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Spherical Hecke algebras for Kac-Moody
groups over local fields

By Stéphane Gaussent and Guy Rousseau

Abstract

We define the spherical Hecke algebra H for an almost split Kac-Moody

group G over a local non-archimedean field. We use the hovel I associated

to this situation, which is the analogue of the Bruhat-Tits building for

a reductive group. The stabilizer K of a special point on the standard

apartment plays the role of a maximal open compact subgroup. We can

define H as the algebra of K-bi-invariant functions on G with almost finite

support. As two points in the hovel are not always in a same apartment,

this support has to be in some large subsemigroup G+ of G. We prove

that the structure constants of H are polynomials in the cardinality of the

residue field, with integer coefficients depending on the geometry of the

standard apartment. We also prove the Satake isomorphism between H
and the algebra of Weyl invariant elements in some completion of a Laurent

polynomial algebra. In particular, H is always commutative. Actually, our

results apply to abstract “locally finite” hovels, so that we can define the

spherical algebra with unequal parameters.
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1052 STÉPHANE GAUSSENT and GUY ROUSSEAU

Introduction

Let G be a connected reductive group over a local non-archimedean field

K, and let K be an open compact subgroup. The space H of complex functions

on G, bi-invariant by K and with compact support is an algebra for the natural

convolution product. Ichiro Satake [Sat63] studied this algebra H to define the

spherical functions and proved, in particular, that H is commutative for good

choices of K. We know now that one of the good choices for K is the stabilizer

of some special vertex for the action of G on its Bruhat-Tits building I , whose

structure is explained in [BT72]. Moreover, H, now called the spherical Hecke

algebra, may be entirely defined using I ; see, e.g., [Par06].

Kac-Moody groups are interesting generalizations of reductive groups, and

it is natural to try to define the spherical Hecke algebra in that case. So, let G

be a Kac-Moody group. Unfortunately, there is, up to now, no good topology

on G and no good compact subgroup, so the “convolution product” has to be

defined only by algebraic means. Alexander Braverman and David Kazhdan

[BK11] succeeded in defining such a spherical Hecke algebra, when G is split

and untwisted affine; see also the survey [BK14] by the same authors. For

a well-chosen subgroup K, they define H as the algebra of K-bi-invariant

complex functions with “almost finite” support. There are two new features:

the support has to be in a subsemigroup G+ of G, and it is an infinite union

of double classes. Hence, H is naturally a module over the ring of complex

formal power series.

Our idea is to define this spherical Hecke algebra using the hovel associated

to the almost split Kac-Moody group G that we built in [GR08], [Rou10]

and [Rou12]. This hovel I is a set with an action of G and a covering by

subsets called apartments. They are in one-to-one correspondence with the

maximal split subtori, hence permuted transitively by G. Each apartment A

is a finite-dimensional real affine space, and its stabilizer N in G acts on it

via a generalized affine Weyl group W = W v n Y (where Y ⊂
−→
A is a discrete

subgroup of translations), which stabilizes a setM of affine hyperplanes called

walls. So, I looks much like the Bruhat-Tits building of a reductive group,

but M is not a locally finite system of hyperplanes (as the root system Φ is

infinite) and two points in I are not always in a same apartment. (This is

why I is called a hovel.) There is on I a G-invariant preorder ≤ that induces

on each apartment A the preorder given by the Tits cone T ⊂
−→
A .

Now, we consider the stabilizer K in G of a special point 0 in a chosen

standard apartment A. Fix a ring R. The spherical Hecke algebra HR is

the space of some K-bi-invariant functions on G with values in R. In other

words, it is the space HI
R of some G-invariant functions on I0 × I0 where

I0 = G/K is the orbit of 0 in I . The convolution product is easy to guess
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from this point of view: (ϕ∗ψ)(x, y) =
∑
z∈I0

ϕ(x, z)ψ(z, y) (if this sum means

something). As two points x, y in I are not always in a same apartment

(i.e., the Cartan decomposition fails: G 6= KNK), we have to consider pairs

(x, y) ∈ I0×I0, with x ≤ y. (This implies that x, y are in a same apartment.)

For HR, this means that the support of ϕ ∈ HR has to be in K\G+/K, where

G+ = {g ∈ G | 0 ≤ g.0} is a semigroup. In addition, K\G+/K is in one-to-

one correspondence with the subsemigroup Y ++ = Y ∩ Cvf of Y (where Cvf
is the fundamental Weyl chamber). Now, to get a well-defined convolution

product, we have to ask (as in [BK11]) that the support of any ϕ ∈ HR is

almost finite: supp(ϕ) ⊂ ⋃n
i=1 (λi − Q∨+) ∩ Y ++, where λi ∈ Y ++ and Q∨+

is the subsemigroup of Y generated by the fundamental coroots. Note that

(λ−Q∨+) ∩ Y ++ is infinite except when G is reductive.

With this definition we are able to prove that HR is really an algebra,

which generalizes the known spherical Hecke algebras in the finite or affine split

case (see Section 2). In Section 3, in the Kac-Moody split case, we describe

the hovel I and give a direct proof that HR is commutative.

The structure constants of HR are the nonnegative integers mλ,µ(ν) (for

λ, µ, ν ∈ Y ++) such that cλ ∗ cµ =
∑
ν∈Y ++ mλ,µ(ν)cν , where cλ is the char-

acteristic function of KλK. Each chamber (= alcove) in I has only a finite

number of adjacent chambers along a given panel. These numbers are called

parameters of I , and they form a finite set Q. In the split case, there is

only one parameter q: the number of elements of the residue field κ of K.

In Section 4, we show that the structure constants are polynomials in these

parameters with integral coefficients depending only on the geometry of the

model apartment.

In Section 5, we build an action of HR on the module of functions from

A ∩ I0 to R. This gives an injective homomorphism from HR into a suit-

able completion R[[Y ]] of the group algebra R[Y ]; hence HR is abelian (5.3).

After being modified by a character, this homomorphism gives the Satake iso-

morphism from HR onto the subalgebra R[[Y ]]W
v

of W v-invariant elements in

R[[Y ]]. The proof involves a parabolic retraction of I onto an extended tree

inside the hovel.

Actually, this article is written in a more general framework (explained in

Section 1): we ask I to be an abstract ordered hovel (as defined in [Rou11])

and G to be a strongly transitive group of (positive, type-preserving) automor-

phisms.

The general definition and study of Hecke algebras for split Kac-Moody

groups over local fields was also undertaken by Alexander Braverman, David

Kazhdan and Manish Patnaik (as we knew from [P10]). A preliminary draft

appeared recently [BKP]. Their arguments are algebraic without use of a

geometric object as a hovel, and the proofs seem complete (temporarily?) only
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for the untwisted affine case. In addition to the construction of the spherical

Hecke algebra and the Satake isomorphism (as here), they give a formula for

spherical functions and they build the Iwahori-Hecke algebra.

One should notice that these authors use, instead of our groupK, a smaller

group, a priori slightly different; see Remark in Section 3.4. This group is also

used in [BGKP14] to perform computations on some double cosets in an affine

Kac-Moody group over a local non-archimedian field in order to prove an affine

Gindikin-Karpelevich formula.

In an article in preparation, we generalize the Iwahori-Hecke algebra to

our general framework and investigate its relationship with the spherical Hecke

algebra. In the same vein, it should be possible to define the Hecke algebra

associated to any type of parahoric subgroups.

1. General framework

1.1. Vectorial data. We consider a quadruple (V,W v, (αi)i∈I , (α
∨
i )i∈I),

where V is a finite-dimensional real vector space, W v a subgroup of GL(V )

(the vectorial Weyl group), I a finite set, (α∨i )i∈I a family in V and (αi)i∈I
a free family in the dual V ∗. We ask these data to verify the conditions of

[Rou11, 1.1]. In particular, the formula ri(v) = v − αi(v)α∨i defines a linear

involution in V that is an element in W v and (W v, {ri | i ∈ I}) is a Coxeter

system.

To be more concrete, we consider the Kac-Moody case of [Rou11, 1.2]:

the matrix M = (αj(α
∨
i ))i,j∈I is a generalized Cartan matrix. Then W v is the

Weyl group of the corresponding Kac-Moody Lie algebra gM and the associated

real root system is

Φ = {w(αi) | w ∈W v, i ∈ I} ⊂ Q =
⊕
i∈I

Z.αi.

We set Φ± = Φ ∩Q±, where Q± = ±(
⊕

i∈I (Z≥0).αi) and Q∨ = (
⊕
i∈I Z.α∨i ),

Q∨± = ±(
⊕
i∈I (Z≥0).α∨i ). We have Φ = Φ+ ∪ Φ− and, for α = w(αi) ∈ Φ,

rα = w.ri.w
−1 and rα(v) = v−α(v)α∨, where α∨ = w(α∨i ) depends only on α.

The set Φ is an (abstract, reduced) real root system in the sense of [MP89],

[MP95] or [Bar96]. We shall sometimes also use the set ∆ = Φ ∪∆+
im ∪∆−im

of all roots (with −∆−im = ∆+
im ⊂ Q+, W v-stable) defined in [Kac90]. It is an

(abstract, reduced) root system in the sense of [Bar96].

The fundamental positive chamber is Cvf ={v ∈ V | αi(v) > 0 for all i∈I}.
Its closure Cvf is the disjoint union of the vectorial faces F v(J) = {v ∈ V |
αi(v) = 0 for all i ∈ J, αi(v) > 0 for all i ∈ I\J} for J ⊂ I. The positive (resp.

negative) vectorial faces are the sets w.F v(J) (resp. −w.F v(J)) for w ∈ W v

and J ⊂ I. The set J or the face w.F v(J) is called spherical if the group

W v(J) generated by {ri | i ∈ J} is finite.



SPHERICAL HECKE ALGEBRAS FOR KAC-MOODY GROUPS 1055

The Tits cone T is the (disjoint) union of the positive vectorial faces. It

is a W v-stable convex cone in V .

1.2. The model apartment. As in [Rou11, 1.4] the model apartment A is

V considered as an affine space and endowed with a familyM of walls. These

walls are affine hyperplanes directed by Ker(α) for α ∈ Φ.

We ask this apartment to be semi-discrete and the origin 0 to be special.

This means that these walls are the hyperplanes defined as follows:

M(α, k) = {v ∈ V | α(v) + k = 0} for α ∈ Φ and k ∈ Λα

(with Λα = kα.Z a nontrivial discrete subgroup of R). Using the following

lemma (i.e., replacing Φ by ‹Φ) we shall (and will) assume that Λα = Z for all

α ∈ Φ.

Lemma 1.3. For all α ∈ Φ, we choose kα > 0 and define α̃ = α/kα,

α̃∨=kα.α
∨. Then ‹Φ = {α̃ | α ∈ Φ} is the (abstract reduced) real root system

(in the sense of [MP89], [MP95] or [Bar96]) associated to

(V,W v, (k−1
αi .αi)i∈I , (kαi .α

∨
i )i∈I)

and hence to the generalized Cartan matrix M̃ = (k−1
αj .αj(kαi .α

∨
i ))i,j∈I . More-

over, with ‹Φ, the walls are described using the subgroups Λ̃α = Z.

Proof. For α, β ∈ Φ, the group W a contains the translation τ by kα.α
∨

and τ(M(β, 0)) = M(β,−β(kα.α
∨)). So kα.β(α∨) ∈ Λβ; i.e.,

β̃(α̃∨) = k−1
β .kα.β(α∨) ∈ Z.

Hence M̃ = (k−1
αj .αj(kαi .α

∨
i ))i,j∈I is a generalized Cartan matrix and the lemma

is clear, as kwα = kα. �

For α = w(αi) ∈ Φ, k ∈ Z and M = M(α, k), the reflection rα,k = rM
with respect to M is the affine involution of A with fixed points the wall M

and associated linear involution rα. The affine Weyl group W a is the group

generated by the reflections rM for M ∈M; we assume that W a stabilizesM.

For α ∈ Φ and k ∈ R, D(α, k) = {v ∈ V | α(v) + k ≥ 0} is a half-space. It

is called a half-apartment if k ∈ Z.

The Tits cone T and its interior T o are convex and W v-stable cones;

therefore, we can define two W v-invariant preorder relations on A:

x ≤ y ⇔ y − x ∈ T and x
o
≤ y ⇔ y − x ∈ T o.

If W v has no fixed point in V \ {0} and no finite factor, then they are orders;

but they are not in general.
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1.4. Faces, sectors, chimneys. The faces in A are associated to the above

systems of walls and half-apartments (i.e., D(α, k) = {v ∈ A | α(v) + k ≥ 0}).
As in [BT72], they are no longer subsets of A, but filters of subsets of A. For

the definition of that notion and its properties, we refer to [BT72] or [GR08].

If F is a subset of A containing an element x in its closure, the germ of F

in x is the filter germx(F ) consisting of all subsets of A that are intersections

of F and neighbourhoods of x. In particular, if x 6= y ∈ E, we denote the germ

in x of the segment [x, y] (resp. of the interval ]x, y]) by [x, y) (resp. ]x, y)).

Given F a filter of subsets of A, its enclosure clA(F ) is the filter made of

the subsets of A containing an element of F of the shape ∩α∈∆D(α, kα), where

kα ∈ Z ∪ {∞}. (Here, D(α,∞) = A.)

