered as a topological subspace of [Πj∈Z (C/〈i〉)]× (C−{0}) with

its metrizable product topology. Note that hj is continuous. Thus, there

exists a maximum of h1 in MF . Now consider the restriction of h2 to the

nonempty subset MF (1) = {M ∈ MF | h1(M) = maxMF
h1}. As before, we

can maximize h2 on MF (1), which implies that the space MF (2) defined in

the statement of the proposition is nonempty and maximize h3 inMF (2). Re-

peating the argument, induction lets us maximize hj+1 inMF (j) 6= Ø for each

j ∈ N. Since the compact subsets MF (j) satisfy MF (j) ⊃ MF (j + 1) for all

j, this collection of closed sets satisfies the finite intersection property. By the

compactness of MF , we conclude that
⋂
j∈NMF (j) 6= Ø. Thus there exists a

surface Mmax ∈MF that maximizes each of the functions hj+1 inMF (j) for all

j ≥ 1. In the same way, we find a surface Mmin ∈MF that minimizes the func-

tion hj+1 on ›MF (j) for all j ≥ 1. This proves the first statement of item (1).

Next we prove that if M0 ∈ MF maximizes each of the functions hj+1

in MF (j) for all j ≥ 1, then its Shiffman function is linear. (For mini-

mizing surfaces, the argument is similar.) By Theorem 5.14, the Shiffman

function SM0 of M0 can be holomorphically integrated. Thus we find a curve
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t ∈ D(ε) 7→ gt ∈Mimm ⊂ W whose zeros pj(t) and poles qj(t) depend holomor-

phically on t, satisfying items (i), (ii) and (iii) of Definition 5.12 for M = M0.

With the notation of that definition, let ψt : (C/〈i〉)− {pj(t), qj(t)}j → R3 be

the parametrization of Mt given by

ψt(z) = <
∫ z

z0

Å
1

2

Å
1

gt
− gt
ã
,
i

2

Å
1

gt
+ gt

ã
, 1

ã
dz,

where z0 has been chosen in (C/〈i〉) − {pj(t), qj(t) | j ∈ Z, |t| < ε}. By equa-

tion (50), the normal part of the variational field of t ∈ D(ε) 7→ ψt is (up to a

multiplicative constant) the complex valued Shiffman function SMt + iS∗Mt
of

Mt plus a linear function of the Gauss map Nt of Mt; we conclude from Re-

mark 4.4 that Mt ∈MF for all t. Therefore, the harmonic function t ∈ D(ε) 7→
h1(Mt) = <(q0(t)−p0(t)) attains a maximum at t = 0, and hence it is constant.

From here we conclude that the holomorphic function t ∈ D(ε) 7→ q0(t)− p0(t)

is also constant. The same argument applies to each function t 7→ hj(Mt),

concluding that for any t, all the planar ends pj(t), qj(t) of Mt are placed at

pj(t) = p0(t) + pj − p0, qj(t) = p0(t) + qj − p0.

Geometrically, this means that the maps ψt coincide with ψ0 up to translations

in the parameter domain and in R3. Therefore, the normal part of the varia-

tional field of t 7→ ψt is linear, as desired. This proves the second statement in

item (1) of the proposition.

Finally, we prove item (2) of the proposition. Given M ∈ M, let F =

(h, 0, 1) be the flux vector of M . By item (1), there exist surfaces Mmax,Mmin

∈MF such that Mmax maximizes each of the functions hj+1 in MF (j) (resp.

Mmin minimizes hj+1 in ›MF (j)) for all j ≥ 1. Furthermore, the Shiffman

functions of Mmax,Mmin are linear. By Proposition 6.2, both Mmax,Mmin are

Riemann minimal examples. Since the flux parametrizes the space of Riemann

minimal examples, it follows that the Riemann minimal example RF in MF

is unique up to translation. Thus, Mmax and Mmin are translations of RF . On

the other hand, the vertical distance between the ends p0, q0 of M (with the

notation in (56)) is bounded above (resp. by below) by the distance between

the corresponding ends of Mmax (resp. of Mmin). Therefore, the vertical dis-

tance between the ends p0, q0 of M is maximal, or equivalently, M maximizes

h1 on MF . Analogously, M maximizes each of the functions hj+1 in MF (j)

for all j ≥ 1 and applying item (1), its Shiffman function SM is linear. Now

the proof of the proposition is complete. �

7. Linearity of bounded Jacobi functions

on Riemann minimal examples

We devote this section to describing the set of bounded Jacobi functions

on every Riemann minimal example, which is the goal of Theorem 7.1 below.
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This result plays a central role in our proof in Section 8 that any limit end

of a properly embedded minimal surface with finite genus and horizontal limit

tangent plane at infinity converges exponentially in height to a limit end of

one of the Riemann minimal examples.

Theorem 7.1. Let R = Rt ⊂ R3 be a Riemann minimal example. Then,

any bounded Jacobi function on R is linear.

Proof. We first homothetically rescaleR so that its middle ends are placed

at integer heights. Let N be the Gauss map of R and Γ the zero set of the

linear Jacobi function 〈N, e2〉, where e2 = (0, 1, 0). Γ consists of the horizon-

tal straight lines in R plus the intersection of R with the (x1, x3)-plane (of

reflective symmetry). Viewing the parameter domain as a cylinder S1 × R
punctured at integer heights, the reflection in the (x1, x3)-plane produces a

reflection symmetry of the cylinder by a plane passing through its axis, and Γ

is represented in the cylinder by the wider circles and straight lines in Figure 3

left.

Figure 3. Left: The conformal model S1×R. Right: A Riemann

minimal example. Triangles denote finite branch points, and

dots denote ends. The planar curves of symmetry together

with the straight lines form the zero set of 〈N, e2〉, and we have

shadowed one of its nodal domains.

Γ divides R into infinitely many components Ωi, i ∈ Z, which we call

nodal domains. (One of these nodal domains is shaded in Figure 3.) The

branch values of N lie in the great circle S2 ∩ {x2 = 0}. Thus N restricts to

Ωi as a biholomorphism onto one of the open hemispheres in which {x2 = 0}
divides S2 for each i ∈ Z. Furthermore, such a biholomorphism has continuous
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extension to the boundaries of these domains. Since the induced metric on Ωi

by the inner product of R3 and the spherical metric are conformally related by

N , we can identify Ωi with the hemisphere N(Ωi) and express the stability form

associated to the Jacobi operator as the quadratic form
∫

Ωi
(|∇w|2 − 2w2) dA

for any function in the Sobolev space W 1,2(Ωi) with the spherical metric.

Assertion 7.2. Let v ∈ W 1,2(Ω) be a bounded solution of ∆v + 2v = 0

on a hemisphere Ω ⊂ S2. Then∫
∂Ω
v
∂v

∂η
ds ≥ 0,

with equality if and only if v linear; i.e., v(x) = 〈x, a〉 for some a ∈ R3. (Here

η stands for the exterior conormal unit vector to Ω along its boundary.)

Proof of Assertion 7.2. Clearly we can assume that Ω is one of the two

hemispheres in S2−{x2 = 0}. Recall that the Neumann problem for the spher-

ical Laplacian on Ω has first eigenvalue 0 (whose eigenfunctions are constant)

and second eigenvalue 2, with eigenfunctions being of the type x ∈ Ω 7→ 〈x, b〉
with b ∈ R3 orthogonal to e2. In particular, for every function w ∈ W 1,2(Ω)

with
∫

Ωw dA = 0, we have

(57)

∫
Ω

(|∇w|2 − 2w2) dA ≥ 0,

and equality holds if and only if w(x) = 〈x, b〉 for any b orthogonal to e2.

