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Sharp vanishing thresholds for cohomology
of random flag complexes

By Matthew Kahle

Abstract

For every k ≥ 1, the k-th cohomology group Hk(X,Q) of the random

flag complex X ∼ X(n, p) passes through two phase transitions: one where

it appears and one where it vanishes. We describe the vanishing threshold

and show that it is sharp. Using the same spectral methods, we also find

a sharp threshold for the fundamental group π1(X) to have Kazhdan’s

property (T). Combining with earlier results, we obtain as a corollary that

for every k ≥ 3, there is a regime in which the random flag complex is

rationally homotopy equivalent to a bouquet of k-dimensional spheres.

1. Introduction

The edge-independent random graph G(n, p) is a model of fundamental

importance in combinatorics, probability, and statistical mechanics. Some-

times called the Erdős–Rényi model, this is defined as the probability distri-

bution over all graphs on vertex set [n] := {1, 2, . . . , n} where every edge is

included with probability p, jointly independently — in other words for every

graph G on vertex set [n] with e edges,

P(G) = pe(1− p)(
n
2)−e.

We use the notation G ∼ G(n, p) to indicate that G is a graph chosen according

to this distribution.

In random graph theory, one is usually concerned with asymptotic behav-

ior as n → ∞, and it is often convenient to write p as a function of n. For a

graph property P, we say that G ∈ P with high probability (w.h.p.), if

P(G ∈ P)→ 1

as the number of vertices n → ∞. Throughout this article, whenever we use

big-O, little-o asymptotic notation, it is also always understood as the number

of vertices n→∞.
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For a monotone graph property P, i.e., a property closed under addition

of edges, a function p̄ is said to be a sharp threshold for property P if for every

fixed ε > 0, whenever p ≥ (1 + ε)p̄, w.h.p. G ∈ P and whenever p ≤ (1− ε)p̄,
w.h.p. G /∈ P.

In 1959, Erdős and Rényi exhibited a sharp threshold for connectivity of

the random graph [13].

Erdős–Rényi theorem. Suppose that ε > 0 is fixed and G ∼ G(n, p).

(1) If

p ≥ (1 + ε) log n

n
,

then w.h.p. G is connected;

(2) and if

p ≤ (1− ε) log n

n
,

then w.h.p. G is disconnected.

A flag complex is a simplicial complex that is maximal with respect to its

underlying 1-skeleton. This is also sometimes called a clique complex since the

faces of the simplicial complex correspond to complete subgraphs. For a graph

H, let X(H) denote the associated flag complex.

We are interested here in the expected topological properties of the flag

complex of a random graph. Define X(n, p) to be the probability distribution

over flag complexes on vertex set [n] where the distribution on the 1-skeleton

agrees with G(n, p). We use the notation X ∼ X(n, p) to mean a flag complex

chosen according to this distribution. This puts a measure on a wide range of

possible topologies — indeed, every simplicial complex is homeomorphic to a

flag complex, e.g., by barycentric subdivision.

The following is our main result, which may be seen as a generalization

of the Erdős–Rényi theorem to higher dimensions.

Theorem 1.1. Let k ≥ 1 and ε > 0 be fixed, and let X ∼ X(n, p).

(1) If

p ≥

ÑÄ
k
2 + 1 + ε

ä
log n

n

é1/(k+1)

,

then w.h.p. Hk(X,Q) = 0;

(2) and ifÅ
k + 1 + ε

n

ã1/k

≤ p ≤

ÑÄ
k
2 + 1− ε

ä
log n

n

é1/(k+1)

,

then w.h.p. Hk(X,Q) 6= 0.
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By the universal coefficient theorem, Hk(X,Q) is isomorphic to Hk(X,Q),

so these results apply for k-th homology as well.

We see immediately that each cohomology group Hk passes through two

phase transitions: one where nontrivial cohomology appears, and one where

it disappears. The correct exponent for the first phase transition was found

earlier in [20], and this article is mostly concerned with the second phase

transition. It still seems reasonable to describe this threshold to be “sharp” in

the sense described above and analogously to the Erdős–Rényi theorem, even

though the property of k-th cohomology vanishing is not monotone for k ≥ 1.

Using the same methods, we also exhibit a sharp threshold for the funda-

mental group π1(X) to have Kazhdan’s property (T).

Theorem 1.2. Let ε > 0 be fixed and X ∼ X(n, p).

(1) If

p ≥

ÑÄ
3
2 + ε

ä
log n

n

é1/2

,

then w.h.p. π1(X) has property (T ); and if

(2)

1 + ε

n
≤ p ≤

ÑÄ
3
2 − ε

ä
log n

n

é1/2

,

then w.h.p. π1(X) does not have property (T).

Combining Theorem 1.1 with several earlier results discussed below, we

obtain the following corollary.

Corollary 1.3. Let X ∼ X(n, p).

(1) Let k ≥ 1 and ε > 0 be fixed. IfÑÄ
k
2 + 1 + ε

ä
log n

n

é1/k

≤ p ≤ 1

n1/(k+1)+ε
,

then w.h.p. ‹Hi(X,Q) = 0 unless i = k,

in which case ‹Hi(X,Q) 6= 0.

