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Small gaps between primes

By James Maynard

Abstract

We introduce a refinement of the GPY sieve method for studying prime

k-tuples and small gaps between primes. This refinement avoids previous

limitations of the method and allows us to show that for each k, the prime

k-tuples conjecture holds for a positive proportion of admissible k-tuples.

In particular, lim infn(pn+m − pn) <∞ for every integer m. We also show

that lim inf(pn+1 − pn) ≤ 600 and, if we assume the Elliott-Halberstam

conjecture, that lim infn(pn+1 − pn) ≤ 12 and lim infn(pn+2 − pn) ≤ 600.

1. Introduction

We say that a set H = {h1, . . . , hk} of distinct nonnegative integers is

‘admissible’ if, for every prime p, there is an integer ap such that ap 6≡ h

(mod p) for all h ∈ H. We are interested in the following conjecture.

Conjecture (Prime k-tuples conjecture). Let H = {h1, . . . , hk} be ad-

missible. Then there are infinitely many integers n such that all of n+h1, . . . ,

n+ hk are prime.

When k > 1, no case of the prime k-tuples conjecture is currently known.

Work on approximations to the prime k-tuples conjecture has been very suc-

cessful in showing the existence of small gaps between primes, however. In their

celebrated paper [5], Goldston, Pintz and Yıldırım introduced a new method

for counting tuples of primes, and this allowed them to show that

(1.1) lim inf
n

pn+1 − pn
log pn

= 0.

The recent breakthrough of Zhang [9] managed to extend this work to prove

(1.2) lim inf
n

(pn+1 − pn) ≤ 70 000 000,

thereby establishing for the first time the existence of infinitely many bounded

gaps between primes. Moreover, it follows from Zhang’s theorem that the

number of admissible sets of size 2 contained in [1, x]2 which satisfy the prime 2-

tuples conjecture is� x2 for large x. Thus, in this sense, a positive proportion
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of admissible sets of size 2 satisfy the prime 2-tuples conjecture. The recent

polymath project [7] has succeeded in reducing the bound (1.2) to 4680, by

optimizing Zhang’s arguments and introducing several new refinements.

The above results have used the ‘GPY method’ to study prime tuples and

small gaps between primes, and this method relies heavily on the distribution

of primes in arithmetic progressions. Given θ > 0, we say the primes have

‘level of distribution θ’1 if, for every A > 0, we have

(1.3)
∑
q≤xθ

max
(a,q)=1

∣∣∣∣π(x; q, a)− π(x)

ϕ(q)

∣∣∣∣�A
x

(log x)A
.

The Bombieri-Vinogradov theorem establishes that the primes have level of

distribution θ for every θ < 1/2, and Elliott and Halberstam [1] conjectured

that this could be extended to every θ < 1. Friedlander and Granville [2] have

shown that (1.3) cannot hold with xθ replaced with x/(log x)B for any fixed B,

and so the Elliott-Halberstam conjecture is essentially the strongest possible

result of this type.

The original work of Goldston, Pintz and Yıldırım showed the existence

of bounded gaps between primes if (1.3) holds for some θ > 1/2. Moreover,

under the Elliott-Halberstam conjecture one had lim infn(pn+1−pn) ≤ 16. The

key breakthrough of Zhang’s work was in establishing that a slightly weakened

form of (1.3) holds for some θ > 1/2.

If one looks for bounded length intervals containing two or more primes,

then the GPY method fails to prove such strong results. Unconditionally we are

only able to improve upon the trivial bound from the prime number theorem

by a constant factor [6], and even assuming the Elliott-Halberstam conjecture,

the best available result [5] is

(1.4) lim inf
n

pn+2 − pn
log pn

= 0.

The aim of this paper is to introduce a refinement of the GPY method which

removes the barrier of θ = 1/2 to establishing bounded gaps between primes

and allows us to show the existence of arbitrarily many primes in bounded

length intervals. This answers the second and third questions posed in [5] on

extensions of the GPY method (the first having been answered by Zhang’s

result). Our new method also has the benefit that it produces numerically

superior results to previous approaches.

Theorem 1.1. Let m ∈ N. We have

lim inf
n

(pn+m − pn)� m3e4m.

1We note that different authors have given slightly different names or definitions to this

concept. For the purposes of this paper, (1.3) will be our definition of the primes having level

of distribution θ.
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Terence Tao (private communication) has independently proven Theo-

rem 1.1 (with a slightly weaker bound) at much the same time. He uses a

similar method; the steps are more-or-less the same but the calculations are

done differently. We will indicate some of the differences in our proofs as we

go along.

We see that the bound in Theorem 1.1 is quite far from the conjectural

bound of approximately m logm predicted by the prime m-tuples conjecture.

Our proof naturally generalizes (but with a weaker upper bound) to many

subsequences of the primes which have a level of distribution θ > 0. For exam-

ple, we can show corresponding results where the primes are contained in short

intervals [N,N+N7/12+ε] for any ε > 0 or in an arithmetic progression modulo

q � (logN)A. In particular, our method gives results for simultaneously prime

values of linear functions, which might have specific interest. Given k distinct

linear functions Li(n) = ain+ bi (1 ≤ i ≤ k) with positive integer coefficients

such that the product function Π(n) =
∏k
i=1 Li(n) has no fixed prime divisor,

the method presented here shows that there are infinitely many integers n such

that at least (1/4 + ok→∞(1)) log k of the Li(n) are prime.

Theorem 1.2. Let m ∈ N. Let r ∈ N be sufficiently large depending on

m, and let A = {a1, a2, . . . , ar} be a set of r distinct integers. Then we have

#{{h1, . . . , hm} ⊆ A : for infinitely many n, all

of n+ h1, . . . , n+ hm are prime}
#{{h1, . . . , hm} ⊆ A}

�m 1.

Therefore a positive proportion of admissible m-tuples satisfy the prime

m-tuples conjecture for every m in an appropriate sense.

Theorem 1.3. We have

lim inf
n

(pn+1 − pn) ≤ 600.

We emphasize that the above result does not incorporate any of the tech-

nology used by Zhang to establish the existence of bounded gaps between

primes. The proof is essentially elementary, relying only on the Bombieri-

Vinogradov theorem. Naturally, if we assume that the primes have a higher

level of distribution, then we can obtain stronger results.

Theorem 1.4. Assume that the primes have level of distribution θ for

every θ < 1. Then

lim inf
n

(pn+1 − pn) ≤ 12,

lim inf
n

(pn+2 − pn) ≤ 600.
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Although the constant 12 of Theorem 1.4 appears to be optimal with

our method in its current form, the constant 600 appearing in Theorem 1.3

and Theorem 1.4 is certainly not optimal. By performing further numerical

calculations our method could produce a better bound, and also most of the

ideas of Zhang’s work (and the refinements produced by the polymath project)

should be able to be combined with this method to reduce the constant further.

We comment that the assumption of the Elliott-Halberstam conjecture allows

us to improve the bound on Theorem 1.1 to O(m3e2m).

2. An improved GPY sieve method

We first give an explanation of the key idea behind our new approach. The

basic idea of the GPY method is, for a fixed admissible set H = {h1, . . . , hk},
to consider the sum

S(N, ρ) =
∑

N≤n<2N

( k∑
i=1

χP(n+ hi)− ρ
)
wn.(2.1)

Here χP is the characteristic function of the primes, ρ > 0 and wn are non-

negative weights. If we can show that S(N, ρ) > 0, then at least one term in

the sum over n must have a positive contribution. By the nonnegativity of

wn, this means that there must be some integer n ∈ [N, 2N ] such that at least

bρ+ 1c of the n+hi are prime. (Here bxc denotes the largest integer less than

or equal to x.) Thus if S(N, ρ) > 0 for all large N , there are infinitely many

integers n for which at least bρ+ 1c of the n+hi are prime. (And so there are

infinitely many bounded length intervals containing bρ+ 1c primes.)

The weights wn are typically chosen to mimic Selberg sieve weights. Es-

timating (2.1) can be interpreted as a ‘k-dimensional’ sieve problem. The

standard Selberg k-dimensional weights (which can be shown to be essentially

optimal in other contexts) are

(2.2) wn =
( ∑
d|
∏k
i=1

(n+hi)
d<R

λd
)2
, λd = µ(d)(logR/d)k.

With this choice we find that we just fail to prove the existence of bounded

gaps between primes if we assume the Elliott-Halberstam conjecture. The key

new idea in the paper of Goldston, Pintz and Yıldırım [5] was to consider more

general sieve weights of the form

(2.3) λd = µ(d)F (logR/d)

for a suitable smooth function F . Goldston, Pintz and Yıldırım chose F (x) =

xk+l for suitable l ∈ N, which has been shown to be essentially optimal when

k is large. This allows us to gain a factor of approximately 2 for large k over

the previous choice of sieve weights. As a result we just fail to prove bounded
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gaps using the fact that the primes have exponent of distribution θ for any

θ < 1/2, but succeed in doing so if we assume they have level of distribution

θ > 1/2.

The new ingredient in our method is to consider a more general form of

the sieve weights

(2.4) wn =
( ∑
di|n+hi∀i

λd1,...,dk

)2
.