Let ϕ be the restriction of x2 = 〈x, e2〉 to S2. The function ϕ has constant

nonzero sign on Ω, and we can consider, for any bounded function v ∈W 1,2(Ω),

the real number c =

∫
Ω
v dA∫

Ω
ϕdA

. After applying (57) to w = v−cϕ on Ω, we obtain

0 ≤
∫

Ω

î
|∇(v − cϕ)|2 − 2(v − cϕ)2

ó
dA(58)

=

∫
Ω

Ä
|∇v|2 − 2v2

ä
dA

+ c2
∫

Ω

Ä
|∇ϕ|2 − 2ϕ2

ä
dA− 2c

∫
Ω

(〈∇v,∇ϕ〉 − 2vϕ) dA.

Since ϕ = 0 on ∂Ω, integration by parts gives∫
Ω

(〈∇v,∇ϕ〉 − 2vϕ) dA = −
∫

Ω
ϕ (∆v + 2v) dA = 0.

In the same way, the second integral in (58) also vanishes, and the first integral

in (58) is

(59)

∫
Ω

Ä
|∇v|2 − 2v2

ä
dA =

∫
Ω

[div(v∇v)− v(∆v + 2v)] dA =

∫
∂Ω
v
∂v

∂η
ds,

which gives the inequality in Assertion 7.2. If equality holds, then (57) im-

plies that v − cϕ is linear on Ω. Hence, v is linear in Ω, which proves the
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necessary condition in Assertion 7.2. The proof of the sufficient condition is

straightforward.

We next continue with the proof of Theorem 7.1. Let T = (T1, 0, 2) ∈
R3−{0} be the smallest orientation-preserving translation vector of R. (Recall

that the planar ends are placed at integer heights.) Take a bounded Jacobi

function v on R. We will prove that v is linear. For j ∈ Z fixed, denote by vj
the function on R given by

vj(p) = v(p+ jT ), p ∈ R.

Since {vj}j is a sequence of bounded Jacobi functions on R, after extracting

a subsequence we can assume that as j → +∞, the sequence {vj}j converges

smoothly to a bounded Jacobi function v∞ : R → R on compact subsets of

R; see, for instance, [20]. In fact, both vj , v∞ extend smoothly through each

planar end of R and the smooth convergence {vj}j → v∞ extends to the planar

ends as well.

Assertion 7.3. v∞ is linear on R.

Proof of Assertion 7.3. By the convergence above, there exists a sequence

of straight lines rk = R ∩ {x3 = jk} with jk ∈ N, jk ↗ +∞ such that the

values of v and its derivatives along rk converge uniformly as k → +∞ to the

values of v∞ and its derivatives along the straight line r = R ∩ {x3 = 0}. By

Assertion 7.2 and equation (59), we have

(60) 0 ≤
∑
j

∫
Ωj

(|∇v|2 − 2v2) dA =

∫
rk+1

v
∂v

∂η
ds−

∫
rk

v
∂v

∂η
ds,

where the sum runs in those nodal domains Ωj between the heights of rk and

rk+1. Taking k → +∞ in (59), we deduce that

(61) lim
j→+∞

∫
Ωj

(|∇v|2 − 2v2) = 0

for every sequence of nodal domains Ωj with heights going to +∞. Finally,

the convergence {vj}j → v∞ and (61) together with Assertion 7.2 imply that

v∞ is linear on any nodal domain of R. By analyticity, v∞ is linear on R and

Assertion 7.3 is proved.

The argument above can be repeated when j → −∞, from where we

deduce that after passing to a subsequence, vj converges as j → −∞ to a

linear function v−∞ on R (possibly distinct of v∞). Furthermore, there exists

a sequence of straight lines rk = R∩{x3 = jk} with k ∈ Z 7→ jk ∈ Z increasing,

such that the values of v and its derivatives along rk converge uniformly as

k → +∞ (resp. as k → −∞) to the values of v∞ (resp. of v−∞) and its

derivatives along the straight line r = R∩ {x3 = 0}.
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Next consider the piece of R bounded by the straight lines rk, r−k with

k ∈ N. The same arguments above demonstrate that for the nodal domains

Ωj between the heights of rk and r−k, we have

0 ≤
∑
j

∫
Ωj

(|∇v|2 − 2v2) dA =

∫
rk

v
∂v

∂η
ds−

∫
r−k

v
∂v

∂η
ds

(k→+∞)−→
∫
r
v∞

∂v∞
∂η

ds−
∫
r
v−∞

∂v−∞
∂η

ds.

Thus it only remains to check that if w is a linear function on R, then

(62)

∫
r
w
∂w

∂η
ds = 0.

To prove (62) we again use the spherical geometry: the straight line r cor-

responds via the Gauss map N of R to a twice covered geodesic arc γ ⊂ S2

∩ {x2 = 0} starting at the north or south pole and ending at a nonvertical

branch value of N (when we view r in R3, this description corresponds to trav-

eling along r from one of its ends to the finite branch point P of N along r,

and from P to the other end of r), and w corresponds to the height function

w(x) = 〈x, a〉 for certain a ∈ R3. Then (62) holds since the conormal vector η

at a point x ∈ r, viewed at one of the two halves of r, is opposite to the value

of η at the same point x, viewed in the other half of r. Now the theorem is

proved. �

8. Asymptotic behavior of finite genus minimal surfaces

In this section, we will give the following descriptive result for the asymp-

totic behavior of every properly embedded minimal surface of finite genus and

infinitely many ends.

Theorem 8.1 (Asymptotic Limit End Property). Let M be a properly

embedded minimal surface in R3 with finite genus g and an infinite number

of ends. Then, M has bounded curvature and after a possible rotation and a

homothety, the following statements hold :

(1) M has two limit ends. In fact, M is conformally diffeomorphic to M−EM ,

where M is a compact Riemann surface of genus g and EM = {en | n ∈ Z}∪
{e−∞, e∞} is a countable closed subset of M with exactly two limit points

e∞ and e−∞. Furthermore, limn→−∞ en = e−∞ and limn→∞ en = e∞.

The set of points EM is called the space of ends of M , the point e−∞
is called the bottom end, the point e∞ is called the top end and every

point en with n ∈ Z is called a middle end of M .

(2) For each n ∈ Z, there exists a punctured disk neighborhood En ⊂ M ⊂ M

of en that is asymptotic in R3 to a horizontal plane Πn and that is a graph

over its projection to Πn. Furthermore, the usual linear ordering on the



526 WILLIAM H. MEEKS III, JOAQUÍN PÉREZ, and ANTONIO ROS

index set Z respects the linear ordering of the heights of the related planes.

The ordered set of heights H = {hn = x3(Πn) | n ∈ Z} of these planes

naturally corresponds to the set of heights of the middle ends of M .

(3) There exists a positive constant CM such that if |t| > CM , then the horizon-

tal plane {x3 = t} intersects M in a proper arc when t ∈ H , or otherwise,

{x3 = t} intersects M in a simple closed curve.

(4) Let η denote the unitary outward conormal along the boundary of Mt =

M ∩ {x3 ≤ t}. Then the flux vector of M , which is defined to be

FM =

∫
∂Mt

η ds

(here ds stands for the length element ), is independent of the choice of t

and has the form FM = (h, 0, 1) for some h > 0.

