Solution of the minimum modulus problem for covering systems

By Bob Hough

Abstract

We answer a question of Erdős by showing that the least modulus of a distinct covering system is at most 10^{16}.

1. Introduction

In 1934 Romanoff proved that the numbers of form a prime plus a power of two have positive lower density. Writing to Erdős, he asked whether there exists an arithmetic progression of odd numbers none of whose members is of this form. Erdős’s positive answer to this question introduced the notion of a distinct covering system of congruences, which is a finite collection of congruences

$$a_i \mod m_i, \quad 1 < m_1 < m_2 < \cdots < m_k$$

such that every integer satisfies at least one of them. His paper [4] gives the example

$$0 \mod 2, \quad 0 \mod 3, \quad 1 \mod 4, \quad 3 \mod 8, \quad 7 \mod 12, \quad 23 \mod 24.$$

Erdős posed a number of problems concerning covering systems, of which two in particular are well known. From [4], the minimum modulus problem asks whether there exist distinct covering systems for which the least modulus is arbitrarily large. With Selfridge, Erdős asked if there exists a distinct covering system with all moduli odd. These two questions appear frequently in Erdős’ collections of open problems [5], [6], [7], [8], [9]. See also [13].

Following Erdős’ paper, a number of covering systems have been exhibited with increasing minimum modulus [3], [14], [2], [15], [12], with the current record of 40 due to Nielsen [16]. In [16], Nielsen suggests for the first time that
the answer to the minimum modulus problem may be negative. We confirm
this conjecture.

Theorem 1. The least modulus of a distinct covering system is at most
\(10^{16}\).

To obtain the bound of \(10^{16}\) we use some simple numerical calculations
performed in Pari/GP [19], together with a standard explicit estimate for the
counting function of primes. For the reader interested only in the qualita-
tive statement that the minimum modulus has a uniform upper bound, our
presentation is self-contained.

In the spirit of the odd modulus problem, Theorem 1 immediately implies
that any covering system contains a modulus divisible by one of an initial
segment of primes. We may return to give a stronger quantitative statement
of this type at a later time.

Prior to our work, the main theoretical progress on the minimum modulus
problem was made recently by Filaseta, Ford, Konyagin, Pomerance and Yu
[11], who showed, among other results, a lower bound for the sum of the
reciprocals of the moduli of a covering system that grows with the minimum
modulus. We build upon their work. In particular, we use an inductive scheme
in which we filter the moduli of the congruences according to the size of their
prime factors, so that we first consider the subset of congruences all of whose
prime factors are below an initial threshold, and we then increase the threshold

A detailed overview of our argument is given in the next section, but we
mention here that our proof follows the probabilistic method in the sense that
we give a positive lower bound for the density of integers left uncovered by any
distinct system of congruences for which the minimum modulus is sufficiently
large. The Lovász Local Lemma plays a crucial rôle. The suitability of the
Local Lemma for estimating the density of the uncovered set at each stage of
the argument relies upon a certain regularity of the uncovered set from the
previous stage, and this regularity we are able to guarantee by applying the
Local Lemma a second time, in a relative form.

Notation. Throughout we denote \(\omega(n)\) the number of distinct prime fac-
tors of natural number \(n\).

Acknowledgements. The author is grateful to Ben Green, who read an
early version of this paper and made a number of suggestions that dramati-
cally improved the structure and readability. The author is also grateful to
Pace Nielsen, Kevin Ford and Michael Filaseta for detailed comments, and to
K. Soundararajan and Persi Diaconis, from whom he learned many of the meth-
ods applied here. An anonymous referee pointed out a numerical improvement
to the parameters that lowered the final bound.
2. Overview

We begin by giving a reasonably detailed overview of the argument. In this summary we will consider only congruence systems all of whose moduli are square free. Treating the case of general moduli involves a minor complication, which we address in the next section.

Let $M > 1$, and let

$$\mathcal{M} \subset \{ m \in \mathbb{N} : m \text{ square free, } m > M \}$$

be a finite set of moduli. We assume that for each $m \in \mathcal{M}$, a residue class $a_m \mod m$ has been given. For M sufficiently large, we argue that for any M, and for any assignment of the a_m, we can give a positive lower bound for the density of solutions to the system of (non)congruences

$$R = \{ z \in \mathbb{Z} : \forall m \in \mathcal{M}, z \not\equiv a_m \mod m \}.$$

The bound will, of course, depend upon M.

We estimate the density of R in stages, so we introduce a sequence of thresholds $1 = P_{-1} < P_0 < P_1 < \cdots$ with $P_i \to \infty$. For the purpose of this summary we assume that P_0 is sufficiently small so that $\prod_{p \leq P_0} p < M$, although to get a better bound for M, we will in practice choose P_0 to be somewhat larger. Let $1 = Q_{-1}, Q_0, Q_1, \ldots$ be such that

$$Q_i = \prod_{p \leq P_i} p, \quad i \geq 0.$$

We say that a number n is P_i-smooth if $n|Q_i$. Let $\mathcal{M}_0, \mathcal{M}_1, \ldots$ be given by

$$\mathcal{M}_i = \{ m \in \mathcal{M} : m|Q_i \}, \quad i \geq 0;$$

that is, \mathcal{M}_i is the set of P_i-smooth moduli in \mathcal{M}. In particular, by our assumption on P_0 we have that \mathcal{M}_0 is empty. For this reason we set $R_0 = R_{-1} = \mathbb{Z}$ and consider the sequence of unsifted sets $R_0 \supset R_1 \supset R_2 \supset \cdots$

$$R_i = \bigcap_{m \in \mathcal{M}_i} \{ z \in \mathbb{Z} : z \not\equiv a_m \mod m \}, \quad i \geq 1.$$

Since the sets \mathcal{M}_i grow to exhaust \mathcal{M}, we eventually have $R = R_i$, and so it will suffice to prove that the density of R_i is nonzero for each i. This lower bound we will give in a uniform way for all congruence systems with minimum modulus greater than M.

We may view R_i as a subset of $\mathbb{Z}/Q_i \mathbb{Z}$. Thinking of $\mathbb{Z}/Q_i \mathbb{Z}$ as fibred over $\mathbb{Z}/Q_i \mathbb{Z}$, we then have that R_{i+1} is contained in fibres over R_i, and we may estimate the density of R_{i+1} by estimating its density in individual fibres over R_i. In fact, we only consider some ‘good’ fibres over a ‘well-distributed’ subset of R_i. Thus we do not actually estimate the density of R_{i+1}, but rather that of a somewhat smaller set. Also, rather than explicitly estimate the density
of the smaller set, we will check that the smaller set is nonempty and then estimate some statistics related to it.

Let \(i \geq 0 \), and let \(r \in R_i \mod Q_i \). By definition, \(r \) has survived sieving by all of the congruences to moduli dividing \(Q_i \), so that the fraction of the fibre \((r \mod Q_i)\) that survives into \(R_{i+1} \) is determined by congruence conditions to moduli in \(\mathcal{M}_{i+1} \setminus \mathcal{M}_i \). Each such modulus \(m \) has a unique factorization as \(m = m_0 n \) with \(m_0 | Q_i \) and \(n \) composed of primes in the interval \((P_i, P_{i+1}]\). We call the collection of such \(n \) the set of ‘new factors’

\[\forall i \geq 0, \quad \mathcal{N}_{i+1} = \{ n \in \mathbb{N} : n > 1, n \text{ square free}, p | n \Rightarrow p \in (P_i, P_{i+1}] \}. \]

This set will play a very important rôle in what follows.

