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On the quantitative distribution of
polynomial nilsequences – erratum

By Ben Green and Terence Tao

Abstract

This is an erratum to the paper The quantitative behaviour of polynomial

orbits on nilmanifolds by the authors, published as Ann. of Math. (2) 175

(2012), no. 2, 465–540. The proof of Theorem 8.6 of that paper, which

claims a distribution result for multiparameter polynomial sequences on

nilmanifolds, was incorrect. We provide two fixes for this issue here. First,

we deduce the “equal sides” case N1 = · · · = Nt = N of this result from the

1-parameter results in the paper. This is the same basic mode of argument

we attempted originally, though the details are different. The equal sides

case is the only one required in applications such as the proof of the inverse

conjectures for the Gowers norms due to the authors and Ziegler. To remove

the equal sides condition one must rerun the entire argument of our paper

in the context of multiparameter polynomial sequences g : Zt → G rather

than 1-parameter sequences g : Z→ G as is currently done: a more detailed

sketch of how this may be done is available online.
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1. Introduction

We quote from [GT12] and use its notation without any further comment.

The problematic part of that paper is Section 8, in which a “multiparameter

quantitative Leibman theorem,” [GT12, Th. 8.6] is established: results such

as [GT12, Th. 1.19] and [GT12, Th. 2.9], which involve only one variable

polynomial maps, are not affected.

c© 2014 Department of Mathematics, Princeton University.
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In [GT12, §8] we attempted to deduce a multiparameter result from the

1-parameter version, [GT12, Th. 2.9]. Unfortunately the deduction is erro-

neous: the problem comes with the line “By switching the indices i1, . . . , it if

necessary. . . ” towards the end of the proof. The problem is that the horizon-

tal character η defined towards the start of the proof may change when this

is done, and this invalidates the argument. We thank Bryna Kra and Wenbo

Sun for drawing this oversight to our attention and for further drawing our

attention to an error in the first version of this erratum.

Our aim is to correct this oversight in the “equal parameters” case of

[GT12, Th. 8.6] in which N1 = · · · = Nd = N , which is the only one required

for all applications we know of. To lift this restriction seems to require running

the entire argument of [GT12] in the context of multiparameter maps from

Zt to G. In [GT] we provide a guide to doing this, of necessity extremely

dependent on [GT12]. Unfortunately the changes required in the multivariate

case propagate right back to the most basic result in [GT12], Proposition 3.1,

which must be proven in a multivariate setting.

The problematic result [GT12, Th. 8.6] was required in Sections 9 and

10 of [GT12], and as a consequence those results are restricted to the equal

parameter case if one only uses the fix contained in this erratum. By following

[GT], one could remove this restriction.

Finally, in Section 4, we list some additional minor errata to [GT12], which

we take the opportunity to record here.

Let us briefly summarise the subsequent publications depending on [GT12,

Th. 8.6] that we are aware of.

• In [GTZ12], the proof of the GI(s) conjectures, the appeal to [GT12]

occurs in Appendix D, specifically Theorem D.2. In this application we

have N1 = · · · = Nt = N .

• In [GT10], the appeal to [GT12] occurs in the proof of the counting

lemma. A slightly modified version of the problematic [GT12, Th. 8.6] is

required, which is stated as [GT10, Th. 3.6]. The proof of this is given in

[GT10, App. B], where it may be confirmed that again we only require

the case N1 = · · · = Nt = N .

• [GSa], [GSb] Whilst these papers do state results depending on [GT12,

Th. 8.6] in which the equal sides condition is not assumed, the authors

have confirmed to us that the main results of these papers, and in par-

ticular the results used subsequently in [FKS13], only require the equal

sides case.

Let us recall the precise statement of [GT12, Th. 8.6] in the equal sides

case.

Theorem [GT12, Th. 8.6]. Let 0 < δ < 1/2, and let m, t,N, d > 1 be

integers. Suppose that G/Γ is an m-dimensional nilmanifold equipped with a
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1
δ -rational Mal ’cev basis X adapted to some filtration G• of degree d and that

g ∈ poly(Zt, G•). Then either (g(~n)Γ)~n∈[N ]t is δ-equidistributed, or else there

is some horizontal character η with 0 < ‖η‖ � δ−Od,m,t(1) such that

‖η ◦ g‖C∞[N ]t � δ−Od,m,t(1).