(5) Let Rh ⊂ R3 be the Riemann minimal example with horizontal tangent

plane at infinity and flux vector F = (h, 0, 1) along a compact horizontal

section. Then, there exists a translation vector v∞ ∈ R3 such that as

t→∞, the function

d+(t) = sup {dist(p,Rh + v∞) | p ∈M ∩ {x3 ≥ t}}

is finite and decays exponentially to zero. In a similar manner, there exists

v−∞ ∈ R3 such that as t→ −∞, the function

d−(t) = sup {dist(p,Rh + v−∞) | p ∈M ∩ {x3 ≤ t}}

is finite and decays exponentially to zero. Furthermore, x2(v∞) = x2(v−∞)

and for t large, M ∩ {x3 ≥ t} (resp. M ∩ {x3 ≤ −t}) can be expressed as

a small (with arbitrarily small Ck-norm for any k) normal graph over its

projection on Rh + v∞ (resp. on Rh + v−∞).

Proof. Let M ⊂ R3 be a properly embedded minimal surface satisfying

the hypotheses of Theorem 8.1. M has exactly two limit ends by Theorem 1

in [36]. In this situation, Theorem 3.5 in [13] gives that between any two middle

ends of M , there is a plane that intersects M transversely in a compact set. It

follows that all middle ends of M are planar. Now items (1), (2), (3) and (4)

of the theorem follow from similar arguments as those giving items (1), (2),

(3) and (4) of Theorem 3.1.

Item (3) of Theorem 8.1 allows us to reduce the proof of the property that

M has bounded curvature to proving it for the three regions M ∩{|x3| ≤ CM},
M ∩{x3 > CM} and M ∩{x3 ≤ −CM}. The region M ∩{|x3| ≤ CM} consists

of a finite number of graphs outside of a compact set, and thus it has bounded

Gaussian curvature. The other two regions have genus zero, and one can argue

similarly as we explained in the proof of Theorem 3.1.

It remains to prove item (5) of the theorem. The already proven items

(1), (2), (3) and (4) of the theorem imply that there exists a translation vector
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T ∈ R3 such that M+ = (M −T )∩{x3 ≥ 0} can be conformally parametrized

by the half-cylinder C+/〈i〉 (here C+ = {x + iy | x ≥ 0}) punctured in an

infinite discrete set of interior points {pj , qj}j∈N, which represent respectively

those ends of M+ where its Gauss map points to the north and south poles.

In this setting, the proofs of items (5), (6) and (7) of Theorem 3.1 remain

valid with M , C, Z replaced by M+, C+, N, with the only change being in the

statement of item (7), where the last two instances of C/〈i〉 are left unchanged,

by choosing the third coordinate of T sufficiently large. We remark that these

arguments rely solely on Colding-Minicozzi theory for planar domains.

Consider the Shiffman function SM+ of M+, which exists by item (3) of

the theorem. Reasoning as in the last paragraph of Section 4.1, we deduce that

SM+ extends smoothly through the points pj , qj to a function on C+/〈i〉, which

we also denote by SM+ . Note that SM+ is asymptotic to zero on the end of

C+/〈i〉, because any sequence of translations of M+ diverging in height, up to

a horizontal translation (which may depend upon the sequence), converges by

Theorem 1.1 to the Riemann minimal exampleRh whose flux vector is (h, 0, 1).

In particular, SM+ is bounded and can considered to be a function in S1 ×
[0,∞). The next lemma gives a control on the decay of SM+ : S1× [0,∞)→R.

Lemma 8.2. There exist C, a > 0 so that |SM+(θ, t)| ≤ Ce−at for all

(θ, t) ∈ S1 × [0,∞).

Proof. We first prove the following assertion.

Assertion 8.3. Let f = f(t) : [0,∞) → [0, 1
2 ] be a continuous function

such that

(1) f(t)→ 0 as t→∞.

(2) For any a > 0, there exists t(a) ≥ 0 such that f(t(a)) ≥ 2−at(a).

Then for each n ∈ N, there exists Tn ≥ n such that f(t) ≤ 2f(Tn) for t ∈
[Tn − n,∞).

Proof of Assertion 8.3. Fix n ∈ N. Let tn ∈ [0,∞) be the smallest t

such that f(t) = 2−
t
n . (The existence of tn follows from f(0) ≤ 1

2 and from

hypothesis (2).) Since f(tn) ≤ 1
2 , then tn ≥ n. Let Tn ∈ [tn,∞) be a point

where f attains its maximum value. (Tn exists by hypothesis (1).) We now

prove that f(t) ≤ 2f(Tn) for all t ∈ [Tn−n,∞) by discussing two possibilities.

Assume Tn − n ≤ tn. If t ∈ [tn,∞), then f(t) ≤ f(Tn) ≤ 2f(Tn), and if

t ∈ [Tn − n, tn], then f(t) ≤ 2−t/n ≤ 2
−(tn−n)

n = 2 · 2−tn/n = 2f(tn) ≤ 2f(Tn).

Assume Tn − n > tn. Then [Tn−n,∞) ⊂ [tn,∞), so we apply the first two

inequalities in the case above. This completes the proof of Assertion 8.3. �
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We now continue the proof of the lemma. Arguing by contradiction, sup-

pose that SM+(θ, t) does not decay exponentially. Choose a constant C > 0

such that the function

f(t) = C |max
θ∈S1

SM+(θ, t)|

satisfies f(t) ≤ 1
2 for all t. By Assertion 8.3, there exist sequences Tn ∈ [0,∞),

θn ∈ S1 such that Tn ≥ n and C|SM+(θ, t)| ≤ 2f(Tn) for every (θ, t) ∈ S1 ×
[Tn − n,∞). For any n ∈ N, consider the function

hn(θ, t) =
C

f(Tn)
SM+(θ, t+ Tn),

defined on S1 × (−n,∞). By construction, |hn| ≤ 2 and |h(θ(n), 0)| = 1 for

some θ(n) ∈ S1. Therefore, after extracting a subsequence, the hn converge to a

bounded Jacobi function h∞ on the Riemann minimal example Rh, considered

to be a function defined on the cylinder S1 × R.

By Theorem 7.1, h∞ is linear, and so h∞ = 〈N∞, a〉 for some a ∈ R3−{0},
where N∞ is the Gauss map of Rh. By the Four Vertex Theorem, the Shiffman

Jacobi function SM+ has at least four zeros at each compact horizontal section

of M+, and so the same holds for each of the functions hn, which contradicts

the assertion below and completes the proof of the lemma. �

Assertion 8.4. Given a Riemann minimal example R with Gauss map

N and a vector a ∈ R3 − {0}, there is a horizontal circle Γ = R ∩ {x3 = t}
such that the linear function v = 〈N, a〉 has at most two zeros on Γ. Moreover,

these zeros are nondegenerate.

Proof. Consider the great circle γa = S2 ∩ {x ∈ R3 | 〈x, a〉 = 0} and a

horizontal line L ⊂ R. We can assume that L = R ∩ {x3 = 0} and that

N(p0) = (0, 0, 1), where p0 denotes the end of R at level x3 = 0. The Gaussian

image N(L) consists of a twice covered geodesic arc in S2 ∩ {x2 = 0} whose

extrema are (0, 0, 1) with N(p) ∈ S2, where {p} = L ∩ {x2 = 0} is the unique

branch point of N along L.

If a is horizontal, then γa passes through the north and south poles. As

the Gauss image of any compact horizontal circle Γ on R winds once around

the north and south poles of S2, it follows that Γ intersects γa transversely into

two points. Thus, the assertion holds in this case.

If a is not horizontal, then we discuss the following cases:

(1) The great circle γa and the geodesic arc N(L) are disjoint. In this

case, we have that v does not vanish along Γt = R ∩ {x3 = t} for t > 0 small

enough.

