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A general regularity theory for stable
codimension 1 integral varifolds

By Neshan Wickramasekera

Abstract

We give a necessary and sufficient geometric structural condition, which

we call the α-Structural Hypothesis, for a stable codimension 1 integral

varifold on a smooth Riemannian manifold to correspond to an embedded

smooth hypersurface away from a small set of generally unavoidable sin-

gularities. The α-Structural Hypothesis says that no point of the support

of the varifold has a neighborhood in which the support is the union of

three or more embedded C1,α hypersurfaces-with-boundary meeting (only)

along their common boundary. We establish that whenever a stable integral

n-varifold on a smooth (n+ 1)-dimensional Riemannian manifold satisfies

the α-Structural Hypothesis for some α ∈ (0, 1/2), its singular set is empty

if n ≤ 6, discrete if n = 7 and has Hausdorff dimension ≤ n − 7 if n ≥ 8;

in view of well-known examples, this is the best possible general dimension

estimate on the singular set of a varifold satisfying our hypotheses. We

also establish compactness of mass-bounded subsets of the class of stable

codimension 1 integral varifolds satisfying the α-Structural Hypothesis for

some α ∈ (0, 1/2).

The α-Structural Hypothesis on an n-varifold for any α ∈ (0, 1/2) is

readily implied by either of the following two hypotheses: (i) the vari-

fold corresponds to an absolutely area minimizing rectifiable current with

no boundary, (ii) the singular set of the varifold has vanishing (n − 1)-

dimensional Hausdorff measure. Thus, our theory subsumes the well-known

regularity theory for codimension 1 area minimizing rectifiable currents and

settles the long standing question as to which weakest size hypothesis on

the singular set of a stable minimal hypersurface guarantees the validity of

the above regularity conclusions.

An optimal strong maximum principle for stationary codimension 1 in-

tegral varifolds follows from our regularity and compactness theorems.
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1. Introduction

Here we study regularity properties of stable critical points of the n-dimen-

sional area functional in a smooth (n + 1)-dimensional Riemannian manifold,

addressing, among a number of other things, the following basic question:

When is a stable critical point V of the n-dimensional area functional

in a smooth (n + 1)-dimensional Riemannian manifold made-up of

pairwise disjoint, smooth, embedded, connected hypersurfaces each of

which is itself a critical point of area?

Without further hypothesis, V need not satisfy the stated property; this

is illustrated by (a sufficiently small region of) any stationary union of three or

more hypersurfaces-with-boundary meeting along a common (n−1)-dimensional

submanifold (e.g., a pair of transverse hyperplanes in a Euclidean space). In

each of these examples, the connected components of the regular part of the

union are not individually critical points of area (in the sense of having vanish-

ing first variation with respect to area for deformations by compactly supported

smooth vector fields of the ambient space; see precise definition in Section 3).

We give a geometrically optimal answer to the above question by estab-

lishing a precise version (given as Corollary 1) of the following assertion:

Presence of a region of V where three or more hypersurfaces-with-

boundary meet along their common boundary is the only obstruction for

V to correspond to a locally finite union of pairwise disjoint, smooth,
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embedded, connected hypersurfaces each of which is itself a critical

point of area.

This follows directly from our main theorem (the Regularity and Compact-

ness Theorem) which establishes a precise version of the following regularity

statement:

Presence of a region of V where three or more hypersurfaces-with-

boundary meet along their common boundary is the only obstruction

to complete regularity of V in low dimensions and to regularity of V

away from a small, quantifiable, set of generally unavoidable singular-

ities in general dimensions.

In proving these results, we shall first work in the context where the

ambient manifold is an open subset of Rn+1 with the Euclidean metric. The

differences that arise in the proof in replacing Euclidean ambient space by a

general smooth (n + 1)-dimensional Riemannian manifold amount to “error

terms” in various identities and inequalities that are valid in the Euclidean

setting, and they can be handled in a straightforward manner. We shall discuss

this further in the penultimate section of the paper.

Here, a critical point of the n-dimensional area means a stationary integral

n-varifold; i.e., an integral n-varifold having zero first variation with respect

to area under deformation by the flow generated by any compactly supported

C1 vector field of the ambient space (see hypothesis (S1) in Section 3).

For a varifold V , let reg V denote its regular part, i.e., the smoothly

embedded part (of the support of the weight measure ‖V ‖ associated with V ),

and let sing V denote its singular set, i.e., the complement of reg V (in the

support of ‖V ‖); see Section 2 for the precise definitions of these terms.

A stationary integral varifold V is stable if reg V is stable in the sense that

V has nonnegative second variation with respect to area under deformation by

the flow generated by any C1 ambient vector field that is compactly supported

away from sing V and that, on reg V , is normal to reg V . In our codimension

1 setting and for Euclidean ambient space, stability of V whenever reg V is

orientable is equivalent to requiring that reg V satisfies the following stability

inequality ([Sim83, §9]):∫
reg V

|A|2ζ2 dHn ≤
∫

reg V
|∇ ζ|2 dHn ∀ ζ ∈ C1

c (reg V );

here A denotes the second fundamental form of reg V , |A| the length of A,∇ the

gradient operator on reg V and Hn is the n-dimensional Hausdorff measure on

Rn+1. (In fact a slightly weaker form of the stability hypothesis suffices for the

proofs of all of our theorems here, and as a result of that, orientability of reg V

for the varifolds V considered here is a conclusion rather than a hypothesis;

see hypothesis (S2) in Section 3 and Corollary 3.2.)
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By a stable integral n-varifold we mean a stable, stationary integral n-vari-

fold. For α ∈ (0, 1) and V an integral varifold on a smooth Riemannian

manifold, we state the following condition (hypothesis (S3) in Section 3), which

we shall refer to often throughout the rest of the introduction:

α-Structural Hypothesis. No singular point of V has a neighbor-

hood in which V corresponds to a union of embedded C1,α hypersurfaces-with-

boundary meeting (only) along their common C1,α boundary (and with mul-

tiplicity a constant positive integer on each of the constituent hypersurfaces-

with-boundary).

Our main theorem (Theorem 18.1; for Euclidean ambient space, Theo-

rem 3.1) can now be stated as follows:

Regularity and Compactness Theorem. A stable integral n-varifold

V on a smooth (n + 1)-dimensional Riemannian manifold corresponds to an

embedded hypersurface with no singularities when 1 ≤ n ≤ 6; to one with at

most a discrete set of singularities when n = 7; and to one with a closed set of

singularities having Hausdorff dimension at most n− 7 when n ≥ 8 (and with

multiplicity, in each case, a constant positive integer on each connected com-

ponent of the hypersurface), provided V satisfies the α-Structural Hypothesis

above for some α ∈ (0, 1/2).

Furthermore, for any given α ∈ (0, 1/2), each mass-bounded subset of

the class of stable codimension 1 integral varifolds satisfying the α-Structural

Hypothesis is compact in the topology of varifold convergence.

In case V corresponds to an absolutely area minimizing codimension 1

rectifiable current, the regularity conclusion of this theorem is well known and

is the result of combined work of E. De Giorgi [DG61], R. Reifenberg [Rei60],

W. Fleming [Fle62], F. Almgren [Alm66], J. Simons [Sim68] and H. Federer

[Fed70]. While our work uses ideas and results from some of these pioneering

works, it does not rely upon the fact that the conclusions hold in the area min-

imizing case; it is interesting to note that the above theorem indeed subsumes

the regularity theory for codimension 1 area minimizing rectifiable currents for

the following simple reason: If T is a rectifiable current on an open ball and

if T has no boundary in the interior of the ball and is supported on a union

of three or more embedded hypersurfaces-with-boundary meeting only along

their common boundary, then T cannot be area minimizing.

Let V be a stationary integral n-varifold on a Riemannian manifold N .

Once we know that the singular set of V is sufficiently small—in fact, as

small as having vanishing (n − 1)-dimensional Hausdorff measure—it is not

difficult to check that the multiplicity 1 varifold associated with each connected

component of the regular part of V is itself stationary in N . Thus we deduce

from the Regularity and Compactness Theorem the following:
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Corollary 1. The α-Structural Hypothesis (see above) for some α ∈
(0, 1/2) is necessary and sufficient for a stable codimension 1 integral varifold

V on a smooth Riemannian manifold N to have the following “local decom-

posability property”: For each open Ω ⊂ N with compact closure in N , there

exist a finite number of pairwise disjoint, smooth, embedded, connected hy-

persurfaces M1,M2, . . . ,Mk of Ω (possibly with a nonempty interior singular

set singMj = (M j \Mj) ∩ Ω for each j = 1, 2, . . . , k) and positive integers

q1, q2, . . . , qk such that the multiplicity 1 varifold |Mj | defined by Mj is station-

ary in Ω for each j = 1, 2, . . . , k and V Ω =
∑k
j=1 qj |Mj |.

In 1981, R. Schoen and L. Simon ([SS81]) proved that the conclusions

of the Regularity and Compactness Theorem hold for the n-dimensional sta-

ble minimal hypersurfaces (viz. embedded hypersurfaces that are stationary

and stable as multiplicity 1 varifolds) satisfying, in place of the α-Structural

Hypothesis, the (much more restrictive) property that the singular sets have

locally finite (n − 2)-dimensional Hausdorff measure. Since then, it has re-

mained an open question as to what the weakest size hypothesis (in terms of

Hausdorff measure) on the singular sets is that would guarantee the validity

of the same conclusions. Since vanishing of the (n− 1)-dimensional Hausdorff

measure of the singular set trivially implies the α-Structural Hypothesis, we

have the following immediate corollary of the Regularity and Compactness

Theorem, which settles this question:

Corollary 2. The conclusions of the Regularity and Compactness Theo-

rem hold for the n-dimensional stable minimal hypersurfaces with singular sets

of vanishing (n − 1)-dimensional Hausdorff measure. In fact, a stable codi-

mension 1 integral n-varifold V satisfies the α-Structural Hypothesis for some

α ∈ (0, 1/2) if and only if its singular set has vanishing (n − 1)-dimensional

Hausdorff measure.

A union of two transversely intersecting hyperplanes in a Euclidean space

shows that for no γ > 0 can the singular set hypothesis in Corollary 2 be

weakened to vanishing of the (n− 1 + γ)-dimensional Hausdorff measure.

In contrast to our α-Structural Hypothesis, the singular set hypothesis

of [SS81] (i.e., the hypothesis that Hn−2(sing V ∩ K) < ∞ for each compact

subset K of the ambient space), together with stability away from the singular

set, a priori implies, by a straightforward argument, that the singularities

are “removable for the stability inequality”— that is to say, the above stability

inequality is valid for the larger class of test functions ζ that are the restrictions

to the hypersurface of compactly supported smooth functions of the ambient

space (that are not required to vanish near the singular set). The techniques

employed in [SS81] in the proof of the regularity theorems therein relied on this
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fact in an essential way. Interestingly, the α-Structural Hypothesis or, for that

matter, vanishing of the (n−1)-dimensional Hausdorff measure of the singular

set, does not seem to imply a priori even local finiteness of total curvature, viz.∫
reg V ∩K |A|2 < ∞ for each compact subset K of the ambient space (whereas

the singular set hypothesis of [SS81] does, in view of the strengthening of

the stability inequality just mentioned). This means that in our proof we

cannot use the stability inequality in a direct way over arbitrary regions of the

varifolds. (Of course a posteriori we can strengthen the stability inequality in

the manner described above so, in particular, it is true under our hypotheses

that
∫
reg V ∩K |A|2 < ∞ for each compact subset K of the ambient space.)

Nevertheless, at several stages our proof makes indispensable use of the work

of Schoen and Simon—specifically, Theorem 3.5 below; indeed, application of

Theorem 3.5 in regions where we have sufficient control over the singular set

is a principal way in which the stability hypothesis enters our proof.

The Regularity and Compactness Theorem is optimal in several ways.

A key aspect of the theorem is that it requires no hypothesis concerning the

size of the singular sets; nor does it require any hypothesis concerning the

generally-difficult-to-control set of points where some tangent cone is a plane

of multiplicity 2 or higher. What suffices is the α-Structural Hypothesis, which

is easier to check in principle. As mentioned before, stationary unions of half-

hyperplanes of a Euclidean space meeting along common axes illustrate that

the α-Structural Hypothesis is a sharp condition needed for the regularity con-

clusions of the theorem.

In view of well-known examples of 7-dimensional stable hypercones with

isolated singularities (e.g., the cone over S3(1/
√

2) × S3(1/
√

2) ⊂ R8), the

Regularity and Compactness Theorem is also optimal with regard to its con-

clusions in the sense that it gives, in dimensions ≥ 7, the optimal general

estimate on the Hausdorff dimension of the singular sets.

It remains an open question as to what one can say about the size of the

singular sets if the stability hypothesis in the theorem is removed. Obviously

in this case one cannot draw the same conclusions in view of the fact that there

are embedded nonequatorial minimal surfaces of S3 (e.g., S1(1/
√

2)×S1(1/
√

2)

⊂ S3), the cones over which provide examples of stationary (unstable) hyper-

cones in R4 with isolated singularities. There are no 2-dimensional singular

stationary hypercones satisfying the α-Structural Hypothesis; however, it is

not known whether there is a singular 2-dimensional stationary integral vari-

fold V in R3 such that V either satisfies the α-Structural Hypothesis or has a

singular set of vanishing 1-dimensional Hausdorff measure or has an isolated

singularity. It also remains largely open what one can say concerning sta-

ble integral varifolds of codimension > 1. Again, the same conclusions as in

our theorem cannot be made in this case due to the presence of branch point
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singularities, as illustrated by 2-dimensional holomorphic varieties with iso-

lated branch points. See the remark following the statement of the Regularity

and Compactness Theorem in Section 3 (Theorem 3.1) for a further discussion

on optimality of our results here.

For a general stationary integral varifold, a point where some tangent cone

is a plane of multiplicity 2 or higher may or may not be a regular point. Our

“Sheeting Theorem” (Theorem 3.3 below) implies that if the varifold satisfies

the hypotheses of the Regularity and Compactness Theorem, then such a point

is a regular point. (As is well known, a point where there is a multiplicity 1

tangent plane is always a regular point, for any stationary integral varifold,

by the regularity theorem of W. K. Allard; see [All72, §8] and also [Sim83,

Th. 23.1].) Indeed, the Sheeting Theorem is one of the two principal ingredi-

ents of the proof of the Regularity and Compactness Theorem; the other is the

“Minimum Distance Theorem” (Theorem 3.4), which implies that no tangent

cone to a varifold satisfying the hypotheses of the Regularity and Compact-

ness Theorem can be supported by a union of three or more half-hyperplanes

meeting along a common (n− 1)-dimensional axis.

A direct consequence of Allard’s regularity theorem is that the regular part

of a stationary integral varifold is a nonempty—in fact a dense—subset of its

support [All72, §8.1]. Thus, given stationarity of the varifold, our stability hy-

pothesis, which concerns only the regular part of the varifold, is never vacuously

true. However, an open, dense subset could have arbitrarily small (positive)

measure, and in fact, as mentioned above, under the stationarity hypothesis

alone no general result whatsoever is known concerning the Hausdorff measure

of the singular sets. Closely related to this is the point made before that from

the hypotheses of the Regularity and Compactness Theorem, not even local

finiteness of total curvature seems to follow a priori. In light of these con-

siderations that indicate that our hypotheses are rather mild, it is somewhat

surprising that our hypotheses imply optimal regularity of the hypersurfaces.

We may summarise all of the various regularity results discussed above

and established in subsequent sections of the paper as follows:

Theorem. Let V be a stable integral n-varifold on a smooth (n + 1)-

dimensional Riemannian manifold N . The following statements concerning V

are equivalent :

(a) For some α ∈ (0, 1/2), V satisfies the α-Structural Hypothesis, viz. no

singular point of V has a neighborhood in which V corresponds to a union

of C1,α embedded hypersurfaces-with-boundary meeting (only) along their

common boundary, with multiplicity a constant positive integer on each

constituent hypersurface-with-boundary.

(b) sing V = ∅ if 1 ≤ n ≤ 6, sing V is discrete if n = 7 and Hn−7+γ(sing V ) = 0

for each γ > 0 if n ≥ 8.
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(c) Hn−1(sing V ) = 0.

(d) V has the local decomposability property (defined in Corollary 1 above),

viz. for each open Ω ⊂ N with compact closure in N , there exist a finite

number of pairwise disjoint, smooth, embedded, connected hypersurfaces

M1,M2, . . . ,Mk of Ω (possibly with (M j \ Mj) ∩ Ω nonempty for each

j = 1, 2, . . . , k) and positive integers q1, q2, . . . , qk such that the multiplicity

1 varifold |Mj | defined by Mj is stationary in Ω for each j = 1, 2, . . . , k

and V Ω =
∑k
j=1 qj |Mj |.

(e) No tangent cone of V corresponds to a union of three or more half-hyper-

planes meeting along a common (n− 1)-dimensional subspace, with multi-

plicity a constant positive integer on each constituent half-hyperplane.

(f) V satisfies the α-Structural Hypothesis for each α ∈ (0, 1/2).

Finally, we mention another direct implication of the Regularity and Com-

pactness Theorem, namely, the following optimal strong maximum principle

(Theorem 19.1) for codimension 1 stationary integral varifolds:

Varifold Maximum principle. Let N be a smooth (n+1)-dimensional

Riemannian manifold, and let Ω1, Ω2 be open subsets of N such that Ω1 ⊂ Ω2.

Let Mi = ∂ Ωi for i = 1, 2. If for i = 1, 2, Mi is connected, Hn−1(singMi) = 0

and Vi ≡ |Mi| is stationary in N, then either spt ‖V1‖ = spt ‖V2‖ or spt ‖V1‖∩
spt ‖V2‖ = ∅. Here singMi = Mi \ regMi, where regMi is the set of points

X ∈Mi such that Mi is a smooth, embedded submanifold near X .

See Section 2 for an explanation of notation used here. If the varifolds V1

and V2 are both free of singularities, the theorem is easily seen to follow from

the Hopf maximum principle. B. Solomon and B. White [SW89] proved the

theorem assuming only that one of V1 or V2 is free of singularities (allowing

the other to be arbitrary with no restriction on its singular set). M. Moschen

[Mos77] and independently L. Simon [Sim87] established the result in case V1

and V2 correspond to area minimizing integral currents, both possibly singu-

lar. Using the Schoen-Simon regularity theory [SS81], some key ideas from

[Sim87] as well as the Solomon–White theorem, T. Ilmanen [Ilm96] estab-

lished the theorem (for stationary V1, V2) subject to the stronger condition

Hn−2(singMi) < ∞ for i = 1, 2. The version above follows directly from the

argument in [Ilm96], in view of the fact that we may use Corollary 2 in places

where the argument in [Ilm96] depended on the Schoen-Simon theory. This ver-

sion is optimal in the sense that larger singular sets cannot generally be allowed.

Outline of the method. Here we give a brief description of the proof of

the Regularity and Compactness Theorem. Fix any α ∈ (0, 1), and let Sα
denote the family of stable integral n-varifolds of the open ball Bn+1

2 (0) ⊂
Rn+1 satisfying the α-Structural Hypothesis. The proof of the Regularity and
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Compactness Theorem is based on establishing the fact that no tangent cone

at a singular point of a varifold belonging to the varifold closure of Sα can be

supported by (a) a hyperplane or (b) a union of half-hyperplanes meeting along

an (n− 1)-dimensional subspace. Once this is established, it is not difficult to

reach the conclusions of the theorem with standard arguments.

The assertion in case (a) is implied by the following regularity result (The-

orem 3.3):

Sheeting Theorem. Whenever a varifold in Sα is weakly close to a

given hyperplane P0 of constant positive integer multiplicity, it must break

up in the interior into disjoint, embedded smooth graphs (“sheets”) of small

curvature over P0.

The assertion in case (b) is a consequence of the following (Theorem 3.4):

Minimum Distance Theorem. No varifold in Sα can be weakly close

to a given stationary integral hypercone C0 corresponding to a union of three

or more half-hyperplanes meeting along an (n− 1)-dimensional subspace (and

with constant positive integer multiplicity on each half-hyperplane).

Our strategy is to prove both the Sheeting Theorem and the Minimum

Distance Theorem simultaneously by an inductive argument, inducting on the

multiplicity q of P0 for the Sheeting Theorem and on the density Θ(‖C0‖, 0) (=

q or q+ 1/2) of C0 at the origin for the Minimum Distance Theorem, where q

is an integer ≥ 1. Approaching both theorems inductively and simultaneously

in this manner makes it possible to establish, for varifolds in Sα (satisfying

appropriate “small excess” hypotheses in accordance with the theorems) and

for their “blow-ups,” many of the necessary a priori estimates that seem in-

accessible via an approach (inductive or otherwise) aimed at proving the two

theorems separately.

The main general idea in the argument is the following: Let q be an integer

≥ 2, and assume by induction the validity of the Sheeting Theorem when P0

has multiplicity ∈ {1, . . . , q− 1} and of the Minimum Distance Theorem when

Θ(‖C0‖, 0) ∈ {3/2, . . . , q − 1/2, q}. Then, in a region of a varifold in Sα where

no singular point has density ≥ q, we may apply the induction hypotheses to-

gether with a theorem of J. Simons ([Sim68]; see also [Sim83, App. B]) and the

“generalised stratification of stationary integral varifolds” due to F. J. Almgren

Jr. [Alm00, Th. 2.26 and Rem. 2.28] to reduce the dimension of the singular

set to a low value. This permits effective usage of the stability hypothesis,

including applicability of the Schoen-Simon version ([SS81, Th. 2]; also Theo-

rem 3.5 below) of the Sheeting Theorem, in such a region. On the other hand,

in the presence of singularities of density ≥ q (and whenever the density ratio

of the varifold at scale 1 is close to q), it is possible to make good use of the
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monotonicity formula; most notable among its consequences in the present con-

text are versions (Theorem 10.1 and Corollary 10.2), for a varifold in Sα with

small “height excess” relative to a hyperplane and lower order height excess

relative to certain cones, of L. Simon’s [Sim93] a priori L2-estimates, and an

analogous, new, “nonconcentration-of-tilt-excess” estimate (Theorem 7.1(b))

giving control of the amount of its “tilt-excess” relative to the hyperplane in

regions where there is a high concentration of points of density ≥ q.
Combining these techniques, we are able to fully analyse, under the in-

duction hypotheses, the “coarse blow-ups,” namely, the compact class Bq ⊂
W 1,2

loc (B1; Rq) ∩ L2 (B1; Rq) (B1 = the open unit ball in Rn) consisting of or-

dered q-tuples of functions produced by blowing up sequences of varifolds in Sα
converging weakly to a multiplicity q hyperplane. (See the precise definition

of Bq at the end of Section 5.) One of the key properties that needs to be

established for Bq is that it does not contain an element H whose graph is the

union of q half-hyperplanes in one half-space of Rn+1 and q half-hyperplanes

in the complementary half-space, with all half-hyperplanes meeting along a

common (n−1)-dimensional subspace and at least two of them distinct on one

side or the other. (This is a Minimum Distance Theorem for Bq, analogous

to the Minimum Distance Theorem for Sα.) Establishing this property takes

considerable effort and occupies a significant part (Sections 9 through 14) of

our work. It is achieved as follows:

First we rule out (in Section 9), by a first variation argument utilizing

the nonconcentration-of-tilt-excess estimate of Theorem 7.1(b), the possibility

that there is such H ∈ Bq with its graph having all q half-hyperplanes on one

side coinciding (but not on the other).

The second, more involved step is to rule out the existence of such an

element in Bq (call it H ′) with its graph having at least two distinct half-

hyperplanes on each side. To this end we assume, arguing by contradiction,

that there is such H ′ ∈ Bq and use the induction hypotheses to implement a

“fine blow-up” procedure (see the definition at the end of Section 11), where

certain sequences of varifolds in Sα are blown up by their height excess (the

“fine excess”) relative to appropriate unions of half-hyperplanes (corresponding

to “vertical” scalings of H ′ by the coarse excess of the varifolds giving rise to

H ′). We use first variation arguments (in particular, Simon’s L2-estimates

and the nonconcentration-of-tilt-excess estimate of Theorem 7.1(b)) and the

standard C1,β boundary regularity theory for harmonic functions to prove a

uniform interior continuity estimate (Theorem 12.2) for the first derivatives of

the fine blow-ups, and we use it, via an excess improvement argument, to show

that our assumption H ′ ∈ Bq must contradict one of the induction hypotheses,

namely, that the Minimum Distance Theorem is valid when Θ(‖C0‖, 0) = q.

This enables us to conclude that the coarse blow-up class Bq has the asserted
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property, viz. that the only elements in Bq that are given by linear functions

on either of two complementary half-spaces are the ones given by q copies of a

single linear function everywhere.

Equipped with this fact and a number of other key properties that we es-

tablish for the coarse blow-ups (see items (B1)–(B7) of Section 4 for a complete

list), we ultimately obtain (in Theorems 14.3 and 4.1), subject to the induc-

tion hypotheses, interior C1 regularity of coarse blow-ups and consequently,

that any coarse blow-up is an ordered set of q harmonic functions (a Sheeting

Theorem for Bq, analogous to the Sheeting Theorem for Sα); furthermore, we

show that these harmonic functions all agree if infinitely many members of a

sequence of varifolds giving rise to the blow-up contain, in the interior, points

of density ≥ q.
The preceding result is the key to completion of the induction step for the

Sheeting Theorem. Together with the Schoen-Simon version of the Sheeting

Theorem, it enables us to prove a De Giorgi type lemma (Lemma 15.1), the

iterative application of which leads us to the following conclusion: Let P0 be

a hyperplane with multiplicity q, and suppose that V is a varifold in Sα lying

weakly close to P0 in a unit cylinder over P0. Let D be the region of P0 inside

a cylinder slightly smaller than the unit cylinder. Then (i) there is a closed

subset of D over each point of which the support of V consists of a single point;

furthermore, at this point, V has a unique multiplicity q tangent hyperplane

almost parallel to P0, and relative to this tangent hyperplane, the height excess

of V satisfies a uniform decay estimate; and (ii) over the complementary open

set, V corresponds to embedded graphs of q ordered, analytic functions of

small gradient solving the minimal surface equation. Facts (i), (ii) and elliptic

estimates imply, by an elementary general argument (Lemma 4.3), that the

varifold corresponds to q ordered graphs over all of D and that each graph

satisfies a uniform C1,β estimate (Theorem 15.2) for some fixed β ∈ (0, 1),

completing the induction step for the Sheeting Theorem.

The final step of the argument is to complete induction for the Minimum

Distance Theorem, which requires showing that the Minimum Distance The-

orem holds whenever Θ(‖C0‖, 0) ∈ {q + 1/2, q + 1}, where C0 is a stationary

cone as in the theorem. Since we may now assume the validity of the Sheet-

ing Theorem for multiplicity up to and including q, we have all the necessary

ingredients to establish (in Theorem 16.1) that given such C0, if there is a

varifold V ∈ Sα weakly close to C0, then it must in the interior be made up

of C1,α embedded hypersurfaces-with-boundary meeting along their common

boundary; this directly contradicts the α-Structural Hypothesis and proves

the Minimum Distance Theorem, subject to the induction hypotheses, when

Θ(‖C0‖, 0) ∈ {q + 1/2, q + 1}. Our argument also establishes the Minimum

Distance Theorem when Θ(‖C0‖, 0) ∈ {3/2, 2}, since in this case we have, in
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place of the induction hypotheses, Allard’s Regularity Theorem, which implies

the Sheeting Theorem when q = 1.

This completes the outline of the proof.
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2. Notation

The following notation will be used throughout the paper:

• n is a fixed positive integer ≥ 2, Rn+1 denotes the (n + 1)-dimensional

Euclidean space and (x1, x2, y1, y2, . . . , yn−1), which we shall sometimes

abbreviate as (x1, x2, y), denotes a general point in Rn+1. We shall identify

Rn with the hyperplane {x1 = 0} of Rn+1 and Rn−1 with the subspace

{x1 = x2 = 0}.
• For Y ∈ Rn+1 and ρ > 0, Bn+1

ρ (Y ) = {X ∈ Rn+1 : |X − Y | < ρ}.
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• For Y ∈ Rn and ρ > 0, Bρ(Y ) = {X ∈ Rn : |X − Y | < ρ}. We shall often

abbreviate Bρ(0) as Bρ.

• For Y ∈ Rn+1 and ρ > 0, ηY,ρ : Rn+1 → Rn+1 is the map defined by

ηY,ρ(X) = ρ−1(X − Y ), and ηρ abbreviates η0,ρ.

• Hk denotes the k-dimensional Hausdorff measure in Rn+1, and ωn =

Hn(B1(0)).

• For A,B ⊂ Rn+1, distH(A,B) denotes the Hausdorff distance between A

and B.

• For X ∈ Rn+1 and A ⊂ Rn+1, dist(X,A) = infY ∈A |X − Y |.
• For A ⊂ Rn+1, A denotes the closure of A.

• Gn denotes the space of hyperplanes of Rn+1.

For an n-varifold V ([All72]; see also [Sim83, Ch. 8]) on an open subset Ω

of Rn+1, an open subset ‹Ω of Ω, a Lipschitz mapping f : Ω → Rn+1 and a

countably n-rectifiable subset M of Ω with locally finite Hn-measure, we use

the following notation:

• V ‹Ω abbreviates the restriction V (‹Ω×Gn) of V to ‹Ω×Gn.
• ‖V ‖ denotes the weight measure on Ω associated with V .

• spt ‖V ‖ denotes the support of ‖V ‖.
• f# V denotes the image varifold under the mapping f.

• |M | denotes the multiplicity 1 varifold on Ω associated with M .

• For Z ∈ spt ‖V ‖ ∩ Ω, VarTan(V,Z) denotes the set of tangent cones to V

at Z.

• reg V denotes the (interior) regular part of spt ‖V ‖. Thus, X ∈ reg V if and

only if X ∈ spt ‖V ‖∩Ω and there exists ρ > 0 such that Bn+1
ρ (X)∩spt ‖V ‖

is a smooth, compact, connected, embedded hypersurface-with-boundary,

with its boundary contained in ∂ Bn+1
ρ (X).

• sing V denotes the interior singular set of spt ‖V ‖. Thus, sing V =(spt ‖V ‖\
reg V ) ∩ Ω.

3. Statement of the main theorems

The Class Sα. Fix any α ∈ (0, 1). Denote by Sα the collection of all

integral n-varifolds V on Bn+1
2 (0) with 0 ∈ spt ‖V ‖, ‖V ‖(Bn+1

2 (0)) < ∞ and

satisfying the following conditions:

(S1) Stationarity: V has zero first variation with respect to the area func-

tional in the following sense:

For any given vector field ψ ∈ C1
c (Bn+1

2 (0); Rn+1), ε > 0 and C2 map

ϕ : (−ε, ε)×Bn+1
2 (0)→ Bn+1

2 (0) such that

(i) ϕ(t, ·) : Bn+1
2 (0) → Bn+1

2 (0) is a C2 diffeomorphism for each t ∈
(−ε, ε) with ϕ(0, ·) equal to the identity map on Bn+1

2 (0),

(ii) ϕ(t, x) = x for each (t, x) ∈ (−ε, ε)×
Ä
Bn+1

2 (0) \ sptψ
ä
, and

(iii) ∂ ϕ(t, ·)/∂ t|t=0 = ψ
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(the flow generated by ψ for instance gives rise to such a family ϕ(t, ·)),
we have that

d

dt

∣∣∣∣
t=0
‖ϕ(t, ·)# V ‖(Bn+1

2 (0)) = 0;

equivalently (see [Sim83, §39]),

(3.1)

∫
Bn+1

2 (0)×Gn
divS ψ(X) dV (X,S) = 0

for every vector field ψ ∈ C1
c (Bn+1

2 (0); Rn+1).

(S2) Stability: For each open ball Ω ⊂ Bn+1
2 (0) such that sing V ∩Ω = ∅ in

case 2 ≤ n ≤ 6 or Hn−7+γ(sing V ∩Ω) = 0 for every γ > 0 in case n ≥ 7,

we have that

(3.2)

∫
reg V ∩Ω

|A|2ζ2 dHn ≤
∫

reg V ∩Ω
|∇ ζ|2 dHn ∀ ζ ∈ C1

c (reg V ∩ Ω),

where A denotes the second fundamental form of reg V , |A| the length of

A and ∇ denotes the gradient operator on reg V ; equivalently (see [Sim83,

§9]), for each such Ω, V has nonnegative second variation with respect

to area for normal deformations compactly supported in Ω \ sing V , in

the following sense: for any given vector field ψ ∈ C1
c (Ω \ sing V ; Rn+1)

with ψ(X) ⊥ TXreg V for each X ∈ reg V ∩ Ω,

d2

dt2

∣∣∣∣∣
t=0

‖ϕ(t, ·)# V ‖(Bn+1
2 (0)) ≥ 0,

where ϕ(t, ·), t ∈ (−ε, ε), are the C2 diffeomorphisms of Bn+1
2 (0) associ-

ated with ψ, described in (S1) above.

(S3) α-Structural Hypothesis: For each given Z ∈ sing V, there exists

no ρ > 0 such that spt ‖V ‖ ∩ Bn+1
ρ (Z) is equal to the union of a finite

number of embedded C1,α hypersurfaces-with-boundary of Bn+1
ρ (Z), all

having a common C1,α boundary in Bn+1
ρ (Z) containing Z and no two

intersecting except along their common boundary.

Remarks. (1) Note that the stability hypothesis (S2) concerns only the

regular part reg V , and by Allard’s regularity theorem, reg V 6= ∅—in fact,

reg V is an open, dense subset of spt ‖V ‖—whenever V is stationary ([All72,

§8.1]). Thus given hypothesis (S1), hypothesis (S2) is never vacuously true.

However an open, dense subset can have arbitrarily small positive measure,

so it is not at all obvious whether hypothesis (S2) is sufficiently strong to

give any control over the singular set. By our main theorem (Theorem 3.1

below) however, we conclude that for V ∈ Sα, sing V must in fact be very low

dimensional.
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(2) The hypothesis Hn−1(sing V ) = 0 trivially implies (S3), so all of our

theorems concerning the class Sα in particular apply to the class of stable

minimal hypersurfaces M of Bn+1
2 (0) (that is, smooth embedded hypersurfaces

M of Bn+1
2 (0) with their associated multiplicity 1 varifolds V = |M | satisfying

(S1) and (S2)) with no removable singularities (thus, if X ∈M ∩Bn+1
2 (0) and

M is a smooth, embedded hypersurface near X, then X ∈M) and with

Hn−1(singM) = 0,

where singM = (M \M)∩Bn+1
2 (0). In fact, by Theorem 3.1, these two classes,

modulo multiplicity, are the same.

(3) By the Hopf boundary point lemma, Hypothesis (S3) is satisfied if no

tangent cone to V at a singular point is supported by a union of three or more

distinct n-dimensional half-hyperplanes meeting along an (n− 1)-dimensional

subspace. By Theorem 3.4 below, for stable codimension 1 integral varifolds,

this condition on the tangent cones is in fact equivalent to hypothesis (S3).

Our main theorem concerning the varifolds in Sα is the following:

Theorem 3.1 (Regularity and Compactness Theorem). Let α ∈ (0, 1).

Let {Vk} ⊂ Sα be a sequence with

lim sup
k→∞

‖Vk‖(Bn+1
2 (0)) <∞.

There exist a subsequence {k′} of {k} and a varifold V ∈ Sα with

Hn−7+γ (sing V ∩Bn+1
2 (0)) = 0

for each γ > 0 if n ≥ 7, sing V ∩ Bn+1
2 (0) discrete if n = 7 and sing V ∩

Bn+1
2 (0) = ∅ if 1 ≤ n ≤ 6 such that Vk′ → V as varifolds on Bn+1

2 (0) and also

spt ‖Vk′‖ → spt ‖V ‖ smoothly (i.e., in the Cm topology for every m) locally in

Bn+1
2 (0) \ sing V .

In particular, if W ∈ Sα, then Hn−7+γ (singW ∩ Bn+1
2 (0)) = 0 for each

γ > 0 if n ≥ 7, singW ∩Bn+1
2 (0) is discrete if n = 7 and singW ∩Bn+1

2 (0) = ∅
if 2 ≤ n ≤ 6.

Note that we do not a priori assume orientability of reg V for V ∈ Sα;

indeed, by virtue of low dimensionality of sing V guaranteed by Theorem 3.1,

orientability of reg V follows if V ∈ Sα:

Corollary 3.2. If V ∈ Sα, then reg V is orientable.

Our proof of Theorem 3.1 will be based on the following two theorems:

Theorem 3.3 (Sheeting Theorem). Let α ∈ (0, 1). Corresponding to each

Λ∈ [1,∞) and θ∈ (0, 1), there exists a number ε0 = ε0(n,Λ, α, θ) ∈ (0, 1) such
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that if V ∈ Sα, (ωn2n)−1‖V ‖(Bn+1
2 (0)) ≤ Λ and

distH(spt ‖V ‖ ∩ (R×B1), {0} ×B1) < ε0,

then

V (R×Bθ) =
q∑
j=1

|graphuj |

for some integer q, where uj ∈ C1,β(Bθ) for each j = 1, 2, . . . , q; u1 ≤ u2 ≤
· · · ≤ uq;

sup
Bθ

(|uj |+ |Duj |) + sup
X1,X2∈Bθ, X1 6=X2

|Duj(X1)−Duj(X2)|
|X1 −X2|β

≤ C
Ç∫

R×B1

|x1|2 d‖V ‖(X)

å1/2

.

Furthermore, uj solves the minimal surface equation weakly on Bθ and hence

in fact uj ∈ C∞(Bθ) for each j = 1, 2, . . . , q. Here C = C(n,Λ, α, θ) ∈ (0,∞)

and β = β(n,Λ, α, θ) ∈ (0, 1).

Theorem 3.4 (Minimum Distance Theorem). Let α ∈ (0, 1). Let δ ∈
(0,1/2), and let C0 be an n-dimensional stationary cone in Rn+1 such that

spt ‖C0‖ is equal to a finite union of at least three distinct n-dimensional half-

hyperplanes of Rn+1 meeting along an (n − 1)-dimensional subspace. There

exists ε = ε(n, α, δ,C0) ∈ (0, 1) such that if V ∈ Sα, Θ(‖V ‖, 0) ≥ Θ(‖C0‖, 0)

and (ωn2n)−1‖V ‖(Bn+1
2 (0)) ≤ ΘC0(0) + δ, then

distH(spt ‖V ‖ ∩Bn+1
1 (0), spt ‖C0‖ ∩Bn+1

1 (0)) ≥ ε.

The proofs of Theorems 3.1, 3.3 and 3.4 will be given in Sections 17, 15

and 16 respectively.

Remark. Theorems 3.1, 3.3 and 3.4 are optimal in several ways:

(a) Examples such as pairs of transverse hyperplanes or a union of three

half-hyperplanes meeting at 120◦ angles along a common axis show that Theo-

rems 3.3, 3.4 and 3.1 do not hold if the structural hypothesis (S3) is removed (or

replaced by the condition Hn−1+γ(sing V ) = 0 for any γ > 0). Stable branched

minimal hypersurfaces (e.g., those constructed in [SW07] or in [Ros10]) show

that in the absence of hypothesis (S3), even when n = 2, there is no hope

of proving regularity of stable codimension 1 integral varifolds away from the

set of points near which the varifold has the structure ruled out by hypothe-

sis (S3). Thus hypothesis (S3) can, in particular, be viewed as a geometric

condition that implies nonexistence of branch points in stable codimension 1

integral varifolds.

(b) Appropriate rescalings of a standard 2-dimensional Catenoid in R3

show that Theorem 3.3 does not hold without the stability hypothesis (S2).
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Similarly, rescalings of a Scherk’s second surface show that Theorem 3.4 does

not hold without (S2). However it is an open question, even when n = 2,

whether some form of Theorem 3.1 giving a bound on the singular set holds

without (S2). In fact, it remains open whether 2 dimensional stationary in-

tegral varifolds in R3 must be regular almost everywhere, even subject to a

condition such as (S3).

(c) There are many examples provided by complex algebraic varieties

demonstrating that Theorems 3.3 and 3.1 do not hold in codimension > 1

even if the stability hypothesis (S2) (where the corresponding higher codimen-

sional stability inequality takes a different form from (3.2); see [Sim83, §9]) is

replaced by the (stronger) absolutely area minimizing hypothesis. For instance,

the holomorphic varieties Vt = {(z, w) : z2 = tw3 + tw}∩B4
1(0) ⊂ C×C ≡ R4,

t ∈ R, which are smooth, embedded area minimizing submanifolds lying close

to the plane {z = 0} ∩ B4
1(0) for small |t| 6= 0, show that Theorem 3.3 does

not hold in codimension > 1. Those holomorphic varieties with branch point

singularities such as V = {(z, w) : z2 = w3} ∩ B4
1(0) ⊂ C×C show that even

in 2 dimension, C2 regularity, and hence Theorem 3.1, is false if codimension

> 1. (For area minimizing currents of dimension n and arbitrary codimen-

sion, Almgren’s theorem ([Alm00]) gives the optimal bound on the Hausdorff

dimension of the interior singular sets; namely, n − 2.) Since the cone C0 in

Theorem 3.4 is not area minimizing, there are no area minimizing examples

nearby, but a given transverse pair of planes in R3 × {0} ⊂ R4, for instance,

can be perturbed in R4 into a union of two planes intersecting only at the

origin, and the latter union is of course stable and satisfies (S3), showing that

Theorem 3.4 is false in codimension > 1.

Our theorems generalise the regularity and compactness theory of

R. Schoen and L. Simon [SS81], which established Theorems 3.3 and 3.1 for

stable codimension 1 integral varifolds V on Bn+1
2 (0) under the hypothesis

Hn−2(sing V ∩ K) < ∞ for each compact K ⊂ Bn+1
2 (0) in place of our hy-

pothesis (S3). (Under this more stringent hypothesis on the singular set,

Theorem 3.4 is a straightforward consequence of Theorem 3.3 and inequal-

ity (3.2).) Our proofs of Theorem 3.3 and Theorem 3.4 however rely on the

Schoen-Simon version of Theorem 3.3 in an essential way; in fact, what we

need is the following slightly weaker version of their theorem:

Theorem 3.5 ([SS81, special case of Th. 2]). Let V be an integral n-

varifold on Bn+1
2 (0) and in place of (S3), assume the (stronger) condition that

Hn−7+γ(sing V ) = 0 for every γ > 0 in case n ≥ 7 and sing V = ∅ in case

2 ≤ n ≤ 6. Let all other hypotheses be as in Theorem 3.3. Then the conclusions

of Theorem 3.3 hold.
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Remark. It suffices to prove Theorem 3.3 for θ = 1/8 and arbitrary Λ ∈
[1,∞). To see this, suppose that case θ = 1/8 of the theorem is true, with

ε′ = ε′(n, α,Λ) ∈ (0, 1) corresponding to ε0. Let θ ∈ (1/8, 1) and let the

hypotheses be as in the theorem with ε0 = ε0(n, α,Λ, θ) ∈ (0, 1) satisfying

ε0 <
Ä

1−θ
8

ä
ε′(n, α, 3nΛ). We may then apply the case θ = 1/8 of the theorem

with 3nΛ in place of Λ and with ‹V =
Ä
ηZ,(1−θ)/2

ä
#
V ∈ Sα in place of V, where

Z ∈ spt ‖V ‖∩ (R×Bθ) is arbitrary; since we may cover spt ‖V ‖∩ (R×Bθ) by

a collection of balls Bn+1
(1−θ)/2(Zj), j = 1, 2, . . . , N, with Zj ∈ spt ‖V ‖∩(R×Bθ)

and N = N(n,Λ, θ), the required estimate follows.

So assume θ = 1/8, and let the hypotheses be as in Theorem 3.3. It follows

from Allard’s integral varifold compactness theorem ([All72, Th. 6.4]) and the

Constancy Theorem for stationary integral varifolds ([Sim83, Th. 41.1]) that if

ε0 =ε0(n,Λ)∈(0, 1) is sufficiently small, then q−1/2≤(ωnR
n)−1‖V ‖(R×BR) <

q+1/2 for some integer q ∈ [1,Λ+1) and R ∈ {1/3, 2/3}. Then V1 ≡ η0,1/3 # V

satisfies (ωn2n)−1‖V1‖(Bn+1
2 (0)) < q+ 1/2 and q− 1/2 ≤ ω−1

n ‖V1‖(R×B1) <

q + 1/2. Thus in order to prove the special case θ = 1/8 of Theorem 3.3 (and

therefore the general version), it suffices to establish the following:

Theorem 3.3′ (Sheeting Theorem). Let α ∈ (0, 1). Let q be any integer

≥ 1. There exists a number ε0 = ε0(n, α, q) ∈ (0, 1) such that if V ∈ Sα,

(ωn2n)−1‖V ‖(Bn+1
2 (0)) < q + 1/2, q − 1/2 ≤ ω−1

n ‖V ‖(R×B1) < q + 1/2 and

distH(spt ‖V ‖ ∩ (R×B1), {0} ×B1) < ε0, then

V (R×B3/8) =
q∑
j=1

|graphuj |,

where uj ∈ C1,β(B3/8) for each j = 1, 2, . . . , q; u1 ≤ u2 ≤ · · · ≤ uq;

sup
B3/8

(|uj |+ |Duj |) + sup
X1,X2∈B3/8, X1 6=X2

|Duj(X1)−Duj(X2)|
|X1 −X2|β

≤ C
Ç∫

R×B1

|x1|2 d‖V ‖(X)

å1/2

;

and uj solves the minimal surface equation (weakly) on B3/8. Here C =

C(n, q, α) ∈ (0,∞) and β = β(n, q, α) ∈ (0, 1).

Finally, we note that in the absence of the α-Structural Hypothesis (S3),

Theorems 3.1, 3.3 and the upper semi-continuity of density of stationary inte-

gral varifolds readily imply the following:

Corollary 3.6. Let V be a stable integral n-varifold on Bn+1
2 (0) (in the

sense that V satisfies (3.1) and (3.2)). If Z ∈ sing V and one of the tangent

cones to V at Z is (the varifold associated with) a hyperplane with multiplicity

q ∈ {2, 3, . . . }, then for any α ∈ (0, 1), there exist a sequence of points Zj ∈
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sing V with Zj 6= Z , Zj → Z and a sequence of numbers σj with 0 < σj <

|Zj − Z| such that for each j = 1, 2, 3, . . . , spt ‖V ‖ ∩Bn+1
σj (Zj) is the union of

at least 3 and at most 2q embedded C1,α hypersurfaces-with-boundary meeting

only along an (n−1)-dimensional C1,α submanifold of Bn+1
σj (Zj) containing Zj .

In fact, if Z ∈ sing V is such that one tangent cone C to V at Z has the

form, after a rotation, C = C′×Rn−k for some k ∈ {0, 1, . . . ,min {6, n}}, then

for any α ∈ (0, 1), there exist a sequence of points Zj ∈ sing V with Zj 6= Z ,

Zj → Z and a sequence of numbers σj with 0 < σj < |Zj − Z| such that for

each j = 1, 2, 3, . . . , spt ‖V ‖ ∩Bn+1
σj (Zj) is the union of at least 3 and at most

2Θ(‖V ‖, Z) embedded C1,α hypersurfaces-with-boundary meeting only along an

(n− 1)-dimensional C1,α submanifold of Bn+1
σj (Zj) containing Zj .

4. Proper blow-up classes

Fix an integer q ≥ 1 and a constant C ∈ (0,∞). Consider a family B of

functions v = (v1, v2, . . . , vq) : B1 → Rq satisfying the following properties:

(B1) B ⊂W 1,2
loc (B1; Rq) ∩ L2(B1; Rq).

(B2) If v ∈ B, then v1 ≤ v2 ≤ · · · ≤ vq.
(B3) If v ∈ B, then ∆ va = 0 in B1, where va = q−1∑q

j=1 v
j .

(B4) For each v ∈ B and each z ∈ B1, either (B4 I) or (B4 II) below is true:

(B4 I) The Hardt-Simon inequality

q∑
j=1

∫
Bρ/2(z)

R2−n
z

Ç
∂
(
(vj − va(z))/Rz

)
∂ Rz

å2

≤ C ρ−n−2
∫
Bρ(z)

|v − `v, z|2

holds for each ρ ∈ (0, 3
8(1 − |z|)], where Rz(x) = |x − z|, `v, z(x) =

va(z)+Dva(z)·(x−z) and v−`v, z = (v1−`v, z, v2−`v, z, . . . , vq−`v, z).
(B4 II) There exists σ = σ(z) ∈ (0, 1− |z|] such that ∆ v = 0 in Bσ(z).

(B5) If v ∈ B, then

(B5 I) ṽz,σ(·) ≡ ‖v(z + σ(·))‖−1
L2(B1(0))v(z + σ(·)) ∈ B for each z ∈ B1 and

σ ∈ (0, 3
8(1− |z|)] whenever v 6≡ 0 in Bσ(z);

(B5 II) v ◦ γ ∈ B for each orthogonal rotation γ of Rn; and

(B5 III) ‖v−`v‖−1
L2(B1(0)) (v − `v) ∈ B whenever v−`v 6≡ 0 in B1, where `v(x) =

va(0)+Dva(0) ·x for x ∈ Rn and v−`v = (v1−`v, v2−`v, . . . , vq−`v).
(B6) If {vk}∞k=1 ⊂ B, then there exist a subsequence {k′} of {k} and a function

v ∈ B such that vk′ → v locally in L2(B1) and locally weakly in W 1,2(B1).

(B7) If v ∈ B is such that for each j = 1, 2, . . . , q, there exist linear functions

Lj1, L
j
2 : Rn → R with vj(x2, y) = Lj1(x2, y) if x2 > 0, vj(x2, y) =

Lj2(x2, y) if x2 ≤ 0 and Lj1(0, y) = Lk2(0, y) for 1 ≤ j, k ≤ q, y ∈ Rn−1, then

v1 = v2 = · · · = vq = L for some linear function L : Rn → R.

We shall refer to any such class B as a proper blow-up class.
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Our main result in this section (Theorem 4.1 below) is that functions

in any proper blow-up class are harmonic. Subsequently, we shall prove that

the collection of functions arising as “coarse blow-ups” (see Section 5 for the

definition) of mass-bounded sequences of varifolds in Sα converging weakly to

a hyperplane is a proper blow-up class for a suitable constant C depending

only on n and the mass bound.

Remark. The first use of the inequality in (B4 I) in the context of regular-

ity theory for minimal submanifolds is due to R. Hardt and L. Simon ([HS79]).

Let B be a proper blow-up class. There exists a constant τ = τ(B) ∈
(0, 1/4) such that if v ∈ B, va(0) = 0 and property (B4 I) holds with z = 0,

then

(4.1)

∫
B1\Bτ

|v|2 ≥ 1

2

∫
B1

|v|2.

To see this, note that since every weakly convergent sequence in W 1,2(B2/3)

is bounded in W 1,2(B2/3), it follows from the compactness property (B6) and

property (B5 I) that there exists a constant C1 = C1(B) ∈ (0,∞) such that∫
B1/4
|Dv|2 ≤ C1

∫
B1
|v|2 for every v ∈ B. Hence by property (B4 I) with z = 0

and ρ = 3/8, we see that if va(0) = 0, then∫
B3/16

|v|2

R2
≤ 2(C2 + C1)

∫
B1

|v|2,

where C2 = C2(C, n) and we have used the fact that, since va is harmonic,

|`v,0(x)|2 = |Dva(0)|2|x|2 ≤ C3

∫
B1/4
|Dv|2 ≤ C3C1

∫
B1
|v|2 for every x ∈ B3/8,

with C3 = C3(n, q). This readily implies that for each τ ∈ (0, 3/16),
∫
Bτ
|v|2 ≤

2(C2+C1)τ2
∫
B1
|v|2, and choosing τ=τ(B)∈(0, 3/16) such that 2(C2+C1)τ2<

1/2, we deduce (4.1).

Theorem 4.1. If B is a proper blow-up class for some C ∈ (0,∞), then

each v ∈ B is harmonic in B1. Furthermore, if v ∈ B and there is a point

z ∈ B1 such that (B4 I ) is satisfied, then v1 = v2 = · · · = vq.

The proof of this Theorem will be based on the following proposition:

Proposition 4.2. Let B be a proper blow-up class, and let τ = τ(B) ∈
(0, 1/4) be the constant as in (4.1). If v ∈ B satisfies property (B4 I) with z = 0

and if v is homogeneous of degree 1 in the annulus B1 \ Bτ , viz. ∂(v/R)
∂ R = 0

almost everywhere in B1 \ Bτ , then vj = L in B1 for some linear function L

and all j ∈ {1, 2, . . . , q}.

For the proofs of Theorem 4.1, Proposition 4.2 and subsequently, we shall

need the following general principle:
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Lemma 4.3. Let w ∈ L2(B1; Rq). Suppose there is a closed subset Γ ⊂ B1

and numbers β, β1, β2 ∈ (0,∞), µ ∈ (0, 1) and ε ∈ (0, 1/4) such that the

following hold : For each z ∈ Γ∩B3/4, there is an affine function `z : Rn → Rq

with supB1
|`z| ≤ β such that

σ−n−2
∫
Bσ(z)

|w − `z|2 ≤ β1

Å
σ

ρ

ãµ
ρ−n−2

∫
Bρ(z)

|w − `z|2

for all 0 < σ ≤ ρ/2 ≤ ε/2 and for each z ∈ B3/4 \Γ, there is an affine function

`z : Rn → Rq such that

σ−n−2
∫
Bσ(z)

|w − `z|2 ≤ β2

Å
σ

ρ

ãµ
ρ−n−2

∫
Bρ(z)

|w − `|2

for each affine function ` : Rn→Rq and all 0<σ≤ρ/2< 1
2 min {1/4, dist(z,Γ)}.

Then w ∈ C1,λ(B1/2) for some λ = λ(n, q, β1, β2, ε, µ) ∈ (0, 1) with

sup
B1/2

(|w|+ |Dw|) + sup
x,y∈B1/2,x 6=y

|Dw(x)−Dw(y)|
|x− y|λ

≤ C
Ç
β2 +

∫
B1

|w|2
å1/2

,

where C = C(n, q, β1, β2, ε) ∈ (0,∞).

Remark. In our applications of the lemma, the component functions of

w, in B1 \ Γ, will either be harmonic or smooth functions with small gradient

solving the minimal surface equation; the second estimate in the hypotheses,

with `z(x) = w(z) + Dw(z) · (x − z) and β2 depending only on n, follows in

these cases from standard interior estimates for second derivatives of harmonic

functions and solutions to uniformly elliptic equations.

Proof. Consider an arbitrary point y ∈ B3/4 and a number ρ ∈ (0, ε). With

γ = γ(n, β1, ε, µ) ∈ (0, 1/8) to be chosen, if there is a point z ∈ Γ ∩ Bγρ(y),

then by the given condition with ρ− |z− y| in place of ρ and σ = γρ+ |z− y|,

(γρ)−n−2
∫
Bγρ(y)

|w − `z|2

≤
Ç

1 +
|z − y|
γρ

ån+2

(γρ+ |z − y|)−n−2
∫
Bγρ+|z−y|(z)

|w − `z|2

≤ 2n+2β1

Ç
γρ+ |z − y|
ρ− |z − y|

åµ
(ρ− |z − y|)−n−2

∫
Bρ−|z−y|(z)

|w − `z|2

≤ 4n+2β1

Å
2γ

1− γ

ãµ
ρ−n−2

∫
Bρ(y)

|w − `z|2.

Choosing γ = γ(n, β1, ε, µ) ∈ (0, ε) such that 4n+2β1

Ä
2γ

1−γ

äµ
< 1/4, we see

from this that

(γρ)−n−2
∫
Bγρ(y)

|w − `z|2 ≤ 4−1ρ−n−2
∫
Bρ(y)

|w − `z|2
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for any y ∈ B3/4 and ρ ∈ (0, ε) provided there is a point z ∈ Γ ∩ Bγρ(y). In

particular, if z? ∈ Γ is such that |y − z?| = dist(y,Γ), then

(4.2) (γρ)−n−2
∫
Bγρ(y)

|w − `z? |2 ≤ 4−1ρ−n−2
∫
Bρ(y)

|w − `z? |2

for each ρ ∈ (0, ε) such that γρ ≥ |y−z?|. On the other hand, if Γ∩Bγρ(y) = ∅,
then again by the given condition we know that for any affine function `,

(4.3) (σγρ)−n−2
∫
Bσγρ(y)

|w − `y|2 ≤ β2σ
µ(γρ)−n−2

∫
Bγρ(y)

|w − `|2

for all σ ∈ (0, 1/2]. Iterating inequality (4.2) with ρ = γj , j = 1, 2, . . . and

using inequality (4.3), we see that for each y ∈ B3/4 \ Γ, there is an integer

j? ≥ 1, an affine function `? (= `z?) with supB1
|`?| ≤ β and an affine function

`y such that

(4.4) (σγj
?+1)−n−2

∫
B
σγj

?+1 (y)
|w− `y|2 ≤ β2σ

µ(γj
?+1)−n−2

∫
B
γj
?+1 (y)

|w− `|2

for each affine function ` and each σ ∈ (0, 1/2]; and

(γj)−n−2
∫
B
γj

(y)
|w − `?|2 ≤ 4−1(γj−1)−n−2

∫
B
γj−1 (y)

|w − `?|2(4.5)

≤ 4−(j−1)γ−n−2
∫
Bγ(y)

|w − `?|2 for each j = 1, 2, . . . , j?.

By taking ` = `?, σ = 1/2 in (4.4) and j = j? in (4.5), and using the

triangle inequality, we see thatÅ
1

2
γj

?+1
ã−n−2 ∫

B 1
2 γ
j?+1 (y)

|`y − `?|2 ≤ C4−(j?−1)
∫
Bγ(y)

|w − `?|2

which, in particular, implies

(4.6)
Ä
γj
ä−n−2

∫
B
γj

(y)
|`y − `?|2 ≤ C4−j

∫
Bγ(y)

|w − `?|2

for j = 1, 2, . . . , j?, where C = C(n, β2, µ, γ) ∈ (0,∞).

By (4.5) and (4.6), we conclude that

(4.7) (γj)−n−2
∫
B
γj

(y)
|w − `y|2 ≤ C4−(j−1)

∫
Bγ(y)

|w − `?|2

for each j = 1, 2, . . . , j?. Thus if y ∈ B3/4 \ Γ, we deduce that

(4.8) ρ−n−2
∫
Bρ(y)

|w − `y|2 ≤ Cρλ
∫
Bγ(y)

|w − `?|2

for all ρ ∈ (0, γ/2], by considering, for any given ρ ∈ (0, γ/2], the two alterna-

tives:
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(i) 2ρ ≤ γj
?+1, in which case ρ = σγj

?+1 for some σ ∈ (0, 1/2] and we use

(4.4) provided γ = γ(n, q, β1, β2, µ, ε) is chosen to satisfy γµ < 1/4 also, or

(ii) γj+1 < 2ρ ≤ γj for some j ∈ {1, 2, . . . , j?}, in which case we use (4.7).

In view of (4.8) (in case y ∈ B3/4 \ Γ) and the given condition (in case

y ∈ B3/4∩Γ), we conclude that for each y ∈ B3/4, there exists an affine function

`y such that for all ρ ∈ (0, γ/2],

(4.9) ρ−n−2
∫
Bρ(y)

|w − `y|2 ≤ Cρλ
Ç
β2 +

∫
B1

|w|2
å
,

where C = C(n, q, β1, β2, µ, ε) ∈ (0,∞) and λ = λ(n, q, β1, β2, µ, ε) ∈ (0, 1). It

is standard that from this the assertions of the lemma follow. �

In the proofs of Proposition 4.2, Theorem 4.1 and subsequently, for v ∈ B,
we let

Γv = {z ∈ B1 \ Ωv : (B4 I) holds} ,
where

Ωv = {z ∈ B1 : ∃ρ ∈ (0, 1− |z|] such that

v1(x) = v2(x) = · · · = vq(x)(= va(x)) for a.e. x ∈ Bρ(z)
}
.

Remark. Note that it follows directly from property (B4) that Γv is a

relatively closed subset of B1 and on B1 \Γv, v
j is almost everywhere equal to

a harmonic function for each j = 1, 2, . . . , q.

Proof of Proposition 4.2. Let τ = τ(B) ∈ (0, 1/4) be as in (4.1). Note

first that if v ∈ B is homogeneous of degree 1 in any annulus B1 \ Bτ ′ , τ ′ ∈
(0, 1), viz. v satisfies ∂(v/R)

∂ R = 0 almost everywhere in B1 \ Bτ ′ , then, since

va = q−1∑q
j=1 v

j is harmonic in B1 by property (B3), it follows that va is a

linear function in B1.

Let H denote the collection of all homogeneous of degree 1 functions ṽ :

Rn → Rq such that ṽ|B1\Bτ ≡ v|B1\Bτ for some v ∈ B satisfying property

(B4 I) with z = 0. For any given ṽ ∈ H, let T (ṽ) = {z ∈ Rn : ṽ(x+ z) = ṽ(x)

for almost every x ∈ Rn}. Using homogeneity of ṽ, it is standard to verify that

T (ṽ) is a linear subspace of Rn.

For k = 0, 1, 2, . . . , n, let Hk = {ṽ ∈ H : dimT (ṽ) = n − k} so that

H =
⋃n
k=0Hk. ClearlyH0 = {0}. Let ṽ ∈ H1, and let v be any element ∈ B that

is homogeneous of degree 1 in B1 \Bτ such that v satisfies property (B4 I) with

z = 0 and v agrees with ṽ on B1\Bτ . We wish to show that there exists a linear

function L such that vj = L in B1 for each j ∈ {1, . . . , q}. This is true if vj = va
on B1 for each j ∈ {1, . . . , q}, so suppose v − va = (v1 − va, . . . , vq − va) 6≡ 0

in B1, and let w = ‖v − va‖−1(v − va). Then w ∈ B by property (B5 III),

w 6≡ 0, wa ≡ 0 and property (B4 I) is satisfied with w in place of v and z = 0,

and hence by (4.1), w 6≡ 0 in B1 \ Bτ . By the definition of H1 and property
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(B5 II) (of v), we may assume that T (ṽ) = {0} ×Rn−1, and by homogeneity

of w in B1 \ Bτ , it then follows that there exist constants λ1 ≥ λ2 ≥ · · · ≥
λq, µ1 ≤ µ2 ≤ · · · ≤ µq, with

∑q
j=1 λj =

∑q
j=1 µj = 0 such that, for each

j ∈ {1, . . . , q}, wj(x2, y) = λjx
2 for each (x2, y) ∈ (B1 \ Bτ ) ∩ {x2 < 0} and

wj(x2, y) = µjx
2 for each (x2, y) ∈ (B1 \Bτ )∩{x2 > 0}. Moreover, since w 6≡ 0

in B1 \Bτ , we must have some j0 ∈ {1, . . . , q− 1} such that either λj0 > λj0+1

or µj0 < µj0+1. Thus, taking any point (0, y1) ∈ (B1 \ Bτ ) ∩ ({0} × Rn−1)

and any number σ1 with 0 < σ1 < min {1 − |y1|, |y1| − τ} and setting ‹w =

‖w((0, y1)+σ1(·))‖−1
L2(B1)w((0, y1)+σ1(·)), we produce an element ‹w ∈ B whose

existence contradicts the fact that B satisfies property (B7). Hence it must be

that v − va = 0 in B1, and H1 consists of linear functions.