Using such weights with λd1,...,dk is the key feature of our method. It allows

us to improve on the previous choice of sieve weights by an arbitrarily large

factor, provided that k is sufficiently large. It is the extra flexibility gained

by allowing the weights to depend on the divisors of each factor individually

which gives this improvement.

The idea to use such weights is not entirely new. Selberg [8, p. 245]

suggested the possible use of similar weights in his work on approximations

to the twin prime problem, and Goldston and Yıldırım [4] considered similar

weights in earlier work on the GPY method, but with the support restricted

to di < R1/k for all i.

We comment that our choice of λd1,...,dk will look like

(2.5) λd1,...,dk ≈
( k∏
i=1

µ(di)
)
f(d1, . . . , dk)

for a suitable smooth function f . For our precise choice of λd1,...,dk (given

in Proposition 4.1), we find it convenient to give a slightly different form of

λd1,...,dk , but weights of the form (2.5) should produce essentially the same

results.

3. Notation

We shall view k as a fixed integer and H = {h1, . . . , hk} as a fixed admis-

sible set. In particular, any constants implied by the asymptotic notation o,

O or � may depend on k and H. We will let N denote a large integer, and all

asymptotic notation should be interpreted as referring to the limit N →∞.

All sums, products and suprema will be assumed to be taken over variables

lying in the natural numbers N = {1, 2, . . . } unless specified otherwise. The

exception to this is when sums or products are over a variable p, which instead

will be assumed to lie in the prime numbers P = {2, 3, . . . }.
Throughout the paper, ϕ will denote the Euler totient function, τr(n) the

number of ways of writing n as a product of r natural numbers and µ the

Moebius function. We will let ε be a fixed positive real number, and we may

assume without further comment that ε is sufficiently small at various stages

of our argument. We let pn denote the nth prime and #A denote the number
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of elements of a finite set A. We use bxc to denote the largest integer n ≤ x

and dxe the smallest integer n ≥ x. We let (a, b) be the greatest common

divisor of integers a and b. Finally, [a, b] will denote the closed interval on the

real line with endpoints a and b, except for in Section 5, where it will denote

the least common multiple of integers a and b instead.

4. Outline of the proof

We will find it convenient to choose our weights wn to be zero unless n lies

in a fixed residue class v0 (mod W ), where W =
∏
p≤D0

p. This is a technical

modification which removes some minor complications in dealing with the effect

of small prime factors. The precise choice of D0 is unimportant, but it will

suffice to choose

(4.1) D0 = log log logN,

so certainly W � (log logN)2 by the prime number theorem. By the Chinese

remainder theorem, we can choose v0 such that v0 + hi is coprime to W for

each i since H is admissible. When n ≡ v0 (mod W ), we choose our weights

wn of the form (2.4). We now wish to estimate the sums

S1 =
∑

N≤n<2N
n≡v0 (mod W )

Ñ ∑
di|n+hi∀i

λd1,...,dk

é2

,(4.2)

S2 =
∑

N≤n<2N
n≡v0 (mod W )

( k∑
i=1

χP(n+ hi)
)Ñ ∑

di|n+hi∀i
λd1,...,dk

é2

.(4.3)

We evaluate these sums using the following proposition.

Proposition 4.1. Let the primes have exponent of distribution θ > 0,

and let R = N θ/2−δ for some small fixed δ > 0. Let λd1,...,dk be defined in

terms of a fixed smooth function F by

λd1,...,dk =
( k∏
i=1

µ(di)di
) ∑

r1,...,rk
di|ri∀i

(ri,W )=1∀i

µ(
∏k
i=1 ri)

2∏k
i=1 ϕ(ri)

F

Å
log r1
logR

, . . . ,
log rk
logR

ã
,

whenever (
∏k
i=1 di,W ) = 1, and let λd1,...,dk = 0 otherwise. Moreover, let F be

supported on Rk = {(x1, . . . , xk) ∈ [0, 1]k :
∑k
i=1 xi ≤ 1}. Then we have

S1 =
(1 + o(1))ϕ(W )kN(logR)k

W k+1
Ik(F ),

S2 =
(1 + o(1))ϕ(W )kN(logR)k+1

W k+1 logN

k∑
m=1

J
(m)
k (F ),
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provided Ik(F ) 6= 0 and J
(m)
k (F ) 6= 0 for each m, where

Ik(F ) =

∫ 1

0
· · ·
∫ 1

0
F (t1, . . . , tk)

2dt1· · · dtk,

J
(m)
k (F ) =

∫ 1

0
· · ·
∫ 1

0

Ç∫ 1

0
F (t1, . . . , tk)dtm

å2

dt1· · · dtm−1dtm+1· · · dtk.

We recall that if S2 is large compared to S1, then using the GPY method

we can show that there are infinitely many integers n such that several of the

n+ hi are prime. The following proposition makes this precise.

Proposition 4.2. Let the primes have level of distribution θ > 0. Let

δ > 0 and H = {h1, . . . , hk} be an admissible set. Let Ik(F ) and J
(m)
k (F ) be

given as in Proposition 4.1, and let Sk denote the set of Riemann-integrable

functions F : [0, 1]k → R supported on Rk={(x1, . . . , xk)∈ [0, 1]k :
∑k
i=1 xi≤1}

with Ik(F ) 6= 0 and J
(m)
k (F ) 6= 0 for each m. Let

Mk = sup
F∈Sk

∑k
m=1 J

(m)
k (F )

Ik(F )
, rk =

⌈θMk

2

⌉
.

Then there are infinitely many integers n such that at least rk of the n+hi (1 ≤
i ≤ k) are prime. In particular, lim infn(pn+rk−1 − pn) ≤ max1≤i,j≤k(hi − hj).

Proof of Proposition 4.2. We let S = S2−ρS1, and we recall from Section

2 that if we can show S > 0 for all large N , then there are infinitely many

integers n such that at least bρ+ 1c of the n+ hi are prime.

We put R = N θ/2−δ for a small δ > 0. By the definition of Mk, we can

choose F0 ∈ Sk such that
∑k
m=1 J

(m)
k (F0) > (Mk − δ)Ik(F0) > 0. Since F0 is

Riemann-integrable, there is a smooth function F1 such that
∑k
m=1 J

(m)
k (F1) >

(Mk − 2δ)Ik(F1) > 0. Using Proposition 4.1, we can then choose λd1,...,dk such

that

S =
ϕ(W )kN(logR)k

W k+1

( logR

logN

k∑
j=1

J
(m)
k (F1)− ρIk(F1) + o(1)

)
(4.4)

≥ ϕ(W )kN(logR)kIk(F1)

W k+1

((θ
2
− δ

)(
Mk − 2δ

)
− ρ+ o(1)

)
.

If ρ = θMk/2− ε then, by choosing δ suitably small (depending on ε), we see

that S > 0 for all large N . Thus there are infinitely many integers n for which

at least bρ+1c of the n+hi are prime. Since bρ+1c = dθMk/2e if ε is suitably

small, we obtain Proposition 4.2. �

Thus, if the primes have a fixed level of distribution θ, to show the ex-

istence of many of the n + hi being prime for infinitely many n ∈ N we only
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require a suitable lower bound for Mk. The following proposition establishes

such a bound for different values of k.

Proposition 4.3. Let k ∈ N, and let Mk be as given by Proposition 4.2.

Then

(1) We have M5 > 2.

(2) We have M105 > 4.

(3) If k is sufficiently large, we have Mk > log k − 2 log log k − 2.

We now prove Theorems 1.1, 1.2, 1.3 and 1.4 from Propositions 4.2 and 4.3.

First we consider Theorem 1.3. We take k = 105. By Proposition 4.3, we

have M105 > 4. By the Bombieri-Vinogradov theorem, the primes have level

of distribution θ=1/2− ε for every ε > 0. Thus, if we take ε sufficiently small,

we have θM105/2>1. Therefore, by Proposition 4.2, we have

lim inf(pn+1 − pn) ≤ max
1≤i,j≤105

(hi − hj)

for any admissible set H = {h1, . . . , h105}. By computations performed by

Thomas Engelsma (unpublished), we can choose2 H such that 0 ≤ h1 < · · · <
h105 and h105 − h1 = 600. This gives Theorem 1.3.

If we assume the Elliott-Halberstam conjecture then the primes have level

of distribution θ = 1 − ε. First we take k = 105 and see that θM105/2 > 2

for ε sufficiently small (since M105 > 4). Therefore, by Proposition 4.2,

lim infn(pn+2 − pn) ≤ max1≤i,j≤105(hi − hj). Thus, choosing the same ad-

missible set H as above, we see lim infn(pn+2 − pn) ≤ 600 under the Elliott-

Halberstam conjecture.

Next we take k = 5 and H = {0, 2, 6, 8, 12}, with θ = 1 − ε again.

By Proposition 4.3 we have M5 > 2, and so θM5/2 > 1 for ε sufficiently

small. Thus, by Proposition 4.2, lim infn(pn+1 − pn) ≤ 12 under the Elliott-

Halberstam conjecture. This completes the proof of Theorem 1.4.

Finally, we consider the case when k is large. For the rest of this sec-

tion, any constants implied by asymptotic notation will be independent of k.