Notation. For the definition of the smoothness norm C∞[N ]t, see the start

of the next section. We will not explicitly indicate the dependence of constants

C or implied constants O() on the parameters m, t and d, which will remain

fixed throughout this erratum. We will write I for the set of multi-indices
~i = (i1, . . . , it) of total degree at most d, that is to say tuples of nonnegative

integers with i1 + · · ·+ it 6 d. Write |~i| := i1 + · · ·+ it.

2. Some results on polynomials

In this section we record some useful distribution results on polynomials

which we will need in both of the proofs of [GT12, Th. 8.6].

We start with some remarks about Taylor coefficients and smoothness

norms. If f : Zt → R is a polynomial map, then in [GT12, Def. 8.2] we defined

the Taylor coefficients of f by writing

(2.1) f(~n) =
∑
~i

α~i

Ç
~n
~i

å
.

We then define the smoothness norm

‖f‖C∞[N ]t := sup
~i 6=0

N |
~i|‖α~i‖R/Z.

Here, however it is more convenient to use the conventional Taylor expansion

(2.2) f(~n) =
∑
~i

β~i~n
~i

and to consider the variant smoothness norm

‖f‖C∞∗ [N ]t := sup
~i 6=0

N |
~i|‖β~i‖R/Z.

Lemma 2.1. Suppose that ‖f‖C∞∗ [N ]t 6M . Then there is some r = O(1)

such that ‖rf‖C∞[N ]t �M .

Proof. This follows from the fact that α~i =
∑
~j∈I M~i,~jβ~j with each M~i,~j

rational with height O(1) and M~i,~j = 0 when |~j| < |~i|. �

We turn now to the following statement, which is actually the special case

G/Γ = R/Z of the problematic result [GT12, Th. 8.6].
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Proposition 2.2. Suppose that g : Zt → R is a polynomial of total degree

d, and let 0 < δ < 1
2 . Then either (g(n)(mod Z)) is δ-equidistributed, or else

there is some q ∈ Z, 0 < |q| � δ−O(1) such that ‖qg‖C∞[N ]t � δ−O(1).

Proof. Slightly amusingly, the attempted argument of [GT12, Th. 8.6] is

actually valid in this case. We run through the details briefly, referring the

reader to the aforementioned argument if further clarification is required. A

simple averaging argument confirms that, for�δO(1)N t−1 values of (n2, . . . , nt)

∈ [N ]t−1, the polynomial sequence (gn2,...,nt(n)(mod Z))n∈[N ] is not δO(1)-

equidistributed, where here we set gn2,...,nt(n) := g(n, n2, . . . , nt). For each

such tuple, [GT12, Th. 2.9] implies that there is an integer ηn2,...,nt with

0 < |ηn2,...,nt | � δ−O(1) such that ‖ηn2,...,ntgn2,...,nt‖C∞[N ] � δ−O(1). By pi-

geonholing in the δ−O(1) possible values of ηn2,...,nt and passing to a thinner

set of tuples (n2, . . . , nt), we may assume that ηn2,...,nt = η does not depend

on (n2, . . . , nt). Writing p := ηg, and continuing to argue as in the proof of

[GT12, Th. 8.6] as far as (8.2), we deduce that for all ~i with i1 > 0, there is

some q~i � δ−O(1) such that ‖q~ip~i‖R/Z � δ−O(1)/N |
~i|, where p~i is the~ith Taylor

coefficient of p. Hence, defining q̃~i := ηq~i, we have ‖q̃~ig~i‖R/Z � δ−O(1)/N |
~i|. A

similar argument holds whenever there is some index j with ~ij > 0, that is to

say whenever ~i 6= 0. Taking q :=
∏
~i∈I q̃~i, the result follows. (Note that in the

attempted argument of [GT12, Th. 8.6] we would obtain different horizontal

characters ηj for each j, which cannot be combined by simple multiplication

to give a horizontal character independent of j as we did here.) �

We use the above proposition to obtain a generalisation of [GT12, Lemma

4.5] to polynomials of several variables.

