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Euler systems for Rankin–Selberg
convolutions of modular forms
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Dedicated to Kazuya Kato

Abstract

We construct a Euler system in the cohomology of the tensor product of

the Galois representations attached to two modular forms, using elements

in the higher Chow groups of products of modular curves. We use these

elements to prove a finiteness theorem for the strict Selmer group of the Ga-

lois representation when the associated p-adic Rankin–Selberg L-function

is nonvanishing at s = 1.
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1. Outline

In [BDR12], Bertolini, Darmon and Rotger studied certain canonical global

cohomology classes (the “Beilinson–Flach elements,” obtained from the con-

structions of [Bĕı84] and [Fla92]) in the cohomology of the tensor products of

the p-adic Galois representations of pairs of weight 2 modular forms. They re-

lated their image under the Bloch–Kato logarithm maps to the values of p-adic
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Rankin–Selberg L-functions. These Beilinson–Flach elements are constructed

as the image of elements of the higher Chow group of a product of modular

curves.

In this paper, we construct a form of Euler system — a compatible system

of cohomology classes over cyclotomic fields — of which the Beilinson–Flach

elements are the bottom layer. We first define elements of higher Chow groups

of the product of two (affine) modular curves over a cyclotomic field,

cΞm,N,j ∈ CH2(Y1(N)2 ⊗Q(µm), 1)

for integers m ≥ 1, N ≥ 5, and j ∈ Z/mZ (cf. Definition 2.7.3). These are

obtained by considering the images of various maps from higher level modular

curves to the surface Y1(N)2, together with modular units (Siegel units) on

these curves. For m = 1, our elements reduce to those considered in [BDR12],

and as in op. cit., we show that after tensoring with Q we can construct preim-

ages of our elements in the higher Chow group of the self-product of the pro-

jective modular curve X1(N); however, in this paper (as in [Kat04]) we shall

take the affine versions as the principal objects of study.

We show two forms of compatibility relation for our generalized Beilinson–

Flach elements: firstly, relating cΞm,N,j to the pushforward of cΞm,Np,j where

p is prime (Theorem 3.1.2); secondly, relating cΞm,N,j to the pushforward (or

Galois norm) of cΞmp,N,j where p is prime and either p | N (Theorem 3.3.2) or

p - mN (Theorem 3.4.1).

We next turn to the relation between our elements and L-values. Theo-

rem 4.3.7 shows, following an argument due to Beilinson, that the images of the

elements cΞm,N,j under the Beilinson regulator map into complex de Rham co-

homology are related to the derivatives at s = 1 of Rankin–Selberg L-functions

of weight 2 modular forms. Theorem 5.6.4 is a p-adic analogue of this result,

generalizing a theorem of Bertolini–Darmon–Rotger [BDR12]; it gives a for-

mula for the image of our element for m = 1 under the p-adic syntomic regu-

lator, for a prime p - N , in terms of Hida’s p-adic Rankin–Selberg L-functions.

Next we consider the images of our elements in étale cohomology. Apply-

ing Huber’s “continuous étale realization” functor and the Hochschild–Serre

exact sequence, and projecting into the isotypical component corresponding to

a pair of eigenforms (f, g) of level N , allows us to construct Galois cohomology

classes

cz
(f,g,N)
m ∈ H1(Q(µm), V ∗f ⊗ V ∗g )

from the elements cΞm,N,j ; see Definition 6.4.4. Using the second norm relation

in the p-adic cyclotomic tower, we can modify these to construct elements of

Iwasawa cohomology groups of pairs of modular forms (under a strong “ordi-

narity” hypothesis; this is Theorem 6.8.6) or of the tensor product of Iwasawa

cohomology groups with the algebra of distributions (under a weaker “small
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slope” hypothesis; see Theorem 6.8.4). These elements satisfy compatibility

relations of Euler-system type when additional primes are added to m.

Using the first norm relation, we also obtain variation in Hida families.

More specifically, if one of the two forms (say g) is ordinary, we may deform

our cohomology classes analytically as g varies over a Hida family; cf. Theo-

rem 6.9.5. (In the special case m = 1, such results have been independently

obtained by Bertolini–Darmon–Rotger.) When f and g are both ordinary,

we obtain three-variable families that also incorporate cyclotomic twists; cf.

Theorem 6.9.8.

As an application of these constructions, we prove (under some techni-

cal hypotheses) a finiteness theorem for the strict Selmer group of a product

of modular forms (Theorem 7.4.2) when the associated p-adic Rankin–Selberg

L-function is nonvanishing at s = 1, and (under very slightly stronger hypothe-

ses) we give an explicit bound for the order of the strict Selmer group in terms

of the p-adic L-value (Theorem 7.5.1).

Remark. It is a pleasure to acknowledge the very deep debt this article

owes to the magisterial work of Kato [Kat04]. We have adopted many aspects

of the strategy and methods of Kato’s work, reused a number of his results,

and even in many cases adopted his notation. It is a pleasure to dedicate this

work to Professor Kato as a humble gift on the occasion of his 60th birthday.

Acknowledgements. Part of this work was done while the second and the
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nally, we are also grateful to the anonymous referee for a number of valuable

suggestions and corrections, to Samit Dasgupta for pointing out several er-

rors in an earlier draft and to Alan Lauder for computing the 17-adic L-value

appearing in the example of Section 7.6.

2. Generalized Beilinson–Flach elements

In this section we shall construct elements of motivic cohomology groups

of products of modular curves, using the explicit description of the motivic

cohomology given by the Gersten complex.

2.1. Modular curves. We begin by fixing notation in regard to modular

curves. We follow the conventions of [Kat04] very closely; see, in particular,

Sections 1, 2, and 5 of op. cit.
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Definition 2.1.1. For N ≥ 3, let Y (N) denote the smooth affine curve

over Q that represents the functor on the category of Q-schemes

S 7→


isomorphism classes of triples (E, e1, e2),

E an elliptic curve over S,

e1, e2 sections of E/S generating E[N ]

 .
The variety Y (N) is equipped with a left action of GL2(Z/NZ): the ele-

ment
(
a b
c d

)
maps (E, e1, e2) to (E, e′1, e

′
2) whereÇ

e′1
e′2

å
=

Ç
a b

c d

åÇ
e1

e2

å
.

In particular, this action factors through GL2(Z/NZ)/〈±1〉.
There is an obvious surjective morphism Y (N) → µ◦N , where µ◦N is the

scheme of primitive N -th roots of unity, which sends (E, e1, e2) to 〈e1, e2〉E[N ],

where 〈−,−〉E[N ] denotes the Weil pairing on E[N ]. Because the Weil pairing

is nondegenerate and alternating, the induced action of GL2(Z/NZ) on µ◦N is

given by σ ·ζ = ζdetσ; and the fibre of Y (N)(C) over the point e2πi/N ∈ µ◦N (C)

is canonically and SL2(Z/NZ)-equivariantly identified with Γ(N)\H, where H
is the upper half-plane and Γ(N) the principal congruence subgroup of level

N in SL2(Z), via the map

τ 7→ (C/(Z + Zτ), τ/N, 1/N) .

We shall mainly be working with certain quotients of the curves Y (N),

which we now define.

Definition 2.1.2. Let M,N ≥ 1, and choose L ≥ 3 divisible by both M

and N . We let Y (M,N) be the quotient of Y (L) by the action of the group®Ç
a b

c d

å
∈ GL2(Z/LZ) :

a = 1, b = 0 mod M,

c = 0, d = 1 mod N

´
.

(This is easily seen to be independent of the choice of L.)

If M + N ≥ 5, this curve represents This curve Y (M,N) represents the

functor of triples (E, e1, e2) where e1 has order M , e2 has order N , and e1, e2

generate a subgroup of E of order MN .

Definition 2.1.3. We write Y1(N) for the smooth affine curve over Q rep-

resenting the functor

S 7→


isomorphism classes of pairs (E,P ),

E an elliptic curve over S,

P a section of E/S of exact order N

 .
Remark 2.1.4. Note that the cusp∞, which corresponds to the generalized

elliptic curve
Ä
Gm/q

Z, ζN
ä
, is not defined over Q[[q]] but rather over Q(µN )[[q]],

so the q-expansions of elements of O(Y1(N)) do not necessarily lie in Q((q))

but rather in Q(µN )((q)). See, e.g., [DI95, §9.3] for further discussion.
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It is clear that Y1(N) = Y (1, N). More generally, we may use the following

proposition to identify Y1(N)×µ◦m, for m,N ≥ 1, with a quotient of a principal

modular curve:

Proposition 2.1.5. If N ≥ 3,m ≥ 1, and L ≥ 3 is divisible by both N

and m, then the map

Y (L) - Y1(N)⊗ µ◦m
(E, e1, e2) -

ïÄ
E, LN e2

ä
,
¨
L
me1,

L
me2

∂
E[m]

ò
identifies Y1(N)×µ◦m with the quotient of Y (L) by the subgroup of GL2(Z/LZ)

given by ®Ç
a b

c d

å
:
c = 0, d = 1 mod N,

ad− bc = 1 mod m

´
.

We shall be most interested in the curves Y (m,mN) for m ≥ 1, N ≥ 1.

Note that Y (m,mN) maps naturally to µ◦m, with geometrically connected

fibres. It has a left action of the group®Ç
a b

c d

å
: c = 0 mod N

´
,

compatible with the determinant action on µ◦m: if x = (E, e1, e2) is a point

of Y (m,mN), so e1 has order m and e2 has order mN , and g =
(
a b
c d

)
∈

GL2(Z/mNZ) with N |c, then

g · x = (E, ae1 + bNe2, c/Ne1 + de2).

We shall introduce some notation for maps between these curves.

Definition 2.1.6. Let m,N ≥ 1.

(1) We write tm for the morphism Y (m,mN)→ Y1(N)× µ◦m given by

(E, e1, e2) 7→
î
(E/〈e1〉, [me2]) , 〈e1, Ne2〉E[m]

ó
.

(2) For a≥1, we write τa for the morphism Y (am, amN)→Y (m,mN) given by

(E, e1, e2) 7→ (E/C, [e1], [ae2]) ,

where C is the cyclic subgroup of order a generated by me1, and [e1], [ae2]

denote the images of e1 and ae2 on E/C.

Proposition 2.1.7. Let m,N, a as above.

(1) We have a commutative diagram

Y (am, amN)
τa- Y (m,mN)

Y1(N)× µ◦am

tam

?
- Y1(N)× µ◦m,

tm

?
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where the bottom horizontal arrow is the identity map on Y1(N) and the

map µ◦am → µ◦m given by ζ 7→ ζa.

(2) For b ∈ (Z/mNZ)×, the map tm intertwines the action of
(
b 0
0 1

)
with the

automorphism σb : ζ 7→ ζb of µ◦m and
Ä
b−1 0
0 b

ä
with the diamond operator

〈b〉 on Y1(N).

Proof. The first statement is immediate from the definition of the maps

and properties of the Weil pairing, and the second is an easy verification (cf.

[Kat04, 5.7.1]). �

Remark 2.1.8. The use of the maps τa is forced on us by the nature of our

construction of zeta elements. It would be much more satisfying to use the nat-

ural degeneracy maps Y (am, amN) → Y (m,mN) given by τ ′a : (E, e1, e2) 7→
(E, ae1, ae2), but we do not know how to construct elements compatible under

these maps; see Section 2.9 below.

Notation. For compatibility with [Kat04], we shall use the alternative no-

tation Y1(N)⊗Q(µm) for Y1(N)× µ◦m.

We shall also have to deal with products of two modular curves.

Definition 2.1.9. We shall write Y (N)2 (slightly abusively) for the fibre

product Y (N)×µ◦N Y (N). This is a subvariety of Y (N)×Spec(Q)Y (N) preserved

by the subgroup ¶
(σ, τ) ∈ GL2(Z/NZ)2 : det(σ) = det(τ)

©
.

Similarly, we shall write Y (m,mN)2 for Y (m,mN) ×µ◦m Y (m,mN), which is

acted upon by the group

G=

®
(σ, τ)∈GL2(Z/mNZ)2 : det(σ)=det(τ) mod m, σ, τ=

Ç
∗ ∗
0 ∗

å
mod N

´
.

Evidently, the image of Y (m,mN)×µ◦m Y (m,mN) under tm× tm lands in

(Y1(N)× µ◦m)×µ◦m (Y1(N)× µ◦m) = Y1(N)2 × µ◦m,

so we may consider tm× tm as a morphism Y (m,mN)2 → Y1(N)2×µ◦m, which

intertwines the action of
((

b 0
0 1

)
,
(
b 0
0 1

))
∈ G with σb.

We shall also have to consider, occasionally, some more general classes of

modular curves. Here we shall only consider models over Q.

Definition 2.1.10. If Γ ⊆ SL2(Z) is a congruence subgroup, then we shall

write Y (Γ) for the variety

(Γ\Y (L))⊗Q(µL) Q,

where L is any integer ≥ 3 such that Γ ⊇ Γ(L); this variety is independent of

the choice of L.
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Remark 2.1.11. If α ∈ GL+
2 (Q), then the isomorphism of Riemann sur-

faces Y (Γ)(C) ∼= Y (αΓα−1)(C) mapping τ ∈ H to ατ extends to an algebraic

isomorphism defined over Q; similarly for degeneracy maps Y (Γ)→ Y (Γ′) for

Γ ⊆ Γ′.

The above constructions with affine modular curves also have projective

analogues where the cusps are taken into account; we shall write X(−) for the

compactified version of Y (−) in line with the standard notation.

2.2. Siegel units.

Definition 2.2.1. For (α, β) ∈ (Q/Z)2 − {(0, 0)} of order dividing N , and

c > 1 coprime to 6N , let cgα,β ∈ O(Y (N))× denote Kato’s Siegel unit, as

defined in [Kat04, §1.4].

We identify cgα,β with a holomorphic function on the upper half-plane, via

the identification of the fibre of Y (N)(C) over e2πi/N ∈ µ◦N (C) with Γ(N)\H
given in the previous section. (Note that cgα,β is defined over Q as a function

on Y (N), but in order to interpret it as a holomorphic function on H we must

make a choice of N -th root of unity, and the q-expansion coefficients of cgα,β
are in Q(µN ).)

Recall that there is an element gα,β ∈ O(Y (N))× ⊗ Q such that cgα,β =

c2gα,β − gcα,cβ.

Proposition 2.2.2 (Distribution relations). Let m ≥ 1, and let c be a

nonzero integer coprime to 6m and the orders of α, β. Then the following

relations hold :

(1a) cgα,β(mz) =
∏
β′

cgα,β′(z),

where the product is over β′ ∈ Q/Z such that mβ′ = β;

(1b) cgα,β(z/m) =
∏
α′

cgα′,β(z),

where the product is over α′ ∈ Q/Z such that mα′ = α; and

(1c) cgα,β(z) =
∏
α′,β′

cgα′,β′(z),

where the product is over pairs (α′, β′) ∈ (Q/Z)2 such that (mα′,mβ′) = (α, β).

Proof. Formula (1a) is Lemma 2.12 of [Kat04]. Formula (1b) can be

proved similarly, or it can be deduced directly from (1a) using the action

of
(

0 −1
1 0

)
. Formula (1c), which is Lemma 1.7(2) of op. cit., is immediate by

combining (1) and (2). �
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Remark 2.2.3. The three formulae above admit the following common

generalization: let M be a 2 × 2 integer matrix with positive determinant D.

Then we have

cgα,β(M · z) =
∏
α′,β′

cgα′,β′ ,

where the product is over all (α′, β′) such that (α′, β′)M ′ = (α, β), where M ′ =

(detM)M−1 is the adjugate matrix of M . Cases (1), (2) and (3) correspond

to taking M = (m 0
0 1 ), ( 1 0

0 m ) and (m 0
0 m ) respectively. The case where M is

invertible is (part of) Lemma 1.7(1) of op. cit.

We are most interested in the units cg0,1/N , which descend to units on

Y1(N). These have the following compatibility property:

Theorem 2.2.4 (Kato). If M,N,N ′ ≥ 1 are integers with prime(N ′) =

prime(N), and α is the natural projection Y (M,N ′) → Y (M,N) (which in-

duces a norm map α∗ : O(Y (M,N ′))× → O(Y (M,N))×), then we have

α∗(cg0,1/N ′) = cg0,1/N .

If N ′ = N`, where ` is prime and ` -MN , then we have

α∗(cg0,1/N ′) = cg0,1/N ·
Ä
cg0,“`−1”/N

ä−1
,

where “`−1” signifies the inverse of ` modulo N .

Proof. These statements are proved in [Kat04, §§2.11, 2.13] (in the course

of proving the norm-compatibility relation for Kato’s elements of K2, Propo-

sitions 2.3 and 2.4 of op. cit.). We reproduce the proofs briefly here.

Firstly, let us suppose prime(mN ′) = prime(mN). Let a = N ′/N . Since

prime(mN ′) = prime(mN), for each (x, y) ∈ (Z/aZ)2 we may choose an ele-

ment sxy ∈ GL2(Z/mN ′Z) of the formÇ
1 0

mNx 1 +mNy

å
.

These elements sxy are coset representatives for the quotient of the two sub-

groups of GL2(Z/mN ′Z) corresponding to Y (m,mN) and Y (m,mN ′), so we

have

α∗
Ä
cg0,1/N ′

ä
=
∏
x,y

s∗xy
Ä
cg0,1/N ′

ä
.

For any M ≥ 1, any u ∈ GL2(Z/MZ) and any α, β ∈
Ä

1
MZ/Z

ä
, we have

u∗ (cgα,β) = cgα′,β′ ,

where

(α′, β′) = (α, β) · u;
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applying this to the formula above we deduce that

α∗
Ä
cg0,1/mN ′

ä
=

∏
x,y∈Z/aZ

Ä
cgx/a,1/mN ′+y/a

ä
.

The latter expression is equal to the product of cgγ,δ over all pairs (γ, δ) such

that (aγ, aδ) = (0, 1/mN); so using the distribution property of equation (1a),

the product is cg0,1/mN as required.

In the second case, where N ′ = `N for ` - MN , we pass via the interme-

diate modular curves Y (M,N(`)) and Y (M(`), N) described in [Kat04, §2.8].

Let ϕ` : Y (M,N(`))→ Y (M(`), N) be the map defined in op. cit., correspond-

ing to z 7→ `z on H. We factor the projection α as α1 ◦ α2, where α1 and α2

are the natural maps

Y (M,N`)
α2- Y (M,N(`))

α1- Y (M,N).

By [Kat04, Step 2 of §2.13 and (2.13.2)], we have

(α2)∗
Ä
cg0,1/N`

ä
= ϕ∗`

Ä
cg0,1/N

ä
·
Ä
cg0,“`−1”/N

ä−1
,

(α1)∗ϕ
∗
` (cg0,1/N ) = cg0,1/N · (cg0,“`−1”/N )`,

(α1)∗
Ä
cg0,“`−1”/N

ä
=
Ä
cg0,“`−1”/N

ä`+1

(the last formula owing to the fact that the degree of α1 is ` + 1). Hence, on

combining these three equations, we obtain

α∗(cg0,1/N`) = (α1)∗(α2)∗
Ä
cg0,1/N`

ä
= (α1)∗

[
ϕ∗`
Ä
cg0,1/N

ä
·
Ä
cg0,“`−1”/N

ä−1
]

=
(
cg0,1/N · (cg0,“`−1”/N )`

)
·
(Ä

cg0,“`−1”/N

ä−1
)`+1

= cg0,1/N ·
Ä
cg0,“`−1”/N

ä−1
. �

Remark 2.2.5. In the above proposition we excluded from consideration

the case when N ′ = N` where ` |M (but ` - N). This case can also be treated

using Kato’s methods, or deduced directly from Step 1 of §2.13 of op. cit. by

applying the element
(

0 −1
1 0

)
, and one finds that in this case we have

α∗
Ä
cg0,1/N`

ä
= cg0,1/N · (ϕ−1

` )∗
Ä
cg0,“`−1”/N

ä
.

However, we shall solely be working with modular curves of the form Y(m,mN),

so we will not need this formula.

2.3. Integral models of modular curves. The following theorem is well

known:

Theorem 2.3.1 (Igusa). There exists a smooth scheme Y(N) over the

ring Z[ζN , 1/N ], representing the functor of Definition 2.1.1 on the category of

Z[1/N ]-schemes.
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For a sketch of the proof, see, e.g., [DR73].

Proposition 2.3.2. The Siegel units cgα,β , for all (α, β) ∈ ( 1
NZ/Z)2 −

{(0, 0)}, are elements of O(Y(N))×.

Proof. As shown in [Kat04, Prop 1.3], given an arbitrary scheme S, an

elliptic curve E/S, and an integer c > 1 coprime to 6, there exists a canonical

element cθE ∈ O(E−E[c])× whose divisor is c2(0)−E[c]. As noted in [Sch98,

§1.3], if the base S is integral and E has a torsion section x : S → E of

order N , where N > 1 is coprime to c and either N is invertible on S or

N has at least two prime factors, then x∗cθE ∈ O(S)×. Applying this with

S = Y(N), E the universal elliptic curve over S, and x the section ae1 + be2

where (α, β) = (a/N, b/N), we deduce that cgα,β extends from Y (N) to a unit

on the integral model Y(N). �

Remark 2.3.3. By passage to the quotient we also see that for any b ∈
Z/NZ, b 6= 0, the Siegel unit cg0,b/N is a unit on the canonical Z[1/N ]-model

Y1(N) of Y1(N).

2.4. Hecke correspondences. We now recall how elements of the Hecke

algebra can be interpreted as correspondences between modular curves or,

equivalently, as 1-cycles on a product of two modular curves.

Lemma 2.4.1. Let α ∈ GL+
2 (Q) and Γ1,Γ2 be finite-index subgroups of

SL2(Z). Then there is a unique morphism of varieties over Q,

σ : Y (Γ1 ∩ α−1Γ2α)→ Y (Γ1)× Y (Γ2),

such that the diagram

H
1× α

- H×H

Y (Γ1 ∩ α−1Γ2α)(C)
?

σ
- (Y (Γ1)× Y (Γ2))(C)

?

commutes (where the vertical arrows are the natural projection maps). The

image of σ is an irreducible closed subvariety of Y (Γ1)× Y (Γ2), and the map

σ is a birational equivalence onto its image.

Proof. After Definition 2.1.10 and the remarks following, the only asser-

tion that needs checking is that σ is birational. However, by Proposition A.1.4

in the appendix (applied to the subgroups Γ1 and α−1Γ2α) we know that σ is

injective away from a finite set. �
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Remark 2.4.2. This proposition is well known in the special case Γ =

SL2(Z) and α =
Ä
p 0
0 1

ä
for a prime p, where it shows that Y0(p) is the normal-

ization of the subvariety of A2 cut out by the classical modular equation of

level p; see, e.g., [DR73, §VI.6].

Lemma 2.4.3. Let Γ,Γ′ be as above, let α1, α2 ∈ GL+
2 (Q), and for i =

1, 2, let Ci be the curve in Y (Γ) × Y (Γ′) that is the image of points of the

form (z, αiz). If the double cosets Γ′α1Γ and Γ′α2Γ are distinct as subsets of

PGL+
2 (Q), then C1 ∩ C2 is a finite set.

Proof. Suppose P ∈ C1 ∩ C2. Then P admits liftings to H × H of the

form (z1, α1z1) and (z2, α2z2); and since both of these points are preimages

of P , we can find γ ∈ Γ and γ′ ∈ Γ′ such that z1 = γz2 and α1z1 = γ′α2z2.

Consequently, z2 is fixed by the element

γ−1α−1
1 γ′α2 ∈ Γ · α−1

1 α2 · (α−1
2 Γ′α2).

By Lemma A.1.2, either γ−1α−1
1 γ′α2 is the identity in PGL+

2 (Q), in which case

Γ′α1Γ and Γ′α2Γ have the same projective image; or z2 lies in one of a finite

set of orbits under the action of Γ ∩ α−1
2 Γ′α2, which implies that P lies in one

of a finite set of points of C2, as required. �

Lemma 2.4.4. Let Γ1,Γ2 ⊆ SL2(Z), and let Γ′1 ⊆ Γ1 and Γ′2 ⊆ Γ2, with

all four subgroups having finite index in SL2(Z). Let α ∈ GL+
2 (Q), and suppose

β1, . . . , βh ∈ GL+
2 (Q) are such that we have

Γ2αΓ1 =
h⊔
i=1

Γ′2βiΓ
′
1.

Let C be the curve in Y (Γ1)×Y (Γ2) that is the image of Y (Γ1 ∩α−1Γ2α)

under the map σ of Lemma 2.4.1. Then the preimage of C in Y (Γ′1)× Y (Γ′2)

is the union of h distinct curves D1, . . . , Dh, where Di is the image of the map

σi : Y (Γ′1 ∩ β−1
i Γ′2βi)

- Y (Γ′1)× Y (Γ′2)

z - (z, βiz).

Moreover, if for each i we choose some γi ∈ Γ1 such that βi ∈ Γ2αγi, then

we have a commutative diagram

(2)

Y (Γ′1 ∩ β−1
i Γ′2βi)

σi- Y (Γ′1)× Y (Γ′2)

Y (Γ1 ∩ α−1
i Γ2αi)

z 7→ γiz

?
σ
- Y (Γ1)× Y (Γ2),

?

where the right-hand vertical arrow is the natural projection map.
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Proof. The definition of γi implies that diagram (2) commutes, from which

it is clear that Di is a lifting of C. By Lemma 2.4.3, the Di are distinct.

It remains only to check that the union of the Di exhausts the preimage

of C. Let P ∈ C, and let P̃ be any lifting of P to H × H. Then we have

P = (γ1z, γ2αz) for some γ1 ∈ Γ1 and γ2 ∈ Γ2; so P = (w, γ2αγ
−1
1 w), where

w = γ1z ∈ H. We have γ2αγ
−1
1 ∈ Γ′2βiΓ

′
1 for some i ∈ {1, . . . , h} so, in

particular, the image of P̃ in Y (Γ′1)× Y (Γ′2) lies in Di as required. �

Lemma 2.4.5. Let Γ be a finite-index subgroup of SL2(Z), and let Γ1,Γ2

be finite-index subgroups of Γ such that Γ1Γ2 = Γ. Then, in the diagram of

modular curves

Y (Γ1 ∩ Γ2)
α
- Y (Γ1)

Y (Γ2)

β

? δ
- Y (Γ),

γ

?

where α, β, γ, δ are the natural projection maps, the two maps O(Y (Γ1))× →
O(Y (Γ2))× given by β∗ ◦ α∗ and δ∗ ◦ γ∗ coincide, and similarly the maps

O(Y (Γ2))× → O(Y (Γ1))× given by α∗ ◦ β∗ and γ∗ ◦ δ∗ coincide.

Proof. Note that the hypotheses are symmetric in Γ1 and Γ2, so it suffices

to show that β∗ ◦ α∗ = δ∗ ◦ γ∗. Moreover, since all of the morphisms in the

diagram are surjective, the corresponding pullback morphisms are injective, so

it suffices to show that

β∗ ◦ β∗ ◦ α∗ = β∗ ◦ δ∗ ◦ γ∗.

Since the diagram commutes, this is equivalent to

(β∗ ◦ β∗) ◦ α∗ = α∗ ◦ (γ∗ ◦ γ∗).

However, the map (β∗ ◦ β∗) is given by the product over translates by coset

representatives for (Γ1 ∩Γ2)\Γ2, and the map (γ∗ ◦ γ∗) is given by the product

over coset representatives for Γ1\Γ. However, since Γ1Γ2 = Γ, the natural map

(Γ1 ∩ Γ2)\Γ2 → Γ1\Γ

is surjective. Thus these two quotients admit a common set of coset represen-

tatives, so the two maps coincide. �

Remark 2.4.6. One can interpret this more “categorically” as follows: our

hypotheses imply that the diagram in the statement of the lemma is Cartesian

(in the category of curves and dominant rational maps), so Y (Γ1 ∩ Γ2) is

birational to the fibre product of Y (Γ1) and Y (Γ2) over Y (Γ). The symmetry

of pushforward and pullback is then a general property of fibre products.
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2.5. Motivic cohomology, higher Chow groups and the Gersten complex.

We now recall the definition of the higher Chow group CH2(X, 1) of a variety

X and how it may be explicitly calculated using the Gersten complex. In this

section k may be any field of characteristic 0. Let Var(k) be the category of

varieties over k, by which we mean separated schemes of finite type over k.

Let Sm(k) be the full subcategory of smooth varieties. Let A = Q or Z be the

coefficient ring.

Definition 2.5.1 (Voevodsky; cf. [MVW06, Def. 3.4]). Let X ∈ Sm(k), and

p, q ∈ Z with q ≥ 0. Define the motivic cohomology of X to be

Hp
M(X,A(q)) = Hp

Zar(X,Z(q)⊗A),

where Z(q) denotes Voevodsky’s motivic complex of sheaves on X and Hp
Zar

denotes hypercohomology (with respect to the Zariski topology).

Remark 2.5.2.

(1) We use a slightly different notation than Voevodsky; the notation used in

op. cit. is H i,j(X,A). Our choice of notation follows [Hub00] and [Lev04].

(2) Note that Hp
M(X,A(q)) is zero for p > inf(2q, q+ dimX). It is not known

to be zero for p < 0 since the motivic complex is not bounded below.

We shall not use the definition of motivic cohomology directly; we shall

rather use the fact that these groups are isomorphic to Bloch’s higher Chow

groups:

Theorem 2.5.3. For any X ∈ Sm(k) and any p, q ≥ 0, there is a natural

isomorphsim

Hp(X,Z(q)) ∼= CHq(X, 2q − p).

Here, the higher Chow groups are those defined by Bloch.

Proof. See [Voe02, Cor. 2] or [Lev04, Th. 1.2]. �

We also have an alternative description of these groups in terms of Quillen

K-theory. We will actually be interested in the special case when p = 3 and

q = 2. Here, we use a result of Landsburg [Lan91]. For X smooth over a field,

m ≥ 0 and 0 ≤ p ≤ m, he constructs a map

Ψm,p : CHm(X,m− p) - Hp(X,Km),

where Km is the sheafification of U 7→ Km(U) on X. Here, Km denotes the

m-th Quillen K-group.

Theorem 2.5.4. The map Ψm,p is an isomorphism for p = m− 1.

Proof. See [Lan91, Th. 2.5]. �
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Remark 2.5.5. For p < m− 1, the map Ψm,p may not be an isomorphism

in general. As pointed out to us by Landsburg in a discussion on http://

mathoverflow.net/, if X = Spec(k), then CHm(X,m) is the Milnor K-group

KM
m (k) (by a theorem of Nesterenko–Suslin) and the map Ψm,0 : KM

m (k) →
H0(X,Km) = Km(k) is the natural map from Milnor to Quillen K-theory,

which is not generally an isomorphism for m > 2.

Finally, we address the question of how to explicitly describe elements of

these groups.

Proposition 2.5.6. Suppose that X is a smooth variety of finite type

over a field k. Then there is a resolution of the sheaf Km

0 - Km
-

∐
x∈X0

(ix)∗Km(k(x)) -
∐
x∈X1

(ix)∗Km−1(k(x)) - · · · .

Proof. See [Qui73]. �

Corollary 2.5.7. The group H1(X,K2) is the first homology group of

the “Gersten complex”

(3) Gerst2(X) :
∐
x∈X0

K2(k(x))
d0-

∐
x∈X1

k(x)×
d1-

∐
x∈X2

Z,

where d0 is the tame symbol map and d1 maps a function to its divisor (cf.

[Fla92, §2]).

Combining the above results, we get the following statement:

Proposition 2.5.8. Assume that X is a smooth variety of finite type

over a field k. Then we have isomorphisms

H1(Gerst2(X)) ∼= H1(X,K2) ∼= CH2(X, 1) ∼= H3
M(X,Z(2)).

We shall use these to identify CH2(X, 1) with H1(Gerst2(X)); it is the

latter group in which we shall actually construct elements.

Notation. We shall write Z2(X, 1) to denote the kernel of the boundary

map d1 in the Gersten complex Gerst2(X), so

Z2(X, 1) =

{∑
i

(Ci, φi) : Ci ∈ X1, φi ∈ k(Ci)
×,
∑
i

div(φi) = 0

}
.

This is a slight abuse of notation since in Bloch’s theory of higher Chow

groups, Z2(X, 1) is used to denote something slightly different (a certain sub-

group of the codimension 2 cycles on X × A1); but we shall not use Bloch’s

construction directly in this paper, so this abuse should cause no confusion.

http://mathoverflow.net/
http://mathoverflow.net/
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Remark 2.5.9. We shall, in fact, construct a “Euler system” in the groups

Z2(X, 1) as X varies over a family of modular surfaces; that is, our compatibil-

ity properties will hold at the level of cycles, rather than just after quotienting

out by the image of tame symbols. The groups Z2(X, 1) are much easier to

work with, as they have good descent properties: for a finite surjective map

X → Y , the pullback Z2(Y, 1)→ Z2(X, 1) is injective.

This is, in a sense, analogous to the fact that in the construction of [Kat04]

the compatibility properties of the Euler system in K2 of modular curves are

proved at the level of K1 ⊗ K1, before quotienting by elements of the form

x⊗ (1− x).

2.6. Zeta elements on Y (m,mN). We begin by defining elements of the

group Z2(Y (m,mN)2, 1), which we shall call zeta elements.

Definition 2.6.1. For m,N ≥ 1, the curve Cm,N,j ⊆ Y (m,mN)2 is defined

as the subvariety Ç
u, v : v =

Ç
1 j

0 1

å
u

å
.

For c > 1 coprime to 6mN , we define

cZm,N,j = (Cm,N,j , φ) ∈ Z2(Y (m,mN)2, 1),

where φ ∈ O(C)× is the pullback of cg0,1/mN along either of the projections

Cm,N,j → Y (m,mN).

The first properties of these elements are the following:

Proposition 2.6.2. The elements cZm,N,j have the following properties :

(1) We have ρ∗cZm,N,j = cZm,N,−j , where ρ is the involution of Y (m,mN)2

that interchanges the factors.

(2) For c, d > 1 coprime to 6mN , the elementñ
d2 −

ÇÇ
d 0

0 d

å
,

Ç
d 0

0 d

åå∗ô
· cZm,N,j

is symmetric in c and d. In particular, there exists a unique element

Zm,N,j ∈ Z2(Y (m,mN)2, 1)⊗Q

such that cZm,N,j =
[
c2 − (( c 0

0 c ) , ( c 0
0 c ))

∗]Zm,N,j for any c.

(3) We have ÇÇ
b 0

0 1

å
,

Ç
b 0

0 1

åå∗
cZm,N,j = cZm,N,b−1j

for any b ∈ (Z/mNZ)×.
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Proof. Part (1) is obvious, and part (2) follows immediately from the fact

that the Siegel units cgα,β satisfy

(d2
cgα,β − cgdα,dβ) = (c2

dgα,β − dgcα,cβ)

for any α, β ∈ 1
NZ/Z− {(0, 0)} and any c, d > 1 coprime to 6mN (cf. [Kat04,

Prop. 1.3(2)]). We may then define Zm,N,j = (c2 − 1)−1
cZm,N,j for any c > 1

congruent to 1 modulo mN .

Property (3) follows from the identity
(
b 0
0 1

)−1
Ä

1 j
0 1

ä
=
Ä

1 b−1j
0 1

ä (
b 0
0 1

)−1
.

�

2.7. Generalized Beilinson–Flach elements. The Beilinson–Flach elements

of [BDR12] are elements of CH2(Y1(N)2, 1) defined as (∆, φ), where ∆ is the

diagonal and φ is a suitable modular unit on ∆. Our generalization of this

is motivated by the observation that one can recover the twists of a modular

form by Dirichlet characters modulo m from the “shifted” forms f(x + a/m)

for a ∈ (Z/mZ)×; this is also the idea underlying the construction of the p-adic

L-function of a single modular form using modular symbols.

Lemma 2.7.1. Let m,N ≥ 1 with m2N ≥ 5, and let j ∈ Z. Then there is

a unique morphism of algebraic varieties over C,

κj : Y1(m2N)⊗ C→ Y1(N)⊗ C,

such that the diagram of morphisms of complex-analytic manifolds

H
z 7→ z + j/m

- H

Y1(m2N)(C)
? κj - Y1(N)(C)

?

commutes. The morphism κj is defined over Q(µm) and depends only on the

residue class of j mod m.

Proof. The existence of such a map at the level of quotients of H follows

immediately from the inclusion of matrix groupsÇ
1 j

m

0 1

å
Γ1(m2N)

Ç
1 − j

m

0 1

å
⊆ Γ1(N).

However, in order to descend to an algebraic morphism over Q(µm) we use the

canonical models above.