Now let k1 be the smallest integer ∈ {2, 3, . . . , n} such that Hk1 6= ∅.
Consider any ṽ ∈ Hk1 , and let v be any element ∈ B such that v satisfies

property (B4 I) with z = 0 and v agrees with ṽ on B1 \Bτ . By property (B5 II)

(of v), we may assume that T (ṽ) = {0}×Rn−k1 . If Γv∩(B1\Bτ ) ⊆ {0}×Rn−k1 ,

then by the remark immediately following the definition of Γv, v
j is harmonic

in (B1\Bτ )\
Ä
{0} ×Rn−k1

ä
for each j ∈ {1, 2, . . . , q}, whence by homogeneity,

ṽ is harmonic on B1 \
Ä
{0} ×Rn−k1

ä
. Since ṽj ∈ W 1,2

loc (Rn) and independent

of the last (n − k1) variables, it follows that ṽj is harmonic in all of Rn. By

homogeneity of ṽ again and property (B2) of v, it follows that ṽ1 = ṽ2 = · · · =
ṽq = L for some linear function L, contrary to the assumption that ṽ ∈ Hk1
for k1 ≥ 2. So we must have that Γv ∩ (B1 \Bτ )\

Ä
{0} ×Rn−k1

ä
6= ∅. We shall

contradict this also.

Let K be any compact subset of (B1\Bτ )\
Ä
{0} ×Rn−k1

ä
. We claim that

there exists ε = ε(v,K,B) ∈ (0, 1) such that for each z ∈ K ∩ Γv and each ρ

with 0 < ρ ≤ ε,
(4.10)

q∑
j=1

∫
Bρ(z)\Bτρ(z)

R2−n
z

Ç
∂
(
(vj − va)/Rz

)
∂ Rz

å2

≥ ερ−n−2
q∑
j=1

∫
Bρ(z)

|vj − va|2.

(Recall that va is a linear function.) If this were false, then there would exist

points z, zi ∈ K ∩ Γv, i = 1, 2, 3, . . . , with zi → z, and radii ρi → 0 such that

v − va 6≡ 0 in Bρi(zi) for each i = 1, 2, 3, . . . and

(4.11)
q∑
j=1

∫
Bρi (zi)\Bτρi (zi)

R2−n
zi

Ç
∂
(
(vj − va)/Rzi

)
∂ Rzi

å2

< εiρ
−n−2
i

q∑
j=1

∫
Bρi (zi)

|vj−va|2,

where εi → 0+. By property (B5 III), we have that w ≡ ‖v−va‖−1
L2(B1)(v−va) ∈

B so that, by property (B5 I), wi ≡ wzi,ρi = ‖w(zi+ρi(·))‖−1
L2(B1)w(zi+ρi(·)) also

belongs to B for each sufficiently large i, and hence, by property (B6), there ex-

ists w? ∈ B such that after passing to a subsequence, wi → w? locally in L2(B1)
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and locally weakly in W 1,2(B1). Since ‖wi‖L2(B1) = 1, it follows from (4.11)

that ‖wi‖L2(B3/4) > c for sufficiently large i, where c = c(n) > 0. Hence w? 6≡ 0

in B1. In view of the strong convergence wi → w? locally in L2(B1) and the

weak convergence Dwi → Dw? locally in L2(B1) (which, in particular, implies

that
∫
B1−ε(0)\Bε′ (0) |x|−n−2(Dw? ·x)2 ≤ lim infi→∞

∫
B1−ε(0)\Bε′ (0) |x|−n−2(Dwi ·

x)2 for any ε, ε′ ∈ (0, 1/4)), it follows from (4.11) that w? is homogeneous of

degree 1 in B1 \Bτ , and since property (B4 I) is satisfied with wi in place of v

and z = 0, that it is also satisfied with w? in place of v and z = 0. Thus if ‹w?
denotes the homogeneous of degree 1 extension of w?|B1\Bτ to all of Rn, then‹w? ∈ H. Note also that {0} ×Rn−k1 ⊆ T (‹w?).

Now by homogeneity of v in B1 \ Bτ , we have that for each y ∈ B1,

sufficiently small σ > 0 and sufficiently large i,

σ−n
∫
Bσ(y)

wi(x+ z) dx = ε−1
i σ−n

∫
Bσ(y)

w(zi + ρi(x+ z)) dx

= (1 + ρi)ε
−1
i σ−n

∫
Bσ(y)

w(zi + (1 + ρi)
−1ρi(z − zi) + (1 + ρi)

−1ρix) dx

= (1 + ρi)
n+1ε−1

i σ−n
∫
B(1+ρi)

−1σ((1+ρi)−1(z−zi+y))
w(zi + ρix) dx

= (1 + ρi)
n+1σ−n

∫
B(1+ρi)

−1σ((1+ρi)−1(z−zi+y))
wi(x) dx,

where εi = ‖w(zi + ρi(·))‖L2(B1), so first letting i → ∞ in this (noting that

zi → z) and then letting σ → 0, we conclude that ‹w?(y + z) = ‹w?(y) for

almost every y; i.e., z ∈ T (‹w?). But z ∈ B1 \
Ä
{0} ×Rn−k1

ä
(since z ∈ K),

and therefore we must have dimT (‹w?) > n − k1. On the other hand, note

that by the definition of k1, either k1 = 2 or (in case k1 ≥ 3) Hk = ∅ for all

k = 2, . . . , (k1−1) so that, in either case, whenever dimT (ṽ) > n−k1 for some

ṽ ∈ H, it follows that ṽ ∈ H1. Thus we have shown that ‹w? ∈ H1 and hence

that ‹w1
? = ‹w2

? = · · · = ‹wq? = L for some linear function L. But since (wi)a ≡ 0

for each j = 1, 2, . . . , it follows that L = (‹w?)a = 0, which is a contradiction.

Thus (4.10) must hold for some ε = ε(v,K,B) ∈ (0, 1) and all z ∈ K, ρ ∈ (0, ε]

as claimed.

Combining (4.10) with property (B4 I), we then have that

q∑
j=1

∫
Bρ(z)\Bτρ(z)

R2−n
z

Ç
∂
(
(vj − va)/Rz

)
∂ Rz

å2

≥ ε

C

q∑
j=1

∫
Bτρ(z)

R2−n
z

Ç
∂
(
vj − va)/Rz

)
∂ Rz

å2

,
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which implies that

(4.12)
q∑
j=1

∫
Bτρ(z)

R2−n
z

Ç
∂
(
(vj − va)/Rz

)
∂ Rz

å2

≤θ
q∑
j=1

∫
Bρ(z)

R2−n
z

Ç
∂
(
vj − va)/Rz

)
∂ Rz

å2

for all z ∈ K ∩ Γv and ρ ∈ (0, ε], where θ = θ(v,K,B) ∈ (0, 1). Iterating this

(for fixed z ∈ K ∩ Γv) with τ iρ, i = 1, 2, 3, . . . in place of ρ, we see that

q∑
j=1

∫
Bτiρ(z)

R2−n
z

Ç
∂
(
(vj − va)/Rz

)
∂ Rz

å2

≤ θi
q∑
j=1

∫
Bρ(z)

R2−n
z

Ç
∂
(
vj − va)/Rz

)
∂ Rz

å2

for i = 0, 1, 2, 3 . . . , which readily implies that
q∑
j=1

∫
Bσ(z)

R2−n
z

Ç
∂
(
(vj − va)/Rz

)
∂ Rz

å2

≤ β
Å
σ

ρ

ãµ q∑
j=1

∫
Bρ(z)

R2−n
z

Ç
∂
(
vj − va)/Rz

)
∂ Rz

å2

for any z ∈ K ∩ Γv and all 0 < σ ≤ ρ/2 ≤ ε/2, where the constants β =

β(v,K,B) ∈ (0,∞) and µ = µ(v,K,B) ∈ (0, 1) are independent of z. By

property (B4 I) and inequality (4.10), this yields the estimate

(4.13)
q∑
j=1

σ−n−2
∫
Bσ(z)

|vj − va|2 ≤ 2−n−2ε−1Cβ

Å
σ

ρ

ãµ
ρ−n−2

q∑
j=1

∫
Bρ(z)

|vj − va|2

for each z ∈ K ∩ Γv and 0 < σ ≤ ρ/2 ≤ ε/4. Since property (B4 II) and the

definition of Γv imply that v is harmonic in Rn\Γv, we deduce from Lemma 4.3,

the remark immediately following Lemma 4.3 and the arbitrariness of K that

v ∈ C1
Ä
(B1 \Bτ ) \

Ä
{0} ×Rn−k1

ää
.

Now by property (B4 I), Γv ∩ (B1 \ Bτ ) \
Ä
{0} ×Rn−k1

ä
⊂ the zero set

of uj ≡
(
vj − vj−1

)∣∣∣
B1\Bτ

for each j = 2, . . . , q. Since uj is nonnegative

and C1 in (B1 \ Bτ ) \
Ä
{0} ×Rn−k1

ä
, it follows that Duj(z) = 0 for any

z ∈ Γv ∩ (B1 \ Bτ ) \
Ä
{0} ×Rn−k1

ä
. Also, by property (B4 II) and the def-

inition of Γv, u
j is harmonic in (B1 \ Bτ ) \

Ä
Γv ∪

Ä
{0} ×Rn−k1

ää
. In order

to derive a contradiction, pick any point z1 ∈ Γv ∩ (B1 \ Bτ ) \
Ä
{0} ×Rn−k1

ä
and let ρ1 = 1

4 dist
Ä
z1, ∂ B1 ∪ ∂Bτ ∪ {0} ×Rn−k1

ä
. If uj(z) > 0 for some

z ∈ Bρ1(z1), then there exists ρ ∈ (0, ρ1) such that uj > 0 in Bρ(z) and

∂ Bρ(z)∩
Ä
Γv ∩ (B1 \Bτ ) \

Ä
{0} ×Rn−k1

ää
6= ∅, contradicting the Hopf bound-

ary point lemma. It follows that uj ≡ 0 in Bρ1(z1) for each j = 2, . . . , q. But
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since z1 ∈ Γv, this is impossible by the definition of Γv, so we see that the

assumption Γv ∩ (B1 \Bτ ) \
Ä
{0} ×Rn−k1

ä
6= ∅ leads to a contradiction. Thus

Hk = ∅ for each k = 2, . . . , n, and the proposition is proved. �

Proof of Theorem 4.1. The main point is to prove that B ⊆ C1(B1). For

if this is true, then, by exactly the same argument as in the last paragraph of

the proof of Proposition 4.2, we see that Γv = ∅ for each v ∈ B, from which

the first assertion of the theorem follows immediately.

In view of Lemma 4.3, property (B4 II) and property (B5 I), to prove that

B ⊆ C1(B1), it suffices to establish that there are fixed constants β = β(B) ∈
(0,∞) and µ = µ(B) ∈ (0, 1) such that for each v ∈ B, z ∈ Γv ∩ B3/4 and

0 < σ ≤ ρ/2 ≤ 1/8,

(4.14) σ−n−2
q∑
j=1

∫
Bσ(z)

|vj − `z|2 ≤ β
Å
σ

ρ

ãµ
ρ−n−2

q∑
j=1

∫
Bρ(z)

|vj − `z|2,

where `z is the affine function given by `z(x) = va(z) + Dva(z) · (x − z),

x ∈ Rn. This estimate follows by exactly the same hole-filling argument used

in the proof of Proposition 4.2. Specifically, we may first prove, by arguing

by contradiction and using Proposition 4.2, that there exists a fixed constant

ε = ε(B) > 0 such that if v ∈ B, 0 ∈ Γv, va(0) = 0 and Dva(0) = 0, then

q∑
j=1

∫
B1/4(0)\Bτ/4(0)

R2−n
Ç
∂
(
vj/R

)
∂ R

å2

≥ ε
q∑
j=1

∫
B1/4(0)

|vj |2,

where τ = τ(B) ∈ (0, 1/4) is the constant as in (4.1). It follows from this and

property (B4 I) (by arguing as in the proof of (4.13)) that if v ∈ B, 0 ∈ Γv,

va(0) = 0 and Dva(0) = 0, then

ρ−n−2
∫
Bρ(0)

|v|2 ≤ βρµ
∫
B1/2

|v|2 ∀ρ ∈ (0, 1/2],

where β = β(B) ∈ (0,∞) and µ = µ(B) ∈ (0, 1). In view of properties (B5 I)

and (B5 III), the estimate (4.14) follows from this.

Since finiteness of
∑q
j=1

∫
Bρ(z)R

2−n
z

(
∂((vj−va(z))/Rz)

∂Rz

)2
implies that v1(z)=

v2(z) = · · · = vq(z) (= va(z)), the second assertion of the theorem follows from

the first, property (B2) and the maximum principle. �

5. Lipschitz approximation and coarse blow-ups

Here we recall (in Theorem 5.1 below) some facts concerning approxima-

tion of a stationary integral varifold weakly close to a hyperplane by the graph

of a Lipschitz function over the hyperplane. These results were established

by Almgren ([Alm00]), adapting, for the higher multiplicity setting, the cor-

responding result of Allard ([All72]) for multiplicity 1 varifolds. We shall use
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these facts to blow up mass-bounded sequences of varifolds weakly converging

to a hyperplane.

First note the following elementary fact, which we shall need here and

subsequently: If V is a stationary integral n-varifold on Bn+1
2 (0), then

(5.1)

∫
Bn+1

2 (0)
|∇V x1|2ζ̃2 d‖V ‖(X) ≤ 4

∫
Bn+1

2 (0)
|x1|2|∇V ζ̃|2 d‖V ‖(X)

for each ζ̃ ∈ C1
c (Bn+1

2 (0)). This is derived simply by taking ψ(X) = x1ζ̃2(X)e1

in the first variation formula (3.1).

Let ρ ∈ (0, 1), and suppose that spt ‖V ‖ ∩ (R × B(1+ρ)/2) ⊂ {|x1| < 1}.
Choosing ζ̃ in (5.1) such that ζ̃(x1, x′) = ζ(x′) in a neighborhood of spt ‖V ‖ ∩
(R × B1), where ζ ∈ C1

c (B(1+ρ)/2) is such that ζ ≡ 1 on Bρ, 0 ≤ ζ ≤ 1 and

|Dζ| ≤ C for some constant C = C(ρ) (e.g., ζ̃(x1, x′) = η(x1)ζ(x′) where

η ∈ C1
c (−3/2, 3/2) with η ≡ 1 on [−1, 1]), we deduce from (5.1) that for each

ρ ∈ (0, 1),

(5.2)

∫
R×Bρ

|∇V x1|2d‖V ‖(X) ≤ CÊ2
V ,

where C = C(n, ρ) ∈ (0,∞), and ÊV =
»∫

R×B1
|x1|2 d‖V ‖(X).

Theorem 5.1 ([Alm00, Cor. 3.11]). Let q be a positive integer and σ ∈
(0, 1). There exist numbers ε0 = ε0(n, q, σ) ∈ (0, 1/2) and ξ = ξ(n, q) ∈ (0, 1/2)

such that the following holds : Let V be a stationary integral n-varifold on

Bn+1
2 (0) with

(ωn2n)−1‖V ‖(Bn+1
2 (0)) < q + 1/2, q − 1/2 ≤ ω−1

n ‖V ‖(R×B1) < q + 1/2

and

Ê2
V ≡

∫
R×B1

|x1|2d‖V ‖(X) ≤ ε0.

Let

Σ = π‹Σ1 ∪ π‹Σ2 ∪ π‹Σ3 ∪ Σ′,

where π : Rn+1 → {0} ×Rn is the orthogonal projection,‹Σ1 =
{
Y ∈ spt ‖V ‖ ∩ (R×Bσ) : ρ−n

∫
R×Bρ(π Y )

|∇V x1|2 d‖V ‖(X) ≥ ξ

for some ρ ∈ (0, 1− σ)
}
,‹Σ2 = {Y ∈ spt ‖V ‖ ∩ (R×Bσ) : either Tan(spt ‖V ‖, Y ) 6= Tann(‖V ‖, Y )

or Tan(spt ‖V ‖, Y ) 6∈ Gn or Θ(‖V ‖, Y ) is not a positive integer} ,

where Tan(spt ‖V ‖, Y ) denotes the tangent cone of spt ‖V ‖ at Y ([Fed69,

3.1.21]) and Tann(‖V ‖, Y ) denotes the (‖V ‖, n) approximate tangent cone of
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‖V ‖ at Y ([Fed69, 3.2.16]),‹Σ3 =
¶
Y ∈ spt ‖V ‖ ∩ (R×Bσ) \ ‹Σ2 : 1− (e1 · ν(Y ))2 ≥ 1/4

©
,

where ν(Y ) is the unit normal to Tan(spt ‖V ‖, Y ), and

Σ′ =
¶
Y ∈ Bσ \ (π‹Σ1 ∪ π‹Σ2 ∪ π‹Σ3) : Θ(‖π# V ‖, Y ) ≤ q − 1

©
.

Then

(a) Hn (Σ) + ‖V ‖(R× Σ) ≤ CÊ2
V , where C = C(n, q, σ) ∈ (0,∞).

(b) There are Lipschitz functions uj : Bσ → R, with Lipuj ≤ 1/2 for each

j ∈ {1, 2, . . . , q} such that u1 ≤ u2 ≤ · · · ≤ uq and

spt ‖V ‖ ∩ (R× (Bσ \ Σ)) =
⋃q
j=1graphuj ∩ (R× (Bσ \ Σ)).

(c) For each x ∈ Bσ \ Σ and each Y ∈ spt ‖V ‖ ∩ π−1(x), Θ(‖V ‖, Y ) is a

positive integer and ∑
Y ∈spt ‖V ‖∩π−1(x)

Θ (‖V ‖, Y ) = q.

Proof. In view of the Constancy Theorem ([Sim83, Th. 41.1]), the esti-

mate (5.2), and the easily verifiable fact that in the present codimension 1

setting, the “unordered distance” is the same as the “ordered distance” (that

is, if aj , bj ∈ R are such that a1 ≤ a2 ≤ · · · ≤ aq and b1 ≤ b2 ≤ · · · ≤ bq,

then G({a1, . . . , aq}, {b1, . . . , bq}) ≡ inf
¶»∑q

j=1(aj − bσ(j))2 : σ is a permuta-

tion of {1, . . . , q}
©

=
»∑q

j=1(aj − bj)2), the theorem follows immediately from

[Alm00, Cor. 3.11], which in turn is a fairly straightforward adaptation of the

corresponding argument in [All72] for the case q = 1. �

Remark. It is an easy consequence of the monotonicity of mass ratio

([Sim83, §17.5]) that for each σ ∈ (0, 1), there exists ε = ε(n, σ) ∈ (0, 1)

such that if V is a stationary integral n-varifold on R × B1 with Ê2
V =∫

R×B1
|x1|2 d‖V ‖(X) < ε, then

sup
X∈(R×Bσ)∩spt ‖V ‖

|x1| ≤ CÊ1/n
V ,

where C = C(n) ∈ (0,∞). In particular, under the hypotheses of Theorem 5.1,

we have that

sup
x∈Bσ

|u(x)| ≤ CÊ1/n
V ,

where C = C(n) ∈ (0,∞).

Let q be a positive integer. Let {Vk} be a sequence of n-dimensional

stationary integral varifolds of Bn+1
2 (0) such that

(5.3)

(ωn2n)−1‖Vk‖(Bn+1
2 (0)) < q + 1/2; q − 1/2 ≤ ω−1

n ‖Vk‖(R×B1) < q + 1/2
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for each k = 1, 2, 3, . . . , and Êk → 0, where

(5.4) Ê2
k ≡ Ê2

Vk
=

∫
R×B1

|x1|2 d‖Vk‖(X).

Let σ ∈ (0, 1). By Theorem 5.1, for all sufficiently large k, there exist Lipschitz

functions ujk : Bσ → R, j = 1, 2, . . . , q, with u1
k ≤ u2

k ≤ · · · ≤ u
q
k and

(5.5) Lipujk ≤ 1/2 for each j ∈ {1, 2, . . . , q}

such that

(5.6) spt ‖Vk‖ ∩ (R× (Bσ \ Σk)) =
⋃q
j=1graphujk ∩ (R× (Bσ \ Σk)),

where Σk is the measurable subset of Bσ that corresponds to Σ in Theorem 5.1

when V is replaced by Vk; thus by Theorem 5.1,

(5.7) ‖Vk‖(R× Σk) +Hn(Σk) ≤ CÊ2
k ,

where C = C(n, q, σ) ∈ (0,∞). Set vjk(x) = Ê−1
k ujk(x) for x ∈ Bσ, and write

vk = (v1
k, v

2
k, . . . , v

q
k). Then vk is Lipschitz on Bσ; and by (5.7) and (5.6),

(5.8)

∫
Bσ

|vk|2 ≤ C, C = C(n, q, σ) ∈ (0,∞).

Furthermore,∫
Bσ

(1 + |Duk|2)−1/2|Duk|2 =

∫
Bσ\Σk

(1 + |Duk|2)−1/2|Duk|2

+

∫
Bσ∩Σk

(1 + |Duk|2)−1/2|Duk|2

≤
∫
R×Bσ

|∇Vk x1|2 d‖Vk‖(X) + C1Ê
2
k ≤ C2Ê

2
k ,

where C1 = C1(n, q, σ) ∈ (0,∞), C2 = C2(n, q, σ) ∈ (0,∞) and we have used

(5.5) in the first inequality and (5.2) in the second. By (5.5) again, this implies

that

(5.9)

∫
Bσ

|Dvk|2 ≤ C, C = C(n, q, σ) ∈ (0,∞).

In view of the arbitrariness of σ ∈ (0, 1), by (5.8), (5.9), the preceding remark,

Rellich’s theorem and a diagonal sequence argument, we obtain a function

v ∈W 1,2
loc (B1; Rq)∩L2(B1; Rq) and a subsequence {kj} of {k} such that vkj → v

as j →∞ in L2(Bσ; Rq) and weakly in W 1,2(Bσ; Rq) for every σ ∈ (0, 1).

Definitions.

(1) Coarse blow-ups. Let v ∈ W 1,2
loc (B1; Rq) ∩ L2(B1; Rq) correspond, in

the manner described above, to (a subsequence of) a sequence {Vk} of station-

ary integral n-varifolds of Bn+1
2 (0) satisfying (5.3) and with Êk → 0, where Êk

is as in (5.4). We shall call v a coarse blow-up of the sequence {Vk}.
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(2) The Class Bq . Denote by Bq the collection of all coarse blow-ups of

sequences of varifolds {Vk} ⊂ Sα satisfying (5.3) and for which Êk → 0, where

Êk is as in (5.4).

6. An outline of the proof of the main theorems

Note that if C0 is a stationary cone as in Theorem 3.4, then ΘC0(0) =

q−1/2 or ΘC0(0) = q for some integer q ≥ 2. We prove both Theorem 3.3′ and

Theorem 3.4 simultaneously by induction on q. The case q = 1 of Theorem 3.3′

is a consequence of Allard’s Regularity Theorem. (Note however that setting

q = 1 in the proofs of Lemma 15.1 and Theorem 15.2 given below reproduces

Allard’s argument proving Theorem 3.3′ in case q = 1.) Validity of the cases

Θ(‖C0‖, 0) = 3/2 and Θ(‖C0‖, 0) = 2 of Theorem 3.4 will be justified at the

end of Section 16.

Let q be an integer ≥ 2 and consider the following:

Induction Hypotheses.

(H1) Theorem 3.3′ holds with 1, . . . , (q − 1) in place of q.

(H2) Theorem 3.4 holds whenever ΘC0(0) ∈ {3/2, 2, 5/2, . . . , q}.
The inductive proof of Theorems 3.3′ and 3.4 is obtained by completing,

assuming (H1), (H2), the steps below in the order they are listed:

Step 1: Prove that Bq is a proper blow-up class (Sections 7–14).

Step 2: Prove Theorem 3.3′ (Section 15).

Step 3: Prove Theorem 3.4 when Θ(‖C0‖, 0) = q + 1/2 (Section 16).

Step 4: Prove Theorem 3.4 when Θ(‖C0‖, 0) = q + 1 (Section 16).

Remarks. (1) Let m ∈ {1, 2, . . . , n}. Suppose that C is an m-dimensional

stationary integral cone in Rn+1. Let LC = {Y ∈ spt ‖C‖ : Θ(‖C‖, Y ) =

Θ(‖C‖, 0)}. It is a well-known consequence of the monotonicity formula that

LC is a linear subspace of Rn+1 of dimension ≤ m and that Y ∈ LC if and only

if TY # C = C, where TY : Rn+1 → Rn+1 is the translation TY (X) = X−Y. Let

dC = dimLC. Then, if ΓC is a rotation of Rn+1 such that ΓC(LC) = {0}×RdC ,

we have that ΓC# C = C′ × RdC , where C′ is a stationary integral cone in

Rn+1−dC . Here, given an integer d ∈ {0, 1, 2, . . . , n} and a rectifiable varifold

V ′ of Rn+1−d, we use the notation V ′×Rd to denote the rectifiable varifold V

of Rn+1 with spt ‖V ‖ = spt ‖V ′‖×Rd and the multiplicity function θV defined

by θV (x, y) = θV ′(x) for (x, y) ∈ spt ‖V ′‖ ×Rd, where θV ′ is the multiplicity

function of V ′.

(2) Let q be an integer ≥ 2, and suppose that the induction hypotheses

(H1), (H2) hold. Let V ∈ Sα. Then we have the following:

(a) If 2 ≤ n ≤ 6, then sing V ∩ {Z ∈ spt ‖V ‖ : Θ(‖V ‖, Z) < q} = ∅.
(b) If n ≥ 7, Z ∈ sing V and Θ(‖V ‖, Z) < q, then dC ≤ n − 7 for any

C ∈ Var Tan(V,Z).
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To see this, suppose either (a) or (b) is false. Then we have either

(a′) n ∈ {2, 3, . . . , 6} and there exist a varifold V ∈ Sα and a point Z ∈ sing V

such that Θ(‖V ‖, Z) < q, or

(b′) n ≥ 7 and there exist a varifold V ∈ Sα and a point Z ∈ sing V with

Θ(‖V ‖, Z) < q such that dC > n− 7 for some C ∈ Var Tan(V,Z).

If (a′) holds, fix any C ∈ Var Tan(V,Z). In either case (a′) or (b′), the

induction hypothesis (H1) implies that dC 6= n; for if dC = n, then C = q′|P |
for some integer q′ ∈ {1, 2, . . . , q−1} and some hyperplane P that we may take

without loss of generality to be {0} ×Rn, whence by the definition of tangent

cone and the fact that weak convergence of stationary integral varifolds implies

convergence of mass and convergence in Hausdorff distance of the supports of

the associated weight measures, for any given ε > 0, there exists σ ∈ (0, 1 −
|Z|/2) such that distH(spt ‖ηZ,σ# V ‖ ∩ (R × B1), {0} × B1) < ε, q′ − 1/2 ≤
ω−1
n ‖ηZ,σ# V ‖(R×B1) < q′+1/2 and (ωn2n)−1‖ηZ,σ# V ‖(Bn+1

2 (0)) < q′+1/2.

Choosing ε = ε0(n, α, q′) where ε0 is as in Theorem 3.3′, by (H1), we may apply

Theorem 3.3′ to deduce that near Z, V corresponds to an embedded graph of a

C1,α function over P solving the minimal surface equation, and hence spt ‖V ‖
near Z is an embedded analytic hypersurface, contradicting our assumption

that Z ∈ sing V. Thus dC < n.

Again in either case, the induction hypothesis (H2) implies that dC 6= n−1;

for if dC = n− 1, then spt ‖C‖ is the union of at least three half-hyperplanes

meeting along an (n − 1)-dimensional subspace, and since Θ(‖C‖, 0) < q,

we must have that Θ(‖C‖, 0) ∈ {3/2, 2, 5/2, . . . , q − 1/2}. Again by the def-

inition of tangent cone, we have that for any given ε1 > 0, a number σ ∈
(0, 1− |Z|/2) such that |(ωn2n)−1‖ηZ,σ# V ‖(Bn+1

2 (0))−Θ(‖C‖, 0)| < 1/8 and

distH(spt ‖ηZ,σ# V ‖ ∩ Bn+1
1 (0), spt ‖C‖ ∩ Bn+1

1 (0)) < ε1, so choosing ε1 =
1
2ε(α,

1
8 ,C) where ε is as in Theorem 3.4, we see by hypothesis (H2) that we

have a contradiction to Theorem 3.4.

Thus dC ≤ n − 2. Assume now without loss of generality that LC =

{0}×RdC . Then C = C′×RdC , where C′ is an (n−dC)-dimensional stationary

integral cone of Rn+1−dC with 0 ∈ sing C′. Note that since Θ(‖C‖, Y ) < q for

each Y ∈ spt ‖C‖, in view of hypothesis (H1), it follows from Theorem 3.3′

that reg C satisfies the stability inequality; viz.,
∫

regC |AC|2ζ2 ≤
∫

regC |∇C ζ|2

for each ζ ∈ C1
c (reg C), where AC denotes the second fundamental form of

reg C.

Now by a theorem of J. Simons [Sim68] (see [Sim83, App. B] for a shorter

proof), we know that if 2 ≤ n ≤ 6, there does not exist, in Rn+1, a minimal

hypercone with an isolated singularity and satisfying the stability inequality.

Applying this to C′, we conclude that if sing C = {0} ×RdC , then, in either

of the cases (a′) or (b′), we have a contradiction. Hence there is a point

Z1 ∈ sing C \ {0} ×RdC .
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Let C1 ∈ Var Tan(C, Z1). Then {tZ1 : t ∈ R} × RdC ⊆ LC1 so that

dC1 ≥ dC + 1. Since C1 Bn+1
1 (0) = limk→∞ Vk for some sequence of var-

ifolds {Vk} ⊂ Sα (indeed, Vk = η
Z̃k,σk #

V for some sequence of points ‹Zk
and a sequence of positive numbers σk converging to 0) and Θ(‖C1‖, 0) =

Θ(‖C‖, Z1) < q, by reasoning as above, we see that dC1 ≤ n − 2 and that

reg C1 satisfies the stability inequality. Thus dC ≤ n − 3, and hence, in par-

ticular, n ≥ 3.

By Simons’ theorem again, there exists a point Z2 ∈ sing C1 \LC1 , which

implies (by reasoning as above considering a cone C2 ∈ Var Tan(C1, Z2)) that

dC ≤ n − 4 and n ≥ 4. Repeating this argument twice more in case (a′), we

produce a cone contradicting Simons’ theorem, and three times more in case

(b′), we reach the conclusion dC ≤ n − 7 contrary to the assumption. Thus

both claims (a) and (b) must hold.

(3) By Remark (2) above and, in case n ≥ 7, Almgren’s generalised stratifi-

cation of stationary integral varifolds ([Alm00, p. 224, Th. 2.26 and Rem. 2.28];

see [Sim96, §3.4] for a concise presentation of the argument in the context of

energy minimizing maps), we have the following:

Let q be an integer ≥ 2. If the induction hypotheses (H1), (H2) hold,

V ∈ Sα, Ω ⊆ Bn+1
2 (0) is open and Θ(‖V ‖, Z) < q for each Z ∈ spt ‖V ‖ ∩ Ω,

then Hn−7+γ(sing V Ω) = 0 for each γ > 0 if n ≥ 7 (with sing V Ω

discrete if n = 7) and sing V Ω = ∅ if 2 ≤ n ≤ 6.

We shall now begin, and end in Section 14, the central part of our work,

namely, the proof that for any integer q ≥ 1, the class of functions Bq (as

defined at the end of Section 5) is a proper blow-up class (as defined in Sec-

tion 4).

7. Nonconcentration of tilt-excess

The main result of this section is the estimate of Theorem 7.1(b), which

says that for a stationary integral n-varifold on an open ball in Rn+1 having

small height excess relative to a hyperplane, concentration of points of “top

density” near an (n−1)-dimensional subspace L implies nonconcentration, near

L, of the tilt-excess of the varifold relative to the hyperplane. This estimate

will play a crucial role in the proof that Bq (see the definition at the end of

Section 5) is a proper blow-up class—specifically, in establishing property (B7)

(see Section 4) for Bq. No stability hypothesis is required for the results of this

section.

Theorem 7.1. Let q be a positive integer, τ ∈ (0, 1/16) and µ ∈ (0, 1).

There exists a number ε1 = ε1(n, q, τ, µ) ∈ (0, 1/2) such that if V is a

stationary integral n-varifold of Bn+1
2 (0) with

(ωn2n)−1‖V ‖(Bn+1
2 (0)) < q + 1/2, q − 1/2 ≤ ω−1

n ‖V ‖(R×B1) < q + 1/2
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and ∫
R×B1

|x1|2d‖V ‖(X) ≤ ε1,

then the following hold :

(a) For each point Z = (z1, z′) ∈ spt ‖V ‖ ∩ (R×B9/16) with Θ(‖V ‖, Z) ≥ q,

|z1|2 ≤ C
∫
R×B1

|x1|2 d‖V ‖(X),

where C = C(n, q) ∈ (0,∞).

(b) If L is an (n− 1)-dimensional subspace of {0} ×Rn such that

L ∩B1/2 ⊂ ({Z ∈ spt ‖V ‖ : Θ(‖V ‖, Z) ≥ q})τ ,

then∫
(L)τ∩(R×B1/2)

|∇V x1|2d‖V ‖(X) ≤ Cτ1−µ
∫
R×B1

|x1|2d‖V ‖(X),

where C = C(n, q, µ) ∈ (0,∞). Here for a subset A of Rn+1, we use the

notation (A)τ = {X ∈ Rn+1 : dist(X,A) ≤ τ}.

Remarks. (1) Since Theorem 5.1 holds with tilt-excess∫
R×B1

|∇V x1|2 d‖V ‖(X)

in place of the height excess Ê2
V (see [Alm00, Cor. 3.11]), an examination of

the proof below in fact shows that for any µ ∈ (0, 1), the more refined estimate∫
(L)τ∩(R×B1/2)

|∇V x1|2d‖V ‖(X)

≤ Cτ1−µ
∫
R×B1

|∇V x1|2d‖V ‖(X), C = C(n, q, µ) ∈ (0,∞)

holds under the hypotheses of Theorem 7.1(b). We do not however need it

here.

(2) A similar estimate for height excess relative to certain minimal cones

was established in a “multiplicity 1 setting” in [Sim93]. Indeed, we shall later

need a version of that as well (see Corollaries 10.8 and 16.5).

Proof. The proof is based on the monotonicity formula [Sim83, 17.5],

which implies that, for any Z ∈ spt ‖V ‖ ∩ (R×B9/16),

(7.1)
1

ωn

∫
Bn+1

3/8
(Z)

|(X − Z)⊥|2

|X − Z|n+2
d‖V ‖(X) =

‖V ‖(Bn+1
3/8 (Z))

ωn(3/8)n
−Θ(‖V ‖, Z).

Write ÊV =
»∫

R×B1
|x1|2 d‖V ‖(X). Assuming ε1 = ε1(n, q) ∈ (0,∞) is

sufficiently small to guarantee the validity of its conclusions, Theorem 5.1 with
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σ = 15/16 implies that

‖V ‖(Bn+1
3/8 (Z)) ≤ ‖V ‖(R×B3/8(z′))

= ‖V ‖(R× (B3/8(z′) \ Σ)) + ‖V ‖(R× (B3/8(z′) ∩ Σ))

≤
q∑
j=1

∫
B3/8(z′)\Σ

»
1 + |Duj |2dHn + ‖V ‖(R× Σ)

≤
q∑
j=1

∫
B3/8(z′)

»
1 + |Duj |2dHn + CÊ2

V ,

where C = C(n, q) ∈ (0,∞), and uj , j = 1, 2, . . . , q, Σ are as in Theorem 5.1;

if, additionally, Θ(‖V ‖, Z) ≥ q, it follows that

‖V ‖(Bn+1
3/8 (Z))

ωn(3/8)n
−Θ(‖V ‖, Z) ≤

‖V ‖(Bn+1
3/8 (Z))

ωn(3/8)n
− q

(7.2)

≤
q∑
j=1

1

ωn(3/8)n

∫
B3/8(z′)

(»
1 + |Duj |2 − 1

)
dHn + CÊ2

V

≤ C
q∑
j=1

∫
B3/8(z′)

|Duj |2 dHn + CÊ2
V

≤ C
q∑
j=1

∫
B3/8(z′)\Σ

|Duj |2 dHn + C
q∑
j=1

∫
B3/8(z′)∩Σ

|Duj |2 dHn + CÊ2
V

≤ C
q∑
j=1

∫
B3/8(z′)\Σ

|Duj |2 dHn + CÊ2
V

≤ C
∫
R×B3/8(z′)

|∇V x1|2 d‖V ‖(X) + CÊ2
V ≤ CÊ2

V ,

where C = C(n, q) ∈ (0,∞), and in the last inequality we have used (5.2).

Thus we deduce from (7.1) that

(7.3)

∫
Bn+1

3/8
(Z)

|(X − Z)⊥|2

|X − Z|n+2
d‖V ‖(X) ≤ CÊ2

V

for each Z∈spt‖V ‖∩(R×B9/16) with Θ(‖V ‖, Z)≥q, where C=C(n, q)∈(0,∞).

To prove the assertion of part (a) of the theorem, we estimate the left-hand

side of (7.1) from below as follows:
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∫
Bn+1

1/4
(Z)

|(X − Z)⊥|2

|X − Z|n+2
d‖V ‖(X)

(7.4)

≥ 4n+2
∫
Bn+1

1/4
(Z)

∣∣∣∣∣∣
n+1∑
j=2

((xj − zj)e⊥j + (x1 − z1)e⊥1

∣∣∣∣∣∣
2

d‖V ‖(X)

≥ 1

2
4n+2

∫
Bn+1

1/4
(Z)
|x1 − z1|2|e⊥1 |2d‖V ‖(X)− 4n

∫
Bn+1

1/4
(Z)

n+1∑
j=2

|e⊥j |2d‖V ‖(X)

=
1

2
4n+2

∫
Bn+1

1/4
(Z)
|x1 − z1|2|e⊥1 |2d‖V ‖(X)− 4n

∫
Bn+1

1/4
(Z)
|∇V x1|2d‖V ‖(X)

≥ 1

2
4n+2

∫
Bn+1

1/4
(Z)
|x1 − z1|2|e⊥1 |2d‖V ‖(X)− CÊ2

V

≥ 4n+1|z1|2
∫
Bn+1

1/4
(Z)
|e⊥1 |2d‖V ‖(X)− CÊ2

V

≥ 4n+1|z1|2
q∑
j=1

∫
B1/8(z′)\Σ

(1 + |Duj |2)−1dHn − CÊ2
V ≥ C|z1|2 − CÊ2

V ,

where for ‖V ‖, almost every X ∈ spt ‖V ‖, e⊥j (X) is the orthogonal projec-

tion of ej onto the orthogonal complement of the approximate tangent plane

Tan(‖V ‖, X) and C = C(n, q) ∈ (0,∞). Note that we have used the fact

that |Duj | ≤ 1/2 almost everywhere and Hn(B1/8(z′) \Σ) ≥ 1
2H

n(B1/8(z′)) =
1
2ωn(1

8)n, which hold by Theorem 5.1 provided ε1 = ε1(n, q) ∈ (0, 1/2) is suffi-

ciently small. The estimate of (a) readily follows from this and (7.3).

To see (b), let Z = (z1, z′) ∈ spt ‖V ‖ ∩ (R×B9/16) be an arbitrary point

and choose ζ ∈ C1
c (Rn+1) such that ζ ≡ 1 on Bn+1

3/8 (0), ζ ≡ 0 in Rn+1\Bn+1
1/2 (0),

0 ≤ ζ ≤ 1 and |Dζ| ≤ 16 everywhere. For µ ∈ (0, 1), taking

ψ(X) = ζ2(X − Z)|X − Z|−n−2+µ|x1 − z1|2(X − Z)

in the first variation formula (3.1) (a valid choice as shown by an easy cut-off

function argument) and computing and estimating as in [Sim93, p. 616], we

deduce that∫
Bn+1

3/8
(Z)

|x1 − z1|2

|X − Z|n+2−µd‖V ‖(X)

≤ C
∫ Ç

ζ2(X − Z)
|(X − Z)⊥|2

|X − Z|n+2−µ +
|x1 − z1|2

|X − Z|n−µ
|∇V ζ(X − Z)|2

å
d‖V ‖(X),
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where C = C(n, µ) ∈ (0,∞). Since sptDζ ⊂ Bn+1
1/2 (0) \Bn+1

3/8 (0), this together

with (7.3) and part (a) implies that∫
Bn+1

3/8
(Z)

|x1 − z1|2

|X − Z|n+2−µd‖V ‖(X) ≤ C
∫
R×B1

|x1|2d‖V ‖(X)

for every Z = (z1, z′) ∈ spt ‖V ‖ ∩ (R × B9/16) with Θ(‖V ‖, Z) ≥ q, where

C = C(n, q, µ) ∈ (0,∞); in particular,∫
Bn+1

4τ (Z)
|x1 − z1|2d‖V ‖(X) ≤ Cτn+2−µ

∫
R×B1

|x1|2d‖V ‖(X)

for each Z = (z1, z′) ∈ spt ‖V ‖ ∩ (R × B9/16) with Θ(‖V ‖, Z) ≥ q and each

τ ∈ (0, 1/16). In view of the hypothesis

L ∩B1/2 ⊂ ({Z ∈ spt ‖V ‖ : Θ(‖V ‖, Z) ≥ q})τ ,

the preceding estimate implies that for each Y ∈ L∩B1/2, there exists z1 ∈ R

such that∫
Bn+1

2τ (Y )
|x1 − z1|2d‖V ‖(X) ≤ Cτn+2−µ

∫
R×B1

|x1|2d‖V ‖(X).

This in turn implies by (5.1) (applied with η(z1,0),1 #V in place of V and a

choice of appropriate test function ζ̃) that for each Y ∈ L ∩B1/2,∫
Bn+1

3τ/2
(Y )
|∇V x1|2d‖V ‖(X) ≤ Cτn−µ

∫
R×B1

|x1|2d‖V ‖(X).

Since we may cover the set (L)τ ∩ (R × B1/2) by N balls Bn+1
3τ/2(Yj) with

Yj ∈ L ∩ B1/2 for j = 1, 2, . . . , N and with N ≤ Cτ1−n, C = C(n), it follows

that ∫
(L)τ∩(R×B1/2)

|∇V x1|2d‖V ‖(X) ≤ Cτ1−µ
∫
R×B1

|x1|2d‖V ‖(X)

with C = C(n, q, µ) ∈ (0,∞), as required. �

8. Properties of coarse blow-ups: Part I

Recall from Section 4 the defining properties (B1)–(B7) of a proper blow-

up class B, and note that it follows from the discussion in Section 5 that the

class B = Bq satisfies properties (B1) and (B2). In this section, we verify that

Bq also satisfies properties (B3)–(B6).

Let v ∈ Bq be arbitrary. By the definition of Bq, there exists, for each

k = 1, 2, 3, . . . , a stationary integral varifold Vk ∈ Sα such that the following are

true: (ωn2n)−1‖Vk‖(Bn+1
2 (0)) < q+1/2; q−1/2 ≤ ω−1

n ‖Vk‖(R×B1) < q+1/2;

Ê2
k ≡

∫
R×B1

|x1|2d‖Vk‖(X) → 0 as k → ∞; for each σ ∈ (0, 1) and each suffi-

ciently large k depending on σ, if ujk : Bσ → R are the functions corresponding

to uj , j = 1, 2, . . . , q, and Σk ⊂ Bσ is the measurable set corresponding to Σ
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in Theorem 5.1 taken with Vk in place of V, then, u1
k ≤ u2

k ≤ · · · ≤ uqk; u
j
k is

Lipschitz with

(8.1) Lipujk ≤ 1/2 for each j ∈ {1, 2, . . . , q};

spt ‖Vk‖ ∩ (R× (Bσ \ Σk)) =
⋃q
j=1graphujk ∩ (R× (Bσ \ Σk));

(8.2) ‖Vk‖(R× Σk) +Hn(Σk) ≤ CÊ2
k ,

where C = (n, q, σ) ∈ (0,∞); and Ê−1
k ujk → vj for each j = 1, 2, . . . , q, where

the convergence is in L2(Bσ) and weakly in W 1,2(Bσ).

To verify that v satisfies property (B3), note that by (3.1), for each k and

each function ζ ∈ C1
c (Bσ), we have that

(8.3)

∫
∇Vk x1 · ∇Vk ζ̃ d‖Vk‖(X) = 0,

where ζ̃ is any function in C1
c (R × Bσ) such that ζ̃ ≡ ζ1 in a neighborhood

of spt ‖Vk‖ ∩ (R × Bσ), where ζ1(X) is defined for X = (x1, x′) ∈ R × Bσ by

ζ1(x1, x′) = ζ(x′). Since x1 = ũjk(X) for ‖Vk‖ almost every X = (x1, x′) ∈
graphujk ∩ spt ‖Vk‖, where ũjk(x

1, x′) = ujk(x) for (x1, x′) ∈ R×Bσ, we deduce

from (8.3) that
q∑
j=1

∫
Bσ

(1 + |Dujk|
2)−1/2Dujk ·Dζ =−

∫
R×(Bσ∩Σk)

∇Vk x1 · ∇Vk ζ̃ d‖Vk‖(X)

+
q∑
j=1

∫
Bσ∩Σk

(1 + |Dujk|
2)−1/2Dujk ·Dζ,

which can be rewritten as
q∑
j=1

∫
Bσ

Dujk ·Dζ = −
∫
R×(Bσ∩Σk)

∇Vk x1 · ∇Vk ζ̃ d‖Vk‖(X)(8.4)

+
q∑
j=1

∫
Bσ∩Σk

(1 + |Dujk|
2)−1/2Dujk ·Dζ + Fk,

where

|Fk| =

∣∣∣∣∣∣
q∑
j=1

∫
Bσ

(1 + |Dujk|
2)−1/2(1 + (1 + |Dujk|

2)1/2)−1|Dujk|
2Dujk ·Dζ

∣∣∣∣∣∣
(8.5)

≤ sup |Dζ|
∫
R×Bσ

|∇Vk x1|2 d‖Vk‖(X)

+ sup |Dζ|
q∑
j=1

∫
Bσ∩Σk

(1 + |Dujk|
2)−1/2(1 + (1 + |Dujk|

2)1/2)−1|Dujk|
3

≤ sup |Dζ|
Ä
CÊ2

k + qHn(Σk)
ä
.
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The last inequality in (8.5), where C = C(n, σ) ∈ (0,∞), follows from (5.2)

and (8.1).

Dividing both sides of (8.4) by Êk and letting k → ∞, we deduce, using

(8.1), (8.2) and (8.5), that
q∑
j=1

∫
Bσ

Dvj ·Dζ = 0

for any ζ ∈ C1
c (Bσ). Since σ ∈ (0, 1) is arbitrary, this implies that ∆ va = 0 in

B1, establishing property (B3) for Bq.
Next we verify that Bq satisfies properties (B5 I), (B5 II), (B6) and (B5 III),

in that order.

Let z ∈ B1, σ ∈ (0, (1 − |z|)] and γ be an orthogonal rotation of Rn,

and note that ṽz,σ ≡ ‖v(z+σ(·))‖−1
L2(B1)v(z+σ(·)) is the coarse blow-up of the

sequence {η(0,z),σ# Vk}, and v◦γ is the coarse blow-up of the sequence {γ̃# Vk},
where γ̃ : Rn+1 → Rn+1 is the orthogonal rotation defined by γ̃(x1, x′) =

(x1, γ(x′)). Thus Bq satisfies properties (B5 I) and (B5 II).

To verify that Bq satisfies property (B6), let {v`}∞`=1 be a sequence of

elements in Bq, and for each ` = 1, 2, . . . , let {V `
k }∞k=1 ⊂ Sα be a sequence

whose coarse blow-up is v`. Choose, for each ` = 1, 2, . . . , a positive inte-

ger k` such that k1 < k2 < k3 < · · · , ÊV `
k`

< min{`−1, ε0(n, q, 1 − `−1)},

where ε0 is as in Theorem 5.1, and ‖Ê−1
V `
k`

u`,k` − v`‖L2(B1−`−1 ) < `−1, where

u`,k` = (u1
`,k`

, u2
`,k`

, . . . , uq`,k`) : B1−`−1 → Rq is the Lipschitz function (with

Lipschitz constant of each component function ≤ 1/2) corresponding to u =

(u1, u2, . . . , uq) of Theorem 5.1 taken with V `
k`

in place of V and with σ =

1 − `−1. That such a choice exists follows from the definition of coarse blow-

up. Note also that it follows from (5.8) and (5.9) that for each σ ∈ (0, 1) and

all sufficiently large `,
∫
Bσ
|v`|2 + |Dv`|2 < C, where C = C(n, q, σ) ∈ (0,∞)

is independent of `. Let v ∈ Bq be the coarse blow-up of an appropriate sub-

sequence {V `′
k`′
} of the sequence {V `

k`
}. It is then straightforward to check,

after passing to a subsequence of {`′} without changing notation, that for each

σ ∈ (0, 1), v`′ → v in L2(Bσ) and weakly in W 1,2(Bσ).

In order to verify that Bq satisfies property (B5 III), note first that if y ∈ R

is a constant and v − y 6≡ 0 in B1, then ‖v − y‖−1
L2(B1)(v − y) ∈ Bq, where we

have used the notation v − y = (v1 − y, v2 − y, . . . , vq − y). To check this,

note that v(σ(·)) − y 6≡ 0 for all sufficiently large σ ∈ (0, 1) and that for any

such σ, ‖v(σ(·))−y‖−1
L2(B1)((v(σ(·))−y) is the coarse blow-up of the sequence

{τk# ησ# Vk}, where τk : Rn+1→Rn+1 is the translation X 7→ X − (Êky, 0).

Thus ‖v(σ(·)) − y‖−1
L2(B1) (v(σ(·))− y) ∈ Bq for all sufficiently large σ ∈ (0, 1),

and hence it follows from property (B6) that ‖v − y‖−1
L2(B1)(v−y) ∈ Bq as

claimed.
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Next note that if L : Rn → R is a linear function and v − L 6≡ 0 in B1,

then ‖v − L‖−1
L2(B1)(v − L) ∈ Bq, where, v − L = (v1 − L, v2 − L, . . . , vq − L).

To check this, assume without loss of generality (in view of property (B5 II))

that L(x) = λx2 for some λ ∈ R, and note that for sufficiently large σ ∈
(0, 1), ‖v(σ(·))−σL‖−1

L2(B1) (v(σ(·))− σL) is the coarse blow-up of the sequence

{Γk# ησ# Vk}, where Γk : Rn+1 → Rn+1 is the rotation fixing {0} × Rn−1

pointwise and mapping the unit normal νk =
Ä
1 + Ê2

kλ
2
ä−1/2 Ä

1,−Êkλ, 0
ä

to

the hyperplane Pk ≡ graph ÊkL to e1. Thus ‖v(σ(·))−σL‖−1
L2(B1) (v(σ(·))− σL)

∈ Bq for all sufficiently large σ ∈ (0, 1), and it follows from property (B6) that

‖v − L‖L2(B1)(v − L) ∈ Bq as claimed. We deduce that Bq satisfies property

(B5 III) by applying the above facts with y = va(0) and with the linear function

L defined by L(x) = ‖v − va(0)‖−1
L2(B1)Dva(0) · x for x ∈ Rn. (Note that

v − va(0) 6≡ 0 in B1 or else v − `v ≡ 0 in B1, contrary to the hypothesis of

(B5 III), where `v is as in the statement of (B5 III).) Note that our argument

shows more generally that

(8.6) v ∈ Bq, v − `v, z 6≡ 0 in B1 =⇒ ‖v − `v, z‖−1
L2(B1) (v − `v, z) ∈ Bq

for each z ∈ B1, where `v, z(x) = va(z) + Dva(z) · (x − z) and v − `v, z =

(v1 − `v, z, . . . , vq − `v, z).
Finally in this section, we verify that Bq satisfies property (B4) with a

constant C = C(n, q) ∈ (0,∞) to be specified momentarily. First note that

for any stationary integral n-varifold V on Bn+1
2 (0) with ÊV sufficiently small

and satisfying the hypotheses of Theorem 5.1 taken with σ = 15/16 and for

any Z = (z1, z′) ∈ spt ‖V ‖ ∩Bn+1
1/8 (0) with Θ(‖V ‖, Z) ≥ q, we have that

q∑
j=1

∫
B1/2(z′)\Σ

Ç
R2
z

(uj − z1)2 +R2
z

ån+2
2

R2−n
z(8.7)

·
Ç
∂
(
(uj − z1)/Rz

)
∂ Rz

å2

dHn(x) ≤ C2Ê
2
V ,

where Rz(x) = |x − z| for x ∈ Rn and C2 = C2(n, q) ∈ (0,∞); the set

Σ ⊂ B15/16 here and the functions uj , j = 1, 2, . . . , q are as in Theorem 5.1

taken with σ = 15/16. To see this, note that by estimating as in (7.3), it follows

that ∫
Bn+1

3/4
(Z)

|(X − Z)⊥|2

|X − Z|n+2
d‖V ‖(X) ≤ C2Ê

2
V , C2 = C2(n, q) ∈ (0,∞),
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while∫
Bn+1

3/4
(Z)

|(X − Z)⊥|2

|X − Z|n+2
d‖V ‖(X)

≥
∫
R×(B1/2(z′)\Σ)

|(X − Z)⊥|2

|X − Z|n+2
d‖V ‖(X)

≥ 1

2

q∑
j=1

∫
B1/2(z′)\Σ

(
(x′ − z′) ·Duj(x′)− (uj(x′)− z1)

)2
((uj(x′)− z1)2 + |x′ − z′|2)

n+2
2

dHn(x′)

=
1

2

q∑
j=1

∫
B1/2(z′)\Σ

Ç
R2
z′

(uj − z1)2 +R2
z′

ån+2
2

R2−n
z′

Ç
∂
(
(uj − z1)/Rz′

)
∂ Rz′

å2

dHn(x′).

Now let v ∈ Bq, and let z ∈ B1 be such that (B4 I) with C = C2, where

C2 = C2(n, q) is as in (8.7), fails. By (8.6), ṽ ≡ ‖v− `v, z‖−1
L2(B1)(v− `v, z) ∈ Bq.

Let Vk ∈ Sα be such that ṽ is the coarse blow-up of {Vk} . We claim that then

there exists σ1 > 0 such that for all sufficiently large k,

(8.8) Z ∈ spt ‖Vk‖ ∩ (R×Bσ1(z)) =⇒ Θ(‖Vk‖, Z) < q.

If not, then there would exist, for each positive integer `, a positive integer {k`}
with k1 < k2 < k3 < · · · and a point Z` = (z1

` , z
′
`) ∈ spt ‖Vk`‖ ∩ (R×B1/`(z))

such that Θ(‖Vk`‖, Z`) ≥ q. Fix any ρ ∈ (0, 3
8(1 − |z|)]. Applying (8.7) with

ηZ`,ρ# Vk` in place of V and 0 in place of Z, we then have, after changing

variables, that for all sufficiently large `,

q∑
j=1

∫
Bρ/2(z′

`
)\Σk`

Ñ
R2
z′
`

(ujk`−z
1
` )2+R2

z′
`

én+2
2

R2−n
z′
`

Ñ
∂
Ä
(ujk` − z

1
` )/Rz′

ä̀
∂ Rz′

`

é2

dHn(x)

(8.9)

≤ C2 ρ
−n−2

∫
R×Bρ(z′

`
)
|x1|2d‖Vk`‖(X).

Now for all sufficiently large ` depending on ρ, ‖Vk`‖(R×Bρ/16(z′`)) ≥ Cρn
for a suitable constant C = C(n) ∈ (0,∞), so there exists a point Y` =

(y1
` , y
′
`) ∈ spt ‖Vk`‖ ∩ (R× (Bρ/16(z′`)) such that

(8.10) |y1
` |2 ≤ Cρ−n

∫
R×Bρ/16(z′

`
)
|x1|2 d‖Vk`‖(X),

where C = C(n) ∈ (0,∞). Applying Theorem 7.1(a) with ‹V = ηY`,ρ/2 # Vk`
in place of V and ‹Z = (ρ/2)−1(Z` − Y`) in place of Z (noting that ‹Z ∈
spt ‖‹V ‖ ∩ (R×B1/8) with Θ(‖‹V ‖, ‹Z) ≥ q), we deduce, using also (8.10), that

(8.11) |z1
` |2 ≤ Cρ−n

∫
R×B3ρ/4(z′

`
)
|x1|2d‖Vk`‖(X)
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for all sufficiently large `, where C = C(n, q) ∈ (0,∞). Dividing both sides of

(8.9) by Ê2
k`

, and letting ` → ∞, we conclude, using (8.11) and the fact that

supX∈spt ‖Vk`‖∩(R×B3/4)) |x1| → 0 as `→∞, that

(8.12)
q∑
j=1

∫
Bρ/2(z)

R2−n
z

Ç
∂
(
(ṽj − y)/Rz

)
∂ Rz

å2

≤ C2 ρ
−n−2

∫
Bρ(z)

|ṽ|2

for some y ∈ R and each ρ ∈ (0, 3
8(1− |z|)]. (Note that in justifying the above,

we have also used the fact that∫
Bρ/2(z)

(Dṽj · (x− z))2

|x− z|n+2

≤ lim inf
`→∞

∫
Bρ/2(z′

k`
)\Σk`

Ñ
R2
z′
`

(ujk` − z
1
` )2 +R2

z′
`

én+2
2

(Dvjk` · (x− z))
2

|x− z|n+2

for each j = 1, 2, . . . , q. To see this, note that Dvjk` → Dṽj locally weakly in L2,

which implies that g`Dv
j
k`
→ Dṽj weakly in L2(Bρ/2(z)) for any sequence of

bounded measurable functions g` with g` → 1 almost everywhere on Bρ/2(z);

thus for any τ ∈ (0, ρ/4),∫
Bρ/2(z)\Bτ (z)

(Dṽj · (x− z))2

|x− z|n+2

= lim
`→∞

∫
Bρ/2(z)\Bτ (z)

g`
Dvjk` · (x− z)(Dṽ

j · (x− z))
|x− z|n+2

;

taking g` =

(
R2
z′
`

(uj
k`
−z1

`
)2+R2

z′
`

)n+2
4 √

χG` where G` = Bρ/2(z′`) \ Σk` and us-

ing Cauchy–Schwarz inequality and letting τ → 0, we deduce the desired

inequality from this.) Since by the triangle inequality (8.12) implies that∫
Bρ/2(z)R

2−n
z

Å
∂ ((ṽa−y)/Rz)

∂ Rz

ã2

< ∞, it follows that y = ṽa(z) = 0. But this

contradicts our assumption that property (B4 I) fails for v, leading us to the

conclusion that (8.8) must hold for all sufficiently large k.

By Remark 3 of Section 6 and (8.8), it follows that for all sufficiently

large k, Hn−7+γ(sing Vk ∩ (R × Bσ1(z))) = 0 for every γ > 0 if n ≥ 7 and

sing Vk ∩ (R × Bσ1(z)) = ∅ if 2 ≤ n ≤ 6, so we may apply Theorem 3.5 and

standard elliptic theory to conclude that

Vk (R×Bσ1/2(z)) =
q∑
j=1

|graphujk|,
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where ujk : Bσ1/2(z)→ R are C2 functions satisfying

sup
Bσ1/2(z)

q∑
j=1

|Dujk|+ |D
2 ujk| ≤ CÊk

and solving the minimal surface equation on Bσ1/2(z), where C = C(n, q, σ) ∈
(0,∞). This readily shows that ∆ ṽj = 0 on Bσ1/2(z) for each j = 1, 2, . . . , q,

establishing property (B4) for Bq.

Remarks. (1) The argument leading to (8.12) proves the following:

Let Ω be an open subset of B3/4. If v ∈ Bq and {Vk} ⊂ Sα is a sequence

whose coarse blow-up is v (in the sense described in Section 5) and if for

infinitely many k, there are points Zk∈spt ‖Vk‖∩(R×Ω) with Θ(‖Vk‖, Zk)≥q,
then there exists a point z ∈ Ω such that

q∑
j=1

∫
Bρ/2(z)

R2−n
z

Ç
∂
(
(vj − va(z))/Rz

)
∂ Rz

å2

≤ C2 ρ
−n−2

∫
Bρ(z)

|v|2

for each ρ ∈ (0, 3
8(1− |z|)].

(2) Let q be an integer ≥ 2. There exist constants η′ = η′(n, q, α) ∈ (0, 1)

and δ′ = δ′(n, q, α) ∈ (0, 1) such that the following is true: If the induc-

tion hypotheses (H1), (H2) hold, V ∈ Sα, (ωn2n)−1‖V ‖(Bn+1
2 (0)) < q + 1/2,

ω−1
n ‖V ‖(R× B1) < q + 1/2,

∫
R×B1

dist2(X,P) d‖V ‖(X) < δ′ for some union

P ⊂ Rn+1 of finitely many (distinct) affine hyperplanes disjoint in R × B1

with distH(P ∩ (R × B1), {0} × B1) < δ′ and, writing A for the set of affine

hyperplanes of Rn+1, if∫
R×B1

dist2(X,P) d‖V ‖(X) < η′ inf
L∈A

∫
R×B1

dist2(X,L) d‖V ‖(X),

then

(a) P consists of at least two affine hyperplanes ;

(b) {Z ∈ spt ‖V ‖ ∩ (R×B3/4) : Θ(‖V ‖, Z) ≥ q} = ∅;
(c) there exist an integer p with 2 ≤ p ≤ q, positive integers aj ≤ q − 1, affine

hyperplanes P ij ⊂ P, C2 functions uij : P 1
j ∩ (R × B3/4) → (P 1

j )⊥ with

u1
j · e1 ≤ · · · ≤ u

aj
j · e1 for 1 ≤ j ≤ p, 1 ≤ i ≤ aj and u

aj−1

j−1 · e1 < u1
j · e1 for

2 ≤ j ≤ p such that ‖uij‖2C2(P 1
j ∩(R×B3/4))

< C
∫
R×B1

dist2(X,P) d‖V ‖(X),

V (R×B5/8) =
∑p
j=1 Vj , where Vj =

∑aj
i=1 |graphuij ∩ (R×B5/8)|, and∫

R×B5/8

dist2(X,P) d‖V ‖(X) =
p∑
j=1

∫
R×B5/8

dist2(X,Pj) d‖Vj‖(X),

where Pj =
⋃aj
i=1P

i
j . Here graphuij = {X+uij(X) : X ∈ Pj ∩ (R×B3/4)}.
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To see this, argue by contradiction: Were the assertion false, we can find a

sequence Vk ∈ Sα with (ωn2n)−1‖Vk‖(Bn+1
2 (0)) < q+1/2, ω−1

n ‖Vk‖(R×B1) <

q+ 1/2 and for each k, affine hyperplanes P 1
k , . . . , P

nk
k with P ik ∩P

j
k ∩ (R×B1)

= ∅ for 1 ≤ i < j ≤ nk and distH(Pk ∩ (R × B1), {0} × B1) → 0 as k → ∞
where Pk =

⋃nk
j=1P

j
k , such that

∫
R×B1

dist2(X,Pk) d‖Vk‖(X)→ 0 and

(8.13)Ç
inf
L∈A

∫
R×B1

dist2(X,L) d‖Vk‖(X)

å−1 ∫
R×B1

dist2(X,Pk) d‖Vk‖(X)→ 0

and yet, at least one of the conclusions (a)–(c) with Vk in place of V and Pk

in place of P fails. Note that infL∈A
∫
R×B1

dist2(X,L) d‖Vk‖(X) → 0, and

choose Lk ∈ A such that∫
R×B1

dist2(X,Lk) d‖Vk‖(X) <
3

2
inf
L∈A

∫
R×B1

dist2(X,L) d‖Vk‖(X).