(2) Let k ≥ 3 and ε > 0 be fixed. IfÇ
(Ck + ε) log n

n

å1/k

≤ p ≤ 1

n1/(k+1)+ε
,

where C3 = 3 and Ck = k/2 + 1 for k > 3, then w.h.p. X is rationally

homotopy equivalent to a bouquet of k-dimensional spheres.
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The rational homotopy statement follows from Theorem 1.1 and the k = 1

case of the earlier Theorem 1.4 by standard results in rational homotopy theory

and, in particular, by Serre’s generalizations of the Hurewicz and Whitehead

theorems [26]; see, for example, Wofsey’s explanation on Mathoverflow [27].

For comparison, standard results on the size of maximal cliques in random

graphs give that for p as in Corollary 1.3, w.h.p. the dimension d = dimX of the

complex itself is either 2k or 2k + 1, where d = 2k w.h.p. if p = o
Ä
n−2/(2k+1)

ä
and d = 2k + 1 w.h.p. if p = ω

Ä
n−2/(2k+1)

ä
. In other words, for many choices

of p, w.h.p. the only nontrivial rational homology of a random d-dimensional

flag complex is in middle degree bd/2c.

1.1. Earlier work. Recall that a topological space T is said to be k-con-

nected if πi(T ) = 0 for i ≤ k.

Theorem 1.4 (Theorem 3.4 in [20]). Suppose that k ≥ 1 and ε > 0 are

fixed and X ∼ X(n, p). If

p ≥
Ç

(2k + 1 + ε) log n

n

å1/(2k+1)

,

then w.h.p. X is k-connected.

By the Hurewicz Theorem, if X is k-connected, then ‹Hi(X,Z) = 0 for

i ≤ k. By the universal coefficient theorem, in this case H i(X,Q) = 0 for

1 ≤ i ≤ k. So part (1) of Theorem 1.1 improves on the vanishing threshold for

H i(X,Q), in particular substantially improving the exponent from 1/(2k + 1)

to 1/(k + 1), which is best possible for rational cohomology.

On the other hand, the exponent 1/3 gives the rough vanishing threshold

for π1(X), as shown by Babson.

Theorem 1.5 (Theorem 1.1 in [4]). If X ∼ X(n, p) where ε > 0 is fixed

and
1 + ε

n
≤ p ≤ 1

n1/3+ε
,

then w.h.p. π1(X) is a nontrivial hyperbolic group.

Theorem 1.5 is closely related to the results in [5], where a parallel re-

sult is shown for Bernoulli random 2-complexes studied earlier by Linial and

Meshulam [23].

The following earlier result can be compared with part (2) of Theorem 1.1.

Theorem 1.6 (Theorem 3.8 in [20]). Suppose that k ≥ 1 and X ∼
X(n, p). If

ω

Å
1

n1/k

ã
≤ p ≤ o

Å
1

n1/(k+1)

ã
,

then w.h.p. Hk(X,Q) 6= 0.
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The upper bound in part (2) of Theorem 1.1 improves the earlier upper

bound from Theorem 1.6 by a roughly logarithmic factor to be essentially

best possible. The lower bound in part (2) of Theorem 1.1 is also a slight

improvement on the earlier lower bound in Theorem 1.6, and the following

earlier result shows that the exponent 1/k in these lower bounds cannot be

improved.

Theorem 1.7 (Theorem 3.6 in [20]). Suppose that k ≥ 1 and ε > 0 are

fixed. If

p ≤ 1

n1/k+ε
,

then w.h.p. Hk(X,Q) = 0.

The proof of Theorem 1.1 is based on earlier work by Garland [15], and

refinements are due to Ballman and Świ
‘
atkowski [6]. See also the Séminaire

Bourbaki by Borel [9] and work of Żuk [28] on thresholds for property (T) in

random groups.

The proof also depends in an essential way on recent work on spectral

gaps of Erdős–Rényi random graphs by Hoffman et al. [18]; in particular, the

spectral gap theorem in Section 3.

The outline for the rest of the paper is as follows. In Section 2 we make

preliminary calculations on the number of maximal k-cliques in random graphs.

In Sections 3 and 4 we prove Theorems 1.1 and 1.2. In Section 5 we close with

comments and conjectures.

2. Preliminary calculations for maximal (k + 1)-cliques

We use the standard notation [n] = {1, 2, . . . , n}, and thenÇ
[n]

m

å
= {{1, 2, . . . ,m}, . . . }

denotes the set of m-subsets of [n], a set of cardinality
(n
m

)
.

Let Nk+1 denote the number of maximal (k + 1)-cliques, i.e., (k + 1)-

cliques that are not contained in any (k+ 2)-cliques. We write Nk+1 as a sum

of indicator random variables, as follows. For i ∈
( [n]
k+1

)
, let Ai be the event

that the vertex set corresponding to i spans a maximal (k + 1)-clique, and let

Yi be the indicator random variable for the event Ai. Then

Nk+1 =
∑

i∈( [n]
k+1)

Yi.

Since the probability that i spans a (k+ 1)-clique is p(
k+1
2 ) and the proba-

bility of the independent event that the vertices in i have no common neighbor
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is (1− pk+1)n−k−1, we have

E[Yi] = p(
k+1
2 )(1− pk+1)n−k−1.