We first consider the map Y (m2N) → Y (m,mN) which maps (E, e1, e2)

to (E/〈me2〉, [mNe1], [e2]). This factors through the quotient by the subgroup
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( u ∗0 1 ) : u = 1 mod mZ, which we have identified with Y1(m2N)⊗Q(µm). This

map is compatible with z 7→ mz on H. We now consider the composition

Y1(m2N)× µm - Y (m,mN)

Ä
1 j
0 1

ä
- Y (m,mN)

tm- Y1(N)× µm,

where tm is as in Definition 2.1.6. All three morphisms are maps of Q(µm)-

varieties (i.e., they commute with the projection maps to µm); and on the fibre

over ζm ∈ µm(C) they correspond to z 7→ mz, z 7→ z+ j, and z 7→ z/m, so the

composition corresponds to z 7→ z + j/m. �

Definition 2.7.2. For m,N, j as above, let ιm,N,j be the map

(1, κj) : Y1(m2N)× µm → Y1(N)2 × µm,

and let Cm,N,j be the irreducible curve in Y1(N)2 that is the image of ιm,N,j .

We now use these curves Cm,N,j to define a class in CH2(Y1(N)2×µm, 1),

using the presentation of the latter group given by the Gersten complex.

Definition 2.7.3. Let N ≥ 5, m ≥ 1, j ∈ Z/mZ as above. Let c ≥ 1 be

coprime to 6mN , and let α ∈ Z/m2NZ. We define the generalized Beilinson–

Flach element

cΞm,N,j,α ∈ CH2
Ä
Y1(N)2 ⊗Q(µm), 1

ä
as the class of the pairÄ

Cm,N,j , (ιm,N,j)∗(cg0,α/m2N )
ä
∈ Z2

Ä
Y1(N)2 × µm, 1

ä
.

When α = 1, we drop it from the notation and write simply cΞm,N,j .

The following proposition shows that these zeta elements are simply the

“Y1-versions” of those defined in the previous section:

Proposition 2.7.4. The generalized Beilinson–Flach element cΞm,N,j,α
is the pushforward of the elementÇÇ

α 0

0 α

å
,

Ç
α 0

0 α

åå∗
cZm,N,j ∈ Z2(Y (m,mN)2, 1)

along the map tm× tm : Y (m,mN)2 → Y1(N)2×µm introduced in Section 2.1.

Proof. It is clear from the construction of the map κm,N,j that Cm,N,j is

the image of Cm,N,j under tm× tm. So it suffices to show that the pushforward

of cg0,1/m2N from Y1(m2N)⊗Q(µm) to Y (m,mN) along the map constructed

above is cg0,1/mN .

Let U be the subgroup of GL2(Z/m2NZ) consisting of elements
(
a b
c d

)
that satisfy c = 0, d = 1 mod m2N and a = 1 mod m (and b arbitrary). This

is clearly contained in the subgroup U ′ of elements satisfying a = 1 mod m,

c = 0 mod m2N and d = 1 mod mN , and a set of coset representatives for
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U/U ′ is given by the matrices®Ç
1 0

0 1 +mNt

å
: 0 ≤ t < m

´
.

Hence the pushforward of cg0,1/m2N from U\Y (m2N) to U ′\Y (m2N) is given

by ∏
0≤t<m

Ç
1 0

0 1 +mNt

å∗
cg0,1/m2N =

∏
0≤t<m

cg0,1/m2N+t/m.

By Proposition 2.2.2(2), this is equal to ϕ∗m
Ä
cg0,1/mN

ä
. However, conjugation

by (m 0
0 1 ) sends U ′ to the subgroup

U ′′ =

®Ç
a b

c d

å
:
a = 1, b = 0 mod m,

c = 0, d = 1 mod mN

´
,

and we have U ′′\Y (m2N) = Y (m,mN). �

We now record some properties of the generalized Beilinson–Flach ele-

ments.

Proposition 2.7.5. The elements above have the following properties :

(1) The element cΞm,N,j,α only depends on the congruence class of α mod-

ulo mN (not m2N ).

(2) The involution of Y1(N)2 ⊗ Q(µm) given by switching the two factors

interchanges cΞm,N,j and cΞm,N,−j .

(3) For q ∈ (Z/mZ)×, we have σ∗q (cΞm,N,j,α) = cΞm,N,q−1j,α, where σq ∈
Gal(Q(µm)/Q) is the arithmetic Frobenius at q.

(4) For any r ∈ (Z/mNZ)×, we have

cΞm,N,j,rα = 〈d× d〉∗cΞm,N,k,α,

where k = r−2j ∈ Z/mZ, d is the image of r in (Z/NZ)×, and 〈d× d〉
denotes the action on Y1(N)2 ⊗Q(µm) of the elementÇ

d−1 0

0 d

å
×
Ç
d−1 0

0 d

å
∈ SL2(Z/NZ)2.

(5) For c, d coprime to 6mN , the expression

d2
cΞm,N,j,α − cΞm,N,j,dα

is symmetric in c and d. In particular, there exist well-defined elements

Ξm,N,j,α ∈ CH2(Y1(N)2 ⊗Q(µm), 1)⊗Q such that we have

cΞm,N,j,α = c2Ξm,N,j,α − Ξm,N,j,cα = (c2 − 〈c× c〉∗σ2
c ) Ξm,N,j,α.
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Proof. After Proposition 2.7.4, parts (1) and (2) are immediate. The

remaining statements follow from Proposition 2.6.2, together with the fact that

tm intertwines the action of
(
d 0
0 1

)
on Y (m,mN) with the arithmetic Frobenius

σd on Y1(N)× µm (Proposition 2.1.7(2)). �

2.8. Cuspidal components. In the preceding sections we have constructed

elements of the higher Chow groups of affine surfaces. In order to be able to

apply results on regulator maps, it is convenient to have elements of Chow

groups of projective surfaces instead. We shall show that this can be achieved,

but not in a canonical way, and only at the cost of tensoring with Q.

Theorem 2.8.1. Let N,m, j be as in Definition 2.7.3. Then the element

Ξm,N,j of CH2(Y1(N)2 ⊗Q(µm), 1)⊗Q is in the image of the pullback map

CH2(X1(N)2 ⊗Q(µm), 1)⊗Q→ CH2(Y1(N)2 ⊗Q(µm), 1)⊗Q

induced by the open embedding Y1(N) ↪→ X1(N).

We will actually prove a slightly more precise statement; see Proposi-

tion 2.8.5 below.

Recall that we constructed cΞm,N,j as the class in CH2(Y1(N)2⊗Q(µm), 1)

of an explicit element of Z2(Y1(N)2 ⊗ Q(µm), 1), which we shall temporarily

denote by cYm,N,j . It is clear that we may also regard cYm,N,j as an element

of Gerst1
2(X1(N)2 ⊗ Q(µm)), whose divisor is not necessarily trivial, but is

supported on the cuspidal locus.

We will need a preparatory lemma. Let K be any number field.

Definition 2.8.2. We shall call an element of Gerst1
2(X1(N)2⊗K) negligible

if it is supported on a finite union of curves of the form {c} × X1(N) or

X1(N)× {d} for points c, d ∈ X1(N)\Y1(N).

Remark 2.8.3. Here by “point” we mean a 0-dimensional point of the

K-scheme X1(N)\Y1(N), i.e., a Gal(K/K)-orbit of points in the naive sense.

Note that this is slightly more restrictive than the definition of “negligible” in

[BDR12].

Before proving the theorem, we will need the following preparatory lemma:

Lemma 2.8.4. Let K be any number field, and let u, v, x, y be cuspidal

points of X1(N)⊗K . Then there exists a negligible element in Gerst1
2(X1(N)2

⊗K)⊗Q with divisor (u, v)− (x, y).

Proof. By the Manin–Drinfeld theorem [Dri73], there exist elements f, g ∈
O(Y1(N)⊗K)×⊗Q whose divisors are v− y and u− x, respectively. The the

element

({u} ×X1(N), f) + (X1(N)× {y}, g)

has the required property. �



672 A. LEI, D. LOEFFLER, and S. L. ZERBES

We can now prove the following proposition:

Proposition 2.8.5. Let N,m, j, c be as in Definition 2.7.3. Then there

exist an integer r ≥ 1 and a negligible element Θ such that

R · cYm,N,j + Θ ∈ Z1(Gerst2(X1(N)2 ⊗Q(µm))).

Proof. Recall that ιm,N,j is the map

ιm,N,j = (1, κj) : Y1(m2N)→ Y1(N)2,

where κj is induced from the map H → H given by z 7→ z + j
m . It follows

that, if we regard cYm,N,j as an element of Z2(X1(N)2 ⊗ Q(µm), 1), then

Div
Ä
cYm,N,j

ä
is a linear combination of divisors of the form (c1, c1 + j

m) −
(c2, c2 + j

m). But Lemma 2.8.4 implies that there exists a negligible element

Θ ∈ Gerst1
2(X1(N) ⊗ Q(µm)) such that Div(Θ) = Div

Ä
cYm,N,j

ä
. Then the

element

cXm,N,j := cYm,N,j −Θ ∈ Z2(X1(N)2 ⊗Q(µm), 1)⊗Q
has the required properties. �

This clearly implies Theorem 2.8.1.

Remark 2.8.6.

(1) Note that the negligible element Θ is not uniquely determined. How-

ever, as we will see below, this will not matter for the evaluation of the

element via the Beilinson or the syntomic regulator.

(2) Since X1(N)2 and Y1(N)2 have the same rational function field, any

element of CH2(X1(N)2 ⊗ Q(µm), 1) ⊗ Q lifting cΞm,N,j is necessarily

the class of an element of Z2(X1(N)2 ⊗ Q(µm), 1) ⊗ Q differing from

cYm,N,j by a negligible element.

(3) Since there are only finitely many cusps on X1(N), the constant R may

be chosen to be independent of c, m and j, although it may of course

depend on N .

2.9. Zeta elements versus generalized Beilinson–Flach elements. At the

referee’s request, we shall briefly clarify the relations between the two classes

of elements we have introduced (the zeta elements cZm,N,j and the generalized

Beilinson–Flach elements cΞm,N,j) and how they would relate to a hypothetical

“optimal” construction. Recall that the element cZm,N,j lies in the group

CH2(Y (m,mN)2, 1), and the element cΞm,N,j ∈ CH2(Y1(N)2 ⊗ Q(µm), 1) is

the pushforward of cZm,N,j via the morphism tm × tm of Section 2.1. It is the

elements cΞm,N,j that will be used in Sections 4–7 of this paper in order to

bound Selmer groups.

One reason for introducing the elements cZm,N,j is that they are somewhat

easier to work with than the cΞm,N,j . In the next section we shall prove
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norm-compatibility relations for the cZm,N,j and deduce norm relations for

the cΞm,N,j as a consequence; given the somewhat opaque map ιm,N,j entering

into the definition of the elements cΞm,N,j , it seems unlikely that these norm

relations could be proved without the introduction of some auxilliary higher-

level modular curve.

A second reason to consider the elements cZm,N,j is the following opti-

mistic idea: Let us fix a prime p, and a level N coprime to p, and let us consider

the curves Y (pr, Npr) for r ≥ 0, and their self-products Y (pr, Npr)2. These

form a tower of surfaces with Galois group GL2(Zp)×detGL2(Zp). Let us imag-

ine that we could construct a norm-compatible family of elements in the higher

Chow groups of this tower, analogous to the compatible family of elements in

K2 of the GL2(Zp)-tower of modular curves constructed by Kato in [Kat04].

Then one could potentially perform a “non-abelian twisting” operation analo-

gous to equation (8.4.3) of op. cit. in order to obtain classes in the cohomology

groups attached to pairs of modular forms of arbitrary weights k, ` ≥ 2.

The elements cZpr,N,j represent our best attempt to realize this dream.

They do indeed live on the surfaces Y (pr, Npr)2; but the norm-compatibility

relation they satisfy (Theorem 3.3.1) involves the “twisted” degeneracy map

τp : Y (pr+1, Npr+1)→ Y (pr, Npr) of Definition 2.1.6, given by z 7→ z/p on the

upper half-plane H, rather than the natural one corresponding to the identity

map on H. The norm-compatibility relation also involves a Hecke operator

at p, which does not appear in the setting of [Kat04]. Consequently, our

methods will only allow us to construct cohomology classes for Rankin–Selberg

convolutions of higher weight forms under additional ordinarity assumptions,

when we can use Hida’s theory of p-adic families in order to pass from weight

2 to general weights.

3. Norm relations for generalized Beilinson–Flach elements

3.1. The first norm relation : varying N . We now consider the relation

between the zeta elements at different levels N (for fixed m and j).

Theorem 3.1.1 (First norm relation). Let α be the natural projection

Y (m,mN ′) → Y (m,mN), where N and N ′ are positive integers such that

N | N ′.
(1) If prime(N ′) ⊆ prime(mN), then the pushforward map

(α× α)∗ : CH2(Y (m,mN ′)2, 1)→ CH2(Y (m,mN)2, 1)

maps cZm,N ′,j to cZm,N,j .
(2) If N ′ = N`, where ` - mN is prime, then

(α× α)∗ (cZm,N`,j) =

ñ
1−
ÇÇ

`−1 0

0 `−1

å
,

Ç
`−1 0

0 `−1

åå∗ô
cZm,N,j ,

where
Ä
`−1 0
0 `−1

ä
is considered as an element of GL2(Z/mNZ).
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Proof. It is clear that the map α commutes with the action of
Ä

1 j
0 1

ä
, so we

have (α×α)(Cm,N ′,j) = Cm,N,j ; more precisely, we have a commutative diagram

Y (m,mN ′)
(1,
Ä

1 j
0 1

ä
)
- Cm,N ′,j

Y (m,mN)

α

? (1,
Ä

1 j
0 1

ä
)
- Cm,N,j .

α× α

?

From Theorem 2.2.4, we know that if prime(mN ′) = prime(mN), then

α∗
Ä
cg0,1/mN ′

ä
= cg0,1/mN , so part (1) of the theorem follows. For part (2), we

deduce from the second part of Theorem 2.2.4 that

(α× α)∗
(
cZm,N ′,j

)
= cZm,N,j − cZm,N,j,“`−1”,

where we write cZm,N,j,a for the element formed with cg0,a/mN in place of

cg0,1/mN . However, we have

cg0,“`−1”/mN =
Ä
`−1 0
0 `−1

ä∗
cg0,1/mN

as elements of O(Y (m,mN))×, and the action of
Ä
`−1 0
0 `−1

ä
evidently commutes

with that of
Ä

1 j
0 1

ä
. �

We now deduce a compatibility relation for zeta elements on Y1(N)2 ⊗
Q(µm).

Theorem 3.1.2 (First norm relation on Y1(N)). Let α be the natural

projection Y1(N ′)→ Y1(N), where N,N ′ are positive integers such that N | N ′.
If prime(mN ′) = prime(mN), then we have

(α× α)∗
(
cΞm,N ′,j

)
= cΞm,N,j .

If N ′ = `N where ` - mN , then we have

(α× α)∗
(
cΞm,N ′,j

)
=
î
1− (〈`−1〉, 〈`−1〉)∗σ−2

`

ó
cΞm,N,j ,

where σ` denotes the arithmetic Frobenius at `.

Proof. This follows immediately from Theorem 3.1.1, since the map πm,N :

Y (m,mN)→ Y1(N)× µm intertwines
Ä
`−1 0
0 `

ä
with the diamond operator 〈`〉,

and
(
` 0
0 1

)
with the Frobenius σ`. �

3.2. Hecke operators. We define Hecke operators, following [Kat04, §§2.9,

4.9]. Let ` be prime, and let M,N ≥ 1. (We allow ` |M or ` | N .) We define a
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correspondence on Y (M,N) as follows. We have a diagram of modular curves

Y (M(`), N)

Y (M,N)

π1

?
Y (M,N),

π
2

-

where π1 is the natural degeneracy map, corresponding to the identity on H,

and π2 is the “twisted” degeneracy map, corresponding to z 7→ z/` on H. (In

the notation introduced in the proof of Theorem 2.2.4 above, π1 was denoted

pr1, and π2 is the composite of ϕ−1
` : Y (M(`), N) → Y (M,N(`)) with the

natural projection Y (M,N(`))→ Y (M,N).)

We denote the correspondence (π2)∗(π1)∗ by T ′` if ` - MN and by U ′` if

` | MN . We denote the operator (π1)∗(π2)∗ by T` (resp. U`); these latter

operators T`, U` are the familiar Hecke operators of the transcendental theory,

but it is the T ′`, U
′
` that will concern us most here.

3.3. The second norm relation for ` | N . Our goal in this section is to

prove the following theorem:

Theorem 3.3.1 (Second norm relation, ` | N case). Let m ≥ 1, N ≥ 5,

and let ` be a prime dividing N . Let τ` denote the degeneracy map

Y (m`,m`N)→ Y (m,mN)

of Definition 2.1.6, compatible with z 7→z/` on H. Then for any j∈(Z/`mZ)×,

and c > 1 coprime to 6`mN , we have

(τ` × τ`)∗ (cZ`m,N,j) =

(U ′` × U ′`) (cZm,N,j) if ` | m,

(U ′` × U ′` −∆∗` ) (cZm,N,j) if ` - m,

where ∆` denotes the action of any element of GL2(Z/mNZ)2 of the form

(( x 0
0 1 ) , ( x 0

0 1 )) with x = ` mod m.

We shall prove Theorem 3.3.1 below. First, we note that it implies the fol-

lowing property of the generalized Beilinson–Flach elements cΞm,N,j on Y1(N):

Theorem 3.3.2 (Second norm relation on Y1(N), ` | N case). Let m≥ 1,

N ≥ 5, ` a prime dividing N , j ∈ (Z/`mZ)×, and c ∈ (Z/`mNZ)×. Then we

have

norm`m
m (cΞ`m,N,j) =

(U ′` × U ′`) (cΞm,N,j) if ` | m,

(U ′` × U ′` − σ`) (cΞm,N,j) if ` - m,

where norm`m
m denotes the Galois norm map, and σ`, for ` - m, denotes the

arithmetic Frobenius at ` in Gal(Q(µm)/Q).
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Proof of Theorem 3.3.2 (assuming Theorem 3.3.1). Let

tm × tm : Y (m,mN)2 → Y1(N)2 ⊗Q(µm)

be the map of Section 2.1. This map commutes with the actions of (U ′`, U
′
`)

on both sides and intertwines the action of ∆` with the arithmetic Frobenius

σ`. Since cΞm,N,j = (tm × tm)∗ (cZm,N,j) by Proposition 2.7.4, Theorem 3.3.2

follows from Theorem 3.3.1. �

Proof of Theorem 3.3.1. Since we are assuming ` | N , let us write N ′ =

N/`. We have the following commutative diagram of modular curves:

Y (`m, `mN)
α- Y (`m,mN)

pr- Y (m(`),mN)

Y (m,mN)
�

π 2τ̀

-

Y (m,mN).

π1

?

Here α is the natural projection Y (`m, `mN)→ Y (`m, `mN ′) = Y (`m,mN),

and pr is the natural projection map. Consequently, we have a commutative

diagram of surfaces

Y (`m, `mN)2 α× α- Y (`m,mN)2 pr×pr- Y (m(`),mN)2

Y (m,mN)2
�

π2
× π

2τ̀ ×
τ̀

-

Y (m,mN)2.

π1 × π1

?

Applying Theorem 3.1.1, we see that (α× α)∗cZ`m,N,j = cZ`m,N ′,j . Since

Y (m(`),mN)2 is the quotient of Y (`m,mN)2 by the subgroup®ÇÇ
x 0

0 1

å
,

Ç
x 0

0 1

åå
: x ∈ Z/`mZ,= 1 mod m

´
,

we have

(pr×pr)∗(pr×pr)∗
(
cZ`m,N ′,j

)
=

∑
x∈Z/`mZ
x=1 mod m

cZ`m,N ′,xj .

Let us now compute (pr×pr)∗(π1×π1)∗cZm,N,j . Since Y (m,mN)2 is the

quotient of Y (`m,mN)2 by the group®ÇÇ
x y

0 1

å
,

Ç
x z

0 1

åå
:
x, y, z ∈ Z/`mZ, x = 1 mod m,

y, z = 0 mod m

´
,

we see that the preimage of Cm,N,k is the union of the curves C`m,N ′,k, for k ∈
Z/`mZ congruent to j modulo m, each of which is isomorphic to Y (`m,mN).



EULER SYSTEMS FOR RANKIN–SELBERG CONVOLUTIONS 677

By counting degrees, they must be distinct. The modular units cg0,1/mN and

cg0,1/`mN ′ coincide, and thus we have

(pr×pr)∗(π1 × π1)∗cZm,N,j =
∑

k∈Z/`mZ
k=j mod m

cZ`m,N ′,k.

By hypothesis, j is invertible modulo `m. Thus if ` | m, the sets {xj : x =

1 mod m} and {k : k = j mod m} coincide, and since (pr×pr)∗ is clearly

injective, we conclude that

(pr×pr)∗
(
cZ`m,N ′,j

)
= (π1 × π1)∗cZm,N,j .

Applying (π2 × π2)∗ gives the result in this case.

If ` - m, there is exactly one lifting j0 of j to Z/`mZ that is not a unit.

The matrix
Ä

1 j0
0 1

ä
normalizes the subgroup of GL2(Z/mNZ) corresponding to

Y (m(`),mN) and thus defines a curve A in Y (m(`),mN)2, which is isomorphic

to Y (m(`),mN), consisting of points (u, v) with v =
Ä

1 j0
0 1

ä
u; and we have

(π1 × π1)∗cZm,N,j = (pr×pr)∗
(
cZ`m,N ′,j

)
+ (A, cg0,1/mN ).

The image of A under π2 is Cm,N,`−1j0 ; moreover, we have a diagram

Y (m(`),mN) ∼=
- A

Y (m,mN)

π2

?

∼=
- Cm,N,`−1j0 .

π2 × π2

?

We claim that (π2)∗
Ä
cg0,1/mN

ä
= cg0,1/mN . However, (π2)∗cg0,1/mN is the

pushforward of ϕ∗` (cg0,1/mN ) ∈ O(Y (m,mN(`)))× along the natural projec-

tion O(Y (m,mN(`)))× → O(Y (m,mN))×, and the distribution relation of

equation (1b) shows that the pushforward of ϕ∗` (cg0,1/mN ) is cg0,1/mN , as re-

quired. Hence,

(π2× π2)∗(A, cg0,1/mN ) = (Cm,N,`−1j0 , cg0,1/mN ) = cZm,N,`−1j0 = ∆∗` (cZm,N,j) ,

as required. �

3.4. The second norm relation for p - mN . In this section, we shall assume

that N ≥ 5, m ≥ 1, j ∈ Z/mZ, and p is a prime such that p - mN . Our aim

is to prove the following theorem:
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Theorem 3.4.1. We have∑
k∈Z/mpZ
k=j mod m

p-k

cΞmp,N,k

=
(
− σp+(T ′p, T

′
p)+
î
(p+1)(〈p−1〉, 〈p−1〉)−(〈p−1〉, T ′2p )−(T ′2p , 〈p−1〉)

ó
σ−1
p

+
Ä
〈p−1〉T ′p, 〈p−1〉T ′p

ä
σ−2
p − p

Ä
〈p−2〉, 〈p−2〉

ä
σ−3
p

)
cΞm,N,j .

Remark 3.4.2. One can formulate a version of this theorem for the zeta

elements cZm,N,j , from which Theorem 3.4.1 would follow in the same way as

Theorem 3.3.2 follows from Theorem 3.3.1. The argument given below can

easily be extended to prove this slightly stronger result; however, we shall not

pursue this here, as the above statement suffices for our applications.

We begin the proof of Theorem 3.4.1 by rewriting the T ′2p terms using a

related Hecke operator S′p.

Proposition 3.4.3. As elements of the Hecke algebra of Γ1(N), we have

T ′2p = S′p + (p + 1)〈p−1〉Rp, where S′p is the double coset of
Ä
p2 0
0 1

ä
and Rp is

the double coset of
Ä
p 0
0 p

ä
.

Proof. This is a simple computation from the definition of multiplication

in the Hecke algebra. �

Since Rp acts trivially on everything in sight, the formula of Theorem 3.4.1

can be written as∑
k∈(Z/mpZ)×

k=j mod m

cΞmp,N,k(4)

=
( Ä

(T ′p, T
′
p)− σp − p(〈p−1〉, 〈p−1〉)σ−1

p

ä Ä
1 +
Ä
〈p−1〉, 〈p−1〉

ä
σ−2
p

ä
−
î
(〈p−1〉, S′p) + (S′p, 〈p−1〉)

ó
σ−1
p

)
cΞm,N,j .

3.4.1. Evaluation of (T ′p, T
′
p)cΞm,N,j . First we shall make a careful study

of the operator (T ′p, T
′
p).

Proposition 3.4.4. If G = SL2(Z/pZ) and B is the lower-triangular

Borel subgroup, then B\G/B has exactly two elements, B and its complement

(the “big Bruhat cell”).

Proof. Well known. �

Corollary 3.4.5. Let Γ be any congruence subgroup of SL2(Z) of level

prime to p, and let α ∈ SL2(Q) be integral at p. Then the double coset ΓαΓ

is the union of exactly two double cosets of Γ′ = Γ ∩ Γ0(p), corresponding to

those elements whose reductions modulo p land in the two double cosets of B

in SL2(Z/pZ).
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Proof. This is a consequence of strong approximation for SL2(Z). Since

Γ has level prime to p, it surjects onto SL2(Z/pZ). Hence we may assume (by

left or right multiplying α by an appropriate element of Γ) that the reduction

of α modulo p is the identity.

We first note that Γ∩α−1Γα is also a congruence subgroup of level prime

to p, so (by the strong approximation theorem) we see that Γ\Γ′ admits a set

of coset representatives lying in Γ ∩ α−1Γα and thus ΓαΓ = ΓαΓ′.

Now let x = γαγ′ ∈ ΓαΓ′. We consider the reduction x̄ of x modulo p. If

this lies in B, then (since ᾱ and γ̄′ are in B) we must have x̄ ∈ B and hence

γ ∈ Γ′; thus x ∈ Γ′αΓ′.

On the other hand, let µ be any element of Γ that is not in Γ0(p). If γ̄ /∈ B,

then γ̄ ∈ Bµ̄B; so there is some σ ∈ Γ ∩ α−1Γα ∩ Γ0(p) such that γ̄ ∈ Bµ̄σ̄.

So γ̄σ̄−1µ̄−1 ∈ B and thus γ ∈ Γ′µσ. Hence x ∈ Γ′µσαΓ′; but α−1σα ∈ Γ′

(since by hypothesis α = 1 mod p and thus conjugation by α fixes Γ0(p)) and

thus x ∈ Γ′µαΓ′. �

Corollary 3.4.6. For k ∈ Z/mpZ, let Dm,N,k denote the curve in

Y (Γ1(N)∩Γ0(p))2 consisting of points of the form
Ä
z, z+ k

m

ä
. Then the preim-

age π−1
1 (Cm,N,j)⊆Y (Γ1(N)∩Γ0(p))2 consists of exactly two components : one

is the curve Dm,N,k where k is the unique lifting of j to Z/mpZ that is zero

modulo p, and the other is the curve Dm,N,k where k is any lifting of j to

Z/mpZ that is a unit modulo p (the resulting curve being independent of the

choice of lifting).

Proof. The preimage of Cm,N,j in H ×H is exactly the set of (u, v) such

that v = γu for some γ in the double coset Γ1(N)
Ä

1 j/m
0 1

ä
Γ1(N). The above

proposition describes the decomposition of this set into double cosets of Γ1(N)∩
Γ0(p), hence the result. �

For any k lifting j (unit or nonunit), we may erect the following diagram

of modular curves:

Y (Γ1(mpN)∩Γ0(mp))

Y (Γ1(mN)∩ Γ0(m) ∩ Uk)
�

ρk

Y (Γ1(mN)∩Γ0(m))
�

α

Dm,N,k

λ
k

-

Cm,N,j
�

π1
ι ′
m,N,j

-

Cmp,N,k.

ι ′m
p,N

,k

-

π
2

-
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Here Uk is the preimage in SL2(Z) of the subgroup

B ∩
Ç

1 k

0 m

å−1

B

Ç
1 k

0 m

å
= B ∩

Ç
1 k

0 1

å−1

B

Ç
1 k

0 1

å
.

(The equality follows from the fact that conjugation by ( 1 0
0 m ) fixes B.) This

subgroup is just B if k ∈ pZ; otherwise it is the subgroup®Ç
u−1 0

k−1(u− u−1) u

å
: u ∈ (Z/pZ)×

´
,

which is a maximal torus in SL2(Z/pZ). The square at the bottom left of the

diagram is Cartesian. The maps α, ρk and π1 are the natural projection maps,

and the remaining maps are defined by

ι′m,N,j : z 7→
Ä
z
m ,

z+j
m

ä
ι′mp,N,k : z 7→

Ä
z
mp ,

z+k
mp

ä
π2 : (u, v) 7→

Ä
u
p ,

v
p

ä
λk : z 7→

Ä
z
m ,

z+k
m

ä
.

Definition 3.4.7. Let a and b be the unique elements of Z/pmZ congruent

to j modulo m and such that a = 0 mod p and b = 1 mod p.

An application of Lemma 2.4.5 shows that we have

Corollary 3.4.8. For any α ∈ Z/mNZ, we have

(T ′p, T
′
p)(cΞm,N,j,α) =

Ä
Cmp,N,a, (π2 ◦ λa)∗cg0,α/mN

ä
+
Ä
Cmp,N,b, (π2 ◦ λb)∗cg0,α/mN

ä
.

(It is convenient to allow α 6= 1 here, for reasons that will become clear

below.)

We first consider the term for a. Here we have Ua = Γ0(p), so Γ1(mN) ∩
Γ0(m) ∩ Ua = Γ1(mN) ∩ Γ0(mp). Since p | a, we see that π2 ◦ λa can also be

expressed as a composition

(5)

Y (Γ1(mN) ∩ Γ0(mp))

Y (Γ1(mN) ∩ Γ0(m))

z 7→ z/p

?

Cmp,N,a = Cm,N,“p−1”j ,

z 7→
(
z
m ,

z+“p−1”j
m

)
?

where “p−1” is the inverse of p in Z/mZ.
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Proposition 3.4.9. The pushforward of cg0,α/mN to Y (Γ1(mN)∩Γ0(m))

along the first map in (5) is cg0,α/mN ·
Ä
cg0,“p−1”α/mN

äp
.

Proof. See [Kat04, 2.13.2]. �

The second map in (5) is just ι′
m,N,“p−1”j

, so we deduce thatÄ
Cmp,N,a, (π2 ◦ λa)∗cg0,α/mN

ä
=
(
Cm,N,“p−1”a, (ι

′
m,N,“p−1”j)∗

Ä
cg0,α/mN ·

Ä
cg0,“p−1”α/mN

äpä )
= cΞm,N,“p−1”j,α + p cΞm,N,“p−1”j,“p−1”α

= (σp + p(〈p−1〉, 〈p−1〉)σ−1
p )cΞm,N,j,α.

Corollary 3.4.10. For any α ∈ (Z/mNZ)×, we haveÄ
(T ′p, T

′
p)− σp − p(〈p−1〉, 〈p−1〉)σ−1

p

ä
cΞm,N,j,α

=
(
Cmp,N,b, (π2 ◦ λb)∗

Ä
cg0,α/mN

ä )
.

In particular,Ä
(T ′p, T

′
p)− σp − p(〈p−1〉, 〈p−1〉)σ−1

p

ä Ä
1 +
Ä
〈p−1〉, 〈p−1〉

ä
σ−2
p

ä
cΞm,N,j

=
(
Cmp,N,b, (π2 ◦ λb)∗

Ä
cg0,1/mN · cg0,“p−1”/mN

ä )
.

Proof. The first formula is immediate from (5) and the evaluation of the

Cmp,N,a term above. The second formula follows by summing the first formula

for α = 1 and for α = p−1. �

3.4.2. Evaluation of the norm term. We want to compare the right-hand

side of the formula in Corollary 3.4.10 with the sum of the cΞmp,N,k for all unit

liftings k of j. To do this, we shall use the fact that all the terms cΞmp,N,k may

be written as the pushforwards of modular units on the same modular curve

Cmp,N,b. More precisely, if k and ` are liftings of j to Z/mpZ that are both

units modulo p, we have a diagram

H
αk` - H

Y (Γ1(mN) ∩ Γ0(m) ∩ Uk)
? ∼=- Y (Γ1(mN) ∩ Γ0(m) ∩ U`)

?

Dm,N,`

λk

?
====================Dm,N,k,

λ`

?
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where αk` is any matrix of the form ( 1 0
v 1 ) with v ∈ mNZ congruent to 1

k −
1
`

modulo p.

Consequently, we can write cΞmp,N,k = (Cmp,N,b, (π2 ◦ λb)∗fk), where

fk = α∗bk(ρk)∗
Ä
cg0,1/mpN

ä
.

We may regard O(Y (Γ1(mpN)∩Γ0(mp)))× as a SL2(Fp)-module in the obvious

way, since Γ1(mpN) ∩ Γ0(mp) is the kernel of the surjective reduction map

Γ1(mN) ∩ Γ0(m) � SL2(Fp). With this convention, we have

(ρk)∗
Ä
cg0,1/mpN

ä
=

∏
u∈F×p

Ç
u−1 0

k−1(u− u−1) u

å∗
cg0,1/mpN

and thus

fk =
∏
u∈F×p

ñÇ
u−1 0

k−1(u− u−1) u

åÇ
1 0

1− k−1 1

åô∗
cg0,1/mpN

=
∏
u∈F×p

Ç
u−1 0

u− k−1u−1 u

å∗
cg0,1/mpN .

Let K be the set of possible values of k, i.e., the set of elements of Z/mpZ
congruent to j modulo m and not divisible by p. Then as k varies over K, for

each fixed u, the expression u − k−1u−1 takes every value in Fp exactly once

with the exception of u, since k−1u−1 takes every value except 0. So∏
k∈K

fk =
∏

u,v∈Fp
u6=0
v 6=u

cgv0/mpN,u1/mpN .

Here by x1 and x0 for x ∈ Fp we mean any element of Z/mpNZ congruent to

x mod p and to 1 (resp. 0) modulo mN .

We find that∏
u,v∈Fp

cgv0/mpN,u1/mpN = cg0,1/mN ,(6a)

∏
v∈Fp

cgv0/mpN,01/mpN =

Ç
1 0

0 p

å∗
cg0,β/mN ,(6b)

∏
u∈Fp

cgu0/mpN,u1/mpN =

Ç
1 0

10 1

å∗ ∏
u∈Fp

cg0,u1/mpN(6c)

=

Ç
1 0

10 1

å∗Ç
p 0

0 1

å∗
cg0,1/mN ,

cg00/mpN,01/mpN = cg0,β/mN ,(6d)

where β is the inverse of p in Z/mNZ.
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Combining the above, we have

(7)
∑

k∈Z/mpZ
k=j mod m

p-k

cΞmp,N,k =
(
Cmp,N,b, (π2 ◦ λb)∗(cg0,1/mN · cg0,β/mN )

)

−
Ç
Cmp,N,b, (π2 ◦ λb)∗

Ç
1 0

0 p

å∗
cg0,β/mN

å
−
Ç
Cmp,N,b, (π2 ◦ λb)∗

Ç
1 0

10 1

å∗Ç
p 0

0 1

å∗
cg0,1/mN

å
.

Combining the first term on the right-hand side of (7) with Corollary 3.4.8,

we see that Theorem 3.4.1 is equivalent to

Proposition 3.4.11. We have( î
(〈p−1〉, S′p) + (S′p, 〈p−1〉)

ó
σ−1
p

)
cΞm,N,j

=

Ç
Cmp,N,b, (π2 ◦ λb)∗

Ç
1 0

0 p

å∗
cg0,β/mN

å
+

Ç
Cmp,N,b, (π2 ◦ λb)∗

Ç
1 0

10 1

å∗Ç
p 0

0 1

å∗
cg0,1/mN

å
.

3.4.3. The first term in Proposition 3.4.11. We now calculate how S′p acts

on cΞm,N,j . We may describe the correspondence S′p in terms of the subgroup

Γ0
0(p) = Γ0(p) ∩ Γ0(p); we have S′p = (π′2)∗(π

′
1)∗, where π′1 and π′2 are the two

maps from Y1(Γ1(N) ∩ Γ0
0(p)) to Y1(N) given by z 7→ pz and z 7→ z/p.

An application of the strong approximation theorem shows (as usual) that

the preimage (π′1×1)−1Cm,N,j ⊆ Y1(Γ1(N)∩Γ0
0(p))×Y1(N) is the single curve

Fm,N,j given by the set of points of the form
Ä
z
p , z + j

m

ä
.