A face F in the apartment A is associated to a point x ∈ A and a vectorial

face F v in V . More precisely, a subset S of A is an element of the face F =

F (x, F v) if, and only if, it contains an intersection of half-spaces D(α, k) or

open half-spaces D◦(α, k) (for α ∈ ∆ and k ∈ Z t {∞}) that contains Ω ∩
(x + F v), where Ω is an open neighborhood of x in A. The enclosure of a

face F = F (x, F v) is its closure: the closed-face F . It is the enclosure of the

local-face in x, germx(x+ F v).

There is an order on the faces: the assertions “F is a face of F ′,” “F ′

covers F” and “F ≤ F ′” are by definition equivalent to F ⊂ F ′. The dimension

of a face F is the smallest dimension of an affine space generated by some

S ∈ F . The (unique) such affine space E of minimal dimension is the support

of F . Any S ∈ F contains a nonempty open subset of E. A face F is spherical

if the direction of its support meets the open Tits cone; then its pointwise

stabilizer WF in W is finite.

Any point x ∈ A is contained in a unique face F (x, V0), which is minimal

(but seldom spherical); x is a vertex if, and only if, F (x, V0) = {x}.
A chamber (or alcove) is a maximal face or, equivalently, a face such that

all its elements contain a nonempty open subset of A.

A panel is a spherical face maximal among faces that are not chambers

or, equivalently, a spherical face of dimension n− 1. Its support is a wall. So,

the set of spherical faces of A and the Tits cone completely determine the set

M of walls.

A sector in A is a V -translate s = x + Cv of a vectorial chamber Cv =

±w.Cvf (w ∈ W v), x is its base point and Cv its direction. Two sectors have

the same direction if, and only if, they are conjugate by V -translation and if,

and only if, their intersection contains another sector.

The sector-germ of a sector s = x + Cv in A is the filter S of subsets

of A consisting of the sets containing a V -translate of s; it is well determined

by the direction Cv. So, the set of translation classes of sectors in A, the set

of vectorial chambers in V and the set of sector-germs in A are in canonical
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bijection. We denote the sector-germ associated to the negative fundamental

vectorial chamber −Cvf by S−∞.

A sector-face in A is a V -translate f = x + F v of a vectorial face F v =

±wF v(J). The sector-face-germ of f is the filter F of subsets containing a

translate f′ of f by an element of F v (i.e., f′ ⊂ f). If F v is spherical, then f and

F are also called spherical. The sign of f and F is the sign of F v.

A chimney in A is associated to a face F = F (x, F v0 ) and to a vectorial

face F v; it is the filter r(F, F v) = clA(F + F v). The face F is the basis of

the chimney and the vectorial face F v its direction. A chimney r = r(F, F v)

is splayed if F v is spherical, and it is solid if its support (as a filter, i.e., the

smallest affine subspace containing r) has a finite pointwise stabilizer in W v.

A splayed chimney is therefore solid. The enclosure of a sector-face f = x+F v

is a chimney.

A ray δ with origin in x and containing y 6= x (or the interval ]x, y], the

segment [x, y]) is called preordered if x ≤ y or y ≤ x and generic if x
o
≤ y or

y
o
≤ x. With these new notions, a chimney can be defined as the enclosure of a

preordered ray and a preordered segment-germ sharing the same origin. The

chimney is splayed if, and only if, the ray is generic.

1.5. The hovel. In this section, we recall the definition of an ordered affine

hovel given by Guy Rousseau in [Rou11].

An apartment of type A is a set A endowed with a set Isom(A, A) of bijec-

tions (called isomorphisms) such that if f0 ∈ Isom(A, A), then f ∈ Isom(A, A)

if, and only if, there exists w ∈ W a satisfying f = f0 ◦ w. An isomorphism

between two apartments φ : A→ A′ is a bijection such that f ∈ Isom(A, A) if,

and only if, φ ◦ f ∈ Isom(A, A′). As the filters in A defined in 1.4 above (e.g.,

faces, sectors, walls, etc.) are permuted by W a; they are well defined in any

apartment of type A.

Definition. An ordered affine hovel of type A is a set I endowed with a

covering A of subsets called apartments such that

(MA1) any A ∈ A admits a structure of an apartment of type A;

(MA2) if F is a point, a germ of a preordered interval, a generic ray or a solid

chimney in an apartment A and if A′ is another apartment containing

F , then A ∩A′ contains the enclosure clA(F ) of F and there exists an

isomorphism from A onto A′ fixing clA(F );

(MA3) if R is the germ of a splayed chimney and if F is a face or a germ of a

solid chimney, then there exists an apartment that contains R and F ;

(MA4) if two apartments A,A′ contain R and F as in (MA3), then their

intersection contains clA(R∪F ) and there exists an isomorphism from

A onto A′ fixing clA(R ∪ F );
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(MAO) if x, y are two points contained in two apartments A and A′, and if

x ≤A y, then the two segments [x, y]A and [x, y]A′ are equal.

We ask here I to be thick of finite thickness: the number of chambers

(=alcoves) containing a given panel has to be finite ≥ 3. This number is the

same for any panel in a given wall M [Rou11, 2.9]; we denote it by 1 + qM .

We assume that I has a strongly transitive group of automorphisms G.

(That is, all isomorphisms involved in the above axioms are induced by ele-

ments of G; cf. [Rou12, 4.10].) We choose in I a fundamental apartment,

which we identify with A. As G is strongly transitive, the apartments of I
are the sets g.A for g ∈ G. The stabilizer N of A in G induces a group ν(N)

of affine automorphisms of A, which permutes the walls, sectors, sector-faces,

etc. and contains the affine Weyl group W a [Rou12, 4.13.1]. We denote the

stabilizer of 0 ∈ A in G by K.

We ask ν(N) to be positive and type-preserving for its action on the vec-

torial faces. This means that the associated linear map −→w of any w ∈ ν(N)

is in W v. As ν(N) contains W a and stabilizes M, we have ν(N) = W v n Y ,

where W v fixes the origin 0 of A and Y is a group of translations such that

Q∨ ⊂ Y ⊂ P∨ = {v ∈ V | α(v) ∈ Z for all α ∈ Φ}.
We ask Y to be discrete in V . This is clearly satisfied if Φ generates V ∗;

i.e., (αi)i∈I is a basis of V ∗.

Examples. The main examples of all the above situation are provided by

the hovels of almost split Kac-Moody groups over fields complete for a discrete

valuation and with a finite residue field; see [Rou10], [Cha10], [Cha] or [Rou12].

Some details in the split case can be found in Section 3.

Remarks. (a) In the following, we often refer to [GR08], which deals with

split Kac-Moody groups and residue fields containing C. But the results cited

are easily generalized to our present framework using the above references.

(b) For an almost split Kac-Moody group over a local field K, the set

of roots Φ is KΦred = {Kα ∈ KΦ | 1
2 .
Kα 6∈ KΦ}, where the relative root

system KΦ describes well the commuting relations between the root subgroups.

Unfortunately ‹Φ gives a worst description of these relations.

1.6. Type 0 vertices. The elements of Y , through the identification Y =

N.0, are called vertices of type 0 in A; they are special vertices. We note

Y + = Y ∩ T and Y ++ = Y ∩ Cvf . The type 0 vertices in I are the points on

the orbit I0 of 0 by G. This set I0 is often called the affine Grassmannian as

it is equal to G/K.

In general, G is not equal to KYK = KNK [GR08, 6.10]; i.e., I0 6= K.Y .

We know that I is endowed with a G-invariant preorder ≤ that induces the

known one on A [Rou11, 5.9]. We set I + = {x ∈ I | 0 ≤ x} , I +
0 = I0∩I +
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and G+ = {g ∈ G | 0 ≤ g.0}; so I +
0 = G+.0 = G+/K. As ≤ is a G-invariant

preorder, G+ is a semigroup.

If x ∈ I +
0 , there is an apartment A containing 0 and x (by definition of

≤) and all apartments containing 0 are conjugated to A by K (axiom (MA2));

so x ∈ K.Y + as I +
0 ∩ A = Y +. But ν(N ∩ K) = W v and Y + = W v.Y ++

(with uniqueness of the element in Y ++); so I +
0 = K.Y ++; more precisely

I +
0 = G+/K is the disjoint union of the KyK/K for y ∈ Y ++. Hence, we

have proved that the map Y ++ → K\G+/K is one-to-one and onto.

1.7. Vectorial distance and Q∨-order. For x ∈ T , we denote by x++ the

unique element in Cvf conjugated by W v to x.

Let I×≤I = {(x, y) ∈ I×I | x ≤ y} be the set of increasing pairs in I .

Such a pair (x, y) is always in a same apartment g.A; so g−1y− g−1x ∈ T , and

we define the vectorial distance dv(x, y) ∈ Cvf by dv(x, y) = (g−1y − g−1x)++.

It does not depend on the choices we made.

For (x, y) ∈ I0×≤I0 = {(x, y) ∈ I0×I0 | x ≤ y}, the vectorial distance

dv(x, y) takes values in Y ++. Actually, as I0 = G.0, K is the stabilizer of 0 and

I +
0 = K.Y ++ (with uniqueness of the element in Y ++), the map dv induces

a bijection between the set I0 ×≤ I0/G of G-orbits in I0 ×≤ I0 and Y ++.

Any g ∈ G+ is in K.dv(0, g.0).K.

For x, y ∈ A, we say that x ≤ Q∨ y (resp. x ≤ Q∨R
y) when y−x ∈ Q∨+ (resp.

y − x ∈ Q∨R+ =
∑
i∈I R≥0.α

∨
i ). Thus we get a preorder, which is an order at

least when (α∨i )i∈I is free or R+-free (i.e.,
∑
aiα
∨
i =0, ai≥0⇒ ai=0 for all i).

1.8. Paths. We consider piecewise linear continuous paths π : [0, 1] → A
such that each (existing) tangent vector π′(t) belongs to an orbit W v.λ for

some λ ∈ Cvf . Such a path is called a λ-path; it is increasing with respect to

the preorder relation ≤ on A.

For any t 6= 0 (resp. t 6= 1), we let π′−(t) (resp. π′+(t)) denote the derivative

of π at t from the left (resp. from the right). Further, we define w±(t) ∈W v to

be the smallest element in its (W v)λ-class such that π′±(t) = w±(t).λ (where

(W v)λ is the stabilizer in W v of λ). Moreover, we denote the negative (resp.

positive) segment-germ of π at t by π−(t) = π(t)− [0, 1)π′−(t) = [π(t), π(t−ε))
(resp. π+(t) = π(t) + [0, 1)π′+(t) = [π(t), π(t+ ε)) (for ε > 0 small).

The reverse path π defined by π = π(1 − t) has symmetric properties; it

is a (−λ)-path.

For any choices of λ ∈ Cvf , π0 ∈ A, r ∈ N \ {0} and sequences τ =

(τ1, τ2, . . . , τr) of elements in W v/(W v)λ and a = (a0 = 0 < a1 < a2 < · · · <
ar = 1) of elements in R, we define a λ-path π = π(λ, π0, τ , a) by the formula

π(t) = π0 +
j−1∑
i=1

(ai − ai−1)τi(λ) + (t− aj−1)τj(λ) for aj−1 ≤ t ≤ aj .

Any λ-path may be defined in this way (and we may assume τj 6= τj+1).
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Definition ([KM08, 3.27]). A Hecke path of shape λ with respect to −Cvf
is a λ-path such that π′+(t) ≤W v

π(t)
π′−(t) for all t ∈ [0, 1] \ {0, 1}, which means

that there exists a W v
π(t)-chain from π′−(t) to π′+(t), i.e., finite sequences (ξ0 =

π′−(t), ξ1, . . . , ξs = π′+(t)) of vectors in V and (β1, . . . , βs) of real roots such

that, for all i = 1, . . . , s,

(i) rβi(ξi−1) = ξi.

(ii) βi(ξi−1) < 0.

(iii) rβi ∈W v
π(t); i.e., βi(π(t)) ∈ Z: π(t) is in a wall of direction Ker(βi).

(iv) Each βi is positive with respect to −Cvf ; i.e., βi(C
v
f ) > 0.

Remarks. (1) The path is folded at π(t) by applying successive reflections

along the walls M(βi,−βi(π(t)) ). Moreover, conditions (ii) and (iv) tell us

that the path is “positively folded” (cf. [GL05]), i.e., centrifugally folded with

respect to the sector-germ S−∞ = germ∞(−Cvf ).

(2) Let c− = germ0(−Cvf ) be the negative fundamental chamber (= al-

cove). A Hecke path of shape λ with respect to c− [BCGR] is a λ-path in the

Tits cone T satisfying the above conditions except that we replace (iv) by

(iv′) each βi is positive with respect to c−; i.e., βi(π(t)− c−) > 0.

Then (ii) and (iv′) tell us that the path is centrifugally folded with respect to

the center c−.

2. Convolution algebras

2.1. Wanted. We consider the space“HI
R = “HR(I , G) = {ϕI : I0 ×≤ I0 → R | ϕI(gx, gy) = ϕI(x, y)∀g ∈ G}

of G-invariant functions on I0 ×≤ I0 with values in some ring R (essentially

C or Z). We want to make “HI
R (or some large subspace) an algebra for the

following convolution product:

(ϕI ∗ ψI)(x, y) =
∑

x≤z≤y
ϕI(x, z)ψI(z, y).

It is clear that this product is associative and R-bilinear if it exists.

