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On self-similar sets with overlaps
and inverse theorems for entropy

By Michael Hochman

Abstract

We study the dimension of self-similar sets and measures on the line.

We show that if the dimension is less than the generic bound of min{1, s},
where s is the similarity dimension, then there are superexponentially close

cylinders at all small enough scales. This is a step towards the conjecture

that such a dimension drop implies exact overlaps and confirms it when the

generating similarities have algebraic coefficients. As applications we prove

Furstenberg’s conjecture on projections of the one-dimensional Sierpinski

gasket and achieve some progress on the Bernoulli convolutions problem

and, more generally, on problems about parametric families of self-similar

measures. The key tool is an inverse theorem on the structure of pairs of

probability measures whose mean entropy at scale 2−n has only a small

amount of growth under convolution.

1. Introduction

The simplest examples of fractal sets and measures are self-similar sets and

measures on the line. These are objects that, like the classical middle-third

Cantor set, are made up of finitely many scaled copies of themselves. When

these scaled copies are sufficiently separated from each other the small-scale

structure is relatively easy to understand and, in particular, there is a closed

formula for the dimension. If one does not assume this separation, however,

the picture becomes significantly more complicated, and it is a longstanding

open problem to compute the dimension. This problem has spawned a number

of related conjectures, the most general of which is that, unless some of the

small-scale copies exactly coincide, the dimension should be equal to the com-

binatorial upper bound; that is, the dimension one would get if the small-scale

copies did not intersect at all. Special cases of this conjecture have received

wide attention; e.g., Furstenberg’s projection problem and the Bernoulli con-

volutions problem. The purpose of this paper is to shed some new light on

these matters.
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1.1. Self-similar sets and measures and their dimension. In this paper an

iterated function system (IFS) will mean a finite family Φ = {ϕi}i∈Λ of linear

contractions of R, written ϕi(x) = rix + ai with |ri| < 1 and ai ∈ R. To

avoid trivialities we assume throughout that there are at least two distinct

contractions. A self-similar set is the attractor of such a system, i.e., the

unique compact set ∅ 6= X ⊆ R satisfying

(1) X =
⋃
i∈Λ

ϕiX.

The self-similar measure associated to Φ and a probability vector (pi)i∈Λ is the

unique Borel probability measure µ on Rd satisfying

(2) µ =
∑
i∈Λ

pi · ϕiµ.

Here ϕµ = µ ◦ ϕ−1 denotes the push-forward of µ by ϕ.

When the images ϕiX are disjoint or satisfy various weaker separation

assumptions, the small-scale structure of self-similar sets and measures is quite

well understood. In particular, the Hausdorff dimension dimX of X is equal

to the similarity dimension1 s-dimX, i.e., the unique solution s ≥ 0 of the

equation
∑ |ri|s = 1. With the dimension of a measure θ defined by2

dim θ = inf{dimE : θ(E) > 0},

and assuming again sufficient separation of the images ϕiX, the dimension

dimµ of a self-similar measure µ is equal to the similarity dimension of µ,

defined by

s-dimµ =

∑
pi log pi∑
pi log ri

.

It is when the images ϕiX have significant overlap that computing the

dimension becomes difficult, and much less is known. One can give trivial

bounds: the dimension is never greater than the similarity dimension, and it

is never greater than the dimension of the ambient space R, which is 1. Hence

dimX ≤min{1, s-dimX},(3)

dimµ≤min{1, s-dimµ}.(4)

However, without special combinatorial assumptions on the IFS, current meth-

ods are unable even to decide whether or not equality holds in (3) and (4), let

1This notation is imprecise, since the similarity dimension depends on the IFS Φ rather

than the attractor X, but the meaning should always be clear from the context. A similar

remark holds for the similarity dimension of measures.
2This is the lower Hausdorff dimension. There are many other notions of dimension, but for

self-similar measures all the major ones coincide since such measures are exact dimensional [9].
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alone compute the dimension exactly. The exception is when there are suffi-

ciently many exact overlaps among the “cylinders” of the IFS. More precisely,

for i = i1 · · · in ∈ Λn, write

ϕi = ϕi1 ◦ · · · ◦ ϕin .

One says that exact overlaps occur if there are an n and distinct i, j ∈ Λn

such that ϕi = ϕj (in particular, the images ϕiX and ϕjX coincide).3 If this

occurs then X and µ can be expressed using an IFS Ψ that is a proper subset

of {ϕi}i∈Λn , and a strict inequality in (3) and (4) sometimes follows from the

corresponding bound for Ψ.

1.2. Main results. The present work was motivated by the folklore conjec-

ture that the occurrence of exact overlaps is the only mechanism that can lead

to a strict inequality in (3) and (4) (see, e.g., [27, Question 2.6]). Our main

result lends some support to the conjecture and proves some special cases of

it. All of our results hold, with suitable modifications, in higher dimensions,

but this will appear separately.

Fix Φ = {ϕi}i∈Λ as in the previous section, and for i ∈ Λn, write ri =

ri1 · . . . · rin , which is the contraction ratio of ϕi. Define the distance between

the cylinders associated to i, j ∈ Λn by

d(i, j) =

 ∞ ri 6= rj ,

|ϕi(0)− ϕj(0)| ri = rj .

Note that d(i, j) = 0 if and only if ϕi = ϕj and that the definition is unchanged

if 0 is replaced by any other point. For n ∈ N, let

∆n = min{d(i, j) : i, j ∈ Λn , i 6= j}.

Let us make a few observations:

— Exact overlaps occur if and only if ∆n = 0 for some n (equivalently all

sufficiently large n).

— ∆n → 0 exponentially. Indeed, the points ϕi(0), i ∈ Λn, can be shown

to lie in a bounded interval independent of n, and the exponentially

many sequences i ∈ Λn give rise to only polynomially many contraction

ratios ri. Therefore there are distinct i, j ∈ Λn with ri = rj and

|ϕi(0)− ϕj(0)| < |Λ|−(1−o(1))n.

— There can also be an exponential lower bound for ∆n. This occurs when

the images ϕi(X), i ∈ Λ, are disjoint, or under the open set condition,

3If i ∈ Λk, j ∈ Λm and ϕi = ϕj , then i cannot be a proper prefix of j and vice versa, so

ij, ji ∈ Λk+m are distinct and ϕij = ϕji. Thus exact overlaps occurs also if there is exact

coincidence of cylinders at “different generations.” Stated differently, exact overlaps means

that the semigroup generated by the ϕi, i ∈ Λ, is not freely generated by them.
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but also sometimes without separation as in Garsia’s example [12] or

the cases discussed in Theorems 1.5 and 1.6 below.

Our main result on self-similar measures is the following.

Theorem 1.1. If µ is a self-similar measure on R and satisfies dimµ <

min{1, s-dimµ}, then ∆n → 0 super-exponentially ; i.e., lim(− 1
n log ∆n) =∞.

The conclusion is about ∆n, which is determined by the IFS Φ, not by

the measure. Thus, if the conclusion fails, then dimµ = s-dimµ for every

self-similar measure of Φ.

Corollary 1.2. If X is the attractor of an IFS on R and if dimX <

min{1, s-dimX}, then lim(− 1
n log ∆n) =∞.

Proof. The self-similar measure µ associated to the probabilities pi =

rs-dimX
i satisfies s-dimµ = s-dimX. Since µ(X) = 1, we have dimµ ≤ dimX,

so by hypothesis, dimµ < min{1, s-dimµ}, and by the theorem, ∆n → 0

super-exponentially. �

Theorem 1.1 is derived from a more quantitative result about the entropy

of finite approximations of µ. Write H(µ, E) for the Shannon entropy of a

measure µ with respect to a partition E , and writeH(µ, E|F) for the conditional

entropy on F ; see Section 3.1. For n ∈ Z the dyadic partitions of R into

intervals of length 2−n is

Dn =

ßï
k

2n
,
k + 1

2n

ã
: k ∈ Z

™
.

For t ∈ R, we also write Dt = D[t]. We remark that lim inf 1
nH(θ,Dn) ≥ dim θ

for any probability measure θ, and the limit exists and is equal to dim θ when

θ is exact dimensional, which is the case for self-similar measures [9].

We first consider the case that Φ is uniformly contracting; i.e., that all ri
are equal to some fixed r. Fix a self-similar measure µ defined by a probability

vector (pi)i∈Λ, and for i ∈ Λn, write pi = pi1 ·. . .·pin . Without loss of generality

one can assume that 0 belongs to the attractor X. Define the n-th generation

approximation of µ by

(5) ν(n) =
∑
i∈Λn

pi · δϕi(0).

This is a probability measure on X and ν(n) → µ weakly. Moreover, writing

n′ = n log2(1/r),

ν(n) closely resembles µ up to scale 2−n
′

= rn in the sense that

lim
n→∞

1

n′
H(ν(n),Dn′) = dimµ.
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The main question we are interested in is the behavior of ν(n) at smaller scales.

Observe that the entropy H(ν(n),Dn′) of ν(n) at scale 2−n
′

may not exhaust

the entropy H(ν(n)) of ν(n) as a discrete measure (i.e., with respect to the

partition into points). If there is substantial excess entropy, it is natural to

ask at what scale and at what rate it appears; it must appear eventually

because limk→∞H(ν(n),Dk) = H(ν(n)). The excess entropy at scale k relative

to the entropy at scale n′ is just the conditional entropy H(ν(n),Dk|Dn′) =

H(ν(n),Dk)−H(ν(n),Dn′).

Theorem 1.3. Let µ be a self-similar measure on R defined by an IFS

with uniform contraction ratios. Let ν(n) be as above. If dimµ < 1, then

(6) lim
n→∞

1

n′
H(ν(n),Dqn′ |Dn′) = 0 for every q > 1.

Note that we assume dimµ < 1 but not necessarily dimµ < s-dimµ.

The statement is valid when dimµ = s-dimµ < 1, although for rather trivial

reasons.

We now formulate the result in the nonuniformly contracting case. Let

r =
∏
i∈Λ

rpii

so that log r is the average logarithmic contraction ratio when ϕi is chosen

randomly with probability pi. Note that, by the law of large numbers, with

probability tending to 1, an element i ∈ Λn chosen according to the probabili-

ties pi will satisfy ri = rn(1+o(1)) = 2n
′(1+o(1)).

With this definition and ν(n) defined as before, the theorem above holds

as stated, but note that now the partitions Dk are not suitable for detecting

exact overlaps, since ϕi(0) = ϕj(0) may happen for some i, j ∈ Λn with ri 6= rj .

To correct this, define the probability measure ν̃(n) on R× R by

ν̃(n) =
∑
i∈Λn

δ(ϕi(0),ri)

and the partition of R× R given by‹Dn = Dn ×F ,

where F is the partition of R into points.

Theorem 1.4. Let µ be a self-similar measure on R and ν̃(n) as above.

If dimµ < 1, then

(7) lim
n→∞

1

n′
H(ν̃(n), ‹Dqn′ |‹Dn′) = 0 for every q > 1.
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To derive Theorem 1.1, let µ be as in the last theorem with dimµ <

min{1, s-dimµ}. The conclusion of the last theorem is equivalent to

1

n′
H(ν̃(n), ‹Dqn′)→ dimµ

for every q > 1. Hence for a given q and all sufficiently large n, we will

have 1
n′H(ν̃(n), ‹Dqn′) < s-dimµ. Since ν̃(n) =

∑
i∈Λn pi · δ(ϕi(0),ri), if each

pair (ϕi(0), rj) belonged to a different atom of ‹Dqn′ , then we would have
1
n′H(ν̃(n), ‹Dqn′) = − 1

n log(1/r)

∑
i∈Λn pi log pi = s-dimµ, a contradiction. Thus

there must be distinct i, j ∈ Λn for which (ϕi(0), ri), (ϕj(0), rj) lie in the same

atom of ‹Dqn′ , giving ∆n < 2−qn
′
.

1.3. Outline of the proof. Let us say a few words about the proofs. For

simplicity we discuss Theorem 1.3, where there is a common contraction ratio

r to all the maps. For a self-similar measure µ =
∑
i∈Λ pi · ϕiµ, iterate this

relation n times to get µ =
∑
i∈Λn pi · ϕiµ. Since each ϕi, i ∈ Λn, contracts by

rn, all the measures ϕiµ, i ∈ Λn, are translates of each other. The last identity

can be rewritten as a convolution

µ = ν(n) ∗ τ (n),

where as before ν(n) =
∑
i∈Λn pi · δϕi(0), and τ (n) is µ scaled down by rn.

Fix q, and write a ≈ b to indicate that the difference tends to 0 as n→∞.

From the entropy identity H(µ,D(q+1)n′) = H(µ,Dn′)+H(µ,D(q+1)n′ |Dn′) and

the fact that 1
n′H(µ,Dn′) ≈ 1

n′H(ν(n),Dn′), we find that the mean entropy

A =
1

(q + 1)n′
H(µ,D(q+1)n′)

is approximately a convex combination A ≈ 1
(q+1)B + q

(q+1)C of the mean

entropy

B =
1

n′
H(ν(n),Dn′)

and the mean conditional entropy

C =
1

qn′
H(µ,D(q+1)n′ |Dn′) =

∑
I∈Dn′

µ(I) · 1

qn′
H(ν

(n)
I ∗ τ (n),D(q+1)n′),

where ν
(n)
I is the normalized restriction of ν(n) on I. Since A ≈ dimµ and

B ≈ dimµ, we find that C ≈ dimµ as well. On the other hand, we also have
1
qn′h(τ (n),D(q+1)n′) ≈ dimµ. Thus by the expression above, C is an average of

terms each of which is close to the mean, and therefore most of them are equal

to the mean. We find that

(8)
1

qn′
H(ν

(n)
I ∗ τ (n),D(q+1)n′) ≈ C ≈ dimµ ≈ 1

qn′
H(τ (n),D(q+1)n′)
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for large n and “typical” I ∈ Dn′ . The argument is then concluded by showing

that (8) implies that either 1
qn′H(τ (n),D(q+1)n′) ≈ 1 (leading to dimµ = 1), or

that typical intervals I satisfy 1
qn′H(ν

(n)
I ,D(q+1)n′) ≈ 0 (leading to (6)).

Now, for a general pair of measures ν, τ , the relation 1
nH(ν ∗ τ,Dn) ≈

1
nH(ν,Dn) analogous to (8) does not have such an implication. But, while we

know nothing about the structure of ν
(n)
I , we do know that τ (n), being self-

similar, is highly uniform at different scales. We will be able to utilize this fact

to draw the desired conclusion. Evidently, the main ingredient in the argument

is an analysis of the growth of measures under convolution, which will occupy

us starting in Section 2.

1.4. Applications. Theorem 1.1 and its corollaries settle a number of cases

of the aforementioned conjecture. Specifically, in any class of IFSs where one

can prove that cylinders are either equal or exponentially separated, the only

possible cause of dimension drop is the occurrence of exact overlaps. Thus,

Theorem 1.5. For IFSs on R defined by algebraic parameters, there is

a dichotomy : Either there are exact overlaps, or the attractor X satisfies

dimX = min{1, s-dimX}.

