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A general regularity theory for stable

codimension 1 integral varifolds

By NESHAN WICKRAMASEKERA

Abstract

We give a necessary and sufficient geometric structural condition, which
we call the a-Structural Hypothesis, for a stable codimension 1 integral
varifold on a smooth Riemannian manifold to correspond to an embedded
smooth hypersurface away from a small set of generally unavoidable sin-
gularities. The a-Structural Hypothesis says that no point of the support
of the varifold has a neighborhood in which the support is the union of
three or more embedded C1'* hypersurfaces-with-boundary meeting (only)
along their common boundary. We establish that whenever a stable integral
n-varifold on a smooth (n + 1)-dimensional Riemannian manifold satisfies
the a-Structural Hypothesis for some a € (0, 1/2), its singular set is empty
if n < 6, discrete if n = 7 and has Hausdorff dimension < n — 7 if n > 8;
in view of well-known examples, this is the best possible general dimension
estimate on the singular set of a varifold satisfying our hypotheses. We
also establish compactness of mass-bounded subsets of the class of stable
codimension 1 integral varifolds satisfying the a-Structural Hypothesis for
some « € (0,1/2).

The a-Structural Hypothesis on an n-varifold for any a € (0,1/2) is
readily implied by either of the following two hypotheses: (i) the vari-
fold corresponds to an absolutely area minimizing rectifiable current with
no boundary, (ii) the singular set of the varifold has vanishing (n — 1)-
dimensional Hausdorff measure. Thus, our theory subsumes the well-known
regularity theory for codimension 1 area minimizing rectifiable currents and
settles the long standing question as to which weakest size hypothesis on
the singular set of a stable minimal hypersurface guarantees the validity of
the above regularity conclusions.

An optimal strong maximum principle for stationary codimension 1 in-
tegral varifolds follows from our regularity and compactness theorems.
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1. Introduction

Here we study regularity properties of stable critical points of the n-dimen-
sional area functional in a smooth (n 4 1)-dimensional Riemannian manifold,
addressing, among a number of other things, the following basic question:

When is a stable critical point V' of the n-dimensional area functional
in a smooth (n + 1)-dimensional Riemannian manifold made-up of
pairwise disjoint, smooth, embedded, connected hypersurfaces each of
which is itself a critical point of area?

Without further hypothesis, V' need not satisfy the stated property; this
is illustrated by (a sufficiently small region of ) any stationary union of three or
more hypersurfaces-with-boundary meeting along a common (n—1)-dimensional
submanifold (e.g., a pair of transverse hyperplanes in a Euclidean space). In
each of these examples, the connected components of the regular part of the
union are not individually critical points of area (in the sense of having vanish-
ing first variation with respect to area for deformations by compactly supported
smooth vector fields of the ambient space; see precise definition in Section 3).

We give a geometrically optimal answer to the above question by estab-
lishing a precise version (given as Corollary 1) of the following assertion:

Presence of a region of V. where three or more hypersurfaces-with-
boundary meet along their common boundary is the only obstruction for
V' to correspond to a locally finite union of pairwise disjoint, smooth,
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embedded, connected hypersurfaces each of which is itself a critical
point of area.

This follows directly from our main theorem (the Regularity and Compact-
ness Theorem) which establishes a precise version of the following regularity
statement:

Presence of a region of V. where three or more hypersurfaces-with-
boundary meet along their common boundary is the only obstruction
to complete reqularity of V in low dimensions and to regularity of V
away from a small, quantifiable, set of generally unavoidable singular-
ities in general dimensions.

In proving these results, we shall first work in the context where the
ambient manifold is an open subset of R"*! with the Euclidean metric. The
differences that arise in the proof in replacing Euclidean ambient space by a
general smooth (n + 1)-dimensional Riemannian manifold amount to “error
terms” in various identities and inequalities that are valid in the Euclidean
setting, and they can be handled in a straightforward manner. We shall discuss
this further in the penultimate section of the paper.

Here, a critical point of the n-dimensional area means a stationary integral
n-varifold; i.e., an integral n-varifold having zero first variation with respect
to area under deformation by the flow generated by any compactly supported
C* vector field of the ambient space (see hypothesis (S1) in Section 3).

For a varifold V, let regV denote its regular part, i.e., the smoothly
embedded part (of the support of the weight measure ||V|| associated with V'),
and let sing V' denote its singular set, i.e., the complement of reg V' (in the
support of ||V||); see Section 2 for the precise definitions of these terms.

A stationary integral varifold V is stable if reg V' is stable in the sense that
V' has nonnegative second variation with respect to area under deformation by
the flow generated by any C'' ambient vector field that is compactly supported
away from sing V' and that, on reg V', is normal to reg V. In our codimension
1 setting and for Euclidean ambient space, stability of V' whenever reg V' is
orientable is equivalent to requiring that reg V' satisfies the following stability
inequality ([Sim83, §9]):

/ yAPg%mng/ VCPAH V¢ e Clreg V);
regV regV

here A denotes the second fundamental form of reg V', |A| the length of A, V the
gradient operator on reg V and H" is the n-dimensional Hausdorff measure on
R, (In fact a slightly weaker form of the stability hypothesis suffices for the
proofs of all of our theorems here, and as a result of that, orientability of reg V'
for the varifolds V' considered here is a conclusion rather than a hypothesis;
see hypothesis (S§2) in Section 3 and Corollary 3.2.)
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By a stable integral n-varifold we mean a stable, stationary integral n-vari-
fold. For o € (0,1) and V an integral varifold on a smooth Riemannian
manifold, we state the following condition (hypothesis (S3) in Section 3), which
we shall refer to often throughout the rest of the introduction:

a-STRUCTURAL HYPOTHESIS. No singular point of V' has a neighbor-
hood in which V corresponds to a union of embedded CH* hypersurfaces-with-
boundary meeting (only) along their common CY* boundary (and with mul-
tiplicity a constant positive integer on each of the constituent hypersurfaces-
with-boundary).

Our main theorem (Theorem 18.1; for Euclidean ambient space, Theo-
rem 3.1) can now be stated as follows:

REGULARITY AND COMPACTNESS THEOREM. A stable integral n-varifold
V' on a smooth (n + 1)-dimensional Riemannian manifold corresponds to an
embedded hypersurface with no singularities when 1 < n < 6; to one with at
most a discrete set of singularities when n = 7; and to one with a closed set of
singularities having Hausdorff dimension at most n — 7 when n > 8 (and with
multiplicity, in each case, a constant positive integer on each connected com-
ponent of the hypersurface), provided V satisfies the a-Structural Hypothesis
above for some o € (0,1/2).

Furthermore, for any given o € (0,1/2), each mass-bounded subset of
the class of stable codimension 1 integral varifolds satisfying the a-Structural
Hypothesis is compact in the topology of varifold convergence.

In case V corresponds to an absolutely area minimizing codimension 1
rectifiable current, the regularity conclusion of this theorem is well known and
is the result of combined work of E. De Giorgi [DG61], R. Reifenberg [Rei60],
W. Fleming [Fle62], F. Almgren [Alm66], J. Simons [Sim68] and H. Federer
[Fed70]. While our work uses ideas and results from some of these pioneering
works, it does not rely upon the fact that the conclusions hold in the area min-
imizing case; it is interesting to note that the above theorem indeed subsumes
the regularity theory for codimension 1 area minimizing rectifiable currents for
the following simple reason: If T' is a rectifiable current on an open ball and
if T" has no boundary in the interior of the ball and is supported on a union
of three or more embedded hypersurfaces-with-boundary meeting only along
their common boundary, then 1" cannot be area minimizing.

Let V be a stationary integral n-varifold on a Riemannian manifold N.
Once we know that the singular set of V is sufficiently small—in fact, as
small as having vanishing (n — 1)-dimensional Hausdorff measure—it is not
difficult to check that the multiplicity 1 varifold associated with each connected
component of the regular part of V is itself stationary in N. Thus we deduce
from the Regularity and Compactness Theorem the following:
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COROLLARY 1. The a-Structural Hypothesis (see above) for some a €
(0,1/2) is necessary and sufficient for a stable codimension 1 integral varifold
V' on a smooth Riemannian manifold N to have the following “local decom-
posability property”: For each open ) C N with compact closure in N, there
exist a finite number of pairwise disjoint, smooth, embedded, connected hy-
persurfaces My, Ma, ..., My of Q (possibly with a nonempty interior singular
set sing M; = (M; \ M;) N Q for each j = 1,2,...,k) and positive integers
41,92, - - -, gk such that the multiplicity 1 varifold |M;| defined by M; is station-
ary in 0 for each j =1,2,....k and V L = 3F_, q;|Mj].

In 1981, R. Schoen and L. Simon ([SS81]) proved that the conclusions
of the Regularity and Compactness Theorem hold for the n-dimensional sta-
ble minimal hypersurfaces (viz. embedded hypersurfaces that are stationary
and stable as multiplicity 1 varifolds) satisfying, in place of the a-Structural
Hypothesis, the (much more restrictive) property that the singular sets have
locally finite (n — 2)-dimensional Hausdorff measure. Since then, it has re-
mained an open question as to what the weakest size hypothesis (in terms of
Hausdorff measure) on the singular sets is that would guarantee the validity
of the same conclusions. Since vanishing of the (n — 1)-dimensional Hausdorff
measure of the singular set trivially implies the a-Structural Hypothesis, we
have the following immediate corollary of the Regularity and Compactness
Theorem, which settles this question:

COROLLARY 2. The conclusions of the Regularity and Compactness Theo-
rem hold for the n-dimensional stable minimal hypersurfaces with singular sets
of vanishing (n — 1)-dimensional Hausdorff measure. In fact, a stable codi-
mension 1 integral n-varifold V satisfies the a-Structural Hypothesis for some
a € (0,1/2) if and only if its singular set has vanishing (n — 1)-dimensional
Hausdorff measure.

A union of two transversely intersecting hyperplanes in a Euclidean space
shows that for no v > 0 can the singular set hypothesis in Corollary 2 be
weakened to vanishing of the (n — 1 + 7)-dimensional Hausdorff measure.

In contrast to our a-Structural Hypothesis, the singular set hypothesis
of [SS81] (i.e., the hypothesis that H" 2(singV N K) < oo for each compact
subset K of the ambient space), together with stability away from the singular
set, a priori implies, by a straightforward argument, that the singularities
are “removable for the stability inequality”— that is to say, the above stability
inequality is valid for the larger class of test functions ¢ that are the restrictions
to the hypersurface of compactly supported smooth functions of the ambient
space (that are not required to vanish near the singular set). The techniques
employed in [SS81] in the proof of the regularity theorems therein relied on this
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fact in an essential way. Interestingly, the a-Structural Hypothesis or, for that
matter, vanishing of the (n — 1)-dimensional Hausdorff measure of the singular
set, does not seem to imply a priori even local finiteness of total curvature, viz.
Jregvinre |A]? < oo for each compact subset K of the ambient space (whereas
the singular set hypothesis of [SS81] does, in view of the strengthening of
the stability inequality just mentioned). This means that in our proof we
cannot use the stability inequality in a direct way over arbitrary regions of the
varifolds. (Of course a posteriori we can strengthen the stability inequality in
the manner described above so, in particular, it is true under our hypotheses

that freg v
Nevertheless, at several stages our proof makes indispensable use of the work

K |A|? < oo for each compact subset K of the ambient space.)

of Schoen and Simon—specifically, Theorem 3.5 below; indeed, application of
Theorem 3.5 in regions where we have sufficient control over the singular set
is a principal way in which the stability hypothesis enters our proof.

The Regularity and Compactness Theorem is optimal in several ways.
A key aspect of the theorem is that it requires mo hypothesis concerning the
size of the singular sets; nor does it require any hypothesis concerning the
generally-difficult-to-control set of points where some tangent cone is a plane
of multiplicity 2 or higher. What suffices is the a-Structural Hypothesis, which
is easier to check in principle. As mentioned before, stationary unions of half-
hyperplanes of a Euclidean space meeting along common axes illustrate that
the a-Structural Hypothesis is a sharp condition needed for the regularity con-
clusions of the theorem.

In view of well-known examples of 7-dimensional stable hypercones with
isolated singularities (e.g., the cone over S3(1/4/2) x S3(1/v/2) C R¥®), the
Regularity and Compactness Theorem is also optimal with regard to its con-
clusions in the sense that it gives, in dimensions > 7, the optimal general
estimate on the Hausdorff dimension of the singular sets.

It remains an open question as to what one can say about the size of the
singular sets if the stability hypothesis in the theorem is removed. Obviously
in this case one cannot draw the same conclusions in view of the fact that there
are embedded nonequatorial minimal surfaces of 8 (e.g., S'(1/v/2) x S*(1/v/2)
C 83), the cones over which provide examples of stationary (unstable) hyper-
cones in R* with isolated singularities. There are no 2-dimensional singular
stationary hypercones satisfying the a-Structural Hypothesis; however, it is
not known whether there is a singular 2-dimensional stationary integral vari-
fold V in R3 such that V either satisfies the a-Structural Hypothesis or has a
singular set of vanishing 1-dimensional Hausdorff measure or has an isolated
singularity. It also remains largely open what one can say concerning sta-
ble integral varifolds of codimension > 1. Again, the same conclusions as in
our theorem cannot be made in this case due to the presence of branch point
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singularities, as illustrated by 2-dimensional holomorphic varieties with iso-
lated branch points. See the remark following the statement of the Regularity
and Compactness Theorem in Section 3 (Theorem 3.1) for a further discussion
on optimality of our results here.

For a general stationary integral varifold, a point where some tangent cone
is a plane of multiplicity 2 or higher may or may not be a regular point. Our
“Sheeting Theorem” (Theorem 3.3 below) implies that if the varifold satisfies
the hypotheses of the Regularity and Compactness Theorem, then such a point
is a regular point. (As is well known, a point where there is a multiplicity 1
tangent plane is always a regular point, for any stationary integral varifold,
by the regularity theorem of W. K. Allard; see [All72, §8] and also [Sim83,
Th. 23.1].) Indeed, the Sheeting Theorem is one of the two principal ingredi-
ents of the proof of the Regularity and Compactness Theorem; the other is the
“Minimum Distance Theorem” (Theorem 3.4), which implies that no tangent
cone to a varifold satisfying the hypotheses of the Regularity and Compact-
ness Theorem can be supported by a union of three or more half-hyperplanes
meeting along a common (n — 1)-dimensional axis.

A direct consequence of Allard’s regularity theorem is that the regular part
of a stationary integral varifold is a nonempty—in fact a dense—subset of its
support [All72, §8.1]. Thus, given stationarity of the varifold, our stability hy-
pothesis, which concerns only the regular part of the varifold, is never vacuously
true. However, an open, dense subset could have arbitrarily small (positive)
measure, and in fact, as mentioned above, under the stationarity hypothesis
alone no general result whatsoever is known concerning the Hausdorff measure
of the singular sets. Closely related to this is the point made before that from
the hypotheses of the Regularity and Compactness Theorem, not even local
finiteness of total curvature seems to follow a priori. In light of these con-
siderations that indicate that our hypotheses are rather mild, it is somewhat
surprising that our hypotheses imply optimal regularity of the hypersurfaces.

We may summarise all of the various regularity results discussed above
and established in subsequent sections of the paper as follows:

THEOREM. Let V' be a stable integral n-varifold on a smooth (n + 1)-
dimensional Riemannian manifold N. The following statements concerning V
are equivalent:

(a) For some o € (0,1/2), V satisfies the a-Structural Hypothesis, viz. no
singular point of V' has a neighborhood in which V' corresponds to a union
of CY% embedded hypersurfaces-with-boundary meeting (only) along their
common boundary, with multiplicity a constant positive integer on each
constituent hypersurface-with-boundary.

(b) singV =0 if1 <n < 6, singV is discrete ifn = 7 and H"~ "+ (sing V) = 0
for each v >0 if n > 8.
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(c) H" (sing V) = 0.

(d) V' has the local decomposability property (defined in Corollary 1 above),
viz. for each open QQ C N with compact closure in N, there exist a finite
number of pairwise disjoint, smooth, embedded, connected hypersurfaces
My, Ms, ..., My of Q (possibly with (M; \ M;) N Q nonempty for each
j=1,2,..., k) and positive integers q1,qa, . . ., qi such that the multiplicity
1 wvarifold |M;| defined by M; is stationary in Q for each j = 1,2,....k
and 'V LQ = Z?zl q]"Mj‘.

(e) No tangent cone of V' corresponds to a union of three or more half-hyper-
planes meeting along a common (n — 1)-dimensional subspace, with multi-
plicity a constant positive integer on each constituent half-hyperplane.

(f) V satisfies the a-Structural Hypothesis for each o € (0,1/2).

Finally, we mention another direct implication of the Regularity and Com-
pactness Theorem, namely, the following optimal strong maximum principle
(Theorem 19.1) for codimension 1 stationary integral varifolds:

VARIFOLD MAXIMUM PRINCIPLE. Let N be a smooth (n+ 1)-dimensional
Riemannian manifold, and let Q1, Qo be open subsets of N such that 1 C Q.
Let M; = 0Q; fori=1,2. If fori =1,2, M; is connected, H" ! (sing M;) = 0
and V; = |M;] is stationary in N, then either spt ||Vi|| = spt ||Va]| or spt ||[Vi| N
spt ||Va|| = 0. Here sing M; = M; \ reg M;, where reg M; is the set of points
X € M; such that M; is a smooth, embedded submanifold near X.

See Section 2 for an explanation of notation used here. If the varifolds V;
and V5, are both free of singularities, the theorem is easily seen to follow from
the Hopf maximum principle. B. Solomon and B. White [SW89] proved the
theorem assuming only that one of V; or V5 is free of singularities (allowing
the other to be arbitrary with no restriction on its singular set). M. Moschen
[Mos77] and independently L. Simon [Sim87] established the result in case Vj
and V5 correspond to area minimizing integral currents, both possibly singu-
lar. Using the Schoen-Simon regularity theory [SS81], some key ideas from
[Sim87] as well as the Solomon-White theorem, T. Ilmanen [Ilm96] estab-
lished the theorem (for stationary Vi, V3) subject to the stronger condition
H"~2(sing M;) < oo for i = 1,2. The version above follows directly from the
argument in [Ilm96], in view of the fact that we may use Corollary 2 in places
where the argument in [Ilm96] depended on the Schoen-Simon theory. This ver-
sion is optimal in the sense that larger singular sets cannot generally be allowed.

Outline of the method. Here we give a brief description of the proof of
the Regularity and Compactness Theorem. Fix any a € (0,1), and let S,
denote the family of stable integral n-varifolds of the open ball ByT(0) C
Rt satisfying the a-Structural Hypothesis. The proof of the Regularity and
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Compactness Theorem is based on establishing the fact that no tangent cone
at a singular point of a varifold belonging to the varifold closure of S, can be
supported by (a) a hyperplane or (b) a union of half-hyperplanes meeting along
an (n — 1)-dimensional subspace. Once this is established, it is not difficult to
reach the conclusions of the theorem with standard arguments.

The assertion in case (a) is implied by the following regularity result (The-
orem 3.3):

SHEETING THEOREM. Whenever a wvarifold in Sy is weakly close to a
given hyperplane Py of constant positive integer multiplicity, it must break
up in the interior into disjoint, embedded smooth graphs ( “sheets”) of small
curvature over Py.

The assertion in case (b) is a consequence of the following (Theorem 3.4):

MiINIMUM DISTANCE THEOREM. No wvarifold in S, can be weakly close
to a given stationary integral hypercone Cqy corresponding to a union of three
or more half-hyperplanes meeting along an (n — 1)-dimensional subspace (and
with constant positive integer multiplicity on each half-hyperplane).

Our strategy is to prove both the Sheeting Theorem and the Minimum
Distance Theorem simultaneously by an inductive argument, inducting on the
multiplicity ¢ of Py for the Sheeting Theorem and on the density O(]|Cyl|,0) (=
q or g+ 1/2) of Cy at the origin for the Minimum Distance Theorem, where ¢
is an integer > 1. Approaching both theorems inductively and simultaneously
in this manner makes it possible to establish, for varifolds in S, (satisfying
appropriate “small excess” hypotheses in accordance with the theorems) and
for their “blow-ups,” many of the necessary a priori estimates that seem in-
accessible via an approach (inductive or otherwise) aimed at proving the two
theorems separately.

The main general idea in the argument is the following: Let ¢ be an integer
> 2, and assume by induction the validity of the Sheeting Theorem when Py
has multiplicity € {1,...,¢— 1} and of the Minimum Distance Theorem when
O(|Col|,0) € {3/2,...,4—1/2,q}. Then, in a region of a varifold in S, where
no singular point has density > ¢, we may apply the induction hypotheses to-
gether with a theorem of J. Simons ([Sim68]; see also [Sim83, App. B]) and the
“generalised stratification of stationary integral varifolds” due to F. J. Almgren
Jr. [Alm00, Th. 2.26 and Rem. 2.28] to reduce the dimension of the singular
set to a low value. This permits effective usage of the stability hypothesis,
including applicability of the Schoen-Simon version ([SS81, Th. 2]; also Theo-
rem 3.5 below) of the Sheeting Theorem, in such a region. On the other hand,
in the presence of singularities of density > ¢ (and whenever the density ratio
of the varifold at scale 1 is close to q), it is possible to make good use of the



852 NESHAN WICKRAMASEKERA

monotonicity formula; most notable among its consequences in the present con-
text are versions (Theorem 10.1 and Corollary 10.2), for a varifold in S, with
small “height excess” relative to a hyperplane and lower order height excess
relative to certain cones, of L. Simon’s [Sim93] a priori L?-estimates, and an
analogous, new, “nonconcentration-of-tilt-excess” estimate (Theorem 7.1(b))
giving control of the amount of its “tilt-excess” relative to the hyperplane in
regions where there is a high concentration of points of density > q.

Combining these techniques, we are able to fully analyse, under the in-
duction hypotheses, the “coarse blow-ups,” namely, the compact class B, C
VVl})’f(BU RY) N L? (B1;RY) (B; = the open unit ball in R™) consisting of or-
dered g-tuples of functions produced by blowing up sequences of varifolds in S,
converging weakly to a multiplicity ¢ hyperplane. (See the precise definition
of B, at the end of Section 5.) One of the key properties that needs to be
established for By is that it does not contain an element H whose graph is the
union of ¢ half-hyperplanes in one half-space of R"*! and ¢ half-hyperplanes
in the complementary half-space, with all half-hyperplanes meeting along a
common (n — 1)-dimensional subspace and at least two of them distinct on one
side or the other. (This is a Minimum Distance Theorem for B,, analogous
to the Minimum Distance Theorem for S,.) Establishing this property takes
considerable effort and occupies a significant part (Sections 9 through 14) of
our work. It is achieved as follows:

First we rule out (in Section 9), by a first variation argument utilizing
the nonconcentration-of-tilt-excess estimate of Theorem 7.1(b), the possibility
that there is such H € B, with its graph having all ¢ half-hyperplanes on one
side coinciding (but not on the other).

The second, more involved step is to rule out the existence of such an
element in B, (call it H’) with its graph having at least two distinct half-
hyperplanes on each side. To this end we assume, arguing by contradiction,
that there is such H' € B, and use the induction hypotheses to implement a
“fine blow-up” procedure (see the definition at the end of Section 11), where
certain sequences of varifolds in S, are blown up by their height excess (the
“fine excess” ) relative to appropriate unions of half-hyperplanes (corresponding
to “vertical” scalings of H' by the coarse excess of the varifolds giving rise to
H'). We use first variation arguments (in particular, Simon’s L?-estimates
and the nonconcentration-of-tilt-excess estimate of Theorem 7.1(b)) and the
standard C1# boundary regularity theory for harmonic functions to prove a
uniform interior continuity estimate (Theorem 12.2) for the first derivatives of
the fine blow-ups, and we use it, via an excess improvement argument, to show
that our assumption H’ € B, must contradict one of the induction hypotheses,
namely, that the Minimum Distance Theorem is valid when O(||Cyl|,0) = g.
This enables us to conclude that the coarse blow-up class B, has the asserted
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property, viz. that the only elements in B, that are given by linear functions
on either of two complementary half-spaces are the ones given by ¢ copies of a
single linear function everywhere.

Equipped with this fact and a number of other key properties that we es-
tablish for the coarse blow-ups (see items (B1)—(B7) of Section 4 for a complete
list), we ultimately obtain (in Theorems 14.3 and 4.1), subject to the induc-
tion hypotheses, interior C' regularity of coarse blow-ups and consequently,
that any coarse blow-up is an ordered set of ¢ harmonic functions (a Sheeting
Theorem for B, analogous to the Sheeting Theorem for S,); furthermore, we
show that these harmonic functions all agree if infinitely many members of a
sequence of varifolds giving rise to the blow-up contain, in the interior, points
of density > q.

The preceding result is the key to completion of the induction step for the
Sheeting Theorem. Together with the Schoen-Simon version of the Sheeting
Theorem, it enables us to prove a De Giorgi type lemma (Lemma 15.1), the
iterative application of which leads us to the following conclusion: Let Py be
a hyperplane with multiplicity ¢, and suppose that V is a varifold in S, lying
weakly close to Py in a unit cylinder over Py. Let D be the region of Py inside
a cylinder slightly smaller than the unit cylinder. Then (i) there is a closed
subset of D over each point of which the support of V' consists of a single point;
furthermore, at this point, V' has a unique multiplicity ¢ tangent hyperplane
almost parallel to Py, and relative to this tangent hyperplane, the height excess
of V satisfies a uniform decay estimate; and (ii) over the complementary open
set, V corresponds to embedded graphs of ¢ ordered, analytic functions of
small gradient solving the minimal surface equation. Facts (i), (ii) and elliptic
estimates imply, by an elementary general argument (Lemma 4.3), that the
varifold corresponds to ¢ ordered graphs over all of D and that each graph
satisfies a uniform C# estimate (Theorem 15.2) for some fixed g € (0,1),
completing the induction step for the Sheeting Theorem.

The final step of the argument is to complete induction for the Minimum
Distance Theorem, which requires showing that the Minimum Distance The-
orem holds whenever ©(||Cy|[,0) € {¢ +1/2,q + 1}, where Cy is a stationary
cone as in the theorem. Since we may now assume the validity of the Sheet-
ing Theorem for multiplicity up to and including ¢, we have all the necessary
ingredients to establish (in Theorem 16.1) that given such Cy, if there is a
varifold V' € S, weakly close to Cgp, then it must in the interior be made up
of C embedded hypersurfaces-with-boundary meeting along their common
boundary; this directly contradicts the a-Structural Hypothesis and proves
the Minimum Distance Theorem, subject to the induction hypotheses, when
O(|Coll,0) € {qg+ 1/2,q + 1}. Our argument also establishes the Minimum
Distance Theorem when O(||Cy|[,0) € {3/2,2}, since in this case we have, in
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place of the induction hypotheses, Allard’s Regularity Theorem, which implies
the Sheeting Theorem when g = 1.
This completes the outline of the proof.
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2. Notation
The following notation will be used throughout the paper:

e n is a fixed positive integer > 2, R"! denotes the (n + 1)-dimensional

nfl)

Euclidean space and (z', 22, y',9%, ...,y , which we shall sometimes

abbreviate as (z!, 22, y), denotes a general point in R"*1. We shall identify
R" with the hyperplane {z! = 0} of R"*! and R"~! with the subspace
{x! = 2% = 0}.

e For Y e R""!and p> 0, BJT (V) ={X e R""! : |[X - Y| < p}.
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e ForY e R"and p >0, B,(Y) ={X € R": | X - Y| < p}. We shall often
abbreviate B,(0) as B,.

e For Y € R"™ and p > 0, 5y, : R*™ — R"™! is the map defined by
ny,p(X) = p~1(X —Y), and 1, abbreviates 1 ,.

e #* denotes the k-dimensional Hausdorff measure in R"t!, and w, =
1B, (0)).

e For A,B c R""!, disty(A, B) denotes the Hausdorff distance between A
and B.

e For X € R"™! and A ¢ R""!, dist(X, A) = infyea | X — Y.

e For A c R"!, A denotes the closure of A.

e (3, denotes the space of hyperplanes of R"*1.

For an n-varifold V' ([All72]; see also [Sim83, Ch. 8]) on an open subset (2
of R™! an open subset Q of €, a Lipschitz mapping f : Q@ — R"™! and a
countably n-rectifiable subset M of Q with locally finite H"-measure, we use
the following notation:

V L abbreviates the restriction V L_(Q x G,,) of V to € x Gn,.

|V|| denotes the weight measure on 2 associated with V.

spt || V]| denotes the support of |V]|.

f#V denotes the image varifold under the mapping f.

e | M| denotes the multiplicity 1 varifold on Q associated with M.

o For Z € spt||V|| N, VarTan(V, Z) denotes the set of tangent cones to V'
at Z.

e reg V denotes the (interior) regular part of spt ||V||. Thus, X € regV if and
only if X € spt ||V||NQ and there exists p > 0 such that By (X)Nspt ||V
is a smooth, compact, connected, embedded hypersurface-with-boundary,
with its boundary contained in 8B;H’1(X )

e sing V' denotes the interior singular set of spt | V||. Thus, sing V' = (spt || V|| \

reg V) NS

3. Statement of the main theorems

The Class S,. Fix any a € (0,1). Denote by S, the collection of all
integral n-varifolds V on B5(0) with 0 € spt ||[V], ||[V|[(ByT(0)) < oo and
satisfying the following conditions:

(S1) STATIONARITY: V has zero first variation with respect to the area func-
tional in the following sense:
For any given vector field 1 € C}(By(0); R**1), ¢ > 0 and C? map
¢ : (—¢,¢) x ByTH0) — BY(0) such that
(i) (t,) = ByT1(0) — ByT(0) is a C? diffeomorphism for each t €
(—¢,¢) with ¢(0,-) equal to the identity map on By *(0),
(ii) @(t,x) = x for each (t,x) € (—e,¢e) x (B’;‘H(O) \ spt 1,/}), and
(i) Dp(t,)/0t],_y =
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(3.1)

(52)
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(the flow generated by 1 for instance gives rise to such a family ¢(t,)),
we have that
d
ai| et )y V[(B3*(0)) = 0;
t=0

equivalently (see [Sim83, §39]),

/ divg (X)) dV(X,S) = 0
BITH(0)xGr

for every vector field ¢ € CL(B5(0); R*1).

STABILITY: For each open ball Q ¢ By (0) such that singV N Q =0 in
case 2 <n < 6 or H" "7 (singV N Q) = 0 for every v > 0 in case n > 7,
we have that

(3.2) / A2 dH g/ V(P AU V¢ e ClregV NQ),
reg VNQ

reg VNQ

where A denotes the second fundamental form of reg V', |A| the length of
A and V denotes the gradient operator on reg V'; equivalently (see [Sim83,
§9]), for each such 2, V' has nonnegative second variation with respect
to area for normal deformations compactly supported in 2 \ sing V', in
the following sense: for any given vector field ¢ € C1(Q\ sing V; R"+1)
with ¢ (X) L TxregV for each X € regV N Q,

d2

gz| et ) V[(B3*(0)) >0,

t=0

where ¢(t,-), t € (—¢,¢), are the C? diffeomorphisms of By (0) associ-
ated with 1, described in (S1) above.

a-STRUCTURAL HYPOTHESIS: For each given Z € singV, there exists
no p > 0 such that spt ||V N B;‘“(Z) is equal to the union of a finite
number of embedded C1® hypersurfaces-with-boundary of B:}“(Z ), all
having a common C'® boundary in B;‘H(Z ) containing Z and no two
intersecting except along their common boundary.

Remarks. (1) Note that the stability hypothesis (S2) concerns only the

regular part regV, and by Allard’s regularity theorem, regV # (—in fact,
reg V' is an open, dense subset of spt ||V|—whenever V is stationary ([All72,
§8.1]). Thus given hypothesis (S1), hypothesis (S§2) is never vacuously true.
However an open, dense subset can have arbitrarily small positive measure,

so it is not at all obvious whether hypothesis (S§2) is sufficiently strong to

give

any control over the singular set. By our main theorem (Theorem 3.1

below) however, we conclude that for V' € S,, sing V' must in fact be very low

dimensional.
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(2) The hypothesis H" !(sing V') = 0 trivially implies (S3), so all of our
theorems concerning the class S, in particular apply to the class of stable
minimal hypersurfaces M of By(0) (that is, smooth embedded hypersurfaces
M of ByT1(0) with their associated multiplicity 1 varifolds V' = |M]| satisfying
(81) and (S2)) with no removable singularities (thus, if X € M N By (0) and

M is a smooth, embedded hypersurface near X, then X € M) and with
H" ! (sing M) =0,

where sing M = (M \ M)NBy*(0). In fact, by Theorem 3.1, these two classes,
modulo multiplicity, are the same.

(3) By the Hopf boundary point lemma, Hypothesis (S3) is satisfied if no
tangent cone to V at a singular point is supported by a union of three or more
distinct n-dimensional half-hyperplanes meeting along an (n — 1)-dimensional
subspace. By Theorem 3.4 below, for stable codimension 1 integral varifolds,
this condition on the tangent cones is in fact equivalent to hypothesis (S3).

Our main theorem concerning the varifolds in &, is the following:

THEOREM 3.1 (Regularity and Compactness Theorem). Let o € (0,1).
Let {Vi.} C Su be a sequence with

limsup ||V (By™(0)) < co.

k—o0

There exist a subsequence {k'} of {k} and a varifold V € S, with
H T (sing V N BYT(0)) =0

for each v > 0 if n > 7, singV N B;LH(O) discrete if n = 7 and singV N
BT (0) =0 if 1 < n <6 such that Viy — V as varifolds on By™(0) and also
spt || Vi || — spt [|V|| smoothly (i.e., in the C™ topology for every m) locally in
By(0) \ sing V.

In particular, if W € S, then H"~ ™ (singW N By (0)) = 0 for each
v >0 ifn > 7, singWNBYT(0) is discrete if n = 7 and singW N ByTH(0) = 0
if 2 <n<6.

Note that we do not a priori assume orientability of regV for V € S,;
indeed, by virtue of low dimensionality of sing V' guaranteed by Theorem 3.1,
orientability of reg V' follows if V € S,:

COROLLARY 3.2. IfV € 8,, then regV is orientable.
Our proof of Theorem 3.1 will be based on the following two theorems:

THEOREM 3.3 (Sheeting Theorem). Let o € (0,1). Corresponding to each
A€[l,00) and 0€(0,1), there exists a number €9 = eo(n, A, ,0) € (0,1) such
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that if V € Sa, (wn2™) YV |(BET(0)) < A and
disty (spt [[V[| N (R x B1), {0} x B1) < e,
then
q
V (R x By) = Z |graph ;|

for some integer q, where u; € CLB(B@> foreach 7 = 1,2,...,q¢; u1 < wug <
- < Ugs

Du;(X1) — Du; (X
sup (|u;| + |Du,|) + sup | Du;(X1) é( 2)|
By X1,X2€By, X1#X2 ’Xl - XQ‘

1/2
<[ wPavico)
RXBl

Furthermore, u; solves the minimal surface equation weakly on By and hence
in fact uj € C>(By) for each j =1,2,...,q. Here C = C(n, A, ,0) € (0,00)
and B = B(n, A, a,0) € (0,1).

THEOREM 3.4 (Minimum Distance Theorem). Let o € (0,1). Let ¢ €
(0,1/2), and let Cqy be an n-dimensional stationary cone in R such that
spt ||Col| is equal to a finite union of at least three distinct n-dimensional half-
hyperplanes of R meeting along an (n — 1)-dimensional subspace. There
exists € = e(n,a, d,Cp) € (0,1) such that if V € S,, O(||V][,0) > O(||Co|l,0)
and (w,2") Y| V[|(BFT(0)) < ©¢, (0) + 6, then

disty (spt | V]| 0 BP(0), spt |Col| N BIFL(0)) > e.

The proofs of Theorems 3.1, 3.3 and 3.4 will be given in Sections 17, 15
and 16 respectively.

Remark. Theorems 3.1, 3.3 and 3.4 are optimal in several ways:

(a) Examples such as pairs of transverse hyperplanes or a union of three
half-hyperplanes meeting at 120° angles along a common axis show that Theo-
rems 3.3, 3.4 and 3.1 do not hold if the structural hypothesis (S3) is removed (or
replaced by the condition H" 117 (sing V') = 0 for any v > 0). Stable branched
minimal hypersurfaces (e.g., those constructed in [SW07] or in [Ros10]) show
that in the absence of hypothesis (§3), even when n = 2, there is no hope
of proving regularity of stable codimension 1 integral varifolds away from the
set of points near which the varifold has the structure ruled out by hypothe-
sis (S83). Thus hypothesis (S3) can, in particular, be viewed as a geometric
condition that implies nonexistence of branch points in stable codimension 1
integral varifolds.

(b) Appropriate rescalings of a standard 2-dimensional Catenoid in R?
show that Theorem 3.3 does not hold without the stability hypothesis (S2).
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Similarly, rescalings of a Scherk’s second surface show that Theorem 3.4 does
not hold without (§2). However it is an open question, even when n = 2,
whether some form of Theorem 3.1 giving a bound on the singular set holds
without (§2). In fact, it remains open whether 2 dimensional stationary in-
tegral varifolds in R® must be regular almost everywhere, even subject to a
condition such as (S3).

(¢) There are many examples provided by complex algebraic varieties
demonstrating that Theorems 3.3 and 3.1 do not hold in codimension > 1
even if the stability hypothesis (S2) (where the corresponding higher codimen-
sional stability inequality takes a different form from (3.2); see [Sim83, §9]) is
replaced by the (stronger) absolutely area minimizing hypothesis. For instance,
the holomorphic varieties V; = {(z,w) : 22 = tw? +tw}NB}(0) C Cx C = R?,
t € R, which are smooth, embedded area minimizing submanifolds lying close
to the plane {z = 0} N B{(0) for small |¢t| # 0, show that Theorem 3.3 does
not hold in codimension > 1. Those holomorphic varieties with branch point
singularities such as V = {(z,w) : 22 = w3} N B}(0) C C x C show that even
in 2 dimension, C? regularity, and hence Theorem 3.1, is false if codimension
> 1. (For area minimizing currents of dimension n and arbitrary codimen-
sion, Almgren’s theorem ([Alm00]) gives the optimal bound on the Hausdorff
dimension of the interior singular sets; namely, n — 2.) Since the cone Cy in
Theorem 3.4 is not area minimizing, there are no area minimizing examples
nearby, but a given transverse pair of planes in R3 x {0} c R?, for instance,
can be perturbed in R? into a union of two planes intersecting only at the
origin, and the latter union is of course stable and satisfies (S3), showing that
Theorem 3.4 is false in codimension > 1.

Our theorems generalise the regularity and compactness theory of
R. Schoen and L. Simon [SS81], which established Theorems 3.3 and 3.1 for
stable codimension 1 integral varifolds V' on B;LH(O) under the hypothesis
H"2(singV N K) < oo for each compact K C ByT(0) in place of our hy-
pothesis (§3). (Under this more stringent hypothesis on the singular set,
Theorem 3.4 is a straightforward consequence of Theorem 3.3 and inequal-
ity (3.2).) Our proofs of Theorem 3.3 and Theorem 3.4 however rely on the
Schoen-Simon version of Theorem 3.3 in an essential way; in fact, what we
need is the following slightly weaker version of their theorem:

THEOREM 3.5 ([SS81, special case of Th. 2]). Let V be an integral n-
varifold on ByT1(0) and in place of (S3), assume the (stronger) condition that
H" ™ (sing V) = 0 for every v > 0 in case n > 7 and singV = 0 in case
2 <n < 6. Let all other hypotheses be as in Theorem 3.3. Then the conclusions
of Theorem 3.3 hold.
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Remark. It suffices to prove Theorem 3.3 for § = 1/8 and arbitrary A €
[1,00). To see this, suppose that case § = 1/8 of the theorem is true, with
¢ = &(n,a,A) € (0,1) corresponding to 9. Let § € (1/8,1) and let the
hypotheses be as in the theorem with g = eo(n,a, A, 0) € (0,1) satisfying
go < (%9) g'(n,a,3"A). We may then apply the case § = 1/8 of the theorem
with 3" A in place of A and with V= (7727(1_9)/2)# V € &, in place of V, where
Z € spt||V||N (R x By) is arbitrary; since we may cover spt ||V||N (R x By) by
a collection of balls Batle)ﬂ(Zj), j=1,2,...,N, with Z; € spt ||[V| N (R x Byp)
and N = N(n, A, 0), the required estimate follows.

So assume 6 = 1/8, and let the hypotheses be as in Theorem 3.3. It follows
from Allard’s integral varifold compactness theorem ([All72, Th. 6.4]) and the
Constancy Theorem for stationary integral varifolds ([Sim83, Th. 41.1]) that if
go=eo(n, A) €(0,1) is sufficiently small, then ¢—1/2 < (w, R") |V |[(Rx Bg) <
q+1/2 for some integer ¢ € [, A+1) and R € {1/3,2/3}. Then V1 =g 1,34V
satisfies (w,2™) 7 | Vi||(BYT1(0)) < ¢+1/2 and ¢ —1/2 < w Y|Vi||(R x By) <
g + 1/2. Thus in order to prove the special case § = 1/8 of Theorem 3.3 (and
therefore the general version), it suffices to establish the following:

THEOREM 3.3" (Sheeting Theorem). Let v € (0,1). Let ¢ be any integer
> 1. There exists a number g9 = g9(n,,q) € (0,1) such that if V € S,,
(@2 U VI(BI0) < a+1/2, g — 1/2 < w V(R x By) < g+ 1/2 and
disty (spt [|[V]| N (R x By),{0} x By) < &g, then

q
VL (R x Byg) =) |graphu],
j=1
where u; € 01’6(33/8) for each j =1,2,...,¢; u1 <ug <--- <ug;

Du;(X1) — Du; (X
sup (Juy| + [Duj) +  sup 1Dt = Do)
Bys X1,X2€By 5, X1£Xo | X1 — X5

1/2
o[, mravico)
RXBl

and wu; solves the minimal surface equation (weakly) on Bss;g. Here C' =
C(n,q, @) € (0,00) and § = B(n,q,a) € (0,1).

Finally, we note that in the absence of the a-Structural Hypothesis (S3),
Theorems 3.1, 3.3 and the upper semi-continuity of density of stationary inte-
gral varifolds readily imply the following:

COROLLARY 3.6. Let V be a stable integral n-varifold on ByT(0) (in the
sense that V' satisfies (3.1) and (3.2)). If Z € sing V' and one of the tangent
cones to'V at Z is (the varifold associated with) a hyperplane with multiplicity
q €{2,3,...}, then for any a € (0,1), there exist a sequence of points Z; €
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sing V' with Z; # Z, Z; — Z and a sequence of numbers o; with 0 < 0; <
|Z; — Z| such that for each j =1,2,3,..., spt|V] N ngl(zj) is the union of
at least 3 and at most 2q embedded C™* hypersurfaces-with-boundary meeting
only along an (n—1)-dimensional C1* submanifold of ng‘l(Zj) containing Z;.

In fact, if Z € sing V' is such that one tangent cone C to V at Z has the
form, after a rotation, C = C'xR"* for some k € {0,1,...,min {6,n}}, then
for any o € (0,1), there exist a sequence of points Z; € singV with Z; # Z,
Zj = Z and a sequence of numbers o; with 0 < o; < |Z; — Z| such that for
each j =1,2,3,...,spt||V| N ng“(Zj) is the union of at least 3 and at most
20(||V|l, Z) embedded CH* hypersurfaces-with-boundary meeting only along an
(n —1)-dimensional CH* submanifold of By (Z;) containing Z;.

4. Proper blow-up classes

Fix an integer ¢ > 1 and a constant C' € (0,00). Consider a family B of

functions v = (v!,v?,...,v9) : B — RY satisfying the following properties:

(B1) B c W-2(By; RY) N L?(By; RY).

(B2) If v € B, then v! <v? <. <09,

(B3) If v € B, then Av, = 0 in By, where v, = ¢! > v,

(B4) For each v € B and each z € By, either (B41) or (B41I) below is true:
(B4 I) The Hardt-Simon inequality

P

holds for each p € (0,%(1 — |z|)], where R,(z) = |z — 2|, &, Z( ) =
va(2)+Dvg(2)-(x—2) and v—£, , = (V1 =l 0% =Ly o, ..\ 0 v, 2)-
(B41I) There exists 0 = o(z) € (0,1 — |z|] such that Av =0 in B,(z )
(B5) If v € B, then
(B51) U54() = |Jv(z + a(-))||£21(31(0))v(z + 0(-)) € B for each z € By and
o € (0,2(1 — |2])] whenever v # 0 in B,();
(B51I) v o~y € B for each orthogonal rotation v of R™; and
(B51II) ”U_E”JHE;(Bl(O)) (v —4,) € B whenever v—{, # 0 in By, where {,(x) =
04(0)+ Dvy(0) -2 for z € R™ and v — £y, = (v! — Ly, 02 — Ly, ..., 01— Ly).
(B6) If {v}32, C B, then there exist a subsequence {k’} of {k} and a function
v € B such that vy — v locally in L?(Bj) and locally weakly in W12(By).
(B7) If v € B is such that for each j = 1,2,...,q, there exist linear functions
L{,Lg : R" — R with vi(a?y) = Li(22,y) if 22 > 0, vi(22,y) =
L%(a;%y) if 22 <0 and L](0,y) = L5(0,y) for 1 < j,k < ¢,y € R"!, then

vl =02 = = 99 = L for some linear function L : R" — R.

We shall refer to any such class B as a proper blow-up class.
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Our main result in this section (Theorem 4.1 below) is that functions
in any proper blow-up class are harmonic. Subsequently, we shall prove that
the collection of functions arising as “coarse blow-ups” (see Section 5 for the
definition) of mass-bounded sequences of varifolds in S, converging weakly to
a hyperplane is a proper blow-up class for a suitable constant C' depending
only on n and the mass bound.

Remark. The first use of the inequality in (B841) in the context of regular-
ity theory for minimal submanifolds is due to R. Hardt and L. Simon ([HS79]).

Let B be a proper blow-up class. There exists a constant 7 = 7(B) €
(0,1/4) such that if v € B, v,(0) = 0 and property (B41I) holds with z = 0,
then

1
(4.1) [k e
Bi\B- 2 /B

To see this, note that since every weakly convergent sequence in Wh2(B, /3)
is bounded in W12(B, /3), it follows from the compactness property (86) and
property (B51I) that there exists a constant C; = C1(B) € (0,00) such that
wa |Dv|? < Oy IB, lv|? for every v € B. Hence by property (B41) with z =0
and p = 3/8, we see that if v,(0) = 0, then

o[

P o +01)/ 02,
/33/16 R? By

where Cy = C5(C,n) and we have used the fact that, since v, is harmonic,
[€y0(z)|? = |Dva(0)?|z]? < Cs me |Dv|* < C3C) [, |v]? for every @ € Bys,
with C3 = C3(n, q). This readily implies that for each 7 € (0,3/16), [5_ lv]? <
2(Co+Cy)7? B, |v|2, and choosing 7=7(B) € (0, 3/16) such that 2(Cy+C1)72 <
1/2, we deduce (4.1).

THEOREM 4.1. If B is a proper blow-up class for some C € (0,00), then
each v € B is harmonic in By. Furthermore, if v € B and there is a point
z € By such that (B4 1) is satisfied, then v' = v? = .- = 09,

The proof of this Theorem will be based on the following proposition:

PROPOSITION 4.2. Let B be a proper blow-up class, and let 7 = 7(B) €
(0,1/4) be the constant as in (4.1). Ifv € B satisfies property (B41) with z =0
and if v is homogeneous of degree 1 in the annulus By \ By, viz. % =0
almost everywhere in By \ B, then vi = L in By for some linear function L

and all j € {1,2,...,q}.

For the proofs of Theorem 4.1, Proposition 4.2 and subsequently, we shall
need the following general principle:
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LEMMA 4.3. Let w € L?(By1;RY). Suppose there is a closed subset T' C By
and numbers 3, 51,82 € (0,00), p € (0,1) and € € (0,1/4) such that the
following hold: For each z € I'N By 4, there is an affine function £, : R™ — RY
with supp, |(;| < B such that

o\ M
O_—n—Q/ |w _€Z|2 < 61 (7) p—n—2/ |w _ €Z|2
Bo(z) p By(2)

for all0 < o < p/2 <¢/2 and for each z € By, \ T, there is an affine function
2, : R™ — RY such that

%
ot [ -tz (2) [ -
Bs(2) p Bp(z)

for each affine function £ : R"—RY and all 0< o < p/2< min {1/4, dist(z,T)}.
Then w € CL)‘(Bl/Q) for some \ = X(n,q, 51, B2, ¢, 1) € (0,1) with

Dw(x) — Dw 1/2
sup (o +Du +sup APAD=BUO (s [ o) T
By/2 T,Y€By /2,07y |z =y B

where C' = C(n, q, 1, B2, €) € (0,00).

Remark. In our applications of the lemma, the component functions of
w, in By \ I, will either be harmonic or smooth functions with small gradient
solving the minimal surface equation; the second estimate in the hypotheses,
with £,(x) = w(z) + Dw(z) - (x — z) and 2 depending only on n, follows in
these cases from standard interior estimates for second derivatives of harmonic
functions and solutions to uniformly elliptic equations.