By the Bombieri-Vinogradov theorem, we can take θ = 1/2 − ε. Thus, by

2Explicitly, we can take H = {0, 10, 12, 24, 28, 30, 34, 42, 48, 52, 54, 64, 70, 72, 78, 82,

90, 94, 100, 112, 114, 118, 120, 124, 132, 138, 148, 154, 168, 174, 178, 180, 184, 190, 192,

202, 204, 208, 220, 222, 232, 234, 250, 252, 258, 262, 264, 268, 280, 288, 294, 300, 310, 322,

324, 328, 330, 334, 342, 352, 358, 360, 364, 372, 378, 384, 390, 394, 400, 402, 408, 412, 418,

420, 430, 432, 442, 444, 450, 454, 462, 468, 472, 478, 484, 490, 492, 498, 504, 510, 528, 532,

534, 538, 544, 558, 562, 570, 574, 580, 582, 588, 594, 598, 600}. This set was obtained from

the website http://math.mit.edu/∼primegaps/ maintained by Andrew Sutherland.

http://math.mit.edu/~primegaps/
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Proposition 4.3, we have for k sufficiently large

(4.5)
θMk

2
≥
(1

4
− ε

2

)(
log k − 2 log log k − 2

)
.

We choose ε = 1/k and see that θMk/2 > m if k ≥ Cm2e4m for some ab-

solute constant C (independent of m and k). Thus, for any admissible set

H = {h1, . . . , hk} with k ≥ Cm2e4m, at least m + 1 of the n + hi must be

prime for infinitely many integers n. We can choose our set H to be the set

{pπ(k)+1, . . . , pπ(k)+k} of the first k primes which are greater than k. This

is admissible, since no element is a multiple of a prime less than k (and

there are k elements, so it cannot cover all residue classes modulo any prime

greater than k.) This set has diameter pπ(k)+k − pπ(k)+1 � k log k. Thus

lim infn(pn+m − pn)� k log k � m3e4m if we take k = dCm2e4me. This gives

Theorem 1.1.

We can now establish Theorem 1.2 by a simple counting argument. Given

m, we let k = dCm2e4me as above. Therefore if {h1, . . . , hk} is admissible, then

there exists a subset {h′1, . . . , h′m} ⊆ {h1, . . . , hk} with the property that there

are infinitely many integers n for which all of the n+h′i are prime (1 ≤ i ≤ m).

We let A2 denote the set formed by starting with the given set A =

{a1, . . . , ar}, and for each prime p ≤ k, in turn removing all elements of the

residue class modulo p which contains the fewest integers. We see that #A2 ≥
r
∏
p≤k(1−1/p)�m r. Moreover, any subset ofA2 of size k must be admissible,

since it cannot cover all residue classes modulo p for any prime p ≤ k. We let

s = #A2, and since r is taken sufficiently large in terms of m, we may assume

that s > k.

We see there are
(s
k

)
sets H ⊆ A2 of size k. Each of these is admissible,

and so contains at least one subset {h′1, . . . , h′m} ⊆ A2 which satisfies the prime

m-tuples conjecture. Any admissible set B ⊆ A2 of size m is contained in
(s−m
k−m

)
sets H ⊆ A2 of size k. Thus there are at least

(s
k

)(s−m
k−m

)−1 �m sm �m rm

admissible sets B ⊆ A2 of size m which satisfy the prime m-tuples conjecture.

Since there are
( r
m

)
≤ rm sets {h1, . . . , hm} ⊆ A, Theorem 1.2 holds.

We are left to establish Propositions 4.1 and 4.3.

5. Selberg sieve manipulations

In this section we perform initial manipulations towards establishing Prop-

osition 4.1. These arguments are multidimensional generalizations of the sieve

arguments of [3]. In particular, our approach is based on the elementary com-

binatorial ideas of Selberg. The aim is to introduce a change of variables to

rewrite our sums S1 and S2 in a simpler form.

Throughout the rest of the paper we assume that the primes have a fixed

level of distribution θ, and R = N θ/2−δ. We restrict the support of λd1,...,dk
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to tuples for which the product d =
∏k
i=1 di is less than R and also satisfies

(d,W ) = 1 and µ(d)2 = 1. We note that the condition µ(d)2 = 1 implies that

(di, dj) = 1 for all i 6= j.

Lemma 5.1. Let

yr1,...,rk =
( k∏
i=1

µ(ri)ϕ(ri)
) ∑
d1,...,dk
ri|di∀i

λd1,...,dk∏k
i=1 di

.

Let ymax = supr1,...,rk |yr1,...,rk |. Then

S1 =
N

W

∑
r1,...,rk

y2r1,...,rk∏k
i=1 ϕ(ri)

+O
(y2maxϕ(W )kN(logR)k

W k+1D0

)
.

Proof. We expand out the square and swap the order of summation to

give

(5.1)

S1=
∑

N≤n<2N
n≡v0 (mod W )

( ∑
di|n+hi∀i

λd1,...,dk

)2
=

∑
d1,...,dk
e1,...,ek

λd1,...,dkλe1,...,ek
∑

N≤n<2N
n≡v0 (mod W )
[di,ei]|n+hi∀i

1.

We recall that here, and throughout this section, we are using [a, b] to denote

the least common multiple of a and b.

By the Chinese remainder theorem, the inner sum can be written as a

sum over a single residue class modulo q = W
∏k
i=1[di, ei], provided that the

integers W, [d1, e1], . . . , [dk, ek] are pairwise coprime. In this case the inner sum

is N/q +O(1). If the integers are not pairwise coprime, then the inner sum is

empty. This gives

S1 =
N

W

∑′

d1,...,dk
e1,...,ek

λd1,...,dkλe1,...,ek∏k
i=1[di, ei]

+O
( ∑′

d1,...,dk
e1,...,ek

|λd1,...,dkλe1,...,ek |
)
,(5.2)

where
∑′ is used to denote the restriction that we require W, [d1, e1], . . . , [dk, ek]

to be pairwise coprime. To ease notation we will put λmax=supd1,...,dk |λd1,...,dk |.
We now see that since λd1,...,dk is nonzero only when

∏k
i=1 di < R, the error

term contributes

(5.3) � λ2max

(∑
d<R

τk(d)
)2
� λ2maxR

2(logR)2k,

which will be negligible.

In the main sum we wish to remove the dependencies between the di and

the ej variables. We use the identity

(5.4)
1

[di, ei]
=

1

diei

∑
ui|di,ei

ϕ(ui)
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to rewrite the main term as

(5.5)
N

W

∑
u1,...,uk

( k∏
i=1

ϕ(ui)
) ∑′

d1,...,dk
e1,...,ek
ui|di,ei∀i

λd1,...,dkλe1,...,ek
(
∏k
i=1 di)(

∏k
i=1 ei)

.

We recall that λd1,...,dk is supported on integers d1, . . . , dk with (di,W ) = 1

for each i and (di, dj) = 1 for all i 6= j. Thus we may drop the requirement

that W is coprime to each of the [di, ei] from the summation, since these terms

have no contribution. Similarly, we may drop the requirement that the di
variables are all pairwise coprime and the requirement that the ei variables

are all pairwise coprime. Thus the only remaining restriction coming from the

pairwise coprimality of W, [d1, e1], . . . , [dk, ek] is that (di, ej) = 1 for all i 6= j.

We can remove the requirement that (di, ej) = 1 by multiplying our ex-

pression by
∑
si,j |di,ej µ(si,j). We do this for all i, j with i 6= j. This transforms

the main term to

(5.6)

N

W

∑
u1,...,uk

( k∏
i=1

ϕ(ui)
) ∑
s1,2,...,sk,k−1

( ∏
1≤i,j≤k
i 6=j

µ(si,j)
) ∑

d1,...,dk
e1,...,ek
ui|di,ei∀i

si,j |di,ej∀i 6=j

λd1,...,dkλe1,...,ek
(
∏k
i=1 di)(

∏k
i=1 ei)

.

We can restrict the si,j to be coprime to ui and uj , because terms with si,j
not coprime to ui or uj make no contribution to our sum. This is because

λd1,...,dk = 0 unless (di, dj) = 1. Similarly we can further restrict our sum so

that si,j is coprime to si,a and sb,j for all a 6= j and b 6= i. We denote the

summation over s1,2, . . . , sk,k−1 with these restrictions by
∑∗.

We now introduce a change of variables to make the estimation of the sum

more straightforward. We let

(5.7) yr1,...,rk =
( k∏
i=1

µ(ri)ϕ(ri)
) ∑
d1,...,dk
ri|di∀i

λd1,...,dk∏k
i=1 di

.