(2) The great circle γa meets the interior of the geodesic arc N(L). Then

v(p) 6= 0 , v(p0) 6= 0 and v has exactly two zeros along L, which are nonde-

generate. It follows that v has just two nondegenerate zeros along the nearby

circle Γt for any small positive t.
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(3) The great circle γa passes through the point N(p). If we parametrize

L by γ(s) = p + s e2 where e2 = (0, 1, 0), then we have that (v ◦ γ)(0) =

〈N(p), a〉 = 0. Also note that (v ◦ γ)′(0) = 〈(N ◦ γ)′(0), a〉 = 0 since p is a

branch point of N . We claim that (v ◦ γ)′′(0) 6= 0: otherwise, (N ◦ γ)′′(0) =

λN(p) + µa × N(p) for certain λ, µ ∈ R, where × denotes cross product.

But (N ◦ γ)′′(0) × N(p) 6= 0 (because this is the tangent component to R of

(N ◦ γ)′′(0), and N has ramification order 1 at p); hence µ 6= 0, which in turn

implies that a×N(p) is orthogonal to e2 (because both (N ◦ γ)′′(0) and N(p)

are orthogonal to e2). Since e2 is also orthogonal to N(p), we deduce that e2

is parallel to a, a contradiction. Therefore, (v ◦ γ)′′(0) 6= 0. From here we

conclude that, for small positive t, either v does not vanish along Γt or it has

just two distinct simple zeros along Γt. �

Next we prove the first statement in item (5) of Theorem 8.1, namely, that

the exponential convergence of the top end of M to a translated image of the

top end of the Riemann minimal example R = Rh with flux (h, 0, 1) equal to

the flux of M . (The corresponding property for bottom ends follows similarly.)

During this proof, we will make clear that the graphing property in the last

statement of item (5) of the theorem also holds. Since we will use the notion

of surface written as a graph over another surface, we first make this notion

precise. We will consider minimal surfaces Σ in a horizontal slab {a ≤ x3 ≤ b},
bounded by two Jordan curves, one in each boundary plane of the slab. (In

particular, Σ is transversal to the boundary of the slab.) Furthermore, Σ will

have genus zero and (possibly) finitely many horizontal planar ends. Thus,

after compactification at the planar ends, we obtain Σ, which is conformally

a cylinder S1(r) × [a, b] for certain r > 0. We take on Σ a unitary, smooth,

transversal vector field ν such that

• ν|∂Σ coincides with one of the two horizontal, normal vector fields to the

planar curves that bound Σ.

• If Σ is noncompact, then ν = ±(0, 0, 1) in a neighborhood of each of the

planar ends of Σ.

Note that ν can be thought as a deformation of the Gauss map of Σ. Although

ν is not unique, we will assume that given a surface Σ we have made a choice

of this transversal vector field. If we have a second surface Σ′ under the same

conditions as Σ, then we say that Σ′ is a graph over Σ if it can be written as

the graph over Σ of a function u ∈ C2(Σ), in the direction of ν; i.e.,

p ∈ Σ 7→ p+ u(p)ν(p) ∈ Σ′.

The notation ‖Σ − Σ′‖Ck,α that appear below will stand for ‖u‖Ck,α (taken

with respect to the flat metric in the cylinder Σ), where we are assuming that

Σ′ is the graph of a function u over Σ in the sense above.
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All the above observations can be easily translated to minimal surfaces

in a half-space above or below a horizontal plane. We leave the details to the

reader.

By quasiperiodicity of M+, we can choose a sequence of positive numbers

{bn}n∈N ↗∞ with M+ = M ∩ {x3 ≥ b1}, satisfying the following properties:

• {bn+1 − bn}n is bounded away from zero and bounded above.

• The surface M+ intersects transversely the horizontal plane {x3 = bn} in a

Jordan curve Γn, whose length is bounded above independently of n.

• The surface Σn = M ∩{bn ≤ x3 ≤ bn+1} is either a compact annulus or has

just one planar end. Furthermore, Σn has total curvature smaller than π.

As a consequence of Lemma 8.2 and linear elliptic theory, we have that the

derivatives of SM+ of any order also decay exponentially and, from the defini-

tion of the Shiffman function, we deduce that for n large, the curves Γn can be

exponentially approximated by horizontal circles Γ′n ⊂ {x3 = bn}, in the sense

that

‖Γn − Γ′n‖C4,α ≤ C1e
−abn ,

for certain constant C1 > 0 independently of n.

As the total curvature of Σn is less than π, then Σn is stable and there are

no bounded Jacobi functions on Σn vanishing at its boundary. An application

of the Implicit Function Theorem in the Banach space context (see, for in-

stance, White [57] for the compact case and Pérez and Ros [46] and Pérez [45]

for the necessary modifications in the case Σn has a planar end) implies that

there exists an embedded minimal surface Rn, described as a graph over Σn

whose boundary is ∂Rn = Γ′n ∪ Γ′n+1, and such that

(63) ‖Σn −Rn‖C2,α ≤ C2e
−abn .

Recall that the notion of graph over Σn depends on the choice of a transversal

vector field νn along Σn. By the quasiperiodicity of M+, we can assume that

both Σn and νn have geometry uniformly bounded in n, and νn−1 = νn along

Γn. In particular, the constant C2 in (63) can be chosen independently of n.

In the sequel, we will find other positive constants independent of n, which

will be denoted by C3, C4, . . . .

Also note that Rn is compact when Σn is compact and Rn has a horizontal

planar end when Σn has a planar end. By the maximum principle, Rn ⊂ {bn ≤
x3 ≤ bn+1}. Furthermore, the horizontal sections of Rn are either closed curves

or an open arc. (This last case occurs at the height of the planar end of Rn,

if it exists.) It also follows from (63) that the total curvature of Rn is smaller

that 3π/2, and so Rn is strictly stable [1]. Since the Shiffman function is

well defined and bounded on Rn and vanishes at ∂Rn, the stability of Rn
implies that its Shiffman function vanishes identically. Thus, Rn is a piece of

a Riemann minimal example. Furthermore, (63) implies that the flux of the
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Riemann minimal example that contains Rn is exponentially close to the flux

FM+ = FR.

As a consequence, there exists a piece R′n = (R + vn) ∩ {bn ≤ x3 ≤
bn+1} of a translated image of the Riemann minimal example R such that

‖Rn −R′n‖C2,α ≤ C3e
−abn for n large. By the triangle inequality, we have

(64) ‖Σn −R′n‖C2,α ≤ C4e
−abn .

We next explain how to conclude all statements in item (5) of Theorem 8.1,

except the property that x2(v∞) = x2(v−∞), which will be proven later. It is

enough to prove the following statement.

Assertion 8.5. There exists a vector v∞ ∈ R3 such that if Wn = {bn ≤
x3 ≤ bn+1}, then

‖M+ − (R+ v∞)‖C2,α(Wn) ≤ C5e
−abn .

Proof. By (64) applied to Σn−1 and Σn that share the common boundary

curve Γn (recall that the transversal vector fields νn−1, νn both coincide along

Γn), we have that both (R + vn) ∩ {x3 = bn}, (R + vn−1) ∩ {x3 = bn} are

exponentially close to Γn in the norm ‖ · ‖C2,α . Since R is a periodic surface,

we can choose vn so that ‖vn− vn−1‖ ≤ C6e
−abn . The triangle inequality gives

(65) ‖vn+k − vn‖ ≤ C6

n+k∑
j=n+1

e−abj .

The convergence of the series
∑∞
j=1 e

−abj shows that {vn}n is a Cauchy se-

quence, and so it converges to a vector v∞ ∈ R3. Finally,

‖M+ − (R+ v∞)‖C2,α(Wn) ≤ ‖M+ − (R+ vn)‖C2,α(Wn)

+ ‖(R+ v∞)− (R+ vn)‖C2,α(Wn)

≤ C4e
−abn + C7‖v∞ − vn‖,

where in the last equality we have used (64) for the first summand and the

fact that R+ v∞ and R+ vn differ by a small translation (namely, v∞ − vn).