Applying Lemma 2.4.5 once more, we have a Cartesian square of curves

(up to birational equivalence)

Y (Γ1(mN) ∩ Γ0(m) ∩ Γ0
0(p))

Y (Γ1(mN) ∩ Γ0(m))
�

pz
←[ z

Fm,N,j

z 7→ Ä
z

m , pz+jm ä
-

Cm,N,j .
� (pu

, v
)←

[ (u
, v

)z 7→ Ä
z
m , z+j

m
ä
-
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The functoriality of pushforward maps gives the following:

Proposition 3.4.12. We have

(S′p, 1)cΞm,N,j,α =

Ç
(π′2 × 1)Fm,N,j , φ∗

ÇÇ
p 0

0 1

å∗
cg0,α/mN

åå
,

where φ is the map

Y (Γ1(mN) ∩ Γ0(m) ∩ Γ0
0(p))→ (π′2 × 1)Fm,N,j ⊂ Y1(N)2

z 7→
Ä
z
mp ,

pz+j
m

ä
.

We first identify the curve (π′2 × 1)Fm,N,j .

Proposition 3.4.13. We have (π′2 × 1)Fm,N,j = (1× 〈p〉)−1Cmp,N,k, for

any integer k congruent to p−1j modulo m and not divisible by p.

More precisely, if k = 1 mod p, and γ′′ is a suitable element of SL2(Z)

that we shall construct below, then there is a commutative diagram

Y (Γ1(mN) ∩ Γ0(m) ∩ Γ0
0(p))

z 7→ γ′′z
- Y (Γ1(mN) ∩ Γ0(m) ∩ Uk)

Y1(N)2

z 7→
Ä
z
mp ,

pz+j
m

ä
?

(1× 〈p〉)
- Y1(N)2,

z 7→
Ä
z
mp ,

z+k
mp

ä
?

where Uk is the level p congruence subgroup from the previous section.

Proof. We note the following matrix identity, which is easy to verify (al-

though tedious to find): for any elements p, x, y of a field F , we haveÇ y
x 0

1
x −

p
y

x
y

åÇ
1 x

p

0 1

å(
1 0

p2

y −
p
x 1

)
=

(
p y

p

0 1
p

)
.

In particular, taking F = Qp and x, y ∈ Z×p , we see that the double cosets of

SL2(Zp) in SL2(Qp) generated by
Ä

1 x/p
0 1

ä
and

(
p y/p
0 1/p

)
are equal to each other

and independent of x and y.

Since both
(
p y/p
0 1/p

)
and its inverse have entries in 1

pZp, it follows thatÇ
1 x/p

0 1

å
γ ∈ SL2(Zp)

Ç
p y/p

0 1/p

å
for any γ ∈ SL2(Zp) congruent to

Ä
1 0
−p/x 1

ä
modulo p2. (In fact, one can check

that it suffices for the matrix to lie in
(

1+pZp Zp
−p/x+p2Zp 1+pZp

)
.)
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If x, y are in Z×p ∩ Q, and we choose γ to be in SL2(Z) and congruent toÄ
1 0
−p/x 1

ä
modulo p2, then the matrix

γ′ =

Ç
1 x/p

0 1

å
γ

Ç
p y/p

0 1/p

å−1

will be in SL2(Q) and will be p-adically integral. If we choose γ to be `-adically

close to the identity for some prime ` 6= p, then γ′ will be `-adically close toÄ
1 x/p
0 1

ä
γ
(
p y/p
0 1/p

)−1
=
Ä

1/p (px−y)/p
0 p

ä
.

So if x, y ∈ Q are units at p and satisfy y = px mod 1, we may choose

γ, γ′ ∈ SL2(Z) such that

• γ ∈ Γ1(m2N),

• γ =
Ä

1 0
−p/x 1

ä
(mod p2),

• γ′ =
Ä ∗ ∗

0 1/p

ä
(mod N),

• the identity
Ä

1 x/p
0 1

ä
γ = γ′

Ä
p y/p
0 p

ä
holds.

We now take y = j/m, and x = k/m for any k congruent to p−1j modulo m

and invertible modulo p. Then we obtain a commutative diagram

H
z 7→ γz - H

Y1(N)2

z 7→
Ä
z, p2z + j

m

ä
?

(1× 〈p〉) - Y1(N)2

z 7→
Ä
z, z + k

mp

ä
?

or, equivalently,

H
z 7→ γ′′z - H

Y1(N)2

z 7→
Ä
z
mp ,

pz+j
m

ä
?

(1× 〈p〉) - Y1(N)2,

z 7→
Ä
z
mp ,

z+k
mp

ä
?

where γ′′ =
Ä
mp 0
0 1

ä
γ
Ä
mp 0
0 1

ä−1
. Note that γ′′ is in Γ1(mN) ∩ Γ0(mp) and is

congruent modulo p to Ç
1 0

−1/mx 1

å
=

Ç
1 0

−1/k 1

å
.

In the preceding diagram, the left vertical map factors through Y (Γ1(mN) ∩
Γ0(m)∩Γ0

0(p)), and γ′ conjugates this onto Γ1(mN)∩Γ0(m)∩Uk; so we finally

obtain the diagram stated in the proposition. �
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Corollary 3.4.14. In the notation of the preceding subsection, we have

(S′p, 〈p−1〉) ·σ−1
p · cΞm,N,j =

Ç
Cmp,N,b, (π2 ◦ λb)∗

Ç
1 0

10 1

å∗Ç
p 0

0 1

å∗
cg0,1/mN

å
.

Proof. This follows from the previous proposition (and its proof) since the

right-hand vertical map in the diagram of the proposition is the same as λk
above and (γ′′)−1 represents the coset

(
1 0
10 1

)
. �

3.4.4. The second term in Proposition 3.4.11. Now we are left to analyse

the operator (1, S′p). To simplify the analysis we shall also consider the operator

Sp given by (π′1)∗(π
′
2)∗ (rather than S′p = (π′2)∗(π

′
1)∗); this is the operator

associated to the double coset
Ä

1 0
0 p2

ä
and is related to S′p by the formula

S′p = 〈p−2〉∗Sp.

Again, we find that the preimage (π′2)−1Cm,N,j in Y1(N) × Y (Γ1(N) ∩ Γ0
0(p))

is a single irreducible curve Fm,N,j given by points of the form (z, p(z+ j/m)).

Proposition 3.4.15. We have

(1, Sp) (cΞm,N,j,α) =

Ç
(1× π′1)(Fm,N,j), φ∗

Ç
1 0

0 p

å∗
cg0,α/mN

å
,

where the morphism φ is defined by

Y (Γ1(mN) ∩ Γ0(m) ∩ Γ0
0(p))→ Y1(N)2

z 7→
(
z
mp ,

pz+p2j
m

)
.

Proof. Closely analogous to the previous case. �

We also have a matrix identityÇ
1 x

p

0 1

åÇ
1 0

− p
x 1

å
=

Ç
0 x

− 1
x p+ p2y

x

åÇ
p py

0 1
p

å
from which we may deduce that if x, y are rational numbers that are units at

p and such that x = py mod 1, there exist γ, γ′ ∈ SL2(Z) such that

• γ ∈ Γ1(m2N),

• γ =
(

1 0
− px 1

)
(mod p2),

• the identity Ç
1 x

p

0 1

å
γ = γ′

Ç
p py

0 1
p

å
holds,

• γ′ is congruent to ( ∗ ∗0 p ) modulo N .
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Thus the diagram

H
z 7→ γz - H

Y1(N)2

z 7→ (z, p2(z + y))

?
(1× 〈p〉) - Y1(N)2

z 7→ (z, z + x/p)

?

commutes. We take y = j/m, and x = k/m where k is congruent to pj modulo

m and not divisible by p. Letting γ′′ =
Ä
mp 0
0 1

ä
γ
Ä
mp 0
0 1

ä−1
as before, we have

the diagram

H
z 7→ γ′′z - H

Y1(N)2

z 7→
(
z
mp ,

pz+p2j
m

)
?

(1× 〈p〉) - Y1(N)2.

z 7→
Ä
z
mp ,

z+k
mp

ä
?

Again, this shows that (1×π′1)(Fm,N,j) = (1×〈p〉)−1Cmp,N,k. If we choose

k to be 1 modulo p, then the right vertical map factors through Γ1(mN) ∩
Γ0(m) ∩ Uk, and the isomorphism between the two is given by γ′′, which is in

Γ1(mN) ∩ Γ0(p) and thus acts trivially on
Ä

1 0
0 p

ä∗
cg0,α/mN . Thus we have

(1, Sp)σp · cΞm,N,j,α = (1× 〈p〉)∗
Ç
Cmp,N,b, (π2 ◦ λb)∗

Ç
1 0

0 p

å∗
cg0,α/mN

å
.

Taking α = β (the inverse of p modulo mN) and using the formula

cΞm,N,j,t = (〈t〉, 〈t〉)σ2
t cΞm,N,j , we see thatÇ

Cmp,N,b, (π2 ◦ λb)∗
Ç

1 0

0 p

å∗
cg0,β/mN

å
= (1, 〈p−1〉)(1, Sp)cΞm,N,βj,β
= (1, 〈p−1〉)(1, 〈p〉2S′p)σpcΞm,N,j,β
= (1, 〈p−1〉)(1, 〈p〉2S′p)σp(〈p−1〉, 〈p−1〉)σ−2

p cΞm,N,j

= (〈p−1〉, S′p)σ−1
p cΞm,N,j

as required, completing the proof of Proposition 3.4.11 and hence of Theo-

rem 3.4.1.

3.5. The second norm relation : higher powers of p. We shall also need to

know how to calculate normpkm
m cΞpkm,N,j for k = 2, 3. This is less central to

our theory than the k = 1 case, but it will be needed in order to compare the

elements we construct for N coprime to p with their “p-stabilized” versions.
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Theorem 3.5.1. For p - mN , we have

normmp2

mp

Ä
cΞmp2,N,j

ä
= (T ′p, T

′
p)cΞmp,N,j

+
(
p(〈p−1〉, 〈p−1〉)− (〈p〉−1, (T ′p)

2)− ((T ′p)
2, 〈p〉−1)

+ 2(〈p−1〉T ′p, 〈p−1〉T ′p)σ−1
p − p(〈p−2〉, 〈p−2〉)σ−2

p

)
cΞm,N,j

and

normmp3

mp2

Ä
cΞmp3,N,j

ä
= (T ′p, T

′
p)cΞmp2,N,j

+
(
p(〈p−1〉, 〈p−1〉)− (〈p〉−1, (T ′p)

2)− ((T ′p)
2, 〈p〉−1)

)
cΞmp,N,j

+

(
(〈p−1〉, 〈p−1〉)

Ç
2(T ′p, T

′
p)− ((〈p〉−1, (T ′p)

2) + ((T ′p)
2, 〈p〉−1))σ−1

p

å)
cΞm,N,j .

Recall the operator S′p that appeared above, satisfying S′p = (T ′p)
2 −

(p + 1)〈p−1〉. In terms of these operators, the formulae we wish to prove

are

normmp2

mp

Ä
cΞmp2,N,j

ä
= (T ′p, T

′
p)cΞmp,N,j

+
(
− (p+ 2)(〈p−1〉, 〈p−1〉)− (〈p〉−1, S′p)− (S′p, 〈p〉−1)

+ (〈p−1〉, 〈p−1〉)σ−1
p

Ä
2(T ′p, T

′
p)− p(〈p−1〉, 〈p−1〉)σ−1

p

ä )
cΞm,N,j

and

normmp3

mp2

Ä
cΞmp3,N,j

ä
= (T ′p, T

′
p)cΞmp2,N,j

−
(
(p+ 2)(〈p−1〉, 〈p−1〉) + (〈p〉−1, S′p) + (S′p, 〈p〉−1)

)
cΞmp,N,j

+

(
(〈p−1〉, 〈p−1〉)

Ç
2(T ′p, T

′
p)−

[
(2p+ 2)(〈p−1〉, 〈p−1〉)

+ (〈p〉−1, S′p) + (S′p, 〈p〉−1)
]
σ−1
p

å)
cΞm,N,j .

A routine but unpleasant computation (in which the use of Sage [Sage]

was found to be invaluable) shows that Theorem 3.5.1, together with Theo-

rem 3.4.1, implies the following formulae for the norms to level prime to p:

Theorem 3.5.2. If p - N , we have

normp2m
m

Ä
cΞp2m,N,j

ä
= pσ2

p

(
(p− 1)(1− (〈p−1〉, 〈p−1〉)σ−2

p )(a)

−
Ä
(T ′p, T

′
p)σ
−1
p + (p− 1)

ä
P p(p

−1σ−1
p )

)
,
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normp3m
m

Ä
cΞp3m,N,j

ä
= p2σ3

p

(
(p− 1)(1− (〈p−1〉, 〈p−1〉)σ−2

p )(b)

− (p−1σ−2
p (T ′p2 , T

′
p2) + (p− 1)p−1σ−1

p (T ′p, T
′
p) + (p− 1))P p(p

−1σ−1
p )

)
.

Here P p is the operator-valued Euler factor at p given by

P p(X) = 1− (T ′p, T
′
p)X

+
(
p((T ′p)

2, 〈p−1〉) + p(〈p−1〉, (T ′p)2)− 2p2(〈p−1〉, 〈p−1〉)
)
X2

− p2(〈p−1〉T ′p, 〈p−1〉T ′p)X3 + p4(〈p−2〉, 〈p−2〉)X4.

3.5.1. Evaluation of the (T ′p, T
′
p) term. We begin with a double coset com-

putation in SL2(Qp). We shall write K = SL2(Zp) and U for the lower-

triangular Iwahori subgroup
{(

a b
c d

)
∈ K : b ∈ pZp

}
.

Proposition 3.5.3. Let j ≥ 1. Then the double coset

K

Ç
p−j 0

0 pj

å
K

decomposes as a disjoint union of exactly four double cosets of the Iwahori U ,

represented by the elements®Ç
p−j 0

0 pj

å
,

Ç
0 −p−j
pj 0

å
,

Ç
pj 0

0 p−j

å
,

Ç
0 −pj
p−j 0

å´
.

Proof. As shown by Iwahori and Matsumoto [IM65, §2.2], we have a de-

composition

SL2(Qp) =
⊔
w∈D

UwU,

where D is the set of matrices of the form
(
pj 0
0 pj

)
or
(

0 −p−j
pj 0

)
for some

j ∈ Z. Comparing this with the well-known Cartan decomposition SL2(Qp) =⊔
j≥0K

(
p−j 0

0 pj

)
K gives the statement above. �

Proposition 3.5.4. For α ∈ SL2(Qp), the index of U ∩ α−1Uα in U is

as follows :

(a) p|2j| for α ∈ U
(
pj 0
0 p−j

)
U , j ∈ Z;

(b) p|2j+1| if α ∈ U
(

0 −p−j
pj 0

)
U , j ∈ Z.

Proof. It is clear that the index concerned depends only on the double

coset UαU , so we may reduce immediately to considering the coset repre-

sentatives in (a) and (b). In each of these cases we find that the intersection

U ∩α−1Uα is a subgroup of the form
{(

a b
c d

)
∈ K : pr | b, ps | c

}
for some r ≥ 1,

s ≥ 0; this clearly has index pr+s−1 in U , which gives the above formulae. �
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Corollary 3.5.5. Let j ∈ Z and m ≥ 1, neither divisible by p, and

k ≥ 1. Then the preimage in Y (Γ1(N)∩Γ0(p))2 of the curve Cmpk,N,j ⊆ Y1(N)2

is the union of four distinct curves :
(1) the curve D1 given by points of the form(

z,

(
1 j

mpk

0 1

)
z

)
,

mapping to Cmpk,N,j with degree p2;

(2) the curve D2 given by points of the form(
z, γ

(
1 j

mpk

0 1

)
z

)
for any γ ∈ Γ1(N) congruent to ( 0 ∗

∗ ∗ ) modulo p, again mapping to

Cmpk,N,j with degree p;

(3) the curve D3 given by points of the form(
z,

(
1 j

mpk

0 1

)
γ−1z

)
,

where γ is as before, mapping to Cmpk,N,j with degree p;

(4) the curve D4 given by points of the form(
z, γ

(
1 j

mpk

0 1

)
γ−1z

)
,

mapping isomorphically to Cmpk,N,j .

Proof. All of these curves are evidently in the preimage of Cmpk,N,j . One

checks that we have (
1 j

mpk

0 1

)
∈ U

Ç
0 −p−k
pk 0

å
U,

γ

(
1 j

mpk

0 1

)
∈ U

Ç
pk 0

0 p−k

å
U,(

1 j
mpk

0 1

)
γ−1 ∈ U

Ç
p−k 0

0 pk

å
U,

γ

(
1 j

mpk

0 1

)
γ−1 ∈ U

Ç
0 −pk
p−k 0

å
U.

Hence the curves Di exhaust the preimage of Cmpk,N,j , by Proposition 3.5.3.

The calculation of the degrees of the maps down follows from Proposition 3.5.4;

and since the total degree is (p+ 1)2, they must be distinct. �

We set

α1 =

(
1 j

mpk

0 1

)
, α2 = γα1, α3 = α1γ

−1, α4 = γα1γ
−1,
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so Di is the locus of points of the form (z, αiz). Let us define

∆i :=
Ä
π2(Di), (π2)∗(π1)∗(ι′mpk,N,j)∗cg0,1/mpkN

ä
∈ Z2(Y1(N)2 ⊗Q(µmpk , 1).

Then we evidently have

(T ′p, T
′
p)cΞmpk,N,j = ∆1 + ∆2 + ∆3 + ∆4.

We shall evaluate each of these in turn, showing that D1 is the norm of

cΞmpk+1,N,j and the remaining ∆i can be calculated in terms of Hecke op-

erators acting on cΞmpr,N,j for r < k.

3.5.2. Evaluation of ∆1.

Corollary 3.5.6. Pushforward and pullback commute in each of the fol-

lowing four diagrams :

(8a)

Y
Ä
Γ1(mpkN) ∩ Γ0(mpk+1) ∩ U

ä z 7→ (
z

mpk
, z+j
mpk

)
- D1

Y (Γ1(mpkN) ∩ Γ0(mpk))

? ι′
mpk,N,j - Cmpk,N,j ,

π1

?

where U is the subgroup of Γ(pk) consisting of matrices whose reduction modulo

pk+1 lies in the subgroup

Å
1
j
m

0 1

ã−1

U

Å
1
j
m

0 1

ã
, and both vertical arrows have

degree p2;

(8b)

Y
Ä
Γ1(mpkN) ∩ Γ0(mpk+1)

ä z 7→ (
z

mpk
, γ · z+j

mpk

)
- D2

Y (Γ1(mpkN) ∩ Γ0(mpk))

? ι′
mpk,N,j - Cmpk,N,j ,

?

where both vertical arrows have degree p;

(8c)

Y
Ä
Γ1(mpkN) ∩ Γ0(mpk) ∩ U

ä z 7→ (
γ · z

mpk
, z+j
mpk

)
- D3

Y (Γ1(mpkN) ∩ Γ0(mpk))

? ι′
mpk,N,j - Cmpk,N,j ,

?



692 A. LEI, D. LOEFFLER, and S. L. ZERBES

where both vertical arrows again have degree p; and

(8d)

Y
Ä
Γ1(mpkN) ∩ Γ0(mpk)

ä z 7→ (
γ · z

mpk
, γ · z+j

mpk

)
- D4

Y (Γ1(mpkN) ∩ Γ0(mpk))

? ι′
mpk,N,j - Cmpk,N,j ,

?

where both vertical arrows are isomorphisms.

Proof. Up to conjugation (and identifying Cmpk,N,j and the Di with their

normalizations) each diagram takes the form

Y (Γ1 ∩ Γ2) - Y (Γ1)

Y (Γ2)
?

- Y (Γ)
?

for subgroups Γ1,Γ2 ⊆ Γ. So it suffices to check in each case that Γ1Γ2 = Γ,

or equivalently that [Γ : Γ1] = [Γ2 : Γ1 ∩ Γ2]; that is, that the degrees of the

two vertical arrows in each diagram are the same. In each case this reduces to

an elementary local computation at p. �

Proposition 3.5.7 (Evaluation of ∆1). We have

∆1 =
∑

j′∈(Z/mpk+1Z)×

j′=j mod pk

cΞmp,N,j′ .

Proof. This follows by exactly the same argument as in the case

k = 0 considered above. From Corollary 3.5.6 we know that the modular unit

(π1)∗(ι′
mpk,N,j

)∗cg0,1/mN on D1 is equal to the pushforward of cg0,1/mN along

the top horizontal arrow in diagram (8a). The subgroups U for all j in a con-

gruence class modulo pk are conjugate, and by exactly the same argument as

in Proposition 3.4.11, we deduce the result. �

3.5.3. Evaluation of ∆2 and ∆3. We now turn our attention to ∆2. Evi-

dently π2(D2) is the image of Y (Γ1(mpkN)∩Γ0(mpk+1)) in Y1(N)2 under the

map

z 7→
ÇÇ

1 0

0 mpk+1

å
z,

Ç
1 0

0 p

å
γ

Ç
1 j

0 mpk

å
z

å
.
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Let us write γ =
Ä
pa b
Nc d

ä
, where d = 1 mod N . Then we find thatÇ

1 0

0 p

å
γ

Ç
1 j

0 mpk

å
=

Ç
p 0

0 p

åÇ
a b

Nc pd

åÇ
1 j

0 mpk−1

å
.

Since scalar matrices act trivially and
Ä
a b
Nc pd

ä
acts on Y1(N) as the diamond

operator 〈p〉, we see that π2(D2) can be written as the image of

Y (Γ1(mpkN) ∩ Γ0(mpk+1)) - Y1(N)2

z -
(

z
mpk+1 , 〈p〉 · z+j

mpk−1

)
.

This map factors through the natural projection

λ : Y (Γ1(mpkN) ∩ Γ0(mpk+1))→ Y
(
Γ1(mpk−1N) ∩ Γ0(mpk+1)

)
.

(Indeed, the first component obviously factors through Γ1(N) ∩ Γ0(mpk+1),

and the second component factors through Y (Γ1(mpk−1N) ∩ Γ0(mpk−1)) as

the map ι′
mpk−1,N,j

constructed above composed with the automorphism 〈p〉.)

Proposition 3.5.8. We have

λ∗
Ä
cg0,1/mpkN

ä
=


cg0,1/mpk−1N if k ≥ 2,

cg0,1/mN ·

ÑÑ
1 0

0 p

é∗
cg0,“p−1”/mN

é−1

if k = 1. �

We thus have

Proposition 3.5.9. We have ∆2 = (C, φ), where

• C is the image of Y (Γ1(mpk−1N)∩ Γ0(mpk+1)) in Y1(N)2 under the map

β : z 7→
Å

z

mpk+1
, 〈p〉 · z + j

mpk−1

ã
,

• φ is the pushforward of cg0,1/mpk−1N along this map if k ≥ 2, and if k = 1,

it is cg0,1/mN ·
ÄÄ

1 0
0 p

ä∗
cg0,“p−1”/mN

ä−1
along this map if k ≥ 2 (resp. if

k = 1).

3.5.4. Evaluation of ∆4. The last, and easiest, term is ∆4.

Proposition 3.5.10 (Evaluation of ∆4). We have

∆4 = p(〈p−1〉, 〈p−1〉) ·

cΞmpk−1,N,j if k ≥ 2,Ä
1− (〈p−1〉, 〈p−1〉)σ−2

p

ä
cΞm,N,j if k = 1.

Proof. Contemplating diagram (8d) we know that ∆4 is equal to the push-

forward of cg0,1/mpk−1N from Y (Γ1(mpkN)∩Γ0(mpk)) to Y1(N)2 along the map

z 7→
ÇÇ

1 0

0 p

å
γ

Ç
1 0

0 mpk

å
z,

Ç
1 0

0 p

å
γ

Ç
1 j

0 mpk

å
z

å
.
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Since
Ä

1 0
0 p

ä
γ = 〈p〉

Ä
p 0
0 1

ä
, this is simply

z 7→ (〈p〉, 〈p〉) ·
ÇÇ

1 0

0 mpk−1

å
z,

Ç
1 j

0 mpk−1

å
z

å
.

This evidently factors as the projection

λ : Y
(
Γ1(mpkN) ∩ Γ0(mpk)

)
→ Y

(
Γ1(mpk−1N) ∩ Γ0(mpk−1)

)
composed with the map (〈p〉, 〈p〉) ◦ ι′

mpk−1,N,j
.

On the other hand, the pushforward of cg0,1/mpkN from Y (Γ1(mpkN) ∩
Γ0(mpk)) to Y (Γ1(mpkN)∩ Γ0(mpk−1)) is clearly

Ä
cg0,1/mpkN

äp
, since the de-

gree of the map is p; and the pushforward from Y (Γ1(mpkN)∩Γ0(mpk−1)) to

Y (Γ1(mpk−1N) ∩ Γ0(mpk−1)) maps cg0,1/mpkN to cg0,1/mpkN if k ≥ 2 and to

cg0,1/mN ·
Ä
cg0,“p−1”/mN

ä−1
otherwise. �

3.5.5. Evaluation of (S′p, 〈p−1〉)cΞmpk−1,N,j . We now compute the image

of cΞmpk−1,N,j under the Hecke operator (S′p, 〈p〉).

Proposition 3.5.11. We have the following double coset decompositions

in SL2(Qp):

K

Ç
1 j/m

0 1

å
K = K = K

Ç
1 j/m

0 1

å
U0(p2)

(where K = SL2(Zp)) and

K

Ç
1 j/mp

0 1

å
K = K

Ç
p−1 0

0 p

å
K

= K

Ç
1 j/mp

0 1

å
U0(p2) tK

Ç
p−1 1

0 p

å
U0(p2)

tK
Ç
p−1 ξ

0 p

å
U0(p2) tK

Ç
p−1 0

0 p

å
U0(p2),

where ξ is any quadratic nonresidue in Z×p .

Geometrically this is expressed as follows:

Proposition 3.5.12. The preimage in Y (Γ1(N) ∩ Γ0(p2)) × Y1(N) of

Cmpk−1,N,j is

• if k = 1, the single curve E consisting of points of the form (z, z + j/m),

with degree p(p+ 1) over Cm,N,j ;

• if k = 2, the union of four distinct curves E1, E2, E3, E4, with degrees

(p, p−1
2 , p−1

2 , 1) respectively over Cmp,N,j , where

– E1 is the curve consisting of points of the form (z, z + j/mp),
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– the curve E2 is the locus of points of the form (δ2z, z + j/mp) where

δ2 is any matrix in Γ1(N) of the form
(
a b
c d

)
, where p | a and a

pb −
m
j

is a quadratic residue mod p;

– the curve E3 is the locus of points of the form (δ3z, z + j/mp), where

δ3 is any matrix in Γ1(N) of the form
(
a b
c d

)
where p | a and a

pb −
m
j

is a quadratic nonresidue mod p;

– the curve E4 is the locus of points of the form (δ4z, z + j/mp), where

δ4 is any matrix in Γ1(N) of the form
(
a b
c d

)
where p | a and a

pb −
m
j =

0 mod p.

Proof. This follows from Lemma 2.4.3 and the previous proposition, noting

the identity Ç
1 j

mp

0 1

å
=

Ç
1 0
pm
j 1

åÇ
1
p ξ

0 p

å(
p+ pξm

j
j
m

−m
j 0

)
. �

Proposition 3.5.13. In the case k = 1, the image of E in Y1(N)2 under

(u, v) 7→ (u/p2, 〈p〉v) is the curve C of Proposition 3.5.15 above.

In the case k = 2, the image of E1 under this map is the curve C ,

the images of E2 and E3 are both (〈p〉, 〈p〉)Cmp,N,j , and the image of E4 is

(〈p〉, 〈p〉)Cm,N,“p−1”j .

Proof. The k = 1 case is clear, as is the assertion for E1 in case k = 2.

The remaining statements are a fiddly double coset computation. �

Proposition 3.5.14. In the case k = 1, we have

(S′p, 〈p−1〉) · cΞm,N,j = (C, β∗cg0,1/mN ),

in the notation of Proposition 3.5.15.

In the case k = 2, we have

(S′p, 〈p−1〉) · cΞpm,N,j =
4∑
i=1

Θi,

where Θi is the term corresponding to the curve Ei of the previous proposition,

and

Θ1 = (C, β∗cg0,1/mpN ).

Proof. An argument using Lemma 2.4.5 in a familiar manner shows that

the pullback of (ι′
mpk−1,N,j

)(cg0,1/mpk−1) to E coincides with the pushforward

of cg0,1/mpk−1 along the map

Y (Γ1(mpk−1N) ∩ Γ0(mpk+1)) - E

z -
(

z
mpk−1 ,

z+j
mpk−1

)
.
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So the pushforward of this along the map E → Y1(N)2 given by (u, v) 7→
(u/p2, 〈p〉v) is

Ä
C, β∗ cg0,1/mN

ä
, since the composition of these two maps is β.

�

Combining the preceding proposition with Proposition 3.5.15, we have

∆2 = (S′p, 〈p−1〉) · cΞm,N,j −∆′2, where

∆′2 =


Ä
C, β∗

Ä
1 0
0 p

ä∗
cg0,“p−1”/mN

ä
if k = 1,

Θ2 + Θ3 + Θ4 if k = 2.

We may express the k = 1 case equivalently as

∆′2 =
Ä
C, β′∗cg0,“p−1”/mN

ä
where β′ is the map

Y (Γ1(mN) ∩ Γ0(p) ∩ Γ0(mp))→ C

given by z 7→
Ä
z
mp , 〈p〉 ·

pz+j
m

ä
.

We have seen this map before: we showed above in Proposition 3.4.13 that

there was a commutative diagram

Y (Γ1(mN) ∩ Γ0(p) ∩ Γ0(mp))
γ′′- Y (Γ1(mN) ∩ Γ0(m) ∩ Uj′)

Y1(N)2

z 7→
Ä
z
mp ,

pz+j
m

ä
?

1× 〈p〉 - Y1(N)2,

z 7→
Ä
z
mp ,

z+j′

mp

ä
?

where γ′′ is a suitable element of Γ1(mN) (in fact of Γ1(mN)∩Γ0(mp), although

we do not need this), j′ = p−1j mod m is invertible modulo p, and Uj′ is the

preimage in a conjugate of the diagonal torus in SL2(Fp).

Proposition 3.5.15 (Evaluation of ∆′2). For k = 1, we have

∆′2 = (〈p−1〉, 〈p−1〉)σ−1
p

Ä
(T ′p, T

′
p)− σp − p(〈p−1〉, 〈p−1〉)σ−1

p

ä
cΞm,N,j ,

and consequently

∆2 =
[
(S′p, 〈p−1〉)

−(〈p−1〉, 〈p−1〉)σ−1
p

Ä
(T ′p, T

′
p)− σp − p(〈p−1〉, 〈p−1〉)σ−1

p

ä ]
· cΞm,N,j .

We now consider ∆3. By applying the automorphism of Y1(N)2 that

switches the two factors and running through essentially the same argument

as above, we see that
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Proposition 3.5.16 (Evaluation of ∆3). For k = 1, we have

∆3 =
[
(〈p−1〉, S′p)

−(〈p−1〉, 〈p−1〉)σ−1
p

Ä
(T ′p, T

′
p)− σp − p(〈p−1〉, 〈p−1〉)σ−1

p

ä ]
· cΞm,N,j .

We now have all the ingredients necessary for the proof in the case k = 1,

which will be carried out in Section 3.5.8. However, for k = 2, there are a few

more ingredients we will need.

3.5.6. Study of Θ4. Let us now consider the term Θ4 that arises for k=2.

Recall that δ4 was any element of Γ1(N) satisfying a certain congruence modulo

p; we may use strong approximation to make additional congruence assump-

tions modulo primes away from p, so we shall assume that δ4 =
Ä

pa b
mNc d

ä
with

ja = mb mod p.

For brevity, we shall write Γ(M,N) for the group®Ç
a b

c d

å
∈ SL2(Z) :

a = 1, b = 0 mod M,

c = 0, d = 1 mod N

´
.

Proposition 3.5.17. There is a commutative diagram

Y (Γ(mp,mpN))
z 7→

Ä
δ4

Ä
1 0
0 mp

ä
z,
Ä

1 j
0 mp

ä
z
ä

- E4

Y (Γ(mp,mpN))

z 7→ εz

? (〈p〉, 〈p〉)ι′mp,N,j0 - Y1(N)2,

(u, v) 7→
Ä
z
p2
, 〈p〉z

ä
?

where ε is a suitably chosen element of Γ1(N) and j0 is the unique integer

congruent to j modulo m and to 0 modulo p.

Proof. Firstly, we note that Γ1(N) normalizes Γ(mp,mpN), so the left-

hand vertical arrow is well defined. More subtly, the well-definedness of the

top horizontal arrow follows from the inclusion

δ4

Ç
1 0

0 mp

å
Γ(mp,mpN)

Ç
1 0

0 mp

å−1

δ−1
4 ⊆ Γ0(p2);

indeed δ4

Ä
1 0
0 mp

ä
=
Ä
p 0
0 m

ä
δ′4 where δ′4 =

(
a mb
Nc d

)
normalizes Γ(mp,mpN), so

δ4

Ç
1 0

0 mp

å
Γ(mp,mpN)

Ç
1 0

0 mp

å−1

δ−1
4

=

Ç
m 0

0 p

å
Γ(mp,mpN)

Ç
m 0

0 p

å−1

⊆ Γ0(m2N) ∩ Γ0(p2).
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It remains to show that ε may be chosen so that the diagram commutes.

We need to choose ε so that we have

Γ1(N)〈p〉
Ç

1 0

0 mp

å
ε = Γ1(N)

Ç
p−1 0

0 p

å
δ4

Ç
1 0

0 mp

å
= Γ1(N)

Ç
1 0

0 mp

å
δ′4

and so that

Γ1(N)

Ç
1 j0
0 mp

å
ε = Γ1(N)

Ç
1 j

0 mp

å
,

where j0 is the unique integer congruent to j mod m and 0 mod p.

These conditions are both satisfied if we take ε to be congruent to 1 modulo

mN and to satisfy the same congruence modulo p as δ′4, so ε = ( x jx∗ ∗ ) mod p

for some x. �

Corollary 3.5.18. We have

Θ4 = (〈p−1〉, 〈p−1〉)∗
Ä
Cm,N,“p−1”j , (ι

′
mp,N,j0)∗(ε

−1)∗cg0,1/mpN

ä
.

Now we calculate the pushforward of (ε−1)∗cg0,1/mpN fromY (Γ(mp,mpN))

to Y (Γ(m,mN)).

Proposition 3.5.19. Let α, β∈Z be such that α=0, β=1 mod mN and

β 6= 0 mod p. Then the pushforward of cgα/mpN,β/mpN from Y (Γ(mp,mpN))

to Y (Γ(m,mN)) along the map z 7→ z/p is cg0,1/mN ·
Ä
cg0,“p−1”/mN

ä−1
, and

hence

Θ4 = (〈p−1〉, 〈p−1〉)σp(1− (〈p−1〉, 〈p−1〉)σ−2
p )cΞm,N,j .

Proof. A calculation using Theorem 2.2.4 shows that pushing forward to

Y (Γ1(mpN) ∩ Γ0(m)) gives cgα/mN,β/mpN = cg0,β/mpN , and we are now in

familiar territory. �

3.5.7. Study of Θ2 and Θ3. Let δ be any element of Γ1(N) ∩ Γ0(mN)

whose top left entry is divisible by p, so δ =
Ä

pa b
mNc d

ä
with pa = d = 1 mod N .

Let δ′ =
Ä
a mb
Nc pd

ä
, so δ′ ∈ 〈p〉Γ1(N) and we have δ

Ä
1 0
0 mp

ä
=
Ä
p 0
0 m

ä
δ′.

Let Eδ be the locus of points in Y (Γ1(N) ∩ Γ0(p2)) × Y1(N) of the form

(δz, z + j/mp); this clearly maps to Cmp,N,j under the natural projection to

Y1(N)2. We then build the following diagram of modular curves:

Y (Γ(mp,mpN))

Ä
p 0
0 m

ä
δ′,
Ä

1 j
0 mp

ä
∼=

- Eδ

Y (Γ(mp,mpN))

id ∼=

?
Ä

1 0
0 mp

ä
,
Ä

1 j
0 mp

ä
∼=

- Cmp,N,j .

pr

?
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Proposition 3.5.20. Suppose that δ′ =
Ä
a′ b′

c′ pd

ä
, with aj − b 6= 0 mod p.

Then the intersection[
(δ′)−1

Ç
1 0

0 m

å−1

(Γ1(N) ∩ Γ0
0(p))

Ç
1 0

0 m

å
δ′

∩
Ç

1 j

0 mp

å−1

Γ1(N)

Ç
1 j

0 mp

å]
∩ Γ(m,mN)

consists precisely of those matrices in Γ(m,mN) that are congruent to ±1

modulo p.

Proof. It suffices to show that

Γ1(N) ∩ Γ0
0(p) ∩

Ç
1 0

0 m

å
δ′
Ç

1 j

0 mp

å−1

Γ1(N)

Ç
1 j

0 mp

å
(δ′)−1

Ç
1 0

0 m

å−1

consists of matrices that are ±1 modulo p, since such matrices are clearly

preserved under conjugation by ( 1 0
0 m ) δ′ (which is integral at p).