This change is invertible. For d1, . . . , dk with
∏k
i=1 di square-free, we find that

∑
r1,...,rk
di|ri∀i

yr1,...,rk∏k
i=1 ϕ(ri)

=
∑

r1,...,rk
di|ri∀i

( k∏
i=1

µ(ri)
) ∑
e1,...,ek
ri|ei∀i

λe1,...,ek∏k
i=1 ei

(5.8)

=
∑

e1,...,ek

λe1,...,ek∏k
i=1 ei

∑
r1,...,rk
di|ri∀i
ri|ei∀i

k∏
i=1

µ(ri) =
λd1,...,dk∏k
i=1 µi(di)di

.
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Thus any choice of yr1,...,rk supported on r1, . . . , rk, with the product r =∏k
i=1 ri square-free and satisfying r < R and (r,W ) = 1, will give a suitable

choice of λd1,...,dk . We let ymax = supr1,...,rk |yr1,...,rk |. Now, since d/ϕ(d) =∑
e|d 1/ϕ(e) for square-free d, we find by taking r′ =

∏k
i=1 ri/di that

λmax ≤ sup
d1,...,dk∏k

i=1
di square-free

ymax

( k∏
i=1

di
) ∑

r1,...,rk
di|ri∀i∏k
i=1 ri<R∏k

i=1
ri square-free

( k∏
i=1

µ(ri)
2

ϕ(ri)

)
(5.9)

≤ ymax sup
d1,...,dk∏k

i=1
di square-free

( k∏
i=1

di
ϕ(di)

) ∑
r′<R/

∏k
i=1 di

(r′,
∏k
i=1

di)=1

µ(r′)2τk(r
′)

ϕ(r′)

≤ ymax sup
d1,...,dk

∑
d|
∏k
i=1

di

µ(d)2

ϕ(d)

∑
r′<R/

∏k
i=1

di

(r′,
∏k
i=1

di)=1

µ(r′)2τk(r
′)

ϕ(r′)

≤ ymax

∑
u<R

µ(u)2τk(u)

ϕ(u)
� ymax(logR)k.

In the last line we have taken u = dr′ and used the fact τk(dr
′) ≥ τk(r′). Hence

the error term O(λ2maxR
2(logN)2k) is of size O(y2maxR

2(logN)4k).

Substituting our change of variables (5.7) into the main term (5.6), and

using the above estimate for the error term, we obtain

S1 =
N

W

∑
u1,...,uk

( k∏
i=1

ϕ(ui)
)

(5.10)

×
∑∗

s1,2,...,sk,k−1

( ∏
1≤i,j≤k
i 6=j

µ(si,j)
)( k∏

i=1

µ(ai)µ(bi)

ϕ(ai)ϕ(bi)

)
ya1,...,akyb1,...,bk

+O
(
y2maxR

2(logR)4k
)
,

where aj = uj
∏
i 6=j sj,i and bj = uj

∏
i 6=j si,j . In these expressions we have

used the fact that we have restricted si,j to be coprime to the other terms in

the expression for ai and bj . For the same reason we may rewrite µ(aj) as

µ(uj)
∏
i 6=j µ(si,j), and similarly for ϕ(aj), µ(bj) and ϕ(bj). This gives us

S1 =
N

W

∑
u1,...,uk

( k∏
i=1

µ(ui)
2

ϕ(ui)

) ∑∗

s1,2,...,sk,k−1

( ∏
1≤i,j≤k
i 6=j

µ(si,j)

ϕ(si,j)2

)
ya1,...,akyb1,...,bk(5.11)

+O
(
y2maxR

2(logR)4k
)
.
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We see that there is no contribution from si,j with (si,j ,W ) 6= 1 because of the

restricted support of y. Thus we only need to consider si,j = 1 or si,j > D0.

The contribution when si,j > D0 is

� y2maxN

W

( ∑
u<R

(u,W )=1

µ(u)2

ϕ(u)

)k( ∑
si,j>D0

µ(si,j)
2

ϕ(si,j)2

)(∑
s≥1

µ(s)2

ϕ(s)2

)k2−k−1
(5.12)

� y2maxϕ(W )kN(logR)k

W k+1D0
.

Thus we may restrict our attention to the case when si,j = 1 for all i 6= j. This

gives

(5.13)

S1 =
N

W

∑
u1,...,uk

y2u1,...,uk∏k
i=1 ϕ(ui)

+O

Ç
y2maxϕ(W )kN(logR)k

W k+1D0
+ y2maxR

2(logR)4k
å
.

We recall that R2 = N θ−2δ ≤ N1−2δ and W � N δ, and so the first error term

dominates. This gives the result. �

We now consider S2. We write S2 =
∑k
m=1 S

(m)
2 , where

(5.14) S
(m)
2 =

∑
N≤n<2N

n≡v0 (mod W )

χP(n+ hm)
( ∑
d1,...,dk
di|n+hi∀i

λd1,...,dk

)2
.

We now estimate S
(m)
2 in a similar way to our treatment of S1.

Lemma 5.2. Let

y(m)
r1,...,rk

=
( k∏
i=1

µ(ri)g(ri)
) ∑
d1,...,dk
ri|di∀i
dm=1

λd1,...,dk∏k
i=1 ϕ(di)

,

where g is the totally multiplicative function defined on primes by g(p) = p−2.

Let y
(m)
max = supr1,...,rk |y

(m)
r1,...,rk |. Then for any fixed A > 0, we have

S
(m)
2 =

N

ϕ(W ) logN

∑
r1,...,rk

(y
(m)
r1,...,rk)2∏k
i=1 g(ri)

+O
((y

(m)
max)2ϕ(W )k−2N(logN)k−2

W k−1D0

)
+O

( y2maxN

(logN)A

)
.

Proof. We first expand out the square and swap the order of summation

to give

(5.15) S
(m)
2 =

∑
d1,...,dk
e1,...,ek

λd1,...,dkλe1,...,ek
∑

N≤n<2N
n≡v0 (mod W )
[di,ei]|n+hi∀i

χP(n+ hm).
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As with S1, the inner sum can be written as a sum over a single residue class

modulo q = W
∏k
i=1[di, ei], provided that W, [d1, e1], . . . , [dk, ek] are pairwise

coprime. The integer n+hm will lie in a residue class coprime to the modulus if

and only if dm = em = 1. In this case the inner sum will contribute XN/ϕ(q)+

O(E(N, q)), where

E(N, q) = 1 + sup
(a,q)=1

∣∣∣∣ ∑
N≤n<2N

n≡a (mod q)

χP(n)− 1

ϕ(q)

∑
N≤n<2N

χP(n)

∣∣∣∣,(5.16)

XN =
∑

N≤n<2N

χP(n).(5.17)

If either one pair of W, [d1, e1], . . . , [dk, ek] share a common factor, or if either

dm or em are not 1, then the contribution of the inner sum is zero. Thus we

obtain

(5.18)

S
(m)
2 =

XN

ϕ(W )

∑′

d1,...,dk
e1,...,ek

em=dm=1

λd1,...,dkλe1,...,ek∏k
i=1 ϕ([di, ei])

+O
( ∑
d1,...,dk
e1,...,ek

|λd1,...,dkλe1,...,ek |E(N, q)
)
,

where we have written q = W
∏k
i=1[di, ei].

We first deal with the contribution from the error terms. From the sup-

port of λd1,...,dk , we see that we only need to consider square-free q with

q < R2W . Given a square-free integer r, there are at most τ3k(r) choices

of d1, . . . , dk, e1, . . . , ek for which W
∏k
i=1[di, ei] = r. We also recall from (5.9)

that λmax � ymax(logR)k. Thus the error term contributes

(5.19) � y2max(logR)2k
∑

r<R2W

µ(r)2τ3k(r)E(N, r).

By Cauchy-Schwarz, the trivial bound E(N, q)� N/ϕ(q), and our hypothesis

that the primes have level of distribution θ, this contributes for any fixed A > 0

� y2max(logR)2k
( ∑
r<R2W

µ(r)2τ23k(r)
N

ϕ(r)

)1/2( ∑
r<R2W

µ(r)2E(N, r)
)1/2(5.20)

� y2maxN

(logN)A
.

We now concentrate on the main sum. As in the treatment of S1 in the proof of

Lemma 5.1, we rewrite the conditions (di, ej) = 1 by multiplying our expression

by
∑
si,j |di,ej µ(si,j). Again we may restrict si,j to be coprime to ui, uj , si,a

and sb,j for all a 6= j and b 6= i. We denote the summation subject to these

restrictions by
∑∗. We also split the ϕ([di, ei]) terms by using the equation
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(valid for square-free di, ei)

(5.21)
1

ϕ([di, ei])
=

1

ϕ(di)ϕ(ei)

∑
ui|di,ei

g(ui),

where g is the totally multiplicative function defined on primes by g(p) = p−2.

This gives us a main term of

(5.22)

XN

ϕ(W )

∑
u1,...,uk

( k∏
i=1

g(ui)
) ∑∗

s1,2,...,sk,k−1

( ∏
1≤i,j≤k
i 6=j

µ(si,j)
) ∑

d1,...,dk
e1,...,ek
ui|di,ei∀i

si,j |di,ej∀i 6=j
dm=em=1

λd1,...,dkλe1,...,ek∏k
i=1 ϕ(di)ϕ(ei)

.

We have now separated the dependencies between the e and d variables, so

again we make a substitution. We let

(5.23) y(m)
r1,...,rk

=
( k∏
i=1

µ(ri)g(ri)
) ∑
d1,...,dk
ri|di∀i
dm=1

λd1,...,dk∏k
i=1 ϕ(di)

.

We note y
(m)
r1,...,rk = 0 unless rm = 1. Substituting this into (5.22), we obtain a

main term of

(5.24)
XN

ϕ(W )

∑
u1,...,uk

( k∏
i=1

µ(ui)
2

g(ui)

) ∑∗

s1,2,...,sk,k−1

( ∏
1≤i,j≤k
i 6=j

µ(si,j)

g(si,j)2

)
y(m)
a1,...,ak

y
(m)
b1,...,bk

,

where aj = uj
∏
i 6=j sj,i and bj = uj

∏
i 6=j si,j for each 1 ≤ j ≤ k. As before,

we have replaced µ(aj) with µ(uj)
∏
i 6=j µ(sj,i) (and similarly for g(aj), µ(bj)

and g(bj)). This is valid since terms with aj or bj not square-free make no

contribution.