By linearity of expectation we have

E[Nk+1] =

Ç
n

k + 1

å
p(

k+1
2 )(1− pk+1)n−k−1.

Now suppose

p =

ÑÄ
k
2 + 1

ä
log n+

Ä
k
2

ä
log log n+ c

n

é1/(k+1)

,

where c ∈ R is constant. Then in this case,

E[Nk+1] =
∑

i∈( [n]
k+1)

E[Yi]

=

Ç
n

k + 1

å
p(

k+1
2 )(1− pk+1)n−k−1

≈ nk+1

(k + 1)!
p(

k+1
2 )e−p

k+1n

=
nk+1

(k + 1)!

(
(k2 + 1 + o(1)) log n

n

)k/2
n−(k/2+1)(log n)−k/2e−c,

and then

(1) E[Nk+1]→
(k2 + 1)k/2

(k + 1)!
e−c,

as n→∞.

2.1. Zero expectation. Letting c→∞ in equation (1) gives that E[Nk+1]

→ 0. By Markov’s inequality, we conclude the following.

Lemma 2.1. Let G ∼ G(n, p), and let Nk+1 count the number of maximal

(k + 1)-cliques in G. If

p ≥

ÑÄ
k
2 + 1

ä
log n+

Ä
k
2

ä
log log n+ ω(1)

n

é1/(k+1)

,

then Nk+1 = 0 w.h.p.

2.2. Infinite expectation. Suppose that

ω

Å
1

n2/k

ã
≤ p ≤

ÑÄ
k
2 + 1

ä
log n+

Ä
k
2

ä
log log n− ω(1)

n

é1/(k+1)

.
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In this case we have that E[Nk+1]→∞. By Chebyshev’s inequality, if we also

have Var[Nk+1] = o
(
E[Nk+1]2

)
, then

P[Nk+1 > 0]→ 1.

(See for example, Chapter 4 of [2].)

So once we bound the variance we have the following.

Lemma 2.2. Let 0 < ε < 1
k(k+1) be fixed, and let G ∼ G(n, p). If

1

n1/k−ε ≤ p ≤

ÑÄ
k
2 + 1

ä
log n+

Ä
k
2

ä
log logn− ω(1)

n

é1/(k+1)

,

then Nk+1 > 0 w.h.p.

Proof of Lemma 2.2. As above, write Nk+1 as a sum of indicator random

variables:

Nk+1 =
∑

i∈( [n]
k+1)

Yi.

Then

Var[Nk+1] ≤ E[Nk+1] +
∑

i,j∈( [n]
k+1)

Cov[Yi, Yj ],

where the covariance is

Cov[Yi, Yj ] = E[YiYj ]− E[Yi]E[Yj ]

= P[Ai and Aj ]− P[Ai]P[Aj ]

since Yi are indicator random variables.

Let I = Ii,j = |i∩j| be the number of vertices in the intersection of subsets

i and j. It is convenient to divide into cases depending on the cardinality of

0 ≤ I < k + 1.

Case I: I = 0.

Given two disjoint subsets, i, j ∈
( [n]
k+1

)
,

P[Ai and Aj ] = p2(k+1
2 )(1− 2pk+1 + p2k+2)n−2k−2

Ä
1−O

Ä
pk
ää
,

and

P[Ai]P[Aj ] =
(
p(

k+1
2 )(1− pk+1)n−k−1

)2

= p2(k+1
2 )
Ä
1− 2pk+1 + p2k+2

än−k−1

= p2(k+1
2 )
Ä
1− 2pk+1 + p2k+2

än−2k−2 Ä
1− 2pk+1 + p2k+2

äk+1

= p2(k+1
2 )
Ä
1− 2pk+1 + p2k+2

än−2k−2 Ä
1−O

Ä
p(k+1)2

ää
,

so

P[Ai and Aj ]− P[Ai]P[Aj ] = p2(k+1
2 )(1− 2pk+1 + p2k+2)n−2k−2O

Ä
pk
ä
.
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The number of vertex-disjoint pairs i, j is O
Ä
n2k+2

ä
, so the total contri-

bution S0 to the variance is

S0 = O
(
n2k+2p2(k+1

2 )(1− 2pk+1 + p2k+2)n−k−1pk
)
.

Compare this to

E[Nk+1]2 =

Ç
n

k + 1

å2

p2(k+1
2 )(1− pk+1)2(n−k−1).

Clearly

S0/E[Nk+1]2 = O
Ä
pk
ä
,

and since p→ 0 by assumption, we have that

S0 = o
Ä
E[Nk+1]2

ä
,

as desired.

Case II: I = 1.

If I = 1, then

P[Ai and Aj ] = p2(k+1
2 )(1− 2pk+1 + p2k+1)n−2k−1(1−O(pk)),

and

P[Ai]P[Aj ] =
(
p(

k+1
2 )(1− pk+1)n−k−1

)2

= p2(k+1
2 )
Ä
1− 2pk+1 + p2k+2

än−k−1

= p2(k+1
2 )
Ä
1− 2pk+1 + p2k+2

än−2k−1 Ä
1− 2pk+1 + p2k+2

äk
= p2(k+1

2 )
Ä
1− 2pk+1 + p2k+2

än−2k−1 Ä
1−O

Ä
pk(k+1)

ää
.