Let γ ∈ Γ1(N)∩Γ0
0(p). Then γ is congruent modulo p to

Ä
x 0
0 x−1

ä
for some

x ∈ (Z/pZ)×. We require thatÇ
1 j

0 mp

å
(δ′)−1

Ç
1 0

0 m

å−1

γ

Ç
1 0

0 m

å
δ′
Ç

1 j

0 mp

å−1

∈ SL2(Zp)

or, equivalently, thatÇ
1 j

0 1

å
(δ′)−1

Ç
x 0

0 x−1

å
δ′
Ç

1 j

0 1

å−1

∼=
Ç
∗ 0

∗ ∗

å
(mod p).

Substituting the entries of δ′, we find that the top right-hand entry of the

product on the left is congruent modulo p to (aj − b)cj(x− x−1). So if aj − b
is not divisible by p, then we must have x − x−1 = 0 mod p; i.e., x = ±1, as

required. �

Remark 3.5.21. Conceptually, what is going on here is that we have cal-

culated the intersection of three Borel subgroups of SL2(Fp) in general position

relative to each other, which is simply the centre of the group.

Corollary 3.5.22. The pullback to Eδ of (ι′mp,N,j)∗cg0,1/mpN is equal to

the pushforward along the top row of the above diagram of the modular unit∏
γ∈Uj/{±1}

γ∗cg0,1/mpN ∈ O(Y (mp,mpN)×),

where Uj is (as above) the torus in SL2(Fp) whose preimage isÇ
1 0

0 p

å−1

K

Ç
1 0

0 p

å
∩
Ç

1 j

0 p

å−1

K

Ç
1 j

0 p

å
,

and we choose a lifting of each element of U/{±1} to an element of Γ(m,mN).
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Note that this depends only rather weakly on δ. We calculated Uj explic-

itly above: it consists of all matrices of the form
Ä

u−1 0
j−1(u−u−1) u

ä
with u ∈ F×p .

We now consider the pushforward of this to Y1(N)2 along the map (u, v) 7→Ä
〈p〉−1

Ä
p−1 0

0 p

ä
u, v
ä
, so the image of Eδ is one of the components of the image

of Cmp,N,j under the Hecke operator (〈p〉S′p, 1).

Proposition 3.5.23. The image of Eδ under this map is Cmp,N,j itself.

More specifically, we may find ε ∈ Γ(m,mN) such that there is a commutative

diagram

Y (Γ(mp,mpN))

Ä
〈p〉−1

Ä
1 0
0 mp

ä
δ′,
Ä

1 j
0 mp

ää
- Y1(N)2

Y (Γ(mp,mpN))

ε ∼=

? ι′mp,N,j - Y1(N)2.

id ∼=

?

Proof. We must show that ε can be found in such a way thatÇ
1 0

0 mp

å
δ′ ∈ Γ1(N)〈p〉

Ç
1 0

0 mp

å
ε

and Ç
1 j

0 mp

å
∈ Γ1(N)

Ç
1 j

0 mp

å
ε.

For any ε ∈ Γ(m,mN), the matrices

〈p〉−1

Ç
1 0

0 mp

å
δ′ε−1

Ç
1 0

0 p

å−1

and Ç
1 j

0 mp

å
ε−1

Ç
1 j

0 mp

å
are integral away from p and have bottom right entry congruent to 1 modulo N ;

so we need only show that ε may be chosen such that both are integral at p.

So we must show that we can find ε in the intersection

ε ∈
Ç

1 j

0 1

å−1

U0(p)

Ç
1 j

0 1

å
∩ U0(p)δ′.

The nonemptiness of this intersection is equivalent to the equality of the double

cosets

U0(p)

Ç
1 j

0 1

å
U0(p) and U0(p)

Ç
1 j

0 1

å
(δ′)−1U0(p).



EULER SYSTEMS FOR RANKIN–SELBERG CONVOLUTIONS 701

However, as we have seen before, there is only one double U0(p) coset in K

other than U0(p) itself, so this equality is equivalent to
Ä

1 j
0 1

ä
(δ′)−1 /∈ U0(p),

which is equivalent to our hypothesis b 6= ja mod p. �

It remains to be shown that we can choose δ and ε in some reasonable

fashion. Let ξ ∈ F×p . Then we can take ε =
(

j−1(1−ξ) −ξ
1−j−2(1−ξ) j+ξj−1

)
and δ′ =(

j−1(1−ξ) −ξ
ξ−1 0

)
. One sees easily that

Ä
1 j
0 1

ä
ε
Ä

1 −j
0 1

ä
=
(

j 0
1−j−2(1−ξ) j−1

)
is lower-

triangular and that if we take ξ to be a quadratic residue or a nonresidue, then

δ′ satisfies the congruences stated above, so it suffices to take ξ = 1 and one

nonsquare ξ.

Let us write Γ(mp,mpN)± for the subgroup of Γ(m,mN) consisting of

matrices that are congruent to ±1 modulo p. Then we have a diagram

Y (Γ(mp,mpN))
σ- Y (Γ(mp,mpN)±)

ε
∼=
- Y (Γ(mp,mpN)±)

Y (Γ(m,mN))2
�

Ä 1
0
0
p

ä ,
Ä 1

j

0
p

ä
µ 1

Y (Γ(m,mN))2.

µ3

Ä
1 0
0 p

ä
,
Ä

1 j
0 p

ä
?

〈p〉 −
1 Ä

1
00
p
ä
δ ′, Ä

1
j0

p
äµ

2

-

Here σ is the natural pushforward map.

The images of µ1 and µ2 are both given by the curve C of points of the

form (z, z + j/p) in Y (Γ(m,mN))2, which maps to Cmp,N,j under the map

(u, v) 7→ (u/m, v/m) to Y1(N)2. We find that

µ∗1 (σ ◦ µ1)∗cg0,1/mpN =
∏
u∈F×p

Ç
u−1 0

j−1(u− u−1) u

å∗
cg0,1/mpN

and hence

(µ2)∗ µ
∗
1 (σ ◦ µ1)∗ cg0,1/mpN

= (µ3)∗(ε
−1)∗ µ∗1 (σ ◦ µ1)∗ cg0,1/mpN

= (µ3)∗(ε
−1)∗

∏
u∈F×p

Ç
u−1 0

j−1(u− u−1) u

å∗
cg0,1/mpN

=
∏

v∈F×p /±1

∏
u∈F×p

ñÇ
u−1 0

j−1(u− u−1) u

å
ε−1

Ç
v−1 0

j−1(v − v−1) v

åô∗
cg0,1/mpN .
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Conjugating by
Ä

1 0
j−1 1

ä
maps the torus Uj onto the diagonal torus and

maps ε−1 onto the matrix
Ä
j ξ
0 j−1

ä
, and the above expression becomes

∏
v∈F×p /±1

∏
u∈F×p

[Ä
1 0
−j−1 1

ä Ä
u−1 0

0 u

ä Ä
j ξ
0 j

ä−1 Ä
v−1 0

0 v

ä Ä
1 0
j−1 1

ä]∗
cg0,1/mpN

=
∏

v∈F×p /±1

∏
u∈F×p

[Ä
1 0
−j−1 1

ä (
u−1v−1j u−1vξ

0 uvj−1

) Ä
1 0
j−1 1

ä]∗
cg0,1/mpN .

We may change variables by letting a = uv and b = u−2. Then the

product becomes

∏
a∈F×p

∏
b∈F×2

p ·ξ

ñÇ
1 0

−j−1 1

åÇ
j b

0 j−1

åÇ
a−1 0

0 a

åÇ
1 0

j−1 1

åô∗
cg0,1/mpN

= (µ1 ◦ σ)∗
∏

b∈F×2
p ·ξ

ñÇ
1 0

−j−1 1

åÇ
j b

0 j−1

åÇ
1 0

j−1 1

åô∗
cg0,1/mpN

= (µ1 ◦ σ)∗
∏

b∈F×2
p ·ξ

ñÇ
j b

−1 j−1(1− b)

åÇ
1 0

j−1 1

åô∗
cg0,1/mpN

= (µ1 ◦ σ)∗

Ç
1 0

j−1 1

å∗ ∏
b∈F×2

p ·ξ
cg(−1)0/mpN,(j−1(1−b))1/mpN .

Considering Θ2 and Θ3 together corresponds to letting b vary over all of

F×p . If we were to extend the product over all b ∈ Fp (residue, nonresidue, or

zero), then we would get

(9) (µ1 ◦ σ)∗

Ç
1 0

j−1 1

å∗Ç
p 0

0 1

å∗
cgα/p,1/mN ,

where α is the image of −1/mN in (Z/pZ)×. (Thus α/p = (−1)0/mN .)

The term for b = 0 is just

(µ1 ◦ σ)∗

Ç
j 0

−1 + j−2 j−1

å∗
cg0,1/mpN = (µ1 ◦ σ)∗cg0,1/mpN ,

since
Ä

j 0
−1+j−2 j−1

ä
∈ Uj . This is what we want: it is the definition of cΞmp,N,j .
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What can we say about the expression in (9)? Writing the pushforward

in terms of coset representatives gives us

∏
u∈F×p

[Ç
p 0

0 1

åÇ
1 0

j−1 1

åÇ
1 0

j−1 1

å−1Ç
u−1 0

0 u

åÇ
1 0

j−1 1

å]∗
cgα/p,1/mN

=
∏
u∈F×p

ñÇ
u−1 0

0 u

åÇ
p 0

0 1

åÇ
1 0

j−1 1

åô∗
cgα/p,1/mN

=

Ç
1 0

j−1 1

å∗Ç
p 0

0 1

å∗ ∏
u∈F×p

cgu/p,1/mN

=

Ç
1 0

j−1 1

å∗(
cg0,1/mN ·

ÇÇ
p 0

0 1

å∗
cg0,1/mN

å−1)

= cg0,1/mN ·
ÇÇ

1 0

j−1 1

å∗Ç
p 0

0 1

å∗
cg0,1/mN

å−1

.

The last line is justified by the fact that
Ä

1 0
j−1 1

ä∗
denotes the action of a matrix

congruent to
Ä

1 0
j−1 1

ä
modulo p but to the identity modulo mN , and such a

matrix will act trivially on cg0,1/mN .

We have seen both of these terms before: the class in CH2(Y1(N)2 ⊗
Q(µm), 1) defined by (Cmp,N,j , pushforward of cg0,1/mN ) is ((T ′p, T

′
p) − σp −

p〈p × p〉−1σ−1
p )cΞm,N,j , by Corollary 3.4.10; and the term corresponding to

(Cmp,N,j , pushforward of
Ä

1 0
j−1 1

ä∗ Ä p 0
0 1

ä∗
cg0,1/mN ) is (〈p〉−1, S′p)cΞm,N,j , by

Corollary 3.4.14.

3.5.8. Conclusion of the proof. We can now complete the proof of Theo-

rem 3.5.1 for k = 1.

We know that

(T ′p, T
′
p)cΞmp,N,j = ∆1 + ∆2 + ∆3 + ∆4,

and we have shown that

∆1 = normmp2

mp

Ä
cΞmp2,N,j

ä
(Proposition 3.5.7);

∆2 =
î
(S′p, 〈p−1〉)− (〈p−1〉, 〈p−1〉)σ−1

p

Ä
(T ′p, T

′
p)− σp

−p(〈p−1〉, 〈p−1〉)σ−1
p

äó
· cΞm,N,j (Proposition 3.5.15),

∆3 =
î
(〈p−1〉, S′p)− (〈p−1〉, 〈p−1〉)σ−1

p

Ä
(T ′p, T

′
p)− σp

−p(〈p−1〉, 〈p−1〉)σ−1
p

äó
· cΞm,N,j (Proposition 3.5.16),
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and

∆4 = p(〈p−1〉, 〈p−1〉)
Ä
1− (〈p−1〉, 〈p−1〉)σ−2

p

ä
cΞm,N,j (Proposition 3.5.10).

Combining these statements gives the k = 1 case of Theorem 3.5.1.

In the case k = 2 we have again (T ′p, T
′
p)cΞmp2,N,j = ∆1 + ∆2 + ∆3 + ∆4,

where

∆1 = normmp3

mp2

Ä
cΞmp3,N,j

ä
(Proposition 3.5.7),

∆2 = (S′p, 〈p−1〉) · cΞmp,N,j −Θ2 −Θ3 −Θ4,

∆3 = (〈p−1〉, S′p) · cΞmp,N,j −Θ′2 −Θ′3 −Θ′4,

and

∆4 = p(〈p−1〉, 〈p−1〉) · cΞmp,N,j (Proposition 3.5.10).

Moreover, we have

Θ4 = (〈p−1〉, 〈p−1〉)σp(1− (〈p−1〉, 〈p−1〉)σ−2
p )cΞm,N,j (Proposition 3.5.19)

and

Θ2 + Θ3 = (〈p−1〉, 〈p−1〉) · cΞmp,N,j
−((T ′p, T

′
p)− σp − p〈p× p〉−1σ−1

p )cΞm,N,j + (〈p〉−1, S′p)cΞm,N,j .

The obvious involution of Y1(N)2 ⊗ Q(µm) given by swapping the two

factors maps cΞpkm,N,j to cΞpkm,N,−j for each j, and it interchanges Θi with

Θ′i for i = 1, . . . , 4, so we obtain formulae for these terms, which are identical

with the nonprimed versions except (〈p−1〉, S′p) is interchanged with (S′p, 〈p−1〉).
Collecting terms gives Theorem 3.5.1 for k = 2.

4. Relation to complex L-values

4.1. Definition of Rankin–Selberg L-functions. We recall the definition of

Rankin–Selberg L-functions of pairs of modular forms.

Definition 4.1.1. Let f, g be cuspidal new modular eigenforms (of possi-

bly distinct weights k, ` and levels Nf , Ng), L a number field containing the

coefficients of f and g, and p a prime. We define the local Euler factor

Pp(f, g,X) = det
Ä
1−X Frob−1

p |(VLλ(f)⊗ VLλ(g))Ip
ä
,

where λ is an arbitrary place of L of residue characteristic distinct from p,

VLλ(f) is the Lλ-linear representation of GQ attached to f (and similarly for

g) — see Section 6.3 below — and Frobp denotes the arithmetic Frobenius at p.

This Euler factor may be defined in purely automorphic terms (cf. [Jac72,

Th. 14.8]), but the above definition is convenient for our purposes. The fol-

lowing is an elementary calculation:
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Proposition 4.1.2. If p - NfNg , then

Pp(f, g,X) = (1− αγX)(1− αδX)(1− βγX)(1− βδX),

where α, β are the roots of X2− ap(f)X + pk−1εp(f) and similarly γ, δ are the

roots of X2 − ap(g)X + p`−1εp(g). Completely explicitly, this becomes

Pp(f, g,X) = 1− ap(f)ap(g)X

+
(
p`−1ap(f)2εp(g) + pk−1εp(f)ap(g)2 − 2pk+`−2εp(f)εp(g)

)
X2

− pk+`−2εp(f)ap(f)εp(g)ap(g)X3 + p2k+2`−4εp(f)2εp(g)2X4.

Proposition 4.1.3. We may write

Pp(f, g,X) =
4∏
i=1

(1− λiX),

where each λi is either 0, or a p-Weil number of weight ≤ (k + ` − 2). In

particular, all poles of the meromorphic function Pp(f, g, p
−s)−1 have real part

at most k+`−2
2 .

Proof. This is clear from Proposition 4.1.2 if p does not divide the levels

of f and g. The remaining cases follow from an explicit computation of the

possible local components of f and g, using the Galois-theoretic definition

adopted above (since the Weil–Deligne representations attached to f and g

must fall into a finite list of possible types). �

We now define global Rankin–Selberg L-functions as a product of local

terms in the usual way.

Definition 4.1.4. We let

L(f, g, s) =
∏

p prime

Pp(f, g, p
−s)−1,

and for N ≥ 1, we let

L(N)(f, g, s) =
∏

p prime
p-N

Pp(f, g, p
−s)−1.

Proposition 4.1.5. Suppose k ≥ `, and write ΓC(s) = (2π)−sΓ(s). Then

the completed L-function

Λ(f, g, s) = ΓC(s)ΓC(s− `+ 1)L(f, g, s)

has analytic continuation to all s ∈ C, except for a simple pole at s = k if

` = k and f = g, and it satisfies a functional equation of the form

Λ(f, g, k + `− 1− s) = ε(s) · Λ(f ⊗ g, s),

where ε is a function of the form AeBs for constants A,B.
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Remark 4.1.6. The function ε(s) is, as the notation suggests, a global

ε-factor, but we shall not use this interpretation here.

In particular, if k = ` = 2 and s = 1, the value L(f, g, 1) vanishes (because

ΓC(s− 1) has a simple pole) and we have

(10) L′(f, g, 1) = 2πΛ(f, g, 1).

4.2. Real-analytic Eisenstein series. We now express the Rankin–Selberg

L-function in terms of the Petersson product with a nonholomorphic Eisenstein

series, the original example of the Rankin–Selberg method.

Definition 4.2.1. Let k ≥ 0 ∈ Z and α ∈ Q/Z.

(1) For τ ∈ H, s ∈ C with k + 2<(s) > 2, we define

E(k)
α (τ, s) = (−2πi)−kπ−sΓ(s+ k)

∑′

(m,n)∈Z2

=(τ)s

(mτ + n+ α)k |mτ + n+ α|2s
,

where the prime denotes that the term (m,n) = (0, 0) is omitted if

α = 0 (but not otherwise).

(2) For τ, s as above, define

F (k)
α (τ, s) = (−2πi)−kΓ(s+ k)π−s

∑′′

(m,n)∈Z2

e2πiαm=(τ)s

(mτ + n)k |mτ + n|2s
,

where the double prime denotes that the term (m,n) = (0, 0) is omitted

(always).

Proposition 4.2.2. The above series have the following properties :

(i) (Automorpy). If Nα = 0, then for fixed τ both E
(k)
α and F

(k)
α are pre-

served by the weight k action of Γ1(N). Moreover, the diamond operators

act on α by multiplication in the obvious way.

(ii) (Action of Atkin–Lehner involutions). If Nα = 0, then we have

F (k)
α (τ, s) = N−k−s

∑
x∈Z/NZ

e2πiαxτ−kE
(k)
x/N

Ä
−1
Nτ , s

ä
.

(iii) (Differential operators). The Maass–Shimura weight-raising differential

operator

δk :=
1

2πi

Å
d

dτ
+

k

τ − τ

ã
(cf. [Shi76, eq. (2.8)]) acts on the Eisenstein series via

δkE
(k)
α (τ, s) = E(k+2)

α (τ, s− 1)

and similarly for F
(k)
α .
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(iv) (Analytic continuation and functional equation). For fixed k, τ, α, both

functions E
(k)
α (τ, s) and F

(k)
α (τ, s) have meromorphic continuations to the

whole s-plane, which are holomorphic everywhere if k 6= 0; and we have

E(k)
α (τ, s) = F (k)

α (τ, 1− k − s).

(v) (Relation to Siegel units). We have

E(0)
α (τ, 0) = 2 log |g0,α(τ)|,

where g0,α is the Siegel unit of Section 2.2.

Proof. Parts (i)–(iii) are easy explicit computations. Part (iv) is a stan-

dard application of the Poisson summation formula, and (v) is [Kat04, formula

(3.8.4)(iii)]. �

Now let f, g be any two newforms of levels Nf , Ng dividing N , and weights

k, `, with k > `. Let f̆ ∈ Sk(Γ1(N))[πf ] and ğ ∈ S`(Γ1(N))[πg] be forms in

the oldspaces at level N attached to f and g (which we shall think of as “test

vectors”). For any α ∈ 1
NZ/Z, set

D(f̆ , ğ, x, s) =

∫
Γ1(N)\H

f̆(−τ) ğ(τ)E(k−`)
α (τ, s− k + 1)=(τ)k−2 dx dy

=
¨
f̆∗(τ), ğ(τ) · E(k−`)

α (τ, s− k + 1)
∂

Γ1(N)
.

The next theorem shows that the function D(f̆ , ğ, 1/N, s) is an “approxi-

mation” to the completed L-function Λ(f, g, s) of the previous section, differing

from it only by possible bad Euler factors at primes ` | N .

Theorem 4.2.3 (Rankin–Selberg, Shimura). We have

D(f̆ , ğ, 1/N, s) = 21−kik−`N2s+2−k−`Λ(f, g, s)C(f̆ , ğ, s),

where

C(f̆ , ğ, s) :=

Ñ∏
p|N

Pp(f, g, p
−s)

é ∑
n∈S(N)

an(f̆)an(ğ)n−s

is a polynomial in the variables p−s for p | N ; in particular, it is holomorphic

for all s ∈ C. Here S(N) is the set of integers all of whose prime factors

divide N .

Proof. See [Kat04, Prop. 7.1]; our E
(j)
1/N (τ, s) corresponds to

(−2πi)−jΓ(s+ j)π−s=(τ)sE(j, τ, 1/N, 2s)

in Kato’s notation, where j = k − `. To see that C(f̆ , ğ, s) is a polynomial,

it suffices to consider the case when f̆ = f(az) and ğ = g(bz) for integers

a | N/Nf , b | N/Ng, in which case the result is clear. �
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In particular, for s = 1 and k = ` = 2, using equation (10) and the above

proposition gives

(11) D(f̆ , ğ, 1/N, 1) = (4π)−1L′(f, g, 1)C(f̆ , ğ, 1).

Remark 4.2.4. If f , g have coprime levels Nf , Ng with NfNg = N , and

if we take f̆ = f and ğ = g to be the normalized newforms, then C(f̆ , ğ, s) is

identically 1, so in this case D(f̆ , ğ, 1/N, s) is N2sΛ(f, g, s) up to constants.

From the functional equation for the real-analytic Eisenstein series and

the action of Atkin–Lehner involutions, we have

D(f̆ , ğ, x, k + `− 1− s) =
〈
f̆∗(τ), ğ(τ) · F (k−`)

x/N (τ, s− k + 1)
〉

Γ1(N)
(12)

= N1−s ∑
y∈Z/NZ

e2πixyD(wN f̆ , wN ğ, y, s).

Here wN f̆ is the function τ 7→ N−1τ−kf̆(−1/(Nτ)); that is, we have chosen

our normalizations so that wN is an involution in weight 2 (but not in more

general weights).

4.3. The Beilinson regulator. For any smooth variety X over a subfield of

C, there is a canonical map, the Beilinson regulator, from H3
M(X,Z(2)) into

complex-analytic Deligne–Beilinson cohomology. These maps were introduced

in [Bĕı84]. We shall only need these maps for H3
M(X,Z(2)) where X is a pro-

jective surface, in which case the target group can be identified with de Rham

cohomology.

Theorem 4.3.1 (Beilinson; cf. [Jan88b, p. 45]). Let X be a smooth pro-

jective surface over C (or a subfield of C). There is a homomorphism

regC : CH2(X, 1)→ H2
dR(X/C)/Fil2 =

Ä
Fil1H2

dR(X/C)
ä∨
,

which sends the class of
∑
j(Zj , gj) ∈ Z2(X, 1) to the linear functional

(13) ω 7→ 1

2πi

∑
j

∫
Zj−Zsing

j

ω log |gj |.

We now show that the images of the generalized Beilinson–Flach elements

Ξm,N,j under regC, paired with differentials corresponding to weight 2 modular

forms f, g, are related to the derivatives of Rankin–Selberg L-functions at the

point s = 1. More precisely, we shall apply regC to a lifting of Ξm,N,j to

CH2(X1(N)2 ⊗ Q(µm), 1) ⊗ Q; the result will turn out to be independent of

the choice of lifting.

Definition 4.3.2. If f ∈ S2(Γ1(N)), we let f∗ ∈ S2(Γ1(N)) be the form

obtained by applying complex conjugation to the Fourier coefficients of f .
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We let ωf denote the holomorphic differential on X1(N) whose pullback

to H is 2πif(z) dz, and we let ηah
f be the anti-holomorphic differential ωf∗ ,

whose pullback is −2πif(−z) dz.

Remark 4.3.3.

(1) The factor 2πi is convenient since dq
q = 2πidz.

(2) The map f → ηah
f is C-linear and Hecke-equivariant (whereas the more

obvious map f 7→ ωf has neither of these desirable properties).

Theorem 4.3.4 (Beilinson; cf. [BDR12, Prop. 4.1]). Let Ξ̃N be any ele-

ment of CH2(X1(N)2, 1) lifting ΞN := Ξ1,N,1 ∈ CH2(Y1(N)2, 1), and let p1, p2

be the projections of X1(N)2 onto its two factors. Then for f̆ , ğ as above, we

have〈
regC

Ä
Ξ̃N
ä
, p∗1(ηah

f̆
) ∧ p∗2(ωğ)

〉
= 2πD(f̆ , ğ, 1/N, 1) = 1

2L
′(f, g, 1)C(f̆ , ğ, 1).

Proof. We have

D′(f, g, 1/N, 1) =

Ç∫
Γ1(N)\H

f(−τ̄)g(τ)E
(0)
1/N (τ, 0) dx ∧ dy

å
= 2

∫
Γ1(N)\H

f(−τ)g(τ) log
∣∣∣g0,1/N (τ)

∣∣∣ dx ∧ dy

= 2

∫
Γ1(N)\H

f(−τ)g(τ) log
∣∣∣g0,1/N (τ)

∣∣∣ (−2πidz̄) ∧ (2πidz)

8π2i

=
1

2π

Ç
1

2πi

∫
Y1(N)(C)

log
∣∣∣g0,1/N

∣∣∣ ηah
f ∧ ωg

å
.

We compare this with Beilinson’s formula for the regulator on CH2(X1(N)2, 1)

(Theorem 4.3.1). We know that Ξ̃N can be written as the class of (∆, g0,1/N )

(where ∆ = C1,N,1 is the diagonal in X1(N)2) plus a linear combination of

elements supported on cuspidal components. It is clear that p∗1(ηah
f ) ∧ p∗2(ωg)

restricts to 0 on any horizontal or vertical component and to ηah
f ∧ ωg on ∆;

so we obtain¨
regC

Ä
Ξ̃N
ä
, ηah
f ∧ ωg

∂
=

1

2πi

∫
Y1(N)

log
∣∣∣g0,1/N

∣∣∣ ηah
f ∧ ωg = 2πD′(f, g, 1)

as required. The final equality follows from equation (11). �

We are interested in a version of Theorem 4.3.4 for m ≥ 1, incorporating

twists by Dirichlet characters. This relation becomes easier to state if we

introduce “equivariant” versions of some of our objects, as follows:

Definition 4.3.5. For N ≥ 5,m ≥ 1 as above and for cusp forms f, g of

level N that are eigenforms for the Hecke operators away from N , we define
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the following elements:

gm =
∑

a∈(Z/mZ)×

[a]−1 ⊗ g
(
z + a

m

)
∈ C[(Z/mZ)×]⊗C S2(Γ1(m2N),C)

and the C[(Z/mZ)×]-valued Dirichlet series

L(mN)(f, g, (Z/mZ)×, s) =
∏
`-mN

P`(f, g, [`]`
−s)−1.

(There is no obvious way to define an equivariant Euler factor at the

primes dividing m.)

Proposition 4.3.6.

(a) We have

an(gm) = an(g)τ(n,m),

where τ(n,m) is the “universal Gauss sum”
∑
a∈(Z/mZ)× [a]−1e2πina/m ∈

C[(Z/mZ)×].

(b) If we extend the Hecke operators on S2(Γ1(N)) linearly to C[(Z/mZ)×]⊗C
S2(Γ1(m2N)), then we have

Tn(gm) = [n]tg(n)gm

〈n〉(gm) = [n]2εg(m)gm

for all n such that (n,mN) = 1, where tg(n) and εg(n) are the eigenvalues

of g for the Tn and 〈n〉 operators respectively.

(We can interpret (b) above as stating that gm transforms under the Hecke

operators away from mN as “g twisted by the universal character of level m.”)

Proof. Part (a) is immediate by a q-expansion computation. For part (b),

we note that the statement regarding the diamond operators can be verified

directly — by essentially the same computation as Proposition 2.7.5(4) — and

the statement for the Tn’s now follows immediately from the standard formulae

for the action of Tn on q-expansions, together with the easily verified fact that

τ(nn′,m) = [n]τ(n′,m) if (n,m) = 1. �

We extend the Beilinson regulator to a homomorphism

regC[(Z/mZ)×] : CH2(X1(N)⊗Q(µm), 1)→ C[(Z/mZ)×]⊗C
Ä
Fil1H2

dR(X/C)
ä∨

by mapping δ to
∑
a∈(Z/NZ)× [a]⊗ regC(σa · δ). (Note that this is not a homo-

morphism of modules over the group ring C[(Z/mZ)×]; the Poincaré duality

pairing interchanges the natural action of C[(Z/mZ)×] with its inverse.)



EULER SYSTEMS FOR RANKIN–SELBERG CONVOLUTIONS 711

Theorem 4.3.7. Let f̆ , ğ be as above, and let Ξ̃m,N,1 be any lifting of

Ξm,N,1 to X1(N)2. Then as elements of C[(Z/mZ)×], we have〈
regC[(Z/mZ)×](Ξ̃m,N,1), p∗1(ηah

f̆
) ∧ p∗2(ωğ)

〉
= 1

2L
′
(mN)(f, g, (Z/mZ)×, 1)A(f̆ , ğ,m, 1),

where we define

A(f̆ , ğ,m, s) =
∑

a∈(Z/mZ)×

[a]−1
∑

n∈S(mN)

an(f)an(g)e2πian/mn−s.

Proof. As we showed in the previous section, Ξ̃m,N,j may be represented

as the class of an element in Z2(X1(N)2⊗Q(µm), 1)⊗Q[(Z/mZ)×] that differs

by negiligible elements fromÄ
Cm,N,j , (ιm,N,j)∗(g0,1/m2N )

ä
.

As in the case m = 1 considered above, these negligible elements pair to 0 with

the differential p∗1(ηah
f ) ∧ p∗2(ωg). Hence we have

〈regC(flΞm,N ), p∗1(ηah
f ) ∧ p∗2(ωg)〉

=
∑

j∈(Z/mZ)×

[j]−1
∫
Cm,N,j

log
∣∣∣(ιm,N,j)∗(g0,1/m2N )

∣∣∣ · p∗1(ηah
f ) ∧ p∗2(ωg)

=
∑

j∈(Z/mZ)×

[j]−1
∫
X1(m2N)

log
∣∣∣g0,1/m2N

∣∣∣
· (p1 ◦ ιm,N,j)∗(ηah

f ) ∧ (p2 ◦ ιm,N,j)∗(ωg).

By construction, p1 ◦ ιm,N,j is just the natural projection map X1(m2N) →
X1(N), so the pullback of ηah

f along this map is just ηah
f again (where now we

consider f as a modular form of level m2N). On the other hand, p2 ◦ ιm,N,j
corresponds to the map z 7→ z+ j

m on the upper half-plane, so (p2◦ιm,N,j)∗(ωg)
is the differential whose pullback to H is 2πig

Ä
z + j

m

ä
dz, and hence we have∑

j

[j]−1(p2 ◦ ιm,N,j)∗(ωg) = 2πigm(z) dz

as elements of C[(Z/mZ)×] ⊗ Ω1
hol(X1(m2N)). Hence, by exactly the same

computation as above,

〈regC(flΞm,N ), p∗1(ηah
f )∧p∗2(ωg)〉=4π

∫
X1(m2N)

f(−τ̄)gm(τ) log
∣∣∣g0,1/m2N

∣∣∣ dx∧dy.

As remarked above, gm is an eigenform for the Hecke operators away from

mN ; so we may now apply exactly the same formal manipulations as in the

proof of [Kat04, Prop. 7.1], but with group ring coefficients rather than C
coefficients, and the result follows in this case also. �
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4.4. A nonvanishing result. In this section, we shall use the results of the

previous section, together with a deep theorem of Shahidi on the nonvanishing

of Rankin–Selberg L-values, to show that the elements Ξm,N,j are not all zero

(which is in no way obvious from their construction).

Theorem 4.4.1 (Shahidi; [Sha81, Th. 5.2]). Let f, g be any two newforms

of weight 2. Then the completed L-function Λ(f, g, s) is holomorphic and non-

vanishing on the line <(s) = 2, unless f = g∗, in which case it has a simple

pole at s = 2.

Remark 4.4.2. We have stated only a special case of Shahidi’s very general

theorem, which applies to automorphic forms on GLn×GLm over an arbitrary

number field. Note also that Shahidi’s normalizations are slightly different

from ours (He normalizes the L-function so that the abcissa of symmetry is

s = 1
2 , independently of the weights of f and g, while we normalize it to be at

s = k+`−1
2 = 3

2 .)

Corollary 4.4.3. If Σ is a finite set of primes, the function LΣ(f, g, s)

has a zero at s = 1 of order r1 + r2, where

r1 =

1 if f∗ 6= g,

0 if f∗ = g

and r2 is the sum of the orders of the poles at s = 1 of the Euler factors

Lp(f, g, s) for primes p ∈ Σ.

Proof. Applying the functional equation for the completed L-function,

which switches s with 3 − s, we deduce from Shahidi’s result that Λ(f, g, s)

is holomorphic and nonvanishing (resp. has a simple pole) at s = 1 if f 6= g∗

(resp. if f = g∗).

However, the L-factor at ∞, L∞(f, g, s) = ΓC(s)ΓC(s − 1), has a simple

pole at s = 1, so the order of vanishing of L(f, g, s) is r1 as defined above.

Since LΣ(f, g, s) is L(f, g, s) divided by the product of the L-factors at primes

in Σ, the result clearly follows. �

Remark 4.4.4. Note that if f∗ = g, then the local L-factor vanishes at

s = 1 for every prime, so r2 will tend to be rather large in this case.

Corollary 4.4.5. Let f, g be any two newforms, Σ any set of primes,

and p any prime in Σ. Then for all but finitely many Dirichlet characters χ of

p-power conductor,
∏
`∈Σ L`(f, g ⊗ χ, s) is holomorphic and nonzero at s = 1.

Proof. If χ has sufficiently large p-power conductor, then the local L-factor

of f ⊗ g ⊗ χ at p is identically 1; so it suffices to consider the L-factors at

primes ` 6= p. However, since χ has conductor prime to `, L`(f ⊗ g ⊗ χ, s) =
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P`(χ(`)`−s)−1, so it suffices to arrange that χ(`)`−1 does not lie in the finite

set of zeroes of the polynomial L`(f ⊗ g,X). It is clear that this may also be

achieved by ensuring that the conductor of χ is sufficiently big. �

Corollary 4.4.6. Given any two forms f, g of level N that are eigenvec-

tors for all Hecke operators, and p any prime, there is k ≥ 0 such that the pro-

jection of Ξmpk,N,1 to the (f, g)-isotypical quotient of CH2(Y1(N)2⊗Q(µmpk), 1)

is nonzero.

Proof. Immediate from the previous corollary and Theorem 4.3.7. �

5. Relation to p-adic L-values

In this section we develop an analogue of the m = 1 case of Theorem 4.3.7

in the p-adic setting. This is essentially a variant of the main theorem of

[BDR12].

5.1. Holomorphic Eisenstein series. We begin by constructing some holo-

morphic Eisenstein series that may be defined over a number field. We follow

Chapter 3 of [Kat04] closely, but we work on Y1(N) rather than Y (N). Our

purpose is to define, for α ∈ Q/Z, the following modular forms:

• E(k)
α ∈Mk(Γ1(N)), where k ≥ 1, k 6= 2;

• ‹E(2)
α ∈M2(Γ1(N));

• F (k)
α ∈Mk(Γ1(N)), for k ≥ 1, with α 6= 0 if k = 2.

We set

E(k)
α (τ) = E(k)

α (τ, 0),

and similarly for F (k).

Proposition 5.1.1. If k ≥ 1, k 6= 2, then E
(k)
α , F

(k)
α ∈ Mk(Γ1(N)) for

any α ∈ 1
NZ/Z.

For k = 2, we have F
(2)
α ∈ M2(Γ1(N)) for any α 6= 0, and ‹E(2)

α :=

E
(2)
α − E

(2)
0 ∈ M2(Γ1(N)) (for any α). The function F

(2)
0 = E

(2)
0 is a C∞

function on H invariant under the weight 2 action of Γ1(N), with slow growth

at the cusps, but is not holomorphic.

Proof. See [Kat04, §3.8]; our E
(k)
α is Kato’s E

(k)
0,α. �

We have q-expansion formulae for both families. Let α ∈ Q/Z. For

<(s) > 1, define

ζ(α, s) =
∑

n∈Q,n>0
n=α mod Z

n−s and ζ∗(α, s) =
∞∑
n=1

e2πiαnn−s
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as in [Kat04, §3.9]. Then both ζ(α, s) and ζ∗(α, s) have meromorphic contin-

uation to all s ∈ C and satisfy

ζ∗(α, 1− s) =
Γ(s)

(2π)s

Ä
e−iπs/2ζ(−α, s) + eiπs/2ζ(α, s)

ä
,

a version of the standard functional equation for the Hurwitz zeta function.