Given \(r \in R_i \mod Q_i \), \(a_{m_0 n} \mod m_0 n \) intersects \((r \mod Q_i)\) if and only if \(a_{m_0 n} \equiv r \mod m_0 \). If this condition is met, the effect within the fibre is determined only by \(a_{m_0 n} \mod n \). For this reason, we group together the congruence conditions according to common \(r \) and \(n \): for each \(r \in \mathbb{Z}/Q_i \mathbb{Z} \) and each \(n \in \mathcal{N}_{i+1} \), we set

\[A_{n,r} = (r \mod Q_i) \cap \bigcup_{m_0 | Q_i, m_0 n \in \mathcal{M}} (a_{m_0 n} \mod m_0 n). \]

We then have

\[\forall i \geq 0, \quad (r \mod Q_i) \cap R_{i+1} = (r \mod Q_i) \cap \bigcap_{n \in \mathcal{N}_{i+1}} A_{n,r}, \]

with the interpretation that \(R_{i+1} \) within \((r \mod Q_i)\) results from sieving \((r \mod Q_i)\) by sets of residues to moduli in \(\mathcal{N}_{i+1} \).

When \(n_1, n_2 \in \mathcal{N}_{i+1} \) are coprime, sieving by the sets \(A_{n_1,r} \) and \(A_{n_2,r} \) are independent events, by the Chinese Remainder Theorem. If all of the sets \(\{ A_{n,r} \}_{n \in \mathcal{N}_{i+1}} \) were jointly independent, then the density of the fibre \(r \mod Q_i \) surviving into \(R_{i+1} \) would be

\[\prod_{n \in \mathcal{N}_{i+1}} \left(1 - \frac{|A_{n,r} \mod nQ_i|}{n} \right) = \exp \left(- \sum_{n \in \mathcal{N}_{i+1}} \frac{|A_{n,r} \mod nQ_i|}{n} \right). \]

For a given \(n \), we can bound the average size of \(|A_{n,r} \mod nQ_i|\) averaged over \(r \mod Q_i \):

\[\frac{1}{Q_i} \sum_{r \mod Q_i} |A_{n,r} \mod nQ_i| \leq \frac{1}{Q_i} \sum_{r \mod Q_i} \sum_{m_0 | Q_i, m_0 r \mod Q_i} 1\{a_{m_0 n} \equiv r \mod m_0 \} \]

\[= \frac{1}{Q_i} \sum_{m_0 | Q_i} \sum_{r \mod Q_i} 1\{r \equiv a_{m_0 n} \mod m_0 \} \]

\[= \frac{1}{Q_i} \sum_{m_0 | Q_i} \frac{Q_i}{m_0} = \prod_{p | Q_i} \left(1 + \frac{1}{p} \right) = (\log P_i)^{1+o(1)}. \]
With the belief that the typical set $A_{n,r}$ has size $\approx \log P_i$, then since
\[
\sum_{n \in \mathcal{N}_{i+1}} \frac{1}{n} = -1 + \prod_{P_i < p \leq P_i + 1} \left(1 + \frac{1}{p}\right) \approx \log \frac{P_{i+1}}{P_i},
\]
we might hope that the typical fibre above R_i has density $P_i^{-O(1)}$. Thus far our reasoning in the case $i = 0$ roughly follows the treatment of [11], but now we diverge.

One difficulty with this heuristic account is that for generic $n_1, n_2 \in \mathcal{N}_{i+1}$ it is not generally true that $(n_1, n_2) = 1$, so that the congruences in $A_{n_1,r}$ and $A_{n_2,r}$ are not independent. To clarify the situation, we may imagine the numbers in the set \mathcal{N}_{i+1} as being split into two types. Within the collection of numbers that are composed of ‘few’ prime factors, it is generally true that most pairs of numbers in the set are co-prime. Meanwhile, the numbers composed of many prime factors are large and sparse, and thus they may be expected to not contribute significantly to the sieve. This reasoning makes it plausible that the Lovász Local Lemma can be used to handle the mild dependence that results from sieving by the moduli in \mathcal{N}_{i+1}. In practice, rather than split the moduli into two groups, in applying the Local Lemma we are naturally led to make a smoother decomposition, which assigns to each modulus a weight according to its number of prime factors.

Unfortunately, it will not generally be true that the Local Lemma applies to estimate the density of a given fibre, but rather only that it applies on a certain subset $R_i^* \subset R_i$ of ‘good’ fibres on which the distribution of the sizes $\{|A_{n,r} \mod nQ_i|\}_{n \in \mathcal{N}_{i+1}}$ is under control. Roughly what is needed for a fibre to be good is that a bound in dilations should hold at each prime $p \in (P_i, P_{i+1}]$,
\[
(1) \quad \sum_{n \in \mathcal{N}_{i+1}, p|n} \frac{|A_{n,r} \mod nQ_i|}{n} \ll 1.
\]
Such a bound controls the dependence among the sets $\{A_{n,r}\}_{n \in \mathcal{N}_{i+1}}$. We give a more precise definition of good fibres in the next section.

In order to demonstrate that a reasonable number of fibres are good we wish to understand the distribution of values of $|A_{n,r} \mod nQ_i|$ for varying r and n. Recall that we gained a heuristic understanding of the typical behavior of $|A_{n,r} \mod nQ_i|$ by taking the average over $\mathbb{Z}/Q_i\mathbb{Z}$. Similarly, we control the distribution of $|A_{n,r} \mod nQ_i|$ as r varies in subsets S_i of R_i by bounding the moments
\[
\frac{1}{|S_i \mod Q_i|} \sum_{r \in S_i \mod Q_i} |A_{n,r} \mod nQ_i|^k, \quad k = 1, 2, 3, \ldots,
\]
and making a truncation argument. In practice we use only the third moment of the sizes $|A_{n,r} \bmod nQ_i|$, although other choices would work as well with appropriately modified parameters.

It transpires that the moments are controlled by statistics

$$
\sum_{m \mid Q_i} \ell_k(m) \max_{b \bmod m} \frac{|S_i \cap (b \bmod m) \bmod Q_i|}{|S_i \bmod Q_i|}, \quad k = 1, 2, 3, \ldots
$$

that measure the bias in the set S_i. Here $\ell_k(m)$ is a weight, equal to $(2^k - 1)^{\omega(m)}$ in the case that m is square free. When $i = 0$, it will not be necessary to consider subsets of $R_0 = \mathbb{Z}/Q_0\mathbb{Z}$, since the statistics taken over R_0 are unbiased, equal to

$$
(2) \quad \sum_{m \mid Q_0} \frac{\ell_k(m)}{m} = \prod_{p < P_0} \left(1 + \frac{2^k - 1}{p}\right) \approx (\log P_0)^{2^k-1},
$$

a rate of growth that will be acceptable for us. When $i > 0$, however, the set R_i will typically be small and irregular as compared to $\mathbb{Z}/Q_i\mathbb{Z}$, so that our argument requires searching for good fibres $R_i^*\subseteq R_i$ chosen to have statistics that approximate (2).

The above discussion suggests that there is a second convenient notion of a good fibre, which is that $(r \bmod Q_i)$ is ‘well distributed’ if for each $n \in \mathcal{N}_{i+1}$,

$$
(3) \quad \max_{b \bmod n} |R_{i+1} \cap (b \bmod n) \cap (r \bmod Q_i) \bmod Q_{i+1}| \approx \frac{1}{n} |R_{i+1} \cap (r \bmod Q_i) \bmod Q_{i+1}|.
$$

Thus in a well-distributed fibre $(r \bmod Q_i)$, for each modulus $n \in \mathcal{N}_{i+1}$, any residue class modulo n is allowed to hold at most slightly more than its share of the set R_{i+1}. A pleasant feature of our argument is that a relative form of the Lovász Local Lemma guarantees that good fibres in the sense of (1) are automatically well distributed in the sense of (3), so that with respect to the moduli in \mathcal{N}_{i+1} composed of large prime factors, a reasonable choice for the set S_{i+1} is the union of good fibres from the previous stage, $S_{i+1} = R_i^* \cap R_{i+1}$.