Proposition 2.3. Suppose that g : Zt → R is a polynomial such that

‖g(~n)‖R/Z 6 ε for at least δN t values of ~n ∈ [N ]t, where ε < δ/10. Then

there is some Q � δ−O(1) such that ‖Qg‖C∞[N ]t � δ−O(1)ε. In particular,

‖Qg(~0)‖R/Z � δ−O(1)ε.

Proof. This is essentially the same as the proof of [GT12, Lemma 4.5].

We include the argument for convenience. If ε � δC , then the result follows

immediately from Proposition 2.2, so assume this is not the case. Expand

g(~n) =
∑
~i∈I

α~i

Ç
~n
~i

å
as a Taylor series. It follows from the assumption that none of the poly-

nomials λg, λ 6 δ/2ε, is δO(1)-equidistributed on [N ]t. Thus by Proposi-

tion 2.3 we see that for each λ 6 δ/2ε, there is qλ � δ−O(1) such that
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‖qλλα~i‖R/Z � δ−O(1)/N |
~i| for all ~i ∈ I . Pigeonholing in the possible val-

ues of qλ we see that there is q � δ−O(1) such that for � δO(1)/ε values

of λ 6 δ/2ε, we have ‖λqα~i‖R/Z � δ−O(1)/N |
~i| for all ~i ∈ I . It follows

from [GT12, Lemma 3.2] that for each ~i ∈ I , there is q~i � δ−O(1) such that

‖q~iα~i‖R/Z � εδ−O(1)/N |
~i|. Writing Q :=

∏
~i∈I q~i, we see that Q� δ−O(1) and

that ‖Qα~i‖R/Z � εδ−O(1)/N |
~i| for all ~i ∈ I .

To get the final conclusion, note that

‖Q(g(~n)− g(~0))‖R/Z � δ−O(1)ε

whenever ~n∈ [N ]t. Since there is at least one value of ~n such that ‖g(~n)‖R/Z6ε,
and Q� δ−O(1), the result follows. �

We will need the following lemma of Schwartz-Zippel type.

Lemma 2.4 (Schwartz-Zippel type lemma). Let f : Zt → R be a nonzero

polynomial of degree d. Then the number of zeros of f in [L]t ⊂ Zt is bounded

by Od,t(L
t−1).

Proof. We proceed by induction on t, the result being clear when t = 1.

Expand

f(n1, . . . , nt) = cd(n1, . . . , nt−1)ndt + · · ·+ c0(n1, . . . , nt−1).

For at least one value of i, the polynomial ci(n1, . . . , nt−1) is not identically

zero, and hence it has Od,t(L
t−2) roots (n1, . . . , nt−1) ∈ [L]t−1 by the induc-

tive hypothesis. However if (n1, . . . , nt−1) is not one of these roots, then f is

nontrivial as a polynomial in nt, and hence it is satisfied by no more than d

values of nt. �

3. Proof of [GT12, Th. 8.6] in the equal parameters case

Let L be a positive integer parameter to be specified later (it will be

δ−C for some large C), and write ~L := (L, . . . , L). Let the notation be as in

[GT12, Th. 8.6], as repeated above. The first step is to cover the cube [N ]t by

1-parameter progressions of length N/L2 pointing in various directions. More

precisely, we have

Lemma 3.1. Suppose that (g(~n)Γ)~n∈[N ]t fails to be δ-equidistributed. Sup-

pose that ~q ∈ [~L] = [L]t. Suppose that N > L2 and that L > C/δ for some

large C . Then (g(~x + ~qn)Γ)n∈[N/L2] fails to be 1
2δ-equidistributed for at least

1
4δN

t tuples ~x ∈ [N ]t.
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Proof. Since (g(~n)Γ)~n∈[N ]t is not δ-equidistributed, there is some Lipschitz

function F : G/Γ→ C,
∫
G/Γ F = 0 such that

|E~n∈[N ]tF (g(~n))| > δ‖F‖Lip.

However, introducing an additional averaging, the left-hand side is equal to

E~x∈[N ]tEn∈[N/L2]F (g(~x+ ~qn)) +O

Å
1

L
‖F‖Lip

ã
.