Proposition 5.1.2. Let k ≥ 1, α ∈ Q/Z.

(1) Assume k 6= 2. Then we have

E(k)
α = a0 +

∑
n≥1

Ñ∑
d|n

dk−1(e2πiαd + (−1)ke−2πiαd)

é
qn,

where

a0 =

ζ∗ (α, 1− k) if k ≥ 3,
1
2 (ζ∗ (α, 0)− ζ∗ (−α, 0)) if k = 1.

(2) We have‹E(2)
α = a0 +

∑
n≥1

Ñ∑
d|n

d(e2πiαd + e−2πiαd − 2)

é
qn,

where a0 = ζ∗ (α,−1) + 1
12 .

(3) Assume α 6= 0 in the case k = 2. Then

F (k)
α = a0 +

∑
n≥1

Ñ∑
d|n

(n
d

)k−1 (e2πiαd + (−1)ke−2πiαd)

é
qn,

where

a0 =

ζ(1− k) if k ≥ 2,
1
2 (ζ∗ (α, 0)− ζ∗ (−α, 0)) if k = 1.

Proof. This is [Kat04, Prop. 3.10]. Note that there is a typographical

error in the statement of the proposition loc. cit.; there is an extra star in the

formula for
∑
ann

−s in case (1), and the formula should read∑
n∈Q,n>0

ann
−s = ζ(α, s)ζ∗(β, s− k + 1) + (−1)kζ(−α, s)ζ∗(−β, s− k + 1). �

5.2. Nearly holomorphic modular forms. For k ≥ 0, we define (follow-

ing, e.g., [Shi86], [Shi00]) the space of nearly holomorphic modular forms

Mnh
k (Γ1(N),C). This is the space of C∞ slowly-increasing functions on H

that are invariant under the weight k action of Γ1(N) and are annihilated by

some power of the Maass–Shimura weight-lowering differential operator

εk =
−1

2πi
=(τ)2 d

dτ
.
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Any such function is in fact annhilated by ε[k/2]+1 and can be expanded as a

finite sum

(14) f(τ) =

[k/2]∑
j=0

fj(τ) (π=(τ))−j ,

where the fj are holomorphic functions. (In particular, any nearly holomorphic

form of weight 0 or 1 is in fact a holomorphic form.) For K a number field

containing the N -th roots of unity,1 we shall say that f ∈ Mnh
k (Γ1(N),K) is

defined over K if the Fourier coefficients of the holomorphic functions fj are

in K, and we write Mnh
k (Γ1(N),K) for the space of such functions.

We let Snh
k (Γ1(N),K) be the subspace of rapidly decreasing functions in

Mnh
k (Γ1(N),K). If k ≥ 2, then Snh

k (Γ1(N),K) coincides with the space de-

fined algebraically in [DR14, §2.4] using the “Hodge splitting” of the de Rham

cohomology.

Corollary 5.2.1. Let k, j be integers with k ≥ 1 and j ∈ [0, k−1]. Then

for any α ∈ 1
NZ/Z, the function τ 7→ E

(k)
α (τ,−j) lies in Mnh

k (Γ1(N),Q(µN )).

Proof. We first note that E
(k)
α , F

(k)
α ∈Mnh

k (Γ1(N),K) for all k ≥ 1. This

is clear for k = 1 or k ≥ 3 (since holomorphic forms are certainly nearly

holomorphic), and for k = 2, it suffices to check that E
(2)
0 = F

(2)
0 is nearly

holomorphic, which is clear from the formula

E
(2)
0 (τ) =

1

4π=(τ)
− 1

12 + 2
∑
n≥1

Ñ∑
d|n

d

é
qn.

With this in hand, we obtain the near-holomorphy of E
(k)
α (τ,−j) for

0 ≤ j ≤ k−1
2 by applying δj to E

(k−2j)
α = E

(k−2j)
α (τ, 0). Applying the same

argument to F
(k−2j)
α shows that F

(k)
α (τ,−j) is nearly holomorphic for j in the

same range; but F
(k)
α (τ,−j) = E

(k)
α (τ, 1− k+ j) by the functional equation, as

required, so we obtain the result for all j ∈ [0, k − 1]. �

We define the q-expansion of a nearly-holomorphic modular form f to

be the Fourier expansion of the holomorphic Z-periodic function f0, when we

write f in the form (14). Then δ corresponds to q d
dq on q-expansions, and

the following is clear from Proposition 5.1.2 and the proof of the previous

proposition:

1This is for compatibility with our notation for classical modular forms, since in our model

of Y1(N), the cusp ∞ is not rational.



716 A. LEI, D. LOEFFLER, and S. L. ZERBES

Proposition 5.2.2. For any j ∈ [0, k−1], the q-expansion of the nearly-

holomorphic form E
(k)
α (τ,−j) is

a0 +
∑
n≥1

Ñ∑
d|n

dk−1−j (n
d

)j (e2πiαd + (−1)ke−2πiαd)

é
qn,

where a0 = 0 unless j ∈ {0, k − 1}.

5.3. P-adic families of Eisenstein series. We now use the q-expansion for-

mulae above as motivation for defining a two-parameter family of p-adic Eisen-

stein series, which can be regarded as an analogue of the E(k)(−, s), with two

continuous p-adic parameters φ1, φ2 replacing the discrete parameter k and the

continuous real-analytic parameter s.

Definition 5.3.1. Choose some (sufficiently large) finite extension L/Qp,

and let Λ = OL[[Z×p ]], the Iwasawa algebra of Z×p . Let Ω = Spf Λ, the weight

space classifying continuous characters φ : Z×p → Cp, and consider the formal

power series with coefficients in Λ“⊗Λ given by

Eα(φ1, φ2) =
∑
n≥1
p-n

Ñ∑
d|n

φ1(d)φ2
(n
d

) î
e2πiαd + εe−2πiαd

óé
qn ∈ OL[[q]],

where ε = −φ1(−1)φ2(−1).

Note 5.3.2. We consider Z×Z as a subset of Ω×Ω in the natural way. Then

for k ≥ 1, k 6= 2, we have Eα(k − 1, 0) = (E
(k)
α )[p] and Eα(0, k − 1) = (F

(k)
α )[p],

where (−)[p] denotes the “p-depletion” operator.

We now fix a newform g ∈ S`(Γ1(Ng)) for some ` and some Ng | N .

(Although the weight ` will be fixed in our discussion, it is convenient to keep

it in the notation as a parameter, since this will make our notation more

consistent with [BDR12].) We will write ğ for any element of S`(N)[πg].

Definition 5.3.3. For integers k, j, we define

Ξ(k, `, α, j)ord,p = eord [Eα(j − `, k − 1− j) · ğ] .

This is an ordinary Λ-adic family of modular forms, parametrized by k

and j. (We are taking ` to be fixed here, in order to avoid the need to make

any ordinarity hypotheses on g.) For any (k, j), Ξ(k, `, α, j)ord,p is a p-adic

modular form of weight k.

We now compare this with the complex-analytic theory. It is clear that

Eα(j − `, k − 1 − j) is the p-depletion of the nearly-overconvergent form τ 7→
E(k−`)(τ,−k + j + 1).
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Definition 5.3.4. For ` ≤ j ≤ k − 1, let Ξ(k, `, α, j) denote the nearly-

holomorphic modular form of weight k given by

Ξ(k, `, α, j)(τ) = E(k−`)
α (τ,−k + j + 1) · ğ,

and let Ξ(k, `, α, j)hol be its image under the holomorphic projector.

Notation. Let H1(Y1(N),Lk−2,∇) denote the de Rham cohomology of

Y1(N) with coefficients in the (k − 2)-nd symmetric power of the relative de

Rham cohomology sheaf of the universal elliptic curve over Y1(N), endowed

with its Gauss–Manin connection.

Proposition 5.3.5. Let k, ` be fixed, with k>`. Let f be a newform in

Sk(Γ1(Nf )), for some Nf | N , and let ef∗ be the projection to the f∗-isotypic

component in the Hecke algebra acting on Sk(Γ1(N)). Assume f is ordi-

nary at p, and let j ∈ [`, k − 1]. Then we have the following relation in

H1(Y1(N),Lk−2,∇):

ef∗Ξ(k, `, α, j)ord,p =
E(f, g, j)

E(f)
ef∗ eord Ξ(k, `, α, j)hol,

where

E(f) = 1− p−1βp(f)αp(f)−1

and

E(f, g, j) = (1− p−jβp(f)αp(g))(1− p−jβp(f)βp(g))

× (1− pj−1αp(f)−1αp(g)−1)(1− pj−1αp(f)−1βp(g)−1).

Here αf , βf are the roots of the Hecke polynomial of f at p, and similarly for g.

Proof. This follows from Corollary 4.13 of [DR14] with the f, g, h of the

theorem taken to be f , E
(k−`)
α (−,−k + j + 1) and g. (Note that the special

case j ≥ k+`−1
2 is [BDR12, Prop. 2.7].) �

5.4. Interpolation in Hida families. We now interpolate the left-hand side

of Proposition 5.3.5 in Hida families.

Notation. Let f be a newform (of some level Nf | N), and let f be the

Hida family through f (with coefficients in some finite flat Λ-algebra Λf ). Then

we define the space Sord(N ; Λf )[πf ] for the Λf -module of families of oldforms

at level N corresponding to f , which is simply the space of formal q-expansions

spanned over Λf by f(qd) for d | N/Nf . We write f̆ for a generic element of

Sord(N ; Λf )[πf ], which we shall think of as a “test vector” associated to f .

We shall continue to write g for a newform in S`(Ng) for some Ng | N ,

and ğ for a generic element of S`(N ;K)[πg].
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Proposition 5.4.1. For any f̆ ∈ Sord(N ; Λf )[πf ] and ğ ∈ S`(N ;K)[πg]

as above, and any α ∈ 1
NZ/Z, there exists an element

Dp(f̆ , ğ, α) ∈ Frac(Λf )“⊗Λ

such that for all integers k, j with k ≥ 2, we have

Dp(f̆ , ğ, α)(k, j) =

¨
f̆∗k ,Ξ(k, `, α, j)ord,p

∂
E∗(fk) 〈fk, fk〉

,

where fk and f̆k are the eigenforms at level N whose ordinary p-stabilizations

are the weight k specializations of f and f̆ , and

E∗(fk) := 1− βp(fk)αp(fk)−1.

Combining this with the previous proposition, we have

Proposition 5.4.2. For integers k, j with ` ≤ j ≤ k − 1, we have

Dp(f̆ , ğ, α)(k, j) =
E(fk, g, j)

E(fk) · E∗(fk) · 〈fk, fk〉
D(f̆k, ğ, α, j).

Note 5.4.3. We know that the Atkin–Lehner operator gives an isomor-

phism

S`(N ;K)[πg]
wN
∼=
- S`(N ;K)[πg∗ ].

Less obviously, there is also an operator

Sord(N ; Λf )[πf ]
wN
∼=
- Sord(N ; Λf )[πf∗ ]

interpolating the action of the Atkin–Lehner operators on the weight k special-

izations. To see this, it suffices to note that the inclusions Sk(N) ↪→ Sk(Np) ↪→
Sk(Np

2) ↪→ · · · commute with the action of wN and this operator is continuous

with respect to the p-adic norm (by the q-expansion principle); the resulting

operator on the completion Sk(Np
∞) commutes with Up and hence preserves

eord Sk(Np
∞).

Proposition 5.4.4. For any k, j ∈ Ωf × Ω, we have

Dp(f̆ , ğ, α)(k, k+ `−1− j) = N1−j ·
∑

y∈Z/NZ
e2πiαx/NDp(wN f̆ , wN ğ, x/N)(k, j).

Proof. It suffices to check this result for all pairs of integers k, j with k ≥ j
since these points are Zariski-dense in Ωf × Ω. By the classical functional

equation, we find that for such k, j, we have

Dp(f̆ , ğ, α)(k, k+ `− 1− j) = A ·N1−j ∑
y∈Z/NZ

e2πiαx/NDp(wN f̆ , wN ğ, α)(k, j),
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where the quantity A is defined by

A =
E(fk, g, k + `− 1− j)
E(fk)E∗(fk)〈fk, fk〉

·
Ç

E(f∗k , g
∗, j)

E(f∗k )E∗(f∗k )〈f∗k , f∗k 〉

å−1

.

We obviously have 〈f∗k , f∗k 〉 = 〈fk, fk〉. More subtly, we have αp(f
∗) =

pk−1/βp(f) and βp(f
∗) = pk−1/αp(f); similarly, we have {αp(g∗), βp(g∗)} =

{p`−1/αp(g), p`−1/βp(g)}. From these relations, it is clear that E(f∗k ) = E(fk),

E∗(f∗k ) = E(fk), and E(fk, g, k + ` − 1 − j) = E(f∗k , g
∗, j). So the ratio A is

identically 1. �

Notation. We write Dp(f̆ , ğ, α) for the restriction of Dp(f̆ , ğ, α) to k×Ω ⊂
Ωf × Ω, where f̆ is any element of Sord(N ; Λf )[πf ] whose specialization in

weight k is f̆ . (This is independent of the choice of family f̆ .)

Note 5.4.5. If k > `, then the L-function Dp(f̆ , ğ, α) interpolates the crit-

ical values D(f, g, α, s); but when k = `, there are no such critical values.

5.5. The syntomic regulator. Let p be prime and K be a finite extension

of Qp with ring of integers OK , and let X be a smooth proper scheme over OK
with generic fibre X. Then there exists a map, the syntomic regulator,

rsyn : CH2(X , 1)→ H2
dR(X/K)/Fil2 =

Ä
Fil1H2

dR(X/K)
ä∨
,

with the property that the diagram

CH2(X , 1) - CH2(X, 1)

H2
dR(X/K)/Fil2

rsyn

?
⊂
exp- H1(K,H2

ét(X,Qp)(2))

rét

?

commutes (cf. [Bes00]). Here exp denotes the Bloch–Kato exponential map

constructed in [BK90] for the crystalline GK-representation V =H2
ét(X,Qp)(2).

Remark 5.5.1. Note that since X has good reduction, all eigenvalues of

Frobenius on Dcris(V ) are Weil numbers of weight −2; thus Dcris(V )ϕ=1 = 0,

implying that exp is injective. This also implies that H1
e (K,V ) = H1

f (K,V ).

Note that we do not necessarily have H1
f (K,V ) = H1

g (K,V ) since V ∗(1) has all

weights equal to 0. It is conjectured that the image of rét is precisely H1
g (K,V ),

but this is only known in a few special cases; cf. [SS10, Fact 1.1].

5.6. Generalization of a theorem of Bertolini–Darmon–Rotger. Note that

there is a map

dlog : O(Y1(N))× ⊗Q→M2(Γ1(N)),
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which corresponds to F (τ) 7→ F ′(τ)
F (τ) as functions on H, and this commutes with

the Atkin–Lehner involutions.

Proposition 5.6.1. For any α 6= 0 ∈ Q/Z, we have

dlog g0,α = −F (2)
α .

Proof. Immediate from comparing the q-expansion of F
(2)
α with that of

g0,α, which is given in [Kat04, §1.9]. �

We recall the following result, which is a slight reformulation and extension

of the main theorem of [BDR12]:

Theorem 5.6.2. Let uα be the modular unit on Y1(N)⊗Z(µN ) such that

dlog uα = ‹E(2)
α ,

and let ∆uα be any element of CH2(X1(N) ⊗ Z(µN ), 1) whose pullback to

CH2(Y1(N)⊗Z(µN ), 1) is the class of (∆, uα), where ∆ is the diagonal subva-

riety.

Let f, g be any two newforms of weight 2 and levels Nf , Ng dividing N ,

with f ordinary at p, and let f̆ , ğ be test vectors attached to f, g as before.

Then we haveÄ
Dp(f̆ , ğ, α)(2)−Dp(f̆ , ğ, 0)(2)

ä
=
E(f, g, 2)

E(f) · E∗(f)

〈
rsyn(∆uα), pr∗1(ηur

f̆
) ∧ pr∗2(ωğ)

〉
.

Here, as in Proposition 4.6 of [DR14], ηur
f̆

denotes the unique class in

H1
dR(X1(N)/Qp) that lies in the ϕ = αp(f) eigenspace and whose image in

H1(X1(N),OX1(N)) agrees with that of 1
〈f,f〉η

ah
f̆

, where ηah
f̆

is as in Defini-

tion 4.3.2 above.

Proof. By Fourier inversion on the multiplicative group (Z/NZ)×, which

acts on both sides of the claimed formula, it suffices to show that for each

Dirichlet character ψ modulo N , we have

(15)
E(f, g, 2)

E(f) · E∗(f)

〈
rsyn(∆uψ), pr∗1(ηur

f̆
) ∧ pr∗2(ωğ)

〉

=


∑
d∈(Z/NZ)× ψ(d)−1Dp(f̆ , ğ, dα)(2) if ψ 6= 1,∑
d∈(Z/NZ)×

Ä
Dp(f̆ , ğ, dα)(2)−Dp(f̆ , ğ, 0)(2)

ä
if ψ = 1,

where uψ =
∑
d ψ(d)−1 ⊗ udα ∈ Z(χ)⊗Z O(Y1(N)×). However, it is clear that

both sides of equation (15) are zero unless ψ = χ := χ−1
f χ−1

g , so we may assume

ψ = χ.

If χ 6= 1 and α has exact order N , then we can assume without loss of

generality that α = 1/N , and we are in the case studied in [BDR12]. In the

remaining cases, the argument goes through essentially identically. �
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Remark 5.6.3. If in fact χ is primitive modulo N , then both sides are zero

unless α has exact order N , so we may reduce to precisely the case covered by

[BDR12].

We can now deduce our main theorem of this section.

Theorem 5.6.4. Let f, g, f̆ , ğ be as above. Then we have

Dp(f̆ , ğ, 1/N)(1) = − E(f, g, 1)

E(f) · E∗(f)

〈
rsyn(Ξ1,N,0),pr∗1(ηur

f̆
) ∧ pr∗2(ωğ)

〉
.

Proof. Applying the previous theorem to wN f̆ and wN ğ, we haveÄ
Dp(wN f̆ , wN ğ, x/N)(2)−Dp(wN f̆ , wN ğ, 0)(2)

ä
=
E(f, g, 1)

E(f) · E∗(f)

〈
rsyn(∆ux/N ),pr∗1(ηur

wN f̆
) ∧ pr∗2(ωwN ğ)

〉
.

We multiply by e2πix/N and sum over x ∈ Z/NZ. The left-hand side becomes∑
x∈Z/NZ

e2πix/NDp(wN f̆ , wN ğ, x/N)(2) = NDp(f̆ , ğ, x/N)(1)

by the p-adic functional equation.

Meanwhile, the right-hand side is∑
x∈x∈Z/NZ

e2πix/N E(f, g, 1)

E(f) · E∗(f)

〈
rsyn(∆ux/N ), pr∗1(ηur

wN f̆
) ∧ pr∗2(ωwN ğ)

〉
.

By the functoriality of the syntomic regulator, we have〈
rsyn(∆ux/N ),pr∗1(ηur

wN f̆
) ∧ pr∗2(ωwN ğ)

〉
=
〈
rsyn(∆(w∗Nux/N )), pr∗1(ηur

f̆
) ∧ pr∗2(ωğ)

〉
.

As elements of Q(µN )⊗Z O(Y1(N))×, we have∑
x∈Z/NZ

e2πix/N ⊗ w∗N (ux/N ) = −N ⊗ g0,1/N ,

and the result follows. �

Remark 5.6.5. One could also prove this statement directly (without the

extended detour via Atkin–Lehner involutions and functional equations) by

generalizing some of the calculations of [BDR12] to use the weight 2 Eisenstein

series F
(2)
χ =

∑
x∈(Z/NZ)×χ(x)−1F

(2)
x/N in place of E

(2)
χ =

∑
x∈(Z/NZ)×χ(x)−1E

(2)
x/N .

(Note that F
(2)
χ is always a holomorphic Eisenstein series if N > 1, while E

(2)
χ

becomes nonholomorphic if χ is the trivial character.)

Remark 5.6.6. If we impose slightly more restrictive hypotheses, we can

avoid the need for any generalization of the main theorem of [BDR12]. If χ

is primitive, then it suffices to check that the main theorem of [BDR12] holds

without the assumption that f, g are eigenforms for the U` with ` | N ; but this
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assumption is not used anywhere in the paper, except in order to explicitly

evaluate the Euler factors at ` | N . If Nf = Ng = N , then we can dispense

with this assumption as well.

6. Families of cohomology classes

In this section, we will construct étale cohomology classes from the gen-

eralized Beilinson–Flach elements in motivic cohomology defined above and

investigate their properties.

6.1. The étale regulator. In [Hub00], Huber constructs a p-adic regulator

map from motivic cohomology into Jannsen’s continuous étale cohomology:

Proposition 6.1.1. Assume that X is a smooth variety over a charac-

teristic 0 field k. Then there is a regulator map

(16) rét : CH2(X, 1) - H3
cont(X,Zp(2)).

Proof. See the second example on [Hub00, p. 772]. �

Proposition 6.1.2. If X is any smooth variety over k, then we have a

Hochschild–Serre spectral sequence

Hp(k,Hq
ét(X,Zp(2)))⇒ Hp+q

cont(X,Zp(2)),

where H∗(k,−) denotes continuous Galois cohomology.

Proof. See [Jan88a, Rem. 3.5]. �

Corollary 6.1.3. Suppose that X is a smooth affine surface over k.

Then we have an edge map

(17) H3
cont(X,Zp(2))→ H1(k,H2

ét(X,Zp(2))).

Proof. The fact that X is defined over an algebraically closed field im-

plies that Hq
ét(X,Zp(2)) = 0 for q > 2, as a d-dimensional affine variety over

an algebraically closed field has étale cohomological dimension d [Del77, Ar-

cata IV.6.4]. Consequently, we have H3
cont(X,Zp(2)) = 0, and we obtain the

required edge map by Proposition 6.1.2. �

Corollary 6.1.4. If X is a smooth affine surface over k, the étale reg-

ulator induces a map (which we also denote by rét by abuse of notation)

(18) rét : CH2(X, 1) - H1(k,H2
ét(X,Zp(2))).

Proof. Compose rét with the edge map (17). �

The regulator maps have the following functoriality property:

Proposition 6.1.5. The regulator maps (18) are compatible with pullback

along flat morphisms of surfaces X → Y over k and pushforward along finite

morphisms. In particular, they are compatible with the Galois restriction maps

for arbitrary extensions k′/k and with the corestriction maps for finite ones.
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Proof. This is true essentially by construction for Huber’s regulator into

continuous cohomology since it arises from a realization functor on Voevodsky’s

category DMgm of geometrical motives, which in turn is built up from the

category (denoted by SmCor in [Hub00]) whose objects are smooth varieties

over k and whose morphisms are finite correspondences X ⇒ Y . It remains

only to check that the Hochschild–Serre exact sequence (17) has the required

functoriality property, which is standard. �

6.2. The Künneth formula. We also recall the Künneth formula for étale

cohomology (cf. [Mil12, Th. 22.4]): if U and V are varieties of finite type over

an algebraically closed field of characteristic 0, then we have an exact sequence

0 -
∑

r+s=m

Hr
ét(U,Zp)⊗Zp H

s
ét(V,Zp) - Hm

ét (U × V,Zp)

-
∑

r+s=m+1

Tor
Zp
1 (Hr

ét(U,Zp), Hs
ét(V,Zp)) - 0.

We are interested in the case when m = 2, and U and V are smooth

curves. If U and V are affine, then they have étale cohomological dimension 1;

so the third term vanishes, as do two of the three summands in the first term,

and we have the following result:

Lemma 6.2.1. For affine curves U, V , the Künneth formula gives an iso-

morphism

H1
ét(U,Zp)⊗Zp H

1
ét(V,Zp)

∼=- H2
ét(U × V,Zp),

functorial in U and V and compatible with the Galois action.

We shall also need to consider the case when U and V are projective (and

connected). In this case, we shall assume the ground field k is Q. By the

compatibility of étale cohomology with Betti cohomology after base extension

to C, we find that in this case the étale cohomology is Zp in degree 0 or 2 and

Z2g
p in degree 1, where g is the genus. Hence all the Tor terms vanish, since

the cohomology groups are free Zp-modules. We conclude that H2
ét(U × V,Zp)

is the direct sum of H1
ét(U,Zp)⊗ZpH

1
ét(V,Zp) and two other summands, which

are both isomorphic (as Galois representations) to Zp(−1).

6.3. Galois representations attached to modular forms. We recall the con-

struction of the Galois representations attached to cuspidal modular forms of

weight 2, using the cohomology of the affine modular curves Y1(N).

Notation. Let f be a cuspidal modular form of weight 2 and level N . We

assume that f is a normalized eigenform for all the Hecke operators Tv (for

v - N) and Uv (for v | N). (We do not assume that f is new of level N .) As
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usual, we write av(f) for the v-th Fourier coefficient of f , which is its eigenvalue

for Tv if v - N and for Uv if v | N ; we also write εd(f) for the eigenvalue of f

for the 〈d〉 operator for d ∈ (Z/NZ)×.

By [AS86, Prop. 4], the space H1
Betti,c(Y1(N)(C),C) is isomorphic to the

space of modular symbols of level Γ1(N) with coefficients in C. This contains

a unique 2-dimensional C-linear subspace VC(f) on which the Hecke operators

Tv, Uv act as multiplication by the Fourier coefficients av(f); and the period

isomorphism relating Betti and de Rham cohomology allows us to regard f as

an element of VC(f). Moreover, if L is any finite extension of Q containing

the Fourier coefficients of f , VC(f) is the base-extension of a 2-dimensional

L-subspace VL(f) ⊆ H1
Betti,c(Y1(N)(C), L).

Let p be a prime. Invoking the comparison theorem between (compactly-

supported) p-adic and Betti cohomology, we can regard Qp ⊗Q VL(f) as a

subspace of L⊗QH
1
ét,c(Y1(N),Qp). Both of these are free modules of rank 2 over

L⊗QQp =
∏

p|p Lp, where the product is over primes of L above p; so we obtain

for each p a 2-dimensional Lp-linear subspace VLp(f) ⊆ H1
ét,c(Y1(N), Lp).

The following proposition is well known:

Proposition 6.3.1. The Galois representation VLp(f) is “the” irreducible

Lp-linear Galois representation attached to f . That is, for each prime v - Np,

the representation VLp(f) is unramified at v and we have

traceLp

Ä
Frob−1

v

∣∣∣VLp(f)
ä

= av(f),

where Frobv is the arithmetic Frobenius.

We note that under Poincaré duality, the dual space VL(f)∗ is identified

with the maximal quotient of H1
Betti(Y1(N)(C), L) on which the transposes T ′v

and U ′v of Tv and Uv act as multiplication by av(f). Tensoring with Qp, and

noting that Poincaré duality holds in étale cohomology with a twist by the

cyclotomic character, we obtain an identification of VLp(f)∗ with a quotient of

H1
ét(Y1(N), Lp)(1).

Definition 6.3.2. Let Op be the ring of integers of Lp. We define TOp(f)∗

as the Op-submodule of VLp(f)∗ generated by the image of H1
ét(Y1(N),Zp)(1),

which is a GQ-stable Op-lattice in VLp(f)∗.

Remark 6.3.3. Note that our conventions are somewhat different from

those of [Kat04, §§6.3, 8.4]: we define VLp(f) as a subspace of compactly-

supported cohomology of a modular curve, while Kato uses the same symbol

to denote a quotient of the noncompactly-supported cohomology. If f is new

of level N , then our VOp(f)∗ coincides with the space Kato would denote by

VLp(f)(1) where f is the complex conjugate of N , and similarly for the integral

lattices. (Our TOp(f)∗ is Kato’s VOp(f)(1).)
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Remark 6.3.4. One can also define a lattice in VLp(f)∗ using the coho-

mology of the projective modular curve. The inclusion Y1(N) ↪→ X1(N) in-

duces a pullback map H1(X1(N),Zp) → H1(Y1(N),Zp), which is injective

with cokernel isomorphic to Zr−1
p , where r is the number of cusps. The action

of the Hecke algebra on the boundary term Zr−1
p is Eisenstein, so the map

H1(X1(N),Qp)→ H1(Y1(N),Qp) is an isomorphism on the f -isotypical com-

ponent. We define ‹TOp(f)∗ as the image of H1(X1(N),Zp) ⊗ Op in VLp(f)∗.

Note that ‹TOp(f)∗ ⊆ TOp(f)∗, and equality holds if f is not congruent modulo

p to an Eisenstein series.

6.4. Generalized Beilinson–Flach classes. LetN≥5. Observe that Y1(N)2

⊗Q(µm) is a smooth variety over Q(µm) for any m. By (18), for any prime p,

we therefore have an étale regulator

rét,Q(µm) : CH2(Y1(N)2 ⊗Q(µm), 1) - H1
Ä
Q(µm), H2

ét(Y1(N)2,Zp(2))
ä
.

Definition 6.4.1. Let f, g be modular forms of level N that are normalized

eigenforms for all the Hecke operators T` (for ` - N) and U` (for ` | N), L a

number field containing the Fourier coefficients of f and g, and p a place of L

above the rational prime p.

Remark 6.4.2. In the situation of Definition 6.4.1, we can use the Künneth

formula (Lemma 6.2.1) to regard

TOp(f, g)∗ := TOp(f)∗ ⊗Op TOp(g)∗

as a quotient of Op ⊗Zp H
2
ét(Y1(N)2,Zp)(2).

Definition 6.4.3. Define the map

κf,g,Q(µm) : CH2(Y1(N)2 ⊗Q(µm), 1) - H1(Q(µm), TOp(f, g)∗)

to be the composition of rét,Q(µm) with the map on Galois cohomology induced

by the projection

H2
ét(Y1(N)2,Zp)(2) - TOp(f, g)∗.

Definition 6.4.4. We define the generalized Beilinson–Flach class

cz
(f,g,N)
m := κf,g,Q(µm)(cΞm,N,1) ∈ H1(Q(µm), TOp(f, g)∗)

and its nonintegral version

z(f,g,N)
m := κf,g,Q(µm)(Ξm,N,1) ∈ H1(Q(µm), VOp(f, g)∗).

The compatibility relations we have shown for the generalized Beilinson–

Flach elements for varying m carry over to the cohomology classes:
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Corollary 6.4.5. For any integers m ≥ 1, N ≥ 1, and ` a prime such

that ` | N , we have

cores`mm
Ä
cz

(f,g,N)
`m

ä
=

(αfαg) · cz
(f,g,N)
m if ` | m,

(αfαg − σ`) · cz
(f,g,N)
m if ` - m,

where αf , αg are the U`-eigenvalues of f and g, and in the latter case σ` is the

arithmetic Frobenius element at ` in Gal(Q(µm)/Q).

If ` is a prime not dividing mN , then

cores`mm
Ä
cz

(f,g,N)
`m

ä
=σ`

Ä
(`−1)(1−εf (`)εg(`)σ

−2
` )−`P`(f, g, `−1σ−1

` )
ä
cz

(f,g,N)
m ,

where P`(f, g,X) is the local Euler factor of f and g at ` (cf. Proposition 4.1.2).

Proof. Immediate from Theorems 3.3.2, 3.4.1 and the compatiblity of the

regulator map with corestriction (Proposition 6.1.5). �

The dependence of cz
(f,g,N)
m on c is as follows:

Proposition 6.4.6. There exist classes

z(f,g,N)
m ∈ H1(Q(µm), VLp(f, g)∗)

such that the relation

(19) cz
(f,g,N)
m = (c2 − εf (c)−1εg(c)

−1[c]2)z(f,g,N)
m

holds for any c > 1 coprime to 6mN .

Proof. Immediate from Proposition 2.7.5(5). �

Proposition 6.4.7. If there exists d ≥ 1 coprime to 6mN such that d2−
εf (d)−1εg(d)−1[d]2 is invertible in Op[(Z/mZ)×], then there exists z

(f,g,N)
m ∈

H1(Q(µm), TOp(f, g)∗) such that equation (19) holds in H1(Q(µm), TOp(f, g)∗)

(not just modulo torsion).

In particular, this holds if the conductor of the reduction modulo p of εfεg
is divisible by some prime that does not divide mp.

Proof. Clear, since if such a d exists, we may define

z(f,g,N)
m := (d2 − εf (d)−1εg(d)−1[d]2)−1

dz
(f,g,N)
m . �

6.5. Local properties of the generalized Beilinson–Flach classes (I). We

now study the local properties of the Beilinson–Flach classes. We shall first

recall some standard definitions.

Definition 6.5.1. If K is a local field and M is a topological GK-module,

we define H1
nr(K,M) to be the image of the inflation map

H1(Knr/K,M IK )→ H1(K,M),

where IK is the inertia subgroup of GK and Knr the maximal unramifed ex-

tension of K.
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If V is a finite-dimensional Qp-vector space and ` is the residue character-

istic of K, we define

H1
f (K,V ) =

H1
nr(K,V ) if ` 6= p,

ker(H1(K,V )→ H1(K,V ⊗ Bcris) if ` = p.

If T is a Zp-lattice in V stable under GK , we write H1
f (K,T ) for the preimage

of H1
f (K,V ) in H1(K,T ); cf. [BK90].

Proposition 6.5.2. If T is a finite-rank free Zp-module with a continuous

action of GK that is trivial on IK and if ` 6= p, then

H1
f (K,T ) = H1

nr(K,T ).

Proof. We have an inflation-restriction exact sequence

0 - H1
nr(K,T ) - H1(K,T ) - H0(Knr/K,H1(IK , T )) - 0

and a corresponding sequence for V in place of T . Suppose x ∈ H1
f (K,T ).

Then the image of x in H1(IK , V ) is zero, so the image of x in H1(IK , T ) is

torsion. However, H1(IK , T ) = Hom(IK , T ) is torsion-free since T is; thus the

image of x in H1(IK , T ) is zero, and hence x ∈ H1
nr(K,T ). �

Definition 6.5.3. If K is a number field and M is a topological GK-module

and v is a prime of K, we say that x ∈ H1(K,M) is unramified at v if its image

in H1(Kv,M) lies in H1
nr(K,M). If M is a finite-rank Zp-module or Qp-vector

space and v is a prime above p, we say x is crystalline at v if its image in

H1(Kv,M) lies in H1
f (Kv,M).

Proposition 6.5.4. The generalized Beilinson–Flach class cz
(f,g,N)
m is

unramified outside the primes dividing mNp. If p - mN , it is crystalline at the

primes above p.

Proof. By the preceding proposition, it suffices to check this result after

inverting p. Let us choose a prime ` - mNp. The compactified modular curve

X(m,mN) associated to Y (m,mN) admits a smooth proper model X (m,mN)

over Z[1/mN ]; hence it has such a model over Z`. It is clear that the class

cZm,N,1 lies in the higher Chow group Z2(Y(m,mN), 1) of the integral model

of Y (m,mN), and we can choose the “negligible elements” of Theorem 2.8.5

in order to obtain a lifting of cZm,N,1 to CH2(X (m,mN), 1)⊗Q.

For proper smooth schemes S over Z`, with ` 6= p, there is a regulator

map

CH2(S, 1)⊗Qp → H3
ét(S,Qp(2))
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(see, e.g., [Fla92]) compatible with the regulator map rét on the generic fi-

bre S. Moreover, the étale cohomology H2
ét(S,Qp(2)) is unramified as a rep-

resentation of GQ` , by the proper base change theorem; and the Hochschild–

Serre spectral sequence maps H3
ét(S,Qp(2)) to H1(Qnr

` /Q`, H
2
ét(S,Qp(2)) ⊂

H1(Q`, H
2
ét(S,Qp(2)), where S = S ⊗Q` (cf. [Fla92, Lemma 2.3]). Hence the

class cz
(f,g,N)
m is unramified at the primes above `, as required.

Similarly, if p - mN , we can lift cZm,N,1 to a class in CH2(X (m,mN), 1)

⊗ Q where X (m,mN) is proper and smooth over Zp. However, the regulator

rét for proper smooth Zp-schemes takes values in H1
f , as a consequence of

the commutative diagram of Section 5.5 above relating rét to the syntomic

regulator rsyn; so we are done. �

Remark 6.5.5. We believe it is known that the regulator map rét for arbi-

trary varieties over p-adic fields takes values in H1
g , as remarked in Section 5.5,

which would imply that the localization at p of the Beilinson–Flach classes

always lies in this subspace.

6.6. Local properties of the generalized Beilinson–Flach classes (II). In

order to control the local properties of the generalized Beilinson–Flach classes

at the “bad” primes, we shall make use of the compatibility in the p-adic

cyclotomic tower, under mild additional hypotheses.

Assumption 6.6.1. The level N is divisible by p, and the Up-eigenvalues

αf , αg of f and g satisfy

vp(αfαg) < 1.