The choice of $S_{i+1} = R_i^* \cap R_{i+1}$ ensures that S_{i+1} is well distributed to the moduli in \mathcal{N}_{i+1} that have only large prime factors, but $R_i^* \cap R_{i+1} \subseteq S_i$ may have become poorly distributed as compared to S_i with respect to moduli having smaller prime factors as a result of variable sieving in the fibres above R_i^*. We balance this effect by reweighting $R_i^* \cap R_{i+1}$ with a measure μ_{i+1} on $\mathbb{Z}/Q_{i+1}\mathbb{Z}$, with respect to which each fibre over R_i^* has equal weight. Thus at stage $i + 1 \geq 1$ we will in fact consider the bias statistics

$$
\beta_k(i + 1) = \sum_{m \mid Q_{i+1}} \ell_k(m) \max_{b \bmod m} \frac{\mu_{i+1}(R_i^* \cap R_{i+1} \cap (b \bmod m))}{\mu_{i+1}(R_i^* \cap R_{i+1})}.
$$
In general we will be able to show that these statistics approximate the unbiased statistics (2) to within an error determined only in terms of the quality of well-distribution (3) and the proportions of fibres that are good from previous stages.

To summarize, at stage 0 we do no sieving so that, with a uniform measure, the bias statistics are under control. This allows us to say that many fibres over $R_0 = \mathbb{Z}/Q_0\mathbb{Z}$ are good, and thus, that the bias statistics at stage 1 do not grow too rapidly. The argument then iterates, with the possibility of continuing iteration for arbitrarily large values of the parameters P_i depending upon growth of the statistics $\beta(i)$ as compared with growth of the P_i. The proof is completed by making this comparison for an explicit choice of parameters.

3. The complete argument

We turn to the technical details of the argument. As we now treat congruences to general moduli, we briefly recall some notions from the previous section, pointing out the minor variation from the square free case.

As above, $M > 0$ is our upper bound for the minimum modulus of a covering system, and

$$\mathcal{M} \subset \{m \in \mathbb{Z}, m > M\}$$

is a finite collection of moduli. For each $m \in \mathcal{M}$, we assume that a congruence class $a_m \mod m$ is given. The uncovered set is

$$R = \bigcap_{m \in \mathcal{M}} (a_m \mod m)^c,$$

which we show has a nonzero density. In the general case it is convenient to let

$$Q = \text{LCM}(m : m \in \mathcal{M}),$$

so that R is a set defined modulo Q.

We take a sequence of thresholds $1 = P_0 < P_1 < \cdots$ with $P_0 \geq 2$ and $P_i \to \infty$. Setting $v = v_p = v_p(Q)$ for the multiplicity with which p divides Q, we let

$$Q_{-1} = 1, \quad \forall i \geq 0, \quad Q_i = \prod_{p \leq P_i} p^v.$$

Then $\mathcal{M}_i = \{m \in \mathcal{M} : m|Q_i\}$ is the collection of P_i-smooth moduli in \mathcal{M}. The set R is filtered in stages $R_{-1} \supset R_0 \supset R_1 \supset \cdots$ by letting $R_{-1} = \mathbb{Z}$, and, for $i \geq 0$,

$$R_i = \bigcap_{m \in \mathcal{M}_i} (a_m \mod m)^c.$$

Although Q_i now depends in an essential way on the collection of moduli \mathcal{M}, our argument will, for a given i, treat the properties of R_i uniformly for all distinct congruence systems having minimum modulus greater than M.
3.1. The initial stage. We are no longer able to assume that \(Q_0 < M \) so that \(\mathcal{M}_0 = \emptyset \), but we will assume that \(M \) is sufficiently large so that \(\mathcal{M}_0 \) is quite sparse. Specifically, we let \(0 < \delta < 1 \) be a parameter. We may estimate the density of the set
\[
R_0 = \bigcap_{m \in \mathcal{M}_0} (a_m \mod m)^c
\]
by applying the union bound
\[
|R_0 \mod Q_0| \leq Q_0 - \sum_{m \in \mathcal{M}_0} |(a_m \mod m) \mod Q_0|
\]
\[
= Q_0 \left(1 - \sum_{m \in \mathcal{M}_0} \frac{1}{m} \right) \leq Q_0 \left(1 - \sum_{m>M, p|m \Rightarrow p \leq P_0} \frac{1}{m} \right),
\]
and we make the condition that
\[
(C0) \sum_{m>M, p|m \Rightarrow p \leq P_0} \frac{1}{m} < \delta.
\]
This implies a bound for some bias statistics of \(R_0 \) as follows.

Let \(\ell_k(m) \) be the number of \(k \)-tuples of natural numbers having LCM \(m \). This is a multiplicative function (that is, \(\ell_k(mn) = \ell_k(m)\ell_k(n) \) when \(m \) and \(n \) are co-prime), and it is given at prime powers by
\[
\ell_k(p^j) = (j + 1)^k - j^k.
\]
We define the \(k \)th bias statistic at stage 0 to be
\[
\beta_k^0(0) = \sum_{m | Q_0} \ell_k(m) \max_{b \mod m} \frac{|R_0 \cap (b \mod m) \mod Q_0|}{|R_0 \mod Q_0|}.
\]
Putting in the trivial bound \(|R_0 \cap (b \mod m) \mod Q_0| \leq \frac{Q_0}{m}\), we find
\[
\beta_k^0(0) \leq \frac{1}{1 - \delta} \sum_{m | Q_0} \frac{\ell_k(m)}{m} < \frac{1}{1 - \delta} \prod_{p \leq P_0} \left(\sum_{j=0}^{\infty} \frac{(j + 1)^k - j^k}{p^j} \right).
\]
We now leave the initial stage. We will return to choose \(\delta \) and \(P_0 \) at the end of the argument.

3.2. The inductive loop. In sieving stage \(i + 1, i \geq 0 \), we view \(\mathbb{Z}/Q_{i+1}\mathbb{Z} \) as fibred over \(\mathbb{Z}/Q_i\mathbb{Z} \), and we consider the set \(R_{i+1} \) within individual fibres over \(R_i \).

Introduce the set of ‘new moduli’
\[
\mathcal{N}_{i+1} = \{ n : n | Q_{i+1}, n > 1, p | n \Rightarrow P_i < p \leq P_{i+1} \},
\]
and notice that each \(n \in \mathcal{N}_{i+1} \) is coprime to \(Q_i \). Thus each modulus \(m \in \mathcal{M}_{i+1} \setminus \mathcal{M}_i \) has a unique factorization as \(m = m_0n \) with \(m_0 \mid Q_i \) and \(n \in \mathcal{N}_{i+1} \).

Given \(r \in R_i \) and \(n \in \mathcal{N}_{i+1} \), we set

\[
A_{n,r} = (r \mod Q_i) \cap \bigcup_{m_0 \mid Q_i, m_0 \in \mathcal{M}_{i+1}} (a_{m_0n} \mod m_0n).
\]

Then

\[
(r \mod Q_i) \cap R_{i+1} = (r \mod Q_i) \cap \bigcap_{n \in \mathcal{N}_{i+1}} A_{n,r}^c.
\]

We wish to consider \(R_{i+1} \) only in good fibres \((r \mod Q_i)\) where the sieve is well behaved. A set of properties that we would like good fibres to have is the following.