Proof. Consider an arbitrary point y € B4 and a number p € (0,¢). With
v = v(n,B1,e,1) € (0,1/8) to be chosen, if there is a point z € I' N B,,(y),
then by the given condition with p — |z — y| in place of p and 0 = yp+ |z — ¥,

|z — vl e —n—2 2
< |1+ - (vp+ [z —yl) ()\w—€z|
vptlz—y|\Z
+ 1z —y[\* e
§2n+261 <'7,0 | y|) (p7|27y|) n 2/ |w762|2
P |Z_y| p—|z—y|(2)

2 H
< 4n+261 (i) p*an/ ’U) o 62‘2
lL—v By (y)

Choosing v = y(n, f1,¢, 1) € (0,¢) such that 4"+25; (%)“ < 1/4, we see
from this that

(yp) "2 /B w — L% < 4712 /B AL

oY 0(Y)
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for any y € B3/, and p € (0,¢) provided there is a point z € I' N B,,(y). In
particular, if z* € T" is such that |y — 2*| = dist(y,I"), then

@2 oo et ey [ g
By (y) By(y)

for each p € (0,¢) such that yp > |y—z*|. On the other hand, if 'NB,,(y) = 0,
then again by the given condition we know that for any affine function /¢,

@3 e[ b <aorap [ et

B'vp(y)
for all o € (0,1/2]. Tterating inequality (4.2) with p = 77, 5 = 1,2,... and
using inequality (4.3), we see that for each y € B3/, \ T, there is an integer

J* > 1, an affine function /, (= £.+) with supp, |[(x| < and an affine function
¢, such that

F*+1y—n—2
(4) (@ )2 [

oyplY

o=, < Bot ()R [

oyi* 1Y) B j*4+1(v)

for each affine function ¢ and each o € (0,1/2]; and

(4.5) ('yj)_”_z/ w—£,]* < 4_1(’Yj_1)_n_2/ o — 4,
By Byi-1®)
< 47Uy / w67 foreach j =1,2,.... %
By (y)

By taking ¢ = 4., 0 = 1/2 in (4.4) and j = j* in (4.5), and using the
triangle inequality, we see that

()"
2 B

which, in particular, implies

N\ —n—2 .
(4.6) (+) / 16, — 6.7 < C4 9/ [ — £, 2
B_;(y) B

~J +(y)

N

%w*-&-l(y) B”/(y)

for j =1,2,...,75*, where C = C(n, B2, u,7) € (0,00).
By (4.5) and (4.6), we conclude that

(4.7) G [ g o [ g
Bi(y) By (y)
for each j =1,2,...,5%. Thus if y € By, \ I', we deduce that
(4.8) [ g [ b
By (y) B (y)

for all p € (0,7/2], by considering, for any given p € (0,v/2], the two alterna-
tives:
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(i) 2p < 47"+ in which case p = 077 ! for some ¢ € (0,1/2] and we use
(4.4) provided v = 7y(n, q, 51, B2, i, €) is chosen to satisfy v# < 1/4 also, or
(ii) vt < 2p <47 for some j € {1,2,...,5*}, in which case we use (4.7).
In view of (4.8) (in case y € Bg), \ I') and the given condition (in case
y € B3/4NT'), we conclude that for each y € Bs 4, there exists an affine function
¢y such that for all p € (0,7/2],

(49) [ et < op (ﬁ2 +/ W) |

Bp(y) By
where C' = C(n7q7517 BQvMﬂS) € (07 OO) and A = A(na Q7/817527 /’L7€> = (07 1) It
is standard that from this the assertions of the lemma follow. O

In the proofs of Proposition 4.2, Theorem 4.1 and subsequently, for v € B,

we let
I'y={z€ B\ Q: (B4I) holds},
where
Oy, ={z¢€ By :3p € (0,1— |z]|] such that

vl(z) =v?(z) = - = v9(x)(= va(z)) for ae. z € By(2)}.

Remark. Note that it follows directly from property (B4) that 'y is a
relatively closed subset of By and on Bj \ Ty, v/ is almost everywhere equal to
a harmonic function for each j =1,2,...,q.

Proof of Proposition 4.2. Let 7 = 7(B) € (0,1/4) be as in (4.1). Note
first that if v € B is homogeneous of degree 1 in any annulus By \ B, 7' €

(0,1), viz. v satisfies B(gRR)

= 0 almost everywhere in By \ B,s, then, since
Vg = ¢ Z?-:l v/ is harmonic in By by property (B3), it follows that v, is a
linear function in Bj.

Let H denote the collection of all homogeneous of degree 1 functions v :
R"™ — RY such that T”Bl\BT = U‘B1\BT for some v € B satisfying property
(B4I) with z = 0. For any given v € H, let T(v) = {z € R" : v(z + z) = v(x)
for almost every z € R"}. Using homogeneity of v, it is standard to verify that
T'(v) is a linear subspace of R".

For £k = 0,1,2,...,n, let Hy = {v € H : dimT(v) = n — k} so that
H = Up_oHk. Clearly Ho = {0}. Let v € H1, and let v be any element € B that
is homogeneous of degree 1 in By \ B; such that v satisfies property (B841) with
z = 0 and v agrees with ¥ on B;\ B,. We wish to show that there exists a linear
function L such that v/ = L in By for each j € {1,...,q}. This is true if v/ = v,
on By for each j € {1,...,q}, so suppose v — v, = (V! —v,,..., 09 —v,) Z 0
in By, and let w = ||[v — v,|| "} (v — vs). Then w € B by property (B5III),
w # 0, w, = 0 and property (B41) is satisfied with w in place of v and z = 0,
and hence by (4.1), w # 0 in By \ B;. By the definition of H; and property
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(B511) (of v), we may assume that T'(v) = {0} x R""!, and by homogeneity
of win By \ By, it then follows that there exist constants A\; > Ay > -+ >
Ago 1 < pp < --0 < g, with Z]:l j = Z] 1 #j = 0 such that, for each
j € {1,...,q}, wi(z?y) = \ja? for each (22,y) € (By \ By) N {z? < 0} and
w’ (22, y) = pja? for each (22, y) € (By\ By) ﬁ{a:Q > 0}. Moreover, since w # 0
in B; \ B;, we must have some jo € {1,...,¢— 1} such that either \j, > X\j;+1
or fij, < pjo+1. Thus, taking any point (0,41) € (B1 \ Br) N ({0} x R"1)
and any number o1 with 0 < o1 < min{l — |y1|,|y1| — 7} and setting w =
||w((0, y1)+01(-))|]221(31)w((0, y1)+01(+)), we produce an element w € B whose
existence contradicts the fact that B satisfies property (57). Hence it must be
that v — v, = 0 in By, and H; consists of linear functions.

Now let k1 be the smallest integer € {2,3,...,n} such that Hy, # 0.
Consider any v € Hy,, and let v be any element € B such that v satisfies
property (B41) with z = 0 and v agrees with v on B; \ B;. By property (B51I)
(of v), we may assume that T(v) = {0} x R* %1 If T,N(B1\B,) C {0} xR k1
then by the remark immediately following the definition of I',, v/ is harmonic
in (B1\Br)\ ({O} X R”_’“) for each j € {1,2,...,q}, whence by homogeneity,
v is harmonic on Bj \ ({0} X R"_kl) . Since ¥/ € I/VI(ID(?(R”) and independent
of the last (n — ki) variables, it follows that / is harmonic in all of R". By
homogeneity of ¥ again and property (B2) of v, it follows that 7' =% = --- =
v9 = L for some linear function L, contrary to the assumption that v € Hy,
for k1 > 2. So we must have that T', N (By\ B;) \ <{0} X R”_]“) # (). We shall
contradict this also.

Let K be any compact subset of (B1\ B;) \ ({O} X R”_kl) . We claim that
there exists ¢ = (v, K, B) € (0,1) such that for each z € K N T, and each p
with 0 < p < ¢,

(4.10)

Z/Bp e szn (8((vja};1:)/Rz)) > ep e 22/ vl — g2,

(Recall that v, is a linear function.) If this were false, then there would exist
points z,2; € KNIy, i =1,2,3,..., with z; — 2z, and radii p; — 0 such that
v —v, #0in By, (z) for each i =1,2,3,... and

(4.11)

J _
Z/ Ri " (a ((U Ua)/RZi)> <eip; " ? Z/ 7%’2
By, zz)\BTpl(zl) aRzi Bpl(zz

where €; — 07. By property (B5I1II), we have that w = HU—UQHZQ(Bl)(v—va) €

B so that, by property (B51), w; = ws, 5, = ||w(zi+pi(-))||221(B1)w(zi+p¢(-)) also
belongs to B for each sufficiently large i, and hence, by property (836), there ex-
ists w, € B such that after passing to a subsequence, w; — wy locally in L?(B)
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and locally weakly in W'2(By). Since ||wil|z2(5,) = 1, it follows from (4.11)
that ”wiHL2(Bg/4) > ¢ for sufficiently large i, where ¢ = ¢(n) > 0. Hence w, # 0
in By. In view of the strong convergence w; — wy locally in L?(B;) and the
weak convergence Dw; — Dw, locally in L?(B;) (which, in particular, implies
that fBl,E(O)\Be/(O) |z| 7" 2(Dw, - x)? < liminf; o0 fBlfg(O)\BE,(O) |z|~"2(Dw; -
x)? for any €,¢’ € (0,1/4)), it follows from (4.11) that w, is homogeneous of
degree 1 in B; \ B, and since property (B41) is satisfied with w; in place of v
and z = 0, that it is also satisfied with w, in place of v and z = 0. Thus if w,
denotes the homogeneous of degree 1 extension of w,| Bi\B, 1O all of R™, then
w, € H. Note also that {0} x R"™% C T'(w,).

Now by homogeneity of v in By \ B;, we have that for each y € By,
sufficiently small ¢ > 0 and sufficiently large ¢,

a*”/ wi(x + z) dx zsi_la*”/ w(z; + pi(x + 2)) do
B (y) B (y)

= (1 +p)=to | W (o) il =) (1) i)
Bs

— (1+Pi)n+15'_1

(2

O'*n/ w(zi + pix) dx
Bypy—10((14p:) 7 (z=2ity))

=(1+ Pi)nHa*"/ wi(z) da,
By py—10((14pi) 7 (z=2i+y))

where €; = [|w(2; + pi(*))|lz2(B,) so first letting i — oo in this (noting that
zi — z) and then letting o — 0, we conclude that w,(y + z) = w.(y) for
almost every y; i.e., z € T'(wy). But z € By \ ({0} X R”*]“) (since z € K),
and therefore we must have dim7'(w,) > n — k;. On the other hand, note
that by the definition of ky, either k1 = 2 or (in case k1 > 3) Hy = 0 for all
k=2,...,(k1—1) so that, in either case, whenever dim T'(v) > n — k; for some
v € H, it follows that v € Hy. Thus we have shown that w, € H; and hence
that w) = w2 = --- = wi = L for some linear function L. But since (w;), =0
for each j = 1,2,..., it follows that L = (wy), = 0, which is a contradiction.
Thus (4.10) must hold for some ¢ = e(v, K, B) € (0,1) and all z € K, p € (0,¢]
as claimed.
Combining (4.10) with property (B841), we then have that

-/ e (2 —va>/Rz>)2
Bp(2\Brp(z)

- OR.

7j=1
-y R2n<a<v —va>/Rz>)2
B Cj:1 Brp(2) - OR. ,
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which implies that
(4.12)

S (L (2

forall z € KNT, and p € (0,¢], where 8 = (v, K, B) € (0,1). Iterating this
(for fixed z € K NT,) with 7%p, i = 1,2,3,... in place of p, we see that

z / R ( ((ngé):)/Rz))Q
<ezz/ R ( (w;;,:)/m))?

fort=0,1,2,3..., which readily 1Inphes that

1 v'—va - 2
;/g(z) R (3(( JaRZ)/R ))
il v'—va > 2
p>”j§::1/3p(z) e (8( j 8Rz)/R )>

for any z € KNI, and all 0 < 0 < p/2 < /2, where the constants § =
B(v,K,B) € (0,00) and p = p(v,K,B) € (0,1) are independent of z. By
property (B41) and inequality (4.10), this yields the estimate

(4.13)

g
ZJ—n—Q/ 07 — ug|? < 2—n—25—106( > —n— zz/ g2
j=1 Bo(z)

for each z € KNI, and 0 < 0 < p/2 < /4. Since property (84 IT) and the
definition of T, imply that v is harmonic in R"\T',,, we deduce from Lemma 4.3,

the remark immediately following Lemma 4.3 and the arbitrariness of K that
veC((B1\Br)\ ({0} x R"=F1)).

Now by property (B41), T, N (B \ B;) \ ({O} X R"*’“) C the zero set
of W = (’Uj —Ujfl) BT for each j = 2,...,q. Since u/ is nonnegative
and C! in (B \ B;) \ ({O} X R”_kl), it follows that Du/(z) = 0 for any
zel,nN(B1\ By)\ ({0} X R”*’“). Also, by property (B4II) and the def-
inition of 'y, w’ is harmonic in (B; \ B;) \ (FU U ({0} X R"‘kl)). In order
to derive a contradiction, pick any point z; € I', N (By \ B;) \ ({O} X R”_kl)
and let p; = idist (21,831 UIB, U{0} x R"*kl). If w/(z) > 0 for some
z € B, (#1), then there exists p € (0,p1) such that v/ > 0 in B,(z) and
0 B,(2)N(Ty N (B1\ Br) \ ({0} x R"~*1)) % §, contradicting the Hopf bound-
ary point lemma. It follows that w/ = 0 in B, (21) for each j = 2,...,q. But
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since z; € I'y, this is impossible by the definition of I';,, so we see that the
assumption I', N (By \ B;) \ ({O} X R"*k'l) # () leads to a contradiction. Thus
Hy. = 0 for each k = 2,...,n, and the proposition is proved. O

Proof of Theorem 4.1. The main point is to prove that B C C!(Bj). For
if this is true, then, by exactly the same argument as in the last paragraph of
the proof of Proposition 4.2, we see that I', = () for each v € B, from which
the first assertion of the theorem follows immediately.

In view of Lemma 4.3, property (B41I) and property (B51), to prove that
B C CY(By), it suffices to establish that there are fixed constants 3 = B(B) €
(0,00) and p = p(B) € (0,1) such that for each v € B, z € I', N By, and

0<o<p/2<1/8,
(4.14) o™ 22/ v — €. 55( p" QZ/ v? — L%,
(z) p(Z)

where £, is the affine function given by £,(x) = v,(2) + Dug(2) - (x — 2),
x € R". This estimate follows by exactly the same hole-filling argument used
in the proof of Proposition 4.2. Specifically, we may first prove, by arguing
by contradiction and using Proposition 4.2, that there exists a fixed constant
e =¢&(B) > 0 such that if v € B, 0 € ', v,(0) = 0 and Dv,(0) = 0, then

R2- (U]/R ) > / 7|2
—ap € !’U |,
2/31/4 (0)\B/4(0) ( OR Z By 4(0

where 7 = 7(B) € (0,1/4) is the constant as in (4.1). It follows from this and
property (B41I) (by arguing as in the proof of (4.13)) that if v € B, 0 € T,
vg(0) = 0 and Dv,(0) = 0, then

—n—2
7

lv|? < [3’,0"/ lv]>  Vpe(0,1/2],
»(0) Biz

where § = 5(B) € (0,00) and p = u(B) € (0,1). In view of properties (B51)
and (B5III), the estimate (4.14) follows from this.

; 2
Since finiteness of Y37 [5 (. RZ ™ (%W) implies that v!(z)=

v2(2) = -+ = v9(2) (= va(2)), the second assertion of the theorem follows from
the first, property (B82) and the maximum principle. O

5. Lipschitz approximation and coarse blow-ups

Here we recall (in Theorem 5.1 below) some facts concerning approxima-
tion of a stationary integral varifold weakly close to a hyperplane by the graph
of a Lipschitz function over the hyperplane. These results were established
by Almgren ([Alm00]), adapting, for the higher multiplicity setting, the cor-
responding result of Allard ([All72]) for multiplicity 1 varifolds. We shall use
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these facts to blow up mass-bounded sequences of varifolds weakly converging
to a hyperplane.

First note the following elementary fact, which we shall need here and
subsequently: If V is a stationary integral n-varifold on By "*(0), then

G [ VPGV 4 P R dvR)
By (0) By +1(0)

for each ¢ € C1(By*+1(0)). This is derived simply by taking ¢ (X) = 212 (X)e!
in the first variation formula (3.1).

Let p € (0,1), and suppose that spt |[V]| N (R x B p)2) C {|z'] < 1}.
Choosing ¢ in (5.1) such that ¢(z!,2') = ¢(2’) in a neighborhood of spt ||V N
(R x By), where ¢ € C’g(B(Hp)/Q) is such that ( =1 on B,, 0 < ¢ <1 and
|D¢| < C for some constant C' = C(p) (e.g., {(z',2') = n(z")¢(2') where
n € C1(—=3/2,3/2) with n = 1 on [~1,1]), we deduce from (5.1) that for each
p € (0,1),

(52) L9Vl < cE,
RxB,

where C' = C(n, p) € (0,00), and Ey = \/fRX31 |22 d||V][(X).

THEOREM 5.1 ([Alm00, Cor. 3.11]). Let ¢ be a positive integer and o €
(0,1). There exist numbers eg = eo(n, q,0) € (0,1/2) and{ = &(n, q) € (0,1/2)
such that the following holds: Let V' be a stationary integral n-varifold on
BYTL(0) with
(W2 VB3 0) <q+1/2,  q—1/2<w,Y[VI(R X Bi) <q+1/2
and

Bp=[  a'PAVI) < e
RXBl
Let
E=W§1UF§2UW§3UE,,

where m : R™"™! — {0} x R" is the orthogonal projection,

1= {Y espt V][N (R x B,) : p_"/
RxB,(rY

VY2 P d||VII(X) > €
)
for some p € (0,1 — a)},
Yo ={Y €spt||V||N(R x By) : either Tan(spt ||V|,Y) # Tan™(|V],Y)
or Tan(spt ||[V|,Y) &€ G, or O(||V],Y) is not a positive integer},

where Tan(spt ||V, Y) denotes the tangent cone of spt||V] at Y ([Fed69,
3.1.21]) and Tan"(||V||,Y) denotes the (||V||,n) approximate tangent cone of
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V| at Y ([Fed69, 3.2.16]),

S3={Y espt|V|N(Rx By)\E2:1— (er-v(Y))? > 1/4},
where v(Y') is the unit normal to Tan(spt ||V|,Y), and

Y ={Y €B,\ (X1 Un S Un3) : O(||me V|, Y) < g — 1}
Then
(a) H™ (Z) + V(R x ) < CEZ, where C = C(n,q,0) € (0,00).
(b) There are Lipschitz functions v/ : B, — R, with Lipu/ < 1/2 for each

j€{1,2,...,q} such that ut <u?® <---<wui and
spt VI[N (R x (By \ B)) = Uj_igraphw’ N (R x (B, \ T)).

(c) For each * € B, \'¥ and each Y € spt||V||n7=(z), O(|V],Y) is a
positive integer and

> OdVILY) =q
Yespt [[V|[[nm—! ()

Proof. In view of the Constancy Theorem ([Sim83, Th. 41.1]), the esti-
mate (5.2), and the easily verifiable fact that in the present codimension 1
setting, the “unordered distance” is the same as the “ordered distance” (that
is, if aj,b; € R are such that a1 < ap < --- < ag and by < by < -+ < by,
then G({a1,...,aq}, {b1,...,b}) = inf {\/25:1(@]- —bo(j))? ¢ 0 is a permuta-
tion of {1,..., q}} = 23:1(%' — b;)?), the theorem follows immediately from
[Alm00, Cor. 3.11], which in turn is a fairly straightforward adaptation of the
corresponding argument in [All72] for the case ¢ = 1. d

Remark. 1t is an easy consequence of the monotonicity of mass ratio
([Sim83, §17.5]) that for each o € (0,1), there exists ¢ = e(n,o) € (0,1)
such that if V' is a stationary integral n-varifold on R x B; with E‘Q/ =
Jrxp, 1212 dIVI(X) < e, then

sup ! < CEY",
Xe(RxBs)Nspt ||V||
where C' = C'(n) € (0,00). In particular, under the hypotheses of Theorem 5.1,
we have that

sup |u(z)| < OB/,
CEEBO

where C' = C(n) € (0, 00).

Let ¢ be a positive integer. Let {Vi} be a sequence of n-dimensional
stationary integral varifolds of By™!(0) such that
(5.3)
(@n2) HVRI(B3TH0)) < g +1/2; ¢ —1/2 <w,|[Vi(R x B) < ¢ +1/2
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for each £ =1,2,3,..., and Ei — 0, where

(5.4) B=By = [ Pl x).
RXBl
Let o € (0,1). By Theorem 5.1, for all sufficiently large k, there exist Lipschitz
functions u), : B, -+ R, j =1,2,...,q, with ull€ < u% <+ <uf and
(5.5) Lipui <1/2 foreach je€{1,2,...,q}
such that

(5.6) spt [|Vill N (R x (B, \ Si)) = Ul graphuf, N (R x (B, \ X)),

where Yj, is the measurable subset of B, that corresponds to X in Theorem 5.1
when V is replaced by Vj; thus by Theorem 5.1,

(5.7) IVi|(R x B) + H™ () < CEF,

where C' = C(n,q,0) € (0,00). Set vi(m) = E’,;lu‘,i(:v) for z € B,, and write
vk = (v, vE,...,v). Then vy is Lipschitz on B,; and by (5.7) and (5.6),

(5.8) /|%Pga C = C(n,q,0) € (0,00).
B,
Furthermore,
/ (1+ |Dugl*)™V2| Duy|* = / (1+ | Dug|*) =2 Duy |
Bo- a\ k
+ (1+ |Dug ) ™V2| Duy |
BNy

< [ VSRV + CuB < CaFE,
Rx B,

where C; = Ci(n,q,0) € (0,00), Co = Ca(n,q,0) € (0,00) and we have used
(5.5) in the first inequality and (5.2) in the second. By (5.5) again, this implies
that

(5.9) /ymﬁgc,czcm%@e@wy
B,

In view of the arbitrariness of o € (0,1), by (5.8), (5.9), the preceding remark,
Rellich’s theorem and a diagonal sequence argument, we obtain a function
NS W]})’S(Bl; R?)NL*(B1; RY) and a subsequence {k;} of {k} such that v, — v
as j — oo in L?(By; RY) and weakly in W12(B,;RY) for every o € (0,1).

Definitions.

(1) Coarse blow-ups. Let v € VVli’CZ(Bl;Rq) N L%(By1; RY) correspond, in
the manner described above, to (a subsequence of) a sequence {V;} of station-
ary integral n-varifolds of By (0) satisfying (5.3) and with Ej, — 0, where Ej,

is as in (5.4). We shall call v a coarse blow-up of the sequence {V}}.
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(2) The Class By. Denote by B, the collection of all coarse blow-ups of
sequences of varifolds {V;} C S, satisfying (5.3) and for which Ej — 0, where
E} is as in (5.4).

6. An outline of the proof of the main theorems

Note that if Cy is a stationary cone as in Theorem 3.4, then ©¢,(0) =
q—1/2 or ©¢,(0) = g for some integer ¢ > 2. We prove both Theorem 3.3" and
Theorem 3.4 simultaneously by induction on ¢q. The case ¢ = 1 of Theorem 3.3’
is a consequence of Allard’s Regularity Theorem. (Note however that setting
g = 1 in the proofs of Lemma 15.1 and Theorem 15.2 given below reproduces
Allard’s argument proving Theorem 3.3" in case ¢ = 1.) Validity of the cases
O(]|Co||,0) = 3/2 and O(||Cyl|,0) = 2 of Theorem 3.4 will be justified at the
end of Section 16.

Let ¢ be an integer > 2 and consider the following:

INDUCTION HYPOTHESES.

(H1) Theorem 3.3" holds with 1,...,(q— 1) in place of q.
(H2) Theorem 3.4 holds whenever O¢,(0) € {3/2,2,5/2,...,q}.

The inductive proof of Theorems 3.3" and 3.4 is obtained by completing,
assuming (H1), (H2), the steps below in the order they are listed:

Step 1: Prove that B, is a proper blow-up class (Sections 7-14).
Step 2: Prove Theorem 3.3’ (Section 15).

Step 3: Prove Theorem 3.4 when ©(]|Cy|[,0) = ¢+ 1/2 (Section 16).
Step 4: Prove Theorem 3.4 when ©(]|Cy|[,0) = ¢+ 1 (Section 16).

Remarks. (1) Let m € {1,2,...,n}. Suppose that C is an m-dimensional
stationary integral cone in R""!. Let Lc = {Y € spt|C| : ©(||C|,Y) =
O(||CJ,0)}. It is a well-known consequence of the monotonicity formula that
Lc is a linear subspace of R"*! of dimension < m and that Y € L¢ if and only
if Ty 4 C = C, where Ty : R"*1 — R""! is the translation Ty (X) = X Y. Let
dc = dim L¢. Then, if I'c is a rotation of R"! such that I'c(Lc) = {0} xRdc,
we have that ¢4 C = C’ x R, where C' is a stationary integral cone in
R"1=dc Here, given an integer d € {0,1,2,...,n} and a rectifiable varifold
V' of R"t174 we use the notation ¥V’ x R? to denote the rectifiable varifold V'
of R™*! with spt || V]| = spt ||V’|| x R? and the multiplicity function 6y defined
by Oy (z,y) = Oy (x) for (z,y) € spt ||[V’|| x R, where @y is the multiplicity
function of V.

(2) Let ¢ be an integer > 2, and suppose that the induction hypotheses
(H1), (H2) hold. Let V' € S,. Then we have the following:

(a) If 2 <n <6, then singV N{Z € spt||V] : O(|V], Z) < q} = 0.
(b) If n > 7, Z € singV and O(||V|,Z) < ¢, then dc¢ < n — 7 for any

C € Var Tan(V, 2).
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To see this, suppose either (a) or (b) is false. Then we have either

(') n€{2,3,...,6} and there exist a varifold V € S, and a point Z € sing V/
such that ©(||V]|, Z) < g, or

(b’) n > 7 and there exist a varifold V € S, and a point Z € singV with
O(||Vl,Z) < g such that dc > n — 7 for some C € Var Tan(V, Z).

If (a') holds, fix any C € Var Tan(V, Z). In either case (a’) or (b’), the
induction hypothesis (H1) implies that dc # n; for if dc = n, then C = ¢/|P|
for some integer ¢’ € {1,2,...,¢—1} and some hyperplane P that we may take
without loss of generality to be {0} x R"™, whence by the definition of tangent
cone and the fact that weak convergence of stationary integral varifolds implies
convergence of mass and convergence in Hausdorff distance of the supports of
the associated weight measures, for any given ¢ > 0, there exists o € (0,1 —
|Z|/2) such that disty(spt||nze4 VI[N (R x B1),{0} x B1) <¢e,¢ —1/2 <
wi 0204 VI(RXBY) < ¢+1/2 and (wa2) " nze 4 VI(BIH(0) < ¢ +1/2.
Choosing € = e¢(n, «, ¢') where £ is as in Theorem 3.3, by (H1), we may apply
Theorem 3.3’ to deduce that near Z, V' corresponds to an embedded graph of a
C1@ function over P solving the minimal surface equation, and hence spt ||V||
near Z is an embedded analytic hypersurface, contradicting our assumption
that Z € sing V. Thus d¢ < n.

Again in either case, the induction hypothesis (H2) implies that dc # n—1;
for if do = n — 1, then spt ||C|| is the union of at least three half-hyperplanes
meeting along an (n — 1)-dimensional subspace, and since O(]|C|/,0) < g,
we must have that O(||C||,0) € {3/2,2,5/2,...,q — 1/2}. Again by the def-
inition of tangent cone, we have that for any given €; > 0, a number o €
(0.1 |21/2) such that (2" [nzo4 V(B3 (0)) — O(|CIL.0)| < 1/8 and
dista (spt 1204 V| N BTH0),spt |C|| N BYT(0)) < €1, so choosing &1 =
3€(a, %, C) where € is as in Theorem 3.4, we see by hypothesis (H2) that we
have a contradiction to Theorem 3.4.

Thus de < n — 2. Assume now without loss of generality that Lo =
{0} xR, Then C = C' xR, where C' is an (n—dc)-dimensional stationary
integral cone of R"*1~9¢ with 0 € sing C'. Note that since O(||C|[,Y") < ¢ for
each Y € spt||CJ|, in view of hypothesis (H1), it follows from Theorem 3.3’
that reg C satisfies the stability inequality; viz., [, ¢ |Ac|?¢? < Jreg© |VC (|2
for each ¢ € Cl(regC), where Ac denotes the second fundamental form of
reg C.

Now by a theorem of J. Simons [Sim68] (see [Sim83, App. B] for a shorter
proof), we know that if 2 < n < 6, there does not exist, in R"*!, a minimal
hypercone with an isolated singularity and satisfying the stability inequality.
Applying this to C’, we conclude that if sing C = {0} x R, then, in either
of the cases (a') or (b'), we have a contradiction. Hence there is a point
7y € sing C\ {0} x Ric.
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Let C; € Var Tan(C, Z1). Then {tZ; : t € R} x R% C L¢, so that
dc, > dc + 1. Since C; LB?H(O) = limy_,o, V} for some sequence of var-
ifolds {Vi} C Sa (indeed, Vi =7z Z
and a sequence of positive numbers o converging to 0) and O(||Cq][,0) =

V' for some sequence of points Zj

O(||C||, Z1) < g, by reasoning as above, we see that dc, < n — 2 and that
reg C; satisfies the stability inequality. Thus dc < n — 3, and hence, in par-
ticular, n > 3.

By Simons’ theorem again, there exists a point Z5 € sing C; \ L, , which
implies (by reasoning as above considering a cone Cy € Var Tan(Cj, Z3)) that
dc < n —4 and n > 4. Repeating this argument twice more in case (a), we
produce a cone contradicting Simons’ theorem, and three times more in case
(b), we reach the conclusion dg < n — 7 contrary to the assumption. Thus
both claims (a) and (b) must hold.

(3) By Remark (2) above and, in case n > 7, Almgren’s generalised stratifi-
cation of stationary integral varifolds ([Alm00, p. 224, Th. 2.26 and Rem. 2.28];
see [Sim96, §3.4] for a concise presentation of the argument in the context of
energy minimizing maps), we have the following:

Let q be an integer > 2. If the induction hypotheses (H1), (H2) hold,
V € Sa, Q C BYTH0) is open and O(|V||, Z) < q for each Z € spt||V| N,
then H" "™ (singV L_Q) = 0 for each v > 0 if n > 7 (with singV L_Q
discrete if n =7) and singV _Q =0 if2 <n <6.

We shall now begin, and end in Section 14, the central part of our work,
namely, the proof that for any integer ¢ > 1, the class of functions By (as
defined at the end of Section 5) is a proper blow-up class (as defined in Sec-
tion 4).

7. Nonconcentration of tilt-excess

The main result of this section is the estimate of Theorem 7.1(b), which
says that for a stationary integral n-varifold on an open ball in R"*! having
small height excess relative to a hyperplane, concentration of points of “top
density” near an (n—1)-dimensional subspace L implies nonconcentration, near
L, of the tilt-excess of the varifold relative to the hyperplane. This estimate
will play a crucial role in the proof that B, (see the definition at the end of
Section 5) is a proper blow-up class—specifically, in establishing property (B7)
(see Section 4) for B,. No stability hypothesis is required for the results of this
section.

THEOREM 7.1. Let q be a positive integer, T € (0,1/16) and p € (0,1).
There exists a number e1 = ei1(n,q,7,u) € (0,1/2) such that if V is a

stationary integral n-varifold of B;LH(O) with

(wn2")HVI(BETH0)) < g +1/2, q¢—1/2<w, V(R X B1) < q+1/2
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and
[ PV < e,
RXBl

then the following hold:
(a) For each point Z = (z*,2') € spt||[V|| N (R x By16) with O(||V]],Z) > q,

Ao Eavie,
RXBl
where C = C(n,q) € (0,00).
(b) If L is an (n — 1)-dimensional subspace of {0} x R™ such that
LBy c({Zespt|V]: OV, 2) > q}),,
then
vVl Pavx) < ort e

RxB

/ 2PV (),
(L)rN(RX By 2) 1

where C = C(n,q,pn) € (0,00). Here for a subset A of R, we use the
notation (A), = {X € R" . dist(X, A) < 7}.

Remarks. (1) Since Theorem 5.1 holds with tilt-excess

[ Ve
RXBl

in place of the height excess EZ (see [Alm00, Cor. 3.11]), an examination of
the proof below in fact shows that for any p € (0,1), the more refined estimate

/ VY 2!V (X)
(L)=N(RxBy,3)

<crth / VY || V[(X), ©=0C(n,q.p) € (0,00)
RxB;

holds under the hypotheses of Theorem 7.1(b). We do not however need it
here.

(2) A similar estimate for height excess relative to certain minimal cones
was established in a “multiplicity 1 setting” in [Sim93]. Indeed, we shall later
need a version of that as well (see Corollaries 10.8 and 16.5).

Proof. The proof is based on the monotonicity formula [Sim83, 17.5],
which implies that, for any Z € spt ||[V|| N (R x By6),

1 (X — Z)L2 IvVIBsE(2)
O 5 fruns o= g VI = 5 — 0V 2)

Write By = \/fo31 |21 2 d||V]|(X). Assuming &1 = e1(n,q) € (0,00) is
sufficiently small to guarantee the validity of its conclusions, Theorem 5.1 with
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o = 15/16 implies that
IVI(B; %' (2)) < VIR x Byys())

3/8
= [VII(R x (B3s() \ X)) + [VII(R x (Bys(2') N X))

<Z/ VU [DuiPdi" + V][R x 3)

3/8(Z

< Z /B 1+ [DuiPdH" + CE2,

3/8(2

where C = C(n,q) € (0,00), and v/, j = 1,2,...,q, ¥ are as in Theorem 5.1;
if, additionally, O(||V||, Z) > ¢, it follows that

(7.2)
IVI(By & (2)) B V(B35 (2)) -
—wn(3/8)” o(lvl,z) < T (3/8"

q
2 _ n 2
< Z% 5k /33/8(z (V1+[Dw —1) dn" + CE}

J=1

q
cz/ \DW 2 dH" + CER
j=17Bss(#)

<C Z |DuJ|2dH”+C'Z/ yDuJ'PdH"JrcEa
Bs/s ZN\Z 3/8 ')

<cC Z/ \Dwi|? dH" + CE?
Bsg(2/)\%

<C VYV 22 d||V|(X) + CE% < CEZ,
RxBjs(2")

where C' = C(n,q) € (0,00), and in the last inequality we have used (5.2).
Thus we deduce from (7.1) that

’(‘( Z) |2 2
7.3) / ————d|V||(X) < CFE
( ;L/Jggl( ) ’X Z‘n+2 H H( V

for each Z € spt||V[|N(RxBy16) with O([|V[], Z) > ¢, where C=C(n, q) € (0, o0).
To prove the assertion of part (a) of the theorem, we estimate the left-hand
side of (7.1) from below as follows:
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(7.4)
(X —2)*P
—d||V|(X
/. oy 1X =2 V1)
n+1 ) 2
24’”2/ ) z:((:cJ )e —i—(ﬂU —Zl)ef' d[VI(X)
B?/J; (Z) j=2
| S22 7§ 12
> Ly / ! — 22l 2d|V|[(X 4”/ e 2d|| V][ (X)
2 B;L/ZI(Z) 1/1;1
1. n
254 +2/n+1 lzt — 22|t |2d||V||(X) — 4 /n+1 VY 2! 2| V[(X)
B1/4 (2) 31/4 (2)
1, a
>4 [ el = APt PAVX) - OB
31/4 (2)

>R [ e PV - B
B (7)

1/4

> 4P Z/ (DUl — OB} > ' - CE,

1/8 ')

where for ||V, almost every X € spt ||V, ejL(X ) is the orthogonal projec-
tion of e; onto the orthogonal complement of the approximate tangent plane
Tan(||V]|,X) and C = C(n,q) € (0,00). Note that we have used the fact
that |Du/| < 1/2 almost everywhere and H"(By5(2') \ &) > %’H”(Bl/g(z’)) =
%wn( )™, which hold by Theorem 5.1 provided 1 = £1(n, q) € (0,1/2) is suffi-
ciently small. The estimate of (a) readily follows from this and (7.3).

To see (b), let Z = (2',2') € spt||[V| N (R x By,16) be an arbitrary point
and choose ¢ € C1(R"*1) such that ( = 1 on B;‘/'gl(O), ¢(=0in R”H\B?/ng( )
0 < ¢ <1and |D(| <16 everywhere. For p € (0,1), taking

P(X) =X = 2)|X - 2|7t - 2 P(X - 2)

in the first variation formula (3.1) (a valid choice as shown by an easy cut-off
function argument) and computing and estimating as in [Sim93, p. 616], we
deduce that

2! — 212
———d|| V(X

(X — Z)L2 gl 12
< (002G g gV O 2R V)
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where C' = C(n, ) € (0,00). Since spt D¢ C B?/ng(()) \ Bg/'gl(O), this together
with (7.3) and part (a) implies that
[ A avic < [ v
sy X -z IO =C h
for every Z = (2',2) € spt||V] N (R x By/1) with O(||V||,Z) > q, where
C =C(n,q,u) € (0,00); in particular,

Lo Jat = APaVIC0 < 0o [t agvx)
BTY(Z) Rx B

for each Z = (2,2) € spt |[V|| N (R x By,16) with O(||[V|, Z) > ¢ and each
7 € (0,1/16). In view of the hypothesis

LBy c({Zespt|V]: OV, 2) > q}),,

the preceding estimate implies that for each Y € LN By s, there exists ZLeR
such that

[ et = PV < 07 [l v o).
BITY(Y) Rx By

This in turn implies by (5.1) (applied with 7.1 )14V in place of V and a

choice of appropriate test function () that for each Y € L N By s,
[ WPV < e [ (et RV,
ng/;(y) RxB;

Since we may cover the set (L) N (R x By/) by N balls ng/lg(Y}) with
Y€ LN By for j=1,2,...,N and with N < Crl=", C = C(n), it follows
that

/ Y PV < ot [ v
(L)TO(RX B1/2) RXBl

with C' = C(n,q,u) € (0,00), as required. O
8. Properties of coarse blow-ups: Part 1

Recall from Section 4 the defining properties (81)—(B7) of a proper blow-
up class B, and note that it follows from the discussion in Section 5 that the
class B = B, satisfies properties (B1) and (B2). In this section, we verify that
B, also satisfies properties (B3)—(B6).

Let v € B, be arbitrary. By the definition of By, there exists, for each
k=1,2,3,..., astationary integral varifold V, € S, such that the following are
true: (w,2™) " |Vel(BET(0) < q+1/2; ¢—1/2 < w; Y |[Vil(Rx By) < q+1/2;
E = JrxB, |z12d||Vi||(X) — 0 as k — oo; for each o € (0,1) and each suffi-
ciently large k depending on o, if ui : B, — R are the functions corresponding
tow/, j =1,2,...,q, and ¥, C B, is the measurable set corresponding to %
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in Theorem 5.1 taken with Vj in place of V, then, u,1c < u% <o < UZ§ u{c is
Lipschitz with

(8.1) Llpuk <1/2 foreachje {1,2,...,q};
spt [[Vill N (R x (By \ Tx)) = Ul graphuj, N (R x (B, \ Tp));
(8:2) [Vel[(R x Xg) + /H”(Ek) < CER,

where C' = (n,q,0) € (0,00); and Ek e v/ for each j = 1,2,...,q, where
the convergence is in L?(B,) and Weakly in Wh2(B,).

To verify that v satisfies property (B3), note that by (3.1), for each k£ and
each function ¢ € C}(B,), we have that

(8.3) Jotat -9 a6 o,

where ( is any function in CHR x B,) such that (=G in a neighborhood
of spt [ V[ N (R x By), where ¢;(X) is defined for X = (z',2) € R x B, by
Gzt ') = ((a'). Since rl = uk,( ) for ||Vi| almost every X = (a!,2') €
graphuk Nspt || V||, where uk(:cl ') = uk( z) for (z!,2') € R x B,, we deduce

from (8.3) that

Z D) o= [ 9 ()
o k

q . .
+3 :/ (1+ |Dul|)~Y2 Dul - D¢,
=17/ BsNSk

which can be rewritten as

q . ~
(8.4) Z/ Duy, - D¢ = _/ vVt VY Cd||[Vi(X)
]:1 BO’ RX(BUﬂZk)
+Z/ (1+ |Dul>)"V2 Du),- D¢ + F,
szk
where
(8.5)
|| = a+ |Dul 7)1 + (1 + [Du[H)Y?) 7 Dul [P Du], - D¢

< sup || / AETRIALES
RxBs
q . . .
+ sup | D(| Z/ (1 +[Duf|>) ™21 + (1 + [Dul[H)Y?) 7! Duf,
i k

< sup | D¢| (CE} + qH"(S)) -
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The last inequality in (8.5), where C' = C(n, o) € (0,00), follows from (5.2)
and (8.1).
Dividing both sides of (8.4) by E} and letting k¥ — oo, we deduce, using

(8.1), (8.2) and (8.5), that

> | Dv-D(=0
j=17Be

for any ¢ € C}(B,). Since o € (0, 1) is arbitrary, this implies that A v, = 0 in
By, establishing property (B3) for B,.

Next we verify that B, satisfies properties (B51), (B51I), (B6) and (B511I),
in that order.

Let z € By, 0 € (0,(1 — |z])] and v be an orthogonal rotation of R",
and note that v, , = |lv(z + U('))Hzgl(Bl)v(z%—a(‘)) is the coarse blow-up of the
sequence {19 .)o # Vi }, and vo+y is the coarse blow-up of the sequence {¥4 Vi },
where 7 : R""! — R™"! is the orthogonal rotation defined by 7(z!,2') =
(z1,7(z')). Thus B, satisfies properties (B51) and (B5II).

To verify that B, satisfies property (86), let {v,}2, be a sequence of
elements in B, and for each £ = 1,2,..., let {V{}2°, C S, be a sequence
whose coarse blow-up is vy. Choose, for each ¢ = 1,2,..., a positive inte-
ger kp such that k1 < ko < kg < ---, EVIfZ < min{l~!,e0(n,q, 1 — £71)},

1) < =1, where

where £¢ is as in Theorem 5.1, and HE;}; U, — vellL2(s,
U, = wéﬁw“ﬁ,k,ﬂ . ’UZ,ke> i Bi_p —>eRq is the Lipschitz function (with
Lipschitz constant of each component function < 1/2) corresponding to u =
(u',u?,...,ud) of Theorem 5.1 taken with V,fe in place of V and with o =
1 — ¢~1. That such a choice exists follows from the definition of coarse blow-
up. Note also that it follows from (5.8) and (5.9) that for each o € (0,1) and
all sufficiently large ¢, [ |vg|* + |Dvg|* < C, where C = C(n,q,0) € (0,00)
is independent of ¢. Let v € B, be the coarse blow-up of an appropriate sub-
sequence {V,fé/ .} of the sequence {V,fz}. It is then straightforward to check,
after passing to a subsequence of {¢'} without changing notation, that for each
o € (0,1), vp — v in L?(B,) and weakly in W12(B,).

In order to verify that B, satisfies property (B511I), note first that ify € R
is a constant and v —y # 0 in By, then |v — yHZzl(Bl)(v —y) € By, where we
have used the notation v —y = (v' — y,v? —y,...,v? —y). To check this,
note that v(o(-)) —y # 0 for all sufficiently large o € (0,1) and that for any

such o, Hv(a(-))—yHZQI(Bl)((U(U(-))—y) is the coarse blow-up of the sequence
{Th# Mo % Vi }, where 73, : R"1 5 R™1 is the translation X +— X — (Ejy, 0).
Thus ||v(e()) — 3/”221(31) (v(o(+)) —y) € By for all sufficiently large o € (0, 1),
and hence it follows from property (B6) that [|v — szg(Bl)(v—y) € By as
claimed.



882 NESHAN WICKRAMASEKERA

Next note that if L : R™ — R is a linear function and v — L # 0 in By,
then |lv — LHZ%(Bl)(v — L) € By, where, v — L = (vl — L,v?> — L,..., 07 — L).
To check this, assume without loss of generality (in view of property (B5I1))
that L(x) = Az? for some A € R, and note that for sufficiently large o €
(0,1), [[v(a(+)) —0L||221(Bl) (v(o(+)) — oL) is the coarse blow-up of the sequence
{Tk 4 N4 Vi}, where I'y : R""1 — R™™! is the rotation fixing {0} x R"™!
pointwise and mapping the unit normal v, = (1 + E,%/\2>_1/2 (1, —Ep, 0) to
the hyperplane P, = graph E).L to el. Thus ||v(a(-))—crL||221(B1) (v(o(+)) — o)
€ B, for all sufficiently large o € (0,1), and it follows from property (B86) that
v = Ll r2(gy) (v — L) € By as claimed. We deduce that B, satisfies property
(B51II) by applying the above facts with y = v,(0) and with the linear function
L defined by L(z) = |jv — va(O)HZQI(Bl)Dva(O) -z for x € R". (Note that
v —g(0) Z 0 in By or else v — ¢, = 0 in By, contrary to the hypothesis of
(B511I), where ¢, is as in the statement of (B51II).) Note that our argument
shows more generally that

(86) wveBy, v—4,,#0in By = vaEMZHZQl(Bl)(UfEU’Z) € B,

for each z € Bj, where £, () = vg(2) + Dvg(2) - (x — 2) and v — 4, , =
e N A

Finally in this section, we verify that B, satisfies property (B84) with a
constant C' = C(n,q) € (0,00) to be specified momentarily. First note that
for any stationary integral n-varifold V on B5y™1(0) with Ey sufficiently small
and satisfying the hypotheses of Theorem 5.1 taken with o = 15/16 and for

any Z = (21,2') € spt||V] N B{L/Zl(O) with ©(||V||, Z) > q, we have that

n+2

q R2 - ,
8.7 / - z Rz—n
57 ;::1 By 5(2)\E ((uﬂ — 212 + R§>

(2t im)
OR,

2
) dH™(z) < CoF?,

where R,(xz) = |z — z| for x € R"™ and Cy = Ca(n,q) € (0,00); the set
¥ C Bys/16 here and the functions uj, j = 1,2,...,q are as in Theorem 5.1
taken with o = 15/16. To see this, note that by estimating as in (7.3), it follows
that

/ de“(x)wﬁ Cy = Cs(n,q) € (0,00)
BN (2) | X — Z|n+2 = 2RV, 2 2 Y
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while
(X - 2)*p
Lpvirop, T =z V1)
3/4

(X — 2)LP
> - dl|lVI(X
/R I o X (09

1 (2 =) - Du(a') — (W(a) —2Y)° .,
& 2/31/2( NE ()

S 2S (W (@) = 217 + [/ = 2P) 5

n+2
1 R?, 2 (0((w = 2N /R
- i z Ifn z dH" /.
22/31/2@’)\2((?# —Zl>2+R§/) s ( IR ) HHe)

Now let v € By, and let z € By be such that (B41I) with C = Cy, where
Cy = C3(n,q) is as in (8.7), fails. By (8.6), v = H’U—EMZHZ%(BI)(U—EMZ) € B,.
Let Vi, € S, be such that v is the coarse blow-up of {Vi} . We claim that then
there exists o1 > 0 such that for all sufficiently large k,

(8.8) Z espt||Vi]| N (R X By, (2)) = O(|Vil, Z) < q.