Proof. Let ϕi(x) = rix+ ai, and suppose ri, ai are algebraic. For distinct

i, j ∈ Λn, the distance |ϕi(0)−ϕj(0)| is a polynomial of degree n in ri, ai, and

hence is either equal to 0, or is ≥ sn for some constant s > 0 depending only

on the numbers ri, ai (see Lemma 5.10). Thus ∆n ≥ sn, and the conclusion

follows from Corollary 1.2. �

There are a handful of cases where a similar argument can handle non-

algebraic parameters. Among these is a conjecture by Furstenberg from the

1970’s, asserting that if the “one dimensional Sierpinski gasket”

F =
¶∑

(in, jn)3−n : (in, jn) ∈ {(0, 0), (1, 0), (0, 1)}
©

is projected orthogonally to a line of irrational slope, then the dimension of

the image is 1 (see, e.g., [27, Question 2.5]).4 It is more convenient to replace

orthogonal projections with the parametrized linear maps πt : R2 → R given

by

πt(x, y) = tx+ y.

4This was motivated by a dual conjecture asserting that any line ` of irrational slope meets

F in a zero dimensional set, and this, in turn, is an analog of similar conjectures arising in

metric number theory and layed out in [10]. The intersections and projections conjectures

are related by the heuristic that for a map F → R, a large image corresponds to small fibers,

but there is only an implication in one direction. (The statement about intersections implies

the one about projections using [11].)
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(Up to a linear change of coordinates in the range, this represents the orthog-

onal projection to the line with slope −1/t.) One may verify that the image

Ft = πtF is the self-similar defined by the contractions

(9) x 7→ 1

3
x, x 7→ 1

3
(x+ 1), x 7→ 1

3
(x+ t).

Therefore s-dimFt = 1 for all t, and it is not hard to show that exact overlaps

occur only for certain rational values of t. Thus, Furstenberg’s conjecture is a

special case of the motivating conjecture of this paper.

From general considerations such as Marstrand’s theorem, we know that

dimFt = 1 for almost every t, and Kenyon showed that this holds also for a

dense Gδ set of t [19]. In the same paper Kenyon also classified those rational

t for which dimFt = 1 and showed that Ft has Lebesgue measure 0 for all

irrational t (strengthening the conclusion of a general theorem of Besicovitch

that gives this for almost every t). For some other partial results, see [34].

Theorem 1.6. If t /∈ Q, then dimFt = 1.

Proof. Fix t, and suppose that dimFt < 1. Let Λ = {0, 1, t} and ϕi(x) =
1
3(x + i), so Ft is the attractor of {ϕi}i∈Λ. For i ∈ Λn, one may check that

ϕi(0) =
∑n
k=1 ik3

−k. Inserting this into the difference ϕi(0) − ϕj(0) we can

separate the terms that are multiplied by t from those that are not, and we

find that |ϕi(0)− ϕj(0)| = pi,j − t · qi,j for rational numbers pi,j , qi,j belonging

to the set

Xn =

{
n∑
i=1

ai3
−i : ai ∈ {±1, 0}

}
.

Therefore there are pn, qn ∈ Xn such that ∆n = |pn− tqn|, so by Corollary 1.2,

(10) |pn − t · qn| < 30−n for large enough n.

If qn = 0 for n satisfying (10), then |pn| < 30−n, but, since pn is rational

with denominator 3n, this can only happen if pn = 0. This in turn implies that

∆n = 0; i.e., there are exact overlaps, so t ∈ Q.

On the other hand, suppose qn 6= 0 for all large n. Since qn is a nonzero

rational with denominator 3n, we have qn ≥ 3−n. Dividing (10) by qn we get

|t−pn/qn| < 10−n. Subtracting successive terms, by the triangle inequality we

have

|pn+1

qn+1
− pn
qn
| < 2 · 10−n for large enough n.

But pn, qn, pn+1, qn+1 ∈ Xn+1, so pn+1/qn+1 − pn/qn is rational with denomi-

nator ≤ 9n+1, giving∣∣∣∣pn+1

qn+1
− pn
qn

∣∣∣∣ 6= 0 =⇒
∣∣∣∣pn+1

qn+1
− pn
qn

∣∣∣∣ ≥ 9−(n+1).
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Since 9−(n+1) ≤ 2 · 10−n is impossible for large n, the last two equations imply

that pn/qn = pn+1/qn+1 for all large n. Therefore there is an n0 such that

|t− pn0/qn0 | < 10−n for n > n0, which gives t = p0/q0. �

The argument above is due to B. Solomyak and P. Shmerkin, and we

thank them for permission to include it here. Similar considerations work in a

few other cases, but one already runs into difficulties if in the example above

we replace the contraction ratio 1/3 with any nonalgebraic 0 < r < 1. (See

also the discussion following Theorem 1.9 below.)

In the absence of a resolution of the general conjecture, we turn to para-

metric families of self-similar sets and measures. The study of parametric

families of general sets and measures is classical; examples include the projec-

tion theorems of Besicovitch and Marstrand and more recent results like those

of Peres-Schlag [24] and Bourgain [3]. When the sets and measures in ques-

tion are self-similar we shall see that the general results can be strengthened

considerably.

Let I be a set of parameters, and let ri : I → (−1, 1)\{0} and ai : I → R,

i ∈ Λ. For each t ∈ I, define ϕi,t : R → R by ϕi,t(x) = ri(t)(x − ai(t)). For a

sequence i ∈ Λn, let ϕi,t = ϕi1,t ◦ · · · ◦ ϕin,t, and define

∆i,j(t) =ϕi,t(0)− ϕj,t(0).(11)

The quantity ∆n = ∆n(t) associated as in the previous section to the IFS

{ϕi,t}i∈Λ is not smaller than the minimum of |∆i,j(t)| over distinct i, j ∈ Λn

(since it is the minimum over pairs i, j with ri = rj). Thus, ∆n → 0 super-

exponentially implies that min{|∆i,j(t)| , i, j ∈ Λn} → 0 super-exponentially

as well, so Theorem 1.1 has the following formal implication.

Theorem 1.7. Let Φt = {ϕi,t} be a parametrized IFS as above. For every

ε > 0, let

(12) Eε =
∞⋃
N=1

⋂
n>N

Ç ⋃
i,j∈Λn

(∆i,j)
−1(−εn, εn)

å
and

(13) E =
⋂
ε>0

Eε.

Then for t ∈ I \ E, for every probability vector p = (pi), the associated self-

similar measure µt of Φt satisfies dimµt = min{1, s-dimµt}, and the attractor

Xt of Φt satisfies dimXt = min{1, s-dimXt}.
Our goal is to show that the set E defined in the theorem above is small.

We restrict ourselves to the case that I ⊆ R is a compact interval; a multi-

parameter version will appear in [14]. Extend the definition of ∆i,j to infinite
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sequences i, j ∈ ΛN by

(14) ∆i,j(t) = lim
n→∞

∆i1···in,j1···jn(t).

Convergence is uniform over I and i, j, and if ai(·) and ri(·) are real analytic

in a neighborhood of I, then so are the functions ∆i,j(·).

Theorem 1.8. Let I ⊆ R be a compact interval, let r : I → (−1, 1) \ {0}
and ai : I → R be real analytic, and let Φt = {ϕi,t}i∈Λ be the associated

parametric family of IFSs, as above. Suppose that

∀i, j ∈ ΛN ( ∆i,j ≡ 0 on I ⇐⇒ i = j ) .

Then the set E of “exceptional” parameters in Theorem 1.7 has Hausdorff and

packing dimension 0.

The condition in the theorem is extremely mild. Essentially it means

that the family does not have overlaps “built in.” For an example where the

hypothesis fails, consider the case that there are i 6= j with ϕi,t = ϕj,t for all t.

In this case the conclusion sometimes fails as well.

Most existing results on parametric families of IFSs are based on the so-

called transversality method, introduced by Pollicott and Simon [28] and de-

veloped, among others, by Solomyak [33] and Peres-Schlag [24]. Theorem 1.8

is based on a similar but much weaker “higher order” transversality condi-

tion, which is automatically satisfied under the stated hypothesis. We give

the details in Section 5.4. See [32] for an effective derivation of higher-order

transversality in certain contexts.

As a demonstration we apply this to the Bernoulli convolutions problem.

For 0 < λ < 1, let νλ denote the distribution of the real random variable∑∞
n=0±λn, where the signs are chosen i.i.d. with equal probabilities. The

name derives from the fact that νλ is the infinite convolution of the measures
1
2 (δ−λn + δλn), n = 0, 1, 2, . . . , but the pertinent fact for us is that νλ is a

self-similar measure, given by assigning equal probabilities to the contractions

(15) ϕ±(x) = λx± 1.

For λ < 1
2 , the measure is supported on a self-similar Cantor set of dimen-

sion < 1, but for λ ∈ [1
2 , 1), the support is an interval, and it is a well-known

open problem to determine whether it is absolute continuous. Exact overlaps

can occur only for certain algebraic λ, and Erdős showed that when λ−1 is a

Pisot number, νλ is in fact singular [5]. No other parameters λ ∈ [1
2 , 1) are

known for which νλ is singular. In the positive direction, it is known that νλ
is absolutely continuous for almost every λ ∈ [1/2, 1) (Solomyak [33]) and the

set of exceptional λ ∈ [a, 1) has dimension < 1 − C(a − 1/2) for some C > 0

(Peres-Schlag [24]) and its dimension tends to 0 as a→ 1 (Erdős [6]).
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We shall consider the question of when dim νλ = 1. This is weaker than

absolute continuity, but little more seems to be known about this question

except the relatively soft fact that the set of parameters with dim νλ = 1 is

also topologically large (contains a dense Gδ set); see [25]. In particular, the

only parameters λ ∈ [1/2, 1) for which dim νλ < 1 is known are inverses of Pisot

numbers (Alexander-Yorke [1]). We also note that in many of the problems

related to Bernoulli convolutions it is the dimension of νλ, rather than its

absolute continuity, that are relevant. For discussion of some applications, see

[25, §8] and [29].

Theorem 1.9. dim νλ = 1 outside a set of λ of dimension 0. Further-

more, the exceptional parameters for which dim νλ < 1 are “nearly algebraic”

in the sense that for every 0 < θ < 1 and all large enough n, there is a poly-

nomial pn(t) of degree n and coefficients 0,±1, such that |pn(λ)| < θn.

Proof. Take the parametrization r(t) = t, a±(t) = ±1 for t ∈ [1/2, 1− ε].
Then ∆i,j(t) =

∑
(in− jn) · tn, and this vanishes identically if and only if i = j,

confirming the hypothesis of Theorem 1.8. Since ∆n(t) is a polynomial of

degree n with coefficients 0,±1, so the second statement follows the description

of the set E in Theorem 1.8. �

Arguing as in the proof of Theorem 1.6, in order to show that dim νλ = 1

for all nonalgebraic λ, it would suffice to answer the following question in the

affirmative.5

Question 1.10. Let Πn denote the collection of polynomial of degree ≤ n
with coefficients 0,±1. Does there exist a constant s > 0 such that for α, β

that are roots of polynomials in Πn, either α = β or |α− β| > sn?

Classical bounds imply this for s ∼ 1/n, but we have not found an answer

to the question in the literature.

Another problem to which our methods apply is the Keane-Smorodinsky

{0,1,3}-problem. For details about the problem, we refer to Pollicott-Simon

[28] or Keane-Smorodinsky-Solomyak [18].

Finally, our methods also can be adapted with minor changes to IFSs

that “contract on average” [23]. We restrict attention to a problem raised

by Sinai [26] concerning the maps ϕ− : x 7→ (1 − α)x − 1 and ϕ+ : x 7→
(1 + α)x+ 1. A composition of n of these maps chosen i.i.d. with probability
1
2 ,

1
2 asymptotically contracts by approximately (1−α2)n/2, and so for each 0 <

α < 1, there is a unique probability measure µα on R satisfying µα = 1
2ϕ−µα+

1
2ϕ+µα. Little is known about the dimension or absolute continuity of µα

5In order to show that an “almost-root” of a polynomial is close to an acrual root one can

rely on the classical transversality arguments; e.g., [33].
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beyond upper bounds analogous to (4). Some results in a randomized analog of

this model have been obtained by Peres, Simon, and Solomyak [26]. We prove

Theorem 1.11. There is a set E ⊆ (0, 1) of Hausdorff (and packing)

dimension 0 such that dimµα = min{1, s-dimµα} for α ∈ (0, 1) \ E.

For further discussion of this problem, see Section 5.5.

1.5. Absolute continuity? There is a conjecture analogous to the one we

began with, predicting that if µ is a self-similar measure, s-dimµ > 1, and there

are no exact overlaps, then µ should be absolutely continuous with respect to

Lebesgue measure. The Bernoulli convolutions problem discussed above is a

special case of this conjecture.

Our methods at present are not able to tackle this problem. At a technical

level, whenever our methods give dimµ = 1 it is a consequence of showing that

H(µ,Dn) = n − o(n). In contrast, absolute continuity would require better

asymptotics; e.g., H(µ,Dn) = n−O(1) (see [13, Th. 1.5]). More substantially,

our arguments do not distinguish between the critical s-dimµ = 1, where

the conclusion of the conjecture is generally false, and super-critical phase

s-dimµ > 1, so in their present form they cannot possibly give results about

absolute continuity.

The discussion above notwithstanding, shortly after this paper appeared in

preprint form, P. Shmerkin found an ingenious way to “amplify” our results on

parametric families of self-similar measures and obtain results about absolute

continuity. For instance,

Theorem (Shmerkin [31]). There is a set E ⊆ (1
2 , 1) of Hausdorff dimen-

sion 0 such that the Bernoulli convolution νλ is absolutely continuous for all

λ ∈ (1
2 , 1) \ E.

The idea of the proof is to split νλ as a convolution ν ′λ ∗ ν ′′λ of self-similar

measures, with s-dim ν ′λ ≥ 1 and s-dim ν ′′λ > 0. By Theorem 1.8, dim ν ′λ = 1

outside a zero-dimensional set E′ of parameters. On the other hand, a classical

argument of Erdős and Kahane shows that, outside a zero-dimensional set E′′ of

parameters, the Fourier transform of ν ′′λ has power decay. Taking E = E′∪E′′,
Shmerkin shows that νλ = ν ′λ ∗ ν ′′λ is absolutely continuous for λ ∈ (1

2 , 1) \ E.

At present the argument above is limited by the fact that E′′ is com-

pletely noneffective, so, unlike Theorem 1.1, it does not give a condition that

applies to individual self-similar measure and does not provide concrete new

examples of parameters for which νλ is absolutely continuous. In contrast,

Corollary 1.5 tells us that dim νλ = 1 whenever λ ∈ (1
2 , 1)∩Q, as well as other

algebraic examples. It remains a challenge to prove a similar result for absolute

continuity.
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1.6. Notation and organization of the paper. The main ingredient in the

proofs are our results on the growth of convolutions of measures. We develop

this subject in the next three sections. Section 2 introduces the statements and

basic definitions, Section 3 contains some preliminaries on entropy and convo-

lutions, and Section 4 proves the main results on convolutions. In Section 5

we prove Theorem 1.1 and the other main results.