Definition. Let \(i \geq 0 \), and let \(\lambda \geq 0 \) be a parameter. We say that \(r \in \mathbb{Z}/Q_i\mathbb{Z} \) is \(\lambda \)-well distributed if \(R_{i+1} \cap (r \mod Q_i) \) is nonempty, and if the fibre satisfies the uniformity property that for each \(n \in \mathcal{N}_{i+1} \),

\[
\max_{b \mod n} \frac{|R_{i+1} \cap (b \mod n) \cap (r \mod Q_i) \mod Q_{i+1}|}{|R_{i+1} \cap (r \mod Q_i) \mod Q_{i+1}|} \leq e^{\lambda \omega(n)/n}.
\]

An alternative, more technical characterization of good fibres is as follows.

Definition. Let \(i \geq 0 \), and let \(\lambda \geq 0 \) be a real parameter. We say that the fibre \(r \in R_i \mod Q_i \) is \(\lambda \)-good if, for each \(p \in \{P_i, P_{i+1}\} \),

\[
\sum_{n \in \mathcal{N}_{i+1}, p \mid n} \left| A_{n,r} \mod nQ_i \right| e^{\lambda \omega(n)/n} \leq 1 - e^{-\lambda}.
\]

If each fibre in a set \(S \subset R_i \) is \(\lambda \)-good, then we say that the set \(S \) is \(\lambda \)-good as well, similarly \(\lambda \)-well distributed.

A basic observation of our proof is that a \(\lambda \)-good fibre is automatically \(\lambda \)-well distributed.

Proposition 1. Let \(i \geq 0, \lambda \geq 0 \), and let \(r \in \mathbb{Z}/Q_i\mathbb{Z} \) be \(\lambda \)-good. Then \(r \) is \(\lambda \)-well distributed.

The proof of this fact uses a relative form of the Lovász Local Lemma.

Lemma (Lovász Local Lemma, relative form). Let \(\{A_u\}_{u \in V} \) be a finite collection of events in a probability space. Let \(D = (V, E) \) be a directed graph, such that, for each \(u \in V \), event \(A_u \) is independent of the sigma-algebra generated by the events \(\{A_v : (u, v) \notin E\} \). Suppose that there exist real numbers \(\{x_u\}_{u \in V} \), satisfying \(0 \leq x_u < 1 \), and for each \(u \in V \),

\[
P(A_u) \leq x_u \prod_{(u,v) \in E} (1 - x_v).
\]
Then for any $\emptyset \neq U \subset V$,

\begin{equation}
P \left(\bigcap_{u \in V} A_u^{c} \right) \geq P \left(\bigcap_{u \in U} A_u^{c} \right) \cdot \prod_{v \in V \setminus U} (1 - x_v) .
\end{equation}

In particular, taking U to be a singleton,

\begin{equation}
P \left(\bigcap_{u \in V} A_u^{c} \right) \geq \prod_{u \in V} (1 - x_u) .
\end{equation}

Remark. The conclusion (7) is the standard one; see [1]. The stronger conclusion (6) follows directly from the proof. For completeness, we show the argument in Appendix B; see also [18].

The application of the Local Lemma to prove Proposition 1 is as follows. Write F_r for the fibre $(r \mod Q_i) \subset \mathbb{Z}/Q_{i+1}\mathbb{Z}$, and make it a probability space with the uniform measure P_r. The events are the collection $\{A_{n,r}\}_{n \in \mathcal{N}_{i+1}}$. Since F_r contains Q_{i+1}/Q_i elements, and since $A_{n,r}$ is a set defined modulo nQ_i, we have

\[P_r(A_{n,r}) = \frac{|A_{n,r} \mod nQ_i|}{n} . \]

By first translating by $-r$ and then dilating by $\frac{1}{Q_i}$, we map F_r onto $\mathbb{Z}/Q_{i+1}\mathbb{Z}$. For $n \in \mathcal{N}_{i+1}$, this map gives a bijection between progressions modulo nQ_i constrained to $(r \mod Q_i)$, and unconstrained progressions modulo n in $\mathbb{Z}/Q_{i+1}\mathbb{Z}$. Applying this map, and then the Chinese Remainder Theorem, makes it clear that $A_{n,r}$ is jointly independent of the σ-algebra generated by the events

\[\{(b \mod n') \cap (r \mod Q_i) : n' \in \mathcal{N}_{i+1}, (n, n') = 1\} . \]

In particular, a valid dependency graph with which to apply the Local Lemma has edges between $n_1, n_2 \in \mathcal{N}_{i+1}$ if and only if $n_1 \neq n_2$ and $(n_1, n_2) > 1$.

Proof of Proposition 1. We first check that

\[\forall n \in \mathcal{N}_{i+1}, \quad x_n = e^{\lambda \omega(n)} \frac{|A_{n,r} \mod nQ_i|}{n} \]

is an admissible set of weights with which to apply the Local Lemma.

Since the fibre r is λ-good, the bound in dilations condition (5) gives that for all $p \in (P_i, P_{i+1})$,

\[\sum_{n \in \mathcal{N}_{i+1} : p|n} \frac{|A_{n,r} \mod nQ_i| e^{\lambda \omega(n)}}{n} \leq 1 - e^{-\lambda} . \]

Dropping all but one term in the sum, we see that for each $n \in \mathcal{N}_{i+1}$, $1 - x_n \geq e^{-\lambda}$. Thus, by convexity,

\[1 - x_n \geq \exp \left(\frac{-\lambda}{1 - e^{-\lambda} x_n} \right) . \]
Therefore, for a given \(n \in N \),
\[
\prod_{n' \in \mathcal{K}_i+1: (n,n') > 1} (1 - x_{n'}) \geq \prod_{p|n} \prod_{n' \in \mathcal{K}_i+1: p|n'} (1 - x_{n'})
\geq \exp \left(\frac{-\lambda}{1 - e^{-\lambda}} \sum_{p|n} \sum_{n' \in \mathcal{K}_i+1: p|n'} e^{\lambda \omega(n')} |A_{n',r} \mod n'Q_i| / n' \right)
\geq \exp \left(-\lambda \omega(n) \right).
\]

It follows that
\[
x_n \prod_{n' \in \mathcal{K}_i+1: (n,n') > 1} (1 - x_{n'}) \geq x_n \prod_{n' \in \mathcal{K}_i+1: (n,n') > 1} (1 - x_{n'}) \geq |A_{n,r} \mod nQ_i| / n
\]
so that the Lovász criterion is satisfied. It is then immediate that the fibre itself is nonempty, since the product in the conclusion (7) of the Local Lemma is nonzero.