If not, then there would exist, for each positive integer ¢, a positive integer {k,}
with k1 < ko < k3 < --- and a point Z, = (z},2)) € spt ||Vg, || N (R x By(2))
such that O(||V4,|[, Z¢) > ¢. Fix any p € (0,3(1 — |2])]. Applying (8.7) with
Nz,p# Vi, in place of V' and 0 in place of Z, we then have, after changing
variables, that for all sufficiently large ¢,

(8.9)

nt2 : 2
Z / R, S 0 ((uf, — 2})/Rzy) BE)
By/a(z)\Sx, \ (uf, —zn +R K O Ry,

<Cop [ PV

X By (z,

Now for all sufficiently large £ depending on p, ||Vi,|[(Rx B,/16(27)) > Cp"
for a suitable constant C' = C(n) € (0,00), so there exists a point Y, =
(v}, y)) € spt||Vi, || N (R x (B,/16(2y)) such that

(5.10) pE<co [ R0,

By/16(2;)

where C = C(n) € (0,00). Applying Theorem 7.1(a) with V = Nep/2 4 Vi
in place of V' and 7 = (p/2)” Y(Z, — Yy) in place of Z (noting that Z €
spt [|[V[| N (R x Byg) with O(|V]l,Z) > q), we deduce, using also (8.10), that

(1) AP <o | ! PV, ()

><B3p/4 Z
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for all sufficiently large ¢, where C' = C(n,q) € (0, 00). Dividing both sides of
(8.9) by El%z’ and letting ¢ — oo, we conclude, using (8.11) and the fact that
SUD X espt | Vi, IN(Rx By /4)) |zt| — 0 as £ — oo, that

for some y € R and each p € (0, 2(1 — |z[)]. (Note that in justifying the above,
we have also used the fact that

/ (DY - (2 — 2))?
0/2(2)

|$ _ Z‘n+2

n+2
2 2 i 2
< liminf ‘ RZZ (ka‘f (= 2))
— /t—o0 BP/Q(Z;CZ)\EIV[ (uie _ 21})2 + R32 |£C — z‘n—l—Q

foreach j = 1,2,...,q. To see this, note that Dvi — D locally weakly in L2,
4

which implies that ggDvie — Dv’ weakly in LQ(Bp/Q(z)) for any sequence of
bounded measurable functions g, with g, — 1 almost everywhere on B, /Q(Z);
thus for any 7 € (0, p/4),

/ (DY - (x — 2))?
B

2(N\Br(z) |z — 2" t2

Duj, - (x = 2)(D¥ - (z — 2)).
Z|n+2 ’

ge
(=00 JB,/5(2)\Bx (2) |z
N
taking g, = <(ui_z/})‘;+R2/> vXa, where Gy = B,/s(z;) \ g, and us-
A z
ing Cauchy—-Schwarz inequality and letting 7 — 0, we deduce the desired
inequality from this.) Since by the triangle inequality (8.12) implies that

~ 2
pr/2(z) RZ <6((%8—7}?§Z)/Rz)> < oo, it follows that y = ©v,(2) = 0. But this
contradicts our assumption that property (B41) fails for v, leading us to the
conclusion that (8.8) must hold for all sufficiently large k.

By Remark 3 of Section 6 and (8.8), it follows that for all sufficiently
large k, H" " (sing V}, N (R x By, (2))) = 0 for every v > 0 if n > 7 and
sing Vi N (R x By, (2)) = 0 if 2 < n < 6, so we may apply Theorem 3.5 and
standard elliptic theory to conclude that

Vi L(R X By, /2(2) Z |graph uk\
7=1
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where u{ﬁ : B, j2(2) = R are C? functions satisfying

q . . ~
sup Y [Duj| + |D*uj| < CEy
Bo'l/Q(Z) ]:]_
and solving the minimal surface equation on B, /5(z), where C' = C(n,q,0) €
(0,00). This readily shows that A%/ = 0 on By, j2(2) for each j = 1,2,...,4q,
establishing property (B4) for Bj.

Remarks. (1) The argument leading to (8.12) proves the following:

Let ) be an open subset of Byyy. If v € By and {Vi} C Sy is a sequence
whose coarse blow-up is v (in the sense described in Section 5) and if for
infinitely many k, there are points Zj € spt || Vi ||V (R x Q) with O(||Vk||, Zk) > ¢,
then there exists a point z € Q such that

f:és<)R?%<8(wj_uxdwR»> ScbpﬂhééA@wp

j=1"5p/2\% IR,

for each p € (0,3(1 — |z])].

(2) Let q be an integer > 2. There exist constants ' =n'(n,q,a) € (0,1)
and &' = §(n,q,«a) € (0,1) such that the following is true: If the induc-
tion hypotheses (H1), (H2) hold, V € Sa, (w,2™)"|V|(BFT(0)) < ¢+ 1/2,
WHIVII(R x By) < ¢ +1/2, JrxB, dist?(X, P)d||V||(X) < &' for some union
P Cc R"! of finitely many (distinct) affine hyperplanes disjoint in R x By
with disty (P N (R x By),{0} x By) < &' and, writing A for the set of affine
hyperplanes of R 1, if

/’ dist?(X, P) d|| V|| (X <nm/’ dist?(X, L) d[V]|(X),
RXBl

then

(a) P consists of at least two affine hyperplanes;
(b) {Z espt|[|[V[[N(R x Bsq) : O(|V, Z) > ¢} = 0;
(c) there exist an integer p with 2 < p < q, positive integers a; < q — 1, affine
hyperplanes PZ - P, C? functions uf P1 N (R x Bgjy) — (le)L with
161< <u ce1 for1<j<np, 1<z§a]andu?fll'el<u]1~elf0r
2 < j < p such that [k HCQ (PIA(Rx B )u) < C Jgxs, dist?(X,P) d||V||(X),

VL(R x Bsjs) =35_, Vj, where V; = S graphu} N (R x Bss)|, and

/ dist2(X, P)d|[V]|(X Z/ dist?(X, P;) d||V; | (X),
RxBs/s RxBj/g

where P; = Uf;lP; Here graphu§» = {X+u§-(X) : X e PN(R X Bsy)}
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To see this, argue by contradiction: Were the assertion false, we can find a
sequence Vi € Sy with (w,2™) ™| Vil[(BETH(0)) < ¢+1/2, w, H[Vil(R x By) <
q+1/2 and for each k, affine hyperplanes P}, ..., P,"* with P} ﬂP]g N(R x By)
= for 1 <i < j<ngand disty(PrN (R x By),{0} x By) = 0 as k = o0
where Py, = (JI*, P/, such that [q, . dist?(X,Py) d||Vi]|(X) — 0 and
(8.13)

-1
(inf / dist2(X, L)dHVkH(X)) / dist2(X, Pr)d|Vi]|(X) =0
LeA JRxB; RxB;

and yet, at least one of the conclusions (a)—(c) with Vj in place of V and Py
in place of P fails. Note that infrea /g, p, dist?(X, L) d||Vi||(X) — 0, and
choose Ly € A such that
/ dist(X, L) d|[Vi]|(X) < 2 in dist2(X, L) d|| Vil|(X).
Rx B 2 LeAJRxB,

Noting then that Ly — {0} x R™, choose rigid motions T : R"*!1 — R"!
such that I'y — Identity and T'y(L;) = {0} x R”, and let v = (v!,...,0%) €
Wli’f(Bl;Rp) N L%(By; RP), with v' < v?--- < v%, be the coarse blow-up,
as described in Section 5, of (a suitable subsequence of) the sequence {Vj, =
n0,13/16 % Lk # Vi } relative to {0} x R™, where £ is a positive integer < q. Let
p < £ be the number of distinct functions in the set {v',...,v’}, denoted
o', ..., 0P with the labelling so chosen that 7' < --- < oP. Then by (8.13), for
each k, there exists {ﬁkl,lg,?, e ,?,f} C {P}, PZ,..., P} such that, writing
Fkﬁ,@ = graph ﬁ}g for an affine function f)"}g : R™ — R with labelling so chosen
that 17,1~C < e < ﬁl,'; in R x By, we have that o/ = limj_,o (Ek)_lﬁi for
1 < j < p. Thus each v/ is affine, and by (8.13) again, p > 2 and @” > ¥' in
Bj. Tt then follows from Remark (1) above (taken with ¢ in place of ¢) that
{Z € spt|[Vill N (R x Bgq) : O(IVill, Z) > ¢} = 0 for sufficiently large k.
The rest of the conclusions with Vj, in place of V' and Py in place of P now
follow, for all sufficiently large k, from Remark 3 of Section 6, Theorem 3.5
and standard elliptic estimates, contrary to the assumption that at least one
of those conclusions must fail for each k.

(3) Let q be an integer > 2. There exists a constant 6 = §(n,q, ) € (0,1)
such that the following is true: If the induction hypotheses (H1), (H2) hold,
V€ Sa, (wn2") HIVI(B31(0)) < g+ 1/2, w VIR x B1) < ¢ +1/2 and

/ dist?(X, P)d|[V[|(X) < 6
RXBl

for some union P C R"! of at most q affine hyperplanes disjoint in R x By

with disty (P N (R x By),{0} x By) < 0, then either

(a) {Z espt|VIIN(Rx Byys) : O(|VI, Z) > q} = 0 and there exist a positive
integer £ with 1 < ¢ < q, distinct affine hyperplanes Py, Ps,..., Py C P,
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positive integers qi,qa, ..., qe with Zi:l @ < q and C? functions ui :
Py N (R x Byjq) — P with

sup  |ul |+ [Dul? < c/ dist2(X, P) d||V||(X)
Pkﬁ(RXB3/4) RxB;

for1 <k </t 1<j<qr where C =C(n), such that

L qx

VIL(Rx Bl/2 Z Z !graphuk (R x B1/2)|;
k=1j=1

or
{Z e spt|[V[N(Rx Byg) : OV, 2) > g} # 0, w, ' [[V[(R x Br) >
q — 1/2, and there exist an affine hyperplane P C P, a measurable subset
¥ C PN(Rx By3ag) Lipschitz functions uy, uz, . . . ,uq : PN(R X Big/8) —
P+ with Lip(uj) < 9/16 for each j € {1,2,...,q} such that

() + VI (Cr (2 +Z/ s + Dy
PN(RXB13/28)\E
<C dist?(X, P) d||V||(X)
R,XBl
and
V L((R x Biz/s) \ Cp(Z Z lgraphu; N (R X Byg es) \ Cp(X))];
J=1

where Cp(¥) = {X € R"" : 71p(X) € X} with mp denoting the orthogonal
projection of R" Tt onto P; furthermore, in this case we have that for each

je{1,2,...,q},

sup |u;| < CoY2,
Bi3/2s

where C = C(n) € (0, 00).
To see this, let ' = 1n'(n,q,a) € (0,1) and & = §'(n,q,a) € (0,1) be the

constants as in Remark (2) above. Let g9 = €¢(n,q,a,3/4) € (0,1) be the
constant as in Theorem 5.1. Let the hypotheses of the assertion of Remark (3)
be satisfied for sufficiently small § € (0,7'd’eg], and note that it follows from
the Constancy Theorem ([Sim83, Th. 41.1]) that if § = d(n,q,«) € (0,1) is
sufficiently small, then there exists an integer m with 1 < m < ¢ such that

wy, HIVI(BYTH(0)) <m+1/2 and m—1/2 < w, 12" |V[[(R x By ) < m+1/2.

Consider the two alternatives:

(A) Jryp, dist®(X,P)d|[VII(X) <1 infrea fgyp, dist®(X, L) d||V]|(X).
(B) Jrxp, dist®(X,P)d|[V[[(X) > 7' infrea [ p, dist*(X, L) d|[V[|(X).
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In case of alternative (B), choose L € A such that

/ dist?(X, L) d||V[|(X) < 3 inf dist?(X, L) d||V||(X)

RxB; 2 LeAJRxB,

and note, by Theorem 5.1, that if § = d(n,q,«) € (0,1) is sufficiently small,
then dist3,;(L N (R x B1), PN (R x B)) < C [z, p, dist>(X,P) d||V]|(X) for
some affine hyperplane P C P, where C' = C(n) € (0,00). Now if m = ¢ and
{Z espt|[V]N(R x Bsy) : |V, Z) > q} # 0 (in case (B)), the assertion
with conclusion (b) follows, for sufficiently small 6 = d(n,q,a) € (0,1), by
applying Theorem 5.1 (with 7,54V in place of V) and using the estimate
(5.2) as well as the estimate of the remark following Theorem 5.1, whereas if
m = q and {Z € spt |[V]| N (R x Byy) : O(|V[,Z) > q} = 0, the assertion
with conclusion (a) with £ =1 and ¢; = ¢ follows from Remark 3 of Section 6,
Theorem 3.5 and standard elliptic estimates; if m < ¢ — 1, hypothesis (H1)
implies that conclusion (a) holds.

In case of alternative (A), we argue by induction on ¢ to see that the
assertion with conclusion (a) holds: If ¢ = 2, the desired conclusion follows
directly from Remark (2)(c) above. For general g, let Vj, P;, a; be as in
Remark 2(c) and note that a; < g — 1. For each fixed j, consider the same
two alternatives (A) and (B) as above but with Vj, P; in place of V, P. In
case alternative (B) holds (with Vj, P; in place of V, P), we see by elliptic
estimates that conclusion (a) (with Vj in place of V and ¢ = 1) must hold,
whereas in case of alternative (A), we may assume by induction the validity of
conclusion (a) (with Vj in place of V' and suitable ¢; in place of ¢).

9. Properties of coarse blow-ups: Part 11

Fix an integer ¢ > 2, and suppose that the induction hypotheses (H1) and
(H2) hold. In this section we begin the proof that the coarse blow-up class B,
satisfies property (B7); we shall complete the proof in Section 14.

Suppose

(1) v = (v},02,...,0]) € B, is such that for each j = 1,2,...,q, there
exist two linear functions L7, L}, : R™ — R with L’(0,y) = L}(0,y) = 0
for each y € R, vj(;vQ,y) = L{(wQ,y) if 2 < 0 and Ui(.l?Q,y) =
Li(2?,y) if 22 > 0.

In order to show that B, satisfies property (B7), we need to prove that

vl =12 =... =o{ = L for some linear function L : R” — R. We shall do this
by establishing the assertions in each of the following two cases:

Case 1: There exists no v, € B, as in (1) above such that L{ = L? = --- =
LY but L) # L3 for some j € {1,2,...,q—1}.
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Case 2: There exists no v, € By as in (1) above such that L} # Li™ for

some i € {1,2,...,g— 1} and Lg #L%H for some j € {1,2,...,q—1}.

We prove the assertion of Case 1 in Lemma 9.1 below and complete the
proof that B, satisfies property (B7) (by proving the assertion of Case 2) in

Corollary 14.2; the latter requires a number of preliminary results that we shall
establish in Sections 10-14.

LeMMA 9.1. Let vy, and L7, i € {1,2}, j € {1,2,...,(]}, be as in (1)
above. If L} = L3 =--- =L, then (i) LY =L =---= L and (ii) vl = L for
some linear function Landallj=1,2,...,q.

Proof. The assertion of (ii) follows from that of (i) since the average
(V4)a = g ! 25:1 vi is harmonic and hence is a linear function under the
hypotheses of the lemma.

Suppose, contrary to the assertion of (i), that Lj =+ Lj 1 for some Jj €
{1,2,...,q — 1}. By property (B5III), M € By, so we may assume
without loss of generality that Lj =0foreach j=1,2,...,q. Fork=1,2,...,
let Vi € S, with (w,2")~ 1HVkH(B”+1(O)) < q+1/2,q-1/2 < w;Y|Vil(Rx By)
< q+1/2 and Ek JrxB, |21|2d|| V4 ||(X) — 0 be such that the coarse blow-up
of the sequence Vi, obtained as described in Section 5, is v,. Let the notation
be as in Section 5. Thus for each o € (0,1) and each sufficiently large k
(depending on o), there exist Lipschitz functions ui :B, - R,j=1,2,...,q,
with Lipu), < 1/2 for each j € {1,2,...,q}, such that

v) = lim E uk,
k—o00

where the convergence is in L?(B,) and weakly in W'?(B,), and
(9.1)  spt Vil N (Bo \ Sk) = Ul graphuf, N (By \ ),

where X, C B, is the set corresponding to 3 in Theorem 5.1 when V is replaced
with Vj so that, in particular,

(9-2) IVAlI(R x £) +H" () < CEF,

where C' = C(n,q,0) € (0,00).
In what follows, we take o € [15/16,1) to be fixed. Fix any 7 € (0,1/16).
Since

/ 2! Vil (X)
(RxBg/16)N{z2<—71/2}

q . .
— V14 | Dul|? |ul|PdH
jz::l /<Bg/16\zk>n{x2<—r/z} B

+ 2P| Ve[ (X)),
(Rx(Bg/16NZg))N{z2<—7/2}
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Elzluk — 0in L? on By N {z? < —7/2} and

sup |zt — 0,
X=(zt,2")espt || Vi [N(RX Bg/16)

it follows from (9.2) that

E? |2 2d|| Vi || (X) — 0

/(RXB9/16)0{$2ST/2}
and consequently, by (5.2), that

(9.3) E? (VY 2 2d|| Vi (X) — 0.
(Rx By o){z2<—7}
We claim that for all sufficiently large k,
(94)  O(|Vi]l,Z2) < q for all Z € spt|[Vi| N (R x Bsg) N{z? > 7/8}.
If this were false, then there would exist a subsequence {k’} of {k} and for
each k', a point Zy = (2}, 21,) € spt||[Vie|| N (R x Bjs) N {z? > 7/8} with
O(||Vir||, Zx) > ¢; by the reasoning as in the remark at the end of Section 8,

this fact yields
, 2
4 0 1}1 — Rz’
SR (@ = 0/R) N
By ya(2) IR

=1

for some 2’ € By sN{x* > 7/8} and some y € R, which implies that vi(Z) =y
for all j = 1,2,...,q. But this contradicts our hypothesis that L% # L%H for
some j € {1,2,...,q— 1}, so (9.4) must hold for all sufficiently large k.

With the help of Remark 3 of Section 6, we deduce from (9.4) that for all
sufficiently large k, H" "7 (sing Vi N (R X Bj/s) N {2* > 7/8}) = 0 for each
7> 0if n > 7 and singV, N (R x Bsjg) N{z? > 7/8} =0 if 2 <n < 6. We
may therefore apply Theorem 3.5 and elliptic theory to deduce that, for all
sufficiently large k, X N By/16 N {22 > 7/4} = 0;

(9.5)
q
Vi L((R x By 16)N{z* > 7/4}) = Z |graph uj| L_((R x By 16) N{z? > 7/4});
j=1
and that ui are C? on By 16N {2? > 7/4}, solve the minimal surface equation

there and satisfy

(9.6) sup |Dfuy|? < CLE?
Bl/gm{$2>7'/4}

for ¢ = 0,1,2, where C;, is a constant depending only on n and 7, and D’
denotes the order /¢ differentiation.
We next claim that for all sufficiently large k,

(9.7) ({0} x R"™) N By € ({Z € spt [Vl - ©([Vill, Z) 2 a}), -
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If this were false, then there would exist a point (0,y) € {0} x R"1 N By,
and a subsequence {k’} of {k} such that for each &/,
By u((0,9) N {Z e spt [Vie |l : ©(IIViv ], 2) = ¢} = 0.

Since spt [|Vi| N (R x Bs;y) — {0} x Bsy, in Hausdorff distance, it follows
that for each & and each Z € spt||[Vi/|| N (R x B;/2((0,y))), we must have
O(||Virll, Z) < q. Arguing exactly as for (9.5) and (9.6), we conclude that for
all sufficiently large &/, Xp N B;/4(0,y) = 0;

spt || Vi [| V(R % B 4(0,y)) = U?Zlgraph ui,

BT/4(O7y) '
and that ui, are C? functions on B, /4(0,y), satisfy
q

Z sup ]Dui,| + |D2ui,] < CEy, C=C(n,71)e(0,00)
j=1Br/1(0,y)

and solve the minimal surface equation on B, 4(0,y). Consequently, v1| B, 4(0.9)
must be harmonic for each j = 1,2,...,q, which is however impossible since
by hypothesis, L{ = 0 for each j = 1,2,...,q while L% #* Lg“ for some
j € {1,2,...,q — 1}. This contradiction establishes (9.7) for all sufficiently
large k.

We now proceed to derive the contradiction needed for the proof of the
lemma. By taking (X) = ((X)e? in the first variation formula (3.1), we

deduce that

(9.8) [ ¥Vea? 9V 0 () = 0

for each £k = 1,2,... and each E € CHR x Bj). Choosing Zto agree with
¢'(z', 2") = ¢(a’) in a neighborhood of spt |V |[N(R x By ), where ¢ € C}(Bj4)
is arbitrary, we deduce from this that

q - D J DC-D J
(9.9) Z/B \/1+ |Duj|? <D2C _ Do (D¢ uk)) = F), where
j=17B1/a

1+ |Dul|?

n=- | Vg vV (0| Vil (X)
RX(By,4N%g)

2 - Dol (DC - Dl
+Z/ Y1+ |[Duj? <D2§— 23 (D¢ Du) )
j=17B1/aNZk

— 1+ |Dug|?

Since fBl/4 Dy¢ =0, it follows from (9.9) that

a / | Dui, |2 Dac Dyul (D¢ - Duf) B

= 2 = —
Jzz:l Bijs 14 /1 + |Duj|? V14 |Dul|?

(9.10)
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In view of (9.5) and (9.6), it follows from the definition of ¥, (see Theorem 5.1)
that

(9.11) ByyNS, C Byyyn{a® < 7/2}

We claim also that for all sufficiently large k,

(9.12)

Vil (Rx (By 4nSg))+H" (B 4NSk) < C VY 22| Vi [ (X),
(RXBI/Q)Q{CC2<T}

where C' € (0,00) is a fixed constant depending only on n and ¢q. To see

this, let iéj), 7 = 1,2,3, correspond to the set fj in Theorem 5.1 when V is
replaced by Vj, and let X} correspond to X'. Since for each k, p € (7/4,1/16)
and Y € spt [|Vi|| N (R x By/p), we trivially have that

013 o [ Va0
RxB,(rY)
< qnpm / VY 2 2d)| Vi [|(X) < 47 P E2,
RX33/4

and since by definition,

S = {y € spt |V N (R x By) :
) (VY% 2 2d|[A]|(X) > € for some p € (0,(1 - o))},
RXxB,(1Y)

where £ = &(n,q) € (0,1/2) is as in Theorem 5.1, it follows that for all suffi-
ciently large k (dependingon 7), Y € iél) if and only if Y € spt || Vi||N(R x By)
and p~" foBp(wY) (VY 2112d|| Vi ||(X) > € for some p € (0,7/4]. Also, by part
3 of the proof of [Alm00, Th. 3.8], we have that for each x € B, and each k,

(9.14) > O ([Vel,Y) < q.
vespt [Villnm=1 @)\ (S(VUs)

In view of (9.11), it follows from the Besicovitch covering lemma and (9.14)
that

[Vill(R x (B4 N Wil(gj))) +H"(B1/4 N Wilgj))

<C Ve 2! 2 d]| Vi | (X)
(B1/2xR)N{x2<7}
for j = 1, where C = C(n,q) € (0,00). Since ||Vk||(§£2)) = 0 (see part 2 of
the proof of [Alm00, Th. 3.8]), this estimate also follows for j = 2 in view
of (9.14); it follows for j = 3, directly from the definition of ff),(f’), (9.11) and

(9.14); it also holds with ¥} in place of Tr,EVJ,(Cj), by (9.11) and part 5 of the proof
of [AIm00, Th. 3.8]. Thus the estimate (9.12), with the constant C' depending
only on n and ¢ (in particular independent of 7), holds.
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By (9.12), Theorem 7.1(b) (with p = 1/2) and (9.3) we deduce that, since
the integrands in both integral expressions in F} are bounded,

(9.15) E, 2| Fy| < Csup |D¢|rY/?

for all sufficiently large k, where C' = C(n,q) € (0,00).

\Dui|2

Doy (D¢-Duy)

Abbreviating w, = S¢_, — =k D o5k note that
g Wk =2 j=1 144/ 14| Dul |2 26 \/ 1+ Dud 2
/ wr] < Csup D] VY 2t VA (),
By \Zpn{z2<7} (Rx By 9)N{z2<7}

and by (9.12),

[l < s nql VYt Vi (),
By /4Ny }

(Rx By )N {z?<t

where C' = C(n), so that again by Theorem 7.1(b) with = 1/2 and (9.3),

(016)  B” ( / wel + [ rwk|> < Csup |D(|r'/?
By,s\ZpN{z2<7} B1/4NXg

for all sufficiently large k, where C' = C(n). Finally, by (9.6),

. 1J
(9.17) lim F,_ 2 wy, = —=

12
. k 5 / | D2v]|* DG,
k=ro0 Byjan{z?>7} j=17B1an{a?=7}

where we have used the fact that Djvl = 0 for i = 3,....,(n+1) and j =
1,2,...,q. Dividing (9.10) by E? and first letting k¥ — oo and then letting
T — 0, we conclude from (9.15), (9.16) and (9.17) that

q
> D30ll?Da =0
j=1 By /4N{z?>0}

for any ¢ € C}(Byjy). Since vl = L} on {2® > 0}, this contradicts (for any
choice of ¢ € 05(31/4) with fB1/4ﬁ{1220} Ds¢ # 0) our assumption that L} #
L];rl for some j € {1,2,...,q — 1}. O

Remark. It follows from Lemma 9.1 and the compactness property (B6)
that there exists a constant ¢ = ¢(n,q) € (0,00) with the following property:
If v € B, is such that, for each j = 1,2,...,q, v/(2?,y) = ijQ for 22 < 0;
vl (2% y) = msz for 22 > 0, where ¢j, m; are constants; and vl # v, for
some j € {1,2,...,q}, where v, = ¢! Z}Ll v’, then [0 — £,]* > CZ?ZI l|lvF —
vaH%Q(Bl) and |my — mg|? > ey lvf — UGH%Q(BI). (Of course once we have
completed the proof that B, satisfies property (B7), we will have ruled out the
existence of such v € By.)
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10. Parametric L%-estimates in terms of fine excess

This section and all of the subsequent sections up to and including Sec-
tion 14 will be devoted to the proof of the assertion of Case 2 set forth at
the beginning of Section 9. Crucial to our proof are the L?-estimates, given in
Theorem 10.1 and Corollary 10.2 below, for a varifold V' € S, with small coarse
excess (relative to a hyperplane) and lower order “fine excess” relative to an
appropriate union of half-hyperplanes meeting along an (n — 1)-dimensional
axis (see Hypotheses 10.1(5) below). These results are adaptations to the
present “higher multiplicity” setting of those proved in [Sim93] in the context
of “multiplicity 1 classes” of minimal submanifolds.

Notation. (1) Let C; denote the set of hypercones C of R""! such that
C = Y1, |Hj|+|Gj|, where for each j € {1,2,...,q}, Hj is the half-hyperplane
defined by

H; = {(«',2%y) e R"™ 2% <0 and 2! = \;z%}
and G is the half-hyperplane defined by

Gj={(z',2%,y) e R"" : 2 > 0 and ' = p;2°},
with Aj, pj constants, Ay > Ao > --- > Ay and py < po < -+ < pgy. Note that
we do not assume cones in C, are stationary in R,

(2) For p € {2,3,...,2q}, let C4(p) denote the set of hypercones C =
Zj‘:l |H;| + |Gj| € C; as defined above such that the number of distinct half-
hyperplanes in the set {Hi, ..., Hy,G1,...,Gq} is p. Then C, = U;ng Cq(p).

(3) For V € S, and C € C,, define a height excess (“fine excess”) Qv (C)
of V relative to C by

Qv(C) = dist*(X, spt |V ) /| C||(X)

</RX (B1/2\{lz?|<1/16})

1/2
o s spt ||cu>d||vw<X>) -
RXBl

(4) For ¢ > 2 and p € {4,...,2q}, let
Qvp)= it Qu(C).
CelJi—sCq(k)

Let « € (0,1), and let ¢ be an integer > 2. In Theorem 10.1, Corollary 10.2
and Lemma 10.8 below and subsequently, we shall consider the following set
of hypotheses for appropriately small £,v € (0, 1) to be determined depending
only on n, g and a:

Hypotheses 10.1.

(1) VESa, O(IVI,0)2 ¢, (wn2") V(B3 T(0)) <q +1/2, w ' |VII(R x By)
<q+1/2.
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(2) C=30_,|Hj|+|Gj| € Cy, where for each j € {1,2,...,q}, Hj is the half-
hyperplane defined by H; = {(z!,2%,9y) € R"" : 22 <0 and z! = \;2?}
and G is the half-hyperplane defined by G; = {(z!,22,y) € R"*l : 22 > 0
and z! = ,ujmz}, with Aj, pj constants, Ay > Ao > -+ > Ag and pqg < pp <
S g

(3) EY = Jrup, [#'PdIVII(X) <e.

@) {Z:0(IVI,2) 2 g} N (R x (Bij2 \ {|2°| < 1/16})) = 0.

(5) QF(C) <~EY.

Remark. There exists e =¢(n, ¢) € (0, 1) such that if Hypotheses 10.1 above
hold with any v€ (0, 1), and the induction hypotheses (H1), (H2) hold, then

(10.1) max {|A\1], (A} < 1By and max {|u1], |ugl} < c1Fy,

where ¢; = ¢1(n) € (0,00). These bounds follow from Hypotheses 10.1(5)
in view of the fact that (by Hypotheses 10.1(4), Remark 3 of Section 6 and
Theorem 3.5), under Hypotheses 10.1, V L (R x (Byy \ {|2*| < 1/8})) =
23‘21 |graph ;| + |graph w;| where, for j =1,2,...,q, u; € 02(31/4 Nn{z? <
—1/8}), wj € C*(Byyy N{2? > 1/8}) with SUPp, ,,n{x2<—1/8} [i;| < CEy and
SUpp, ,n{z2>1/8} lwj| < CEy, C = C(n) € (0,00).

Let ¢; = ci(n) be the constant as in (10.1) above, and define a constant
My = Mo(na Q) € (07 OO) by

My = max § 22n+8w72l(2q + 1)20% 22n+8wn(2q +1)
0 2 ) 61 ’ 61 3

where C; = fBl/QO{$2>1/16} |22|? dH™(x2,y). We shall use this constant at
several places below.

For V as in Hypotheses 10.1, we shall also assume the following for suitable
values of M > 1:

HYPOTHESIS ().

B2 <M inf / dist?(X, P), d|[V(X).
{P={z'=X22}eGn:XeR} JRxB;
Remarks. (1) If Hypotheses 10.1 and Hypothesis (x) hold with sufficiently

small e = e(n,q) € (0,1), v = y(n,q) € (0,1) and with M = 3M¢, then
(10.2)  cBy <max{|\|,[Al}, cEv < max{|ml, |ug} and
min {|A1 = Agl, |1 — pql} = 2cEy

for some constant ¢ = ¢(n,q) € (0,00). Indeed, the triangle inequality (in the
form dist?(X, P) < 2dist?(X, spt ||C||)+2dist?, (PN (R x By ), spt |C|N(Rx By))
for X € R x By, applied with P = {z! = (A 4+ A)z?} or P = {a! =
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2(p1 + p2)2?}), Hypothesis (x) (with M = 2M{) and Hypotheses 10.1 (with
sufficiently small ¢ = ¢(n,q) € (0,1) and v = v(n,q) € (0,1)) imply that
A — M| + |1 — pg| > EEy for some & = &(n,q) € (0,00). Lemma 9.1 then
implies that min {|A; — Ag|, |1 — |} > 2¢Ey, ¢ = ¢(n,q) € (0,1); the first
two inequalities of (10.2) follow readily from this.

(2) It follows from the last inequality of (10.2) that if Hypotheses 10.1 and
Hypothesis (x) hold with € = ¢(n, q), v = v(n, q) € (0, 1) sufficiently small and
M = 3 Mg, then C € Cq4(p) for some p € {4,5,...,2q}.

Finally, for C, V' as in Hypotheses 10.1 and appropriately small g €
(0,1/2) (to be determined depending only on n, ¢ and «), we will also need to
consider the following:

HYPOTHESIS (xx). Either
(i) CeCy(4), or
(ii) ¢ > 3, C € Cy(p) for some p € {5,...,2q} and Q¥ (C) < B(Q%(p — 1))2.

Remarks. (1) Let C be as in Hypothesis 10.1(2). If V € S,, C satisty
Hypothesis 10.1(1), Hypothesis (xx)(ii) with 8 € (0,1/4) and if Ay = \] >
Ay > .- > A = A are the distinct elements of the set {A1,...,\;} and
p1 = py < py < --- < py,, = pg are the distinct elements of {p1, ..., g}
(notation as in Hypothesis 10.1(2)), then it follows from Hypothesis (xx) and
the triangle inequality that

(10.3) ;+1 - )‘2 > QC,QT/(P - 1), #;‘+1 - M;' > 20/@?/(10 - 1)
for some constant ¢ = ¢/(n,q) € (0,00) and all i = 1,2,...,p; — 1 and j =
1,2,...,py — 1.

(2) Suppose V € S,, C € C, satisfy Hypotheses 10.1, Hypothesis (x) and
Hypothesis (%) for some ¢,v,3 € (0,1/2). If C’ € C, is any other cone with
spt ||C’|| = spt ||C||, then Hypotheses 10.1, Hypothesis (x) and Hypothesis (xx)
will continue to be satisfied with C’ in place of C provided v, 3 are replaced
by 2q~, 2q8 respectively.

THEOREM 10.1. Let g be an integer > 2, a € (0,1), 7 € (0,1/8) and
w € (0,1). There exist numbers g = eo(n,q, o, 7) € (0,1), 0 = Y(n,q,,7) €
(0,1) and By = Po(n,q,a,7) € (0,1) such that the following is true: Let V €
Sa, C € C; satisfy Hypotheses 10.1, Hypothesis (x) and Hypothesis (xx) with
M = %Mé and €9,%0, Bo in place of €, v, B respectively. Suppose also that the
induction hypotheses (H1), (H2) hold. Write C = Zgzl |H;| + |G;| where for
each j € {1,2,...,q}, Hj is the half-space defined by H; = {(z*,2%,y) € R"*1 :
22 <0 and x' = \jz?}, G; is the half-space defined by G; = {(z},2%,y) €
R" 22 >0 and x! = ,uij}, with \j, pj constants, A\ > A > --- > Ay and
p < pp < oo < g for (22y) € R™ and j = 1,2,...,q, define hj(z?,y) =
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)\j:c2 and g; (22,y) = ,u,jacQ. Then, after possibly replacing C with another cone
C’ € Cy with spt ||C'|| = spt ||C|| and relabelling C' as C (see the preceding
Remark (2)), the following must hold:
(a) V L (R x (Byss\ {1o%] < 7})) = S30_, |graph(h; + u;)| + leraph(g; + ;)|
where, for each j =1,2,...,q,
(1) uj € C*(Byy N {a? < —7}); wj € C*(Byyy N {a? > 7});
(ii) hj + u; and gj + w; solve the minimal surface equation on their re-
spective domains;
(iii) h1+ur <hg tug <0 < hg +ug;
(iv) i + w1 < ga+wa < -+ < gg + wyg;
(v) dist((h;(2?,y) + uj(a?y), 2%, y),spt [Cl)) = (1 + A3) "2 |u;(2?,y)],
(z%,y) € By N {2? < —7};
(vi) dist((g;(2*,y) +w;(2*,y), 2%, y),5pt [Cl) = (1 + )2 w;(=*,y)],
(22,y) € Bgy N {2% > 1}.
XL? .
(b) Sz 1) ez dIVI(X) < C fiaep, dist®(X,spt |C) d[V[(X).
(c) X743 St ler PAIVIX) < C Jrxp, dist®(X, spt || C[)) dl|V[|(X).
dist?(X,spt ||C -~ .
(@) Jgps100) T L AIVIX) < C frp, dist®(X, spt |Gl df[V|(X).

Here ej-(X) denotes the orthogonal projection of ej onto (Tx spt ||V )+ and

C =C(n,q,a) € (0,00), C = a(n,q,a,,u) € (0,00). (In particular, C, C do
not depend on T.)

Proof. We first establish conclusion (a). Let A=A} > X\y> --- >\ =),
be the distinct elements of the set {1, ..., Ag} and py =py <ph < -+ < py, = fiq
be the distinct elements of {y1, ..., iq} so that pi,ps < ¢ and p; + ps = p. By
(10.2), provided € = e(n, q),y = v(n,q) € (0,1) are sufficiently small, we have
that p1,pa > 2. By Remark (1) at the end of Section 8, Remark (3) of Section 6
and Theorem 3.5, it follows that if ¢ = e(n, ¢, a,7),v = v(n,q,a,7) € (0,1)
are sufficiently small, then

q
(104)  VL(Rx (Byu\ {ls? < 7)) = 3 graph ;| + |graph ;.
j=1

where @; € C*(Bsyy \ {2? > —7}), w; € C*(Bsyy \ {2® < 7}) are functions
with small gradient solving the minimal surface equation and with u; < g <
o < Tg and @y < Wy < -+ < 40,

If p = 4, then p; = py = 2 and by (10.2), provided ¢ = &(n,q),y =
v(n,q) € (0,1) are sufficiently small,

cBy <max {|X], M|} <erByv,  cBy < max{|p], [ph]} < c1 By

and
min {[X] — Xo, |y — pis]} > 2¢Ey,
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where ¢; = ¢1(n),c = ¢(n,q) € (0,00) are as in (10.1) and (10.2). Conclu-

sion (a) follows in this case from Hypothesis 10.1(5) and elliptic estimates.

Now suppose C € C4(p) for some p € {5,6,...,2¢} and assume by induction

the following:

(A1) There exist € = &(n,q,a,7), ¥ = 5(n,q,a,7) and B = E(n, q,a,T) €
(0,1) such that if Hypotheses 10.1, Hypothesis (x) and Hypothesis (%)
are satisfied with M = Mé, g, 7, B in place of €, «y, B respectively, and
with V € S, and any cone C € Uz;}lcq(k‘) in place of C, and if the
induction hypotheses (H1), (H2) hold, then conclusion (a) with C in
place of C holds.

By (10.3),
(10.5) Mg = Xl 2 2dQ0(p — 1), G0 — w5l = 2¢Qy(p — 1)
for some constant ¢ = '(n,q) € (0,00) and all i = 1,2,...,py — 1 and j =

1,2,...,py — 1. So if
2-\% _ .
@ -7 = (58) 758,
then it follows from (10.1), (10.4), (10.5) and elliptic estimates that conclusion

(a) holds provided ¢ = e(n,q,a,7), v = v(n,q,a,7) € (0,1) are sufficiently
small. If on the other hand

qa .
(10.6) @ -1 < (3B) 78,
then we argue as follows: Choose C; € Ui;llcq(k) such that

Qv (p—1)*.

If Hypothesis (x*) is satisfied with C; in place of C and B in place of 3, then
it follows from assumption (A;) (taken with C = Cy), (10.7), Hypothesis (x),
(10.5) and elliptic estimates that conclusion (a) holds provided € = &(n, q, o, 7),
B =pB(n,q,a,7) € (0,1) are sufficiently small; on the other hand, if Hypothe-
sis (x*) is not satisfied with C; in place of C and B in place of 3, then g > 3,
p > 6, Cy € Cy(ky) for some ky € {5,...,p— 1}, and

(10.8) QV(C1) > B(Q4 (k1 — 1)),

In this case, choose a cone Cq € Uﬁ;jcq(k) such that

[\CR GV

(10.7) Q% (Cy) <

3
(10.9) QY (C2) < 5 (QV(kn —1))*
and note that by (10.7), (10.8) and (10.6), we have that
(10.10) QY (C2) < FEY;
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by (10.7), (10.5) and (10.8), we have that

4 ,~ * 4, *
(10.11) [Ny — N = gclﬁQv(kl = 1), | — w5l = 5 BQY(kr — 1)

foreach i =1,2,...,p1 — 1 and j = 1,2,...,p2 — 1; and since Q7 (p — 1) <
Q3 (k1 — 1), Hypothesis (%) implies that

(10.12) Q% (C) < B(QY (k1 — 1))*.

So again, if Hypothesis (x*) is satisfied with Cs in place of C and B in
place of B, it follows from (A;) (taken with C = C,), (10.11), (10.12) and
elliptic estimates that conclusion (a) holds provided ¢ = &(n,q,a,7), f =
B(n,q,a, 1) € (0,1) are sufficiently small; if on the other hand Hypothesis (%*)
is not satisfied with Cs in place of C and B in place of 8, then we may repeat
the above argument in the obvious way. It is clear that at most p repetitions
of the argument are necessary to reach conclusion (a).

Now we prove conclusions (b) and (c). Let ¢ : R — [0, 1] be a decreasing
C? function with ¢ (t) = 1 for ¢ < 13/16 P(t) = 0 for t > 29/32, [¢/(t)] < 32
and [¢" (t)| < 1025. For X = (z!,7%,7) e Rx R x R"" ! let R(X) = |X| and
7(X) = | (@, #2,0)|. We then have by the inequalities (2 ), (3) of the proof of
Lemma 3.4 of [Sim93] that

Y12
(10.13) /BW(O) ?JQ V(%)

2/ v\ 2,75 ~
<C (/Biﬁl(o)w (R)d[[V[(X) /B?H(O)w (R)dHCH(X))

and
n+1 N
(10.14) /B?+1 (1+Z|e \> R)d|V|(X)
<C | @ F0) PR + @(R)) dV|(X)
B+ (0)
=2 [ PRIWRY (R)|V(X),
B (0)

where C = C(n) € (0,00) and for |[V|-a.e. X € spt||V], the expression

(z',22,0)* denotes the orthogonal projection of (#',Z2,0) onto (T spt IvVin*.

Also by the identity (6) of the same proof in [Sim93], we have that

(015) [, FRACID) =2 [ | #E (R ICIT)
B{H' (0) n+

Let 6 be a small positive constant to be chosen dependlng only on n, q and «,
let 7 : R"*! — {0} x R” be the orthogonal projection and let ) = Bis/16 N
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{|7%] < 1/28} nwspt ||V \ ({0} x R"™1). Denote by (x,y) a general point in
R" = {7! = 0} where x € R and y € R""!. Write

Y=UUW,
where U is the set of points (x,y) € Y such that
(15|90|/16)_"_2/ dist®(X, spt |C|)d|[V [ (X) <
RXB15¢|/16(:y)
and W is the set of points (z,y) € ) such that

(15|x|/16)_”‘2/ dist>(X, spt ||C|)d||V[|(X) = 6.
R'XBI5\x\/16(xvy)

Note that if (x,y) € Y, then 7= (z,y) Nspt ||V|| # 0, so it follows from mono-
tonicity of mass ratio that ||V||(R X Bjy)/16(%,y)) = wn(|z]/16)". Consequently,
for each point (z,y) € U, there is a point Z@¥) € spt ||[V||N (R x By 16(z,9))

with dist(Z®¥) spt |C|)) < /24 +1w, '6)z| and satisfying, by (10.1),
disty (1) 710 SPE|CI| N (R x By), {0} x By) < CVs

provided g9 = £¢(9) is sufficiently small. Here C' = C(n) € (0,00). It also
follows from Remark (1) at the end of Section 8, (10.2) and monotonicity
of mass ratio that for any 7/ € (0,1), we may ensure, by choosing gy =
eo(n,q,a, ), v = Y0(n,q,a,7") € (0,1) sufficiently small, that {Z € spt ||V]|N
(R x Bispie) = O(IVI,2) > ¢} € {(@',2%79) € R*™ : [2%| < 7'} and
V(R x Bisie) N {(@H22%,9) € R* |22 < 7'}) < C7/, where C =
C(n,q) € (0,00). Using these facts with sufficiently small 7/ = 7/(n,q) €
(0,1) together with Remark (3) of Section 6 and Theorem 3.5, we find that
wg1(1/16)’”||VH(B;L/"ié(Z)) < g+ 1/4 for any Z € R x Byy/16 and hence, in
particular, that for each (z,y) € U,

W (Tl /) VB (Z69)) < g +1/4.

Furthermore, writing I'" = (R x By|y|/s(m ZEM) N {7t — e - Z@V| > 3|z}
and T'™ = (R X By s(m Z@) N {|7t — er - Z@Y)| < 3|z[}, we have, for
sufficiently small § = §(n) € (0,1) and any (z,y) € U, that

(7]a| /8) "2 / dist? (X, 2@ 4 {0} x R™) d||V | (X)
RXB'”‘T‘/S(W Z(m,y))

< (7]x|/8)7"2 / dist” (X, 2 + {0} x R") d||V[|(X)
.
+(1lal/9)772 [ ais? (X, 200 + {0} x RY dV(5)
T+

<claf 2 | dist® (X, spt [Cl) d|V[[(X) + el =2 [V [[(BL ], (209) D
RXB|T,|(ZL’,y)
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where D = dist%_t (Z(m,y) + {O} X B7|x|/8(0),Spt HCH N (R X B7‘x|/8(7T Z(I’y))),
¢ =c(n) € (0,00) and we have used the pointwise inequality

dist(X, Z®Y) + {0} x R™) < 2dist(X, spt ||C]|)

for X € (R x Byps(r Z9)) 0 {|7" — 259 > 3)al}, valid if 6 = 6(n) €
(0,1) and g9 = €o(n,q, ) € (0,1) are sufficiently small. Thus provided ¢y =
eo(n,q,0) € (0,1) is sufficiently small,
(10.16)

(7]a| /8) "2 dist?(X, 2% + {0} x R™) d||V]|(X) < C§,

RX By|y/s(m Z(®:))

where C' = C(n,q) € (0,00). In particular, ||[V||((R X By|g/s(™ Z@v)) N {X :
dist(X, Z@¥) + {0} x R™) > 6Y/4|z|}) < CV/6|z|™ where C = C(n, q) € (0,0),
and consequently,

i (7]2] /8) [V [[(R % Brjgyjs(m 209)))

< OVB 4w (71l 8) IV IBEIL, 50y (Z69)) < g +1/2

provided § = §(n,q, ) € (0,1) is sufficiently small. Note also that (10.16)
implies that spt ||V N (R x By a(m Z&¥)) € {X € R™! : dist(X, 259 +
{0} x R™) < |z|/2} provided § = d(n,q,a) € (0,1) is sufficiently small. By
applying Remark (3) of Section 8 (With 9y 715/84 Vs Nz 71215 5Pt C|
in place of V,P) we deduce that for each (x,y) € U, there exists a hyperplane
Hy, with Hi, ) N{Z? > 0} € {G1,...,G,} (in case z > 0) or H(, ) N{7? <
0} € {Hi,...,Hy} (in case z < 0), and an H"-measurable subset ¥,y C
Hg )y Nspt |C[| N (R X By /a(z,y)) (where ¥, ) = 0 if Remark (3)(a) applies,
and ¥, ,y corresponds to the set ¥ as in Remark (3)(b) otherwise) such that

/ ] @72, 042 V| (X)
(RX (Byz|/a(@y)) {2 <[z N\Cr, ) (Ba.y))

+ P d|V|(X)

(RxBig|/a(@y))NCr,, s (E(a )

<C dist®(X, spt | C|J) d||V]|(X),
R'XBI5\90|/16(xvy)
where ¢ = C(n,q,a) € (0,00) and Cy(A) = {X € R*™ : 7y(X) € A}.
Since the pointwise inequality |#!| < 2dist (X, spt ||C||) holds whenever X =
(@', 7%,7) € F = (R X By ja(z,y)) N{|Z'| > |z|}, we also have that

/ @220 VI + [ 3 VI
F\CH(, ) (B ) F

<C dist?(X, spt ||C|)) d||V[|(X).
R><315|.r\/16(90»y)
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Combining the two preceding integral estimates, we conclude that for each
(z,y) €U,

(0a7) [ P d|[V](X)
(RXBig|/a(@y))Cr,, Bz )

+ (&, ,0)1 2 | V]|(X)
(RXB'ZI/4(Z',y))\CH(I’y) (Z(z,y))

<C dist” (X, spt ||C|) ]| V]| (X),
RXBis5)z)/16(%:y)
where C' = C(n,q,a) € (0,00). We claim that (10.17) also holds trivially (by
taking ¥, ) to be equal to any component of spt||C|| N (R X Bjy/4(,y)))
whenever (z,y) € W. Indeed,

/ P d|vII(%)
RX By /4(z,y)

-/ RV
(RXBig|/a(@y)) ][zt [<[z[}

+ N 72 d|V|[(X)
(RX B /a(z,y))N{|zt]|>|z]}

81 ~
< EI%PHVH((R x By a(z,y)) N{|Z'] < |z[})
+ 50 dist?(X, spt ||C|)) d||V[|(X)

RXB|y|/4(z,y)

< Clz|"*? +C dist?(X, spt ||C||) d|| V]|(X)
RX Bz /4(z,y)
<C dist*(X, spt [|C]) d|| V]| (X)
R><315\x|/16($79)
whenever (z,y) € W, where C = C(n,q,a) € (0,00). Thus (10.17) holds for
each (7,y) € Y and some H"-measurable subset ¥,y C H,,y Nspt[|C| N
(R X Bg)a(z, ).

Now choose a countable collection Z of points (x,y) € ) such that ) C
U,y)ezBie|/s(®,y) and the collection {Bisjq(/16(,Y)}(zy)ez can be decom-
posed into at most N = N(n) pairwise disjoint sub-collections. This can be
achieved, e.g., as follows: Use the “5-times covering lemma” [Sim83, Th. 3.3] to
extract a countable collection Z of points (z,y) € ) such that the collection of
closed balls {§|x|/41(x,y)}(z7y)61 is pairwise disjoint and Y C(z,y)ez Bja|/s(T,Y)-
Then the collection B = {Bi5/3/16(, )} (2,y)ez automatically will have the
property that for each (z, o) € Z,

(1) card {(z,y) € T : Bisjz)/16(7,¥) N Bisjag|16(0, y0) # 0} < N
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for some fixed constant N = N(n), from which it follows as required that
uB = U§V:1 UB; where Bi,...,By C B and each B; consists of pairwise disjoint
balls. To see (1), note that Bs,/16(7, y) N Bis|x|/16(T0,%0) # 0 = [(z,y) —
(z0,y0)| < 15|xo|/16 4 15|z|/16, whence |x| < 31|xo| < 31 x 31|z| and |(z,y) —
(z0,y0)| < c|zo|—|z|/41 where ¢ = 15/16+ (31 x 15)/16+31/41, which say that

Blyo|/(31x41) (T, Y) C Blgjya1(%,y) C Bejgy| (%0, Y0); since By a1(@,y), (z,y) € T
are pairwise disjoint, the assertion (f) follows. Let

g= U ((R X B|m|/8(x7y)) \CH(x,y)(Z(a:,y)D .
(z,y)€T
We deduce from (10.17) that

(10.18) / 72 )V [(X) + / (@,7%,0)4 P d|V|(X)
(RN (RxY)nG

<C dist® (X, spt || C|)) ]| V[|(X),
RXBl

where C' = C(n, q,a) € (0,00).