Noting then that Lk → {0} × Rn, choose rigid motions Γk : Rn+1 → Rn+1

such that Γk → Identity and Γk(Lk) = {0} ×Rn, and let v = (v1, . . . , v`) ∈
W 1,2

loc (B1; Rp) ∩ L2(B1; Rp), with v1 ≤ v2 · · · ≤ v`, be the coarse blow-up,

as described in Section 5, of (a suitable subsequence of) the sequence {‹Vk =

η0,13/16 # Γk# Vk} relative to {0} ×Rn, where ` is a positive integer ≤ q. Let

p ≤ ` be the number of distinct functions in the set {v1, . . . , v`}, denoted

ṽ1, . . . , ṽp with the labelling so chosen that ṽ1 ≤ · · · ≤ ṽp. Then by (8.13), for

each k, there exists {‹P 1
k ,
‹P 2
k , . . . ,

‹P pk } ⊂ {P 1
k , P

2
k , . . . , P

nk
k } such that, writing

Γk‹P ik = graph p̃ik for an affine function p̃ik : Rn → R with labelling so chosen

that p̃1
k < · · · < p̃pk in R × B1, we have that ṽj = limk→∞

Ä
Êk
ä−1

p̃jk for

1 ≤ j ≤ p. Thus each vj is affine, and by (8.13) again, p ≥ 2 and ṽp > ṽ1 in

B1. It then follows from Remark (1) above (taken with ` in place of q) that

{Z ∈ spt ‖Vk‖ ∩ (R × B3/4) : Θ(‖Vk‖, Z) ≥ `} = ∅ for sufficiently large k.

The rest of the conclusions with Vk in place of V and Pk in place of P now

follow, for all sufficiently large k, from Remark 3 of Section 6, Theorem 3.5

and standard elliptic estimates, contrary to the assumption that at least one

of those conclusions must fail for each k.

(3) Let q be an integer ≥ 2. There exists a constant δ = δ(n, q, α) ∈ (0, 1)

such that the following is true: If the induction hypotheses (H1), (H2) hold,

V ∈ Sα, (ωn2n)−1‖V ‖(Bn+1
2 (0)) < q + 1/2, ω−1

n ‖V ‖(R×B1) < q + 1/2 and∫
R×B1

dist2(X,P) d‖V ‖(X) < δ

for some union P ⊂ Rn+1 of at most q affine hyperplanes disjoint in R× B1

with distH(P ∩ (R×B1), {0} ×B1) < δ, then either

(a) {Z ∈ spt ‖V ‖∩ (R×B7/8) : Θ(‖V ‖, Z) ≥ q} = ∅ and there exist a positive

integer ` with 1 ≤ ` ≤ q, distinct affine hyperplanes P1, P2, . . . , P` ⊂ P,
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positive integers q1, q2, . . . , q` with
∑`
k=1 qk ≤ q and C2 functions ujk :

Pk ∩ (R×B3/4)→ P⊥k with

sup
Pk∩(R×B3/4)

|ujk|
2 + |Dujk|

2 ≤ C
∫
R×B1

dist2(X,P) d‖V ‖(X)

for 1 ≤ k ≤ `, 1 ≤ j ≤ qk where C = C(n), such that

V (R×B1/2) =
∑̀
k=1

qk∑
j=1

|graphujk ∩ (R×B1/2)|;

or

(b) {Z ∈ spt ‖V ‖ ∩ (R × B7/8) : Θ(‖V ‖, Z) ≥ q} 6= ∅, ω−1
n ‖V ‖(R × B1) ≥

q − 1/2, and there exist an affine hyperplane P ⊂ P, a measurable subset

Σ ⊂ P∩(R×B13/28) Lipschitz functions u1, u2, . . . , uq : P∩(R×B13/28)→
P⊥ with Lip(uj) ≤ 9/16 for each j ∈ {1, 2, . . . , q} such that

Hn(Σ) + ‖V ‖(CP (Σ)) +
q∑
j=1

∫
P∩(R×B13/28)\Σ

|uj |2 + |Duj |2

≤ C
∫
R×B1

dist2(X,P) d‖V ‖(X)

and

V ((R×B13/28) \ CP (Σ)) =
q∑
j=1

|graphuj ∩ ((R×B13/28) \ CP (Σ))|,

where CP (Σ) = {X ∈ Rn+1 : πP (X) ∈ Σ} with πP denoting the orthogonal

projection of Rn+1 onto P ; furthermore, in this case we have that for each

j ∈ {1, 2, . . . , q},
sup
B13/28

|uj | ≤ Cδ1/2n,

where C = C(n) ∈ (0,∞).

To see this, let η′ = η′(n, q, α) ∈ (0, 1) and δ′ = δ′(n, q, α) ∈ (0, 1) be the

constants as in Remark (2) above. Let ε0 = ε0(n, q, α, 3/4) ∈ (0, 1) be the

constant as in Theorem 5.1. Let the hypotheses of the assertion of Remark (3)

be satisfied for sufficiently small δ ∈ (0, η′δ′ε0], and note that it follows from

the Constancy Theorem ([Sim83, Th. 41.1]) that if δ = δ(n, q, α) ∈ (0, 1) is

sufficiently small, then there exists an integer m with 1 ≤ m ≤ q such that

ω−1
n ‖V ‖(Bn+1

1 (0)) < m+ 1/2 and m− 1/2 ≤ ω−1
n 2n‖V ‖(R×B1/2) < m+ 1/2.

Consider the two alternatives:

(A)
∫
R×B1

dist2(X,P) d‖V ‖(X) < η′ infL∈A
∫
R×B1

dist2(X,L) d‖V ‖(X).

(B)
∫
R×B1

dist2(X,P) d‖V ‖(X) ≥ η′ infL∈A
∫
R×B1

dist2(X,L) d‖V ‖(X).
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In case of alternative (B), choose L̃ ∈ A such that∫
R×B1

dist2(X, L̃) d‖V ‖(X) <
3

2
inf
L∈A

∫
R×B1

dist2(X,L) d‖V ‖(X)

and note, by Theorem 5.1, that if δ = δ(n, q, α) ∈ (0, 1) is sufficiently small,

then dist2
H(L̃ ∩ (R × B1), P ∩ (R × B1)) ≤ C

∫
R×B1

dist2(X,P) d‖V ‖(X) for

some affine hyperplane P ⊂ P, where C = C(n) ∈ (0,∞). Now if m = q and

{Z ∈ spt ‖V ‖ ∩ (R × B3/4) : Θ(‖V ‖, Z) ≥ q} 6= ∅ (in case (B)), the assertion

with conclusion (b) follows, for sufficiently small δ = δ(n, q, α) ∈ (0, 1), by

applying Theorem 5.1 (with η1/2 # V in place of V ) and using the estimate

(5.2) as well as the estimate of the remark following Theorem 5.1, whereas if

m = q and {Z ∈ spt ‖V ‖ ∩ (R × B3/4) : Θ(‖V ‖, Z) ≥ q} = ∅, the assertion

with conclusion (a) with ` = 1 and q1 = q follows from Remark 3 of Section 6,

Theorem 3.5 and standard elliptic estimates; if m ≤ q − 1, hypothesis (H1)

implies that conclusion (a) holds.

In case of alternative (A), we argue by induction on q to see that the

assertion with conclusion (a) holds: If q = 2, the desired conclusion follows

directly from Remark (2)(c) above. For general q, let Vj , Pj , aj be as in

Remark 2(c) and note that aj ≤ q − 1. For each fixed j, consider the same

two alternatives (A) and (B) as above but with Vj , Pj in place of V , P. In

case alternative (B) holds (with Vj , Pj in place of V , P), we see by elliptic

estimates that conclusion (a) (with Vj in place of V and ` = 1) must hold,

whereas in case of alternative (A), we may assume by induction the validity of

conclusion (a) (with Vj in place of V and suitable `j in place of `).

9. Properties of coarse blow-ups: Part II

Fix an integer q ≥ 2, and suppose that the induction hypotheses (H1) and

(H2) hold. In this section we begin the proof that the coarse blow-up class Bq
satisfies property (B7); we shall complete the proof in Section 14.

Suppose

(†) v? = (v1
?, v

2
?, . . . , v

q
?) ∈ Bq is such that for each j = 1, 2, . . . , q, there

exist two linear functions Lj1, L
j
2 : Rn → R with Lj1(0, y) = Lj2(0, y) = 0

for each y ∈ Rn−1, vj?(x
2, y) = Lj1(x2, y) if x2 < 0 and vj?(x

2, y) =

Lj2(x2, y) if x2 ≥ 0.

In order to show that Bq satisfies property (B7), we need to prove that

v1
? = v2

? = · · · = vq? = L for some linear function L : Rn → R. We shall do this

by establishing the assertions in each of the following two cases:

Case 1: There exists no v? ∈ Bq as in (†) above such that L1
1 = L2

1 = · · · =
Lq1 but Lj2 6= Lj+1

2 for some j ∈ {1, 2, . . . , q − 1}.
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Case 2: There exists no v? ∈ Bq as in (†) above such that Li1 6= Li+1
1 for

some i ∈ {1, 2, . . . , q − 1} and Lj2 6= Lj+1
2 for some j ∈ {1, 2, . . . , q − 1}.

We prove the assertion of Case 1 in Lemma 9.1 below and complete the

proof that Bq satisfies property (B7) (by proving the assertion of Case 2) in

Corollary 14.2; the latter requires a number of preliminary results that we shall

establish in Sections 10–14.

Lemma 9.1. Let v? and Lji , i ∈ {1, 2}, j ∈ {1, 2, . . . , q}, be as in (†)
above. If L1

1 = L2
1 = · · · = Lq1, then (i) L1

2 = L2
2 = · · · = Lq2 and (ii) vj? = L for

some linear function L and all j = 1, 2, . . . , q.

Proof. The assertion of (ii) follows from that of (i) since the average

(v?)a = q−1∑q
j=1 v

j
? is harmonic and hence is a linear function under the

hypotheses of the lemma.

Suppose, contrary to the assertion of (i), that Lj2 6= Lj+1
2 for some j ∈

{1, 2, . . . , q − 1}. By property (B5 III), v?−(v?)a
‖v?−(v?)a‖ ∈ Bq, so we may assume

without loss of generality that Lj1 = 0 for each j = 1, 2, . . . , q. For k = 1, 2, . . . ,

let Vk ∈ Sα with (ωn2n)−1‖Vk‖(Bn+1
2 (0)) < q+1/2, q−1/2 ≤ ω−1

n ‖Vk‖(R×B1)

< q+1/2 and Ê2
k =

∫
R×B1

|x1|2d‖Vk‖(X)→ 0 be such that the coarse blow-up

of the sequence Vk, obtained as described in Section 5, is v?. Let the notation

be as in Section 5. Thus for each σ ∈ (0, 1) and each sufficiently large k

(depending on σ), there exist Lipschitz functions ujk : Bσ → R, j = 1, 2, . . . , q,

with Lipujk ≤ 1/2 for each j ∈ {1, 2, . . . , q}, such that

vj? = lim
k→∞

Ê−1
k ujk,

where the convergence is in L2(Bσ) and weakly in W 1,2(Bσ), and

(9.1) spt ‖Vk‖ ∩ π−1(Bσ \ Σk) =
⋃q
j=1graphujk ∩ π

−1(Bσ \ Σk),

where Σk ⊂ Bσ is the set corresponding to Σ in Theorem 5.1 when V is replaced

with Vk so that, in particular,

(9.2) ‖Vk‖(R× Σk) +Hn(Σk) ≤ CÊ2
k ,

where C = C(n, q, σ) ∈ (0,∞).

In what follows, we take σ ∈ [15/16, 1) to be fixed. Fix any τ ∈ (0, 1/16).

Since ∫
(R×B9/16)∩{x2≤−τ/2}

|x1|2d‖Vk‖(X)

=
q∑
j=1

∫
(B9/16\Σk)∩{x2≤−τ/2}

√
1 + |Dujk|2 |u

j
k|

2dHn

+

∫
(R×(B9/16∩Σk))∩{x2≤−τ/2}

|x1|2d‖Vk‖(X),
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Ê−1
k uk → 0 in L2 on B9/16 ∩ {x2 ≤ −τ/2} and

sup
X=(x1,x′)∈spt ‖Vk‖∩(R×B9/16)

|x1| → 0,

it follows from (9.2) that

Ê−2
k

∫
(R×B9/16)∩{x2≤−τ/2}

|x1|2d‖Vk‖(X)→ 0

and consequently, by (5.2), that

(9.3) Ê−2
k

∫
(R×B1/2)∩{x2≤−τ}

|∇Vk x1|2d‖Vk‖(X)→ 0.

We claim that for all sufficiently large k,

(9.4) Θ(‖Vk‖, Z) < q for all Z ∈ spt ‖Vk‖ ∩ (R×B5/8) ∩ {x2 > τ/8}.

If this were false, then there would exist a subsequence {k′} of {k} and for

each k′, a point Zk′ = (z1
k′ , z

′
k′) ∈ spt ‖Vk′‖ ∩ (R × B5/8) ∩ {x2 > τ/8} with

Θ(‖Vk′‖, Zk′) ≥ q; by the reasoning as in the remark at the end of Section 8,

this fact yields

q∑
j=1

∫
B1/4(z′)

R2−n
z′

Ñ
∂
Ä
(vj? − y)/Rz′

ä
∂ Rz′

é2

dHn ≤ C

for some z′ ∈ B5/8∩{x2 ≥ τ/8} and some y ∈ R, which implies that vj?(z
′) = y

for all j = 1, 2, . . . , q. But this contradicts our hypothesis that Lj2 6= Lj+1
2 for

some j ∈ {1, 2, . . . , q − 1}, so (9.4) must hold for all sufficiently large k.

With the help of Remark 3 of Section 6, we deduce from (9.4) that for all

sufficiently large k, Hn−7+γ(sing Vk ∩ (R × B5/8) ∩ {x2 > τ/8}) = 0 for each

γ > 0 if n ≥ 7 and sing Vk ∩ (R × B5/8) ∩ {x2 > τ/8} = ∅ if 2 ≤ n ≤ 6. We

may therefore apply Theorem 3.5 and elliptic theory to deduce that, for all

sufficiently large k, Σk ∩B9/16 ∩ {x2 > τ/4} = ∅;
(9.5)

Vk ((R×B9/16)∩{x2 > τ/4}) =
q∑
j=1

|graphujk| ((R×B9/16)∩{x2 > τ/4});

and that ujk are C2 on B9/16 ∩ {x2 > τ/4}, solve the minimal surface equation

there and satisfy

(9.6) sup
B1/2∩{x2>τ/4}

|D` uk|2 ≤ Cτ Ê2
k

for ` = 0, 1, 2, where Cτ is a constant depending only on n and τ , and D`

denotes the order ` differentiation.

We next claim that for all sufficiently large k,

(9.7) ({0} ×Rn−1) ∩B1/2 ⊂ ({Z ∈ spt ‖Vk‖ : Θ(‖Vk‖, Z) ≥ q})τ .
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If this were false, then there would exist a point (0, y) ∈ {0} × Rn−1 ∩ B1/2

and a subsequence {k′} of {k} such that for each k′,

Bn+1
3τ/4((0, y)) ∩ {Z ∈ spt ‖Vk′‖ : Θ(‖Vk′‖, Z) ≥ q} = ∅.

Since spt ‖Vk‖ ∩ (R × B3/4) → {0} × B3/4 in Hausdorff distance, it follows

that for each k′ and each Z ∈ spt ‖Vk′‖ ∩ (R × Bτ/2((0, y))), we must have

Θ(‖Vk′‖, Z) < q. Arguing exactly as for (9.5) and (9.6), we conclude that for

all sufficiently large k′, Σk′ ∩Bτ/4(0, y) = ∅;

spt ‖Vk′‖ ∩ (R×Bτ/4(0, y)) =
⋃q
j=1graph ujk′

∣∣∣
Bτ/4(0,y)

;

and that ujk′ are C2 functions on Bτ/4(0, y), satisfy

q∑
j=1

sup
Bτ/4(0,y)

|Dujk′ |+ |D
2ujk′ | ≤ CÊk′ , C = C(n, τ) ∈ (0,∞)

and solve the minimal surface equation on Bτ/4(0, y). Consequently, vj?|Bτ/4(0,y)

must be harmonic for each j = 1, 2, . . . , q, which is however impossible since

by hypothesis, Lj1 = 0 for each j = 1, 2, . . . , q while Lj2 6= Lj+1
2 for some

j ∈ {1, 2, . . . , q − 1}. This contradiction establishes (9.7) for all sufficiently

large k.

We now proceed to derive the contradiction needed for the proof of the

lemma. By taking ψ(X) = ζ̃(X)e2 in the first variation formula (3.1), we

deduce that

(9.8)

∫
∇Vk x2 · ∇Vk ζ̃(X)d‖Vk‖(X) = 0

for each k = 1, 2, . . . and each ζ̃ ∈ C1
c (R × B1). Choosing ζ̃ to agree with

ζ ′(x1, x′) = ζ(x′) in a neighborhood of spt ‖V ‖∩(R×B1/4), where ζ ∈ C1
c (B1/4)

is arbitrary, we deduce from this that

(9.9)
q∑
j=1

∫
B1/4

√
1 + |Dujk|2

(
D2ζ −

D2u
j
k(Dζ ·Du

j
k)

1 + |Dujk|2

)
= Fk, where

Fk = −
∫
R×(B1/4∩Σk)

∇Vk x2 · ∇Vk ζ̃(X)d‖Vk‖(X)

+
q∑
j=1

∫
B1/4∩Σk

√
1 + |Dujk|2

(
D2ζ −

D2u
j
k(Dζ ·Du

j
k)

1 + |Dujk|2

)
.

Since
∫
B1/4

D2ζ = 0, it follows from (9.9) that

(9.10)
q∑
j=1

∫
B1/4

|Dujk|2

1 +
»

1 + |Dujk|2
D2ζ −

D2u
j
k(Dζ ·Du

j
k)»

1 + |Dujk|2
= Fk.
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In view of (9.5) and (9.6), it follows from the definition of Σk (see Theorem 5.1)

that

(9.11) B1/4 ∩ Σk ⊂ B1/4 ∩ {x2 < τ/2}.

We claim also that for all sufficiently large k,

(9.12)

‖Vk‖(R×(B1/4∩Σk))+Hn(B1/4∩Σk) ≤ C
∫

(R×B1/2)∩{x2<τ}
|∇Vk x1|2d‖Vk‖(X),

where C ∈ (0,∞) is a fixed constant depending only on n and q. To see

this, let ‹Σ(j)
k , j = 1, 2, 3, correspond to the set ‹Σj in Theorem 5.1 when V is

replaced by Vk, and let Σ′k correspond to Σ′. Since for each k, ρ ∈ (τ/4, 1/16)

and Y ∈ spt ‖Vk‖ ∩ (R×B1/2), we trivially have that

ρ−n
∫
R×Bρ(π Y )

|∇Vk x1|2d‖Vk‖(X)(9.13)

≤ 4nτ−n
∫
R×B3/4

|∇Vk x1|2d‖Vk‖(X) ≤ 4nτ−nÊ2
k ,

and since by definition,‹Σ(1)
k = {Y ∈ spt ‖Vk‖ ∩ (R×Bσ) :

ρ−n
∫
R×Bρ(π Y )

|∇Vk x1|2d‖Vk‖(X) ≥ ξ for some ρ ∈ (0, (1− σ))},

where ξ = ξ(n, q) ∈ (0, 1/2) is as in Theorem 5.1, it follows that for all suffi-

ciently large k (depending on τ), Y ∈ ‹Σ(1)
k if and only if Y ∈ spt ‖Vk‖∩(R×Bσ)

and ρ−n
∫
R×Bρ(π Y ) |∇Vk x1|2d‖Vk‖(X) ≥ ξ for some ρ ∈ (0, τ/4]. Also, by part

3 of the proof of [Alm00, Th. 3.8], we have that for each x ∈ Bσ and each k,

(9.14)
∑

Y ∈spt ‖Vk‖∩π−1(x)\
Ä

Σ̃
(1)
k
∪Σ̃

(2)
k

äΘ (‖Vk‖, Y ) ≤ q.

In view of (9.11), it follows from the Besicovitch covering lemma and (9.14)

that

‖Vk‖(R× (B1/4 ∩ π‹Σ(j)
k )) +Hn(B1/4 ∩ π‹Σ(j)

k )

≤ C
∫

(B1/2×R)∩{x2<τ}
|∇Vk x1|2d‖Vk‖(X)

for j = 1, where C = C(n, q) ∈ (0,∞). Since ‖Vk‖(‹Σ(2)
k ) = 0 (see part 2 of

the proof of [Alm00, Th. 3.8]), this estimate also follows for j = 2 in view

of (9.14); it follows for j = 3, directly from the definition of ‹Σ(3)
k , (9.11) and

(9.14); it also holds with Σ′k in place of π‹Σ(j)
k , by (9.11) and part 5 of the proof

of [Alm00, Th. 3.8]. Thus the estimate (9.12), with the constant C depending

only on n and q (in particular independent of τ), holds.
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By (9.12), Theorem 7.1(b) (with µ = 1/2) and (9.3) we deduce that, since

the integrands in both integral expressions in Fk are bounded,

(9.15) Ê−2
k |Fk| ≤ C sup |Dζ|τ1/2

for all sufficiently large k, where C = C(n, q) ∈ (0,∞).

Abbreviating wk =
∑q
j=1

|Duj
k
|2

1+

»
1+|Duj

k
|2
D2ζ −

D2u
j
k
(Dζ·Duj

k
)»

1+|Duj
k
|2

, note that

∫
B1/4\Σk∩{x2≤τ}

|wk| ≤ C sup |Dζ|
∫

(R×B1/2)∩{x2≤τ}
|∇Vk x1|2d‖Vk‖(X),

and by (9.12),∫
B1/4∩Σk

|wk| ≤ C sup |Dζ|
∫

(R×B1/2)∩{x2≤τ}
|∇Vk x1|2d‖Vk‖(X),

where C = C(n), so that again by Theorem 7.1(b) with µ = 1/2 and (9.3),

(9.16) Ê−2
k

(∫
B1/4\Σk∩{x2≤τ}

|wk|+
∫
B1/4∩Σk

|wk|
)
≤ C sup |Dζ|τ1/2

for all sufficiently large k, where C = C(n). Finally, by (9.6),

(9.17) lim
k→∞

Ê−2
k

∫
B1/4∩{x2≥τ}

wk = −1

2

q∑
j=1

∫
B1/4∩{x2≥τ}

|D2v
j
?|2D2ζ,

where we have used the fact that Div
j
? ≡ 0 for i = 3, . . . , (n + 1) and j =

1, 2, . . . , q. Dividing (9.10) by Ê2
k and first letting k → ∞ and then letting

τ → 0, we conclude from (9.15), (9.16) and (9.17) that

q∑
j=1

∫
B1/4∩{x2≥0}

|D2v
j
?|2D2ζ = 0

for any ζ ∈ C1
c (B1/4). Since vj? = Lj2 on {x2 ≥ 0}, this contradicts (for any

choice of ζ ∈ C1
c (B1/4) with

∫
B1/4∩{x2≥0}D2ζ 6= 0) our assumption that Lj2 6=

Lj+1
2 for some j ∈ {1, 2, . . . , q − 1}. �

Remark. It follows from Lemma 9.1 and the compactness property (B6)

that there exists a constant c = c(n, q) ∈ (0,∞) with the following property:

If v ∈ Bq is such that, for each j = 1, 2, . . . , q, vj(x2, y) = `jx
2 for x2 < 0;

vj(x2, y) = mjx
2 for x2 ≥ 0, where `j , mj are constants; and vj 6≡ va for

some j ∈ {1, 2, . . . , q}, where va ≡ q−1∑q
j=1 v

j , then |`1 − `q|2 ≥ c
∑q
j=1 ‖vj −

va‖2L2(B1) and |m1 −mq|2 ≥ c
∑q
j=1 ‖vj − va‖2L2(B1). (Of course once we have

completed the proof that Bq satisfies property (B7), we will have ruled out the

existence of such v ∈ Bq.)
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10. Parametric L2-estimates in terms of fine excess

This section and all of the subsequent sections up to and including Sec-

tion 14 will be devoted to the proof of the assertion of Case 2 set forth at

the beginning of Section 9. Crucial to our proof are the L2-estimates, given in

Theorem 10.1 and Corollary 10.2 below, for a varifold V ∈ Sα with small coarse

excess (relative to a hyperplane) and lower order “fine excess” relative to an

appropriate union of half-hyperplanes meeting along an (n − 1)-dimensional

axis (see Hypotheses 10.1(5) below). These results are adaptations to the

present “higher multiplicity” setting of those proved in [Sim93] in the context

of “multiplicity 1 classes” of minimal submanifolds.

Notation. (1) Let Cq denote the set of hypercones C of Rn+1 such that

C =
∑q
j=1 |Hj |+|Gj |, where for each j ∈ {1, 2, . . . , q}, Hj is the half-hyperplane

defined by

Hj = {(x1, x2, y) ∈ Rn+1 : x2 < 0 and x1 = λjx
2}

and Gj is the half-hyperplane defined by

Gj = {(x1, x2, y) ∈ Rn+1 : x2 > 0 and x1 = µjx
2},

with λj , µj constants, λ1 ≥ λ2 ≥ · · · ≥ λq and µ1 ≤ µ2 ≤ · · · ≤ µq. Note that

we do not assume cones in Cq are stationary in Rn+1.

(2) For p ∈ {2, 3, . . . , 2q}, let Cq(p) denote the set of hypercones C =∑q
j=1 |Hj |+ |Gj | ∈ Cq as defined above such that the number of distinct half-

hyperplanes in the set {H1, . . . ,Hq, G1, . . . , Gq} is p. Then Cq =
⋃2q
p=2 Cq(p).

(3) For V ∈ Sα and C ∈ Cq, define a height excess (“fine excess”) QV (C)

of V relative to C by

QV (C) =

(∫
R×(B1/2\{|x2|<1/16})

dist2(X, spt ‖V ‖) d‖C‖(X)

+

∫
R×B1

dist2(X, spt ‖C‖) d‖V ‖(X)

å1/2

.

(4) For q ≥ 2 and p ∈ {4, . . . , 2q}, let

Q?V (p) = inf
C∈
⋃p
k=4Cq(k)

QV (C).

Let α ∈ (0, 1), and let q be an integer ≥ 2. In Theorem 10.1, Corollary 10.2

and Lemma 10.8 below and subsequently, we shall consider the following set

of hypotheses for appropriately small ε, γ ∈ (0, 1) to be determined depending

only on n, q and α:

Hypotheses 10.1.

(1) V ∈Sα, Θ(‖V ‖, 0)≥q, (ωn2n)−1‖V ‖(Bn+1
2 (0))<q+ 1/2, ω−1

n ‖V ‖(R×B1)

< q + 1/2.
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(2) C =
∑q
j=1 |Hj |+ |Gj | ∈ Cq, where for each j ∈ {1, 2, . . . , q}, Hj is the half-

hyperplane defined by Hj = {(x1, x2, y) ∈ Rn+1 : x2 < 0 and x1 = λjx
2}

and Gj is the half-hyperplane defined by Gj = {(x1, x2, y) ∈ Rn+1 : x2 > 0

and x1 = µjx
2}, with λj , µj constants, λ1 ≥ λ2 ≥ · · · ≥ λq and µ1 ≤ µ2 ≤

· · · ≤ µq.
(3) Ê2

V ≡
∫
R×B1

|x1|2d‖V ‖(X) < ε.

(4) {Z : Θ(‖V ‖, Z) ≥ q} ∩
Ä
R× (B1/2 \ {|x2| < 1/16})

ä
= ∅.

(5) Q2
V (C) < γÊ2

V .

Remark. There exists ε=ε(n, q)∈(0, 1) such that if Hypotheses 10.1 above

hold with any γ∈(0, 1), and the induction hypotheses (H1), (H2) hold, then

(10.1) max {|λ1|, |λq|} ≤ c1ÊV and max {|µ1|, |µq|} ≤ c1ÊV ,

where c1 = c1(n) ∈ (0,∞). These bounds follow from Hypotheses 10.1(5)

in view of the fact that (by Hypotheses 10.1(4), Remark 3 of Section 6 and

Theorem 3.5), under Hypotheses 10.1, V (R × (B1/4 \ {|x2| < 1/8})) =∑q
j=1 |graph ũj |+ |graph ‹wj | where, for j = 1, 2, . . . , q, ũj ∈ C2(B1/4 ∩ {x2 <

−1/8}), ‹wj ∈ C2(B1/4 ∩ {x2 > 1/8}) with supB1/4∩{x2<−1/8} |ũj | ≤ CÊV and

supB1/4∩{x2>1/8} |‹wj | ≤ CÊV , C = C(n) ∈ (0,∞).

Let c1 = c1(n) be the constant as in (10.1) above, and define a constant

M0 = M0(n, q) ∈ (0,∞) by

M0 = max

®
3

2
,
22n+8ω2

n(2q + 1)2c2
1

C1
,
22n+8ωn(2q + 1)

C1

´
,

where C1 =
∫
B1/2∩{x2>1/16} |x2|2 dHn(x2, y). We shall use this constant at

several places below.

For V as in Hypotheses 10.1, we shall also assume the following for suitable

values of M > 1:

Hypothesis (?).

Ê2
V < M inf

{P={x1=λx2}∈Gn:λ∈R}

∫
R×B1

dist2(X,P ), d‖V ‖(X).

Remarks. (1) If Hypotheses 10.1 and Hypothesis (?) hold with sufficiently

small ε = ε(n, q) ∈ (0, 1), γ = γ(n, q) ∈ (0, 1) and with M = 3
2M

4
0 , then

cÊV ≤ max {|λ1|, |λq|}, cÊV ≤ max {|µ1|, |µq|} and(10.2)

min {|λ1 − λq|, |µ1 − µq|} ≥ 2cÊV

for some constant c = c(n, q) ∈ (0,∞). Indeed, the triangle inequality (in the

form dist2(X,P ) ≤ 2dist2(X, spt ‖C‖)+2dist2
H(P∩(R×B1), spt ‖C‖∩(R×B1))

for X ∈ R × B1, applied with P = {x1 = 1
2(λ1 + λq)x

2} or P = {x1 =
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1
2(µ1 + µ2)x2}), Hypothesis (?) (with M = 3

2M
4
0 ) and Hypotheses 10.1 (with

sufficiently small ε = ε(n, q) ∈ (0, 1) and γ = γ(n, q) ∈ (0, 1)) imply that

|λ1 − λq| + |µ1 − µq| ≥ c̃ÊV for some c̃ = c̃(n, q) ∈ (0,∞). Lemma 9.1 then

implies that min {|λ1 − λq|, |µ1 − µq|} ≥ 2cÊV , c = c(n, q) ∈ (0, 1); the first

two inequalities of (10.2) follow readily from this.

(2) It follows from the last inequality of (10.2) that if Hypotheses 10.1 and

Hypothesis (?) hold with ε = ε(n, q), γ = γ(n, q) ∈ (0, 1) sufficiently small and

M = 3
2M

4
0 , then C ∈ Cq(p) for some p ∈ {4, 5, . . . , 2q}.

Finally, for C, V as in Hypotheses 10.1 and appropriately small β ∈
(0, 1/2) (to be determined depending only on n, q and α), we will also need to

consider the following:

Hypothesis (??). Either

(i) C ∈ Cq(4), or

(ii) q ≥ 3, C ∈ Cq(p) for some p ∈ {5, . . . , 2q} and Q2
V (C) < β (Q?V (p− 1))2 .

Remarks. (1) Let C be as in Hypothesis 10.1(2). If V ∈ Sα, C satisfy

Hypothesis 10.1(1), Hypothesis (??)(ii) with β ∈ (0, 1/4) and if λ1 = λ′1 >

λ′2 > · · · > λ′p1 = λq are the distinct elements of the set {λ1, . . . , λq} and

µ1 = µ′1 < µ′2 < · · · < µ′p2 = µq are the distinct elements of {µ1, . . . , µq}
(notation as in Hypothesis 10.1(2)), then it follows from Hypothesis (??) and

the triangle inequality that

(10.3) λ′i+1 − λ′i ≥ 2c′Q?V (p− 1), µ′j+1 − µ′j ≥ 2c′Q?V (p− 1)

for some constant c′ = c′(n, q) ∈ (0,∞) and all i = 1, 2, . . . , p1 − 1 and j =

1, 2, . . . , p2 − 1.

(2) Suppose V ∈ Sα, C ∈ Cq satisfy Hypotheses 10.1, Hypothesis (?) and

Hypothesis (??) for some ε, γ, β ∈ (0, 1/2). If C′ ∈ Cq is any other cone with

spt ‖C′‖ = spt ‖C‖, then Hypotheses 10.1, Hypothesis (?) and Hypothesis (??)

will continue to be satisfied with C′ in place of C provided γ, β are replaced

by 2qγ, 2qβ respectively.

Theorem 10.1. Let q be an integer ≥ 2, α ∈ (0, 1), τ ∈ (0, 1/8) and

µ ∈ (0, 1). There exist numbers ε0 = ε0(n, q, α, τ) ∈ (0, 1), γ0 = γ0(n, q, α, τ) ∈
(0, 1) and β0 = β0(n, q, α, τ) ∈ (0, 1) such that the following is true: Let V ∈
Sα, C ∈ Cq satisfy Hypotheses 10.1, Hypothesis (?) and Hypothesis (??) with

M = 3
2M

4
0 and ε0,γ0, β0 in place of ε, γ, β respectively. Suppose also that the

induction hypotheses (H1), (H2) hold. Write C =
∑q
j=1 |Hj | + |Gj | where for

each j ∈ {1, 2, . . . , q}, Hj is the half-space defined by Hj = {(x1, x2, y) ∈ Rn+1 :

x2 < 0 and x1 = λjx
2}, Gj is the half-space defined by Gj = {(x1, x2, y) ∈

Rn+1 : x2 > 0 and x1 = µjx
2}, with λj , µj constants, λ1 ≥ λ2 ≥ · · · ≥ λq and

µ1 ≤ µ2 ≤ · · · ≤ µq ; for (x2, y) ∈ Rn and j = 1, 2, . . . , q, define hj(x
2, y) =
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λjx
2 and gj(x

2, y) = µjx
2. Then, after possibly replacing C with another cone

C′ ∈ Cq with spt ‖C′‖ = spt ‖C‖ and relabelling C′ as C (see the preceding

Remark (2)), the following must hold :

(a) V (R× (B3/4 \ {|x2| < τ})) =
∑q
j=1 |graph(hj + uj)|+ |graph(gj + wj)|

where, for each j = 1, 2, . . . , q,

(i) uj ∈ C2(B3/4 ∩ {x2 < −τ}); wj ∈ C2(B3/4 ∩ {x2 > τ});
(ii) hj + uj and gj + wj solve the minimal surface equation on their re-

spective domains ;

(iii) h1 + u1 ≤ h2 + u2 ≤ · · · ≤ hq + uq ;

(iv) g1 + w1 ≤ g2 + w2 ≤ · · · ≤ gq + wq ;

(v) dist((hj(x
2, y) + uj(x

2, y), x2, y), spt ‖C‖) = (1 + λ2
j )
−1/2|uj(x2, y)|,

(x2, y) ∈ B3/4 ∩ {x2 < −τ};
(vi) dist((gj(x

2, y) + wj(x
2, y), x2, y), spt ‖C‖) = (1 + µ2

j )
−1/2|wj(x2, y)|,

(x2, y) ∈ B3/4 ∩ {x2 > τ}.
(b)

∫
Bn+1

5/8
(0)
|X⊥|2
|X|n+2 d‖V ‖(X) ≤ C

∫
R×B1

dist2(X, spt ‖C‖) d‖V ‖(X).

(c)
∑n+1
j=3

∫
Bn+1

5/8
(0) |e

⊥
j |2 d‖V ‖(X) ≤ C

∫
R×B1

dist2(X, spt ‖C‖) d‖V ‖(X).

(d)
∫
Bn+1

5/8
(0)

dist2(X,spt ‖C‖)
|X|n+2−µ d‖V ‖(X) ≤ ‹C ∫R×B1

dist2(X, spt ‖C‖) d‖V ‖(X).

Here e⊥j (X) denotes the orthogonal projection of ej onto (TX spt ‖V ‖)⊥ and

C = C(n, q, α) ∈ (0,∞), ‹C = ‹C(n, q, α, µ) ∈ (0,∞). (In particular, C , ‹C do

not depend on τ .)

Proof. We first establish conclusion (a). Let λ1 =λ′1 > λ′2> · · · >λ′p1 =λq
be the distinct elements of the set {λ1, . . . , λq} and µ1 =µ′1<µ

′
2< · · · <µ′p2 =µq

be the distinct elements of {µ1, . . . , µq} so that p1, p2 ≤ q and p1 + p2 = p. By

(10.2), provided ε = ε(n, q), γ = γ(n, q) ∈ (0, 1) are sufficiently small, we have

that p1, p2 ≥ 2. By Remark (1) at the end of Section 8, Remark (3) of Section 6

and Theorem 3.5, it follows that if ε = ε(n, q, α, τ), γ = γ(n, q, α, τ) ∈ (0, 1)

are sufficiently small, then

(10.4) V (R× (B3/4 \ {|x2| < τ})) =
q∑
j=1

|graph ũj |+ |graph ‹wj |,
where ũj ∈ C2(B3/4 \ {x2 > −τ}), ‹wj ∈ C2(B3/4 \ {x2 < τ}) are functions

with small gradient solving the minimal surface equation and with ũ1 ≤ ũ2 ≤
· · · ≤ ũq and ‹w1 ≤ ‹w2 ≤ · · · ≤ ‹wq.

If p = 4, then p1 = p2 = 2 and by (10.2), provided ε = ε(n, q), γ =

γ(n, q) ∈ (0, 1) are sufficiently small,

cÊV ≤ max {|λ′1|, |λ′2|} ≤ c1ÊV , cÊV ≤ max {|µ′1|, |µ′2|} ≤ c1ÊV

and

min {|λ′1 − λ′2|, |µ′1 − µ′2|} ≥ 2cÊV ,
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where c1 = c1(n), c = c(n, q) ∈ (0,∞) are as in (10.1) and (10.2). Conclu-

sion (a) follows in this case from Hypothesis 10.1(5) and elliptic estimates.

Now suppose C ∈ Cq(p) for some p ∈ {5, 6, . . . , 2q} and assume by induction

the following:

(A1) There exist ε̃ = ε̃(n, q, α, τ), γ̃ = γ̃(n, q, α, τ) and β̃ = β̃(n, q, α, τ) ∈
(0, 1) such that if Hypotheses 10.1, Hypothesis (?) and Hypothesis (??)

are satisfied with M = M4
0 , ε̃, γ̃, β̃ in place of ε, γ, β respectively, and

with V ∈ Sα and any cone ‹C ∈ ⋃p−1
k=4Cq(k) in place of C, and if the

induction hypotheses (H1), (H2) hold, then conclusion (a) with ‹C in

place of C holds.

By (10.3),

(10.5) |λ′i+1 − λ′i| ≥ 2c′Q?V (p− 1), |µ′j+1 − µ′j | ≥ 2c′Q?V (p− 1)

for some constant c′ = c′(n, q) ∈ (0,∞) and all i = 1, 2, . . . , p1 − 1 and j =

1, 2, . . . , p2 − 1. So if

(Q?V (p− 1))2 ≥
Å

2

3
β̃

ã2q

γ̃Ê2
V ,

then it follows from (10.1), (10.4), (10.5) and elliptic estimates that conclusion

(a) holds provided ε = ε(n, q, α, τ), γ = γ(n, q, α, τ) ∈ (0, 1) are sufficiently

small. If on the other hand

(10.6) (Q?V (p− 1))2 <

Å
2

3
β̃

ã2q

γ̃Ê2
V ,

then we argue as follows: Choose C1 ∈
⋃p−1
k=4Cq(k) such that

(10.7) Q2
V (C1) ≤ 3

2
(Q?V (p− 1))2 .

If Hypothesis (??) is satisfied with C1 in place of C and β̃ in place of β, then

it follows from assumption (A1) (taken with ‹C = C1), (10.7), Hypothesis (??),

(10.5) and elliptic estimates that conclusion (a) holds provided ε = ε(n, q, α, τ),

β = β(n, q, α, τ) ∈ (0, 1) are sufficiently small; on the other hand, if Hypothe-

sis (??) is not satisfied with C1 in place of C and β̃ in place of β, then q ≥ 3,

p ≥ 6, C1 ∈ Cq(k1) for some k1 ∈ {5, . . . , p− 1}, and

(10.8) Q2
V (C1) ≥ β̃ (Q?V (k1 − 1))2 .

In this case, choose a cone C2 ∈
⋃k1−1
k=4 Cq(k) such that

(10.9) Q2
V (C2) ≤ 3

2
(Q?V (k1 − 1))2

and note that by (10.7), (10.8) and (10.6), we have that

(10.10) Q2
V (C2) ≤ γ̃Ê2

V ;
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by (10.7), (10.5) and (10.8), we have that

(10.11) |λ′i+1 − λ′i| ≥
4

3
c′β̃Q?V (k1 − 1), |µ′j+1 − µ′j | ≥

4

3
c′β̃Q?V (k1 − 1)

for each i = 1, 2, . . . , p1 − 1 and j = 1, 2, . . . , p2 − 1; and since Q?V (p − 1) ≤
Q?V (k1 − 1), Hypothesis (??) implies that

(10.12) Q2
V (C) ≤ β (Q?V (k1 − 1))2 .

So again, if Hypothesis (??) is satisfied with C2 in place of C and β̃ in

place of β, it follows from (A1) (taken with ‹C = C2), (10.11), (10.12) and

elliptic estimates that conclusion (a) holds provided ε = ε(n, q, α, τ), β =

β(n, q, α, τ) ∈ (0, 1) are sufficiently small; if on the other hand Hypothesis (??)

is not satisfied with C2 in place of C and β̃ in place of β, then we may repeat

the above argument in the obvious way. It is clear that at most p repetitions

of the argument are necessary to reach conclusion (a).

Now we prove conclusions (b) and (c). Let ψ : R→ [0, 1] be a decreasing

C2 function with ψ(t) ≡ 1 for t ≤ 13/16, ψ(t) ≡ 0 for t ≥ 29/32, |ψ′(t)| ≤ 32

and |ψ′′(t)| ≤ 1025. For ‹X = (x̃1, x̃2, ỹ) ∈ R×R×Rn−1, let ‹R(‹X) = |‹X| and

r̃(‹X) = |(x̃1, x̃2, 0)|. We then have by the inequalities (2), (3) of the proof of

Lemma 3.4 of [Sim93] that∫
Bn+1

5/8
(0)

|‹X⊥|2‹Rn+2
d‖V ‖(‹X)(10.13)

≤ C
Ç∫

Bn+1
1 (0)

ψ2(‹R) d‖V ‖(‹X)−
∫
Bn+1

1 (0)
ψ2(‹R) d‖C‖(‹X)

å
and ∫

Bn+1
1 (0)

Ñ
1 +

n+1∑
j=3

|e⊥j |2
é
ψ2(‹R) d‖V ‖(‹X)(10.14)

≤ C
∫
Bn+1

1 (0)
|(x̃1, x̃2, 0)⊥|2(ψ2(‹R) + (ψ′(‹R))2) d‖V ‖(‹X)

− 2

∫
Bn+1

1 (0)
r̃2‹R−1ψ(‹R)ψ′(‹R) d‖V ‖(‹X),

where C = C(n) ∈ (0,∞) and for ‖V ‖-a.e. ‹X ∈ spt ‖V ‖, the expression

(x̃1, x̃2, 0)⊥ denotes the orthogonal projection of (x̃1, x̃2, 0) onto (T
X̃

spt ‖V ‖)⊥.
Also by the identity (6) of the same proof in [Sim93], we have that

(10.15)

∫
Bn+1

1 (0)
ψ2(‹R) d‖C‖(‹X) = −2

∫
Bn+1

1 (0)
r̃2‹R−1ψ(‹R)ψ′(‹R) d‖C‖(‹X).

Let δ be a small positive constant to be chosen depending only on n, q and α,

let π : Rn+1 → {0} ×Rn be the orthogonal projection and let Y = B15/16 ∩
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{|x̃2| < 1/28} ∩ π spt ‖V ‖ \
(
{0} ×Rn−1

)
. Denote by (x, y) a general point in

Rn = {x̃1 = 0} where x ∈ R and y ∈ Rn−1. Write

Y = U ∪ W,

where U is the set of points (x, y) ∈ Y such that

(15|x|/16)−n−2
∫
R×B15|x|/16(x,y)

dist2(‹X, spt ‖C‖)d‖V ‖(‹X) < δ

and W is the set of points (x, y) ∈ Y such that

(15|x|/16)−n−2
∫
R×B15|x|/16(x,y)

dist2(‹X, spt ‖C‖)d‖V ‖(‹X) ≥ δ.

Note that if (x, y) ∈ Y, then π−1(x, y) ∩ spt ‖V ‖ 6= ∅, so it follows from mono-

tonicity of mass ratio that ‖V ‖(R×B|x|/16(x, y)) ≥ ωn(|x|/16)n. Consequently,

for each point (x, y) ∈ U , there is a point Z(x,y) ∈ spt ‖V ‖∩ (R×B|x|/16(x, y))

with dist(Z(x,y), spt ‖C‖) ≤
»

24n+1ω−1
n δ|x| and satisfying, by (10.1),

distH(ηZ(x,y),7|x|/8 spt ‖C‖ ∩ (R×B1), {0} ×B1) < C
√
δ

provided ε0 = ε0(δ) is sufficiently small. Here C = C(n) ∈ (0,∞). It also

follows from Remark (1) at the end of Section 8, (10.2) and monotonicity

of mass ratio that for any τ ′ ∈ (0, 1), we may ensure, by choosing ε0 =

ε0(n, q, α, τ ′), γ0 = γ0(n, q, α, τ ′) ∈ (0, 1) sufficiently small, that {Z ∈ spt ‖V ‖∩
(R × B15/16) : Θ(‖V ‖, Z) ≥ q} ⊂ {(x̃1, x̃2, ỹ) ∈ Rn+1 : |x̃2| < τ ′} and

‖V ‖((R × B15/16) ∩ {(x̃1, x̃2, ỹ) ∈ Rn+1 : |x̃2| < τ ′}) < Cτ ′, where C =

C(n, q) ∈ (0,∞). Using these facts with sufficiently small τ ′ = τ ′(n, q) ∈
(0, 1) together with Remark (3) of Section 6 and Theorem 3.5, we find that

ω−1
n (1/16)−n‖V ‖(Bn+1

1/16(Z)) < q + 1/4 for any Z ∈ R × B14/16 and hence, in

particular, that for each (x, y) ∈ U ,

ω−1
n (7|x|/4)−n‖V ‖(Bn+1

7|x|/4(Z(x,y))) < q + 1/4.

Furthermore, writing Γ+ = (R×B7|x|/8(π Z(x,y))) ∩ {|x̃1 − e1 · Z(x,y)| ≥ 3
4 |x|}

and Γ− = (R × B7|x|/8(π Z(x,y))) ∩ {|x̃1 − e1 · Z(x,y)| < 3
4 |x|}, we have, for

sufficiently small δ = δ(n) ∈ (0, 1) and any (x, y) ∈ U , that

(7|x|/8)−n−2

∫
R×B7|x|/8(π Z(x,y))

dist2 (‹X,Z(x,y) + {0} ×Rn) d‖V ‖(‹X)

≤ (7|x|/8)−n−2

∫
Γ−

dist2 (‹X,Z(x,y) + {0} ×Rn) d‖V ‖(‹X)

+ (7|x|/8)−n−2

∫
Γ+

dist2 (‹X,Z(x,y) + {0} ×Rn) d‖V ‖(‹X)

≤ c|x|−n−2

∫
R×B|x|(x,y)

dist2(‹X, spt ‖C‖) d‖V ‖(‹X) + c|x|−n−2‖V ‖(Bn+1
5|x|/4(Z(x,y)))D
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where D = dist2
H (Z(x,y) + {0} × B7|x|/8(0), spt ‖C‖ ∩ (R × B7|x|/8(π Z(x,y))),

c = c(n) ∈ (0,∞) and we have used the pointwise inequality

dist(‹X,Z(x,y) + {0} ×Rn) ≤ 2 dist(‹X, spt ‖C‖)

for ‹X ∈ (R × B7|x|/8(π Z(x,y))) ∩ {|x̃1 − Z(x,y)
1 | ≥ 3

4 |x|}, valid if δ = δ(n) ∈
(0, 1) and ε0 = ε0(n, q, α) ∈ (0, 1) are sufficiently small. Thus provided ε0 =

ε0(n, q, δ) ∈ (0, 1) is sufficiently small,

(10.16)

(7|x|/8)−n−2
∫
R×B7|x|/8(π Z(x,y))

dist2(‹X,Z(x,y) + {0} ×Rn) d‖V ‖(‹X) < Cδ,

where C = C(n, q) ∈ (0,∞). In particular, ‖V ‖((R× B7|x|/8(π Z(x,y))) ∩ {‹X :

dist(‹X,Z(x,y) + {0}×Rn) ≥ δ1/4|x|}) ≤ C
√
δ|x|n where C = C(n, q) ∈ (0,∞),

and consequently,

ω−1
n (7|x|/8)−n‖V ‖(R×B7|x|/8(π Z(x,y)))

≤ C
√
δ + ω−1

n (7|x|/8)−n‖V ‖(Bn+1
(7/8+δ1/4)|x|(Z

(x,y))) < q + 1/2

provided δ = δ(n, q, α) ∈ (0, 1) is sufficiently small. Note also that (10.16)

implies that spt ‖V ‖ ∩ (R × B3|x|/4(π Z(x,y))) ⊂ {‹X ∈ Rn+1 : dist(‹X,Z(x,y) +

{0} × Rn) < |x|/2} provided δ = δ(n, q, α) ∈ (0, 1) is sufficiently small. By

applying Remark (3) of Section 8 (with ηZ(x,y),7|x|/8 # V , ηZ(x,y),7|x|/8 spt ‖C‖
in place of V ,P) we deduce that for each (x, y) ∈ U , there exists a hyperplane

H(x,y) with H(x,y) ∩ {x̃2 > 0} ∈ {G1, . . . , Gq} (in case x > 0) or H(x,y) ∩ {x̃2 <

0} ∈ {H1, . . . ,Hq} (in case x < 0), and an Hn-measurable subset Σ(x,y) ⊂
H(x,y)∩ spt ‖C‖∩ (R×B|x|/4(x, y)) (where Σ(x,y) = ∅ if Remark (3)(a) applies,

and Σ(x,y) corresponds to the set Σ as in Remark (3)(b) otherwise) such that∫
(R×(B|x|/4(x,y))∩{|x̃1|≤|x|}\CH(x,y)

(Σ(x,y))
|(x̃1, x̃2, 0)⊥|2 d‖V ‖(‹X)

+

∫
(R×B|x|/4(x,y))∩CH(x,y)

(Σ(x,y))
|x̃2|2 d‖V ‖(‹X)

≤ C
∫
R×B15|x|/16(x,y)

dist2(‹X, spt ‖C‖) d‖V ‖(‹X),

where C = C(n, q, α) ∈ (0,∞) and CH(A) = {X ∈ Rn+1 : πH(X) ∈ A}.
Since the pointwise inequality |x̃1| ≤ 2dist (‹X, spt ‖C‖) holds whenever ‹X =

(x̃1, x̃2, ỹ) ∈ F ≡ (R×B|x|/4(x, y)) ∩ {|x̃1| > |x|}, we also have that∫
F\CH(x,y)

(Σ(x,y))
|(x̃1, x̃2, 0)⊥|2 d‖V ‖(‹X) +

∫
F
|x̃1|2 d‖V ‖(‹X)

≤ C
∫
R×B15|x|/16(x,y)

dist2(‹X, spt ‖C‖) d‖V ‖(‹X).
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Combining the two preceding integral estimates, we conclude that for each

(x, y) ∈ U ,∫
(R×B|x|/4(x,y))∩CH(x,y)

(Σ(x,y))
r̃2 d‖V ‖(‹X)(10.17)

+

∫
(R×B|x|/4(x,y))\CH(x,y)

(Σ(x,y))
|(x̃1, x̃2, 0)⊥|2 d‖V ‖(‹X)

≤ C
∫
R×B15|x|/16(x,y)

dist2(‹X, spt ‖C‖) d‖V ‖(‹X),

where C = C(n, q, α) ∈ (0,∞). We claim that (10.17) also holds trivially (by

taking Σ(x,y) to be equal to any component of spt ‖C‖ ∩ (R × B|x|/4(x, y)))

whenever (x, y) ∈ W. Indeed,∫
R×B|x|/4(x,y)

r̃2 d‖V ‖(‹X)

=

∫
(R×B|x|/4(x,y))∩{|x̃1|<|x|}

r̃2 d‖V ‖(‹X)

+

∫
(R×B|x|/4(x,y))∩{|x̃1|≥|x|}

r̃2 d‖V ‖(‹X)

≤ 81

16
|x|2‖V ‖((R×B|x|/4(x, y)) ∩ {|x̃1| < |x|})

+ 50

∫
R×B|x|/4(x,y)

dist2(‹X, spt ‖C‖) d‖V ‖(‹X)

≤ C|x|n+2 + C

∫
R×B|x|/4(x,y)

dist2(‹X, spt ‖C‖) d‖V ‖(‹X)

≤ C
∫
R×B15|x|/16(x,y)

dist2(‹X, spt ‖C‖) d‖V ‖(‹X)

whenever (x, y) ∈ W, where C = C(n, q, α) ∈ (0,∞). Thus (10.17) holds for

each (x, y) ∈ Y and some Hn-measurable subset Σ(x,y) ⊂ H(x,y) ∩ spt ‖C‖ ∩
(R×B|x|/4(x, y)).

Now choose a countable collection I of points (x, y) ∈ Y such that Y ⊂⋃
(x,y)∈IB|x|/8(x, y) and the collection {B15|x|/16(x, y)}(x,y)∈I can be decom-

posed into at most N = N(n) pairwise disjoint sub-collections. This can be

achieved, e.g., as follows: Use the “5-times covering lemma” [Sim83, Th. 3.3] to

extract a countable collection I of points (x, y) ∈ Y such that the collection of

closed balls {B|x|/41(x,y)}(x,y)∈I is pairwise disjoint and Y⊂⋃(x,y)∈IB|x|/8(x,y).

Then the collection B = {B15|x|/16(x, y)}(x,y)∈I automatically will have the

property that for each (x0, y0) ∈ I,

(†) card {(x, y) ∈ I : B15|x|/16(x, y) ∩B15|x0|/16(x0, y0) 6= ∅} ≤ N
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for some fixed constant N = N(n), from which it follows as required that

∪B =
⋃N
j=1∪Bj where B1, . . . ,BN ⊂ B and each Bj consists of pairwise disjoint

balls. To see (†), note that B15|x|/16(x, y)∩B15|x0|/16(x0, y0) 6= ∅ =⇒ |(x, y)−
(x0, y0)| ≤ 15|x0|/16 + 15|x|/16, whence |x| ≤ 31|x0| ≤ 31× 31|x| and |(x, y)−
(x0, y0)| ≤ c|x0|−|x|/41 where c = 15/16+(31×15)/16+31/41, which say that

B|x0|/(31×41)(x, y) ⊂ B|x|/41(x, y) ⊂ Bc|x0|(x0, y0); since B|x|/41(x, y), (x, y) ∈ I
are pairwise disjoint, the assertion (†) follows. Let

G =
⋃

(x,y)∈I

Ä
(R×B|x|/8(x, y)) \ CH(x,y)

(Σ(x,y))
ä
.

We deduce from (10.17) that∫
(R×Y)\G

|r̃|2 d‖V ‖(‹X) +

∫
(R×Y)∩G

|(x̃1, x̃2, 0)⊥|2 d‖V ‖(‹X)(10.18)

≤ C
∫
R×B1

dist2(‹X, spt ‖C‖) d‖V ‖(‹X),

where C = C(n, q, α) ∈ (0,∞).

Now let J be a collection of J = J(n) points w ∈ B15/16 \ {|x̃2| < 1/28}
such that B15/16 \ {|x̃2| < 1/28} ⊂ ⋃w∈JB1/64(w). For z ∈ Rn and ρ > 0, let

Tρ(z) = {(x̃ sin θ, x̃ cos θ, ỹ) : (x̃, ỹ) ∈ Bρ(z), θ ∈ [0, 2π)}. Note that if ε0 =

ε0(n, q, α, 1/32) ∈ (0, 1), γ0 = γ0(n, q, α, 1/32) ∈ (0, 1), β0 = β0(n, q, α, 1/32) ∈
(0, 1) are sufficiently small, then for each (x, y) ∈ I,Ä

(R×B|x|/8(x, y)) \ CH(x,y)
(Σ(x,y))

ä
∩ spt ‖V ‖(10.19)

⊆
(
T±9|x|/64(x, y) \ CH(x,y)

(Σ(x,y))
)
∩ spt ‖V ‖

⊆
(
T±3|x|/16(x, y) \ CH(x,y)

(Σ(x,y))
)
∩ spt ‖V ‖

⊆
Ä
(R×B|x|/4(x, y)) \ CH(x,y)

(Σ(x,y))
ä
∩ spt ‖V ‖

and for each w ∈ J ,

(10.20) R×B1/64(w)∩ spt ‖V ‖ ⊆ T±9/512(w)∩ spt ‖V ‖ ⊆ T±3/128(w)∩ spt ‖V ‖,

where T+
ρ (z) = Tρ(z) ∩ {|x̃1| < |x̃2|} ∩ {x̃2 > 0}; T−ρ (z) = Tρ(z) ∩ {|x̃1| <

|x̃2|} ∩ {x̃2 < 0}; in (10.19) we choose the + sign if x > 0 and the − sign if

x < 0; in (10.20) we choose the + sign if e2 ·w > 0 and the − sign if e2 ·w < 0.

Now, applying [Fed69, 3.1.13] with

Φ = {B3|x|/16(x, y)}(x,y)∈I ∪ {B3/128(w)}w∈J
and letting

h(p) =
1

20
sup{inf{1,dist(p,Rn \B)} : B ∈ Φ}

for p ∈ ∪Φ, we obtain a smooth partition of unity {ϕs}s∈S having the following

properties:



904 NESHAN WICKRAMASEKERA

(i) S is a countable subset of ∪Φ and ϕs : ∪Φ→ [0, 1] ∀ s ∈ S.

(ii) {Bh(s)(s)}s∈S is pairwise disjoint and for each s ∈ S, Bh(s)(s) ⊂ sptϕs ⊂
B10h(s)(s) ⊂ B for some B ∈ Φ.

(iii)
∑
s∈S ϕs(p) = 1 for each p ∈ ∪Φ.

(iv) |Dϕs(p)| ≤ Ch(p)−1 for each s ∈ S and each p ∈ ∪Φ, where C = C(n) ∈
(0,∞).

In particular, note that it follows from (iv) and the definition of h(·) that for

each s ∈ S,

(10.21) |Dϕs(x̃, ỹ)| ≤ C |x̃|−1

whenever (x̃, ỹ) ∈ ⋃(x,y)∈I B5|x|/32(x, y) ∪ ⋃w∈JB5/256(w), where C = C(n) ∈
(0,∞). For each s ∈ S, extend ϕs to Rn by setting ϕs(x) = 0 for x ∈ Rn \∪Φ,

and let ϕ̃s be the (smooth) extension of ϕs to {‹X = (x̃1, x̃2, ỹ) ∈ Rn+1 : |x̃1| <
|x̃2|} defined by ϕ̃s(x̃

1, x̃2, ỹ) = ϕs(±
»
|x̃1|2 + |x̃2|2, ỹ), where the + sign is

chosen if x̃2 > 0 and the − sign if x̃2 < 0.

Let G̃ = G ∪
Ä
R× (B15/16 \ {|x̃2| < 1/28})

ä
. We claim that there exists a

fixed constant M = M(n) such that for each (x, y) ∈ I,

(10.22)

card {s ∈ S : spt ϕ̃s ⊂ T3|x|/16(x, y) and spt ϕ̃s ∩ G̃ ∩ spt ‖V ‖ 6= ∅} ≤M

and for each w ∈ J ,

(10.23) card {s ∈ S : spt ϕ̃s ⊂ T3/128(w) and spt ϕ̃s∩ G̃ ∩ spt ‖V ‖ 6= ∅} ≤M.

To see (10.22), fix (x, y) ∈ I and let

S(x,y) = {s ∈ S : spt ϕ̃s ⊂ T3|x|/16(x, y) and spt ϕ̃s ∩ G̃ ∩ spt ‖V ‖ 6= ∅}.

Note that spt ϕ̃s ⊂ T3|x|/16(x, y) ⇐⇒ sptϕs ⊂ B3|x|/16(x, y), and since

G̃ ∩ spt ‖V ‖ ⊂ ⋃(x,y)∈I
Ä
(R×B|x|/8(x, y)) \ CH(x,y)

(Σ(x,y))
ä

∪⋃w∈J (R×B1/64(w)) ∩ spt ‖V ‖,

it follows from (10.19), (10.20) and (ii) above that if s ∈ S(x,y), then either

(?) B3|x|/16(x, y)∩B9|x′|/64(x′, y′) 6= ∅ and B10h(s)(s)∩B9|x′|/64(x′, y′) 6= ∅ for

some (x′, y′) ∈ I, or

(??) B10h(s)(s) ∩B9/512(w′) 6= ∅ for some w′ ∈ J .
If (?) holds, then |x − x′| < 3|x|/16 + 9|x′|/64 whence |x′| > 52|x|/73, and

|s− (x′, y′)| < 10h(s) + 9|x′|/64; so if h(s) < |x′|/640, then s ∈ B5|x′|/32(x′, y′)

and hence, since B3|x′|/16(x′, y′) ∈ Φ, it follows from the definition of h(s) that

h(s) ≥ |x′|/640 contrary to our assumption. Hence in case (?) holds, we must

have that h(s) ≥ 52|x|/(640× 73). In case (??) holds, similar reasoning shows

that h(s) ≥ 1/5120. Thus for any fixed (x, y) ∈ I, we have established that s ∈
S(x,y) =⇒ h(s) ≥ min{52|x|/(640×73), 1/5120} and (by (ii) above) Bh(s)(s) ⊂
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B3|x|/16(x, y). SinceBh(s)(s), s ∈ S are pairwise disjoint, this establishes (10.22)

for some fixed M = M(n). Identical reasoning (using the fact that |e2 · w| >
1/28 for each w ∈ J ) establishes (10.23).