We see the contribution from si,j 6= 1 is of size

� (y
(m)
max)2N

ϕ(W ) logN

( ∑
u<R

(u,W )=1

µ(u)2

g(u)

)k−1(∑
s

µ(s)2

g(s)2

)k(k−1)−1 ∑
si,j>D0

µ(si,j)
2

g(si,j)2

(5.25)

� (y
(m)
max)2ϕ(W )k−2N(logR)k−1

W k−1D0 logN
.
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Thus we find that

S
(m)
2 =

XN

ϕ(W )

∑
u1,...,uk

(y
(m)
u1,...,uk)2∏k
i=1 g(ui)

+O
((y

(m)
max)2ϕ(W )k−2N(logR)k−2

D0W k−1

ä
(5.26)

+O
( y2maxN

(logN)A

)
.

Finally, by the prime number theorem, XN = N/ logN+O(N/(logN)2). This

error term contributes

(5.27)

� (y
(m)
max)2N

ϕ(W )(logN)2

( ∑
u<R

(u,W )=1

µ(u)2

g(u)

)k−1
� (y

(m)
max)2ϕ(W )k−2N(logR)k−3

W k−1 ,

which can be absorbed into the first error term of (5.26). This completes the

proof. �

Remark. In our proof of Lemma 5.2 we only really require λd1,...,dk to be

supported on d1, . . . , dk satisfying
∏
i 6=j di < R for all j instead of

∏k
i=1 di < R.

For k ≥ 3, the numerical benefit of this extension is small, and so we do not

consider it further.

Remark. As our result relies on the Bombieri-Vinogradov theorem, the

implied constant in the error term is not effectively computable. However, if

we restrict the λd1,...,dk to be supported on di which are coprime to the largest

prime factor of a possible exceptional modulus of a primitive character, then

we can make this error term (and all others in this paper) effective at the cost

of a negligible error.

We now relate our new variables y
(m)
r1,...,rk to the yr1,...,rk variables from S1.

Lemma 5.3. If rm = 1, then

y(m)
r1,...,rk

=
∑
am

yr1,...,rm−1,am,rm+1,...,rk

ϕ(am)
+O

(ymaxϕ(W ) logR

WD0

)
.

Proof. We assume throughout the proof that rm = 1. We first substitute

our expression (5.8) into the definition (5.23). This gives

(5.28) y(m)
r1,...,rk

=
( k∏
i=1

µ(ri)g(ri)
) ∑
d1,...,dk
ri|di∀i
dm=1

( k∏
i=1

µ(di)di
ϕ(di)

) ∑
a1,...,ak
di|ai∀i

ya1,...,ak∏k
i=1 ϕ(ai)

.
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We swap the summation of the d and a variables to give

(5.29) y(m)
r1,...,rk

=
( k∏
i=1

µ(ri)g(ri)
) ∑
a1,...,ak
ri|ai∀i

ya1,...,ak∏k
i=1 ϕ(ai)

∑
d1,...,dk

di|ai,ri|di∀i
dm=1

k∏
i=1

µ(di)di
ϕ(di)

.

We can now evaluate the sum over d1, . . . , dk explicitly. This gives

y(m)
r1,...,rk

=
( k∏
i=1

µ(ri)g(ri)
) ∑
a1,...,ak
ri|ai∀i

ya1,...,ak∏k
i=1 ϕ(ai)

∏
i 6=m

µ(ai)ri
ϕ(ai)

.(5.30)

We see that from the support of ya1,...,ak that we may restrict the summation

over aj to (aj ,W ) = 1. Thus either aj = rj or aj > D0rj . For j 6= m, the total

contribution from aj 6= rj is

� ymax

( k∏
i=1

g(ri)ri
)( ∑

aj>D0rj
rj |aj

µ(aj)
2

ϕ(aj)2

)( ∑
am<R

(am,W )=1

µ(am)2

ϕ(am)

) ∏
1≤i≤k
i 6=j,m

(∑
ri|ai

µ(ai)
2

ϕ(ai)2

)(5.31)

�
( k∏
i=1

g(ri)ri
ϕ(ri)2

)ymaxϕ(W ) logR

WD0
� ymaxϕ(W ) logR

WD0
.

Thus we find that the main contribution is when aj = rj for all j 6= m. We

have

y(m)
r1,...,rk

=
( k∏
i=1

g(ri)ri
ϕ(ri)2

)∑
am

yr1,...,rm−1,am,rm+1,...,rk

ϕ(am)
+O

(ymaxϕ(W ) logR

WD0

)
.

(5.32)

We note that g(p)p/ϕ(p)2 = 1 + O(p−2). Thus, since the contribution is zero

unless
∏k
i=1 ri is coprime to W , we see that the product in the above expression

may be replaced by 1 +O(D−10 ). This gives the result. �

6. Smooth choice of y

We now choose suitable values for our y variables and complete the proof

of Proposition 4.1.

We first give some comments to motivate our choice of the y variables,

which we believe should be close to optimal. We wish to choose y so as to

maximize the ratio of the main terms of S2 and S1. If we use Lagrangian

multipliers to maximize this ratio (treating all error terms as zero), we arrive

at the condition that

(6.1) λyr1,...,rk =
( k∏
i=1

ϕ(ri)

g(ri)

) k∑
m=1

g(rm)

ϕ(rm)
y
(m)
r1,...,rm−1,1,rm+1,...,rk
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for some fixed constant λ. The y terms are supported on integers free of small

prime factors, and for most integers r free of small prime factors we have

g(r) ≈ ϕ(r) ≈ r, and so the above condition reduces to

(6.2) λyr1,...,rk ≈
k∑

m=1

y
(m)
r1,...,rm−1,1,rm+1,...,rk

.

This condition looks smooth (it has no dependence on the prime factorization

of the ri) and should be able to be satisfied if yr1,...,rk is a smooth function

of the ri variables. Motivated by the above, when the product r =
∏k
i=1 ri

satisfies (r,W ) = 1 and µ(r)2 = 1, we choose

(6.3) yr1,...,rk = F
( log r1

logR
, . . . ,

log rk
logR

)
,

for some smooth function F : Rk → R, supported on Rk = {(x1, . . . , xk) ∈
[0, 1]k :

∑k
i=1 xi ≤ 1}. As previously required, we set yr1,...,rk = 0 if the product

r is either not coprime to W or is not square-free. With this choice of y, we

can obtain suitable asymptotic estimates for S1 and S2.

We will use the following lemma to estimate our sums S1 and S2 with this

choice of y.

Lemma 6.1. Let A1, A2, L > 0. Let γ be a multiplicative function satis-

fying

0 ≤ γ(p)

p
≤ 1−A1,

and

−L ≤
∑

w≤p≤z

γ(p) log p

p
− log z/w ≤ A2

for any 2 ≤ w ≤ z. Let g be the totally multiplicative function defined on

primes by g(p) = γ(p)/(p − γ(p)). Finally, let G : [0, 1] → R be smooth, and

let Gmax = supt∈[0,1](|G(t)|+ |G′(t)|). Then∑
d<z

µ(d)2g(d)G
( log d

log z

)
= S log z

∫ 1

0
G(x)dx+OA1,A2(SLGmax),

where

S =
∏
p

(
1− γ(p)

p

)−1(
1− 1

p

)
.

Here the constant implied by the ‘O’ term is independent of G and L.

Proof. This is [3, Lemma 4], with κ = 1 and slight changes to the notation.

�

We now finish our estimations of S1 and S
(m)
2 , completing the proof of

Proposition 4.1. We first estimate S1.
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Lemma 6.2. Let yr1,...,rk be given in terms of a smooth function F by

(6.3), with F supported on Rk = {(x1, . . . , xk) ∈ [0, 1]k :
∑k
i=1 xi ≤ 1}. Let

Fmax = sup
(t1,...,tk)∈[0,1]k

|F (t1, . . . , tk)|+
k∑
i=1

|∂F
∂ti

(t1, . . . , tk)|.

Then we have

S1 =
ϕ(W )kN(logR)k

W k+1
Ik(F ) +O

(F 2
maxϕ(W )kN(logR)k

W k+1D0

)
,

where

Ik(F ) =

∫ 1

0
· · ·
∫ 1

0
F (t1, . . . , tk)

2dt1· · · dtk.

Proof. We substitute our choice (6.3) of y into our expression of S1 in

terms of yr1,...,rk given by Lemma 5.1. This gives

S1 =
N

W

∑
u1,...,uk

(ui,uj)=1∀i 6=j
(ui,W )=1∀i

( k∏
i=1

µ(ui)
2

ϕ(ui)

)
F
( log u1

logR
, . . . ,

log uk
logR

)2
(6.4)

+O
(F 2

maxϕ(W )kN(logR)k

W k+1D0

)
.