Subtracting, we have

P[Ai and Aj ]− P[Ai]P[Aj ] = p2(k+1
2 )(1− 2pk+1 + p2k+2)n−2k−1O

Ä
pk
ä
.

There are O
Ä
n2k+1

ä
such pairs of events, so

S1 = O
(
n2k+1p2(k+1

2 )(1− 2pk+1 + p2k+2)n−2k−1pk
)
.

Compare this to

E[Nk+1]2 =

Ç
n

k + 1

å2

p2(k+1
2 )(1− pk+1)2(n−k−1).

Now

S1/E[Nk+1]2 = O
Ä
n−1pk

ä
= o(1)

since n→∞ and p→ 0. So we have that

S1 = o
Ä
E[Nk+1]2

ä
,

as desired.
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Case III: 2 ≤ I ≤ k.

In this case,

P[Ai and Aj ] = p2(k+1
2 )−(I2)(1− 2pk+1 + p2k+2−I)n−2k−2+I(1−O(pk))

and

P[Ai]P[Aj ] =
(
p(

k+1
2 )(1− pk+1)n−k−1

)2

= p2(k+1
2 )(1− 2pk+1 + p2k+2)n−k−1.

Comparing, we have

P[Ai]P[Aj ]

P[Ai and Aj ]
≤ p(

I
2)
Ç

1 +
p2k+2 − p2k+2−I

1− 2pk+1 + p2k+2−I

ån
(1 + o(1))

≤ p(
I
2),

and since p→ 0 and I ≥ 2 by assumption,

P[Ai]P[Aj ]

P[Ai and Aj ]
→ 0.

So

P[Ai and Aj ]− P[Ai]P[Aj ] = (1− o(1))P[Ai and Aj ],

and now we bound the covariance

Cov[Yi, Yj ]

by bounding the probability P[Ai and Aj ].

For every 2 ≤ I < k + 1, there are O
Ä
n2k+2−I

ä
pairs of events i, j with

vertex intersection of cardinality I.

So the total contribution to variance from such pairs is at most

SI = O
(
n2k+2−Ip2(k+1

2 )−(I2)(1− 2pk+1 + p2k+2−I)n−2k−2+I
)
.

Compare this to

E[Nk+1]2 =

Ç
n

k + 1

å2

p2(k+1
2 )(1− pk+1)2(n−k−1).

We have

SI/E[Nk+1]2 = O
(
n−Ip−(I2)

)
.

Clearly

nIp(
I
2) =

Ä
np(I−1)/2

äI →∞
as n→∞, since I ≤ k and p = ω(n−1/(k+1)). Hence

SI = o
Ä
E[Nk+1]2

ä
for 2 ≤ I ≤ k. �
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2.3. Finite expectation. By computing the factorial moments of Nk+1, the

following limit theorem can be proved. (See, for example, Section 6.1 of [19].)

Theorem 2.3. If

p =

ÑÄ
k
2 + 1

ä
log n+

Ä
k
2

ä
log log n+ c

n

é1/(k+1)

,

where c ∈ R is constant, then the number Nk+1 of maximal (k + 1)-cliques

approaches a Poisson distribution

Nk+1 → Pois(µ)

with mean

µ =
(k/2 + 1)k/2

(k + 1)!
e−c.

Since we do not use Theorem 2.3 for anything else, we state it without

proof. We record the combinatorial observation for the sake of completeness,

however, and also to provide some justification for a conjecture in Section 5.

3. Vanishing cohomology and property (T)

In this section we prove a slightly sharper version of part (1) of Theo-

rems 1.1 and 1.2. Set

p̄ =

ÑÄ
k
2 + 1

ä
log n+ Ck

√
log n log log n

n

é1/(k+1)

,

where Ck is a constant depending only on k, to be chosen later, and assume

that p ≥ p̄.
For a finite graph H, let C0(H) denote the vector space of 0-forms on H,

i.e., the vector space of functions f : V (H) → R. If all the vertex degrees are

positive, then the averaging operator A on C0(H) is defined by

Af(x) =
1

deg x

∑
y∼x

f(y),

where the notation y ∼ x means that the sum is over all vertices y that

are adjacent to vertex x. The identity operator on C0(H) is denoted by I.

Then the normalized graph Laplacian L = L(H) is a linear operator on C0(H)

defined by L = I −A.

The eigenvalues of L satisfy 0 = λ1 ≤ λ2 ≤ · · · ≤ λN ≤ 2, where N =

|V (G)| is the number of vertices of H. Moreover, the multiplicity of the zero

eigenvalue equals the number of connected components of H. In the case that

H is connected, then the smallest positive eigenvalue λ2[H] is sometimes called

the spectral gap of H.



COHOMOLOGY OF RANDOM FLAG COMPLEXES 1095

A simplicial complex ∆ is said to be pure D-dimensional if every face of

∆ is contained in a D-dimensional face. A special case of Theorem 2.1 in [6]

is the following.

Cohomology vanishing theorem (Garland, Ballman–Świ
‘
atkowski). Let ∆

be a pure D-dimensional finite simplicial complex such that for every (D− 2)-

dimensional face σ, the link lk∆(σ) is connected and has spectral gap

λ2[lk∆(σ)] > 1− 1

D
.