Noting, by (10.19) and the definition of Σ(x,y), that the set(
T±3|x|/16(x, y) \ CH(x,y)

(Σ(x,y))
)
∩ spt ‖V ‖,

if nonempty, can be written as the union of normal graphs of Lipschitz functions

defined over subsets of a sub-collection of the half-hyperplanes G1, . . . , Gq (if

x > 0) or of the half-hyperplanes H1, . . . ,Hq (if x < 0), we see from the area

formula and Remark (3) of Section 8 that for any given (x, y) ∈ I and any

s ∈ S with spt ϕ̃s ⊂ T3|x|/16(x, y),

∫
G∪(R×(B15/16\{|x̃2|<1/28}))

ϕ̃s(‹X)r̃2‹R−1ψ(‹R)ψ′(‹R) d‖V ‖(‹X)

(10.24)

=

`(x,y)∑
k=1

qk(x,y)∑
i=1

∫
Ωk(x,y)

ϕs

Å
±
√
r̃2 + |uik(‹X)|2, ỹ

ã
× r̃2

ui
k

‹R−1
ui
k

ψ(‹Rui
k
)ψ′(‹Rui

k
)
»

1 + |∇uik|2 dH
n(‹X)

=

`(x,y)∑
k=1

qk(x, y)

∫
Ωk(x,y)

ϕs(±r̃, ỹ)r̃2‹R−1ψ(‹R)ψ′(‹R) dHn(‹X)

+

`(x,y)∑
k=1

qk(x,y)∑
i=1

∫
Ωk(x,y)

Å
ϕs

Å
±
√
r̃2 + |uik(‹X)|2, ỹ

ã
− ϕs(±r̃, ỹ)

ã
× r̃2‹R−1ψ(‹R)ψ′(‹R) dHn(‹X) + E,

where we choose the + sign if x > 0 and the − sign if x < 0; `(x, y) is a positive

integer ≤ q; qk(x, y) are positive integers with

(10.25)

`(x,y)∑
k=1

qk(x, y) ≤ q;

Ωk(x, y) is, by (10.19) and (10.20), a measurable subset ofÄ⋃
(x′,y′)∈IT19|x′|/128(x′, y′) ∪⋃w′∈J T19/1024(w′)

ä
∩ (R×B|x|/4(x, y)) ∩Gjk(x,y)

(if x > 0) or ofÄ⋃
(x′,y′)∈IT19|x′|/128(x′, y′) ∪⋃w′∈J T19/1024(w′)

ä
∩ (R×B|x|/4(x, y)) ∩Hjk(x,y)

(if x < 0) for some integer jk(x, y) ∈ {1, 2, . . . , q}; uik are the Lipschitz functions

as in Remark (3) of Section 8 (applied with ηZ(x,y),7|x|/8 # V , ηZ(x,y),7|x|/8 spt ‖C‖
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in place of V ,P); r̃ui
k

=
»
r̃2 + |uik|2; ‹Rui

k
=
»‹R2 + |uik|2 and, by the estimates

of Remark (3) of Section 8,

|E| ≤ C
∫
R×B15|x|/16(x,y)

dist2(‹X, spt ‖C‖) d‖V ‖(‹X)

for some constant C = (n, q) ∈ (0,∞). Still assuming spt ϕ̃s ⊂ T3|x|/16(x, y),

we also see in view of (10.25) that

`(x,y)∑
k=1

qk(x, y)

∫
Ωk(x,y)

ϕs(±r̃, ỹ)r̃2‹R−1ψ(‹R)ψ′(‹R) dHn(‹X)

(10.26)

≥
`(x,y)∑
k=1

qk(x, y)

∫
Pk∩T3|x|/16(x,y)

ϕs(±r̃, ỹ)r̃2‹R−1ψ(‹R)ψ′(‹R) dHn(‹X)

=

Ñ
`(x,y)∑
k=1

qk(x, y)

é ∫
B3|x|/16(x,y)

ϕs(±r̃, ỹ)r̃2‹R−1ψ(‹R)ψ′(‹R) dHn(‹X)

≥ q
∫
B3|x|/16(x,y)

ϕs(±r̃, ỹ)r̃2‹R−1ψ(‹R)ψ′(‹R) dHn(‹X)

=

∫
R×B15/16

ϕs(±r̃, ỹ)r̃2‹R−1ψ(‹R)ψ′(‹R) d‖C‖(‹X),

where Pk = Gjk if x > 0 and Pk = Hjk if x < 0. Since we may bound, using

the sup estimate of Remark (3)(b) of Section 8 and (10.21) (keeping in mind

that Ωk(x, y) ⊂
Ä⋃

(x′,y′)∈IT19|x′|/128(x′, y′) ∪ ⋃
w′∈J T19/1024(w′)

ä
∩ spt ‖C‖),

the absolute value of the middle term of the last line of (10.24) by a constant

times
∫
R×B15|x|/16(x,y) dist2(‹X, spt ‖C‖) d‖V ‖(‹X), we conclude from (10.24) and

(10.26) that for each (x, y) ∈ I and each s ∈ S with spt ϕ̃s ⊂ T3|x|/16(x, y),∫
G∪(R×(B15/16\{|x̃2|<1/28}))

ϕ̃s(‹X)r̃2‹R−1ψ(‹R)ψ′(‹R) d‖V ‖(‹X)(10.27)

≥
∫
R×B15/16

ϕs(±r̃, ỹ)r̃2‹R−1ψ(‹R)ψ′(‹R) d‖C‖(‹X)

− C
∫
R×B15|x|/16(x,y)

dist2(‹X, spt ‖C‖) d‖V ‖(‹X),

where C = C(n, q) ∈ (0,∞); the + sign is chosen if x > 0 and the − sign if

x < 0. By a similar argument, using part (a) and elliptic estimates, we also see

that for each w ∈ J and each s ∈ S with spt ϕ̃s ⊂ T3/128(w),
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G∪(R×(B15/16\{|x̃2|<1/28}))

ϕ̃s(‹X)r̃2‹R−1ψ(‹R)ψ′(‹R) d‖V ‖(‹X)(10.28)

≥
∫
R×B15/16

ϕs(±r̃, ỹ)r̃2‹R−1ψ(‹R)ψ′(‹R) d‖C‖(‹X)

− C
∫
R×B1/32(w)

dist2(X, spt ‖C‖) d‖V ‖(‹X),

where C = C(n, q) ∈ (0,∞); the + sign is chosen if e2 · w > 0 and the − sign

if e2 · w < 0.

Now choose enumerations J = {wj}Jj=1 and I = {(xJ+j , yJ+j)}∞j=1, let

Sj =
{
s ∈ S : spt ϕ̃s ⊂ T3/128(wj),

spt ϕ̃s ∩
Ä
G ∪
Ä
R× (B15/16 \ {|x̃2| < 1/28})

ää
∩ spt ‖V ‖ 6= ∅

}
for 1 ≤ j ≤ J and

Sj = {s ∈ S : spt ϕ̃s ⊂ T3|xj |/16(xj , yj),

spt ϕ̃s ∩
Ä
G ∪
Ä
R× (B15/16 \ {|x̃2| < 1/28})

ää
∩ spt ‖V ‖ 6= ∅}

for j ≥ J + 1, write{
s ∈ S : spt ϕ̃s ∩

Ä
G ∪
Ä
R× (B15/16 \ {|x̃2| < 1/28})

ää
∩ spt ‖V ‖ 6= ∅

}
=
⋃∞
j=1S ′j ,

where S ′1 = S1 and S ′j = Sj\
⋃j−1
i=1S ′i for j ≥ 2, and note that S ′j are pairwise dis-

joint and, by (10.22), (10.23), that card(S ′j) ≤M = M(n). Summing in (10.27),

(10.28) first over s ∈ S ′j for fixed j, and then over j (where j ∈ {1, 2, . . . , J} in

(10.28) and j ≥ J + 1 in (10.27)) keeping in mind that the collection of balls

{B15|x|/16(x, y)}(x,y)∈I = {B15|xj |/16(xj , yj)}∞j=J+1 can be subdivided into at

most N = N(n) sub-collections of pairwise disjoint balls, and adding the two

resulting inequalities (and using the fact that
∑
s∈S ϕ̃s(‹X) = 1 for each point‹X ∈ G ∪ ÄR× (B15/16 \ {|x̃2| < 1/28})

ä
∩ spt ‖V ‖ and

∑
s∈S ϕs(±r̃, ỹ) ≤ 1 for

each point ‹X = (x̃1, x̃2, ỹ) ∈ spt ‖C‖), we conclude that∫
G∪(R×(B15/16\{|x̃2|<1/28}))

r̃2‹R−1ψ(‹R)ψ′(‹R) d‖V ‖(‹X)(10.29)

−
∫
R×B15/16

r̃2‹R−1ψ(‹R)ψ′(‹R) d‖C‖(‹X)

≥ −C
∫
R×B1

dist2(‹X, spt ‖C‖) d‖V ‖(‹X),

where C = C(n, q) ∈ (0,∞). In view of (10.13), (10.14), (10.15), conclusions

(b) and (c) now follow from the estimates (10.18), (10.29) and conclusion (a).
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Conclusion (d) follows from conclusion (b) by exactly the same argument as

for the corresponding estimate in Lemma 3.4 of [Sim93]. �

For the proof of Corollary 10.2 below and subsequently, we shall need

the following elementary fact: If C ∈ Cq is as in Hypothesis 10.1(2) and if

Z = (ζ1, ζ2, η) ∈ R×R×Rn−1 ≡ Rn+1, then for any X ∈ Rn+1,

(10.30) |dist(X, spt ‖C‖)− dist(X, spt ‖TZ # C‖)| ≤ |ζ1|+ ν|ζ2|,

where TZ : Rn+1 → Rn+1 is the translation X 7→ X + Z and

ν = max {|λ1|, . . . , |λq|, |µ1|, . . . , |µq|}.

Indeed, by the triangle inequality

|dist(X, spt ‖C‖)− dist(X, spt ‖TZ # C‖)| ≤ distH(spt ‖C‖, spt ‖TZ # C‖)

and by translation invariance of C along {0} ×Rn−1,

distH(spt ‖C‖, spt ‖TZ # C‖)
= distH(spt ‖C‖, spt ‖T(ζ1,ζ2,0) # C‖)

≤ distH(spt ‖C‖, spt ‖T(ζ1,0,0) # C‖)

+ distH(spt ‖T(ζ1,0,0) # C‖, spt ‖T(ζ1,ζ2,0) # C‖)

= distH(spt ‖C‖, spt ‖T(ζ1,0,0) # C‖)

+ distH(spt ‖C‖, spt ‖T(0,ζ2,0) # C‖) ≤ |ζ1|+ ν|ζ2|.

Corollary 10.2. Let q be an integer ≥ 2 and α ∈ (0, 1). For each ρ ∈
(0, 1/4], there exist numbers ε = ε(n, q, α, ρ) ∈ (0, 1), γ = γ(n, q, α, ρ) ∈ (0, 1)

and β = β(n, q, α, ρ) ∈ (0, 1) such that the following is true: If V ∈ Sα, C ∈ Cq
satisfy Hypotheses 10.1, Hypothesis (?) with M = 3

2M
3
0 and Hypothesis (??),

and if the induction hypotheses (H1), (H2) hold, then for each Z = (ζ1, ζ2, η) ∈
spt ‖V ‖ ∩ (R × B3/8) with Θ(‖V ‖, Z) ≥ q and each µ ∈ (0, 1) we have the

following :

(a) |ζ1|2 + Ê2
V |ζ2|2 ≤ C

∫
R×B1

dist2(X, spt ‖C‖) d‖V ‖(X);

(b)

∫
Bn+1

5ρ/8
(Z)

dist2(X, spt ‖TZ # C‖)
|X − Z|n+2−µ d‖V ‖(X)

≤ ‹Cρ−n−2+µ
∫
R×Bρ(ζ2,η)

dist2(X, spt ‖TZ # C‖) d‖V ‖(X).

Here TZ : Rn+1 → Rn+1 is the translation X 7→ X + Z ; C = C(n, q, α) ∈
(0,∞) and ‹C = ‹C(n, q, α, µ) ∈ (0,∞). (In particular, C , ‹C do not depend

on ρ.)
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Our proof of this corollary will be based on several preliminary results,

given below as Lemma 10.3, Lemma 10.4, Proposition 10.5, Lemma 10.6 and

Proposition 10.7.

Lemma 10.3. For any given δ ∈ (0, 1), there exist ε′ = ε′(n, q, α, δ),

γ′ = γ′(n, q, α, δ) ∈ (0, 1) such that if Hypotheses 10.1 with ε′, γ′ in place

of ε, γ are satisfied by V ∈ Sα and C ∈ K, and also Hypothesis (?) with

M = 3
2M

3
0 are satisfied by V , then

|ζ1|2 + Ê2
V |ζ2|2 < δÊ2

V

for each Z = (ζ1, ζ2, η) ∈ spt ‖V ‖ ∩ (R×B3/8) with Θ(‖V ‖, Z) ≥ q.

Proof. The lemma follows by arguing by contradiction, using Remark (3)

of Section 6, Theorem 3.5, the remark at the end of Section 8 and the bounds

(10.1), (10.2). �

Lemma 10.4. Let q be an integer ≥ 3. For any given δ ∈ (0, 1), there exist

ε = ε(n, q, α, δ), γ = γ(n, q, α, δ) and β = β(n, q, α, δ) ∈ (0, 1) such that if

(a) p′ ∈ {5, . . . , 2q} and

(b) Hypotheses 10.1, Hypothesis (?) with M = 3
2M

3
0 and Hypothesis (??)

are satisfied with V ∈ Sα, C ∈ Cq(p′),
then

|ζ1|2 + Ê2
V |ζ2|2 ≤ δ

(
Q?V (p′ − 1)

)2
for each Z = (ζ1, ζ2, η) ∈ spt ‖V ‖ ∩ (R×B3/8) with Θ(‖V ‖, Z) ≥ q.

We shall eventually prove this lemma by induction on p′, but first we need

to establish the following:

Proposition 10.5. Let q be an integer ≥ 2, p ∈ {4, . . . , 2q}, and suppose

that either

(i) p = 4, or

(ii) q ≥ 3, p ≥ 5 and Lemma 10.4 holds whenever p′ ∈ {5, . . . , p}.
Then Corollary 10.2 holds whenever C ∈ ⋃pk=4Cq(k).

Proof. Let ε0, γ0 and β0 be the constants given by Theorem 10.1 taken

with τ = 1/16 (say). Suppose that the hypotheses of the proposition are

satisfied. Let ρ ∈ (0, 1/4], and suppose that the hypotheses of Corollary 10.2,

for suitably small ε, γ, β to be determined depending only on n, q, α and ρ,

are satisfied by a varifold V ∈ Sα and a cone C ∈ ⋃pk=4Cq(k) .

To show that the conclusions of Corollary 10.2 follow, we need to apply

Theorem 10.1 with τ = 1/16 and ηZ,ρ# V in place of V for any Z = (ζ1, ζ2, η) ∈
spt ‖V ‖ ∩ (R × B3/8) with Θ (‖V ‖, Z) ≥ q. Thus we need to show that it is
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possible to choose ε, γ, β depending only on n, q, α, ρ such that Hypothe-

ses 10.1, Hypothesis (?) and Hypothesis (??) are satisfied with the varifold‹V = ηZ,ρ# V in place of V , with ε0 , γ0, β0 in place of ε, γ, β respectively and

withM = 3
2M

4
0 . If this is so, then part (b) of Corollary 10.2 follows as the result

of a direct application of Theorem 10.1(d) with ‹V in place of V , and part (a)

of Corollary 10.2 follows from the argument of [Wic04, Lemma 6.21] (which in

turn is a minor modification of the corresponding argument of [Sim93]), which

also requires application of Theorem 10.1(d) with ‹V in place of V.

Hypothesis 10.1(1) with ‹V in place of V follows from Theorem 5.1; Hy-

pothesis 10.1(3) with ‹V in place of V and ε0 in place of ε holds if ε < ρn+2ε0.

Hypothesis 10.1(4) with ‹V in place of V is satisfied since by the remark at the

end of Section 8, we may choose ε = ε(n, q, α, ρ), γ = γ(n, q, α, ρ) sufficiently

small to ensure that {Z : Θ(‖V ‖, Z) ≥ q} ∩ (R×B1/2) ⊂ {|x2| < ρ/128}.
To verify that Hypotheses 10.1(5) is satisfied with ‹V in place of V and γ0 in

place of γ, we proceed as follows: First, using Theorem 10.1(a) with τ = ρ/32,

we note that for ε = ε(n, q, α, ρ), γ = γ(n, q, α, ρ), β = β(n, q, α, ρ) ∈ (0, 1)

sufficiently small,

ρ−n−2
∫
R×Bρ(ζ2,η)

|x1 − ζ1|2 d‖V ‖(X)(10.31)

≥ ρ−n−2
q∑
j=1

Ç∫
Bρ(ζ2,η)∩{x2<−ρ/16}

|hj + uj − ζ1|2

+

∫
Bρ(ζ2,η)∩{x2>ρ/16}

|gj + wj − ζ1|2
å

≥ 1

2
ρ−n−2

q∑
j=1

(∫
Bρ/2∩{x2<−ρ/16}

|hj |2 +

∫
Bρ/2∩{x2>ρ/16}

|gj |2
)

− ρ−n−2
q∑
j=1

Ç∫
Bρ(ζ2,η)∩{x2<−ρ/16}

|uj |2 +

∫
Bρ(ζ2,η)∩{x2>ρ/16}

|wj |2
å

− Cρ−2|ζ1|2

≥ 2−n−3C1

Ñ
q∑
j=1

|λj |2 + |µj |2
é
− ρ−n−2E2

V − Cρ−2|ζ1|2,

where

E2
V =

∫
R×B1

dist2(X, spt ‖C‖) d‖V ‖(X),

C1 = C1(n) ≡
∫
B1/2\{x2>1/16}

|x2|2 dHn(x2, y), C = C(n, q) ∈ (0, 1)
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and the rest of the notation is as in Theorem 10.1(a). If ε = ε(n, q, α, ρ),

γ = γ(n, q, α, ρ) ∈ (0, 1) are sufficiently small, it follows from (10.31), (10.2)

and Lemma 10.3 that

(10.32) Ê
Ṽ
≥ CÊV ,

where C = C(n, q) ∈ (0,∞). On the other hand, by (10.30) and (10.1), we

have that∫
R×B1

dist2(X, spt ‖C‖) d‖‹V ‖(X)

≤ 2ρ−n−2
∫
R×B1

dist2(X, spt ‖C‖) d‖V ‖(X) + Cρ−2
Ä
|ζ1|2 + Ê2

V |ζ2|2
ä
,

where C = C(n, q) ∈ (0,∞) and, provided ε = ε(n, q, α, ρ), γ = γ(n, q, α, ρ),

β = β(n, q, α, ρ) are sufficiently small,∫
R×(B1/2\{|x2|<1/16})

dist2(X, spt ‖‹V ‖) d‖C‖(X)

= ρ−n−2
∫
R×(Bρ(Z)\{|x2−ζ2|<ρ/16})

dist2(X, spt ‖V ‖) d‖TZ # C‖(X)

≤ ρ−n−2
∫
R×(B17ρ/16(0,η)\{|x2|<ρ/32})

dist2(X, spt ‖V ‖) d‖TZ # C‖(X)

≤ ρ−n−2
∫
R×(B5/8(0)\{|x2|<ρ/32})

dist2(X, spt ‖V ‖) d‖C‖(X)

+ Cρ−2
Ä
|ζ1|2 + Ê2

V |ζ2|2
ä

≤ Cρ−n−2
∫
R×B1

dist2(X, spt ‖C‖) d‖V ‖(X) + Cρ−2
Ä
|ζ1|2 + Ê2

V |ζ2|2
ä
,

where C = C(n, q) ∈ (0,∞), the second inequality follows from the area for-

mula and (10.1), and the last inequality follows from Theorem 10.1(a) applied

with τ = ρ/64. Thus

(10.33) Q2
Ṽ

(C) ≤ C
Ä
ρ−n−2Q2

V (C) + ρ−2(|ζ1|2 + Ê2
V |ζ2|2)

ä
which, in view of (10.32) and Lemma 10.3 applied with sufficiently small δ =

δ(n, q, α, ρ) ∈ (0, 1), implies that Hypothesis 10.1(5) is satisfied with ‹V in place

of V and γ0 in place of γ.

To verify that Hypothesis (?) is satisfied with ‹V in place of V and M =
3
2M

4
0 , reasoning again as in (10.31), we see first that for any hyperplane P of

the form P = {x1 = λx2} with |λ| < 1,
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ρ−n−2
∫
R×Bρ(ζ2,η)

dist2(X − Z,P ) d‖V ‖(X)(10.34)

≥ 2−n−4C1

Ç q∑
j=1

|λj − λ|2 + |µj − λ|2
å

− 1

2
ρ−n−2E2

V − Cρ−2|ζ1 − λζ2|2

≥ 2−n−4C1dist2
H(spt ‖C‖ ∩ (R×B1), P ∩ (R×B1))

− 1

2
ρ−n−2E2

V − Cρ−2|ζ1 − λζ2|2

≥ 2−n−4ω−1
n (2q + 1)−1C1

∫
R×B1

dist2(X,P ) d‖V ‖(X)

−
Ä
2−n−3ω−1

n (2q + 1)−1C1 + 2−1ρ−n−2
ä
E2
V − Cρ−2|ζ1 − λζ2|2,

where C = C(n, q) ∈ (0,∞) and we have used the triangle inequality in

the last step. On the other hand, noting, by the Constancy Theorem, that

(ωn(2ρ)n)−1 ‖V ‖ (R×B2ρ(0, η)) ≤ q + 1/2 provided ε = ε(n, q, ρ) ∈ (0, 1) is

sufficiently small, we see by Lemma 10.3 and the triangle inequality again that

ρ−n−2
∫
R×Bρ(ζ2,η)

|x1 − ζ1|2 d‖V ‖(X)(10.35)

≤ 2ρ−n−2‖V ‖(R×B2ρ(0, η))dist2
H (spt ‖C‖ ∩ (R×B2ρ), {0} ×B2ρ)

+ 2ρ−n−2E2
V + Cρ−2δÊ2

V

≤
Ä
2n+2ωn(2q + 1)c2

1 + Cρ−2δ
ä
Ê2
V + 2ρ−n−2E2

V ,

where c1 = c1(n) is as in (10.1). Since

Ê2
V ≤

3

2
M3

0 inf
{P={x1=λx2}}

∫
R×B1

dist2(X,P ) d‖V ‖(X)

by hypothesis (of Corollary 10.2), in view of the fact that

inf
{P={x1=λx2}}

∫
R×B1

dist2(X,P ) d‖V ‖(X)

= inf
{P={x1=λx2}, |λ|<CÊV }

∫
R×B1

dist2(X,P ) d‖V ‖(X),

where C=C(n)∈(0,∞), we deduce from Lemma 10.3, (10.34) and (10.35) that

Ê2
Ṽ
≤

(
22n+6ω2

n(2q+1)2c2
1+2n+4ωn(2q+1)(2ρ−n−2γ+Cρ−2δ)

) 3
2M

3
0

C1−2n+4ωn(2q+1)
Ä
(2−1ρ−n−2+2−n−3ω−1

n (2q+1)−1C1)γ+Cρ−2δ
ä

3
2M

3
0

× inf
{P={x1=λx2}}

∫
R×B1

dist2(X,P ) d‖‹V ‖(X)

≤ 3

2
M4

0 inf
{P={x1=λx2}}

∫
R×B1

dist2(X,P ) d‖‹V ‖(X)

provided ε = ε(n, q, α, ρ), γ = γ(n, q, α, ρ) ∈ (0, 1) are sufficiently small.
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It only remains to verify that Hypothesis (??) with ‹V in place of V and

β0 in place of β is satisfied whenever C ∈ ⋃pk=4Cq(k). If p = 4, then C ∈ Cq(4)

and there is nothing further to verify, so assume that q ≥ 3 and C ∈ Cq(p′) for

some p′ ∈ {5, . . . , p}. Then for any C′ ∈ ⋃p′−1
k=4 Cq(k), we have by the definition

of Q?V (p′ − 1), the triangle inequality and Hypothesis (??) (for V and C with

sufficiently small β) that dist2
H (spt ‖C′‖ ∩ (R×B1), spt ‖C‖ ∩ (R×B1)) ≥

C (Q?V (p′ − 1))2, where C = C(n, q) ∈ (0,∞), and hence by Theorem 10.1(a),

for sufficiently small ε = ε(n, q, α, ρ), γ = γ(n, q, α, ρ), β = β(n, q, α, ρ) ∈ (0, 1),

that

∫
R×B1

dist2 (X, spt ‖C′‖) d‖‹V ‖(X)

(10.36)

≥
q∑
j=1

ρ−n−2
∫
Bρ(ζ2,η)∩{x2<− ρ

16
}

dist2 ((hj(X ′) + uj(X ′), X ′)− Z, spt ‖C′‖) dX ′

+
q∑
j=1

ρ−n−2
∫
Bρ(ζ2,η)∩{x2> ρ

16
}

dist2 ((gj(X ′) +wj(X ′), X ′)−Z, spt ‖C′‖) dX ′

≥
q∑
j=1

ρ−n−2
∫
Bρ/2(0,η)∩{x2<− ρ

16
}

dist2 ((hj(X ′) + uj(X ′), X ′), spt ‖C′‖) dX ′

+
q∑
j=1

ρ−n−2
∫
Bρ/2(0,η)∩{x2> ρ

16
}

dist2 ((gj(X ′) + wj(X ′), X ′), spt ‖C′‖) dX ′

− C ′ρ−2(|ζ1|2 + δ(C′)|ζ2|2)

≥ C (Q?V (p− 1))2 − ρ−n−2E2
V − C ′ρ−2(|ζ1|2 + δ(C′)|ζ2|2)

≥ 1

2
C
(
Q?V (p′ − 1)

)2 − C ′ρ−2(|ζ1|2 + δ(C′)|ζ2|2)

where C = C(n, q), C ′ = C ′(n, q) ∈ (0,∞) and

δ(C′) = dist2
H
(
spt ‖C′‖ ∩ (R×B1), {0} ×B1

)
.

Since Ê2
Ṽ
≤ Cρ−n−2Ê2

V where C = C(n, q) ∈ (0,∞), we have that

Q?
Ṽ

(p′ − 1) = inf
{C′∈

⋃p′−1
k=4 Cq(k):δ(C′)<Cρ−n−2Ê2

V }
Q
Ṽ

(C′),

so it follows from (10.36) that

(10.37)
Ä
Q?
Ṽ

(p′ − 1)
ä2 ≥ C (Q?V (p′ − 1)

)2 − C ′ρ−n−4(|ζ1|2 + Ê2
V |ζ2|2),

where C = C(n, q), C ′ = C ′(n, q) ∈ (0,∞). On the other hand, by (10.33),

Q2
Ṽ

(C) ≤ C1

Ä
ρ−n−2Q2

V (C) + ρ−2(|ζ1|2 + Ê2
V |ζ2|2)

ä
(10.38)

≤ C1βρ
−n−2 (Q?V (p′ − 1)

)2
+ C1ρ

−2(|ζ1|2 + Ê2
V |ζ2|2),
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where C1 = C1(n, q) ∈ (0,∞). Since by assumption Lemma 10.4 holds when-

ever p′ ∈ {5, . . . , p}, we may apply Lemma 10.4 with any δ = δ(n, q, α, ρ) ∈
(0, 1) satisfying max{C ′, β−1

0 C1}ρ−n−4δ < C/2, where C, C ′, C1 are as in

(10.37) and (10.38), to conclude that Hypothesis (??) with ‹V , β0 in place of

V , β is satisfied. The proof of the proposition is thus complete. �

Lemma 10.6. Let q ≥ 3 and δ ∈ (0, 1). There exist ε̃1 = ε̃1(n, q, α, δ),

β̃1 = β̃1(n, q, α, δ), γ1 = γ1(n, q, α, δ) and β1 = β1(n, q, α, δ) ∈ (0, 1) such that if

(a) p′ ∈ {5, . . . , 2q};
(b) Hypotheses 10.1(1)–(4), Hypothesis (?) and Hypothesis (??) are satisfied

with V ∈ Sα, C ∈ Cq(p′), M = 3
2M

3
0 and with ε̃1, β̃1 in place of ε, β

respectively ;

(c) either

(i) (Q?V (4))2 ≤ γ1Ê
2
V , or

(ii) p′ ∈ {6, . . . , 2q}, (Q?V (p′ − j′))2 ≤ β1 (Q?V (p′ − j′ − 1))2 and

(Q?V (p′ − j′))2 ≤ γ1Ê
2
V for some j′ ∈ {1, . . . , p′ − 5},

then for each Z = (ζ1, ζ2, η) ∈ spt ‖V ‖ ∩ (R×B3/8) with Θ(‖V ‖, Z) ≥ q,

|ζ1|2 + Ê2
V |ζ2|2 < δ (Q?V (4))2

in case (c)(i) holds and

|ζ1|2 + Ê2
V |ζ2|2 < δ

(
Q?V (p′ − j′)

)2
in case (c)(ii) holds.

This lemma will follow, in view of the following proposition, from our

inductive proof of Lemma 10.4 given below.

Proposition 10.7. Let q be an integer ≥ 3, p ∈ {5, . . . , 2q}, and suppose

that either

(i) p = 5, or

(ii) p ∈ {6, . . . , 2q} and Lemma 10.4 holds whenever p′ ∈ {5, . . . , p− 1}.
Then Lemma 10.6 holds whenever p′ = p.

Proof. We argue by contradiction. Fix p ∈ {5, . . . , 2q}, and suppose that

the hypotheses of the proposition are satisfied.

Note that if Lemma 10.6 with p′ = p does not hold, then there exist

a number δ ∈ (0, 1), an integer j′ ∈ {1, . . . , p − 5} in case p ∈ {6, . . . , 2q}
and, for each k = 1, 2, . . . , a varifold Vk ∈ Sα, a point Zk = (ζ1

k , z
2
k, ηk) ∈

spt ‖Vk‖ ∩ (R × B3/8) with Θ(‖Vk‖, Zk) ≥ q, a cone Ck ∈ Cq(p) such that

Hypotheses 10.1(1), 10.1(2), 10.1(4) and Hypothesis (?) are satisfied with Vk
in place of V , Ck in place of C, M = 3

2M
3
0 ;

Êk → 0;
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(Q?k(p− 1))−1QVk(Ck)→ 0;(10.39)

either Ê−1
k Q?k(4)→ 0 or(10.40)

p∈{6, . . . , 2q},
(
Q?k(p− j′ − 1)

)−1
Q?k(p− j′)→ 0 and Ê−1

k Q?k(p− j′)→0

(10.41)

(or both) and yet

|ζ1
k |2 + Ê2

k |ζ2
k |2 ≥ δ (Q?k(4))2 in case (10.40) holds and(10.42)

|ζ1
k |2 + Ê2

k |ζ2
k |2 ≥ δ

(
Q?k(p− j′)

)2
in case (10.41) holds,(10.43)

where we have used the notation Êk = ÊVk and Q?k(·) = Q?Vk(·).
For each k = 1, 2, . . . , let Ck ∈ Cq be chosen as follows: in case (10.40)

holds, Ck ∈ Cq(4) is such that
Ä
QVk(Ck)

ä2
< 3

2

Ä
Q?Vk(4)

ä2
; in case (10.41)

holds, Ck ∈ Cq(p− j′) is such that
Ä
QVk(Ck)

ä2
< 3

2

Ä
Q?Vk(p− j′)

ä2
. Note that

since the rest of our argument is the same for either case, we use the same

notation Ck for either case. Let τk ∈ (0, 1/8) be such that τk ↘ 0+. By

passing to appropriate subsequences without changing notation, we have by

Proposition 10.5 and Corollary 10.2 that for each k = 1, 2, . . . ,

(10.44) |ζ1
k |2 + Ê2

k |ζ2
k |2 ≤ CE2

k ,

where C = C(n, q, α) ∈ (0,∞), and for each µ ∈ (0, 1),

q∑
j=1

∫
B1/8(ζ2

k
,ηk)∩{x2<−τk/4}

|ukj (X ′)− (ζ1
k − λ

k
j ζ

2
k)|2

|(hkj (X ′) + ukj (X
′), X ′)− (ζ1

k , ζ
2
k , ηk)|n+2−µ dX

′

(10.45)

+
q∑
j=1

∫
B1/8(ζ2

k
,ηk)∩{x2>τk/4}

|wkj (X ′)− (ζ1
k − µkj ζ2)|2

|(gkj (X ′) + wkj (X ′), X ′)− (ζ1
k , ζ

2
k , ηk)|n+2−µ dX

′

≤ ‹CE2
k ,

where ‹C = ‹C(n, q, α, µ) ∈ (0,∞). Here,

E2
k =

∫
R×B1

dist2(X, spt ‖Ck‖) d‖Vk‖(X)

for each j ∈ {1, 2, . . . , q} and k = 1, 2, . . . , the functions ukj , w
k
j correspond to

uj , wj of Theorem 10.1(a) when Vk, Ck are taken in place of V, C, and the

numbers λ
k
j , µ

k
j correspond to λj , µj of Hypothesis 10.1(2) when Ck is taken

in place of C. Note then that λ
k
1 ≥ λ

k
2 ≥ · · · ≥ λ

k
q , µ

k
1 ≤ µk2 ≤ · · · ≤ µkq and by

(10.1) and (10.2),

cÊk ≤ max {|λk1|, |λ
k
q |} ≤ c1Êk, cÊk ≤ max {|µk1|, |µkq |} ≤ c1Êk,(10.46)

min {|λk1 − λ
k
q |, |µk1 − µkq |} ≥ 2cÊk,

where c1 = c1(n), c = c(n, q) ∈ (0,∞) are as in (10.1) and (10.2).
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Writing Qk = QVk(Ck), we see by Theorem 10.1(a) and elliptic estimates

that for each j∈{1, 2, . . . , q}, there exist harmonic functions ϕj : B3/4∩{x2<0}
→ R, ψj : B3/4 ∩ {x2 > 0} → R such that Q−1

k ukj → ϕj , Q
−1
k wkj → ψj where

the convergence is in C2(K) for each compact subset K of the respective do-

mains of ϕj , ψj . By (10.39), Q−1
k QVk(Ck) → 0, which implies that for each

j ∈ {1, 2, . . . , q}, there exist constants λj , µj such that ϕj(x
2, y) = λjx

2 for

(x2, y) ∈ B1/2 ∩ {x2 < 0} and ψj(x
2, y) = µjx

2 for (x2, y) ∈ B1/2 ∩ {x2 > 0}.
We find a point η ∈ {0} ×Rn−1 ∩ B3/8(0) and, by (10.44) and (10.46), num-

bers κ1, κ2, `1, . . . , `q,m1, . . . ,mq such that, passing to further subsequences

without changing notation, ηk → η, Q−1
k ζ1

k → κ1, Q−1
k Êkζ

2
k → κ2, Ê−1

k λkj → `j

and Ê−1
k µkj → mj . We deduce from (10.45) that

q∑
j=1

∫
B1/8(0,η)∩{x2<0}

|λjx2 − (κ1 − `jκ2)|2

(|x2|2 + |y − η|2)
n+2−µ

2

dx2dy

+
q∑
j=1

∫
B1/8(0,η)∩{x2>0}

|µjx2 − (κ1 −mjκ2)|2

(|x2|2 + |y − η|2)
n+2−µ

2

dx2dy <∞,

which readily implies that κ1 − `jκ2 = 0 and κ1 − mjκ2 = 0 for each j =

1, 2, . . . , q. Since by (10.46) not all `1, . . . , `q are equal, we must have that

κ1 = κ2 = 0. This contradicts (10.42) in case (10.40) holds and (10.43) in case

(10.41) holds. The proposition is thus proved. �

Proof of Lemma 10.4. We prove the lemma by induction on p′. Let δ ∈
(0, 1) and consider first the case p′ = 5. Noting, in view of Proposition 10.7, the

validity of Lemma 10.6 with p′ = 5, let ε̃1 = ε̃1(n, q, α, δ), β̃1 = β̃1(n, q, α, δ),

γ1 = γ1(n, q, α, δ), β1 = β1(n, q, α, δ) be as in Lemma 10.6 with p′ = 5, and

suppose that the hypotheses of Lemma 10.4 with p′ = 5 are satisfied by some

V ∈ Sα and C ∈ Cq(5), with ε = min{ε̃, ε′(n, q, α, δγ1)}, β = β̃1 and γ =

min{γ1, γ
′(n, q, α, δγ1)}, where ε′ = ε′(n, q, α, ·), γ′ = γ′(n, q, α, ·) are as in

Lemma 10.3. Then hypotheses (a) and (b) of Lemma 10.6 with p′ = 5 are

satisfied by V and C. If also (Q?V (4))2 ≤ γ1Ê
2
V , then by Lemma 10.6 we have

the desired conclusion. If on the other hand (Q?V (4))2 > γ1Ê
2
V , then applying

Lemma 10.3 with δγ1 in place of δ, we again have the desired conclusion. So

Lemma 10.4 is established in case p′ = 5.

Now fix p ∈ {6, . . . , 2q}, and suppose by induction that Lemma 10.4 holds

whenever p′ ∈ {5, . . . , p − 1}. Then by Proposition 10.7, Lemma 10.6 with

p′ = p holds. Let δ ∈ (0, 1), and let ε̃1(n, q, α, ·), β̃1(n, q, α, ·), γ1(n, q, α, ·),
β1 = β1(n, q, α, ·) be as in Lemma 10.6 with p′ = p. Set β

(0)
1 = 1, and for j =

1, 2, 3, . . . p − 5, set β
(j)
1 = β1(n, q, α, δΠj−1

k=0β
(k)
1 ), ε̃

(j)
1 = ε̃1(n, q, α, δΠj

k=1β
(k)
1 ),

β̃
(j)
1 = β̃1(n, q, α, δΠj

k=1β
(k)
1 ) and γ

(j)
1 = γ1(n, q, α, δΠj

k=1β
(k)
1 ). Again let ε′ =
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ε′(n, q, α, ·), γ′ = γ′(n, q, α, ·) be as in Lemma 10.3, let δ′ = Πp−5
j=1γ

(j)
1 β

(j)
1 β̃

(j)
1

and let ε = ε′(n, q, α, δδ′), γ = γ′(n, q, α, δδ′).

Let C ∈ Cq(p), V ∈ Sα, and suppose that the hypotheses of Lemma 10.4

are satisfied with ε = min{ε, ε̃(j)
1 : 1 ≤ j ≤ p−5}, β = min{β̃(j)

1 : 1 ≤ j ≤ p−5}
and γ = min{γ, γ(j)

1 : 1 ≤ j ≤ p− 5}. Consider the following exhaustive list of

alternatives:

(a) (Q?V (p− 1))2 > δ′Ê2
V .

(b1) (Q?V (p− 1))2 ≤ δ′Ê2
V and (Q?V (p− 1))2 ≤ β(1)

1 (Q?V (p− 2))2.

(b2) (Q?V (p− 1))2 ≤ δ′Ê2
V , (Q?V (p− 1))2 > β

(1)
1 (Q?V (p− 2))2 and

(Q?V (p− 2))2 ≤ β(2)
1 (Q?V (p− 3))2 .

(b3) (Q?V (p− 1))2 ≤ δ′Ê2
V , (Q?V (p− 1))2 > β

(1)
1 (Q?V (p− 2))2, (Q?V (p− 2))2

> β
(2)
1 (Q?V (p− 3))2 and (Q?V (p− 3))2 ≤ β

(3)
1 (Q?V (p− 4))2 .

. . .

(bp−5) (Q?V (p− 1))2 ≤ δ′Ê2
V , (Q?V (p− 1))2 > β

(1)
1 (Q?V (p− 2))2, (Q?V (p− 2))2

> β
(2)
1 (Q?V (p− 3))2 , (Q?V (p− 3))2 > β

(3)
1 (Q?V (p− 4))2 , . . . , (Q?V (6))2

> β
(p−6)
1 (Q?V (5))2 and (Q?V (5))2 ≤ β(p−5)

1 (Q?V (4))2 .

(c) (Q?V (p− 1))2 ≤ δ′Ê2
V , (Q?V (p− 1))2 > β

(1)
1 (Q?V (p− 2))2, (Q?V (p− 2))2

> β
(2)
1 (Q?V (p− 3))2 , (Q?V (p− 3))2 > β

(3)
1 (Q?V (p− 4))2, . . . , (Q?V (6))2

> β
(p−6)
1 (Q?V (5))2 and (Q?V (5))2 > β

(p−5)
1 (Q?V (4))2 .

The conclusion of Lemma 10.4 in case of alternative (a) follows from

Lemma 10.3 applied with δδ′ in place of δ; the conclusion of Lemma 10.4

in case of alternative (b1) follows from Lemma 10.6 applied with p′ = p and

j = 1; the conclusion of Lemma 10.4 in case of alternative (b2) follows from

Lemma 10.6 applied with p′ = p, j = 2 and δβ
(1)
1 in place of δ; similarly,

the conclusion of Lemma 10.4 in case of any of the alternatives (b3)–(bp−5)

follows from an application of Lemma 10.6 with p′ = p and appropriate value

of j and δ; the conclusion of Lemma 10.4 in case of alternative (c) follows

from Lemma 10.6 applied with p′ = 5 and δΠp−5
k=1β

(k)
1 in place of δ. Thus the

inductive poof of Lemma 10.4 is complete. �

Proof of Lemma 10.6. Since we have now established Lemma 10.4 for all

values of p′ ∈ {5, . . . , 2q}, Lemma 10.6 follows from Proposition 10.7. �

Proof of Corollary 10.2. Again, since Lemma 10.4 holds for all values of

p′ ∈ {5, . . . , 2q}, Corollary 10.2 follows from Proposition 10.5. �

Remark. Note that the proof of Corollary 10.2 establishes that corre-

sponding to each ε, γ, β∈(0, 1/2) and ρ∈(0, 1/2), there exist ε̃= ε̃(n, q, α, ρ, ε)∈
(0, 1/2), γ̃ = γ̃(n, q, α, ρ, γ) ∈ (0, 1/2), β̃ = β̃(n, q, α, ρ, β) ∈ (0, 1/2) such that
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the following is true: Let V ∈ Sα and C ∈ Cq. If Hypotheses 10.1 are sat-

isfied with ε̃, γ̃ in place of ε, γ respectively, Hypothesis (?) is satisfied with

M = 3
2M

2
0 and Hypothesis (??) is satisfied with β̃ in place of β, and if the in-

duction hypotheses (H1), (H2) hold, then, for each Z ∈ spt ‖V ‖ ∩ (R×B3/8),

Hypotheses 10.1, Hypothesis (?) with M = 3
2M

3
0 and Hypothesis (??) are

satisfied with ηZ,ρ# V in place of V .

Lemma 10.8. Let q be an integer ≥ 2, α ∈ (0, 1), δ ∈ (0, 1/8) and µ ∈
(0, 1). There exist numbers ε1 = ε1(n, q, α, δ)∈ (0, 1), γ1 = γ1(n, q, α, δ)∈ (0, 1)

and β1 = β1(n, q, α) ∈ (0, 1) such that the following is true: If V ∈Sα, C∈Cq
satisfy Hypotheses 10.1, Hypothesis (?) with ε1, γ1 in place of ε, γ respectively

and with M= 3
2M

3
0 , and if the induction hypotheses (H1), (H2) hold, then

(a) Bn+1
δ (0, y) ∩ {Z : Θ(‖V ‖, Z) ≥ q} 6= ∅ for each point (0, y) ∈ {0} ×

Rn−1 ∩B1/2.

(b) If additionally V , C satisfy Hypothesis (??) with β1 in place of β, then∫
Bn+1

1/2
(0)∩{|(x1,x2)|<σ}

dist2(X, spt ‖C‖) d‖V ‖(X)

≤ C1σ
1−µ

∫
R×B1

dist2(X, spt ‖C‖) d‖V ‖(X)

for each σ ∈ [δ, 1/4), where C1 = C1(n, q, α, µ) ∈ (0,∞). (In particular,

C1 is independent of δ and σ.)

Proof. If part (a) were false, then there would exist a number δ ∈ (0, 1/2)

and a sequence of varifolds {Vk} ⊂ Sα; a sequence of cones Ck =
∑q
j=1 |Hk

j |+
|Gkj | ∈ Cq where, for each k, Hk

j = {(x1, x2, y)∈Rn+1 : x2 < 0 and x1 = λkjx
2},

Gkj = {(x1, x2, y) ∈ Rn+1 : x2 > 0 and x1 = µkjx
2}, with λk1 ≥ λk2 ≥ · · · ≥ λkq

and µk1 ≤ µk2 ≤ · · · ≤ µkq ; and a sequence of points (0, yk) ∈ {0} ×Rn−1 ∩B1/2

with Bn+1
δ (0, yk)∩{Z : Θ(‖Vk‖, Z) ≥ q} = ∅ such that Hypotheses 10.1 (1), (2),

(4) are satisfied with Vk, Ck in place of V , C; Hypothesis (?) is satisfied with

M = 3
2M

3
0 and Vk in place of V ; Êk = ÊVk ≡

»∫
R×B1

|x1|2d‖Vk‖(X)→ 0 and

Ê−2
k

∫
R×(B1/2\{|x2|<1/16})

dist2(X, spt ‖Vk‖) d‖Ck‖(X)(10.47)

+ Ê−2
k

∫
R×B1

dist2(X, spt ‖Ck‖) d‖Vk‖(X)→ 0.

After passing to a subsequence without changing notation, (0, yk)→ (0, y)

for some point (0, y) ∈ {0} ×Rn−1 ∩B1/2, and hence

Bn+1
δ/2 (0, y) ∩ {Z : Θ(‖Vk‖, Z) ≥ q} = ∅

for all sufficiently large k. This implies, by Remark 3 of Section 6, that for all

sufficiently large k, Hn−7+γ(sing Vk (Bn+1
δ/2 (0, y)) = 0 for each γ > 0 if n ≥ 7,
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and sing Vk (Bn+1
δ/2 (0, y)) = ∅ if 2 ≤ n ≤ 6, so by Theorem 3.5 and elliptic

theory,

(10.48) Vk
Ä
R×Bδ/4((0, y))

ä
=

q∑
j=1

|graphukj |

for all sufficiently large k, where vkj ∈ C∞
Ä
Bδ/4(0, y)

ä
, uk1 ≤ uk2 ≤ · · · ≤ ukq on

Bδ/4((0, y)) and ukj are solutions of the minimal surface equation on Bδ/4((0, y))

satisfying, by standard elliptic estimates,

sup
Bδ/16(0,y)

|D` ukj | ≤ CÊk

for ` = 0, 1, 2, 3 and j = 1, 2, . . . , q, where C = C(n, δ). Passing to a further sub-

sequence without changing notation, we deduce that for each j = 1, 2, . . . , q,

Ê−1
k ukj → vj in C2(Bδ/16(0, y)) where vj are harmonic in Bδ/16(0, y) with

v1 ≤ v2 ≤ . . . vq on Bδ/16(0, y). By (10.47), we see that

vj
∣∣∣
Bδ/16(0,y)∩{x2<0}

= h̃j
∣∣∣
Bδ/16(0,y)∩{x2<0}

and

vj
∣∣∣
Bδ/16(0,y)∩{x2>0}

= g̃j
∣∣∣
Bδ/16(0,y)∩{x2>0}

,

where h̃j and g̃j are linear functions of the form h̃j(x
2, y) = λ̃jx

2, g̃j(x
2, y) =

µ̃jx
2, with λ̃j , µ̃j ∈ R, λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃q and µ̃1 ≤ µ̃2 ≤ · · · ≤ µ̃q. By the

maximum principle, we conclude that λ̃j = µ̃j = λ for some λ ∈ R and all

j = 1, 2, . . . , q. Therefore, by (10.47) again, we see that the coarse blow-up

(in the sense of Section 5) of {Vk} and that of {Ck} are both equal to the

hyperplane x1 = λx2. But this is impossible in view of (10.2), so the assertion

of part (a) must hold.

To see part (b), argue as in [Sim93, Cor. 3.2(ii)] noting that by (10.30),

(10.1) and Corollary 10.2(a), we have that for each Z ∈ spt ‖V ‖ ∩ (R×B3/8)

with Θ(‖V ‖, Z) ≥ q and any X ∈ Rn+1,

|dist(X, spt ‖C‖)− dist(X, spt ‖TZ # C‖)|2

≤ C
∫
R×B1

dist2(‹X, spt ‖C‖) d‖V ‖(‹X),

where C = C(n, q, α) ∈ (0,∞). �

11. Blowing up by fine excess

Let {εk},{γk} and {βk} be sequences of positive numbers such that εk, γk,

βk → 0. Consider sequences of varifolds Vk ∈ Sα and cones Ck ∈ Cq such that,

for each k = 1, 2, . . . , with Vk, Ck in place of V , C respectively, Hypotheses 10.1

hold with εk, γk in place of ε, γ; Hypothesis (?) holds with M = 3
2M

3
0 and
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Hypothesis (??) holds with βk in place of β. Thus, for each k = 1, 2, . . . , we

suppose:

(1k) Θ(‖Vk‖, 0) ≥ q, (2ωn)−1‖Vk‖(Bn+1
2 (0)) < q + 1/2, ω−1

n ‖Vk‖(R × B1) <

q + 1/2.

(2k) Ck =
∑q
j=1 |Hk

j | + |Gkj | where for each j ∈ {1, 2, . . . , q}, Hk
j is the half-

space defined by Hk
j = {(x1, x2, y) ∈ Rn+1 : x2 < 0 and x1 = λkjx

2}, Gkj
the half-space defined by Gkj = {(x1, x2, y) ∈ Rn+1 : x2 > 0 and x1 =

µkjx
2}, with λkj , µ

k
j constants, λk1 ≥ λk2 ≥ · · · ≥ λkq and µk1 ≤ µk2 ≤ · · · ≤ µkq .

(3k) Ê
2
k = Ê2

Vk
≡
∫
R×B1

|x1|2d‖Vk‖(X) < εk.

(4k) {Z : Θ(‖Vk‖, Z) ≥ q} ∩
Ä
R× (B1/2 \ {|x2| < 1/16})

ä
= ∅.

(5k) Ê
−2
k (Qk(Ck))

2 < γk, where

(Qk(Ck))
2 = (QVk(Ck))

2

=

(∫
R×(B1/2\{|x2|<1/16})

dist2(X, spt ‖Vk‖) d‖Ck‖(X)

+

∫
R×B1

dist2(X, spt ‖Ck‖) d‖Vk‖(X)

å
.

(6k) Ê2
k <

3

2
M3

0 inf
{P={x1=λx2}}

∫
R×B1

dist2(X,P ) d‖Vk‖(X).

(7k) Either (i) or (ii) below holds:

(i) Ck ∈ Cq(4).

(ii) q≥3, Ck∈Cq(pk) for some pk ∈ {5, 6, . . . , 2q} and (Q?k)
−2 (Qk(Ck))

2

< βk, where

(Q?k)
2 =
Ä
Q?Vk(pk − 1)

ä2
= inf

C̃∈
⋃pk−1

j=4 Cq(j)

(∫
R×(B1/2\{|x2|<1/16})

dist2(X, spt ‖Vk‖) d‖‹C‖(X)

+

∫
R×B1

dist2(X, spt ‖‹C‖) d‖Vk‖(X)

å
.

Let Ek =
»∫

R×B1
dist2(X, spt ‖Ck‖) d‖Vk‖(X) so that by (5k),

(11.1) Ê−1
k Ek → 0.

Note also that in case Ck 6∈ Cq(4) except for finitely many k, we have by

(3k) and (5k) that Q?k → 0.

Let {δk}, {τk} be sequences of decreasing positive numbers converging to 0.

By passing to appropriate subsequences of {Vk}, {Ck}, and possibly replacing

Ck with a cone C′k ∈ Cq with spt ‖C′k‖ = spt ‖Ck‖ without changing notation

(see Remark (2) following the statement of Hypothesis (??)), we deduce that,

for each k = 1, 2, . . . , assertions (Ak)–(Dk) below hold:



STABLE CODIMENSION 1 INTEGRAL VARIFOLDS 921

(Ak) By Lemma 10.8,

(11.2) Bn+1
δk

(0, y) ∩ {Z : Θ(‖Vk‖, Z) ≥ q} 6= ∅

for each point (0, y) ∈ {0} ×Rn−1 ∩B1/2 and

(11.3)

∫
Bn+1

1/2
(0)∩{|(x1,x2)|<σ}

dist2(X, spt ‖Ck‖) d‖Vk‖(X) ≤ Cσ1/2E2
k

for each σ ∈ [δk, 1/4), where C = C(n, q, α) ∈ (0,∞).

(Bk) By Theorem 10.1(a),

(11.4) Vk (R×(B3/4\{|x2| < τk})) =
q∑
j=1

|graph(hkj+ukj )|+|graph(gkj +wkj )|,

where hkj , g
k
j are the linear functions on Rn given by hkj (x

2, y) = λkjx
2,

gkj (x2, y)=µkjx
2, ukj ∈C2(B3/4 ∩ {x2<−τk}), wkj ∈ C2(B3/4 ∩ {x2 > τk})

with hkj + ukj and gkj + wkj solving the minimal surface equation on their

respective domains and satisfying

hk1 + uk1 ≤ hk2 + uk2 ≤ · · · ≤ hkq + ukq ,

gk1 + wk1 ≤ gk2 + wk2 ≤ · · · ≤ gkq + wkq ,

dist((hkj (x
2, y) + ukj (x

2, y), x2, y), spt ‖Ck‖) = (1 + (λkj )
2)−1/2|ukj (x2, y)|

for (x2, y) ∈ B3/4 ∩ {x2 < −τk} and

dist((gkj (x2, y) + wkj (x2, y), x2, y), spt ‖Ck‖) = (1 + (µkj )
2)−1/2|wkj (x2, y)|

for (x2, y) ∈ B3/4 ∩ {x2 > τk}.
(Ck) For each point Z = (ζ1, ζ2, η) ∈ spt ‖Vk‖∩ (R×B3/8) with Θ(‖Vk‖, Z) ≥

q, by Corollary 10.2(a) (taken with ρ = 1/4, say),

(11.5) |ζ1|2 + Ê2
k |ζ2|2 ≤ CE2

k ,

where C = C(n, q, α) ∈ (0,∞).

(Dk) By (10.1) and (10.2),

cÊk ≤ max {|λk1|, |λkq |} ≤ c1Êk, cÊk ≤ max {|µk1|, |µkq |} ≤ c1Êk,(11.6)

min {|λk1 − λkq |, |µk1 − µkq |} ≥ 2cÊk,

where c1 = c1(n) ∈ (0,∞) and c = c(n, q) ∈ (0,∞).

Furthermore, by Corollary 10.2(b), (11.4) and the area formula, there exists,

for each ρ ∈ (0, 1/4], an integer K = K(ρ) ≥ 1 such that the following assertion

holds for each k ≥ K :
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(Ek) For each point Z = (ζ1, ζ2, η) ∈ spt ‖Vk‖∩(R×B3/8) with Θ(‖Vk‖, Z) ≥ q
and each µ ∈ (0, 1),

q∑
j=1

∫
Bρ/2(ζ2,η)∩{x2<−τk}

|ukj (x2, y)− (ζ1 − λkj ζ2)|2

|(hkj (x2, y) + ukj (x
2, y), x2, y)− (ζ1, ζ2, η)|n+2−µ dx

2 dy

(11.7)

+
q∑
j=1

∫
Bρ/2(ζ2,η)∩{x2>τk}

|wkj (x2, y)− (ζ1 − µkj ζ2)|2

|(gkj (x2, y) + wj(x2, y), x2, y)− (ζ1, ζ2, η)|n+2−µ dx
2dy

≤ C1ρ
−n−2+µ

∫
R×Bρ(ζ2,η)

dist2(X, spt ‖TZ # Ck‖) d‖Vk‖(X),

where C1 = C1(n, q, α, µ) ∈ (0,∞).

Extend ukj , w
k
j to all of B3/4∩{x2 < 0} and B3/4∩{x2 > 0} respectively by

defining values to be zero in B3/4 ∩ {0 > x2 ≥ −τk} and B3/4 ∩ {0 < x2 ≤ τk}
respectively.

By (11.6), there exist numbers `j ,mj for each j = 1, 2, . . . , q with

c ≤ max {|`1|, |`q|} ≤ c1, c ≤ max {|m1|, |mq|} ≤ c1,(11.8)

min {|`1 − `q|, |m1 −mq|} ≥ 2c

such that after passing to appropriate subsequences without changing notation,

(11.9) Ê−1
k λkj → `j and Ê−1

k µkj → mj

for each j = 1, 2, . . . , q. By (11.4) and elliptic estimates, there exist harmonic

functions ϕj : B3/4 ∩ {x2 < 0} → R and ψj : B3/4 ∩ {x2 > 0} → R such that

(11.10) E−1
k ukj → ϕj and E−1

k wkj → ψj ,

where the convergence is in C2(K) for each compact subset K of the respective

domains. From (11.3), it follows that∫
B1/2∩{0>x2>−σ}

|ϕ|2 ≤ Cσ1/2,

∫
B1/2∩{0<x2<σ}

|ψ|2 ≤ Cσ1/2

for each σ ∈ (0, 1/4), where C = C(n, q, α) ∈ (0,∞), and hence that the con-

vergence in (11.10) is, respectively, also in L2 (B1/2∩{x2 < 0}) and L2 (B1/2∩
{x2 > 0}).

Set ϕ = (ϕ1, ϕ2, . . . , ϕq) and ψ = (ψ1, ψ2, . . . , ψq).

Definitions. (1) Fine blow-ups. Let ϕ : B3/4 ∩ {x2 < 0} → Rq and

ψ : B3/4 ∩ {x2 > 0} → Rq be a pair of functions arising, in the manner

described above, corresponding to

(i) a sequence of varifolds {Vk} ⊂ Sα and a sequence of cones {Ck} ⊂ Cq
satisfying the hypotheses (1k)–(7k) for some sequences of numbers {εk},
{γk}, {βk} with εk, γk, βk → 0+, and
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(ii) sequences {δk}, {τk} of decreasing positive numbers converging to zero

such that (11.2), (11.3), (11.4) and (11.7) hold. We call the pair (ϕ,ψ)

a fine blow-up of the sequence {Vk} relative to {Ck}.
(2) The Class BF . Let BF be the collection of all fine blow-ups (ϕ,ψ)

such that the corresponding sequences of varifolds Vk ∈ Sα satisfies condition

(6k) with M2
0 in place of M3

0 ; thus we assume the stronger condition

Ê2
Vk
<

3

2
M2

0 inf
{P={x1=λx2}}

∫
R×B1

dist2(X,P ) d‖Vk‖(X), k = 1, 2, 3, . . .

in place of (6k) for any sequence {Vk} ⊂ Sα giving rise to a fine blow-up

belonging to BF .

12. Continuity estimates for the fine blow-ups and their derivatives

Here we first use estimates (11.5) and (11.7) to prove a continuity estimate

(Lemma 12.1 below) for any (ϕ,ψ) ∈ BF . We then use it to establish the main

result of this section (Theorem 12.2), namely, the continuity estimate for the

first derivatives of (ϕ,ψ) ∈ BF .

Lemma 12.1. If (ϕ,ψ) ∈ BF , then

ϕ ∈ C0,β(B5/16 ∩ {x2 < 0}; Rq), ψ ∈ C0,β(B5/16 ∩ {x2 > 0}; Rq)

for some β = β(n, q, α) ∈ (0, 1) and the following estimates hold :

sup
B5/16∩{x2<0}

|ϕ|2 + sup
x,z∈B5/16∩{x2<0},x 6=z

|ϕ(x)− ϕ(z)|2

|x− z|2β

≤ C

(∫
B1/2∩{x2<0}

|ϕ|2 +

∫
B1/2∩{x2>0}

|ψ|2
)
,

sup
B5/16∩{x2>0}

|ψ|2 + sup
x,z∈B5/16∩{x2>0},x 6=z

|ψ(x)− ψ(z)|2

|x− z|2β

≤ C
(∫

B1/2∩{x2<0}
|ϕ|2 +

∫
B1/2∩{x2>0}

|ψ|2
)
.

Here C = C(n, q, α) ∈ (0,∞).

Proof. By the definition of fine blow-up, there are sequences {Vk} ⊂ Sα,

{Ck} ⊂ Cq and sequences of decreasing positive numbers {εk}, {γk}, {βk},
{δk}, {τk} converging to zero for which all of the assertions of Section 11 hold,

with M2
0 in place of M3

0 in (6k).

Let Y ∈ {0}×Rn−1∩B5/16 be arbitrary. By (11.2), for each k = 1, 2, 3, . . . ,

there exist Zk = (ζk1 , ζ
k
2 , η

k)∈spt ‖Vk‖ with Θ(‖Vk‖, Zk)≥q such that Zk→ Y.
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Using (11.3), (11.5), (11.7) (with ζk1 , ζ
k
2 , η

k in place of ζ1, ζ2, η and µ = 1/2)

and (11.9), we deduce that for each ρ ∈ (0, 1/8],

q∑
j=1

∫
Bρ/2(Y )∩{x2<0}

|ϕj(x)− (κ1(Y )− `jκ2(Y ))|2

|x− Y |n+3/2
dx(12.1)

+
q∑
j=1

∫
Bρ/2(Y )∩{x2>0}

|ψj(x)− (κ1(Y )−mjκ2(Y ))|2

|x− Y |n+3/2
dx

≤ C1ρ
−n−3/2

q∑
j=1

∫
Bρ(Y )∩{x2<0}

|ϕj − (κ1(Y )− `jκ2(Y ))|2

+ C1ρ
−n−3/2

q∑
j=1

∫
Bρ(Y )∩{x2>0}

|ψj − (κ1(Y )−mjκ2(Y ))|2,

where C1 = C1(n, q, α) ∈ (0,∞) and we have set

(12.2) κ1(Y ) = lim
k→∞

E−1
k ζk1 , κ2(Y ) = lim

k→∞
E−1
k Êkζ

k
2 ,

both of which limits exist after passing to a subsequence of the original sequence

{k}. Note that by (11.5),

(12.3) |κ1(Y )|, |κ2(Y )| ≤ C, C = C(n, q, α) ∈ (0,∞).

We remark also that our notation here is appropriate, and the limits in

(12.2) indeed depend only on Y and are independent of the sequence of points

Zk converging to Y ; this follows directly from the finiteness of the integrals on

the left-hand side of (12.1) and the fact that, by Lemma 9.1, at least two of

the `j ’s and two of the mj ’s are distinct.

For Y ∈ {0} ×Rn−1 ∩B5/16 and each j = 1, 2, . . . , q, define

(12.4) ϕj(Y ) = κ1(Y )− `jκ2(Y ) and ψj(Y ) = κ1(Y )−mjκ2(Y ).

Then by (12.1),

σ−n
Ç∫

Bσ(Y )∩{x2<0}
|ϕ(x)− ϕ(Y )|2 dx +

∫
Bσ(Y )∩{x2>0}

|ψ(x)− ψ(Y )|2 dx
å(12.5)

≤ C1

Å
σ

ρ

ã3/2

ρ−n
Ç∫

Bρ(Y )∩{x2<0}
|ϕ(x)− ϕ(Y )|2 dx

+

∫
Bρ(Y )∩{x2>0}

|ψ(x)− ψ(Y )|2 dx
å

for each 0 < σ ≤ ρ/2 ≤ 1/32 and for the same constant C1 = C1(n, q, α) ∈
(0,∞) as in (12.1).

To complete the proof of the lemma, we follow the argument of Lemma 4.3.