Via dv, “HI
R is linearly isomorphic to the space“HR = {ϕG : Y ++ = K\G+/K → R},

which can be interpreted as the space of K-bi-invariant functions on G+. The

correspondence ϕI ↔ ϕG between “HI
R and “HR is given by

ϕG(g) = ϕI(0, g.0) and ϕI(x, y) = ϕG(dv(x, y)).

In this setting, the convolution product should be

(ϕG∗ ψG)(g) =
∑

h∈G+/K

ϕG(h)ψG(h−1g),
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where we consider ϕG and ψG trivial on G\G+. In the following, we shall often

make no difference between ϕI or ϕG and forget the exponents I and G.

We consider the subspace HfR of functions with finite support in Y ++ =

K\G+/K; its natural basis is (cλ)λ∈Y ++ , where cλ sends λ to 1 and µ 6= λ to 0.

Clearly c0 is a unit for ∗. In “HI
R , (cλ ∗ cµ)I(x, y) is the number of triangles

[x, z, y] with dv(x, z) = λ and dv(z, y) = µ.

As suggested by [BK11] and Lemma 2.4, we also consider the subspaceHR
of “HR of functions ϕ with almost finite support; i.e., supp(ϕ) ⊂ ∪ni=1 (λi−Q∨+)

∩ Y ++, where λi ∈ Y ++.

2.2. Retractions onto Y +. For all x ∈ I +, there is an apartment contain-

ing x and c− [Rou11, 5.1], and this apartment is conjugated to A by an element

of K fixing c− (axiom (MA2) ). So, by the usual arguments and [Rou11, 5.5]

we can define the retraction ρc− of I + into A with center c−; its image is

ρc−(I +) = T = I + ∩ A and ρc−(I +
0 ) = Y +. There is also the retraction

ρ−∞ of I onto A with center the sector-germ S−∞ [GR08, 4.4].

For ρ = ρc− or ρ−∞, the image of any segment [x, y] with (x, y) ∈ I ×≤I
and dv(x, y) = λ ∈ Cvf is a λ-path [GR08, 4.4]. In particular, ρ(x) ≤ ρ(y).

2.3. Convolution product. The convolution product in “HR should be de-

fined (for y ∈ Y ++) by

(ϕ ∗ ψ)(y) =
∑

ϕ(z)ψ(dv(z, y)),

where the sum runs over the z ∈ I +
0 such that 0 ≤ z ≤ y and ϕ(z) =

ϕI (0, z) = ϕG(dv(0, z)).

(1) Using ρc− we have, for λ, µ, y ∈ Y ++,

(cλ ∗ cµ)(y) =
∑

w∈W v/(W v)λ

Nc−(µ,w.λ, y),

where Nc−(µ,w.λ, y) is the number of z ∈ I +
0 with dv(z, y) = µ and ρc−(z) =

w.λ ∈ Y +. Note that, if Nc−(µ,w.λ, y) > 0, there exists a µ-path from w.λ

to y, and hence y ∈ w.λ+ Y +.

So cλ ∗ cµ is the formal sum cλ ∗ cµ =
∑
ν∈Y ++ mλ,µ(ν)cν where the struc-

ture constant mλ,µ(ν) =
∑
w∈W v/(W v)λ Nc−(µ,w.λ, ν) ∈ Z≥0 ∪ {+∞} is also

equal to the number of triangles [x, z, y] with dv(x, z) = λ and dv(z, y) = µ for

any fixed pair (x, y) ∈ I0 ×≤ I0 with dv(x, y) = ν (e.g., (x, y) = (0, ν)).

(2) Using ρ−∞ we have mλ,µ(ν) =
∑
z′ N−∞(µ, z′, ν) where the sum runs

over the z′ in Y +(λ) = ρ−∞({z ∈ I +
0 | dv(0, z) = λ}) and N−∞(µ, z′, ν) ∈

Z≥0 ∪ {+∞} is the number of z ∈ I +
0 with dv(0, z) = λ, dv(z, y) = µ (for

any y ∈ I +
0 with dv(0, y) = ν, e.g., y = ν) and ρ−∞(z) = z′. But ρ−∞([0, z])

is a λ-path hence increasing with respect to ≤ , so Y +(λ) ⊂ Y +. Moreover,
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ρ−∞([z, ν]) is a µ-path, so z′ has to be in ν − Y +. Hence, z′ has to run over

the set Y +(λ) ∩ (ν − Y +) ⊂ Y + ∩ (ν − Y +).

Actually, the image by ρ−∞ of any segment [x, y] with (x, y) ∈ I ×≤ I
and dv(x, y) = λ ∈ Y ++ is a Hecke path of shape λ with respect to −Cvf [GR08,

Th. 6.2]. Hence we have the following results:

Lemma 2.4.

(a) For λ ∈ Y ++ and w ∈W v , wλ ∈ λ−Q∨+; i.e., wλ ≤ Q∨ λ.

(b) Let π be a Hecke path of shape λ ∈ Y ++ with respect to −Cvf , from

y0 ∈ Y to y1 ∈ Y . Then λ = π′+(0)++ = π′−(1)++, π′+(0) ≤ Q∨ λ,

π′+(0) ≤ Q∨R
(y1 − y0) ≤ Q∨R

π′−(1) ≤ Q∨ λ and y1 − y0 ≤ Q∨ λ.

(c) If moreover, (α∨i )i∈I is free, we may replace above ≤ Q∨R
by ≤ Q∨ .

(d) For λ, µ, ν ∈ Y ++, if mλ,µ(ν) > 0, then ν ∈ λ+µ−Q∨+, i.e., ν ≤ Q∨ λ+µ.

Note. By (d) above, if x ≤ z ≤ y in I0, then dv(x, y) ≤ Q∨d
v(x, z) +

dv(z, y).

Proof. (a) By definition, for λ ∈ Y , w.λ ∈ λ+Q∨, hence (a) follows from

[Kac90, 3.12d] used in a realization where (α∨i )i∈I is free.

(b) By definition of Hecke paths in 1.8, λ = π′+(0)++ = π′−(1)++. More-

over, for all t ∈ [0, 1], λ = π′−(t)++ = π′+(t)++, and we know how to get π′+(t)

from π′−(t) by successive reflections; this proves that π′+(t) ∈ π′−(t) +Q∨R+. By

integrating the locally constant function π′(t), we get

π′+(0) ≤ Q∨R
(y1 − y0) ≤ Q∨R

π′−(1) ≤ Q∨R
λ.

It is proved (but not stated) in [GR08, 5.3.3] that any Hecke path of shape

λ starting in y0 ∈ Y can be transformed in the path πλ(t) = y0+λt by applying

successively the operators eαi or ẽαi for i ∈ I; moreover, eαi(π)(1) = π(1)+α∨i
and ẽαi(π)(1) = π(1), hence y1 − y0 ≤ Q∨ λ.

(c) By (b), y1 − y0 − π′+(0) ∈ Q∨R+ ∩ Q∨ = Q∨+, so π′+(0) ≤ Q∨ (y1 − y0).

The same follows for y1 − y0 ≤ Q∨ π
′
−(1).

(d) If mλ,µ(ν) > 0, we have an Hecke path of shape λ (resp. µ) from 0 to

z′ (resp. from z′ to ν). So (d) follows from (b). �

Proposition 2.5. Suppose (α∨i )i∈I is free in V . Then for all λ, µ, ν ∈
Y ++, mλ,µ(ν) is finite.

Note. Actually, we may replace the condition on freeness of (α∨i )i∈I by

the condition on R+-freeness.

Proof. We have to count the z∈I +
0 such that dv(0, z)=λ and dv(z, ν)=µ.

We set z′ = ρ−∞(z). By Lemma 2.4b, z′ ∈ λ−Q∨+ and ν ∈ z′+µ−Q∨+. Hence

z′ is in (λ−Q∨+) ∩ (ν − µ+Q∨+), which is finite as (α∨i )i∈I is free or R+-free.

So, we fix now z′. By [GR08, Cor. 5.9] there is a finite number of Hecke paths

π′ of shape µ from z′ to ν. So, we fix now π′. And by [GR08, Th. 6.3] (see also
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Remark 4.10 and Proposition 4.11) there is a finite number of segments [z, ν]

retracting to π′; hence the number of z is finite. �

Theorem 2.6. Suppose (α∨i )i∈I is free or R+-free, then HR is an algebra.

Proof. We saw that for λ, µ, ν ∈ Y ++, mλ,µ(ν) is finite; hence cλ ∗ cµ is

well defined (eventually as an infinite formal sum). Let us consider ϕ,ψ ∈ HR:

supp(ϕ) ⊂ ∪mi=1 (λi − Q∨+), supp(ψ) ⊂ ∪nj=1 (µj − Q∨+). Let ν ∈ Y ++. If

mλ,µ(ν) > 0 with λ ∈ supp(ϕ), µ ∈ supp(ψ) (hence λ ∈ λi −Q∨+, µ ∈ µj −Q∨+
for some i, j), we have λ+ µ ∈ ν +Q∨+ by Lemma 2.4(d). So,

λ ∈ (ν − µ+Q∨+) ∩ (λi −Q∨+) ⊂ (ν − µj +Q∨+) ∩ (λi −Q∨+),

which is a finite set. For the same reasons µ is in a finite set, so ϕ ∗ ψ is well

defined.

With the above notation, ν ∈ (λ + µ − Q∨+) ⊂ ∪i,j (λi + µj − Q∨+), so

ϕ ∗ ψ ∈ HR. �

Definition 2.7. HR = HR(I , G) is the spherical Hecke algebra (with co-

efficients in R) associated to the hovel I and its strongly transitive automor-

phism group G.

Remark. We shall now investigateHR and some other possible convolution

algebras in “HR by separating the cases: finite, indefinite and affine.

2.8. Finite case. In this case Φ and W v are finite, (α∨i )i∈I is free, T = V

and the relation ≤ is trivial. The hovel I = I + is a locally finite Bruhat-Tits

building.

Let ρ be the half-sum of positive roots. As 2ρ ∈ Q and ρ(α∨i ) = 1 for all

i ∈ I, we see that an almost finite set in Y ++ is always finite. So HR and HfR
are equal.

The algebra HC was already studied by I. Satake in [Sat63]. Its close link

with buildings is explained in [Par06]. The algebra HZ is the spherical Hecke

ring of [KLM08], where the interpretation of mλ,µ(ν) as a number of triangles

in I is already given.

Note that “HR is not an algebra as, e.g., mλ,(−w0)λ(0) 6= 0 for all λ ∈ Y ++

(where w0 is the greatest element in W v).

2.9. Indefinite case.

Lemma. Suppose now Φ associated to an indefinite indecomposable gen-

eralized Cartan matrix. Then there is an element δ in ∆+
im (of support I) such

that δ(α∨i ) < 0 for all i ∈ I and a basis (δi)i∈I of the real vector space QR
spanned by Φ such that δi(T ) ≥ 0 for all i ∈ I .

Proof. Any δ ∈ ∆+
im takes positive values on T [Kac90, 5.8]. Now, in the

indefinite case, there is δ ∈ ∆+
im ∩ (⊕i∈I R>0.αi) such that δ(α∨i ) < 0 for all
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i ∈ I [Kac90, 4.3], and hence δ + αi ∈ ∆+ for all i ∈ I. Eventually replacing

δ by 3δ [Kac90, 5.5], we have (δ + αi)(α
∨
j ) < 0 for all i, j ∈ I, and hence

δ + αi ∈ ∆+
im. The wanted basis is inside {δ} ∪ {δ + αi | i ∈ I}. �

The existence of δ ∈ ∆+
im as in the lemma proves that (α∨i )i∈I is R+-free.

So HR is an algebra. The following Example 2.10 proves that HfR is in general

not a subalgebra.

If (αi)i∈I generates (i.e., is a basis of) V ∗, “HR is also an algebra (the

formal spherical Hecke algebra). Let ν ∈ Y ++. We have to prove that there is

only a finite number of pairs (λ, µ) ∈ (Y ++)2 such that mλ,µ(ν) > 0. Let z′ be

as in the proof of 2.5. We saw in 2.3 that z′ ∈ Y +∩(ν−Y +) = Y ∩T ∩(ν−T ).

By the lemma, T ∩ (ν −T ) is bounded; hence Y ∩ T ∩ (ν −T ) is finite. So we

may fix z′. Now λ ∈ z′+Q∨+, and hence (for δ as in the lemma) δ(λ) ≤ δ(z′); as

αi(λ) ∈ Z≥0 for all i ∈ I and δ ∈ ⊕i∈I R>0.αi, this gives only a finite number

of possibilities for λ. Similarly, µ ∈ ν − z′ +Q∨+ has to be in a finite set.

Actually “HR is often equal to HR when (α∨i )i∈I is free and (αi)i∈I gener-

ates V ∗ (hence the matrix M = (αj(α
∨
i )) is invertible); see Example 2.10.

2.10. An indefinite rank 2 example. Let us consider the Kac-Moody ma-

trix M =
Ä

2 −3
−3 2

ä
. A basis of Φ and of V ∗ is {α1, α2}, and we consider the

dual basis ($∨1 , $
∨
2 ) of V . In this basis, α∨1 =

(
2
−3

)
, α∨2 =

(−3
2

)
and the matri-

ces of r1, r2, r2r1 and r1r2 are respectively
(−1 0

3 1

)
,
(

1 3
0 −1

)
, M =

(
8 3
−3 −1

)
and

M−1 =
(−1 −3

3 8

)
. The eigenvalues of M or M−1 are a± = (7±

√
45)/2. In any

basis diagonalizing M and M−1 we see easily that (r2r1)n + (r1r2)n = an.IdV ,

where an = an+ + an− is in N and increasing up to infinity (a0 = 2, a1 = 7,

a2 = 47, a3 = 322,. . . ).