Proposition 6.6.2. Suppose that Assumption 6.6.1 holds. Then for

any m ≥ 1 divisible by p and any prime v - p of Q(µm), the cohomol-

ogy class cz
(f,g,N)
m lies in H1

f (Q(µm)v, TOp(f, g)∗). If vp(αfαg) = 0, it lies in

H1
nr(Q(µm)v, TOp(f, g)∗). If m ≥ 1 is coprime to p, and αfαg is not a root of

unity, then again we have cz
(f,g,N)
m ∈ H1

f (Q(µm)v, TOp(f, g)∗).

Proof. To lighten the notation, we write K=Q(µm)v and M = TOp(f, g)∗.

We assume first that p | m. We write Ki = Q(µmpi)v (after choosing one of

the finitely many primes of Q(µmp∞) above v). Each Ki is contained in Knr

since v - p.
For each i, there is an inflation-restriction exact sequence

0 - H1(Knr/Ki,M
Iv) - H1(Ki,M) - H0(Knr/Ki, H

1(Iv,M)) - 0,

and the corestriction maps H1(Ki+1,M)→ H1(Ki,M) correspond to the trace

maps

H0(Knr/Ki+1, H
1(Iv,M))→ H0(Knr/Ki, H

1(Iv,M)).
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Since M is a finitely-generated Zp-module, H1(Iv,M) is finitely generated

over Zp, by [Rub00, Prop. B.2.7(iii)]; thus the sequence of modules Mi =

H0(Knr/Ki, H
1(Iv,M)) stabilizes at some i0 � 0. So for i ≥ i0, the trace

maps Mi+1 → Mi are simply multiplication by p on Mi+1 = Mi = M∞. Let

zi be the image of cz
(f,g,N)
mpi

in Mi. It then follows that for i ≥ i0, we have

(αfαg)
iz0 = pi−i0 cores0

i0(zi).

If αfαg is a p-adic unit, then this immediately implies that z0 = 0 since it is

divisible by arbitrarily high powers of p. Thus cz
(f,g,N)
m is unramified at v.

Otherwise, we can only deduce that

z0 ∈
Ç

pi−i0

(αfαg)i

å
M0 + (M0)tors

for all i � 0, which implies that z0 ∈ (M0)tors as vp(αfαg) < 1. Hence the

image of z0 in M0⊗Qp is zero, so the image of cz
(f,g,N)
m in H1(Q(µm)v,M⊗Qp)

is unramified. Thus cz
(f,g,N)
m ∈ H1

f (Q(µm)v,M). Now suppose p - m. Applying

the above argument with m replaced by mp and using Corollary 6.4.5, we see

that (αfαg − σp)cz
(f,g,N)
m lies in H1

f , but since αfαg is not a root of unity, the

factor (αfαg − σp) is invertible after extending scalars to Qp. �

6.7. Relation between p-stabilized and non-p-stabilized classes. For the ar-

guments of the previous section, we assumed throughout that p | N . If we are

given forms of levels prime to p, then we can obtain forms of level divisible

by p via “p-stabilization” (choosing old eigenforms of level divisible by p with

the same Hecke eigenvalues at all other primes). In this section, we shall in-

vestigate the relations between the classes obtained for the p-stabilized and

non-p-stabilized forms.

Let f be a normalized eigenform of weight 2 and level N , and let p be

a prime such that p - N . Then there are two eigenforms fα, fβ at level Np

in the oldspace attached to f , whose Up-eigenvalues are the roots α, β of the

Hecke polynomial X2 − ap(f)X + pεp(f). (We assume, by enlarging the field

if necessary, that these lie in our coefficient field L.)

Then there are projection maps

prfα : H1
ét(Y1(Np), Lp)→ VLp(fα)∗,

prfβ : H1
ét(Y1(Np), Lp)→ VLp(fβ)∗,

prf : H1
ét(Y1(N), Lp)→ VLp(f)∗

and a pushforward map π : H1
ét(Y1(Np), Lp)→ H1

ét(Y1(N), Lp).

Proposition 6.7.1. In the above situation, there is a nonzero, GQ-equi-

variant map

π(α) : VLp(fα)∗ → VLp(f)∗
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and similarly π(β), with the property that

π(α) ◦ prfα +π(β) ◦ prfβ = prf ◦π

as maps H1
ét(Y1(Np), Lp)→ V ∗f .

Proof. Let H1
ét(Y1(Np), Lp)[f ] denote the maximal quotient of the space

H1
ét(Y1(Np), Lp) where the operators T ′v for v -Np and U ′v for v |N act via av(f).

Then, by comparison with modular symbols, we see that H1
ét(Y1(Np), Lp)[f ] is

4-dimensional, and the U ′p operator on this space is annihilated by the Hecke

polynomial.

By [CE98, Th. 2.1], the roots α and β are distinct, so we may write

H1
ét(Y1(Np), Lp)[f ] as a direct sum of GQ-stable eigenspaces, which map iso-

morphically onto the quotients VLp(fα) and VLp(fβ). This gives a lifting of

VLp(fα) to a subspace of H1
ét(Y1(Np), Lp)[f ], and the map prf ◦π clearly fac-

tors through H1
ét(Y1(Np), Lp)[f ] as stated. �

Now let us suppose we have two normalized weight 2 eigenforms f, g, of

level N prime to p as before. Let α, β be the roots of the Hecke polynomial

of f at p, and similarly γ, δ for g. By the Coleman–Edixhoven theorem cited

above, we have α 6= β and γ 6= δ.

A choice of root of each polynomial gives p-stabilized eigenforms fα, gγ of

level Np. Then for each m, we have

• a class z
(f,g,N)
m in the cohomology of VLp(f, g)∗, which is a quotient of

H2
ét(Y1(N)2, Lp)(2);

• an element z
(fα,gγ ,Np)
m living in the cohomology of the representation

VLp(fα, gγ)∗, which is a quotient of H2
ét(Y1(Np)2, Lp)(2).

These two representations are isomorphic as abstract Galois representa-

tions but are realized differently as quotients of étale cohomology. We can

regard both as quotients of the following space:

Definition 6.7.2. Let H2
ét(Y1(Np)2, Lp)f,g denote the maximal Lp-linear

quotient of H2
ét(Y1(Np)2, Lp) on which the operators (T ′v, 1) (for v - Np) and

(U ′v, 1) (for v | N) act via the Fourier coefficients of f , and similarly for g.

Note 6.7.3. Using the Künneth formula and a modular symbol calculation,

we see that H2
ét(Y1(Np)2, Lp)f,g has dimension 16 and can be viewed as a direct

sum of four simultaneous eigenspaces for the two operators (U ′p, 1) and (1, U ′p),

corresponding to the stabilizations (α, γ), (α, δ), (β, γ) and (β, δ). Each of

these is a 4-dimensional Gal(Q/Q)-stable Lp-linear subspace.

For the remainder of this section, we shall assume the following:

Assumption 6.7.4. We have αγ 6= βδ.
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Remark 6.7.5. Assumption 6.7.4 is a consequence of Assumption 6.6.1,

since vp(αβγδ) = vp(p
2εf (p)εg(p)) = 2, so if vp(αγ) < 1, then vp(βδ) > 1.

Proposition 6.7.6. If Assumption 6.7.4 is satisfied, then the operator

Jα,γ :=
(U − αδ)(U − βγ)(U − βδ)

(αγ − αδ)(αγ − βγ)(αγ − βδ)
,

where U = (U ′p, U
′
p), is an idempotent in EndLp H

2
ét(Y1(Np)2, Lp)f,g ; it is equal

to the identity on the (α, γ) eigenspace and zero on the other three eigenspaces.

Proof. We know that αγ 6= αδ and αγ 6= βγ by the Coleman–Edixhoven

theorem, so if αγ 6= βδ, the αγ eigenspace for the operator U coincides with

the (α, γ) simultaneous eigenspace for (U ′p, 1) and (1, U ′p). We may thus define

a projection onto this eigenspace by applying to U a polynomial that is 1 at

αγ and zero at the other three eigenvalues. �

Proposition 6.7.7. There is a Gal(Q/Q)-equivariant Lp-linear isomor-

phism

π(α,γ) : VLp(fα, gγ)∗
∼=- VLp(f, g)∗

with the property that

π(α,γ) ◦ pr(α,γ) = π ◦ Jα,γ
as maps H2

ét(Y1(Np)2, Lp)f,g(2)→ VLp(f, g)∗, where

π : H2
ét(Y1(Np)2, Lp)f,g → VLp(f, g)∗

is the natural map induced by the pushforward map Y1(Np)2 → Y1(N)2.

Proof. We define π(α,γ) as π ◦ ι(α,γ), where ι(α,γ) is the section of prα,γ
identifying VLp(fα, gγ) with the (α, γ)-eigenspace of H2

ét(Y1(Np)2, Lp)f,g. The

composition ι(α,γ) ◦ prα,γ is therefore equal to the projection operator Jα,γ
above, and the proposition follows. �

Corollary 6.7.8. For p - m, we have

π(α,γ)
Ä
cz

(fα,gγ ,Np)
m

ä
=
αγ
Ä
1− βδ

p σ
−1
p

ä Ä
1− αδ

p σ
−1
p

ä Ä
1− βγ

p σ
−1
p

ä
(γ − δ)(α− β)

· cz(f,g,N)
m .

Proof. We shall prove this by a slightly roundabout argument, using the

second norm relation “in reverse” to understand how U acts on the zeta ele-

ments. Let us write the polynomial

(X − αδ)(X − βγ)(X − βδ)
(αγ − αδ)(αγ − βγ)(αγ − βδ)

∈ Lp[X]

as j0 + j1X + j2X
2 + j3X

3, and let cz
(f,g,Np)
m be the image of regét(cΞm,Np,j)

in H2
ét(Y1(Np)2, Lp)f,g.
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Essentially, by definition, we have cz
(fα,gγ ,Np)
m = prα,γ cz

(f,g,Np)
m , and hence

we may apply the preceding proposition to obtain

π(α,γ)
Ä
cz

(fα,gγ ,Np)
m

ä
= π

Ä
Jα,γ · cz(f,g,Np)

m

ä
= π

ÄÄ
j0 + j1U + j2U2 + j3U3

ä
cz

(fα,gγ ,Np)
m

ä
.

By the second norm relation for p | N (Theorem 3.3.2) and induction on r we

see that for r ≥ 1, we have

Ur
Ä
cz

(f,g,Np)
m

ä
= normprm

m

(
cz

(f,g,Np)
prm

)
+ σp · normpr−1m

m

(
cz

(f,g,Np)
pr−1m

)
+ · · ·+ σrp · cz(f,g,Np)

m .

On the other hand, by the first norm relation (Theorem 3.1.2) we know that

for r ≥ 1, we have

π
(
normprm

m (cz
(f,g,Np)
prm )

)
= normprmm

(
π(cz

(f,g,Np)
prm )

)
= normprm

m cz
f,g,N
m

while for r = 0, we have

π
Ä
cz

(f,g,Np)
m

ä
= (1− εp(f)εp(g)σ−2

p )cz
(f,g,N)
m .

Combining these statements, we have

π(α,γ)
Ä
cz

(fα,gγ ,Np)
m

ä
= (j0 + j1σp + j2σ

2
p + j3σ

3
p)(1− εp(f)εp(g)σ−2

p )cz
(f,g,N)
m

+ (j1 + j2σp + j3σ
2
p) normpm

m

Ä
cz

(f,g,N)
pm

ä
+ (j2 + σpj3) normp2m

m

(
cz

(f,g,N)
p2m

)
+ j3 normp3m

m

(
cz

(f,g,N)
p3m

)
.

The prime-to-p case of the second norm relation (Theorem 3.4.1) gives a for-

mula for the second term, and Theorem 3.5.2 extends this to the remaining

two terms. Substituting these in, the entirety of the right-hand side simpli-

fies to a linear combination of terms, each of which is cz
(f,g,N)
m acted on by a

polynomial in σp, σ
−1
p with coefficients given as rational functions in α, β, γ, δ.

After a computation (which was carried out using Sage, [Sage]), one finds the

polynomial simplifies to the product of Euler-type factors stated above. �

This extremely laborious computation allows us to prove the following

theorem, which will be crucial to the Iwasawa-theoretic applications of our

Euler system:

Corollary 6.7.9. Suppose f, g admit p-stabilizations fα, gγ such that

vp(αγ) < 1. Suppose m is coprime to p and neither of the quantities αδ/p,

βγ/p is an r-th root of unity, where r is the order of p in (Z/mZ)×.

Then for every prime v - p of Q(µm), the localization of cz
f,g,N
m at v lies

in H1
f .
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Proof. We know from Proposition 6.6.2 that the class cz
fα,gβ ,Np
m is in H1

f

at all primes away from p. Since αγ 6= βδ by Remark 6.7.5, the formula of the

previous corollary applies.

We note that for λ ∈ Lp, the element 1−λσ−1
p is invertible in Lp[(Z/mZ)×]

if and only if λr 6= 1, where r is the order of σp as above. It is clear that βδ
p

cannot be a root of unity of any order, as its p-adic valuation is strictly positive.

By assumption neither αδ/p nor βγ/p is an r-th root of unity; so the quantity

αγ
Ä
1− βδ

p σ
−1
p

ä Ä
1− αδ

p σ
−1
p

ä Ä
1− βγ

p σ
−1
p

ä
(γ − δ)(α− β)

is invertible in Lp[(Z/mZ)×]. Hence cz
(f,g,N)
m is also in H1

f . �

Remark 6.7.10. Note that the conclusion of Corollary 6.7.9 does not ex-

plicitly mention the choice of p-stabilization (α, γ); we use only the fact that

one exists. We conjecture that the conclusion holds much more generally.

6.8. Iwasawa cohomology classes.

Notation. We now let S be a finite set of places of Q containing p, ∞,

and all primes whose inertia groups act nontrivially on TOp(f, g)∗ (which can

only happen for primes dividing N). Let QS be the maximal extension of Q
unramified outside S.

Definition 6.8.1. For K a finite extension of Q contained in QS , i ≥ 0,

and T a topological Zp[GK ]-module unramified outside S, define

H i
S(K,T ) = H i(QS/K, T ).

If T is also a finitely-generated Zp-module and K∞ is a p-adic Lie extension of

K unramified outside S, define

H i
Iw,S(K∞, T ) = lim←−

L

H i
S(L, T ),

where L varies over the set of finite extensions of K contained in K∞ and the

inverse limit is with respect to the corestriction maps.

Remark 6.8.2. If K∞ contains finite extensions of K of degree divisible by

arbitrarily large powers of p – for instance, if K∞/K is Galois and its Galois

group is a p-adic Lie group of positive dimension – then H0
Iw,S(K∞, V ) is zero,

and H1
Iw,S(K∞, T ) is in fact independent of S, as long as S contains the set S0

consisting of all primes above p or ∞, all primes ramifying in K∞/K and all

primes at which T is ramified.

We now let f, g be eigenforms of level N , with coefficients in a field L, as

in Definition 6.4.1.
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Proposition 6.8.3. Suppose m ≥ 1 and there is no Dirichlet character

ψ of conductor dividing mp∞ such that f ∼ ḡ⊗ψ, where ∼ signifies that these

two eigenforms have the same Hecke eigenvalues away from their levels (i.e.

correspond to the same newform). Then

H0(Q(µmp∞), VLp(f, g)∗) = 0.

Proof. The space H0(Q(µmp∞), VLp(f, g)∗ is preserved by the residual ac-

tion of the abelian group Gal(Q(µmp∞)/Q), so if it is nonzero, it contains a

subspace on which Gal(Q(µmp∞)/Q) acts by some character λ (possibly after

a finite extension of the field L). This gives a nonzero Gal(Q/Q)-equivariant

homomorphism

VLp(f)→ VLp(g)∗(λ) = VLp(ḡ)(χλ),

where χ is the cyclotomic character. Since both sides are irreducible represen-

tations of Gal(Q/Q), this map must be an isomorphism; consequently, ψ = χλ

has finite order and f ∼ ḡ ⊗ ψ. �

We can now prove the main result of this section, which shows that the

elements (αfαg)
−i
cz

(f,g,N)
mpi

for i ≥ 0 can be glued together into a (possibly

unbounded) Euler system.

Theorem 6.8.4. Let m,N ≥ 1 with (m, p) = 1, and let p be a prime

dividing N . Let f, g be modular forms of level N that are eigenforms for all

the Hecke operators, with Up-eigenvalues αf and αg such that h :=vp(αfαg)<1.

Suppose that f 6∼ ḡ ⊗ ψ for all Dirichlet characters ψ of conductor dividing

mp∞. Then for any r such that h ≤ r < 1, there is a unique element

cz
(f,g,N)
m,r ∈ Hr(Γ)⊗Λ(Γ) H

1
Iw,S(Q(µmp∞), TOp(f, g)∗)

whose projection to H1
S(Q(µmpi), VLp(f, g)∗) is equal to

(αfαg)
−i
cz

(f,g,N)
mpi

if i ≥ 1 and to

(1− (αfαg)
−1σp)cz

(f,g,N)
m

if i = 0.

Moreover, if ` is a prime not dividing mN , the corestriction map sends

cz
(f,g,N)
`m,r to

σ`
Ä
(`− 1)(1− εf (`)εg(`)σ

−2
` )− `P`(`−1σ−1

` )
ä
cz

(f,g,N)
m,r .

Proof. The existence of cz
(f,g,N)
m,r satisfying the projection formula for i ≥ 1

is immediate from Corollary 6.4.5 and Proposition A.2.10. The projection

formula for i = 0 follows from the i = 0 case of Corollary 6.4.5. �
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Note 6.8.5. The elements cz
(f,g,N)
m,r are in fact independent of r ∈ [h, 1), in

the sense that if vp(αfαg) ≤ r < r′ < 1, then cz
(f,g,N)
m,r′ is the image of cz

(f,g,N)
m,r

under the natural map

Hr(Γ)⊗Λ(Γ) H
1
Iw,S(Q(µmp∞), TOp(f, g)∗)

- Hr′(Γ)⊗Λ(Γ) H
1
Iw,S(Q(µmp∞), TOp(f, g)∗)

induced by the inclusion Hr(Γ) ↪→ Hr′(Γ).

In the case when vp(αfαg) = 0, we can prove a stronger result; in this

case we can dispense with the assumption that f is not a twist of ḡ, and we

even get integral coefficients.

Theorem 6.8.6. Assume that f and g are eigenforms of level dividing N

and such that vp(αfαg) = 0. Then there is a unique element cz
(f,g,N)
m ∈

H1
Iw,S(Q(µmp∞), TOp(f, g)∗) whose projection to H1

S(Q(µmpi), TOp(f, g)∗) is

equal to (αfαg)
−i
cz

(f,g,N)
mpi

if i ≥ 1,(
1− (αfαg)

−1σp
)
cz

(f,g,N)
m if i = 0.

Proof. For i ≥ 1, let

cz
(f,g,N)
m,i = (αfαg)

−i
cz

(f,g,N)
mpi

.

As vp(αfαg) = 0, we have cz
(f,g,N)
m,i ∈ H1

S(Q(µmpi), TOp(f, g)∗). Moreover, it is

clear from Corollary 6.4.5 that

coresi/i−1(cz
(f,g,N)
m,i ) = cz

(f,g,N)
m,i−1 ;

i.e., cz
(f,g,N)
m =

Ä
cz

(f,g,N)
m,i

ä
i≥1

defines an element in H1
Iw,S(Q(µmp∞), TOp(f, g)∗).

The projection formula for i = 0 follows as before. �

Remark 6.8.7. The difficulties arising when vp(αfαg) ≥ 1 are somewhat

reminiscent of the “critical slope” case in the Iwasawa theory of a single mod-

ular form over the cyclotomic tower; cf. [PS11], [PS13], [LZ13]. However, in

our situation the conditions we must impose are more restrictive; in partic-

ular, given forms f ′, g′ of level prime to p, at most two of the four possible

choices of p-stablizations f, g of f ′, g′ will be possible, and in many cases (e.g.

if ap(f
′) = ap(g

′) = 0) there are no valid choices at all.

Our methods using higher Chow groups can perhaps be thought of as

an “algebraic avatar” of the modular symbol computations of [AV75]. It is

interesting to speculate whether the overconvergent modular symbols of [PS11]

also admit such an algebraic analogue, which could conceivably be applied in

the critical-slope cases.
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6.8.1. Dispensing with c. We now investigate the extent to which the

“smoothing factor” c may be removed.

Notation. If R is a integral domain, we write Q(R) for its field of fractions.

For integers c and m such that (c,m) = 1, we write [c] for the image of σc in

Zp[Gal(Q(µm)/Q)].

Under the hypotheses of Theorem 6.8.6, there exists an element

z(f,g,N)
m ∈ H1

Iw,S(Q(µmp∞), TOp(f, g)∗)⊗Λ(Γ1) Q(Λ(Γ1))

such that

(20) cz
(f,g,N)
m = (c2 − εf (c)−1εg(c)

−1[c]2)z(f,g,N)
m .

Remark 6.8.8. Note that we are identifying Γ1 with Gal(Q(µmp∞)/Q(µmp)).

We may define z
(f,g,N)
m as

(d2 − εf (d)−1εg(d)−1[d]2)−1
dz

(f,g,N)
m

for any d > 1 coprime to 6N and congruent to 1 mod mp; then [d] lies in Γ1,

so the expression is well defined, and it is evidently independent of the choice

of d.

Notation. Write Γ(m) = Gal(Q(µmp∞)/Q) ∼= (Z/mZ)× × Γ.

Lemma 6.8.9. Let p be a prime ideal of Λ(Γ(m)) of height 1 that does

not contain p. If the conductor of the Dirichlet character εfεg does not divide

mp∞, then there exists an integer c > 1 coprime to 6mpN such that c2 −
εf (c)−1εg(c)

−1[c]2 /∈ p.

Proof. Since p does not contain p, it corresponds to a Galois orbit of

continuous characters Γ(m) → Qp. Let κp be a representative of this orbit.

Define h̃ : Γ(m) → Q×p by h̃(x) = κp(x)2/χ(x)2, where χ : Γ(m) → Z×p is the

p-adic cyclotomic character. We need to show that there is an integer c ≥ 1

coprime to 6mpN such that h̃([c]) 6= εf (c)εg(c).

However, if no such integer existed, then εfεg would have to factor through

the natural map Ẑ× → Γ(m), i.e., would have to have conductor dividing mp∞,

contrary to our hypotheses. �

Corollary 6.8.10. If εfεg does not have conductor dividing mp∞, then

z(f,g,N)
m ∈ H1

Iw,S(Q(µmp∞), TOp(f, g)∗)⊗Q.

Proof. Let Z0 be the Λ(Γ(m))-module generated by cz
(f,g,N)
m for all possible

c, and let Z1 be the Λ(Γ(m))-module generated by z
(f,g,N)
m . By (20), Z0 ⊂ Z1

and there exists µ ∈ Λ(Γ(m)) such that µZ1 ⊂ Z0 and Z0/µZ1 is p-torsion free.

Hence, it is enough to show that Z0,p = Z1,p for any prime ideal p of height 1
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that does not contain p. Fix such a p. By Lemma 6.8.9, there exists c such

that c2 − εf (c)−1εg(c)
−1[c]2 /∈ p, so

z(f,g,N)
m ∈ Z0,p

by (20), as required. �

Remark 6.8.11. Note that if the mod p reduction of the Dirichlet character

εfεg does not have conductor dividing mp∞, then we can even deduce that

z(f,g,N)
m ∈ H1

Iw,S(Q(µmp∞), TOp(f, g)∗).

Lemma 6.8.12. If the residual representation of TOp(f, g)∗ restricted to

GQµm is irreducible, then H1
Iw,S(Q(µmp∞), TOp(f, g)∗) is a free Λ(Γ(m))-module.

Proof. This follows from the argument of [Kat04, §13.8], which we briefly

outline here. For simplicity, let T = TOp(f, g)∗, Λ = Λ(Γ(m)) and H1(T ) =

H1
Iw,S(Q(µmp∞), TOp(f, g)∗). It is enough to show that if (x, y) is a maximal

ideal of Λ, the two maps

α : H1(T )
x- H1(T ) and β : H1(T )/xH1(T )

y- H1(T )/xH1(T )

are injective.

If x = p, the injectivity of α follows from the fact that

lim←−
n

H0(Q(µmpn), T/p) = 0,

which is a consequence of the finiteness of T/p. If x is such that Λ/xΛ is

p-torsion free, it is enough to show that H0(Q(µm), T ⊗Λ/xΛ) = 0, where the

action of σ ∈ GQ(µm) on Λ is given by multiplication by σ̄−1, where σ̄ denotes

the image of σ in Γ(m). But T is irreducible, so non-abelian. This implies that

H0(Q(µm), T ⊗ Λ/xΛ) = 0.

To show that β is injective, it is enough to show that H0(Z[1/mp], T ⊗
Λ/(x, y)) = 0. But Λ/(x, y) ∼= Op/Mp(r) for some r, so we are done by the

irreducibility of T/Mp. �

Corollary 6.8.13. If εfεg does not have p-power conductor and the

residual representation of TOp(f, g)∗ restricted to GQµm is irreducible, then

z(f,g,N)
m ∈ H1

Iw,S(Q(µmp∞), TOp(f, g)∗).

Proof. This follows from the argument in [Kat04, §13.14]. Let Z1 be the

Λ(Γ(m))-module generated by z
(f,g,N)
m . By the proof of Corollary 6.8.10, Z1,p ⊂

H1
Iw,S(Q(µmp∞)p for any prime ideal p of Λ(Γ(m)) height 1. ButH1

Iw,S(Q(µmp∞)

is a free Λ(Γ(m))-module by Lemma 6.8.12, hence the result. �
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6.9. Variation in Hida families. We now make use of the first norm rela-

tion (Theorem 3.1.2) to build elements in the cohomology of towers of modular

curves, under additional ordinarity hypotheses. Let us begin by recalling some

of Ohta’s results in [Oht99], [Oht00] concerning the structure of the module

GESp(N,Zp) := lim←−
n≥1

H1
ét(Y1(Npn),Zp),

which can be roughly summarized by the statement that one can build a Hida

theory for this module after replacing the usual Hecke operators with their

transposes.

We note that the full Hecke algebra does not act on GESp(N,Zp), since

the operator Up =
Ä

1 0
0 p

ä
does not commute with the trace maps. Rather,

we obtain an action of the Hecke operator U ′p, corresponding to
Ä
p 0
0 1

ä
. Ohta

shows that one may use the operator U ′p to define an “anti-ordinary projector”

e′ord = limn→∞(U ′p)
n!, analogous to the usual Hida ordinary projector eord =

limn→∞(Up)
n!.

Ohta proves the following control theorem for the anti-ordinary part of

GESp(N)Zp , which is naturally a module over the Iwasawa algebra of Γ1 =

(1 + pZp)× via the diamond operators:

Proposition 6.9.1 ([Oht99, 1.3, 1.4]). The module e′ord GESp(N)Zp is

free of finite rank over Λ(Γ1), and for each r ≥ 1, there is a GQ-equivariant

isomorphism

e′ord GESp(N,Zp)/ωr ∼= e′ordH
1(Y1(Npr),Zp),

where ωr is the kernel of the natural map Λ(Γ1)→ Zp[(Z/prZ)×].

From this isomorphism, we deduce that e′ord GESp(N,Zp) has an action of

the Hecke algebra

e′ordH′(N,Zp) = lim←−
r≥1

e′ordH′(Γ1(Npr),Zp),

where H′(Γ1(Npr),Zp) is the Zp-subalgebra of EndQpM2(Γ1(Npr),Qp) gener-

ated by the Hecke operators T ′(n) for n ≥ 1 and 〈q〉 for q ∈ (Z/NZ)×. Here

T ′(`), for ` prime, corresponds to the double coset
(
` 0
0 1

)
so, in particular, for

(m,Np) = 1, we have T ′(m) = 〈m〉−1T (m) (the adjoint of T (m) with respect

to the Petersson product).

The algebra e′ordH′(N,Zp) algebra is finite and free as a Λ(Γ1)-module.

(Note that it is not generally free as a Λ(Γ)-module, although it is evidently

projective.)

Proposition 6.9.2 ([Oht99, 2.2]). The Hecke algebra e′ordH′(N,Zp) is

isomorphic to the Hecke algebra Hord(N,Zp) := eordH(N,Zp) acting on the
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module eordM2(N,Λ(Γ1)) of ordinary Λ-adic modular forms (not necessarily

cuspidal), via the map sending T (n)′ to T (n) and 〈n〉 to 〈n〉−1.

Definition 6.9.3. In the above situation, by a Hida family of tame level

N , we mean a maximal ideal of the ring Hord(N,Zp). For each Hida family g,

we define

T (g)∗ =
(
e′ord GESp(N,Zp)

)
g (1).

Corollary 6.9.4. Let g be an ordinary weight 2 Hecke eigenform of level

Nps, with coefficients in some finite extension Lp/Qp with ring of integers Op.

Then we have an isomorphism of Op-linear Galois representations

Op ⊗Hord(N,Zp) T (g)∗ ∼= TOp(g)∗,

where TOp(g)∗ is the representation defined in 6.3 above.

Proof. Clear from the definition of TOp(g)∗ and the control theorem (The-

orem 6.9.1). �

Theorem 6.9.5. Let N ≥ 1 be prime to p. If g is a Hida family of tame

level N , and f is any eigenform of level Npk for k ≥ 1 whose Up-eigenvalue

αf satisfies vp(αf ) < 1, then for each integer m ≥ 1, there is a cohomology

class

cz
(f,g)
m ∈ H1

S(Q(µm), TOp(f)∗ ⊗Zp T (g)∗)

such that for each classical weight 2 specialization g of g with coefficients in

L, the image of cz
(f,g)
m in

H1(Q(µm), TOp(f)∗ ⊗Op TOp(g)∗) = H1(Q(µm), TOp(f, g)∗)

is the generalized Beilinson–Flach element cz
(f,g,N ′)
m , where N ′ is the greatest

common divisor of the levels of f and g.

Proof. We know that the elements cΞm,Nps,1 for s ≥ 1 are unramified

outside S and are compatible under pushforward via the natural projection

maps. Hence the sequence of elements defined by pushing forward cΞm,Nps,1
to CH2(Y1(Npr)×Y1(Nps)×Q(µm), 1), for s ≥ r, are compatible under push-

forward maps in the Y1(Nps) factor alone. Applying the étale regulator, we

obtain elements of the module

lim←−
s≥r

H1(Q(µm), H2
ét(Y1(Npr)× Y1(Nps),Zp)(2)).

For each s, we may decompose H2
ét(Y1(Npr)× Y1(Nps),Zp) as the tensor prod-

uct of the H1’s of the two factors, using the Künneth formula. Projecting to the

quotient TOp(f) of H1
ét(Y1(Npr),Zp)(1) and applying the anti-ordinary projec-

tor e′ord to H1
ét(Y1(Nps),Zp)(1), we may argue exactly as in Proposition 6.6.2

to deduce that the elements we obtain are unramified outside Np.
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Since the restricted-ramification cohomology groups H i
S(Q(µm),−) com-

mute with inverse limits, we obtain an element of

H1
S(Q(µm), TOp(f)∗ ⊗ e′ord GESp(N)Zp(1)).

Pushing forward along the canonical map e′ord GESp(N)Zp(1) → T (g)∗, we

obtain the required elements. �

We also obtain a corresponding result for the product of two Hida families,

whose proof is essentially identical to the above:

Theorem 6.9.6. Let N ≥ 1 be prime to p. If f , g are Hida families of

tame level N , then for each integer m ≥ 1, there is a cohomology class

cz
(f ,g)
m ∈ H1

S(Q(µm), T (f)∗ ⊗̂
Zp
T (g)∗)

such that for classical weight 2 specializations f , g of f , g with coefficients in

L, the image of cz
(f ,g)
m in

H1(Q(µm), TOp(f)∗ ⊗Op TOp(g)∗) = H1(Q(µm), TOp(f, g)∗)

is the generalized Beilinson–Flach element cz
(f,g,N ′)
m , where N ′ is the greatest

common divisor of the levels of f and g.

Remark 6.9.7. We do not know if one can formulate a result analogous to

Theorem 6.8.4 incorporating Hida-family variation in g since we do not know

whether the results of Appendix A.2 apply for “big” Galois representations;

but if f is ordinary, there are no such issues.

Theorem 6.9.8. In the situation of Theorem 6.9.6, for each m prime to

p, there exists a cohomology class

cz
(f ,g)
m ∈ H1

Iw,S(Q(µmp∞), T (f)∗ ⊗̂
Zp
T (g)∗)

whose image in H1
Iw,S(Q(µmpi), T (f)∗ ⊗̂Zp T (g)∗) for each i ≥ 1 is equal to

(αfαg)
−i · cz(f ,g)

mpi
.

6.10. Integrality of the Poincaré pairing. In this section, we prove a tech-

nical lemma that will be needed in our applications to bounding Selmer groups.

We assume that p > 3, N ≥ 5, and p - N .

Recall that X1(N) admits a canonical smooth proper model over Z[1/N ]

([DR73]) and hence over Zp. By [FM87], the integral de Rham cohomology

H1(X1(N),Ω•X1(N)/Zp) is a filtered Dieudonné module over Zp, and

T (H1(X1(N),Ω•X1(N)/Zp)) = H1
ét(X1(N),Zp),

where T (−) is the Fontaine–Laffaille functor.
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We define versions of these in the f -isotypical component by projection.

As in Remark 6.3.4, we define ‹TOp(f)∗ to be the image of H1
ét(X1(N),Zp)

⊗ Op in VLp(f)∗, and similarly for g. We define Dcris(‹TOp(f)∗) as the image

of H1(X1(N),Ω•X1(N)/Zp) ⊗Zp Op in Dcris(VLp(f)∗); then Dcris(‹TOp(f)∗) is a

strongly divisible Op-lattice, and its image under T (−) is ‹TOp(f)∗.

Let us recall here the definition of ηur
f .

Definition 6.10.1. Let X = X1(N) and

ηah
f =

f̄∗(z)dz̄

〈f∗, f∗〉k,N
∈ H1

dR(XC).

We denote by ηf its image in H1(X/C,OX/C), which lies in H1(X/Qp,OX/Qp);
then ηur

f is defined to be the lift of ηf to the unit root subspace of H1
dR(XCp)

f,ur.

Our aim is to investigate the denominator of the class ηur
f relative to the

sublattice

OL ⊗Zp H
1(X1(N),Ω•X1(N)/Zp) ⊆ Lp ⊗Qp H

1(X1(N),Ω•X1(N)/Qp).

Since the unit root lifting is obviously integral, it suffices to show that ηf ∈
OL ⊗Zp H

1(X1(N),OX1(N)/Zp).

Proposition 6.10.2. An element of

Lp ⊗H1(X1(N)/Qp,OX1(N)/Qp)

lies in the sublattice

Op ⊗H1(X1(N),OX1(N)/Zp)

if and only if it pairs to an element of Op with all elements of

Op ⊗H0(X1(N)/Zp,Ω1
X1(N)/Zp).

Proof. Since the pairing between

H1(X1(N),OX1(N)/Zp) and H0(X1(N)/Zp,Ω1
X1(N)/Zp)

is defined over Zp, it suffices to assume Op = Zp. But Serre duality shows

that this pairing is perfect, i.e., identifies H0(X1(N)/Zp,Ω1
X1(N)/Zp) with the

Zp-dual of H1(X1(N)/Zp,OX1(N)/Zp). �

Lemma 6.10.3. Let φ∈S2(N ;Lp). Then the element ωφ of H0(X/L,Ω1
X/L)

lies in H0(X/OL,Ω1
X/OL) if and only if φ ∈ S2(N ;Op).

Proof. We have by definition ωφ(q) = φ(q)dq/q, which is defined over OL
if φ is. �
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Definition 6.10.4. If f ∈ S2(Γ1(N), L), let If denote the ideal in O such

that ®
〈f∗, φ〉
〈f∗, f∗〉

: φ ∈ S2(N,O)

´
= I−1

f .

Remark 6.10.5. Note that I−1
f contains O, so If is an integral ideal (rather

than a fractional ideal). The ideal If essentially measures the extent to which

f is congruent to other eigenforms in S2(N,O).

Corollary 6.10.6. For any prime p - N , we have

ηf ∈ I−1
f · Op ⊗Zp H

1(X1(N),OX1(N)/Zp).

Proof. By the construction of the class ηf , for any ϕ ∈ S2(Γ1(N),O), we

have

〈ηf , ωφ〉 =
〈f∗, φ〉
〈f∗, f∗〉

∈ I−1
f O,

so the result follows by Lemma 6.10.3 and Proposition 6.10.2. �

Corollary 6.10.7. The linear functional

Dcris(VLp(f, g)∗)→ Lp

given by pairing with ηur
f ⊗ ωg maps the submodule

Dcris(‹TOp(f)∗)⊗ Dcris(‹TOp(g)∗)

into I−1
f Op.