Then HD−1(∆,Q) = 0.

The cohomology group HD−1(∆,Q) only depends on the D-skeleton of

∆. So to use Theorem 3 to show that Hk(X,Q) = 0, we will show that if the

edge probability p is large enough, then w.h.p.

(1) the (k + 1)-skeleton of X ∼ X(n, p) is pure-dimensional; and

(2) for every (k − 1)-dimensional face σ ∈ X, the link lkX(σ) is connected

and has spectral gap

λ2[lkX(σ)] > 1− 1

k
.

3.1. Pure-dimensional. We first establish that for large enough p, the

(k + 1)-skeleton of X is pure-dimensional.

Lemma 3.1. If p ≥ p̄, then w.h.p. the (k + 1)-skeleton of X ∼ X(n, p)

is pure (k + 1)-dimensional ; in other words, every face is contained in the

boundary of a (k + 1)-face.

Proof. A k-face not contained in a (k + 1)-face would correspond to a

maximal (k + 1)-clique. But

p̄ ≥

ÑÄ
k
2 + 1

ä
log n+

Ä
k
2

ä
log log n+ ω(1)

n

é1/(k+1)

,

so by Lemma 2.1, for p ≥ p̄ the probability that there exist any maximal

(k + 1)-cliques tends to zero as n → ∞. The argument that for 0 ≤ i < k

w.h.p. every i-dimensional face is contained in an (i + 1)-dimensional face is

identical. �

3.2. Connectedness and spectral gap. Finally, we must show that if p is

large enough, then w.h.p. the link of every (k − 1)-dimensional face in the

(k + 1)-skeleton of X is connected and has sufficiently large spectral gap. We

require the following spectral gap theorem, which is Theorem 2.1 in [18].

Spectral gap theorem (Hoffman–Kahle–Paquette). Let G ∼ G(n, p) be an

Erdős–Rényi random graph. Let L denote the normalized Laplacian of G, and
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let λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of L. For every fixed α ≥ 0, there is

a constant Cα depending only on α, such that if

p ≥ (α+ 1) log n+ Cα
√

log n log log n

n
,

then G is connected and

λ2(G) > 1− o(1),

with probability 1− o(n−α).

Let Nσ denote the number of vertices in the link of a (k− 1)-dimensional

face σ in X ∼ X(n, p). Most of the work in this section is in establishing the

following estimate, which will allow us to apply the spectral gap theorem.

Lemma 3.2. If

p ≥
Ç

(k/2 + 1) log n+ Ck
√

log n log log n

n

å1/(k+1)

,

then w.h.p.
(α+ 1) logNσ + Cα

√
logNσ log logNσ

Nσ
≤ 1/p

for every (k − 1)-dimensional face σ ∈ X , where α = k(k + 3)/2 and Cα is

as defined in the spectral gap theorem, and Ck is a constant that only depends

on k.

Proof of Lemma 3.2. Let fk−1 denote the number of (k − 1)-dimensional

faces. Then fk−1 has the same distribution as the binomial random variable

Bin(
(n
k

)
, p(

k
2)) and Nσ has the same distribution as the binomial random vari-

able Bin(n− k, pk). So for p ≥ n−1/(k+1), Chernoff bounds give that w.h.p.

µ− µ3/5 ≤ Nσ ≤ µ+ µ3/5

for every (k − 1)-dimensional face σ, where

µ = npk.

Let N = µ− µ3/5.

Now let

g(x) =
(α+ 1) log x+ Cα

√
log x log log x

x
.

Then since sums and products of increasing positive functions are increasing,

a little calculus shows that g(x) is decreasing on the interval x ∈ (16,∞).

So it suffices to show that w.h.p.

(2) p ≥ (α+ 1) logN + Cα
√

logN log logN

N
,

since w.h.p. Nσ ≥ N for every σ.
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Write

f(p) = Np− (α+ 1) logN − Cα
√

logN log logN

and

p̄ =

Ç
(k/2 + 1) log n+ Ck

√
log n log log n

n

å1/(k+1)

.

The goal is to show that f(p) > 0 for p ≥ p̄.
Case I: (k/2 + 1) log n+ Ck

√
log n log log n ≤ npk+1 ≤ n1/10k.

A reasonable approximation of f is given by the auxiliary function

f̃(p) = µp− (α+ 1) logµ− Cα
√

log n log log n− 1.

In particular, we will show that for large n, and in the given range of p,

(1) f(p) ≥ f̃(p),

(2) f̃(p̄) > 0, and

(3) df̃/dp > 0,

which together establish the claim that f(p) > 0 for p in the given range.

(1) Clearly

−Cα
√

logN log logN ≥ −Cα
√

log n log logn,

since n ≥ N .

Since N ≤ µ and α > 0, we also have

−(α+ 1) logN ≥ −(α+ 1) logµ.

Finally, we are assuming that npk+1 ≤ n1/10k and 1/10k < 2/(3k + 5)

since k ≥ 1, so we have

npk+1 ≤ n2/(3k+5)

pk+1 ≤ n−(3k+3)/(3k+5)

p(3k+5)/5 ≤ n−3/5

p(npk)3/5 ≤ 1,

or in other words

Np ≥ µp− 1.