Finally, (65) implies

‖M+ − (R+ v∞)‖C2,α(Wn) ≤ C4e
−abn + C6

∞∑
j=n+1

e−abj ≤ C5e
−abn ,

which completes the proof of the assertion. (Consequently, item (5) of Theo-

rem 8.1 is proved except for the property stated in the following lemma.) �

Lemma 8.6. x2(v∞) = x2(v−∞).

Proof. Recall that R = Rh ⊂ R3 is the Riemann minimal example with

the same flux vector (h, 0, 1) asM . Let T be the smallest orientation-preserving
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translation vector of R, with x3(T ) > 0. Also, assume that R is normalized

by a translation so that the (x1, x2)-plane intersects R in a circle γ. By the

first statement in item (5) of Theorem 8.1, for n ∈ N large, the curve γ(n) =

M ∩ {x3 = x3(v∞ + nT )} is closely approximated by the horizontal circle

γ+v∞+nT ⊂ R+v∞. Similarly, for n large, γ(−n) = M∩{x3 = x3(v−∞−nT )}
is closely approximated by the horizontal circle γ + v−∞ − nT ⊂ R+ v−∞.

As M is minimal, the R3-valued one-form α : M → R3 given by αp(v) =

p×v for all p ∈M and v ∈ TpM has divergence zero. The Divergence Theorem

applied to α on a compact subdomain Ω ⊂M gives

(66) ~0 =

∫
∂Ω
α(η) ds =

∫
∂Ω
p× η ds,

where η denotes the exterior conormal field to Ω along its boundary. We now

choose a domain Ω adapted to our setting: For n large, label by A(n) the

component of M − [γ(n) ∪ γ(−n)] whose boundary is ∂A(n) = γ(n) ∪ γ(−n).

The proper domain A(n) contains a finite positive number l(n) of planar ends.

For each end ek in A(n), choose an embedded curve βk ⊂ A(n) around this end,

the βk curves being disjoint. Finally, define Ω(n) to be the compact subdomain

of A(n) bounded by γ(n)∪ γ(−n)∪ β1 ∪ · · · ∪ βl(n). Then, (66) can be written

as

(67) ~0 =

∫
γ(n)

p× η ds+

∫
γ(−n)

p× η ds+

l(n)∑
k=1

∫
βk

p× η ds.

Each integral along βk in the summation above is the torque vector asso-

ciated to the end ek. This is a horizontal vector pointing to the direction of the

straight line asymptotic to the (noncompact) level section at the height of the

end ek. Thus, the third term in (67) will disappear after taking inner products

with e3 = (0, 0, 1). Concerning the first integral in (67), we can estimate it

as the corresponding integral over the translated Riemann minimal example

R+ v∞ up to an error εn such that εn → 0 as n→∞:∫
γ(n)

p× η ds = εn +

∫
γ+v∞+nT

p(R+ v∞)× η(R+ v∞) ds(R+ v∞)

= εn +

∫
γ
[p(R) + v∞ + nT ]× η(R) ds(R)

= εn +

∫
γ
p(R)× η(R) ds(R) + [v∞ + nT ]× Flux(M),

where η(R + v∞) is the unitary conormal vector to R + v∞ along γ + v∞ +

nT (we follow a similar notation for p(R), ds(R)), and we have used that∫
γ η(R) ds(R) = Flux(R) = Flux(M).

If we repeat the same argument along γ(−n), then we must take into

account that the exterior conormal vectors to Ω(n) along γ(n) and γ(−n) are
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almost opposite; thus, after taking limits, the conormal vector η(R) along γ in

the integral of the right-hand-side of the last displayed expression associated to

γ(n) is opposite to the corresponding one for γ(−n). Therefore, equation (67)

implies

0 = lim
n→∞

Æ∫
γ(n)

p× η ds+

∫
γ(n)

p× η ds, e3

∏
= 〈[(v∞ − v−∞) + 2nT ]× Flux(M), e3〉
= 〈[(v∞ − v−∞) + 2nT ] ,Flux(M)× e3〉 .

Since Flux(M)×e3 is a nonzero vector pointing to the x2-axis, we deduce that

x2(v∞) = x2(v−∞), which completes the proof of the lemma. (Thus, the proof

of Theorem 8.1 is complete.) �

Remark 8.7. By Theorem 1.1, any properly embedded with genus zero and

an infinite number of ends is a Riemann minimal example. In the statement of

this result, it is natural to replace the hypothesis of properness by completeness.

The authors have found a proof of this result in the complete setting under

the additional hypothesis that the surface has countably many ends [38]. We

remark that every properly embedded minimal surface in R3 has a countable

number of ends, regardless of its genus [13].

9. Appendix 1: Finite dimensionality of the space

of bounded Jacobi functions

We saw in Corollary 4.15 that the Shiffman function SM associated to a

quasiperiodic, immersed minimal surface M of Riemann type extends smoothly

through the planar ends of M to a bounded, smooth function on the cylinder

C/〈i〉. Given such an immersed minimal surface M , in Section 5.2 we pro-

duced a sequence {vn}n of (complex valued) Jacobi functions on M , one of

whose terms is SM + iS∗M . A key point in the holomorphic integration of SM is

that the sequence {vn}n only has a finite number of linearly independent func-

tions. This property follows from two facts: firstly, the fact that each Jacobi

function vn extends smoothly to a bounded function on C/〈i〉 (Theorem 5.8)

and secondly, that the bounded kernel of the Jacobi operator on a quasiperi-

odic, immersed minimal surface of Riemann type is finite dimensional. This

finite dimensionality can be deduced from Theorem 0.5 in Colding, de Lellis

and Minicozzi [6]. For the sake of completeness, we provide a direct proof of

this property communicated to us by to Frank Pacard.

Theorem 9.1. Let M ⊂ R3 be a quasiperiodic, immersed minimal surface

of Riemann type. Then, the linear space J∞(M) = {v ∈ J (M) | v is bounded}
is finite dimensional.
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Proof. By definition, M is conformally equivalent to (C/〈i〉)−g−1({0,∞}),
where g ∈ Mimm is the Gauss map of M . Recall that C/〈i〉 is isometric to

S1×R. Take global coordinates (θ, t) on S1×R, and consider the product metric

dθ2×dt2, which is conformal to the metric ds2 on M induced by the usual inner

product of R3. If we write N for the Gauss map of M and ds2 = λ2(dθ2×dt2),

then the Jacobi operator L = ∆+|σ|2 = ∆+|∇N |2 of M is L = λ−2LM , where

LM = (∆S1 + ∂2
t ) +VM is a Schrödinger operator on S1×R with potential VM

given by the square of the norm of the differential of N = N(θ, t) (with respect

to dθ2 × dt2). Since M is quasiperiodic, VM is globally bounded on S1 × R.

By elliptic regularity, any bounded Jacobi function v onM extends through

the zeros and poles of g to a smooth function v̂ in the kernel of the operator LM ,

such that v̂ is bounded at both ends of S1×R. Therefore, the space J∞(M) of

bounded Jacobi functions identifies naturally with the bounded kernel of LM .