For the uniformity property (4), let \(n \in \mathcal{K}_i+1 \) and let \(b \mod n \) maximize
\[
\frac{|R_i+1 \cap (r \mod Q_i) \cap (b \mod n) \mod Q_i+1|}{|R_i+1 \cap (r \mod Q_i) \mod Q_i+1|}
= \frac{\Pr \left(\left(\bigcap_{n' \in \mathcal{K}_i+1} A_{n',r}^c \right) \cap (b \mod n) \right)}{\Pr \left(\bigcap_{n' \in \mathcal{K}_i+1} A_{n',r}^c \right)}.
\]

Dropping part of the intersection, the numerator is bounded above by
\[
\Pr \left(\bigcap_{n' \in \mathcal{K}_i+1} A_{n',r}^c \right) = \frac{1}{n} \Pr \left(\bigcap_{n' \in \mathcal{K}_i+1} A_{n',r}^c \right).
\]

Now by the stronger conclusion (6) of the Local Lemma,
\[
\Pr \left(\bigcap_{n' \in \mathcal{K}_i+1} A_{n',r}^c \right) \geq \Pr \left(\bigcap_{n' \in \mathcal{K}_i+1} A_{n',r}^c \right) \prod_{n' \in \mathcal{K}_i+1: (n',n) > 1} (1 - x_{n'})
\]
\[
\geq e^{-\lambda \omega(n)},
\]

it follows that
\[
\frac{|R_i+1 \cap (b \mod n) \cap (r \mod Q_i) \mod Q_i+1|}{|R_i+1 \cap (r \mod Q_i) \mod Q_i+1|} \leq \frac{1}{n} \prod_{n' \in \mathcal{K}_i+1: (n',n) > 1} (1 - x_{n'})^{-1}
\leq e^{\lambda \omega(n)} / n,
\]
which is the condition of uniformity.
Let \(R^*_0 = \mathbb{Z} \), and for \(i \geq 0 \), let \(R^*_i \) be the \(\lambda \)-good fibres within \(R^*_{i-1} \cap R_i \). It remains to describe how we may find good fibres above a large well-distributed set.

It will be convenient to reweight \(\mathbb{Z}/Q_i \mathbb{Z} \) at each stage with a measure \(\mu_i \), supported on the set \(R^*_{i-1} \cap R_i \). The advantage of using this measure is that it will balance the effect of the variation in size of the various good fibres from previous stages, so that at stage \(i+1 \) we isolate the effects of sieving by moduli in \(\mathcal{M}_{i+1} \). We define \(\mu_i \) iteratively by setting

\[
\mu_0(r) = \begin{cases}
1 & r \in R_0 \mod Q_0, \\
0 & r \notin R_0 \mod Q_0.
\end{cases}
\]

For \(i \geq 0 \) and for \(r \in R^*_i \cap R_{i+1} \mod Q_{i+1} \), we reduce \(r \mod Q_i \) to determine \(\mu_i(r) \), and we set

\[
\mu_{i+1}(r) = \begin{cases}
\mu_i(r \mod Q_i) & r \in R^*_i \cap R_{i+1} \mod Q_{i+1}, \\
0 & r \notin R^*_i \cap R_{i+1} \mod Q_{i+1}.
\end{cases}
\]

Along with the measures \(\mu_i \), we track a collection of bias statistics.

Definition. Let \(i \geq 0 \) and \(k \geq 1 \). The \(k \)th bias statistic of set \(R^*_i \cap R_i \subset \mathbb{Z}/Q_i \mathbb{Z} \) is defined by

\[
\beta^k_i(i) = \sum_{m \mid Q_i} \ell_k(m) \max_{b \mod m} \frac{\mu_i(R^*_{i-1} \cap R_i \cap (b \mod m))}{\mu_i(R^*_{i-1} \cap R_i)}.
\]

Since we require \(R^*_0 = \mathbb{Z} \) and since \(\mu_0 \) is uniform on \(R_0 \), this agrees with our definition of the bias statistics for \(R_0 \) given in the initial stage. These bias statistics will be the main tool used to produce good fibres, a discussion that we briefly postpone.

The primary virtue of the measure \(\mu_i \) is that it allows us to bound the iterative growth of the bias statistics only in terms of the size of the well-distributed set \(R^*_i \) and its parameter of well-distribution, \(\lambda \). Before demonstrating this, we record the notation

\[
\pi_i^{\text{good}} = \frac{\mu_i(R^*_i)}{\mu_i(R^*_i \cap R_i)}
\]

for the proportion relative to \(\mu_i \) of good fibres in \(R^*_i \cap R_i \), and we record the following simple lemma.

Lemma 2. Let \(i \geq 0 \). For a fixed \(r \in R^*_i \mod Q_i \), the measure \(\mu_{i+1} \) is constant on \(R_{i+1} \cap (r \mod Q_i) \). The total mass of \(\mu_{i+1} \) is given by

\[
\mu_{i+1}(R^*_i \cap R_{i+1}) = \pi_i^{\text{good}} \mu_i(R^*_i \cap R_i).
\]
Proof. The first observation is immediate from the definition. The total mass is given by

$$\mu_{i+1}(R_i^* \cap R_{i+1}) = \sum_{r \in R_i^* \cap R_{i+1} \mod Q_{i+1}} \mu_{i+1}(r)$$

$$= \sum_{r_0 \in R_i^* \mod Q_i} \mu_i(r_0)$$

$$\times \sum_{r \in R_{i+1} \cap (r_0 \mod Q_i) \mod Q_{i+1}} \frac{1}{|R_{i+1} \cap (r_0 \mod Q_i) \mod Q_{i+1}|}$$

$$= \sum_{r_0 \in R_i^* \mod Q_i} \mu_i(r_0)$$

$$= \pi_i^{\text{good}} \mu_i(R_{i-1}^* \cap R_i).$$

The main proposition regarding the measures μ_i now is as follows.

Proposition 3. Let $i \geq 0$ and $k \geq 1$, and suppose that R_i^* is λ-good. We have

$$\beta_k(i + 1) \leq \frac{\beta_k^k(i)}{\pi_i^{\text{good}}} \prod_{P_i < p \leq P_{i+1}} \left(1 + e^\lambda \sum_{j=1}^{v_p} \frac{(j+1)^k - j^k}{p^j} \right).$$

Proof. Recall that

$$\beta_k^k(i + 1) = \sum_{m \mid Q_{i+1}} \ell_k(m) \max_{b \mod m} \frac{\mu_{i+1}(R_i^* \cap R_{i+1} \cap (b \mod m))}{\mu_{i+1}(R_i^* \cap R_{i+1})}.$$

Given $m \mid Q_{i+1}$, factor $m = m_0 n$ with $m_0 \mid Q_i$ and $n \in \{1\} \cup \mathcal{A}_{i+1}$. Let $b \mod m$ maximize $\mu_{i+1}(R_i^* \cap R_{i+1} \cap (b \mod m))$. Fibering over $\mathbb{Z}/Q_i \mathbb{Z}$, we have

$$\mu_{i+1}(R_i^* \cap R_{i+1} \cap (b \mod m)) = \sum_{r_0 \in R_i^* \mod Q_i \atop r_0 \equiv b \mod m_0} \mu_{i+1}((r_0 \mod Q_i) \cap (b \mod n))$$

$$= \sum_{r_0 \in R_i^* \mod Q_i \atop r_0 \equiv b \mod m_0} \mu_i(r_0) \frac{|R_{i+1} \cap (b \mod n) \cap (r_0 \mod Q_i) \mod Q_{i+1}|}{|R_{i+1} \cap (r_0 \mod Q_i) \mod Q_{i+1}|}.$$

Since the good set R_i^* is λ-well distributed, the last sum is bounded by

$$\frac{e^\lambda \omega(n)}{n} \sum_{r_0 \in R_i^* \mod Q_i \atop r_0 \equiv b \mod m_0} \mu_i(r_0).$$