Proposition 6.10.8. Let z ∈ H1
f

(
Qp,
î‹TOp(f)⊗ ‹TOp(g)

ó∗)
. Then

〈log(z), ηur
f ⊗ ωg〉 ∈ I−1

f · (1− α
−1γ−1)−1(1− α−1δ−1)−1 · Op,

where α is the unit root of the Hecke polynomial of f and β, δ are the roots of

the Hecke polynomial of g.

Proof. By Fontaine–Laffaille theory, for any crystalline Op-linear GQp-

representation V whose Hodge filtration has length < p and such that we have

Dcris(V )ϕ=1 = 0, the map

logQp,V : H1
f (Qp, V )

∼=- Dcris(V )

Fil0 Dcris(V )

induces an isomorphism of Op-modules

H1
f (Qp, T )

torsion

∼=- (1− ϕ)−1D

(1− ϕ)−1D ∩ Fil0 Dcris(V )

for any GQp-stable lattice T ⊆ V with corresponding strongly divisible lattice

D ⊆ Dcris(V ); cf. Theorem 4.1 and Lemma 4.5 of [BK90].
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In our case we may take V = W ⊗ VLp(g)∗, where W is the 1-dimensional

unramified quotient of VLp(f)∗, since the linear functional given by pairing

with ηur
f ⊗ωg factors through this quotient. Let us suppose that g is ordinary;

using the explicit description of the strongly divisible lattices in Dcris(VLp(g)∗)

given in [LZ13, §5], one checks that

(1− ϕ)−1D

(1− ϕ)−1D ∩ Fil0 Dcris(V )
⊆ p−k · D

D ∩ Fil0 Dcris(V )
,

where k = vp
[
(1− α−1γ−1)(1− α−1δ−1)

]
. In the nonordinary case one reasons

similarly using the description of the Wach module of the (unique up to scaling)

lattice in Dcris(VLp(g)∗) given in [BLZ04]. Combining this with Corollary 6.10.7

gives the result. �

7. Bounding strict Selmer groups

Let f , g be newforms of weight 2, level N and characters χf and χg,

respectively. Let L be the subfield of Q generated by the coefficients of f

and g. For a prime p of L, denote by VLp(f) and VLp(g) the Lp-representations

of GQ attached to f and g, respectively. The aim of this section is to apply

Theorem 7.1.5 to the representation VLp(f)⊗ VLp(g).

7.1. The method of Euler systems. We recall some definitions and results

from [Rub00]. Let O be the ring of integers of a finite extension E/Qp, and

let T be a free O-module of finite rank with a continuous action of GQ that is

unramified at almost all primes. Let V = T ⊗OE and W = V/T = T ⊗OE/O.

Let Σ be a finite set of primes containing p and all prime numbers at

which the action of GQ on T ramifies. Let A be a set of integers such that

• if m ∈ A, then all divisors of m are in A;

• if r, s ∈ A, then LCM(r, s) ∈ A;

• ` ∈ A for all primes ` /∈ Σ.

For a prime ` 6∈ Σ, define

p`(X) = detE
Ä
1− Frob−1

` X
∣∣∣V ∗(1)

ä
∈ Zp[X],

where Frob` is the arithmetic Frobenius at `.

Definition 7.1.1 (cf. [Rub00, Def. 2.1.1]). A Euler system for (T,A,Σ) is

a system of elements

cm ∈ H1(Q(µm), T ) for all m ∈ A

such that if ` is a prime such that m,m` ∈ A and ` 6= Σ, then the corestriction

map

H1(Q(µ`m), T )→ H1(Q(µm), T )
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sends c`m to p`(σ−1
` )cm if ` - m and ` 6= Σ,

cm if ` | m or ` ∈ Σ.

Here, σ` denotes the arithmetic Frobenius of ` in Gal(Q(µm)/Q).

Remark 7.1.2. Our notation differs slightly from that of [Rub00]. Firstly,

Rubin writes T ∗ for the “Tate dual” Hom(T,Zp(1)), while we write this as

T ∗(1). More significantly, Rubin considers an infinite abelian extension K and

a class cF for every finite subextension F of K; in our case K is the extension

KA = Q(µr : r ∈ A), and it suffices to specify a class for each subextension of

the form Q(µm), which is our cm, and to fill in the remainder via corestriction.

Definition 7.1.3. For each prime `, letH1
f (Q`,W ) be the image ofH1

f (Q`,V )

in H1(Q`,W ). Define

S{p}(Q,W ) = ker
Ä
H1(Q,W ) -

⊕
`6=p

H1(Q`,W )/H1
f (Q`,W )

ä
,

and define the strict Selmer group of W over Q as

S{p}(Q,W ) = ker
Ä
S{p}(Q,W ) - H1(Qp,W )

ä
.

(Thus S{p} is the Selmer group with local conditions given by the Bloch–

Kato condition at primes away from p and the zero local condition at p.)

We define S{p}(Q, T ) similarly, and also S{p}(K,T ) similarly, for any num-

ber field K. (We shall only need this when K = Q(µm), see Hypothesis

Hyp(S(p), V ) below.)

In order to state the main theorem, we introduce the following sets of

hypotheses. Note that Hyp(Q, T ) is strictly stronger than Hyp(Q, V ), but

Hyp(p,A) and Hyp(S{p}, V ) are independent of each other.

Hypothesis (Hyp(Q, T )). T ⊗ k is an irreducible k[GQ]-module, where k

is the residue field of O, and there exists an element τ ∈ GQ that satisfies the

following conditions:

(i) τ acts trivially on µp∞ ;

(ii) T/(τ − 1)T is free of rank 1 over O.

Hypothesis (Hyp(Q, V )). V is an irreducible E[GQ]-module, and there ex-

ists an element τ ∈ GQ that satisfies the following conditions:

(i) τ acts trivially on µp∞ ;

(ii) dimQp(V/(τ − 1)V ) = 1.

Hypothesis (Hyp(p,A)). The set A contains all powers of p.

Hypothesis (Hyp(S{p}, V )). The following three conditions hold:

(i) TGQ = 0;

(ii) cm ∈ S{p}(Q(µm), T ) for all m ∈ A;
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(iii) there exists an element γ ∈ GQ such that

• γ acts trivially on µp∞ ,

• γ − 1 is injective on T .

Theorem 7.1.4. Assume that V is not the trivial representation, and that

Hypothesis Hyp(Q, V ) and at least one of hypotheses Hyp(p) and Hyp(S(p), V )

are satisfied. If c = (cm)m∈A is a Euler system for (T,A,Σ) and the image of

c1 in H1(Q, T ) is not contained in H1(Q, T )tors, then S{p}(Q,W ∗(1)) is finite.

Theorem 7.1.5. Assume that p > 2 and that Hypothesis Hyp(Q, T ) and

at least one of hypotheses Hyp(p) and Hyp(S(p), V ) are satisfied. If c =

(cm)m∈A is a Euler system for (T,A,Σ), then

lengthO(S{p}(Q,W ∗(1))) ≤ indO(c) + nW + n∗W ,

where indO(c) is the largest power of the maximal ideal by which c1 can be

divided in H1(Q, T )/torsion and the quantities nW and n∗W are as defined in

Theorem 2.2.2 of [Rub00].

Proofs. If Hyp(p,A) holds, then Theorems 7.1.4 and 7.1.5 are Theorems

2.2.3 and 2.2.2 of [Rub00] respectively. If Hyp(S(p), V ) holds instead, then the

necessary modifications to the proofs are outlined in Section 9.1 of op. cit. �

7.2. Verifying the hypotheses on T. The main result of this section is

Proposition 7.2.18, which implies that under some mild technical assumptions

there is a large supply of primes where the condition Hyp(Q, T ) is satisfied.

7.2.1. Big image results for one modular form. We begin by some results

from [Mom81] and [Rib85] regarding the image of the Galois representations

attached to a modular form. Let f =
∑
n≥1 anq

n be a new eigenform of weight

k ≥ 2, level N and character ε, not of CM type. Let L = Q(an : n ≥ 1) be its

coefficient field, with ring of integers OL.

Recall that an extra twist of f is an element γ ∈ Gal(L/Q) such that γ(f)

is equal to the twist of f by some Dirichlet character χγ . We let Γ ⊆ Gal(L/Q)

be the group of such γ. We let F ⊆ L be the fixed field of Γ, and we let

H ⊆ Gal(Q/Q) be the absolute Galois group of the finite abelian extension K

cut out by the Dirichlet characters χγ .

For each prime λ of L, it is clear that the trace of the Galois representation

ρLλ(f)|H takes values in Fµ, where µ is the prime of F below λ.

Theorem 7.2.1 (Momose–Ribet; see [Rib85, Th. 3.1]). For all but finitely

many λ, the image of the Galois representation ρLλ(f)|H is a conjugate of the

group

{g ∈ GL2(OF,µ) : det(g) ∈ Z×` },
where µ and ` are the primes of F and Q below λ.
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Remark 7.2.2. For a “generic” modular form f , there will be no extra

twists if the character f is trivial, but there will always be at least one if f has

nontrivial character since the complex conjugate f∗ is a twist of f .

We will need the following slight strengthening:

Proposition 7.2.3. Let K ′ be any finite extension of K that is abelian

over Q, and let H ′ ⊆ H be its absolute Galois group. Then for all but finitely

many λ, the image of ρLλ(f)|H′ is a conjugate of the group {g ∈ GL2(OF,µ) :

det(g) ∈ Z×` } above.

Proof. If λ is a prime satisfying the conclusion of the theorem, then the

image of ρLλ(f)|H′ contains SL2(OF,µ) since SL2(OF,µ) is equal to its own

commutator subgroup. But for all but finitely many primes `, the field K ′ is

linearly disjoint from Q(µ`∞) and thus the cyclotomic character is a surjection

H ′ → Z`. �

7.2.2. Big image results for pairs of modular forms. We recall the follow-

ing result from group theory:

Proposition 7.2.4 (Goursat’s Lemma; cf. [Lan02, Exercise I.5]). Let

G1, G2 be groups and H a subgroup of G = G1×G2 such that the projections πi :

H → Gi are surjective. Let N1 = H ∩ (G1 × {e2}) and N2 = H ∩ ({e1} ×G2),

which we identify with subgroups of G1, G2 in the obvious manner. Then the

Ni are normal in Gi, and H is the graph of an isomorphism G1/N1
∼= G2/N2.

Corollary 7.2.5. Let F,F′ be finite fields of the same characteristic,

both of order ≥ 4. Let H be a subgroup of SL2(F) × SL2(F′) surjecting onto

both factors. Then either H is the whole of SL2(F) × SL2(F′), or F = F′ and

H is conjugate in GL2(F)×GL2(F) to one of the following subgroups :

(i) the diagonal subgroup {(x, ϕj(x)) : x ∈ G} for some 0 ≤ j < k, where

F = Fpk and ϕ is the p-power Frobenius of F;

(ii) the subgroup {(x, y) : y = ±ϕj(x)} for some 0 ≤ j < k.

Proof. This follows immediately from Goursat’s lemma and a case-by-case

check, given that the groups PSL2(F) for fields F of order ≥ 4 are pairwise

nonisomorphic simple groups, and the automorphism groups of SL2(F) and

PSL2(F) are both isomorphic to PGL2(F) o 〈ϕ〉. �

Proposition 7.2.6. Let O,O′ be the rings of integers of any two unram-

ified extensions of Qp, where p is a prime ≥ 5, with residue fields F,F′. Then

any closed subgroup H ⊆ SL2(O)×SL2(O′) that surjects onto SL2(F)×SL2(F′)
must be the whole of SL2(O)× SL2(O′).

Proof. We follow the argument given for SL2(Zp) by Swinnerton-Dyer

in [SD73]. It suffices to show that for each n ≥ 2, the image Hn of H in

SL2(O/pn)×SL2(O′/pn) contains the subgroups Kn×1 and 1×K ′n, where Kn
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is the kernel of SL2(O/pn) → SL2(O/pn−1) and similarly for K ′n. Note that

for each n, the group Kn is abelian and is isomorphic (via m 7→ 1 + pn−1m)

to the group of trace zero matrices in M2(F), which is generated by matrices

u such that u2 = 0.

We now proceed by induction on n. Let u ∈ M2(F) satisfy u2 = 0. By

assumption, we may then find h ∈ H congruent to (1 +u, 1) modulo p; and, as

shown in op. cit., we have hp = (1 + pu, 1) mod p2. Thus (1 + pu, 1) ∈ H2, and

thus H2 ⊇ K2× 1. Similarly, H2 contains 1×K ′2, so in fact H2 is the whole of

SL2(O/p2)× SL2(O′/p2).

Suppose n ≥ 3 and Hn−1 is everything. We claim Hn contains Kn × 1.

Again, Kn consists of matrices of the form (1+pn−1u, 1), and by the induction

assumption we can find h ∈ H congruent to (1 +pn−2u, 1) modulo pn−1. Then

hp is congruent to (1 + pn−1u, 1) modulo pn, so (1 + pn−1u, 1) ∈ Hn. Thus

Hn ⊇ Kn × 1 and similarly Hn ⊇ 1×K ′n, so we are done. �

As a corollary, we obtain the following result:

Proposition 7.2.7. Let O,O′ be as above, with characteristic ≥ 5, and

let H be a subgroup of SL2(O)× SL2(O′) that surjects onto both factors. Then

either H = SL2(O)× SL2(O′), or O′ = O and H is contained in the subgroup

{(x, y) ∈ SL2(O) : x = ±ϕjy mod p}

for some j.

We shall now boost this to a statement about GL2. For O,O′ as before,

let G denote the group

{(x, y) ∈ GL2(O)×GL2(O′) : det(x) = det(y) ∈ Z×p }.

We can regard this as a fibre product G1 ×Z×p G2, where G1 = {x ∈ GL2(O) :

det(x) ∈ Z×p } and similarly for G2.

Proposition 7.2.8. Let H be a subgroup of G that surjects onto G1 and

G2. Then either H = G, or we have O = O′ and H is contained in the

subgroup of G given by {(x, y) : x = ±ϕjy mod p} for some j.

Proof. Let G◦ = SL2(O)×SL2(O′), and let H◦ = H∩G◦. Then H◦ has full

image in each of SL2(O) and SL2(O′), so either H◦ = G◦, or O′ = O and the

image of H◦ modulo p is contained in the subgroup {(x, y) : x = ±ϕjy mod p}
for some j.

Suppose first that H◦ = G◦. Then we must have H = G, since for each

g ∈ G, there is some h ∈ H with det(h) = det(g), and then h−1g lies in G◦ so

by assumption it must be in H.

In the remaining case, by replacing H with its image under the automor-

phism ϕj × 1, we may assume without loss of generality that j = 0. Then any
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h ∈ H◦ is of the form (x, y) with x = ±y modulo p. Let (x, y) be any element

of H, and consider the class of t = x−1y in PSL2(F); then for any (u, v) ∈ H◦,
we have

[u−1tu] = [u−1x−1yu] = [x−1][(xux−1)−1(yvy−1)][y][v−1u] = [x−1y] = [t]

since (xux−1, yvy−1) ∈ H◦. Thus the classes [t] and [u] commute in PSL2(F).

However, since H◦ surjects onto SL2(O), this forces [t] to be in the centre of

PSL2(F), which is trivial (since it is a simple group). Thus x = ±y mod p for

all (x, y) ∈ H, as claimed. �

Assume now that we have two newforms f and g, and let L be the subfield

of Q generated by the coefficients of f and g. For each prime p of L, we may

consider the image of the Galois representation ρf,p × ρg,p : Gal(Q/Q) →
GL2(Lp)×GL2(Lp).

Let H be the subgroup of Gal(Q/Q) cut out by the Dirichlet characters

corresponding to the “extra twists” of f and g, and let K be its fixed field (an

abelian extension of Q). Let F, F ′ be the subfields of L fixed by the extra twists.

By Proposition 7.2.3, we know that for all but finitely many p, the image of

ρf,p|H is the group {x ∈ GL2(O) : det(x) ∈ Z×p }, where O is the completion of

F at the prime below p and p is the residue characteristic of p; similarly, the

image of ρg,p|H will be the group {x ∈ GL2(O′) : det(x) ∈ Z×p } where O′ is the

completion of F ′ at p. Then the image of the Galois representation ρf,p×ρg,p is

a subgroup of the group Gp = G defined above that surjects onto either factor.

Proposition 7.2.9. In the above situation, either the image of H under

ρf,p × ρg,p is Gp, or O′ = O and there is an element γ ∈ Gal(L/Q) and a

quadratic character χ : H → {±1} such that the equality

(21) ρf,p(σ) = ±ρf,p(σ)γ mod p

holds for all σ ∈ H .

Proof. We know from above that if the image of ρf,p × ρg,p is not G, then

O = O′ and ρf,p(σ) = ±ϕjρg,p(σ) mod p for all σ ∈ H, where ϕj is the mod p

Frobenius.

Now we may take γ to be any element of the decomposition group of p in

Gal(L/Q) reducing to ϕj modulo p. (Of course, there will almost always be

only be one such element since only finitely many primes ramify in L/Q.) �

We now lift to characteristic 0. Let w be a prime of the field K; we define

aw(f) = tr ρf,λ(σ−1
w ), where σw is the arithmetic Frobenius at w in H and λ

is some prime of L; if w is a degree 1 prime, then this is just av(f) where v

is the rational prime below w, and for general primes w, it may be expressed

as a polynomial in av(f) and χv(f). In any case it is obviously independent
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of the choice of auxilliary prime λ, and (since K is abelian over Q) it depends

only on the prime v of Q below w. We define aw(g) similarly.2

Definition 7.2.10. Let us say a prime p of residue characteristic ≥ 5 is a

good prime for the pair (f, g) if the image of H under ρf,p×ρg,p is the whole of

Gp. If the image is a proper subgroup, but has full projection to either factor,

we say p is a bad prime.

Remark 7.2.11. If p divides 2 or 3, or is such that ρf,p or ρg,p has small

image, we consider p to be neutral, neither good nor bad. By the theorem of

Momose–Ribet (Theorem 7.2.1), there are only finitely many neutral primes.

Corollary 7.2.12. If there are infinitely many bad primes for (f, g),

then there is γ ∈ Gal(L/Q) such that the equality

aw(f) = ±γ(aw(g))

holds for all primes w of K .

Proof. For each bad prime p, there exists a γ ∈ Gal(L/Q) such that

the congruence (21) holds and, in particular, (by taking σ = σ−1
w ) we have

aw(f)2 = γ(aw(g)2) mod p for all primes w of K.

Since Gal(L/Q) is finite, there exists some γ such that the congruence

(21) of the proposition holds for all p in an infinite set B. In this case, we have

aw(f)2 = γ(aw(g)2) mod p

for infinitely many p. So we must have an equality aw(f)2 = γ(aw(g)2), since

a nonzero element of a number field cannot be divisible by infinitely many

primes. �

Corollary 7.2.13. If there are infinitely many bad primes for (f, g),

there exists a quadratic Groessencharacter κ of K (equivalently, a continuous

quadratic character of H) such that

aw(f) = κ(w)aw(g)

for all primes w of K .

Proof. This follows from the strong multiplicity-one theorem for SL2 /K

(cf. [Ram00]): the Satake parameters of the base-change representations BC(πf )

and BC(πγg ) of GL2(AK) agree up to sign at any prime w, and Ramakrishnan’s

result guarantees that the sign relating the two is given by a quadratic char-

acter. �

2Of course, we can define the quantity aw(f) intrinsically in “automorphic” terms, as (up

to normalizations) it is the trace of the d-th power of the conjugacy class in GL2(C) that is

the Satake parameter of πf,v, where d is the degree of the unramified extension [Kw : Qv];

this makes the independence of λ self-evident.
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Remark 7.2.14. Frustratingly it does not seem to be possible to show the

existence of κ without such heavy automorphic machinery, even though we

know that for infinitely many primes p, the sign relating ρf and ρg modulo p

is given by a character.

Theorem 7.2.15. Suppose there are infinitely many bad primes for (f, g).

Then f is Galois-conjugate to some twist of g.

Proof. From Ramakrishan’s theorem, we know that we have

ρf,λ|H ∼= ργg,λ|H ⊗ τ

for a quadratic character τ of H and any choice of prime λ. Inducing up from

H to H ′ = Gal(Q/Q), we have

ρf,λ ⊗ IndH
′

H (1H) = ρg,λ ⊗ IndH
′

H (τ).

But the left-hand side contains ρf,λ as a direct summand, while the right-

hand side is a direct sum of representations of the form ργg,λ ⊗ µ where µ is

an irreducible Artin representation. Hence there must be at least one µ that

is 1-dimensional and such that ρf,λ ∼= ργg,λ ⊗ µ, in which case we must have

f = gγ ⊗ µ. �

7.2.3. Existence of the special element. As in the previous section, let f

and g be two newforms, and let L be the subfield of Q generated by the

coefficients of f and g. We assume that f is not Galois conjugate to a twist

of g, so by Theorem 7.2.15 there are only finitely many bad primes for (f, g).

We retain the notation of the previous section.

Let p be a good prime that does not divide the levels of f and g, and p

the rational prime below p.

We make the following crucial assumption:

Assumption 7.2.16. The character χ = (χfχg)
−1 is nontrivial, and its

conductor is not a power of p.

For simplification, we also make the following assumption:

Assumption 7.2.17. We have Lf,p = Lg,p = Qp, so after a suitable

choice of basis, we may assume that the image of ρf,p × ρg,p is contained in

GL2(Zp)×GL2(Zp).

We can now prove the main result of this section.

Proposition 7.2.18. There exists an element τ ∈ GQ(µp∞ ) such that

V/(τ − 1)V is 1-dimensional, where V = VLp(f, g)∗.

If χ is not congruent modulo p to any character of p-power conductor,

then there exists τ such that T/(τ − 1)T is free of rank 1 for any GQ-stable

lattice T in V .
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Proof. Choose some α ∈ Gal(Q/Q) such that χ(α) 6= 1 but α is in the

kernel of the p-adic cyclotomic character. Note that such α do exist, since the

conductor of χ not a power of p. Consider the coset α · (H ∩GQ(µp∞ )). Since

p is a good prime, under ρf,p × ρg,p, the coset α · (H ∩GQ(µp∞ )) is mapped to

(ρf,p(α), ρg,p(α)) · SL2(Zp)2,

which consists of all pairs (u, v) of matrices such that det(u) = χf (α) and

det(v) = χg(α). In particular, it contains the pairÇ
x 0

0 x−1χf (α)

åÇ
x−1 0

0 xχg(α)

å
for any x ∈ Z×p . The image of this pair under the tensor product homomor-

phism GL2×GL2 → GL4 is the diagonal matrix with entriesî
1, x−2χf (α), x2χg(α), χf (α)χg(α)

ó
.

By choosing x appropriately, we can arrange that neither x−2χf (α) nor x2χg(α)

is equal to 1. Thus 1 is an eigenvalue of τ on VLp(f)⊗VLp(g) with multiplicitly

exactly 1.

If we assume the stronger condition on χ in the statement, then we can

assume that χf (α)χg(α) is not 1 modulo p. By choosing x appropriately we

can assume that x−2χf (α) and x2χg(α) are also noncongruent to 1, so it follows

that T/(τ − 1)T is free of rank 1 as required (for any τ -stable OL-lattice in V

and, in particular, any GQ-stable lattice). �

7.2.4. The quantities nW and n∗W . We recall the definitions of the quanti-

ties nW and n∗W in Rubin’s theory. Let T be a finite-rank free O-module with

a continuous action of GQ. As usual, write V = T ⊗ E and W = V/T .

Definition 7.2.19. Define Ω to be the smallest extension of Q whose Galois

group acts trivially on W and on µp∞ , and define

nW = `O
Ä
H1(Ω/Q,W ) ∩ S{p}(K,W )

ä
,

n∗W = `O
Ä
H1(Ω/Q,W ∗(1)) ∩ S{p}(K,W ∗(1))

ä
.

We now give conditions under which these quantities are zero.

Proposition 7.2.20. Suppose the centre of Ω acts on each of T ⊗ k and

T ∗(1)⊗ k via a nontrivial character. Then nW = n∗W = 0.

Proof. We shall show that the hypotheses imply that H1(Ω/Q,W ) =

H1(Ω/Q,W ∗(1)) = 0. We give the argument for W ; the proof for W ∗(1)

is similar.

Clearly we have H1(Ω/Q, V ) = 0, and hence H1(Ω/Q,W ) is finite. So

it suffices to show that H1(Ω/Q,W )[$] = 0, where $ is a uniformizer. But
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we have a surjection H1(Ω/Q,W [$]) � H1(Ω/Q,W )[$], so we are reduced

to showing that H1(Ω/Q,W [$]) = H1(Ω/Q, T ⊗ k) is zero. However, this is

immediate since any representation of nontrivial central character cannot have

a nontrivial extension by the trivial representation. �

7.3. The Euler system. As above, let f and g be newforms of weight 2,

level N and characters χf and χg, respectively. Let p be a prime not dividing

N . Let L be a number field containing the coefficients of fα and gβ, and let p

be a prime of L above p. Let E = Lp, and let O be its ring of integers. We

write T = TO(f, g)∗ and p`(X) = det(1− Frob−1
q X|T ∗(1)) = P`(f, g, `

−1X) ∈
OL[X]. We assume that the following conditions are satisfied:

Assumption 7.3.1.

(i) the character χ = χfχg is not trivial and, moreover, is not trivial modulo p;

(ii) there exist p-stabilizations fα, gγ of f and g with Up-eigenvalues α, γ re-

spectively such that

• vp(αγ) < 1,

• α/γ is not a root of unity.

Fix c ≥ 1 coprime to 6N , and let A be the set of square-free integers prime

to Npc. By Corollary 6.4.5, we have, for every integer m ∈ A, a cohomology

class cz
f,g,N
m ∈ H1(Qm, T ) that satisfies the following compatibility property:

if m ∈ A and ` is a prime comprime to mNpc, then the image of zf,g,N`m under

the corestriction map H1(Q`m, T )→ H1(Qm, T ) is

−σ`A`(σ−1
` )zf,g,Nm ,

where A`(X) is a polynomial in OL[X] congruent modulo `− 1 to p`(X).

Lemma 7.3.2. There exists a system of cohomology classes

{cz̃f,g,Nm ∈ H1(Qm, T ) : m ∈ A}

such that

cz̃
f,g,N
1 = cz

f,g,N
1

and if m ∈ A and ` is a prime such that m` ∈ A, then the image of cz̃
f,g,N
`m

under the corestriction map H1(Q`m, T )→ H1(Qm, T ) is

A`(σ
−1
` )cz̃

f,g,N
m .

Proof. By induction on the number of prime factors of m, we can choose

(noncanonically) a system of elements γm ∈ (Z/mZ)× for every m ∈ A such

that γm` = `−1γm mod m. Identify γm with an element of Gal(Q(µm/Q) via

the inverse of the cyclotomic character, and define cz̃
f,g,N
m = (−1)s(m)γm ·

cz
f,g,N
m , where s(m) is the number of prime factors of m. It is clear by con-

struction that the elements have the required property. �
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Note 7.3.3. By Corollary 6.7.9, the classes cz
f,g,N
m are in the Selmer group

S{p}(Q(µm), TOp(f, g)∗). As S{p}(Q(µm), TOp(f, g)∗) is invariant under the ac-

tion of Gal(Q(µm)/Q), it follows that the same is true for the modified classes

cz̃
f,g,N
m .

We now show that we can convert the classes (cz
f,g,N
m )m∈A into a Euler

system. Let T , Σ and A be as defined at the beginning of Section 7.1. Then

we have the following result (cf. [Rub00, Lemma 9.6.1]):

Lemma 7.3.4. Suppose that for all primes ` ∈ A we have polynomials

r`(X), s`(X) ∈ O[X] such that

r`(X) ≡ s`(X) (mod `− 1),

and suppose we have a collection of cohomology classes
¶
c̃m ∈ H1(Q(µm), T ) :

m ∈ A
©

such that if ` ∈ A is coprime to m, then

coresQ(µ`m)/Q(µm)(c̃`m) =

{
r`(σ

−1
` )c̃m if ` - m,

c̃m if ` | m.

Then there exists a collection of classes
¶
cm ∈ H1(Q(µm), T ) : m ∈ A

©
with

the following properties :

(i) for all m,
cm ∈ O[(Z/mZ)×] · c̃m;

(ii) if ` is a prime such that m,m` ∈ A, then

coresQ(µ`m)/Q(µm)(c`m) =

{
s`(σ

−1
` )cm if ` - m,

cm if ` | m;

(iii) if m ∈ A and χ is a character of Gal(Q(µm)/Q) of conductor k such that

prime(m) ⊂ prime(k) ∪ Σ, then∑
γ∈Gal(Q(µm)/Q)

χ(γ)γ(cm) =
∑

γ∈Gal(Q(µm)/Q)

χ(γ)γ(c̃m).

Definition 7.3.5. Define {cẑf,g,Nm ∈ H1(Q(µm), TOp(f, g)∗)) : m ∈ A} to

be the classes obtained by applying Lemma 7.3.4 to our classes cz̃
f,g,N
m , where

we take r`(X) = A`(X) and s`(X) = p`(X) = P`(f, g, `
−1X) and, as above, A

is the set of square-free integers coprime to Npc.

Note 7.3.6. By construction, the classes {cẑf,g,Nm : m ∈ A} are a Euler sys-

tem for (T,Σ, A) in the sense of Definition 7.1.1, where Σ is the set of primes di-

viding Npc. Moreover, because of (i), we have cẑm ∈ S{p}(Q(µm), T ) for all m.

7.4. Finiteness of the strict Selmer group. We now combine the above

results to prove a finiteness theorem for the strict Selmer group. For the

convenience of the reader, we shall recapitulate all of the assumptions we have

made on f and g.
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Assumption 7.4.1. Assume that f and g are weight 2 newforms with

coefficients in a number field L and that p is a prime of L above the rational

prime p, with the following properties :

(i) Neither f nor g is of CM type;

(ii) f is not a twist of g;

(iii) The character εfεg is nontrivial ;

(iv) p ≥ 5;

(v) p does not divide the levels of f and g;

(vi) p is totally split in the field L, so Lp = Qp;

(vii) the p-adic Galois representations of f and g are surjective onto GL2(Zp);
(viii) there exists some prime v such that χ(v) = 1 for all inner twists χ of f

or g, and av(f) 6= ±av(g) mod p;

(ix) f is ordinary at p;

(x) there exists a root γ of the Hecke polynomial of g at p such that vp(γ) < 1

and α/γ is not a root of unity, where α is the unit root of the Hecke

polynomial of f .

If we assume hypotheses (i)–(iii) (which do not depend on p), then there

will be many p such that the remaining hypotheses hold.

Theorem 7.4.2. Suppose Assumption 7.4.1 is satisfied, and the p-adic

Rankin–Selberg L-function Dp(f, g, 1/N) does not vanish at 1, where N is some

integer divisible by the levels of f and g. Then

#S{p}
Ç
Q,

VLp(f, g)

TOp(f, g)
(1)

å
<∞.

Proof. It suffices to show that the hypotheses of Theorem 7.1.4 are sat-

isfied for T = TOp(f, g)∗. By Proposition 7.2.18, the element τ required by

Hypothesis Hyp(Q, V ) exists, and the Euler system of Definition 7.3.5 satisfies

Hypothesis Hyp(S{p}, V )(ii). Since T is nontrivial and irreducible, TGK = 0,

and the element γ in Hypothesis Hyp(S{p}, V )(iii) clearly exists.

By Theorem 5.6.4, if Dp(f, g, 1/N)(1) 6= 0, the image of regp Ξ1,N,1 in

the (f, g)-isotypical quotient of H2
dR(X1(N)/Qp)/Fil2 is nonzero. Hence, by

the diagram of Section 5.5, the localization of the Galois cohomology class

zf,g,N1 at p is nonzero so, in particular, cz
f,g,N
1 is nontorsion as an element of

H1(Q, TLp(f, g)∗) for any c > 1. Thus we may apply Theorem 7.1.4 to the

Euler system (cẑ
f,g,N
m )m∈A of Definition 7.3.5 to obtain the finiteness of the

strict Selmer group. �

7.5. The order of the strict Selmer group. Theorem 7.1.5 gives a bound

for the order of the strict Selmer group, under slightly stronger hypotheses

than Theorem 7.4.2.
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Theorem 7.5.1. Suppose Assumption 7.4.1 is satisfied and, in addition,

the mod p reduction of εfεg is not trivial. Then we have

lengthZp S{p}
Ç
Q,

VLp(f, g)

TOp(f, g)
(1)

å
≤ vp

Ç
(1− p−1βα−1)

(1− p−1βγ)(1− p−1βδ)
Dp(f, g, 1/N)(1)

å
+ λ,

where λ is the p-adic valuation of the ideal If of Definition 6.10.4 above.

Proof. Our condition on the mod p reduction of εfεg implies that Hypoth-

esis Hyp(Q, T ) is satisfied (again by Proposition 7.2.18; note that the mod p

reduction cannot be a nontrivial character of p-power conductor as p does not

divide the levels of f and g). The condition also assures that the quantities

nW and n∗W appearing in Theorem 7.1.5 are zero (Proposition 7.2.20).

We consider the linear functional α on H1(Q, VLp(f, g)∗) given by x 7→
〈logQp(x), ηur

f ⊗ ωg〉. On the lattice ‹TOp(f, g)∗ this takes values in

I−1
f · (1− α

−1γ−1)−1(1− α−1δ−1)−1Op,

by Corollary 6.10.7; but since the Galois representations of f and g are assumed

to have big image, we have ‹TOp(f, g)∗ = TOp(f, g)∗.

Theorem 5.6.4 shows that τ maps the class zf,g,1 to

E(f)E∗(f)

E(f, g, 1)
Dp(f, g, 1/N)(1).

Hence the index of divisibility of zf,g,N1 is bounded above by

vp

Ç
E(f)E∗(f)(1− α−1γ−1)(1− α−1δ−1)

E(f, g, 1)
Dp(f, g, 1/N)(1)

å
+ λ.

We can ignore the factor E∗(f) := 1 − βα−1, since αf is a unit and βf is a

nonunit so E∗(f) ∈ O×p . Substituting the definitions of E(f) and E(f, g, 1), we

have
E(f)(1− α−1γ−1)(1− α−1δ−1)

E(f, g, 1)
=

(1− p−1βα−1)

(1− p−1βγ)(1− p−1βδ)
. �

7.6. An example. It may seem slightly unclear whether the long list of

conditions in Assumption 7.4.1 may be simultaneously satisfied, so we present

the following explicit example (computed using Sage [Sage]):

Let f be the unique weight 2 newform of level 11 (corresponding to the

elliptic curve E : y2+y = x3−x). Let g be the unique newform of weight 2, level

26, and character χ :=
( •

13

)
with a2(g) = i, so the q-expansions of f and g are

f = q − 2q2 − q3 + 2q4 + q5 +O(q6),

g = q + iq2 − q3 − q4 − 3iq5 +O(q6).
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Note that χ has conductor 13, so the local component of πg at 2 is an

unramified twist of the Steinberg representation; on the other hand f is un-

ramified principal series at 2 and Steinberg at 11. So f cannot be a twist of

g, and neither f nor g is of CM type (since CM forms cannot be Steinberg

at any prime). The form f has no inner twists (since it is non-CM and has

coefficients in Q); as for g, its Galois orbit consists of g and ḡ, so its only inner

twist is ḡ.

To calculate the image of the Galois representations of f and g, we note

that Sage [Sage] has a facility to compute all the exceptional primes for the

Galois representation attached to an elliptic curve (i.e., those primes for which

the image of the Galois representation is not GL2(Zp)). This speedily tells us

that ρf,p is surjective for all p 6= 5.

The form g does not correspond to an elliptic curve, but there is a Dirichlet

character ψ : (Z/13Z)× → Q(i)× such that g ⊗ ψ corresponds to an elliptic

curve E′ of conductor 2×132 = 338 (the curve with Cremona label 338d, given

by y2 + xy = x3 + x2 + 504x− 13112), and the only exceptional primes for E′

are {3, 5}. Letting H = GQ(
√

13), the kernel of the character χ, we see that for

all primes p /∈ {2, 3, 5, 13}, the image of H under ρg,p, for any prime p of Q(i)

above p, is GL2(Zp).
Moreover, the only prime such that av(f) = av(g) for all v split in Q(

√
13)

is p = 5. We deduce that for any p congruent to 1 mod 4 and not in {5, 13},
and any prime p of Q(i) above p, the hypotheses (i) – (viii) are satisfied.

We check that both f and g are ordinary at the primes above 17 (it does

not matter which prime we take, since a17(g) ∈ Z). For any choice of roots

α, γ of roots of the Hecke polynomials of f and g, the minimal polynomial of

α/γ over Q is x4 + 6
17x

3 − 21
17x

2 + 6
17x + 1 so, in particular, α/γ is not a root

of unity. Thus hypotheses (ix) and (x) are satisfied if p is either of the primes

above 17.

Note added after submission. Since this paper was originally submitted,

the 17-adic L-values appearing in this example have been computed modulo 173

by Alan Lauder, using the techniques described in [Lau14]. It is actually more

convenient to compute Dp(g, f, 1/N)(1) rather than Dp(f, g, 1/N)(1). This

quantity is indeed nonzero, so applying Theorem 7.4.2 gives finiteness of the

Selmer group.