Now let J be a collection of J = J(n) points w € Bys16 \ {|7%] < 1/28}
such that Bys 16\ {|7%] < 1/28} C UwegBijea(w). For z € R™ and p > 0, let
T)(z) = {(Zsinb,zcosb,y) : (Z,y) € By(z), 6 € [0,2m)}. Note that if ¢9 =
50(”7 q,, 1/32> € (01 1)7 Y0 = ’70(”7 q, 1/32) € (07 1)7 BO = ﬁO(nv q, 1/32) €
(0,1) are sufficiently small, then for each (x,y) € Z,

(10.19) (R X Bpays(z, )\ Ca,.,, () Nspt | V]
C (T3 j6a (@) \ Crrgepy (Bay))) Nspt [V
C (T3 16(®:9) \ Carg, ) (S(oy)) NPtV

- ((R X B\a:|/4(l‘a y)) \CH(;C,y)(E(a?,y))) Mspt ||V||
and for each w € 7,
(10.20) R x Bl/64(w) Nspt ||V C T9:|;512(w) Nspt V]| C Tg?;lzg(w) Nspt [V,

where T)F(2) = T,(2) N {|z'] < 12|} N {Z? > 0}; T, (z) = Tp(z) n{|z'| <

|72} N {Z% < 0}; in (10.19) we choose the + sign if > 0 and the — sign if

x < 0;in (10.20) we choose the + sign if e5-w > 0 and the — sign if e5 - w < 0.
Now, applying [Fed69, 3.1.13] with

¢ = {B3\x|/16(x7 y)}(x,y)ez U {33/128(w)}wej
and letting

h(p) = %sup{inf{l,dist(p, R"\ B)}: B € o}

for p € U®, we obtain a smooth partition of unity {¢s}ses having the following
properties:
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(i) S is a countable subset of U® and ¢, : UP — [0,1] V s € S.
(ii) {Bh(s)(s)}ses is pairwise disjoint and for each s € S, By5)(s) C spt s C
Bion(s)(s) C B for some B € ®.

(iil) Y ses ps(p) =1 for each p € Ud.
(iv) |Dys(p)| < Ch(p)~! for each s € S and each p € U®, where C = C(n) €

(0, 00).
In particular, note that it follows from (iv) and the definition of h(-) that for
each s € S,

(10.21) Doy (2,5) < C |2

whenever (Z,9) € U(w,y)ez Bs|e|/32(T:Y) U Uwes Bs2s6(w), where C' = C(n) €
(0,00). For each s € S, extend s to R™ by setting ¢s(x) = 0 for z € R\ UD,
and let 3, be the (smooth) extension of ¢, to {X = (z!,7%,7) € R"" : |7!| <
|72} defined by @4(zt,72,9) = @s(E£1/|712 + |72|2,7), where the + sign is
chosen if 72 > 0 and the — sign if 72 < 0.

Let G =GU (R X (Bys/ie \ {|7°] < 1/28})) . We claim that there exists a
fixed constant M = M (n) such that for each (z,y) € Z,
(10.22)

card{s € § : spt @5 C Tz/16(x,y) and spt Ps N Gnspt |V #£0} <M

and for each w € J,
(10.23) card{s € S : spt 95 C T3/128(w) and spt GsNGNspt |V # 0} < M.
To see (10.22), fix (z,y) € Z and let

S(ay) = {5 € 8 5pt s C Typyy16(x,y) and spt G, NG Nspt [V # 0}
Note that spt s C T35/16(7,y) <= spt s C Bsjy16(2,y), and since

G Nspt |V € Uggyer (R x Blays(@,9)\ Cor,. ) (Siay))
U Uwes (R x By jga(w)) Nspt |V,

it follows from (10.19), (10.20) and (ii) above that if s € S, ), then either

(*) B3\x|/16(x7 Y) ﬁB9\m/|/64(35', y') # 0 and Bth(s)(S) mB9|z/|/64($/7 y') # 0 for

some (2/,y') € Z, or

(**) Bth(s)(S) N B9/512(U}/) # @ fOI‘ some ’U)/ - j
If (%) holds, then |z — /| < 3|z|/16 + 9|2'|/64 whence |2/| > 52|z|/73, and
|s — (', y")] < 10h(s) 4 9]2'|/64; so if h(s) < |2'|/640, then s € By, /32(2", ')
and hence, since Bs|,|/16(2,y') € @, it follows from the definition of h(s) that
h(s) > |2'|/640 contrary to our assumption. Hence in case (x) holds, we must
have that h(s) > 52|x|/(640 x 73). In case (xx) holds, similar reasoning shows
that h(s) > 1/5120. Thus for any fixed (z,y) € Z, we have established that s €
Sy = h(s) > min{52|z|/(640x73),1/5120} and (by (ii) above) By 4)(s) C
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Bsjg/16(2,y). Since By, (s), s € S are pairwise disjoint, this establishes (10.22)
for some fixed M = M(n). Identical reasoning (using the fact that |ey - w| >
1/28 for each w € J) establishes (10.23).

Noting, by (10.19) and the definition of ¥, ,), that the set

(Tafay 6 (@ 9) \ Coiyy) (Ba)) D5t [V,

if nonempty, can be written as the union of normal graphs of Lipschitz functions
defined over subsets of a sub-collection of the half-hyperplanes Gy, ...,Gy (if
x > 0) or of the half-hyperplanes Hy,...,H, (if z < 0), we see from the area
formula and Remark (3) of Section 8 that for any given (z,y) € Z and any
s € S with spt @5 C T4 /16(2, ),

(10.24)

/ o BDPR R R V()
Q'U(R>< (B1s,16\{122|<1/28}))

,y)qk z,y)
S % [ e VR R)
k=1
X 7o R (Ry )0 (B )1+ [V g 2 dH™ (X)
£(z,y) ) X
= ; NE=) o T R)dH"(X

,leq’f(”)/w,yf” DR (B (B) " (X)

U(zy) qr(z,y)

=2 i X" 2 ~) _ ~ ~

e300 [ (e (VR ORT) )

x PR™Y(R)Y (R) dH™(X) + E,

where we choose the + sign if z > 0 and the — sign if x < 0; ¢(x, y) is a positive
integer < q; qi(z,y) are positive integers with

L(z,y)

(10.25) > aley) < g
k=1

Qi (z,y) is, by (10.19) and (10.20), a measurable subset of

(U wherTiopr /128 (@' 4") U Uwrer Troi024(w')) N (R X Biyyya(@, ) N Gy o)
(if x > 0) or of

(U yyerTiopr/128(x' . ¥') UlUwres Tiojro2a(w’)) N (R x Bigya(@,)) N Hjy (1)

(if < 0) for some integer ji(x,y) € {1,2,...,¢}; u} are the Lipschitz functions
as in Remark (3) of Section 8 (applied with Nz 11z /8 4 Vs Nz 71278 SPE IIC]]
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in place of V.,P); Tui = 72+ |ul % Eui = R2+ |u}|? and, by the estimates
of Remark (3) of Section 8,

|E|<C dist?(X, spt | C)) d||V||(X)
RX Bz /16(%:Y)

for some constant C' = (n,q) € (0,00). Still assuming spt s C T34 /16(2,Y),
we also see in view of (10.25) that

(10.26)
U(z,y) N _ B _
S o) [ e ER R (R (X)
k—1 Qp(z,y)
U(z,y) N B B _
> > ae(z,y) / @s(£7, §)F2 R Ip(R)Y (R) dH™(X)
k=1 PpNT314)/16(z:y)
£(z,y) _ _ B B
= (Z Qk(w,y)> / s (27, )PP R P(R)Y (R) dH™(X)
k=1 B3z /16(2y)

Y
B

/ P (7 PR O(R)Y! (B ™ (X)
Bsjg)/16(2,Y)

= s (£7, §)FRY(R)Y (R) d|| C||(X),
RXxBis5/16

where P, = Gj, if £ > 0 and P, = Hj, if x < 0. Since we may bound, using
the sup estimate of Remark (3)(b) of Section 8 and (10.21) (keeping in mind
that Q(z,y) C (U(m’,y’)GITIQ\x’VlQS(x,ay/) U Uw’eJT19/1024(w,)) Nspt[|Cl),
the absolute value of the middle term of the last line of (10.24) by a constant
times fRXBlS\z\/lG(x’y) dist?(X, spt ||C|)) d||V||(X), we conclude from (10.24) and
(10.26) that for each (z,y) € T and each s € S with spt s C T35 /16(, ¥),

(10.27) Zs(X)P R (R (R) d|[V[(X)

/QU(RX (Bis/16\{[22]<1/28}))

> [ @RpER @ (R dC)(R)
RxBis/16

-C dist?(X, spt || C|) d||V[|(X),
RXBi5)z)/16(,y)

where C' = C(n,q) € (0,00); the + sign is chosen if x > 0 and the — sign if
x < 0. By a similar argument, using part (a) and elliptic estimates, we also see
that for each w € J and each s € S with spt g5 C T5/198(w),
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(10.28) Zs(X)P R (R (R) d|[V|(X)

/QU(R>< (B1s/16\{|22<1/28}))

> / s (17, §)P2R "W (R)Y/ (R) d| C||(X)
RxBis/16

-C dist? (X, spt [|C]) ]| V]| (X),
RX By /32(w)

where C' = C(n,q) € (0,00); the 4 sign is chosen if e - w > 0 and the — sign
if eg-w < 0.
Now choose enumerations J = {wj}‘j]:1 and Z = {(z 45, Y+5) 721, let

S; = {5 € S :sptps C Ty/198(wj),

spt s 1 (G U (R x (Bisyis \ {[7%] < 1/28}))) nspt ||V ]| # 0}
for 1 <j < J and
Sj = {5 €S :5pt Ps C Ty 16(255 ),

spt $s N (G U (R x (Bisjig \ {|7%] < 1/28}))) Nspt |[V]| # 0}
for j > J + 1, write

{5€8:spt@,n(GU (R x (Bisyie\ {132 < 1/28})))
Nspt V]| # 0} = UX, S,

where §] = S1 and S} = Sj\Ug;llS{ for j > 2, and note that S} are pairwise dis-
joint and, by (10.22), (10.23), that card(S}) < M = M (n). Summing in (10.27),
(10.28) first over s € S]’~ for fixed j, and then over j (where j € {1,2,...,J} in
(10.28) and j > J + 1 in (10.27)) keeping in mind that the collection of balls
{Bisiel/16(%, Y) ewyer = {Bis|e;|/16(T5:¥5)}52 541 can be subdivided into at
most N = N(n) sub-collections of pairwise disjoint balls, and adding the two
resulting inequalities (and using the fact that > ,cs 4,55(5(: ) = 1 for each point
X € GU (R x (Bizig \ {|7%] < 1/28})) Nspt |V and Yses @s(£7,75) < 1 for
cach point X = (#1,#2,7) € spt ||C||), we conclude that

(10.29) PR(R)Y (R) d||VI|(X)

/gU(RX(315/16\{|52|<1/28}))

- [ PRwREE IC)X)
RxBis/16

> —C dist® (X, spt |C|) d|| V|| (X),
RXBl

where C'=C(n,q) € (0,00). In view of (10.13), (10.14), (10.15), conclusions
(b) and (c) now follow from the estimates (10.18), (10.29) and conclusion (a).
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Conclusion (d) follows from conclusion (b) by exactly the same argument as
for the corresponding estimate in Lemma 3.4 of [Sim93]. O

For the proof of Corollary 10.2 below and subsequently, we shall need
the following elementary fact: If C € C, is as in Hypothesis 10.1(2) and if
Z = (¢4 ¢%n) e R xR xR =R"! then for any X € R"H!,

(10.30) |dist(X, spt | C[) — dist (X, spt | T2 4 C[))| < |¢*] +vI¢?],
where T : R*t! — R is the translation X — X + Z and
v =max{|Ail,... [Agl, lpal, - lpgl}-
Indeed, by the triangle inequality
|dist(X, spt [|Cl|) — dist(X, spt [Tz 4 Cl|)| < disty(spt [|C||, spt [Tz 4 C|)
and by translation invariance of C along {0} x R 1,
distyy (spt || C[,spt [Tz 4 C|)
= disty(spt [|Cll, spt [[T{¢1 ¢2,0) % ClI)
< disty (spt ||Cl[,spt [| T(¢1,0,0)  ClI)
+ disty (spt [ Ti¢1,0,0) % ClI, spt [T ¢2,0) 4 ClI)
= disty(spt [|Cll, spt [[T¢1,0,0) % ClI)
+ disty(spt [l spt [ Tjo 2014 C) < IC1] + vIC2].

COROLLARY 10.2. Let q be an integer > 2 and o € (0,1). For each p €
(0,1/4], there exist numbers € = e(n,q,a, p) € (0,1), v = v(n,q,a,p) € (0,1)
and = B(n,q,a, p) € (0,1) such that the following is true: If V € Sy, C € Cy
satisfy Hypotheses 10.1, Hypothesis (x) with M = %MS’ and Hypothesis (%*),
and if the induction hypotheses (H1), (H2) hold, then for each Z = (¢*,(%,n) €
spt [|[V[| N (R x Bsg) with ©(||V][,Z) > q and each p € (0,1) we have the
following:

@ CPEBCEEC [ dist(Xspt|Cl) V()
RXBl
dist?(X,spt || Tz 4 C||)
(b) - dVI(X)
Byiz) X =z
< Cpze | dist®(X, spt | Tz 4 C|)) d]| V|(X).
RxB,(¢2,n)

Here Tz : R*Y — R™! is the translation X — X + Z; C = C(n,q,a) €
(0,00) and C = C(n,q,a, ) € (0,00). (In particular, C, C do not depend
on p.)
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Our proof of this corollary will be based on several preliminary results,
given below as Lemma 10.3, Lemma 10.4, Proposition 10.5, Lemma 10.6 and
Proposition 10.7.

LEMMA 10.3. For any given § € (0,1), there exist ¢’ = &'(n,q,a,9),
v = ~4'(n,q,a,8) € (0,1) such that if Hypotheses 10.1 with ', v in place
of €, v are satisfied by V € S, and C € K, and also Hypothesis (x) with
M = %MS’ are satisfied by V', then

¢+ EVIC ) < 05
for cach Z = (C1,¢2,n) € spt V]| N (R x Byys) with O(|V], 2) > .
Proof. The lemma follows by arguing by contradiction, using Remark (3)

of Section 6, Theorem 3.5, the remark at the end of Section 8 and the bounds
(10.1), (10.2). O

LEMMA 10.4. Let q be an integer > 3. For any given § € (0,1), there exist
e=¢e(n,q,a,9), v =~n,qa,9) and = p(n,q,a,d) € (0,1) such that if
(a) p' € {5,...,2q} and
(b) Hypotheses 10.1, Hypothesis (x) with M = 3Mg and Hypothesis (5x)
are satisfied with V € S,, C € Cq(p'),

then
P+ BRI < 6 (Q (' — 1)
for each Z = (¢*,¢%,m) € spt [V]| 0 (R x Bys) with O(| V|, Z) > g.

We shall eventually prove this lemma by induction on p’, but first we need
to establish the following:

PROPOSITION 10.5. Let q be an integer > 2, p € {4,...,2q}, and suppose
that either

(i) p=4, or
(ii) ¢ >3, p > 5 and Lemma 10.4 holds whenever p’ € {5,... p}.

Then Corollary 10.2 holds whenever C € (J}_,Cq(k).

Proof. Let €9, 70 and By be the constants given by Theorem 10.1 taken
with 7 = 1/16 (say). Suppose that the hypotheses of the proposition are
satisfied. Let p € (0,1/4], and suppose that the hypotheses of Corollary 10.2,
for suitably small e,~, 5 to be determined depending only on n, ¢, « and p,
are satisfied by a varifold V € S, and a cone C € | J;_,Cq(k) .

To show that the conclusions of Corollary 10.2 follow, we need to apply
Theorem 10.1 with 7 = 1/16 and 11z, V in place of V for any Z = (¢, (%,n) €
spt ||V N (R x Bsg) with © ([[V||, Z) > ¢q. Thus we need to show that it is
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possible to choose €, v, 8 depending only on n, ¢, «, p such that Hypothe-
ses 10.1, Hypothesis (x) and Hypothesis (xx) are satisfied with the varifold
V= nzp# V in place of V, with €9 , 70, Bo in place of €, 7, 3 respectively and
with M = %M{}. If this is so, then part (b) of Corollary 10.2 follows as the result
of a direct application of Theorem 10.1(d) with V in place of V, and part (a)
of Corollary 10.2 follows from the argument of [Wic04, Lemma 6.21] (which in
turn is a minor modification of the corresponding argument of [Sim93]), which
also requires application of Theorem 10.1(d) with V in place of V.

Hypothesis 10.1(1) with V in place of V follows from Theorem 5.1; Hy-
pothesis 10.1(3) with V in place of V and &g in place of & holds if & < ,07”r2
Hypothesis 10.1(4) with Vin place of V' is satisfied since by the remark at the
end of Section 8, we may choose ¢ = ¢(n, q,a, p), v = v(n, q, a, p) sufficiently
small to ensure that {Z : ©(||V ]|, Z) > ¢} N (R x By 5) C {|2?| < p/128}.

To verify that Hypotheses 10.1(5) is satisfied with V in place of V and 7o in
place of 7, we proceed as follows: First, using Theorem 10.1(a) with 7 = p/32,
we note that for ¢ = ¢(n,q,a,p),y = v(n,q,a,p), 5 = B(n,q,a,p) € (0,1)
sufficiently small,

(10.31) p*"”/ [zt = P alV]I(X)
RXBp(C2 n)
p "2 hj +u; — CH?
- Z (/B,, ¢2, )m{m2<—p/16}‘ ! 1= ¢

+/ \gj+wj—41|2>
B,(¢2m)n{z2>p/16}

1 PR (/ 2
=3 Z By jaNfa?<— p/w} B an{a>p/16)

q
,n 2 / ]u~]2—+—/ ,w‘|2)
Z( By(C2mn{a2<—p/16} By(C2mn{a?>p/16}
— Cp~?|¢?
q
> 2700 (Z A1+ !ujl2> —p "By — Cp ¢
j=1

where

Egz/ dist™ (X, spt || C|) [ V| (X0),
Rx B,

Ty =Ci(n) = P dH" (@ y), O =Cnq) € (0,1)

/31/2\{$2>1/16}
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and the rest of the notation is as in Theorem 10.1(a). If ¢ = e(n,q, a,p),
v = 7v(n,q,a,p) € (0,1) are sufficiently small, it follows from (10.31), (10.2)
and Lemma 10.3 that

(10.32) E- > CEy,

where C' = C(n,q) € (0,00). On the other hand, by (10.30) and (10.1), we
have that

/ dist?(X, spt [|C||) d|| V[ (X)
RxB1

<2072 [ dis*(Xspt [CI) dVIX) + Cp72 (16 + BFICE)
X b1

where C' = C(n,q) € (0,00) and, provided ¢ = e(n, q, o, p), v = v(n,q, ®, p),
B = B(n,q,a, p) are sufficiently small,

/ dist? (X, 5pt [ 7]) | (X)
Rx(By5\{|2%<1/16})

- dist? (X, 5t V] d| Tz  C|(X)
Rx(By(2)\{|z*—¢?|<p/16})

<

| dist? (X, spt | V) d T2 4 C|(X)
Rx (Bl7p/16(07n)\{|w2|<p/32})

: p_n_2/ dist?*(X, spt | V])) d||C||(X)
Rx(Bs/s(0)\{|z?|<p/32})

+Cp 2 (IS + ETICP)
< Cp 2 /R N dist*(X, spt | C||) d||V[[(X) + Cp~2 (I¢*]* + EF[C*?)
X b1

where C = C(n,q) € (0,00), the second inequality follows from the area for-
mula and (10.1), and the last inequality follows from Theorem 10.1(a) applied
with 7 = p/64. Thus

(10.33) Q%(C) < C(p"?QU(C) + p*(IC" [ + EFICP))

which, in view of (10.32) and Lemma 10.3 applied with sufficiently small § =
d(n,q,a,p) € (0,1), implies that Hypothesis 10.1(5) is satisfied with V in place
of V' and 7y in place of ~.

To verify that Hypothesis (x) is satisfied with V in place of V and M =
%Mé, reasoning again as in (10.31), we see first that for any hyperplane P of
the form P = {z! = Az?} with || < 1,
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(10.34) p~"2 / dist?(X — 7, P)d|[V|(X)
RxB,(¢%n)

q
> 20 (32 - A+ - AP

j=1
1, -
— 5P 2B = CpYCt = AP
> 2740 dist?, (spt |C|| N (R x By), PN (R x By))
1 _,_ -
— 50 "By - Cp I - AP
RxB;

_ (2_71_30.};1(2(] + 1)—161 + 2—1p—n—2) E‘Q/ _ Cp_2|<1 _ )\C2‘27
where C = C(n,q) € (0,00) and we have used the triangle inequality in
the last step. On the other hand, noting, by the Constancy Theorem, that
(wn(20)™) " IVl (R x Bap(0,m)) < g+ 1/2 provided & = &(n,q,p) € (0,1) is
sufficiently small, we see by Lemma 10.3 and the triangle inequality again that
(1035) 52 [ 2! = ¢ V()

RxB,(¢?m)
<207 | V|(R x ng(O,n))distg_[ (spt||C|| N (R x By,), {0} x By,)
+2p " 2EL + Cp 25K

< (22w, (2 + )¢ + Cp %6) B +2p " EY,
where ¢; = ¢;(n) is as in (10.1). Since
3
= inf /
2 {P={z'=Xz2}} JRxB;
by hypothesis (of Corollary 10.2), in view of the fact that

Ef < SM§ dist>(X, P) d||V[|(X)

inf / dist?(X, P) d||V||(X)
{P={z'=X2?}} JRx B,

= inf [ @t PV (),
(P={a1=)22},|\|<CEv} JRxB;
where C=C(n) € (0, 00), we deduce from Lemma 10.3, (10.34) and (10.35) that
P2 o (220w (29+1)2cf +2"Hw, (29 +1) (207" >y +Cp%0)) S MG
VT O —2ntw,(2g+1) <(2_1p_”_2+2_”_3w51 (2q+1)_1€1)’y+0p_25> Mg

X dist?(X, P) d||V[|(X)

inf /
{P={z'=X22}} JRxB,
3 —~
< Mt inf / dist?(X, P) d||V||(X
oMo o Jas, (X, P)d||V|[(X)

provided € = &(n, ¢, a, p), v = v(n,q,a, p) € (0,1) are sufficiently small.
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It only remains to verify that Hypothesis (%) with V in place of V and
Bo in place of J is satisfied whenever C € | J_,Cq(k). If p = 4, then C € Cy(4)
and there is nothing further to verify, so assume that ¢ > 3 and C € C,(p’) for
some p’ € {5,...,p}. Then for any C' € U,’;/:_jcq(k), we have by the definition
of Q% (p — 1), the triangle inequality and Hypothesis (xx) (for V and C with
sufficiently small 8) that dist?, (spt |C’|| N (R x By),spt ||C|| N (R x By)) >
C(Qy( — 1))?, where C' = C(n, q) € (0,00), and hence by Theorem 10.1(a),
for sufficiently small e = e(n, q, o, p), v = y(n,q, @, p), B = B(n,q,a, p) € (0,1),
that
(10.36)

/ dist? (X, spt | C'||) d|| V[|(X)
RXBl

/ dist? ((h? (X') + v/ (X'), X") — Z,spt | C'||) dX’
Bp(¢2mn{z?<—15}

.

dist? ((¢7 (X') +w! (X"), X') — Z,spt | C'||) dX’

2
,2/

B,(¢2mn{z2> &}

2

>
> dist? (W (X') + v/ (X'), X'),spt || C'||) d X’

q
> "
=1
q
+> p "
j=1
q
> " /
j=1 Bp/2(0,17)ﬂ{$2<—%
q
+3 dist? (¢ (X') + w! (X"), X"),spt |C']|) dX

p ‘2/
j=1 B, /2 (0,mn{z?> £}

= C'p2(ICH P+ 8(CNIC )
> C(Qu(p—1)" = p "By = Co?(IC P+ 6(CHIECP)

1. _
> SC QU —1)° = T (I + 6(CHIC)
where C' = C(n,q), C' = C'(n,q) € (0,00) and

§(C’) = dist3, (spt||C'|| N (R x By), {0} x By).

Since E% < Cp~"2E2 where C = C(n,q) € (0,00), we have that

Qi -1= QuO),
(CrelUpoy Ca(k):8(C)<Cpn—2E2 )

so it follows from (10.36) that
(10.37)  (Qx(' —1)* = C QY1 — 1)~ C'p (¢ + B2,
where C' = C(n,q), C' = C’'(n,q) € (0,00). On the other hand, by (10.33),
(10.38)  Q%(C) < Ci (p " 2QV(C) + p (IS + EVIC)))

< Cifp " (QV (W = 1)+ Cip (I + EZICP),
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where C; = C1(n,q) € (0,00). Since by assumption Lemma 10.4 holds when-
ever p' € {5,...,p}, we may apply Lemma 10.4 with any 6 = d(n,q,a,p) €
(0,1) satisfying max{C’,BO_lCl}p_”_45 < C/2, where C, C', Cy are as in
(10.37) and (10.38), to conclude that Hypothesis (%) with V, By in place of
V', B is satisfied. The proof of the proposition is thus complete. O

LEMMA 10.6. Let ¢ > 3 and 6 € (0,1). There exist &1 = £1(n,q,a,d),

B = Bl(n,q,a,é),wl =1(n,q,a,9) and B1 = Pi(n,q,a,d) € (0,1) such that if

(a) p" € {5,...,2q}

(b) Hypotheses 10.1(1)—(4), Hypothesis (x) and Hypothesis (xx) are satisfied
with V€ Sy, C € Cy(p)), M = %Mg’ and with &1, 51 in place of €,
respectively;

(c) either

(1) (QF(4)* <mEE, or
(ii) p € {6,....2¢}, (Q4 (¥ — 1)) < B QY — ' —1))° and
QY (' —")° < mE} for some j' € {1,...,p' — 5},
then for each Z = (¢',¢*,m) € spt||[V| N (R x Bsg) with ©(|V||,Z) > g,

G+ EY|GI* < 6 (Q7(4))*
in case (c)(i) holds and
G + B lGl < s (@ - 1)
in case (c)(il) holds.

This lemma will follow, in view of the following proposition, from our
inductive proof of Lemma 10.4 given below.

PROPOSITION 10.7. Let q be an integer > 3, p € {5,...,2q}, and suppose
that either

(i) p=5, or
(ii) p € {6,...,2q} and Lemma 10.4 holds whenever p' € {5,...,p — 1}.

Then Lemma 10.6 holds whenever p' = p.

Proof. We argue by contradiction. Fix p € {5,...,2q}, and suppose that
the hypotheses of the proposition are satisfied.

Note that if Lemma 10.6 with p’ = p does not hold, then there exist
a number § € (0,1), an integer j* € {1,...,p — 5} in case p € {6,...,2q}
and, for each £k = 1,2,..., a varifold Vi € S,, a point Z; = (C,i,z,%,nk) €
spt [|Vi|| N (R % Bgjg) with O([|Vk[|, Zk) > ¢, a cone Cy € Cy(p) such that
Hypotheses 10.1(1), 10.1(2), 10.1(4) and Hypothesis (x) are satisfied with Vj
in place of V', Cy in place of C, M = %MS’;

EAk—)O;
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(10.39) (Qi(p— 1)) Qu (Ck) — 0;
(10.40) either E,'Qp(4) — 0 or
(10.41)

pe{6,....2q}, @i(p—37 —1) " Qi(p—5) — 0 and E;'Qi(p — ) —0
(or both) and yet

(10.42) IC12 + E2|¢?1? > 6 (Q5(4))%in case (10.40) holds and
(10.43) ICH? + E2|¢2)? > 6 (Qf(p— 7)) in case (10.41) holds,
where we have used the notation Ey = Ey, and Qf(-) = 1AQR

For each k = 1,2,..., let Ci € C, be chosen as follows: in case (10.40)
holds, Cy € C4(4) is such that (ka(ék)f < %( {/k(4))2; in case (10.41)
holds, Cy, € Cy(p — j') is such that (ka (ék))Q <3 ( v (p— j’))z. Note that
since the rest of our argument is the same for either case, we use the same
notation Cj, for either case. Let 7, € (0,1/8) be such that 7, \, 0%. By

passing to appropriate subsequences without changing notation, we have by
Proposition 10.5 and Corollary 10.2 that for each k =1,2, ...,

(10.44) GI* + ERIGI? < CEF,
where C' = C(n,q,«) € (0,00), and for each u € (0,1),
(10.45)
~k
S b (X) — (G = Q)P .
= By s(@moniaz <—m/ay [(RF(X) +uf (X7), X7) = (¢, Gy i) [ F2 0
q wh(X) — (G = )P o
* 2 i igonteso oy TEGE) + 0G0, ) — (& )77 7
=17 B1s(Comp){z?>7i /4} |G w; ) ko Ggr Tk
< CEZ,
where C = a(n,q,a,u) € (0,00). Here,
= [ dist(X, st [Cul) d Vil ()
RXBl
for each j € {1,2,...,q} and k = 1,2,..., the functions u?, wf correspond to

u;, wj of Theorem 10.1(a) when Vj, Cj are taken in place of V, C, and the
numbers X?, ﬁ? correspond to Aj, pu; of Hypothesis 10.1(2) when C}, is taken
in place of C. Note then that le > X]; > > X};, ﬁ’f < ﬁ’Q“ << H’; and by
(10.1) and (10.2),

A 7k; 7]{: A A _ _ A
(10.46)  cEy, < max {|\], A} < 1By, eBy < max {[@Y], [g]} < 1By,
. ~k k. _ S
mln{p\l - )‘q|> |N]1C - iu“l(;|} > 2cEy,
where ¢; = ¢1(n),c = ¢(n,q) € (0,00) are as in (10.1) and (10.2).
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Writing Qx = Qv,, (Ck), we see by Theorem 10.1(a) and elliptic estimates
that for each j€{1,2,..., ¢}, there exist harmonic functions ¢; : B3/4ﬂ{x2 <0}
— R, ¢ : B3js N {2? > 0} — R such that Q; 'ul — ¢;, Qi 'wk — ¢ where
the convergence is in C2(K) for each compact subset K of the respective do-
mains of ¢;, ¥;. By (10.39), Q,;IQV,C (Ck) — 0, which implies that for each
j € {1,2,...,q}, there exist constants \;, fi; such that pj(z?y) = Aja? for
(22,y) € Byjp N{a? < 0} and ¢;(2?,y) = m;z? for (2%,y) € Byjs N{z? > 0}.
We find a point n € {0} x R*' N Bsg(0) and, by (10.44) and (10.46), num-
bers k1, k2, 1,...,4g, m1,...,mq such that, passing to further subsequences
without changing notation, np — n, Q,;lg,i — K1, Q;lEkle — Ko, Ek_l)\? — 4
and Ek_l,ug? — mj. We deduce from (10.45) that

Z |Aja? — (k1 — Ljko)]?

n+2—p

/31/8(0,77)0{:102<0} (|x2]2 + \y _ 77|2) 5

da?dy

=1

a 2% — (k1 — mjro)|?
n+2—p

/B1/8(07n)ﬂ{ﬂ>0} (|22 + |y —n|?) 2

+ da’dy < oo,

Jj=1

which readily implies that k1 — £;k2 = 0 and k1 — mjke = 0 for each j =
1,2,...,q. Since by (10.46) not all ¢y,...,¢, are equal, we must have that
k1 = kg = 0. This contradicts (10.42) in case (10.40) holds and (10.43) in case
(10.41) holds. The proposition is thus proved. O

Proof of Lemma 10.4. We prove the lemma by induction on p’. Let § €
(0,1) and consider first the case p’ = 5. Noting, in view of Proposition 10.7, the
validity of Lemma 10.6 with p’ = 5, let &1 = &1(n, ¢, @, d), B = Bl(n, q,,9),
m =m(n,q a,6), f1 = Bi1(n,q,a,d) be as in Lemma 10.6 with p’ = 5, and
suppose that the hypotheses of Lemma 10.4 with p’ = 5 are satisfied by some
V e S, and C € Cy(5), with ¢ = min{¢,&'(n, ¢, ,071)}, B = Bi and v =
min{vyy,7/(n,q,a,6v1)}, where & = &'(n,q,a,-), v/ = v/ (n,q,,-) are as in
Lemma 10.3. Then hypotheses (a) and (b) of Lemma 10.6 with p’ = 5 are
satisfied by V and C. If also (Q’{/(4))2 < 71177‘2,, then by Lemma 10.6 we have
the desired conclusion. If on the other hand (Q%(4))? > 41 EZ, then applying
Lemma 10.3 with é+; in place of §, we again have the desired conclusion. So
Lemma 10.4 is established in case p’ = 5.

Now fix p € {6,...,2q}, and suppose by induction that Lemma 10.4 holds
whenever p' € {5,...,p — 1}. Then by Proposition 10.7, Lemma 10.6 with
p = p holds. Let § € (0,1), and let &1(n,q, "), Bl(n, q,a,), 1(n,q,a,-),
B1 = P1(n,q,a,-) be as in Lemma 10.6 with p’ = p. Set 5%0) =1, and for j =
1,2,3,...p— 5, set ,89) = 51(n,q7a,(5ﬂf;éﬁ§k)), é{lj) = gl(n,q,a,(sﬂi:lﬁ%k)),
B%j) = Bl(n,q,a,éﬂizlﬁgk)) and 'ﬁj) = vl(n,q,a,éﬂizlﬁgk)). Again let &/ =
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e'(n,q,a,-), v = 7(n,¢,@,-) be as in Lemma 10.3, let ¢' = TI;_ i”y(J)B( )By)
and let £ =€'(n,q,a,6d"), 7 = +'(n,q, a, 68").

Let C € Cy(p), V € Sa, and suppose that the hypotheses of Lemma 10.4
are satisfied WlthE = min{z, 51) 1<j<p-5}p= mm{ﬁ U1 < j <p->5}

and v = min{7, 71 : 1 < j <p-—>5}. Consider the following exhaustive list of
alternatives:

(a) (Q(p—1))° > §EZ.

(b1) (@1 (p—1)* < 'EF and (Q(p—1))* < BV (@4 (p - 2))*.

(ba) ( *V<p—1>>2saEV, @y (p—1))* > B Q) (p — 2))* and
Qb (p—2)* < B2 (Qu(p—3))°.

(bs) ( *Vp—1>>2swv, Q40— 1)* > BV Q4 (0 —2)%, Q4 (p - 2))?
> 87 (Q4(p - 3))* and (Q4(p - 3))% < B Q4 (p — 4)%.

(bp-3) (@Y (p—1))? <5/E\2/v @v(p—1)
> 37 Qv =3)7%, Qi —3))
> 877 (Qi(5)) and (Qy(5))° <

(c) @yp—1)* <dEY, (Qy(p—1)° > ﬁf (Qy(p—2) 27 (@ (p—2))?
> B2 (@4 (0 - 3)7, (@ —3) > 87 Q) (p - 4)% ... (Q1(6))°
> 8777 (Qy(5)° and (Q3(5)° > B (@7 (4))%.

The conclusion of Lemma 10.4 in case of alternative (a) follows from

Lemma 10.3 applied with 40’ in place of d; the conclusion of Lemma 10.4

in case of alternative (by) follows from Lemma 10.6 applied with p’ = p and
j = 1; the conclusion of Lemma 10.4 in case of alternative (by) follows from

)2>61 <Q*<p—2>>2,< Qb (p — 2))?
2> 8 (Qp(p - 4>>2
B (Qy(4)?.

Lemma 10.6 applied with p’ = p, 7 = 2 and 6351) in place of §; similarly,
the conclusion of Lemma 10.4 in case of any of the alternatives (bg)—(b,—5)
follows from an application of Lemma 10.6 with p’ = p and appropriate value
of j and §; the conclusion of Lemma 10.4 in case of alternative (c) follows
from Lemma 10.6 applied with p’ = 5 and 6H£;‘;’,@’§k) in place of §. Thus the
inductive poof of Lemma 10.4 is complete. (|

Proof of Lemma 10.6. Since we have now established Lemma 10.4 for all
values of p’ € {5,...,2¢}, Lemma 10.6 follows from Proposition 10.7. O

Proof of Corollary 10.2. Again, since Lemma 10.4 holds for all values of
p €{5,...,2q}, Corollary 10.2 follows from Proposition 10.5. O

Remark. Note that the proof of Corollary 10.2 establishes that corre-
sponding to each €,7, € (0,1/2) and pE(O 1/2), there exist €=£(n, g, v, p,€) €

(0,1/2), ¥ = F(n,q, 0, p,7) € (0,1/2), B = B(n,q,, p, B) € (0,1/2) such that
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the following is true: Let V € S, and C € C,. If Hypotheses 10.1 are sat-
isfied with &, 7 in place of e, v respectively, Hypothesis (x) is satisfied with
M = %Mg and Hypothesis (xx) is satisfied with B in place of 3, and if the in-
duction hypotheses (H1), (H2) hold, then, for each Z € spt [[V[| N (R x Bsg),
Hypotheses 10.1, Hypothesis () with M = %MS’ and Hypothesis (xx) are
satisfied with 77,4 V in place of V.

LEMMA 10.8. Let g be an integer > 2, o € (0,1), € (0,1/8) and p €
(0,1). There exist numbers €1 =¢c1(n,q,a,9) € (0,1), 1 =v1(n,q,®,0) €(0,1)
and 1 = Pi(n,q,a) € (0,1) such that the following is true: If V.€S,, CeCy
satisfy Hypotheses 10.1, Hypothesis (x) with €1, 1 in place of €, y respectively
and with M:%MS’, and if the induction hypotheses (H1), (H2) hold, then

(a) BitH0,9) N {Z : ©(|V,Z) > ¢} # O for each point (0,y) € {0} x
R"'n Bl/2'

(b) If additionally V', C satisfy Hypothesis (xx) with B1 in place of B, then

/ . dist® (X, spt [|C|) d| V[ (X)
B;L/Q 0)N{|(z1,z2)|<0}

<Ciot [ dist (X spt | C) V(X
RXB1

for each o € [0,1/4), where Cy = Cy(n,q,a, 1) € (0,00). (In particular,
C1 is independent of § and o.)

Proof. If part (a) were false, then there would exist a number 6 € (0,1/2)
and a sequence of varifolds {Vj.} C Sa; a sequence of cones Cp = >1_, |H ]’“\ +
|G§3| € C, where, for each k, H]k ={(z},2%,y) eR" : 22 <0 and 2! = )\fo},
G ={(z" 2% y) e R"! : 22 > 0 and 2! = pha?}, with A} > A5 > ... > A}
and pf < p§ <. < pk;and a sequence of points (0,y;) € {0} x R"™ N By 5
with BytH(0, y)N{Z : ©(||Vill, Z) > q} = 0 such that Hypotheses 10.1 (1), (2),
(4) are satisfied with Vi, Cy in place of V', C; Hypothesis (x) is satisfied with
M = 3Mg and Vj, in place of V; B = By, = /[, 5, [#'2d[Vi[(X) = 0 and

(10.47) B2 dist®(X, spt || Vi) d]| C | (X)
Rx (B j2\{[2<1/16})

+E? | dist®(X,spt || Cyl)) df[ Vil (X) = 0.
RXBl
After passing to a subsequence without changing notation, (0,yx) — (0,y)
for some point (0,y) € {0} x R*1 N §1/2, and hence
BIAY0,9) N {Z : O(Vil, 2) = q} = 0

for all sufficiently large k. This implies, by Remark 3 of Section 6, that for all
sufficiently large k, H"~ "+ (sing V4 L(Bg/zl (0,y)) = 0 for each v > 0 if n > 7,
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and sing V}, L(Bg?;l(o;y))
theory,

() if 2 < n <6, so by Theorem 3.5 and elliptic

q
(10.48) Vi, L (R x Bs4((0,))) = Y |graph uf]
j=1
for all sufficiently large k, where vf e C® (B5/4(0, y)), ub <ub <. < u]; on
Bs4((0,y)) and uf“' are solutions of the minimal surface equation on B;/4((0,))
satisfying, by standard elliptic estimates,

sup |D* u§| < CE}

Bs/16(0,y)
for{ =0,1,2,3and j = 1,2,...,q, where C = C(n, ). Passing to a further sub-
sequence without changing notation, we deduce that for each j = 1,2,...,q,

E,;luf — vj in C?(Bgs16(0,y)) where v; are harmonic in Bs/16(0,y) with

v1 < v < ...y on Bsi6(0,y). By (10.47), we see that

v ‘ R ‘
J J By /16(0,y)N{z2<0}

Bs16(0,9)N{22<0}
and

“ -3
I Bs 160N {22>0} — 771Bjs16(0,9)n{22>0}’

where ﬁj and g; are linear functions of the form Ej(m2, y) = ij2, g;(z%,y) =
fjx?, with A, i € Ry Ay > Ag > --- > A, and fiy < Jig < --- < Jig. By the
maximum principle, we conclude that Xj = p; = X for some A € R and all
j = 1,2,...,q. Therefore, by (10.47) again, we see that the coarse blow-up
(in the sense of Section 5) of {V;} and that of {Cy} are both equal to the
hyperplane 2! = Az2. But this is impossible in view of (10.2), so the assertion
of part (a) must hold.

To see part (b), argue as in [Sim93, Cor. 3.2(ii)] noting that by (10.30),
(10.1) and Corollary 10.2(a), we have that for each Z € spt ||[V|| N (R x Bs/g)
with ©(||V]|, Z) > ¢ and any X € R"H!,

|dist(X, spt [ C||) — dist(X, spt || 777 4 C||) [

<C dist® (X, spt | C|)) ]| V[|(X),
R,XBl

where C' = C(n, ¢, a) € (0,00). O

11. Blowing up by fine excess

Let {er}, {7} and {Bx} be sequences of positive numbers such that e, v,
Br. — 0. Consider sequences of varifolds Vi, € S, and cones Cj, € C, such that,
foreach k =1,2,..., with V, Ci in place of V', C respectively, Hypotheses 10.1
hold with eg, 7% in place of €, v; Hypothesis (x) holds with M = %Mg’ and
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Hypothesis (%) holds with f; in place of . Thus, for each k = 1,2,..., we

suppose:

(1%) OIV],0) > g, (20,)  IVEII(BETH0)) < ¢+ 1/2, w ' |Vil(R x B1) <
q+1/2.

(2r) Cr =21, |HJ]"’| + \G§| where for each j € {1,2,...,q}, H]k is the half-
space defined by ij ={(z',2%y) e R : 22 <0 and 2! = )\;?:BQ}, Gé?
the half-space defined by Gé? = {(z},2%,y) €e R : 22 >0 and 2! =
,ug?xQ}, with )\;?,,u? constants, )\]f > )\’2“ >0 > )\l; and ,u'f < ué“ <... < ,u];.

(3) Ef = Evk = Jrxp, 12" PAIVA[I(X) < e

(4) {7 = OVl 2) = a} 1 (R x (Byya \ {Is%] < 1/16})) = 0.

(51) E;%(Qr(Cr))? < i, where

(Q(Cr))? = (Qv,(Cy))?

= (/ dist?(X, spt || Vi|) d]| C | (X)
Rx (B2 \{|#2|<1/16})
[ (X spt | Ci) d||vk|<X>> |
RXB1
3
6 E? < ZM3 inf / dist?(X, P) d||V3||(X).
(k) k 9 O{P:{xlz)\ﬂ}} Rx B ( ) H k’H( )

(7x) Either (i) or (ii) below holds:
(i) Cr € Cy(4).
(i) ¢>3, CreCqy(py) for some p;, € {5,6,...,2q} and (Q;)_2 (Qk(Ck))2
< Bk, where

@)% = (4, (e — 1))

- in,f1 (/ diStQ(X,sptHVkH)dHGH(X)
CGU?24 Cq(j) \YRx(By/2\{|z2|<1/16})

; dist2<X,spt||6|r>d\|vk||<x>).
RXBl

Let By, = \/fRXBl dist? (X, spt ||Cr||) d||Vi||(X) so that by (5),
(11.1) E By — 0.

Note also that in case Cj & C,4(4) except for finitely many k, we have by
(3k) and (5%) that Qj — 0.

Let {0k}, {7} be sequences of decreasing positive numbers converging to 0.
By passing to appropriate subsequences of {V4}, {Cx}, and possibly replacing
Cy, with a cone Cj, € C, with spt ||Cy|| = spt ||Ck|| without changing notation
(see Remark (2) following the statement of Hypothesis (xx)), we deduce that,
for each k =1,2,..., assertions (Ay)—(Dy) below hold:
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(Ax) By Lemma 10.8,
(11.2) By FH0,9) N {Z : ©(|Vall, 2) = q} # 0

for each point (0,y) € {0} x R"~!' N By 5 and

R dist? (X, spt [|Cll) d][Vi | (X) < Co' /3
Bn

172 O)N{|(z"2?)| <o}

for each o € [0, 1/4), where C = C(n,q,a) € (0,00).
(Br) By Theorem 10.1(a),

q
(11.4) Vi L(Rx(Baa\{l2*| < m})) = D_ Igraph(hf +uj)|+|graph(g} +w})],
j=1

where h?,gf are the linear functions on R"™ given by h?(mZ,y) = )\fa,j,
g}“(ﬁ, y):,u?:v% ug‘j €C?(Byjy N{z? <—7}), w}“ € C*(By/yN{2* > 7:})
with hé? + u? and gf + w;-“ solving the minimal surface equation on their
respective domains and satisfying
W +uff <B4 ub <o <hE+ulf,
gr +wi < gb+wh <o < gi +wy,
dist (R (%, y) + uf (2%, ), 2%, ), spt [Cill) = (1 + (A])*) /2 |uf (2, )|
for (x2,y) € Bsy N {2? < -7} and
dist((g¥ (22, y) + (2%, y), 2%, y),spt [|Chll) = (1 + (15)*) 2wk (22, y)]

for (22,y) € Bsjy N {a? > 7.}

(Ck) For each point Z = (¢*,¢%, ) € spt ||Vi|| N (R x By s) with (|| Vi, Z) >
g, by Corollary 10.2(a) (taken with p = 1/4, say),

(11.5) IC'7 + ERIC” < CER,
where C' = C(n, q,a) € (0,00).

(Di) By (10.1) and (10.2),

(11.6)  cBp <max{|\}[,|\i|} < 1By, By < max {|pf], |1b]} < e By,

min (X — X, [k — b1} = 2.

where ¢; = ¢1(n) € (0,00) and ¢ = ¢(n, q) € (0,0).

Furthermore, by Corollary 10.2(b), (11.4) and the area formula, there exists,
for each p € (0,1/4], an integer K = K (p) > 1 such that the following assertion
holds for each £ > K :
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(Ex) For each point Z = (¢!, (%, 1) € spt [[Vi[|[N(Rx Bss) with O([|[ V[, Z) > ¢
and each p € (0,1),

(11.7)
S () — (¢~ M) i
j=1 Bp/2(42,n)ﬂ{w2<—m} |(h§(l‘2a y) + U?(:LQ, y)v $27 y) - (Clv CZ’ ,'7)|n+27,u
.y (a2 y) — (¢! — )P iy
7j=1 BP/2(C2,n)ﬂ{$2>Tk} ‘(gf ($27 y) + Wi (ZE2, y)v $27 y) - (Cla C27 ,,7)|n+27,u,
<o [ s (X spt [T 4 Cul) dVE] (),
RxB,(¢%m)

where C7 = C1(n, q,a, i) € (0,00).

Extend u?, wf to all of B3/4ﬁ{x2 < 0} and Bg/4ﬂ{:c2 > 0} respectively by
defining values to be zero in Bs;, N {0 > 22> —7.} and B3y {0 < 2?2 <1}
respectively.

By (11.6), there exist numbers ¢, m; for each j =1,2,..., ¢ with

(11.8) c <max{|li],|lg|} <c1, ¢ <max{|mi]|,|mq|} < e,

min {|¢; — 4y, |m1 —my|} > 2¢
such that after passing to appropriate subsequences without changing notation,
(11.9) EAk_l)\f — {; and Ek_luf — m;
for each j = 1,2,...,q. By (11.4) and elliptic estimates, there exist harmonic
functions ¢; : B3y N {22 <0} = R and ¢; : Bsy N {22 > 0} — R such that
(11.10) Ek_lu;C — ¢; and Ek_lwg-C — 15,

where the convergence is in C2(K) for each compact subset K of the respective
domains. From (11.3), it follows that

ol? < Col/2, /B W2 < Col/2

1/20{0<[L‘2<U}

/Bl/20{0>ac2>—a}
for each o € (0,1/4), where C' = C(n,q,a) € (0,00), and hence that the con-
vergence in (11.10) is, respectively, also in L? (By 5 N{z? < 0}) and L* (By 5N
{2? > 0}).