We follow standard notational conventions. N = {1, 2, 3, . . . }. All loga-

rithms are to base 2. P(X) is the space of probability measures on X, endowed

with the weak-* topology if appropriate. We follow standard “big O” notation:

Oα(f(n)) is an unspecified function bounded in absolute value by Cα · f(n) for

some constant Cα depending on α. Similarly o(1) is a quantity tending to 0

as the relevant parameter → ∞. The statement “for all s and t > t(s), . . . ”

should be understood as saying “there exists a function t(·) such that for all s

and t > t(s), . . . ”. If we want to refer to the function t(·) outside the context

where it is introduced, we will designate it as t1(·), t2(·), etc.

Acknowledgment. I am grateful to Pablo Shmerkin and Boris Solomyak

for many contributions that have made this a better paper, and especially for

their permission to include the derivation of Theorem 1.6. I also thank Nicolas

de Saxce and Izabella Laba for their comments. This project began during

a visit to Microsoft Research in Redmond, Washington, and I would like to

thank Yuval Peres and the members of the theory group for their hospitality.

2. An inverse theorem for the entropy of convolutions

2.1. Entropy and additive combinatorics. As we saw in Section 1.3, a key

ingredient in the proof of Theorem 1.3 is an analysis of the growth of measures

under convolution. This subject is of independent interest and will occupy us

for a large part of this paper.

It will be convenient to introduce the normalized scale-n entropy

Hn(µ) =
1

n
H(µ,Dn).

Our aim is to obtain structural information about measures µ, ν for which µ∗ν
is small in the sense that

(16) Hn(µ ∗ ν) ≤ Hn(µ) + δ,

where δ > 0 is small but fixed and n is large.

This problem is a relative of classical ones in additive combinatorics con-

cerning the structure of sets A,B whose sumset A+B = {a+b : a ∈ A , b ∈ B}
is appropriately small. The general principle is that when the sum is small,

the sets should have some algebraic structure. Results to this effect are known

as inverse theorems. For example, the Freiman-Ruzsa theorem asserts that if
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|A + B| ≤ C|A|, then A,B are close, in a manner depending on C, to gen-

eralized arithmetic progressions6 (the converse is immediate). For details and

more discussion see, e.g., [36].

The entropy of a discrete measure corresponds to the logarithm of the

cardinality of a set, and convolution is the analog for measures of the sumset

operation. Thus the analog of the condition |A+A| ≤ C|A| is

(17) Hn(µ ∗ µ) ≤ Hn(µ) +O

Å
1

n

ã
.

An entropy version of Freiman’s theorem was recently proved by Tao [35], who

showed that if µ satisfies (17), then it is close, in an appropriate sense, to a

uniform measures on a (generalized) arithmetic progression.

The condition (16), however, is significantly weaker than (17) even when

the latter is specialized to ν = µ, and it is harder to draw conclusions from it

about the global structure of µ. Consider the following example. Start with an

arithmetic progression of length n1 and gap ε1, and put the uniform measure

on it. Now split each atom x into an arithmetic progression of length n2 and

gap ε2 < ε1/n2, starting at x (so the entire gap fits in the space between x and

the next atom). Repeat this procedure N times with parameters ni, εi, and call

the resulting measure µ. Let k be such that εN is of order 2−k. It is not hard to

verify that we can have Hk(µ) = 1/2 but |Hk(µ)−Hk(µ∗µ)| arbitrarily small.

This example is actually the uniform measure on a (generalized) arithmetic

progression, as predicted by Freiman-type theorems, but the rank N can be

arbitrarily large. Furthermore, if one conditions µ on an exponentially small

subset of its support, one gets another example with the similar properties

that is quite far from a generalized arithmetic progression.

Our main contribution to this matter is Theorem 2.7 below, which shows

that constructions like the one above are, in a certain statistical sense, the only

way that (16) can occur. We note that there is a substantial existing literature

on the growth condition |A+B| ≤ |A|1+δ, which is the sumset analog of (16).

Such a condition appears in the sum-product theorems of Bourgain-Katz-Tao

[4] in the work of Katz-Tao [17], and in the Euclidean setting, more explicitly

in Bourgain’s work on the Erdős-Volkmann conjecture [2] and Marstrand-like

projection theorems [3]. However we have not found a result in the literature

that meets our needs and, in any event, we believe that the formulation given

here will find further applications.

2.2. Component measures. The following notation will be needed in Rd as

well as R. Let Ddn = Dn× · · ·×Dn denote the dyadic partition of Rd; we often

6A generalized arithmetic progression is an affine image of a box in a higher-dimensional

lattice.



SELF-SIMILAR SETS 787

suppress the superscript when it is clear from the context. Let Dn(x) ∈ Dn
denote the unique level-n dyadic cell containing x. For D ∈ Dn, let TD : Rd
→ Rd be the unique homothety mapping D to [0, 1)d. Recall that if µ ∈ P(R),

then TDµ is the push-forward of µ through TD .

Definition 2.1. For µ ∈ P(Rd) and a dyadic cell D with µ(D) > 0, the

(raw) D-component of µ is

µD =
1

µ(D)
µ|D

and the (rescaled) D-component is

µD =
1

µ(D)
TD(µ|D).

For x ∈ Rd with µ(Dn(x)) > 0, we write

µx,n = µDn(x),

µx,n = µDn(x).

These measures, as x ranges over all possible values for which µ(Dn(x)) > 0,

are called the level-n components of µ.

Our results on the multi-scale structure of µ ∈ Rd are stated in terms of

the behavior of random components of µ, defined as follows.7

Definition 2.2. Let µ ∈ P(Rd).
(1) A random level-n component, raw or rescaled, is the random measure

µD or µD, respectively, obtained by choosing D ∈ Dn with probability

µ(D); equivalently, the random measure µx,n or µx,n, respectively, with

x chosen according to µ.

(2) For a finite set I ⊆ N, a random level-I component, raw or rescaled,

is chosen by first choosing n ∈ I uniformly, and then (conditionally

independently on the choice of n) choosing a raw or rescaled level-n

component, respectively.

Notation 2.3. When the symbols µx,i and µx,i appear inside an expression

P (· · · ) or E (· · · ), they will always denote random variables drawn according

to the component distributions defined above. The range of i will be specified

as needed.

7Definition 2.2 is motivated by Furstenberg’s notion of a CP-distribution [10], [11], [15],

which arises as limits as N → ∞ of the distribution of components of level 1, . . . , N . These

limits have a useful dynamical interpretation but in our finitary setting we do not require

this technology.
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The definition is best understood with some examples. For A ⊆ P([0, 1]d)

we have

Pi=n
Ä
µx,i ∈ A

ä
=

ˆ
1A(µx,n) dµ(x),

P0≤i≤n
Ä
µx,i ∈ A

ä
=

1

n+ 1

n∑
i=0

ˆ
1A(µx,i) dµ(x).

This notation implicitly defines x, i as random variables. Thus if A0, A1, . . . ⊆
P([0, 1]d) and D ⊆ [0, 1]d, we could write

P0≤i≤n
Ä
µx,i ∈ Ai and x ∈ D

ä
=

1

n+ 1

n∑
i=0

µ
Ä
x : µx,i ∈ Ai and x ∈ D

ä
.

Similarly, for f : P([0, 1)d)→ R and I ⊆ N, we have the expectation

Ei∈I
Ä
f(µx,i)

ä
=

1

|I|
∑
i∈I

ˆ
f(µx,i) dµ(x).

When dealing with components of several measures µ, ν, we assume all choices

of components µx,i, νy,j are independent unless otherwise stated. For instance,

Pi=n
Ä
µx,i ∈ A , νy,i ∈ B

ä
=

¨
1A(µx,n) · 1B(νy,n) dµ(x) dν(y).

Here 1A is the indicator function on A, given by 1A(ω) = 1 if ω ∈ A and 0

otherwise.

We record one obvious fact, which we will use repeatedly.

Lemma 2.4. For µ ∈ P(Rd) and n ∈ N,

µ = Ei=n (µx,i) .

We sometimes use similar notation to average a sequence an, . . . , an+k∈R:

En≤i≤n+k (ai) =
1

k + 1

n+k∑
i=n

ai.

2.3. An inverse theorem. The approximate equality Hn(µ ∗ ν) ≈ Hn(µ)

occurs trivially if either µ is uniform (Lebesgue) measure on [0, 1], or if ν = δx
is a point mass. As we saw in Section 2.1, there are other ways this can occur,

but the theorem below shows that in a statistical sense, locally (i.e., for typical

component measures) the two trivial scenarios are essentially the only ones. In

order to state this precisely we require finite-scale and approximate versions of

being uniform and being a point mass. There are many definitions to choose

from. One possible choice is the following.

Definition 2.5. A measure µ ∈ P([0, 1]) is ε-atomic if there is an interval

I of length ε such that µ(I) > 1− ε.
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Alternatively we could require that the entropy be small at a given scale,

or that the random variable whose distribution is the given measure has small

variance. Up to choice of parameters these definitions coincide, and we shall

use all the definitions later. See Definition 3.9 and the discussion following it,

and Lemma 4.4, below.

Definition 2.6. A measure µ ∈ P([0, 1]) is (ε,m)-uniform if Hm(µ) > 1−ε.

Again one can imagine many alternative definitions. For example, almost-

uniformity of µ ∈ P([0, 1]) at scale δ could mean that |µ(I) − |I|| < δ2 for all

intervals I of length |I| ≥ δ, or that the Fourier transform µ̂(ξ) is small at

frequencies |ξ| < 1/δ. Again, these definitions are essentially equivalent, up to

adjustment of parameters, to the one above. We shall not use them here.

Theorem 2.7. For every ε > 0 and integer m ≥ 1, there is a δ =

δ(ε,m) > 0 such that for every n > n(ε, δ,m), the following holds. If µ, ν ∈
P([0, 1]) and

Hn(µ ∗ ν) < Hn(µ) + δ,

then there are disjoint subsets I, J ⊆ {1, . . . , n} with |I ∪ J | > (1 − ε)n, such

that

Pi=k
Ä
µx,i is (ε,m)-uniform

ä
> 1− ε for k ∈ I,

Pi=k
Ä
νx,i is ε-atomic

ä
> 1− ε for k ∈ J.

From this it is easy to derive many variants of the theorem for the other

notions of atomicity and uniformity discussed above. In Section 2.3 we give

a marginally stronger statement in which atomicity is expressed in terms of

entropy.

The proof is given in Section 4.4. The dependence of δ on ε,m is effective,

but the bounds we obtain are certainly far from optimal, and we do not pursue

this topic. The value of n depends among other things on the rate at which

Hm(µ)→ dimµ, which is currently not effective.

The converse direction of the theorem is false; that is, there are measures

that satisfy the conclusion but also Hn(µ ∗ ν) > Hn(µ) + δ. To see this begin

with a measure µ ∈ [0, 1] such that dim(µ ∗ µ) = dimµ = 1/2 and such that

limHn(µ) = limHn(µ ∗ µ) = 1
2 . (Such measures are not hard to construct;

see, e.g., [7] or the more elaborate constructions in [20], [30].) By Marstrand’s

theorem, for almost every t, the scaled measure ν(A) = µ(tA) satisfies dimµ ∗
ν = 1 and hence Hn(µ ∗ ν)→ 1. But it is easy to verify that as the conclusion

of the theorem holds for the pair µ, µ, it holds for µ, ν as well.

Note that there is no assumption on the entropy of ν, but if Hn(ν) is

sufficiently close to 0, the conclusion will automatically hold with I empty,
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and if Hn(ν) is not too close to 0, then J cannot be too large relative to n (see

Lemma 3.4 below). We obtain the following useful conclusion.

Theorem 2.8. For every ε > 0 and integer m, there is a δ = δ(ε,m) > 0

such that for every n > n(ε, δ,m) and every µ ∈ P([0, 1]), if

P
0≤i≤n

Ä
Hm(µx,i) < 1− ε

ä
> 1− ε,

then for every ν ∈ P([0, 1]),

Hn(ν) > ε =⇒ Hn(µ ∗ ν) ≥ Hn(µ) + δ.

Specializing the above to self-convolutions we have the following result,

which shows that constructions like the one described in Section 2.1 are,

roughly, the only way that Hn(µ ∗ µ) = Hn(µ) + δ can occur. This should be

compared with the results of Tao [35], who studied the condition Hn(µ ∗ µ) =

Hn(µ) +O( 1
n).

Theorem 2.9. For every ε > 0 and integer m, there is a δ = δ(ε,m) > 0

such that for every sufficiently large n > n(ε, δ,m) and every µ ∈ P([0, 1)), if

Hn(µ ∗ µ) < Hn(µ) + δ,

then there are disjoint subsets I, J ⊆ {0, . . . , n} with |I ∪ J | ≥ (1 − ε)n and

such that

Pi=k
Ä
µx,i is (ε,m)-uniform

ä
> 1− ε for k ∈ I,

Pi=k
Ä
µx,i is ε-atomic

ä
> 1− ε for k ∈ J.

These results hold more generally for compactly supported measures, but

the parameters will depend on the diameter of the support. They can also be

extended to measures with unbounded support under additional assumptions;

see Section 5.5.

3. Entropy, atomicity, uniformity

3.1. Preliminaries on entropy. The Shannon entropy of a probability mea-

sure µ with respect to a countable partition E is given by

H(µ, E) = −
∑
E∈E

µ(E) logµ(E),

where the logarithm is in base 2 and 0 log 0 = 0. The conditional entropy with

respect to a countable partition F is

H(µ, E|F) =
∑
F∈F

µ(F ) ·H(µF , E),

where µF = 1
µ(F )µ|F is the conditional measure on F . For a discrete probability

measure µ, we write H(µ) for the entropy with respect to the partition into
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points, and for a probability vector α = (α1, . . . , αk), we write

H(α) = −
∑

αi logαi.

We collect here some standard properties of entropy.

Lemma 3.1. Let µ, ν be probability measures on a common space, E ,F
partitions of the underlying space and α ∈ [0, 1].

(1) H(µ, E) ≥ 0, with equality if and only if µ is supported on a single atom

of E .

(2) If µ is supported on k atoms of E , then H(µ, E) ≤ log k.

(3) If F refines E (i.e., for all F ∈ F , there exists E ∈ E such that F ⊆ E),

then H(µ,F) ≥ H(µ, E).

(4) If E ∨ F = {E ∩ F : E ∈ E , F ∈ F} is the join of E and F , then

H(µ, E ∨ F) = H(µ,F) +H(µ, E|F).

(5) H(·, E) and H(·, E|F) are concave.

(6) H(·, E) obeys the “convexity” bound

H
Ä∑

αiµi, E
ä
≤
∑

αiH(µi, E) +H(α).

In particular, we note that for µ ∈ P([0, 1]d), we have the boundsH(µ,Dm)

≤ md (hence Hn(µ) ≤ 1) and H(µ,Dn+m|Dn) ≤ md.

Although the function (µ,m) 7→ H(µ,Dm) is not weakly continuous, the

following estimates provide usable substitutes.

Lemma 3.2. Let µ, ν ∈ P(Rd), E ,F be partitions of Rd, and let m,m′ ∈ N.