We note that two integers a and b with (a,W ) = (b,W ) = 1 but (a, b) 6= 1

must have a common prime factor which is greater than D0. Thus we can drop

the requirement that (ui, uj) = 1, at the cost of an error of size

� F 2
maxN

W

∑
p>D0

∑
u1,...,uk<R
p|ui,uj

(ui,W )=1∀i

k∏
i=1

µ(ui)
2

ϕ(ui)
(6.5)

� F 2
maxN

W

∑
p>D0

1

(p− 1)2

( ∑
u<R

(u,W )=1

µ(u)2

ϕ(u)

)k
� F 2

maxϕ(W )kN(logR)k

W k+1D0
.

Thus we are left to evaluate the sum

(6.6)
∑

u1,...,uk
(ui,W )=1∀i

( k∏
i=1

µ(ui)
2

ϕ(ui)

)
F
( log u1

logR
, . . . ,

log uk
logR

)2
.
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We can now estimate this sum by k applications of Lemma 6.1, dealing with

the sum over each ui in turn. For each application, we take

γ(p) =

1, p -W,
0, otherwise,

(6.7)

L� 1 +
∑
p|W

log p

p
� logD0,(6.8)

and A1 and A2 fixed constants of suitable size. This gives

∑
u1,...,uk

(ui,W )=1∀i

( k∏
i=1

µ(ui)
2

ϕ(ui)

)
F
( log u1

logR
, . . . ,

log uk
logR

)2
(6.9)

=
ϕ(W )k(logR)k

W k
Ik(F ) +O

(F 2
maxϕ(W )k(logD0)(logR)k−1

W k

)
.

We now combine (6.9) with (6.4) and (6.5) to obtain the result. �

Lemma 6.3. Let yr1,...,rk , F and Fmax be as described in Lemma 6.2. Then

we have

S
(m)
2 =

ϕ(W )kN(logR)k+1

W k+1 logN
J
(m)
k (F ) +O

(F 2
maxϕ(W )kN(logR)k

W k+1D0

)
,

where

J
(m)
k (F ) =

∫ 1

0
· · ·
∫ 1

0

( ∫ 1

0
F (t1, . . . , tk)dtm

)2
dt1 · · · dtm−1dtm+1 · · · dtk.

Proof. The estimation of S
(m)
2 is similar to the estimation of S1. We first

estimate y
(m)
r1,...,rk . We recall that y

(m)
r1,...,rk = 0 unless rm = 1 and r =

∏k
i=1 ri

satisfies (r,W ) = 1 and µ(r)2 = 1, in which case y
(m)
r1,...,rk is given in terms of

yr1,...,rk by Lemma 5.3. We first concentrate on this case when y
(m)
r1,...,rk 6= 0.

We substitute our choice (6.3) of y into our expression from Lemma 5.3. This

gives

y(m)
r1,...,rk

= O
(Fmaxϕ(W ) logR

WD0

)(6.10)

+
∑

(u,W
∏k
i=1 ri)=1

µ(u)2

ϕ(u)
F
( log r1

logR
, . . . ,

log rm−1
logR

,
log u

logR
,
log rm+1

logR
, . . . ,

log rk
logR

)
.



SMALL GAPS BETWEEN PRIMES 403

We can see from this that y
(m)
max � ϕ(W )Fmax(logR)/W . We now estimate the

sum over u in (6.10). We apply Lemma 6.1 with

γ(p) =

1, p -W ∏k
i=1 ri,

0, otherwise,

(6.11)

L� 1 +
∑

p|W
∏k
i=1

ri

log p

p
�

∑
p<logR

log p

p
+

∑
p|W

∏k
i=1

ri
p>logR

log logR

logR
� log logN,

(6.12)

and with A1, A2 suitable fixed constants. This gives us

y(m)
r1,...,rk

= (logR)
ϕ(W )

W

Ä k∏
i=1

ϕ(ri)

ri

ä
F (m)
r1,...,rk

+O
(Fmaxϕ(W ) logR

WD0

)
,(6.13)

where

(6.14) F (m)
r1,...,rk

=

∫ 1

0
F
( log r1

logR
, . . . ,

log rm−1
logR

, tm,
log rm+1

logR
, . . . ,

log rk
logR

)
dtm.

Thus we have shown that if rm = 1 and r =
∏k
i=1 ri satisfies (r,W ) = 1 and

µ(r)2 = 1, then y
(m)
r1,...,rk is given by (6.13), and otherwise y

(m)
r1,...,rk = 0. We now

substitute this into our expression from Lemma 5.2; namely,

S
(m)
2 =

N

ϕ(W ) logN

∑
r1,...,rk

(y
(m)
r1,...,rk)2∏k
i=1 g(ri)

(6.15)

+O
((y

(m)
max)2ϕ(W )k−2N(logN)k−2

W k−1D0

)
+O

( y2maxN

(logN)A

)
.

We obtain

S
(m)
2 =

ϕ(W )N(logR)2

W 2 logN

∑
r1,...,rk

(ri,W )=1∀i
(ri,rj)=1∀i 6=j

rm=1

( k∏
i=1

µ(ri)
2ϕ(ri)

2

g(ri)r2i

)
(F (m)

r1,...,rk
)2(6.16)

+O
(F 2

maxϕ(W )kN(logR)k

W k+1D0

)
.
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We remove the condition that (ri, rj) = 1 in the same way we did when con-

sidering S1. Instead of (6.5), this introduces an error which is of size

� ϕ(W )N(logR)2F 2
max

W 2 logN

( ∑
p>D0

ϕ(p)4

g(p)2p4

)( ∑
r<R

(r,W )=1

µ(r)2ϕ(r)2

g(r)r2

)k−1
(6.17)

� F 2
maxϕ(W )kN(logN)k

W k+1D0
.

Thus we are left to evaluate the sum

(6.18)
∑

r1,...,rm−1,rm+1,...,rk
(ri,W )=1∀i

( ∏
1≤i≤k
i 6=j

µ(ri)
2ϕ(ri)

2

g(ri)r2i

)
(F (m)

r1,...,rk
)2.

We estimate this by applying Lemma 6.1 to each summation variable in turn.

In each case we take

γ(p) =

1− p2−3p+1
p3−p2−2p+1

, p -W,
0, otherwise,

(6.19)

L� 1 +
∑
p|W

log p

p
� logD0,(6.20)

and A1, A2 suitable fixed constants. This gives

(6.21) S
(m)
2 =

ϕ(W )kN(logR)k+1

W k+1 logN
J
(m)
k +O

(F 2
maxϕ(W )kN(logN)k

W k+1D0

)
,

where

(6.22) J
(m)
k =

∫ 1

0
· · ·
∫ 1

0

(∫ 1

0
F (t1, . . . , tk)dtm

)2
dt1· · · dtm−1dtm+1· · · dtk,

as required. �

Remark. If F (t1, . . . , tk) = G(
∑k
i=1 ti) for some function G, then Ik(F )

and J
(m)
k (F ) simplify to Ik(F ) =

∫ 1
0 G(t)2tk−1dt/(k − 1)! and J

(m)
k (F ) =∫ 1

0 (
∫ 1
t G(v)dv)2tk−2dt/(k − 2)! for each m, which is equivalent to the results

obtained using the original GPY method using weights given by (2.3).

Remark. Tao gives an alternative approach to arrive at his equivalent

of Proposition 4.1. His approach is to define λd1,...,dk in terms of a suitable

smooth function f(t1, . . . , tk) as in (2.5). He then estimates the corresponding

sums directly using Fourier integrals. This is somewhat similar to the original

paper of Goldston, Pintz and Yıldırım [5]. Our function F corresponds to

f(t1, . . . , tk) differentiated with respect to each coordinate.
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7. Choice of smooth weight for large k

In this section we establish part (3) of Proposition 4.3. Our argument

here is closely related to that of Tao, who uses a probability theory proof.

We let Sk denote the set of Riemann-integrable functions F : [0, 1]k → R
supported on Rk = {(x1, . . . , xk) ∈ [0, 1]k :

∑k
i=1 xi ≤ 1} with Ik(F ) 6= 0 and

J
(m)
k (F ) 6= 0 for each m. We would like to obtain a lower bound for

(7.1) Mk = sup
F∈Sk

∑k
m=1 J

(m)
k (F )

Ik(F )
.

Remark. Let Lk denote the linear operator defined by

(7.2)

LkF (u1, . . . , uk) =
k∑

m=1

∫ 1−
∑

i6=m ui

0
F (u1, . . . , um−1, tm, um+1, . . . , uk)dtm

whenever (u1, . . . , uk) ∈ Rk, and zero otherwise. We expect that if F maxi-

mizes the ratio
∑k
m=1 J

(m)
k (F )/Ik(F ), then F is an eigenfunction for Lk, and

the corresponding eigenvalue is the value of ratio at F . Unfortunately the

author has not been able to solve the eigenvalue equation for Lk when k > 2.

We obtain a lower bound for Mk by constructing a function F = Fk which

makes the ratio
∑k
m=1 J

(m)
k (F )/Ik(F ) large provided k is large. We choose F

to be of the form

(7.3) F (t1, . . . , tk) =


∏k
i=1 g(kti), if

∑k
i=1 ti ≤ 1,

0, otherwise,

for some smooth function g : [0,∞] → R, supported on [0, T ]. We see that

with this choice F is symmetric, and so J
(m)
k (F ) is independent of m. Thus

we only need to consider Jk = J
(1)
k (F ). Similarly we write Ik = Ik(F ).