Consider an arbitrary point z+ ∈ B5/16 ∩ {x2 > 0} and let ρ ∈ (0, 1/16].
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Denote by z− the image of z+ under reflection across {0}×Rn−1. Letting Y ∈
{0}×Rn−1 be the point such that |z−−Y |= |z+−Y |=dist(z+, {0}×Rn−1), and

with γ=γ(n, q, α)∈(0, 1/16] to be chosen, if dist(z+, {0} ×Rn−1)<γρ, then

(γρ)−n
Ç∫

Bγρ(z−)∩{x2<0}
|ϕ− ϕ(Y )|2 +

∫
Bγρ(z+)∩{x2>0}

|ψ − ψ(Y )|2
å(12.6)

≤ 2n(γρ+ |z− − Y |)−n
(∫

Bγρ+|z−−Y |(Y )∩{x2<0}
|ϕ− ϕ(Y )|2

+

∫
Bγρ+|z+−Y |(Y )∩{x2>0}

|ψ − ψ(Y )|2
)

≤ 2nC1

Ç
γρ+ |z− − Y |
ρ− |z− − Y |

å3/2

(ρ− |z− − Y |)−n
(∫

Bρ−|z−−Y |(Y )∩{x2<0}

· |ϕ− ϕ(Y )|2 +

∫
Bρ−|z+−Y |(Y )∩{x2>0}

|ψ − ψ(Y )|2
)

≤ 4nC1

Å
2γ

1− γ

ã3/2

ρ−n
Ç∫

Bρ(z−)∩{x2<0}
|ϕ− ϕ(Y )|2

+

∫
Bρ(z+)∩{x2>0}

|ψ − ψ(Y )|2
å
.

Choosing γ = γ(n, q, α) ∈ (0, 1/16] such that 4nC1

Ä
2γ

1−γ

ä3/2
< 1/4, we deduce

that

(γρ)−n
Ç∫

Bγρ(z−)∩{x2<0}
|ϕ− ϕ(Y )|2 +

∫
Bγρ(z+)∩{x2>0}

|ψ − ψ(Y )|2
å(12.7)

≤ 4−1ρ−n
Ç∫

Bρ(z−)∩{x2<0}
|ϕ− ϕ(Y )|2 +

∫
Bρ(z+)∩{x2>0}

|ψ − ψ(Y )|2
å

for any z+∈B5/16 ∩{x2>0} and ρ∈(0, 1/16] provided γρ > |z+−Y |= |z−−Y |
= dist(z+, {0}×Rn−1). If on the other hand γρ ≤ dist(z+, {0}×Rn−1), since

ϕ and ψ are harmonic in B1/2 ∩{x2 < 0} and B1/2 ∩{x2 > 0} respectively, we

have for each σ ∈ (0, 1/2] and any constant vectors b+, b− ∈ Rq,

(σγρ)−n
Ä∫
Bσγρ(z−) |ϕ− ϕ(z−)|2 +

∫
Bσγρ(z+) |ψ − ψ(z+)|2

ä
(12.8)

≤ Cσ2(γρ)−n
Ä∫
Bγρ(z−) |ϕ− b−|2 +

∫
Bγρ(z+) |ψ − b+|2

ä
,

where C = C(n) ∈ (0,∞).

Given any z+ ∈ B5/16 ∩ {x2 > 0}, let j? ∈ {0, 1, 2, . . . } be such that

γj?+1 < dist(z+, {0} × Rn−1) ≤ γj? . Then, with Y ∈ {0} × Rn−1 such that
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|z+ − Y | = dist(z+, {0} ×Rn−1), by (12.8),

(σγj?+1)−n
(∫

B
σγj?+1 (z−)

|ϕ− ϕ(z−)|2 +

∫
B
σγj?+1 (z+)

|ψ − ψ(z+)|2
)(12.9)

≤ Cσ2(γj?+1)−n
(∫

B
γj?+1 (z−)

|ϕ− ϕ(Y )|2 +

∫
B
γj?+1 (z+)

|ψ − ψ(Y )|2
)

for any σ ∈ (0, 1/2], and if j? ≥ 1, by (12.7),

(γj)−n
(∫

B
γj

(z−)∩{x2<0}
|ϕ− ϕ(Y )|2 +

∫
B
γj

(z+)∩{x2>0}
|ψ − ψ(Y )|2

)(12.10)

≤ 4−1(γj−1)−n
(∫

B
γj−1 (z−)∩{x2<0}

|ϕ− ϕ(Y )|2

+

∫
B
γj−1 (z+)∩{x2>0}

|ψ − ψ(Y )|2
)

≤ 4−(j−1)γ−n
Ç∫

Bγ(z−)∩{x2<0}
|ϕ− ϕ(Y )|2 +

∫
Bγ(z+)∩{x2>0}

|ψ − ψ(Y )|2
å

for j = 1, 2, . . . , j?. If j? ≥ 1, taking j = j? in (12.10) and σ = 1/2 in (12.9),

we see by the triangle inequality that

|ϕ(z−)− ϕ(Y )|2 + |ψ(z+)− ψ(Y )|2

≤ C4−(j?−1)γ−n
Ç∫

Bγ(z−)∩{x2<0}
|ϕ− ϕ(Y )|2 +

∫
Bγ(z+)∩{x2>0}

|ψ − ψ(Y )|2
å
,

where C = C(n, q, α) ∈ (0,∞), and hence by (12.10) and the triangle inequal-

ity, we again see that

(γj)−n
(∫

B
γj

(z−)∩{x2<0}
|ϕ− ϕ(z−)|2 +

∫
B
γj

(z+)∩{x2>0}
|ψ − ψ(z+)|2

)(12.11)

≤ C4−(j−1)γ−n
Ç∫

Bγ(z−)∩{x2<0}
|ϕ− ϕ(Y )|2 +

∫
Bγ(z+)∩{x2>0}

|ψ − ψ(Y )|2
å

for j = 1, 2, . . . , j?, where C = C(n, q, α) ∈ (0,∞).

By applying (11.5) with ‹Vk ≡ η0,1/2 # Vk in place of Vk, and noting (e.g.,

by the argument establishing (10.32)) that Ê
Ṽk
≥ CÊVk where C = C(n, q) ∈

(0,∞), also using (11.3) and (11.8), we deduce that for each Y ∈ {0}×Rn−1∩
B5/16,

(12.12) |ϕ(Y )|2 + |ψ(Y )|2 ≤ C
(∫

B1/2∩{x2<0}
|ϕ|2 +

∫
B1/2∩{x2>0}

|ψ|2
)
,



STABLE CODIMENSION 1 INTEGRAL VARIFOLDS 927

where C = C(n, q, α) ∈ (0,∞). With the help of (12.9), (12.10), (12.11) and

(12.12), we deduce that for any given z+ ∈ B5/16 ∩ {x2 > 0},

ρ−n
Ç∫

Bρ(z−)∩{x2<0}
|ϕ− ϕ(z−)|2 +

∫
Bρ(z+)∩{x2>0}

|ψ − ψ(z+)|2
å

(12.13)

≤ Cρ2β

(∫
B1/2∩{x2<0}

|ϕ|2 +

∫
B1/2∩{x2>0}

|ψ|2
)

for all ρ ∈ (0, γ], where C = C(n, q, α) ∈ (0,∞) and β = β(n, q, α) ∈ (0, 1), by

considering, for any given ρ ∈ (0, γ], the alternatives 2ρ ≤ γj?+1, in which case

ρ = σγj?+1 for some σ ∈ (0, 1/2] and we use (12.9) and (12.10) with j = j?, or

γj+1 < 2ρ ≤ γj for some j ∈ {1, 2, . . . , j?}, in which case we use (12.11). The

conclusions of the lemma follow readily from (12.13). �

Theorem 12.2. If (ϕ,ψ) ∈ BF , then

ϕ ∈ C2(B1/4 ∩ {x2 < 0}; Rq), ψ ∈ C2(B1/4 ∩ {x2 > 0}; Rq)

and the following estimates hold :

sup
B1/4∩{x2<0}

|Dϕ|2 + sup
x,z∈B1/4∩{x2<0}, x 6=z

|Dϕ(x)−Dϕ(z)|2

|x− z|2

≤ C
(∫

B1/2∩{x2<0}
|ϕ|2 +

∫
B1/2∩{x2>0}

|ψ|2
)
,

sup
B1/4∩{x2<0}

|Dψ|2 + sup
x,z∈B1/4∩{x2<0}, x 6=z

|Dψ(x)−Dψ(z)|2

|x− z|2

≤ C
(∫

B1/2∩{x2<0}
|ϕ|2 +

∫
B1/2∩{x2>0}

|ψ|2
)
.

Here C = C(n, q, α) ∈ (0,∞).

Proof. By the definition of BF , there are sequences {Vk} ⊂ Sα, {Ck} ⊂ Cq
and sequences of decreasing positive numbers {εk}, {γk}, {βk}, {δk}, {τk} for

which all of the assertions of Section 11 hold, with M2
0 in place of M3

0 in

condition (6k).

By (3.1),

(12.14)

∫
R×B1

∇Vk x1 · ∇Vk ζ̃ d‖Vk‖(X) = 0

for each k = 1, 2, . . . and any ζ̃ ∈ C1
c (R× B1). Let τ ∈ (0, 1/32) be arbitrary.

Choose any ζ ∈ C2
c (B3/8) with ∂ ζ

∂ x2
≡ 0 in {|x2| < 2τ}, and set ζ1(x1, x2, y) =

ζ(x2, y) for (x1, x2, y) ∈ R× B1/2. Let ζ̃ ∈ C1
c (R× B3/8) be such that ζ̃ ≡ ζ1

in a neighborhood of spt ‖Vk‖∩ (R×B3/8) for all k = 1, 2, . . . . By (12.14) and

(11.4), for all sufficiently large k,
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∫
R×(B3/8∩{|x2|<2τ})

∇Vk x1 · ∇Vk ζ̃ d‖Vk‖(X)

(12.15)

+
q∑
j=1

∫
B3/8∩{x2≤−2τ}

Ä
1 + |D(hkj + ukj )|2

ä−1/2
D(hkj + ukj ) ·Dζ dx

+
q∑
j=1

∫
B3/8∩{x2≥2τ}

Ä
1 + |D(gkj + wkj )|2

ä−1/2
D(gkj + wkj ) ·Dζ dx = 0.

Since ∂ ζ̃
∂ x1

= 0 in a neighborhood of spt ‖Vk‖ ∩ (R×B1/2) and ∂ ζ̃
∂ x2

= 0 in

{|x2| < 2τ}, it follows that∣∣∣∣∣
∫
R×(B3/8∩{|x2|<2τ})

∇Vk x1 · ∇Vk ζ̃ d‖Vk‖(X)

∣∣∣∣∣(12.16)

=

∣∣∣∣∣
∫
R×(B3/8∩{|x2|<2τ})

e1 · ∇Vk ζ̃ d‖Vk‖(X)

∣∣∣∣∣
≤ sup |Dζ|

n+1∑
j=3

∫
R×(B3/8∩{|x2|<2τ})

|e⊥kj | d‖Vk‖(X)

≤ sup |Dζ| (‖Vk‖(R× (B3/8 ∩ {|x2| < 2τ}))1/2

·
Ç n+1∑
j=3

∫
R×B3/8

|e⊥kj |
2 d‖Vk‖(X)

å1/2

≤ C sup |Dζ|
√
τEk,

where C = C(n, q, α) ∈ (0,∞), and the last inequality is a consequence of

Theorem 10.1(c) and the fact that ‖Vk‖(R × (B3/8 ∩ {|x2| < 2τ})) ≤ Cτ,

C = C(n, q, α) ∈ (0,∞) for all sufficiently large k.

Since hkj (x) = λkjx
2, we have for each j = 1, 2, . . . , q and k = 1, 2, . . . ,

∫
B3/8∩{x2≤−2τ}

Ä
1 + |D(hkj + ukj )|2

ä−1/2
D(hkj + ukj ) ·Dζ

(12.17)

=

∫
B3/8∩{x2≤−2τ}

Ä
1 + |D(hkj + ukj )|2

ä−1/2
Dukj ·Dζ

− αkj
∫
B3/8∩{x2≤−2τ}

Ä
1 + |D(hkj + ukj )|2

ä−1/2
D(2hkj + ukj ) ·Dukj»

1 + |D(hkj + ukj )|2 +
»

1 + (λkj )
2

∂ ζ

∂ x2

+ αkj

∫
B3/8∩{x2≤−2τ}

∂ ζ

∂ x2
,

where αkj = λkj
Ä
1 + (λkj )

2
ä−1/2

.
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By the Cauchy-Schwarz inequality and elliptic estimates,

∣∣∣∣∣∣∣
∫
B3/8∩{x2≤−2τ}

Ä
1 + |D(hkj + ukj )|2

ä−1/2
D(2hkj + ukj ) ·Dukj»

1 + |D(hkj + ukj )|2 +
»

1 + (λkj )
2

∂ ζ

∂ x2
dx

∣∣∣∣∣∣∣
(12.18)

≤ C(τ) sup |Dζ|
√
|λkj |2 +

∫
B1/2∩{x2≤−τ}

|ukj |2 dx
√∫

B1/2∩{x2≤−τ}
|ukj |2 dx

≤ C(τ) sup |Dζ|
√
|λkj |2 + E2

k Ek.

If ζ also satisfies

(12.19)

∫
B3/8∩({0}×Rn−1)

ζ dy = 0,

then, since∫
B3/8∩{x2≤−2τ}

∂ ζ

∂ x2
dx =

∫
B3/8∩{x2≤0}

∂ ζ

∂ x2
dx = −

∫
B3/8∩({0}×Rn−1)

ζ dy,

the last term on the right-hand side of (12.17) will be zero. Thus, for each

fixed τ > 0 and each ζ ∈ C1
c (B3/8) with ∂ ζ

∂ x2
= 0 in {|x2| < 2τ} and satisfying

(12.19), we have

q∑
j=1

∫
B3/8∩{x2≤−2τ}

Ä
1 + |D(hkj + ukj )|2

ä−1/2
D(hkj + ukj ) ·Dζ dx(12.20)

=
q∑
j=1

∫
B3/8∩{x2≤−2τ}

Ä
1 + |D(hkj + ukj )|2

ä−1/2
Dukj ·Dζ dx+ ε−k

and, by a similar argument,

q∑
j=1

∫
B3/8∩{x2≥2τ}

Ä
1 + |D(gkj + wkj )|2

ä−1/2
D(gkj + wkj ) ·Dζ dx(12.21)

=
q∑
j=1

∫
B3/8∩{x2≥2τ}

Ä
1 + |D(gkj + wkj )|2

ä−1/2
Dwkj ·Dζ dx+ ε+

k ,

where limk→∞ E−1
k |ε

−
k | = limk→∞ E−1

k |ε
+
k | = 0. We may divide (12.15) by Ek

and let k → ∞ to deduce, by (12.16), (12.20), (12.21) and (11.10), that for

each τ ∈ (0, 1/16),

(12.22)
q∑
j=1

∫
B3/8∩{x2≤−2τ}

Dϕj ·Dζ +
q∑
j=1

∫
B3/8∩{x2≥2τ}

Dψj ·Dζ + ε(τ) = 0,
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where ε(τ)→ 0 as τ → 0. Upon integration by parts (in view of the fact that
∂ ζ
∂ x2

= 0 in {|x2| < 2τ}), this gives

(12.23)
q∑
j=1

∫
B3/8∩{x2≤−2τ}

ϕj∆ ζ +
q∑
j=1

∫
B3/8∩{x2≥2τ}

ψj∆ ζ − ε(τ) = 0.

Since ϕj ∈ L1(B1/2 ∩ {x2 ≤ 0}) and ψj ∈ L1(B1/2 ∩ {x2 ≥ 0}) for each

j = 1, 2, . . . , q, we may let τ → 0 in (12.23) to conclude that

(12.24)
q∑
j=1

∫
B3/8∩{x2≤0}

ϕj∆ ζ +
q∑
j=1

∫
B3/8∩{x2≥0}

ψj∆ ζ = 0

for any ζ ∈ C2
c (B3/8) with ∂ ζ

∂ x2
= 0 in a neighborhood of {x2 = 0} and

satisfying (12.19).

Now for any ` ∈ {1, 2, . . . , n−1}, h ∈ (−1/16, 1/16) and any ζ ∈ C2
c (B5/16)

with ∂ ζ
∂ x2

= 0 in a neighborhood of {x2 = 0}, we have that δ`,h ζ ∈ C1
c (B3/8),

∂
∂ x2

δ`,h ζ = 0 in a neighborhood of {x2 = 0} and δ`,h ζ satisfies (12.19), where

δ`,h ζ(x2, y) = ζ(x2, y1, . . . , y` + h, y`+1, . . . , yn−1)− ζ(x2, y). Thus, by (12.24),

q∑
j=1

∫
B3/8∩{x2<0}

ϕj ∆ δ`,h ζ +
q∑
j=1

∫
B3/8∩{x2>0}

ψj ∆ δ`,h ζ = 0

and consequently,

(12.25)
q∑
j=1

∫
B5/16∩{x2<0}

δ`,h ϕj ∆ ζ +
q∑
j=1

∫
B5/16∩{x2>0}

δ`,h ψj ∆ ζ = 0

for any ζ ∈ C2
c (B5/16) with ∂ ζ

∂ x2
= 0 in a neighborhood of {x2 = 0}, any

` ∈ {1, 2, . . . , n − 1} and h ∈ (−1/16, 1/16). Since any ζ ∈ C2
c (B5/16) that

is even in the x2 variable can be approximate in C2(B5/16) by a sequence

ζi ∈ C2
c (B5/16) satisfying, for each i = 1, 2, 3, . . . , ∂ ζi

∂ x2
= 0 in a neighborhood

of {x2 = 0}, we see that (12.25) holds for any ζ ∈ C2
c (B5/16) that is even in

the x2 variable and for each ` ∈ {1, 2, . . . , n− 1} and h ∈ (−1/16, 1/16). Thus

(12.26)

∫
B5/16

Φ`,h∆ ζ = 0

for any ζ ∈ C2
c (B5/16) that is even in the x2 variable, any ` ∈ {1, 2, . . . , n− 1}

and h ∈ (−1/16, 1/16), where Φ`,h : B3/8 → R is the function defined by

Φ`,h(x2, y) =
∑q
j=1 δ`,h ϕj(−x2, y) + δ`,h ψj(x

2, y) if x2 ≥ 0 and Φ`,h(x2, y) =∑q
j=1 δ`,h ϕj(x

2, y)+δ`,h ψj(−x2, y) if x2 < 0. Since Φ is even in the x2 variable,

(12.26) holds also for any ζ that is odd in the x2 variable. Thus (12.26) holds

for every ζ ∈ C2
c (B5/16), and hence Φ`,h is a smooth harmonic function in
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B5/16. Since we have directly from the definition of Φ`,h and Lemma 12.1 that

(12.27)

∣∣∣∣∣
∫
B5/16

h−1Φ`,h

∣∣∣∣∣ ≤ C
(∫

B1/2∩{x2≤0}
|ϕ|2 +

∫
B1/2∩{x2≥0}

|ψ|2
)1/2

for all h ∈ (−1/16, 1/16) \ {0}, where C = C(n, q, α) ∈ (0,∞), it follows

from standard estimates for harmonic functions that there exists a harmonic

function Φ` : B9/32 → R such that h−1Φ`,h → Φ` in C2(B9/32) as h→ 0, and

(12.28)

sup
B9/32

|Φ`|2 + |DΦ`|2 + |D2Φ`|2 ≤ C
(∫

B1/2∩{x2≤0}
|ϕ|2 +

∫
B1/2∩{x2≥0}

|ψ|2
)
.

Let Φ : B1/2 → R be the function defined by Φ(x2, y) =
∑q
j=1 ϕj(x

2, y) +

ψj(−x2, y) if x2 < 0 and Φ(x2, y) =
∑q
j=1 ϕj(−x2, y) + ψj(x

2, y) if x2 ≥ 0.

Since Φ` = ∂
∂ y`

Φ on B1/2 \ ({0} ×Rn−1), it follows that for (x2, y) ∈ B9/32 \
({0} ×Rn−1),

Φ(x2, y) = Φ(x2, y1, . . . , y`−1, 0, y`+1, . . . , yn−1)

+

∫ y`

0
Φ`(x

2, y1, . . . , y`−1, t, y`+1, . . . , yn−1) dt,

so we may let x2 → 0 on both sides of this and use Lemma 12.1, (12.4) and the

arbitrariness of the index ` ∈ {1, 2, . . . , n−1} to conclude that, with Y = (0, y),

(12.29) Φ(Y ) = 2qκ1(Y )−

Ñ
q∑
j=1

(`j +mj)

é
κ2(Y )

is a C∞ function of Y ∈ B9/32 ∩ ({0} × Rn−1) (with ∂
∂ y`

Φ(Y ) = Φ`(Y ),
∂2

∂ ym ∂ y`
Φ(Y ) = ∂

∂ ym Φ`(Y ), ∂3

∂ yk ∂ ym ∂ y`
Φ(Y ) = ∂2

∂ yk ∂ ym
Φ`(Y ) for each `,m, k

∈ {1, 2, . . . , n− 1}) satisfying, by (12.28) and Lemma 12.1, the estimate

sup
B9/32∩({0}×Rn−1)

|Φ|2 + |DY Φ|2 + |D2
Y Φ|2 + |D3

Y Φ|2(12.30)

≤ C
(∫

B1/2∩{x2≤0}
|ϕ|2 +

∫
B1/2∩{x2≥0}

|ψ|2
)
,

where C = C(n, q, α) ∈ (0,∞).

Next we derive regularity estimates for a different linear combination of

κ1 and κ2. For this, we note that by (3.1) again,

(12.31)

∫
R×B1

∇Vk x2 · ∇Vk ζ̃ d‖Vk‖(X) = 0

for each k = 1, 2, . . . and each ζ̃ ∈ C1
c (R × B1). Let τ ∈ (0, 1/16), ζ ∈

C2
c (B3/8) and ζ̃ be as before so that, in particular, ∂ ζ

∂ x2
= 0 in {|x2| < 2τ}.
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Note that the unit normal νkj to (Mk
j )
− ≡ graph(hkj + ukj ) is given by νkj =Ä

(1 + |D(hkj + ukj )|2
ä−1/2

Å
1,−λkj −

∂ ukj
∂ x2

,−Dy u
k
j

ã
so that, on (Mk

j )
−,

∇Vk x2 · ∇Vk ζ̃ = e2 ·
Ä
Dζ̃ − (Dζ̃ · νkj )νkj

ä
=

∂ ζ

∂ x2
−
Ä
1 + |D(hkj + ukj )|2

ä−1

(
λkj +

∂ ukj
∂ x2

)

·
((

λkj +
∂ ukj
∂ x2

)
∂ ζ

∂ x2
+Dyu

k
j ·Dyζ

)

=
Ä
1+|D(hkj + ukj )|2

ä−1

(Ä
1 + |Dy u

k
j |2
ä ∂ ζ
∂ x2
−
(
λkj +

∂ ukj
∂ x2

)
Dy u

k
j ·Dy ζ

)
.

Using this and the analogous expression for ∇Vkx2 · ∇Vk ζ̃ on

(Mk
j )

+ ≡ graph(gkj + wkj ),

we deduce from (12.31) and Theorem 10.1(a) that

∫
R×(B3/8∩{|x2|<2τ})

∇Vk x2 · ∇Vk ζ̃ d‖Vk‖(X)

(12.32)

+
q∑
j=1

∫
B3/8∩{x2≤−2τ}

(1 + |Dy u
k
j |2) ∂ ζ

∂ x2
− (λkj +

∂ ukj
∂ x2

)Dy u
k
j ·Dy ζ»

1 + |D(hkj + ukj )|2
dx

+
q∑
j=1

∫
B3/8∩{x2≥2τ}

(1 + |Dy w
k
j |2) ∂ ζ

∂ x2
− (µkj +

∂ wkj
∂ x2

)Dy w
k
j ·Dy ζ»

1 + |D(gkj + wkj )|2
dx = 0.

Since ∂ ζ̃
∂ x1

= 0 in a neighborhood of spt ‖Vk‖ ∩ (R×B1/2) and ∂ ζ̃
∂ x2

= 0 in

{|x2| < 2τ}, it follows that∣∣∣∣∣
∫
R×(B3/8∩{|x2|<2τ})

∇Vk x2 · ∇Vk ζ̃ d‖Vk‖(X)

∣∣∣∣∣(12.33)

=

∣∣∣∣∣
∫
R×(B3/8∩{|x2|<2τ})

e2 · ∇Vk ζ̃ d‖Vk‖(X)

∣∣∣∣∣
≤ sup |Dζ|

n+1∑
j=3

∫
R×(B3/8∩{|x2|<2τ})

|e⊥k2 ||e
⊥k
j | d‖Vk‖(X)

≤ sup |Dζ|
(∫

R×(B3/8∩{|x2|<2τ})
|e⊥k2 |

2 d‖Vk‖(X)

)1/2

·

Ñ
n+1∑
j=3

∫
R×B3/8

|e⊥kj |
2 d‖Vk‖(X)

é1/2



STABLE CODIMENSION 1 INTEGRAL VARIFOLDS 933

≤ sup |Dζ|
(∫

R×(B3/8∩{|x2|<2τ})
1− |e⊥k1 |

2 d‖Vk‖(X)

)1/2

·

Ñ
n+1∑
j=3

∫
R×B3/8

|e⊥kj |
2 d‖Vk‖(X)

é1/2

≤ C sup |Dζ| τ1/4ÊkEk

for all sufficiently large k, where C = C(n, q, α) ∈ (0,∞) and the last inequality

follows from Theorem 10.1(c), Theorem 7.1(b) and Lemma 10.8. Since

∫
B3/8∩{x2≤−2τ}

(1 + |Dy u
k
j |2) ∂ ζ

∂ x2
− (λkj +

∂ ukj
∂ x2

)Dy u
k
j ·Dy ζ»

1 + |D(hkj + ukj )|2

(12.34)

= −
∫
B3/8∩{x2≤−2τ}

λkjDy u
k
j ·Dy ζ»

1 + |D(hkj + ukj )|2

+

∫
B3/8∩{x2≤−2τ}

|Dy u
k
j |2

∂ ζ
∂ x2
− ∂ ukj

∂ x2
Dy u

k
j ·Dy ζ»

1 + |D(hkj + ukj )|2

−
∫
B3/8∩{x2≤−2τ}

(2λkj
∂ ukj
∂ x2

+ |Dukj |2) ∂ ζ
∂ x2»

1 + |λkj |2
»

1 + |D(hkj + ukj )|2
Ä»

1 + |λkj |2 +
»

1 + |D(hkj + ukj )|2
ä

+
1»

1 + |λkj |2

∫
B3/8∩{x2≤−2τ}

∂ ζ

∂ x2

it follows that if ζ also satisfies (12.19), then

∫
B3/8∩{x2≤−2τ}

(1 + |Dy u
k
j |2) ∂ ζ

∂ x2
− (λkj +

∂ ukj
∂ x2

)Dy u
k
j ·Dy ζ»

1 + |D(hkj + ukj )|2
dx

(12.35)

= −
∫
B3/8∩{x2≤−2τ}

·
2λkj

∂ ukj
∂ x2

∂ ζ
∂ x2»

1 + |λkj |2
»

1 + |D(hkj + ukj )|2
Ä»

1 + |λkj |2 +
»

1 + |D(hkj + ukj )|2
ä dx

−
∫
B3/8∩{x2≤−2τ}

λkjDy u
k
j ·Dy ζ»

1 + |D(hkj + ukj )|2
dx+ η−k
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where, by elliptic estimates,

(12.36) |η−k | ≤ C sup |Dζ|E2
k , C = C(n, q, τ) ∈ (0,∞).

By the same argument,

∫
B3/8∩{x2≥2τ}

(1 + |Dy w
k
j |2) ∂ ζ

∂ x2
− (µkj +

∂ wkj
∂ x2

)Dy w
k
j ·Dy ζ»

1 + |D(gkj + wkj )|2

(12.37)

= −
∫
B3/8∩{x2≥2τ}

·
2µkj

∂ wkj
∂ x2

∂ ζ
∂ x2»

1 + |µkj |2
»

1 + |Dgkj + wkj )|2
Ä»

1 + |µkj |2 +
»

1 + |D(gkj + wkj )|2
ä

−
∫
B3/8∩{x2≥2τ}

µkjDy w
k
j ·Dy ζ»

1 + |D(gkj + ukj )|2
dx+ η+

k

where, again by elliptic estimates,

(12.38) |η+
k | ≤ C sup |Dζ|E2

k , C = C(n, q, τ) ∈ (0,∞).

Dividing (12.32) by ÊkEk and letting k →∞, we conclude with the help

of (12.33), (12.35), (12.36), (12.37), (12.38), (11.1) and (11.9) that

(12.39)
q∑
j=1

`j

∫
B3/8∩{x2≤−2τ}

Dϕj ·Dζ +
q∑
j=1

mj

∫
B3/8∩{x2≥2τ}

Dψj ·Dζ + η(τ) = 0

for any ζ ∈ C2
c (B3/8) with ∂ ζ

∂ x2
= 0 in {|x2| < 2τ} and satisfying (12.19), where

η(τ)→ 0 as τ → 0.

It follows from (12.39) in the same way that (12.30) follows from (12.22)

that if we let, for Y ∈ B3/8 ∩ ({0} ×Rn−1),

(12.40) Ψ(Y ) =

Ñ
q∑
j=1

(`j +mj)

é
κ1(Y )−

Ñ
q∑
j=1

(`2j +m2
j )

é
κ2(Y ),

then Ψ is a C∞ function on B9/32 ∩ ({0} ×Rn−1) satisfying the estimate

sup
B9/32∩({0}×Rn−1)

|Ψ|2 + |DY Ψ|2 + |D2
Y Ψ|2 + |D3

Y Ψ|2(12.41)

≤ C
(∫

B1/2∩{x2≤0}
|ϕ|2 +

∫
B1/2∩{x2≥0}

|ψ|2
)
,

where C = C(n, q, α) ∈ (0,∞).
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Note that

J ≡ 2q
q∑
j=1

(`2j +m2
j )−

Ñ
q∑
j=1

(`j +mj)

é2

=
1

2

q∑
i=1

q∑
j=1

Ä
(mi −mj)

2 + (`i − `j)2 + 2(`i −mj)
2
ä
,

and so it follows from (11.8) that ‹C ≥ J ≥ C > 0, where ‹C = ‹C(n, q) ∈ (0,∞)

and C = C(n, q) ∈ (0,∞); thus, by (12.29) and (12.40), we may express each

of κ1 and κ2 as a linear combination of Φ and Ψ with coefficients, in absolute

value, ≤ C = C(n, q) ∈ (0,∞). Consequently, κ1, κ2 are in C∞(B9/32 ∩ ({0} ×
Rn−1)) and, by (12.30) and (12.41), satisfy the estimates

sup
B9/32∩({0}×Rn−1)

|κi|2 + |Dy κi|2 + |D2
y κi|2 + |D3

y κi|2(12.42)

≤ C
(∫

B1/2∩{x2≤0}
|ϕ|2 +

∫
B1/2∩{x2≥0}

|ψ|2
)

for i = 1, 2, where C = C(n, q, α) ∈ (0,∞). This in turn implies that for each

j = 1, 2, . . . , q, the functions

ϕj |B9/32∩({0}×Rn−1) (= κ1 − `jκ2)

and

ψj |B9/32∩({0}×Rn−1) (= κ1 −mjκ2)

belong to C∞
Ä
B9/32 ∩ ({0} ×Rn−1)

ä
and satisfy the estimates

sup
B9/32∩({0}×Rn−1)

|ϕj |2 + |Dy ϕj |2 + |D2
y ϕj |2 + |D3

y ϕj |2(12.43)

≤ C
(∫

B1/2∩{x2≤0}
|ϕ|2 +

∫
B1/2∩{x2≥0}

|ψ|2
)
,

sup
B9/32∩({0}×Rn−1)

|ψj |2 + |Dy ψj |2 + |D2
y ψj |2 + |D3

y ψj |2(12.44)

≤ C
(∫

B1/2∩{x2≤0}
|ϕ|2 +

∫
B1/2∩{x2≥0}

|ψ|2
)
,

where C = C(n, q, α) ∈ (0,∞). By Lemma 12.1 and the standard C2,α bound-

ary regularity theory for harmonic functions ([Mor66]), the desired conclusions

of the present lemma, in particular, follow. �
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13. Improvement of fine excess

Let q be an integer ≥ 2, α ∈ (0, 1), and suppose that the induction

hypotheses (H1), (H2) hold. The main result of this section (Lemma 13.3

below) establishes that there are fixed constants ε = ε(n, q, α) ∈ (0, 1), γ =

γ(n, q, α) ∈ (0, 1) such that whenever V ∈ Sα, C ∈ Cq satisfy Hypotheses 10.1

and Hypothesis (?) (of Section 10) with a suitable constant M depending only

on n and q, the fine excess of V relative to a new cone C′ ∈ Cq decays by a

fixed factor at one of several fixed smaller scales.

Lemma 13.1. Let q be an integer ≥ 2, α ∈ (0, 1) and θ ∈ (0, 1/4). There

exist numbers ε = ε(n, q, α, θ) ∈ (0, 1/2), γ = γ(n, q, α, θ) ∈ (0, 1/2) and

β = β(n, q, α, θ) ∈ (0, 1/2) such that the following is true: If V ∈ Sα, C ∈ Cq
satisfy Hypotheses 10.1, Hypothesis (?) and Hypothesis (??) with ε = ε, γ = γ,

M = 3
2M0, β = β, and if the induction hypotheses (H1), (H2) hold, then there

exist an orthogonal rotation Γ of Rn+1 and a cone C′ ∈ Cq such that, with

Ê2
V =

∫
R×B1

|x1|2 d‖V ‖(X)

and

E2
V =

∫
R×B1

dist2(X, spt ‖C)‖) d‖V ‖(X),

the following hold :

(a) |e1−Γ(e1)| ≤ κEV and |ej−Γ(ej)| ≤ κÊ−1
V EV for each j = 2, 3, . . . , n+1;

(b) dist2
H(spt ‖C′‖ ∩ (R×B1), spt ‖C‖ ∩ (R×B1)) ≤ C0E

2
V ;

(c) θ−n−2
∫
Γ(R×(Bθ/2\{|x2|≤θ/16})) dist2(X, spt ‖V ‖) d‖Γ# C′‖(X)

+ θ−n−2
∫
Γ(R×Bθ) dist2(X, spt ‖Γ# C′‖) d‖V ‖(X) ≤ νθ2E2

V ;

(d)
Ä
θ−n−2

∫
R×Bθ dist2(X,P ) d‖Γ−1

# V ‖(X)
ä1/2

≥ 2−
n+4
2

»
C1 distH(spt ‖C‖ ∩ (R × B1), P ∩ (R × B1)) − C2EV for any

P ∈ Gn of the form P = {x1 = λx2} for some λ ∈ (−1, 1);

(e) {Z : Θ(‖Γ−1
# V ‖, Z) ≥ q} ∩

Ä
R× (Bθ/2 ∩ {|x2| < θ/16})

ä
= ∅;

(f) (ωnθ
n)−1 ‖Γ−1

# V ‖(R×Bθ) < q + 1/2.

Here the constants κ,C0, ν, C2 ∈ (0,∞), each depends only on n, q, α, and

C1 = C1(n) =
∫
B1/2∩{x2>1/16} |x2|2 dHn(x2, y).

Proof. Consider any sequence of varifolds {Vk} ⊂ Sα and any sequence

of cones {Ck} ⊂ Cq satisfying, for each k = 1, 2, . . . , hypotheses (1k)–(7k) of

Section 11 for some sequences {εk}, {γk}, {βk} of numbers with εk, γk, βk → 0+

and withM0 in place ofM3
0 (in hypothesis (6k)). The lemma will be established

by showing that for each of infinitely many k, there exist an orthogonal rotation
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Γk of Rn+1 and a cone C′k ∈ Cq such that the conclusions of the lemma

hold with Vk, Ck, C′k in place of V , C, C′ respectively for fixed constants

κ,C0, γ0, ν, C1, C2 ∈ (0,∞) depending only on n, q and α.

Let Êk = ÊVk and Ek = EVk . For i = 1, 2, . . . , (n − 1), let Yi = 1
2θ e2+i ∈

{0}×Rn−1. We infer from (11.2) that passing to a subsequence of {k} without

changing notation, for each k = 1, 2, 3, . . . , there exist points

Zi, k = (ζi, k1 , ζi, k2 , ηi, k) ∈ spt ‖Vk‖ ∩ (R×B1),

i = 1, 2, . . . , (n−1), such that Θ(‖Vk‖, Zi, k) ≥ q and |Zi, k−Yi| → 0 as k →∞;

also, we may find orthogonal rotations Γ′k of Rn+1 such that

Γ′k(Σk) = {0} ×Rn−1 and Γ′k

Ç
Zi,k
|Zi,k|

å
→ e2+i for each i = 1, 2, . . . , (n− 1),

where Σk is the (n− 1)-dimensional subspace spanned by {Zi, k : i = 1, 2, . . . ,

(n− 1)}. Let Γ′′k be the orthogonal rotation of Rn+1 such that Γ′′k(Y ) = Y for

each Y ∈ {0} ×Rn−1 and Γ′′k

(
π12 Γ′k(e1)

|π12 Γ′
k
(e1)|

)
= e1, where π12 : Rn+1 → R2 × {0}

is the orthogonal projection onto the x1x2-plane, and let Γk = Γ′′k ◦ Γ′k so that

(13.1)

Γk(Σk) = {0} ×Rn−1, Γk

Ç
Zi,k
|Zi,k|

å
→ e2+i for each i = 1, 2, . . . , (n− 1).

Let (ϕ,ψ) ∈ BF be the fine blow-up of a subsequence of {Vk} relative to

the corresponding subsequence of {Ck}. Since Θ(‖Vk‖, 0) ≥ q, it follows from

(11.7) that ϕ(0) = ψ(0) = 0, and consequently, from (12.2) and (12.42) that

after passing to further subsequences without changing notation,

(13.2) |ζi, k1 |+ Êk|ζi, k2 | ≤ CθEk
for each i = 1, 2, . . . , n − 1 and k = 1, 2, . . . , where C = C(n, q, α) ∈ (0,∞).

With the help of (13.2), the following can then be verified:

(13.3)

|e1 − Γk(e1)| ≤ CEk and |ej − Γk(ej)| ≤ CÊ−1
k Ek, j = 2, 3, . . . , n+ 1,

where C = C(n, q, α) ∈ (0,∞). In particular, note that C here is independent

of θ. Consequently, letting ‹Vk = η0,7/8 #(Γk# Vk) and passing to a further

subsequence without changing notation, we have for each k = 1, 2, 3, . . . that

(13.4) dH(Γ−1
k ({0} ×Rn) ∩ (R×B1), {0} ×B1) ≤ CEk

and

(13.5) E2
Ṽk
≡
∫
R×B1

dist2(X, spt ‖Ck‖) d‖‹Vk‖(X) ≤ CE2
k ,

where C = C(n, q, α) ∈ (0,∞). Furthermore, we claim that

(13.6) ‹CÊk ≤ ÊṼk ≤ CÊk
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for constants ‹C = ‹C(n, q, α) ∈ (0,∞) and C = C(n, q, α) ∈ (0,∞). The

second of these inequalities follows directly from the definition of ‹Vk and in-

equality (13.4); to see the first, note first that since the coarse blow-up v? of

{Vk} (by the excess Êk) is homogeneous of degree 1 (in fact its graph is a

union of half-hyperplanes meeting along {0} ×Rn−1) and satisfies, by (11.6),∫
B1
|v?|2 ≥ c̃ where c̃ = c̃(n, q) ∈ (0, 1), we have for each σ ∈ (0, 1) that

σ−n−2
∫
Bσ
|v?|2 =

∫
B1
|v?|2 ≥ c̃ so that

∫
R×Bσ

|x1|2 d‖Vk‖(X) =
q∑
j=1

∫
Bσ

√
1 + |Dujk|2|u

j
k|

2

−
q∑
j=1

∫
Σk

√
1 + |Dujk|2|u

j
k|

2 +

∫
R×Σk

|x1|2 d‖Vk‖(X)

≥
∫
Bσ

|uk|2 − 2Cσ

Ç
sup
Bσ

|uk|2
å
Ê2
k

≥
Ç

1

2
c̃ σn+2 − 2Cσ

Ç
sup
Bσ

|uk|2
åå

Ê2
k

for sufficiently large k, where uk, Σk correspond to u, Σ of Theorem 5.1 taken

with Vk in place of V and the constant Cσ is the same as the constant C of

Theorem 5.1(a). Thus for sufficiently large k depending on σ,

(13.7)

∫
R×Bσ

|x1|2 d‖Vk‖(X) ≥ cÊ2
k ,

where c = c(n, q, σ) ∈ (0, 1), which, taken with a suitable choice of σ ∈ (0, 1),

readily implies the first of the inequalities of (13.6).

Using Theorem 5.1, (11.5) and inequalities (13.3)–(13.6), we can now ver-

ify that after passing to another subsequence without changing notation, for

each k = 1, 2, . . . , the hypotheses (1k)–(7k) of Section 11 are satisfied with‹Vk in place of Vk, suitable numbers ε̃k, γ̃k, β̃k → 0+ in place of εk, γk, βk
respectively and with M2

0 in place of M3
0 (in (6k)). Of these, verification of

(1k)–(5k) is straightforward; to verify that (6k) is satisfied with ‹Vk in place of

V and M2
0 in place of M3

0 , we proceed as follows: We note first that by (13.6),

inf
P={x1=λx2}

∫
R×B1

dist2(X,P ) d‖‹Vk‖(X)

= inf
P={x1=λx2};|λ|≤CÊk

∫
R×B1

dist2(X,P ) d‖‹Vk‖(X),

where C = C(n, q, α) ∈ (0,∞), and that for any hyperplane P = {x1 = λx2}
with |λ| < CÊk and for sufficiently large k,
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∫
R×B1

dist2(X,P ) d‖‹Vk‖(X) ≥
Å

8

7

ãn+2 ∫
R×B1/2

dist2(X,Γ−1
k (P )) d‖Vk‖(X)

≥ 1

2

Å
8

7

ãn+2 ∫
R×B1/2

dist2(X,P ) d‖Vk‖(X)

− C dist2
H(Γ−1

k (P ) ∩ (R×B1/2), P ∩ (R×B1/2))

≥ 7−n−22n−1ω−1
n (2q + 1)−1C1

∫
R×B1

dist2(X,P ) d‖Vk‖(X)− CE2
k

≥ 7−n−22n−1ω−1
n (2q + 1)−1C1

Å
3

2
M0

ã−1 ∫
R×B1

|x1|2 d‖Vk‖(X)− CE2
k ,

where C = C(n, q) ∈ (0,∞), the third inequality follows from (10.34) with

ρ = 1/2 and Z = 0, and the last inequality holds by hypothesis of the present

lemma. On the other hand,∫
R×B1

|x1|2 d‖‹Vk‖(X) ≤ 2

Å
8

7

ãn+2 ∫
R×B1

|x1|2 d‖Vk‖(X)

+

Å
8

7

ãn+2

ωn(2q + 1)dist2(Γ−1
k ({0} ×Rn) ∩ (R×B1), {0} ×B1)

≤ 2

Å
8

7

ãn+2 ∫
R×B1

|x1|2 d‖Vk‖(X) + CE2
k ,

where C = C(n, q, α) ∈ (0,∞). Hence

Ê2
Ṽk
≤ 3M0

2
Ä
2−2n−7ω−1

n (2q + 1)−1C1 − Cγk
ä ∫

R×B1

dist2(X,P ) d‖‹Vk‖(X),

where C = C(n, q, α) ∈ (0,∞), and it follows from this that hypothesis (6k)

with ‹Vk in place of Vk and M2
0 in place of M3

0 is satisfied for all sufficiently

large k; hypothesis (7k) with ‹Vk in place of Vk can easily be verified using the

estimate Q?
Ṽk

(pk − 1) ≥ CQ?Vk(pk − 1), where C = C(n, q) ∈ (0,∞), which

follows from (13.3) and the fact that, for any C ∈ ⋃pk−1
j=4 Cq(j),∫

R×(B7/16\{|x2|≤7/(8·16)})
dist2(X, spt ‖Vk‖) d‖C‖(X)

+

∫
R×B7/8

dist2(X, spt ‖C‖) d‖Vk‖(X) ≥ c̃1

Ä
Q?Vk(pk − 1)

ä2
,

where c̃1 = c̃1(n, q) ∈ (0, 1), the validity of which can be seen by reasoning as

in the proof of (13.7) using the fact that the blow-up of {Vk} by Q?Vk(pk − 1)

is homogeneous of degree 1 (by hypothesis (7k)) and has, by (10.3), L2(B1)

norm ≥ c, c = c(n, q) ∈ (0, 1).

Thus, the fine blow-up (ϕ̃, ψ̃) of {‹Vk} relative to {Ck} belongs to BF .
Furthermore, it follows from (13.1) and (11.7) (applied with ‹Vk in place of Vk
and 8

7Γk Zi,k, i = 1, 2, . . . , n−1, in place of Z) that for each i = 1, 2, . . . , (n−1),
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ϕ̃(Yi) = ψ̃(Yi) = 0 and consequently, since Yi = 1
2θ ei+2, that there exist points

Sj,i, Tj,i ∈ Bθ/2 ∩ ({0} ×Rn−1) such that

∂ ϕ̃j
∂ yi

(Sj,i) = 0 and
∂ ψ̃j
∂ yi

(Tj,i) = 0

for each i = 1, 2, . . . , n−1 and j = 1, 2, . . . , q. By the estimate of Theorem 12.2,

this readily implies that

(13.8) |Dyϕ̃(0)|2 + |Dyψ̃(0)|2 ≤ Cθ2

(∫
B1/2∩{x2<0}

|ϕ̃|2 +

∫
B1/2∩{x2>0}

|ψ̃|2
)
,

where C=C(n, q, α) ∈ (0,∞). For j= 1, 2, . . . , q and x = (x2, y)∈Rn, letting

Lj
ϕ̃
(x) = Dϕ̃j(0) · x, Lj

ψ̃
(x) = Dψ̃j(0) · x, P j

ϕ̃
(x2, y) =

∂ ϕ̃j
∂ x2

(0)x2 and P j
ψ̃

(x)

=
∂ ψ̃j
∂ x2

(0)x2, it follows from (13.8) that for each (x2, y) ∈ Rn,

|P j
ϕ̃
(x2, y)− Lj

ϕ̃
(x2, y)|2 + |P j

ψ̃
(x2, y)− Lj

ψ̃
(x2, y)|2

≤ Cθ2|y|2
(∫

B1/2∩{x2<0}
|ϕ̃|2 +

∫
B1/2∩{x2>0}

|ψ̃|2
)

and consequently from Theorem 12.2 that

θ−n−2

Ç∫
B2θ∩{x2≤0}

|ϕ̃− Pϕ̃|
2 +

∫
B2θ∩{x2≥0}

|ψ̃ − P
ψ̃
|2
å
≤ Cθ2,(13.9)

C = C(n, q, α) ∈ (0,∞).

For j = 1, 2, . . . , q and k = 1, 2, . . . , let

λ′ kj = λkj + E
Ṽk

∂ ϕ̃j
∂ x2

(0),(13.10)

µ′ kj = µkj + E
Ṽk

∂ ψ̃j
∂ x2

(0),

H ′ kj = {(x1, x2, y) : x1 = λ′ kj x
2, x2 ≤ 0},

G′ kj = {(x1, x2, y) : x1 = µ′ kj x
2, x2 ≥ 0},

C′k =
q∑
j=1

|H ′ kj |+ |G′ kj |.

With the help of (13.1), (11.3) and (13.5), it is straightforward to verify that

(13.11) θ−n−2
∫

Γ−1
k

(R×Bθ)
dist2(X, spt ‖(Γ−1

k )# C′k‖) d‖Vk‖(X) ≤ Cθ2E2
k

for all sufficiently large k, where C′k is as above and Γk is as in (13.1), and

C = C(n, q, α) ∈ (0,∞). Furthermore, it follows from (13.5), (13.10) and
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Theorem 12.2 that

dist2
H(spt ‖C′k‖ ∩ (R×B1), spt ‖Ck‖ ∩ (R×B1)) ≤ CE2

k ,(13.12)

C = C(n, q, α) ∈ (0,∞).

From (11.4) (applied with ‹Vk in place of Vk), it follows that

θ−n−2
∫

Γ−1
k (R×(Bθ/2\{|x2|≤θ/16}))

dist2(X, spt ‖Vk‖) d‖Γ−1
k# C′k‖(X)(13.13)

≤ Cθ−n−2
∫

Γ−1
k

(R×Bθ)
dist2(X, spt ‖Γ−1

k# C′k‖) d‖Vk‖(X),

C = C(n, q, α) ∈ (0,∞).

Again by (11.4) (applied with ‹Vk in place of Vk), (13.5), (13.11) and (13.12),

we have that for any hyperplane P of the form P = {x1 = λx2}, |λ| < 1,

writing θ̃ = 8
7θ,

θ̃−n−2
∫
R×B

θ̃

dist2 (X,P ) d‖‹Vk‖(X)

≥ 1

2
θ̃−n−2

q∑
j=1

Ñ∫
B
θ̃/2
∩{x2<−θ̃/16}

|hkj − λx2 + ũkj |2

+

∫
B
θ̃/2
∩{x2>θ̃/16}

|gkj − λx2 + ‹wkj |2é
≥ 1

4
θ̃−n−2

q∑
j=1

Ñ∫
B
θ̃/2
∩{x2<−θ̃/16}

|hkj − λx2|2 +

∫
B
θ̃/2
∩{x2>θ̃/16}

|gkj − λx2|2
é

− 1

2
θ̃−n−2

q∑
j=1

Ñ∫
B
θ̃/2
∩{x2<−θ̃/16}

|ũkj |2 +

∫
B
θ̃/2
∩{x2>θ̃/16}

|‹wkj |2é
≥ 2−n−4C1dist2

H(spt ‖Ck‖ ∩ (R×B1), P ∩ (R×B1))

− 1

2
θ̃−n−2

∫
R×B

θ̃

dist2(X, spt ‖Ck‖) d‖‹Vk‖(X)

≥ 2−n−4C1dist2
H(spt ‖Ck‖ ∩ (R×B1), P ∩ (R×B1))

− θ̃−n−2
∫
R×B

θ̃

dist2(X, spt ‖C′k‖) d‖‹Vk‖(X)− CE2
k

≥ 2−n−4C1dist2
H(spt ‖Ck‖ ∩ (R×B1), P ∩ (R×B1))− CE2

k ,

where C1 =
∫
B1/2∩{x2>1/16} |x2|2 dHn(x2, y), C2 = C2(n, q, α) ∈ (0,∞) and the

notation is as in Theorem 10.1 taken with ‹Vk in place of V (in particular, with

ũjk, ‹wjk corresponding to uj , wj). This readily implies that
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θ−n−2

∫
R×Bθ

dist2(X,P ) d‖Γk# Vk‖(X)

å1/2

(13.14)

≥ 2−
n+4
2

»
C1 distH(spt ‖Ck‖ ∩ (R×B1), P ∩ (R××B1))− CEk

for each hyperplane P = {x1 = λx2} with |λ| < 1 and all sufficiently large k,

where C = C(n, q, α) ∈ (0,∞).

The inequalities (13.3) and (13.11)–(13.14) say that the conclusions (a)–

(d) of the lemma, with Vk, Ck, C′k, Γ−1
k in place of V , C, C′, Γ, hold for

all sufficiently large k. Conclusion (e) with Vk in place of V and Γ−1
k in place

of Γ is clear, for all sufficiently large k, by (11.5) applied with ‹Vk in place

of Vk. Conclusion (f) with Vk in place of V and Γ−1
k in place of Γ follows,

for sufficiently large k, from the Constancy Theorem for stationary integral

varifolds and the fact that q ≤ Θ(‖‹Vk‖, 0) ≤ (ωn2n)−1 ‖Ṽk‖(Bn+1
2 (0)) < q+1/2

for each k. �

Lemma 13.2. Let q ≥ 2 be an integer, α ∈ (0, 1) and p ∈ {4, 5, . . . , 2q}.
For j = 1, 2, . . . , p − 3, let θj ∈ (0, 1/4) be such that θ1 > 8θ2 > 64θ3 > · · · >
8p−4θp−3. There exist numbers ε(p) = ε(p)(n, q, α, θ1, θ2, . . . , θp−3) ∈ (0, 1/2),

γ(p) = γ(p)(n, q, α, θ1, θ2 . . . , θp−3) ∈ (0, 1/2) such that if V ∈ Sα, C ∈ Cq(p)
satisfy Hypotheses 10.1 and Hypothesis (?) with ε = ε(p), γ = γ(p), M = 3

2M0,

and if the induction hypotheses (H1), (H2) hold, then there exist an orthogonal

rotation Γ of Rn+1 and a cone C′ ∈ Cq such that, with

Ê2
V =

∫
R×B1

|x1|2 d‖V ‖(X)

and

Q2
V (C) =

∫
R×(B1/2\{|x2|<1/16})

dist2(X, spt ‖V ‖) d‖C‖(X)

+

∫
R×B1

dist2(X, spt ‖C)‖) d‖V ‖(X),

we have the following :

(a) |e1 − Γ(e1)| ≤ κ(p)QV (C) and |ej − Γ(ej)| ≤ κ(p)Ê−1
V QV (C) for each j =

2, 3, . . . , n+ 1;

(b) dist2
H(spt ‖C′‖ ∩ (R×B1), spt ‖C‖ ∩ (R×B1)) ≤ C(p)

0 Q2
V (C);

and for some j ∈ {1, 2, . . . , p− 3},

(c) θ−n−2
j

∫
Γ
Ä
R×
Ä
Bθj/2\{|x

2|≤θj/16}
ää dist2(X, spt ‖V ‖) d‖Γ# C′‖(X)

+ θ−n−2
j

∫
Γ(R×Bθj ) dist2(X, spt ‖Γ# C′‖) d‖V ‖(X) ≤ ν(p)

j θ2
jQ

2
V (C);
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(d) for any P ∈ Gn of the form P = {x1 = λx2} for some λ ∈ (−1, 1),Ç
θ−n−2
j

∫
R×Bθj

dist2 (X,P ) d‖Γ−1
# V ‖(X)

å1/2

≥ 2−
n+4
2

»
C1 distH(spt ‖C‖ ∩ (R×B1), P ∩ (R×B1))− C(p)

2 QV (C);

(e) {Z : Θ(‖Γ−1
# V ‖, Z) ≥ q} ∩

Ä
R× (Bθj/2 ∩ {|x2| < θj/16})

ä
= ∅;

(f)
Ä
ωnθ

n
j

ä−1 ‖Γ−1
# V ‖(R×Bθj ) < q + 1/2.

Here the dependence of the various constants on the parameters is as follows :

κ(p) = κ(p)(n, q, α, θ1, . . . , θp−4), C
(p)
0 = C

(p)
0 (n, q, α, θ1, . . . , θp−4),

C
(p)
2 = C

(p)
2 (n, q, α, θ1, . . . , θp−4)

in case q ≥ 3 and p ∈ {5, 6, . . . , 2q}; κ(4) = κ, C
(4)
0 = C0, C

(4)
2 = C2, where

κ = κ(n, q, α), C0 = C0(n, q, α), C2 = C2(n, q, α) are as in Lemma 13.1;

ν
(p)
1 = ν, where ν = ν(n, q, α) is as in Lemma 13.1; and, in case q ≥ 3, for

each j = 2, 3, . . . , p − 3, ν
(p)
j = ν

(p)
j (n, q, α, θ1, . . . , θj−1). In particular, ν

(p)
j is

independent of θj , θj+1, . . . , θp−3 for j = 1, 2, . . . , p− 3.

Proof. If p = 4, then we may simply set ε(4)(n, q, α, θ1) = ε(n, q, α, θ1) and

γ(4)(n, q, α, θ1) = γ(n, q, α, θ1), where ε, γ are as in Lemma 13.1, and deduce

from Lemma 13.1 with θ = θ1 that there exist a cone C′ ∈ Cq and an orthogonal

rotation Γ of Rn+1 such that the conclusions of the lemma hold with j = 1 in

(c)–(f); with κ(4) = κ, C
(4)
0 = C0, C

(4)
2 = C2 and ν

(4)
1 = ν, where κj , C0, C2,

ν are as in Lemma 13.1. Thus the lemma holds if p = 4.

Else q ≥ 3 and p ∈ {5, 6, . . . , 2q}. Assume by induction the validity of

the lemma with any p′ ∈ {4, 5, . . . , p − 1} in place of p. Let θj ∈ (0, 1/4),

j = 1, 2, . . . , p − 3 be given such that θ1 > 8θ2 > 64θ3 > · · · > 8p−4θp−3.

To prove the lemma as stated, it suffices to show that for arbitrary sequences

{Vk} ⊂ Sα, {Ck} ⊂ Cq(p) that satisfy hypotheses (1k)–(5k) of Section 11 as

well as hypothesis (6k) of Section 11 with M0 in place of M2
0 , there exist a

subsequence {k′} of {k} and, for each k′, a cone C′k′ ∈ Cq and an orthogonal

rotation Γk′ of Rn+1 such that the conclusions of the lemma hold with Vk′ , Ck′ ,

C′k′ , Γ′k in place of V , C, C′, Γ respectively and with suitable constants κ(p),

C
(p)
0 , C

(p)
2 and ν

(p)
1 , . . . , ν

(p)
p−3 depending only on the parameters as specified

in the statement of the lemma. So suppose, for k = 1, 2, . . . , that Vk ∈ Sα,

Ck ∈ Cq(p) satisfy hypotheses (1k)–(6k) of Section 11 with M0 in place of M2
0 .

For each k, choose a cone ‹Ck ∈
⋃p−1
j=4 Cq(j) such thatÄ‹Qkä2 ≡ (∫

R×(B1/2\{|x2|<1/16})
dist2(X, spt ‖Vk‖) d‖‹Ck‖(X)(13.15)

+

∫
R×B1

dist2(X, spt ‖‹Ck‖) d‖Vk‖(X)

å
≤ 3

2
(Q?k)

2 ,
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where

(Q?k)
2 = inf

C̃∈
⋃p−1
j=4Cq(j)

(∫
R×(B1/2\{|x2|<1/16})

dist2(X, spt ‖Vk‖) d‖‹C‖(X)

+

∫
R×B1

dist2(X, spt ‖‹C‖) d‖Vk‖(X)

å
.

Let β = β(n, q, α, θ1), where β is as in Lemma 13.1, and consider the

following two alternatives:

(A) for infinitely many k,∫
R×(B1/2\{|x2|<1/16})

dist2(X, spt ‖Vk‖) d‖Ck‖(X)

+

∫
R×B1

dist2(X, spt ‖Ck‖) d‖Vk‖(X) < β (Q?k)
2

(B) for all sufficiently large k,∫
R×(B1/2\{|x2|<1/16})

dist2(X, spt ‖Vk‖) d‖Ck‖(X)

+

∫
R×B1

dist2(X, spt ‖Ck‖) d‖Vk‖(X) ≥ β (Q?k)
2 .

If alternative (A) holds, we deduce directly from Lemma 13.1, applied with

θ = θ1, that for infinitely many k, there exist a cone C′k ∈ Cq and an orthogonal

rotation Γk of Rn+1 such that the conclusions of the present lemma hold with

Vk, Ck, C′k, Γk in place of V , C, C′, Γ; with j = 1 in the conclusions (c)–(f);

and with κ, C0, C2, ν (as in Lemma 13.1) in place of κ(p), C
(p)
2 , ν

(p)
1 .

If alternative (B) holds, we have by hypothesis (5k) and (13.15) that for

all sufficiently large k,(∫
R×(B1/2\{|x2|<1/16})

dist2(X, spt ‖Vk‖) d‖‹Ck‖(X)(13.16)

+

∫
R×B1

dist2(X, spt ‖‹Ck‖) d‖Vk‖(X)

å
≤ 3γk

2β
Ê2
k .

Since ‹Ck ∈ Cq(p′) for some p′ ∈ {4, 5, . . . , p − 1} and infinitely many k, we

may, by the induction hypothesis, apply the lemma with p′ in place of p and

θ2, θ3, . . . , θp′−2 in place of θ1, θ2, . . . , θp′−3 to deduce that for infinitely many k,

there exist a cone C′k ∈ Cq and an orthogonal rotation Γk of Rn+1 such that

the conclusions (a)–(f) hold with Vk, ‹Ck, C′k, Γk in place of V , C, C′, Γ—in

particular, with ‹Qk in place of QV (C)—and such that

(i) in case p′ = 4 (which must be the case if p = 5), with κ(4) = κ, C
(4)
0 = C0,

C
(4)
2 = C2 and ν

(4)
1 = ν (where κ, C0, C1, C2, ν are as in Lemma 13.1 and

C is as in Theorem 10.2(a)); and
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(ii) in case p′ ∈ {5, 6, . . . , p− 1} (possible, of course, only if p ≥ 6) with

κ(p′) = κ(p′)(n, q, α, θ2, . . . , θp′−3), C
(p′)
0 = C

(p′)
0 (n, q, α, θ2, . . . , θp′−3),

C
(p′)
2 = C

(p′)
2 (n, q, α, θ2, . . . , θp′−3)

in place of κ(p), C
(p)
0 , C

(p)
2 respectively, with ν

(p′)
1 (n, q, α) = ν (where ν is

as in Lemma 13.1) in place of ν
(p)
1 , and with ν

(p′)
j−1(n, q, α, θ2, . . . , θj−1) in

place of ν
(p)
j−1 for each j = 3, . . . , p′ − 2.

Since by (13.15) and the defining requirement of alternative (B) we have that‹Q2
k ≤

3

2β

(∫
R×(B1/2\{|x2|<1/16})

dist2(X, spt ‖Vk‖) d‖Ck‖(X)

+

∫
R×B1

dist2(X, spt ‖Ck‖) d‖Vk‖(X)

å
,

and dist2
H(spt ‖Ck‖ ∩ (R × B1), spt ‖‹Ck‖ ∩ (R × B1)) ≤ C(‹Q2

k + Q2
k), where

C = C(n, q) ∈ (0,∞), setting

κ(5)(n, q, α, θ1) =
3κ

2β(n, q, α, θ1)
, C

(5)
0 (n, q, α, θ1) = 2C +

3(C + C0)

β(n, q, α, θ1)
,

C
(5)
2 (n, q, α, θ1) = 2−

n+4
2

»
C1C +

Å
2−

n+4
2

»
C1C + C2

ã√
3

2β(n, q, α, θ1)
,

ν
(5)
1 (n, q, α) = ν, ν

(5)
2 (n, q, α, θ1) =

3ν

2β(n, q, α, θ1)
,

and, for p ≥ 6,

κ(p)(n, q, α, θ1, . . . , θp−4)

= max

®
κ,

3

2β(n, q, α, θ1)
κ(p′)(n, q, α, θ2, . . . , θp′−3) : p′ = 5, . . . , p− 1

´
,

C
(p)
0 (n, q, α, θ1, . . . , θp−4)

= max

®
C0, 2C+

3

β(n, q, α, θ1)

Ä
C+C

(p′)
0 (n, q, α, θ2, . . . , θp′−3)

ä
: p′=5, . . . , p−1́ ,

C
(p)
2 (n, q, α, θ1, . . . , θp−4)

= max

®
C2, a+

 
3

2β(n, q, α, θ1)

Ä
a+C

(p′)
2 (n, q, α, θ2, . . . , θp′−3)

ä
: p′=5, . . . , p−1

´
,

where a = 2−
n+4
2

»
C1C,

ν
(p)
1 (n, q, α) = ν, ν

(p)
2 (n, q, α, θ1) =

3ν

2β(n, q, α, θ1)
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and, for j = 3, . . . , p− 3,

ν
(p)
j (n, q, α, θ1, . . . , θj−1)

= max

®
3

2β(n, q, α, θ1)
ν

(p′)
j−1(n, q, α, θ2, . . . , θj−1) : p′ = j + 2, . . . , p− 1

´
,

we see that if alternative (B) holds, the conclusions (a)–(f) of the lemma follow

with Vk, Ck, C′k, Γk in place of V , C, C′, Γ; with constants κ(p), C
(p)
0 , C

(p)
2

depending only on n, q, α, θ1, θ2, . . . , θp−4; with ν
(p)
1 depending only on n, q,

α and for each j = 2, 3, . . . , p − 3, with ν
(p)
j depending only on n, q, α and

θ1, θ2, θ3, . . . , θj−1. Note that in checking that conclusion (d) holds with Vk, Ck

in place of V , C, we have used the fact that

distH(spt ‖‹Ck‖ ∩ (R×B1), {0} ×B1)

≥ distH(spt ‖Ck‖ ∩ (R×B1), {0} ×B1)

− distH(spt ‖Ck‖ ∩ (R×B1), spt ‖‹Ck‖ ∩ (R×B1))

≥ distH(spt ‖Ck‖ ∩ (R×B1), {0} ×B1)−
√
C(‹Qk +Qk).