(1) Given a compact K ⊆ Rd and µ ∈ P(K), there is a neighborhood U ⊆
P(K) of µ such that |H(ν,Dm)−H(µ,Dm)| = Od(1) for ν ∈ U .

(2) If each E ∈ E intersects at most k elements of F and vice versa, then

|H(µ, E)−H(µ,F)| = O(log k).

(3) If f, g : Rd → Rk and ‖f(x)− g(x)‖≤C2−m for x ∈ Rd, then |H(fµ,Dm)

−H(gµ,Dm)| ≤ OC,k(1).

(4) If ν(·) = µ(·+ x0), then |H(µ,Dm)−H(ν,Dm)| = Od(1).

(5) If C−1 ≤ m′/m ≤ C , then |H(µ,Dm)−H(µ,Dm′)| ≤ OC,d(1).

Recall that the total variation distance between µ, ν ∈ P(Rd) is

‖µ− ν‖ = sup
A
|µ(A)− ν(A)|,

where the supremum is over Borel sets A. This is a complete metric on P(Rd).
It follows from standard measure theory that for every ε > 0, there is a δ > 0

such that if ‖µ− ν‖ < δ, then there are probability measures τ, µ′, ν ′ such that

µ = (1− ε)τ + εµ′ and ν = (1− ε)τ + εν ′. Combining this with Lemma 3.1(5)

and (6), we have
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Lemma 3.3. For every ε > 0, there is a δ > 0 such that if µ, ν ∈ P(Rd)
and ‖µ− ν‖ < δ, then for any finite partition A of Rd with k elements,

|H(µ,A)−H(ν,A)| < ε log k +H(ε).

In particular, if µ, ν ∈ P([0, 1]d), then

|Hm(µ)−Hm(ν)| < dε+
H(ε)

m
.

3.2. Global entropy from local entropy. Recall from Section 2.2 the defini-

tion of the raw and rescaled components µx,n, µx,n, and note that

(18) H(µx,n,Dm) = H(µx,n,Dn+m).

Also, note that

Ei=n
Ä
Hm(µx,i)

ä
=

ˆ
1

m
H(µx,n,Dm) dµ(x)

=
1

m

ˆ
H(µx,n,Dn+m) dµ(x)

=
1

m

∑
D∈Dn

µ(D)H(µD,Dm+n)

=
1

m
H(µ,Dn+m | Dn).

Lemma 3.4. For r ≥ 1 and µ ∈ P([−r, r]d) and integers m < n,

Hn(µ) =E
0≤i≤n

Ä
Hm(µx,i)

ä
+O

Å
m

n
+

log r

n

ã
.

Proof. By the paragraph before the lemma, the statement is equivalent to

Hn(µ) =
1

n

n−1∑
i=0

1

m
H(µ,Di+m|Di) +O

Å
m

n
+

log r

n

ã
.

At the cost of adding O(m/n) to the error term we can delete up to m terms

from the sum. Thus without loss of generality we may assume that n/m ∈ N.

When m = 1, iterating the conditional entropy formula and using H(µ,D0) =

O(log r) gives
n−1∑
i=0

H(µ,Di+1 | Di) = H(µ,Dn|D0) = H(µ,Dn)−O(log r).

The result follows on dividing by n. For general m, first decompose the sum

according to the residue class of i mod m and apply the above to each one:

n−1∑
i=0

1

m
H(µ,Di+m | Di) =

1

m

m−1∑
p=0

Ñ
n/m−1∑
k=0

H(µ,D(k+1)m+p | Dkm+p)

é
=

1

m

m−1∑
p=0

H(µ,Dn+p | Dp).
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Dividing by n, the result follows from the bound∣∣∣∣ 1nH(µ,Dn+p|Dp)−Hn(µ)

∣∣∣∣ < 2m+O(log r)

n
,

which can be derived from the identities

H(µ,Dn) +H(µ,Dn+p|Dn) =H(µ,Dn+p)

=H(µ,Dp) +H(µ,Dn+p|Dp)

together with the fact that H(µ,Dp) ≤ p + log r and H(µ,Drm+p|Drm) ≤ p,

and recalling that 0 ≤ p < m. �

We have a similar lower bound for the entropy of a convolution in terms

of convolutions of its components at each level.

Lemma 3.5. Let r > 0 and µ, ν ∈ P([−r, r]d). Then for m < n ∈ N,

Hn(µ ∗ ν)≥E0≤i≤n

Å
1

m
H(µx,i ∗ νy,i,Di+m|Di)

ã
+O

Å
m+ log r

n

ã
≥E0≤i≤n

Ä
Hm(µx,i ∗ νy,i)

ä
+O

Å
1

m
+
m

n
+

log r

n

ã
.

Proof. As in the previous proof, by introducing an error of O(m/n) we

can assume that m divides n, and by the conditional entropy formula,

H(µ ∗ ν,Dn) =

n/m−1∑
k=0

H(µ ∗ ν,D(k+1)m|Dkm) +H(µ ∗ ν,D0)

=

n/m−1∑
k=0

H(µ ∗ ν,D(k+1)m|Dkm) +O(log r)

since µ ∗ ν is supported on [−2r, 2r]d. Apply the linear map (x, y) 7→ x + y

to the trivial identity µ × ν = Ei=k(µx,i × νy,i) (Lemma (2.4) for the product

measure). We obtain the identity µ ∗ ν = Ei=k(µx,i ∗ νxy,i). By concavity of

conditional entropy (Lemma 3.1 (5)),

H(µ ∗ ν,Dn) =

n/m−1∑
k=0

H
Ä
Ei=km(µx,i ∗ νxy,i),D(k+1)m|Dkm

ä
+O(log r)

≥
n/m−1∑
k=0

Ei=km
Ä
H(µx,i ∗ νy,i,D(k+1)m|Dkm)

ä
+O(log r).

Dividing by n, we have shown that

Hn(µ ∗ ν) ≥ m

n

n/m−1∑
k=0

Ei=k
Ä
Hm(µx,i ∗ νxy,i)

ä
+O

Å
m

n
+

log r

n

ã
.
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Now do the same for the sum k = p to n/m+p for p = 0, 1, . . . ,m−1. Averag-

ing the resulting expressions gives the first inequality. The second inequality

follows from the first using

H(µx,i ∗ νx,i,D(k+1)m|Dkm) =H(µx,i ∗ νy,i,Dm|D0)

=H(µx,i ∗ νy,i,Dm) +O(1)

=mHm(µx,i ∗ νy,i) +O(1),

where the O(1) error term arises because µx,i ∗ νx,i is supported on [0, 2)d and

hence meets O(1) sets in D0. �

3.3. Covering lemmas. We will require some simple combinatorial lem-

mas.

Lemma 3.6. Let I ⊆ {0, . . . , n} and m ∈ N be given. Then there is a

subset I ′ ⊆ I such that I ⊆ I ′+ [0,m] and [i, i+m]∩ [j, j+m] = ∅ for distinct

i, j ∈ I ′.
Proof. Define I ′ inductively. Begin with I ′ = ∅ and, at each successive

stage, if I \ ⋃i∈I′ [i, i + m] 6= ∅, then add its least element to I ′. Stop when

I ⊆ ⋃i∈I′ [i, i+m]. �

Lemma 3.7. Let I, J ⊆ {0, . . . , n} and m ∈ N, δ > 0. Suppose that

|[i, i + m] ∩ J | ≥ (1 − δ)m for i ∈ I . Then there is a subset J ′ ⊆ J such that

|J ′ ∩ (J ′ − `)| ≥ (1− δ − `
m)|I| for 0 ≤ ` ≤ m.

Proof. Let I ′ ⊆ I be the collection obtained by applying the previous

lemma to I,m. Let J ′ = J ∩ (
⋃
i∈I′ [i, i+m]). Then

J ′ ∩ (J ′ − `) ⊇ J ∩
⋃
i∈I′

([i, i+m] ∩ [i− `, i+m− `]) =
⋃
i∈I′

(J ∩ [i, i+m− `]).

Also, |J ∩ [i, i+m− `]| ≥ (1− δ − `
m)m for i ∈ I ′ , and I ⊆ ⋃i∈I′ [i, i+m], so

by the above,

|J ′ ∩ (J ′ − `)| ≥
Å

1− δ − `

m

ã
· |
⋃
i∈I′

[i, i+m]| ≥
Å

1− δ − `

m

ã
|I|. �

Lemma 3.8. Let m, δ be given, and let I1, J1 and I2, J2 be two pairs of

subsets of {0, . . . , n} satisfying the assumptions of the previous lemma. Suppose

also that I1 ∩ I2 = ∅. Then there exist J ′1 ⊆ J1 and J ′2 ⊆ J2 with J ′1 ∩ J ′2 = ∅
and such that |J ′1 ∪ J ′2| ≥ (1− δ)2|I1 ∪ I2|.

Proof. Define I ′1 ⊆ I1 and J ′1 = J1∩
⋃
i∈I′ [i, i+m] as in the previous proof,

so taking ` = 0 in its conclusion, |J ′1| ≥ (1 − δ)|I1|. Let U =
⋃
i∈I′1 [i, i + m],

and recall that |J ′1| = |U ∩ J1| ≥ (1− δ)|U |. Since I1 ⊆ U and I1 ∩ I2 = ∅,

|J ′1 ∩ I2| ≤ |U | − |I1| ≤
1

1− δ
|J ′1| − |I1|.
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Hence, using |J ′1| ≥ (1− δ)|I1|,

|J ′1 ∪ I2|= |J ′1|+ |I2| − |J ′1 ∩ I2|

≥ |J ′1|+ |I2| −
Å

1

1− δ
|J ′1| − |I1|

ã
≥ |I1|+ |I2| −

δ

1− δ
|J ′1|

≥ (1− δ)|I1|+ |I2|.

Now perform the analysis above with I2 \ J ′1, J2 in the role of I1, J1 and with

J ′1 in the role of I2. (Thus (I2 \ J ′1) ∩ J ′1 = ∅ as required.) We obtain J ′2 ⊆ J2

such that

|J ′2 ∪ J ′1| ≥ (1− δ)|I2 \ J ′1|+ |J ′1|
= (1− δ)|J ′1 ∪ I2|.

Substituting the previous bound |J ′1 ∪ I2| ≥ (1 − δ)|I1| + |I2| gives the claim,

except for disjointness of J ′1, J
′
2, but clearly if they are not disjoint, we can

replace J ′1 with J ′1 \ J2. �

3.4. Atomicity and uniformity of components. We need to know that

almost-atomicity and almost-uniformity passes to component measures. It

will be convenient to replace the notion of ε-atomic measures, introduced in

Section 2.3, with one that is both stronger and more convenient to work with.

Definition 3.9. A measure µ ∈ P([0, 1]) is (ε,m)-atomic if Hm(µ) < ε.

Recall that Hm(µ) = 0 if and only if µ is supported on a single interval

I ∈ Dm of length 2−m. Thus, by continuity of the entropy function (pi) 7→
−∑ pi log pi, if ε is small compared to m, then any (ε,m)-atomic measure

is 2−m-atomic. The reverse implication is false: indeed, a measure may be

ε-atomic for arbitrarily small ε and at the same time have its mass divided

evenly between two (adjacent) intervals I, I ′ ∈ Dm, in which case Hm(µ) = 1
m .

Thus, for ε small compared to m, the most one can say in general about an

ε-atomic measure is that it is ( 1
m ,m)-atomic. Thus the definition above is

slightly stronger.

Lemma 3.10. If µ ∈ P([0, 1]) is (ε,m)-atomic, then for k < m,

P0≤i≤m
Ä
µx,i is (ε′, k)-atomic

ä
> 1− ε′

for ε′ =
»
ε+O( km).

Proof. By Lemma 3.4,

E0≤i≤m(Hk(µ
i,x)) ≤ Hm(µ) +O

Å
k

m

ã
< ε+O

Å
k

m

ã
.

Since Hk(µ
i,x) ≥ 0, the claim follows by Markov’s inequality. �
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Lemma 3.11. If µ ∈ P([0, 1]) is (ε, n)-uniform, then for every 1 ≤ m < n,

P0≤i≤n
Ä
µx,i is (ε′,m)-uniform

ä
> 1− ε′,

where ε′ =
»
ε+O(mn ).

Proof. The proof is the same as the previous lemma and we omit it. �

We also will repeatedly use the following consequence of Chebychev’s in-

equality.

Lemma 3.12. Suppose that A ⊆ P([0, 1]) and that

P0≤i≤n(µx,i ∈ A) > 1− ε.

Then there is a subset I ⊆ {0, . . . , n} with |I| > (1−
√
ε)n and

Pi=q(µx,i ∈ A) > 1−
√
ε for q ∈ I.

Proof. Consider the function f : {0, . . . ,m} → [0, 1] given by f(q) =

Pi=q(µx,i ∈ A). By assumption, E0≤q≤n(f(q)) > 1 − ε. By Chebychev’s

inequality, there is a subset I ⊆ {0, . . . , n} with |I| ≥ (1 −
√
ε)n and f(q) >

1−
√
ε for q ∈ I, as desired. �

4. Convolutions

4.1. The Berry-Esseen theorem and an entropy estimate. For µ ∈ P(R),

let m(µ) denote the mean, or barycenter, of µ, given by

〈µ〉 =

ˆ
x dµ(x),

and let Var(µ) denote its variance:

Var(µ) =

ˆ
(x− 〈µ〉)2 dµ(x).

Recall that if µ1, . . . , µk ∈ P(R), then µ = µ1∗· · ·∗µk has mean 〈µ〉 =
∑k
i=1 〈µi〉

and Var(µ) =
∑k
i=1 Var(µi).

The Gaussian with mean m and variance σ2 is given by γm,σ2(A) =´
A ϕ((x −m)/σ2)dx, where ϕ(x) =

√
2π exp(−1

2 |x|
2). The central limit theo-

rem asserts that, for µ1, µ2, · · · ∈ P(Rd) of positive variance, the convolutions

µ1 ∗ · · · ∗ µk can be rescaled so that the resulting measure is close in the weak

sense to a Gaussian measure. The Berry-Esseen inequalities quantify the rate

of this convergence. We use the following variant from [8].

Theorem 4.1. Let µ1, . . . , µk be probability measures on R with finite

third moments ρi =
´
|x|3 dµi(x). Let µ = µ1 ∗ · · · ∗ µk, and let γ be the
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Gaussian measure with the same mean and variance as µ. Then8 for any

interval I ⊆ R,

|µ(I)− γ(I)| ≤ C1 ·
∑k
i=1 ρi

Var(µ)3/2
,

where C1 = C1(d). In particular, if ρi ≤ C and
∑k
i=1 Var(µi) ≥ ck for con-

stants c, C > 0, then

|µ(I)− γ(I)| = Oc,C(k−1/2).

4.2. Multiscale analysis of repeated self-convolutions. In this section we

show that for any measure µ, every δ > 0, every integer scale m ≥ 2, and

appropriately large k, the following holds. Typical levels-i components of the

convolution µ∗k are (δ,m)-uniform, unless in µ the level-i components are

typically (δ,m)-atomic. The main idea is to apply the Berry-Esseen theorem

to convolutions of component measures.