8. Conjectures on higher-rank Euler systems

We now explain how the cohomology classes constructed in the previous

section may be reconciled with the general conjectural setup of cyclotomic

Iwasawa theory for motivic Galois representations formulated by Perrin-Riou,

and its extension to the two-variable situation as formulated by the second and

third authors in [LZ12].
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8.1. Euler systems : rank 1 and higher rank. Let us place ourselves again

in the general setting of Section 7.1 above, so T is a free O-module with a

continuous action of GQ unramified outside a finite set Σ 3 p, and A is a set

of integers satisfying the conditions loc. cit. Suppose that all integers in A are

coprime to p.

Perrin-Riou’s conjectures, as formulated in [PR98] (cf. also [Rub00, §8.5]),

discuss the following class of objects:

Definition 8.1.1. A Euler–Iwasawa system of rank r ≥ 1 consists of the

data of, for each m ∈ A, a class

cm ∈
r∧

Λ(Γm)

H1
Iw(Q(µmp∞), V )

with the property that if ` is prime and `,m` ∈ A, we have

cores
Q(µm`p∞ )

Q(µmp∞ ) cm` =

p`(σ−1
` )cm if ` - mΣ,

cm if ` | mΣ.

Note that a rank 1 Euler–Iwasawa system is equivalent to the data of a

Euler system for (T,Ap,Σ) in the previous sense, where Ap = {pkm : m ∈ A,

k ≥ 0}.
As noted in [PR98, §1.2.3], a higher-rank Euler system can be used to

construct rank 1 Euler systems, by pairing with appropriate “rank r − 1”

elements. We make the following definition:

Definition 8.1.2. We define a Perrin-Riou functional to be the data of,

for each squarefree m prime to S as above, an element

Φm ∈
r−1∧

HomΛ

Ä
H1

Iw,S(Q(µmp∞), T ),Λ
äι
,

with the property that for each ` - mS, we have

Φm = Φm` ◦ res
Q(µm`p∞ )

Q(µmp∞ ) .

Lemma 1.2.3 of op. cit. shows that if (cp(m)) is a Euler system of rank r,

and (Φm) is a Perrin-Riou functional, then the elements

Φm(cp(m)) ∈ H1
Iw,S(Q(µmp∞), T )

define a Euler system of rank 1. (Here, as explained loc.cit., we interpret Φm

as a map
r∧
H1

Iw,S(Q(µmp∞), T )→ H1
Iw,S(Q(µmp∞), T ),

which we also denote by Φm.)

Appendix B of op. cit. shows that (under mild hypotheses on T ) there

is a plentiful supply of Perrin-Riou functionals, although there is no obvious
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canonical choice. More specifically, given any m and any Φm, there exists a

Perrin-Riou functional extending Φm. Hence, given as a starting point a rank

r Euler system, one may construct a rank 1 Euler system (indeed many such

systems) and obtain Iwasawa-theoretic results from this rank 1 system; but

these rank 1 Euler systems are noncanonical and, in particular, there is no

reason to expect that they should have any relation to L-values.

Remark 8.1.3. An alternative approach to bounding Selmer groups in the

r > 1 case by directly utilizing a notion of “higher-rank Kolyvagin systems,”

rather than by constructing rank 1 Euler systems, has been initiated by Mazur

and Rubin (unpublished).

8.2. Otsuki ’s functionals. We now explain a construction due to Otsuki

[Ots09], who has shown how to construct canonical linear functionals on co-

homology groups by composing the dual exponential map with an appropriate

“weighted trace.” These maps do not satisfy the compatibility properties of a

Perrin-Riou functional, and thus they give rise to systems of elements of group

rings satisfying a modified compatibility property; we shall show that this

modification is consistent with the results we have shown for our generalized

Beilinson–Flach classes.

For technical reasons we shall work in the limit over the cyclotomic exten-

sion, rather than directly over Q(µm); this avoids problems caused by zeroes

of local Euler factors (cf. the discussion at the start of Section 9.1 of [Rub00]).

Choose a system of roots of unity ζm ∈ Q for all m ≥ 1 that satisfy ζnmn =

ζm for all integersm,n. LetGm = Gal(Q(µm)/Q) and Γm = Gal(Q(µmp∞)/Q);

we identify Γm with Gm × Γ in the obvious way.

Let V be an E-linear p-adic representation of GQ, where E/Qp is a finite

extension, that is crystalline at p with nonnegative Hodge–Tate weights and

such that no eigenvalue of Frobenius on Dcris(V ) is a root of unity. Then for

all m ≥ 1, the p-adic regulator map

LΓ
Q(µm),V : H1

Iw(Q(µmp∞), V ) - Q(µm)⊗Q HE(Γ)⊗E Dcris(V )

is well defined (as the sum of the local regulator maps at the primes of Q(µm)

above p).

Let D = Dcris(V
∗) = Dcris(V )∗, and let Dmp∞ = ΛE(Γ)⊗E D ⊗Q Q(µm).

We regard Dmp∞ as a Γm-module, via the usual action of Gm on Q(µm) and of

Γ on ΛE(Γ). Following [Kur02] and [Ots09], we have the following definition:

Definition 8.2.1. Define a pairing

tm : Dmp∞ ×H1
Iw(Q(µmp∞), V ) - HE [Γm]

by

tm(x, z) =
∑
σ∈Gm

[σ] traceQ(µm)/Q
¨
σx,LΓ

Q(µm),V (z)
∂

cris
.
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Here we extend 〈, 〉cris to be Γ-linear in the second variable and Γ-antilinear

in the first. One checks that

tm(σx, τz) = [σ−1τ ] · tm(x, z)

for all σ, τ ∈ Γm (not just in Γ).

Now fix two families F`, G` of polynomials in E[X], indexed by primes

` /∈ Σ, such that F`, G` ∈ 1 +XE[X] for all `.

Let A be the set of square-free integers prime to Σ. For each prime ` /∈ Σ

and each m ∈ A, consider the Λ(Γm)-linear endomorphism of ΛE(Γ)⊗QQ(µm)

given by σ̂`(x ⊗ ζ) = τ`x ⊗ ζ`, for all roots of unity ζ ∈ µm, where τ` is the

arithmetic Frobenius at ` in Γ. Thus σ̂` is the action of the Frobenius at ` in

Γm if ` - m and is a possibly noninvertible endomorphism if ` | m; and the σ̂`
all commute with each other.

Proposition 8.2.2. The endomorphism F`(σ̂`) is invertible in

EndQ (Q⊗Q Q(µm)) ,

where Q = Frac ΛE(Γ).

Proof. Clear, since the roots of the characteristic polynomial of σ̂` on

Q(µm) are scalars. �

For each m ∈ A, let us define an element x′m ∈ Q⊗Q Q(µm) by

x′m =

Ñ∏
`|m

F`(σ̂`)
−1G`(σ̂`)

é
· (1⊗ ζm).

Proposition 8.2.3. If ` - m, then we have

trm`m (x′m`) = σ−1
` F`(σ`)

−1 ((`− 1)G`(σ`)− `F`(σ`))x′m.

Proof. This is a straightforward generalization of (one case of) Proposition

2.5 of [Ots09]. We define H`(X) = G`(X)−F`(X)
X , so we have

F`(σ̂`)
−1G`(σ̂`) = 1 +H`(σ̂`)F`(σ̂`)

−1σ̂`

in EndQQ⊗Q Q(µm`). The operator σ̂v commutes with trm`m whenever v 6= `.

Hence

trm`m (x′m`) = trm`m

ÑÑ∏
v|m`

Fv(σ̂v)
−1Gv(σv)

é
ζm`

é
=

Ñ∏
v|m

Fv(σ̂v)
−1Gv(σ̂v)

é
trm`m

Ä
F`(σ̂`)

−1G`(σ`)ζm`
ä
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=

Ñ∏
v|m

Fv(σ̂v)
−1Gv(σ̂v)

é
trm`m

ÄÄ
1 +H`(σ̂`)F`(σ̂`)

−1σ̂`
ä
ζm`
ä

=

Ñ∏
v|m

Fv(σ̂v)
−1Gv(σ̂v)

éî
trm`m (ζm`)+trm`m

Ä
H`(σ̂`)F`(σ̂`)

−1ζm
äó

=

Ñ∏
v|m

Fv(σ̂v)
−1Gv(σ̂v)

éîÄ
−σ−1

` ζm
ä
+(`− 1)

Ä
H`(σ̂`)F`(σ̂`)

−1ζm
äó

=
Ä
−σ−1

` + (`− 1)H`(σ`)F`(σ`)
−1
ä
x′m

(where we have dropped the hats, since σ̂` acts on Q ⊗ Q(µm) as the usual

Frobenius σ`). Since σ`H`(σ`) = G`(σ`)− F`(σ`), we have

− σ−1
` + (`− 1)H`(σ`)F`(σ`)

−1

= σ−1
` F`(σ`)

−1 (−F`(σ`) + (`− 1)σ`H`(σ`))

= σ−1
` F`(σ`)

−1 (−F`(σ`) + (`− 1)(G`(σ`)− F`(σ`)))

= σ−1
` F`(σ`)

−1 ((`− 1)G`(σ`)− `F`(σ`)) ,

which gives the formula stated above. �

Corollary 8.2.4. If we are given, for each m ∈ A, an element

zm ∈ Q⊗Λ(Γ) H
1
Iw(Q(µmp∞), V )

satisfying

coresm`m (zm`) = F`(σ
−1
` )zm

for each m and each prime ` - m, ` /∈ Σ, and if we define xm = x′mv ∈ Dmp∞

for some fixed v ∈ D, then we have the relation

prm`m tm`(xm`, zm`) = σ`
Ä
(`− 1)G`(σ

−1
` )− `F`(σ−1

` )
ä
tm (xm, zm) .

By base extension we may regard tm(xm,−) as a map
∧2

Λ(Γm)Mm →Mm,

where

Mm = Q⊗Λ(Γ) H
1
Iw(Q(µmp∞), V ),

so it makes sense to evaluate tm(xm,−) against a rank 2 Euler–Iwasawa system.

We now specialize to the case where V = VLλ(f, g)∗ for some weight 2

eigenforms (f, g) of levels divisible only by primes in Σ−{p}. We take G`(X) =

1 − ε`(f)ε`(g)X2 and F`(X) = P`(`
−1X) as before. Choose a p-stabilization

(α, γ) of f and g, and let v = vα⊗vγ be the obvious ϕ-eigenvector in Dcris(V
∗)

of eigenvalue αγ.

Proposition 8.2.5. Let (wm)m≥1 be a Euler–Iwasawa system of rank 2

for (T,A,Σ), for some lattice T in V , and let

vm = tm(xm, wm).
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Then we have

vm ∈ Hh(Γ)⊗Λ(Γ) Q⊗Λ(Γ) H
1(Q(µmp∞), V ),

where h = vp(αγ). The elements vm satisfy the compatibility relation

coresm`m vm` = σ`
Ä
(`− 1)G`(σ

−1
` )− `F`(σ−1

` )
ä
vm.

Note that the growth conditionHh(Γ) is consistent with what we have seen

for the elements z
fα,gγ ,Np
m (cf. Theorem 6.8.4) and the compatibility condition

between levels m and m` is consistent with Theorem 3.4.1. This suggests the

following conjecture:

Conjecture 8.2.6. Then there exists a rank 2 Euler–Iwasawa system

(wm) for (TOλ(f, g)∗, A,Σ) with the property that for all m ∈ A, and all choices

of p-stabilizations (α, γ) of (f, g), the Iwasawa cohomology class z
fα,gγ ,Np
m of

Theorem 6.8.4 is given by

zfα,gγ ,Npm = tm(xm, wm)

in the notation above.

This gives a conceptual explanation for the (somewhat surprising) growth

and compatibility properties of the generalized Beilinson–Flach elements in

the context of Perrin-Riou’s theory of higher-rank Euler systems. The authors

would like to express their cautious hope that similar rank 1 “shadows” of

higher rank Euler systems might also exist in other contexts.

Remark 8.2.7. Note that it is implicit in this conjecture that the elements

tm(xm, wm) have no poles (except possibly at the trivial character), so the

singularities of tm, at the characters where one of the F`(σ̂`) for ` | m fails to

be invertible, must be “cancelled out” by zeroes of wm.

Appendix A. Ancillary results

A.1. Fixed points of double cosets. Here we shall prove a result that is

used in the proof of Theorem 3.4.1 above.

Let Γ be a discrete subgroup of PSL2(R). Recall that a fundamental

domain for Γ is a closed subset D of H such that

• D is equal to the closure of its interior D◦,

• ⋃γ∈Γ γD = H,

• γD◦ ∩D◦ = ∅ for all nonidentity elements γ ∈ Γ.

We assume henceforth that Γ is a Fuchsian group of the first kind, i.e.,

that Γ admits a fundamental domain D with finite hyperbolic area. We shall

say that a fundamental domain D is polygonal if D is the region bounded by a

finite number of geodesic arcs inH; it is known that every Γ admits a polygonal

fundamental domain.
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Lemma A.1.1. Let D be a Dirichlet domain for Γ, and let E = αD where

α lies in the commensurator Comm(Γ). Then there are only finitely many

γ ∈ Γ such that αD ∩ γD 6= ∅.

Proof. It is clear that αD is a Dirichlet domain for αΓα−1. In particular,

it is polygonal. Hence it can be decomposed as the union of a compact set M

and a finite number Ni of “cusp neighbourhoods,” which are subsets bounded

by two geodesics intersecting at a vertex at infinity, which is a parabolic point

xi of αΓα−1 on the boundary P1(R), and an arc of a Euclidean circle tangent

to the real line at xi.

Since M is compact, it can intersect only finitely many Γ-translates of D

(cf. [Kat92, Th. 3.5.1]). Moreover, since α ∈ Comm(D), the sets of parabolic

points of Γ and αΓα−1 are the same; so for each vertex-at-infinity x of αD,

we may choose some γ ∈ Γ that maps a vertex-at-infinity yi of D to xi, and

it is clear that Ni is contained in a finite union of translates of γγ′D where γ′

lies in the stabilizer of yi. Each of these, in turn, intersects finitely many other

translates of D (since D has finitely many sides). �

Lemma A.1.2. Let Γ be Fuchsian group of the first kind, and let X ⊂
Comm(Γ) be a finite union of double cosets ΓαΓ. Then the set

Fix(X) = {u ∈ H : γu = u for some γ ∈ X , γ 6= 1}

is a finite union of Γ-orbits in H.

Proof. Since X −{id} is preserved by conjugation by Γ, the set Fix(X) is

a union of orbits of Γ. So it suffices to show that Fix(X) ∩D is finite, where

D is a Dirichlet domain for Γ.

We claim that there are only finitely many x ∈ X such that xD ∩D 6= ∅.

From Lemma A.1.1, we know that for each α ∈ G, there are finitely many

γ ∈ Γ such that γD ∩ αD 6= ∅ and hence finitely many x ∈ Γα such that

xD∩D 6= ∅. Since X is the union of finitely many left cosets Γαi, this implies

the claim.

However, each nonidentity element in the finite set {x ∈ X : xD∩D 6= ∅}
can only have finitely many fixed points in H and, in particular, in D; so

Fix(X) ∩D is finite, as required. �

Lemma A.1.3. Let Γ1,Γ2 be commensurable Fuchsian groups of the first

kind. Then the set

{u ∈ H : ∃c ∈ Γ1, d ∈ Γ2 such that cd 6= 1 and cdu = u}

is a finite union of orbits under Γ1 ∩ Γ2.

Proof. This follows from the previous lemma applied to Γ = Γ1 ∩ Γ2 and

X = Γ1Γ2. �
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(Note that if Γ1 = Γ2, or more generally if the group generated by Γ1 and

Γ2 is Fuchsian, this generalizes the well-known result that Fuchsian groups of

the first kind have finitely many elliptic points in Γ.)

In particular, we have the following:

Proposition A.1.4. Let Γ1,Γ2 be commensurable Fuchsian groups of the

first kind. Then the natural map

(Γ1 ∩ Γ2)\H → (Γ1\H)× (Γ2\H)

is injective away from a finite subset of its domain.

Proof. Let z, z′ be two points of H such that z′ ∈ Γ1z and z′ ∈ Γ2z. Then

we may write z′ = γ1z for some γ1 ∈ Γ1 and z′ = γ2z for some γ2 ∈ Γ2.

Hence γ−1
1 γ2z = z. So either z lies in the finite subset Fix(Γ1Γ2) of

(Γ1∩Γ2)\H, or γ−1
1 γ2 = 1, in which case z and z′ are clearly in the same orbit

under Γ1 ∩ Γ2. �

A.2. Unbounded Iwasawa cohomology. In this section, we shall consider

inverse systems of cohomology classes in Z×p -extensions that are not bounded

(as in the usual definition of Iwasawa cohomology) but satisfy a weaker growth

condition.

Let K be a finite extension of either Q or Qp. If K is global, suppose that

either p 6= 2, or K has no real places.

Notation. In order to handle the two cases in a uniform manner, we

shall adopt a notation that is slightly abusive: for T a Zp-representation of

Gal(K̄/K), the notation H i(K,T ) will mean either H i(K,T ) as defined above

if G is local, or what we previously called H i
S(K,T ) if K is global, where S is

some fixed finite set of places containing all infinite places and all those divid-

ing p. In the latter case, we will assume that S contains all primes at which T

is ramified.

As before, we let Kn = K(µpn) and K∞ =
⋃
nKn, and define Iwasawa

cohomology groups H i
Iw(K∞, T ) as the inverse limit of the H i(Kn, T ) with

respect to corestriction, with their natural module structure over Λ = ΛZp(Γ).

Proposition A.2.1 (Nekovar). For any j ∈ {0, 1, 2}, we have a short

exact sequence

(22) 0 - Hj
Iw(K∞, T )Γn

- Hj(Kn, T ) - Hj+1
Iw (K∞, T )Γn - 0.

Proof. This is Corollary 8.4.8.2 of [Nek06]. We briefly recall the proof.

There are natural isomorphisms

H i
Iw(K∞, T ) ∼= H i(K,Λ⊗Zp T ),

H i(Kn, T ) ∼= H i(K,Zp[Γ/Γn]⊗Zp T )
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(for a suitable Λ-linear action of GK on the tensor products); see Proposition

8.3.5 of op. cit. Then the result above follows from the long exact cohomology

sequence of K-cohomology attached to the short exact sequence of Λ[GK ]-

modules

0 - Λ⊗Zp T
[γn]−1- Λ⊗Zp T

- Zp[Γ/Γn]⊗Zp T
- 0. �

Proposition A.2.2 (Perrin-Riou). There is an exact sequence

0 - TGK∞ - H1
Iw(K∞, T ) - HomΛ(H1(K∞, V/T )∨,Λ)ι

- (finite) - 0,

where ι signifies that the Λ-module structure is composed with the automor-

phism γ 7→ γ−1. In both cases, this exact sequence identifies TGK∞ with the

Λ-torsion submodule of H1
Iw(K∞, T ).

Proof. The local case is [PR92, Prop. 2.1.6]; note that in the local situa-

tion, Tate duality furnishes an isomorphismH1(K∞, V/T )∨ ∼= H1
Iw(K∞, T

∗(1))

and the middle map can be interpreted as Perrin-Riou’s pairing H1
Iw(K∞, T )×

H1
Iw(K∞, T

∗(1))→ Λ. The global case is [PR95, Lemma 1.3.3]. �

The main object of study in this section is the following module. Let

V = Qp ⊗Zp T .

Definition A.2.3. For K,T, V as above, and 0 ≤ r < 1, let Yr(K∞, V )

be the space of sequences (cn)n≥0 ∈ lim←−nH
1(Kn, V ) such that there exists

δ < ∞ independent of n for which pbrnc+δcn is in the image of H1(Kn, T ) in

H1(Kn, V ).

Proposition A.2.4. For all 0≤r<1, the natural map λr : Hr(Γ)⊗ΛQp (Γ)

H1
Iw(K∞, V )→ lim←−nH

1(Kn, V ) has image contained in Yr(K∞, V ).

Proof. This is clear from the definition of Hr(Γ). �

Remark A.2.5. The map λr is not necessarily injective, even for r = 0

(where Hr(Γ) is just Λ⊗Qp). A counterexample is provided by the represen-

tation T = Zp(1). Then the cocycle cn given by σ 7→ χ(σ)−1
pn is well defined

as an element of H1(Kn, T ) (for either local or global K). The sequence (cn)

defines an element of H1
Iw(K∞, T ) that is not p-torsion and thus is nonzero as

an element of H1
Iw(K∞, V ). But pncn is a coboundary for all n, so the image

of cn in H1(Kn, V ) is zero for all n. Thus (cn) lies in the kernel of the above

map.

Proposition A.2.6. The kernel of λr is contained in H1
Iw(K∞, V )tors

∼=
V GK∞ .
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Remark A.2.7. We note first that this statement does make sense, since for

any ΛQp(Γ)-torsion module M , tensoring with 1 ∈ Hr(Γ) gives an isomorphism

Hr(Γ)⊗ΛQp (Γ) M ∼= M .

Proof. Tensoring (22) with Qp, we find that the map

H1
Iw(K∞, V )Γn → H1(Kn, V )

is injective. Thus the kernel of λr consists of those elements lying in⋂
n≥0

(γn − 1)
(
Hr(Γ)⊗ΛQp (Γ) H

1
Iw(K∞, V )

)
.

Since H1
Iw(K∞, V ) is a finitely-generated module over the subring ΛQp(Γ1)

⊂ ΛQp(Γ), which is a PID, we may write it as the direct sum of its torsion

submodule and a complementary free submodule. Since r < 1, we find that⋂
n≥1

(γn − 1)Hr(Γ) = 0,

and hence the kernel of λr is contained in the torsion part of H1
Iw(K∞, V ),

which is equal to V GK∞ by Proposition A.2.2. �

Remark A.2.8. Although we shall not need this, it clearly follows that the

kernel of λr is equal to
⋃
n≥0(γn − 1)V GK∞ , which is the unique Γ-invariant

complement of
⋃
nH

0(Kn, V ) in H0(K∞, V ).

Proposition A.2.9. Let K be a p-adic field, and suppose that V GK∞ = 0.

Then the map

Hr(Γ)⊗ΛQp (Γ) H
1
Iw(K∞, V )→ Yr(K∞, V )

is an isomorphism.

Proof. By Proposition A.2.2, our hypotheses imply that H1
Iw(K∞, V ) is a

torsion-free ΛQp(Γ)-module; hence it is free, since ΛQp(Γ) is a finite product of

principal ideal domains (and the ranks of the Γtors-isotypical direct summands

of H1
Iw(K∞, V ) are all equal). Thus there exists a free basis x1, . . . , xd of

H1
Iw(K∞, V ), where d = dimQp(V ).

For each n, the cokernel of the projection map

H1
Iw(K,T )→ H1(Kn, T )

is finite, and its order is bounded independently of n. (In fact, the cokernel of

this map is isomorphic to the Γn-invariants of

H2
Iw(K∞, T ) ∼= H0(K∞, (V/T )∗(1))∨,

and H0(K∞, (V/T )∗(1)) is finite, since H0(K∞, V
∗(1)) = H0(K∞, V )∗(1)=0.)

Thus the map
H1

Iw(K∞, V )→ H1(Kn, V )

is surjective for all n, and there is ν < ∞ independent of n such that the

Zp-submodule spanned by the images of x1, . . . , xd in H1(Kn, V ) contains pν ·
H1(Kn,T )

torsion .
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Consequently, given any sequence (cn)n≥0∈Yr(K∞, V ), we have for each n

uniquely determined elements b
(n)
1 , . . . , b

(n)
d ∈ Qp[Γ/Γn] such that

∑d
i=1 b

(n)
i x

(n)
i

= cn, where x
(n)
i is the image of xi in H1(Kn, V ). Also, for each i, the sequence

(b
(n)
i )n≥0 is compatible under projection (by uniqueness), and its valuation is

bounded below by −brnc − δ − ν; so (as r < 1) there is a unique element

bi ∈ Hr(Γ) whose image at level n is b
(n)
i for all n. Then it is clear that

c =
∑
i bi ⊗ xi ∈ Hr(Γ) ⊗ΛQp (Γ) H

1
Iw(K∞, V ) is a preimage of (cn)n≥0; by the

previous proposition, it is unique. �

In the global case we cannot prove quite such a strong result, as we do

not have such good control over H2
Iw(K∞, T ); the following rather more specific

result (which applies to both local and global cases) will suffice for our purposes:

Proposition A.2.10. Let r < 1, and suppose T has the structure of a

module over OE , for some finite extension E/Qp, and that TGK∞ = 0. Let α ∈
OE such that vp(α) ≤ r, and suppose we are given elements xn ∈ H1(Kn, T )

for n ≥ 0 satisfying

coresn+1
n (xn+1) = αxn.

Then there is a unique element x ∈ Hr(Γ) ⊗Λ H1
Iw(K∞, T ) whose image in

H1(Kn, V ) is equal to α−ncn for all n.

Proof. We claim that the hypotheses of the theorem force each cn to be

the image of an element of H1
Iw(K∞, V )Γn . To prove this, we shall argue much

as in the proof of Proposition 6.6.2. We begin by noting that H2
Iw(K∞, T )

is a finitely-generated Λ-module and the subgroups Mn := H2
Iw(K∞, T )Γn are

Λ-submodules (since Γ is abelian). As Λ is a Noetherian ring, the ascending

chain of submodules (Mn)n≥0 must eventually stabilize; that is, there is an n0

such that Mn = Mn0 for all n ≥ n0.

The corestriction map H1(Kn+1, T ) → H1(Kn, T ) corresponds to the

trace map Mn+1 → Mn; when n ≥ n0, this is simply multiplication by p

on Mn0 . Since vp(α) < 1, we deduce as in Proposition 6.6.2 that for all n ≥ 0,

the image of xn is contained in the torsion submodule of Mn. Inverting p, the

torsion is killed, and the image of xn in H2
Iw(K∞, V )Γn is 0; so xn lies in the

submodule H1
Iw(K∞, V )Γn ⊆ H1(Kn, V ).

Now let us choose a basis of the free ΛQp(Γ)-module H1
Iw(K∞, V ). In

order to apply the argument of the previous proposition, we need only check

that the order of the torsion subgroup of Mn is bounded independently of n;

but this is immediate from the fact that the Mn stabilize for large n (and

are all finitely-generated as Zp-modules). This shows that there exists a µ

such that α−ncn lies in p−brnc−µH1
Iw(K∞, T ), and the argument proceeds as in

Proposition A.2.9. �
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p-adic L-functions, Ann. Sci. Éc. Norm. Supér. 44 (2011), 1–42.

MR 2760194. Zbl 1268.11075.

[PS13] R. Pollack and G. Stevens, Critical slope p-adic L-functions, J. Lond.

Math. Soc. 87 (2013), 428–452. MR 3046279. Zbl 06160939. http://dx.doi.

org/10.1112/jlms/jds057.

[Qui73] D. Quillen, Higher algebraic K-theory. I, in Algebraic K-theory, I: Higher

K-Theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972),

Lecture Notes in Math. 341, Springer-Verlag, New York, 1973, pp. 85–147.

MR 0338129. Zbl 0292.18004. http://dx.doi.org/10.1007/BFb0067053.

[Ram00] D. Ramakrishnan, Modularity of the Rankin-Selberg L-series, and mul-

tiplicity one for SL(2), Ann. of Math. 152 (2000), 45–111. MR 1792292.

Zbl 0989.11023. http://dx.doi.org/10.2307/2661379.

[Rib85] K. A. Ribet, On l-adic representations attached to modular forms. II,

Glasgow Math. J. 27 (1985), 185–194. MR 0819838. Zbl 0596.10027. http:

//dx.doi.org/10.1017/S0017089500006170.

[Rub00] K. Rubin, Euler Systems, Ann. of Math. Stud. 147, Princeton Univ. Press,

Princeton, NJ, 2000. MR 1749177. Zbl 0977.11001.

[SS10] S. Saito and K. Sato, A p-adic regulator map and finiteness re-

sults for arithmetic schemes, Doc. Math. (2010), 525–594. MR 2804264.

Zbl 1207.14015. Available at http://www.math.uiuc.edu/documenta/

vol-suslin/saito sato.pdf.

[Sch98] A. J. Scholl, An introduction to Kato’s Euler systems, in Galois Rep-

resentations in Arithmetic Algebraic Geometry (Durham, 1996), London

Math. Soc. Lecture Note Ser. 254, Cambridge Univ. Press, Cambridge,

1998, pp. 379–460. MR 1696501. Zbl 0952.11015. http://dx.doi.org/10.

1017/CBO9780511662010.011.

[Sha81] F. Shahidi, On certain L-functions, Amer. J. Math. 103 (1981), 297–355.

MR 0610479. Zbl 0467.12013. http://dx.doi.org/10.2307/2374219.

[Shi76] G. Shimura, The special values of the zeta functions associated with

cusp forms, Comm. Pure Appl. Math. 29 (1976), 783–804. MR 0434962.

Zbl 0348.10015. http://dx.doi.org/10.1002/cpa.3160290618.

[Shi86] G. Shimura, On a class of nearly holomorphic automorphic forms, Ann.

of Math. 123 (1986), 347–406. MR 0835767. Zbl 0593.10022. http://dx.

doi.org/10.2307/1971276.

http://www.ams.org/mathscinet-getitem?mr=1327803
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0845.11040
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0845.11040
http://www.ams.org/mathscinet-getitem?mr=1662231
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0930.11078
http://dx.doi.org/10.5802/aif.1655
http://www.numdam.org/item?id=AIF_1998__48_5_1231_0
http://www.numdam.org/item?id=AIF_1998__48_5_1231_0
http://www.ams.org/mathscinet-getitem?mr=2760194
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1268.11075
http://www.ams.org/mathscinet-getitem?mr=3046279
http://www.zentralblatt-math.org/zmath/en/search/?q=an:06160939
http://dx.doi.org/10.1112/jlms/jds057
http://dx.doi.org/10.1112/jlms/jds057
http://www.ams.org/mathscinet-getitem?mr=0338129
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0292.18004
http://dx.doi.org/10.1007/BFb0067053
http://www.ams.org/mathscinet-getitem?mr=1792292
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0989.11023
http://dx.doi.org/10.2307/2661379
http://www.ams.org/mathscinet-getitem?mr=0819838
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0596.10027
http://dx.doi.org/10.1017/S0017089500006170
http://dx.doi.org/10.1017/S0017089500006170
http://www.ams.org/mathscinet-getitem?mr=1749177
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0977.11001
http://www.ams.org/mathscinet-getitem?mr=2804264
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1207.14015
http://www.math.uiuc.edu/documenta/vol-suslin/saito_sato.pdf
http://www.math.uiuc.edu/documenta/vol-suslin/saito_sato.pdf
http://www.ams.org/mathscinet-getitem?mr=1696501
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0952.11015
http://dx.doi.org/10.1017/CBO9780511662010.011
http://dx.doi.org/10.1017/CBO9780511662010.011
http://www.ams.org/mathscinet-getitem?mr=0610479
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0467.12013
http://dx.doi.org/10.2307/2374219
http://www.ams.org/mathscinet-getitem?mr=0434962
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0348.10015
http://dx.doi.org/10.1002/cpa.3160290618
http://www.ams.org/mathscinet-getitem?mr=0835767
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0593.10022
http://dx.doi.org/10.2307/1971276
http://dx.doi.org/10.2307/1971276


EULER SYSTEMS FOR RANKIN–SELBERG CONVOLUTIONS 771

[Shi00] G. Shimura, Arithmeticity in the Theory of Automorphic Forms,

Math. Surveys Monogr. 82, Amer. Math. Soc., Providence, RI, 2000.

MR 1780262. Zbl 0967.11001. http://dx.doi.org/10.1090/surv/082.

[SD73] H. P. F. Swinnerton-Dyer, On l-adic representations and congruences

for coefficients of modular forms, in Modular Functions of One Variable,

III (Proc. Internat. Summer School, Univ. Antwerp, 1972), Lecture Notes

in Math. 350, Springer-Verlag, New York, 1973, pp. 1–55. MR 0406931.

Zbl 0267.10032. http://dx.doi.org/10.1007/978-3-540-37802-0 1.

[Sage] The Sage Group, Sage Mathematics Software. Available at http://www.

sagemath.org/.

[Voe02] V. Voevodsky, Motivic cohomology groups are isomorphic to higher

Chow groups in any characteristic, Int. Math. Res. Not. 2002 (2002),

351–355. MR 1883180. Zbl 1057.14026. http://dx.doi.org/10.1155/

S107379280210403X.

(Received: February 7, 2013)

(Revised: August 21, 2013)

McGill University, Montreal, QC, Canada

Current address : Université Laval, Québec, Canada

E-mail : antonio.lei@mcgill.ca

Mathematics Institute, University of Warwick, Coventry, UK

E-mail : d.a.loeffler@warwick.ac.uk

University College London, London, UK

E-mail : s.zerbes@ucl.ac.uk

http://www.ams.org/mathscinet-getitem?mr=1780262
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0967.11001
http://dx.doi.org/10.1090/surv/082
http://www.ams.org/mathscinet-getitem?mr=0406931
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0267.10032
http://dx.doi.org/10.1007/978-3-540-37802-0_1
http://www.sagemath.org/
http://www.sagemath.org/
http://www.ams.org/mathscinet-getitem?mr=1883180
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1057.14026
http://dx.doi.org/10.1155/S107379280210403X
http://dx.doi.org/10.1155/S107379280210403X
mailto:antonio.lei@mcgill.ca
mailto:d.a.loeffler@warwick.ac.uk
mailto:s.zerbes@ucl.ac.uk

	1. Outline
	Remark
	Acknowledgements

	2. Generalized Beilinson–Flach elements
	2.1. Modular curves
	2.2. Siegel units
	2.3. Integral models of modular curves
	2.4. Hecke correspondences
	2.5. Motivic cohomology, higher Chow groups and the Gersten complex
	2.6. Zeta elements on Y(m, mN)
	2.7. Generalized Beilinson–Flach elements
	2.8. Cuspidal components
	2.9. Zeta elements versus generalized Beilinson–Flach elements

	3. Norm relations for generalized Beilinson–Flach elements
	3.1. The first norm relation: varying N
	3.2. Hecke operators
	3.3. The second norm relation for l|N
	3.4. The second norm relation for p prime to mN
	3.4.1. Evaluation of the (Tp,Tp) term
	3.4.2. Evaluation of the norm term
	3.4.3. The first term in [prop:normrelation2]Proposition 3.4.11
	3.4.4. The second term in [prop:normrelation2]Proposition 3.4.11

	3.5. The second norm relation: higher powers of p
	3.5.1. Evaluation of the (Tp,Tp) term
	3.5.2. Evaluation of Delta1
	3.5.3. Evaluation of Delta2 and Delta3
	3.5.4. Evaluation of Delta4
	3.5.5. Evaluation of the Sp term
	3.5.6. Study of Theta4
	3.5.7. Study of Theta2 and Theta3
	3.5.8. Conclusion of the proof


	4. Relation to complex L-values
	4.1. Definition of Rankin–Selberg L-functions
	4.2. Real-analytic Eisenstein series
	4.3. The Beilinson regulator
	4.4. A nonvanishing result

	5. Relation to p-adic L-values
	5.1. Holomorphic Eisenstein series
	5.2. Nearly holomorphic modular forms
	5.3. P-adic families of Eisenstein series
	5.4. Interpolation in Hida families
	5.5. The syntomic regulator
	5.6. Generalization of a theorem of Bertolini–Darmon–Rotger

	6. Families of cohomology classes
	6.1. The étale regulator
	6.2. The Künneth formula
	6.3. Galois representations attached to modular forms
	6.4. Generalized Beilinson–Flach classes
	6.5. Local properties of the generalized Beilinson–Flach classes (I)
	6.6. Local properties of the generalized Beilinson–Flach classes (II)
	6.7. Relation between p-stabilized and non-p-stabilized classes
	6.8. Iwasawa cohomology classes
	6.8.1. Dispensing with c

	6.9. Variation in Hida families
	6.10. Integrality of the Poincaré pairing

	7. Bounding strict Selmer groups
	7.1. The method of Euler systems
	7.2. Verifying the hypotheses on T
	7.2.1. Big image results for one modular form
	7.2.2. Big image results for pairs of modular forms
	7.2.3. Existence of the special element
	7.2.4. The quantities nW and n*W

	7.3. The Euler system
	7.4. Finiteness of the strict Selmer group
	7.5. The order of the strict Selmer group
	7.6. An example
	Note added after submission


	8. Conjectures on higher-rank Euler systems
	8.1. Euler systems: rank 1 and higher rank
	8.2. Otsuki's functionals

	Appendix A. Ancillary results
	A.1. Fixed points of double cosets
	A.2. Unbounded Iwasawa cohomology

	References