Set Y= (‘pla P2, .- 790q) and w = (wlvw% ERE 7¢q)'

Definitions. (1) Fine blow-ups. Let ¢ : Bz N {z? < 0} — RY and
Y By N {22 > 0} — RY be a pair of functions arising, in the manner
described above, corresponding to

(i) a sequence of varifolds {V},} C S, and a sequence of cones {Cy} C Cq
satisfying the hypotheses (1;)—(7) for some sequences of numbers {e},

{’Yk}v {Bk} with 5ka7/€75k — 0+’ and
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(ii) sequences {0y}, {7x} of decreasing positive numbers converging to zero
such that (11.2), (11.3), (11.4) and (11.7) hold. We call the pair (¢, )
a fine blow-up of the sequence {V;} relative to {Cy}.

(2) The Class BY'. Let B be the collection of all fine blow-ups (¢,)

such that the corresponding sequences of varifolds Vj, € S, satisfies condition
(65) with Mg in place of Mg; thus we assume the stronger condition

- 3
EZ < M2 inf / dist?(X, P) d||Vi|(X), k=1,2,3,...
G GME s P) IV (X)
in place of (6;) for any sequence {Vi} C S, giving rise to a fine blow-up

belonging to BF.

12. Continuity estimates for the fine blow-ups and their derivatives

Here we first use estimates (11.5) and (11.7) to prove a continuity estimate
(Lemma 12.1 below) for any (¢,) € BF. We then use it to establish the main
result of this section (Theorem 12.2), namely, the continuity estimate for the
first derivatives of (i,1)) € BF.

LEMMA 12.1. If (p,v) € BF, then

¢ € C"(Bs;16n {22 <0} RY), 1 € C¥P(B;16 N {22 > 0}; RY)

for some 8 = B(n,q,«) € (0,1) and the following estimates hold:

o(z) — (2)]?
s P+ swp P
By /16N{z2<0} x,2€ By /16N {22<0},2#2 r—==z
<c(f o+ [ v,
By 2n{z2<0} By 2n{22>0}
() — (2)|?
o WP sw v~ vi2)
Bs/16N{22>0} x,2€B5 16N {22 >0}, x#2 r—=z

sc(/ ol + | |wﬁ.
By j2n{z2<0} By 2n{z2>0}

Here C = C(n,q,a) € (0,00).

Proof. By the definition of fine blow-up, there are sequences {V;} C S,,
{Ck} C C,; and sequences of decreasing positive numbers {ex}, {v&}, {8k},
{0k}, {7k} converging to zero for which all of the assertions of Section 11 hold,
with MZ in place of M in (6y).

LetY € {O}XR”_IQBE,/M be arbitrary. By (11.2), foreach k =1,2,3,...,
there exist Zp = (CF, ¢, n¥) €spt || Vil with ©(||Vi|l, Zx) > ¢ such that Z;, — Y.
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Using (11.3), (11.5), (11.7) (with ¢¥, (5, n* in place of (1,2, n and pu = 1/2)
and (11.9), we deduce that for each p € (0,1/8],

S o3(2) = (1Y) ~ (V)P
—1 7 Bp2(Y)N{z2<0} ‘x - Y‘n+3/2

. Z | [95(@) = (1Y) = myma(V)P

(12.1)

Y)n{z2>0} |x_Y‘n+3/2

<Cip 3/22 . (V) = (V)P

ﬂ{x2<0}
_”_3/2 / i — (k1Y) = mjra(Y 2
Z s eragy ¥ T (1) = mima ()P,
where C1 = Ci(n,q,«a) € (O,oo) and we have set
(12.2) k1(Y) = lim E ¢, wmo(Y) = lim E_'Epck,
k—o00 k—00

both of which limits exist after passing to a subsequence of the original sequence
{k}. Note that by (11.5),

(12.3) |k1(Y)],|ke(Y)] < C, C=C(n,q,a)€ (0,00).

We remark also that our notation here is appropriate, and the limits in
(12.2) indeed depend only on Y and are independent of the sequence of points
Zj converging to Y'; this follows directly from the finiteness of the integrals on
the left-hand side of (12.1) and the fact that, by Lemma 9.1, at least two of
the ¢;’s and two of the m;’s are distinct.

For Y € {0} x R*~!'n By 16 and each j = 1,2,...,¢q, define

(124) Qp](Y) = K,l(Y) — ngQ(Y) and ¢](Y) = K1 (Y) — m]’K,Q(Y).
Then by (12.1),
(12.5)

~(/ () — (1) + o) — 0¥ o
- (Y)N{z2<0} B (Y)n{z2>0}
o 3/2 —-n 2
<a(2)" () pla) — (V)2 da
P B,(Y)n{z2<0}

T () - w(Y)Fdx)

B, (Y)N{z2>0}
for each 0 < 0 < p/2 < 1/32 and for the same constant C; = Ci(n,q,«) €
(0,00) as in (12.1).
To complete the proof of the lemma, we follow the argument of Lemma 4.3.
Consider an arbitrary point z* € Bj6 N {z? > 0} and let p € (0,1/16].
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Denote by z~ the image of 2™ under reflection across {0} x R*~1. Letting Y €
{0} xR"~! be the point such that |z~ —Y|= |2+ Y| =dist(z+, {0} xR 1), and
with y=~(n, g, @) € (0,1/16] to be chosen, if dist(z*, {0} x R*"1)<~vp, then

(12.6)

on~ (| oo+ [ o= 01)P)
By (27 )N{z2<0} By p(21)N{z2>0}

<2'(pt ]~V ( / el
Bw+‘z__Yl(Y)m{x2<0}

+f ¥ - W)P)

B, i+ —y (V)N {22>0}

- 3/2
SQnCI (W) (p_‘z*_Y’)fn (/
p—lz7 =Y B, |~ _y|(Y)n{z2<0}
e — e+ [ v - W)P)
Bpi‘z+7y‘(Y)ﬂ{$2>0}

9 3/2 Y
<va () (f o (V)P
11—~ B, (2~ )n{z2<0}

- o= 0.
B, (zt)N{z2>0}

Choosing v =v(n, ¢, ) € (0,1/16] such that 4"C} (%)3/2 < 1/4, we deduce
that

(12.7)
—n o Y 2 _ Y 2
(19) (/B N L ol RN 2 >r)

<o (| oo )P + | o - u(r)P)
Bo(z—)N{x2<0} By (zT)N{z2>0}

for any 2t € B; /16N {2 >0} and pe (0,1/16] provided vp > |27 =Y |=|2" =Y
= dist(z*, {0} x R"™1). If on the other hand vp < dist(z*, {0} x R"™1), since
¢ and 1 are harmonic in By /5 N {2? < 0} and BN {22 > 0} respectively, we
have for each o € (0,1/2] and any constant vectors b+, b~ € R4,

(128)  (090) " (Jgy o |9 — 9+ [, oy 16— 0(=H)R)
< Co*(yp)™" (wa(zf) o= b + wa(ZJr) | — b+|2) )
where C' = C(n) € (0, 00).

Given any zt € B/ N {2® > 0}, let j. € {0,1,2,...} be such that
Al < dist(2T, {0} x R*™1) < 4%, Then, with Y € {0} x R*! such that

avp
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|zt — Y| =dist(z+, {0} x R"1), by (12.8),
(12.9)

w%ﬁwﬂ(/ - e+ [ w—wwﬂﬁ)
B, ix+1(27) B jx+1(z1)

scﬁmﬁﬂ>”<@ et | (ﬂw-wawﬂ
Lixt+1(2 yixt1(2

for any o € (0,1/2], and if j, > 1, by (12.7),
(12.10)

wn—“</

B’Y

<4TH(pimhm (/ o — (Y)|?
Bwjfl(z_)ﬂ{$2<0}

¢—MYW)

o= o)+ [

j (z7)n{z2<0}

w—www)

L3 (zH)N{a2>0}

+ / |
B’ijl (Z+)ﬂ{332>0}

<a oy oo+ [ o= v(1)P)
By (z7)N{x?2<0} B, (zT)n{z2>0}

for j = 1,2,...,4,. If j, > 1, taking j = j, in (12.10) and ¢ = 1/2 in (12.9),
we see by the triangle inequality that

o(z7) = (V)] + [ (=) — w(Y)[?

<ot (f o~ o+ [ o= vr)R).
B, (z7)n{z2<0} By (zt)n{z2>0}

where C'= C(n, q,a) € (0,00), and hence by (12.10) and the triangle inequal-
ity, we again see that

(12.11)

w®%</ o= ez + [ r¢—¢@ﬂﬁ>
B ; (z7)N{z2<0} B ; (zt)N{x2>0}

<crto(f oo )P + | - v )P)
B, (z~)n{z2<0} B (zH)n{z2>0}

for j =1,2,...,jx, where C' = C(n,q,a) € (0,00).

By applying (11.5) with Vi, = 19124 Vi in place of Vi, and noting (e.g.,
by the argument establishing (10.32)) that E"~/k > CEy, where C = C(n,q) €
(0,00), also using (11.3) and (11.8), we deduce that for each Y € {0} x R*~1n
Bs 16,

(12.12) IMﬂF+WWWSC</ ol + | wﬁ,
By on{z2<0} By on{z2>0}
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where C' = C(n,q,a) € (0,00). With the help of (12.9), (12.10), (12.11) and
(12.12), we deduce that for any given 2 € B 14N {22 > 0},

a2y ool + [ b= vP)
Bo(z~)N{z2<0} By (zT)N{z2>0}

<o ([ ol + | vl
By /2n{z2<0} By /2n{z2>0}

for all p € (0,7], where C' = C(n,q,a) € (0,00) and 8 = fB(n,q,a) € (0,1), by
considering, for any given p € (0,7], the alternatives 2p < 47**1 in which case
p = oy* ! for some o € (0,1/2] and we use (12.9) and (12.10) with j = j,, or
I+t < 2p < 47 for some j € {1,2,..., 7.}, in which case we use (12.11). The
conclusions of the lemma follow readily from (12.13). O

THEOREM 12.2. If (p,%) € BE, then
@ € C*(ByyN{a? <0} RY), 1 € C*(Byn{a®>0};RY)

and the following estimates hold:

|Dp(x) — D(2)?
|z — 2

sup Dyl + sup
By/4N{z2<0} ©,2€By 7,M{22<0}, w72

sc(/ ol + [ rwﬂ,
By 2Nn{22<0} By 2Nn{22>0}

| Dy (@) — Dip(2) P

sup | DY) + sup PR

By ,n{z2<0} x,2€ By ;4N{22<0}, x#2

§0</ ol + | |wﬁ.
Bl/zﬁ{x2<0} Bl/gm{SE2>0}

Proof. By the definition of BY, there are sequences {V;} C S,, {Cr} C Cy
and sequences of decreasing positive numbers {e}, {7}, {8k}, {0k}, {7} for
which all of the assertions of Section 11 hold, with M2 in place of M3 in
condition (6g).

By (3.1),

Here C = C(n,q,a) € (0,00).

(12.14) / VYt VY Cd||Vill(X) = 0
RXB1

for each k = 1,2,... and any ( € C}(R x By). Let 7 € (0,1/32) be arbitrary.
Choose any (¢ € 02(33/8) with % =0 in {|2?| < 27}, and set (3 (2!, 22, y) =
C(22,y) for (2',22 y) € R x Byy. Let ¢ e CHR x Bsg/g) be such that (=G
in a neighborhood of spt ||Vi[|N (R x B3g) for all k = 1,2,.... By (12.14) and
(11.4), for all sufficiently large k,
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(12.15)
J VYeat v Cd|[Vill(X)
Rx(Bsz sN{|z2|<27})
; ~1/2
- / 1+ |D(RE +u)?) " D(hE + %) - D¢ dw
jgl B3/8m{x2§*27'} ( J J ) J j
j=1 BS/SO{$2ZQT} J J j i .

Since % = 0 in a neighborhood of spt [|[Vi|| N (R x By /2) and % =01in
{|z?| < 27}, it follows that

(12.16)

/ Vil 9YC duvka)'
Rx (B3 sN{|2z2|<27})

/ er V¢ d||vku<X>’
Rx (B3 sN{|z?|<27})

n+1

<sw Dl [ e dIVill(X)
jz::?) Rx (B3 sn{le2|<27})

< sup [D¢] (|[Vl|(R x (Bass N {|2?] < 27}))"2

n+1 N 1/2
(X[, terramie)
=3 3/8

< Csup |D¢|V/TE,

where C' = C(n,q,a) € (0,00), and the last inequality is a consequence of
Theorem 10.1(c) and the fact that [|[Vi||(R x (Bsss N {|a?| < 27})) < O,
C = C(n,q,a) € (0,00) for all sufficiently large k.

Since h;‘:(x) = )\fo, we have for each j =1,2,...,qand k=1,2,...,

(12.17)

—-1/2
(14 1D(E +ub)[2) ™2 D(hk + k) - DG

/]533/80{x2§—27'}

_ (1+ [D(RE +5)12) "% Dub - D¢
Bg/gN{az?<—27}

/ (14 [D(RE +ub)[2) " D(2hk 4 ub) - Db o¢
Bysniz2<—2ry  \/T+|D(RE+ub)2+/1+ (N2 92®

0
rod | e
B3/Sﬂ{12§727} aw

—-1/2

k
@

where a? = )\g‘? (1 + (A;C)z)
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By the Cauchy-Schwarz inequality and elliptic estimates,

(12.18)
/ (1+ [D(RE +ub)2) "2 D(2hk + ub) - Db o¢
Bysnisz<-2rt  /T+|D(RE+ub)2+/1+ (N2 922

=€) s e \/’)\?P i By jon{z2< }|u§|2dx\//3 N{z2< }|u§;|2 o
1/2 TES—T 1/2 TES—T

< C(r)sup [DC|/|N}? + E} Ej.

If ¢ also satisfies

(12.19) Cdy =0,

/33/sﬁ({0}><R"_1)

then, since

/, S an= [ O dr=— [ Cay,
33/8m{x2gf27—} a:’U Bg/gﬁ{IQSO} 81’ B3/8ﬂ({0}XRnfl)

the last term on the right-hand side of (12.17) will be zero. Thus, for each
fixed 7 > 0 and each ¢ € C}(Bjyg) with % =0 in {|2?| < 27} and satisfying
(12.19), we have

q
12.20 / 1+ |D(BE +u¥)2) 2 D + ) - D¢ da
a220) 32 (D) D o) e

—-1/2

q
:Z/ (1+ DY +u5)?) ™ Dub - D¢ d + 2
B

j=1"Bs/sN{z?<—27}

and, by a similar argument,

1 —1/2
(12.21) / 14 |D(g% +wh)? D(gk +wh) - D¢ dx
]Z_;[ By sn{z?>27} ( ’ ’ ) ’ ’
- k 2\ Y2 ok +
:Ej/ (L+1|D(g} +wh)?) " Dw} - D¢ da + €,
j=1 BggN{z2>27}

where limg 00 B}, ey | = limg—oo B} e | = 0. We may divide (12.15) by E,
and let & — oo to deduce, by (12.16), (12.20), (12.21) and (11.10), that for
each 7 € (0,1/16),

q q
(12.22) / Dyj- DG+ / Dy - D¢+ (1) = 0,
j;[ B3/80{m2§727} ! le B3/8H{I222T} I
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where ¢(7) — 0 as 7 — 0. Upon integration by parts (in view of the fact that
96 — 0in {|2?] < 27}), this gives

ozxz2

q
12.23 / AC+ / YiAC —e(r) = 0.
( ) ]Zl By gn{z?<—-27} i C Z 3/80{932>27'} g ( )
Since p; € LY(Byj N {a? < 0}) and ¢; € L*(Byjp N {z* > 0}) for each
j=1,2,...,q, we may let 7 — 0 in (12.23) to conclude that

q
- JZ=:1 /Bs/sﬁ{l‘Q<0} N Z / By sn{z?>0} vt =0
for any ¢ € C2?(Bsg) with % = 0 in a neighborhood of {z? = 0} and
satisfying (12.19).

Now for any £ € {1,2,...,n—1}, h € (—1/16,1/16) and any ¢ € C2(Bs,15)
Wlth 8< = 0 in a neighborhood of {z? = 0}, we have that &, ( € C}(Bs)s),
8932 5g,hC = 0 in a neighborhood of {z% = 0} and &, ¢ satisfies (12.19), where

6f,h C(‘T?a y) = C(‘T?a yla R 7y£ + hv y£+17 ey yn—l) - <($2a y) Thus, by (1224)7

q
0j Adep ¢+ / ViAS (=0
‘;[ /B3/80{w2<0} ’ Z 3/8ﬂ{m2>0} !
and consequently,
q
(12.25) Z/ msoJACJrZ/ Senthj AC =0

j=1"Bs/16N{z><0} Bs/16N{z2>0}

for any ¢ € C? (Bs/16) with a 9¢ = 0 in a neighborhood of {22 = 0}, any
¢e{1,2,....,n—1} and h € (—1/16,1/16). Since any ¢ € CE(B5/16) that
is even in the x? variable can be approximate in C?(Bs /16) by a sequence
G € C? (Bs/16) satisfying, for each i = 1,2,3,. gg = 0 in a neighborhood
of {J: = 0}, we see that (12.25) holds for any C € C2(Bs,16) that is even in
the 22 variable and for each £ € {1,2,...,n —1} and h € (—1/16,1/16). Thus

(12.26) / BypAC =0
Bs,16

for any ¢ € 03(35/16) that is even in the 22 variable, any £ € {1,2,...,n — 1}
and h € (—1/16,1/16), where @y} : B3z — R is the function defined by
Oy (2?,y) = YIo1 0enpj(—2%,y) + denpj(a?,y) if 22 > 0 and By p(2?,y) =
Z?:l Sen (@ y)+00n i (—2% y) if 22 < 0. Since @ is even in the 22 variable,
(12.26) holds also for any ¢ that is odd in the x? variable. Thus (12.26) holds
for every ¢ € CZ(Bs/16), and hence @ is a smooth harmonic function in
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Bs,16- Since we have directly from the definition of ®4; and Lemma 12.1 that

1/2
/ h*@ﬁsc</ ol + [ |wﬂ
Bs /16 By /5n{x2<0} By /2n{x2>0}

for all h € (—1/16,1/16) \ {0}, where C = C(n,q,a) € (0,00), it follows
from standard estimates for harmonic functions that there exists a harmonic
function ®; : By 35 — R such that h=1®y), — @4 in 02(39/32) as h — 0, and
(12.28)

sup (@0 + DO, + | D0, < C ([ ol + | wl?).
B By /5n{z2<0} By /5n{z2>0}

9/32

(12.27)

Let @ : By, — R be the function defined by P(22,y) = 23:1 wi(xy) +
Yi(—2?,y) if 22 < 0 and ®(2?,y) = Z?:l (=22 y) + ¥j(z?y) if 22 > 0.
Since ¢, = Biyz ® on By \ ({0} x R"71), it follows that for (22,y) € By/so \
({0} x R™),

Q(x27 y) = (p($27y17 R 7yK_17 07 yz—’_l? R 7yn_1)

¢
Yy
+/0 @g(x27y17"'7yé_l7t7y£+17"'7yn_1)dt7

so we may let 22 — 0 on both sides of this and use Lemma 12.1, (12.4) and the
arbitrariness of the index ¢ € {1,2,...,n—1} to conclude that, with Y = (0, y),

(12.29) d(Y) = 2qk1(Y) — <Z(£j + mj)> ra(Y)

j=1
is a C> function of Y € By3y N ({0} x R"~1) (with aiyecp(y) = 3y(Y),

2 3 2
W@(Y) = % @g(Y), W@(Y) = 8y,§678ym q)g(Y) for ea.Ch E,m, k

€ {1,2,...,n — 1}) satisfying, by (12.28) and Lemma 12.1, the estimate
(12.30) sup |2 4 |Dy ®> + |D} ®* + | DY @

By /35N({0} xR"~1)
gc(/ ol + | rwﬁ,
B /on{2?<0} By on{2?>0}

where C'= C(n, ¢, a) € (0,00).
Next we derive regularity estimates for a different linear combination of
k1 and kg. For this, we note that by (3.1) again,

(12.31) / Va2 vV LVl (X) = 0
R><Bl

for each & = 1,2,... and each ( € C)R x By). Let 7 € (0,1/16), ¢ €
CZ(B3ss) and ¢ be as before so that, in particular, % = 0in {|2z?| < 27}.
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Note that the unit normal 1/]]~g to (Mf)* = graph(hf + u?) is given by 1/]’? =
-1/2 dub _
((1 +[D(hk + u?)P) (1, N — 4, —D, uf) so that, on (M5)~,

V2?2 V(= ey - (DE— (Dg ij)yjk>

9¢ e oyt (e, U

A uk ¢
k k
' ((AJ‘ * aé) 92 TP 'Dy<>
ko, ky2) L k2, 9¢ k 8“? k

Using this and the analogous expression for VVk22 - kaZ on

(ME)T = graph(gh + wh),
we deduce from (12.31) and Theorem 10.1(a) that
(12.32)

I vYea? - VY ) V| (X)
Rx(Bgz/sN{|z?|<27})

. / (1+ [Dyujl”) g2 — (A + 58) Dy uj - Dy ¢
B

dzr
s VTR

) dwk
(1+[D,y w§|2)anz — (1 + 58)Dyw) - Dy ¢

q
M/
jz:l By/sn{22>27} V14 [D(gh +wh)P

dx = 0.

Since % = 0 in a neighborhood of spt [|[Vk|| N (R x By ;) and % =0in

{|z?| < 27}, it follows that

(12.33)

/ V¥t Vg dnka(X)‘
R x (B3 sN{|z2|<27})

/ 2 V¢ duvkn(X)'
R x(Bg sN{|z2|<27})

n+1

<sw D¢y [
jz::g Rx(

1 1
lex*[le ] dl| Vil (X)
Bgsn{|z?|<27})

1/2
< sup |DC] | [ e3* 2 IV (X)
Rx(Bgz sN{|z?|<27})

nal N 1/2
X[ e
- RXB3/8

Jj=3
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1/2
<sup D] ( [ L fe* P dVAI(X)
R><(B3/gﬂ{\x2\<2‘r})

n+1 1/2
(Z L “\Qduvkn(X))
RxBj3/g

< C sup |D¢| 7V ELEy,

for all sufficiently large k, where C' = C(n, ¢, @) € (0, 00) and the last inequality
follows from Theorem 10.1(c), Theorem 7.1(b) and Lemma 10.8. Since

(12.34)
(1+ Dy ul]? )25 — ()\k—|—812)Dqu Dy ¢
/B3/Sﬁ{1’2§—27'} V14 [D(RE + k)2
NeDyuk - Dy ¢
T /133/8m{m2§27} \/1 + | D( h"? + u)|

k12 9¢
Dy b2 2% — 54Dy ub - Dy ¢

“,
By gN{z2<—27} \/1 + | D( hé? + uj)|2

- /B3/Sﬂ{z2§—27'}
( )\kaxQ + |D | )8902
V14 INERT+ [D(RE +ub)2 (/T4 N2+ /1 + [D(RE + ub)]2)
9¢

1
S e
1+ !)\?|2 By gn{z2<—27} 0 x?

it follows that if ¢ also satisfies (12.19), then

(12.35)
/ (14 |Dyuk )%—(Agwr )D uk DC
Bssn{a2<—27} \/1 + |D(h§? + ué‘f)P
- _~/B3/Sﬂ{x2<—2’r}
k(’?u ¢
. 2AJ 8xj2 dax? dr
I+ INERVT 4 [DRE -+ uB)2 (/T + N2+ /1 + [D(RE + uF)]2)
NeD,uk - D
—/ 1 Dvty Dy da +1;;
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where, by elliptic estimates,
(12.36) In, | < Csup |D¢|ER, C =C(n,q,7) € (0,00).

By the same argument,

(12.37)
0 dwk
/ (1+ Dy w225 — (45 + 345 Dy wh - D, ¢
Fsietzen VI+ID(gf + )P
B /33/80{352227'}
) KO B¢
. j 0x2 Ox?
VI P+ [Dgf +wi)P (V14182 + 1+ [D(g) + w))P)

_/ My Ly W y G dm+77,j

By sn{a2>27} \/1 + |D(g§C + u§)|2
where, again by elliptic estimates,
(12.38) |7],j] < Csup|DC¢|E}, C=C(n,q1) € (0,00).

Dividing (12.32) by ELE), and letting k — oo, we conclude with the help
of (12.33), (12.35), (12.36), (12.37), (12.38), (11.1) and (11.9) that
(12.39)
q q
>t Dy D¢+ m; | Dy D¢+ () =0

=1 Bg/gn{z2<-27} j=1 Bg sn{z2>27}
for any ¢ € C%(B with 2% = 0 in {|22| < 27} and satisfying (12.19), where
c\P3/8 S5z
n(r) - 0as 7 — 0.

It follows from (12.39) in the same way that (12.30) follows from (12.22)
that if we let, for Y € B3/s N ({0} x R*71),

J

(12.40) T(Y) = (qu(ej +mj)> k1Y) — <

q
J=1 =

(3 + m?)) k2 (Y),
1
then ¥ is a C* function on By3; N ({0} x R™™!) satisfying the estimate

(12.41) sup |U> 4 |Dy U + |D} ©|* + | D} O

By /32N ({0} xR™~1)
SO(/ o+ [ rwﬁ,
By /2n{x2<0} B jon{a2>0}

where C' = C(n, ¢, a) € (0,00).
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Note that

and so it follows from (11.8) that C > J > C > 0, where C' = C(n, q) € (0, c0)
and C = C(n,q) € (0,00); thus, by (12.29) and (12.40), we may express each
of k1 and k9 as a linear combination of ® and ¥ with coefficients, in absolute
value, < C' = C(n,q) € (0,00). Consequently, 1, kg are in C*°(Bg/3p N ({0} X
R 1)) and, by (12.30) and (12.41), satisfy the estimates

(12.42) sup kil + | Dy kil* + ’DZ Kil® + ]D:; kil

By/32N({0} xR ~1)
<c ( / ol + | W)
By jon{z2<0} By jon{z2>0}

for i = 1,2, where C' = C(n,q,a) € (0,00). This in turn implies that for each
j=1,2,...,q, the functions

sOj|Bg/320({0}><R"71) (= 1 — LK)
and
¢j|Bg/32ﬁ({O}><R”*1) (: R1 — mjm)

belong to C'*° (39/32 N ({0} x R”fl)) and satisfy the estimates

(12.43) sup |0j” + Dy @i* + |D} ;1% + 1D; 051
Bg/32N({0}xRn—1)
<cl/ ol + [ W)
By /on{z2<0} By on{x2>0}
(12.44) sup ;1% + [ Dy 51% + 1D by + | D
Bg/32N({0} xR"~1)

§C< / ol + [ wP),
Bl/gﬁ{xQSO} 31/20{52220}

where C = C(n, q,a) € (0,00). By Lemma 12.1 and the standard C*® bound-
ary regularity theory for harmonic functions ([Mor66]), the desired conclusions
of the present lemma, in particular, follow. O
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13. Improvement of fine excess

Let ¢ be an integer > 2, a € (0,1), and suppose that the induction
hypotheses (H1), (H2) hold. The main result of this section (Lemma 13.3
below) establishes that there are fixed constants e = e(n,q,a) € (0,1), v =
v(n,q,a) € (0,1) such that whenever V' € S,, C € C, satisfy Hypotheses 10.1
and Hypothesis (x) (of Section 10) with a suitable constant M depending only
on n and ¢, the fine excess of V relative to a new cone C’ € C, decays by a
fixed factor at one of several fixed smaller scales.

LEMMA 13.1. Let q be an integer > 2, o € (0,1) and 6 € (0,1/4). There
exist numbers € = g(n,q,a,0) € (0,1/2), ¥ = F(n,q,,0) € (0,1/2) and
B =B(n,q,,0) € (0,1/2) such that the following is true: If V € S,, C € C,
satisfy Hypotheses 10.1, Hypothesis (x) and Hypothesis (xx) with e =&, v =7,
M = %Mo, B = B, and if the induction hypotheses (H1), (H2) hold, then there
exist an orthogonal rotation T' of R"*1 and a cone C' € Cq such that, with

B = [ P
RXBl
and
= [ (st [C) V(X))

RXBl
the following hold:
(a) le1—T'(e1)| < REy and |e; —T'(e;)] < EE‘;lEV foreach j=2,3,... ,n+1;
(b) dist3,(spt |C'|| N (R x By),spt |C||N (R x By)) < CoEZ;

(c) "2 fF(Rx (B2 \{|22<0/16})) dist” (X, spt [[V]]) df|T4 C'll(X)
+07"72 [irocpy) dist? (X, spt [Ty C'l]) d||V][(X) < 7077

e . _ 1/2
(d) (0772 Jg, dist*(X, P)dT5' V(X))
> 275 /C disty(spt ||C|| N (R x By), PN (R x By)) — CoEy for any
P € G, of the form P = {x! = \z?} for some X € (—1,1);
() {Z: (15" VI, Z2) > g} N (R x (Bgja N {|2°] < 0/16})) = 0;

(f) (wnb™) " T VIR x Bp) < g +1/2.

Here the constants &,Co,7,Cy € (0,00), each depends only on n, q, o, and
C1=Ci(n) = fBl/Qm{x2>1/16} 2?2 dH" (2, y).

Proof. Consider any sequence of varifolds {Vx} C S, and any sequence
of cones {C} C C, satistying, for each k = 1,2,..., hypotheses (1;)-(7) of
Section 11 for some sequences {ex}, {7&}, {8k} of numbers with ez, vx, Bx — 0T
and with My in place of M (in hypothesis (65)). The lemma will be established
by showing that for each of infinitely many k, there exist an orthogonal rotation
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I'y, of R*! and a cone C). € C4 such that the conclusions of the lemma
hold with Vi, Cj, Cj, in place of V, C, C’ respectively for fixed constants
%, Co,%,7,C1,C3 € (0,00) depending only on n, ¢ and .

Let Ej, = EVk and E, = Ey,. Fori=1,2,...,(n—1), let ¥; = %96244’ €
{0} x R"~1. We infer from (11.2) that passing to a subsequence of {k} without
changing notation, for each k =1,2,3, ..., there exist points

Zik = (Ci’kaé’k,m,k) € spt ||Vk|| N (R x By),
i=1,2,...,(n—1), such that O(||Vi||, Zi ) > q and |Z;  —Yi| — 0 as k — oo;

also, we may find orthogonal rotations I'j, of R"*! such that
Zik
[Zigl
where Y, is the (n — 1)-dimensional subspace spanned by {Z; , : i =1,2,...,
(n —1)}. Let I'} be the orthogonal rotation of R"*1 such that T'}(Y) =Y for
each Y € {0} x R" ! and I'}) (M) = e, where 712 : R""! — R2 x {0}

[m12 T (e1)]
is the orthogonal projection onto the z!'z?-plane, and let T}, = I’/ oI} so that
(13.1)

7.

Ik (Xx) = {0} x R, Iy <‘Zl’k‘> — eg; foreachi=1,2,...,(n—1).
ik
Let (p,1) € BF be the fine blow-up of a subsequence of {V}} relative to

the corresponding subsequence of {Cy}. Since O(||Vi||,0) > g, it follows from
(11.7) that ¢(0) = ¥(0) = 0, and consequently, from (12.2) and (12.42) that
after passing to further subsequences without changing notation,

(13.2) oM + ExlCh ™| < COEy

foreach i = 1,2,...,n—1 and k = 1,2,..., where C = C(n,q,«a) € (0,00).
With the help of (13.2), the following can then be verified:
(13.3)

le — Tx(e1)| < CEy and |ej — Ti(e;)| < CE'Ey, §=2,3,...,n+1,

. (%) = {0} x R"™! and T, ( ) — egy; foreachi=1,2,...,(n—1),

where C = C(n,q,a) € (0,00). In particular, note that C' here is independent

of §. Consequently, letting Vi, = 19 7/84(I'k4 Vi) and passing to a further

subsequence without changing notation, we have for each k = 1,2,3,... that
(13.4) d (T 1 ({0} x R") N (R x By),{0} x By) < CE}

and

(13.5) E‘%k = /RXBl dist?(X, spt ||Ck||)d|H~/k||(X) < CF},

where C'= C(n, ¢, ) € (0,00). Furthermore, we claim that

(13.6) CEy < By < CEy
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for constants C = C(n,q,a) € (0,00) and C = C(n,q,a) € (0,00). The
second of these inequalities follows directly from the definition of ‘N/k and in-
equality (13.4); to see the first, note first that since the coarse blow-up v, of
{Vi} (by the excess E}) is homogeneous of degree 1 (in fact its graph is a
union of half-hyperplanes meeting along {0} x R"~!) and satisfies, by (11.6),
IB, lve|> > € where ¢ = ¢(n,q) € (0,1), we have for each o € (0,1) that
o "2 s, v |2 = /B, v, |2 > € so that

q . .
[ PO =3 [ 1 D e
RXxB, j=1 Bs
! ] j 12 1,2
=Y [V e+ [ e i)

> [t = 26 (s ) B2
Bs B

o

1 .
> (250"+2 - 2C, (sup |uk|2)> E?
Bs

for sufficiently large k, where wug, 3 correspond to w, 3 of Theorem 5.1 taken
with V4 in place of V and the constant C, is the same as the constant C' of
Theorem 5.1(a). Thus for sufficiently large k depending on o,

(13.7) [ PV = B,
Rx B,

where ¢ = ¢(n,q,0) € (0,1), which, taken with a suitable choice of o € (0, 1),
readily implies the first of the inequalities of (13.6).

Using Theorem 5.1, (11.5) and inequalities (13.3)—(13.6), we can now ver-
ify that after passing to another subsequence without changing notation, for
each k = 1,2,..., the hypotheses (1;)—(7;) of Section 11 are satisfied with
V’k in place of Vi, suitable numbers &g, Yz, Bk — 0% in place of €, Vi, Bk
respectively and with Mg in place of M§ (in (6;)). Of these, verification of
(11)—(51) is straightforward; to verify that (6;) is satisfied with V}, in place of
V and M¢ in place of Mg, we proceed as follows: We note first that by (13.6),

inf / dist?(X, P) d||Vi||(X
Pefmra2) SR, (X, P)d|[Vi[|(X)

. inf / dist?(X, P) d|| V| (X),
P={z'=X\z2};|\|<CE) /JRx B

where C' = C(n,q,a) € (0,00), and that for any hyperplane P = {x! = \2?}

A~

with |A| < CE} and for sufficiently large k,
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2 i 8 2 2 1
[ @ P a0 = (5) [ dis0rEe) divid )
RXBl RXBl/Q

= 21\7
— Cdist3 (I, (P) N (R x Byjz), PN (R x Byjy))

- (,) / dist?(X, P) d|| Vi]|(X)
RxBl/2

> 7n29n 1,119 £ 1)1, / dist?(X, P) d|| Vi |(X) — CE2
RXBl

-1
> 7 g+ )T (S0) [ e PVl - B,
2 RxB;

where C' = C(n,q) € (0,00), the third inequality follows from (10.34) with
p=1/2 and Z = 0, and the last inequality holds by hypothesis of the present
lemma. On the other hand,

~ 8 n+2
[ wPavieo=2(z) [ e Pdvede
RxB; 7 RxB;

8 n—+2
#(5)" wn(2a+ DA ({0} x R 0 (R x By), {0} x By)

8 n—+2
<2(2) [ PV + O,
RXBl

7
where C'= C(n, q,a) € (0,00). Hence
R M, ~
B2 < N [ s PVl (),
Vi T 2 (2720 Tw, 1 (2g 4+ 1) 710 — Cy) JRxy

where C' = C(n,q,a) € (0,00), and it follows from this that hypothesis (6y)
with 17k in place of Vi and Mg in place of M is satisfied for all sufficiently
large k; hypothesis (7x) with Vi, in place of V}, can easily be verified using the
estimate Q%k (px — 1) > CQy, (pr — 1), where C = C(n,q) € (0,00), which

follows from (13.3) and the fact that, for any C € U?’;Zlcq(j),

/ dist? (X, 5pt [ Vi) |G| (X)
R (Br/16\{|22[<7/(8-16)})

+ dist?(X, spt [|C) d| Vi I(X) = & (@4, (e — 1))
RXxBy/g

where ¢; = ¢1(n, q) € (0, 1), the validity of which can be seen by reasoning as
in the proof of (13.7) using the fact that the blow-up of {Vi} by Q% (pr — 1)
is homogeneous of degree 1 (by hypothesis (7;)) and has, by (10.3), L*(B)
norm > ¢, ¢ = ¢(n,q) € (0,1).

Thus, the fine blow-up (3, ) of {V}} relative to {C} belongs to B~
Furthermore, it follows from (13.1) and (11.7) (applied with Vj in place of Vj
and %Fk Zik,1=1,2,...,n—1, in place of Z) that foreach i =1,2,...,(n—1),
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@(Y;) = ¥(Y;) = 0 and consequently, since Y; = 0 €12, that there exist points
S;i,Tji € Bpjo N ({0} x R™1) such that
9 ¢;
0yt
foreachi=1,2,...,n—1and j =1,2,...,q. By the estimate of Theorem 12.2,
this readily implies that

(13.8) [Dy@(0)[* + [Dy(0)[* < C6? ( / 72+ [ |«Z|2),
By /2n{z2<0} By /5n{z2>0}

where C=C(n,q,a) € (0,00). For j=1,2,...,q and = = (~ y) € R", letting
Lia) = DF(0) 3, Lia) = DE(0) -, Pey) = S0 and Pila)

(Sj,i) =0 and

= 9%5(0)a2, it follows from (13.8) that for each (22,y) € R,

[PL(a?,y) = LE(a?,9) 4 |PLa?,y) = L(a? )

< ooyl | 72+ [ 9P
By /2Nn{22<0} By /5n{z2>0}

and consequently from Theorem 12.2 that

o) o2 7P+ [ i ri) < e
Bogn{a2<0} 14 Bogn{a2>0} ¥

C=0C(n,q,a) € (0,00).
For j=1,2,...,qand k=1,2,..., let

9,
(13.10) NF =25+ By o —£2(0),

1 —M§“+Evk wfﬁ( 0),
(2!

oz
H/k { ) $1:)\;~k$2, ZL‘2<0},
GF = {(@'a%y) 2t = e, a? =0},
q
Z|H,k|—|—|G/k|

With the help of (13.1), (11.3) and (13.5), it is straightforward to verify that

CER I dist(X, spt | (T ) Ch 1) dl[VAl| () < C62EZ
» [ (RxBy)

for all sufficiently large k, where Cj is as above and I'j, is as in (13.1), and
C = C(n,q,a) € (0,00). Furthermore, it follows from (13.5), (13.10) and
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Theorem 12.2 that

(13.12) dist%_[(spt |CLll N (R x By),spt ||Ckl| N (R x By)) < CEZ,
C=C(n,q,a) € (0,00).

From (11.4) (applied with V}, in place of V4), it follows that

(13.13) 9%72/ dist® (X, spt || Vi) @[T, % Chll(X)
I (Rox (B 2\ {122/ <0/16) ) bt E

<opm [ it (X st T Gl V] (Y),
I (RxBy)
C=C(n,q,a) € (0,00).

Again by (11.4) (applied with Vj in place of V}), (13.5), (13.11) and (13.12),
we have that for any hyperplane P of the form P = ol = 2%}, ) < 1,
writing 0 = %0,

g_n—z/ dist? (X, P) d|| Vi | (X)
R,XB'Bv

1~ q
>y Bt = xa? + k)
— 2 ; < B~ ﬁ{x2<—g/16}‘ J i

0/2

+/ . |gf—Ax2+w§|2>
B~ n{z2>0/16}

/2

1~ q
LA </ N _ g} )\x2|2>
=1 Bg/2ﬂ{x2<—0/16} Bg/2ﬂ{x2>9/16}

1~ q
—somey (] gk | _jap
2 Z Bfev/Qﬂ{a:2<—0/16}| i Bf9v/2ﬁ{a:2>9/16}’ h

1
> 2740 dist3, (spt |Ck|| N (R x By), PN (R x By))

Y

2
> 2740 dist3, (spt |Ck|| N (R x By), PN (R x By))

1 , -
_ 1% 2/ dist?(X, spt [|Cx ) ||V | (X)
RXB’é'

g [ iRt G V() - OB
RXB’é'

> 2740 dist3, (spt |Cr|| N (R x By), PN (R x By)) — CE},

where C7 = fBl/Qm{x2>1/16} |22|? dH™ (22, 5), C2 = Ca(n, q,a) € (0,00) and the

notation is as in Theorem 10.1 taken with Vk in place of V (in particular, with
ty, wi. corresponding to u/, w’). This readily implies that



942 NESHAN WICKRAMASEKERA

1/2
a1ty (5= [ s 0r P alne 00
RXBg

> 2757 /O disty (spt | Cil N (R x By), PN (R x xBy)) — CEy,

for each hyperplane P = {z! = A2} with |[A\| < 1 and all sufficiently large k,
where C' = C(n, ¢, a) € (0,00).

The inequalities (13.3) and (13.11)—(13.14) say that the conclusions (a)—
(d) of the lemma, with Vj, Cy, Cj, F,:l in place of V, C, C’, T', hold for
all sufficiently large k. Conclusion (e) with Vi in place of V' and I‘,;l in place
of I is clear, for all sufficiently large k, by (11.5) applied with Vi, in place
of V. Conclusion (f) with Vj in place of V' and I’,;l in place of I' follows,
for sufficiently large k, from the Constancy Theorem for stationary integral
varifolds and the fact that ¢ < O(||Vi]|,0) < (wn2™) ! ||IA/;||(B§L+1(O)) <q+1/2
for each k. O

LEMMA 13.2. Let g > 2 be an integer, o € (0,1) and p € {4,5,...,2q}.
Forj=1,2,...,p—3, let 6; € (0,1/4) be such that 6; > 802 > 6463 > --- >
8P=49,_3. There exist numbers e = e (n,q,0,01,0,,... ,0p—3) € (0,1/2),
@) = ~P)(n, q, 0,0 ooy 0p—3) € (0,1/2) such that if V € S,, C € Cy(p)
satisfy Hypotheses 10.1 and Hypothesis (x) with e = e®), ~ =~®) M = %Mo,
and if the induction hypotheses (H1), (H2) hold, then there exist an orthogonal
rotation I' of R"*1 and a cone C' € Cy such that, with

B = [ PV
R,XBl
and

Qo) = [ dist® (X, spt V) | € (X)
Rx(By/2\{|2?|<1/16})

+ dist®(X, spt [|[C)|) d[|V[[(X),
R,XBl
we have the following:
(a) ler — T(e1)| < kPQy(C) and |ej — T(e;)| < H(p)E‘;le(C) for each j =
2,3,....n+1;
(b) dist3,(spt |C’[| N (R x By),spt [ C] N (R x By)) < CP'Q3(C):

and for some j € {1,2,...,p— 3},

(c) ;"7 fF(RX( ) dist*(X, spt |V ]]) || C'[|(X)

By, /2 \{|22|<6;/16}
07" e, ) st (X spt [Ty C) IV (X) < 176303 (C):
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(d) for any P € Gy, of the form P = {z' = \x?} for some )\ € (—1,1),
0" dist® (X, P) |5 VH(X))l/Q
R><B9
2/ distau(spt [C N (R x B). PO (R x B1)) — (P Qu (C):
(e) {Z: @(HF; VI, Z) > ¢} N (R x (By, o N {|2? < 0;/16})) =
(1) (wnf?) ' IITL VIR x Bg,) < q+1/2.
Here the dependence of the various constants on the parameters is as follows:
kP = /i(p)(n, g,0,01,...,0,_4), Cép) = C’ép)(n, g,0,01,...,0,_4),
Cép) = C’ép)(n, ¢, a,01,...,0p_4)
in case ¢ > 3 and p € {5,6,...,2¢}; kY =R, 054) = Co, 0(4) Cy, where

R = R(n,q,a), Co = Co(n,q,a), Co2 = Ca(n,q,a) are as in Lemma 13.1;
(p)

vy’ =T, where 7 = U(n,q,a) is as in Lemma 13.1; and, in case ¢ > 3, for
each j =2,3,...,p— 3, V(p) = V](-p)(n,q,a,el,...,ej_l). In particular, V](-p) 18
independent of 0;,0;41,...,0,—3 for j =1,2,...,p— 3.

Proof. If p = 4, then we may simply set ¢ (n, ¢, o, 01) = E(n, ¢, @, 61) and
Y®(n,q,a,61) = F(n,q,a,0;), where g, 7 are as in Lemma 13.1, and deduce
from Lemma 13.1 with 6 = 6; that there exist a cone C’ € C, and an orthogonal
rotation I' of R"*! such that the conclusions of the lemma hold with j = 1 in
(¢)—(f); with k) = &, 064) = C), C§4) = (Cy and I/YL) = v, where &;, C, Ca,
7 are as in Lemma 13.1. Thus the lemma holds if p = 4.

Else ¢ > 3 and p € {5,6,...,2¢}. Assume by induction the validity of
the lemma with any p’ € {4,5,...,p — 1} in place of p. Let 6; € (0,1/4),
j = 1,2,...,p — 3 be given such that §; > 80 > 6403 > --- > 8740, ;.
To prove the lemma as stated, it suffices to show that for arbitrary sequences
{Vi} C Sa, {Cr} C Cy(p) that satisfy hypotheses (1;)—(5;) of Section 11 as
well as hypothesis (6;) of Section 11 with My in place of Mg, there exist a
subsequence {k'} of {k} and, for each £/, a cone C}, € C,; and an orthogonal
rotation I'yy of R"! such that the conclusions of the lemma hold with Vi, Cy,
C),, I',, in place of V, C, C/, T" respectively and with suitable constants k(@)

C’ép ), Cép ) and yfp ), ceey l(f’ )3 depending only on the parameters as specified

in the statement of the lemma. So suppose, for £k = 1,2,..., that V}, € S,,
Cy, € Cy(p) satisfy hypotheses (1g)- (6k) of Section 11 with My in place of M¢.

For each k, choose a cone Cj, € Uj=1 C4(j) such that

(13.15)  (Qx)'= dist? (X, spt [ Vi) | Gy | ()

</RX (B1/2\{|z?|<1/16})

. =~ 3
+ dist? (X, spt HCkH)dHVkH(X)) < 5 (@R,
RXB1
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where

Q)= _ inf (/
CelJiZ,¢q(5) \YRx(By2\{|2?<1/16})

" dist2<x,sptuéumuvkum).
RXBl

dist® (X, spt [[Vi||) d]|C||(X)

Let 8 = B(n,q,a,0;), where (3 is as in Lemma 13.1, and consider the
following two alternatives:

(A) for infinitely many k,

/ dist® (X, spt || Vi|l) d||C || (X)
Rx(By2\{|x2|<1/16})

+ dist®(X, spt | Crl) | Vil (X) < 8(Qk)*
R,XBl

(B) for all sufficiently large k,

/ dist2(X, spt || Vi) d||Ck | (X)
Rx(By2\{|2%|<1/16})

[ s spt Gl dIVAIX) 2 Q1)
RxBq

If alternative (A) holds, we deduce directly from Lemma 13.1, applied with
6 = 01, that for infinitely many k, there exist a cone C}, € C, and an orthogonal
rotation I';, of R™*! such that the conclusions of the present lemma hold with
Vi, Ck, C,, Tk in place of V, C, C', I'; with j = 1 in the conclusions (c¢)—(f);
and with &, Cy, C9, 7 (as in Lemma 13.1) in place of k@), Cép), ufp).

If alternative (B) holds, we have by hypothesis (5;) and (13.15) that for
all sufficiently large k,

(13.16) dist*(X, spt || Vi) ]| C | (X)

</RX(31/2\{|902|<1/16})

28

Since Cy, € Cq(p') for some p' € {4,5,...,p — 1} and infinitely many k, we
may, by the induction hypothesis, apply the lemma with p’ in place of p and
t2,03,...,0,_o in place of 01,60, ...,0,,_3 to deduce that for infinitely many £,
there exist a cone Cj, € C; and an orthogonal rotation I'y, of R"*! such that
the conclusions (a)—(f) hold with Vi, Cy. Cj., I'y in place of V, C, C’, I'—in
particular, with Qj in place of Qv (C)—and such that

(i) in case p’ = 4 (which must be the case if p = 5), with x4 = &, C((]4) =C),
054) = Cy and V§4) = U (where %, Cg, C1, Ca, U are as in Lemma 13.1 and
C is as in Theorem 10.2(a)); and

. p= 3k ~
b, st S dlvil ) < 8
RXBl
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(ii) in case p’ € {5,6,...,p — 1} (possible, of course, only if p > 6) with
K'(pl) = ’{(pl) (n7 q, «, 02) L) 0}0’—3)7 C(()p ) = (()p )(nu q,a, 927 ceey 9p’—3)7
C'ép) = ép )(n,q,a,ez, oy Op_3)
in place of kP, Cép ), Cgp ) respectively, with l/gp l)(
(p)

as in Lemma 13.1) in place of v;"’, and with 1/](-112

n,q,a) = v (where 7 is

(n> q,«, 027 B ejfl) in
place of V](Ji)l for each j =3,...,p' — 2.