Proposition 4.2. Let σ > 0, δ > 0, and let m ≥ 2 be an integer. Then

there exists an integer p = p0(σ, δ,m) such that for all k ≥ k0(σ, δ,m), the

following holds. Let µ1, . . . , µk ∈ P([0, 1]), let µ = µ1 ∗ · · · ∗ µk, and suppose

that Var(µ) ≥ σk. Then

(19) Pi=p−[log
√
k]

Ä
µx,i is (δ,m)-uniform

ä
> 1− δ.

Note that p − [log
√
k] will generally be negative. Dyadic partitions of

level q with q < 0 are defined in the same manner as for positive q; that is, by

D−q = {[r2−q, (r+ 1)2−q)}r∈Z. For q < 0, this partition consists of intervals of

length is 2|q| with integer endpoints. Thus, the conclusion of the proposition

concerns the µ-probabilities of nearby intervals of length Op(
√
k) = Oσ,δ,m(

√
k)

(since p = p0(σ, δ,m)). This is the natural scale at which we can expect to

control such probabilities: indeed, µ is close to a Gaussian γ of variance σk,

but only in the sense that for any c, if k is large enough, µ and γ closely agree

on the mass that they give to intervals of length c
»

Var(µ) = c
√
k.

Proof. Let us first make some elementary observations. Suppose that

γ ∈ P(R) is a probability measure with continuous density function f and

x ∈ R is such that f(x) 6= 0. Since γ(I) =
´
I f(y)dy, for any interval I, we

8In the usual formulation one considers the measure µ′ defined by scaling µ by Var(µ),

and γ′ the Gaussian with the same mean and variance 1 = Var(µ′), and gives a similar

bound for |µ′(J) − γ′(J)| as J ranges over intervals. The two formulations are equivalent

since µ(I) − γ(I) = µ′(J) − γ′(J), where J is an interval depending in the obvious manner

on I, and I → J is a bijection.
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have ∣∣∣∣∣γ(I)

|I|
− f(x)

∣∣∣∣∣ ≤ sup
z∈I
|f(x)− f(z)|,

where |I| is the length of I. By continuity, the right-hand side tends to 0 uni-

formly as the endpoints of I approach x. In particular, if n is large enough, for

any I ⊆ Dn(x), the ratio γ(x)
|I| will be arbitrarily close to f(x). Therefore, since

f(x) 6= 0, for any fixed m, if n is large enough, then | γ(I)
γ(J)−1| = | γ(I)/|I|

γ(J)/|J |−1| for

all intervals I, J ∈ Dn+m with I, J ⊆ Dn(x). In other words, the distribution

of γx,n on the level-m dyadic subintervals of [0, 1) approaches the uniform one

as n→∞. Now,

Hm(µx,n) = −
∑

I∈Dn+m,I⊆Dn(x)

µ(I) logµ(I),

and the function t log t is continuous for t ∈ (0, 1). Therefore, writing u for the

uniform measure on [0, 1), we conclude that

lim
n→∞

Hm(γx,n) = Hm(u) = 1.

This in turn implies that Ei=p(Hm(γx,p)) → 1 as p → ∞. Finally, the rate of

convergence in the limits above is easily seen to depend only on the value f(x)

and the modulus of continuity of f at x.

Fix 0 < σ, δ < 1, and consider the family G of Gaussians with mean 0 and

variance in the interval [σ, 1]. For every interval I = [−R,R], the restriction to

I of the density functions of measures in G form an equicontinuous family. Also,

by choosing a large enough R we can ensure that infg∈G γ([−R,R]) is arbitrarily

close to 1. Therefore, by the previous discussion, there is a p = p0(σ, δ,m) such

that Pi=p(Hm(γx,i) > 1− δ) > 1− δ for all γ ∈ G.

Now, if µi and µ are as in the statement and µ′ is µ scaled by 2−[log
√
k]

(which is up to a constant factor the same as 1/
√
k), then by the Berry-Esseen

theorem (Theorem 4.1), µ′ agrees with the Gaussian of the same mean and

variance on intervals of length 2−p−m to a degree that can be made arbitrarily

small by making k large in a manner depending on σ, p. In particular, for large

enough k, this guarantees that Pi=p(Hm((µ′)x,i) > 1− δ) > 1− δ.
All that remains is to adjust the scale by a factor of 2[log

√
k]. Then the same

argument applied to µ instead of the scaled µ′ gives Pi=p−[log
√
k](Hm((µ)x,i) >

1− δ) > 1− δ, which is (19). �

We turn to repeated self-convolutions.

Proposition 4.3. Let σ, δ > 0, and let m ≥ 2 be an integer. Then

there exists p = p1(σ, δ,m) such that for sufficiently large k ≥ k1(σ, δ,m), the

following holds. Let µ ∈ P([0, 1]), fix an integer i0 ≥ 0, and write

λ = Ei=i0
Ä
Var(µx,i)

ä
.
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If λ > σ, then for j0 = i0 − [log
√
k] + p and ν = µ∗k, we have

Pj=j0
Ä
νx,j is (δ,m)-uniform

ä
> 1− δ.

Proof. Let µ, λ and m be given. Fix p and k. (We will later see how large

they must be.) Let i0 be as in the statement and j0 = i0 − [log
√
k] + p.

Let µ̃ denote the k-fold self-product µ̃ = µ× · · ·×µ, and let π : (R)k → R
denote the addition map

π(x1, . . . , xk) =
k∑
i=1

xi.

Then ν = πµ̃ and, since µ̃ = Ei=i0 (µ̃x,i), we also have by linearity ν =

Ei=i0 (πµ̃x,i). By concavity of entropy and an application of Markov’s inequal-

ity, there is a δ1 > 0, depending only on δ, such that the proposition will follow

if we show that with probability > 1 − δ1 over the choice of the component

µ̃x,i0 of µ̃, the measure η = πµ̃x,i0 satisfies

(20) Pj=j0
Ä
ηy,j is (δ1,m)-uniform

ä
> 1− δ1.

The random component µ̃x,i0 is itself a product measure µ̃x,i = µx1,i0 ×
· · · × µxk,i0 , and the marginal measures µxj ,i0 of this product are distributed

independently according to the distribution of the raw components of µ at

level i0. Note that these components differ from the rescaled components by a

scaling factor of 2i0 , so the expected variance of the raw components is 2−2i0λ.

Recall that

Var(π(µx1,i0 × · · · × µxk,i0)) =
k∑
j=1

Var(µxj ,i0).

Thus for any δ2 > 0, by the weak law of large numbers, if k is large enough in

a manner depending on δ2, then with probability > 1 − δ2 over the choice of

µ̃x,i0 we will have9

(21)

∣∣∣∣1k Var(πµ̃x,i0)− 2−2i0λ

∣∣∣∣ < 2−2i0δ2.

We can choose δ2 small in a manner depending on σ, so (21) implies

Var(πµ̃x,i0)> 2−2i0 · kσ/2.(22)

But now inequality (20) follows from an application of Proposition 4.2 with

proper choice of parameters. �

9We use here the fact that we have a uniform bound for the rate of convergence in the

weak law of large numbers for i.i.d. random variables X1, X2, . . . . In fact, the rate can be

bounded in terms of the mean and variance of X1. Here X1 is distributed like the variance

Var(µx,i0) of a random component of level i0, and the mean and variance of X1 are bounded

independently of µ ∈ P([0, 1]).
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Lemma 4.4. Fix m ∈ N. If Var(µ) is small enough, then Hm(µ) ≤ 2
m . If

Hm(µ) is small enough, then Var(µ) < 2−m.

Proof. If Var(µ) is small, then most of the µ-mass sits on an interval of

length 2−m, hence on at most two intervals from Dm, so Hm(µ) is roughly 1
m

(certainly < 2
m). Conversely, if Hm(µ) is small, then most of the µ-mass sits

on one interval from Dm, whose length is 2−m, so Var(µ) is of this order. �

Recall Definitions 2.6 and 3.9.

Corollary 4.5. Let m ∈ N and ε > 0. For N > N(m, ε) and 0 < δ <

δ(m, ε,N), if µ ∈ P([0, 1]) and Var(µ) < δ, then

P0≤i≤N (Var(µx,i) < ε and µx,i is (ε,m)-atomic) > 1− ε.

Proof. Using the previous lemma choose m′, ε′ such that Hm′(θ) < ε′

implies Var(θ) < ε. Then it suffices to find N, δ such that Var(µ) < δ implies

P0≤i≤N (Hm′(µ
x,i) < ε′ and Hm(µx,i) < ε) > 1− ε.

By Lemma 3.10 (applied twice), if ε′′ > 0 is small enough, then for large enough

N , the last inequality follows from HN (µ) < ε′′. Finally, by the last lemma

again, if N is large enough, this follows from Var(µ) < δ if δ is sufficiently

small. �

Theorem 4.6. Let δ > 0, and let m ≥ 2 be an integer. Then for k ≥
k2(δ,m) and all sufficiently large n ≥ n2(δ,m, k), the following holds. For any

µ ∈ P([0, 1]), there are disjoint subsets I, J ⊆ {1, . . . , n} with |I∪J | > (1−δ)n
such that, writing ν = µ∗k,

Pi=q
Ä
νx,i is (δ,m)-uniform

ä
≥ 1− δ for q ∈ I,(23)

Pi=q
Ä
µx,i is (δ,m)-atomic

ä
≥ 1− δ for q ∈ J.(24)

Proof. Let δ and m ≥ 0 be given. We may assume δ < 1/2. The proof is

given in terms of a function ρ̃ : (0, 1] → (0, 1] with ρ̃(σ) depending on σ, δ,m.

The exact requirements will be given in the course of the proof. The definition

of ρ̃ uses the functions k1(·), and p1(·) from Proposition 4.3 and we assume,

without loss of generality, that these functions are monotone in each of their

arguments.

Our first requirement of ρ̃ will be that ρ̃(σ) < σ. Consider the decreasing

sequence σ0 > σ1 > · · · defined by σ0 = 1 and σi = ρ̃(σi−1). Assume that

k ≥ k1(σd1+2/δe, δ,m); this expression can be taken for k2(δ,m).

Fix µ and n large; we shall later see how large an n is desirable. For

0 ≤ q ≤ n, write

λq = Ei=q
Ä
Var(µx,i)

ä
.
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Since the intervals (σi, σi−1] are disjoint, there is an integer 1 ≤ s ≤ 1 + 2
δ such

that P0≤q≤n(λq ∈ (σs, σs−1]) < δ
2 . For this s, define

σ= σs−1,

ρ= ρ̃(σ) = σs

and set

I ′= {0 ≤ q ≤ n : λq > σ},
J ′= {0 ≤ q ≤ n : λq < ρ}.

Then by our choice of s,

(25) |I ′ ∪ J ′| >
Å

1− δ

2

ã
n.

Let ` ≥ 0 be the integer

` = [log
√
k]− p1(σ, δ,m).

Since we may take n large relative to `, by deleting at most ` elements of I ′

we can assume that I ′ ⊆ [`, n] and that (25) remain valid. Let

I = I ′ − `.

Since k ≥ k1(σ, δ,m), by our choice of parameters and the previous proposition,

Pi=q
Ä
νx,i is (δ,m)-uniform

ä
> 1− δ for q ∈ I,

which is (23).

We now turn to the slightly harder task of choosing n (i.e., determining

the appropriate condition n ≥ n2). By definition of J ′,

Ei=q
Ä
Var(µx,i)

ä
= λq < ρ for q ∈ J ′.

This and Markov’s inequality imply

(26) Pi=q
Ä
Var(µx,i) <

√
ρ
ä
> 1−√ρ for q ∈ J ′.

Fix a small number ρ′ = ρ′(δ, σ) and a large integer N = N(`, δ, ρ′) upon which

we place constraints in due course. Since we can take n large relative to N ,

we can assume I ′, J ′ ⊆ {`, . . . , n −N} without affecting the size bounds. As-

suming ρ is small enough, Corollary 4.5 tells us that any measure θ ∈ P([0, 1])

satisfying Var(θ) <
√
ρ also satisfies

P0≤i≤N
Ä
Var(θy,i) < σ and θy,i is (δ,m)-atomic

ä
> 1− ρ′.

Assuming again that
√
ρ < ρ′, the last equation and (26) give

Pq≤i≤q+N
Ä
Var(µx,i) < σ and µx,i is (δ,m)-atomic

ä
> (1−√ρ)(1− ρ′)
> 1− 2ρ′ for q ∈ J ′.
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Let

U =

ß
q ∈ N : Pi=q(Var(θy,i) <

σ

2
and θy,i is (δ,m)-atomic) > 1−

√
2ρ′
™
.

By Lemma 3.12 (i.e., Chebychev’s inequality),

|U ∩ [q, q +N ]| ≥ (1−
√

2ρ′)N for q ∈ J ′.

Apply Lemma 3.7 to J ′ and U to obtain U ′ ⊆ U satisfying |U ′| > (1−
√

2ρ′)|J ′|
and |U ′ ∩ (U ′ − `)| > (1− 2

√
2ρ′ − `

N )|U ′|. Defining

J = U ′ ∩ (U ′ − `)

and assuming that `
N < 2

√
ρ′, we conclude that

|J | ≥ (1− 3
√

2ρ′)|J ′|.

We claim that I ∩ J = ∅. Indeed, suppose q ∈ I ∩ J . Then q + ` ∈ I ′, so

λq+` ≥ σ. On the other hand, q ∈ J ⊆ U ′ − ` implies q + ` ∈ U ′ ⊆ U , so by

definition of U and assuming that 3
√

3ρ′ < σ,

λq+` =Ei=q+`(Var(µx,i))

≤ σ

2
· Pi=q+`

Å
Var(µx,i) <

σ

2

ã
+ 1 · Pi=q+`

Å
Var(µx,i) ≥ 1

2

ã
<
σ

2
· 1 + 1 · 3

√
3ρ′

<σ.

This contradiction shows that I ∩ J = ∅.
Finally, I ′ ∩ J ′ = ∅ and |I ′ ∪ J ′| > (1− δ

2)n so, assuming that 3
√

3ρ′ < δ,

|I ∪ J | = |I|+ |J | ≥ |I|+ (1− 3
√

3ρ′)|J ′| >
Å

1− δ

2

ã
|I ′ ∪ J ′| >

Å
1− δ

2

ã2

n.

This completes the proof. �

4.3. The Kăımanovich-Vershik lemma. The Plünnecke-Ruzsa inequality

in additive combinatorics roughly states that if A,B ⊆ Z and |A+B| ≤ C|A|,
then there is a subset A0 ⊆ A of size comparable to A such that |A0 +B⊕k| ≤
Ck|A|. The second ingredient in our proof of Theorem 2.7 is the following

elegant analog for entropy.

Lemma 4.7. Let Γ be a countable abelian group, and let µ, ν ∈ P(Γ) be

probability measures with H(µ) <∞, H(ν) <∞. Let

δk = H(µ ∗ (ν∗(k+1)))−H(µ ∗ (ν∗k)).