The key observation is that if the center of mass
∫∞
0 ug(u)2du/

∫∞
0 g(u)2du

of g2 is strictly less than 1, then for large k we expect that the constraints∑k
i=1 ti ≤ 1 to be able to be dropped at the cost of only a small error. This

is because (by concentration of measure) the main contribution to the unre-

stricted integrals

I ′k =

∫ ∞
0
· · ·
∫ ∞
0

k∏
i=1

g(kti)
2dt1· · · dtk

and

J ′k =

∫ ∞
0
· · ·
∫ ∞
0

(

∫ ∞
0

k∏
i=1

g(kti)dt1)
2dt2· · · dtk

should come primarily from when
∑k
i=1 ti is close to the center of mass. There-

fore we would expect the contribution when
∑k
i=1 ti > 1 to be small if the center
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of mass is less than 1, and so Ik and Jk are well approximated by I ′k and J ′k in

this case.

To ease notation we let γ =
∫
u≥0 g(u)2du, and we restrict our attention to

g such that γ > 0. We have

(7.4) Ik =

∫
· · ·
∫

Rk

F (t1, . . . , tk)
2dt1· · · dtk ≤

(∫ ∞
0

g(kt)2dt
)k

= k−kγk.

We now consider Jk. Since squares are nonnegative, we obtain a lower bound

for Jk if we restrict the outer integral to
∑k
i=2 ti < 1 − T/k. This has the

advantage that, by the support of g, there are no further restrictions on the

inner integral. Thus

(7.5) Jk ≥
∫
· · ·
∫

t2,...,tk≥0∑k
i=2 ti≤1−T/k

(∫ T/k

0

( k∏
i=1

g(kti)
)
dt1
)2
dt2· · · dtk.

We write the right-hand side of (7.5) as J ′k − Ek, where

J ′k =

∫
· · ·
∫

t2,...,tk≥0

(∫ T/k

0

( k∏
i=1

g(kti)
)
dt1
)2
dt2· · · dtk(7.6)

=
(∫ ∞

0
g(kt1)dt1

)2(∫ ∞
0

g(kt)2dt
)k−1

= k−k−1γk−1
(∫ ∞

0
g(u)du

)2
,

Ek =

∫
· · ·
∫

t2,...,tk≥0∑k
i=2

ti>1−T/k

(∫ T/k

0

( k∏
i=1

g(kti)
)
dt1
)2
dt2· · · dtk(7.7)

= k−k−1
(∫ ∞

0
g(u)du

)2 ∫
· · ·
∫

u2,...,uk≥0∑k
i=2

ui>k−T

( k∏
i=2

g(ui)
2
)
du2· · · duk.

First we wish to show the error integral Ek is small. We do this by comparison

with a second moment. We expect the bound (7.13) for Ek to be small if the

center of mass of g2 is strictly less than (k−T )/(k−1). Therefore we introduce

the restriction on g that

(7.8) µ =

∫∞
0 ug(u)2du∫∞
0 g(u)2du

< 1− T

k
.

To simplify notation, we put η = (k− T )/(k− 1)− µ > 0. If
∑k
i=2 ui > k− T ,

then
∑k
i=2 ui > (k − 1)(µ+ η), and so we have

(7.9) 1 ≤ η−2
( 1

k − 1

k∑
i=2

ui − µ
)2
.
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Since the right-hand side of (7.9) is nonnegative for all ui, we obtain an upper

bound for Ek if we multiply the integrand by η−2(
∑k
i=2 ui/(k − 1) − µ)2 and

then drop the requirement that
∑k
i=1 ui > k − T . This gives us

(7.10)

Ek≤η−2k−k−1
(∫ ∞

0
g(u)du

)2∫ ∞
0
· · ·
∫ ∞
0

(∑k
i=2 ui
k − 1

− µ
)2( k∏

i=2

g(ui)
2
)
du2· · · duk.

We expand out the inner square. All the terms which are not of the form u2j
we can calculate explicitly as an expression in µ and γ. We find

∫ ∞
0
· · ·
∫ ∞
0

(2
∑

2≤i<j≤k uiuj

(k − 1)2
− 2µ

∑k
i=2 ui

k − 1
+ µ2

)( k∏
i=2

g(ui)
2
)
du2· · · duk

(7.11)

=
−µ2γk−1

k − 1
.

For the u2j terms, we see that u2jg(uj)
2 ≤ Tujg(uj)

2 from the support of g.

Thus

∫ ∞
0
· · ·
∫ ∞
0

u2j

( k∏
i=2

g(ui)
2
)
du2· · · duk ≤ Tγk−2

∫ ∞
0

ujg(uj)
2duj = µTγk−1.

(7.12)

This gives

Ek ≤ η−2k−k−1
(∫ ∞

0
g(u)du

)2(µTγk−1
k − 1

− µ2γk−1

k − 1

)
(7.13)

≤ η−2µTk−k−1γk−1

k − 1

(∫ ∞
0

g(u)du
)2
.

Since (k − 1)η2 ≥ k(1 − T/k − µ)2 and µ ≤ 1, we find that putting together

(7.4), (7.5), (7.6) and (7.13), we obtain

(7.14)
kJk
Ik
≥

(
∫∞
0 g(u)du)2∫∞
0 g(u)2du

(
1− T

k(1− T/k − µ)2

)
.

To maximize our lower bound (7.14), we wish to maximize
∫ T
0 g(u)du subject

to the constraints that
∫ T
0 g(u)2du = γ and

∫ T
0 ug(u)2du = µγ. Thus we wish

to maximize the expression

(7.15)

∫ T

0
g(u)du− α

(∫ T

0
g(u)2du− γ

)
− β

(∫ T

0
ug(u)2du− µγ

)
with respect to α, β and the function g. By the Euler-Lagrange equation, this

occurs when ∂
∂g (g(t)−αg(t)2−βtg(t)2) = 0 for all t ∈ [0, T ]. Thus we see that

(7.16) g(t) =
1

2α+ 2βt
for 0 ≤ t ≤ T .
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Since the ratio we wish to maximize is unaffected if we multiply g by a positive

constant, we restrict our attention to functions g of the form 1/(1 + At) for

t ∈ [0, T ] and for some constant A > 0. With this choice of g we find that∫ T

0
g(u)du =

log(1 +AT )

A
,

∫ T

0
g(u)2du =

1

A

(
1− 1

1 +AT

)
,(7.17) ∫ T

0
ug(u)2du =

1

A2

(
log(1 +AT )− 1 +

1

1 +AT

)
.(7.18)

We choose T such that 1 + AT = eA (which is close to optimal). With this

choice we find that µ = 1/(1−e−A)−A−1 and T ≤ eA/A. Thus 1−T/k−µ ≥
A−1(1 − A/(eA − 1) − eA/k). Substituting (7.17) into (7.14), and then using

these expressions, we find that

(7.19)
kJk
Ik
≥ A

1− e−A
(
1− T

k(1− T/k − µ)2

)
≥ A

(
1− AeA

k(1−A/(eA − 1)− eA/k)2

)
,

provided the right-hand side is positive. Finally, we choose A = log k −
2 log log k > 0. For k sufficiently large, we have

(7.20) 1− T

k
− µ ≥ A−1

(
1− (log k)3

k
− 1

(log k)2

)
> 0,

and so µ < 1−T/k, as required by our constraint (7.8). This choice of A gives

(7.21)

Mk ≥
kJk
Ik
≥ (log k − 2 log log k)

(
1− log k

(log k)2 +O(1)

)
≥ log k − 2 log log k − 2

when k is sufficiently large.

8. Choice of weight for small k

In this section we establish parts (1) and (2) of Proposition 4.3. In or-

der to get a suitable lower bound for Mk when k is small, we will consider

approximations to the optimal function F of the form

(8.1) F (t1, . . . , tk) =

P (t1, . . . , tk), if (t1, . . . , tk) ∈ Rk,
0, otherwise

for polynomials P . By the symmetry of
∑k
m=1 J

(m)
k (F ) and Ik(F ), we restrict

our attention to polynomials which are symmetric functions of t1, . . . , tk. (If F

satisfies LkF = λF , then Fσ = F (σ(t1), . . . , σ(tk)) also satisfies this for every

permutation σ of t1, . . . , tk. Thus the symmetric function which is the average

of Fσ over all such permutations would satisfy this eigenfunction equation,

and so we expect there to be an optimal function which is symmetric.) Any

such polynomial can be written as a polynomial expression in the power sum

polynomials Pj =
∑k
i=1 t

j
i .
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Lemma 8.1. Let Pj =
∑k
i=1 t

j
i denote the jth symmetric power sum poly-

nomial. Then we have∫
· · ·
∫

Rk

(1− P1)
aP bj dt1· · · dtk =

a!

(k + jb+ a)!
Gb,j(k),

where

Gb,j(x) = b!
b∑

r=1

Ç
x

r

å ∑
b1,...,br≥1∑r
i=1

bi=b

r∏
i=1

(jbi)!

bi!

is a polynomial of degree b which depends only on b and j.

Proof. We first show by induction on k that

(8.2)

∫
· · ·
∫

Rk

(
1−

k∑
i=1

ti
)a k∏

i=1

taii dt1· · · dtk =
a!
∏k
i=1 ai!