In particular, if L > C/δ with C large enough, then we have

E~x∈[N ]tEn∈[N/L2]F (g(~x+ ~qn)) >
3

4
δ‖F‖Lip.

It follows that for at least 1
4δN

d tuples ~x we have

En∈[N/L2]F (g(~x+ ~qn)) >
1

2
δ‖F‖Lip,

and this implies the result. �

Write p(~n) := π(g(~n)), where π is projection onto the horizontal torus

(G/Γ)ab. Recall that the horizontal torus has dimension mab, so p takes values

in Rmab . The total degree (highest degree of any monomial) of p is at most d.

Expand

(3.1) p(~x+ ~qn) =
d∑
i=1

∑
~i∈I :|~i|=i

c~i(~x)~q
~ini.

Here, the c~i : Zt → Rmab are polynomials of total degree at most d.

Now we claim that the map from Z to G defined by n 7→ g(~x + ~qn) lies

in poly(Z, G•). Indeed the map from Zt to G given by ~n 7→ g(~x + ~q · ~n)

lies in poly(Zt, G•) by [GT12, Cor. 6.8], and so it suffices to check that if

h(~n) ∈ poly(Zt, G•), then the diagonal map h∆(n) := h(n, n, . . . , n) lies in

poly(Z, G•). But this is obvious from the definition, [GT12, Def. 6.1].

Suppose that (g(~x + ~qn)Γ)n∈[N/L2] fails to be 1
2δ-equidistributed. By

Lemma 3.1, for every ~q ∈ [~L] this is so for at least 1
4δN

t values of ~x ∈ [N ]t.

By [GT12, Th. 2.9], which is applicable by the claim in the preceding para-

graph, the following is therefore true. For all ~q with 0 6 qi < L, there are

at least 1
4δN

t choices of ~x ∈ [N ]t such that there is some ξ(~q, ~x) ∈ Zmab ,

0 < |ξ(~q, ~x)| � δ−O(1) such that∥∥∥ξ(~q, ~x) ·
∑

~i:|~i|=i

c~i(~x)~q
~i
∥∥∥
R/Z
� (L/δ)O(1)N−i

for all i = 1, . . . , d.

By the pigeonhole principle there is some ξ ∈ Zmab , 0 < |ξ| � δ−O(1),

together with a subset S ⊂ [~L]×[N ]t, |S | � δO(1)(LN)t, such that ξ(~q, ~x) = ξ

whenever (~q, ~x) ∈ S . For each ~q ∈ [~L], write Xq := {~x ∈ [N ]t : (~q, ~x) ∈ S }.
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Then for � δO(1)Lt values of ~q ∈ [~L], we have |Xq| � δO(1)N t. Let Q be the

set of such ~q.

Thus

(3.2)
∥∥∥ξ · ∑

~i:|~i|=i

c~i(~x)~q
~i
∥∥∥
R/Z
� (L/δ)O(1)N−i

whenever ~x ∈ X~q, and for all i = 1, . . . , d, and if ~q ∈ Q, then |X~q| � δC
′
N t.

Now we apply Proposition 2.3, with g : Zt → R given by

g(~x) = gi,~q(~x) := ξ ·
∑

~i:|~i|=i

c~i(~x)~q
~i.

If N > (L/δ)C for C large enough, then ε := (L/δ)O(1)N−i is small enough

that ε < 1
10δ

C′ and so the proposition applies.

We conclude that for each ~q ∈ Q and for each i = 1, . . . , d, there is some

Qi = Qi(~q), Qi(~q)� δ−O(1) such that∥∥∥Qi(~q)ξ · ∑
~i:|~i|=i

c~i(
~0)~q

~i
∥∥∥
R/Z
� (L/δ)O(1)N−i.

Since there are � δ−O(1) possibilities for (Q1(~q), . . . , Qd(~q)), we may pass

to a set Q′ ⊂ Q, |Q′| � δO(1)Ld, such that Qi(~q) = Qi is independent of ~q as

~q ranges over Q′. Setting ξ̃ := Q1 . . . Qdξ, we then have

(3.3) ‖ξ̃ ·
∑

~i:|~i|=i

c~i(
~0)~q

~i‖R/Z � (L/δ)O(1)N−i

for all ~q ∈ Q′ and for all i = 1, . . . , d.