Similar reasoning applies in checking conclusion (b). This completes the proof.

�

Lemma 13.3. Let q ≥ 2 be an integer and α ∈ (0, 1). For j = 1, 2, . . . ,

2q−3, let θj ∈ (0, 1/4) be such that θ1 > 8θ2 > 64θ3 > · · · > 82q−4θ2q−3. There

exist numbers

ε = ε(n, q, α, θ1, θ2, . . . , θ2q−3) ∈ (0, 1/2),

γ = γ(n, q, α, θ1, θ2, . . . , θ2q−3) ∈ (0, 1/2)

such that the following is true: If V ∈ Sα, C ∈ Cq satisfy Hypotheses 10.1 and

Hypothesis (?) with M = 3
2M0 and if the induction hypotheses (H1), (H2) hold,

then there exist an orthogonal rotation Γ of Rn+1 and a cone C′ ∈ Cq such that,

with ÊV and QV (C) as defined in Lemma 13.2, we have the following :

(a) |e1 − Γ(e1)| ≤ κQV (C)and |ej − Γ(ej)| ≤ κÊ−1
V QV (C) for each j =

2, 3, . . . , n+ 1;

(b) dist2
H(spt ‖C′‖ ∩ (R×B1), spt ‖C‖ ∩ (R×B1)) ≤ C0Q

2
V (C);

and for some j ∈ {1, 2, . . . , 2q − 3},

(c) θ−n−2
j

∫
Γ
Ä
R×
Ä
Bθj/2\{|x

2|≤θj/16}
ää dist2(X, spt ‖V ‖) d‖Γ# C′‖(X)

+ θ−n−2
j

∫
Γ(R×Bθj )

dist2(X, spt ‖Γ# C′‖) d‖V ‖(X) ≤ νjθ2
jQ

2
V (C);
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(d) for any P ∈ Gn of the form P = {x1 = λx2} for some λ ∈ (−1, 1),(
θ−n−2
j

∫
R×Bθj

dist2(X,P ) d‖Γ−1
# V ‖(X)

)1/2

≥ 2−
n+4
2

»
C1 distH(spt ‖C‖ ∩ (R×B1), P ∩ (R×B1))− C2QV (C);

(e) {Z : Θ(‖Γ−1
# V ‖, Z) ≥ q} ∩

Ä
R× (Bθj/2 ∩ {|x2| < θj/16})

ä
= ∅;

(f)
Ä
ωnθ

n
j

ä−1 ‖Γ−1
# V ‖(R×Bθj ) < q + 1/2.

Here the constants κ,C0, C2 ∈ (0,∞) depend only on n, α in case q = 2 and

only on n, q, α and θ1, θ2, . . . , θ2q−4 in case q ≥ 3; ν1 = ν1(n, q, α); and, in case

q ≥ 3, for each j = 2, 3, . . . , 2q−3, νj = νj(n, q, α, θ1, . . . , θj−1). (In particular,

νj is independent of θj , θj+1, . . . , θ2q−3 for each j = 1, 2, . . . , 2q − 3.)

Proof. Set ε= min
¶
ε(4), ε(5), . . . , ε(2q)

©
and γ= min

¶
γ(4), γ(5), . . . , γ(2q)

©
,

where

ε(p) =ε(p)(n, q, α, θ1, . . . , θp−3), γ(p) =γ(p)(n, q, α, θ1, . . . , θp−3), 4 ≤ p ≤ 2q

are as in Lemma 13.2. Set ν1 = ν, and for each j = 2, . . . , 2q − 3, set

νj =max
{
ν

(j+3)
j , ν

(j+4)
j , . . . , ν

(2q)
j

} (
= ν

(2q)
j

)
,

where ν is as in Lemma 13.1 and for each p ∈ {5, . . . , 2q}, the numbers ν
(p)
j

are as in Lemma 13.2 taken with scales θ1, . . . , θp−3. Note that then, ν1 =

ν1(n, q, α) and in case q ≥ 3,

νj = νj(n, q, α, θ1, . . . , θj−1) for 2 ≤ j ≤ 2q − 3.

Set

κ = max
¶
κ(4), κ(5), . . . , κ(2q)

© Ä
= κ(2q)

ä
,

C0 = max
{
C

(4)
0 , C

(5)
0 , . . . , C

(2q)
0

} (
= C

(2q)
0

)
,

C2 = max
{
C

(4)
2 , C

(5)
2 , . . . , C

(2q)
2

} (
= C

(2q)
2

)
,

where for each p ∈ {4, 5, . . . , 2q}, the numbers κ(p), C
(p)
0 , C

(p)
2 are as in

Lemma 13.2 taken with scales θ1, . . . , θp−3. Since C ∈ Cq implies that C ∈ Cq(p)
for some p ∈ {4, 5, . . . , 2q}, the conclusions of the present lemma follow directly

from Lemma 13.2. �

14. Properties of coarse blow-ups: Part III

Subject to the induction hypotheses (H1), (H2), in this section we com-

plete the proof that Bq is a proper blow-up class by showing that Bq satisfies

property (B7). Recall that in order to do this, it only remains to rule out the
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possibility that Bq contains an element whose graph is the union of q half-

hyperplanes in the half-space {x2 ≤ 0} and q half-hyperplanes in {x2 ≥ 0},
with all half-hyperplanes meeting along {0}×Rn−1 and with at least two of the

half-hyperplanes distinct on each side . (This is Case 2 stated at the beginning

of Section 9.)

Lemma 14.1. Let q ≥ 2 be an integer and α ∈ (0, 1). There exist con-

stants ε1 = ε1(n, q, α) ∈ (0, 1) and γ1 = γ1(n, q, α) ∈ (0, 1) such that if

• the induction hypotheses (H1), (H2) hold,

• V ∈ Sα,

• Θ(‖V ‖, 0) ≥ q,
• (ωn2n)−1‖V ‖(Bn+1

2 (0)) < q + 1/2,

• ω−1
n ‖V ‖(R×B1) < q + 1/2,

• {Z : Θ(‖V ‖, Z) ≥ q} ∩
Ä
R× (B1/2 \ {|x2| < 1/16})

ä
= ∅,

• Ê2
V ≡

∫
R×B1

|x1|2d‖V ‖(X) < ε1 and

• Ê2
V < 3

2 inf{P={x1=λx2}}
∫
R×B1

dist2(X,P ) d‖V ‖(X),

then∫
R×(B1/2\{|x2|<1/16})

dist2(X, spt ‖V ‖) d‖C‖(X)

+

∫
R×B1

dist2(X, spt ‖C‖) d‖V ‖(X) ≥ γ1Ê
2
V

for any cone C ∈ Cq.
Proof. For j = 1, 2, . . . , 2q − 3, choose numbers θj = θj(n, q, α) ∈ (0, 1/2)

as follows: First choose θ1 = θ1(n, q, α) ∈ (0, 1/2) such that ν1θ
2(1−α)
1 < 1,

where ν1 = ν1(n, q, α) is as in Lemma 13.3. Having chosen θ1, θ2, . . . , θj , 1≤j≤
2q−4, choose θj+1 = θj+1(n, q, α) such that θj+1 < 8−1θj and νj+1θ

2(1−α)
j+1 < 1,

where νj+1 = νj+1(n, q, α, θ1, θ2, . . . , θj) is as in Lemma 13.3.

Let ε1 ∈ (0, ε), γ1 ∈ (0, γ) be constants to be eventually chosen de-

pending only on n, q and α, where ε = ε(n, q, α, θ1, . . . , θ2q−3) and γ =

γ(n, q, α, θ1, . . . , θ2q−3) are as in Lemma 13.3. Suppose that the hypotheses

of the present lemma are satisfied with V ∈ Sα but the conclusion fails; i.e.,

there exists C∈Cq such that∫
R×(B1/2\{|x2|<1/16})

dist2(X, spt ‖V ‖) d‖C‖(X)(14.1)

+

∫
R×B1

dist2(X, spt ‖C‖) d‖V ‖(X) < γ1Ê
2
V .

In particular, V , C then satisfy the hypotheses of Lemma 13.3. In what follows,

for C′ ∈ Cq, Γ an orthogonal rotation of Rn+1 and ρ ∈ (0, 1], we shall use the

notation
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QV (C′,Γ, ρ) =

(
ρ−n−2

∫
Γ(R×(Bρ/2\{|x2|<ρ/16}))

dist2(X, spt ‖V ‖) d‖Γ# C′‖(X)

+ ρ−n−2
∫

Γ(R×Bρ)
dist2(X, spt ‖Γ# C′‖) d‖V ‖(X)

å1/2

.

We claim that we may apply Lemma 13.3 iteratively to obtain, for each k =

0, 1, 2, 3, . . . , an orthogonal rotation Γk of Rn+1 with Γ0 = Identity, and a cone

Ck ∈ Cq with C0 = C, satisfying, for k ≥ 1,

|Γk(e1)− Γk−1(e1)|2 ≤ CδkQ2
V ;(14.2)

|Γk(ej)− Γk−1(ej)|2 ≤ CδkÊ−2
V Q2

V ;(14.3)

dist2
H(spt ‖Ck‖ ∩ (R×B1), spt ‖Ck−1‖ ∩ (R×B1)) ≤ CδkQ2

V ;(14.4)

Q2
V (Ck,Γk, σk) ≤ νjkθ

2
jk
Q2
V (Ck−1,Γk−1, σk−1) ≤ · · · ≤ δkQ2

V(14.5)

for some jk ∈ {1, 2, . . . , 2q − 3};Ç
σ−n−2
k

∫
R×Bσk

dist2(X,P ) d‖Γk# V ‖(X)

å1/2

(14.6)

≥ 2−
n+4
2

»
C1 distH(spt ‖Ck−1‖ ∩ (R×B1), P ∩ (R×B1))

− C2QV (Ck−1,Γk−1, σk−1)

for each P ∈ Gn of the form P = {x1 = λx2} for some λ ∈ (−1, 1);

(14.7) {Z : Θ(‖Γk# V ‖, Z) ≥ q} ∩
Ä
R× (Bσk \ {|x

2| < σk/16})
ä

= ∅;

and

(14.8) (ωnσ
n
k )−1 ‖Γ−1

k# V ‖(R×Bσk) < q + 1/2,

where QV = QV (C,Γ0, 1), C = C(n, q, α) ∈ (0,∞), C2 = C2(n, q, α) ∈ (0,∞)

and, for each k = 1, 2, 3, . . . ,

σk = θjkσk−1, δk = νjkθ
2
jk
δk−1

for some jk ∈ {1, 2, . . . , 2q − 3}, where σ0 = δ0 = 1. Thus

σk =
2q−3∏
j=1

θ
kj
j and δk =

2q−3∏
j=1

Ä
νjθ

2
j

äkj
for some nonnegative integers k1, k2, . . . , k2q−3 such that

∑2q−3
j=1 kj = k. Note,

in particular, that

θk2q−3 ≤ σk ≤ θk1 , δk < σ2α
k < 4−kα and

∞∑
j=k

δj < cδk

for k = 1, 2, . . . , where c = c(α) ∈ (0,∞).
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To verify these assertions inductively, note that (14.4)–(14.7) with k=1

follow directly from Lemma 13.3. Suppose k ≥ 2 and that (14.4)–(14.7) hold

with 1, 2, 3, . . . , k − 1 in place of k. We wish to apply Lemma 13.3 with

ησk−1 # Γ−1
k−1 # V in place of V and Ck−1 in place of C. Note first that by

the triangle inequality and (14.8) with k − 1 in place of k,

Ê2
ησk−1 # Γ−1

k−1#
V

= σ−n−2
k−1

∫
R×Bσk−1

|x1|2 d‖Γ−1
k−1 # V ‖(X)

≤ 2σ−n−2
k−1

∫
R×Bσk−1

dist2(X, spt ‖Ck−1‖) d‖Γ−1
k−1 # V ‖(X)

+ ωn(2q + 1) dist2
H(spt ‖Ck−1‖ ∩ (R×B1), {0} ×B1)

and by applying (14.4) with 1, 2, . . . , k − 1 in place of k, summing over k, and

using the fact that
∑∞
k=1 δ

1/2
k < 2−α(1− 2−α)−1,

distH(spt ‖Ck−1‖ ∩ (R×B1), {0} ×B1)

≤ distH(spt ‖C‖ ∩ (R×B1), {0} ×B1) + CQV , C = C(n, q, α) ∈ (0,∞);

thus,

Ê2
ησk−1 # Γ−1

k−1#
V
≤ 2ωn(2q + 1) dist2

H(spt ‖C‖ ∩ (R×B1), {0} ×B1) + CQ2
V ,

C = C(n, q, α) ∈ (0,∞), so that, by (10.1),

(14.9) Ê2
ησk−1 # Γ−1

k−1#
V
≤ 2(2q + 1)ωnc

2
1Ê

2
V + CQ2

V , C = C(n, q, α) ∈ (0,∞),

where c1 = c1(n) ∈ (0,∞) is as in (10.1); in particular,

(14.10) Ê2
ησk−1 # Γ−1

k−1#
V
≤ CÊ2

V , C = C(n, q, α) ∈ (0,∞).

Again by (14.4),

distH(spt ‖Ck−2‖ ∩ (R×B1), {0} ×B1)

≥ distH(spt ‖C‖ ∩R×B1, {0} ×B1)

−
k−2∑
j=1

distH(spt ‖Cj−1‖ ∩ (R×B1), spt ‖Cj‖ ∩ (R×B1))

≥ distH(spt ‖C‖ ∩ (R×B1), {0} ×B1)− CQV
k−2∑
j=1

δ
1/2
j ,

which implies by (14.6) and (14.5) that

Êησk−1 # Γ−1
k−1#

V ≥ 2−
n+4
2

»
C1 distH(spt ‖C‖ ∩ (R×B1), {0} ×B1)− CQV ,

where C = C(n, q, α) ∈ (0,∞). Hence by (10.2) and (14.1), we see that

(14.11) Êησk−1 # Γ−1
k−1#

V ≥ (C1 − Cγ1)ÊV ,
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where C1 = C1(n, q), C = C(n, q) ∈ (0,∞). Thus if 2Cγ1 < C1, it follows from

(14.1), (14.5) and (14.11) that

∫
R×(B1/2\{|x2|<1/16})

dist2(X, spt ‖ησk−1 # Γ−1
k−1 # V ‖) d‖Ck−1‖(X)

(14.12)

+

∫
R×B1

dist 2(X, spt ‖Ck−1‖) d‖ησk−1 # Γ−1
k−1 # V ‖(X) ≤ Cγ1Ê

2
ησk−1 # Γ−1

k−1#
V

and from (14.10) that

Ê2
ησk−1 # Γ−1

k−1#
V
≤ Cε1,

where C = C(n, q, α) ∈ (0,∞). By (14.6) again with k − 1 in place of k and

(14.4) with 1, 2, . . . , k − 1 in place of k,(
σ−n−2
k−1

∫
R×Bσk−1

dist2(X,P ) d‖Γk−1 # V ‖(X)

)1/2

≥ 2−
n+4
2

»
C1 distH(spt ‖C‖ ∩ (R×B1), P ∩ (R×B1))− CQV

so that∫
R×B1

dist2(X,P ) d‖ησk−1 #Γk−1 # V ‖(X)

≥ 2−n−5C1 dist2
H(spt ‖C‖ ∩ (R×B1), P ∩ (R×B1))− CQ2

V

≥ 2−n−5C1ω
−1
n (2q + 1)−1

∫
R×B1

dist2(X,P ) d‖V ‖(X)− CQ2
V

≥ 2−n−5C1ω
−1
n (2q + 1)−1

Å
3

2

ã−1

Ê2
V − CQ2

V

≥ 2−n−6C1ω
−2
n (2q + 1)−2c−2

1

Å
3

2

ã−1

Ê2
ησk−1 #Γk−1# V − CQ2

V

≥
Ç

2−n−6C1ω
−2
n (2q + 1)−2c−2

1

Å
3

2

ã−1

− Cγ1

å
Ê2
ησk−1 #Γk−1# V ,

where C = C(n, q, α) ∈ (0,∞) and we have used our hypothesis that

Ê2
V <

3

2
inf

P={x1=λx2}

∫
R×B1

dist2(X,P ) d‖V ‖(X).

This readily implies that if we choose γ1 = γ1(n, q, α) ∈ (0, 1) sufficiently small,

then

Ê2
ησk−1 #Γk−1# V ≤

3

2
M0

∫
R×B1

dist2(X,P ) d‖ησk−1 #Γk−1 # V ‖(X)

for any hyperplane P of the form P = {x1 = λx2}. So if we choose γ1 =

γ1(n, q, α) and ε1 = ε1(n, q, α) sufficiently small, we can apply Lemma 13.3

with ησk−1 # Γ−1
k−1 # V in place of V and Ck−1 in place of C to obtain an
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orthogonal rotation Γ of Rn+1 and a cone Ck ∈ Cq such that, with Γk =

Γk−1 ◦ Γ, (14.2)–(14.8) hold. This completes the inductive proof that (14.2)–

(14.8) hold for all k = 1, 2, 3, . . . . Writing

Ck =
q∑
j=1

|Hk
j |+ |Gkj |,

where for each j ∈ {1, 2, . . . , q}, Hk
j is the half-space defined by

Hk
j = {(x1, x2, y) ∈ Rn+1 : x2 < 0 and x1 = λkjx

2}

and Gkj is the half-space defined by

Gkj = {(x1, x2, y) ∈ Rn+1 : x2 > 0 and x1 = µkjx
2},

with λkj , µ
k
j constants, λk1 ≥ λk2 ≥ · · · ≥ λkq and µk1 ≤ µk2 ≤ · · · ≤ µkq , note

that by (10.2) (applied with ησk # Γk# V in place of V and Ck in place of C),

(14.11) and (14.12), we also have that

(14.13) |λk1 − λkq | ≥ CÊV and |µk1 − µkq | ≥ CÊV , C = C(n, q, α) ∈ (0,∞)

for all k = 1, 2, 3, . . . .

By (14.4), {spt ‖Ck‖ ∩ (R × B1)} is a Cauchy sequence (in Hausdorff

distance) and hence, since Θ(‖Ck‖, 0) = q for each k = 1, 2, . . . , there is a var-

ifold H ∈ Cq such that passing to a subsequence {k′} of {k}, Ck′ Bn+1
2 (0)→

H Bn+1
2 (0) and

(14.14) dist2
H(spt ‖H‖ ∩ (R×B1), spt ‖Ck′‖ ∩ (R×B1)) ≤ Cδk′Q2

V

for each k′, where C = C(n, q, α) ∈ (0,∞). By (14.13), spt ‖H‖ is not a

hyperplane. Since δk ≤ σ2α
k , it follows from (14.5), (14.8) and (14.14) that

(14.15)

∫
R×B1

dist2(X, spt ‖H‖) d‖ησk′ #Γ−1
k′# V ‖(X) ≤ Cσ2α

k′ Q
2
V

and

(14.16)∫
R×(B1/2\{|x2|<1/16})

dist2(X, spt ‖ησk′ #Γ−1
k′# V ‖) d‖Ck′‖(X) ≤ Cσ2α

k′ Q
2
V

for all k′, where C = C(n, q, α) ∈ (0,∞). Now, since q ≤ Θ(‖V ‖, 0) ≤
(ωn2n)−1‖V ‖(Bn+1

2 (0)) < q + 1/2, it follows from the monotonicity formula

that

q ≤ Θ(‖ησk′ #Γ−1
k′# V ‖, 0) ≤ (ωn2n)−1‖ησk′ #Γ−1

k′# V ‖(B
n+1
2 (0))

≤ (ωn2n)−1‖V ‖(Bn+1
2 (0)) < q + 1/2.

Hence, there is a stationary integral varifold W on Bn+1
2 (0) with

q ≤ Θ(‖W‖, 0) ≤ (ωn2n)−1‖W‖(Bn+1
2 (0)) < q + 1/2
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such that, passing to a further subsequence without changing notation,

(14.17) ησk′ #Γ−1
k′# V →W

as varifolds onBn+1
2 (0). The estimate (14.15) implies that spt ‖W‖∩(R×B1) ⊆

spt ‖H‖ ∩ (R × B1). Since distH(spt ‖ησk′ #Γk′# V ‖ ∩ (R × B1), spt ‖W‖ ∩
(R × B1)) → 0, it follows from (14.16), the triangle inequality and the weak

convergence ‖Ck′‖ → ‖H‖ on R × B1/2 that spt ‖H‖ ∩ (R × (B1/2 \ {|x2| <
1/16})) ⊆ spt ‖W‖∩(R×(B1/2 \{|x2| < 1/16})). Hence spt ‖W‖∩(R×B1) =

spt ‖H‖∩(R×B1), from which it also follows that Θ(‖W‖, 0) = q. Thus (14.17)

contradicts case Θ(‖C0‖, 0) = q of the induction hypothesis (H2), proving the

lemma. �

Corollary 14.2. Let q be an integer ≥ 2, and suppose that the induction

hypotheses (H1), (H2) hold. Then the class Bq (defined in Section 5) satisfies

property (B7) of the definition of proper blow-up classes (given in Section 4).

Proof. If not, in view of Lemma 9.1, there exists an element v? ∈ Bq such

that, for j = 1, 2, . . . , q, vj?(x
2, y) = Lj1(x2, y) if x2 < 0 and vj?(x

2, y) = Lj2(x2, y)

if x2≥0 where Lj1, L
j
2 : Rn→R are linear functions with Lj1(0, y)=Lj2(0, y)=0

and

(14.18) Lj11 6= Lj1+1
1 and Lj22 6= Lj2+1

2 for some j1, j2 ∈ {1, 2, . . . , q − 1}.

Since the average (v?)a = q−1∑q
j=1 v

j
? is linear (by property (B3)) and

‖v? − (v?)a‖−1
L2(B1)(v? − (v?)a) ∈ Bq (by property (B5 I)), where v? − (v?)a =

(v1
? − (v?)a, . . . , v

q
? − (v?)a), we may assume without loss of generality that

(v?)a = 0 and that

(14.19) ‖v?‖L2(B1) = 1.

By the definition of Bq, for each k = 1, 2, 3, . . . , there exists a stationary

integral varifold Vk of Bn+1
2 (0) with

(14.20)

(ωn2n)−1 ‖Vk‖(Bn+1
2 (0)) < q + 1/2, q − 1/2 ≤ ω−1

n ‖Vk‖(R×B1) < q + 1/2

and

(14.21) Ê2
k ≡

∫
R×B1

|x1|2d‖Vk‖(X)→ 0

as k → ∞ such that the following hold: If σ ∈ (0, 1), k is sufficiently large

depending on σ, Σk ⊂ Bσ is the measurable set corresponding to Σ and vjk :

Bσ → R, j = 1, 2, . . . , q, are the Lipschitz functions corresponding to uj in

Theorem 5.1 applied with Vk in place of V , then by Theorem 5.1, v1
k ≤ v2

k ≤
· · · ≤ vqk,

(14.22) Lip vjk ≤ 1/2 for each j ∈ {1, 2, . . . , q},
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(14.23) ‖Vk‖(R× Σk) +Hn(Σk) ≤ CσÊ2
k ,

where Cσ ∈ (0,∞) is a constant depending only on n, q and σ,

(14.24) spt ‖Vk‖ ∩ (R× (Bσ \ Σk)) =
⋃q
j=1graph vjk ∩ (R× (Bσ \ Σk)),

and

(14.25) Ê−1
k vjk → vj?,

where the convergence is in L2(Bσ) and weakly in W 1,2(Bσ). Note that by

(14.20), after passing to a subsequence without changing notation, there exists

a stationary integral varifold V of Bn+1
2 (0) such that Vk → V, and by (14.21),

spt ‖V (R×B1)‖ ⊂ {0}×B1, so by (14.20) and the Constancy Theorem for

stationary integral varifolds, V (R×B1) = q|{0} ×B1|. Hence by replacing

Vk with η0,1/2 # Vk and noting that by homogeneity of v?, the coarse blow-up

of {η0,1/2 # Vk} is still v?, we may assume that for all sufficiently large k,

(14.26) q − 1/4 ≤ (ωn2n)−1‖Vk‖(Bn+1
2 (0)) < q + 1/4.

By using the argument justifying the assertion (9.7), we may pass to a sub-

sequence without changing notation and find points Zk ∈ spt ‖Vk‖ ∩ Bn+1
1 (0)

with Θ(‖Vk‖, Zk) ≥ q and Zk → 0. Replacing Vk with ηZk,1−|Zk|# Vk, we may

thus assume that

(14.27) Θ(‖Vk‖, 0) ≥ q

for each k = 1, 2, 3, . . . , and in view of (14.26), the monotonicity formula

implies that the new Vk satisfy (14.20). We now argue that for each sufficiently

large k, we must have that

(14.28)∫
R×B1

|x1|2 d‖Vk‖(X) <
3

2
inf

{P={x1=λx2}}

∫
R×B1

dist2(X,P ) d‖Vk‖(X).

If this is false, then there is a subsequence {k′} of {k} and corresponding to

each k′, there is a number λk′ ∈ R such that, with Pk′ = {x1 = λk′x
2}, we

have ∫
R×B1

dist2(X,Pk′) d‖Vk′‖(X) ≤ 5

6
Ê2
k′

for all k′. In particular, for each σ ∈ (1/2, 1) and sufficiently large k′,

(14.29) (1 + λ2
k′)
−1

q∑
j=1

∫
Bσ\Σk′

(vjk′(x
2, y)− λk′x2)2 dx2dy ≤ 5

6
Ê2
k′ ,
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whence (1 + λ2
k′)
−1λ2

k′
∫
B1/2\Σk′

|x2|2 dx2dy ≤ 11
3 Ê

2
k′ . Thus, |λk′ | ≤ CÊk′ for all

sufficiently large k′, where C = C(n) ∈ (0,∞), and hence, passing to a further

subsequence without changing notation, Ê−1
k′ λk′ → ` for some ` ∈ R. It follows

from (14.29) and (14.23) that

q∑
j=1

∫
Bσ

(vjk′ − λk′x
2)2 dx2dy ≤ 5

6
(1 + λ2

k′)Ê
2
k′ + 2Cσ sup

Bσ

(|vk′ |2 + λ2
k′ |x2|2) Ê2

k′ .

First dividing this by Ê2
k′ and letting k′ → ∞, and then letting σ → 1, we

see that
∑q
j=1

∫
B1

(vj? − `x2)2 ≤ 5/6. Since vj?(x
2, y) = `jx

2 if x2 < 0 and

vj?(x
2, y) = mjx

2 if x2 > 0 for some `j ,mj ∈ R, this implies that
∫
B1
|v?|2 −

2`
∑q
j=1(`j +mj)

∫
B1∩{x2>0} |x2|2 + `2

∫
B1
|x2|2 ≤ 5/6, which is a contradiction

since (v?)a ≡ 0 (so that
∑q
j=1 `j =

∑q
j=1mj = 0) and

∫
B1
|v?|2 = 1. Thus

(14.28) must hold for all sufficiently large k.

For j = 1, 2, 3, . . . , q and k = 1, 2, 3, . . . , let hkj = ÊkL
j
1, gkj = ÊkL

j
2,

Hk
j = graphhkj , G

k
j = graph gkj and Ck =

∑q
j=1 |Hk

j |+ |Gkj |. By (14.22), (14.23)

and (14.24),

∫
R×Bσ

dist2(X, spt ‖Ck‖) d‖Vk‖(X)

(14.30)

≤ 2

∫
Bσ

|vk − Êkv?|2 + Cσ sup
X∈spt‖Vk‖∩(R×Bσ)

dist2 (X, spt ‖Ck‖)Ê2
k .

By (14.19) and homogeneity of v?,
∫
Bσ
|v?|2 = σn+2, so by (14.25), for each

θ ∈ (0, 1/8) and σ ∈ (0, 1),
∫
Bσ
|vk|2 ≥ (1 − θ)σn+2Ê2

k for sufficiently large k.

Since∫
R×Bσ

|x1|2 d‖Vk‖(X) =
q∑
j=1

∫
Bσ

√
1 + |Dvjk|2|v

j
k|

2

−
q∑
j=1

∫
Σk

√
1 + |Dvjk|2|v

j
k|

2 +

∫
R×Σk

|x1|2 d‖Vk‖(X)

≥
∫
Bσ

|vk|2 − 2Cσ

Ç
sup
Bσ

|vk|2
å
Ê2
k ,

it follows that

(14.31)∫
R×(B1\Bσ)

|x1|2 d‖Vk‖(X) ≤
Ç

1− (1− θ)σn+2 + 2Cσ

Ç
sup
Bσ

|vk|2
åå

Ê2
k

for all sufficiently large k. By the triangle inequality,
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R×(B1\Bσ)

dist2(X, spt ‖Ck‖) d‖Vk‖(X)(14.32)

≤ 2

∫
R×(B1\Bσ)

|x1|2 d‖Vk‖(X)

+ 3 dist2
H(spt ‖Ck‖ ∩ (R×B1), {0} ×B1)‖Vk‖(R× (B1 \Bσ))

≤ 2

∫
R×(B1\Bσ)

|x1|2 d‖Vk‖(X) + CHn(B1 \Bσ)Ê2
k

for all sufficiently large k, where C = C(n, q) ∈ (0,∞). Here we have used the

fact that Vk (R × B1) → q|{0} × B1|. Thus, if γ1 = γ1(n, q, α) ∈ (0, 1/2)

is the constant as in Lemma 14.1, then we may fix θ = θ(n, q, α) ∈ (0, 1/8)

sufficiently small and σ = σ(n, q, α) ∈ (0, 1) sufficiently close to 1 in order

to conclude from (14.25), (14.30), (14.31) and (14.32) that for all sufficiently

large k,

(14.33)

∫
R×B1

dist2(X, spt ‖Ck‖) d‖Vk‖(X) ≤ γ1

4
Ê2
k .

In view of (14.18), we have by the argument leading to (9.5) that for all

sufficiently large k, Σk ⊂ Bσ ∩ {|x2| < 1/64} and that

(14.34)

Vk ((R×Bσ)∩{x2 ≤ −1/64}) =
q∑
j=1

|graphujk| ((R×Bσ)∩{x2 ≤ −1/64})

and

(14.35)

Vk ((R×Bσ) ∩ {x2 ≥ 1/64}) =
q∑
j=1

|graphwjk| ((R×Bσ) ∩ {x2 ≥ 1/64}),

where u1
k ≤ u2

k ≤ . . . uqk and w1
k ≤ w2

k ≤ . . . wqk (thus, vk|Bσ∩{x2≤−1/64} ≡ uk

and vk|Bσ∩{x2≥1/64} ≡ wk), u
j
k, w

j
k are C2 functions on Bσ ∩ {x2 ≤ −1/64},

Bσ∩{x2 ≥ 1/64} respectively, solving the minimal surface equation there, and

satisfying, by elliptic theory,

(14.36) sup
Bκσ∩{x2≤−1/64}

|Dujk|
2 + sup

Bκσ∩{x2≥1/64}
|Dwjk|

2 ≤ C(κ, σ)Ê2
k

for each κ ∈ (0, 1), j = 1, 2, . . . , q where C(κ, σ) ∈ (0,∞) is a constant de-

pending only on n, κ and σ. We see from (14.34), (14.35), (14.36) and (14.25)

that

∫
R×(B1/2\{|x2|<1/64})

dist2(X, spt ‖Vk‖) d‖Ck‖(X)

(14.37)

≤ 2
q∑
j=1

(∫
B1/2∩{x2<−1/64}

|ÊkLj1 − u
j
k|

2+

∫
B1/2∩{x2>1/64}

|ÊkLj2−w
j
k|

2

)
≤ηkÊ2

k ,
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where ηk → 0. By (14.33) and (14.37),∫
R×(B1/2\{|x2|<1/64})

dist2(X, spt ‖Vk‖) d‖Ck‖(X)

+

∫
R×B1

dist2(X, spt ‖Ck‖) d‖Vk‖(X) ≤ γ1

2
Ê2
k

for sufficiently large k, which in view of (14.20), (14.21) and (14.27) contradicts

Lemma 14.1. �

Theorem 14.3. Let q be an integer ≥ 2, α ∈ (0, 1), and suppose that the

induction hypotheses (H1), (H2) hold. Let Bq be the class of functions defined

in Section 5. (Thus, each v ∈ Bq is a coarse blow-up, in the sense described

in Section 5, of a sequences of varifolds in Sα converging weakly, in R × B1,

to q|{0} × B1|.) If v = (v1, v2, . . . , vq) ∈ Bq , then vj is harmonic in B1 for

each j = 1, 2, . . . , q. Furthermore, if {Vk} ⊂ Sα is a sequence whose coarse

blow-up is v, and if for each of infinitely many values of k, there is a point

Zk ∈ spt ‖Vk‖ ∩ (B3/4 ×R) with Θ(‖Vk‖, Zk) ≥ q, then v1 = v2 = · · · = vq.

Proof. By the discussion of Section 8 and Corollary 14.2, Bq is a proper

blow-up class for a constant C = C(n, q) ∈ (0,∞). The present theorem follows

from Theorem 4.1 and the remark at the end of Section 8. �

15. The Sheeting Theorem

This section is devoted to the proof of the Sheeting Theorem (Theorem

3.3′) subject to the induction hypotheses (H1), (H2).

Lemma 15.1. Let q be an integer ≥ 2, α ∈ (0, 1) and θ ∈ (0, 1/4). Suppose

that the induction hypotheses (H1), (H2) hold. There exists a number β0 =

β0(n, q, α, θ) ∈ (0, 1/2) such that if V ∈ Sα, (ωn2n)−1‖V ‖(Bn+1
2 (0)) < q+ 1/2,

q−1/2 ≤ (ωn)−1‖V ‖(B1×R) < q+1/2, and
∫
R×B1

dist2(X,P ) d‖V ‖(X) < β0

for some affine hyperplane P of Rn+1 with dist2
H (P ∩(B1×R), B1×{0}) < β0,

then the following hold :

(a) Either V (B1/2 × R) =
∑q
j=1 |graphuj | where uj ∈ C2 (B1/2; R) for

j = 1, 2, . . . , q; u1 ≤ u2 ≤ · · · ≤ uq on B1/2; uj0 < uj0+1 on B1/2 for some

j0 ∈ {1, 2, . . . , q − 1} and, for each j ∈ {1, 2, . . . , q},

supB1/2
|uj − p|2 + |Duj −Dp|2 + |D2 uj |2 ≤ C

∫
R×B1

dist2(X,P ) d‖V ‖(X),

where C = C(n, q) ∈ (0,∞) and p : Rn → R is the affine function such

that graph p = P ; or, there exists an affine hyperplane P ′ with

dist2
H
(
P ′ ∩ (R×B1), P ∩ (R×B1)

)
≤ C1

∫
R×B1

dist2 (X,P ) d‖V ‖(X)
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and

θ−n−2
∫
R×Bθ

dist2(X,P ′) d‖V ‖(X) ≤ C2θ
2
∫
R×B1

dist2 (X,P ) d‖V ‖(X),

where C1 = C1(n, q) ∈ (0,∞) and C2 = C2(n, q) ∈ (0,∞).

(b) (ωn(2θ)n)−1 ‖V ‖(Bn+1
2θ (0)) < q + 1/2 and

q − 1/2 ≤ (ωnθ
n)−1‖V ‖(R×Bθ) < q + 1/2.

Proof. For each k = 1, 2, 3, . . . , let Vk ∈ Sα be such that

(15.1)

(ωn2n)−1‖Vk‖(Bn+1
2 (0))< q+1/2 and q−1/2≤(ωn)−1‖Vk‖(R×B1) < q+1/2,

and let Pk be an affine hyperplane of Rn+1 such that

distH(Pk ∩ (R×B1), {0} ×B1)→ 0(15.2)

and ∫
R×B1

dist2(X,Pk) d‖Vk‖(X)→ 0.(15.3)

The lemma will be established by proving that for each of infinitely many k,

the conclusions hold with Vk in place of V , Pk in place of P and with fixed

constants C = C(n, q), C1 = C1(n, q), C2 = C2(n, q) ∈ (0,∞).

By (15.2), (15.3) and the triangle inequality, Êk ≡
»∫

R×B1
|x1|2 d‖Vk‖(X)

→ 0. Hence, by (15.1) and the Constancy Theorem, Vk (R×B1)→ q|{0}×
B1| so that

q − 1/2 ≤ (ωnθ
n)−1 ‖Vk‖(R×Bθ) < q + 1/2

for sufficiently large k. Furthermore, by monotonicity of mass ratio,

(ωn(2θ)n)−1 ‖Vk‖(Bn+1
2θ (0)) ≤ (ωn2n)−1 ‖Vk‖(Bn+1

2 (0)) < q + 1/2.

Thus, conclusion (b) with Vk in place of V holds for sufficiently large k.

For each k = 1, 2, 3, . . . , there exists, by (15.2), a rigid motion Γk of Rn+1

with Γk → Identity such that Γk(Pk) = {0} × Rn. Let ‹Vk = η9/10 # Γk# Vk.

Then by (15.1), (ωn2n)−1 ‖‹Vk‖(Bn+1
2 (0)) < q + 1/2, and by (15.3),

(15.4)∫
R×B19/18

|x1|2 d‖‹Vk‖(X) ≤
Å

9

10

ã−n−2 ∫
R×B1

dist2 (X,Pk) d‖Vk‖(X)→ 0.

It follows again by the Constancy Theorem, for all sufficiently large k,

q − 1/2 ≤ (ωn)−1‖‹Vk‖(R×B1) < q + 1/2.

Let ṽ = (ṽ1, ṽ2, . . . , ṽq) ∈ Bq be the coarse blow-up of (a subsequence)

of ‹Vk by the coarse excess Ê
Ṽk
≡
√∫

R×B1
|x1|2 d‖‹Vk‖(X). Suppose first that
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the ṽj ’s are not all identical to one another. Then by Theorem 14.3, for all

sufficiently large k,

Z ∈ spt ‖‹Vk‖ ∩ (R×B3/4) =⇒ Θ(‖‹Vk‖, Z) < q.

Hence, by Remark 3 of Section 6, we may apply Theorem 3.5 followed by

elliptic theory to ‹Vk and conclude, after transforming by Γ−1
k ◦ η

−1
9/10, that

Vk (R×B1/2) =
q∑
j=1

|graphujk|

for all sufficiently large k, where ujk ∈ C2(B1/2; R), u1
k ≤ u2

k ≤ · · · ≤ uqk; u
j0
k <

uj0+1
k on B1/2 for some j0 ∈ {1, 2, . . . , q − 1} and, for each j ∈ {1, 2, . . . , q},

supB1/2
|ujk−pk|

2 + |Dujk−Dpk|2 + |D2 ujk|
2 ≤ C

∫
R×B1

dist2(X,Pk) d‖Vk‖(X),

where C = C(n, q) ∈ (0,∞) and pk : Rn → R is the affine function such that

graph pk = Pk.

On the other hand, if ṽ1 = ṽ2 = · · · = ṽq (= ṽ, say) on B1, then letting

p̃(x) = ṽ(0) +Dṽ(0) ·x and ‹Pk = graph Ê
Ṽk
p̃, it follows from Theorem 5.1 and

the standard estimates for harmonic functions that

distH(‹Pk ∩ (R×B1), {0} ×B1) ≤ CÊ
Ṽk

(15.5)

and

θ−n−2
∫
R×B2θ

dist2(X, ‹Pk) d‖‹Vk‖(X) ≤ Cθ2Ê2
Ṽk

(15.6)

for all sufficiently large k, where C=C(n, q) ∈ (0,∞). Setting P ′k=η−1
9/10Γ−1

k
‹Pk,

it follows readily from (15.5), (15.6) and (15.4) that

distH(P ′k ∩ (R×B1), Pk ∩ (R×B1)) ≤ C
∫
R×B1

dist2(X,Pk) d‖Vk‖(X)

and

θ−n−2
∫
R×Bθ

dist2(X,P ′k) d‖Vk‖(X) ≤ Cθ2
∫
R×B1

dist2(X,Pk) d‖Vk‖(X)

for all sufficiently large k, where C = C(n, q) ∈ (0,∞). Thus, conclusion (a)

with Vk, Pk, P
′
k in place of V , P , P ′ and with a fixed constant C=C(n, q) ∈

(0,∞) holds for infinitely many k. �

Theorem 15.2. Let q be an integer ≥ 2, α ∈ (0, 1), γ ∈ (0, 1), and

suppose that the induction hypotheses (H1), (H2) hold. There exists a num-

ber ε = ε(n, q, α, γ) ∈ (0, 1) such that the following is true: If V ∈ Sα,

(ωn2n)−1‖V ‖(Bn+1
2 (0)) < q + 1/2, q − 1/2 ≤ ω−1

n ‖V ‖(B1 × R) < q + 1/2

and Ê2
V ≡

∫
R×B1

|x1|2 d‖V ‖(X) < ε, then

V (Bγ/2 ×R) =
q∑
j=1

|graphuj |,
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where uj ∈ C1,λ(Bγ/2) for each j = 1, 2, . . . , q, u1 ≤ u2 ≤ · · · ≤ uq and

sup
Bγ/2

(|uj |+ |Duj |) + sup
Y1,Y2∈Bγ/2, Y1 6=Y2

|Duj(Y1)− uj(Y2)|
|Y1 − Y2|λ

≤ C
Ç∫

R×B1

|x1|2 d‖V ‖(X)

å1/2

.

Here C = C(n, q, α, γ) ∈ (0,∞) and λ = λ(n, q, α, γ) ∈ (0, 1). Furthermore, we

have in fact that uj ∈ C∞(Bγ/2) and uj solves the minimal surface equation

on Bγ/2 for each j = 1, 2, . . . , q.

Proof. Let γ̃ = (1 − γ)/4. Let C = C(n, q), C1 = C1(n, q) and C2 =

C2(n, q) be the constants as in the conclusion of Lemma 15.1. Choose θ =

θ(n, q) ∈ (0, 1/4) such that C2θ
2 < 1/4 and ε = ε(n, q, α, γ) ∈ (0, 1) such

that ε < (1 + C1)−1γ̃n+2β0/8, where β0 = β0(n, q, α, θ) is as in Lemma 15.1.

Additional restrictions on ε will be imposed during the course of the proof,

but we will choose ε depending only on n, q, α and γ. Suppose that Ê2
V ≡∫

R×B1
|x1|2 d‖V ‖(X) ≤ ε, and let

β = min
{

4−1 (1 + 2C1)−1 β0, 4−1γ̃nω−1
n (2q + 1)−1β0,

4−1 (2 + ωn(2q + 1)C1)−1
Å

2θ

3

ãn+2

ε0,

8−1ωn4−nθn
Ä
256θ−2 + (q + 1)C

ä−1
(2 + ωn(2q + 1)C1)−1

}
.

Here ε0 = ε0(n, q, 5/6), C = C(n, q, 5/6), where ε0 = ε0(n, q, ·) is as in Theo-

rem 5.1 and C = C(n, q, ·) is as in Theorem 5.1(a). Note that β depends only

on n, q, α and γ. Let P0 be any affine hyperplane such that

(15.7) dist2
H(P0 ∩ (R×B1), {0} ×B1) < β.

Fix any point Y ∈ Bγ(0), and let ‹V = ηY,γ̃# V. Note then that

Ê2
Ṽ , P0

≡
∫
R×B1

dist2(X,P0) d‖‹V ‖(X)

(15.8)

= γ̃−n−2
∫
R×B

γ̃
(Y )

dist2(X,Y + γ̃P0) d‖V ‖(X)

≤ 2γ̃−n−2
∫
R×B

γ̃
(Y )
|x1|2 d‖V ‖(X)

+ 2γ̃−n−2‖V ‖(R×Bγ̃(Y ))dist2
H(Y +γ̃P0 ∩ (R×Bγ̃(Y )), {0}×Bγ̃(Y ))

≤ 2γ̃−n−2Ê2
V + γ̃−nωn(2q + 1)dist2

H (P0 ∩ (R×B1), {0} ×B1)

≤ 2γ̃−n−2ε+ β0/4 < β0.
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Furthermore, assuming ε < ε0

Ä
n, q, 3+γ

4

ä
, where ε0 is as in Theorem 5.1 and

applying Theorem 5.1 with σ = (3 + γ)/4, we have that

∣∣∣(ωnγ̃n)−1 ‖V ‖(R×Bγ̃(Y ))− q
∣∣∣

(15.9)

=

∣∣∣∣∣∣(ωnγ̃n)−1
q∑
j=1

∫
B
γ̃
\Σ

(»
1 + |Duj |2 − 1

)
dx

− (ωnγ̃
n)−1

Ä
qHn(Bγ̃ ∩ Σ)− ‖V ‖(R× (Bγ̃ ∩ Σ))

ä∣∣∣∣∣∣
≤ (ωnγ̃

n)−1
q∑
j=1

∫
B
γ̃
\Σ

|Duj |2»
1 + |Duj |2

dx+ (ωnγ̃
n)−1 (q + 1)‹CÊ2

V

≤ (ωnγ̃
n)−1

∫
R×B

γ̃
(Y )
|∇V x1|2 d‖V ‖(X) + (ωnγ̃

n)−1 (q + 1)‹CÊ2
V

≤ 16γ̃−2 (ωnγ̃
n)−1

∫
R×B‹2γ(Y )

|x1|2 d‖V ‖(X) + (ωnγ̃
n)−1 (q + 1)‹CÊ2

V

≤ (ωnγ̃
n)−1 (16γ̃−2 + (q + 1)‹C)Ê2

V .

Here ‹C = C
Ä
n, q, 3+γ

4

ä
, where C = C(n, q, ·) is as in Theorem 5.1(a) and uj ,

Σ are as in Theorem 5.1; we have also used the fact that∫
R×B

γ̃
(Y )
|∇V x1|2 d‖V ‖(X) ≤ 16γ̃−2

∫
R×B

γ̃
(Y )
|x1|2 d‖V ‖(X),

which follows from (5.1). Thus if ε = ε(n, q, α, γ) ∈ (0, 1) is sufficiently small,

this says that

(15.10) q − 1/2 ≤ (ωn)−1‖‹V ‖(R×B1) < q + 1/2.

Since

(ωn2n)−1‖‹V ‖(Bn+1
2 (0)) = (ωn(2γ̃)n)−1 ‖V ‖(Bn+1

2γ̃
(Y ))

≤ (ωn(2γ̃)n)−1 ‖V ‖(R×B2γ̃(Y )),

the same estimate with 2γ̃ in place of γ̃ shows that

(15.11) (ωn2n)−1‖‹V ‖(Bn+1
2 (0)) < q + 1/2

provided ε = ε(n, q, α, γ) ∈ (0, 1) is sufficiently small.

We claim that either (I) or (II) below must hold:

(I) For each k ∈ {0, 1, 2, . . . },Ä
ωn(2θk)n

ä−1 ‖‹V ‖(Bn+1
2θk

(0)) < q + 1/2,(15.12)

q − 1/2 ≤ (ωn(θk)n)−1‖‹V ‖(R×Bθk) < q + 1/2,
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there exists an affine hyperplane Pk such that, if k ≥ 1,

(15.13) dist2
H (Pk ∩ (R×B1), Pk−1 ∩ (R×B1)) ≤ C14−kÊ2

Ṽ ,P0

and

(θk)−n−2
∫
R×B

θk

dist2(X,Pk) d‖‹V ‖(X)

(15.14)

≤ 4−1(θk−1)−n−2
∫
R×B

θk−1

dist2(X,Pk−1) d‖‹V ‖(X) ≤ · · · ≤ 4−kÊ2
Ṽ ,P0

.

(II) There exists ρ0 ∈ (0, 1) such that ‹V (R × Bρ0) =
∑q
j=1 |graphuj | for

functions uj ∈ C2(Bρ0 ; R), j = 1, 2, . . . , q, satisfying u1 ≤ u2 ≤ · · · ≤ uq
on Bρ0 ; uj0 < uj0+1 on Bρ0 for some j0 ∈ {1, 2, . . . , q − 1} and

supBρ0/2
ρ−2

0 |uj |
2 + |Duj |2 + ρ2

0|D2 uj |2(15.15)

≤ (C + 2C1)Ê2
Ṽ ,P0

+ 4dist2
H(P0 ∩ (R×B1), {0} ×B1)

for each j ∈ {1, 2, . . . , q}; moreover,

ρ−n
∫
R×Bρ

|∇V x1|2 d‖V ‖(X)(15.16)

≤ C ′
(
Ê2
Ṽ ,P0

+ dist2
H(P0 ∩ (R×B1), {0} ×B1)

)
for ρ0 < ρ < θ,

where C ′ = C ′(n, q) ∈ (0,∞).

To see this, let k0 be the smallest integer (≥ 1) such that alternative (I)

fails to hold. If k0 = 1, in view of (15.8) and (15.10), it follows directly

from Lemma 15.1 applied with ‹V in place of V and with P = P0 that (II)

must hold with ρ0 = 1/2. Suppose k0 ≥ 2. Then by assumption, the in-

equalities (15.12), (15.13) and (15.14) hold for each k = 1, 2, . . . , k0 − 1 and

consequently, by (15.7), (15.8), (15.13) and the triangle inequality,

dist2
H(Pk0−1 ∩ (R×B1), {0} ×B1)(15.17)

≤
(√

C1ÊṼ ,P0
+ distH(P0 ∩ (R×B1), {0} ×B1)

)2

≤ 4C1γ̃
−n−2ε+ β0/2 < β0.

Applying Lemma 15.1 with ηθk0−1 #
‹V in place of V and Pk0−1 in place of P , we

see by the defining property of k0 that ‹V (R×Bθk0−1/2) =
∑q
j=1 |graphuj |,

where uj ∈ C2 (Bθk0−1/2; R) for j = 1, 2, . . . , q; u1 ≤ u2 ≤ · · · ≤ uq on Bθk0−1/2;

uj < uj+1 on Bθk0−1/2 for some j ∈ {1, 2, . . . , q − 1} and
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supB
θk0−1/2

(θk0−1)−2|uj − p|2 + |Duj −Dp|2 + (θk0−1)2|D2 uj |2
(15.18)

≤ C(θk0−1)−n−2
∫
R×B

θk0−1

dist2(X,Pk0−1) d‖‹V ‖(X) ≤ C4−(k0−1)Ê2
Ṽ ,P0

for each j ∈ {1, 2, . . . , q}. Here p : Rn → R is the affine function such that

graph p = Pk0−1. In view of (15.8) and (15.17), this evidently implies alterna-

tive (II) with ρ0 = θk0−1. Thus either (I) or (II) holds as claimed.

Suppose that (I) holds for some P0 satisfying (15.7). It is standard then

that there exists a hyperplane ‹P with

(15.19) distH(‹P ∩ (R×B1), P0 ∩ (R×B1)) ≤ C1ÊṼ ,P0

such that

(15.20) ρ−n−2
∫
R×Bρ

dist2(X, ‹P ) d‖‹V ‖(X) ≤ C3ρ
2µÊ2

Ṽ ,P0

for each ρ ∈ (0, 1), where C3 = C3(n, q) ∈ (0,∞) and µ = µ(n, q) ∈ (0, 1). Note

that ‹P does not depend on P0, nor do the constants C3 and µ. Moreover, in

this case, we claim that we have for each ρ ∈ (0, 1/4) that

(ωn(2ρ)n)−1 ‖‹V ‖(Bn+1
2ρ (0)) < q + 1/2,(15.21)

q − 1/2 ≤ (ωnρ
n)−1‖‹V ‖(R×Bρ) < q + 1/2.

To see this, given ρ ∈ (0, 1/4), choose k such that θk+1 ≤ 4ρ < θk and note by

(15.12), (15.13), (15.14) and the triangle inequality thatÄ
θk
ä−n−2

∫
R×B

θk

|x1|2 d‖‹V ‖(X)

(15.22)

≤ 2(2 + ωn(2q + 1)C1)(γ̃−n−2Ê2
V + dist2(P0 ∩ (R×B1), {0} ×B1))

≤ 2(2 + ωn(2q + 1)C1)(γ̃−n−2ε+ β).

Thus provided ε = ε(n, q, α, γ) ∈ (0, 1) is sufficiently small, we may, in view of

(15.12), apply Theorem 5.1 with ηθk #
‹V in place of V , σ = 5/6 and estimate

exactly as in (15.9) (with ηθk #
‹V in place of V , Y = 0 and θ−kρ in place of γ̃)

to deduce that∣∣∣∣Äωn Äθ−kρänä−1
‖ηθk #

‹V ‖ ÄR×Bθ−kρ(Y )
ä
− q

∣∣∣∣
≤ 2
Ä
ωn
Ä
θ−kρ

änä−1 (
16
Ä
θ−kρ

ä−2
+ (q + 1)C

)
× (2 + ωn(2q + 1)C1)

Ä
γ̃−n−2ε+ β

ä
≤ 2ω−1

n 4nθ−n
Ä
256θ−2 + (q + 1)C

ä
(2 + ωn(2q + 1)C1)

Ä
γ̃−n−2ε+ β

ä
.



964 NESHAN WICKRAMASEKERA

(Recall that C = C(n, q, 5/6), where C = C(n, q, ·) is as in Theorem 5.1(a).)

From this, (15.11) and the monotonicity formula, we deduce that (15.21) holds

provided ε = ε(n, q, α, γ) ∈ (0, 1) is sufficiently small. It then follows, if alter-

native (I) holds for some P0 satisfying (15.7), that spt ‖‹V ‖∩π−1(0) consists of

a single point (= ‹P ∩ π−1(0)); to see this, first note that spt ‖‹V ‖ ∩ π−1(0) 6= ∅
by the second inequality in (15.21). Let Z ∈ spt ‖‹V ‖ ∩ π−1(0) and CZ be a

tangent cone to ‹V at Z. Thus ηZ,σj #
‹V → CZ 6= 0 for some sequence of num-

bers σj → 0+, and by (15.20), distH(spt ‖ηZ,σj #
‹V ‖∩ (R×B1/2), σ−1

j (‹P −Z)∩
(R×B1/2))→ 0, which can only be true if Z ∈ ‹P . But by (15.19), ‹P ∩ π−1(0)

consists of a single point.

Since alternative (II) implies that spt ‖‹V ‖∩π−1(0) has at least two distinct

points, we see that if alternative (I) holds for some P0 satisfying (15.7), then

(I) must hold for all P0 satisfying (15.7). Taking P0 = Rn × {0}, we deduce

from (15.19) and (15.20) that

(15.23) distH(‹P ∩ (R×B1), {0} ×B1)) ≤ C1γ̃
−n−2Ê2

V ≤ C1γ̃
−n−2ε

and

(15.24) ρ−n−2
∫
R×Bρ

dist2(X, ‹P ) d‖‹V ‖(X) ≤ C3γ̃
−n−2Ê2

V ≤ C3γ̃
−n−2ε

for ρ ∈ (0, 1). So if we choose ε = ε(n, q, α, γ) such that C1γ̃
−n−2ε < β, then

we may, in particular, take P0 = ‹P in (15.20).

Thus we have so far established the following: Given q, α, γ as in the

theorem and that the induction hypotheses (H1), (H2) hold, there exists ε =

ε(n, q, α, γ) ∈ (0, 1) such that if V ∈ Sα satisfies the hypotheses of the theorem,

Y ∈ Bγ , ‹V = ηY,γ̃# V where γ̃ = (1 − γ)/4, then either alternative (I) above

holds for all affine hyperplanes P0 satisfying (15.7) or alternative (II) above

holds for all such P0. Furthermore, if alternative (I) holds, then the bounds

(15.21) are satisfied for each ρ ∈ (0, 1/4), the estimates (15.23), (15.24) are

satisfied and

(15.25)

ρ−n−2
∫
R×Bρ

dist2(X, ‹P ) d‖‹V ‖(X) ≤ C3ρ
2µ
∫
R×B1

dist2(X, ‹P ) d‖‹V ‖(X)

for ρ ∈ (0, 1), where ‹P is a (uniquely determined) affine hyperplane, C3 =

C3(n, q) ∈ (0,∞) and µ = µ(n, q) ∈ (0, 1).

Now suppose the hypotheses of the theorem are satisfied with a number

ε′ = ε′(n, q, α, γ) ∈ (0, ε) in place of ε and that alternative (I) (with Y ∈ Bγ ,‹V = ηY,γ̃# V as above) still holds. Then for any ρ ∈ (0, 1/4), we have by

(15.23), (15.24), (15.21) and the triangle inequality that

ρ−n−2
∫
R×Bρ

|x1|2 d‖‹V ‖(X) ≤ (2C3 + ωn(2q + 1)C1)γ̃−n−2Ê2
V < 2(C3 + C1)ε′.
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Thus if we choose ε′ = ε′(n, q, α, γ) sufficiently small, we may, in view of this

and (15.21), repeat the argument leading to (15.25) with ηρ#
‹V (for which

alternative (I) must hold) in place of ‹V . By applying (15.25) with ηρ#
‹V in

place of ‹V and ρ−1σ in place of ρ, we deduce that if alternative (I) holds

for some P0 satisfying (15.7), then there exists a unique affine hyperplane ‹P
satisfying (15.23) and

σ−n−2
∫
R×Bσ

dist2(X, ‹P ) d‖‹V ‖(X)(15.26)

≤ C3

Å
σ

ρ

ã2µ

ρ−n−2
∫
R×Bρ

dist2(X, ‹P ) d‖‹V ‖(X)

for each 0 < σ < ρ < 1/4. On the other hand, if (I) fails for some P0 satisfying

(15.7), then it fails with P0 = {0} ×Rn, in which case (by (II)) there exists

ρ0 ∈ (0, 1) such that ‹V (R × Bρ0) =
∑q
j=1 |graphuj | for functions uj ∈

C2(Bρ0 ; R), j = 1, 2, . . . , q satisfying u1 ≤ u2 ≤ · · · ≤ uq on Bρ0 ; uj < uj+1 on

Bρ0 for some j ∈ {1, 2, . . . , q − 1} and

supBρ0/2
ρ−2

0 |uj |
2 + |Duj |2 + ρ2

0|D2 uj | ≤ (C + 2C1)γ̃−n−2Ê2
V

for each j ∈ {1, 2, . . . , q}.
Thus we have shown that if the hypotheses of the theorem are satisfied

with sufficiently small ε′ = ε′(n, q, γ) ∈ (0, 1) in place of ε, then for each point

Y ∈ Bγ , precisely one of the following alternatives (IY ) and (IIY ) must hold:

(IY ) there exists an affine hyperplane PY with

(15.27) dist2
H(PY ∩ (R×B1(Y )), {0} ×B1(Y )) ≤ C1γ̃

−n−2Ê2
V

such that

σ−n−2
∫
R×Bσ(Y )

dist2(X,PY ) d‖V ‖(X)(15.28)

≤ C3

Å
σ

ρ

ã2µ

ρ−n−2
∫
R×Bρ(Y )

dist2(X,PY ) d‖V ‖(X)

for each 0 < σ < ρ < γ̃/4, where C3 = C3(n, q) ∈ (0,∞) and µ =

µ(n, q) ∈ (0, 1); or

(IIY ) there exists ρY ∈ (0, 1/2] such that V (R×BρY (Y )) =
∑q
j=1 |graphuYj |

for functions uYj ∈ C2(BρY (Y ); R), j = 1, 2, . . . , q, satisfying uY1 ≤ uY2 ≤
· · · ≤ uYq on BρY (Y ); uYj0 < uYj0+1 on BρY (Y ) for some j0 ∈ {1, 2, . . . , q−1}
and

(15.29) supBρY (Y ) ρ
−2
Y |u

Y
j |2 + |DuYj |2 + ρ2

Y |D2 uYj |2 ≤ (C + 2C1)γ̃−n−2Ê2
V

for each j ∈ {1, 2, . . . , q}, where C = C(n, q) ∈ (0,∞).
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Let Ω = {Y ∈ Bγ : (IY ) fails}. Since uYj < uYj+1 on BρY (Y ) for some

j whenever (IIY ) holds, it follows that Ω is an open set. Hence, since for

every Y ∈ Ω, each of the functions uYj as in (IIY ) solves the minimal surface

equation on BρY (Y ), by unique continuation of solutions to the minimal surface

equation, we see that

(15.30) V (R× Ω) =
q∑
j=1

|graphuj |

for functions uj ∈ C∞(Ω; R), solving the minimal surface equation on Ω and

satisfying u1 ≤ u2 ≤ · · · ≤ uq on Ω; uj < uj+1 for some j ∈ {1, 2, . . . , q − 1} in

each connected component of Ω (by the maximum principle) and

(15.31) supΩ|uj |2 + |Duj |2 ≤ (C + 2C1)γ̃−n−2Ê2
V ≤ (C + 2C1)γ̃−n−2ε′

for each j ∈ {1, 2, . . . , q}. This implies that for each affine function p : Rn → R

with supB1
|p|2 ≤ C1γ̃

−n−2ε′ and each j = 1, 2, . . . , q, the function wj = uj−p ∈
C∞(Ω) solves on Ω a uniformly elliptic equation of the type a`kD`Dκwj +

b`D`wj = 0 with smooth coefficients a`k, b` satisfying supΩ |a`k| + |b`| ≤ κ,

κ = κ(n, q, γ) ∈ (0,∞). By using the standard second derivative estimates

for solutions to such equations, we conclude that for each Y ∈ Ω, each j =

1, 2, . . . , q and each affine function pj : Rn → R with supB1
|pj |2 ≤ C1γ̃

−n−2ε′,

(15.32) σ−n−2
∫
Bσ(Y )

|uj − pYj |2 ≤ C4

Å
σ

ρ

ã2

ρ−n−2
∫
Bρ(Y )

|uj − pj |2

for 0 < σ ≤ ρ/2 < 1
2dist(Y,Bγ \ Ω), where C4 = C4(n, q, γ) ∈ (0,∞) and

pYj (X) = uj(Y )+Duj(Y )·(X−Y ). Since for each Y ∈ Bγ\Ω, spt ‖V ‖∩π−1(Y )

consists of a single point (zY , Y ) (= PY ∩ π−1(Y )), for each j = 1, 2, . . . , q, we

may extend uj to all of Bγ by setting uj(Y ) = zY for Y ∈ Bγ \ Ω. Then by

(15.30),

(15.33) spt ‖V ‖ ∩ (R×Bγ) =
⋃q
j=1graphuj .