(k + a+
∑k
i=1 ai)!

.

We consider the integration with respect to t1. The limits of integration are 0

and 1 −∑k
i=2 ti for (t2, . . . , tk) ∈ Rk−1. By substituting v = t1/(1 −

∑k
i=2 ti)

we find ∫ 1−
∑k

i=2
ti

0

(
1−

k∑
i=1

ti
)a( k∏

i=1

taii

)
dt1(8.3)

=
( k∏
i=2

taii

)(
1−

k∑
i=2

ti
)a+a1+1

∫ 1

0
(1− v)ava1dv

=
a!a1!

(a+ a1 + 1)!

( k∏
i=2

taii

)(
1−

k∑
i=2

ti
)a+a1+1

.

Here we used the beta function identity
∫ 1
0 t

a(1 − t)bdt = a!b!/(a + b + 1)! in

the last line. We now see (8.2) follows by induction.

By the binomial theorem,

(8.4) P bj =
∑

b1,...,bk∑k
i=1

bi=b

b!∏k
i=1 bi!

k∏
i=1

tjbii .

Thus, applying (8.2), we obtain

(8.5)

∫
· · ·
∫

Rk

(1− P1)
aP bj dt1· · · dtk =

b!a!

(k + a+ jb)!

∑
b1,...,bk∑k
i=1

bi=b

k∏
i=1

(jbi)!

bi!
.

For computations, b will be small, and so we find it convenient to split the

summation depending on how many of the bi are nonzero. Given an integer r,



410 JAMES MAYNARD

there are
(k
r

)
ways of choosing r of b1, . . . , bk to be nonzero. Thus

(8.6)
∑

b1,...,bk∑k
i=1 bi=b

k∏
i=1

(jbi)!

bi!
=

b∑
r=1

Ç
k

r

å ∑
b1,...,br≥1∑r
i=1

bi=b

r∏
i=1

(jbi)!

bi!
.

This gives the result. �

It is straightforward to extend Lemma 8.1 to more general combinations

of the symmetric power polynomials. In this paper we will concentrate on the

case when P is a polynomial expression in only P1 and P2 for simplicity. We

comment the polynomials Gb,j are not problematic to calculate numerically for

small values of b. We now use Lemma 8.1 to obtain a manageable expression

for Ik(F ) and J
(m)
k (F ) with this choice of P .

Lemma 8.2. Let F be given in terms of a polynomial P by (8.1). Let P be

given in terms of a polynomial expression in the symmetric power polynomials

P1 =
∑k
i=1 ti and P2 =

∑k
i=1 t

2
i by P =

∑d
i=1 ai(1 − P1)

biP ci2 for constants

ai ∈ R and nonnegative integers bi, ci. Then for each 1 ≤ m ≤ k, we have

Ik(F ) =
∑

1≤i,j≤d
aiaj

(bi + bj)!Gci+cj ,2(k)

(k + bi + bj + 2ci + 2cj)!
,

J
(m)
k (F ) =

∑
1≤i,j≤d

aiaj

ci∑
c′1=0

cj∑
c′2=0

Ç
ci
c′1

åÇ
cj
c′2

å
γbi,bj ,ci,cj ,c′1,c′2Gc′1+c′2,2(k − 1)

(k + bi + bj + 2ci + 2cj + 1)!
,

where

γbi,bj ,ci,cj ,c′1,c′2 =
bi!bj !(2ci − 2c′1)!(2cj − 2c′2)!(bi + bj + 2ci + 2cj − 2c′1 − 2c′2 + 2)!

(bi + 2ci − 2c′1 + 1)!(bj + 2cj − 2c′2 + 1)!

and where G is the polynomial given by Lemma 8.1.

Proof. We first consider Ik(F ). We have, using Lemma 8.1,

Ik(F ) =

∫
· · ·
∫

Rk

P 2dt1· · · dtk(8.7)

=
∑

1≤i,j≤d
aiaj

∫
· · ·
∫

Rk

(1− P1)
bi+bjP

ci+cj
2 dt1· · · dtk

=
∑

1≤i,j≤d
aiaj

(bi + bj)!Gci+cj ,2(k)

(k + bi + bj + 2ci + 2cj)!
.

We now consider J
(m)
k (F ). Since F is symmetric in t1, . . . , tk, we see that

J
(m)
k (F ) is independent of m, and so it suffices to only consider J

(1)
k (F ). We
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have ∫ 1−
∑k

i=2
ti

0
(1− P1)

bP c2dt1(8.8)

=
c∑

c′=0

Ç
c

c′

å( k∑
i=2

t2i

)c′ ∫ 1−
∑k

i=2 ti

0

(
1−

k∑
i=1

ti
)b
t2c−2c

′

1 dt1

=
c∑

c′=0

Ç
c

c′

å
(P ′2)

c′(1− P ′1)b+2c−2c′+1
∫ 1

0
(1− u)bu2c−2c

′
du

=
c∑

c′=0

Ç
c

c′

å
(P ′2)

c′(1− P ′1)b+2c−2c′+1 b!(2c− 2c′)!

(b+ 2c− 2c′ + 1)!
,

where P ′1 =
∑k
i=2 ti and P ′2 =

∑k
i=2 t

2
i . Thus

(∫ 1

0
Fdt1

)2
=
( d∑
i=1

ai

∫ 1−
∑k

j=2
tj

0
(1− P1)

biP ci2 dt1
)2(8.9)

=
∑

1≤i,j≤d
aiaj

ci∑
c′1=0

cj∑
c′2=0

Ç
ci
c′1

åÇ
cj
c′2

å
(P ′2)

c′1+c
′
2(1− P ′1)bi+bj+2ci+2cj−2c′1−2c

′
2+2

× bi!bj !(2ci − 2c′1)!(2cj − 2c′2)!

(bi + 2ci − 2c′1 + 1)!(bj + 2cj − 2c′2 + 1)!
.

Applying Lemma 8.1 again, we see that

(8.10)

∫
· · ·
∫

Rk−1

(1− P ′1)b(P ′2)c
′
dt2· · · dtk =

b!

(k + b+ c− 1)!
Gc,2(k − 1).

Combining (8.9) and (8.10) gives the result. �

We see from Lemma 8.2 that Ik(F ) and
∑k
m=1 J

(m)
k (F ) can both be ex-

pressed as quadratic forms in the coefficients a = (a1, . . . , ad) of P . Moreover,

these will be positive definite real quadratic forms. Thus, in particular, we find

that

(8.11)

∑k
m=1 J

(m)
k (F )

Ik(F )
=

aTA2a

aTA1a
,

for two rational symmetric positive definite matrices A1, A2, which can be

calculated explicitly in terms of k for any choice of the exponents bi, ci. Maxi-

mizing expressions of this form has a known solution.

Lemma 8.3. Let A1, A2 be real, symmetric positive definite matrices. Then

aTA2a

aTA1a
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is maximized when a is an eigenvector of A−11 A2 corresponding to the largest

eigenvalue of A−11 A2. The value of the ratio at its maximum is this largest

eigenvalue.

Proof. We see that multiplying a by a nonzero scalar does not change the

ratio, so we may assume without loss of generality that aTA1a = 1. By the

theory of Lagrangian multipliers, aTA2a is maximized subject to aTA1a = 1

when

(8.12) L(a, λ) = aTA2a− λ(aTA1a− 1)

is stationary. This occurs when (using the symmetricity of A1, A2)

(8.13) 0 =
∂L

∂ai
= ((2A2 − 2λA1)a)i

for each i. This implies that (recalling that A1 is positive definite so invertible)

(8.14) A−11 A2a = λa.

It then is clear that aTA1a = λ−1aTA2a. �

Proof of parts (1) and (2) of Proposition 4.3.To establish Proposition 4.3

we rely on some computer calculation to calculate a lower bound for Mk. We let

F be given in terms of a polynomial P by (8.1). We let P be given by a polyno-

mial expression in P1 =
∑k
i=1 ti and P2 =

∑k
i=1 t

2
i which is a linear combination

of all monomials (1− P1)
bP c2 with b+ 2c ≤ 11. There are 42 such monomials,

and with k = 105 we can calculate the 42 × 42 rational symmetric matrices

A1 and A2 corresponding to the coefficients of the quadratic forms Ik(F ) and∑k
m=1 J

(m)
k (F ). We then find3 that the largest eigenvalue of A−11 A2 is

(8.15) λ ≈ 4.0020697 · · · > 4.

Thus M105 > 4. This verifies part (2) of Proposition 4.3. We comment that

by taking a rational approximation to the corresponding eigenvector, we can

verify this lower bound by calculating the ratio
∑k
m=1 J

(m)
k (F )/Ik(F ) using

only exact arithmetic.

For part (1) of Proposition 4.3, we take k = 5 and

(8.16) P = (1− P1)P2 +
7

10
(1− P1)

2 +
1

14
P2 −

3

14
(1− P1).

With this choice we find that

(8.17) M5 ≥
∑k
m=1 J

(m)
k (F )

Ik(F )
=

1 417 255

708 216
> 2.

This completes the proof of Proposition 4.3. �

3An ancillary Mathematica R© file detailing these computations is available alongside this

paper at www.arxiv.org.
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