Therefore, using the multiplicativity of $\ell_k(m)$, we find

$$\beta_k^k(i + 1) \leq \sum_{n \in \{1\} \cup \mathcal{A}_{i+1}} \ell_k(n) \frac{e^\lambda \omega(n)}{n} \sum_{m_0 \mid Q_i} \ell_k(m_0) \max_{b \mod m_0} \frac{\mu_i(R_i^* \cap (b \mod m_0))}{\mu_{i+1}(R_i^* \cap R_{i+1})}.$$
The inner condition restricts good fibres. For \(\ell \) as the product of the proposition. Meanwhile, using \(R_i^* \subset R_{i-1}^* \cap R_i \) and \(\mu_{i+1}(R_i^* \cap R_{i+1}) = \pi_i^{\text{good}} \mu_i(R_{i-1}^* \cap R_i) \), we bound the sum over \(m_0 \) by

\[
\sum_{m_0 \mid Q_i} \ell_k(m_0) \max_{b \mod m_0} \frac{\mu_i(R_i^* \cap (b \mod m_0))}{\mu_i(R_i^* \cap R_{i+1})} \leq \frac{1}{\pi_i^{\text{good}}} \sum_{m_0 \mid Q_i} \ell_k(m_0) \max_{b \mod m_0} \frac{\mu_i(R_i^* \cap R_i \cap (b \mod m_0))}{\mu_i(R_i^* \cap R_i)} = \beta_k(i). \quad \square
\]

It remains to demonstrate the utility of the bias statistics for generating good fibres. For \(n \in \mathcal{M}_{i+1} \), \(k \geq 1 \) and \(R_{i-1}^* \cap R_i \) defined modulo \(Q_i \), define the \(k \)th moment of \(|A_{n,r} \mod nQ_i| \) to be

\[
M_k(i, n) = \frac{1}{\mu_i(R_{i-1}^* \cap R_i)} \sum_{r \in R_{i-1}^* \cap R_i \mod Q_i} \mu_i(r)|A_{n,r} \mod nQ_i|^k.
\]

The bias statistics control these moments.

Lemma 4. Let \(i \geq 0 \) and let \(n \in \mathcal{M}_{i+1} \). We have \(M_k(i, n) \leq \beta_k(i) \).

Proof. Recall that

\[
A_{n,r} = (r \mod Q_i) \cap \left(\bigcup_{m_0 \mid Q_i} (a_{mn} \mod m_0n) \right).
\]

A given congruence \((a_{mn} \mod m_0n) \) intersects \(r \mod Q_i \) if and only if \(r \equiv a_{mn} \mod m_0 \). If it does intersect, it does so in a single residue class modulo \(nQ_i \). Thus, the union bound gives

\[
|A_{n,r} \mod nQ_i| \leq \sum_{m_0 \mid Q_i} 1\{r \equiv a_{mn} \mod m_0\}.
\]

It follows that, considering \(R_{i-1}^* \cap R_i \) as a subset of \(\mathbb{Z}/Q_i\mathbb{Z} \),

\[
M_k(i, n) \leq \frac{1}{\mu_i(R_{i-1}^* \cap R_i)} \sum_{r \in R_{i-1}^* \cap R_i} \mu_i(r) \times \sum_{m_1, \ldots, m_k \mid Q_i} 1\{\forall 1 \leq j \leq k, \ r \equiv a_{mj} \mod m_j\} = \frac{1}{\mu_i(R_{i-1}^* \cap R_i)} \sum_{m_1, \ldots, m_k \mid Q_i} \mu_i(r) 1\{\forall 1 \leq j \leq k, \ r \equiv a_{mj} \mod m_j\}.
\]

The inner condition restricts \(r \) to at most one class modulo the LCM of \(m_1, \ldots, m_k \). Grouping \(m_1, \ldots, m_k \) according to their LCM, and writing \(\ell_k(m) \)
for the number of ways in which \(m \) is the LCM of a \(k \)-tuple of natural numbers, we find
\[
M_k^k(i, n) \leq \frac{1}{\mu_i(R_{i-1}^* \cap R_i)} \times \sum_{m \mid Q_i} \ell_k(m) \max_{b \mod m} \mu_i(R_{i-1}^* \cap R_i \cap (b \mod m)) = \beta_k^k(i). \tag*{□}
\]

Since the above estimate is uniform in \(n \), we have convexity-type control over mixtures of the sizes \(\{|A_{n,r} \mod nQ_i|\}_{n \in \mathcal{N}_{i+1}} \).

Lemma 5. Let \(i \geq 0 \) and \(k \geq 1 \). Let \(\{w_n\}_{n \in \mathcal{N}_{i+1}} \) be a set of nonnegative weights, not all zero. Then for all \(B > 0 \) and any \(k \geq 1 \),
\[
\frac{1}{\mu_i(R_{i-1}^* \cap R_i)} \sum_{r \in R_{i-1}^* \cap R_i} \mu_i \left(\sum_{n \in \mathcal{N}_{i+1}} w_n |A_{n,r} \mod nQ_i| > B \right) \leq \frac{\beta_k^k(i)}{B^k} \left(\sum_{n \in \mathcal{N}_{i+1}} w_n \right)^k.
\]

Proof. Set \(w'_n = \frac{w_n}{\sum_n w_n} \), which is a probability measure on \(\mathcal{N}_{i+1} \). Convexity gives
\[
\left(\sum_{n \in \mathcal{N}_{i+1}} w'_n |A_{n,r} \mod nQ_i| \right)^k \leq \sum_{n \in \mathcal{N}_{i+1}} w'_n |A_{n,r} \mod nQ_i|^k,
\]
so that
\[
\frac{1}{\mu_i(R_{i-1}^* \cap R_i)} \sum_{r \in R_{i-1}^* \cap R_i} \mu_i(r) \left(\sum_{n \in \mathcal{N}_{i+1}} w'_n |A_{n,r} \mod nQ_i| \right)^k \leq \sum_{n \in \mathcal{N}_{i+1}} w'_n M_k^k(i, n) \leq \beta_k^k(i).
\]
The result now follows from Markov’s inequality. \(\square \)

We now complete our argument by using the bias statistics to guarantee the existence of good fibres.

For a given \(p \in (P_i, P_{i+1}] \), the dilation condition of good fibres (5) at \(p \) is the statement that
\[
\sum_{n \in \mathcal{N}_{i+1}, p \mid n} \frac{|A_{n,r} \mod nQ_i| e^{\lambda \omega(n)}}{n} \leq 1 - e^{-\lambda}.
\]
By applying the convexity lemma, Lemma 5, with weights
\[
w_n = 1_p |n|^{-1} e^{\lambda \omega(n)} \frac{e^{\lambda \omega(n)}}{n},
\]
we find that the relative proportion of fibres failing this condition is bounded by

\[
\min_k \frac{\beta_k^*(i)}{(1 - e^{-\lambda})^k} \left(\frac{\sum_{n \in A_{i+1}, p|n} e^{\lambda \omega(n)}}{\sum_{n \in A_{i+1}, p|n} e^{\lambda \omega(n)}} \right)^k.
\]

Since

\[
\sum_{n \in A_{i+1}, p|n} e^{\lambda \omega(n)} \leq \frac{e^\lambda}{p - 1} \sum_{n \in A_{i+1}} e^{\lambda \omega(n)} \leq \frac{e^\lambda}{p - 1} \prod_{p_i < p \leq P_{i+1}} \left(1 + \frac{e^\lambda}{p - 1} \right),
\]

making a union bound, we find that the total relative proportion of fibres failing some dilation condition is bounded by

\[
\min_k \beta_k^*(i) \frac{e^{k \lambda}}{(1 - e^{-\lambda})^k} \left(\prod_{p_i < p \leq P_{i+1}} \left(1 + \frac{e^\lambda}{p - 1} \right) \right)^k \sum_{p_i < p \leq P_{i+1}} 1 \quad (p - 1)^k.
\]

For a value \(0 < \pi^{\text{good}} < 1\), we make the constraint that this quantity is bounded by \(1 - \pi^{\text{good}}\); that is,

\[
(\text{C1})
\]

\[
\frac{e^\lambda}{1 - e^{-\lambda}} \prod_{p_i < p \leq P_{i+1}} \left(1 + \frac{e^\lambda}{p - 1} \right) \geq \max_k \frac{1 - \pi^{\text{good}})^{\frac{1}{k}}}{\beta_k(i)} \left(\sum_{p_i < p \leq P_{i+1}} 1 \quad (p - 1)^k \right)^{-\frac{1}{k}},
\]

which guarantees that, with respect to \(\mu_i\), the proportion of good fibres in \(R_{i+1}^* \cap R_i\) is at least \(\pi^{\text{good}}\).