Now let ‹Σ1, ‹Σ2, ‹Σ3, Σ′ be the sets as in Theorem 5.1 taken with σ = γ. We

claim that these sets are all empty if ε′ = ε′(n, q, α, γ) is sufficiently small.

Indeed, it is clear from (15.30), (15.31) and the definitions of ‹Σj , Σ′ that‹Σj ∩ (R × Ω) = ∅ for j = 1, 2, 3 and that Σ′ ∩ Ω = ∅. For each Y ∈Bγ \ Ω,

by applying (5.1) with ΓY # V in place of V where ΓY is a rigid motion of

Rn+1 that takes (zY , Y ) ∈ PY to the origin and PY to {0} × Rn, and using

the estimate (15.28), we see that Y 6∈ π‹Σ1 provided ε′ = ε′(n, q, α, γ) is suf-

ficiently small. Since (15.28) implies that for each Y ∈ Bγ \ Ω, the varifold

V has a unique tangent cone at (zY , Y ) with support equal to PY − (zY , Y ),

it follows from the constancy theorem that Θ(‖V ‖, (zY , Y )) is a positive inte-

ger and furthermore, from the fact that varifold convergence implies Hausdorff

convergence of supports, that Tan(spt ‖V ‖, Y ) = PY − (zY , Y ). Consequently,
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we see that Y 6∈ π‹Σ2 and by (15.27), we see that Y 6∈ π‹Σ3. Finally, we argue

that Θ(‖V ‖, (zY , Y )) ≥ q for each Y ∈ Bγ \ Ω, from which it follows that

Σ′ ∩ (Bγ \ Ω) = ∅. If Θ(‖V ‖, (zY0 , Y0)) < q for some Y0 ∈ Bγ \ Ω, there is,

by upper semi-continuity of density, some σ0 > 0 such that Θ(‖V ‖, X) < q

for each X ∈ spt ‖V ‖ ∩ (R× Bσ0(Y0)). Hence, by Remark 3 of Section 6, the

estimate (15.28) taken with σ = σ0, ρ = γ̃/8 and the estimate (15.21) taken

with ρ = γ̃−1σ0, we may, provided ε′ = ε′(n, q, α, γ) is sufficiently small, apply

Theorem 3.5 to conclude that

V (R×Bσ0/2) =
q∑
j=1

|graphwj |

for smooth functions w1 ≤ w2 ≤ · · · ≤ wq on Bσ0/2(Y0) solving the minimal

surface equation. Since π−1(Y0) ∩ spt ‖V ‖ consists of a single point, by the

maximum principle we must have that w1 = w2 = · · · = wq on Bσ0/2(Y0),

contrary to the assumption that Θ(‖V ‖, (zY0 , Y0)) < q. This concludes the

proof of the claim that the sets ‹Σj ,Σ
′ are all empty. Then by Theorem 5.1 and

(15.33), for each j = 1, 2, . . . , q, the function uj : Bγ → R is Lipschitz with

Lipschitz constant ≤ 1/2 so that by (15.28),(15.31) and the area formula, it

follows that

(15.34) σ−n−2
∫
Bσ(Y )

|uj − pY |2 = 2C3

Å
σ

ρ

ã2α

ρ−n−2
∫
Bρ(Y )

|uj − pY |2

for each Y ∈ Bγ \Ω and each σ, ρ with 0 < σ < ρ < γ̃/4, where pY : Rn → R

is the affine function such that graph pY = PY .

In view of (15.32) and (15.34), we conclude from Lemma 4.3 that uj ∈
C1,λ(Bγ/2) with

sup
Bγ/2

|uj |2 + |Duj |2 + sup
Y1,Y2∈Bγ/2, Y1 6=Y2

|Duj(Y1)−Duj(Y2)|2

|Y1 − Y2|2λ
≤ C5Ê

2
V

for each j = 1, 2, . . . , q, where C5 = C5(n, q, γ) ∈ (0,∞) and λ = λ(n, q, γ) ∈
(0, 1).

To show that for each j = 1, 2, . . . , q, the function uj ∈ C∞(Bγ/2) and

solves the minimal surface equation on Bγ/2, we argue as follows: We know that

on the open set Ω ⊆ Bγ , each uj ∈ C2 and solves the minimal surface equation

(and hence is smooth), and on Bγ \Ω, the functions uj all agree, so if Bγ/2 ⊆ Ω

or Bγ/2 ∩ Ω = ∅, there is nothing further to prove. Else, for any connected

component Ω′ of Ω such that Bγ/2 ∩ Ω′ 6= ∅, we must have that Bγ/2 \ Ω′ 6= ∅
whence ∂ Ω′ ∩Bγ/2 6= ∅. Fix any such Ω′, and let B ⊂ Ω′ be an open ball such

that B ∩ ∂ Ω′ ∩ Bγ/2 6= ∅. (To find such B, pick any point p ∈ Ω′ closer to

∂ Ω′ than to ∂ Bγ/2 and let B = BR(p), where R = sup {r : Br(p) ⊂ Ω′}.) Let

x0 ∈ ∂ B ∩ ∂ Ω′ ∩Bγ/2. Pick any j ∈ {1, 2, . . . , q − 1}, and let wj = uj+1 − uj .
Then wj solves in B a uniformly elliptic equation with smooth coefficients.
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Since wj ∈ C1(Bγ/2), wj ≥ 0 and wj(x0) = 0, it follows that Dwj(x0) = 0,

and hence by the Hopf boundary point lemma, wj ≡ 0 in B. This implies by

unique continuation of solutions to the minimal surface equation that wj ≡ 0

in Ω′ whence all of the uj ’s agree on Ω′, which is impossible by the definition

of Ω (see the line preceding (15.31)). Thus we must have either Bγ/2 ⊆ Ω or

Bγ/2 ∩ Ω = ∅, and the proof of the theorem is complete. �

16. The Minimum Distance Theorem

Let q be an integer ≥ 2, and let C0 be a stationary integral hypercone in

Rn+1 such that spt ‖C0‖ consists of three or more distinct half-hyperplanes of

Rn+1 meeting along a common (n− 1)-dimensional subspace LC0 of Rn+1. In

this section we will use the multiplicity q case of the Sheeting Theorem (i.e.,

Theorem 15.2) to establish, subject to the induction hypotheses (H1), (H2),

the validity of Theorem 3.4 whenever

(16.1) Θ(‖C0‖, 0) ∈ {q + 1/2, q + 1}.

Our argument will also establish Theorem 3.4 in case Θ(‖C0‖, 0) ∈ {3/2, 2};
see the remark at the end of this section.

Suppose that C0 satisfies (16.1), and without loss of generality assume

that LC0 = {0} × Rn−1. Thus, spt ‖C0‖ = spt ‖∆0‖ × Rn−1, where ∆0 is a

1-dimensional stationary cone in R2, whence ∆0 =
∑m0
j=1 q

(0)
j |R

(0)
j | and

(16.2) C0 =
m0∑
j=1

q
(0)
j |H

(0)
j |,

where m0 is an integer ≥ 3, q
(0)
j is a positive integer for each j = 1, 2, . . . ,m0,

R
(0)
j = {tw(0)

j : t > 0} for some unit vector w
(0)
j ∈ S1 ⊂ R2 with w

(0)
j 6= w

(0)
k

for j 6= k, and H
(0)
j = R

(0)
j × Rn−1. Stationarity of C0 is equivalent to the

requirement

(16.3)
m0∑
j=1

q
(0)
j w

(0)
j = 0.

Since, by (16.1),

(16.4)
m0∑
j=1

q
(0)
j ∈ {2q + 1, 2q + 2},

we see readily from (16.3) that

(16.5) q
(0)
j ≤ q for each j = 1, 2, . . . ,m0.

The theorem we wish to prove is the following:
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Theorem 16.1. Let q be an integer ≥ 2, α ∈ (0, 1), and suppose that

the induction hypotheses (H1), (H2) hold. Let C0 be the stationary cone as in

(16.2), where m0 ≥ 3 and H
(0)
j 6= H

(0)
k for j 6= k, and suppose that C0 satisfies

(16.1). For each γ ∈ (0, 1/2), there exists a number ε0 = ε0(n, q, α, γ,C0) ∈
(0, 1) such that if V ∈ Sα, Θ(‖V ‖, 0)≥Θ(‖C0‖, 0) and (ωn2n)−1‖V ‖(Bn+1

2 (0))

< Θ(‖C0‖, 0) + γ, then

distH(spt ‖V ‖ ∩Bn+1
1 (0), spt ‖C0‖ ∩Bn+1

1 (0)) ≥ ε0.

Notation. Let C0 be as in (16.2), with the associated unit vectors w
(0)
j ∈R2,

j = 1, 2, . . . ,m0, as described above. We shall use the following notation in

connection with C0:

σ0 = max {w(0)
j ·w

(0)
k : j, k = 1, 2, . . . ,m0, j 6= k}.

N(H
(0)
j ) is the conical neighborhood of H

(0)
j defined by

N(H
(0)
j ) =

{
(x, y) ∈ R2 ×Rn−1 : x ·w(0)

j >

 
1 + σ0

2
|x|
}
.

Given C0 as above, K denotes the family of hypercones C of Rn+1 of the

form

(16.6) C =
m0∑
j=1

q
(0)
j∑
`=1

|Hj, `|,

where Hj, ` are half-hyperplanes of Rn+1 meeting along {0}×Rn−1 with Hj, ` ∈
N(H

(0)
j ) for each j∈{1, 2, . . . ,m0}, `∈{1, 2, . . . , q(0)

j }, andHj,1,Hj,2, . . . ,Hj, q
(0)
j

not necessarily distinct for each j ∈ {1, 2, . . . ,m0}. Note that unless otherwise

specified, we do not assume a cone C ∈ K is stationary in Rn+1.

For p ∈ {m0,m0 + 1, . . . , 2q}, K(p) denotes the set of cones C ∈ K as

in (16.6) such that the number of distinct elements in the set {Hj, ` : j =

1, 2, . . . ,m0, ` = 1, 2, . . . , q
(0)
j } is p. Thus

K =
⋃2Θ(‖C0‖,0)
p=m0

K(p).

Also, for X ∈ Rn+1, let r(X) = dist(X, {0} ×Rn−1).

For the rest of this section, we shall fix C0 as above, with fixed labelling of

the elements of the set {H(0)
j : j = 1, . . . ,m0} of constituent half-hyperplanes

of spt ‖C0‖ and with q
(0)
j , 1 ≤ j ≤ m0, denoting the multiplicity on H

(0)
j .

For α ∈ (0, 1), γ ∈ (0, 1/2) and appropriate ε ∈ (0, 1/2), consider the

following:

Hypotheses 16.2.

(1) V ∈ Sα, 0 ∈ spt ‖V ‖, Θ(‖V ‖, 0) ≥ Θ(‖C0‖, 0), (ωn2n)−1‖V ‖(Bn+1
2 (0))

< Θ(‖C0‖, 0) + γ.
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(2) C =
∑m0
j=1

∑q
(0)
j

`=1 |Hj, `| ∈ K, where Hj, ` are half-hyperplanes of Rn+1 meet-

ing along {0}×Rn−1 with Hj, ` ∈ N(H
(0)
j ) for each j ∈ {1, 2, . . . ,m0} and

` ∈ {1, 2, . . . , q(0)
j }.

(3) distH(spt ‖C‖ ∩Bn+1
1 (0), spt ‖C0‖ ∩Bn+1

1 (0)) < ε.

(4)

∫
Bn+1

1 (0)
dist2(X, spt ‖C‖) d‖V ‖(X) < ε.

(5) For each j = 1, 2, . . . ,m0,

‖V ‖((Bn+1
1/2 (0) \ {r(X) < 1/8}) ∩N(H

(0)
j ))

≥
Å
q

(0)
j −

1

4

ã
Hn((Bn+1

1/2 (0) \ {r(X) < 1/8}) ∩H(0)
j ).

Fix a number s = s(n, q) ∈ (0, 1/16) such that

(16.7)

Hn
(
Bn

1
2
−s(0) \ {r(X) < 1/8 + s}

)
≥
Å

1− 1

4q

ã
Hn
Ä
Bn

1/2(0) \ {r(X) < 1/8}
ä

and note that by (16.5),

q
(0)
j H

n((Bn+1
1
2
−s(0) \ {r(X) < 1/8 + s}) ∩H(0)

j )(16.8)

≥
Å
q

(0)
j −

1

4

ã
Hn((Bn+1

1/2 (0) \ {r(X) < 1/8}) ∩H(0)
j )

for each j = 1, 2, . . . ,m0.

Remarks. (1) For each γ ∈ (0, 1/2) and τ ∈ (0, 1/8), there exists ε =

ε(n, q, τ, γ,C0) ∈ (0, 1) such that if the induction hypotheses (H1), (H2) and

Hypotheses 16.2 hold, then

(a) {Z ∈ spt ‖V ‖ ∩ Bn+1
15/16(0) : Θ(‖V ‖, Z) ≥ q + 1/2} ⊂ {X ∈ Rn+1 :

r(X) < τ/2}; and

(b) for each j ∈ {1, 2, . . . ,m0} and ` ∈ {1, 2, . . . , q(0)
j }, there exists a func-

tion

ũj, ` ∈ C2
Å(
Bn+1

15/16(0) ∩H(0)
j \ {r(X) < τ}

)
;
(
H

(0)
j

)⊥ã
with small C2 norm such that ũj, ` solves the minimal surface equation

on its domain and

V
(
Bn+1

15/16(0) \ {r(X) < τ}
)

=
m0∑
j=1

q
(0)
j∑
`=1

|graph ũj, `|.

To see this, argue by contradiction, using the Constancy Theorem, upper

semi-continuity of the density function Θ(·, ·), (16.5), induction hypothesis

(H1) and Theorem 15.2.
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(2) For each γ ∈ (0, 1/2) and τ ∈ (0, 1/8), there exists ε = ε(n, q, τ, γ,C0)

∈ (0, 1) such that if Hypotheses 16.2(1)–(4) hold and if (in place of Hypothe-

sis 16.2(5)) ∫
Bn+1

1/2
(0)\{r(X)<1/8}

dist2(X, spt ‖V ‖) d‖C‖(X) < ε,

then

{Z ∈ spt ‖V ‖ ∩Bn+1
15/16(0) : Θ(‖V ‖, Z) ≥ q + 1/2} ⊂ {X ∈ Rn+1 : r(X) < τ}.

Again, this is easily seen by arguing by contradiction using the Constancy

Theorem, upper semi-continuity of density and (16.5).

(3) Let q be an integer ≥ 2. If the induction hypotheses (H1), (H2) hold,

V ∈ Sα, Ω ⊆ Bn+1
2 (0) is open and Θ(‖V ‖, Z) < q+1/2 for each Z ∈ spt ‖V ‖∩Ω,

then Hn−7+γ(sing V Ω) = 0 for each γ > 0 if n ≥ 7, sing V Ω is discrete

if n = 7 and sing V Ω = ∅ if 2 ≤ n ≤ 6. This can be seen by reasoning

exactly as in Remarks (2) and (3) of Section 6, with the additional help of

Theorem 15.2.

(4) Let γ ∈ (0, 1/2), ρ ∈ (0, 1/2] and ε′ ∈ (0, 1/2). There exists a number

ε = ε(ρ, ε′, α, γ,C0) ∈ (0, 1/2) such that if Hypotheses 16.2 are satisfied, then

for each Z ∈ spt ‖V ‖ ∩ Bn+1
1/8 (0) with Θ(‖V ‖, Z) ≥ q + 1/2, Hypotheses 16.2

are also satisfied with ηZ,ρ# V in place of V and ε′ in place of ε.

Indeed, given any ρ ∈ (0, 1/2], if V , C are as in Hypotheses 16.2 with suffi-

ciently small ε = ε(ρ, α,C0) ∈ (0, 1/2), then it follows from Remark (1) applied

with suitably small τ = τ(ρ, γ) ∈ (0, 1/16) and the fact that ‖V ‖(Bn+1
1 (0) ∩

{X : r(X) < τ}) ≤ Cτ where C = C(n, q) ∈ (0,∞) that for any Z ∈
spt ‖V ‖ ∩ Bn+1

1/8 (0) with Θ(‖V ‖, Z) ≥ q + 1/2 , Hypothesis 16.2(1) is satis-

fied with ηZ,ρ# V in place of V . Also, since by the triangle inequality∫
Bn+1

1 (0)
dist2(X, spt ‖C‖)d‖ηZ,ρ# V ‖(X)

≤ 2ρ−n−2
∫
Bn+1
ρ (Z)

dist2(X, spt ‖C‖) d‖V ‖(X)

+ Cρ−2dist2(Z, {0} ×Rn−1),

where C = C(n, q, γ) ∈ (0,∞), it follows again by Remark (1) (taken with

τ = ρ
»

(2C)−1ε′) that if ε = ε(ρ, ε′, α, γ,C0) is sufficiently small, then Hy-

pothesis 16.2(4) is satisfied with ηZ,ρ# V in place of V and ε′ in place of ε.

Finally, applying Remark (1) once again with τ = ρs, where s = s(n, q) is as

in (16.7), we deduce using (16.8), the area formula and the inclusion

spt ‖V ‖ ∩
(
Bn+1
ρ−τ (0, η) \B2

ρ
8

+τ (0)×Rn−1
)

⊂ spt ‖V ‖ ∩
Ä
Bn+1
ρ (Z) \B2

τ (0)×Rn−1
ä
,
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where (0, η) is the orthogonal projection of Z onto {0} × Rn−1, that if ε =

ε(ρ, α, γ,C0) is sufficiently small, then Hypothesis 16.2(5) is satisfied with

ηZ,ρ# V in place of V.

With the notation as above, for V ∈ Sα, C ∈ K as in Hypotheses 16.2

and appropriate β ∈ (0, 1/2), we will also need to consider the following:

Hypothesis (†). Either (i) or (ii) below holds :

(i) C ∈ K(m0).

(ii) 2Θ(‖C0‖, 0) ≥ m0 + 1, C ∈ K(p) for some p ∈ {m0 + 1,m0 + 2, . . . ,

2Θ(‖C0‖, 0)} and∫
Bn+1

1 (0)
dist2(X, spt ‖C‖) d‖V ‖(X)

+

∫
Bn+1

1 (0)\{r(X)<1/16}
dist2(X, spt ‖V ‖) d‖C‖(X)

≤ β inf
C̃∈
⋃p−1
j=m0

K(j)

Ç∫
Bn+1

1 (0)
dist2(X, spt ‖‹C‖) d‖V ‖(X)

+

∫
Bn+1

1 (0)\{r(X)<1/16}
dist2(X, spt ‖V ‖) d‖‹C‖(X)

å
.

Remark. If Hypotheses 16.2 and Hypothesis (†) for some β ∈ (0, 1/2) are

satisfied, and if C′ ∈ K is such that spt ‖C′‖ = spt ‖C‖, then Hypotheses 16.2

and Hypothesis (†), taken with C′ in place of C and 2qβ in place of β, will be

satisfied.

Case Θ(‖C0‖, 0) = q + 1/2. From now on until we state otherwise, we

shall assume that Θ(‖C0‖, 0) = q + 1/2.

The basic L2-estimates of [Sim93, Th. 3.1] hold under our assumptions,

namely, the induction hypotheses (H1), (H2), Hypotheses 16.2 and Hypothe-

sis (†), and are given in Theorem 16.2 and Corollary 16.3 below:

Theorem 16.2. Let q be an integer ≥ 2, α ∈ (0, 1), γ ∈ (0, 1/2), µ ∈
(0, 1) and τ ∈ (0, 1/8). Suppose that the induction hypotheses (H1), (H2) hold.

Let C0 be a stationary cone as above, with Θ(‖C0‖, 0) = q + 1/2. There exist

numbers ε0 = ε0(n, q, α, γ, τ,C0) ∈ (0, 1/2), β0 = β0(n, q, α, γ, τ,C0) ∈ (0, 1/2)

such that if V ∈ Sα, C ∈ K satisfy Hypotheses 16.2 with ε0 in place of

ε and Hypothesis (†) with β0 in place of β, then, after taking appropriate

C′ ∈ K with spt ‖C′‖ = spt ‖C‖ in place of C, relabelling C′ as C (see

the preceding remark) and writing C =
∑m0
j=1

∑q
(0)
j

`=1 |Hj, `| where Hj, ` are half-

hyperplanes of Rn+1 meeting along {0} ×Rn−1 with Hj, ` ∈ N(H
(0)
j ) for each

j ∈ {1, 2, . . . ,m0} and ` ∈ {1, 2, . . . , q(0)
j }, the following hold :
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(a) V (Bn+1
7/8 (0) \ {r(X) < τ}) =

∑m0
j=1

∑q
(0)
j

`=1 |graphuj, ` ∩ Bn+1
7/8 (0)| where

uj, ` ∈ C2(Bn+1
7/8 (0) ∩Hj, `\{r(X) < τ};H⊥j, `) for 1 ≤ j ≤ m0, 1 ≤ ` ≤ q(0)

j ,

uj, ` solves the minimal surface equation on Bn+1
7/8 (0) ∩Hj, ` \ {r(X) < τ},

dist(X+uj, `(X), spt ‖C‖) = |uj, `(X)| for X ∈ Bn+1
7/8 (0)∩Hj, `\{r(X) < τ}

and for each j ∈ {1, . . . ,m0} and `1, `2 ∈ {1, . . . , q(0)
j }, either graphuj, `1 ∩

Bn+1
7/8 (0) ≡ graphuj,`2 ∩B

n+1
7/8 (0) or graphuj, `1 ∩graphuj,`2 ∩B

n+1
7/8 (0) = ∅;

(b)
∫
Bn+1

3/4
(0)
|X⊥|2
|X|n+2 d‖V ‖(X) ≤ C

∫
Bn+1

1 (0) dist2(X, spt ‖C‖) d‖V ‖(X);

(c)
∑n+1
j=3

∫
Bn+1

3/4
(0) |e

⊥
j |2 d‖V ‖(X) ≤ C

∫
Bn+1

1 (0) dist2(X, spt ‖C‖) d‖V ‖(X);

(d)
∫
Bn+1

3/4
(0)

dist2(X,spt ‖C‖)
|X|n+2−µ d‖V ‖(X) ≤ C1

∫
Bn+1

1 (0) dist2(X, spt ‖C‖) d‖V ‖(X).

Here C = C(n, α, γ,C0) ∈ (0,∞) and C1 = C1(n, α, γ, µ,C0) ∈ (0,∞). In

particular, C and C1 do not depend on τ.

Proof. Note first that by Remark (1) following Hypotheses 16.2, provided

the hypotheses of the theorem are satisfied with ε0 = ε0(n, q, α, τ,C0) suf-

ficiently small, we have that Θ(‖V ‖, Z) < q + 1/2 for each Z ∈ spt ‖V ‖ ∩
Bn+1

15/16(0) \ {r(X) < τ/2}, and

V
(
Bn+1

7/8 (0) \ {r(X) < τ}
)

=
m0∑
j=1

q
(0)
j∑
`=1

|graph ũj, `|,

where for each j ∈ {1, 2, . . . ,m0} and ` ∈ {1, 2, . . . , q(0)
j },

ũj, ` ∈ C2
Å(
Bn+1

7/8 (0) ∩H(0)
j \ {r(X) < τ}

)
;
(
H

(0)
j

)⊥ã
and ũj, ` are solutions to the minimal surface equation over

H
(0)
j ∩

(
Bn+1

7/8 (0) \ {r(X) < τ}
)

with small C2 norm. So if C ∈ K(m0), then the desired conclusions in part (a)

readily follow because then C =
∑m0
j=1 q

(0)
j |H ′j | for distinct half-hyperplanes H ′j

meeting along {0} ×Rn−1, which, by Hypotheses 16.2(3), satisfy distH(H ′j ∩
Bn+1

1 (0), H
(0)
j ∩B

n+1
1 (0)) < ε0 for each j ∈ {1, 2, . . . ,m0}. Otherwise we must

have that 2Θ(‖C0‖, 0)≥m0 +1 and that C∈K(p) for some p ∈ {m0 +1,m0 +2,

. . . , 2Θ(‖C0‖, 0)}. For each j ∈ {1, 2, . . . ,m0}, let q′j ∈ {1, 2, . . . , q
(0)
j } be the

number of distinct elements in the set {Hj, 1, Hj, 2, . . . ,Hj, q
(0)
j

} and label them

H ′j, `′ , `
′ = 1, 2, . . . , q′j . Let w′j, `′ ∈ R2 be the unit vector such that H ′j, `′ =

{(tw′j, `′ , y) : t > 0, y ∈ Rn−1}. Provided that β0 = β0(α, γ,C0) ∈ (0, 1/2) is
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sufficiently small, it follows from the definition of K, Hypotheses 16.2(3) and

Hypothesis (†)(ii) that for each j ∈ {1, 2, . . . ,m0} and `′1, `
′
2 ∈ {1, 2, . . . , q′j},

|w′j, `′1 −w′j, `′2
| ≥ cQ′V

for some constant c = c(α, γ,C0) ∈ (0,∞), where

Q′V = inf
C̃∈
⋃p−1
j=m0

K(j)

Ç∫
Bn+1

1 (0)
dist2(X, spt ‖‹C‖) d‖V ‖(X)

+

∫
Bn+1

1 (0)\{r(X)<1/16}
dist2(X, spt ‖V ‖) d‖‹C‖(X)

å
.

By exactly the same inductive proof of Theorem 10.1(a), conclusion (a) now fol-

lows from this provided ε0 = ε0(n, α, γ, τ,C0), β0 = β0(n, α, γ, τ,C0) ∈ (0, 1/2)

are sufficiently small.

The rest of the theorem is proved by arguing exactly as in [Sim93, Th. 3.4];

the key point that enables us to use the argument of [Sim93, Th. 3.4] is having

at our disposal the appropriate regularity theorem, namely, Theorem 15.2.

Specifically, letting

Tρ,κ(ζ) = {(x, y) ∈ R2 ×Rn−1 : (|x| − ρ)2 + |y − ζ|2 < κ2ρ2/64}

for κ ∈ (0, 1], ρ ∈ (0, 1/2) and ζ ∈ Rn−1, we have the following for any given

β ∈ (0, 1):

Claim. There exists a constant δ = δ(n, q, α, γ, β,C0) ∈ (0, 1/2) such that

if V , C are as in the theorem, (ξ, ζ) ∈ spt ‖C‖ ∩ Bn+1
13/16(0) ∩ {r(X) < 1/16}

where ζ ∈ Rn−1,

(16.9) spt ‖V ‖ ∩ T|ξ|,1/16(ζ) 6= ∅

and

(16.10) |ξ|−n−2
∫
T|ξ|,1(ζ)

dist2(X, spt ‖C‖) d‖V ‖(X) < δ,

then there exist distinct integers j1, j2, . . . , jp ∈ {1, 2, . . . ,m0} and, for each

k ∈ {1, 2, . . . , p}, functions u
(|ξ|,ζ)
jk,k`

∈ C2(T|ξ|,3/4(ζ) ∩ Hjk,k` ;H
⊥
jk,k`

) with ` =

1, 2, . . . , nk for some nk ≤ q such that

(16.11) V T|ξ|,1/2(ζ) =
p∑

k=1

nk∑
`=1

|graphu
(|ξ|,ζ)
jk,k`

∩ T|ξ|,1/2(ζ)|

and for each k ∈ {1, . . . , p}, ` ∈ {1, . . . , nk},

|ξ|−1 sup
T|ξ|,3/4(ζ)∩Hjk,k`

|u(|ξ|,ζ)
jk,k`

|+ sup
T|ξ|,3/4(ζ)∩Hjk,k`

|∇u(|ξ|,ζ)
jk,k`

| ≤ β/2.
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To verify this claim, observe first that by using the monotonicity of mass

ratio and a covering argument, we see that under the hypotheses of the the-

orem, ‖V ‖(Bn+1
1 (0) ∩ {r(X) < τ}) ≤ Cτ for each τ ∈ (0, 1/4), where C =

C(n, q) ∈ (0,∞). Using this with sufficiently small τ = τ(n, q) ∈ (0, 1/2) and

conclusion (a), we deduce that

ω−1
n ρ−n‖V ‖(Bn+1

ρ (Z)) ≤ ω−1
n (16)n‖V ‖(Bn+1

1/16(Z)) < q + 3/4

for each Z ∈Bn+1
13/16(0) and ρ∈ (0, 1/16) provided ε0 = ε0(n, q, α, γ,C0)∈ (0, 1)

is sufficiently small. Since (16.10) for sufficiently small δ = δ(n, q, α, γ,C0) ∈
(0, 1/2) implies that V T|ξ|,7/8(ζ) =

∑m0
j=1 Vj where spt ‖Vj‖ ⊂ N(H

(0)
j ) ∩

T|ξ|,7/8(ζ) (allowing for the possibility that Vj = 0 for some values of j), we see

by applying Theorem 15.2 and Remark (3) at the end of Section 8 that (16.11)

follows from (16.9) and (16.10) as claimed.

Now, as in Lemma 2.6 of [Sim93], let U be the union of all T|ξ|,1/2(ζ) ∩
spt ‖C‖ over all (ξ, ζ) ∈ spt ‖C‖ ∩Bn+1

7/8 (0) such that for each j ∈ {1, . . . ,m0}
and each ` ∈ {1, . . . , q(0)

j }, there exists u
(|ξ|,ζ)
j,` ∈ C2(T|ξ|,3/4(ζ)∩Hj,`;H

⊥
j,`) with

|ξ|−1 sup
T|ξ|,3/4(ζ)∩Hj,`

|u(|ξ|,ζ)
j,` |+ sup

T|ξ|,3/4(ζ)∩Hj,`
|∇u(|ξ|,ζ)

j,` | ≤ β/2,

dist(X + u
(|ξ|,ζ)
j,` (X), spt ‖C‖) = |u(|ξ|,ζ)

j,` (X)| for each X ∈ T|ξ|,1/2(ζ) ∩Hj,`

and

V T|ξ|,1/2(ζ) =
m0∑
j=1

q
(0)
j∑
`=1

|graphu
(|ξ|,ζ)
j,` ∩ T|ξ|,1/2(ζ)|.

For each j ∈ {1, . . . ,m0}, ` ∈ {1, . . . , q(0)
j }, define uj,` ∈ C2(U ∩ Hj,`;H

⊥
j,`)

by uj,`|T|ξ|,1/2(ζ)∩Hj,` = u
(|ξ|,ζ)
j,` . With the help of the above claim, we may now

verify the validity of Lemma 2.6 of [Sim93] (by following the same proof), with

the conclusion that for each j ∈ {1, . . . ,m0} and ` ∈ {1, . . . , q(0)
j },

Hj,` ∩Bn+1
7/8 (0) \ {r(X) < τ} ⊂ U ;

there exists uj,` ∈ C2(U ∩Hj,`;H
⊥
j,`) such that

sup
U∩Hj,`

r−1|uj,`|+ |∇uj,`| ≤ β;

and∫
Bn+1

7/8
(0)\G

r2(X) d‖V ‖(X) +
m0∑
j=1

q
(0)
j∑
`=1

∫
U∩Hj,`

r2(X)|∇uj,`(X)|2 dHn(X)

≤ C
∫
Bn+1

1 (0)
dist2(X, spt ‖C‖) d‖V ‖(X),
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whereG =
⋃m0
j=1

⋃q(0)j
`=1graphuj,` and C = C(n, α, γ,C0) ∈ (0,∞). Consequently,

the argument of Lemma 3.4 of [Sim93] carries over to give conclusions (b)–(d)

of the present theorem. �

Corollary 16.3. Let q be an integer ≥ 2, α ∈ (0, 1), γ ∈ (0, 1/2)

and µ ∈ (0, 1). Suppose that the induction hypotheses (H1), (H2) hold, and

let C0 be the stationary cone as in (16.2), with Θ(‖C0‖, 0) = q + 1/2. For

each ρ ∈ (0, 1/4], there exist numbers ε = ε(n, α, γ, τ, ρ,C0) ∈ (0, 1/2), β =

β(n, α, γ, τ, ρ,C0) ∈ (0, 1/2) such that if V ∈ Sα, C ∈ K satisfy Hypothe-

ses 16.2 and Hypothesis (†), then for each Z = (ζ1, ζ2, η) ∈ spt ‖V ‖∩(Bn+1
3/8 (0))

with Θ(‖V ‖, Z) ≥ Θ(‖C0‖, 0), we have the following :

(a) |ζ1|2 + |ζ2|2 ≤ C
∫
Bn+1

1 (0)
dist2(X, spt ‖C‖) d‖V ‖(X).

(b)

∫
Bn+1
ρ/2

(Z)

dist2(X, spt ‖TZ # C‖)
|X − Z|n+2−µ d‖V ‖(X)

≤C1ρ
−n−2+µ

∫
Bn+1
ρ (Z)

dist2(X, spt ‖TZ #C‖) d‖V ‖(X), where TZ : Rn+1

→ Rn+1 is the translation X 7→ X + Z .

Here C = C(n, α, γ,C0) ∈ (0,∞) and C1 = C1(n, α, γ, µ,C0) ∈ (0,∞). (In

particular, C , C1 do not depend on ρ.)

Proof. The proof requires application of Theorem 16.2 with ηZ,ρ# V in

place of V , where Z ∈ spt ‖V ‖ ∩Bn+1
3/8 (0) is any point such that Θ(‖V ‖, Z) ≥

Θ(‖C0‖, 0).

It follows from Remark (4) above that whenever Hypotheses 16.2 are sat-

isfied with ε = ε(n, q, α, τ, ρ,C0) sufficiently small, they are also satisfied with

ηZ,ρ# V in place of V and ε0 (as in Theorem 16.2) in place of ε.

To verify that Hypothesis (†) is satisfied with ηZ,ρ# V in place of V and β0

(as in Theorem 16.2) in place of β, and complete at the same time the proof of

the corollary inductively, we may follow the steps of the proof of Corollary 10.2

(i.e., Lemmas 10.3, 10.4, 10.6 and Propositions 10.5, 10.7) in conjunction with

the argument of Lemma 3.9 of [Sim93] (with modifications as in [Wic04]). �

We shall need the following easy consequence of the preceding corollary

for the proof of Theorem 16.1 at the end of this section:

Corollary 16.4. Let q be an integer ≥ 2, α ∈ (0, 1), γ ∈ (0, 1/2),

ε′ ∈ (0, 1/2), and suppose that the induction hypotheses (H1), (H2) hold. Let

C0 be the stationary cone as in 16.2, with Θ(‖C0‖, 0) = q + 1/2. There exists

a number ε1 = ε1(n, α, γ, ε′,C0) ∈ (0, 1/2) such that if V ∈ Sα, C ∈ K satisfy

Hypotheses 16.2 with ε1 in place of ε, then
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Bn+1

1 (0)
dist2(X, spt ‖C‖) d‖V ‖(X)(a)

+

∫
Bn+1

1 (0)\{r(X)<1/16}
dist2(X, spt ‖V ‖) d‖C‖(X) < ε′,

and for each Z=(ζ1, ζ2, η) ∈ spt ‖V ‖∩(Bn+1
3/8 (0)) with Θ(‖V ‖, Z)≥Θ(‖C0‖, 0),

we have that

|ζ1|2 + |ζ2|2 ≤ C
Ç∫

Bn+1
1 (0)

dist2(X, spt ‖C‖) d‖V ‖(X)(b)

+

∫
Bn+1

1 (0)\{r(X)<1/16}
dist2(X, spt ‖V ‖) d‖C‖(X)

å
,∫

Bn+1
1 (0)

dist2(X, spt ‖C‖) d‖V Z‖(X)(c)

+

∫
Bn+1

1 (0)\{r(X)<1/16}
dist2(X, spt ‖V Z‖) d‖C‖(X)

≤ C
Ç∫

Bn+1
1 (0)

dist2(X, spt ‖C‖) d‖V ‖(X)

+

∫
Bn+1

1 (0)\{r(X)<1/64}
dist2(X, spt ‖V ‖) d‖C‖(X)

å
,

where V Z = ηZ,1/2 # V and C = C(n, α, γ,C0) ∈ (0,∞).

Proof. Conclusion (a) is easily seen by arguing by contradiction using

Allard’s integral varifold compactness theorem ([All72]; also [Sim83, §42.8]).

Conclusion (b) in case C ∈ K(m0) follows directly from Corollary 16.3. So

suppose that C 6∈ K(m0). Noting in this case that 2Θ(‖C0‖, 0) ≥ m0 + 1, fix

p ∈ {m0 +1,m0 +2, . . . , 2Θ(‖C0‖, 0)} and assume by induction that conclusion

(b) of the corollary (taken with ε′ = 1/4, say) holds whenever C ∈ ⋃p−1
j=m0

K(j),

with ε denoting the required value of ε1. Choose a cone ‹C1 ∈
⋃p−1
j=m0

K(j) such

that∫
Bn+1

1 (0)
dist2(X, spt ‖‹C1‖) d‖V ‖(X)

+

∫
Bn+1

1 (0)\{r(X)<1/16}
dist2(X, spt ‖V ‖) d‖‹C1‖(X)

≤ 3

2
inf

C̃∈
⋃p−1
j=m0

K(j)

Ç∫
Bn+1

1 (0)
dist2(X, spt ‖‹C‖) d‖V ‖(X)

+

∫
Bn+1

1 (0)\{r(X)<1/16}
dist2(X, spt ‖V ‖) d‖‹C‖(X)

å
,

and let β1 = 2
3β(n, α, γ, 1/4, 1/4,C0) where β is as in Corollary 16.3. Sup-

pose C ∈ K(p) and that Hypotheses 16.2 hold with the value of ε equal to
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ε(n, α, γ, 1/4, 1/4,C0) where ε(n, α, γ, ·, ·,C0) is as in Corollary 16.3. If∫
Bn+1

1 (0)
dist2(X, spt ‖C‖) d‖V ‖(X)

+

∫
Bn+1

1 (0)\{r(X)<1/16}
dist2(X, spt ‖V ‖) d‖C‖(X)

≤ β1

Ç∫
Bn+1

1 (0)
dist2(X, spt ‖‹C1‖) d‖V ‖(X)

+

∫
Bn+1

1 (0)\{r(X)<1/16}
dist2(X, spt ‖V ‖) d‖‹C1‖(X)

å
,

then conclusion (b) follows directly from Corollary 16.3. On the other hand,

if the reverse inequality holds, then by taking ε′ = ε′(n, α, γ,C0) sufficiently

small in conclusion (a), we can ensure that Hypotheses 16.2 are satisfied with‹C1 in place of C and ε in place of ε, so conclusion (b) in this case follows by

the induction hypothesis. Thus conclusion (b) holds whenever C ∈ K(p), and

since C ∈ K =⇒ C ∈ K(j) for some j ∈ {m0, . . . , 2Θ(‖C0‖, 0)}, the inductive

proof of conclusion (b) is complete.

To see conclusion (c), note that∫
Bn+1

1 (0)
dist2(X, spt ‖C‖) d‖V Z‖(X)

= 2n+2
∫
Bn+1

1/2
(Z)

dist2(X,TZ spt ‖C‖) d‖V ‖(X)

≤ 2n+2
∫
Bn+1

1 (0)
dist2(X, spt ‖C‖) d‖V ‖(X) + C

Ä
|ζ1|2 + |ζ2|2

ä
and∫
Bn+1

1 (0)\{r(X)<1/16}
dist2(X, spt ‖V Z‖) d‖C‖(X)

= 2n+2
∫
Bn+1

1/2
(Z)\{r(X−Z)<1/32}

dist2(X, spt ‖V ‖) d‖TZ # C‖(X)

≤ 2n+2
∫
Bn+1

1/2
(Z)\{r(X)<1/64}

dist2(X, spt ‖V ‖) d‖TZ # C‖(X)

≤ 2n+2
∫
Bn+1

1 (0)\{r(X)<1/64}
dist2(X, spt ‖V ‖)d‖C‖(X) + C

Ä
|ζ1|2 + |ζ2|2

ä
,

where C = C(n, q) ∈ (0,∞), TZ : Rn+1 → Rn+1 is the translation X 7→ X+Z

and we have used the fact that C is translation invariant along {0}×Rn−1 and

assumed that ε = ε(n, α, γ,C0) is sufficiently small to ensure that dist(Z, {0}×
Rn−1) < 1/64. In view of conclusion (b), the validity of conclusion (c) readily

follows from these two inequalities. �
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Lemma 16.5. Let q be an integer ≥ 2, α ∈ (0, 1), δ ∈ (0, 1/8), γ ∈ (0, 1/2)

and C0 be as above. Suppose that the induction hypotheses (H1), (H2) hold

and that Θ(‖C0‖, 0) = q + 1/2. There exist numbers ε1 = ε1(n, α, γ, δ,C0) ∈
(0, 1/2) and β1 = β1(n, α, γ,C0) ∈ (0, 1/2) such that if V ∈ Sα, C ∈ K satisfy

Hypotheses 16.2 with ε1 in place of ε, then

(a) Bn+1
δ (0, y) ∩ {Z : Θ(‖V ‖, Z) ≥ q + 1/2} 6= ∅ for each point (0, y) ∈
{0} ×Rn−1 ∩Bn+1

1/2 (0), and

(b) if additionally Hypothesis (†) holds with β1 in place of β and if µ ∈ (0, 1),

then∫
Bn+1

1/2
(0)∩{r(X)<σ}

dist2(X, spt ‖C‖) d‖V ‖(X)

≤ C1σ
1−µ

∫
Bn+1

1 (0)
dist2(X, spt ‖C‖) d‖V ‖(X)

for each σ ∈ [δ, 1/4), where C1 = C1(n, q, α, µ,C0) ∈ (0,∞). (In particu-

lar, C1 is independent of δ and σ.)

Proof. Suppose for some number δ ∈ (0, 1/8) and some point (0, y) ∈
{0}×Rn−1 ∩Bn+1

1/2 (0) that Bn+1
δ (0, y)∩ {Z : Θ(‖V ‖, Z) ≥ q+ 1/2} = ∅. Then

by Remark (3) following Hypotheses 16.2, it follows that

Hn−7+γ(sing V (Bn+1
δ (0, y))) = 0 if n ≥ 7,(16.4)

sing V (Bn+1
δ (0, y)) = ∅ if 2 ≤ n ≤ 6.

From this and hypothesis (S2) we deduce (with the help of an elementary

covering argument in case n ≥ 7) that∫
spt ‖V ‖∩Bn+1

δ
(0,y)
|A|2ζ2 dHn ≤

∫
spt ‖V ‖∩Bn+1

δ
(0,y)
|∇V ζ|2 dHn

for any ζ ∈ C1
c (Bn+1

δ (0, y)), where A denotes the second fundamental form

of reg V. Choosing ζ ∈ C1
c (Bn+1

δ (0, y)) such that ζ ≡ 1 in Bn+1
δ/2 (0, y) and

|D ζ| ≤ 4δ−1, we conclude from the preceding inequality that

(16.12)

∫
spt ‖V ‖∩Bn+1

δ/2
(0,y)
|A|2 dHn ≤ Cδn−2,

where C = C(n, q) ∈ (0,∞). Now let τ ∈ (0, δ/4) be arbitrary for the moment

and assume that ε ∈ (0, ε0), where ε0 = ε0(α, β, τ,C0) is as in Theorem 16.2.

Using Theorem 16.2(a), (16.12) and the argument leading to the inequality

(6.12) of [SS81] (with σ = τ), we deduce, provided ε = ε(α, β, τ,C0) is suffi-

ciently small and positive, that

C ≤ τ1/2δ−1/2,
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where C = C(β,C0) ∈ (0,∞). This however is a contradiction if we choose,

e.g., τ = δ
8 if 4C2 ≥ 1 or τ = C2δ

2 if 4C2 < 1. We conclude that part (a) must

hold provided ε = ε(α, β, δ,C0) ∈ (0, 1/2) is sufficiently small. To prove the

estimate of part (b), first note that in view of Corollary 16.3(a) and (b) (with

τ = 1/16, say), it follows from the argument leading to the estimate (3) of

[Sim93, p. 619] that for each Z ∈ spt ‖V ‖ ∩Bn+1
3/8 (0) with Θ(‖V ‖, Z) ≥ q,

∫
Bn+1

1/4
(Z)

dist2(X, spt ‖C‖)
|X − Z|n−α

d‖V ‖(X) ≤ C
∫
Bn+1

1 (0)
dist2(X, spt ‖C‖) d‖V ‖(X),

where C =C(β, α,C0)∈ (0,∞). By the argument of [Sim93, Cor. 3.2(ii)] (cf.

proof of Lemma 10.8(b)), the required estimate follows from this and part (a).

�

Remark. Note that Theorem 16.2, Corollary 16.3, Corollary 16.4 and

Lemma 16.5 all continue to hold in case Θ(‖C0‖, 0) = q + 1 provided that

Theorem 15.2 holds with q + 1 in place of q.

Let γ ∈ (0, 1/2), and consider a sequence of varifolds {Vk} ⊂ Sα and a

sequence of cones {Ck} satisfying, for each k = 1, 2, . . . , Hypotheses 16.2 and

Hypothesis (†) with Vk, Ck in place of V , C and εk, βk in place of ε, β, where

εk, βk → 0+. Thus, for each k = 1, 2, . . . , we suppose that

(1k) Vk ∈ Sα, 0 ∈ spt ‖Vk‖, Θ(‖Vk‖, 0) ≥ q + 1/2, (ωn2n)−1‖Vk‖(Bn+1
2 (0)) <

q + 1/2 + γ;

(2k) Ck =
∑m0
j=1

∑q
(0)
j

`=1 |Hk
j, `| ∈ K, where Hk

j, ` are half-hyperplanes of Rn+1

meeting along {0}×Rn−1 withHk
j, ` ∈ N(H

(0)
j ) for each j ∈ {1, 2, . . . ,m0}

and ` ∈ {1, 2, . . . , q(0)
j };

(3k) distH(spt ‖Ck‖ ∩Bn+1
1 (0), spt ‖C0‖ ∩Bn+1

1 (0)) < εk;

(4k)

∫
Bn+1

1 (0)
dist2(X, spt ‖Ck‖) d‖Vk‖(X) < εk;

(5k) for each j = 1, 2, . . . ,m0,

‖Vk‖((Bn+1
1/2 (0) \ {r(X) < 1/8}) ∩N(H

(0
j ))

≥
Å
q

(0)
j −

1

4

ã
Hn((Bn+1

1/2 (0) \ {r(X) < 1/8}) ∩H(0)
j );

(6k) either (i) or (ii) below holds:

(i) Ck ∈ K(m0);

(ii) 2Θ(‖C0‖, 0) ≥ m0 + 1, Ck ∈ K(pk) for some pk ∈ {m0 + 1,m0 +

2, . . . , 2Θ(‖C0‖, 0)} and
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Bn+1

1 (0)
dist2(X, spt ‖Ck‖) d‖Vk‖(X)

+

∫
Bn+1

1 (0)\{r(X)<1/16}
dist2(X, spt ‖Vk‖) d‖Ck‖(X)

≤ βk inf
C̃∈
⋃pk−1

j=m0
K(j)

Ç∫
Bn+1

1 (0)
dist2(X, spt ‖‹C‖) d‖Vk‖(X)

+

∫
Bn+1

1 (0)\{r(X)<1/16}
dist2(X, spt ‖Vk‖) d‖‹C‖(X)

å
.

Note that it follows from (2k) and (3k) thatHk
j,` → H

(0)
j for each j∈{1, . . . ,m0}

and ` ∈ {1, . . . , q(0)
j }.

Let Ek =
√∫

Bn+1
1 (0) dist2(X, spt ‖Ck‖) d‖Vk‖(X). Let {δk}, {τk} be se-

quences of decreasing positive numbers converging to 0. By passing to ap-

propriate subsequences of {Vk}, {Ck} without changing notation, we have the

following:

(Ak) By Lemma 16.5,

(16.13) Bn+1
δk

(0, y) ∩ {Z : Θ(‖Vk‖, Z) ≥ q + 1/2} 6= ∅

for each point (0, y) ∈ {0} ×Rn−1 ∩Bn+1
1/2 (0) and

(16.14)

∫
Bn+1

1/2
(0)∩{r(X)<σ}

dist2(X, spt ‖Ck‖) d‖Vk‖(X) ≤ Cσ1/2E2
k

for each σ ∈ [δk, 1/4), where C = C(n, q, α, γ,C0) ∈ (0,∞).

(Bk) By Theorem 16.2 (a),

(16.15) Vk (Bn+1
7/8 (0) \ {r(X) < τk}) =

m0∑
j=1

q
(0)
j∑
`=1

|graphukj, `|

where, for each k = 1, 2, . . . , j ∈ {1, 2, . . . ,m0} and ` ∈ {1, 2, . . . , q(0)
j },

ukj, ` ∈ C2(Bn+1
7/8 (0) ∩Hk

j, `\{r(X) < τk}; (Hk
j, `)
⊥), ukj, ` solves the minimal

surface equation on Bn+1
7/8 (0)∩Hk

j, ` \ {r(X) < τk} and satisfies dist(X +

ukj, `(X), spt ‖C‖) = |ukj, `(X)| for X ∈ Bn+1
7/8 (0) ∩Hk

j, ` \ {r(X) < τk}.

(Ck) For each point Z = (ζ1, ζ2, η) ∈ spt ‖Vk‖ ∩ Bn+1
3/8 (0) with Θ(‖Vk‖, Z) ≥

q + 1/2, by Corollary 16.3 (a),

(16.16) |ζ1|2 + |ζ2|2 ≤ CE2
k ,

where C = C(n, q, α, γ,C0) ∈ (0,∞).
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(Dk) For each fixed µ ∈ (0, 1), ρ ∈ (0, 1/4), each sufficiently large k and each

point Z = (ζ1, ζ2, η) ∈ spt ‖Vk‖ ∩ Bn+1
3/8 (0) with Θ(‖Vk‖, Z) ≥ q + 1/2,

by Corollary 16.3(b),

m0∑
j=1

q
(0)
j∑
`=1

∫
Bn+1

1/4
(Z)∩Hk

j, `
\{r(X)<τk}

|ukj, `(X)− (ζ1, ζ2, 0)
⊥
Hk
j |2

|X + ukj, `(X)− Z|n+2−µ dX(16.17)

≤ C1ρ
−n−2+µ

∫
Bn+1
ρ (Z)

dist2(X, spt ‖TZ # Ck‖) d‖Vk‖(X),

where C1 = C1(α, γ, µ,C0) ∈ (0,∞).

Extend ukj,` to all of Bn+1
7/8 (0) ∩ Hk

j, ` by defining values to be zero in

Bn+1
7/8 (0)∩Hk

j, `∩{r(X) < τk}. For each j∈{1, 2, . . . ,m0} and `∈{1, 2, . . . , q(0)
j },

let hj, ` : H
(0)
j → (H

(0)
j )⊥ be the linear functions such that {X +hj, `(X) : X ∈

H
(0)
j } = Hj, ` and let ũkj, `(X) = ukj, `(X +hj, `(X)). By (16.15) and elliptic esti-

mates, for each j = 1, 2, . . . ,m0 and ` = 1, 2, . . . , q
(0)
j (for any manner in which

the labelling is chosen for the elements of the sets {ukj, 1, ukj, 2, . . . , ukj, q(0)j
}, k =

1, 2, 3, . . . ), there exist harmonic functions vj, ` : B3/4 ∩ H
(0)
j → (H

(0)
j )⊥ such

that, after passing to a subsequence,

(16.18) E−1
k ũkj, ` → vj, `,

where the convergence is in C2(K) for each compact subset K of B3/4 ∩H
(0)
j .

From (16.14), it follows that for each σ ∈ (0, 1/4),

m0∑
j=1

q
(0)
j∑
`=1

∫
Bn+1

3/4
(0)∩H(0)

j ∩{r(X)<σ}
|vj, `|2 ≤ Cσ1/2, C = C(α, γ,C0)

and hence that the convergence in (16.18) is also in L2 (B3/4 ∩H
(0)
j ).

Lemma 16.6. For each j ∈ {1, 2, . . . ,m0} and ` ∈ {1, 2, . . . , q(0)
j }, we have

that

vj, ` ∈ C0,µ
Å
Bn+1

5/16(0) ∩H(0)
j ;

(
H

(0)
j

)⊥ã
with the estimate

sup

Bn+1
5/16

(0)∩H(0)
j

|vj, `|2 + sup

X1,X2∈Bn+1
5/16

(0)∩H(0)
j , X1 6=X2

|vj, `(X1)− vj, `(X2)|2

|X1 −X2|2µ

≤ C
m0∑
j=1

q
(0)
j∑
`=1

∫
Bn+1

3/4
(0)∩H(0)

j

|vj, `|2,

where µ = µ(n, q, α, γ,C0) ∈ (0, 1) and C = C(n, q, α, γ,C0) ∈ (0,∞).
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Proof. Note first that for each given Y ∈ Bn+1
5/16(0)∩{0}×Rn−1, there ex-

ists, by (16.13), a sequence of points Zk = (ζk1 , ζ
k
2 , ηk) ∈ spt ‖Vk‖∩Bn+1

3/4 (0) with

Θ(‖Vk‖, Zk) ≥ q such that Zk → Y. Passing to a subsequence without changing

notation, the limits limk→∞ E−1
k ζk1 and limk→∞ E−1

k ζk2 exist by (16.16). Write

(16.19) κ(Y ) =

Å
lim
k→∞

E−1
k ζk1 , lim

k→∞
E−1
k ζk2 , 0

ã
,

and note by (16.16) that

(16.20) |κ(Y )| ≤ C,

where C = C(n, q, α, γ,C0) ∈ (0,∞). It follows from (16.14), (16.15) and

(16.17) that for each µ ∈ (0, 1),

m0∑
j=1

q
(0)
j∑
`=1

∫
Bn+1

1/4
(Y )∩H(0)

j

|vj, `(X)− κ(Y )
⊥
H

(0)
j |2

|X − Y |n+2−µ dX(16.21)

≤ C1ρ
−n−2+µ

m0∑
j=1

q
(0)
j∑
`=1

∫
Bn+1
ρ (Y )∩H(0)

j

|vj, ` − κ(Y )
⊥
H

(0)
j |2

for ρ ∈ (0, 1/8], where C1 = C1(α, γ, µ,C0) ∈ (0,∞). In view of (16.20), this in

particular implies that for each j = 1, 2, . . . ,m0, κ(Y )
⊥
H

(0)
j is uniquely defined

(depending only on Y and independent of the sequence {Zk} tending to Y ),

and hence, since the set of normal directions to H
(0)
j , j = 1, 2, . . . ,m0, spans

R2 × {0}, the vector κ(Y ) is also uniquely defined. For Y ∈ Bn+1
1/4 (0) ∩ {0} ×

Rn−1, j ∈ {1, 2, . . . ,m0} and ` ∈ {1, 2, . . . , q(0)
j }, define vj,`(Y ) = κ(Y )

⊥
H

(0)
j .

The proof of the lemma can now be completed by modifying the proof of

Lemma 12.1 in an obvious way. �

Theorem 16.7. For each j ∈ {1, 2, . . . ,m0}, ` ∈ {1, 2, . . . , q(0)
j }, we have

that

vj, ` ∈ C2
Å
Bn+1

1/4 (0) ∩H(0)
j ;

(
H

(0)
j

)⊥ã
with the estimate

sup

Bn+1
1/4

(0)∩H(0)
j

|Dvj, `|2+ sup

X1,X2∈Bn+1
1/4

(0)∩H(0)
j , X1 6=X2

|Dvj, `(X1)−Dvj, `(X2)|2

|X1 −X2|2

≤ C
m0∑
j=1

q
(0)
j∑
`=1

∫
Bn+1

3/4
(0)∩H(0)

j

|vj, `|2,

where C = C(n, q, α, γ,C0) ∈ (0,∞).
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Proof. For Y ∈ Bn+1
1/2 (0) ∩ {0} ×Rn−1, let κ̃(Y ) =

∑m0
j=1 κ(Y )

⊥
H

(0)
j where

κ is the function defined by (16.19). By modifying the argument leading to

the estimate (12.30) in obvious ways, it can be seen that κ̃ ∈ C∞ (Bn+1
1/2 (0) ∩

{0} ×Rn−1; Rn+1) with

sup
Bn+1

1/2
(0)∩({0}×Rn−1)

|κ̃|2 + |DY κ̃|2 + |D2
Y κ̃|2 + |D3

Y κ̃|2

≤ C
m0∑
j=1

q
(0)
j∑
`=1

∫
Bn+1

3/4
(0)∩H(0)

j

|vj, `|2,

where C = C(α, γ,C0) ∈ (0,∞). Since the set of normal directions to H
(0)
j ,

j = 1, 2, . . . ,m0, span R2 × {0}, it follows that for each j = 1, 2, . . . ,m0,

κ
⊥
H

(0)
j ∈ C∞ (Bn+1

1/2 (0) ∩ {0} ×Rn−1; Rn+1) with

sup
Bn+1

1/2
(0)∩({0}×Rn−1)

|κ
⊥
H

(0)
j |2 + |DY κ

⊥
H

(0)
j |2 + |D2

Y κ
⊥
H

(0)
j |2(16.22)

+ |D3
Y κ
⊥
H

(0)
j |2 ≤ C

m0∑
j=1

q
(0)
j∑
`=1

∫
Bn+1

3/4
(0)∩H(0)

j

|vj, `|2,

where C=C(α, γ,C0)∈(0,∞). Since by Lemma 16.6, for each j = 1, 2, . . . ,m0

and ` = 1, 2, . . . , q
(0)
j , vj, ` is continuous inBn+1

1/2 (0) ∩H(0)
j with boundary values

vj, `|Bn+1
1/2

(0)∩{0}×Rn−1 ≡ κ
⊥
H

(0)
j , and vj, ` is harmonic in Bn+1

3/4 (0) ∩ H(0)
j , the

desired conclusions of the lemma follow, in view of the estimate (16.22), from

the standard boundary regularity theory for harmonic functions. �

Lemma 16.8. Let q be an integer ≥ 2, α ∈ (0, 1), γ ∈ (0, 1/2) and θ ∈
(0, 1/4). Let C0 be the stationary cone as in (16.2), with Θ(‖C0‖, 0) = q+1/2.

There exist numbers ε = ε(α, γ, θ,C0) ∈ (0, 1/2) and β = β(α, γ, θ,C0) ∈
(0, 1/2) such that if V ∈ Sα, C ∈ K satisfy Hypotheses 16.2 and Hypothesis (†)
with ε = ε and β = β and if the induction hypotheses (H1), (H2) hold, then

there exist an orthogonal rotation Γ of Rn+1 and a cone C′ ∈ K such that,

with

E2
V =

∫
Bn+1

1 (0)
dist2(X, spt ‖C)‖) d‖V ‖(X),

the following hold :

|ej − Γ(ej)| ≤ κEV , for j = 1, 2, 3, . . . , n+ 1;(a)

dist2
H(spt ‖C′‖ ∩Bn+1

1 (0), spt ‖C‖ ∩Bn+1
1 (0)) ≤ C0E2

V ;(b)
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θ−n−2
∫

Γ(Bn+1
θ

(0)\{r(X)≤θ/16})
dist2(X, spt ‖V ‖) d‖Γ# C′‖(X)(c)

+ θ−n−2
∫
Bn+1
θ

(0)
dist2(X, spt ‖Γ# C′‖) d‖V ‖(X) ≤ νθ2E2

V .

Here the constants κ,C0, ν ∈ (0,∞) each depends only on α, γ and C0.

Proof. If the lemma is false, there exist a sequence of varifolds {Vk}⊂Sα
and a sequence of cones {Ck}⊂K satisfying, for each k = 1, 2, 3, . . . , the

conditions (1k)–(6k) above (listed immediately after the proof of Lemma 16.5)

but not satisfying, for any choice of orthogonal rotation Γ of Rn+1 and C′ ∈ K,

the conclusion of the lemma taken with Vk, Ck in place of V , C. Choose any

two sequences of decreasing positive numbers {δk} and {τk} with δk → 0 and

τk → 0 and corresponding subsequences of {Vk}, {Ck} for which the assertions

(16.13)–(16.17) are valid, and let {vj, `}j=1,2,...,m0; `=1,2,...,q
(0)
j

be the blow-up of

{Vk} relative to {Ck}. Thus, for each j = 1, 2, . . . ,m0 and ` = 1, 2, . . . , q
(0)
j ,

vj, ` ∈ L2
Å
Bn+1

3/4 (0) ∩H(0)
j ;

(
H

(0)
j

)⊥ã
∩ C2

Å
Bn+1

3/4 (0) ∩H(0)
j ;

(
H

(0)
j

)⊥ã
are the functions produced as in (16.18). Note then that Theorem 16.7 is

applicable to the functions vj, `. By exactly following the corresponding steps

in the proof of Lemma 13.1 and by using Theorem 16.7 where the proof of

Lemma 13.1 depended on Theorem 12.2, we see that corresponding to infin-

itely many k, there are orthogonal rotations Γk, cones C′k ∈ K such that the

conclusions of the present lemma hold with Vk, Ck, C′k and Γk in place of V ,

C, C′ and Γ, and with constants κ, C0, ν depending only on α, γ and C0.

This contradicts our assumption, establishing the lemma. �

Lemma 16.9. Let α ∈ (0, 1), q be an integer ≥ 2 and γ ∈ (0, 1/2). Let

C0 =
∑m0
j=1

∑q
(0)
j

`=1 |Hj, `| be the stationary cone as in (16.2) with Θ(‖C0‖, 0) =

q+ 1/2. For j = 1, 2, . . . , 2q−m0 + 1, let θj ∈ (0, 1/4) be such that θ1 > 8θ2 >

64θ3 > · · · > 82q−m0θ2q−m0+1. There exists a number ε0 = ε0(α, γ, θ1, θ2, . . . ,

θ2q−m0+1,C0) ∈ (0, 1/2) such that the following is true: If V ∈ Sα, C ∈ K sat-

isfy Hypotheses 16.2 and if the induction hypotheses (H1), (H2) hold, then there

exist orthogonal rotations Γ,∆ of Rn+1 and cones C′,C′′ ∈ K such that, with

Q2
V (C) =

∫
Bn+1

1 (0)\{r(X)<1/16}
dist2(X, spt ‖V ‖) d‖C‖(X)

+

∫
Bn+1

1 (0)
dist2(X, spt ‖C)‖) d‖V ‖(X)
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and

R2
V (C) =

∫
Bn+1

1 (0)\{r(X)<1/64}
dist2(X, spt ‖V ‖) d‖C‖(X)

+

∫
Bn+1

1 (0)
dist2(X, spt ‖C)‖) d‖V ‖(X),

we have the following :

(a) |ej−Γ(ej)| ≤ κQV (C) and |ej−∆(ej)| ≤ κRV (C) for j = 1, 2, 3, . . . , n+1;

(b) dist2
H(spt ‖C′‖ ∩Bn+1

1 (0), spt ‖C‖ ∩Bn+1
1 (0)) ≤ C0Q2

V (C) and

dist2
H(spt ‖C′′‖ ∩Bn+1

1 (0), spt ‖C‖ ∩Bn+1
1 (0)) ≤ C0R2

V (C);

(c) for some j′ ∈ {1, 2, . . . , 2q −m0 + 1},

θ−n−2
j′

∫
Γ

(
Bn+1
θj′

(0)\{r(X)≤θj′/16}
) dist2(X, spt ‖V ‖) d‖Γ# C′‖(X)

+θ−n−2
j′

∫
Bn+1
θj′

(0)
dist2(X, spt ‖Γ# C′‖) d‖V ‖(X) ≤ νj′θ2

j′Q2
V (C),

and for some j′′ ∈ {1, 2, . . . , 2q −m0 + 1},

θ−n−2
j′′

∫
∆

(
Bn+1
θj′′

(0)\{r(X)≤θj′′/64}
) dist2(X, spt ‖V ‖) d‖∆# C′′‖(X)

+ θ−n−2
j′′

∫
Bn+1
θj′′

(0)
dist2(X, spt ‖∆# C′′‖) d‖V ‖(X) ≤ νj′′θ2

j′′R2
V (C).