Then δk is nonincreasing in k. In particular,

H(µ ∗ (ν∗k)) ≤ H(µ) + k · (H(µ ∗ ν)−H(ν)).
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Lemma 4.7 first appears in a study of random walks on groups by Kăıma-

novich and Vershik [16]. It was more recently rediscovered by Madiman and

his co-authors [21], [22] and, in a weaker form, by Tao [35], who later made

the connection to additive combinatorics. For completeness, we give the short

proof here.

Proof. Let X0 be a random variable distributed according to µ, let Zn be

distributed according to ν, and let all variables be independent. Set Xn =

X0 + Z1 + · · · + Zn, so the distribution of Xn is just µ ∗ ν∗n. Furthermore,

since G is abelian, given Z1 = g, the distribution of Xn is the same as the

distribution of Xn−1 + g and hence H(Xn|Z1) = H(Xn−1). We now compute

H(Z1|Xn) =H(Z1, Xn)−H(Xn)(27)

=H(Z1) +H(Xn|Z1)−H(Xn)

=H(ν) +H(µ ∗ ν∗(n−1))−H(µ ∗ ν∗n).

Since Xn is a Markov process, a short calculation shows that Z1 = X1 −X0 is

independent of Xn+1 when conditioned on Xn, so

H(Z1 |Xn) = H(Z1 |Xn, Xn+1) ≤ H(Z1 |Xn+1).

Using (27) in both sides of the inequality above, we find that

H(µ ∗ ν∗(n−1))−H(µ ∗ ν∗n) ≤ H(µ ∗ ν∗n)−H(µ ∗ ν∗(n+1)),

which is the what we claimed. �

For the analogous statement for the scale-n entropy of measures on R, we

use a discretization argument. For m ∈ N, let

Mm =

ß
k

2m
: k ∈ Z

™
denote the group of 2m-adic rationals. Each D ∈ Dm contains exactly one

x ∈ Mm. Define the m-discretization map σm : R → Mm by σm(x) = v if

Dm(x) = Dm(v), so that σm(x) ∈ Dm(x).

We say that a measure µ ∈ P(Rd) is m-discrete if it is supported on Mm.

For arbitrary µ its m-discretization is its push-forward σmµ through σm, given

explicitly by

σmµ =
∑
v∈Md

m

µ(Dm(v)) · δv.

Clearly Hm(µ) = Hm(σmµ).

Lemma 4.8. Given µ1, . . . , µk ∈ P(R) with H(µi) <∞ and m ∈ N,

|Hm(µ1 ∗ µ2 ∗ · · · ∗ µk)−Hm(σmµ1 ∗ · · · ∗ σmµk)| = O(k/m).



804 MICHAEL HOCHMAN

Proof. Let π : Rk → R denote the map (x1, . . . , xk) 7→
∑k
i=1 xi. Then

µ1 ∗ · · · ∗ µk = π(µ1 × · · · × µk) and µ
(m)
1 ∗ · · · ∗ µ(m)

k = π ◦ σkm(µ1 × · · · × µk).
(Here σkm : (x1, . . . , xk) 7→ (σmx1, . . . , σmxk).) Now, it is easy to check that

|π(x1, . . . , xk)− π ◦ σkm(x1, . . . , xk)| = O(k),

so the desired entropy bound follows from Lemma 3.2(3). �

Proposition 4.9. Let µ, ν ∈ P(R) with Hn(µ), Hn(ν) <∞. Then

(28) Hn(µ ∗ (ν∗k)) ≤ Hn(µ) + k · (Hn(µ ∗ ν)−Hn(µ)) +O

Å
k

n

ã
.

Proof. Writing µ̃ = σn(µ) and ν̃ = σn(ν), Theorem 4.7 implies

H(µ̃ ∗ (ν̃∗k)) ≤ H(µ̃) + k · (H(µ̃ ∗ ν̃)−H(ν̃)).

For n-discrete measures, the entropy of the measure coincides with its entropy

with respect to Dn, so dividing this inequality by n gives (28) for µ̃, ν̃ in-

stead of µ, ν, and without the error term. The desired inequality follows from

Lemma 4.8. �

We also will later need the following simple fact.

Corollary 4.10. For m ∈ N and µ, ν ∈ P([−r, r]d) with Hn(µ), Hn(ν)

<∞,

Hm(µ ∗ ν) ≥ Hm(µ)−O
Å

1

m

ã
.

Proof. This is immediate from the identity µ∗ν =
´
µ∗δy dν(y), concavity

of entropy, and Lemma 3.2(4). (Note that µ ∗ δy is a translate of µ.) �

4.4. Proof of the inverse theorem. Recall Definitions 2.6 and 3.9.

Theorem 4.11. For every ε1, ε2 > 0 and integers m1,m2 ≥ 2, there

exists a δ = δ(ε1, ε2,m1,m2) such that for all n > n(ε1, ε2,m1,m2, δ), if ν, µ ∈
P([0, 1]), then either Hn(µ ∗ ν) ≥ Hn(µ) + δ, or there exist disjoint subsets

I, J ⊆ {0, . . . , n} with |I ∪ J | ≥ (1− ε)n and

Pi=k
Ä
µx,i is (ε1,m1)-uniform

ä
> 1− ε for k ∈ I,

Pi=k
Ä
νx,i is (ε2,m2)-atomic

ä
> 1− ε for k ∈ J.

Remark. Since, given ε1, for a suitable choice of ε2,m2 any (ε′,m′)-atomic

measure is ε1-atomic, the statement above implies Theorem 2.7.

Proof. We begin with ε1 = ε2 = ε and m1 = m2 = m and assume that m

is large with respect to ε. (We shall see how large below.) We later explain

how to remove this assumption. Choose k = k2(ε,m) as in Theorem 4.6, with

δ = ε/2. We shall show that the conclusion holds if n is large relative to the

previous parameters.
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Let µ, ν ∈ P([0, 1)). Denote

τ = ν∗k.

Assuming n is large enough, Theorem 4.6 provides us with disjoint subsets

I, J ⊆ {0, . . . , n}, with |I ∪ J | > (1− ε/2)n such that

(29) Pi=k
Å
τx,i is

Å
ε

2
,m

ã
-uniform

ã
> 1− ε

2
for k ∈ I

and

(30) Pi=k
Ä
νx,i is (ε,m)-atomic

ä
≥ 1− ε

2
for k ∈ J.

Let I0 ⊆ I denote the set of k such that

(31) Pi=k
Ä
µx,i is (ε,m)-uniform

ä
> 1− ε for k ∈ I.

If |I0| > (1− ε)n, we are done since by (30) and (31), the pair I0, J satisfy the

second alternative of the theorem.

Otherwise, let I1 = I \ I0, so that |I1| = |I| − |I0| > εn/2. We have

Pi=k
Å
τx,i is

Å
ε

2
,m

ã
-uniform and µy,i is not (ε,m)-uniform

ã
>
ε

2
for k ∈ I1.

For µx,i, τy,i in the event above, this just means that Hm(τy,i) > Hm(µx,i)+ε/2

and hence Hm(µx,i ∗ τy,i) ≥ Hm(µx,i) + ε/2 − O(1/m). For any other pair

µx,i, τy,i, we have the trivial bound Hm(µx,i ∗ τy,i) ≥ Hm(µx,i) − O(1/m).

Thus, using Lemmas 3.4, 3.5, and 4.10,

Hn(µ ∗ τ) = E0≤i≤n(Hm(µx,i ∗ τy,i)) +O

Å
m

n

ã
=
|I1|
n+ 1

Ei∈I1(Hm(µx,i ∗ τy,i))

+
n+ 1− |I1|

n+ 1
Ei∈Ic1 (Hm(µx,i ∗ τy,i)) +O

Å
m

n

ã
>
|I1|
n+ 1

Ç
Ei∈I1(Hm(µx,i)) +

Å
ε

2

ã2
å

+
n+ 1− |I1|

n+ 1
Ei∈Ic1 (Hm(µx,i)) +O

Å
1

m
+
m

n

ã
= E0≤i≤n(Hm(µx,i)) +

Å
ε

2

ã3

+O

Å
1

m
+
m

n

ã
= Hn(µ) +

Å
ε

2

ã3

+O

Å
1

m
+
m

n

ã
.

So, assuming that ε was sufficiently small to begin with, m large with respect

to ε and n large with respect to m, we have

Hn(µ ∗ τ) > Hn(µ) +
ε3

10
.
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On the other hand, by Proposition 4.9,

Hn(µ ∗ τ) = Hn(µ ∗ ν∗k) ≤ Hn(µ) + k · (Hn(µ ∗ ν)−Hn(µ)) +O

Å
k

n

ã
.

Assuming that n is large enough in a manner depending on ε and k, this and

the previous inequality give

Hn(µ ∗ ν) ≥ Hn(µ) +
ε3

100k
.

This is the desired conclusion, with δ = ε3/100k.

We now remove the largeness assumption onm. Let ε,m1,m2 be given and

choose ε′ > 0 small compared to ε, and m′ appropriately large for ε,m1,m2.

Applying what we just proved for a large enough n, we obtain corresponding

I, J ⊆ [0, n]. It will be convenient to denote U1 = I and U2 = J . Now,

for i ∈ U1, by definition of U1 and Lemma 3.11, and assuming m1/m
′ small

enough,

Pi≤j≤i+m′(µx,j is (
√

2ε′,m1)-uniform) > 1−
√

2ε′.

Thus, assuming as we may that ε <
√

2ε′, if we set

V1 = {j ∈ [0, n] : Pu=j(µ
x,u is (ε,m2)-uniform) > 1− ε},

then by Lemma 3.12 (Chebychev’s inequality), |[i, i+m′]∩V1| > (1−(2ε)1/4)m′.

Similarly, defining

V2 = {j ∈ [0, n] : Pu=j(µ
x,u is (ε,m)-atomic) > 1− ε}

and using Lemma 3.10, if m2/m is small enough, then |[j, j + m′] ∩ V2| >
(1 − (2ε)1/4)m′ for all for j ∈ U2. Now, applying Lemma 3.8 to U1, V1 and

U2, V2, we find U ′1 ⊆ U1 and U ′2 ⊆ U2 as in that lemma. Taking I ′ = U ′1 and

J ′ = U ′2, these are the desired sets.

Lastly, to allow for different parameters ε1, ε2, just take ε = min{ε1, ε2}
and apply what we have already seen. Then any (ε,m1)-uniform measure is

(ε1,m1)-uniform and any (ε,m2)-atomic measure is also (ε2,m2)-atomic, and

we are done. �

Theorems 2.8 and 2.9 are formal consequences of Theorem 2.7, as discussed

in Section 2.3.

5. Self-similar measures

5.1. Uniform entropy dimension and self-similar measures. The entropy

dimension of a measure θ ∈ P(R) is the limit limn→∞Hn(θ), assuming it

exists; by Lemma 3.4, this limit is equal to limn→∞ E0≤i≤n(Hm(θx,i)) for all

integers m. The convergence of the averages does not, however, imply that the

entropies of the components θx,i concentrate around their mean, and examples

show that they need not. We introduce the following stronger notion.
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Definition 5.1. A measure θ ∈ P(R) has uniform entropy dimension α if

for every ε > 0, for large enough m,

(32) lim inf
n→∞

P0≤i≤n(|Hm(θx,i)− α| < ε) > 1− ε.

Our main objective in this section is to prove

Proposition 5.2. Let µ ∈ P(R) be a self-similar measure and α = dimµ.

Then µ has uniform entropy dimension α.

For simplicity we first consider the case that all the contractions in the

IFS contract by the same ratio r. Thus, consider an IFS Φ = {ϕi}i∈Λ with

ϕi(x) = r(x − ai), 0 < r < 1. We denote the attractor by X and without

loss of generality assume that 0 ∈ X ⊆ [0, 1], which can always be arranged

by a change of coordinates and may be seen not to affect the conclusions. Let

µ =
∑
i∈Λ pi ·ϕiµ be a self-similar measure, and as usual write ϕi = ϕi1◦· · ·◦ϕin

and pi = pi1 · . . . · pin for i ∈ Λn.

Let

α = dimµ.

As we have already noted, self-similar measures are exact dimensional [9], and

for such measures, the dimension and entropy dimension coincide:

(33) lim
n→∞

Hn(µ) = α.

Fix x̃ ∈ X, and define probability measures

µ
[n]
x,k = c ·

∑
{pi · ϕiµ : i ∈ Λn , ϕix̃ ∈ Dk(x)} ,

where c = c(x, x̃, k, n) is a normalizing constant. Thus µ
[n]
x,k differs from µx,k in

that, instead of restricting µ =
∑
i∈Λn pi · ϕiµ to Dk(x), we include or exclude

each term in its entirety depending on whether ϕix̃ ∈ Dk(x). Since ϕiµ may

not be supported entirely on either Dk(x) or its complement, in general we

have neither µ
[n]
x,k � µx,k nor µx,k � µ

[n]
x,k. Note that the definition of µ

[n]
x,k

depends on the point x̃, but this will not concern us.

For 0 < ρ < 1, it will be convenient to write

`(ρ) = dlog ρ/ log re ,

so ρ, r`(ρ) differ by a multiplicative constant. Recall that ‖·‖ denotes the total

variation norm; see Section 3.1.

Lemma 5.3. For every ε > 0 there is a 0 < ρ < 1 such that, for all k and

n = `(ρ2−k),

(34) Pi=k
(∥∥∥µx,i − µ[n]

x,i

∥∥∥ < ε
)
> 1− ε.

Furthermore, ρ can be chosen independently of x̃ and of the coordinate system

on R. (So the same bound holds for any translate of µ.)
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Proof. It is elementary that if µ is atomic then it consists of a single atom.

In this case the statement is trivial, so assume µ is nonatomic. Then10 given

ε > 0, there is a δ > 0 such that every interval of length δ has µ-mass < ε2/2.

Choose an integer q so that rq < δ/2, and let ρ = rq.

Let k ∈ N and ` = `(2−k) so that 2−k · r ≤ r` ≤ 2−k. Let i ∈ Λ`, and

consider those j ∈ Λq such that ϕijµ is not supported on an element of Dk.
Then ϕijµ is supported on the interval J of length δ centered at one of the

endpoints of an element of Dk. Since ϕiµ can give positive mass to at most two

such intervals J , and ϕiµ(J) < ε2/2 for each such J , we conclude that in the

representation µi = 1
pi

∑
j∈Λq pij · (ϕijµ), at least 1−ε2 of the mass comes from

terms that are supported entirely on just one element of Dk. Therefore the

same is true in the representation µ =
∑
u∈Λ`+q pu · ϕuµ. The inequality (34)

now follows by an application of the Markov inequality. Finally, Since our

choice of parameters did not depend on x̃ and is invariant under translation of

µ and of the IFS, the last statement holds. �

Lemma 5.4. For ε > 0, for large enough m and all k,

Pi=k
Ä
Hm(µx,i) > α− ε

ä
> 1− ε,

and the same holds for any translate of µ.