Now the theorem is a consequence of part (1) of a more general result proved

by Colding, de Lellis and Minicozzi, namely, Theorem 0.5 in [6]. For the sake

of completeness, we provide a direct proof of the finite dimensionality of the

bounded kernel of LM in a simpler setting, which is sufficient for our purposes;

see Assertion 9.3 below. We thank Frank Pacard, who communicated this

argument to us. Modulo Assertion 9.3 and Remark 9.4 below, Theorem 9.1 is

proved. �

Let Σ be a compact manifold endowed with a Riemannian metric h, and let

λ0 = 0 < λ1 < λ2 < · · · be the eigenvalues of the Laplacian −∆h. Our goal is

to give a sufficient condition under which the bounded kernel of the Schrödinger

operator on the metric cylinder (Σ×R, h×dt2) given by (∆h+∂2
t ) +V , where

V ∈ L∞(Σ×R), has finite dimension. Such a condition will relate the spectral

gaps {λj+1 − λj}j of −∆h and ‖V ‖L∞(Σ×R); see Assertion 9.3 below.

We first study the operator ∆h + ∂2
t acting on functions belonging to the

weighted space eδtL2(Σ×R), where δ is a real number. (We will assume from

now on that Σ×R is endowed with the product metric h×dt2.) The following

result is a refinement of some ideas in the paper of Lockhart and McOwen [29].

Assertion 9.2. Assume that δ ∈ R is chosen so that δ2 6= λj for all

j ≥ 0. Then, if (∆h + ∂2
t )U = F with U,F ∈ eδtL2(Σ× R), we have

(68) ‖e−δtU‖L2(Σ×R) ≤
1

infj |δ2 − λj |
‖e−δtF‖L2(Σ×R).

Proof. First observe that the functions u = e−δtU , f = e−δtF belong to

L2(Σ × R) and f = e−δt(∆h + ∂2
t )(eδtu). We perform the Fourier transform

of t 7→ u(y, t) and t 7→ f(y, t) for y ∈ Σ fixed, defining the complex valued

functions

û(y, s) =
1√
2π

∫
R
u(y, t)eistdt, f̂(y, s) =

1√
2π

∫
R
f(y, t)eistdt



PROPERLY EMBEDDED MINIMAL PLANAR DOMAINS 535

for all (y, s) ∈ Σ × R. To keep notations short, we set z := δ − is ∈ C. It

is straightforward to check that given an s ∈ R, the functions û(·, s), f̂(·, s)
satisfy (in the sense of distributions) the equation

(∆h + z2)û(·, s) = f̂(·, s) on Σ.

Given z ∈ C, consider the linear Schrödinger operator “Bz = ∆h+z2, acting on

complex valued functions on Σ. Let us denote by E0, E1, E2, . . . the eigenspaces

of −∆h corresponding to the eigenvalues λ0 = 0 < λ1 < λ2 < · · · , respectively.

By classical elliptic theory, if z2 6= λj for all j ∈ N ∪ {0}, then there exists a

bounded operator “Rz : L2(Σ)→ L2(Σ) that is a right inverse of “Bz, i.e., “Bz◦“Rz
is the identity on L2(Σ), where we keep the notation L2(Σ) for L2-complex

valued functions on Σ. Also note that the condition z2 6= λj holds for all j

since |z2 − λj | ≥ |δ2 − λj | > 0.

Using the orthogonal eigendata decomposition f̂(·, s) =
∑
j≥0

∑
f̂h∈Ej

f̂h,

it is easy to check that“Rz(f̂(·, s)) =
∑
j≥0

1

z2 − λj

∑
f̂h∈Ej

f̂h.

Plancherel’s formula then implies

‖“Rz(f̂(·, s))‖2L2(Σ) =
∑
j≥0

1

|z2 − λj |2
∑
f̂h∈Ej

‖f̂h‖2L2(Σ).

Using the inequality |z2 − λj | ≥ |δ2 − λj |, we obtain

‖“Rz(f̂(·, s))‖2L2(Σ) ≤
1

infj |z2 − λj |2
∑
j≥0

∑
f̂h∈Ej

‖f̂h‖2L2(Σ)(69)

≤ 1

infj |δ2 − λj |2
‖f̂(·, s)‖2L2(Σ).

Note that “Rz(f̂(·, s)) = û(·, s) (because “Bzû = f̂ and z2 6= λj for all j). Since

the Fourier transform is an isometry of L2(Σ), one has

‖u‖2L2(Σ×R) = ‖û‖2L2(Σ×R) =

∫
R
‖û(·, s)‖2L2(Σ)ds

=

∫
R
‖“Rz(f̂(·, s))‖2L2(Σ)ds

(69)

≤ 1

infj |δ2 − λj |2
∫
R
‖f̂(·, s)‖2L2(Σ)ds

=
1

infj |δ2 − λj |2
‖f̂‖2L2(Σ×R)

=
1

infj |δ2 − λj |2
‖f‖2L2(Σ×R),
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from which one deduces directly the inequality (68). Hence, the assertion is

proved. �

Assertion 9.3. Let (Σ, h) be a compact Riemannian manifold and V ∈
L∞(Σ× R). Assume that there exists j0 ∈ N such that

(70) 4‖V ‖L∞(Σ×R) ≤ λj0+1 − λj0 ,

where λ0 = 0 < λ1 < λ2 < · · · is the spectrum of −∆h on Σ. Then, the

bounded kernel of ∆h + ∂2
t + V on Σ× R is finite dimensional.

Remark 9.4. In the case where Σ = S1 with its standard metric, then

λj = j2 and λj+1 − λj = 2j + 1, so the hypothesis (70) is always fulfilled.

Proof. Again the proof is essentially borrowed from the paper by Lockhart

and McOwen [29] (see Section 2 on pages 420, 421). First consider a function

w in the bounded kernel of ∆h + ∂2
t + V . Let χ ∈ C∞(Σ × R) be a cutoff

function only depending on t, equal to 0 for t < −1 and equal to 1 for t > 1.

We choose δ > 0 such that

δ2 =
1

2
(λj0+1 + λj0);

in particular, δ2 6= λj for all j ≥ 0.

Applying the result in Assertion 9.2 to this value of δ and to the functions

U := χw, F := (∆h + ∂2
t )(χw) = −V χw + w∂2

t χ+ 2∂tχ∂tw, we obtain

‖e−δtχw‖L2(Σ×R) ≤
1

infj |δ2 − λj |
‖e−δtF‖L2(Σ×R)

≤ 1

infj |δ2 − λj |
Ä
‖e−δtV χw‖L2(Σ×R)

+‖e−δtw∂2
t χ‖L2(Σ×R) + ‖e−δt2∂tχ∂tw‖L2(Σ×R)

ä
≤ 1

infj |δ2 − λj |
Ä
‖V ‖L∞(Σ×R) ‖e−δtχw‖L2(Σ×R) + c‖w‖W 1,2(Σ×(−1,1))

ä
for some constant c > 0 that only depends on the choice of the cutoff function

χ. (Note that we have used that ∂tχ = 0 outside Σ × (−1, 1) in the last

inequality.)

On the other hand, (70) gives that

inf
j
|δ2 − λj | =

1

2
(λj0+1 − λj0) ≥ 2‖V ‖L∞(Σ×R).

Thus, ‖e−δtχw‖L2(Σ×R) ≤ 1
2‖e
−δtχw‖L2(Σ×R) + 2c

λj0+1−λj0
‖w‖W 1,2(Σ×(−1,1)),

which implies

(71) ‖e−δtχw‖L2(Σ×R) ≤
4c

λj0+1 − λj0
‖w‖W 1,2(Σ×(−1,1)) ≤ C‖w‖W 1,2(Σ×(−1,1))
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for some constant C > 0 that depends on λj0 , λj0+1 and on χ. (But these data

have been fixed once for all.)