3.3. Proof of Theorem 1. The iterative stage of our argument is summarized in the following technical theorem.

Theorem 2. Let \(i \geq 0\), and let \(0 < \pi^{\text{good}} < 1\). Let the set \(R_{i+1}^* \subset \mathbb{Z}/Q_{i-1} \mathbb{Z}\) be such that \(R_{i+1}^* \cap R_i\) is nonempty, let \(\mu_i\) be a measure on \(\mathbb{Z}/Q_i \mathbb{Z}\), with support in \(R_{i+1}^* \cap R_i\), and denote the bias statistics of \(\mu_i\) by \(\beta_k(i), k = 1, 2, 3, \ldots\). Suppose that \(\lambda > 0\) and \(P_{i+1} > P_i\) satisfy the constraint

\[
(\text{C1})
\]

\[
\prod_{p_i < p \leq P_{i+1}} \left(1 + \frac{e^\lambda}{p - 1} \right) \leq \frac{1 - e^{-\lambda}}{e^\lambda} \max_k \frac{(1 - \pi^{\text{good}})^{\frac{1}{k}}}{\beta_k(i)} \left(\sum_{p_i < p \leq P_{i+1}} 1 \quad (p - 1)^k \right)^{-\frac{1}{k}}.
\]

Then there exists \(R_{i+1}^* \subset R_{i+1}^* \cap R_i\) defined modulo \(Q_i\) with \(\frac{\mu_i(R_{i+1}^*)}{\mu_i(R_{i+1}^* \cap R_i)} \geq \pi^{\text{good}}\), such that the density of \(R_{i+1}^*\) in each fibre above \(R_{i+1}^*\) is positive, and such that the associated bias statistics \(\beta_k(i + 1)\) of \(R_{i+1}^* \cap R_{i+1}^*\) with respect to \(\mu_{i+1}\) defined by (8) satisfy

\[
\beta_k^*(i + 1) \leq \frac{\beta_k^*(i)}{\pi^{\text{good}}} \prod_{p_i < p \leq P_{i+1}} \left(1 + e^\lambda \sum_{j=1}^{\nu_p} \frac{(j + 1)^k - j^k}{p^j} \right), \quad k = 1, 2, \ldots.
\]
We now make specific choices for our parameters and prove Theorem 1.

Proof of Theorem 1. Set $M = 10^{16}$ as in Theorem 1. For $i \geq 0$, let $P_i = e^{11+i}$. Set $e^\lambda = 2$, $\pi^{\text{good}} = \frac{1}{2}$. It will suffice to check that the density of the set R_0 is positive and that the constraint (C1) of Theorem 2 is met for every $i \geq 0$.

By Rankin’s trick, for any $\sigma > 0$,
\[
\sum_{m > M \atop p|m = p \leq P_0} \frac{1}{m} \leq M^{-\sigma} \sum_{m \atop p|m = p \leq P_0} \frac{1}{m^{1-\sigma}} = M^{-\sigma} \prod_{p \leq P_0} \left(1 - \frac{1}{p^{1-\sigma}}\right)^{-1}.
\]

Choosing $\sigma = 0.19$, we verify in Pari-GP [19] that the right-hand side is less than 0.859, so that R_0 is nonempty and, in particular, $\delta = 0.86$ in the initial stage is permissible.

We will argue throughout with the third bias statistic. We calculate
\[
\beta_3(0) \leq \left((1 - \delta)^{-1} \prod_{p \leq P_0} \left(\sum_{j=0}^{\infty} \frac{3j^2 + 3j + 1}{p^j}\right)\right)^{\frac{1}{3}} < 731.8.
\]

We use the following explicit estimates, which are verified in Appendix A. For all $n \geq 11$,
\[
\prod_{e^n < p \leq e^{n+1}} \left(1 + \frac{2}{p-1}\right) < 1.2,
\]
\[
\prod_{e^n < p \leq e^{n+1}} \left(1 + 2 \sum_{j=1}^{\infty} \frac{(j+1)^3 - j^3}{p^j}\right) < 3.4,
\]
\[
\left(\sum_{e^n < p \leq e^{n+1}} \frac{1}{(p-1)^3}\right)^{-\frac{1}{3}} > (2ne^{2n})^{\frac{1}{3}}.
\]

Thus the constraint (C1) is satisfied at $i = 0$ since
\[
\prod_{e^{11} < p \leq e^{12}} \left(1 + \frac{2}{p-1}\right) < 1.2 < \frac{(1 - 0.5)^{\frac{1}{3}}}{4} \frac{1}{731.8} \left(\sum_{e^{11} < p \leq e^{12}} \frac{1}{(p-1)^3}\right)^{-\frac{1}{3}}.
\]

The constraint holds for all i since the growth of the bias statistics guarantees that for $i \geq 0$,
\[
\frac{\beta_3(i+1)}{\beta_3(i)} < \left(\frac{3.4}{0.5}\right)^{\frac{1}{3}} < e^{\frac{2}{3}},
\]
which is less than the growth of $((22 + 2i)e^{22+2i})^{\frac{1}{3}}$ from i to $i + 1$. \qed
Appendix A. Explicit estimates with primes

A standard reference for explicit prime sum estimates is [17]. Slightly stronger estimates are now known (see, e.g., [10]), but the following will suffice for our purpose.

Theorem 6 ([17, Cor. 2]). Let \(\theta(x) = \sum_{p \leq x} \log p \). For \(x \geq 678407 \), we have

\[
|\theta(x) - x| < \frac{x}{40 \log x}.
\]

We now check the explicit estimates used in the proof of Theorem 1.

Lemma 7. For any \(n \geq 11 \),

\[
\prod_{e^n < p \leq e^{n+1}} \left(1 + \frac{2}{p - 1}\right) < 1.2,
\]

\[
\prod_{e^n < p \leq e^{n+1}} \left(1 + 2 \sum_{j=1}^{\infty} \frac{(j+1)^3 - j^3}{p^j}\right) < 3.4,
\]

\[
\sum_{e^n < p \leq e^{n+1}} \frac{1}{(p - 1)^3} < \frac{1}{2 n e^{2n}}.
\]

Proof. Using Pari-GP [19] we verified these estimates numerically for \(n = 11, 12, 13 \). For \(n > 13 \), they follow by partial summation against (10). For the first,

\[
\log \prod_{e^n < p \leq e^{n+1}} \left(1 + \frac{2}{p - 1}\right) \leq 2 \sum_{e^n < p \leq e^{n+1}} \frac{1}{p - 1} \leq \frac{2}{1 - e^{-n}} \int_{e^n}^{e^{n+1}} \frac{d\theta(x)}{x \log x}.
\]