Here κ and C0 depend only on α, γ,C0 in case 2q = m0 and only on α, γ, θ1, . . . ,

θ2q−m0 and C0 in case 2q ≥ m0 +1; ν1 = ν1(α, γ,C0) and, in case 2q ≥ m0 +1,

for each j = 2, 3, . . . , 2q−m0 + 1, νj = νj(α, γ, θ1, . . . , θj−1,C0). In particular,

νj is independent of θj , θj+1, . . . , θ2q−m0+1 for j = 1, 2, . . . , 2q −m0 + 1.

Proof. First use Lemma 16.8 and the argument of Lemmas 13.2 and 13.3

to obtain each of those conclusions above in which QV (C) appears on the

right-hand side, with a set of constants κ1, C
(1)
0 , ν

(1)
j in place of κ, C0, νj ,

j = 1, 2, . . . , 2q −m0 + 1, depending only on the allowed parameters stated in

the conclusion. Then repeat the entire argument leading to these conclusions

but withRV (C) in place of QV (C) (so, in particular, part (ii) of Hypothesis (†)
reads RV (C) ≤ β inf

C̃∈
⋃p−1
j=m0

K(j)
RV (‹C)) to obtain those conclusions above

where RV (C) appears on the right-hand side, with a set of constants κ2, C
(2)
0 ,

ν
(2)
j in place of κ, C0, νj , j = 1, 2, . . . , 2q − m0 + 1, depending again only

on the allowed parameters. Set κ = max {κ1, κ2}, C0 = max {C(1)
0 , C

(2)
0 } and

νj = max {ν(1)
j , ν

(2)
j } for j = 1, 2, . . . , 2q −m0 + 1. �
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Proof of Theorem 16.1. Case 1: Θ(‖C0‖, 0) = q + 1/2, q ≥ 2. If the

theorem is false in this case, then there exist a number γ ∈ (0, 1/2) and,

for each ` = 1, 2, 3, . . . , a varifold V` ∈ Sα with Θ(‖V`‖, 0) ≥ q + 1/2 and

(ωn2n)−1‖V`‖(Bn+1
2 (0)) ≤ q + 1/2 + γ such that

distH(spt ‖V`‖ ∩Bn+1
1 (0), spt ‖C0‖ ∩Bn+1

1 (0))→ 0

as ` → ∞. By Allard’s integral varifold compactness theorem ([All72]; see

also [Sim83, §42.8]) and the constancy theorem ([Sim83, §41]), it follows, after

passing to a subsequence without changing notation, that

V` Bn+1
1 (0)→

Ñ
m0∑
j=1

q
(0)
j |H

(0)
j |

é
Bn+1

1 (0)

as varifolds, where q
(0)
j , j = 1, 2, . . . ,m0, are positive integers with

∑m0
j=1 q

(0)
j =

2q+1. We may assume, by redefining the multiplicities of the original cone C0

if necessary, that C0 =
∑m0
j=1 q

(0)
j |H

(0)
j |. Thus

(16.23) V` Bn+1
1 (0)→ C0 Bn+1

1 (0) as varifolds.

For j = 1, 2, . . . , 2q−m0+1, choose numbers θj = θj(α, γ,C0) ∈ (0, 1/8) as

follows: First choose θ1 such that ν1θ
2(1−α)
1 < 1/4, where ν1 = ν1(α, γ,C0) is as

in Lemma 16.9. Having chosen θ1, θ2, . . . , θj , 1 ≤ j ≤ 2q−m0, choose θj+1 such

that θj+1<8−1θj and νj+1θ
2(1−α)
j+1 <1/4, where νj+1 =νj+1(α, γ, θ1, . . . , θj ,C0)

is as in Lemma 16.9.

Note that it is easily seen by arguing by contradiction that corresponding

to any given ε′ ∈ (0, 1/2), there exists ε = ε(ε′, α, γ,C0) ∈ (0, 1/2) such that if

Hypotheses 16.2 are satisfied, then

QV (C) ≤ RV (C) < ε′

where QV (C), RV (C) are defined as in Lemma 16.9. By Remark (4) following

the statement of Hypotheses 16.2, it then follows that if Hypotheses 16.2 are

satisfied with sufficiently small ε = ε(ε′, α, γ,C0), then for each Z ∈ spt ‖V ‖ ∩
Bn+1

1/8 (0) with Θ(‖V ‖, Z) ≥ q + 1/2,

(16.24) QV Z (C) ≤ RV Z (C) < ε′,

where V Z = ηZ,1/2 # V.

Now fix ` sufficiently large, let V = V` and let Z ∈ spt ‖V ‖∩Bn+1
1/8 (0) with

Θ(‖V ‖, Z) ≥ q + 1/2. We claim that we may apply Lemma 16.9 iteratively

to obtain, for each k = 0, 1, 2, 3, . . . , an orthogonal rotation ΓZk of Rn+1 with

ΓZ0 = Identity, and a cone CZ
k ∈ K with CZ

0 = C0 satisfying, for k ≥ 1,

(16.25) |ΓZk (ej)− ΓZk−1(ej)| ≤ κ
Ä
σZk
äαQV Z (C0), j = 1, 2, . . . , n+ 1,
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(16.26)

distH(spt ‖CZ
k ‖ ∩Bn+1

1 (0), spt ‖CZ
k−1‖ ∩Bn+1

1 (0)) ≤ C0

Ä
σZk
äαQV Z (C0),

(16.27)Ä
σZk
ä−n−2

∫
Bn+1

σZ
k

(0)
dist2(X, spt ‖

Ä
ΓZk
ä

#
CZ
k ‖) d‖V Z‖(X) ≤

Ä
σZk
ä2αQ2

V Z (C0),

andÄ
σZk
ä−n−2

∫
ΓZ
k

(Bn+1

σZ
k

(0)\{|r(X)|≤σZ
k
/16})

dist2(X, spt ‖V Z‖) d‖
Ä
ΓZk
ä

#
CZ
k ‖(X)

(16.28)

≤
Ä
σZk
ä2αQ2

V Z (C0),

where κ = κ(α, γ,C0), C0 = C0(α, γ,C0) are as in Lemma 16.9 and {σZk } is

a sequence of positive numbers such that σZ0 = 1 and for each k = 1, 2, . . . ,

σZk = θjZ
k
σZk−1 for some jZk ∈ {1, 2, . . . , 2q−m0 + 1}. To see this, note first that

it follows from Remark (4) following the statement of Hypotheses 16.2 that if

V = V` with ` fixed sufficiently large, then for each Z ∈ spt ‖V ‖ ∩ Bn+1
1/8 (0)

with Θ(‖V ‖, Z) ≥ q + 1/2, Hypotheses 16.2 are satisfied with V Z in place of

V, C0 in place of C and with ε = ε0(α, γ,C0), where ε0 is as in Lemma 16.9.

Hence by applying Lemma 16.9 with V Z in place of V and C = C0, we deduce

that (16.25)–(16.28) hold in case k = 1. So let k ≥ 2, and suppose by induction

that (16.25)–(16.28) are valid with 1, 2, . . . , k − 1 in place of k. Then for any

given ε ∈ (0, 1/4), provided V = V` with ` sufficiently large, Hypotheses 16.2

are satisfied with
Ä
ΓZk−1

ä−1

#
η0,σZ

k−1
# V

Z in place of V and with C = CZ
k−1.

Here, the validity of Hypotheses 16.2(1)–(4) with
Ä
ΓZk−1

ä−1

#
η0,σZ

k−1
# V

Z in

place of V and CZ
k−1 in place of C is clear, and in verifying Hypothesis 16.2(5)

with
Ä
ΓZk−1

ä−1

#
η0,σZ

k−1
# V

Z in place of V , note first that by Remarks (1) and

(4) following the statement of Hypotheses 16.2 (taken with ρ = σZ1 and τ =
1
32 min{θ1, θ2 . . . , θ2q−m0+1} = 1

32θ2q−m0+1), we have that

(16.29)

η0,σZ1 # V
Z

Å
Bn+1

1 (0) \
ß
r(X) <

1

32
θ2q−m0+1

™ã
=

m0∑
j=1

q
(0)
j∑
i=1

|graph ũj, i|,

where for each j ∈ {1, 2, . . . ,m0} and i ∈ {1, 2, . . . , q(0)
j },

ũj, i ∈ C2
Å
H

(0)
j ∩

Å
Bn+1

1 (0) \
ß
r(X) <

1

32
θ2q−m0+1

™ã
;
(
H

(0)
j

)⊥ã



STABLE CODIMENSION 1 INTEGRAL VARIFOLDS 989

and ũj, i are solutions to the minimal surface equation over

H
(0)
j ∩

Å
Bn+1

1 (0) \ {r(X) <
1

32
θ2q−m0+1}

ã
with small C2 norm. So in particular, in view of (16.25), Hypothesis 16.2(5) is

satisfied with
Ä
ΓZ1
ä−1

#
η0,σZ1 # V

Z in place of V . On the other hand, by (16.26),

(16.27) and (16.28), we may apply Remarks (2) and (3) following the statement

of Hypotheses 16.2 with
Ä
ΓZr
ä−1

#
η0,σZr # V

Z in place of V and τ = 1
2θ2q−m0+1,

followed by Theorem 3.5, to deduce that for each r ∈ {2, 3, . . . , k − 1},
(16.30)Ä

ΓZr
ä−1

#
η0,σZr # V

Z
Å
Bn+1

1/2 (0) \
ß
r(X)<

1

2
θ2q−m0+1

™ã
=

m0∑
j=1

pZ,rj∑
i=1

|graph ũZ,rj, i |

for some integers pZ,rj ≥ 1, where for each j ∈ {1, . . . ,m0} and i ∈ {1, . . . , pZ,rj },

ũZ,rj, i ∈ C
2
Å
H

(0)
j ∩

Å
Bn+1

1/2 (0) \
ß
r(X) <

1

2
θ2q−m0+1

™ã
;
(
H

(0)
j

)⊥ã
and ũZ,rj, i are solutions to the minimal surface equation over

H
(0)
j ∩

Å
Bn+1

1/2 (0) \ {r(X) <
1

2
θ2q−m0+1}

ã
with small C2 norm. Since σZr ≥ θ2q−m0+1σ

Z
r−1 for each r ≥ 1, it follows from

(16.29), (16.30) and unique continuation of solutions to the minimal surface

equation that

(16.31) pZ,rj = q
(0)
j

for each r ∈ {2, 3, . . . , k−1} and j ∈ {1, 2, . . . ,m0}, whence, by (16.30), we see

that Hypothesis 16.2(5) with
Ä
ΓZk−1

ä−1

#
η0,σZ

k−1
# V

Z in place of V is satisfied

as claimed. Hence we may apply Lemma 16.9 with
Ä
ΓZk−1

ä−1

#
η0,σZ

k−1
# V

Z in

place of V and CZ
k−1 in place of C to obtain an orthogonal rotation ΓZk of Rn+1

and a cone CZ
k ∈ K satisfying (16.25)–(16.28). This inductively establishes the

validity of (16.25)–(16.28) for each k = 1, 2, 3, . . . . Using (16.25)–(16.28) in a

standard way, we reach the conclusion that if V = V` with ` fixed sufficiently

large, then corresponding to each Z ∈ spt ‖V ‖ ∩ Bn+1
1/8 (0) with Θ(‖V ‖, Z) ≥

q + 1/2, there exist a cone CZ ∈ K with

(16.32) distH(spt ‖CZ‖ ∩Bn+1
1 (0), spt ‖C0‖ ∩Bn+1

1 (0)) ≤ CQV Z (C0)

and an orthogonal rotation ΓZ of Rn+1 satisfying, for each k = 0, 1, 2, . . . ,

(16.33) |ΓZ(ej)− ΓZk (ej)| ≤ C
Ä
σZk
äαQV Z (C0), j = 1, 2, . . . , n+ 1
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such thatÄ
σZk
ä−n−2

∫
ΓZ
k

(Bn+1

σZ
k
/2

(0)\{|r(X)|≤σZ
k
/16})

dist2(X, spt ‖V Z‖) d‖ΓZ# CZ‖(X)

(16.34)

≤ C
Ä
σZk
ä2αQ2

V Z (C0)

for each k = 0, 1, 2, . . . and

(16.35) ρ−n−2
∫
Bn+1
ρ (0)

dist2(X, spt ‖ΓZ# CZ‖) d‖V Z‖(X) ≤ Cρ2αQ2
V Z (C0)

for all ρ ∈ (0, 1/4], where C = C(α, γ,C0) ∈ (0,∞).

Let TV = {Z ∈ spt ‖V ‖ : Θ (‖V ‖, Z) ≥ q + 1/2} ∩ Bn+1
1 (0). We now use

the estimates (16.32)–(16.35), Lemmas 16.5(a) and 16.9 and Corollary 16.4 to

establish that TV ∩Bn+1
1/32(0) is an (n−1)-dimensional embedded C1,α submani-

fold of Bn+1
1/32(0) containing the origin. Indeed, note first that estimates (16.32),

(16.34) and (16.35) imply that for any given ε ∈ (0, 1/4), if V = V` with fixed

` sufficiently large, then for each Z ∈ TV ∩Bn+1
1/16(0) and each k ≥ 1, Hypothe-

ses 16.2 are satisfied with
Ä
ΓZ
ä−1

#
ηZ, 1

2
σZ
k

# V in place of V and C = CZ . (In

verifying Hypothesis 16.2(5) with
Ä
ΓZ
ä−1

#
ηZ, 1

2
σZ
k

# V =
Ä
ΓZ
ä−1

#
η0,σZ

k
# V

Z in

place of V , we argue exactly as we did in verifying Hypothesis 16.2(5) withÄ
ΓZk−1

ä−1

#
η0,σZ

k−1
# V

Z in place of V as part of the inductive step described

above.)

Consequently, we see that for each point (0, y) ∈ {0} ×Rn−1 ∩Bn+1
1/16(0),

(16.36) TV ∩R2 × {(0, y)} 6= ∅;

for if there is a point (0, y) ∈ {0}×Rn−1 ∩Bn+1
1/16(0) with TV ∩

(
R2 × {(0, y)}

)
= ∅, then, since TV ∩ Bn+1

1/16(0) is a relatively closed subset of Bn+1
1/16(0) and

0 ∈ TV , we can find r ∈ (0, 1/16) such that TV ∩
(
R2 ×Bn−1

r (0, y)
)

= ∅ but

TV ∩
(
R2 × ∂ Bn−1

r (0, y)
)
6= ∅, whence we may, in view of (16.33), (16.34)

and (16.35), pick any point Z ∈ TV ∩
(
R2 × ∂ Bn−1

r (0, y)
)
, choose k such

that σZk < r/4 and apply Lemma 16.5(a) with
Ä
ΓZ
ä−1

#
ηZ, 1

2
σZ
k

# V in place of

V, C = CZ and δ = 1/8 to get a contradiction with the assumption TV ∩(
R2 ×Bn−1

r (0, y)
)

= ∅.
For Z ∈ TV , let SZ = Z+ΓZ

(
{0} ×Rn−1

)
and note that for each Z ∈ TV

and each ρ ∈ (0, 1/4],

(16.37) TV ∩
Å
Bn+1
ρ (Z) \

ß
X ∈ Rn+1 : dist(X,SZ) <

1

8
ρ

™ã
= ∅.

This is easily seen by choosing, for given Z ∈ TV and ρ ∈ (0, 1/4], the unique

integer k such that 15
32σ

Z
k+1 < ρ ≤ 15

32σ
Z
k , and applying Remark (2) following
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Hypotheses 16.2 with τ = 1
16θ2q−m0+1 and with

Ä
ΓZ
ä−1

#
ηZ, 1

2
σZ
k

# V in place of

V. This and (16.36) imply that for each (0, y) ∈ {0}×Rn−1 ∩Bn+1
1/16(0), the set

TV ∩R2 × {(0, y)} consists of a unique point, so that

(16.38) TV ∩Bn+1
1/16(0) = graphϕ

for a function ϕ = (ϕ1, ϕ2) : Bn−1
1/16(0) → R2. Moreover, (16.37) and the es-

timates (16.24), (16.33) say that ϕ is Lipschitz with Lip(ϕ) ≤ 1 and, writing

ϕ̃(Z) = (ϕ1(Z), ϕ2(Z), Z) for Z ∈ Bn−1
1/16(0), that

(16.39) Dϕ̃(Z)
Ä
{0} ×Rn−1

ä
= ΓZ({0} ×Rn−1)

for Hn−1-a.e. Z ∈ Bn−1
1/16(0).

We now argue that ϕ|Bn−1
1/32

(0) must be of class C1,α. For this, first observe

that by employing exactly the argument leading to (16.32)–(16.35) but using

those conclusions of Lemma 16.9 involving RV (C) (in place of those involving

QV (C)), we obtain for each Z ∈ TV orthogonal rotations ∆Z ,∆Z
k of Rn+1 for

k = 1, 2, 3, . . . ; a cone WZ ∈ K and numbers τZk ∈ (0, 1] for k = 1, 2, 3, . . . ,

where for each k, τZk = θ`Z
k
τZk−1 for some `Zk ∈ {1, 2, . . . , 2q−m0 +1}, such that

(16.40) distH(spt ‖WZ‖ ∩Bn+1
1 (0), spt ‖C0‖ ∩Bn+1

1 (0)) ≤ CRV Z (C0);

(16.41) |∆Z(ej)−∆Z
k (ej)| ≤ C

Ä
τZk
äαRV Z (C0), j = 1, 2, . . . , n+ 1;

Ä
τZk
ä−n−2

∫
∆Z
k

(Bn+1

τZ
k
/2

(0)\{|r(X)|≤τZ
k
/64})

dist2(X, spt ‖V Z‖) d‖∆Z
# WZ‖(X)

(16.42)

≤ C
Ä
τZk
ä2αR2

V Z (C0)

for each k = 0, 1, 2, . . . ; and

(16.43) ρ−n−2
∫
Bn+1
ρ (0)

dist2(X, spt ‖∆Z
# WZ‖) d‖V Z‖(X) ≤ Cρ2αR2

V Z (C0)

for all ρ ∈ (0, 1/4], where C = C(α, γ,C0) ∈ (0,∞).

Since the sequence of varifolds Wk = ηZ,σZ
k

# V, k = 1, 2, 3, . . . has a sub-

sequence Wk′ that converges to a cone P satisfying, by (16.34) and (16.35),

spt ‖P‖ = spt ‖ΓZ# CZ‖, it follows from (16.43) taken with ρ = σZk′ that

spt ‖ΓZ# CZ‖ ⊆ spt ‖∆Z
# WZ‖. The same reasoning applied to the sequence

ηZ,τZ
k

# V establishes the reverse inclusion, so we have that spt ‖ΓZ# CZ‖ =

spt ‖∆Z
# WZ‖ whence, in particular, we have that

(16.44) ΓZ({0} ×Rn−1) = ∆Z({0} ×Rn−1).
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Recall (cf. the paragraph preceding (16.36)) that given any ε ∈ (0, 1/2), if

V = V` with ` fixed sufficiently large depending on ε, then for each Z ∈ TV ∩
Bn+1

1/16(0) and k≥1, Hypotheses 16.2 are satisfied with Vk,Z≡
Ä
∆Z
ä−1

#
ηZ, 1

2
τZ
k

# V

in place of V and WZ in place of C. Consequently, by Remark (4) following the

statement of Hypotheses 16.2, we see that given any ε ∈ (0, 1/2), if V = V` for

` fixed sufficiently large, then for any Z ∈ TV , k ≥ 1 and ‹Z ∈ TVk,Z , Hypothe-

ses 16.2 are satisfied with η
Z̃,1/2 #

Vk,Z in place of V and WZ in place of C. Now

take any two distinct points Z1, Z2 ∈ TV ∩Bn+1
1/32(0), let m be the unique integer

satisfying τZ1
m+1 < 2|Z1−Z2| ≤ τZ1

m and let ‹V = Vm,Z1 =
Ä
∆Z1
ä−1

#
η
Z1,

1
2
τ
Z1
m #

V.

Letting ‹Z =
Ä
∆Z1
ä−1
Å

2(Z2−Z1)

τ
Z1
m

ã
and noting that ‹Z ∈ spt ‖‹V ‖∩Bn+1

1/16(0) with

Θ(‖‹V ‖, ‹Z) ≥ q + 1/2, we may apply Lemma 16.9 iteratively (utilising its con-

clusions involving Q(·)(·)), starting with ‹V Z̃ = η
Z̃,1/2 #

‹V in place of V and

WZ1 in place of C (and with θ1, θ2, . . . θ2q−m0+1 equal to the same fixed con-

stants as chosen at the beginning of the proof of the present theorem), in the

manner exactly as in the argument leading to (16.32)–(16.35), to conclude that

there exist a cone ‹C ∈ K with

(16.45) distH(spt ‖‹C‖ ∩Bn+1
1 (0), spt ‖WZ1‖ ∩Bn+1

1 (0)) ≤ CQ
Ṽ Z̃

(WZ1);

orthogonal rotations Γ̃, Γ̃0, Γ̃1, . . . of Rn+1 with Γ̃0 = Identity; and a se-

quence of positive numbers {σ̃k} with σ̃0 = 1 and σ̃k = θ̃
jk
σ̃k−1 for some

j̃k ∈ {1, 2, . . . , 2q−m0 + 1} and each k ≥ 1, satisfying, for each k = 0, 1, 2, . . . ,

(16.46) |Γ̃(ej)− Γ̃k(ej)| ≤ C (σ̃k)
αQ

Ṽ Z̃
(WZ1), j = 1, 2, . . . , n+ 1;

(σ̃k)
−n−2

∫
Γ̃k(Bn+1

σ̃k/2
(0)\{|r(X)|≤σ̃k/16})

dist2(X, spt ‖‹V Z̃‖) d‖Γ̃#
‹C‖(X)

(16.47)

≤ C (σ̃k)
2αQ2

Ṽ Z̃
(WZ1);

and for each ρ ∈ (0, 1/4],

(16.48) ρ−n−2
∫
Bn+1
ρ (0)

dist2(X, spt ‖Γ̃#
‹C‖) d‖‹V Z̃‖(X) ≤ Cρ2αQ2

Ṽ Z̃
(WZ1),

where C = C(α, γ,C0) ∈ (0,∞) is as in (16.32)–(16.35). Noting that ‹V Z̃ =Ä
∆Z1
ä−1

#
η
Z2,

1
2
τ
Z1
m #

V, we deduce from (16.47), (16.48) and inequalities (16.34),

(16.35) taken with Z = Z2, and reasoning exactly as for (16.44), that

(16.49) ∆Z1 ◦ Γ̃({0} ×Rn−1) = ΓZ2({0} ×Rn−1).
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This together with (16.44) taken with Z = Z1 and (16.46) taken with k = 0

implies that

distH
Ä
ΓZ1
Ä
{0} ×Rn−1

ä
∩Bn+1

1 (0),ΓZ2
Ä
{0} ×Rn−1

ä
∩Bn+1

1 (0)
ä

≤ CQ
Ṽ Z̃

(WZ1),

where C = C(α, γ,C0) ∈ (0,∞). On the other hand, we see directly from

Corollary 16.4(c) (taken with ‹V in place of V and WZ1 in place of C) that

Q
Ṽ Z̃

(WZ1) ≤ CR
Ṽ

(WZ1) and by (16.42), (16.43) and (16.24) that R
Ṽ

(WZ1)

≤ C(τZ1
m )αRV Z1 (C0) ≤ C|Z1 − Z2|α, where C = C(n, α, γ,C0) ∈ (0,∞). We

have thus established that for any pair of points Z1, Z2 ∈ TV ∩Bn+1
1/32(0),

distH
Ä
ΓZ1
Ä
{0} ×Rn−1

ä
∩Bn+1

1 (0),ΓZ2
Ä
{0} ×Rn−1

ä
∩Bn+1

1 (0)
ä

≤ C|Z1 − Z2|α,

which in view of (16.39) says that

(16.50) ϕ|Bn−1
1/32

(0) ∈ C
1,α(Bn−1

1/32(0)).

Now fix j ∈ {1, 2, . . . ,m0} and assume, for notational convenience and without

loss of generality, that H
(0)
j = {(0, x2, y) ∈ Rn+1 : x2 > 0, y ∈ Rn−1}.

Let T ′V be the orthogonal projection of TV ∩ Bn+1
1/32(0) onto the hyperplane

{x1 = 0} ≡ Rn, so that T ′V = {(0, ϕ2(y), y) : y ∈ Bn−1
1/32(0)}. Assuming that

V = V` with ` sufficiently large, note then that T ′V ⊂ {|x2| < 1/128} and by

(16.38) and (16.50) that Bn
1/64(0) \ T ′V has exactly two components. Let Ω′ be

the component of Bn
1/64(0) \ T ′V containing Bn

1/64(0) ∩ {x2 > 1/128}. Keeping

in mind that (16.30) and (16.31) are valid for each Z ∈ TV ∩ Bn+1
1/32(0) and

each r = 1, 2, 3, . . . , it follows from (16.30), (16.31) and unique continuation of

solutions to the minimal surface equation that

V
(
(R× Ω′) ∩Nj

)
=

q0j∑
i=1

|graphui|,

where Nj =
⋃
Z∈TV ∩Bn+1

1/32
(0)

(
Z + ΓZ(N(H

(0)
j )

)
and, for each i = 1, 2, . . . , q

(0)
j ,

ui ∈ C2(Ω′) with ui solving the minimal surface equation on Ω′, |Dui| < 1,

u1 ≤ u2 ≤ · · · ≤ u
q
(0)
j

and, by the maximum principle, either ui ≡ ui+1 or

ui < ui+1 for each i = 1, 2, . . . , q
(0)
j − 1. Since for each i = 1, 2, . . . , q

(0)
j , ui

extends to Ω′ ∩ Bn
1/64(0) as a Lipschitz function with boundary values given

by uj |∂ Ω′∩Bn
1/64

(0) (0, ϕ2(y), y) = ϕ1(y) for each point (0, ϕ2(y), y) ∈ ∂ Ω′ ∩
Bn

1/64(0) = T ′V ∩Bn
1/64(0), it follows from (16.50) and standard C1,α boundary

regularity theory for uniformly elliptic equations ([Mor66]) that ui ∈ C1,α(Ω′∩
Bn

1/64(0)).
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We have thus established that V Bn+1
1/64(0) =

∑2q+1
j=1 |Mj | where, for each

j ∈ {1, 2, . . . , 2q + 1}, Mj is an embedded C1,α hypersurface-with-boundary

with ∂Mj = TV ∩ Bn+1
1/64(0) and, for each j, k ∈ {1, 2, . . . , 2q + 1}, either Mj ∩

Mk = TV ∩ Bn+1
1/64(0) or Mj = Mk. This directly contradicts hypothesis (S3)

that V is assumed to satisfy, completing the proof of the theorem in case

Θ(‖C0‖, 0) = q + 1/2.

Case 2: Θ(‖C0‖, 0) = q+1, q ≥ 2. Note that the validity of Theorem 16.1

in case Θ(‖C0‖, 0) = q + 1/2 enables us to repeat the entire proof of Theo-

rem 15.2 with q + 1 in place of q, yielding Theorem 15.2 with q + 1 in place

of q. Consequently, the assertion of Remark (3) following the statement of Hy-

potheses 16.2 holds with q+ 1 in place of q+ 1/2. Thus we may simply repeat

(see the remark following the proof of Lemma 16.5) all of the steps of the above

argument taking q + 1 in place of q + 1/2. This establishes Theorem 16.1 in

case Θ(‖C0‖, 0) = q + 1.

The proof of Theorem 16.1 is now complete. �

Remark. The case q = 1 of Theorem 3.3′ is a special case of Allard’s

Regularity Theorem (which is reproduced by taking q = 1 in our proofs of

Lemma 15.1 and Theorem 15.2). The validity of the case Θ(‖C0‖, 0) = 3/2

of Theorem 3.4 follows from the validity of the case q = 1 of Theorem 3.3′;

indeed, in this case, the same argument as for Theorem 16.1 carries over (with

obvious simplifications) provided the induction hypothesis (H1) is replaced

by Theorem 3.3′, case q = 1. In fact, when Θ(‖C0‖, 0) = 3/2, Theorem 3.4

is true without the stability hypotheses (S2) on V (so V only needs to be

stationary and satisfy (S3)); see [Sim93, Cors. 2 and 3]. This in turn enables

us to prove Theorem 3.4 in case Θ(‖C0‖, 0) = 2 by repeating the above proof

of Theorem 16.1 (case Θ (‖C0‖, 0) = q + 1), taking q = 1 and, in place of

induction hypotheses (H1) and (H2), case q = 1 of Theorem 3.3′ and case

Θ(‖C0‖, 0) = 3/2 of Theorem 3.4 respectively.

Theorem 15.2 and Theorem 16.1 together with the above remark and the

remark preceding the statement of Theorem 3.3′ complete the inductive proof

of both Theorem 3.3 and Theorem 3.4.

17. The Regularity and Compactness Theorem

Proof of Theorem 3.1. Note first that if V ∈ Sα, then it follows from

Theorem 3.3, Theorem 3.4 and Remark 3 of Section 6 that Hn−7+γ(sing V ∩
(Bn+1

2 (0)) = 0 for each γ > 0 if n ≥ 7 and sing V ∩Bn+1
2 (0) = ∅ if 2 ≤ n ≤ 6.

Suppose, for each k = 1, 2, 3, . . . , that Vk ∈ Sα and that

Λ = lim sup
k→∞

‖Vk‖(Bn+1
2 (0)) <∞.
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By Allard’s integer varifold compactness theorem, there exists a stationary

integral varifold V of Bn+1
2 (0), with ‖V ‖(Bn+1

2 (0)) < Λ + 1, such that, after

passing to a subsequence, Vk → V as varifolds in Bn+1
2 (0). Set K = sing V ∩

Bn+1
2 (0).

We argue that V ∈ Sα as follows. By Theorem 3.3 and unique continuation

of solutions to the minimal surface equation, if M is a connected component

of reg V and 0 < ρ′ < ρ < 2, there exists a number ε = ε(M,ρ, ρ′) ∈ (0, 1/2)

such that for all sufficiently large k,

spt ‖Vk‖ ∩ {X ∈ Bn+1
ρ (0) : dist(X,M ∩Bn+1

ρ (0)) < ε}

⊃ ⋃qj=1graphukj ⊃ spt ‖Vk‖ ∩ {X ∈ Bn+1
ρ′ (0) : dist(X,M ∩Bn+1

ρ′ (0)) < ε}

for some integer q ≥ 1 and functions ukj ∈ C1,α(M ∩ Bn+1
ρ (0);M⊥) solving

the minimal surface equation on M ∩ Bn+1
ρ (0). It follows that

∫
reg V |A|2ζ2 ≤∫

reg V |∇ ζ|2 for each ζ ∈ C1
c (reg V ), where A denotes the second fundamental

form of reg V. It is also clear, from Theorem 3.4, that V satisfies the structural

property (S3); for if not, there exists a point Z ∈ spt ‖V ‖ ∩ Bn+1
2 (0) such

that the (unique) tangent cone CZ to V at Z is supported by the union of a

finite number (≥ 3) of half-hyperplanes meeting along an (n− 1)-dimensional

subspace. By the definition of tangent cone and the fact that varifold conver-

gence of stationary integral varifolds implies convergence in Hausdorff distance

of the supports of the associated weight measures, for any given ε1 > 0, there

exists a number σ ∈ (0, dist(Z, ∂ Bn+1
2 (0))) such that for all sufficiently large

k, dist(spt ‖ηZ,σ# Vk‖∩Bn+1
1 (0), spt ‖CZ‖∩Bn+1

1 (0)) < ε1. This however con-

tradicts Theorem 3.4 if we take ε1 = ε(1/2,CZ), where ε is as in Theorem 3.4.

Thus V ∈ Sα, and hence Hn−7+γ(K) = 0 for each γ > 0 if n ≥ 7 and K = ∅ if

2 ≤ n ≤ 6.

Finally, suppose n = 7 and consider any V ∈ Sα. To complete the proof of

the theorem, it only remains to show that K is discrete. If this were false, there

would exist points Z,Zj ∈ K, j = 1, 2, 3 . . . , such that Zj 6= Z for each j =

1, 2, 3, . . . and Zj → Z as j →∞. Letting σj = |Z−Zj |, we obtain, passing to a

subsequence without changing notation, a tangent cone C = limj→∞ ηZ,σj # V.

By the discussion above, C ∈ Sα. Since σ−1
j (Zj − Z) ∈ Sn−1 ∩ sing ηZ,σj # V,

it follows, passing to a further subsequence, that σ−1
j (Zj − Z) → Z? ∈ Sn−1

and by Hausdorff convergence and Theorem 3.3, Z? ∈ sing C. Since C is a

cone, it follows that {tZ? : t > 0} ⊂ sing C, which is impossible since C ∈ Sα
and we have established that for n = 7, Hγ(K) = 0 for each γ > 0 and any

V ∈ Sα. �
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18. Generalization to Riemannian manifolds

Let N be a smooth (n + 1)-dimensional Riemannian manifold (without

boundary) and for X ∈ N , let expX denote the exponential map at X. For

each X ∈ N , let RX ∈ (0,∞] be the injectivity radius at X.

Let ‹V be a stationary integral n-varifold on N . Let X0 ∈ spt ‖‹V ‖, Nρ0(X0)

be a normal coordinate ball of radius ρ0 ∈ (0, RX0) around X0. Then V =

exp−1
X0 #

‹V Nρ0(X0) is an integral n-varifold on Bn+1
ρ0 (0) ⊂ TX0 N ≈ Rn+1,

which is stationary with respect to the functional

(18.1) FX0(V ) =

∫
Bn+1
ρ0

(0)×Gn
|ΛnDF (X) ◦ S| dV (X,S),

where F ≡ expX0
. Let ψ ∈ C1

c (Bn+1
ρ0 (0); Rn+1), and let ϕt, t ∈ (−ε, ε) be the

flow generated by ψ. By computing directly the first variation δFX0
V (ψ) ≡

d
dt

∣∣∣
t=0
FX0(ϕt#V ) of V with respect to FX0 and setting δFX0

V (ψ) = 0, we

see that the following bound holds (cf. [SS81, (1.7), (1.9), (1.11)]) for some

constant µ depending only on the metric on N. (Such µ ∈ (0,∞) exists by

replacing N with a suitable open subset of N if necessary.)

(S?1) For all ψ ∈ C1
c (Bn+1

ρ0 (0); Rn+1),∣∣∣∣∣
∫
Bn+1
ρ0

(0)×Gn
divS ψ(X) dV (X,S)

∣∣∣∣∣
≤ µ

∫
Bn+1
ρ0

(0)
(|ψ(X)|+ |X||∇ψ(X)|) d‖V ‖(X).

Furthermore, for ψ ∈ C1
c (Bn+1

ρ0 (0) \ sing V ; Rn+1), the second variation

δ2
FX0

V (ψ) ≡ d2

dt2

∣∣∣∣∣
t=0

FX0(ϕt#V )

of V with respect to FX0 is given by (cf. [SS81, (1.8), (1.10), (1.12)])

δ2
FX0

V (ψ) =

∫
reg V

(
n∑
i=1

|(Dτi ψ)⊥|2 + (divreg V ψ)2

−
n∑

i,j=1

(τi ·Dτj ψ) · (τj ·Dτi ψ)

é
dHn +R(ψ),

where {τ1, τ2, . . . , τn} is an orthonormal basis for the tangent space TX(reg V )

of reg V at X, Dτ ψ denotes the directional derivative of ψ in the direction τ

and

|R(ψ)| ≤ cµ
∫

reg V

Ä
c̃µ|ψ|2 + |ψ||∇ψ|+ |X||∇ψ|2

ä
dHn,

with c, c̃ absolute constants. If reg V is orientable and ν is a continuous choice

of unit normal to reg V , we may, for any ζ ∈ C1
c (reg V ), extend ζν to a vector
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field in C1
c (Bn+1

ρ0 (0) \ sing V ; Rn+1) and take in the above ψ = ζν to deduce

that (cf. [SS81, (1.14), (1.15)])

δ2
FX0

V (ψ) =

∫
reg V

Ä
|∇ ζ|2 − |A|2ζ2 +H2ζ2

ä
dHn +R(ψ),

where A denotes the second fundamental form of reg V , |A| the length of A,

H the mean curvature of reg V and

|R(ψ)| ≤ cµ
∫

reg V

Ä
c̃µ|ζ|2 + |ζ||∇ ζ|+ ζ2|A||X||∇ ζ|2 + |X|ζ2|A|2

ä
dHn.

If δ2
FX0

(ψ) ≥ 0 for all ψ = ζν, ζ ∈ C1
c (reg V ), then we have (cf. [SS81, (1.17)])

(S?2) For all ζ ∈ C1
c (reg V ) where c1, c2 are constants depending only on n,∫

reg V ∩Bn+1
ρ0

(0)
|A|2ζ2 dHn ≤

∫
reg V ∩Bn+1

ρ0
(0)
|∇ ζ|2 dHn

+ c1µ

∫
reg V ∩Bn+1

ρ0
(0)

Ä
c2µζ

2 + ζ|∇ ζ|+ ζ2|A|+ |X||∇ ζ|2

+|X|ζ2|A|2 + c2µ|X|2ζ2|A|2
ä
dHn.

For the rest of this discussion, we take µ, c1, c2 to be chosen as above and

fixed.

Definitions. Let µ, c1, c2 be the positive numbers as above.

(1) By a stable integral n-varifold ‹V on N we mean a stationary integral

n-varifold ‹V on N such that for each X0 ∈ spt ‖‹V ‖ and each normal ball

Nρ0(X0) ⊂ N around X0, the integral n-varifold V = (exp−1
X0

)#
‹V Nρ0(X0)

on Bn+1
ρ0 (0) ⊂ Rn+1 satisfies (S?2).

(2) For α ∈ (0, 1), let S̃α denote the collection of stable integral n-varifolds

on N satisfying the structural condition (S3) of Section 3 taken with normal

ball Nρ(Z) ⊂ N in place of Bn+1
ρ (Z).

(3) For α ∈ (0, 1), let S?α denote the collection of integral n-varifolds V on

Bn+1
1 (0) ⊂ Rn+1 such that

(18.2) V = η0,ρ# exp−1
X #
‹V Nρ(X)

for some ‹V ∈ S̃α, X ∈ spt ‖‹V ‖ and ρ ∈ (0, RX).

(4) For ρ ∈ (0,∞) and α ∈ (0, 1), let S?α(ρ) be the set of integral n-varifolds

V ∈ S?α such that (18.2) holds for some ‹V ∈ S̃α and X ∈ spt ‖‹V ‖ with RX ≥ ρ.

Remark. Let ρ ∈ (0,∞), and suppose that V ∈ S?α(ρ). Then for each

Y ∈ spt ‖V ‖ ∩Bn+1
1/2 (0),

(18.3) η0,ρ/2 # τY # V ∈ S?α(ρ/2),

where τY = exp−1
expX(ρY ) ◦ expX ◦ η0,ρ−1 . Note that τY (Y ) = 0.
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We assert that the following direct analog of Theorem 3.1 holds:

Theorem 18.1 (Regularity and Compactness Theorem—Manifold ver-

sion). Let N be a smooth (n+ 1)-dimensional Riemannian manifold, X0 ∈ N
and α ∈ (0, 1/2). Let {‹Vk} ⊂ S̃α be a sequence with X0 ∈ spt ‖‹Vk‖ for each

k = 1, 2, . . . and with

lim sup
k→∞

‖‹Vk‖(N) <∞.

Then there exist a subsequence {k′} of {k} and a varifold ‹V ∈ S̃α with X0 ∈
spt ‖‹V ‖ and with Hn−7+γ (sing ‹V ∩N) = 0 for each γ > 0 if n ≥ 7, sing ‹V ∩N
discrete if n = 7 and sing ‹V ∩ N = ∅ if 2 ≤ n ≤ 6 such that ‹Vk′ → ‹V as

varifolds of N and smoothly (i.e., in the Cm topology for every m) locally in

N \ sing ‹V . In particular, if W̃ ∈ S̃α, then Hn−7+γ (sing W̃ ∩N) = 0 for each

γ > 0 if n ≥ 7, sing W̃ ∩N is discrete if n = 7 and sing W̃ ∩N = ∅ if 2 ≤ n ≤ 6.

By the preceding discussion, this theorem is equivalent to the assertion

obtained from it by replacing N with Bn+1
1 (0) ⊂ Rn+1, X0 with 0 and S̃α

with S?α; the proof of the latter amounts to making minor modifications, as

described below, to the proof of Theorem 3.1.

Step 1. Let V be an integral n-varifold of Bn+1
1 (0) such that (18.2) holds

for some stationary integral n-varifold ‹V of N , X0 ∈ spt ‖‹V ‖ in place of X and

ρ0 ∈ (0, RX0) in place of ρ. By the discussion involving (5.3)–(5.9) of [SS81],

we have, for each 0 < σ < δ, where δ = δ(n, µρ0) ∈ (0, 1), the following facts:

(18.4) τ−n‖V ‖(Bn+1
τ (0)) ≤ (1 + 12nµρ0σ)σ−n‖V ‖(Bn+1

σ (0))

for all τ with 0 < τ ≤ σ; the density Θ(‖V ‖, 0) = limτ→0
‖V ‖(Bn+1

τ (0))
ωnτn

exists

(and is finite); the function Θ(‖ · ‖, 0) is upper semi-continuous;

(18.5)∫
Bn+1
σ (0)

|X⊥|2

|X|n+2
d‖V ‖(X) ≤ ‖V ‖(B

n+1
σ (0))

ωnσn
−Θ(‖V ‖, 0) + Cσ

‖V ‖(Bn+1
σ (0))

ωnσn
,

where C = C(n, µρ0) ∈ (0,∞); tangent cones to V at 0 ∈ spt ‖V ‖ exist and

are stationary integral hypercones of Rn+1.

Let VarTan(V, 0) denote the set of tangent cones to V at 0. For Y ∈
spt ‖V ‖ ∩ B1/2(0), let Θ(‖V ‖, Y ) = Θ(‖η0,ρ0/2 # τY #V ‖, 0) (see 18.3) and

VarTan(V, Y ) = VarTan(η0,ρ0/2 # τY #V, 0). Recalling the well-known fact that

if C is a stationary cone in a Euclidean space Rm, then the set {Z ∈ Rm :

Θ(‖C‖, Z) = Θ(‖C‖, 0)} is a linear subspace of Rm, we deduce by the ar-

gument of Almgren’s generalised stratification of stationary integral varifolds

([Alm00, Rem. 2.28]; see also [Sim96, §3.4]) the following:
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Let V be an integral n-varifold of Bn+1
1 (0) such that (18.2) holds for

some stationary integral n-varifold ‹V of N , X ∈ spt ‖‹V ‖ and ρ ∈
(0, RX). For k = 0, 1, 2, . . . , n, let Sk = {Y ∈ spt ‖V ‖ ∩ Bn+1

1/2 (0) :

dim {Z ∈ Rn+1 : Θ(‖C‖, Z) = Θ(‖C‖, 0)} ≤ k ∀C ∈ VarTan(V, Y )}.
Then dimH(Sk) ≤ k.

Step 2. We claim that the following analogs of Theorems 3.3 and 3.4 hold.

Theorem 18.2 (Sheeting Theorem—Manifold Version). Let α ∈ (0, 1/2),

ρ0 ∈ (0,∞) and q be any integer ≥ 1. Let α′ = (2α + 1)/4. There exists a

number ε0 = ε0(n, q, α, µρ0)∈ (0, 1) such that if V ∈S?α(ρ0), ω−1
n ‖V ‖(Bn+1

1 (0))

< q + 1/2, σ ∈ (0, 1/2), (q − 1/2) ≤ (ωnσ
n)−1 ‖V ‖(Bn+1

σ (0)) < (q + 1/2) and

σ−1distH(spt ‖V ‖ ∩ (R×Bσ), {0} ×Bσ) + σ2α′ < ε0, then

V (R×Bσ/2) =
q∑
j=1

|graphuj |,

where uj ∈ C1,β(Bσ/2) for each j = 1, 2, . . . , q; u1 ≤ u2 ≤ · · · ≤ uq and

σ−1 sup
Bσ/2

|uj |+ sup
Bσ/2

|Duj |+ σβ sup
X1,X2∈Bσ/2, X1 6=X2

|Duj(X1)−Duj(X2)|
|X1 −X2|β

≤ C
Ç
σ−n−2

∫
R×Bσ

|x1|2 d‖V ‖(X) + σ2α′
å1/2

.

Here C = C(n, q, α, µρ0) ∈ (0,∞) and β = β(n, q, α, µρ0) ∈ (0, 1).

Remark. If the conclusions of Theorem 18.2 hold and V corresponds, as

in (18.2), to some ‹V ∈ S̃α, X = X0 ∈ N ∩ spt ‖‹V ‖ and ρ = ρ0 ∈ (0, RX0), then

it follows that for each j ∈ {1, 2, . . . , q}, Vj ≡ |graph ρ0uj(ρ
−1
0 (·))| is stationary

with respect to the functional F(·) = FX0

Ä
(·) R×Bσ/2

ä
, where FX0 is as

in (18.1). Thus, by computing the associated Euler-Lagrange equation and

applying elliptic regularity theory, we see that uj ∈ C∞(Bσ/2) and satisfies an

equation of the form

(18.6)
n∑

k,`=1

ajk`DkD`uj = f j

on Bσ/2, with |f j(x)| ≤ µρ0 and ak`(x) = δk` −
Dkuj(x)D`uj(x)√

1+|Duj(x)|2
+ bjk`(x), where

|bjk`(x)| ≤ µρ0σ, for x ∈ Bσ/2.

Theorem 18.3 (Minimum Distance Theorem—Manifold Version). Let

α ∈ (0, 1/2), ρ0 ∈ (0,∞) and γ ∈ (0, 1/2). Let α′ = (2α + 1)/4. Suppose

that C0 is an n-dimensional stationary cone in Rn+1 such that spt ‖C0‖ is

equal to a finite union of at least three distinct n-dimensional half-hyperplanes

of Rn+1 meeting along an (n − 1)-dimensional subspace. Then there exists
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ε = ε(α, γ, µρ0,C0) ∈ (0, 1) such that if V ∈ S?α(ρ0), σ ∈ (0, 1/2), Θ(‖V ‖, 0) ≥
Θ(‖C0‖, 0) and (ωn)−1‖V ‖(Bn+1

1 (0)) ≤ ΘC0(0) + γ, then

σα
′
+ σ−1distH(spt ‖V ‖ ∩Bn+1

σ (0), spt ‖C0‖ ∩Bn+1
σ (0)) ≥ ε.

In particular, σ−1distH(spt ‖V ‖ ∩Bn+1
σ (0), spt ‖C0‖ ∩Bn+1

σ (0)) ≥ ε/2 for suf-

ficiently small σ > 0.

The proof of Theorems 18.2 and 18.3 amounts to an easy modification of

the induction argument given above for Theorems 3.3′ and 3.4, which is the

“Euclidean case,” viz. the case when µ = 0 (which corresponds to the case

when N is an open subset of Rn+1 in Theorem 18.1). We outline the proof as

follows:

(i) It follows from [SS81, Th. 1], that Theorem 18.2 holds if V , in place of

the structural condition (S3), satisfies that

dimH(sing V) ≤ n− 7 in case n ≥ 7 and sing V = ∅ in case n ≤ 6,

together with all other hypotheses as in Theorem 18.2.

(ii) Let ρ0 ∈ (0,∞), and let V be an integral n-varifold on Bn+1
1 (0) such

that (18.2) holds with ρ = ρ0 for some stationary integral n-varifold ‹V on N

and X0 ∈ spt ‖‹V ‖ with RX0 ≥ ρ0. Let σ ∈ (0, 1), Λ ∈ [1,∞), and suppose

that (ωnσ
n)−1‖V ‖(Bn+1

σ (0)) ≤ Λ and σ−n−2
∫
R×Bσ |x

1|2 d‖V ‖(X) +σ < 1. By

taking ψ(X) = x1ζ̃2(X)e1 in (S?1), where ζ̃ ∈ C1
c (R×B3/4), we deduce that

(18.7)∫
R×B3/4

|∇x1|2ζ̃2 d ‖η0,σ# V ‖(X)≤C
(∫

R×B3/4

|x1|2|∇ ζ̃|2 d ‖η0,σ# V ‖(X)+σ

)

for each ζ̃ ∈ C1
c (R × B3/4), where C = C(n,Λ,M, µρ0) ∈ (0,∞) and M =

supspt ‖η0,σ# V ‖∩(R×B3/4) |ζ̃|+ |Dζ̃|. Choosing ζ̃ such that ζ̃(x1, x′) = ζ(x′) in a

neighborhood of spt ‖η0,σ# V ‖ ∩ (R× B3/4), where ζ ∈ C1
c (B3/4) is such that

ζ ≡ 1 on B1/2, 0 ≤ ζ ≤ 1 and |Dζ| ≤ 8, we deduce from this that

(18.8)∫
R×B1/2

|∇x1|2 d ‖η0,σ# V ‖(X) ≤ C
(∫

R×B3/4

|x1|2 d ‖η0,σ# V ‖(X) + σ

)
,

where C = C(n,Λ, µρ0).

(iii) Let ρ0, V be as in (ii), and let σ ∈ (0, 3/4). With η0,σ# V in place

of V ,  
σ−n−2

∫
R×Bσ

|x1|2 d‖V ‖(X) + σ

in place of ÊV and with the constants ε0, C depending on n, q, µρ0, Theo-

rem 5.1 holds; its proof amounts to modifying the argument of [Alm00, Th. 3.8]

in obvious ways, making use of (18.4), (18.5) and (18.8).



STABLE CODIMENSION 1 INTEGRAL VARIFOLDS 1001

(iv) Consequently, the case q = 1 of Theorem 18.2 follows by the excess

improvement argument as in [All72, Chap. 8].

(v) From (iii) and the inequalities (18.5), (18.7), we deduce that for ρ0, V

as in (ii) and σ ∈ (0, 3/4), Theorem 7.1 hold with η0,σ# V in place of V and 
σ−n−2

∫
R×Bσ

|x1|2 d‖V ‖(X) + σ

in place of ÊV , again with the constants ε1, C etc. depending also on µρ0.

(vi) For what follows, fix α ∈ (0, 1/2), ρ0 ∈ (0,∞), and let α′ = (2α+1)/4.

For V ∈ S?α(ρ0) and σ ∈ (0, 3/4), let

Ê?V (σ) =

 
σ−n−2

∫
R×Bσ

|x1|2 d‖V ‖(X) + σ2α′ .

Let q be an integer ≥ 2, and assume inductively the validity of Theo-

rem 18.2 with 1, 2, . . . , q−1 in place of q and that of Theorem 18.3 if Θ (‖C0‖, 0)

∈ {3/2, 2, 5/2, . . . , q − 1/2, q}.
(vii) For each k = 1, 2, 3, . . . , let σk ∈ (0, 3/4), Vk ∈ S?α(ρ0) be such that

ω−1
n ‖Vk‖(Bn+1

1 (0)) < q+1/2, σk → 0 and (q−1/2) ≤ (ωnσ
n
k )−1 ‖Vk‖(Bn+1

σk
(0))

< (q + 1/2). If Ê?Vk(σk)→ 0, then as in the discussion following Theorem 5.1,

we may blow up the sequence {η0,σk # Vk Bn+1
1 (0)} by Ê?Vk(σk). We shall

continue to call a function v ∈ W 1,2
loc (B1; Rq) ∩ L2(B1; Rq) produced this way

a coarse blow-up.

(viii) By the reasoning of Remarks 2 and 3 of Section 6 and Step 1 above,

we have the following:

Let q be an integer ≥ 2 and suppose that the induction hypotheses as in

(vi) hold. If V ∈ S?α(ρ0), Ω ⊆ Bn+1
1 (0) is open and Θ(‖V ‖, Z) < q for

each Z ∈ spt ‖V ‖ ∩ Ω, then Hn−7+γ(sing V Ω) = 0 for each γ > 0

if n ≥ 7 and sing V Ω = ∅ if 2 ≤ n ≤ 6.

(ix) The collection B?q of all coarse blow-ups v (as in (vii)) is a proper

blow-up class, viz. B?q satisfies properties (B1)–(B7) of Section 4. Verification

of properties (B1)–(B3), (B5) and (B6) proceeds in the same way as for the

Euclidean case described in Section 8 above. In view of (i), property (B4)

follows from the corresponding argument for the Euclidean case, also described

in Section 8, with the inequality (18.5) taking the place of the monotonicity

identity (7.1).

Property (B7) is verified by separately establishing the same two cases

as Cases 1 and 2 of Section 9. With regard to Case 1, note that by taking

ψ(X) = ζ̃(X)e2 in (S?1), where ζ̃ ∈ C1
c (R × B3/4), it follows that for each

k = 1, 2, . . . ,
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∫
R×B3/4

∇x2 · ∇ ζ̃ d‖η0,σk # Vk‖(X)

∣∣∣∣∣
≤ C sup

spt ‖η0,σk # Vk‖∩(R×B3/4)

Ä
|ζ̃|+ |Dζ̃|

ä
σk

≤ C sup
spt ‖η0,σk # Vk‖∩(R×B3/4)

Ä
|ζ̃|+ |Dζ̃|

ä
σ1−2α′

k

Ä
Ê?Vk(σk)

ä2
,

where C = C(n, q, µρ0). Case 1 is established by taking this in place of (9.8)

and (18.7) in place of (5.1) in the argument of Lemma 9.1. With regard to

Case 2, we note that the following analogue of Lemma 13.1 holds. Here Cq,
Cq(p) are as defined in Section 10.

Lemma 18.4. Let q be an integer ≥ 2, α ∈ (0, 1/2), θ ∈ (0, 1/4) and

ρ0 ∈ (0,∞). There exist numbers ε = ε(n, q, α, θ, µρ0) ∈ (0, 1/2), γ =

γ(n, q, α, θ, µρ0) ∈ (0, 1/2) and β = β(n, q, α, θ, µρ0) ∈ (0, 1/2] such that the

following is true: Let σ ∈ (0, 1), and suppose that the induction hypotheses as

in (vi) and the following hold.

(1) V ∈ S?α(ρ0), Θ(‖V ‖, 0) ≥ q, (ωnσ
n)−1‖V ‖(Bn+1

σ (0)) < q + 1/2.

(2) C =
∑q
j=1 |Hj |+ |Gj | ∈ Cq, where for each j ∈ {1, 2, . . . , q}, Hj is the half-

space defined by Hj = {(x1, x2, y) ∈ Rn+1 : x2 < 0 and x1 = λjx
2} and

Gj is the half-space defined by Gj = {(x1, x2, y) ∈ Rn+1 : x2 > 0 and x1 =

µjx
2}, with λj , µj constants, λ1 ≥ λ2 ≥ · · · ≥ λq and µ1 ≤ µ2 ≤ · · · ≤ µq .

(3)
Ä
Ê?V (σ)

ä2 ≡ ∫R×B1
|x1|2d‖η0,σ# V ‖(X) + σ2α′ < ε, where α′ = (2α+ 1)/4.

(4) {Z : Θ(‖η0,σ# V ‖, Z) ≥ q} ∩
Ä
R× (B1/2 \ {|x2| < 1/16})

ä
= ∅.

(5)
∫
R×(B1/2\{|x2|<1/16}) dist2(X, spt ‖η0,σ# V ‖) d‖C‖(X)

+
∫
R×B1

dist2(X, spt ‖C‖) d‖η0,σ# V ‖(X) ≤ γ
Ä
Ê?V (σ)

ä2
.

(6)
Ä
Ê?V
ä2
< 3

2M0 inf{P∈Gn:P∩({0}×Rn)={0}×Rn−1}
∫
R×B1

dist2(X,P ), d‖V ‖(X)

+σ2α′ , where M0 = M0(n, q) ∈ (1,∞) is the constant defined in Section 10.

(7) Either

(i) C ∈ Cq(4), or

(ii) q ≥ 3, C ∈ Cq(p) for some p ∈ {5, . . . , 2q} and∫
R×(B1/2\{|x2|<1/16})

dist2(X, spt ‖η0,σ# V ‖) d‖C‖(X)

+

∫
R×B1

dist2(X, spt ‖C‖) d‖η0,σ# V ‖(X)

≤ β inf
C̃∈
⋃p−1
k=4Cq(k)

(∫
R×(B1/2\{|x2|<1/16})

dist2(X, spt ‖η0,σ# V ‖) d‖‹C‖(X)

+

∫
R×B1

dist2(X, spt ‖‹C‖) d‖η0,σ# V ‖(X)

å
.
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Then there exist an orthogonal rotation Γ of Rn+1 and a cone C′ ∈ Cq such

that the conclusions of Lemma 13.1 hold with η0,σ# V in place of V , Ê?V (σ) in

place of ÊV ,

E?V (C, σ) ≡
 ∫

R×B1

dist2(X, spt ‖C‖) d‖η0,σ# V ‖(X) + σ2α′

in place of EV and with the constants κ, C0, γ0, ν, C1, C2 ∈ (0,∞) depending

only on n, q, α and µρ0.

In proving this, note first that if σ2α′ >
∫
R×B1

|x1|2 d‖η0,σ# V ‖(X), then,

provided γ < θn+4/2, we trivially have that

θ−n−2
∫
R×Bθ

dist2(X, spt ‖C‖) d‖η0,σ# V ‖(X) ≤ θ−n−2γ
Ä
Ê?V (σ)

ä2
≤ 2θ−n−2γσ2α′ ≤ θ2σ2α′ ≤ θ2 (E?V (C, σ))2 .

Thus conclusions (a)–(d) hold with C′ = C and Γ= Identity, and conclusions

(e) and (f) can be checked as in the proof of Lemma 13.1. Hence we may

assume without loss of generality thatÄ
Ê?V (σ)

ä2 ≤ 2

∫
R×B1

|x1|2 d‖η0,σ# V ‖(X).

With this additional assumption and with the help of inequality (18.5), the

obvious analogues of Theorem 10.1 and Corollary 10.2 can be established;

consequently, Lemma 18.4 can be proved by making obvious modifications to

the entire argument leading to Lemma 13.1, as described in Sections 10–13.

The obvious analog of Lemma 13.3 then follows; note, in particular, that

in the conclusions of this modified lemma we must take

Q?V (C, σ) ≡
(∫

R×(B1/2\{|x2|<1/16})
dist2(X, spt ‖η0,σ# η0,σ# V ‖) d‖C‖(X)

+

∫
R×B1

dist2(X, spt ‖C‖) d‖η0,σ# V ‖(X) + σ2α′
å1/2

in place of QV , and note that the modified lemma yields that for some j ∈
{1, 2, . . . , 2q − 3}, C′ ∈ Cq and some orthogonal rotation Γ of Rn+1,∫
R×(B1/2\{|x2|<1/16})

dist2(X, spt ‖η0,θjσ# η0,σ# V ‖) d‖Γ# C′‖(X)

+

∫
R×B1

dist2(X, spt ‖Γ# C′‖) d‖η0,θjσ# V ‖(X) ≤ νjθ2
j (Q?V (σ))2 ,

where the parameters θ1, . . . , θ2q−3 and the constants ν1, . . . ν2q−3 are analogous

to the same quantities as in Lemma 13.3, with ν1 depending only on n, q, α,

µρ0 and for j ∈ {2, 3, . . . , 2q−3}, νj depending only on n, q, α, θ1, . . . , θj−1,µρ0.

By choosing θ1, θ2, . . . , θ2q−3 in that order, depending only on n, q, α and µρ0,
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to ensure that νjθ
2
j <

1
2θ

2α
j and θ2α′

j < 1
2θ

2α
j for each j = 1, 2, . . . , 2q − 3, we

deduce that under the hypotheses of the modified lemma,(
Q?V (Γ# C′, θjσ)

)2 ≤ θ2α
j (Q?V (C, σ))2

for some j ∈ {1, 2, . . . , 2q− 3}, C′ ∈ Cq and an orthogonal rotation Γ of Rn+1.

In view of the remark preceding Theorem 18.1, the iterative application of this

as in Lemma 14.1 gives the analog of Lemma 14.1; arguing as in Corollary 14.2

then establishes Case 2, completing the proof that B?q is a proper blow-up class.

(x) In view of (i) and (18.6), the argument of Section 15 carries over to

yield Theorem 18.2 for q ≥ 2, subject to the induction hypotheses as in (vi).

First in case Θ(‖C0‖, 0) = q + 1/2 and then in case Θ(C0‖, 0) = q + 1, again

subject to the induction hypotheses as in (vi), Theorem 18.3 follows from the

argument, with obvious modifications, of Section 16. In particular, note that in

view of the “monotonicity inequality” (18.5) needed in the proof, and the need

to use directly the first variation inequality (S?1) in establishing regularity of

blow-ups as in Theorem 16.7, we must take

E?V (C, σ) ≡
Ç∫

Bn+1
1 (0)

dist2(X, spt ‖C)‖) d‖η0,σ# V ‖(X) + σ2α′
å1/2

in place of the excess E used in Section 16 (see Lemma 16.8). Same modification

applies to the excess Q used in Lemma 16.9.

Step 3: In view of Step 1, Step 2 and the fact that Allard’s integral

varifold compactness theorem ([All72, Th. 6.4]) holds in Riemannian manifolds,

Theorem 18.1 follows from the argument of Theorem 3.1 in Section 17.

19. A sharp varifold maximum principle

We conclude this paper by pointing out an immediate application of The-

orem 18.1; namely, the following optimal strong maximum principle for co-

dimension 1 stationary integral varifolds.

Theorem 19.1. Let N be a smooth (n+1)-dimensional Riemannian man-

ifold.

(a) If V1, V2 are stationary integral n-varifolds on N such that

Hn−1(spt ‖V1‖ ∩ spt ‖V2‖) = 0,

then spt ‖V1‖ ∩ spt ‖V2‖ = ∅.
(b) Let Ω1, Ω2 be open subsets of N with Ω1 ⊂ Ω2 and Mi = ∂ Ωi, i = 1, 2.

If for i = 1, 2, Mi is connected, Hn−1(singMi) = 0 and Vi ≡ |Mi| is

stationary in N, then either spt ‖V1‖ = spt ‖V2‖ or spt ‖V1‖∩spt ‖V2‖ = ∅.
Here singMi = Mi \ regMi, where regMi is the set of points X ∈ Mi

with the property that there exists a number σ = σ(X) > 0 such that

Mi ∩ Bn+1
σ (X) is a smooth, properly embedded hypersurface of Bn+1

σ (X)

with no boundary in Bn+1
σ (X).
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Remark. These results were established by T. Ilmanen ([Ilm96]) under the

stronger hypotheses that

Hn−2(spt ‖V1‖ ∩ spt ‖V2‖) = 0

in part (a) and

Hn−2(singMi) = 0, i = 1, 2,

in part (b). Obvious examples show that for any γ > 0, neither of these

hypotheses can be weakened to Hn−1+γ(·) = 0.

Proof. The argument of [Ilm96] carries over, with (2) of [Ilm96] replaced

by the hypothesis

Hn−1(singM) = 0

and Theorems (8), (9) therein replaced by our Theorem 18.1. �
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