Proof. Let ε > 0 be given. Choose 0 < ε′ < ε sufficiently small that

‖ν − ν ′‖ < ε′ implies |Hm(ν) − Hm(ν ′)| < ε/2 for every m and every ν, ν ′ ∈
P([0, 1]d) (Lemma 3.3). Let ρ be as in the previous lemma chosen with respect

to ε′. Assume that m is large enough that |Hm(µ′)− α| < ε/2 whenever µ′ is

µ scaled by a factor of at most ρ (m exists by (33) and Lemma 3.2 (5)). Now

fix k and let ` = `(ρ2−k). By the previous lemma and choice of ε′, it is enough

to show that 1
mH(µ

[`]
x,k,Dk+m) > α − ε/2. But this follows from the fact that

µ
[`]
x,k is a convex combination of measures µj for j ∈ Λ`, our choice of m and `,

and concavity of entropy. �

We now prove Proposition 5.2. Let 0 < ε < 1 be given, and fix an auxiliary

parameter ε′ < ε/2. We first show that this holds for m large in a manner

depending on ε. Specifically, let m be large enough that the previous lemma

applies for the parameter ε′. In particular, for any n,

(35) P0≤i≤n
Ä
Hm(µx,i) > α− ε′

ä
> 1− ε′.

10This is the only part of the proof of Theorem 1.3 that is not effective, but with a little

more work one could make it effective in the sense that, if lim inf − log ∆(n) = M <∞, then

at arbitrarily small scales one can obtain estimates of the continuity of µ in terms of M .
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By (33), for n large enough we have |Hn(µ)− α| < ε′/2, so by Lemma 3.4, for

large enough n we have

|E0≤i≤n
Ä
Hm(µx,i)

ä
− α| < ε′.

Since Hm(µx,i) ≥ 0, the last two equalities imply

P0≤i≤n
Ä
Hm(µx,i) < α+ ε′′

ä
> 1− ε′′

for some ε′′ that tend to 0 with ε′. Thus, choosing ε′ small enough, the last

inequality and (35) give (32), as desired.

When the contraction ratios are not uniform, ϕi = rix + ai, some minor

changes are needed in the proof. Given n, let Λ(n) denote the set of i ∈
Λ∗ =

⋃∞
m=1 Λm such that ri < rn ≤ rj , where j is the same as i but with

the last symbol deleted. (So its length is one less than i.) This ensures that

{ri}i∈Λ(n) are all within a multiplicative constant of each other. (This constant

is min{rj : j ∈ Λ}.) It is easy to check that Λ(n) is a section of Λ∗ in the

sense that every sequence i ∈ Λ∗ with ri < rn has a unique prefix in Λ(n). Now

define µ
[n]
x,k as before, but using ϕiµ for i ∈ Λ(n); i.e.,

µ
[n]
x,k = c ·

∑¶
pi · ϕiµ : i ∈ Λ(n) , ϕix̃ ∈ Dk(x)

©
.

With this modification all the previous arguments now go through.

Finally, let us note the following consequence of the inverse theorem (The-

orem 2.8).

Corollary 5.5. For every measure µ ∈ P(R) with uniform entropy di-

mension 0 < α < 1, and for every ε > 0, there is a δ > 0 and such that for all

large enough n and every ν ∈ P([0, 1]),

Hn(ν) > ε =⇒ Hn(µ ∗ ν) ≥ Hn(µ) + δ.

Similar conclusions hold for dimension.

5.2. Proof of Theorem 1.3. We again begin with the uniformly contracting

case, ϕi = rx + ai, and continue with the notation from the previous section;

in particular, assume that 0 is in the attractor. Recall from the introduction

that
ν(n) =

∑
i∈Λn

pi · δϕi(0).

Define
τ (n)(A) = µ(r−nA).

One may verify easily, using the assumption 0 ∈ X, that

(36) µ = ν(n) ∗ τ (n).

As in the introduction, write

n′ = [n log(1/r)].
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Thus τ (n) is µ scaled down by a factor of rn = 2−n
′

and translated. Using

(33), Lemma 3.2, and the fact that τ (n) is supported on an interval of order

rn = 2−n
′
, we have

lim
n→∞

1

n′
H(ν(n),Dn′) = lim

n→∞
1

n′
H(µ,Dn′) = dimµ = α.

Suppose now that α < 1. Fix a large q, and consider the identity

1

qn
H(µ,Dqn) =

n′

qn
·
Å

1

n′
H(µ,Dn′)

ã
+
qn− n′

qn
·
Å

1

qn− n′
H(µ,Dqn|Dn′)

ã
=

[log(1/r)]

q

Å
1

n′
H(µ,Dn′)

ã
+
q − [log(1/r)]

q

Å
1

qn− n′
H(µ,Dqn|Dn′)

ã
.

The left-hand side and the term 1
n′H(µ,Dn′) on the right-hand side both tend

to α as n→∞. Since r, q are independent of n, we conclude that

(37) lim
n→∞

1

qn− n′
H(µ,Dqn|Dn′) = α.

From the identity = Ei=n′(ν
(n)
y,i ) and linearity of convolution,

µ = ν(n) ∗ τ (n) = Ei=n′
(
ν

(n)
y,i ∗ τ

(n)
)
.

Also, each measure ν
(n)
y,i ∗ τ (n) is supported on an interval of length O(2−n

′
) so

|H(ν
(n)
y,i ∗ τ

(n),Dqn|Dn′)−H(ν
(n)
y,i ∗ τ

(n),Dqn)| = O(1).

By concavity of conditional entropy (Lemma 3.1 (5)),

H(µ,Dqn|Dn′) =H(ν(n) ∗ τ (n),Dqn|Dn′)

≥Ei=n′
(
H(ν

(n)
y,i ∗ τ

(n),Dqn|Dn′)
)

=Ei=n′
(
H(ν

(n)
y,i ∗ τ

(n),Dqn)
)

+O(1),

so by (37),

(38) lim sup
n→∞

1

qn− n′
Ei=n′

(
H(ν

(n)
y,i ∗ τ

(n),Dqn)
)
≤ α.

Now, we also know that

(39) lim
n→∞

1

qn− n′
H(τ (n),Dqn) = α

since, up to a re-scaling, this is just (33). (We again used the fact that τ (n) is

supported on intervals of length 2−n
′
.) By Lemma 4.10, for every component

ν
(n)
y,i ,

1

qn− n′
H(ν

(n)
y,i ∗ τ

(n),Dqn) ≥ 1

qn− n′
H(τ (n),Dqn) +O

Å
1

qn− n′
ã
.
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Therefore for every δ > 0,

lim
n→∞

Pi=n′
Å

1

qn− n′
H(ν

(n)
y,i ∗ τ

(n),Dqn) > α− δ
ã

= 1

which, combined with (38), implies that for every δ > 0,

lim
n→∞

Pi=n′
Å∣∣∣∣ 1

qn− n′
H(ν

(n)
y,i ∗ τ

(n),Dqn)− α
∣∣∣∣ < δ

ã
= 1,

and replacing α with the limit in (39), we have that for all δ > 0,

(40)

lim
n→∞

Pi=n′
Å∣∣∣∣ 1

qn− n′
H(ν

(n)
y,i ∗ τ

(n),Dqn)− 1

qn− n′
H(τ (n),Dqn)

∣∣∣∣ < δ

ã
= 1.

Now let ε > 0. By Proposition 5.2 and the assumption that α < 1, for

small enough ε, large enough m and all sufficiently large n,

Pn′<i≤qn′
Ä
Hm((τ (n))x,i) < 1− ε

ä
≥Pn′<i≤qn′

Ä
Hm((τ (n))x,i) < α+ ε

ä
.

> 1− ε

Choose δ > 0 smaller than the constant of the same name in the conclusion of

Theorem 2.8. Then, for sufficiently large n, we can apply Theorem 2.8 to the

components ν
(n)
y,i in the event in equation (40). (For this we rescale by 2n

′
and

note that the measures ν
(n)
y,n′ are supported on level-n′ dyadic cells and τ (n) is

supported on an interval of the same order of magnitude.) We conclude that

every component ν
(n)
y,i in the event in question satisfies 1

qn−n′H(ν
(n)
y,i ,Dqn) < ε,

and hence by (40),

lim
n→∞

Pi=n′
Å

1

qn− n′
H(ν

(n)
y,i ,Dqn) < ε

ã
= 1.

Thus, from the definition of conditional entropy and the last equation,

lim
n→∞

1

qn− n′
H(ν(n),Dqn|Dn′) = lim

n→∞
1

qn− n′
Ei=n′

(
H(ν

(n)
y,i ,Dqn)

)
= lim
n→∞

Ei=n′
Å

1

qn− n′
H(ν

(n)
y,i ,Dqn)

ã
<ε.

Since ε was arbitrary, this is Theorem 1.3.

5.3. Proof of Theorem 1.4 (the nonuniformly contracting case). We now

consider the situation for general IFS, in which the contraction ri of ϕi is

not constant. Again assume that 0 is in the attractor. Let r =
∏
i∈Λ r

pi
i ,

n′ = log2(1/r) as in the introduction, and define ν̃(n) as before. Given n, let

Rn = {ri : i ∈ Λn}.
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Note that |Rn| = O(n|Λ|). Therefore H(ν̃(n), {R} × F) = O(log n), and conse-

quently for all k,

H(ν̃(n), ‹Dk) = H(ν(n),Dk) +O(log n).

Thus

H(ν̃(n), ‹Dqn|‹Dn′) = H(ν(n),Dqn|Dn) +O(log n),

and our goal reduces to proving that for every q > 1,

1

qn
H(ν(n),Dqn|Dn′)→ 0 as n→∞.

Furthermore, for every ε > 0,

H(ν(n),Dqn|D(1−ε)n′) = H(ν(n),Dqn|Dn′)−O(εn),

so it will suffice for us to prove that

lim sup
n→∞

1

qn
H(ν(n),Dqn|D(1−ε)n) = o(1) as ε→ 0.

Fix ε > 0. For t ∈ Rn, let

Λn,t = {i ∈ Λn : ri = t},
pn,t =

∑
i∈Λn,t

pi,

so {pn,t}t∈Rn is a probability vector. It will sometimes be convenient to con-

sider i ∈ Λn, i ∈ Λn,t and t ∈ Rn as random elements drawn according to

the probabilities pi, pi/p
n,t, and pn,t, respectively. Then we interpret expres-

sions such as Pi∈Λn(A), Pi∈Λn,t(A) and Pt∈Rn(A) in the obvious manner, and

similarly expectations. With this notation, we can define

ν(n,t) =Ei∈Λn,t(δϕi(0)) =
1

pn,t

∑
i∈Λn,t

pi · δϕi(0).

This a probability measure on R representing the part of ν(n) coming from

contractions by t; indeed,

ν(n) =Et∈Rn(ν(n,t)).(41)

For t > 0, let τ (t) be the measure

τ (t)(A) = τ(tA).

(Note that we are no longer using logarithmic scale, so the measure that was

previously denotedτ (n) is now τ (2−n).) We then have

(42) µ = Et∈Rn(ν(n,t) ∗ τ (t)).
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Fix ε > 0. Arguing as in the previous section, using equation (42) and

concavity of entropy, we have

α= lim
n→∞

1

qn− (1− ε)n′
H(µ,Dqn|D(1−ε)n′)(43)

≥ lim sup
n→∞

1

qn− (1− ε)n′
Et∈Rn

Ä
H(ν(n,t) ∗ τ (t),Dqn|D(1−ε)n′)

ä
.

By the law of large numbers,

lim
n→∞

Pi∈Λn

Ä
2−(1+ε)n′ < ri < 2−(1−ε)n′

ä
= 1

or, equivalently,

(44) lim
n→∞

Pt∈Rn

Ä
2−(1+ε)n′ < t < 2−(1−ε)n′

ä
= 1.

Using Hk(µ)→ α and the definition of τ (t), we conclude that

lim
n→∞

Pt∈Rn

Ç
1

qn− (1− ε)n′
H(τ (t),Dqn) ≥ (1− ε)α

å
= 1.

Also, since τ (t) is supported on an interval of order t, from (44), (43) and

concavity of entropy,

α≥ lim sup
n→∞

1

qn− (1− ε)n′
Et∈RnEi=n′

(
H(ν

(n,t)
y,i ∗ τ

(t),Dqn|D(1−ε)n′)
)

(45)

= lim sup
n→∞

1

qn− (1− ε)n′
Et∈RnEi=n′

(
H(ν

(n,t)
y,i ∗ τ

(t),Dqn
)
.

This is the analogue of equation 38 in the proof of the uniformly contracting

case, and from here one proceeds exactly as in that proof to conclude that

there is a function δ(ε), tending to 0 as ε→ 0, such that

Pt∈Rn

Ç
Pi=n′

Ç
1

qn− (1− ε)n
H(ν(n,t),Dqn) < δ(ε)

åå
= 1.

Now, using equation (41) and the fact that the entropy of the distribution

{p(n,t)}t∈Rn is o(n) as n→∞, by Lemma 3.1(6) one concludes that

lim sup
n→∞

H(ν(n),Dqn|D(1−ε)n′) ≤ δ(ε),

which is what we wanted to prove.

5.4. Transversality and the dimension of exceptions. In this section we

prove Theorem 1.8. Let I ⊆ R be a compact interval for t ∈ I, and let

Φt = {ϕi,t}i∈Λ be an IFS, ϕi,t(x) = ri(t)(x−ai(t)). We define ϕi,t and ri(t) for

i ∈ Λn as usual, set ∆i,j(t) = ϕi,t(0)−ϕj,t(0) when i, j ∈ Λn, and for i, j ∈ ΛN,

define ∆i,j(t) = lim ∆i1···in,j1···jn(t). (This is well defined since limϕi1···in(0)

converges, in fact exponentially, as n→∞.)
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For i, j ∈ Λn or i, j ∈ ΛN, let i ∧ j denote the longest common initial

segment of i, j, and |i ∧ j| its length, so |i ∧ j| = min{k : ik 6= jk} − 1. Let

rmin = min
i∈Λ

min
t∈I
|ri(t)|,

so 0 < rmin < 1. For a Ck-function F : I → R, write F (p) = dp

dtpF and

‖F‖I,k = max
p∈{0,...,k}

max
t∈I
|F (p)(t)|.

In particular, we write

Rk = max
i∈Λ
‖ri‖I,k .

Definition 5.6. The family {Φt}t∈I is transverse of order k if ri(·), ai(·)
are k-times continuously differentiable and there is a constant c > 0 such that

for every n ∈ N and distinct i, j ∈ Λn,

(46)

∀ t0 ∈ I ∃ p ∈ {0, 1, 2, . . . , k} such that |∆(p)
i,j (t0)| ≥ c · |i ∧ j|−p · ri∧j(t0).

The classical notion of transversality roughly corresponds to the case k = 1

in this definition; see, e.g., [24, Def. 2.7]. Unlike the classical notion, which ei-

ther fails or is difficult to verify in many cases of interest, higher-order transver-

sality holds almost automatically. To begin with, let i, j ∈ Λn and observe that

∆i,j(t) = ri∧j(t)‹∆i,j(t)

where, writing u, v for the sequences obtained from i, j after deleting the longest

initial segment, ‹∆i,j(t) = ∆u,v(t).

Differentiating p times,‹∆(p)
i,j (t) =

dp

dtp
(ri∧j(t)

−1 ·∆i,j(t))

=
p∑
q=0

Ç
p

q

å
· d

q

dtq
(ri∧j(t)

−1) ·∆(p−q)
i,j (t).