Since by (13.15) and the defining requirement of alternative (B) we have that

2
< -
U= 20 ( Rx(By 2\ {|22|<1/16})

[ s spt [Cul) d||vkr<X>) |
RXBl

dist? (X, spt || Vi]|) d||Cl|(X)

and dist2,(spt | Cr|| N (R x By),spt [Cil| N (R x By)) < C(Q2 + Q2), where
C =C(n,q) € (0,00), setting

3K
(5) )=z~
k' (n,q,a,0r) 26(n,q,a,bq)

3(6 + 60)
B(na q, «, 91) 7
3
23(77’7 q,«, 91) ’

) C(()5) (TL, q, o, 91) = 26 +

055) (n, q,a, 91) = 2_%% 616 + (Q_RTH \/ 616 + 62)

(5)

_ 5 33U
14 (n7Q7a) =V, Vé )(n, q7a701) = m

Y

and, for p > 6,

"@(p) (na q,, 917 s )9;0—4)
3

= [ —) Oa,...0y_3):p =5 ~1
max { K, — K n,q,o,bo, ..., 0y _ : Sy s
{ 26(%,(]70[,91) ( ! ’ ! 3) P P

C(()p) (na q, &, 01) ceey 91)—4)

= maX{CO, 20 + =

m (€+Cép)(n’q’a’92"">‘9p’—3)) 3p/=5,...,p—1},

O (n,q, 0,01, 0ps)
3
23(”) q, @, 91)

where a = 275" C,C,

= max {C’g, a+ (a—I—Cép,)(n,q,a,Qg, .. .,sz_3)> cp' =5,... ,p—l},

i 30
v (n.q,0) =7, 1" (n,q,0,01) = 28(n, g, ,61)
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and, for j =3,...,p— 3,
(P)(

Vj anvaael)"'yej—l)

3 ') o —
_max{Wwyj_l(n,q,a,eg,...,Hj_l).p—]+2,...,p—1 ,

we see that if alternative (B) holds, the conclusions (a)—(f) of the lemma follow

with V4, Cy, Cj, I'y in place of V, C, C', T'; with constants H(p),Cép),Cép)
depending only on n, ¢, a, 61,02, ...,0,_4; with I/%p) depending only on n, ¢,
« and for each 5 = 2,3,...,p — 3, with I/](-p) depending only on n, ¢, a and
61,602,603, ...,60,_1. Note that in checking that conclusion (d) holds with V, Cj
in place of V', C, we have used the fact that

disty(spt || C | N (R x By), {0} x By)
> disty(spt || Cx ]| N (R x By), {0} x Bi)
— disty(spt ||Ck]| N (R x By),spt |Cxl| N (R x By))
> disty (spt [|Cx|| N (R x Bi), {0} x B1) — VC(Qk + Qu)-

Similar reasoning applies in checking conclusion (b). This completes the proof.
O

LEMMA 13.3. Let q > 2 be an integer and o € (0,1). For j = 1,2,...,
2q—3, let 0; € (0,1/4) be such that 0; > 80 > 6463 > --- > 824740y, 5. There
exist numbers

e=¢e(n,q,a,61,02,...,02,3) € (0,1/2),

= V(na q, &, 917 027 DRI 02(1—3) S (07 1/2)
such that the following is true: If V € S,, C € Cy4 satisfy Hypotheses 10.1 and
Hypothesis (x) with M = 3 My and if the induction hypotheses (H1), (H2) hold,

then there exist an orthogonal rotation T' of R"™! and a cone C' € Cq such that,
with Ey and Qv (C) as defined in Lemma 13.2, we have the following:

(a) ler — I'(e1)] < kQv(C)and lej — I'(ej)| < RE‘}IQV(C) for each j =
2.3,...,n+1;
(b) dist?,(spt [C’]| N (R x B1),spt [|[C|| N (R x B1)) < CoQi(C);

and for some j € {1,2,...,2q — 3},

6. "2 /
(C) J F(Rx(ng/z\{|x2‘§9j/16})>

+ 9}”72/ dist? (X, spt [Ty C'])) A VII(X) < 136507 (C);
F(RXBQJ.)

dist*(X, spt |V |]) || C'[|(X)



STABLE CODIMENSION 1 INTEGRAL VARIFOLDS 947

(d) for any P € Gy, of the form P = {z' = \x?} for some )\ € (—1,1),

1/2
(9;71—2 [R dist?(X, P) d||T,' VI|(X )>
><ng

> 275"/ disty(spt |CJ| N (R x By), PN (R x By)) — C2Qv(C);

(e) {Z: (T4 VI, 2) = g} N (R x (By, ;o N {[a?| < 0,;/16})) = 0;
—1 _

() (wnb7) " ITL' VIR x By,) < q+1/2.
Here the constants k,Cy, Cy € (0,00) depend only on n,a in case ¢ = 2 and
only onn, q, a and 61,02, ... ,024_4 in case ¢ > 3; v1 = v1(n,q, a); and, in case
q >3, foreachj=2,3,...,2¢—3, v; = vj(n,q,a,01,...,0,_1). (In particular,
vj is independent of 05,0;41,...,024—3 for each j =1,2,...,2¢ —3.)

Proof. Set e =min {5(4), e® . ,5(2‘1)} and v =min {y(‘l), 7(5), e ,7(2‘1)},
where

g(p):,g(p)(n’q’a’el,_ "79p73)7 7(1)):7(]))(”)(]5@’017' "701)*3)7 4 Sp < 2(]

are as in Lemma 13.2. Set v; = 7, and for each j = 2,...,2¢q — 3, set

Vj =max {V](]+3)’ VJ(J+4)7 ey V§2q)} (: V;Qq)) 9
where 7 is as in Lemma 13.1 and for each p € {5,...,2q}, the numbers V](p)
are as in Lemma 13.2 taken with scales 01,...,0,_3. Note that then, 11 =

vi(n,q,a) and in case ¢ > 3,
vi =vj(n,q,0,61,...,0j_1) for 2 <j <2q—3.
Set
K = max {Ii(4), kO ,Ii(2q)} (: Ii(zq)) ,

Co = mas {080, (= c).

Cy =max{C§",cf,.. P} (= cf),
where for each p € {4,5,...,2q}, the numbers x®, C’ép), Cép) are as in
Lemma 13.2 taken with scales 61, . .., 0,_3. Since C € C, implies that C € Cy(p)

for some p € {4,5,...,2q}, the conclusions of the present lemma follow directly
from Lemma 13.2. U

14. Properties of coarse blow-ups: Part III

Subject to the induction hypotheses (H1), (H2), in this section we com-
plete the proof that B, is a proper blow-up class by showing that B, satisfies
property (B7). Recall that in order to do this, it only remains to rule out the
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possibility that B, contains an element whose graph is the union of ¢ half-
hyperplanes in the half-space {22 < 0} and ¢ half-hyperplanes in {22 > 0},
with all half-hyperplanes meeting along {0} x R"~! and with at least two of the
half-hyperplanes distinct on each side . (This is Case 2 stated at the beginning
of Section 9.)

LEMMA 14.1. Let ¢ > 2 be an integer and o € (0,1). There exist con-
stants e1 = e1(n,q, @) € (0,1) and y1 = 11 (n,q,«) € (0,1) such that if
the induction hypotheses (H1), (H2) hold,

VeS,,

o[V, 0) = g,
(wn2") T HIVI(B5T(0)) < g+ 1/2,
W HIVIR x By) < g+ 1/2,

e {Z:0(IV],2) = ¢} N (R x (B2 \ {|a?| < 1/16})) = 0,

o Ef = Jrxp, 12 PAIVII(X) < &1 and

o B} < 3infip_rnye2yy Jrup, dist? (X, P)d||V][(X),
then

/ dist? (X, 5pt [ V]) € (X)
Rx(By/2\{|2%|<1/16})

+ dist*(X,spt | Cl) d|[V[[(X) = mE}
R,XBl

for any cone C € C,.
Proof. For j =1,2,...,2q — 3, choose numbers 0; = 6;(n,q,a) € (0,1/2)
as follows: First choose 61 = 601(n,q,a) € (0,1/2) such that ulef““” <1,

where v1 = v1(n, ¢, @) is as in Lemma 13.3. Having chosen 61,6, ...,0;,1<j<

2¢—4, choose 011 = 0;11(n, q,a) such that 0,1 < 8716, and Vj+19]2-5rlfa) <1,
where vj11 = vj11(n,q,a,601,02,...,0;) is as in Lemma 13.3.

Let ¢ € (0,e), 11 € (0,7) be constants to be eventually chosen de-
pending only on n, ¢ and «, where ¢ = e(n,q,a,61,...,02-3) and v =
v(n,q, 0, 01,...,024_3) are as in Lemma 13.3. Suppose that the hypotheses
of the present lemma are satisfied with V € S, but the conclusion fails; i.e.,

there exists C€C, such that

aan) | dist®(X, spt ||V ]| CJ|(X)
Rx(By/2\{|z2|<1/16})

+ dist*(X, spt || C[[) d|V[[(X) < 1 EF.
RXBl
In particular, V', C then satisfy the hypotheses of Lemma 13.3. In what follows,
for C’ € C,, T' an orthogonal rotation of R"™! and p € (0, 1], we shall use the
notation
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Qv(C'T.p) = <p“ / dist* (X, spt |V [) T ) ()
D(Rx (B, 2\{|22|<p/16}))

1/2
Ty N T IPIATES)
I'(RxB,)

We claim that we may apply Lemma 13.3 iteratively to obtain, for each k& =
0,1,2,3,..., an orthogonal rotation I';, of R"*! with I’y = Identity, and a cone
Ci, € Cy with Cy = C, satisfying, for k > 1,

(14.2) ITk(e1) — Tr_1(e1)]? < COLQ%;

(14.3) Tr(e;) — Tro1(e;)|? < ConE2QY;

(14.4)  dist3,(spt |C| N (R x By),spt |Cr_1]| N (R x By)) < C6,Q%;
(14.5) QY (Ck, Ty, o) < 1,07, Qv (Crm1, Tim1, 0%1) < -+ < 5,QF

for some jr € {1,2,...,2q — 3};
1/2
(14.6) <g,;"—2 / dist?(X, P) d|Ty 4 V||(X)>
Rx ok

> 275 /C, disty(spt [|C1 | N (R x B1), P (R x By))
= CoQv(Cp—1,Tk-1,0%-1)
for each P € G,, of the form P = {z! = A\z?} for some \ € (—1,1);
(147 {Z:0(ITkx V[, 2) = a} N (R x (B, \ {|2*] < 0x/16})) = 0;
and
(14.8) (wnof) I, VIR % Bo,) < q+1/2,

where QV = QV(Cvrﬂa 1)’ C= C(”an a) € (07 OO), 02 = CZ(”a Q7a) € (07 OO)
and, for each £ =1,2,3,...,

op =001, 0= yjkef-kék_l
for some ji € {1,2,...,2q — 3}, where o9 = 69 = 1. Thus
2q—3 2q—3

O — H 95] and 5k = H <Vj032> !
Jj=1 Jj=1
for some nonnegative integers k1, ko, ..., kag—3 such that Zji;g k; = k. Note,

in particular, that

00
0’§q_3 <o < Qlf, O < Uza < 4k and Z 5j < O
i=k

for k =1,2,..., where ¢ = c(a) € (0,00).
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To verify these assertions inductively, note that (14.4)—(14.7) with k=1
follow directly from Lemma 13.3. Suppose k& > 2 and that (14.4)—(14.7) hold
with 1,2,3,...,k — 1 in place of k. We wish to apply Lemma 13.3 with
ngkil#Fﬁl#V in place of V and Cy_; in place of C. Note first that by
the triangle inequality and (14.8) with k£ — 1 in place of k,

2 . _—n—2 1,2 -1
E”crkfl#rllll#‘/ ~ k-1 />< . ‘:B ’ d”rk—l#v”(X)

<207 [ dis(Xspt[Contl) T, V)
Ok—1

+ wn(2q + 1) dist?,(spt || Cx_1]| N (R x By),{0} x By)
and by applying (14.4) with 1,2,...,k — 1 in place of k, summing over k, and
using the fact that 22, 5,1/2 <2741 —27)71
disty (spt |Cr—1[| N (R x B1),{0} x Bi)

< dlSt'H(Spt HCH n (R X Bl)7 {O} X Bl) +CQv, C = C(?’L, q, Oé) € (0,00),
thus,

E? 1 < 2wn(2¢ 4 1) dist3, (spt |C|| N (R x By), {0} x By) + CQ%,
”ak_l#rk—1#v

C =C(n,q,«) € (0,00), so that, by (10.1),

(14.9) EA'z%_l ST, < 2(2q + 1)wnC%EA‘Q/ +CQ%, C=C(n,q,a) € (0,00),

where ¢; = ¢1(n) € (0,00) is as in (10.1); in particular,

14.1 o e oo |
( 0) nakfl#rkil#v —= C Vo C C(?’L,q, Ot) c (0’ oo)

Again by (14.4),
disty (spt || Cr—2[l N (R x By),{0} x Bi)
> disty(spt |C|| N R x By, {0} x B1)
k—2

— Y dista(spt [Cj—1]| N (R x Bi),spt |G| N (R x By))
Jj=1

k—2
> disty(spt | CJ| N (R x By),{0} x By) — CQv > 8;"%,
j=1

which implies by (14.6) and (14.5) that

_ntd = ..
nok_l#r*;_ll#v >2" 2 Cl dlSt'H(Spt HC” N (R X B1)7 {O} X Bl) - CQV;

where C' = C(n, q,a) € (0,00). Hence by (10.2) and (14.1), we see that

(1411) n0k71#rl:711#v > (Ol - CVI)EV>
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where Cy = Cy(n,q), C = C(n,q) € (0,00). Thus if 2Cy; < (4, it follows from
(14.1), (14.5) and (14.11) that

(14.12)

dist?(X, spt ||n, ol VD d|Cr (X
o oy 5P s L VI Gt )

+ dist 2(X, pt [|Chr 1) dllnioy,_, 4 Ty ty 4 VIX) < CpiE?
I{Xfﬁ

and from (14.10) that

-1
Tk—1 #Fk—l# 14

EQ —1 < 061
Nop_1# 12V — ’

where C' = C(n,q,a) € (0,00). By (14.6) again with £ — 1 in place of k£ and
(14.4) with 1,2,...,k — 1 in place of k,

ot
RxB,

so that
/ dist2(X, P) d||ns,_, #Th—14 V| (X)
I{XEH

> 27750 disty (spt [ | 1 (R x Ba), P (R x B) - €@}

1/2
dist2(X, P) d|[Ty1 4 VH(X)>

Tk—1

> 273" \/Cy disty(spt |C N (R x By), PN (R x By)) — CQy

> gt ) [ a0 P v - C0
Rx B

_ 3N .
> 27" 5w (2¢ + 1)1 (5) EL —CQ%

n—6A Lo o3\ -
> 9760w 2(2q + 1) 2012<§> B2 o v —CQY

6/ — 9 o3\t -
> (2 50w, 2(2¢ + 1) % c? (§> - C%) E%kal#rk_l#\/a
where C'= C(n, q, ) € (0,00) and we have used our hypothesis that

o 3
EZ <Z  inf / dist2(X, P) d||V||(X).
v 2P:{m1:>\$2} RxB ( ) || ||( )

This readily implies that if we choose v1 = y1(n, ¢, a) € (0, 1) sufficiently small,
then

) 3 )

B arigv S Mo [ disO0PY Al 4T 4 VI(X)
for any hyperplane P of the form P = {z' = Az?}. So if we choose 7; =
v1(n,q,«) and 1 = €1(n, ¢, a) sufficiently small, we can apply Lemma 13.3
with ngk_l#F,:_ll#V in place of V and Cg_; in place of C to obtain an
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orthogonal rotation I' of R"*! and a cone C;, € Cq such that, with 'y, =
I'y—1 0T, (14.2)—(14.8) hold. This completes the inductive proof that (14.2)—
(14.8) hold for all k =1,2,3,... . Writing

q
Cr =D [H}| + G,
j=1

where for each j € {1,2,...,q}, ij is the half-space defined by
H]k ={(z"2%,y) eR" : 22 <0 and z' = )\fo}
and G? is the half-space defined by
Gf = {(z',2%,y) e R"™ : 22 > 0 and z! = M?JJQ},

with )\;‘?,ug‘; constants, )\If > )\’§ > 0> )\'; and /ﬂf < ,u’2“ < e < u’;, note
that by (10.2) (applied with 7,, 4 'y 4 V in place of V and Cj, in place of C),
(14.11) and (14.12), we also have that

(14.13) ]/\’f — )\I;] > CEy and ]//f - u’;\ >CEy, C= C(n,q,a) € (0,00)
forall k=1,2,3,....

By (14.4), {spt||Ck|| N (R x By)} is a Cauchy sequence (in Hausdorff
distance) and hence, since O(||Cg||,0) = ¢ for each k = 1,2,..., there is a var-
ifold H € C, such that passing to a subsequence {k'} of {k}, Cp L_By(0) —
H L By (0) and
(14.14) dist?, (spt | H|| N (R x By),spt |[Cr|| N (R x By)) < Cop Q%
for each k', where C = C(n,q,a) € (0,00). By (14.13), spt ||H|| is not a
hyperplane. Since §; < 07, it follows from (14.5), (14.8) and (14.14) that

(415) [ dist (Xt [H) dlne, T3 VIO < CofrQ}
RXBl
and

(14.16)

dist?(X, spt |0, «Tot V) d||Cw ||(X) < Co?tQ?
e ey 5P o 2T VID G| <

for all k', where C = C(n,q,a) € (0,00). Now, since ¢ < O(||[V|,0) <
(Wn2") Y VI(BETE(0)) < ¢ + 1/2, it follows from the monotonicity formula
that

4 < Oy # % VI10) < (@n2™) Mo, #  VI(B5H(0))
< (@n2") T IVII(B5(0)) < g +1/2.
Hence, there is a stationary integral varifold W on BSH(O) with

¢ < O([W]|,0) < (wn2")HWI(B37(0)) < ¢ +1/2
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such that, passing to a further subsequence without changing notation,
-1

as varifolds on By (0). The estimate (14.15) implies that spt ||W|N(RxBy) C
spt [|[H|| N (R x By). Since disty(spt (|10, 4w % VI N (R x B1),spt|[W] N
(R x By)) — 0, it follows from (14.16), the triangle inequality and the weak
convergence [|Cy|| — [|H|| on R X By that spt [|H|| N (R x (B \ {|2?| <
1/16})) C spt [[W[|N (R x (By 2 \{|a?| < 1/16})). Hence spt [[W||N (R x By) =
spt ||H||N(R x By), from which it also follows that ©(||IW]|,0) = ¢q. Thus (14.17)
contradicts case O(||Cyl|,0) = ¢ of the induction hypothesis (H2), proving the
lemma. g

COROLLARY 14.2. Let q be an integer > 2, and suppose that the induction
hypotheses (H1), (H2) hold. Then the class B, (defined in Section 5) satisfies
property (B7) of the definition of proper blow-up classes (given in Section 4).

Proof. If not, in view of Lemma 9.1, there exists an element v, € Bq such
that, for j = 1,2,...,4¢, vi(x?,y) = L (2?,y) if 22 < 0 and Ui(mQ, ) :'L%(J:Q,y)
if 22 >0 where L7, L} : R" — R are linear functions with L4 (0, y)=L%(0,4) =0
and

(14.18) L{l %+ L]f“ and L%é % Lgﬁl for some j1,j2 € {1,2,...,q—1}.

Since the average (vi), = ¢! S vl is linear (by property (B3)) and
|| — (U*>aH221(31)(”* — (vi)a) € By (by property (B51)), where v, — (v4)q =

(v} — (ve)as- -, 8 — (v4)a), Wwe may assume without loss of generality that
(vx)e = 0 and that
(14.19) [vellL2(my) = 1-

By the definition of By, for each £ = 1,2,3,..., there exists a stationary
integral varifold V; of By1(0) with
(14.20)
(wn2")HIVRI(BETH(0)) < g +1/2, g —1/2 <w M |Vi[|(R x Bi) < g +1/2

and

(14.21) Bi= [ el Pdlvil(x) 0
RXB1

as k — oo such that the following hold: If o € (0,1), k is sufficiently large
depending on o, ¥, C B, is the measurable set corresponding to ¥ and U‘]i :
B, -+ R, j = 1,2,...,q, are the Lipschitz functions corresponding to «’/ in
Theorem 5.1 applied with V; in place of V', then by Theorem 5.1, v,}: < U]% <
e < UZ7

(14.22) Lipv] <1/2 foreach je {1,2,...,q},
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(14.23) Vil (R x %) +H" (S) < Co B,

where C, € (0,00) is a constant depending only on n, g and o,

(1424)  spt Vel 0 (R x (B \ £x) = U'_graphvi, N (R x (B, \ ),
and

(14.25) E Y] — 0,

where the convergence is in L?(B,) and weakly in W'2(B,). Note that by
(14.20), after passing to a subsequence without changing notation, there exists
a stationary integral varifold V of By*1(0) such that Vi — V, and by (14.21),
spt ||V L(R x By)|| € {0} x By, so by (14.20) and the Constancy Theorem for
stationary integral varifolds, V L (R x By) = ¢q|{0} x Bi|. Hence by replacing
Vi with 19 1/2 4 Vi and noting that by homogeneity of v,, the coarse blow-up
of {no1 J2# Vi } is still vy, we may assume that for all sufficiently large k,

(14.26) ¢ —1/4 < (wn2") [ VRll(B5T(0)) < ¢ +1/4.

By using the argument justifying the assertion (9.7), we may pass to a sub-
sequence without changing notation and find points Zj € spt||Vi|| N BF™1(0)
with O(||Vkl|, Z) > q and Zj, — 0. Replacing Vi, with 17, 1_7,| % Vi, we may
thus assume that

(14.27) O([Vill,0) = ¢

for each £k = 1,2,3,..., and in view of (14.26), the monotonicity formula
implies that the new Vj, satisfy (14.20). We now argue that for each sufficiently
large k, we must have that

(14.28)

3
2 ][V | (X) <
><Bl

2 (p=hhnsyy S, B O P AIVEIX)

If this is false, then there is a subsequence {k’'} of {k} and corresponding to
each k', there is a number Ay € R such that, with Py = {z! = \pa2?}, we

have

/ dist2(X, Py ) d|Vie||(X) < 2 B2
RXB1 6

for all &'. In particular, for each o € (1/2,1) and sufficiently large &/,

q

. 5 .

(14.29) (1+x2)7 1 Z/ . (v}, (22, y) — Apa®)? da’dy < 6E,%,,
j=1"Be\xy



STABLE CODIMENSION 1 INTEGRAL VARIFOLDS 955

whence (14 22,)71\Z, fBl/2\Ek’ |22|? da?dy < %Ei, Thus, [\y| < CEjy for all
sufficiently large k', where C' = C'(n) € (0, 00), and hence, passing to a further

subsequence without changing notation, E,;l)\k/ — ¢ for some ¢ € R. It follows
from (14.29) and (14.23) that

q
. 5 R R
> /B (v}, — Awa®)? da’dy < s+ MEE 420, sgp(|vk,|2 + X\ |2%?) B
‘7_1 o o

First dividing this by E’,%, and letting &’ — oo, and then letting o — 1, we
see that 23:1 fBl(v,{ — ¢22)? < 5/6. Since vl(2?,y) = liz? if 2% < 0 and
vl(22,y) = mjz? if 2 > 0 for some ¢;,m; € R, this implies that B, vy |2 —
20527, (L +my) Iin(z2>0) |22|? + ¢ IB, |z2|? < 5/6, which is a contradiction
since (vy)a = 0 (so that 9_,¢; = Y9y m; = 0) and [ |vs|* = 1. Thus
(14.28) must hold for all sufficiently large k.

For j = 1,2,3,...,q and k = 1,2,3,..., let h? = E‘kL{, gf = E‘kLé,
ij = graph h¥, Gé? = graphgég and Cy = ;1:1 ]ij\ + ]Gﬂ By (14.22), (14.23)

J
and (14.24),

(14.30)
/ dist?(X, spt || Crl) dl| Vi | (X)
RxB,

< 2/ ok — Epve|? + C, sup dist? (X, spt || Cx||) E2.
B, X espt||VieIN(Rx By)

By (14.19) and homogeneity of vy, [p [v*|? = ¢"2, so by (14.25), for each
0 € (0,1/8) and o € (0,1), [ |vox|*> > (1 — 0)o™+2E2 for sufficiently large k.
Since

q A .
[ Pavie) =3 [ i+ Dol
Rx B, 578,
= [ Vrepeped + [ alvio
j=1 Ek RXEk

> / | — 2C, (Sup ’%’2) E},
B, B

o

it follows that
(14.31)

/ 22 d|| Vi [(X) < <1 —(1—6)c"? +20, (sup |vk|2>> E?
Rx(B1\Bs)

o

for all sufficiently large k. By the triangle inequality,
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(1432) | dist? (X, 5pt | Ci ) Ve | (X)
Rx(B1\Bo)

<2 212 VA (X)
Rx(B1\Bs)

3 dist, (spt [ Cll N (R x Ba), {0}  BY)|Vil(R x (B \ Bo)
<2 | ? d||Vi[|(X) + CH™(B1 \ B,)Ej,
Rx(B1\Bs)

for all sufficiently large k, where C' = C(n, q) € (0,00). Here we have used the
fact that Vi L (R x By) — ¢|{0} x By|. Thus, if 11 = v1(n,q,a) € (0,1/2)
is the constant as in Lemma 14.1, then we may fix § = 0(n,q,a) € (0,1/8)
sufficiently small and o = o(n,q,a) € (0,1) sufficiently close to 1 in order
to conclude from (14.25), (14.30), (14.31) and (14.32) that for all sufficiently
large k,

(14.33) [ s spt [ Gl Vi () < 2 B2
Rx B 4

In view of (14.18), we have by the argument leading to (9.5) that for all
sufficiently large k, ¥ C By N {|2?| < 1/64} and that
(14.34)

=)

Vi L((Rx By)N{2* < —1/64}) = Z graphuk\ L (Rx B,)N{z? < —1/64})

and
(14.35)

Q

Vi (R x By)N{z? >1/64}) = Z lgraphwl| L ((R x B,) N {z? > 1/64}),

where u,l€ < u% < uz and wk < wk < ...wk (thus, Uk|Bgm{x2§—1/64} = uy

and k| g (251601 = Wk), ui,wi are C? functions on B, N {z? < —1/64},

By N{x? > 1/64} respectively, solving the minimal surface equation there, and

satisfying, by elliptic theory,

(14.36) sup |D ui|2 + sup |D wi|2 < C(k,0)E?
Bron{z2<—1/64} BroN{z2>1/64}

for each k € (0,1), 7 = 1,2,...,q where C(k,0) € (0,00) is a constant de-
pending only on n, x and 0. We see from (14.34), (14.35), (14.36) and (14.25)
that

(14.37)

/ dist2(X, spt || Vi) d||Ck | (X)
Rx(By2\{|7%<1/64})

q . ' o | A
<23( By — i+ Byl —uw]?) <m B},
;( By jon{x2<—1/64} | ! d By jsN{22>1/64} | 2~ Wil Nk Lo,
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where 7 — 0. By (14.33) and (14.37),

/ distQ(X, spt || Vi) d||Cr || (X)
Rx(By/2\{|z2|<1/64})

+ [ dist(X,spt]|Cil) dVil|(X) < 5B
RXBl

for sufficiently large k, which in view of (14.20), (14.21) and (14.27) contradicts

Lemma 14.1. g

THEOREM 14.3. Let q be an integer > 2, o € (0,1), and suppose that the
induction hypotheses (H1), (H2) hold. Let B, be the class of functions defined
in Section 5. (Thus, each v € By is a coarse blow-up, in the sense described
in Section b, of a sequences of varifolds in S, converging weakly, in R x By,
to ql{0} x Bi|.) Ifv = (v}, v?%,...,0v9) € By, then v’ is harmonic in By for

each j = 1,2,...,q. Furthermore, if {Vi} C S, is a sequence whose coarse
blow-up is v, and if for each of infinitely many values of k, there is a point
Zi, € spt |Vi]l N (Bsja x R) with O(|Vi|l, Zk) > q, then vt = v? = -+ = v,

Proof. By the discussion of Section 8 and Corollary 14.2, B, is a proper
blow-up class for a constant C' = C'(n, q) € (0,00). The present theorem follows
from Theorem 4.1 and the remark at the end of Section 8. O

15. The Sheeting Theorem

This section is devoted to the proof of the Sheeting Theorem (Theorem
3.3") subject to the induction hypotheses (H1), (H2).

LEMMA 15.1. Let q be an integer > 2, o € (0,1) and 6 € (0,1/4). Suppose
that the induction hypotheses (H1), (H2) hold. There exists a number 5y =
Bo(n, g, a,0) € (0,1/2) such that if V € Sa, (wn2™) " H|VI(BYTH0)) < ¢+1/2,
q—1/2 < (wn) HIV[(B1 X R) < ¢+1/2, and [g, 5, dist*(X, P)d||V|[(X) < Bo
for some affine hyperplane P of R* ! with dist3, (PN (By xR), By x{0}) < Bo,
then the following hold:

(a) Either V(B x R) = 23‘:1 lgraphu;j| where u; € C?(Bjj9;R) for

J=12,. . ¢ ur Suz <--- <ug on By uj, < ujor1 on By for some

jo € {1,2,...,q— 1} and, for each j € {1,2,...,q},

supp, , [uj —pl* +[Du; — Dpl* + |D*ws|* < C /R | dist? (X P) ||V (X),
X b1

where C = C(n,q) € (0,00) and p : R™ — R is the affine function such
that graphp = P; or, there exists an affine hyperplane P’ with

dist3, (P"N(R x B1),PN (R x By)) < Cl/ dist? (X, P) d||V||(X)
RXBl
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and

o7 [ st P V(X) < Cob? [ it (X, P dV(X),
R Xx By R

X1

where Cy = C1(n, q) € (0,00) and Cy = Ca(n,q) € (0,00).
(b) (wn(20)") | VI[(B35™(0)) < g+ 1/2 and

q—1/2 < (wa0") VIR x Bg) < g +1/2.

Proof. For each k =1,2,3,..., let V, € S, be such that
(15.1)
(@n2) Vil (B3 F1(0)) < ¢+1/2 and g—1/2< (w,) " |Vil|(RxB1) < ¢+1/2,

and let P, be an affine hyperplane of R"*! such that

(15.2) disty (P N (R X By), {0} X Bl) —0

and

(15.3) / dist?(X, Py) || Va]|(X) — 0.
RXBl

The lemma will be established by proving that for each of infinitely many k,
the conclusions hold with Vj, in place of V, P; in place of P and with fixed
constants C' = C(n, q), C1 = Ci(n, q), C2 = Ca(n, q) € (0,00).

By (15.2), (15.3) and the triangle inequality, £, = \/foB1 |22 d|| Vi [ (X)
— 0. Hence, by (15.1) and the Constancy Theorem, Vi, L_(R x B;y) — ¢|{0} x
By | so that

g —1/2 < (wu0") T IVAII(R x Bg) < g +1/2
for sufficiently large k. Furthermore, by monotonicity of mass ratio,
(wn(20)") "M IVAI(B5™(0)) < (@n2")™H [VAll(B3 T (0)) < g +1/2.

Thus, conclusion (b) with V; in place of V holds for sufficiently large k.

For each k = 1,2,3, ..., there exists, by (15.2), a rigid motion T}, of R"*!
with Ty — Identity such that T'y(Py) = {0} x R". Let Vk = 19/10# Lrs Vi
Then by (15.1), (wn2")_1 HV;CH(B;“(O)) < q+1/2, and by (15.3),

(15.4)
9

—n—2
[ Pavie < () [ dis 0P vl 0 —o.
Rx Big,1s 10 Rx B

It follows again by the Constancy Theorem, for all sufficiently large k,
q—1/2 < (wp) " HIVil(R x By) < ¢+ 1/2.

Let 7 = (v%,2?%,...,99) € B, be the coarse blow-up of (a subsequence)
of Vj, by the coarse excess EA% = \/fRX31 212 d|| V|| (X). Suppose first that
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the ©/’s are not all identical to one another. Then by Theorem 14.3, for all
sufficiently large k,

Zespt||Vil|n(Rx Bspy) = O(|Vil, 2) <q.
Hence, by Remark 3 of Section 6, we may apply Theorem 3.5 followed by
elliptic theory to Vi and conclude, after transforming by F;l 0 7, /110, that

q .
Vi L(R % Byjp) = ) |graph uj
j=1
for all sufficiently large k, where ufg € 02(31/2; R), u} <uj <--- <uf; uio <

uiOH on By 5 for some jo € {1,2,...,¢ — 1} and, for each j € {1,2,...,q},

sup , [ ~pu*+ (Dl = Dpe+ D[P < € [ dist (X, P d Vel (X),
1

where C' = C(n,q) € (0,00) and pi : R™ — R is the affine function such that
graph pp = Py.

On the other hand, if ! = 92 = --- = 9% (= v, say) on By, then letting
p(z) = 5(0) + Dv(0) - = and Py, = graph Eﬁkﬁj it follows from Theorem 5.1 and
the standard estimates for harmonic functions that

(15.5) disty (Py N (R x By),{0} x By) < CE;,

and

(15.6) 62 / dist?(X, By) d|| Ve |(X) < CO2E2
Rx By Vi

for all sufficiently large k, where C'=C(n, q) € (0, 00). Setting P} :779_/110FI;1 P,
it follows readily from (15.5), (15.6) and (15.4) that

disty (P N (R x B1), P N (R x By)) < C dist” (X, Pe) d| V| (X)
Rx B,
and
e—n—Q/ dist*(X, P) d|[Vi|(X) < 092/ dist® (X, Py) dl| Vil (X)
Rx By RxB;

for all sufficiently large k, where C' = C(n,q) € (0,00). Thus, conclusion (a)
with Vi, Py, P/ in place of V, P, P" and with a fixed constant C'=C(n,q) €
(0, 00) holds for infinitely many k. O

THEOREM 15.2. Let q be an integer > 2, o € (0,1), v € (0,1), and
suppose that the induction hypotheses (H1), (H2) hold. There exists a num-
ber ¢ = e(n,q,a,y) € (0,1) such that the following is true: If V € S,,
(@2 VIBEY0) < g+ 1/2 g - 1/2 < w [VI(By x R) < g+ 1/2
and B3 = JrxB, |22 d||V|(X) < ¢, then

q
VL (B,sxR)=>" |graphu;l,
j=1
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where u; € Cl’)\(B,y/Q) for each j =1,2,...,q, u1 <up <--- <y and

Dui(Y7) — u;i(Y5
sup (|us| + [Duj) +  sup [Dug(%1) — 1y (%)l
B,Y/g Yl,YQEB,Y/Q,Y17éY2 ‘Yl - Y2|

1/2
o[, wravico) .
RXB1

Here C = C(n,q,a,7) € (0,00) and A = \(n,q,a,7) € (0,1). Furthermore, we
have in fact that u; € COO(B,Y/Q) and uj; solves the minimal surface equation
on B,y for each j =1,2,...,q.

Proof. Let ¥ = (1 —v)/4. Let C = C(n,q), C1 = Ci(n,q) and Cy =
C2(n,q) be the constants as in the conclusion of Lemma 15.1. Choose § =
0(n,q) € (0,1/4) such that Ce0? < 1/4 and € = £(n,q,a,7) € (0,1) such
that ¢ < (1 + C1)~13"128y/8, where By = Bo(n,q,a,0) is as in Lemma 15.1.
Additional restrictions on & will be imposed during the course of the proof,

but we will choose € depending only on n, ¢, o and . Suppose that B2 =
Jrxn, [ P dIVII(X) < e, and let
f = min {4_1 (1+ 201)_1 Bos 4_1*~y"w;1(2q + 1)_1ﬁo,

471 (2 2q+ e~ () 2
(2+wn(2¢+1)C1) " (5 €0,

8w, d 0" (256072 + (g + 1)0) " (24 wa(2g +1)Cy) ! 3
Here gy = ¢¢(n,q,5/6), C = C(n,q,5/6), where g9 = g¢(n,q, ) is as in Theo-

rem 5.1 and C' = C(n,q,-) is as in Theorem 5.1(a). Note that 5 depends only
on n, q,  and . Let Py be any affine hyperplane such that

(15.7) dist?, (P, N (R x By), {0} x By) < B.
Fix any point Y € B,(0), and let V= Ny 4 V. Note then that
(15.8)

E2 z/ dist?(X, Py) d||V||(X
VR = Jeen, (X, Po) dl|V|[(X)

=y [ dsGY + AR V(X))
RxB~(Y)

<o [ RdVY)
RXB;(Y)

+27 7" V[[(Rx Bx(Y))dist3, (Y +7 P N (Rx B5(Y)), {0} x B:(Y))
<2y "R 4 37w, (2 4 1)dist3, (Po N (R x By), {0} x By)
< 25" %e 4 Bo/4 < Po.
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Furthermore, assuming ¢ < ¢g (n, q, ?’TT’Y), where ¢¢ is as in Theorem 5.1 and
applying Theorem 5.1 with o = (3 + 7)/4, we have that

(15.9)

(@) VIR x B5(Y)) — g

q
(wpA™) L Z/BN\E (V1+[Duil2 — 1) da
Jj=1 o

— (@A) (gH" (B3N %) — V(R x (B3 nX)))
~ny\—1 d |Duj‘2
< (Wn’)/ ) ;/B:\E /1+ ’Duj‘Q
< (Wn?yn)il/

RxB~(

<1672 (wp,3™) ! /R

dz + (wn7") ' (¢ + 1)CE}
| VY 2 2|V |[(X) + (wad™) " (g + 1)CER
Y

! 2 AV (X) + (wa7) " (g + 1)CEY
XBE;(Y)

< (waA") (16772 + (¢ +1)O) .

Here C = C (n,q, ‘ISTT”), where C' = C(n,q,-) is as in Theorem 5.1(a) and u/,
Y are as in Theorem 5.1; we have also used the fact that

/ VY 22 d|V(X) < 16%‘2/ |2 d||[V[|(X),
RxB;(Y) RxB;(Y)

which follows from (5.1). Thus if € = e(n, ¢, a,7) € (0,1) is sufficiently small,
this says that

(15.10) q—1/2 < (wp) HIVI(R x By) < ¢+ 1/2.
Since
(@n2") THIVII(BETH(0) = (wn(29)™) IVIBE (V)
< (@a(20)") THIVIR x By (Y)),

the same estimate with 27 in place of 4 shows that
(15.11) (@n2") V(B3 T(0) < g+ 1/2
provided € = &(n, ¢, ,7y) € (0, 1) is sufficiently small.

We claim that either (I) or (II) below must hold:

(I) For each k € {0,1,2,...},

(15.12) (wn(205)") IV (B (0) < g +1/2,

¢ —1/2 < (@a(0")") VIR x Bye) < g +1/2,
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there exists an affine hyperplane P such that, if £ > 1,

(15.13) dist?, (P, N (R x By), Pr_1 N (R x By)) < 014—’@% .
and
(15.14)
(6%) 2 / dist3(X, Py) d|[V]|(X)
R x ok
< 4—1(9k—1)—”—2/ dist?(X, Py ) d|V||(X) < --- <47 FEZ .
RXB@k—l V7PO

(II) There exists po € (0,1) such that V L(R x By,) = Y9, |graphu;| for
functions u; € Cz(Bpo;R), Jj=1,2,...,q, satisfying u; <up <--- <y
on By; uj, < ujo4+1 on By, for some jo € {1,2,...,¢— 1} and

(15.15) supg, , oo |usl* + |Dwl? + pg| D? uy?
<(C+200)EL |, +4disty; (PN (R x B1),{0} x By)
» 470
for each j € {1,2,...,q}; moreover,

(1516) 7 [ VY dv(x)
RxB,

<c (E%PO + dist},(Py N (R x Br), {0} x Br)) for py < p <0,

where C" = C'(n, q) € (0,00).

To see this, let kg be the smallest integer (> 1) such that alternative (I)
fails to hold. If ky = 1, in view of (15.8) and (15.10), it follows directly
from Lemma 15.1 applied with V in place of V' and with P = Py that (II)
must hold with pyp = 1/2. Suppose kg > 2. Then by assumption, the in-
equalities (15.12), (15.13) and (15.14) hold for each k = 1,2,...,ky — 1 and
consequently, by (15.7), (15.8), (15.13) and the triangle inequality,

(15.17)  dist3,(Py,—1 N (R x By), {0} x By)
~ 2
< (VCiEg , +disty (PN (R x By),{0} x By))
<4017 " %e + Bo/2 < Bo.

Applying Lemma 15.1 with ngr,—1 4 Vin place of V and Py,_; in place of P, we
see by the defining property of ko that V L_(R x Byro-1)9) = Z?Zl |graph u;|,
where u; € C? (B@kofl/Q;R) forj=1,2,...,¢gu1 <up < -+ < ugon Byrg-19;
uj < ujt1 on Byry-1 ), for some j € {1,2,...,¢—1} and
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(15.18)
b, (007 uy — pf? 4 Dy — Dpf? (002D
<oy [ (X, Py dIT)(X) < a2
RXBekO_l V’PO

for each j € {1,2,...,q}. Here p: R™ — R is the affine function such that
graphp = Pj,_1. In view of (15.8) and (15.17), this evidently implies alterna-
tive (II) with pg = #¥~1. Thus either (I) or (II) holds as claimed.

Suppose that (I) holds for some Py satisfying (15.7). It is standard then
that there exists a hyperplane P with

(15.19) disty (PN (R x B1), PN (R x B)) < C1 By

such that

(15.20) p 2 / dist?(X, B) d|[V[|(X) < Cap™ B2
RxB, VP

for each p € (0,1), where C5 = C3(n, q) € (0,00) and p = p(n,q) € (0,1). Note
that P does not depend on Py, nor do the constants C3 and pu. Moreover, in
this case, we claim that we have for each p € (0,1/4) that

(15.21) (@n(20)") M IVI(BS,(0) < g +1/2,
¢—1/2 < (ap") VIR x By) < q+1/2.

To see this, given p € (0,1/4), choose k such that 8! < 4p < 6% and note by
(15.12), (15.13), (15.14) and the triangle inequality that

(15.22)
k\—n—2 112 177
()" [, PV

ok

< 2(24 wn(2g + 1)C1) (3" 2E2 + dist?(Py N (R x By), {0} x By))
< 2(2+wn(2¢+ 1)) F "2 + ).

Thus provided € = e(n, q,a,7y) € (0,1) is sufficiently small, we may, in view of
(15.12), apply Theorem 5.1 with ngk » V in place of V, o = 5/6 and estimate
exactly as in (15.9) (with ngk 4 V in place of V, Y = 0 and 6% in place of 7)
to deduce that

(wn (6750)") " g1 4 VII (R % Byes, )—q‘
<2 (wn<0 p) )7 (6(0 ) q—i—l)C)
X (24 wn(2¢+1)CY) (7 " 264—5)
< 2w, 1m0 (256072 + (¢ + 1)C) (2 + wa(2g + 1)C1) ("2 + ).
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(Recall that C = C(n,q,5/6), where C = C(n,q,-) is as in Theorem 5.1(a).)
From this, (15.11) and the monotonicity formula, we deduce that (15.21) holds
provided € = €(n, q,a,v) € (0,1) is sufficiently small. It then follows, if alter-
native (I) holds for some Py satisfying (15.7), that spt ||V ||N72(0) consists of
a single point (= P N7~ 1(0)); to see this, first note that spt ||V || n7=1(0) #£ 0
by the second inequality in (15.21). Let Z € spt ||V|| N 71(0) and Cy be a
tangent cone to V at Z. Thus NZo; # V> Cy # 0 for some sequence of num-
bers o; — 07, and by (15.20), disty (spt |nz,0, # VI N (R x By ), 07 (P—Z)N
(R x By/)) — 0, which can only be true if Z € P. But by (15.19), PN71(0)
consists of a single point.

Since alternative (II) implies that spt ||V ||N7~2(0) has at least two distinct
points, we see that if alternative (I) holds for some Py satisfying (15.7), then
(I) must hold for all Py satisfying (15.7). Taking Py = R" x {0}, we deduce
from (15.19) and (15.20) that

(15.23)  disty(P N (R x By), {0} x B1)) < C17 " 2E2 < 017 " 2
and

(15.24)  p "2 / dist?>(X, P)d||V||(X) < C37 " 2E2 < 037" 2%
RxB,

for p € (0,1). So if we choose € = £(n, q,a, ) such that C;7~ " 2¢ < f3, then
we may, in particular, take Py = P in (15.20).

Thus we have so far established the following: Given ¢, «, v as in the
theorem and that the induction hypotheses (H1), (H2) hold, there exists ¢ =
e(n,q,a,v) € (0,1) such that if V' € S, satisfies the hypotheses of the theorem,
Y € B,, V= Ny 4V where ¥ = (1 —v)/4, then either alternative (I) above
holds for all affine hyperplanes Py satisfying (15.7) or alternative (II) above
holds for all such Py. Furthermore, if alternative (I) holds, then the bounds
(15.21) are satisfied for each p € (0,1/4), the estimates (15.23), (15.24) are
satisfied and
(15.25)

p "2 / dist?(X, P) d||V[|(X) < Csp? dist?(X, P) d||V[|(X)
RxB, RxB;
for p € (0,1), where Pisa (uniquely determined) affine hyperplane, C3 =
Cs(n,q) € (0,00) and p = p(n,q) € (0,1).

Now suppose the hypotheses of the theorem are satisfied with a number
¢ =¢€'(n,q,a,7) € (0,¢) in place of ¢ and that alternative (I) (with Y € B,,
V= Ny54V as above) still holds. Then for any p € (0,1/4), we have by

)

(15.23), (15.24), (15.21) and the triangle inequality that

p‘"‘Q/R e PAIVIICY) < (263 + wn(20 + 1)C1F "2 EY < 2(Cs+ Cr)e'
xBp
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Thus if we choose &' = €'(n, ¢, a,v) sufficiently small, we may, in view of this
and (15.21), repeat the argument leading to (15.25) with 7,4V (for which
alternative (I) must hold) in place of V. By applying (15.25) with 1,4V in

place of V and p!

o in place of p, we deduce that if alternative (I) holds
for some Py satisfying (15.7), then there exists a unique affine hyperplane P

satisfying (15.23) and
(15.26) o2 / dist?(X, P) d||V7||(X)
Rx B,

o

21 ~ ~
<cs(2)7 [ a0 Py v oY)
1% RxB,

for each 0 < o < p < 1/4. On the other hand, if (I) fails for some Py satisfying
(15.7), then it fails with Py = {0} x R™, in which case (by (II)) there exists
po € (0,1) such that V' L(R x B,,) = > ]_, [graphu;| for functions u; €
C’Q(B,)O;R), j=1,2,... ¢satisfying u; <ug <--- <ugon By; uj < ujpq on
B,, for some j € {1,2,...,¢ — 1} and

supg, , Ao |usl* + |Dwl? + p§| D? uy| < (C+201)77"2EY

for each j € {1,2,...,q}.