Adding the three inequalities yields f(p) ≥ f̃(p).

(2) Since

p̄ =

Ç
(k/2 + 1) log n+ Ck

√
log n log log n

n

å1/(k+1)

,

we have

log p̄ =
1

k + 1
(log log n− log n) +O(1).
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Recalling that

α+ 1 =
(k + 1)(k + 2)

2
,

we have that

f̃(p̄) = np̄k+1 − (α+ 1)(log n+ k log p̄)− Cα
√

log n log log n− 1

= (k/2 + 1) log n+ Ck
√

log n log logn− (α+ 1)(log n+ k log p̄)

− Cα
√

log n log logn− 1

= (k/2 + 1) log n+ (Ck − Cα)
√

log n log logn

− (k + 1)(k + 2)

2

Å
1

k + 1
log n+

k

k + 1
log log n

ã
−O(1)

= (Ck − Cα)
√

log n log logn−
Å
k + 2

k

ã
log logn−O(1),

so as long as Ck > Cα, we have that f̃(p̄) > 0 for large enough n.

(3) Since

f̃(p) = npk+1 − (α+ 1)k log p− Cα
√

log n log log n− 1,

we have

df̃/dp = (k + 1)npk − (α+ 1)kp−1.

Then df̃/dp = 0 only at

pc =

Ç
k(α+ 1)

k + 1
n

å1/(k+1)

,

and α and k are constant so pc < p̄ for large enough n.

Since df̃/dp is continuous on (0,∞) and

lim
p→∞

f̃(p) =∞,

we have df̃/dp > 0 for p ≥ p̄.

Case II: n1/100k ≤ npk+1.

In this case proving that f(p) > 0 is more straightforward. Indeed,

f(p) = Np− (α+ 1) logN − Cα
√

logN log logN

≥ (1− o(1))µp− (α+ 1) log n− Cα
√

log n log log n

= (1− o(1))npk+1 − (α+ 1) log n− Cα
√

log n log log n

= n1/100k −O(log n),

so for large enough n, we have f(p) > 0.

Together, Cases I and II establish that f(p) > 0 for p > p̄. �

Now we are in position to prove one implication of the main result.
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Proof of part (1) of Theorem 1.1. Suppose p ≥ p̄ and X ∼ X(n, p), and

let fk−1 denote the number of (k − 1)-dimensional faces of X. Then Chernoff

bounds show that w.h.p.

fk−1 ≤ (1 + o(1))

Ç
n

k

å
p(

k
2).

Lemma 3.2 gives that w.h.p.

p ≥ (α+ 1) logNσ + Cα
√

logNσ log logNσ

Nσ

for every (k − 1)-face σ, where α = k(k + 3)/2.

The link of a (k−1)-face σ in the (k+1)-skeleton has the same distribution

as an Erdős–Rényi random graph G(Nσ, p), so the spectral gap theorem gives

that the probability Pσ that λ2[G(Nσ, p)] < 1− 1/(k + 1) is o(N−ασ ).

Let Pf be the probability that there exists a face σ such that

λ2[G(Nσ, p)] < 1− 1

k + 1
.

Applying a union bound,

Pf ≤
∑
σ

Pσ

≤
∑
σ

o
Ä
N−ασ

ä
≤
∑
σ

o
Ä
µ−α
ä

≤ (1 + o(1))

Ç
n

k

å
p(

k
2)o(µ−α)

= o
(
nkp(

k
2)(npk)−k(k+3)/2

)
= o

ÅÄ
npk+1

ä−k(k+1)/2
ã

= o(1)

since npk+1 →∞ for p ≥ p̄.
Now we have w.h.p. that the spectral gap of the link of every (k− 1)-face

σ in the (k+1)-skeleton is greater than 1/(k+1), so the cohomology vanishing

theorem gives that Hk(X,Q) = 0 as desired. �

Proof of part (1) of Theorem 1.2. The proof is the same as the case k = 1

of part (1) of Theorem 1.1, but instead of the cohomology vanishing theorem

we use the following closely related theorem of Żuk [28].

Spectral criterion for property (T). If X is a pure 2-dimensional locally-

finite simplicial complex such that for every vertex v, the vertex link lk(v) is
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connected and the normalized Laplacian L = L[lk(v)] satisfies λ2(L) > 1/2,

then π1(X) has property (T).

Both the cohomology vanishing theorem for k = 1 and the spectral crite-

rion for property (T) require that the link of every vertex in the 2-skeleton of

X has spectral gap at least 1/2, and this is exactly what was checked in the

proof of part (1) of Theorem 1.1 above. �

4. Nonvanishing cohomology

In this section we prove Part (2) of Theorems 1.1 and 1.2. In particular,

we show that if X ∼ X(n, p) whereÅ
k + 1 + ε

n

ã1/k

≤ p ≤

ÑÄ
k
2 + 1− ε

ä
log n

n

é1/(k+1)

,

then w.h.p. Hk(X,Q) 6= 0. The strategy is to show that in this regime there

exist k-faces not contained in the boundary of any (k + 1)-face and that gen-

erate nontrivial cohomology classes. This is the higher-dimensional analogue

of isolated vertices being the main obstruction to connectivity of the random

graph G(n, p); see, for example, Chapter 7 of [8].