Consider now λ = µ = −α∨1 −α∨2 = ( 1
1 ) in Y ++ ⊂ Z≥0.$

∨
1 ⊕Z≥0.$

∨
2 . We

have (r2r1)n.λ+ (r1r2)n.λ = an.λ. This means that

mλ,λ(an.λ) ≥ Nc−(λ, (r2r1)nλ, an.λ) ≥ 1

for all positive n (and the same thing for N−∞). So cλ ∗ cλ is an infinite formal

sum. Actually (−Q∨+)∩Y ++ ⊃ Z≥0.5$
∨
1 ⊕Z≥0.5$

∨
2 ; hence Y ++ itself is almost

finite!

2.11. An affine rank 2 example. Let us consider the Kac-Moody matrix

M =
Ä

2 −2
−2 2

ä
. A basis of Φ is {α1, α2}, but we consider a realization V of

dimension 3 for which {α∨1 , α∨2 } is free and with basis of V ∗, {αo = −ρ, α1, α2}.
More precisely, if ($∨0 , $

∨
1 , $

∨
2 ) is the dual basis of V , we have α∨1 =

Å
−1
2
−2

ã
,

α∨2 =

Å
−1
−2
2

ã
and the matrices of r1, r2, r1r2 and r2r1 are respectively

(
1 1 0
0 −1 0
0 2 1

)
,(

1 0 1
0 1 2
0 0 −1

)
, M =

(
1 1 3
0 −1 −2
0 2 3

)
and M−1 =

(
1 3 1
0 3 2
0 −2 −1

)
. A classical calculus using
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triangulation tells us that (r2r1)n + (r1r2)n =
(

2 4n2 4n2

0 1 0
0 0 1

)
. Actually, c =

α∨1 + α∨2 = −2$∨0 ∈ Q∨+ is the canonical central element [Kac90, §6.2] and the

above calculations are peculiar cases of [Kac90, §6.5].

Now let us consider λ = µ =
∑2
i=1 ai$

∨
i ∈ Y ++ ⊂ ⊕2

i=1 Z≥0$
∨
i . We have

(r2r1)n(λ) + (r1r2)n(λ) = λ − 2n2|λ|c with |λ| = a1 + a2. This means that

mλ,λ(λ− 2n2|λ|c) ≥ Nc−(λ, (r2r1)n(λ), λ− 2n2|λ|c) ≥ 1 for all n ∈ Z (and the

same thing for N−∞). So cλ ∗ cλ is an infinite formal sum.

Moreover, as c is fixed by r1 and r2, (r2r1)n(λ+2n2|λ|c)+(r1r2)n(λ) = λ,

so mλ+2n2|λ|c,λ(λ) ≥ 1 for all n ∈ Z, and “HR is not an algebra. Remark also

that, if we consider the essential quotient V e = V/Rc, the above calculus tells

that mλ,λ(λ) ≥ ∑
n∈Z Nc−(λ, (r2r1)n(λ), λ) is infinite if |λ| > 0.

2.12. Affine indecomposable case. We saw in Example 2.11 that mλ,λ(λ)

may be infinite for all λ ∈ Y ++ when (α∨i )i∈I is not free. So, in this case,“HR seems to contain no algebra except R.c0. Remark also that (α∨i )i∈I free

is equivalent to (α∨i )i∈I R+-free in the affine indecomposable case as the only

possible relation between the α∨i is c = 0, where c =
∑
i∈I a

∨
i .α
∨
i (with a∨i ∈

Z>0 for all i ∈ I) is the canonical central element.

An almost finite subset in Y ++ is a finite union of subsets like Yλ =

(λ − Q∨+) ∩ Y ++. Let δ be the smallest positive imaginary root in ∆. Then

δ(Q∨+) = 0 so Yλ ⊂ {y ∈ Y ++ | δ(y) = δ(λ)} = Y ′λ. But δ =
∑
i∈I ai.αi

with ai ∈ Z>0 for all i ∈ I, so the image of Y ′λ in V e = V/Rc (where Rc =

∩i∈I Ker(αi)) is finite. It is now clear that Yλ is a finite union of sets like

µ−Z≥0.c with µ ∈ Y ++. Hence an almost finite subset as defined above is the

same as an almost finite union (of double cosets) as defined in [BK11].

The algebra HC is the one introduced by A. Braverman and D. Kazhdan

in [BK11]. We gave above a combinatorial proof that it is an algebra, without

algebraic geometry.

3. The split Kac-Moody case

3.1. Situation. As in [Rou10] or [Rou12], we consider a split Kac-Moody

group G associated to a root generating system

S = (M, YS , (αi)i∈I , (α
∨
i )i∈I)

over a field K endowed with a discrete valuation ω (with value group Λ = Z
and ring of integers O = ω−1([0,+∞])) whose residue field κ = Fq is finite. So,

M = (ai,j)i,j∈I is a Kac-Moody matrix, YS a free Z-module, (α∨i )i∈I a family

in YS , (αi)i∈I a family in the dual X = Y ∗S of YS and αj(α
∨
i ) = ai,j . We denote

by W v the associated Weyl group.

If (αi)i∈I is free in X, we consider V = VY = YS ⊗Z R and the quadruple

(V,W v, (αi = αi)i∈I , (α
∨
i )i∈I). In general, we may define Q = ZI with canoni-

cal basis (αi)i∈I ; then V = VQ = HomZ(Q,R) is also in a quadruple as in 1.1.
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A third example V xl of choice for V is explained in [Rou12]. We always denote

by bar : Q→ X the linear map sending αi to αi.

With these vectorial data we may define what was considered in 1.1

and 1.2. We choose Λα = Λ = Z for all α ∈ Φ. Now the hovel I in 1.5 is as

defined in [Rou10] or [Rou12], and the strongly transitive group is G = G(K).

By [Rou11, 6.11] or [Rou10, 5.16] we have qM = q for any wall M . When G is

a split reductive group, I is its extended Bruhat-Tits building.

3.2. Generators for G. The Kac-Moody group G contains a split maximal

torus T with character group X and cocharacter group YS . We set T = T(K).

For each α ∈ Φ ⊂ Q, there is a group homomorphism xα : K → G that is

one-to-one; its image is the subgroup Uα. Now G is generated by T and the

subgroups Uα for α ∈ Φ, submitted to some relations given by Tits [Tit87],

also available in [Rém02] or [Rou10]. We denote the subgroup generated by

the subgroups Uα, for α ∈ Φ±, by U±.

Now we shall explain only a few of the relations. For u ∈ K, t ∈ T and

α ∈ Φ, one has

(KMT4) t.xα(u).t−1 = xα(α(t).u) (where α = bar(α)).

For u 6= 0, we note s̃α(u) = xα(u).x−α(u−1).xα(u) and s̃α = s̃α(1).

(KMT5) s̃α(u).t.s̃α(u)−1 = rα(t). (W v acts on V , YS , X and hence on T .)

3.3. Weyl groups. Actually the stabilizer N of A ⊂ I is the normalizer

of T in G. The image ν(N) of N in Aut(A) is a semi-direct product ν(N) =

ν(N0) n ν(T ) with

• N0 is the stabilizer of 0 in N and ν(N0) is isomorphic to W v acting linearly

on A = V . Actually ν(N0) is generated by the elements ν(s̃α), which act

as rα (for α ∈ Φ).

• t ∈ T acts on A by a translation of vector ν(t) ∈ V such that χ(ν(t)) =

−ω(χ(t)) for any χ ∈ X = Y ∗S and χ ∈ X or Q that are related by χ = χ

if V = VY or χ = bar(χ) if V = VQ.

So, ν(N) = W v n Y where Y is closely related to YS ' T/T(O): as Λ =

ω(K) = Z, they are equal if V = VY and if V = VQ, Y = bar∗(YS) is the image

of YS by the map bar∗ : YS → HomZ(Q,Z) dual to bar.

So, the choice V = VY is more pleasant. The choice V = VQ is made,

e.g., in [Cha10], [Cha] or [Rém02], and has good properties in the indefinite

case; cf. 2.9. They both coincide when (αi)i∈I is a basis of X ⊗ R = V ∗Y . This

assumption generalizes semi-simplicity; in particular, the center of G is then

finite [Rém02, 9.6.2].

3.4. The group K . The group K = G0 should be equal to G(O) for some

integral structure of G over O; cf. [GR08, 3.14]. But the appropriate integral

structure is difficult to define in general. So, we define K by its generators.
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The group N0 is generated by T0 = T(O) = T ∩K and the elements s̃α
for α ∈ Φ. (This is clear by 3.3.) The group U0, generated by the groups

Uα,0 = xα(O) for α ∈ Φ, is in K. We set U±0 = U0 ∩U±. In general, U±0 is not

generated by the groups Uα,0 for α ∈ Φ± [Rou10, 4.12.3a].

It is likely that K may be greater than the group generated by N0 and U0

(i.e., by U0 and T0). We have to define groups Upm+
0 ⊃ U+

0 and Unm−0 ⊃ U−0
as follows. In some formal positive completion “G+ of G, we can define the

subgroup Uma+
0 =

∏
α∈∆+ Uα,0 of the subgroup Uma+ =

∏
α∈∆+ Uα of “G+,

with U+ ⊂ Uma+ (where Uα,0 and Uα are suitably defined for α imaginary).

Then Upm+
0 = Uma+

0 ∩G = Uma+
0 ∩ U+. The group Unm−0 is defined similarly

with ∆− using the group Uma−0 ⊂ Uma− in some formal negative completion“G− of G.

Now K = G0 = Unm−0 .U+
0 .N0 = Upm+

0 .U−0 .N0 (see [Rou10, 4.14, 5.1]).

Remark. Let us denote by K1 the group used by A. Braverman, D. Kazh-

dan and M. Patnaik in their definition of the spherical Hecke algebra. With the

notation above, K1 is generated by T0 and U0, i.e., by T0, U+
0 and U−0 , hence

K = Unm−0 .K1 = Upm+
0 .K1, with U−0 ⊂ Unm−0 ⊂ U− and U+

0 ⊂ Upm+
0 ⊂ U+.

But they prove, at least in the untwisted affine case, that U− ∩ U+.K1 ⊂ K1

[BKP, proof of Lemma A.3]; so Unm−0 ⊂ U− ∩ K ⊂ U− ∩ U+.K1 ⊂ K1 and

K = K1. This result answers positively a question in [Rou12, 5.4], at least for

points of type 0 and in the untwisted affine split case.

Proposition 3.5. There is an involution θ (called Chevalley involution)

of the group G such that θ(t) = t−1 for all t ∈ T and θ(xα(u)) = x−α(u) for

all α ∈ Φ and u ∈ K. Moreover, K is θ-stable and θ induces the identity on

W v = N/T .

Proof. This involution is well known on the corresponding complex Lie

algebra. See [Kac90, 1.3.4], where for the generators eα, one uses a different

convention from ours ([eα, e−α] = −α∨ as in [Tit87] or [Rém02]). Hence the

proposition follows when κ contains C or is at least of characteristic 0. But

here we have to use the definition of G by generators and relations.

We see in [Rou10, 1.5, 1.7.5] that s̃α(−u)= s̃α(u)−1 and s̃α(u)= s̃−α(u−1).

So for the wanted involution θ, we have θ(s̃α(u)) = s̃−α(u) = s̃α(u−1). We

now have to verify the relations between the θ(xα(u)) = x−α(u), θ(t) = t−1

and θ(s̃α(u)) = s̃α(u−1). This is clear for (KMT4) and (KMT5) (as rα = r−α).

The three other relations are

(KMT3) (xα(u), xβ(v))=
∏
xγ(Cα,βp,q .u

pvq) for (α, β)∈Φ2 prenilpotent and, for

the product, γ = pα+qβ runs in (Z>0α+Z>0β)∩Φ. But the integers

Cα,βp,q are picked up from the corresponding formula between exponen-

tials in the automorphism group of the corresponding complex Lie
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algebra. As we know that θ is defined in this Lie algebra, we have

C−α,−βp,q = Cα,βp,q and (KMT3) is still true for the images by θ.

(KMT6) s̃α(u−1) = s̃α.α
∨(u) for α simple and u ∈ K \ {0}. This is still true

after applying θ as θ(s̃α(u−1)) = s̃α(u) and (−α)∨(u) = α∨(u−1).

(KMT7) s̃α.xβ(u).s̃−1
α = xγ(ε.u) if γ = rα(β) and s̃α(eβ) = ε.eγ in the Lie

algebra (with ε = ±1). This is still true after applying θ because

s̃α(eβ) = ε.eγ ⇒ s̃α(e−β) = ε.e−γ (as rα(β∨) = γ∨).

So, θ is a well-defined involution of G, θ(U0) = U0, θ(N0) = N0 and

θ(U±0 ) = U∓0 . But the isomorphism θ of U+ onto U− can clearly be extended

to an isomorphism θ from Uma+ onto Uma− sending Uma+
0 onto Uma−0 . So

θ(Upm+
0 ) = Unm−0 and θ(K) = K. As θ(s̃α) = s̃α, θ induces the identity on

W v = N/T . �

Theorem 3.6. The algebra “HR or HR is commutative, when it exists.

Notation. To be clearer we shall sometimes write “HR(G,K) or HR(G,K)

instead of “HR or HR.