Next we apply Assertion 9.2 to the functions U := (1 − χ)w and F :=

(∆h+∂2
t )((1−χ)w) = −V (1−χ)w−w∂2

t χ−2∂tχ∂tw, and this time we change

δ to −δ to get

‖eδt(1− χ)w‖L2(Σ×R) ≤
1

infj |δ2 − λj |
Ä
‖V ‖L∞(Σ×R)‖eδt(1− χ)w‖L2(Σ×R)

+ c‖w‖W 1,2(Σ×(−1,1))

)
.

Arguing as above, we conclude that

(72) ‖eδt(1− χ)w‖L2(Σ×R) ≤ C‖w‖W 1,2(Σ×(−1,1)).

Collecting (71) and (72) and using the triangle inequality, we deduce that

(73) ‖e−δ|t|w‖L2(Σ×R) ≤ 2C‖w‖W 1,2(Σ×(−1,1))

for certain C > 0, and this estimate holds for any function w in the bounded

kernel of ∆h + ∂2
t + V .

Another ingredient we will use in proving the assertion is a W 2,2-estimate

valid for any function in the kernel of ∆h + ∂2
t + V . Namely, the classical Lp-

estimates applied to the solution w of (∆h + ∂2
t )w = −V w (see, for instance,

Theorem 9.11 of Gilbarg and Trudinger [20]), imply that

(74) ‖w‖W 2,2(Σ×(−1,1)) ≤ C
Ä
1 + ‖V ‖L∞(Σ×R)

ä
‖w‖L2(Σ×(−2,2)).

The final ingredient is the compactness of the Sobolev embedding (Rellich’s

theorem; see, for instance, [20] Theorem 7.26):

(75) W 2,2(Σ× (−1, 1)) ↪→W 1,2(Σ× (−1, 1)).

We finally prove the finite dimensionality of the bounded kernel K of ∆h+

∂2
t + V . Arguing by contradiction, suppose that K were infinite dimensional.

There would exist a sequence of linearly independent functions wn ∈ K, which

could be normalized so that

(76)

∫
Σ×R

wnwme
−2δ|t| dt dh =

0 if n 6= m,

1 if n = m.

Recall that δ > 0, and hence the integrals are well defined since the

functions wn are bounded. As e−δ|t| is bounded away from zero in (−2, 2), we

conclude from (76) that the sequence {wn}n is bounded in L2(Σ×(−2, 2)), and

(74) then implies that it is also bounded in W 2,2(Σ× (−1, 1)). Now, using the

compactness of the embedding (75), there exists a subsequence (still denoted

by {wn}n) that converges in W 1,2(Σ× (−1, 1)).

The convergence of {wn}n in W 1,2(Σ×(−1, 1)) together with (73) applied

to wn −wm implies that {e−δ|t|wn}n is a Cauchy sequence in L2(Σ×R). But,

L2(Σ×R) being a Banach space, this sequence converges in L2(Σ×R) to some
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function W ∈ L2(Σ × R). Passing to the limit as n → ∞ in (76) (keeping m

fixed in the first integral), we have

(77)

∫
Σ×R

Wwme
−δ|t| dt dh = 0,

∫
Σ×R

W 2 dt dh = 1.

Finally, passing to the limit as m→∞ in the left integral above, one obtains∫
Σ×R

W 2 dt dh = 0,

which contradicts the right integral in (77). This finishes the proof of the

assertion. �

From the descriptions in Theorems 3.1 and 3.2, it follows that every prop-

erly embedded minimal surface M in R3 with finite genus g and infinite topol-

ogy is conformally diffeomorphic to a compact Riemann surface of genus g

with a countable set of points removed, and this set of points has exactly two

limit points on the compact surface. Furthermore, M has bounded curvature,

each middle end is planar and M has two limit ends of Riemann type. (See

Theorem 8.1 for an improved description of such an M .) In particular, M has

a partial conformal compactification M by adding its nonlimit ends and a com-

plete metric on M with two cylindrical ends. As in the previously considered

case when the genus of M was zero, the bounded Jacobi functions of M can be

identified with the bounded kernel of ∆M +V , where V is a bounded potential.

In this case, the arguments in the proof of Theorem 9.1 can be easily modified

and imply the result below. We remark that when M has 0 < k < ∞ ends,

then M has finite total curvature and the statement below is well known. We

also note that Theorem 9.5 is a particular case of the more general result in

Theorem 0.5 in Colding, de Lellis and Minicozzi [6].

Theorem 9.5. Let M ⊂ R3 be a properly embedded minimal surface with

finite genus and more than one end. Then, the linear space of bounded Jacobi

functions on M is finite dimensional.

10. Appendix 2: Uniqueness of the Riemann minimal examples in

the two-ended periodic case

Recall that M1 ⊂ M is the subset of singly-periodic surfaces that define

a two-ended torus in their orientable quotient by a translation with smallest

absolute total curvature. In Proposition 6.2 of this paper we showed that if SM
is linear for a surface M ∈ M, then M ∈ M1. At this point we can conclude

that M ∈ R by quoting our previous characterization in [34]. Below, we give

an alternative proof of the characterizationM1 = R based on the Four Vertex

Theorem.
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Consider the flux map h1 = h|M1 : M1 → (0,∞) where FM = (h(M), 0, 1)

is the flux vector of M ∈M1. We first prove that R is a connected component

of M1. Since R is a path connected closed set in M1, it remains to prove

that M1 −R is closed in M1. Otherwise, there exists a sequence of surfaces

{Σn}n ⊂ M1 −R that converges on compact subsets of R3 to some Rt ∈ R.

Note that the Shiffman functions SΣn of the Σn are not identically zero, and

after the normalization ŜΣn = 1
supΣn

|SΣn |
SΣn , we find a bounded sequence of

Jacobi functions that converges (up to extracting a subsequence) to a periodic

Jacobi function Ŝ∞ on Rt. By the Four Vertex Theorem, ŜΣn has at least four

zeros on each compact horizontal section of Σn (counted with multiplicity),

and the same holds for Ŝ∞ on each compact horizontal section of Rt. On the

other hand, the only periodic Jacobi functions on Rt are the linear ones. (This

follows, for instance, from Montiel and Ros [42] and also follows from our more

general result in Theorem 7.1.) This contradicts Assertion 8.4 and proves that

R is a connected component of M1.

SinceR is a connected component ofM1 and h|R : R → (0,∞) is bijective,

to deduce that R =M1, it suffices to prove that the following three properties:

(1) h1 is a proper map.

(2) h1 is an open map.

(3) There exists ε > 0 such that if h1(M) < ε, then M ∈ R.

The properness of h1 in point (1) above follows from the curvature estimates

in Theorem 5 of [35], which in fact insures properness of h : M→ (0,∞). Both

the openness point (2) and the local uniqueness point (3) above follow from

arguments in [34], but we give simpler arguments below; once we prove these

two points, then Proposition 6.2 will hold.

We first prove the openness of h1 in point (2) above. Consider the space

W1 = {(Σ, g, [α])}, where Σ is a compact Riemann surface of genus one, g : Σ→
C ∪ {∞} is a meromorphic function of degree two with an order-two zero p

and an order-two pole q, and [α] is a homology class in H1(Σ− {p, q},Z) that

is nontrivial in H1(Σ,Z). We denote the elements in W1 simply by g. The

space W1 is a two-dimensional complex manifold, with local charts given by

g 7→ (a1 + a2, a1 · a2), where a1, a2 ∈ C − {0} are the (possibly equal) branch

values of g ∈ W1 close to a given element g0 ∈ W1. (In a chart, we can forget

about the homology class associated to g after identification with that of g0.)

Given g ∈ W1, we associate a unique holomorphic differential φ on Σ by the

equation
∫
α φ = 2πi. Consider the period map Per1 : W1 → C2 given by

Per1(g) =

Å∫
α

1

g
φ,

∫
α
g φ

ã
.