Write \(d\theta(x) = dx + d(\theta(x) - x) \). Integrating the second term by parts, we obtain

\[
\int_{e^n}^{e^{n+1}} \frac{d\theta(x)}{x \log x} \leq \log \frac{n+1}{n} + \frac{|\theta(e^{n+1}) - e^{n+1}|}{(n+1)e^{n+1}} + \frac{|\theta(e^n) - e^n|}{n e^n}
\]

\[
+ \int_{e^n}^{e^{n+1}} \frac{|\theta(x) - x|}{x^2} \left(\frac{1}{\log x} + \frac{1}{(\log x)^2}\right) dx
\]

\[
\leq \log \frac{15}{14} + \frac{1}{40 \cdot 15^2} + \frac{1}{40 \cdot 14^2} + \frac{2}{40 \cdot 14} \log \frac{15}{14} < 0.0695
\]

so that

\[
\frac{2}{1 - e^{-14}} \int_{e^n}^{e^{n+1}} \frac{d\theta(x)}{x \log x} < 0.14 < 1.2.
\]
For the second,

\[
\log \prod_{e^n < p \leq e^{n+1}} \left(1 + 2 \sum_{j=1}^{\infty} \frac{(j+1)^3 - j^3}{p^j} \right) \leq 2 \sum_{e^n < p \leq e^{n+1}} \frac{1}{p-3} \leq 14 \sum_{e^n < p \leq e^{n+1}} \frac{1}{p} \leq \frac{14}{1 - 3e^{-14}} \cdot \frac{1}{p} < \frac{14}{1 - 3e^{-14}} \cdot 0.07 < 1 < \log(3.4).
\]

For the third, proceed as for the first,

\[
\sum_{e^n < p \leq e^{n+1}} \frac{1}{(p-1)^3} \leq \frac{1}{n(1-e^{-n})^3} \left(\int_{e^n}^{e^{n+1}} \frac{dx}{x^3} + \int_{e^n}^{e^{n+1}} \frac{d(\theta(x) - x)}{x^3} \right)
\leq \frac{1}{(1-e^{-n})^3} \left[\frac{1 - e^{-2}}{2ne^{2n}} + \frac{1}{40n^2e^{2n}} + \frac{1}{40n(n+1)e^{2(n+1)}} + \frac{3}{40n^2} \int_{e^n}^{e^{n+1}} \frac{dx}{x^3} \right]
\leq \frac{1}{2ne^{2n}(1-e^{-14})^3} \left[1 - e^{-2} + \frac{1}{20 \cdot 14} + \frac{1}{20e^2 \cdot 15} + \frac{3}{40 \cdot 14} \right]
\leq \frac{0.88}{2ne^{2n}}.
\]

\[\square\]

Appendix B. The relative Lovász Local Lemma

For completeness, and for the reader’s convenience, we record a proof of the relative form of the Lovász Local Lemma used in our argument. We emphasize that the proof is the standard one (see, e.g., [1, pp. 54–55]), although the conclusion that we need is not typically recorded.

Recall the statement of the lemma.

Lemma (Lovász Local Lemma, relative form). Let \(\{A_u\}_{u \in V} \) be a finite collection of events in a probability space. Let \(D = (V, E) \) be a directed graph, such that, for each \(u \in V \), event \(A_u \) is independent of the sigma-algebra generated by the events \(\{A_v : (u, v) \notin E\} \). Suppose that there exist real numbers \(\{x_u\}_{u \in V} \), satisfying \(0 \leq x_u < 1 \), and for each \(u \in V \),

\[
P(A_u) \leq x_u \prod_{(u, v) \in E} (1 - x_v).
\]

Then for any \(\emptyset \neq U \subset V \),

\[
P \left(\bigcap_{u \in V^c} A^c_u \right) \geq P \left(\bigcap_{u \in U} A^c_u \right) \cdot \prod_{v \in V \setminus U} (1 - x_v).
\]
In particular, taking U to be a singleton,

\[
\mathbf{P}\left(\bigcap_{u \in V} A_u^c\right) \geq \prod_{u \in V} (1 - x_u). \tag{12}
\]

Proof. By assigning an ordering to V, identify it with the set $\{1, 2, \ldots, n\}$ for some n. Assume that in this ordering U is identified with $\{1, 2, \ldots, m\}$ for some m. The following is to be shown by induction. For $k = 1, 2, \ldots, n$,

1. For any $S \subset \{1, \ldots, n\}$, $|S| = k - 1$, and for any $1 \leq i \leq n$, $i \not\in S$, we have
 \[
 \mathbf{P}\left(A_i \mid \bigcap_{j \in S} A_j^c\right) \leq x_i.
 \]
2. For any $S \subset \{1, \ldots, n\}$, $|S| = k$ we have
 \[
 \mathbf{P}\left(\bigcap_{j \in S} A_j^c\right) \geq \prod_{j \in S} (1 - x_j).
 \]

Obviously (12) is the second item when $k = n$. The conclusion (11) is also easily deduced:

\[
\mathbf{P}\left(\bigcap_{i=1}^n A_i^c\right) = \mathbf{P}\left(\bigcap_{i=1}^m A_i^c\right) \cdot \prod_{j=m+1}^n \mathbf{P}\left(A_j^c \mid \bigcap_{i=1}^{j-1} A_i^c\right) \geq \mathbf{P}\left(\bigcap_{i=1}^m A_i^c\right) \cdot \prod_{j=m+1}^n (1 - x_j).
\]

When $k = 1$, the conditional statement is to be interpreted as if there is no conditioning, and both statements are then obvious.

To induce, let $1 < k \leq n$ and assume the truth of both statements for any $1 \leq k' < k$. We first prove statement (1) in case k. Note that by the case $k - 1$ of statement (2), the conditional probability in (1) is well defined. Let $S_1 = \{j \in S : (i, j) \in E\}$, and let $S_2 = S \setminus S_1$. We may obviously assume that $S_1 = \{j_1 < j_2 < \cdots < j_r\}$ is nonempty, since otherwise the result is immediate by independence. We have

\[
\mathbf{P}\left(A_i \mid \bigcap_{j \in S} A_j^c\right) = \frac{\mathbf{P}\left(A_i \cap \bigcap_{j \in S_1} A_j^c \mid \bigcap_{j \in S_2} A_j^c\right)}{\mathbf{P}\left(\bigcap_{j \in S_1} A_j^c \mid \bigcap_{j \in S_2} A_j^c\right)}.
\]

For the denominator, we have the lower bound

\[
\mathbf{P}\left(\bigcap_{j \in S_2} A_j^c\right) \cdot \mathbf{P}\left(A_{j_1}^c \mid \bigcap_{j \in S_2} A_j^c\right) \cdot \mathbf{P}\left(A_{j_2}^c \mid A_{j_1}^c \cap \bigcap_{j \in S_2} A_j^c\right) \cdots \mathbf{P}\left(A_{j_r}^c \mid \bigcap_{\ell=1}^{r-1} A_{j_\ell}^c \cap \bigcap_{j \in S_2} A_j^c\right) \geq \prod_{\ell=1}^r (1 - x_{j_\ell})
\]

by applying (1) of the inductive assumption in cases $k' < k$.

For the numerator, we have the upper bound
\[
P \left(A_i \cap \bigcap_{j \in S_1} A_j^c \bigcap_{j \in S_2} A_j^c \right) \leq P \left(A_i \bigcap_{j \in S_2} A_j^c \right) = P(A_i) \leq x_i \prod_{j \in (i,j) \in E} (1 - x_j).
\]

Combined, these two bounds prove (1) in case \(k\).

To prove (2) in case \(k\), let \(S = \{j_1 < j_2 < \cdots < j_r\}\) and observe
\[
P \left(\bigcap_{j \in S} A_j^c \right) = \prod_{\ell = 1}^r P \left(A_i^c \bigcap_{1 \leq m < \ell} A_m^c \right) \geq \prod_{\ell = 1}^r (1 - x_\ell),
\]
which uses (1) in case \(k\). \(\square\)

References

(Received: December 22, 2013)

Mathematical Institute, University of Oxford, Oxford, UK

E-mail: hough@maths.ox.ac.uk