Thus we have shown that if the hypotheses of the theorem are satisfied
with sufficiently small &’ = €/(n, ¢,7) € (0,1) in place of £, then for each point
Y € B,, precisely one of the following alternatives (Iy) and (IIy) must hold:

(Iy) there exists an affine hyperplane Py with

(15.27) dist3,(Py N (R x B1(Y)), {0} x B (Y)) < C17 " 2E2
such that
(15.28) 52 / dist?(X, Py) d||V|[(X)
RxB,(Y)

(2

2p
<cs(2)7 [ st R dV)
P RxB,(Y)

for each 0 < 0 < p < 7/4, where C3 = C3(n,q) € (0,00) and p =
p(n, q) € (0,1); or

(Iy) there exists py € (0,1/2] such that V L (R x B, (Y)) = >-%_; |graph u}/
for functions u}/ € C*(B,, (Y);R), j = 1,2,...,q, satisfying u} <ud <
e < u}f on B,y (Y); u}fo < ”%H on B, (Y') for some jg € {1,2,...,q—1}
and

(15:29)  supg, vy oy 2ls) 24 (D) [P+ gDl 2 < (C 420072 B}

for each j € {1,2,...,q}, where C = C(n,q) € (0,00).
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Let @ = {Y € B, : (Iy) fails}. Since uf < u};l on B,, (Y) for some
j whenever (IIy) holds, it follows that € is an open set. Hence, since for
every Y € (1, each of the functions u}/ as in (IIy) solves the minimal surface
equation on B, (Y), by unique continuation of solutions to the minimal surface

equation, we see that

q
(15.30) VL(RxQ)=>|graphu|

j=1
for functions u; € C*°(;R), solving the minimal surface equation on € and
satisfying u1 <wug < -+ < g on ; uj < ujqq for some j € {1,2,...,¢—1} in
each connected component of Q (by the maximum principle) and

(15.31)  supg|u;|® + [Duyf* < (C'+2C1)F "B < (C +2C1)7 "%

for each j € {1,2,...,¢q}. This implies that for each affine function p: R* — R
withsupp, [p|* < C1y "%
C>(Q) solves on Q a uniformly elliptic equation of the type apD;D, w; +
beDyw; = 0 with smooth coefficients ag, by satisfying supq |ag| + b < &,
k = k(n,q,7) € (0,00). By using the standard second derivative estimates
for solutions to such equations, we conclude that for each Y € ), each j =
1,2,...,q and each affine function p; : R® — R with supp, |p;|* < C177"2¢/,

2
15.32 o_"_z/ w—pl2<C (E) ,0_"_2/ w; — pj|?
( ) Bg(y)| j— ;| 4 P B,,(Y)| i — Dl

for 0 < 0 < p/2 < 3dist(Y, B, \ ), where Cy = Cy(n,q,7) € (0,00) and
p}/(X) = u;(Y)+Du;(Y)-(X=Y). Since for each Y € B\, spt ||V ||n7=1(Y)
consists of a single point (2y,Y) (= Py N7~ 1(Y)), for each j = 1,2,...,q, we
may extend u; to all of B, by setting u;(Y) = zy for Y € B, \ Q. Then by
(15.30),

(15.33) spt [V N (R x By) = Uj_,graphu;.

and each j = 1,2,...,q, the function w; = uj—p €

Now let fl, ig, ig, Y/ be the sets as in Theorem 5.1 taken with o = . We
claim that these sets are all empty if &' = &'(n,q,«,~) is sufficiently small.
Indeed, it is clear from (15.30), (15.31) and the definitions of 3;, ' that
ij NRx Q) =0 for j =1,2,3 and that ¥’ N Q = (. For each YeB,\Q,
by applying (5.1) with I'y % V' in place of V' where I'y is a rigid motion of
R™! that takes (zy,Y) € Py to the origin and Py to {0} x R", and using
the estimate (15.28), we see that Y ¢ 7 % provided &’ = g'(n,q,a,v) is suf-
ficiently small. Since (15.28) implies that for each Y € B, \ Q, the varifold
V has a unique tangent cone at (zy,Y’) with support equal to Py — (zy,Y),
it follows from the constancy theorem that O(||V ||, (2y,Y)) is a positive inte-
ger and furthermore, from the fact that varifold convergence implies Hausdorff
convergence of supports, that Tan(spt ||V, Y) = Py — (2y,Y). Consequently,
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we see that Y & 735 and by (15.27), we see that Y ¢ 7 33. Finally, we argue
that O(||V],(2y,Y)) > ¢ for each Y € B, \ Q, from which it follows that
YN (B, \Q) =0.If ©(|V, (2v, Y0)) < ¢ for some Yy € B, \ Q, there is,
by upper semi-continuity of density, some oy > 0 such that O(||V|, X) < ¢
for each X € spt||V| N (R x By, (Y0)). Hence, by Remark 3 of Section 6, the
estimate (15.28) taken with o = 0g, p = 7/8 and the estimate (15.21) taken
with p = 3~ 'og, we may, provided ¢/ = ¢'(n, ¢, a, y) is sufficiently small, apply
Theorem 3.5 to conclude that

q
VL(R X Bgy2) = Z |graph w’ |
j=1

for smooth functions w; < wy < -+ < wy on By, /Q(YO) solving the minimal
surface equation. Since 7~ 1(Yp) N spt||V]| consists of a single point, by the
maximum principle we must have that w; = ws = -+ = wy on By, /2(Y0),
contrary to the assumption that ©(||V|], (2y;,Y0)) < ¢. This concludes the
proof of the claim that the sets ij, Y are all empty. Then by Theorem 5.1 and
(15.33), for each j = 1,2,...,¢q, the function u; : B, — R is Lipschitz with
Lipschitz constant < 1/2 so that by (15.28),(15.31) and the area formula, it
follows that

g

2c X
(1534) O_—n—2/ |uj _pY|2 =204 (7> p—n—2/ ‘u] _pY|2
Bs(Y) P B,(Y)

for each Y € B, \ Q and each o, p with 0 < ¢ < p < 7/4, where pY :R" =R
is the affine function such that graphp¥ = Py.

In view of (15.32) and (15.34), we conclude from Lemma 4.3 that u; €
CHA(B,/2) with

Du;(Y1) — Du;(Ys)|?
sup |Uj|2+|DUj|2+ sup | ’LL]( 1) u]( 2)|

< C5F}
2) = 14
B»Y/Q Y1,Y26B7/2,Y175Y2 |}/1 - Yé’

for each j = 1,2,...,q, where C5 = C5(n,q,7) € (0,00) and X\ = A\(n,q,v) €
(0,1).

To show that for each j = 1,2,...,¢, the function u; € C*°(B, ;) and
solves the minimal surface equation on B, /5, we argue as follows: We know that
on the open set {2} C B, each u; € C? and solves the minimal surface equation
(and hence is smooth), and on B, \ €2, the functions u; all agree, so if B, C
or B, NQ = (), there is nothing further to prove. Else, for any connected
component Q' of Q such that B,y N Q' # (), we must have that B, 5 \ Q' #
whence 0 Q' N B, ; # 0. Fix any such €', and let B C ' be an open ball such
that BN Q' N B,y # 0. (To find such B, pick any point p € Q' closer to
0§ than to 0 B,/ and let B = Bg(p), where R = sup {r : B,(p) C Q'}.) Let
1o € 0BNIQY N B, ). Pick any j € {1,2,...,¢ — 1}, and let w; = u;y1 — u;.
Then w; solves in B a uniformly elliptic equation with smooth coefficients.
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Since w; € CY(B,)s), wj > 0 and w;(xo) = 0, it follows that Dw;(zo) = 0,
and hence by the Hopf boundary point lemma, w; = 0 in B. This implies by
unique continuation of solutions to the minimal surface equation that w; =0
in Q' whence all of the u;’s agree on ¥, which is impossible by the definition
of Q) (see the line preceding (15.31)). Thus we must have either B, C € or
B, /2N Q =0, and the proof of the theorem is complete. O

16. The Minimum Distance Theorem

Let ¢ be an integer > 2, and let Cy be a stationary integral hypercone in
R"*! such that spt ||Cp|| consists of three or more distinct half-hyperplanes of
R"™"! meeting along a common (n — 1)-dimensional subspace Lg, of R"™!. In
this section we will use the multiplicity ¢ case of the Sheeting Theorem (i.e.,
Theorem 15.2) to establish, subject to the induction hypotheses (H1), (H2),
the validity of Theorem 3.4 whenever

(16.1) O(||Col[,0) € {¢g+1/2,q +1}.

Our argument will also establish Theorem 3.4 in case ©(||Cyl|,0) € {3/2,2};
see the remark at the end of this section.

Suppose that Cy satisfies (16.1), and without loss of generality assume
that Lo, = {0} x R, Thus, spt ||Co|| = spt || Aol x R”_l, Where A is a

1-dimensional stationary cone in R?, whence Ay = 70 ] q] |R )| and
™ (0) 77(0)
(16.2) Co=> q; |H;" |,
j=1
where mg is an integer > 3, q(o) is a positive integer for each j =1, 2, ...,mg,

Rg-o) = {twj( Vit > 0} for some unit vector w( ) ¢ 8! ¢ R? with w 75 W(O)

for j # k, and H j( ) = R§» ) % R Stationarity of Cq is equivalent to the

requirement

(16.3) Z q(o)
Since, by (16.1),

mo
(16.4) > d” e {2q+ 1,2 + 2},
j=1
we see readily from (16.3) that
(16.5) qj(p) <gq foreach j=1,2,...,myg.

The theorem we wish to prove is the following:
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THEOREM 16.1. Let q be an integer > 2, a € (0,1), and suppose that
the induction hypotheses (Hl) (H2) hold Let Cy be the stationary cone as in
(16.2), where my > 3 and H 75 H fOTj % k, and suppose that Cq satisfies
(16.1). For each v € (0, 1/2) there exists a number g9 = o(n, q,a,7,Cp) €
(0,1) such that if V € Sa, O(||[V]],0)>0(||Co|,0) and (w,2™) |V ||(ByT1(0))
< O((|Col[,0) + 1, then

disty (spt | V|| N BIT(0), spt ||Col| N BFT1(0)) > ep.

Notation. Let Cg be as in (16.2), with the associated unit vectors w( e R?,
7 =1,2,...,mg, as described above. We shall use the following notatlon in
connection with Cgy:
= maX{W(O) ,(f]) 2 k=1,2,...,mg, j #k}.
N(H ]( )) is the conical neighborhood of H ;0) defined by

e 1+o
N(H") = {(w y) eR* xR izowl? > Oy |}

Given Cy as above, K denotes the family of hypercones C of R"*! of the
form

(0)
mo 9

(16.6) C=> > |Hj,
j=1¢=1
where H; ; are half-hyperplanes of R"™! meeting along {0} x R"~! with H; ; €
0 . 0
N(H") for each j€{1,2,...,mo}, £€{1,2,...,¢\"}, and Hix oo H, o)

not necessarily distinct for each j € {1,2,...,mp}. Note that unless otherwise
specified, we do not assume a cone C € K is stationary in R"*1.

For p € {mg,mo + 1,...,2q}, K(p) denotes the set of cones C € K as
in (16.6) such that the number of distinct elements in the set {H; , : j =

1,2,...,mg, £ = 1,2,...,q(0)} is p. Thus
K = (J2PUC0 (1),

p=mo
Also, for X € R"" let r(X) = dist(X, {0} x R*71).

For the rest of this section, we shall fix Cy as above, with fixed labelling of
the elements of the set {H J(O) :j=1,...,mg} of constituent half-hyperplanes
of spt ||Cyl| and with qj(-o), 1 < j < my, denoting the multiplicity on HJ(O).

For a € (0,1), v € (0,1/2) and appropriate ¢ € (0,1/2), consider the
following:

Hypotheses 16.2.

(1) V € Sa, 0 € spt|[V], VI, 0) = O(lIColl,0), (wn2") " IVII(B5T(0))
< O([|Col,0) + -
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(0)
(2) C=37" ZZL L |Hj,¢| € K, where H; ; are half-hyperplanes of R"*! meet-
ing along {0} x R"! with H; , € N(H.”) for each j € {1,2,...,mo} and
(0)
te{l,2,..., ; }.
(3) disty (spt |[|C|| N BI(0), spt [|Coll N BFT(0)) < e.
(@ [, disXspt Ol IV (X) < 2.
B} *1(0)
(5) For each j =1,2,...,my,
n 0
VB 0) \ {r(X) < 1/8}) N N(H"))
0 1\ n 0
> (o~ ) M (B O\ () < 1781 0 H).

Fix a number s = s(n, q) € (0,1/16) such that

(16.7)

H (BL_ O\ (X0 < 18+ 5}) = (1= 1) 00 (Ba(0) \ {r(X) < 1/8))
and note that by (16.5),

(16.8) H(BIEHO N\ {r(X) < 1/8+s)n H[Y)

1 n n
> (o = ) H (B O\ r(x) < 1/s)) 0 H)
for each j =1,2,...,mg.

Remarks. (1) For each v € (0,1/2) and 7 € (0,1/8), there exists ¢ =
e(n,q,7,7,Co) € (0,1) such that if the induction hypotheses (H1), (H2) and
Hypotheses 16.2 hold, then

(a) {Z € spt|| V] 03?5%6(0) 0|V, Z) > ¢+ 1/2} C {X € R* .

r(X) < 7/2}; and
(b) for each j € {1,2,...,mp} and ¢ € {1,2,... ,qj(.o)}, there exists a func-
tion

i € O (B e n B {r(X) < 1}): (7))

with small C? norm such that u; ¢ solves the minimal surface equation
on its domain and
(0)
mo 95
1 ~
VL (B 0\ {r(X) < 7}) = 33" leraphii; |-
j=1¢=1
To see this, argue by contradiction, using the Constancy Theorem, upper

semi-continuity of the density function ©(-,-), (16.5), induction hypothesis
(H1) and Theorem 15.2.
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(2) For each v € (0,1/2) and 7 € (0,1/8), there exists € = &(n, ¢, 7,7, Co)
€ (0,1) such that if Hypotheses 16.2(1)—(4) hold and if (in place of Hypothe-
sis 16.2(5))

/ dist? (X, 5pt [ V) d[C|(X) < <,
BY SN 0O\{r(X)<1/8}

then
{Z espt||V| N B?gﬁﬁ(()) :O(|V,Z2) > q+1/2} Cc{X € R r(X) <7}

Again, this is easily seen by arguing by contradiction using the Constancy
Theorem, upper semi-continuity of density and (16.5).

(3) Let ¢ be an integer > 2. If the induction hypotheses (H1), (H2) hold,
V€S, QC BYT(0)is open and O(||V||, Z) < g+1/2 for each Z € spt ||V ||N€,
then H"~ ™7 (sing V L_Q) = 0 for each v > 0 if n > 7, singV _Q is discrete
if n =7 and singV L_Q = 0 if 2 < n < 6. This can be seen by reasoning
exactly as in Remarks (2) and (3) of Section 6, with the additional help of
Theorem 15.2.

(4) Let v € (0,1/2), p € (0,1/2] and &’ € (0,1/2). There exists a number
e =¢(p,e,a,7,Cp) € (0,1/2) such that if Hypotheses 16.2 are satisfied, then
for each Z € spt ||V N B?/ng(O) with O(||V|,Z) > ¢+ 1/2, Hypotheses 16.2
are also satisfied with 7z ,4 V in place of V and €’ in place of .

Indeed, given any p € (0,1/2], if V, C are as in Hypotheses 16.2 with suffi-
ciently small ¢ = ¢(p, a, Cy) € (0,1/2), then it follows from Remark (1) applied
with suitably small 7 = 7(p,v) € (0,1/16) and the fact that ||V (B} (0) N
{X : r(X) < 7}) < C7 where C = C(n,q) € (0,00) that for any Z €
spt ||[V] N B?/'gl(O) with ©(|V|,Z) > ¢+ 1/2 , Hypothesis 16.2(1) is satis-
fied with 1z ,4 V in place of V. Also, since by the triangle inequality

[ s spt [Cl iz, VI (X)
BIT(0)
<o [ dist(Xspt O] dV(X)
Byt(2)

+ Cp2dist*(Z, {0} x R"™1),

where C' = C(n,q,v) € (0,00), it follows again by Remark (1) (taken with
7 = py/(20)71e’) that if € = e(p,e’, o, 7, Cp) is sufficiently small, then Hy-
pothesis 16.2(4) is satisfied with 7z ,4 V in place of V and ¢’ in place of ¢.
Finally, applying Remark (1) once again with 7 = ps, where s = s(n,q) is as
in (16.7), we deduce using (16.8), the area formula and the inclusion

spt [V 1 (B3 (0,m) \ B (0) x R")
st VI (B (2)\ BYO) x R,
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where (0,7) is the orthogonal projection of Z onto {0} x R"~!, that if ¢ =
e(p,a,v,Cp) is sufficiently small, then Hypothesis 16.2(5) is satisfied with
nz,p+ V in place of V.

With the notation as above, for V € §,, C € K as in Hypotheses 16.2
and appropriate 5 € (0,1/2), we will also need to consider the following:

HYPOTHESIS (). Fither (i) or (ii) below holds:

(i) C € K(my).

(i) 26(|Coll,0) > mo + 1, C € K(p) for some p € {mo + L,mg+2,...,
20(||Col],0)} and

[ dist (X spe €I IV (X)
ByTH(0)

+ dist®(X, spt [V]) ]| C]| ()
By (0)\{r(X)<1/16}

< fintgg s e ( s s IC IV 6)

+ dist? (X, spt [ V) d\én(X)) .
BYTH(0)\{r(X)<1/16}

Remark. If Hypotheses 16.2 and Hypothesis (}) for some 5 € (0,1/2) are
satisfied, and if C’ € K is such that spt ||C’|| = spt ||C||, then Hypotheses 16.2
and Hypothesis (}), taken with C’ in place of C and 2¢/3 in place of 3, will be
satisfied.

Case O(||Co|l,0) = g + 1/2. From now on until we state otherwise, we
shall assume that ©(||Cy||,0) = g + 1/2.

The basic L2-estimates of [Sim93, Th. 3.1] hold under our assumptions,
namely, the induction hypotheses (H1), (H2), Hypotheses 16.2 and Hypothe-
sis (1), and are given in Theorem 16.2 and Corollary 16.3 below:

THEOREM 16.2. Let q be an integer > 2, a € (0,1), v € (0,1/2), p €
(0,1) and T € (0,1/8). Suppose that the induction hypotheses (H1), (H2) hold.
Let Cy be a stationary cone as above, with ©(||Co|[,0) = ¢+ 1/2. There exist
numbers g = eo(n, q, o, 7,7, Co) € (0,1/2), Bo = Bo(n,q,a,~,7,Cp) € (0,1/2)
such that if V. € Sy, C € K satisfy Hypotheses 16.2 with €y in place of
e and Hypothesis () with By in place of B, then, after taking appropriate
C' € K with spt||C'|| = spt||C|| in place of C, relabelling C' as C (see

(0)

the preceding remark) and writing C = Y% szzl |Hj ¢| where Hj ¢ are half-
hyperplanes of R meeting along {0} x R~ with H; ; € N(H](-O)) for each
je{1,2,....mo} and L € {1,2,... ,q](o)}, the following hold:
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(0)
n m q; n
() V L(BIE(O) \ {r(X) < 7}) = S 2, Jgraphu; ¢ 0 BEEN(0)] where
ujp € CR(BEEN0) N Hy \{r(X) < 7} Hify) for 1 < j <mo, 1 <0< g,
uj,¢ solves the minimal surface equation on B?/'EI(O) NHj \{r(X) <7},
dist(X +uj ¢(X),spt ||C||) = |uy,¢(X)| for X € B?/ng(O)HHj,g\{r(X) <7}
and for each j € {1,...,mp} and l1,0s € {1,... ,q](p)}, either graph u; ¢, N

B?/ng(O) = graphu; g, OB?/ng (0) or graphwu; ¢, Ngraphw; s, ﬂB?/El (0) =0,
12 .
(b) Sgps10) ez dIVI(X) < C Jgpon g dist? (X, spt [C) d]| V| (X);
O war; Jeztioy leg P AIVIIX) < C fgniagg) dist* (X, spt ||C]) I V]| (X);

ist? .
(@) Sz o) L d[VI|(X) < O s g dist® (X, st [C]) dl| V| (X):

Here C = C(n,a,7,Cq) € (0,00) and C; = Cy(n,a,v,u, Cp) € (0,00). In
particular, C and Cy do not depend on T.

Proof. Note first that by Remark (1) following Hypotheses 16.2, provided
the hypotheses of the theorem are satisfied with 9 = eo(n,q, a, 7, Cp) suf-
ficiently small, we have that O(||V]|,Z) < g + 1/2 for each Z € spt|V] N
B{L;/{ﬁ(o) \ {r(X) < 7/2}, and

(0)
mo %
VL (BEEHO)\ {r(X) < 7}) = > [eraph iy (|,

j=1¢=1

where for each j € {1,2,...,mo} and £ € {1,2,..., j(o)},

i€ O (B ) N HO\ r(x) < 7)1 (5) ")
and u; ¢ are solutions to the minimal surface equation over

H 0 (BEEH0)\ {r(X) < 7})

with small C? norm. So if C € K(my), then the desired conclusions in part (a)
readily follow because then C = 77" qj(-o)\H ;| for distinet half-hyperplanes H
meeting along {0} x R, which, by Hypotheses 16.2(3), satisfy disty, (H} N
B0, H](-O) N BYTH(0)) < e for each j € {1,2,...,mg}. Otherwise we must
have that 20(||Cyl|,0) >mo+1 and that C e K(p) for some p € {mo+1, mo+2,
-++,20([|Co|,0)}. For each j € {1,2,...,mo}, let ¢} € {1,2,...,qj(»0)} be the
number of distinct elements in the set {H; 1, Hj o, ... ,Hj7 q;o)} and label them
H]’.J,, ' =1,2,...,q; Let W;M, € R? be the unit vector such that HJ’.’E, =
{(w) py) 1 >0, y € R !}. Provided that By = Bo(a, 7, Co) € (0,1/2) is
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sufficiently small, it follows from the definition of I, Hypotheses 16.2(3) and
Hypothesis (1)(ii) that for each j € {1,2,...,mo} and ¢},¢, € {1,2,...,q;},

W = Wil > cQy

for some constant ¢ = ¢(a,y, Cp) € (0,00), where
= inf~ . dist?(X, spt ||C||) d||V]|(X
O =intg gt iy ([ G G VO

+ distQ(X,sptHV\)dHa](X)>.

BFH0)\{r(X)<1/16}

By exactly the same inductive proof of Theorem 10.1(a), conclusion (a) now fol-
lows from this provided g9 = £¢(n, a, 7, 7, Co), Bo = Bo(n, o, 7,7, Co) € (0,1/2)
are sufficiently small.

The rest of the theorem is proved by arguing exactly as in [Sim93, Th. 3.4];
the key point that enables us to use the argument of [Sim93, Th. 3.4] is having
at our disposal the appropriate regularity theorem, namely, Theorem 15.2.
Specifically, letting

Tpw(C) = {(z,y) e R x R"" 1= (2] = p)* + |y — ¢|* < w?p*/64}

for k € (0,1], p € (0,1/2) and ¢ € R}, we have the following for any given
B € (0,1):

CrLAIM. There exists a constant § = d(n, q,a,~, 3,Cy) €
if V, C are as in the theorem, (£,¢) € spt||C|| N B (0)

0,1/2) such that
13/16 r(
where ( € R"™1, /

(
N{r(X) < 1/16}

(16.9) spt [V N Tig)1/16(C) # 0
and
(1610) g [ a0 <6
Tey1 ()

then there exist distinct integers ji,j2,...,Jp € {1,2,...,mo} and, for each
ke {1,2,...,p}, functions ugflkj) € C2(T|€|73/4(§) N H]kykZ;HjJ];,k‘g) with € =
1,2,...,ng for some ng < q such that
(16.11) V U Tigaa(©) = 35 leraphul}) g1 ()

k=1¢=1

and for each k € {1,...,p}, L € {1,... ,ny},

-1 (\EI ¢)
|§‘ sup U ke | +

Tig),3/4(ONHj) k, Tie),3/4(ONHjy k,

sup [Vl < 2.
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To verify this claim, observe first that by using the monotonicity of mass
ratio and a covering argument, we see that under the hypotheses of the the-
orem, ||V|[(BIT(0) N {r(X) < 7}) < Cr for each 7 € (0,1/4), where C =
C(n,q) € (0,00). Using this with sufficiently small 7 = 7(n,q) € (0,1/2) and
conclusion (a), we deduce that

w o IVIBETH(2)) < wi ' (16)"VII(BY6(2)) < g +3/4

for each Z € Bﬁ,ﬁb,( ) and p € (0,1/16) provided g9 =¢o(n, g, , 7, Co) € (0,1)

is sufficiently small. Since (16.10) for sufficiently small 6 = d(n, ¢, a, 7y, Cp) €
(0,1/2) implies that V LTj¢ 7/5(C) = 7% V; where spt |Vj]| < N(H\”)
Tie|,7/8(C) (allowing for the possibility that V; = 0 for some values of j), we see
by applying Theorem 15.2 and Remark (3) at the end of Section 8 that (16.11)
follows from (16.9) and (16.10) as claimed.

Now, as in Lemma 2.6 of [Sim93], let U be the union of all T|§‘71/2(C) N

spt ||C|| over all (£, ¢) € spt||C| N B?/ng(O) such that for each j € {1,...,mp}
and each ¢ € {1,.. .,q](-o)}, there exists u%"o € C*(Tig3/4(¢) ﬂH]g,H ) with
67 sup O s V<
Tig),3/4(C)NH; e T¢|,3/4(O)NH; e

dist(X + u(‘§| C)( X),spt ||C]]) = \ug-!EI’O(Xﬂ for each X € Tj¢|1/2(C) N Hjp

and
(0)

mo 95
V LT\5|,1/2(C) = Z Z |graph U%"O n T|.5\,1/2(C)|-
j=1¢=1
For each j € {1,...,mo}, £ € {1,...,q](-0)}, define uj, € C*(U N Hj,g;HjL’g)
by u;, JAH, . = 5'2‘ <) With the help of the above claim, we may now

verify the validity of Lemma 2.6 of [Sim93] (by following the same proof), with

the conclusion that for each j € {1,...,mo} and £ € {1,.. .,q](o)}

H;,N B?/ng(O) \{r(X)< 1} CU,
there exists uj, € C*(U N ng,H% ) such that

sup 1 Huje| + Vel < B

UmHj’g
and
4
forrPCOAVICO + 33 [ 200V w0 e 3)
B7/8 © )\G Jj=1¢=1

< c/ dlstz X, spt ||[C|) d||V]|(X),



976 NESHAN WICKRAMASEKERA

(0)
where G = U;”:OIUZ]':lgraph ujeand C = C(n,a,v,Cy) € (0,00). Consequently,
the argument of Lemma 3.4 of [Sim93] carries over to give conclusions (b)—(d)
of the present theorem. O

COROLLARY 16.3. Let q be an integer > 2, a € (0,1), v € (0,1/2)
and p € (0,1). Suppose that the induction hypotheses (H1), (H2) hold, and
let Cy be the stationary cone as in (16.2), with ©(]|Cyl|,0) = ¢ + 1/2. For
each p € (0,1/4], there exist numbers ¢ = e(n,a,v,,p,Co) € (0,1/2), B =
B(n,a,vy,1,p,Co) € (0,1/2) such that if V € S,, C € K satisfy Hypothe-
ses 16.2 and Hypothesis (1), then for each Z = (¢*,¢%,n) € spt ]]V\]ﬂ(Bg/ng(O))
with O(||V], Z) > ©(||Col|,0), we have the following:

@) 1P HICP <O [ 06 spt O V().
1

dist?(X, spt || Tz 4 C||)

b |V |(X
O forn ™ x gpriedIVIO
<Cyp e /B"‘H(Z) dist?(X, spt || Tz £C||) d||V||(X), where Tz : R™1
P

— Rt s the translation X — X + Z.

Here C = C(n,a,7,Cp) € (0,00) and C; = Ci(n,a,v,u,Co) € (0,00). (In
particular, C, C1 do not depend on p.)

Proof. The proof requires application of Theorem 16.2 with 77,4V in
place of V', where Z € spt ||V|| N Bg/gl(O) is any point such that ©(||V||, Z) >
O([Coll, 0).

It follows from Remark (4) above that whenever Hypotheses 16.2 are sat-
isfied with e = e(n, q, a, 7, p, Cp) sufficiently small, they are also satisfied with
nzp# V in place of V and ¢¢ (as in Theorem 16.2) in place of ¢.

To verify that Hypothesis (f) is satisfied with 1z ,4 V in place of V and Sy
(as in Theorem 16.2) in place of 5, and complete at the same time the proof of
the corollary inductively, we may follow the steps of the proof of Corollary 10.2
(i.e., Lemmas 10.3, 10.4, 10.6 and Propositions 10.5, 10.7) in conjunction with
the argument of Lemma 3.9 of [Sim93] (with modifications as in [Wic04]). O

We shall need the following easy consequence of the preceding corollary
for the proof of Theorem 16.1 at the end of this section:

COROLLARY 16.4. Let q be an integer > 2, a € (0,1), v € (0,1/2),
e’ € (0,1/2), and suppose that the induction hypotheses (H1), (H2) hold. Let
Co be the stationary cone as in 16.2, with ©(||Co||,0) = g+ 1/2. There exists
a number 1 = e1(n, a,v,&, Co) € (0,1/2) such that if V € S,, C € K satisfy
Hypotheses 16.2 with €1 in place of €, then
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@ [ st [C V)
BYT(0)

+ dist* (X, spt |[V[) | € (X) <.
BYTH(0)\{r(X)<1/16}

and for each Z = (¢, (?,n) € spt HVHﬂ(Bg/JgI(O)) with ©(|V|, Z) >©(]|Co|,0),

we have that

o ePriep<e(f |, asesten v

v cnst2<x,sptuvnmucwm),
BTTH O\ {r(X)<1/16}

© [ dsst[C v (x)
By(0)

1

+/ dist? (X, spt [|VZ]]) || C||(X)
B O)\{r(X)<1/16}

<C (/ dist*(X, spt [|C)) d[|V|(X)
B *1(0)

+ dist2<X,spt\|vr>ducu<X>),
BYTH0)\{r(X)<1/64}

where VZ = Nz1/24V and C = C(n,a,v,Co) € (0,00).

Proof. Conclusion (a) is easily seen by arguing by contradiction using
Allard’s integral varifold compactness theorem ([All72]; also [Sim83, §42.8]).
Conclusion (b) in case C € K(myg) follows directly from Corollary 16.3. So
suppose that C ¢ K(myp). Noting in this case that 20(||Col|,0) > mo + 1, fix
p € {mo+1,mo+2,...,20(]|Co|[,0)} and assume by induction that conclusion
(b) of the corollary (taken with &’ = 1/4, say) holds whenever C € U?;:nOIC(j),
with £ denoting the required value of £1. Choose a cone C; € U?;:nOIC(j) such
that

/+1 dist® (X, spt | Cal]) d||V[|(X)
BI(0)

- dist® (X, spt |V | Gy ()
BPtH(0)\{r(X)<1/16}

3. . .9 ~
<Sintg ( / sy S UG AV )

j=mgq

+ dist2<x,spt||vn>d||6|<X>),
BITH0)\{r(X)<1/16}

and let 5, = %ﬁ(n,a,'y,l/ll, 1/4,Cy) where $ is as in Corollary 16.3. Sup-
pose C € K(p) and that Hypotheses 16.2 hold with the value of ¢ equal to
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e(n,a,7,1/4,1/4,Cy) where e(n, a7, -, -, Cp) is as in Corollary 16.3. If
[ dist(Xspt €l V)
BI(0)

4 / dist?(X, spt |[V]]) ]| C|(X)
BT\ {r(X)<1/16}

< B ([, distspt[Cal) dIV(X)
BITH0)

v A (Xt V) | () )

B (0)\{r(X)<1/16}
then conclusion (b) follows directly from Corollary 16.3. On the other hand,
if the reverse inequality holds, then by taking ¢’ = &'(n, a, v, Cp) sufficiently
small in conclusion (a), we can ensure that Hypotheses 16.2 are satisfied with
C; in place of C and Z in place of £, so conclusion (b) in this case follows by
the induction hypothesis. Thus conclusion (b) holds whenever C € K(p), and
since C € K = C € K(j) for some j € {my,...,20(]|Cyl,0)}, the inductive
proof of conclusion (b) is complete.

To see conclusion (c¢), note that

/ dist?(X, spt ||C||) ||V Z|(X)
BIH0)

_ gn2 /Bn+ dist2(X, T spt |CIJ) d| V]| (X)

T (2)

<o [ dis (X st [ VIO + € (I + [62)
BIT(0)

1

and

/ dist?(X, spt [|[VZ]]) d||C||(X)
B O\ {r(X)<1/16)

_ g2 /BM dist? (X, spt [ V])) || T2 4 CJ|(X)

e (O\{r(X-2)<1/32}

< 2n+2/ . dist2(X, spt | V]]) d|| Tz % C||(X)
By (2)\{r(X)<1/64}

< 2””/ dist® (X, spt |VINAIICH(X) + C (¢! +[¢2?) .
BIFH0)\{r(X)<1/64}

where C' = C(n,q) € (0,00), Tz : R"™* — R"*! is the translation X — X + 7

and we have used the fact that C is translation invariant along {0} x R"~! and

assumed that € = £(n, «, 7y, Cyp) is sufficiently small to ensure that dist(Z, {0} x

R"!) < 1/64. In view of conclusion (b), the validity of conclusion (c) readily

follows from these two inequalities. O
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LEMMA 16.5. Let q be an integer > 2, a € (0,1), 6 € (0,1/8), v € (0,1/2)
and Cq be as above. Suppose that the induction hypotheses (H1), (H2) hold
and that ©(||Co||,0) = ¢ + 1/2. There exist numbers e = e1(n, a,7,d,Cp) €
(0,1/2) and By = f1(n,a,v,Co) € (0,1/2) such that if V € Sy, C € K satisfy
Hypotheses 16.2 with 1 in place of €, then
(a) By (0,9) N{Z : ©(|VI,2) > q+1/2} # O for each point (0,y) €

{0} x R*"1 N BYE(0), and

(b) if additionally Hypothesis (1) holds with 5y in place of 5 and if u € (0,1),
then

/. dist?(X spt [C[)) [V (X)
B

L ON{r(X)<o)

<Ciot [ dist (st [C) VI Y)
B (0)

for each o € [§,1/4), where C; = Ci(n,q,a, u, Co) € (0,00). (In particu-
lar, Cy is independent of 6 and o.)

Proof. Suppose for some number § € (0,1/8) and some point (0,y) €
{0} x R*"1N BYA1(0) that Bf*1(0,y) N {Z : ©(|V|, Z) > ¢ +1/2} = 0. Then
by Remark (3) following Hypotheses 16.2, it follows that

(16.4) H ™ (sing V L(ByH0,y)) =0 ifn>7,
sing V L_(BytH(0,y)) =0 if 2 <n <6.

From this and hypothesis (5§2) we deduce (with the help of an elementary
covering argument in case n > 7) that
|A]P¢? aH™ < VY ¢|2 dH"
)

/SPt IVInB; ™ (0,y /Spt IVINB; ™ (0,9)

for any ¢ € CH(BF(0,y)), where A denotes the second fundamental form
of reg V. Choosing ¢ € C(By*1(0,y)) such that ¢( = 1 in Bg‘/‘gl(o,y) and
|D¢| < 4671, we conclude from the preceding inequality that

(16.12) / |A]? dH™ < Co" 2,

spt [VINB} 5! (0.)
where C' = C(n,q) € (0,00). Now let 7 € (0,9/4) be arbitrary for the moment
and assume that € € (0,¢¢), where g9 = ¢¢(a, 8,7, Cyp) is as in Theorem 16.2.
Using Theorem 16.2(a), (16.12) and the argument leading to the inequality
(6.12) of [SS81] (with ¢ = 7), we deduce, provided € = ¢(a, 8,7, Cy) is suffi-
ciently small and positive, that

C < 71257172,
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where C'= C(8,Cy) € (0,00). This however is a contradiction if we choose,
e.g., T= % if 4C?2 >1or 7= %25 if 4C? < 1. We conclude that part (a) must
hold provided € = ¢(a, 3,9, Cp) € (0,1/2) is sufficiently small. To prove the
estimate of part (b), first note that in view of Corollary 16.3(a) and (b) (with
T = 1/16, say), it follows from the argument leading to the estimate (3) of

[Sim93, p. 619] that for each Z € spt |V N B35 (0) with ©(|V|, Z) > q,

distQ(X, spt [|Cl|)
/Bn+1

dVch/ dist? (X, spt ||C||) d||V]|(X),
2 X - 2Zp-a [VII(X) B0 (X, spt |C])) 2[[V[|(X)

1/4

where C'=C(8,a, Cyp) € (0,00). By the argument of [Sim93, Cor. 3.2(ii)] (cf.
proof of Lemma 10.8(b)), the required estimate follows from this and part (a).
(]

Remark. Note that Theorem 16.2, Corollary 16.3, Corollary 16.4 and
Lemma 16.5 all continue to hold in case O(||Cyl|,0) = ¢ + 1 provided that
Theorem 15.2 holds with ¢ + 1 in place of q.

Let v € (0,1/2), and consider a sequence of varifolds {V;} C S, and a
sequence of cones {Cy} satisfying, for each k = 1,2,..., Hypotheses 16.2 and
Hypothesis (1) with Vj, Cy in place of V, C and ¢, Sy in place of ¢, 8, where
€k, B — 0. Thus, for each k = 1,2,..., we suppose that

(1k) Vi € Sas 0 € spt[[Vill, O([[Vi,0) = ¢ +1/2, (wn2")H|[Vi[[(B5T(0)) <
q+1/2+;

(0)

(2) Cr = X7 ZZil |HY | € K, where HF, are half-hyperplanes of R"*!
meeting along {0} x R"~! with Hﬁe € N(H](.O)) foreachj € {1,2,...,mo}
and ¢ € {1,2,..., (-0)};

(31) disty(spt [ Crll N BT H(0),pt [ Col N BYT(0)) < exs

() [ dist st Gl VAN < e

BY(0)

(5x) for each 7 =1,2,...,my,

IVRII(BYL )\ {r(X) < 1/8}) N N(H]")

> (o - 3) M (B 0\ (r(X) < 18 0 HO);

(6x) either (i) or (ii) below holds:
(i) Ck € K(mo);
(ii) 20(]|Co|l,0) > mo + 1, C, € K(px) for some py, € {mo + 1,mo +
2’ cee 26(”00”’ 0)} and
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[ s st [l VAN
BI(0)

+/ distQ(X, spt || Vi|l) d|| Ck | (X)
B )\ {r(X)<1/16}

) —~
TN M T R ATES

- dist? (X, spt Vil du6||<X>> .
BT (0)\{r(X)<1/16}
Note that it follows from (2) and (3) that H]’fg — H](O) foreach je{1,...,mo}
and £ € {1,.. .,qj(-o)}.
Let & = \/fB?H(O) dist?(X, spt [|Cr|) d||Vi|[(X). Let {6x}, {1} be se-
quences of decreasing positive numbers converging to 0. By passing to ap-

propriate subsequences of {V}}, {Cy} without changing notation, we have the
following:

(Ar) By Lemma 16.5,

(16.13) BE0.9) {2 OVl 2) > g+ 12} £0
for each point (0,y) € {0} x R*~1n B{L/ng(()) and
oy [ dist (X, spt | Ci ) d[Vil|(X) < Cor*/26
Bn

L O)N{r(X) <o}

for each o € [0f,1/4), where C' = C(n,q, a7, Cop) € (0,00).
(Bx) By Theorem 16.2 (a),

iy 17

(16.15) Vi (B?/'gl( I\ {r(X) <m}) = Z Z ]graphu
Jj=1/4=1

where, for each k = 1,2,..., j € {1,2,...,mp} and ¢ € {1,2,...,q](-0)},
uﬁg € CQ(B?/ng( )N Hké\{r( ) < Tk} (H]k b, U?,e solves the minimal
surface equation on B?/gl( )n er \ {r(X) < 7} and satisfies dist(X +
uf o(X),spt [ Cl) = Juf ((X)| for X € BIEH0) N HE, \ {r(X) < 7).
(Ck) For each point Z = (¢',¢%,7) € spt[|[Vi| N By (0) with O(||Vi|, Z2) >
g+ 1/2, by Corollary 16.3 (a),
(16.16) G+ 1P < O&,

where €' = C(na q,q,7, CO) S (07 OO)
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(Dg) For each fixed p € (0,1), p € (0,1/4), each sufficiently large k and each
point Z = (¢*,¢%,n) € spt||[Vi|| N Bg/gl(O) with O(||Vk|, Z) > ¢+ 1/2,
by Corollary 16.3(b),
(0) Lk
mo 45 uk (X)) — 17 270 HP 2
(1617) ZZ/ 1 ‘ ],E( )k (C C 3+2_‘
Do Bt @nml N <n | X+ (X) = Z|rree
< Crpm e [ it (X, st | T Cul) VAN,
By(2)
where C; = Cy(a, 7, 1, Cp) € (0,00).

Extend U?,e to all of B?/ng(O) N Hj’fz by defining values to be zero in

BEH0)NHE N {r(X) < 7}, For each j€{1,2,...,mo} and £€{1,2,...,¢}"},

let hj g : HJ(O) — (HJ(O))L be the linear functions such that {X +h; ((X): X €
H"} = Hj ¢ and let @ ,(X) = u¥ ,(X +h; «(X)). By (16.15) and elliptic esti-
(0)

mates, for each j =1,2,... , mgand £ =1,2,..., (for any manner in which

J
the labelling is chosen for the elements of the sets {uéC 1s u? oy ey uF ot k=
’ ’ 3, q;

1,2,3,...), there exist harmonic functions v; ; : By N H](»O) — (H](O))l such

that, after passing to a subsequence,
(16.18) Ex 1 0 = vj 0,

where the convergence is in C2(K) for each compact subset K of B aNH ](0).
From (16.14), it follows that for each o € (0,1/4),

(©

mo qJ
ZZ/ v, < Ca'/?, C = C(a,7, Co)
Do /B onEOnr(X)<e}

and hence that the convergence in (16.18) is also in L? (Bss N H;O)).

LEMMA 16.6. Foreachj € {1,2,...,mo} andl € {1,2,..., q](-o)}, we have
that

n 0 0\ +
vj.¢ € COH (BBE.(O) N (1) )

with the estimate
vj,0(X1) — vj,0(X2)[?

_swp el 4 _sup o
By (O)nH X1,X2€Bg L (O)NHY, X1#X, 1 2
mo
<cy > 0.0

n+1 (0)
j=14=1 33/4 (0)nH

where n= u(na q,a,7, CO) € (07 1) and C = C(na q,q,7, CO) € (07 OO)
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Proof. Note first that for each given Y € Bg/ﬁé(()) N{0} x R"~ !, there ex-

ists, by (16.13), a sequence of points Zj, = (CF, (5, ) € spt ||Vk|]ﬂBg/'zl (0) with

O(||Vkll, Zr) > ¢ such that Z; — Y. Passing to a subsequence without changing
notation, the limits limy_, &, '¢F and limg 00 & 'C5 exist by (16.16). Write

(16.19) w(v) = (Jim &1¢t, tim £;1¢h0),
and note by (16.16) that
(16.20) k(Y)| < C,

where C' = C(n,q,a,7,Cp) € (0,00). It follows from (16.14), (16.15) and
(16.17) that for each p € (0,1),

) I

mo 45 |’U‘ (X) - K,(Y) H](.O) |2
16.21 / 5t ax
(16-21) JZMX; Byl vne® | X =Y [rrEes

(©

mo 95
SCp TR N /B -

(0)
j=1e=17By" (Y)NH;

L0
vj,e — 6(Y) " P

for p € (0,1/8], where C; = C1(a, 7, 1, Cp) € (0,00). In view of (16.20), this in

(0)
particular implies that for each j = 1,2,...,mg, £(Y) "7 is uniquely defined
(depending only on Y and independent of the sequence {Z;} tending to Y),
and hence, since the set of normal directions to H jo , 7 =1,2,...,mg, spans

R? x {0}, the vector k(Y is also uniquely defined. For Y € B?/Zl (0)N {0} x

1,0
R, j e {1,2,....mo} and £ € {1,2,...,¢\”}, define v;,(Y) = w(Y) "

The proof of the lemma can now be completed by modifying the proof of
Lemma 12.1 in an obvious way. [l

THEOREM 16.7. For each j € {1,2,...,mo}, £ € {1,2,.. .,q](-o)}, we have
that

€L
vj0 € C? <B?/+41(0) nH; (1) )

with the estimate
|Dvj,o(X1) — Dvj o(X2)|?

2
sup |Dv; ¢+ sup ~ X
B 0)nH X1, X2 B HO)NH, X1 £X X1 = X
172 (O)NH; 1,X2€BY T (0)NH; ™, X17#X>
(0)
mo 95
<cC vi o]?
2530 ) N DY
j=1/4=1 3/4 J

where C = C(n, q,a,v,Co) € (0,00).
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L0
Proof. For Y € B?/EI(O) N{0} x R" ! let K(Y) = S R(Y) 5" where
k is the function defined by (16.19). By modifying the argument leading to

the estimate (12.30) in obvious ways, it can be seen that & € C™ (B"f1(0) N

{0} x R*HR™) with 1/2
sup &> + |Dy &|* + | Dy &> + | Dy &|?
B O)N{0}xRA—1)
mo @
=¢ Z Z /B"“(O)mHJ@) [,

j=1/4=1 3/4

where C' = C(a,v,Cp) € (0,00). Since the set of normal directions to HJ(O),

j = 1,2,...,mp, span R? x {0}, it follows that for each j = 1,2,...,mq,
L
ki€ C™(BMEH0)N {0} x R*1; R with

1/2
() 1.0 ()
(16.22) sup k i P4+ |Dyk i P4+ |DEk T
Bf/gl(o)m({o}an—l)
0)
3 Ly 2 o 3 2
L TR ETe) 35 DY NI oY

(0)
Jj=1/4=1 3/4 (O)OHj

where C'=C(a,, Cp) € (0, 00). Since by Lemma 16.6, for each j = 1,2,...,myp

and/=1,2,..., J(.O), vj, ¢ is continuous in B{‘/J;l(O) N HJ(O) with boundary values
)
_ H: . .. +1 (0)
Uj»€|B;L/§1(0)m{o}an—l =k 7 , and vj, is harmonic in Bg/4 (0) N H;”, the

desired conclusions of the lemma follow, in view of the estimate (16.22), from
the standard boundary regularity theory for harmonic functions. ([

LEMMA 16.8. Let q be an integer > 2, o € (0,1), v € (0,1/2) and 0 €
(0,1/4). Let Cy be the stationary cone as in (16.2), with O(||Co||,0) = ¢+1/2.
There exist numbers € = g(a,v,0,Co) € (0,1/2) and B = B(a,v,0,Cq) €
(0,1/2) such that if V € S,, C € K satisfy Hypotheses 16.2 and Hypothesis (T)
with ¢ = € and 8 = B and if the induction hypotheses (H1), (H2) hold, then
there exist an orthogonal rotation T' of R™! and a cone C' € K such that,
with

g = [ ., dist(Xspt O V().
BIT(0)

1

the following hold:
(a)  lej —TD(e;)| <®Ey, for j=1,2,3,...,n+1;
(b)  dist3,(spt [ N BIF(0),spt [ C] N BI(0)) < Tok:
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@ o dist? (X, spt V] d|[T C'[[(X)
T(By T (0)\{r(X)<6/16})
+ g2 / dist2(X, spt [Ty C'[)) d|[V]|(X) < 76%E2.
B™1(0)

0

Here the constants &, Cy, 7 € (0,00) each depends only on o, v and Cy.

Proof. If the lemma is false, there exist a sequence of varifolds {V}} CS,
and a sequence of cones {Cy}CK satisfying, for each k& = 1,2,3,..., the
conditions (1;)—(6x) above (listed immediately after the proof of Lemma 16.5)
but not satisfying, for any choice of orthogonal rotation I of R**! and C’ € K,
the conclusion of the lemma taken with Vj, Cy in place of V', C. Choose any
two sequences of decreasing positive numbers {d;} and {7} with d; — 0 and
T — 0 and corresponding subsequences of {Vj}, {Cy} for which the assertions

(16.13)—(16.17) are valid, and let {Uj’Z}j=1,2,...,mo; r=12,.4 be the blow-up of

{Vi} relative to {Cy}. Thus, for each j =1,2,... ,mgand £ =1,2,..., §0),

vjo € L2 (Bg/tf(o) nH; (H](O))L) nec? (Bg/tj(o) nH"; (H§°))L>
are the functions produced as in (16.18). Note then that Theorem 16.7 is
applicable to the functions v; ¢. By exactly following the corresponding steps
in the proof of Lemma 13.1 and by using Theorem 16.7 where the proof of
Lemma 13.1 depended on Theorem 12.2, we see that corresponding to infin-
itely many k, there are orthogonal rotations I'y, cones Cj € K such that the
conclusions of the present lemma hold with Vj, Ci, C). and I' in place of V/,
C, C' and T, and with constants &, C, 7 depending only on a, v and Cj.
This contradicts our assumption, establishing the lemma. O

LEMMA 16.9. Let o € (0,1), q be an integer > 2 and v € (0,1/2). Let
(0)
Co =37 ZZ;I |Hj ¢| be the stationary cone as in (16.2) with ©(||Cy||,0) =

q+1/2. Forj=1,2,...,2¢—mo+1, let 0; € (0,1/4) be such that 6, > 86, >
6403 > -+ > 824 m0fy, . 1. There exists a number g9 = go(a,, 01,02, .. .,
02g—mo+1, Co) € (0,1/2) such that the following is true: IfV € S,, C € K sat-
isfy Hypotheses 16.2 and if the induction hypotheses (H1), (H2) hold, then there
exist orthogonal rotations T', A of R™™! and cones C',C" € K such that, with

BO= [ sy B LIV IO )
1 T

+/ dist® (X, spt |C) ) d|V || (X)
Bn+1(0)

1
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and

RY(C) = dist*(X, spt [[V'[]) d]| C||(X)

/Bf“(o)\{r(X)<1/64}
[ st spt O dV(X),
ByT(0)

we have the following:
(a) lej—T(ej)| < kQv(C) and |e;—Alej)| < KRy (C) forj=1,2,3,...,n+1,;
(b) distZ,(spt || 1 BI1(0),5pt [ C]| 0 BIFL(0)) < Co @2 (C) and
dist, (spt [|C"[| 0 B{*1(0), spt [|C|| N BY*1(0)) < CoRY(C);
(c) for some j' € {1,2,...,2¢ —mo + 1},

o7 | dist®(X, spt | V]]) d|| T4 C'[|(X)
J r (Bg;l(O)\{r(X)§0j/ /16})

—n—2 ) / 2 N2
H g S I N AV < 385 G3(C),
j/

and for some j" € {1,2,...,2q — mo + 1},

002 | dist?(X,spt [V]) ] Ay € (X)
J A(ngj} (O\{r(X)<0,0 /64})

02 /B 1 B CCDU8 C) dIVI(X) < 00033 ().