First we show that if p is in the given regime, then w.h.p. there exist k-

dimensional faces σ ∈ X that are not contained in the boundaries of any (k+1)-

dimensional faces — such faces generate cocycles in Hk (i.e., the characteristic

function of σ is a cocycle). Then we show that if p is sufficiently large, no

k-dimensional face can be a coboundary. Putting it all together, we find an

interval of p for which there is at least one k-dimensional face that represents

a nontrivial class in Hk(X,Q).

4.1. Nontrivial cocycles. Lemma 2.2 gives that for p in this regime, w.h.p.

there exist maximal (k + 1)-cliques in G ∼ G(n, p). But these are equivalent

to isolated k-faces σ in X ∼ X(n, p), and the characteristic functions of such

σ are cocycles. The main point is to show that σ nontrivial, i.e., that σ is not

the coboundary of anything.

We have showed above that there exist k-dimensional faces that are not

contained in the boundary of any (k+ 1)-dimensional face. Any such face gen-

erates a class in the vector space Zk(X) of k-cocycles. Now we will show that in

the same regime of p, w.h.p. no k-dimensional face represents a k-coboundary.

Hence Hk(X,Q) 6= 0.

Consider the exact sequence of the pair (X,X − σ) where σ is a maximal

k-face:

Hk−1(X − σ)→ Hk(X,X − σ)→ Hk(X).

By excision, Hk(X,X − σ) ∼= Hk(σ, ∂σ) ∼= Q.
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Suppose that a k-dimensional face σ ∈ X represents a k-coboundary, i.e.,

σ = dφ for some (k − 1)-cochain φ. Then φ represents a nontrivial class in

Hk−1(X − σ). (The notation X − σ means X with the open face σ deleted.)

The following lemma shows that it is unlikely that such a σ exists.

Lemma 4.1. Fix k ≥ 1 and 0 < ε ≤ 1/k, and let X ∼ X(n, p). If

p ≥ 1

n1/k−ε ,

then w.h.p. Hk−1(X − σ,Q) = 0 for every maximal k-face σ.

Proof of Lemma 4.1. The claim that Hk−1(X,Q) = 0 is implied by Part

(1) of Theorem 1.1 (with the index shifted by 1), proved in Section 3, so our

focus is on the second part of the claim, that Hk−1(X − σ,Q) = 0 for every

k-face σ.

We apply the spectral gap theorem again. Since the proof here is so similar

to that of Section 3, we omit some details and focus on what is new in this

argument.

We may restrict our attention to the k-skeleton of X. Let σ be an arbitrary

k-dimensional face of X. Let τ be a (k − 2)-dimensional face of X − σ, and

denote the link of τ in X−σ by lkX−σ(τ). Since we are restricting our attention

to the k-skeleton of X, this link is a graph. Clearly, either lkX−σ(τ) = lkX(τ)

or lkX−σ(τ) = lkX(τ)− e for some edge e in the graph lkX(τ).

We have control on the spectral gap of lkX(τ) by the spectral gap theo-

rem. From this we can control the spectral gap of lkX−σ(τ) via the Wielandt–

Hoffman theorem [17].

Wielandt–Hoffman theorem. Let A and B be normal matrices. Let their

eigenvalues ai and bi be ordered such that
∑
i |ai− bi|2 is minimized. Then we

have ∑
i

|ai − bi|2 ≤ ‖A−B‖,

where ‖ · ‖ denotes the Frobenius matrix norm.

Consider the normalized Laplacians A = L[lkX(τ)] and B = L[lkX−σ(τ)]

— since these matrices are symmetric, they are normal. All eigenvalues of

A and B are real, and putting them in increasing order minimizes the sum∑
i |ai − bi|2 .

We have

‖A−B‖ =
√∑

i

∑
j

|aij − bij |2.
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In a normalized graph Laplacian,

aij =
1»

deg(vi) deg(vj)

if vi is adjacent to vj , and aij = 0 otherwise.

The link of a (k− 2)-face (in the k-skeleton) has the same distribution as

a random graph on the vertices in the link, so standard results give that the

degree of every vertex in lkX(τ) is exponentially concentrated around its mean

(n−k+1)pk ≥ nkε (see Chapter 3 in [8]) and there are only polynomially many

such vertices summed over all links. So w.h.p. every vertex in every link has

degree (1+o(1))npk ≥ nkε. Then the Wielandt–Hoffman theorem tells us that

the Frobenius matrix norm of the normalized Laplacian cannot shift by more

than O
Ä
n−kε

ä
= o(1) when an edge is deleted. Hence no single eigenvalue can

shift by more than this.

Since we already have λ2[lkX(τ)] > 1 − o(1) for every τ by Section 3.2,

this gives that λ2[lkX−σ(τ)] > 1 − o(1) for every τ and σ as well. Applying

the cohomology vanishing theorem again, we have that Hk−1(X − σ,Q) = 0

for every k-dimensional face σ. �

Proof of Part (2) of Theorems 1.1 and 1.2. If

1

n1/k−ε ≤ p ≤

ÑÄ
k
2 + 1− ε

ä
log n

n

é1/(k+1)

,

where 0 < ε < 1/k(k+1), then Lemma 4.1, together with the excision argument

above, gives that w.h.p. Hk(X,Q) 6= 0.