Then, the space of elements g ∈ W1 such that (g, φ) is the Weierstrass pair

of an immersed minimal surface are Mimm
1 = Per−1

1 ({(a, a) | a ∈ C}). (Note
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that we do not need to impose any residue condition at the ends, since g has

a unique zero and a unique pole and the sum of residues of a meromorphic

differential on a compact Riemann surface is zero.) Since Per1 is holomorphic,

for a ∈ C fixed, the set Mimm
1 (a) = Per−1

1 (a) is a complex analytic subvariety

of W1. Since the limit of embedded surfaces is embedded, we have that the

subset M1 ⊂ Mimm
1 of embedded surfaces is closed in Mimm

1 . An application

the maximum principle at infinity [39] gives thatM1 is also open inMimm
1 . In

particular, the setM1(a) =Mimm
1 (a)∩M1 is a complex analytic subvariety of

W1. By our uniform curvature estimates in Theorem 5 of [35] and subsequent

uniform local area estimates,M1(a) is compact. As the only compact, complex

analytic subvarieties of W1 are finite sets (see Lemma 4 in [34]), we deduce

thatM1(a) is finite. Thus, given M ∈M1, there exists an open neighborhood

U of M in W1 such that U ∩M1(a) = U ∩Mimm
1 (a) = {M}. In this setting,

the openness theorem for finite holomorphic maps (Chapter 5.2 of Griffiths

and Harris [22]) gives that Per1 is an open map locally around M . Finally, the

relationship between the period map Per1 and the flux map h1 : M1 → (0,∞)

gives the desired openness for h1.

Our next statement is the local uniqueness point (3) in the list of properties

of h1. (And thus, it finishes the proof of Proposition 6.2.) In fact, the argument

below does not use periodicity for the surfaces in question, so it can be stated

in M instead of in M1.

Theorem 10.1. There exists ε > 0 such that if M ∈ M has flux vector

FM = (h, 0, 1) with 0 < h < ε, then M is a Riemann minimal example.

Proof. Here we will present a different proof from the one we gave in [34].

Arguing by contradiction, assume we have a sequence {Mn}n ⊂ M with flux

vector FMn = (h(Mn), 0, 1) and h(Mn)→ 0 as n→∞, and assume that none

of the Mn are Riemann minimal examples. Point 5 in Theorem 3.1 insures

that there exists a uniform bound for the Gaussian curvature of the surfaces

Mn, n ∈ N. A suitable modification of the arguments in the proof of Lemma 3

in [34] can be used to show that as n→∞, the surfaces Mn become arbitrarily

close to an infinite discrete collection of larger and larger translated pieces of

a vertical catenoid with flux e3 = (0, 0, 1) joined by flatter and flatter graphs

containing the ends of Mn. For each n, let Mn be the conformal cylinder

obtained by attaching the middle ends to Mn, and let SMn be the Shiffman

function of Mn.

By Corollary 4.15, SMn extends smoothly to a bounded function on Mn.

Note that for fixed n, the function |SMn | needs not attain its maximum on Mn,

but in that case we can exchange each Mn by a limit of suitable translations

of Mn (hence such limit also belongs to M), so that the Shiffman function in

absolute value reaches its maximum on this limit. Since the flux of a surface in
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M does not change under translations, we do not lose generality by assuming

that for all n large, |SMn | attains its maximum at a point pn ∈ Mn. We now

define vn = 1
|SMn (pn)|SMn .

Take a sequence {δ(n)}n ⊂ (0, 1) converging to 1. For n large, let Cn ⊂Mn

be one of the connected components of 〈Nn, e3〉−1[−δ(n), δ(n)] that contains pn
or is adjacent to a horizontal graphical region containing pn. By our previous

arguments, Cn is arbitrarily close to a translated image of the intersection of

a vertical catenoid C∞ of vertical flux e3 centered at the origin with a ball of

arbitrarily large radius also centered at the origin.

Assertion 10.2. {supCn |vn|}n tends to zero as n→∞.

Proof of Assertion 10.2. Since {vn|Cn}n is a bounded sequence of Jacobi

functions on the forming catenoidal pieces Cn and suitable translations of the

Cn converge to the catenoid C∞, it is not difficult to check that a subsequence

of {vn|Cn}n (denoted in the same way) converges to a bounded Jacobi function

on C∞. Since bounded Jacobi functions on a catenoid are linear, we conclude

that {vn|Cn}n converges to a linear Jacobi function v on C∞. (Or by identifying

the compactification of C∞ with the sphere S2 through the Gauss map of C∞,

we can view v as a linear function on S2.) We now check that v is identically

zero on S2.

Arguing by contradiction, suppose v is not identically zero on S2. Recall

that the Shiffman function (SMn)|Cn measures the derivative of the curvature

of each planar section of Cn with respect to a certain parameter times a pos-

itive function. By the Four Vertex Theorem, each horizontal section of Cn
contains at least four zeros of SMn , and so also at least four zeros of vn. Since

horizontal sections of the Cn (suitably translated) converge to horizontal sec-

tions of C∞ and any nontrivial linear function on S2 has at most two zeros on

each horizontal section (with a possible exceptional horizontal section if the

linear function is the vertical coordinate, but this does not affect our argu-

ment by taking a different horizontal section), we conclude that at least two

zeros of vn in a certain horizontal section must collapse into a zero of v; hence

the gradient of v will vanish at such a collapsing zero. But the gradient of a

nontrivial linear function on S2 never vanishes at a zero of the function. This

contradiction proves Assertion 10.2.

Recall that |vn(pn)| = 1 for all n. By Assertion 10.2, Nn(pn) must converge

to the vertical or equivalently, pn must lie in one of the graphical components

of the complement of all the catenoidal pieces in Mn, a noncompact minimal

graph, which we will denote by Ωn. Note that Ωn is a graph over an unbounded

domain in the plane {x3 = 0}, ∂Ωn consists of two almost-circular, almost-

horizontal curves with 〈Nn, e3〉|∂Ωn = ±δ(n) and Ωn contains exactly one end

of Mn. Hence we can apply Lemma 10.3 below to the minimal surface Ωn and
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to the bounded Jacobi function vn|Ωn , contradicting that vn|∂Ωn converges to

zero (Assertion 10.2) but |vn(pn)| = 1. This contradiction finishes the proof of

Theorem 10.1. �

Lemma 10.3. Let δ ∈ (0, 1), and let Ω ⊂ R3 be a complete, noncompact

minimal surface with nonempty compact boundary and finite total curvature,

whose Gauss map N satisfies N3 = 〈N, e3〉 ≥ 1 − δ in Ω. Then, for every

bounded Jacobi function v on Ω,

(1− δ) sup
Ω
|v| ≤ sup

∂Ω
|v|.

Proof. Since Ω has finite total curvature, Ω compactifies after attaching

its ends to a compact Riemann surface Ω with boundary. As v is bounded on

Ω, v extends smoothly across the punctures to a Jacobi function on Ω. We will

let a = sup∂Ω |v|. Since N3 ≥ 1 − δ > 0 in Ω and N3 is a Jacobi function, we

conclude that Ω is strictly stable, and so a > 0. Now, v + a
1−δN3 ≥ 0 on ∂Ω,

and v+ a
1−δN3 is again a Jacobi function on Ω. Thus by stability, v+ a

1−δN3 ≥ 0

in Ω. Analogously, v− a
1−δN3 ≤ 0 in ∂Ω, and hence v− a

1−δN3 ≤ 0 in Ω. These

inequalities together with N3 ≤ 1 give |v| ≤ a
1−δ in Ω, as desired. �
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