Proof. The formula θ#(g) = θ(g−1) defines an anti-involution (θ#(gh) =

θ#(h).θ#(g) ) of G that induces the identity on T and stabilizes K. In partic-

ular, θ#(G+) = θ#(KY ++K) = G+ and θ#(KλK) = KλK for all λ ∈ Y ++.

For ϕ,ψ ∈ “HR and g ∈ G+, one has

(ϕ ∗ ψ)(g) = (ϕ ∗ ψ)(θ#(g)) =
∑

h∈G+/K

ϕ(h)ψ(h−1θ#(g)).

The map h 7→ h′ = θ#(h−1θ#(g)) = gθ#(h−1) is one-to-one from G+/K onto

G+/K. So,

(ϕ ∗ ψ)(g) =
∑

h′∈G+/K

ϕ(θ#(h′−1g))ψ(θ#(h′))

=
∑

h′∈G+/K

ϕ(h′−1g)ψ(h′) = (ψ ∗ ϕ)(g). �

Remarks 3.7. (1) Below, this commutativity will be proved in general, as

a consequence of the Satake isomorphism. The above proof generalizes well-

known proofs in the reductive case; e.g., for G = GLn, θ# is the transposition.

(2) When G is an almost split Kac-Moody group over the field K (supposed

complete or henselian) it splits over a finite Galois extension L, the hovel KI
over K exists and embeds in the hovel LI over L [Rou12, §6]. After eventually

enlarging L, one may suppose that 0 is a special point in KI and LI — more

precisely, in the fundamental apartments KA ⊂ LA = A associated respectively

to a maximal K-split torus KS and a L-split maximal torus T ⊃ KS. If we

make a good choice of the homomorphisms xα : L → G(L), the associated

involution θ of G(L) should commute with the action of the Galois group
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Γ = Gal(L/K) and hence induce an involution Kθ and an anti-involution Kθ#

of G(K) = G(L)Γ such that Kθ(K) = Kθ#(K) = K and Kθ# induces the

identity in Y (KS) = KS(K)/KS(O). The commutativity of “HR(G,K) or

HR(G,K) would follow.

This strategy works well when G is quasi split over K; unfortunately, it

seems to fail in the general case.

(3) The commutativity of “HR or HR is related to the choice of a special

vertex for the origin 0. Even in the semi-simple case, other choices may give

noncommutative convolution algebras; see [Sat63] and [KR07].

4. Structure constants

We come back to the general framework of Section 1. We shall compute the

structure constants of “HR or HR by formulas depending on A and the numbers

qM of 1.5. Note that there is only a finite number of them: as qwM = qM for

all w ∈ ν(N) and wM(α, k) = M(wα, k) for all w ∈ W v, we may suppose

M = M(αi, k) with i ∈ I and k ∈ Z. Now α∨i ∈ Q∨ ⊂ Y ; as αi(α
∨
i ) = 2,

the translation by α∨i permutes the walls M = M(αi, k) (for k ∈ Z) with

two orbits. So, Y has at most two orbits in the set of the constants qM(αi,k):

one containing the qi = qM(αi,0) and the other containing the q′i = qM(αi,±1).

Hence, the number of (possibly) different parameters is at most 2.|I|. We

denote by Q = {q1, . . . , ql, q
′
1 = ql+1, . . . , q

′
l = q2l} this set of parameters.

4.1. Centrifugally folded galleries of chambers. Let x be a point in the

standard apartment A. Let Φx be the set of all roots α such that α(x) ∈ Z.

It is a closed subsystem of roots. Its associated Weyl group W v
x is a Coxeter

group.

We have twinned buildings I +
x (resp. I −x ) whose elements are segment

germs [x, y) = germx([x, y]) for y ∈ I , y 6= x, y ≥ x (resp. y ≤ x). We consider

their unrestricted structure, so the associated Weyl group is W v and the cham-

bers (resp. closed chambers) are the local chambers C = germx(x+ Cv) (resp.

local closed chambers C = germx(x + Cv)), where Cv is a vectorial chamber;

cf. [GR08, 4.5] or [Rou11, §5]. To A is associated a twin system of apartments

Ax = (A−x ,A+
x ).

We choose in A−x a negative (local) chamber C−x and denote by C+
x its

opposite in A+
x . We consider the system of positive roots Φ+ associated to C+

x

(i.e., Φ+ = wΦ+
f if Φ+

f is the system Φ+ defined in 1.1 and C+
x = germx(x +

wCvf )). We denote by (αi)i∈I the corresponding basis of Φ and by (ri)i∈I the

corresponding generators of W v.

Fix a reduced decomposition of an element w ∈ W v, w = ri1 · · · rir , and

let i = (i1, . . . , ir) be the type of the decomposition. Now we consider galleries

of (local) chambers c = (C−x , C1, . . . , Cr) in the apartment A−x starting at C−x
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and of type i. The set of all these galleries is in bijection with the set Γ(i) =

{1, ri1} × · · · × {1, rir} via the map (c1, . . . , cr) 7→ (C−x , c1C
−
x , . . . , c1 · · · crC−x ).

Let βj = −c1 · · · cj(αij ); then βj is the root corresponding to the common limit

wall Mj = Mβj of Cj−1 = c1 · · · cj−1C
−
x and Cj = c1 · · · cjC−x and satisfying

βj(Cj) ≥ βj(x). (Actually, Mj is a wall ⇐⇒ βj ∈ Φx.) In the following, we

shall identify a sequence (c1, . . . , cr) and the corresponding gallery.

Definition 4.2. Let Q be a chamber in A+
x . A gallery c=(c1, . . . , cr)∈Γ(i)

is said to be centrifugally folded with respect to Q if cj = 1 implies βj ∈ Φx

and w−1
Q βj < 0, where wQ = w(C+

x ,Q) ∈ W v (i.e., Q = wQC
+
x ). We denote

this set of centrifugally folded galleries by Γ+
Q(i).

Proposition 4.3. A gallery c = (C−x , C1, . . . , Cr) ∈ Γ(i) belongs to Γ+
Q(i)

if, and only if, Cj = Cj−1 implies that Mj = Mβj is a wall and separates Q

from Cj = Cj−1.

Proof. We saw that Mj is a wall if and only if βj ∈ Φx. We have the

following equivalences:

Mj separates Q from Cj = Cj−1

⇐⇒ w−1
Q Mj separates C+

x from w−1
Q Cj = w−1

Q Cj−1

⇐⇒ w−1
Q βj is a negative root. �

The group Gx = Gx/GIx acts strongly transitively on I +
x and I −x . For

any root α ∈ Φx with α(x) = k ∈ Z, the group Uα = Uα,k/Uα,k+1 is a finite

subgroup of Gx of cardinality qx,α = qM(α,−α(x)) ∈ Q. We denote by uα the

elements of this group.

Next, let ρQ : Ix → Ax be the retraction centered at Q. To a gallery of

chambers c = (c1, . . . , cr) = (C−x , C1, . . . , Cr) in Γ(i), one can associate the set

of all galleries of type i starting at C−x in I −x that retract onto c. We denote

this set by CQ(c). We denote the set of minimal galleries in CQ(c) by CmQ (c).

Set

(1) gj =

cj if w−1
Q βj > 0 or βj 6∈ Φx,

ucj(αij )cj if w−1
Q βj < 0 and βj ∈ Φx.

Proposition 4.4. CQ(c) is the nonempty set of all galleries (C−x = C ′0,

C ′1, . . . , C
′
r) where C ′j = g1 · · · gjC−x for all j, with each gj chosen as in equa-

tion (1) above. For all j, the local chambers Q and C ′j are in the apartment

g1 · · · gjAx.

The set CmQ (c) is empty if, and only if, the gallery c is not centrifugally

folded with respect to Q. The gallery (C−x = C ′0, C
′
1, . . . , C

′
r) is minimal if, and

only if, cj 6= 1 for any j with w−1
Q βj > 0 or βj 6∈ Φx and ucj(αij ) 6= 1 for any j

with cj = 1 and w−1
Q βj < 0.
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Remark. For gj as in equation (1), we may write gj = ucj(αij )cj (with

ucj(αij ) = 1 if w−1
Q βj > 0 or βj 6∈ Φx). Then in the product g1 · · · gj we may

gather the ck on the right and, as c1 · · · ck(αik) = −βk, we may write g1 · · · gj =

u−β1 · · ·u−βj .c1 · · · cj . Hence C ′j := g1 · · · gjC−x = u−β1 · · ·u−βjCj . When

u−βk 6= 1, we have βk ∈ Φx and w−1
Q βk < 0; so it is clear that ρQ(C ′j) = Cj .

The gallery (C−x = C ′0, C
′
1, . . . , C

′
r) (of type i) is minimal if, and only if,

we may also write (uniquely)

C ′j = u−αi1 .uri1 (−αi2 ) · · ·uri1 ···rij−1
(−αij ).ri1 · · · rij (C−x )

= h1 · · ·hj .ri1 · · · rij (C−x )

with

hk = uri1 ···rik−1
(−αik ) ∈ U ri1 ···rik−1

(−αik )

(which fixes C−x ). In particular, C ′j ∈ h1 · · ·hjAx. But this formula gives no

way to know when ρQ(C ′j) = Cj . We know only that, when βk 6∈ Φx, i.e.,

ri1 · · · rik−1
(−αik) 6∈ Φx, we necessarily have hk = 1.

Proof. As the type i of (C−x = C ′0, C
′
1, . . . , C

′
r) is the type of a minimal

decomposition, this gallery is minimal if, and only if, two consecutive chambers

are different. So the last assertion is a consequence of the first ones. We prove

these properties for (C−x = C ′0, C
′
1, . . . , C

′
j) by induction on j. In the following

we just write Hj for the common limit hyperplane Hβj of Cj−1 and Cj of

type ij .

There are five possible relative positions of Q, C−x and C1 with respect to

H1, and we seek C ′1 with ρQ(C ′1) = C1 and C ′1 ⊃ C
−
x ∩H1.

(0) β1 = −c1αi1 6∈ Φx. Then H1 is not a wall, each C ′1 with C ′1 ⊃ C
−
x ∩H1

is equal to C−x or ri1C
−
x and C ′1 or C−x are contained in the same apartments.

So C ′1 = C1 = c1C
−
x ; C1 and Q are in g1Ax = Ax with g1 = c1. When C ′1 = C−x ,

we have c1 = 1 and c is not centrifugally folded.

We suppose now β1 ∈ Φx, so H1 is a wall.

(1) C−x is on the same side of H1 as Q and C1 is not. Then c1 = ri1 , β1 =

αi1 , w−1
Q β1 < 0, C ′1 = g1C

−
x = u−αi1 ri1C

−
x = u−αi1C1. But u−αi1 pointwise

stabilizes the half-space bounded by H1 containing C−x ; hence u−αi1 (Q) = Q

and C ′1 are in the apartment g1Ax.

(2) Q and C−x = C1 are separated by H1. Then c1 = 1, β1 = −αi1 ,

w−1
Q β1 < 0, C ′1 = g1C

−
x = uαi1C

−
x but uαi1 pointwise stabilizes the half-space

bounded by H1 not containing C−x ; hence Q and C ′1 are in the apartment g1Ax.

(3) C1 is on the same side of H1 as Q and C−x is not. Then c1 = ri1 ,

β1 = αi1 , w−1
Q β1 > 0 and C ′1 has to be C1, so g1 = c1 = ri1 , w−1

Q (αi1) > 0;

moreover, Q and C ′1 = ri1C
−
x = C1 are in the apartment g1Ax.
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(4) Q and C−x = C1 are on the same side of H1. Then c1 = 1 and

w−1
Q β1 > 0; the gallery c is not centrifugally folded. So ρQ(C ′1) = C1 implies

C ′1 = C−x = g1C
−
x with g1 = c1 = 1 as in (1). But the gallery (C−x =

C ′0, C
′
1, . . . , C

′
j) cannot be minimal.

By induction we assume now that the chambers Q and C ′j−1 =g1 · · · gj−1C
−
x

are in the apartment Aj−1 = g1 · · · gj−1Ax. Again, we have five possible relative

positions for Q, Cj−1 and Cj with respect to Hj . We seek C ′j with ρQ(C ′j) = Cj

and C ′j ⊃ C ′j−1 ∩ g1 · · · gj−1Hαij
.

(0) βj = −c1 · · · cjαij 6∈ Φx. Then Hj is not a wall, and each C ′j with

C ′j ⊃ C ′j−1∩g1 · · · gj−1Hαij
is equal to C ′j−1 = g1 · · · gj−1C

−
x or g1 · · · gj−1rijC

−
x ;

moreover, C ′j or C ′j−1 are contained in the same apartments. Therefore C ′j =

g1 · · · gj−1cjC
−
x and Q are in g1 · · · gjAx = g1 · · · gj−1Ax with gj = cj . When

C ′j = C ′j−1, we have cj = 1 and c is not centrifugally folded.

Now we suppose βj ∈ Φx, so Hj is a wall.

(1) Cj−1 is on the same side of Hj = c1 · · · cj−1Hαij
as Q and Cj is not.