On the other hand, ifÅ
k + 1 + ε

n

ã1/k

≤ p ≤ 1

n1/k−ε ,

then an easier argument is available. Indeed, standard results for clique counts

give that in this case w.h.p. fk > fk−1 + fk+1, and the Morse inequalities give

that βk ≥ fk− fk−1− fk+1, so we conclude that w.h.p. βk > 0. Together these

two intervals cover the whole range of p for Part (2) of Theorem 1.1.

Part (2) of Theorem 1.1 implies Part (2) of 1.2 since (T) groups have finite

abelianizations. �

5. Comments

Earlier results of Linial and Meshulam [23] on Bernoulli random 2-com-

plexes Y2(n, p), and more generally of Meshulam and Wallach [24] on random d-

complexes Yd(n, p), also give sharp threshold cohomology-vanishing analogues

of the Erdős–Rényi theorem. The techniques in these papers are combinatori-

ally intricate cocycle counting arguments. One common thread in this area is
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the notion of expansion; see, for example, the discussion of random complexes

as higher-dimensional expanders in [12].

DeMarco, Hamm, and Kahn independently proved the k = 1 case of The-

orem 1.1 with Z/2-coefficients [11]. This is a slightly stronger result topolog-

ically speaking, since H1(X,Z/2) = 0 implies H1(X,Q) = 0 by the universal

coefficient theorem, and it would be interesting to know if their techniques can

be extended to k ≥ 2, or to other finite fields.

One might expect that part (1) of Theorem 1.1 could be slightly sharpened

as follows.1

Conjecture 5.1. If

p =

ÑÄ
k
2 + 1

ä
log n+

Ä
k
2

ä
log log n+ c

n

é1/(k+1)

,

where k ≥ 1 and c ∈ R are constant, then the k-th Betti number βk converges

in law to a Poisson distribution

βk → Pois(µ)

with mean

µ =

Ä
k
2 + 1

äk/2
(k + 1)!

e−c.

In particular,

P[Hk(X,Q) = 0]→ exp

(
−

(k2 + 1)k/2

(k + 1)!
e−c

)
as n→∞.

In particular, if Conjecture 5.1 is true, then letting c → ±∞ arbitrarily

slowly would give the correct width of the critical window.

Conjecture 5.1 should be compared with Theorem 2.3. The conjecture is

equivalent to saying that for the given range of p, w.h.p. characteristic functions

on isolated k-faces generate rational cohomology. The analogous statement

is well known for random graphs G(n, p); see, for example, Chapter 10 of

Bollobás [8].

It would also be interesting to know if Corollary 1.3 can be refined to

homotopy equivalence, at least for a slightly smaller range of p.

1As this article is going to press, it seems that an improved version of the spectral gap

theorem in Section 3, in joint work with Hoffman and Paquette [18], will be strong enough

to establish Conjecture 5.1.
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Conjecture 5.2. Let k ≥ 3 and ε > 0 be fixed. If

nε

n1/k
≤ p ≤ n−ε

n1/(k+1)
,

then w.h.p. X is homotopy equivalent to a bouquet of k-spheres.

Simplicial complexes and posets in topological combinatorics are often

homotopy equivalent to bouquets of d-spheres [14], [7], and proving this con-

jecture might provide a kind of measure-theoretic explanation of the seeming

ubiquity of this phenomenon.

Conjecture 5.2 is equivalent to showing that integral homology H∗(X,Z) is

torsion-free, since (simply connected) Moore spaces are unique up to homotopy

equivalence; e.g., see Example 4.34 in Hatcher [16]. In contrast, Kalai showed

that uniform random Q-acyclic complexes have, on average, enormous torsion

groups [21].

For the lower threshold, I would guess that both of the following hold.

Conjecture 5.3. Suppose that k ≥ 1 is fixed. If

p = o

Å
1

n1/k

ã
,

then w.h.p. Hk(X,Q) = 0.

Conjecture 5.4. If k ≥ 0 is fixed and

Ck = inf

ß
λ > 0 | p =

λ

n1/k
=⇒ w.h.p. Hk(X,Q) 6= 0

™
,

then Ck > 0.

The lower bound in part (2) of Theorem 1.1 shows that Ck ≤ (k + 1)1/k.

This can almost certainly be improved; for example C1 ≤ 1, since cycles appear

w.h.p. in the random graph G(n, p) once p ≥ 1/n. On the other hand, if

p = c/n with 0 < c < 1 fixed and G ∼ G(n, p), then

P[H1(G) = 0]→
√

1− c exp(c/2 + c2/4),

which is strictly positive for 0 < c < 1, so in fact C1 = 1; see Pittel [25] for a

proof.

In a series of papers, Kozlov [22], Cohen et. al. [10], and most recently

Aronshtam and Linial [3] have studied the threshold for the appearance of

d-cycles in the Bernoulli random d-complex Yd(n, p). Conjectures 5.3 and 5.4

are inspired by the results in these papers.
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