0.
1!

Here k and Cy depend only on a, v, Cy in case 2¢ = mg and only on o, 7,01, ...,
02g—m, and Cy in case 2¢ > mo+1; v1 = v1(a, v, Co) and, in case 2q > mo+1,
foreach j =2,3,...,2¢—mo+1, v; = vj(a,7,61,...,0;—1,Co). In particular,

v; is independent of 05,011, ... ,02¢—me1 for j =1,2,...,2¢ —mo + 1.

Proof. First use Lemma 16.8 and the argument of Lemmas 13.2 and 13.3
to obtain each of those conclusions above in which Qy (C) appears on the
right-hand side, with a set of constants s, C’él), 1/](-1) in place of , Cy, v,
i=1,2,...,2¢ — mg + 1, depending only on the allowed parameters stated in
the conclusion. Then repeat the entire argument leading to these conclusions
but with Ry (C) in place of Qy(C) (so, in particular, part (ii) of Hypothesis ()
reads Ry (C) < Binfg  p-1 4 Ry (C)) to obtain those conclusions above

er:mOK(J)

where Ry (C) appears on the right-hand side, with a set of constants ko, 032),
(2

v;” in place of k, Cy, vj, j = 1,2,...,2¢g — mp + 1, depending again only
on the allowed parameters. Set k = max {k1,k2}, Co = maX{Cél), 082)} and

I/j:max{yj(-l),l/]@)} for j =1,2,...,2¢ — mg+ 1. O
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Proof of Theorem 16.1. Case 1: O(||Col[,0) = ¢+ 1/2, ¢ > 2. If the
theorem is false in this case, then there exist a number v € (0,1/2) and,
for each ¢ = 1,2,3,..., a varifold V;, € S, with ©(]|V;]|,0) > ¢ + 1/2 and
(wn2") THIVEI(BET(0)) < g 4 1/2 + 7 such that

disty (spt || Vel 0 BY(0), spt [|Coll N By T(0)) — 0

as { — oo. By Allard’s integral varifold compactness theorem ([All72]; see
also [Sim83, §42.8]) and the constancy theorem ([Sim83, §41]), it follows, after
passing to a subsequence without changing notation, that

mo
WBW®%<Z#WW)UWW)

j=1

as varifolds, where q( ) ,7=1,2,...,mg, are positive integers with Z] 1 qJ(O)

2q+ 1. We may assume, by redeﬁmng the multiplicities of the original cone Cy
if necessary, that Co = >0 ¢ ] ]H | Thus

(16.23) Ve LB (0) = Co LLBI"(0) as varifolds.

Forj =1,2,...,2¢g—mo+1, choose numbers 0; = 0;(c, v, Co) € (0,1/8) as
follows: First choose 61 such that 1/1(9%(1_0‘) < 1/4, where v; = vi(a, 7, Cy) is as
in Lemma 16.9. Having chosen 91, Oa,...,0;,1 < j < 2g—my, choose 041 such
that 641 <8~ '6; and v 167\ <1/4, where vj1 =vj1(a, 7,61, 65, Co)
is as in Lemma 16.9.

Note that it is easily seen by arguing by contradiction that corresponding
to any given ¢’ € (0,1/2), there exists e = e(¢’, o, 7y, Cp) € (0,1/2) such that if
Hypotheses 16.2 are satisfied, then

Qv(C) <Ryv(C) < ¢

where Qv (C), Ry (C) are defined as in Lemma 16.9. By Remark (4) following
the statement of Hypotheses 16.2, it then follows that if Hypotheses 16.2 are
satisfied with sufficiently small ¢ = e(¢/, a, 7y, Cp), then for each Z € spt [|[V]| N

BYEN0) with ©(|[V], Z) > ¢ +1/2,

(16.24) Qyz(C) < Ryz(C) < €,

where V% = Nzi/24 V.

Now fix ¢ sufficiently large, let V' = V; and let Z € spt || V|| ﬂB?/El (0) with
O(|V]|,Z) > ¢+ 1/2. We claim that we may apply Lemma 16.9 iteratively
to obtain, for each k = 0,1,2,3,..., an orthogonal rotation I‘f of R"! with

= Identity, and a cone Cf € K with C§ = C satisfying, for k > 1,

(1625)  |TZ(e)) ~TZ4(en)| < m (o7)" Qua(Co),  j=120..,m+1,
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(16.26)
disty(spt [CF | 1 Bi(0),spt |CF_1[| N B H(0)) < Co (07 )™ Qv (Co),

(16.27)
(6" gy Bt (1), CED V(X < (o)™ @ (Co)

*n*Q/ 42 z z z
dist™(X, spt [VZ) df| (T ), Cx11(X)
) D7 (B O\{Ir(X) <07 /16) (&) ©
k

< (o7)* Q%2(Cy),

where x = x(a,, Co), Co = Co(a,7, Co) are as in Lemma 16.9 and {o?} is
a sequence of positive numbers such that UOZ =1 and for each kK = 1,2,...,
of = ijza,il for some jZ € {1,2,...,2q—mg+1}. To see this, note first that
it follows from Remark (4) following the statement of Hypotheses 16.2 that if
V =V, with ¢ fixed sufficiently large, then for each Z € spt|V| N B’f;gl(O)
with O(||V||, Z) > q + 1/2, Hypotheses 16.2 are satisfied with V# in place of
V., Cy in place of C and with € = g¢(a, 7, Cp), where gy is as in Lemma 16.9.
Hence by applying Lemma 16.9 with VZ in place of V and C = Cy, we deduce
that (16.25)—(16.28) hold in case k = 1. So let k > 2, and suppose by induction
that (16.25)—(16.28) are valid with 1,2,...,k — 1 in place of k. Then for any
given € € (0,1/4), provided V =V, with ¢ sufficiently large, Hypotheses 16.2

are satisfied with (Ff_ﬁ; 0,07, # VZ in place of V and with C = Cf_l.
.1 . -1 .
Here, the validity of Hypotheses 16.2(1)-(4) with (Fﬁl)# nOkaZ,l#VZ in
place of V and CZ_, in place of C is clear, and in verifying Hypothesis 16.2(5)
with (Ff_l); Moo? | # V7 in place of V, note first that by Remarks (1) and
(4) following the statement of Hypotheses 16.2 (taken with p = of and 7 =

S min{01,02 ..., 02g-me+1} = 3502g—mo+1), We have that
(16.29)
(0)
z +1 1 o3 ~
oo VZ L (B0 {r(X) < sobog ot }) = D Jeraphi i,
j=1i=1

where for each j € {1,2,...,mp} and i € {1,2,... 7q(AO)},

i, € C? (H§0) n (B’f*l(o)\ {r(X ) < %9%—”@0“}) ; (H§O))L)
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and u; ; are solutions to the minimal surface equation over
7 (Bt X) < —4
;o N{BIT 0\ {r(X) < 32 2q-mo+1}

with small C2 norm. So in particular, in view of (16.25), Hypothesis 16.2(5) is
satisfied with (Flz); 0,07 4 V7 in place of V. On the other hand, by (16.26),
(16.27) and (16.28), we may apply Remarks (2) and (3) following the statement
of Hypotheses 16.2 with (FTZ); No,07 # V< in place of V and 7 = %92q_m0+1,
followed by Theorem 3.5, to deduce that for each r € {2,3,...,k — 1},
(16.30)

Z,r
-1 n 1 mo i ~Z.r
(17), oz 5 V7 L (BIS O\ {r(X) < 502y mosa }) =D 3 laraph ]|
j=1i=1

for some integers ij’T > 1, where for each j € {1,...,mg} and i € {1,... ,ij’r},

7, 0 1 0\ L+
il e 0 (1 0 (Bl )\ {r(x) < 5ezq,moﬂ}) (H))
and ﬁJZZ are solutions to the minimal surface equation over

HJ(-O) N <B?/J51 0)\ {r(X) < %92q7m0+1}>

with small C? norm. Since 07 > 0ay_my+107_; for each r > 1, it follows from
(16.29), (16.30) and unique continuation of solutions to the minimal surface
equation that

(16.31) p7" =g\

for each r € {2,3,...,k—1} and j € {1,2,...,mp}, whence, by (16.30), we see

that Hypothesis 16.2(5) with (I‘f_ﬁ;

-1
as claimed. Hence we may apply Lemma 16.9 with (qu)# Moo | 4 VZ in

0,07, # VZ in place of V is satisfied

place of V' and Cf_l in place of C to obtain an orthogonal rotation Ff of R"+1
and a cone CZ € K satisfying (16.25)(16.28). This inductively establishes the
validity of (16.25)—(16.28) for each k = 1,2,3,.... Using (16.25)—(16.28) in a
standard way, we reach the conclusion that if V=V, with £ fixed sufficiently
large, then corresponding to each Z € spt ||V|| N B"E(0) with ©(||V ], Z) >

1/8

q + 1/2, there exist a cone CZ € K with

(16.32)  distw(spt [|[C7|| N BY*1(0),5pt [|Col| N BYF1(0)) < CQyz(Co)
and an orthogonal rotation I'Y of R**! satisfying, for each k =0,1,2,...,

(16.33)  |T%(ej) = Tf(e))| < C (oF)" Quz(Co), §=1,2,...,n+1
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such that
(16.34)
z —"—QJ/ .2 z 7 ~Z
o dist?(X,spt ||[V7]]) d||TZ C?]|(X)
() TZ(B"E (O\{Ir(X)|<oZ/16}) #

k 05/2
2
< C(of)™ Q}2(Co)
for each £k =0,1,2,... and

(16.35) p”QL+ufmﬁwmeﬁcﬂnwvﬂuxécﬁ%ﬁAcw
(]
P

for all p € (0,1/4], where C' = C(a, 7, Cyp) € (0, 00).

Let Ty = {Z € spt||[V] : ©(|V],Z) > g+ 1/2} N B¥(0). We now use
the estimates (16.32)—(16.35), Lemmas 16.5(a) and 16.9 and Corollary 16.4 to
establish that TVOB{LZé (0) is an (n — 1)-dimensional embedded C'** submani-
fold of B?fgé (0) containing the origin. Indeed, note first that estimates (16.32),
(16.34) and (16.35) imply that for any given € € (0,1/4), if V =V, with fixed

¢ sufficiently large, then for each Z € Ty, N B?/*ié(()) and each k > 1, Hypothe-
-1

ses 16.2 are satisfied with (I‘Z># Nz,107 4 V in place of V and C = CZ. (In

o . . . -1 -1 .
verifying Hypothesis 16.2(5) with (FZ># Nz, LoZ 4 V= (FZ)# 10,07 # VZ in
place of V, we argue exactly as we did in verifying Hypothesis 16.2(5) with
(Fffl); Noo? | # VZ in place of V as part of the inductive step described
above.)

Consequently, we see that for each point (0,%) € {0} x R*~1n B 1(0),

1/16
(16.36) Ty AR? x {(0,)} # 0;

for if there is a point (0,y) € {0} x R*~1N By;g(m with 7y N (R? x {(0,9)})

= (), then, since Ty N B?ﬁé(O) is a relatively closed subset of B’f;ié(O) and
0 € Ty, we can find r € (0,1/16) such that Ty N (R? x B*~1(0,y)) = 0 but
Ty N (R? x 0B 1(0,y)) # 0, whence we may, in view of (16.33), (16.34)

and (16.35), pick any point Z € Ty N (R? x 9 B»~1(0,y)), choose k such

that o7 < r/4 and apply Lemma 16.5(a) with (I‘Z);E1

V, C = C% and § = 1/8 to get a contradiction with the assumption Ty N
(R2 x B2(0,y) = 0.

For Z € Ty, let Sy = Z+T% ({0} x R"!) and note that for each Z € Ty,
and each p € (0,1/4],

7,107 4 V' in place of

(16.37) Ty N (BQH(Z) \ {X e R dist(X, Sz) < ép}) =0.

This is easily seen by choosing, for given Z € Ty and p € (0,1/4], the unique
integer k such that %05 1 <p< %akz , and applying Remark (2) following
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-1
Hypotheses 16.2 with 7 = %92q_m0+1 and with (FZ)# Nz,10% 4 V in place of
V. This and (16.36) imply that for each (0,y) € {0} x R*~1n B?flé((]), the set
Ty NR2 x {(0,y)} consists of a unique point, so that

(16.38) Ty N B}j35(0) = graph

for a function ¢ = (¢1,p2) : B’f/_lé(O) — R2. Moreover, (16.37) and the es-

timates (16.24), (16.33) say that ¢ is Lipschitz with Lip(¢) < 1 and, writing
$(2) = (v1(2), p2(2), Z) for Z € By ;4(0), that
(16.39) D@(Z) ({0} x R"') =T?({0} x R" )
for H" lae. Z € B?/_lé(O).
We now argue that ¢|gn-1 (0) st be of class C1®. For this, first observe

1/32

that by employing exactly the argument leading to (16.32)—(16.35) but using
those conclusions of Lemma 16.9 involving Ry (C) (in place of those involving
Qy(C)), we obtain for each Z € Ty orthogonal rotations A%, AZ of R"*! for
k=1,2,3,...; a cone WZ € K and numbers 7¢ € (0,1] for k = 1,2,3,...,
where for each k, 77 = QékaZ_l for some ¢Z € {1,2,...,2qg—mg+1}, such that

(16.40)  disty(spt [WZ [ 0 Bf+1(0),spt [|Coll N BY*(0)) < CRy2(Co);
(16.41)  [AZ(ej) — Af(e;)| < C ()" Ryz(Co), j=1,2,...,n+1;

(16.42)

A —n—z/ L B Z ;
! dist2(X, spt |VZ|) d| AZ W2 (X)
( k) AZ(B"S! (0\{Ir(X)|<7Z /64}) e

TkZ/Z
2a
<C(f)" R}2(Co)
for each kK =0,1,2,...; and

16.43) p "2 /
( ) P 0

for all p € (0,1/4], where C' = C(a, 7, Cyp) € (0, 00).
Since the sequence of varifolds Wy = Nz.07 # V,k=1,2,3,... has a sub-

dist* (X, spt | AZ W2 d[|VZ]|(X) < Cp**Ri2(Co)

sequence Wy that converges to a cone P satisfying, by (16.34) and (16.35),
spt ||P|| = sptHI’gé CZ||, it follows from (16.43) taken with p = o7 that
spt HFi C?|| C spt HAi WZ||. The same reasoning applied to the sequence
Nz:7 4V establishes the reverse inclusion, so we have that spt Hf‘i c?| =

spt ||A§E WZ|| whence, in particular, we have that

(16.44) rZ({0} x R" 1) = AZ({0} x R* 1),
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Recall (cf. the paragraph preceding (16.36)) that given any ¢ € (0,1/2), if
V =V, with ¢ fixed sufficiently large depending on &, then for each Z € Ty N
B{‘/Jgé(O) and k> 1, Hypotheses 16.2 are satisfied with V}, 7 = (AZ);E1 NgizuV

27
in place of V and W¥ in place of C. Consequently, by Remark (4) following the
statement of Hypotheses 16.2, we see that given any € € (0,1/2), if V =V} for
¢ fixed sufficiently large, then for any Z € Ty, k > 1 and 7€ 1y, ,, Hypothe-
ses 16.2 are satisfied with %1724 Vi,z in place of V' and W in place of C. Now

take any two distinct points Z3, Zs € Ty ﬂBﬁ;}é (0), let m be the unique integer
V.

~ -1
satisfying Tiﬁrl < 2|Z1—Zs| <77 and let V = Vin,z, = (AZI)# Ny 1,71 4
19 m

Letting Z = (AZl>_1 (%) and noting that Z € spt || V| ﬂB?ﬁé(O) with
@(H\N/H, Z) > g+ 1/2, we may apply Lemma 16.9 iteratively (utilising its con-
Z 7)21/2#? in place of V and
WZ1 in place of C (and with 61, 6s, . .. 02g—mo+1 equal to the same fixed con-
stants as chosen at the beginning of the proof of the present theorem), in the
manner exactly as in the argument leading to (16.32)-(16.35), to conclude that

there exist a cone C € K with

clusions involving Q(.(+)), starting with vZ

(16.45)  disty(spt |C|| N BIH(0), spt [[WZH|| 0 BI(0)) < CQsz(W?);

orthogonal rotations f,fo,fl,... of R"! with f‘o = Identity; and a se-
quence of positive numbers {o;} with 69 = 1 and 7 = e’jk&k_l for some
5;9 €{1,2,...,2¢—mo+ 1} and each k > 1, satisfying, for each k =0,1,2,...,

(16.46) T(ej) = Tilej)] < C (1) Quz (W), j=1,2,...,n+1;

(16.47)

COR . _dise(X,spt [VZ]) dT CJ[(X)
TR(BEY O\{Ir(X)I<50/16)

< C (ak)Qoz Q%}E(WZl)?
and for each p € (0,1/4],

(16.43) pt [ dist (Xt [T C T2 (X) < Q2 (W),
B

771 (0)

where C' = C(a, 7, Co) € (0,00) is as in (16.32)—(16.35). Noting that VZ =

(Azl);ﬁ1 U V, we deduce from (16.47), (16.48) and inequalities (16.34),
72Tm

(16.35) taken with Z = Z5, and reasoning exactly as for (16.44), that

(16.49) A% oT({0} x R™Y) =T% ({0} x R"71).
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This together with (16.44) taken with Z = Z; and (16.46) taken with k = 0
implies that
dista (T7 ({0} x R"™1) N ByH(0), 1% ({0} x R"') n BI+1(0))

< CQz (W),
where C' = C(a,7,Cp) € (0,00). On the other hand, we see directly from
Corollary 16.4(c) (taken with V in place of V and W?! in place of C) that
Qﬁ(wzl) < OR(W?') and by (16.42), (16.43) and (16.24) that R (W)
< O(121)°Ry2,(Co) < C|Zy — Z5]®, where C = C(n,a,7,Co) € (0,00). We
have thus established that for any pair of points Z1, Zo € Ty N B{L/Jgé(O),

distr (T7 ({0} x R™™) 0 By (0).T7% ({0} x R") 1 By (0)

< C’ZI - ZQ’a7
which in view of (16.39) says that
1,a n—1
Now fix j € {1,2,...,mp} and assume, for notational convenience and without
loss of generality, that H](O) = {(0,2%,y) € R*"™! : 22 > 0, y € R}

n+1
Bl/32

{z! = 0} = R™, so that T}, = {(0,92(y),y) : y € Bl/32( )}. Assuming that
V =V, with ¢ sufficiently large, note then that 7Y, C {|2?| < 1/128} and by
(16.38) and (16.50) that By, (0 )\ 17, has exactly two components. Let ' be
the component of Bl/64( ) \ T{, containing B’f/64(0) N {z? > 1/128}. Keeping
in mind that (16.30) and (16.31) are valid for each Z € Ty N B?;gé(O) and
each r =1,2,3,..., it follows from (16.30), (16.31) and unique continuation of
solutions to the minimal surface equation that

O

VL ((RxQ)NN;) Z|graphul|

Let Ty, be the orthogonal projection of Ty N (0) onto the hyperplane

where N; = UZETVmBnJrl( 0) (Z + FZ(N(HJ(O))) and, for each i = 1,2,... ,qj(.o)7

1/32

u; € C?(Y) with u; solving the minimal surface equation on €', |Du;| < 1,

u < ug < -0 < U, and, by the maximum principle, either u; = wu;41 or
j

u; < u;4q1 for each i = 1,2,...,q§-0) — 1. Since for each i = 1,2,...,q](0)

extends to Q' N B} /64(0) as a Lipschitz function with boundary values given
by wilgangy,, o (0:92(9),9) = ¢1(y) for each point (0,¢2(y),y) € 9N
B{l/64(0) Tv N B1/64(0), it follows from (16.50) and standard C1® boundary

regularity theory for uniformly elliptic equations ([Mor66]) that u; € C1*(¥'N
B1)64(0))-



994 NESHAN WICKRAMASEKERA

We have thus established that V' LB;%}l(O) = Z?f{l |M;| where, for each
j € {1,2,...,2¢ + 1}, M; is an embedded C1* hypersurface-with-boundary
with 9 M; = Ty N B%}l(()) and, for each j,k € {1,2,...,2¢ + 1}, either M; N
M =Ty N B?/'Ei(O) or M; = Mj,. This directly contradicts hypothesis (S3)
that V is assumed to satisfy, completing the proof of the theorem in case
O([Coll,0) = q+1/2.

Case 2: ©(||Cy|l,0) = g+1, ¢ > 2. Note that the validity of Theorem 16.1
in case O(||Co|l,0) = ¢ + 1/2 enables us to repeat the entire proof of Theo-
rem 15.2 with ¢ + 1 in place of ¢, yielding Theorem 15.2 with ¢ + 1 in place
of q. Consequently, the assertion of Remark (3) following the statement of Hy-
potheses 16.2 holds with ¢+ 1 in place of ¢+ 1/2. Thus we may simply repeat
(see the remark following the proof of Lemma 16.5) all of the steps of the above
argument taking ¢ + 1 in place of ¢ + 1/2. This establishes Theorem 16.1 in
case O(||Col|,0) = ¢ + 1.

The proof of Theorem 16.1 is now complete. O

Remark. The case ¢ = 1 of Theorem 3.3 is a special case of Allard’s
Regularity Theorem (which is reproduced by taking ¢ = 1 in our proofs of
Lemma 15.1 and Theorem 15.2). The validity of the case O(||Cyl/,0) = 3/2
of Theorem 3.4 follows from the validity of the case ¢ = 1 of Theorem 3.3';
indeed, in this case, the same argument as for Theorem 16.1 carries over (with
obvious simplifications) provided the induction hypothesis (H1) is replaced
by Theorem 3.3', case ¢ = 1. In fact, when O(||Cpl|,0) = 3/2, Theorem 3.4
is true without the stability hypotheses (S2) on V' (so V only needs to be
stationary and satisfy (S3)); see [Sim93, Cors. 2 and 3]. This in turn enables
us to prove Theorem 3.4 in case O(||Cyl|,0) = 2 by repeating the above proof
of Theorem 16.1 (case © (||Cyl|,0) = ¢ + 1), taking ¢ = 1 and, in place of
induction hypotheses (H1) and (H2), case ¢ = 1 of Theorem 3.3’ and case
O(]|Co|[,0) = 3/2 of Theorem 3.4 respectively.

Theorem 15.2 and Theorem 16.1 together with the above remark and the
remark preceding the statement of Theorem 3.3' complete the inductive proof
of both Theorem 3.3 and Theorem 3.4.

17. The Regularity and Compactness Theorem

Proof of Theorem 3.1. Note first that if V € S,, then it follows from
Theorem 3.3, Theorem 3.4 and Remark 3 of Section 6 that H" "7 (singV N
(B5(0)) = 0 for each v > 0 if n > 7 and singV N By (0) =0 if 2 < n < 6.

Suppose, for each k =1,2,3,..., that V;, € S, and that

A =limsup ||Vi|(B5T(0)) < oc.
k—o0
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By Allard’s integer varifold compactness theorem, there exists a stationary
integral varifold V of By*1(0), with ||V|(B5™(0)) < A + 1, such that, after
passing to a subsequence, V, — V' as varifolds in B;H(O). Set K =singV N
BI(0).

We argue that V' € S, as follows. By Theorem 3.3 and unique continuation
of solutions to the minimal surface equation, if M is a connected component
of regV and 0 < p/ < p < 2, there exists a number € = (M, p, p') € (0,1/2)
such that for all sufficiently large k,

spt [|Viel| N {X € ByT1(0) : dist(X, M N BT (0)) < e}
> Ul graphuf O spt |[Vi|| N {X € B(0) : dist(X, M N B (0) < e}

for some integer ¢ > 1 and functions ué“ c (M N B;‘H(O);ML) solving
the minimal surface equation on M N BQH(O). It follows that [, |A]2¢% <
Jregv IV ¢|? for each ¢ € Cl(regV), where A denotes the second fundamental
form of reg V. It is also clear, from Theorem 3.4, that V satisfies the structural
property (S3); for if not, there exists a point Z € spt ||V N By (0) such
that the (unique) tangent cone Cz to V at Z is supported by the union of a
finite number (> 3) of half-hyperplanes meeting along an (n — 1)-dimensional
subspace. By the definition of tangent cone and the fact that varifold conver-
gence of stationary integral varifolds implies convergence in Hausdorff distance
of the supports of the associated weight measures, for any given &1 > 0, there
exists a number o € (0,dist(Z,d ByT1(0))) such that for all sufficiently large
k, dist(spt |nz.0 4 Vil N BIT(0),spt || Cz|| N B (0)) < 1. This however con-
tradicts Theorem 3.4 if we take €1 = ¢(1/2,Cyz), where ¢ is as in Theorem 3.4.
Thus V € S,, and hence H"~"t7(K) = 0 for each v > 0 if n > 7 and K = () if
2<n<6.

Finally, suppose n = 7 and consider any V € S,. To complete the proof of
the theorem, it only remains to show that K is discrete. If this were false, there
would exist points Z,7Z; € K, j = 1,2,3..., such that Z; # Z for each j =
1,2,3,... and Z; — Z as j — oc. Letting 0; = |Z—Z;|, we obtain, passing to a
subsequence without changing notation, a tangent cone C = lim; 00 77,0, # V-
By the discussion above, C € S,. Since aj_l(Zj — 7) € S" ! Nsing NZo;# Vs
it follows, passing to a further subsequence, that aj_l(Zj ~7) — Z7* € S*1
and by Hausdorff convergence and Theorem 3.3, Z* € sing C. Since C is a
cone, it follows that {tZ* : ¢ > 0} C sing C, which is impossible since C € S,
and we have established that for n = 7, H7(K) = 0 for each v > 0 and any
Ves,. O
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18. Generalization to Riemannian manifolds

Let N be a smooth (n + 1)-dimensional Riemannian manifold (without
boundary) and for X € N, let expy denote the exponential map at X. For
each X € N, let Rx € (0,00] be the injectivity radius at X.

Let V be a stationary integral n-varifold on N. Let X € spt |V, N, 0 (X0)
be a normal coordinate ball of radius pg € (0, Rx,) around Xy. Then V =
eXpy. " V LN, (Xo) is an integral n-varifold on Brt(0) € Tx, N ~ R",
which is stationary with respect to the functional
(18.1) Fay(V) = / IALDF(X) o S| dV(X, S),

By (0)xGn
where F = expy,. Let ¢ € C (Bt (0); R™), and let ¢, ¢ € (—¢,¢) be the
flow generated by ¢. By computing directly the first variation dr, Vy) =
%’tzo Fxo(pt#V) of V with respect to Fx, and setting ér, V(¢) = 0, we
see that the following bound holds (cf. [SS81, (1.7), (1.9), (1.11)]) for some
constant p depending only on the metric on N. (Such p € (0,00) exists by
replacing N with a suitable open subset of N if necessary.)

(8§*1) For all ¢ € CL(B(0); R™),

/ dive ¥(X) dV (X, S)
By (0)x G
< M/n+1 ([P (X)) + [X][ Ve (X)]) dV][(X).
Bpy (0)
Furthermore, for ¢ € CZ (Bt (0) \ sing V; R"*), the second variation
d2
a2 - Fxo(pt#V)
of V' with respect to Fx, is given by (cf. [SS81, (1.8), (1.10), (1.12)])

53‘-)(0 V(i /regV (Z [ (divreg\/ T;Z))2

0%, V(W) =

- Z 7i+ Drj ) - m) dH" + R(Y),

1,j=1

where {71, 72,...,7,} is an orthonormal basis for the tangent space Tx (reg V)
of regV at X, D, denotes the directional derivative of ¢ in the direction 7
and

[R(¢)] < C“/egv (@l + [V ¢l + 1 X| IV $I?) dH™,

with ¢, ¢ absolute constants. If reg V' is orientable and v is a continuous choice
of unit normal to reg V', we may, for any ¢ € C!(reg V), extend (v to a vector
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field in C; (Byt1(0) \ sing V; R™™1) and take in the above ¢ = (v to deduce
that (cf. [SS81, (1.14), (1.15)])

T, V) = [ (IVCP = 1APC + H2C) W+ R(w),

where A denotes the second fundamental form of reg V', |A| the length of A,
H the mean curvature of reg V' and

[R(¥)| < cu/ § (@l¢l + 1KV ¢+ CIANXNIV P + IXICAP) dH™
reg

If 5]25(0 (v) > 0 for all 9 = (v, ¢ € Cl(reg V), then we have (cf. [SS81, (1.17)])

(8*2) For all ¢ € Cl(reg V) where ¢1, ¢ are constants depending only on n,

|A]2C2dH™ < IV ¢ dH™
)

/reg vNBp (o /reg VB (0)

vap [ (@n® + (VG CLAl+ X G
reg VB, (0)

+HX|CIAP + cop XPCPIA]?) dH™.

For the rest of this discussion, we take u, ¢1, ¢ to be chosen as above and
fixed.

Definitions. Let u, c1, co be the positive numbers as above.

(1) By a stable integral n-varifold V on N we mean a stationary integral
n-varifold V on N such that for each Xy € spt|V]| and each normal ball
Npo(Xo) C N around X, the integral n-varifold V = (expy! )4 V LN, (Xo)
on BH(0) € R™ satisfies (5*2).

(2) For a € (0,1), let S, denote the collection of stable integral n-varifolds
on N satisfying the structural condition (S3) of Section 3 taken with normal
ball N,(Z) C N in place of Bj*1(Z).

(3) For a € (0,1), let S} denote the collection of integral n-varifolds V' on
ByH(0) € R™! such that

(18.2) V =m0,p# exp}l# 1% LN, (X)

for some V € Sy, X € spt||V] and p € (0, Rx).
(4) For p € (0,00) and a« € (0,1), let Sx(p) be the set of integral n-varifolds
V' € 8% such that (18.2) holds for some V € S, and X € spt |V with Rx > p.

Remark. Let p € (0,00), and suppose that V' € Sk(p). Then for each
Y espt V]| nBLN0),

1/2
(18.3) Mop/2 Ty 4V € Salp/2),
where 1y = exp(;é)x(py) oexpy o1 ,-1. Note that 7y (Y) = 0.
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We assert that the following direct analog of Theorem 3.1 holds:

THEOREM 18.1 (Regularity and Compactness Theorem—Manifold ver-
sion). Let N be a smooth (n+ 1)-dimensional Riemannian manifold, Xo € N
and o € (0,1/2). Let {Vi;} C S4 be a sequence with Xy € spt ||Vi|| for each
k=1,2,... and with

limsup ||[Vi|/(V) < oo
k—o0

Then there exist a subsequence {k'} of {k} and a varifold V e S, with Xo €
spt ||V and with 1T+ (sing VNAN) =0 for eachy>0ifn>T, smgVﬂN
discrete if n = 7 and smgVﬂ N =0if2 <n <6 such that Vk/ — V as
varifolds of N and smoothly (i.e., in the C™ topology for every m) locally in
N\ sing V. In particular, if W e S, then HV T+ (singf/lv/ NN) =0 for each
v >01ifn>7,sing WNN is discrete ifn="Tand singVT/ﬁN =0if2<n<6.

By the preceding discussion, this theorem is equivalent to the assertion
obtained from it by replacing N with B*1(0) ¢ R™!, X, with 0 and S.
with S}; the proof of the latter amounts to making minor modifications, as
described below, to the proof of Theorem 3.1.

Step 1. Let V be an integral n-varifold of B} (0) such that (18.2) holds
for some stationary integral n-varifold V of N, X, € spt||V|| in place of X and
po € (0, Rx,) in place of p. By the discussion involving (5.3)—(5.9) of [SS81],
we have, for each 0 < o < ¢, where § = §(n, upg) € (0, 1), the following facts:

(18.4) TVIBETH0)) < (1+ 12nppoo)o " | VII(B5(0))

for all 7 with 0 < 7 < o; the density O(||V]],0) = lim,_ M
(and is finite); the function ©(]| - ||,0) is upper semi- contmuous
(18.5)

X112 \%4 Bntl 0 \%4 Bnt+l 0
L X v < VI8 (D_@wwun+aﬂlta (0)

= M
nt1g) | X[ F2 wpo™ on

exists

where C' = C(n, upo) € (0,00); tangent cones to V' at 0 € spt ||V exist and
are stationary integral hypercones of R™1.

Let VarTan(V,0) denote the set of tangent cones to V at 0. For Y €
spt [V N By2(0), let O([[VI,Y) = O(lno,pos24 7v#VI,0) (see 18.3) and
VarTan(V,Y') = VarTan(ng ,, /2 # 7y #V,0). Recalling the well-known fact that
if C is a stationary cone in a Euclidean space R™, then the set {Z € R™ :
O(||Cl, Z) = O(]|C]|,0)} is a linear subspace of R™, we deduce by the ar-
gument of Almgren’s generalised stratification of stationary integral varifolds
([AImO00, Rem. 2.28]; see also [Sim96, §3.4]) the following:
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Let V' be an integral n-varifold of By (0) such that (18.2) holds for
some stationary integral n-varifold V of N, X € spt HVH and p €
(0,Rx). For k = 0,1,2,...,n, let Sy = {Y € spt|V]| me/gl(O) :
dim{Z € R*1 . 0(||C]|, Z) = O(|C,0)} < k ¥C € VarTan(V,Y)}.
Then dimy (Sk) < k.

Step 2. We claim that the following analogs of Theorems 3.3 and 3.4 hold.

THEOREM 18.2 (Sheeting Theorem—Manifold Version). Let a € (0,1/2),
po € (0,00) and q be any integer > 1. Let o' = (2a + 1)/4. There exists a
number g9 =¢eo(n, q, o, upo) € (0,1) such that if V€ Sx(po), wy ||V II(BFT(0))
<q+1/2,0€(0,1/2), (¢—-1/2) < (wao™ " [V[(BEF(0)) < (¢ +1/2) and
o~ Udisty(spt ||V] N (R x By), {0} x By) + 02 < &g, then

q
VL(R x By) = ) |graphuy],
j=1

where u; € C’LB(BJ/Q) foreach j=1,2,...,q¢;u1 <ug <--- <y and

Du;(X1) — Duj(X
o' sup |uj| + sup |Duj| + o sup | Du;(X1) Ué( 2)|
By /2 Bg /s X1,X2€B, 5, X1#X2 | X1 — X,

1/2
sc(o“ / rw1|2d||vu<x>+ah’) .
Rx B,

Here C = C(?’L, q, &, ,UPO) € (07 OO) and 6 = 6(”7 q; &, MPO) € (07 1)

Remark. If the conclusions of Theorem 18.2 hold and V corresponds, as
in (18.2), to some V € So, X = Xo € NNspt ||V and p = po € (0, Rx, ), then
it follows that for each j € {1,2,...,q}, V; = |graph pou;(py *(-))] is stationary
with respect to the functional F(-) = Fx, (() L R x B(,/2>, where Fy, is as
in (18.1). Thus, by computing the associated Euler-Lagrange equation and
applying elliptic regularity theory, we see that u; € C°°(B,/3) and satisfies an
equation of the form

(18.6) > al,DpDeuj = f7
k=1
. : Dyuj(z)Douj(x) j
on B, o, with [f7(x)] < ppo and ape(x) = e — W + by (x), where
U (T

|b1.,(2)| < ppoo, for @ € B, s.

THEOREM 18.3 (Minimum Distance Theorem—Manifold Version). Let
a € (0,1/2), po € (0,00) and v € (0,1/2). Let o/ = (2a + 1)/4. Suppose
that Cq is an n-dimensional stationary cone in R" ! such that spt||Co is
equal to a finite union of at least three distinct n-dimensional half-hyperplanes
of R™ meeting along an (n — 1)-dimensional subspace. Then there exists
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e = (a7, upo. Co) € (0.1) such that if V € Si(po), o € (0,1/2), O(|V]],0) =
O(/IColl, 0) and (wa) M [VII(BF(0)) < ©c,(0) +7, then

o + o Mdisty (spt |V ]| 0 B2HH(0), spt | Co| N B2H(0)) > e.

In particular, o~ disty (spt || V]| N B2T1(0), spt ||Col| N B2F1(0)) > /2 for suf-
ficiently small o > 0.

The proof of Theorems 18.2 and 18.3 amounts to an easy modification of
the induction argument given above for Theorems 3.3' and 3.4, which is the
“Euclidean case,” viz. the case when p = 0 (which corresponds to the case
when N is an open subset of R"*! in Theorem 18.1). We outline the proof as
follows:

(i) It follows from [SS81, Th. 1], that Theorem 18.2 holds if V, in place of
the structural condition (S3), satisfies that

dimy (singV) <n —7 in case n > 7 and singV =0 in case n <6,
together with all other hypotheses as in Theorem 18.2.

(ii) Let po € (0,00), and let V be an integral n-varifold on BJ(0) such
that (18.2) holds with p = py for some stationary integral n-varifold V on N
and Xg € spt||V|| with Rx, > po. Let 0 € (0,1), A € [1,00), and suppose
that (w,o™) HV](BETH(0)) < Aand 072 [ 5 |2'*d|V[|(X)+0 < 1. By
taking ¢ (X) = z!¢2(X)e! in (§*1), where ¢ € CH(R x Bs)y4), we deduce that
(18.7)

foon, 1T e VIO <C ]
RXB3/4

for each ¢ € C}(R x Bs)y), where C = C(n,A, M, upo) € (0,00) and M =
SUPspt [0, 4 V|N(RX B ) |¢] +|DC|. Choosing ¢ such that ((x!,2") = ((2') in a
neighborhood of spt [[70,0 % V|| N (R x Bsy), where ¢ € C}(Bs4) is such that
¢=1on By, 0<¢<1and |[D(| <8, we deduce from this that

(18.8)

[ IValPdlmesVIG) <C (/
RXBl/Q

where C' = C(n, A, upo)-
(ili) Let po, V be as in (ii), and let o € (0,3/4). With 19,4 V in place

of V,
Jorr [ v +o
Rx B,
in place of Ey and with the constants €0, C depending on n, ¢, upg, Theo-

rem 5.1 holds; its proof amounts to modifying the argument of [Alm00, Th. 3.8]
in obvious ways, making use of (18.4), (18.5) and (18.8).

[ [21V ¢ d[lmo.o 4 VH(X)+U>

XB3/4

' 2 d |noo 4 VII(X) + J) ;

XB3/4
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(iv) Consequently, the case ¢ = 1 of Theorem 18.2 follows by the excess
improvement argument as in [All72, Chap. 8|.

(v) From (iii) and the inequalities (18.5), (18.7), we deduce that for pg, V'
as in (ii) and o € (0,3/4), Theorem 7.1 hold with 79,4 V in place of V' and

Jorr [ v +o
Rx B,

in place of Ey, again with the constants £, C etc. depending also on 100 -
(vi) For what follows, fix @ € (0,1/2), po € (0,00), and let o/ = (2a+1) /4.
For V € SX(pp) and o € (0,3/4), let

Bylo) = \for-2 [ tpavi|n) + o
Rx B,

Let ¢ be an integer > 2, and assume inductively the validity of Theo-
rem 18.2 with 1,2,...,¢—1 in place of ¢ and that of Theorem 18.3 if © (||Cy|, 0)
€{3/2,2,5/2,...,q—1/2,q}.

(vii) For each k = 1,2,3,..., let o, € (0,3/4), Vi € Sx(po) be such that
wi VRl (BEH(0) < g+1/2, 0 = 0 and (¢—1/2) < (waof) ™" Vil (B (0))
<(qg+1/2). If E‘*/k (o) — 0, then as in the discussion following Theorem 5.1,
we may blow up the sequence {ng,, « Vi L_B{"**(0)} by E{}k (o). We shall
continue to call a function v € WE)CQ (B1;R%) N L?(By; RY) produced this way
a coarse blow-up.

(viii) By the reasoning of Remarks 2 and 3 of Section 6 and Step 1 above,
we have the following:

Let q be an integer > 2 and suppose that the induction hypotheses as in
(vi) hold. If V € S%(po), 2 C BYTH(0) is open and O(||V |, Z) < q for
each Z € spt||[V] N, then H" " (singV L_Q) = 0 for each v > 0
ifn>TandsingV L_Q=0if2<n<6.

(ix) The collection By of all coarse blow-ups v (as in (vii)) is a proper
blow-up class, viz. B} satisfies properties (B1)-(B7) of Section 4. Verification
of properties (B1)-(B3), (B5) and (B6) proceeds in the same way as for the
Euclidean case described in Section 8 above. In view of (i), property (54)
follows from the corresponding argument for the Euclidean case, also described
in Section 8, with the inequality (18.5) taking the place of the monotonicity
identity (7.1).

Property (B7) is verified by separately establishing the same two cases
as Cases 1 and 2 of Section 9. With regard to Case 1, note that by taking
Y(X) = ((X)e? in (8*1), where { € CL(R x Bs)y), it follows that for each
k=1,2,...,
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/ Vx2~ngH770,ak#VkH(X)
RXB3/4

<C sup (I +1D¢]) o
spt 170,04, # VElIN(RXB3/4)
~ ~ _929 [ & 2
<C sup (IC1+1DS1) o2 (B (o%))

spt 10,0, # VilIN(RXB3,4)

where C' = C(n,q, upp). Case 1 is established by taking this in place of (9.8)
and (18.7) in place of (5.1) in the argument of Lemma 9.1. With regard to
Case 2, we note that the following analogue of Lemma 13.1 holds. Here Cg4,
Cy(p) are as defined in Section 10.

LEMMA 18.4. Let q be an integer > 2, a € (0,1/2), 8 € (0,1/4) and
po € (0,00). There exist numbers € = &(n,q,,0,upy) € (0,1/2), ¥ =
7(”7 q, &, 97 HPO) € (07 1/2) and B = B(na q, &, 07 MPO) € (07 1/2] such that the
following is true: Let o € (0,1), and suppose that the induction hypotheses as
in (vi) and the following hold.

(1) V€Sipo), O(IVI,0) 2 q, (wao™)HIVI(BFH(0)) < g +1/2.
(2) C= 231:1 |H;|+|G;| € Cy, where for each j € {1,2,...,q}, H; is the half-
space defined by H; = {(z,2%,y) € R"" 1 22 <0 and z' = \;j2?} and

G is the half-space defined by G; = {(z',2%,y) e R"™ : 22 > 0 and 2! =

uij}, with A\j, pj constants, A1 > g > -+ > Ag and p1 < g < -+ - < .

A~ 2 /
(3) (E‘*/(a)) = Jaxp, [ Pdlnoe 4 VI(X) + 0% <&, where o = (2004 1) /4.
(4) {Z: 0o VI, 2) = g} 0 (R x (Byja \ {|a?| < 1/16})) = 0.
(5) Jrx (B, 5\ {221 <1/16}) dist*(X, spt 0,02 V1) dl|C||(X) .
+ Jroe, dist” (X, spt [|C]) dllmoo 4 VII(X) <5 (B (o))"
Ay ) 2 . .
(6) (EV)” < 3Moinfpeg, . propxRm)={0}xRo-1} Jrxp, dist* (X, P), d[|V]|(X)

+02% where My = My(n,q) € (1,00) is the constant defined in Section 10.
(7) Either

(i) C e Cy(4), or

(ii) ¢ > 3, C € Cy(p) for some p € {5,...,2q} and

/ dist?(X, spt [[70.0 4 V[|) d]| C[|(X)
Rx(By2\{|z2|<1/16})

[ i st O] e 4 V)
RXBl

<pB _inf (/
CelJrZic (k) \/Rx(By2\{|z2|<1/16})

T diStQ(X,SPtHEH)dHUo,a#VH(X))-
RXBl

dist?(X, spt |00 V) d||C[|(X)
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Then there exist an orthogonal rotation T of R"*! and a cone C' € Cq such
that the conclusions of Lemma 13.1 hold with ng s 4V in place of V, E‘*/(O') mn
place of EV,

EY(C,o0) = \//RXB dist?(X, spt ||C||) d||no.o £ VII(X) + o2
1

in place of Ey and with the constants %, Co, 7y, 7, C1, Ca € (0,00) depending
only on n, q, o and ppg.

In proving this, note first that if 62% > Jrxs, 12 dlno.e 4 VII(X), then,
provided v < 0"+ /2, we trivially have that

0n2/R . dist?(X, spt ||C||) d||no.o 4 VI[(X) < 07" 2 (EA‘*/(U))
X Do

< 207" 2y < 020 < 6% (Ey(C,0))?.

Thus conclusions (a)—(d) hold with C' = C and I'= Identity, and conclusions
(e) and (f) can be checked as in the proof of Lemma 13.1. Hence we may
assume without loss of generality that

(Br@) <2 [ Pl VI,

With this additional assumption and with the help of inequality (18.5), the
obvious analogues of Theorem 10.1 and Corollary 10.2 can be established;
consequently, Lemma 18.4 can be proved by making obvious modifications to

2

the entire argument leading to Lemma 13.1, as described in Sections 10-13.
The obvious analog of Lemma 13.3 then follows; note, in particular, that
in the conclusions of this modified lemma we must take

aie.n = st (X591 [0 4 VI) A (X)
Rx(By/2\{|z%|<1/16})

1/2
[ dist (X spt [Cl) a4 V() + )
RxB 1

in place of @y, and note that the modified lemma yields that for some j €
{1,2,...,2¢ — 3}, C’ € C, and some orthogonal rotation I' of R"*1,

dist®(X, spt ||10,0,0 4 10,02 V) d||T C'[(X)
/Rx<Bl/2\{|x2|<1/16}> !

+ dist® (X, spt [T C'[|) dl[m0.,0 4 VII(X) < 1467 (Q3(0))?,

RxBq
where the parameters 61, . . ., 0243 and the constants v1, . . . 1943 are analogous
to the same quantities as in Lemma 13.3, with v; depending only on n, ¢, a,
ppo and for j € {2,3,...,2¢—3}, v; depending only on n, q, o, 61, ...,6;_1,1p0.
By choosing 01,03, ...,024—3 in that order, depending only on n, ¢, o and pupo,
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to ensure that 1/]-9]2 < %9]2-0‘ and GJQ-O‘, < %GJQ-O‘ for each j = 1,2,...,2q — 3, we
deduce that under the hypotheses of the modified lemma,
(QV (T4 C.0j0))" < 67 (Q}(C, )’
for some j € {1,2,...,2¢ — 3}, C’' € C,; and an orthogonal rotation I of R"*1.
In view of the remark preceding Theorem 18.1, the iterative application of this
as in Lemma 14.1 gives the analog of Lemma 14.1; arguing as in Corollary 14.2
then establishes Case 2, completing the proof that ] is a proper blow-up class.
(x) In view of (i) and (18.6), the argument of Section 15 carries over to
yield Theorem 18.2 for ¢ > 2, subject to the induction hypotheses as in (vi).
First in case ©(||Cyp||,0) = ¢ + 1/2 and then in case ©(Cy||,0) = ¢ + 1, again
subject to the induction hypotheses as in (vi), Theorem 18.3 follows from the
argument, with obvious modifications, of Section 16. In particular, note that in
view of the “monotonicity inequality” (18.5) needed in the proof, and the need
to use directly the first variation inequality (S*1) in establishing regularity of
blow-ups as in Theorem 16.7, we must take

1/2
£5(C,0) = ( /BW(O) dist(X, spt ]| C) ) dllnor 4 VII(X) + 0™ )
1

in place of the excess £ used in Section 16 (see Lemma 16.8). Same modification
applies to the excess Q used in Lemma 16.9.

Step 3: In view of Step 1, Step 2 and the fact that Allard’s integral
varifold compactness theorem ([All72, Th. 6.4]) holds in Riemannian manifolds,
Theorem 18.1 follows from the argument of Theorem 3.1 in Section 17.

19. A sharp varifold maximum principle

We conclude this paper by pointing out an immediate application of The-
orem 18.1; namely, the following optimal strong maximum principle for co-
dimension 1 stationary integral varifolds.

THEOREM 19.1. Let N be a smooth (n+1)-dimensional Riemannian man-
ifold.

(a) If Vi, Vi are stationary integral n-varifolds on N such that
M (spt | VAl Nspt [[Val]) =0,

then spt || Vi | N spt [[Va ] = 0.

(b) Let Qq, Q9 be open subsets of N with Q1 C Qo and M; = 0Q;, i = 1,2.
If for i = 1,2, M; is connected, H" '(sing M;) = 0 and V; = |M;| is
stationary in N, then either spt ||V1|| = spt || V]| or spt [|[V1]|Nspt || Vz|| = 0.
Here sing M; = M; \ reg M;, where reg M; is the set of points X € M;
with the property that there exists a number o = o(X) > 0 such that
M; N B Y(X) is a smooth, properly embedded hypersurface of BMF1(X)
with no boundary in BT(X).
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Remark. These results were established by T. Ilmanen ([Ilm96]) under the
stronger hypotheses that

M2 (spt VAl Nspt [[Val]) = 0
in part (a) and

H" 2 (sing M;) =0, i=1,2,
in part (b). Obvious examples show that for any v > 0, neither of these
hypotheses can be weakened to H"~1*7(-) = 0.

Proof. The argument of [Ilm96] carries over, with (2) of [Ilm96] replaced
by the hypothesis
H" L (sing M) =0
and Theorems (8), (9) therein replaced by our Theorem 18.1. O
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