Then cj = rij , βj = c1 · · · cj−1αij , w
−1
Q βj < 0. Moreover, Q and C ′j−1 are on

the same side of g1 · · · gj−1Hαij
in Aj−1, and

C ′j = g1 · · · gj−1u−αij rijC
−
x

= g1 · · · gj−1u−αij rij (g1 · · · gj−1)−1C ′j−1

= g1 · · · gj−1u−αij (g1 · · · gj−1)−1g1 · · · gj−1rij (g1 · · · gj−1)−1C ′j−1,

where g1 · · · gj−1rij (g1 · · · gj−1)−1C ′j−1 is the chamber adjacent to C ′j along

g1 · · · gj−1Hαij
in Aj−1. Moreover, g1 · · · gj−1u−αij (g1 · · · gj−1)−1 pointwise sta-

bilizes the half-space bounded by g1 · · · gj−1Hαij
containing C ′j−1 and Q. So

Q and C ′j are in the apartment g1 · · · gjAx.

(2) Cj−1 =Cj and Q are separated by Hj . Then cj =1, βj =−c1 · · · cj−1αij ,

w−1
Q βj < 0. Moreover, C ′j−1 and Q are separated by g1 · · · gj−1Hαij

in Aj−1,

and Q and the chamber

g1 · · · gj−1rij (g1 · · · gj−1)−1C ′j−1

are on the same side of this wall. For uαij 6= 1,

C ′j = g1 · · · gj−1uαijC
−
x = g1 · · · gj−1uαij (g1 · · · gj−1)−1C ′j−1

is a chamber adjacent (or equal) to C ′j−1 along

g1 · · · gj−1Hαij
= g1 · · · gj−1uαijHαij

in g1 · · · gjAx (with gj = uαij ).
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The root-subgroup g1 · · · gj−1Uαij (g1 · · · gj−1)−1 pointwise stabilizes the

half-space bounded by g1 · · · gj−1Hαij
and containing the chamber

g1 · · · gj−1rij (g1 · · · gj−1)−1C ′j−1.

So Q and C ′j are in the apartment g1 · · · gjAx.

(3) Cj is on the same side of Hj = c1 · · · cj−1Hαij
as Q and Cj−1 is not.

Then cj = rij , βj = c1 · · · cj−1αij , w
−1
Q βj > 0, and so C ′j = g1 · · · gj−1rijC

−
x .

Whence Q and C ′j are in the apartment g1 · · · gjAx.

(4) Cj−1 = Cj and Q are on the same side of Hj = c1 · · · cj−1Hαij
. Then

cj = 1, βj = −c1 · · · cj−1αij and w−1
Q βj > 0. The gallery c is not centrifugally

folded. So ρQ(C ′j) = Cj implies C ′j = C ′j−1 = g1 · · · gjC−x with gj = cj = 1 as

in (1). But the gallery (C−x = C ′0, C
′
1, . . . , C

′
j) cannot be minimal. �

Corollary 4.5. If c ∈ Γ+
Q(i), then the number of elements in CmQ (c) is

]CmQ (c) =

t(c)∏
k=1

qjk ×
r(c)∏
l=1

(qjl − 1),

where qj = qx,βj = qx,αij ∈ Q, t(c) = ]{j | cj = rij , βj ∈ Φx and w−1
Q βj < 0}

and r(c) = ]{j | cj = 1, βj ∈ Φx and w−1
Q βj < 0}.

Remark. In the case of Section 3, where all parameters are equal to q,

]CQ(c) is the number of points, over the field Fq, on a cell in a Bott-Samelson

variety (which is defined over Z). And CmQ (c) is a subset of that cell isomorphic

to Gt(c)
a ×Gr(c)

m .

4.6. Galleries and opposite segment germs. Suppose now x ∈ A ∩ I +.

Let ξ and η be two segment germs in A+
x . Let −η and −ξ opposite respectively

η and ξ in A−x . Let i be the type of a minimal gallery between C−x and C−ξ,

where C−ξ is the negative (local) chamber containing −ξ such that w(C−x , C−ξ)

is of minimal length. Let Q be a chamber of A+
x containing η. We suppose ξ

and η conjugated by W v
x .

Lemma. The following conditions are equivalent :

(i) there exists an opposite ζ to η in I −x such that ρAx,C−x (ζ) = −ξ;
(ii) there exists a gallery c ∈ Γ+

Q(i) ending in −η;

(iii) ξ ≤ W v
x
η (in the sense of 1.8, with Φ+ defined as in 4.1 using C−x ).

Moreover, the possible ζ are in one-to-one correspondence with the disjoint

union of the sets CmQ (c) for c in the set Γ+
Q(i,−η) of galleries in Γ+

Q(i) end-

ing in −η. More precisely, if m ∈ CQ(c) is associated to (h1, . . . , hr) as in

Remark 4.4, then ζ = h1 · · ·hr(−ξ).
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Proof. If ζ ∈ I −x opposites η and if ρAx,C−x (ζ) = −ξ, then any minimal

gallery m = (C−x ,M1, . . . ,Mr 3 ζ) retracts onto a minimal gallery between C−x
and C−ξ. So we can assume as well that m has type i = (i1, . . . , ir) and then ζ

determines m. Now, if we retract m from Q, we get a gallery c = ρAx,Q(m) in

A−x starting at C−x , ending in −η and centrifugally folded with respect to Q.

Reciprocally, let c = (C−x , C1, . . . , Cr) ∈ Γ+
Q(i), such that −η ∈ Cr. Ac-

cording to Proposition 4.4 and the remark that follows it, there exists a minimal

gallery m = (C−x , C
′
1, . . . , C

′
r) in the set CQ(c), and the chambers C ′j can be

described by C ′j = g1 · · · gjC−x = h1 · · ·hj .ri1 · · · rijC−x where each hk fixes C−x ,

hence ρAx,C−x restricts on C ′j to the action of (h1 · · ·hj)−1.

Let ζ ∈ C ′r opposite η in any apartment containing those two. The min-

imality of the gallery m = (C−x , C
′
1, . . . , C

′
r) ensures that ρAx,C−x (ζ) ∈ C−ξ;

hence ρAx,C−x (ζ) = −ξ as they are both opposite η up to conjugation by W v
x .

So we proved the equivalence (i)⇐⇒ (ii) and the last two assertions.

Now the equivalence (i)⇐⇒ (iii) is proved in [GR08, Prop. 6.1, Th. 6.3]:

in this reference we speak of Hecke paths with respect to −Cvf , but the essential

part is a local discussion in Ix (using only C−x and the twin building structure

of I ±x ) that gives this equivalence. �

4.7. Liftings of Hecke paths. Let π be a λ-path from z′ ∈ Y + to y ∈ Y +

entirely contained in the Tits cone T , hence in a finite union of closed sectors

wCvf with w ∈ W v. By [GR08, 5.2.1], for each w ∈ W v, there is only a finite

number of s ∈]0, 1] such that the reverse path π̄(t) = π(1 − t) leaves, in π(s),

a wall positively with respect to −wCvf ; i.e., this wall separates π−(s) from

−wCvf . Therefore, we are able to define ` ∈ N and 0 < t1 < t2 < · · · < t` ≤ 1

such that the zk = π(tk), k ∈ {1, . . . , `}, are the only points in the path where at

least one wall containing zk separates π−(tk) and the local chamber c− of 1.8(2).

For each k ∈ {1, . . . , `}, we choose for C−zk (as in 4.1) the germ in zk of

the sector of vertex zk containing c−. Let ik be a fixed reduced decomposition

of the element w−(tk) ∈W v, and let Qk be a fixed chamber in I +
zk

containing

ηk = π+(tk). We set −ξk = π−(tk). When π is a Hecke path (or a billiard path

as in [GR08]), ξk and ηk are conjugated by W v
zk

.

When π is a Hecke path with respect to c−, {z1, . . . , z`} includes all points

where the piecewise linear path π is folded and, in the other points, all galleries

in Γ+
Qk

(ik,−ηk) are unfolded.

Let Sc−(π, y) be the set of all segments [z, y] such that ρc−([z, y]) = π.

Theorem 4.8. Sc−(π, y) is nonempty if, and only if, π is a Hecke path

with respect to c−. Then, we have a bijection

Sc−(π, y) '
∏̀
k=1

∐
c∈Γ+

Qk
(ik,−ηk)

CmQk(c).
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In particular, the number of elements in this set is a polynomial in the numbers

q ∈ Q with coefficients in Z depending only on A.

Note. So the image by ρc− of a segment in I + is a Hecke path with

respect to c−.

Proof. The restriction of ρc− to Izk is clearly equal to ρAzk ,C
−
zk

; therefore

Lemma 4.6 tells us that π is a Hecke path with respect to c− if, and only if,

each Γ+
Qk

(ik,−ηk) is nonempty.

We set t0 = 0 and t`+1 = 1. We shall build a bijection from Sc−(π|[tn−1,1], y)

onto
∏`
k=n

∐
c∈Γ+

Qk
(ik,−ηk) C

m
Qk

(c) by decreasing induction on n ∈ {1, . . . , `+1}.
For n = ` + 1 and if t` 6= 1, no wall cutting π([t`, 1]) separates y = π(1) from

c−; so a segment s in I with s(1) = y and ρc− ◦ s = π has to coincide with π

on [t`, 1].

Suppose now that s ∈ Sc−(π|[tn,1], y) is determined by a unique element in

∏̀
k=n+1

∐
c∈Γ+

Qk
(ik,−ηk)

CmQk(c)

in the following way: For an element (mn+1,mn+2, . . . ,m`) in this last set,

each mk = (C−zk , C
k
1 , . . . , C

k
rk

) is the minimal gallery given by a sequence of

elements (hk1, . . . , h
k
rk

) ∈ (Gzk)rk , as in the remark after Proposition 4.4 and, for

t ∈ [tn, tn+1], we have s(t) = (h`1 · · ·h`r`) · · · (h
n+1
1 · · ·hn+1

rn+1
)π(t) where, actually,

each hkj is a chosen element of U−ri1 ···rij−1
(αij ) whose class in U−ri1 ···rij−1

(αij )

is the hkj defined above; in particular, each hkj fixes c−.

We set g = (h`1 · · ·h`r`) · · · (h
n+1
1 · · ·hn+1

rn+1
) ∈ Gc− . Then

g−1s(tn) = π(tn) = zn.

If s ∈ Sc−(π|[tn−1,1], y) and s|[tn,1] is as above, then g−1s−(tn) is a segment

germ in I −zn opposite g−1s+(tn) = π+(tn) = ηn and retracting to π−(tn) by ρc− .

By Lemma 4.6 and the above remark, this segment germ determines uniquely

a minimal gallery mn ∈ CmQn(c) with c ∈ Γ+
Qn

(in,−ηn).

Conversely, such a minimal gallery mn determines a segment germ ζ∈I −zn ,

opposite π+(tn) = ηn such that ρAzn ,C
−
zn

(ζ) = π−(tn). By Lemma 4.6, ζ =

(hn1 · · ·hnrn)π−(tn) for some well-defined (hn1 , . . . , h
n
rn) ∈ (Gzn)rn . As above

we replace each gnj by a chosen element of G(zn∪c−) whose class in Gzn is

this gnj . As no wall cutting [zn−1, zn] separates zn = π(tn) from c−, any segment

retracting by ρc− onto [zn−1, zn] and with [zn, x) = π−(tn) (resp. = ζ, = gζ) is

equal to [zn−1, zn] (resp. (hn1 · · ·hnrn)[zn−1, zn], g(hn1 · · ·hnrn)[zn−1, zn]). We set

s(t) = (h`1 · · ·h`r`) · · · (h
n+1
1 · · ·hn+1

rn+1
)(hn1 · · ·hnrn)π(t) for t ∈ [tn−1, tn].
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With this inductive definition, s is a λ-path, s(1) = y, ρc− ◦ s = π and

s|[tk−1,tk] is a segment for all k ∈ {1, . . . , ` + 1}. Moreover, for k ∈ {1, . . . , `},
the segment germs [s(tk), s(tk+1)) and [s(tk), s(tk−1)) are opposite. By the

following lemma this proves that s itself is a segment. �

Lemma 4.9. Let x, y, z be three points in an ordered hovel I , with x ≤
y ≤ z, and suppose the segment germs [y, z) , [y, x) opposite in the twin build-

ings Iy . Then [x, y] ∪ [y, z] is the segment [x, z].

Proof. For any u ∈ [y, z], we have x ≤ y ≤ u ≤ z. Hence x and [u, y) or

[u, z) are in a same apartment [Rou11, 5.1]. As [y, z] is compact we deduce

that there are points u0 = y, u1, . . . , u` = z such that x and [ui−1, ui] are in a

same apartment Ai for 1 ≤ i ≤ `. Now A1 contains x and [y, u1], hence also

[x, y] (axiom (MAO) of 1.5). But [y, x) and [y, u1) = [y, z) are opposite, so

[x, y] ∪ [y, u1] = [x, u1]. The lemma follows by induction. �

Remark 4.10. Analogue results can be proven for the retraction ρ−∞ in-

stead of ρc− : for all x, we choose C−x = germx(x − Cvf ). For a λ-path π in

A from z′ to y, [GR08, 5.2.1] tells that we have a finite number of points

zk = π(tk) where at least a wall is left positively by the path π̄(t) = π(1− t).
As above, we define ik, Qk, ηk and ξk. Now S−∞(π, y) is the set of all segments

[z, y] such that ρ−∞([z, y]) = π.