We claim that if L = δ−C with C big enough, then as a consequence of

(3.3) we have

(3.4)
∥∥∥ ˜̃
ξ · c~i(~0)

∥∥∥
R/Z
� (L/δ)O(1)N−i � δ−O(1)N−i

for all ~i ∈ I , where
˜̃
ξ = Q̃ξ̃ with |Q̃| � δ−O(1).

Leaving the proof of this claim aside for the moment, setting ~x = ~0 and

n = 1 in (3.1) reveals that

p(~n) =
∑
~i∈I

c~i(
~0)~n

~i,

and so (3.4) implies that ‖ ˜̃
ξ · p‖C∞∗ [N ]t � δ−O(1). By Lemma 2.1, there is some

r = O(1) such that ‖r ˜̃
ξ ·p‖C∞[N ]t � δ−O(1). Defining the horizontal character η

to be r
˜̃
ξ ·π, this concludes the proof of [GT12, Th. 8.6] in the equal parameters

case.
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It remains to check the claim (3.4). We do this by taking linear combi-

nations of (3.3) for different ~q ∈ Q′ in order to isolate each individual Taylor

coefficient c~i(
~0). The key input is the following lemma.

Lemma 3.2. Let Q ⊂ [L]t be a set of size εLt, and to each ~q ∈ Q,

associate the vector v~q := (~q
~i)~i∈I ∈ QI . Then, provided L > C/ε, the v~q span

QI .

Proof. If not, there is some w ∈ QI such that w · v~q = 0 for all ~q ∈ Q.

Thus ∑
~i

w~i~q
~i = 0

whenever ~q ∈ Q. This is a polynomial equation of total degree i in q1, . . . , qt,

and it is not the trivial polynomial. Therefore by Lemma 2.4 this equation has

O(Lt−1) < |Q| solutions, contrary to assumption. �

Returning to our proof of the claim (3.4), take L = δ−C large enough that

Lemma 3.2 applies (with ε := |Q′|/N t). Then for each ~i ∈ I we may select

~q1, . . . , ~q|I | ∈ Q′ and rationals γm such that

1~i=~j =

|I |∑
m=1

γm~q
~j
m.

Inverting these linear relations using the adjoint formula for the inverse (or by

using Siegel’s lemma), we see that the γm are all rationals of height � δ−O(1).

Taking Q̃ to be the product of the denominators of all these γm, across all

values of ~i ∈ I , we have Q̃� δ−O(1) and now

Q̃1~i=~j =

|I |∑
m=1

γ′m~q
~j
m

with the γ′m being integers of size at most δ−O(1). We may now take appropriate

linear combinations of (3.3) to get the claim (3.4), thereby concluding the

argument.

4. Minor errata

We take the opportunity to correct some further small points in [GT12].

• In the proof of [GT12, Lemma 3.2], k and q are the same.

• The invocation of [GT12, Lemma 3.2] in the proof of [GT12, Prop. 5.3] is

only valid in the regime supi |ζi| 6 δ
2(1+m) , due to the hypothesis ε 6 δ/2

in [GT12, Lemma 3.2]. However, the conclusion |α| �m supi |ζi|δ−C/N is

trivially valid in the remaining case supi |ζi| > δ
2(1+m) , due to the hypoth-

esis |α| 6 1/δN .

• After (7.6), gh should be g̃h.
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• The last lines of the proof of Proposition 7.2 are valid for the case j > 1.

For the j = 0 case, one needs to replace Gj+1 by G2, that is to say one

needs to verify g
(n+h

i )
i = g

(ni)
i (mod G2). For i > 2, this is clear; for i = 0, 1,

one can verify that gi is trivial since g2(0) = g2(1) = idG.

• The proof of Lemma 7.8 is not correct as it stands, because we failed to

check that [G′1, G
′
1] ⊆ G′2. For this to hold we need ker η̃2 ⊂ [G,G], which

is not in general true. However, earlier arguments in Section 7 complete

the analysis unless we are in this case, by the remarks at the bottom of

page 512. Note that there is a further small misprint on page 512, line -3:

this should state that η2 annihilates [G,G].
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