A calculation shows that∣∣∣∣ dqdtq (ri∧j(t)
−1)

∣∣∣∣ ≤ Oq,rmin,Rq(|i ∧ j|q · ri∧j(t)−1).

Thus we have the bound

|‹∆(p)
i,j (t)| = Op,rmin,Rp

Å
max

0≤q≤p

(
|i ∧ j|q · ri∧j(t)−1 · |∆(q)

i,j (t)|
)ã

.

Proposition 5.7. Suppose ri(·), ai(·) are real-analytic on I . Suppose that

for i, j ∈ ΛN, ∆i,j ≡ 0 on I if and only if i = j. Then the associated family

{Φt}t∈I is transverse of order k for some k.
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Proof. First, for x ∈ I, we can extend ri, ai analytically to a complex

neighborhood Ux of x on which |ri| are still bounded uniformly away from 1.

Define ∆i,j(z) as before for i, j ∈ Λn and z ∈ Ux, and note that for i, j ∈ ΛN,

the limit ∆i,j(z) = lim ∆i1···in,j1···jn(z) is uniform for z ∈ Ux. This shows that

∆i,j(t) is also real-analytic on I

Given k, from the expression for ‹∆(p)
i,j above, we see that if c > 0 and there

exists t0 ∈ I such that |∆(p)
i,j (t0)| ≤ c · |i ∧ j|−p · ri∧j(t0) for all 0 ≤ p ≤ k, then

|‹∆(p)
i,j (t0)| ≤ c′ for all 0 ≤ p ≤ k, where c′ = Ok,Rk

(c). For each k, choose ck > 0

such that the associated c′k satisfies c′k < 1/k.

Suppose that for all k the family {Φt} is not transverse of order k. Then

by assumption we can choose n(k) and distinct i(k), j(k) ∈ Λn(k), and a point

tk ∈ I, such that |∆(p)

i(k),j(k)
(tk)| ≤ ck · |i(k) ∧ j(k)|−p · ri(k)∧j(k)(tk) for 0 ≤ p ≤ k,

and hence ‹∆(p)

i(k),j(k)
(tk) ≤ c′k. Let u(k) and v(k) denote the sequences obtained

from i(k) and j(k) by deleting the first |i(k) ∧ j(k)| symbols, so that the first

symbols of u(k) and v(k) now differ and ∆u(k),v(k) = ‹∆i(k),j(k) . Hence we have

(47) |∆(p)

u(k),v(k)
(tk)| ≤ c′k < 1/k for all 0 ≤ p ≤ k.

Passing to a subsequence k`, we may assume that tk` → t0 and that

u(k`) → u ∈ ΛN and v(k`) → v ∈ ΛN (the latter in the sense that all coordinates

stabilize eventually to the corresponding coordinate in the limit sequence).

Note that u 6= v, because u(k`), v(k`) differ in their first symbol for all `, hence

so do u, v. It follows that ∆u(k`),v(k`) → ∆u,v uniformly and that the same

holds for p-th derivatives. Hence for all p ≥ 0, using uniform convergence and

(47),

|∆(p)
u,v(t0)| = lim

`→∞
|∆(p)

u(k`),v(k`)
(tk`)| = 0.

But ∆u,v is real analytic, so the vanishing of its derivatives implies ∆u,v ≡ 0

on I, contrary to the hypothesis. �

We turn now to the implications of transversality. The key implication is

provided by the following simple lemma.

Lemma 5.8. Let k ∈ N, and let F be a k-times continuously differentiable

function on a compact interval J ⊆ R. Let M = ‖F‖J,k, and let 0 < b < 1 be

such that for every x ∈ J there is a p ∈ {0, . . . , k} with |F (p)(x)| > b. Then for

every 0 < ρ < (b/2)2k , the set F−1(−ρ, ρ) ⊆ J can be covered by Ok,M,|J |(1/b
k)

intervals of length ≤ 2(ρ/b)1/2k each.

Proof. For brevity, we suppress dependence on the parameters k,M, |J |,
so throughout this proof, O(·) = Ok,M,|J |(·).
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The proof is by induction on k. For k = 0, the hypothesis is that

|F (0)(x)| = |F (x)| > b for all x ∈ J , hence F−1(−ρ, ρ) = ∅ for 0 < ρ <

b/2 = (b/2)20 , and the assertion is trivial.

Assume that we have proved the claim for k− 1, and consider the case k.

Let J ′ be a maximal closed interval in F−1[−b, b], and let G = F ′|J ′ . Note that

G satisfies the hypothesis for k−1 and the same value of b and M , and
√
bρ <√

ρ < (b/2)2k−1
, so from the induction hypothesis we find thatG−1(−

√
bρ,
√
bρ)

can be covered by O(1/bk−1) intervals of length < 2(
√
bρ/b)1/2k−1

= 2(ρ/b)1/2k

each. Let U denote the union of this cover, and consider the intervals J ′i that

are the closures of the maximal subintervals in J ′\U . By the above, the number

of such intervals J ′i is ≤ O(1/bk−1). Now, on each J ′i we have |F ′| ≥
√
bρ, so

by continuity of F ′ either F ′ ≥
√
bρ or F ′ ≤ −

√
bρ in all of J ′i . An elementary

consequence of this is that J ′i ∩ F−1(−ρ, ρ) is an interval of length at most

2ρ/
√
bρ = 2

»
ρ/b ≤ 2(ρ/b)1/2k . In summary we have covered J ′ ∩ F−1(−ρ, ρ)

by O(1/bk−1) intervals of length 2(ρ/b)1/2k each.

It remains to show that there areO(1/b) maximal intervals J ′ ⊆ F−1[−b, b]
as in the paragraph above. In fact, we only need to bound the number of such

J ′ that intersect F−1(−ρ, ρ). For J ′ of this kind, if J ′ = J , we are done,

since this means there is just one such interval. Otherwise there is an endpoint

a ∈ J ′ with |F (a)| = b. There is also a point a′ ∈ J ′ with |F (a′)| < ρ < (b/2)2k .

Since |F ′| ≤ M , we conclude that |J ′| ≥ |a′ − a| ≥ (b− ρ)/M ≥ b/2M . Thus,

since the intervals J ′ are disjoint, their number is ≤ |J |/(b/2M) = O(1/b),

completing the induction step. �

Let bdimX denote the upper box dimension of a set X, defined by

bdimX = lim sup
r→0

log # min{` : X can be covered by ` balls of radius r}
log(1/r)

.

One always has dimX ≤ bdimX. The packing dimension is defined by

pdimX = inf

®
sup
n

bdimXn : X ⊆
∞⋃
n=1

Xn

´
.

Note that dimX ≤ pdimX, and Y ⊆ X implies pdimY ≤ pdimX.

Theorem 5.9. If {Φt}t∈I satisfies transversality of order k ≥ 1 on the

compact interval I , then the set E of “exceptional” parameters in Theorem 1.7

has packing (and hence Hausdorff ) dimension 0.

Proof. Write

M = sup
n

sup
i,j∈Λn

‖∆i,j‖I,k .

That M <∞ follows from k-fold continuous differentiability of ri(·), ai(·) and

the fact that |ri| are bounded away from 1 on I. By transversality there is a
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constant c > 0 such that for every t ∈ I, every n and all distinct i, j ∈ Λn,∣∣∣∣ ∂p∂tp∆i,j(t)

∣∣∣∣ > c · |i ∧ j|−p · r|i∧j|min for some p ∈ {0, . . . , k}.

We may assume that c < 1 and k ≥ 2. In what follows we suppress the

dependence on k,M, c and |I| in the O(·) notation: O(·) = Ok,M,c,|I|(·).
Fix n and distinct i, j ∈ Λn. Let b = b(n) = cn−krnmin so that the hypoth-

esis of the previous lemma is satisfied for the function F = ∆i,j and this b.

Therefore, for all 0 < ρ < (b/2)2k , the set {t ∈ I : |∆i,j | < ρ} can be covered

by at most O(1/bk) intervals of length 2(ρ/b)1/2k each.

Now let ε > 0 be such that ρ = εn satisfies ρ < (b(n)/2)2k = (cn−krnmin)2k

for all n. (This holds for all sufficiently small ε > 0.) Fixing n again, the

discussion above applies to (∆i,j)
−1(−εn, εn) for every distinct pair i, j ∈ Λn,

so ranging over all such pairs we find that

Eε,n =
⋃

i,j∈Λn , i 6=j
(∆i,j)

−1(−εn, εn)

can be covered by O(|Λ|n/b(n)k) intervals of length at most O((εn/b(n))1/2k).

Now, E ⊆ Eε where

(48) Eε =
∞⋃
N=1

⋂
n>N

Eε,n.

By the above, for each ε and N , we have

bdim

( ⋂
n>N

Eε,n

)
≤ lim
n→∞

log
Ä
|Λ|n/b(n)k

ä
log
Ä
(εn/b(n))1/2k

ä
= lim
n→∞

log
Ä
nO(1) · |Λ|kn/rknmin

ä
log

(
nO(1) · εn/2k/rn/2

k

min

)
=Ok

Ç
log(|Λ|/rmin)

log(ε/rmin)

å
.

The last expression tends to 0 as ε → 0, uniformly in N . Thus by (48), the

same is true of Eε, and E ⊆ Eε for all ε, so E has packing (and Hausdorff)

dimension 0. �

Theorem 1.8 now follows by combining Proposition 5.7 and Theorem 5.9.

5.5. Miscellaneous proofs. To complete the proof of Corollary 1.5, we have

Lemma 5.10. Let A ⊆ R be a finite set of algebraic numbers over Q.

Then there is a constant 0 < s < 1 such that any polynomial expression x of

degree n in the elements of A, either x = 0 or |x| > sn.
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Proof. Choose an algebraic integer α such that A ⊆ Q(α). Since the

statement is unchanged if we multiply all elements of A by an integer, we

can assume that the elements of A are integer polynomials in α of degree

≤ d with coefficients bounded by N for some d,N that depend only on α.

Substituting these polynomials into the expression for x, we have an expression

x =
∑dn
k=0 nkα

k, where nk ∈ N and |nk| ≤ N . It suffices to prove that any

such expression is either 0 or ≥ sn for 0 < s < 1 independent of n (but which

may depend on α and hence on d,N). In proving this last statement we may

assume that d = 1. (Replace s by s1/d and change variables to n′ = dn.)

Let α = α1, α2, . . . , αu denote the algebraic conjugates of α, and let

σ1, σ2, . . . , σu denote the automorphisms of Q(α), with σiα = αi. If x 6= 0,

then
∏u
i=1 σi(x) ∈ Z, so

1 ≤
∣∣∣∣∣ u∏
i=1

σi(x)

∣∣∣∣∣ = x ·
u∏
i=2

∣∣∣∣∣ n∑
k=0

nkσi(x)k
∣∣∣∣∣ ≤ x · u∏

i=2

n∑
k=0

nk|αi|k ≤ x · (n ·N ·αnmax)u,

where αmax = max{|α2|, . . . , |αu|}. Dividing out gives the lemma. �

We finish with some comments on Sinai’s problem, Theorem 1.11. We

first state a generalization of Theorem 1.7 needed to treat families of IFSs that

contract only on average.

Suppose that for t ∈ I we have a family Φt = {ϕi,t}i∈Λ of (not necessarily

contracting) similarities of R, and as usual write ϕi,t = ri,tUi,t + ai,t. Let p be

a fixed probability vector, and suppose that for each t we have
∑
p′i log ri < 0;

i.e., the systems contract on average. One can then show that there is a

unique probability measure µt on R satisfying µt =
∑
i∈Λ pi · ϕi,tµt [23], that

H(µt,Dm) < ∞ for every t and m, and that µt([−R,R]) → 1 as R → ∞
uniformly in t. Under these conditions one can verify the stronger property

that for every t ∈ I, we have∣∣∣Hm(µt)−Hm((µt)[−R,R])
∣∣∣ = o(1) as R→∞

uniformly in t and m.

Theorem 5.11. Let (Φt)t∈I , p, and µt be as in the preceding paragraph.

Let µ̃ denote the product measure on ΛN with marginal p, and suppose that

A ⊆ ΛN is a Borel set such that µ̃(A) > 0. Write

E =
⋂
ε>0

Ñ
∞⋃
N=1

⋂
n>N

Ñ ⋃
i,j∈A

(∆i,j)
−1((−εn, εn))

éé
.

Then dimµt = min{d, s-dimµt} for every t ∈ I \E. Furthermore, suppose that

I ⊆ R is compact and connected and that the parametrization is analytic in the

sense of Theorem 1.8. If

∀i, j ∈ A ( ∆i,j ≡ 0 on I ⇐⇒ i = j ) ,
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then the set E above is of packing (and Hausdorff ) dimension at most k − 1

and, in particular, of Lebesgue measure 0.

The proof is the same as the proofs of Theorems 1.7 and 1.8, except that

in analyzing the resulting convolution one must approximate µt by (µt)[−R,R]

for an appropriately large R that is fixed in advance, with the scale n large

relative to R. We omit the details.

Let us see how this applies to Theorem 1.11, where ϕ−1,α(x) = (1−α)x−1

and ϕ1,α(x) = (1 + α)x + 1 for α ∈ (0, 1], and p = (1/2, 1/2). It suffices to

consider the system for α ∈ [s, 1] for some s > 0. Let A be the set of i ∈ ΛN

such that | 1
N

∑N
n=1 in − 1

2 | < δ for n > N(δ), where δ > 0 small enough to

ensure that |ϕi1···in | < 1 when this condition holds, and N(δ) large enough

that µ̃(A) > 0; in fact we can make µ̃(A) arbitrarily close to 1, by the law of

large numbers. It remains to verify for i, j ∈ A that ∆i,j vanishes on [s, 1] if

and only if i = j. Note that for i ∈ {−1, 1}n,

ϕi,α(0) = 1 + (1 + i1α) + (1 + i1α)(1 + i2α) + · · ·+
n∏
k=1

(1 + ikα).

Thus ∆i,j is a series whose terms are of the form ck,m(1 − α)k(1 + α)m for

some ck,m ∈ {0,±1}, and i = j if and only if all terms are 0. Furthermore,

there is an n0 such that if k +m ≥ n0 and ck,m 6= 0, then k > (1− δ)m. Thus

since s ≤ α ≤ 1 and δ was chosen small enough, the series converges uniformly

on [s, 1] and, furthermore, there is an ε > 0 such that the series converges

uniformly on some larger interval [s, 1 + ε], and even in a neighborhood of 1

in the complex plane. Hence ∆i,j(·) is real-analytic on [s, 1 + ε] and is given

by this series. Now, if i 6= j, we can divide out by the highest power (1− α)k0

that is common to all the terms (possibly k0 = 0) and evaluate the resulting

function at α = 1. We get a finite sum of the form
∑

(k,m)∈U cm,k2
m for some

finite set of indices U ∈ N2 such that cm,k ∈ {±1} for (k,m) ∈ U . Such a sum

cannot vanish, hence by analyticity ∆i,j 6≡ 0 on every sub-interval of [s, 1 + ε]

and, in particular, ∆i,j 6≡ 0 on [s, 1], as desired.
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