In [GR08, Ths. 6.2 and 6.3], we have proven that S−∞(π, y) is nonempty if,

and only if, π is a Hecke path with respect to −Cvf . Moreover, we have shown

that for I associated to a split Kac-Moody group over C((t)), S−∞(π, y) is

isomorphic to a quasi-affine toric complex variety. The arguments above prove

that with our choice for I , S−∞(π, y) is finite, with the following precision

(which generalizes to the Kac-Moody case some formulae of [GL12]):

Proposition 4.11. Let π be a Hecke path with respect to −Cvf from z′

to y. Then we have a bijection

S−∞(π, y) '
∏̀
k=1

∐
c∈Γ+

Qk
(ik,−ηk)

CmQk(c)

In particular, the number of elements in this set is a polynomial in the numbers

q ∈ Q with coefficients in Z depending only on A.

Theorem 4.12. Let λ, µ, ν ∈ Y ++, c− be the negative fundamental alcove,

and suppose (α∨i )i∈I is R+-free. Then

(a) The number of Hecke paths of shape µ with respect to c− starting in z′ = wλ

(for some w ∈W v fixing 0) and ending in y = ν is finite.
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(b) The structure constant mλ,µ(ν), i.e., the number of triangles [0, z, ν] in I
with dv(0, z) = λ and dv(z, ν) = µ, is equal to

(2) mλ,µ(ν) =
∑

w∈W v/(W v)λ

∑
π

`π∏
k=1

∑
c∈Γ+

Qk
(ik,−ηk)

]CmQk(c),

where π runs over the set of Hecke paths of shape µ with respect to c−
from wλ to ν and `π , Γ+

Qk
(ik,−ηk) and CmQk(c) are defined as above for

each such π.

(c) In particular, the structure constants of the Hecke algebra HR are polyno-

mials in the numbers q∈Q with coefficients in Z depending only on A.

Proof. We saw in 2.3.1 that mλ,µ(ν) is the number of z ∈ I +
0 such that

dv(0, z) = λ and dv(z, ν) = µ. Such a z determines uniquely a Hecke path

π = ρc−([z, ν]) of shape µ with respect to c− from z′ = ρc−(z) to ν. But

dv(0, z) = λ and 0 ∈ c−, so dv(0, z′) = λ; i.e., z′ = wλ with w ∈ W v. So the

formula (2) follows from Theorem 4.8.

We know already that mλ,µ(ν) is finite (2.5) and Sc−(π, y) 6= ∅ (Theo-

rem 4.8); hence (a) is clear. Now (c) follows from Corollary 4.5 �

5. Satake isomorphism

In this section, we prove the Satake isomorphism. From now on, we assume

that the α∨i ’s are free.

We denote by U− the pointwise stabilizer in G of the sector-germ S−∞;

i.e., any u ∈ U− has to pointwise stabilize a sector x−Cvf ⊂ A. By definition,

for z ∈ I , ρ−∞(z) is the only point of the orbit U−.z in A.

5.1. The module of functions on the type 0 vertices in A. Let A0 = ν(N).0

= Y.0 be the set of vertices of type 0 in A. Note that A0 can be identified with

the set of horocycles of U− in I0, i.e., with I0/U
−, via the retraction ρ−∞.

First we consider F̂ = F̂R = F (A0, R), the set of functions on A0 with values

in the ring R. Equivalently, F̂ can be identified with the set of U−-invariant

functions on I0.

For µ ∈ Y , we define χµ ∈ F̂ as the characteristic function of U−.µ in

I0 (or {µ} in Y ). Then, any χ ∈ F̂R may be written χ =
∑
µ∈Y aµχµ with

aµ ∈ R. We set supp(χ) = {µ | aµ 6= 0}. Now, let

F = FR = {χ ∈ F̂ | supp(χ) ⊂ ∪nj=1(µj −Q∨+) for some µj ∈ A0}

be the set of functions on I0 with almost finite support.
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We define also the following completion of the group algebra R[Y ]:

R[[Y ]] =
{
f =

∑
y∈Y

aye
y | supp(f) = {y ∈ Y | ay 6= 0}

⊂ ∪nj=1(µj −Q∨+) for some µj ∈ A0

}
;

it is clearly a commutative algebra (with ey.ez = ey+z). Actually, it is the

Looijenga’s coweight algebra; see Section 4.1 in [Loo80].

The formula (f.χ)(µ) =
∑
y∈Y ayχ(µ−y), for f =

∑
aye

y ∈ R[[Y ]], χ ∈ F
and µ ∈ Y , defines an element f.χ ∈ F ; in particular, ey.χµ = χµ+y. Clearly,

the map R[[Y ]]×F → F , (f, χ) 7→ f.χ makes F into a free R[[Y ]]-module of

rank 1, with any χµ as basis element.

Definition-Proposition 5.2. The map

F ×H → F
(χ, ϕ) 7→ χ ∗ ϕ

where, for x ∈ I0, (χ ∗ ϕ)(x) =
∑
y∈I0

χ(y)ϕI (y, x), defines a right action

of H on F that commutes with the actions of Z = {n ∈ N | ν(n) ∈ Y } and

(more generally) R[[Y ]].

Proof. It is relatively clear that χ∗ϕ is a function on I0/U
− and that the

map indeed defines an action. Let us check that this action commutes with

the one of Z. Let t ∈ Z and x ∈ I0. Then

(χ ∗ ϕ)(tx) =
∑
y∈I0

χ(y)ϕI (y, tx)

=
∑
y′∈I0

χ(ty′)ϕI (ty′, tx) (y = ty′)

=
∑
y′∈I0

χ(ty′)ϕI (y′, x)

= ((χ ◦ t) ∗ ϕ)(x).

So, (χ ◦ t) ∗ ϕ = (χ ∗ ϕ) ◦ t. For ν(t) = µ ∈ Y and χ ∈ F , clearly we have

χ ◦ t = e−µ.χ. As a formal consequence, the right action of H commutes with

the left action of R[[Y ]].

The difficult point is to show that the support condition is satisfied. For

any λ ∈ Y ++ and any ν ∈ Y ,

(χµ ∗ cλ)(ν) =
∑
y∈I0

χµ(y)cIλ (y, ν)

= ]{y ∈ I0 | ρ−∞(y) = µ and dv(y, ν) = λ}.

The latest is also the cardinality of the set of all segments [y, ν] in I (y ≤ ν) of

“length” λ such that y ∈ U− · µ. In addition, since the action of H commutes

with the one of Z, we set nλ(ν − µ) = (χµ ∗ cλ)(ν). Then nλ(ν − µ) =
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∑
π ]S−∞(π, ν) where the sum runs over the set of Hecke λ-paths with respect

to −Cvf from µ to ν. (See 4.10 for the definition of S−∞(π, ν).)

Now, Lemma 2.4(b) shows that nλ(ν − µ) 6= 0 implies ν − µ ≤Q+ λ.

Moreover, if ν = λ+ µ, then nλ(λ) = 1. Therefore, we get

(3) χµ ∗ cλ =
∑

ν≤Q∨λ+µ

nλ(ν − µ)χν = χλ+µ +
∑

ν<Q∨λ+µ

nλ(ν − µ)χν .

This formula shows that, for any ϕ ∈ H with supp(ϕ) ⊂ ∪ni=1(λi − Q∨+) and

any χ ∈ F with supp(χ) ⊂ ∪nj=1(µj −Q∨+), the support of χ ∗ ϕ is contained

in ∪i,j(λi + µj − Q∨+). More precisely, for any ν ∈ ∪i,j(λi + µj − Q∨+), there

exists a finite number of λ ∈ supp(ϕ) and µ ∈ supp(χ) such that ν ≤Q+ λ+µ.

Hence, χ ∗ ϕ is well defined. �

5.3. The Satake isomorphism.

5.3.1. The morphism S∗. As F is a free R[[Y ]]-module of rank 1, we have

EndR[[Y ]](F ) = R[[Y ]]. So the right action of H on the R[[Y ]]-module F gives

an algebra homomorphism S∗ : H → R[[Y ]] such that χ ∗ ϕ = S∗(ϕ).χ for any

ϕ ∈ H and any χ ∈ F .

As eν .χµ = χµ+ν , equation (3) gives

S∗(cλ) =
∑

ν≤Q∨λ
nλ(ν)eν = eλ +

∑
ν<Q∨λ

nλ(ν)eν .

We shall modify S∗ by some character to get the Satake isomorphism.

5.3.2. The module δ. We define the map δ : Q∨ → R∗+ by
∑
i∈I aiα

∨
i 7→∏

i∈I (qiq
′
i)
ai , where qi, q

′
i ∈ Q ⊂ N are as in the beginning of Section 4. We

extend this homomorphism and its square root to Y (as R∗+ is uniquely di-

visible). So, we get homomorphisms δ, δ1/2 : Y → R∗+ and δ = δ ◦ ν, δ1/2 =

δ1/2 ◦ ν : Z → R∗+.

We made a choice for δ. But we shall see in Theorem 5.4 that the expected

properties depend only on δ
Q∨

.

In the classical case, where G is a split semi-simple group and I its

Bruhat-Tits building, we have qi = q′i = q for any i ∈ I. Hence, if we set

µ =
∑
i∈I aiα

∨
i , then δ1/2(µ) = q

∑
ai = qρ(µ), where ρ is the half-sum of

positive roots.

5.3.3. The Satake isomorphism. From now on, we suppose that the alge-

bra R contains the image of δ1/2 in R∗+. We define

S(cλ) =
∑

µ≤Q∨λ
δ1/2(µ)nλ(µ)eµ = δ1/2(λ)eλ +

∑
µ<Q∨λ

δ1/2(µ)nλ(µ)eµ

and extend it to formal combinations of the cλ with almost finite support.
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Thus we get an algebra homomorphism S : H → R[[Y ]] called the Satake

isomorphism, as it is one-to-one. For ϕ =
∑
λ aλcλ ∈ H, we have

S(ϕ) =
∑
λ

aλ
Ä
δ1/2(λ)eλ +

∑
µ<Q∨λ

δ1/2(µ)nλ(µ)eµ
ä
.

If ϕ 6= 0 and λ0 is a maximum element in supp(ϕ), then λ0 is also a maximum

element in supp(S(ϕ)) and S(ϕ) 6= 0.

Remarks. (a) So, now we know that H is commutative.

(b) In the classical case where G is a split semi-simple group, S(cλ) is

defined as an integral over a maximal unipotent subgroup; here we choose

U−. The Haar measure du on U− is chosen to give volume 1 to K ∩ U− and,

for an element t in the torus Z, the formula for changing variables is given

by d(tut−1) = δ(t)−1du. So the classical formula for the Satake isomorphism

given, e.g., in [Car79, (19) p 146] when ν(t) = µ, is

S(cλ)(t) = δ(t)1/2
∫
U−

cGλ (ut)du = δ(t)1/2
∫
U−

cIλ (0, ut.0)du

= δ(t)1/2
∫
U−

cIλ (u−1.0, t.0)du = δ(t)1/2
∑

y∈U−.0
cIλ (y, µ)

= δ(t)1/2
∑
y∈I0

χ0(y).cIλ (y, µ) = δ(t)1/2(χ0 ∗ cλ)(µ).

This is the same formula as ours.

5.3.4. W v-invariance. There is an action of W v on Y , hence on R[Y ] by

setting w.eλ = ewλ for w ∈ W v and λ ∈ Y . This action does not extend to

R[[Y ]], but we define

R[[Y ]]W
v

= {f =
∑

aλe
λ ∈ R[[Y ]] | aλ = awλ∀λ ∈ Y ∀w ∈W v}.

This is a subalgebra of R[[Y ]] and actually the image of the Satake isomorphism

(see Theorem 5.4).

Remark. Let C∨ = {π ∈ V ∗ | α∨i (π) ≥ 0 for all i ∈ I} and T ∨ =

∪w∈W v wC∨ be the fundamental dual chamber and the dual Tits cone in V ∗.

By definition, for f ∈ R[[Y ]] and π ∈ C∨, π(supp(f)) is bounded above. Hence,

for f ∈ R[[Y ]]W
v
, π(supp(f)) is also bounded above for any π ∈ T ∨. We know

that the dual cone of T ∨ is the closed convex hull Γ of the set ∆∨im+ ∪ {0},
where ∆∨im+ ⊂ Q∨+ is the set of positive imaginary roots in the dual system of

roots ∆∨ ([Kac90, 5.8]). So, the only directions along which points in supp(f)

(for f ∈ R[[Y ]]W
v
) may go to infinity are the directions in −Γ.

Theorem 5.4. The Hecke algebra HR is isomorphic via S to the commu-

tative algebra R[[Y ]]W
v

of Weyl invariant elements in R[[Y ]].
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Proof. As S(cλ) =
∑
µ≤Q∨λ δ

1/2(µ)nλ(µ)eµ, we only have to prove that

for w ∈W v, δ1/2(µ)nλ(µ) = δ1/2(wµ)nλ(wµ) or nλ(wµ) = nλ(µ)δ1/2(µ−wµ).

It is sufficient to prove this for w = ri a fundamental reflection, hence to

prove that nλ(riµ) = nλ(µ)δ1/2(µ − riµ) = nλ(µ)δ1/2(αi(µ)α∨i ). By the given

definition of δ, the wanted formula is

(4) nλ(riµ) = nλ(µ)
(»

qiq′i

)αi(µ)
.

The proof of this formula is postponed to the following subsections, starting

with 5.5. One can already notice that αi(µ) is an integer. We know that any

t ∈ Z with ν(t) = µ exchanges the walls M(αi, 0) and M(αi, αi(µ)), hence, if

αi(µ) is odd, we get that qi = q′i. So, in any case
Ä»

qiq′i
ä|αi(µ)|

is an integer.

Once formula (4) is proved we know that S(H) ⊂ R[[Y ]]W
v
. For f =∑

aµe
µ ∈ R[[Y ]]W

v
with supp(f) ⊂ ∪rj=1 (λj −Q∨+), we shall build a sequence

ϕn in H such that supp(f −S(ϕn)) ⊂ ∪rj=1 (λj−Q∨+n) and supp(ϕn+1−ϕn) ⊂
Y ++ ∩ (∪rj=1 (λj −Q∨+n)), where Q∨+n = {∑i∈I niα

∨
i ∈ Q∨+ |

∑
ni ≥ n}. Then,

the limit ϕ of this sequence exists in H and S(ϕ) = f . So, S is onto.

We build the sequence by induction. We set ϕ0 = 0. If ϕ0, . . . , ϕn are

given as above, we set {µ1, . . . , µs} = supp(f − S(ϕn)) \ ∪rj=1 (λj −Q∨+(n+1)).

For any w ∈ W v, wµk ∈ supp(f − S(ϕn)) ⊂ ∪rj=1 (λj − Q∨+n), so wµk cannot

be strictly greater than µk for ≤Q∨ ; this proves that µk ∈ Y ++. So we define

ϕn+1 = ϕn −
∑s
k=1 aµk(f − S(ϕn))δ(µk)

−1/2cµk . As S(cλ) = δ1/2(λ)eλ +∑
µ<Q∨λ

δ1/2(µ)nλ(µ)eµ, this ϕn+1 is suitable. �

Remark. Suppose G is a split Kac-Moody group as in Section 3. Consider

the complex Kac-Moody algebra g∨ associated with G∨, the Langlands dual

of G. Let h∨ = C ⊗Z Y be the Cartan subalgebra of g∨. Let Rep(g∨) be the

category of g∨-modules V such that V is h∨-diagonalizable, the weight spaces

Vλ are finite-dimensional and the set P(V ) of weights of V satisfies P(V ) ⊂
∪rj=1 (λj−Q∨+) for some λj . One can check that Rep(g∨) is stable by tensoring,

and hence we can consider its Grothendieck ring K(g∨). Now, the map [V ] 7→∑
λ(dimVλ)eλ is an isomorphism from K(g∨) onto C[[Y ]]W

v
. Therefore, by

composing it with S, we get an isomorphism between HC and K(g∨).

5.5. Extended tree associated to (A, αi). We consider the vectorial panel

−F v({i}) in −Cvf and its support the vectorial wall Ker(αi). Their respective

directions are a panel F∞ in a wall M∞, in the twin buildings I ±∞ at infinity

of I [Rou11, 3.3, 3.4, 3.7].

The germs of the sector-panels in I of direction F∞ are the points of an

(essential) affine building I (F∞), which is of rank 1, i.e., a tree [Rou11, 4.6].

The union I (M∞) of the apartments in I containing a wall of direc-

tion M∞ is an inessential affine building whose essential quotient is I (F∞)
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[Rou11, 4.9]. More precisely, I (M∞) may be identified with the product of

the tree I (F∞) and an affine space quotient of A.

The canonical apartment of I (M∞) is A endowed with a smaller set of

walls: uniquely the walls of direction Ker(αi). As we chose I semi-discrete

(1.2), this is a locally finite set of hyperplanes; hence I (M∞) is discrete and

I (F∞) a discrete tree (not an R-tree). By [Rou11, 2.9] the valencies of these

walls are the same in I (M∞) and in I , i.e., 1 + qi and 1 + q′i; hence I (F∞)

is a semi-homogeneous tree of valencies 1 + qi and 1 + q′i. By definition, 0 ∈ A
is in a wall of valence 1 + qi.

We asked that the stabilizer N of A in G be positive and type preserving

(1.5), i.e., that it act on V =
−→
A via W v. So, the stabilizer in W v of M∞ is

{1, ri}, and M∞ determines in V a supplementary vector subspace of dimension

one: M⊥∞ = Ker(1 + ri). The affine space A decomposes as the product of the

affine space E = A/M⊥∞ with associated vector space Ker(αi) and an affine

line (= A/Ker(αi)). This decomposition is canonical, i.e., invariant by the

stabilizer N(M∞) of M∞ in N . As a consequence we get the decomposition

I (M∞) = E×I (F∞) that is canonical, i.e., invariant by the stabilizer G(M∞)

of M∞ in G. Moreover, G(M∞) acts on E by translations only.

Remark. Suppose G is an almost split Kac-Moody group over a local

field K and I its associated hovel as in [Rou12]. Then the stabilizer G(F∞)

of F∞ in G is a parabolic subgroup, endowed with a Levi decomposition

G(F∞) = G(M∞)nU(F∞) (with U(F∞) ⊂ U−) and I (M∞) (resp. I (F∞)) is

the extended (resp. essential) Bruhat-Tits building associated to the reductive

group of rank 1 G(M∞), embedded in I [Rou12, 6.12.2]. Any orbit of U(F∞)

in I meets I (M∞) in one and only one point.

The tree I (F∞) is a piece of the polyhedral “compactification” of I (a

true compactification when G is reductive). With the notation of [Rou12],

I (M∞) (resp. I (F∞)) is the façade I (G,K,A)F∞ (resp. I (G,K,Ae)F∞).

5.6. Parabolic retraction. Let x be a point in I . There is a unique sector-

panel x + F∞ of vertex x and direction F∞ [Rou11, 4.7.1]. The germ of this

sector-panel is a point in I (F∞), the projection prF∞(x) of x onto I (F∞); cf.

[Cha10], [Cha] or [Rou12, 4.3.5] in the Kac-Moody case.

Let Ax be an apartment in I containing x and F∞; hence x + F∞ and

germ∞(x+F∞). But this germ is in an apartment Bx of I (M∞) (axiom (MA3)

applied to germ∞(x + F∞) and a sector of direction Cvf ) and there exists an

isomorphism ψx of Ax onto Bx fixing this germ (axiom (MA2)). One writes

ρ(x) = ψx(x) ∈ I (M∞). We have thus defined the retraction ρ = ρF∞,M∞
of I onto I (M∞) with center F∞. We shall now verify that ρ(x) does not

depend on the choices made.



SPHERICAL HECKE ALGEBRAS FOR KAC-MOODY GROUPS 1083

By definition, ρ(x) is in the hyperplane Hx of Bx of direction M∞ and

containing germ∞(x + F∞); this Hx does not depend on the choice of Bx.

Moreover, for two choices ψx : Ax → Bx and ψ′x : A′x → Bx, ψ′x ◦ ψ−1
x is the

identity on germ∞(x + F∞) and hence on Hx. It is now clear that ψx(x) =

ψ′x(x). Actually ρ(x) may also be defined in the following simple way: there

exist y, z ∈ (x+ F∞) ∩Bx such that y is the middle of [x, z] in Ax. Then ρ(x)

is the point of Hx ⊂ Bx such that y is the middle of [ρ(x), z] in Bx.

Remark. It is possible to prove that the image by ρ of a preordered seg-

ment is a polygonal line and, in some generalized sense, a Hecke path.

5.7. Factorization of ρ−∞. The panel F∞ is in the closure of the chamber

C−∞ of I −∞ associated to−Cvf . So this chamber or the associated sector-germ

S−∞ determines an end of the tree I (F∞) [Rou11, 4.6]; i.e., a sector-germ S′

in I (M∞): S′ is one of the two sector-germs in A (considered as an apartment

of I (M∞) with its small set of walls), and each element in S′ contains a half-

apartment of equation αi(y) ≤ k with k ∈ Z. We denote by ρ′−∞ the retraction

of I (M∞) onto A with center S′.

Lemma. The retraction ρ−∞ factorizes through ρ: ρ−∞ = ρ′−∞ ◦ ρ.

Proof. For x ∈ I , one chooses an apartment Ax containing x and C−∞,

and hence also containing the sector x+C−∞, its sector-germ S−∞ and its panel

x+F∞. One chooses an apartment Bx of I (M∞) containing germ∞(x+F∞)

and S−∞. Hence, Ax and Bx contain both germ∞(x + F∞) and S−∞; by

axiom (MA4) there exists an isomorphism ψx of Ax onto Bx fixing these two

germs. By the definition of the parabolic retraction, in 5.6, ρ(x) = ψx(x).

Now the apartments Ax and Bx of I (M∞) contain both S−∞ and hence

S′. So there is an isomorphism θ : Bx → A fixing S′ and hence S−∞. As

ρ(x) ∈ Bx, one has ρ′−∞ ◦ ρ(x) = θ(ρ(x)) = θ ◦ ψx(x), and this is ρ−∞(x) as

θ ◦ ψx : Ax → A is an isomorphism fixing S−∞. �

5.8. Counting. We want to prove equation (4): nλ(riµ)=nλ(µ)
Ä»

qiq′i
äαi(µ)

for λ ∈ Y ++ and µ ∈ Y , where nλ(µ) is the number of points y ∈ I0 such

that ρ−∞(y) = −µ and dv(y, 0) = λ; cf. 5.2. For z ∈ I (M∞), one writes

pλ(z) ∈ Z≥0 ∪ {∞} for the number of points y ∈ I0 such that ρ(y) = z and

dv(y, 0) = λ. By Lemma 5.7, nλ(µ) is the sum of pλ(z) for z ∈ I (M∞) ∩I0

such that ρ′−∞(z) = −µ.

LetM0 = 0+M∞ = Ker(αi) be the wall in A of directionM∞ containing 0.

Its pointwise stabilizer G(M0) (⊂ G(M∞)) acts transitively on the apartments

of I or I (M∞) containing it (by axiom (MA4), as M0 is the enclosure of

two sector-panel germs). Moreover, G(M∞) fixes F∞; hence ρ is G(M∞)-

equivariant. As a consequence, the weight function pλ is constant on the orbits

of G(M0) in I (M∞) ∩I0. Hence nλ(µ) =
∑

Ω pλ(Ω)nΩ(−µ), where the sum
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runs over the orbits Ω of G(M0) in I (M∞) ∩I0 and nΩ(ν) is the number of

points z in the orbit Ω such that ρ′−∞(z) = ν.

To prove formula (4), it is sufficient to prove that for any orbit Ω as above

and any ν ∈ Y ,

nΩ(riν) = nΩ(ν)
(»

qiq′i

)−αi(ν)
.

In 5.5 we saw that G(M∞) leaves the decomposition I (M∞)=I (F∞)×E
invariant and acts on E by translations. But G(M0) fixes M0 3 0, so it acts

trivially on E. As G(M0) is transitive on the apartments containing M0, an

orbit Ω is a set Sr × {e}, where Sr is the sphere of radius r ∈ Z≥0 and center

0 in the tree I (F∞). The apartment A (with its small set of walls) is the

product (R,Z)× E, where αi is the projection of A onto the one-dimensional

apartment R with vertex set Z.

So, the above formula and hence formula (4) and Theorem 5.4 are conse-

quences of the following proposition. The fact that qi = q′i when m = αi(ν) is

odd was explained in the proof of 5.4.

5.9. The tree case. Let T be a (discrete) semi-homogeneous tree. Let

A ' R be an apartment in T whose vertices are identified with Z. The valency

of the vertex s ∈ Z is 1 + q (resp. 1 + q′) if s is even (resp. odd). Let −∞ be

the end of A corresponding to integers converging towards −∞. Let ρ′ be the

retraction of T onto A with center −∞. For m ∈ Z ⊂ A and r ∈ Z≥0, we write

nr(m) the number of vertices in the sphere Sr of center 0 and radius r in T
such that ρ′(z) = m.

If m is odd, we ask that q = q′.

Proposition. One has nr(m) = nr(−m)(
√
qq′)m.

Remark. This formula is equivalent to the W v(T)-invariance of the image

of the Satake isomorphism for the Bruhat-Tits tree T. As this invariance is

known, the following proof is not necessary; we give it for the convenience of

the reader.

For a Bruhat-Tits tree I = T, there are two choices for I0 (and Y ): the

set of vertices at even distance from 0 or the full set of vertices. In this last

case, we have to allow m to be odd, and we see below that the hypothesis q = q′

is necessary to get the formula. So, even for classical Bruhat-Tits buildings,

to get the good image for the Satake isomorphism, I0 cannot be any G-stable

set of special vertices. (We chose I0 to be a G-orbit.)

Proof. For z ∈ Sr, let sz ∈ Z be the vertex of A such that [0, sz] = [0, z]∩A.

Then ρ′(z) = sz+(r−|sz|) ∈ Z. We can calculate the number nr(m) of vertices

z ∈ Sr such that ρ′(z) = m:

First case: sz ≥ 0 ⇐⇒ ρ′(z) = r. So nr(r) = qq′qq′ · · · (r factors).
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Second case: −r ≤ sz < 0 ⇐⇒ ρ′(z) < r and then ρ′(z) = r + 2sz, i.e.,

sz = (ρ′(z)− r)/2. The number nr(m) is then

1 if m = sz = −r,
(q − 1)q′qq′ · · · (r + sz = (r +m)/2 factors) if sz ∈]− r, 0[ is even,

(q′ − 1)qq′q · · · (r + sz = (r +m)/2 factors) if sz ∈]− r, 0[ is odd.

It is now easy to compare nr(m) and nr(−m). We get the wanted formula,

using that q = q′ when m is odd. �
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Université Jean Monnet, Saint-Etienne, F-42023, France

E-mail : Stephane.Gaussent@univ-st-etienne.fr
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