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Min-Max theory and
the Willmore conjecture

By Fernando C. Marques and André Neves

Abstract

In 1965, T. J. Willmore conjectured that the integral of the square of

the mean curvature of a torus immersed in R3 is at least 2π2. We prove

this conjecture using the min-max theory of minimal surfaces.
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1. Introduction

The most basic geometric invariants of a closed surface Σ immersed in

Euclidean three-space are the Gauss curvature K and the mean curvature H.

These invariants have been studied in differential geometry since its very be-

ginning. The total integral of the Gauss curvature is a topological invariant by

the Gauss-Bonnet theorem. The integral of the square of the mean curvature,

known as the Willmore energy, is especially interesting because it has the re-

markable property of being invariant under conformal transformations of R3

[7], [47]. This fact was already known to Blaschke [7] and Thomsen [42] in the

1920’s (see also [47]).

Sometimes called bending energy, the Willmore energy appears naturally

in some physical contexts. For instance, it had been proposed in 1812 by Pois-

son [33] and later by Germain [13] to describe elastic shells. In mathematical

biology it appears in the Helfrich model [15] as one of the terms that contribute

to the energy of cell membranes.

If we fix the topological type of Σ and ask the question of what is the

optimal immersion of Σ in R3, it is natural to search among solutions to geo-

metric variational problems. It is not difficult to see that the Willmore energy

is minimized, among the class of all closed surfaces, precisely by the round

spheres with value 4π. The global problem of minimizing the Willmore energy

among the class of immersed tori was proposed by T. J. Willmore [48].

The main purpose of this paper is to prove the Willmore conjecture:

1.1. Willmore Conjecture (1965, [48]). The integral of the square of

the mean curvature of a torus immersed in R3 is at least 2π2.

The equality is achieved by the torus of revolution whose generating circle

has radius 1 and center at distance
√

2 from the axis of revolution:

(u, v) 7→
Ä
(
√

2 + cos u) cos v, (
√

2 + cos u) sin v, sin u) ∈ R3.

This torus can also be seen as a stereographic projection of the Clifford torus

S1( 1√
2
)× S1( 1√

2
) ⊂ S3.

The Willmore conjecture can be reformulated as a question about sur-

faces in the three-sphere because if π : S3 \ {(0, 0, 0, 1)} → R3 denotes the

stereographic projection and Σ ⊂ S3 \ {(0, 0, 0, 1)} is a closed surface, then

(1)

∫
Σ̃

‹H2d‹Σ =

∫
Σ

(1 +H2)dΣ.
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Here H and ‹H are the mean curvature functions of Σ ⊂ S3 and ‹Σ = π(Σ) ⊂ R3,

respectively.

The conformal invariance of (1) motivates the following definition. Unless

otherwise stated, we will assume throughout the paper that surfaces are smooth

and connected.

1.2. Definition. The Willmore energy of a closed surface Σ ⊂ S3 is the

quantity

W(Σ) =

∫
Σ

(1 +H2) dΣ.

Here H denotes the mean curvature of Σ; i.e., H = k1+k2
2 , where k1 and k2 are

the principal curvatures. Note that if F : S3 → S3 is a conformal map, then

W(F (Σ)) =W(Σ).

The Willmore conjecture follows as a consequence of our main theorem:

Theorem A. Let Σ ⊂ S3 be an embedded closed surface of genus g ≥ 1.

Then

W(Σ) ≥ 2π2,

and the equality holds if and only if Σ is the Clifford torus up to conformal

transformations of S3.

Theorem A indeed implies the Willmore conjecture because Li and Yau

[26] proved that if an immersion f : Σ → S3 covers a point x ∈ S3 at least k

times, then W(Σ) ≥ 4πk . Therefore a nonembedded surface Σ has W(Σ) ≥
8π > 2π2.

If Σ is a critical point for the functional W, we say that Σ is a Willmore

surface. The Euler-Lagrange equation for this variational problem, attributed

by Thomsen [42] to Schadow, is

∆H + 2(H2 −K)H = 0,

where K denotes the Gauss curvature. Hence the image of a minimal surface

under a conformal transformation of S3 is a Willmore surface. (Minimal sur-

faces in S3 with arbitrary genus were constructed by Lawson [25].) These are

the simplest examples of Willmore surfaces but not the only ones. Bryant [8]

found and classified immersed Willmore spheres and Pinkall [31] constructed

infinitely many embedded Willmore tori in S3 that are not conformal to a

minimal surface. Weiner [46] checked that the second variation of W at the

Clifford torus is nonnegative.

The existence of a torus that minimizes the Willmore energy was estab-

lished by Simon [40]. His work was later extended to surfaces of higher genus

by Bauer and Kuwert [6] (see also [20]). We note that the existence of mini-

mizers among higher genus surfaces in three-space also follows from our work
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since Theorem A immediately implies the Douglas-type condition of [40]. The

minimum Willmore energy among all orientable closed surfaces of genus g is

less than 8π [25], [17], [19], and converges to 8π as g →∞ [21]. The minimum

Willmore energy among all immersed projective planes in R3 is known to be

12π [9], [18].

Conjecture 1.1 was known to be true in some particular cases. Willmore

himself [49], and independently Shiohama and Takagi [38], proved it when

the torus is a tube of constant radius around a space curve in R3. Chen [10]

proved it for conformal images of flat tori in S3. (See [43] and [5] for related

results.) Langer and Singer [23] proved it for tori of revolution. (Also see [16]

for a generalization.) Langevin and Rosenberg [24] proved that any embedded

knotted torus Σ in R3 satisfies
∫

Σ |K| dΣ ≥ 16π. (Recall that a torus is knotted

if it is not isotopic to the standard embedding.) Since
∫

ΣH
2 dΣ ≥ 1

2

∫
Σ |K| dΣ

for any torus Σ ⊂ R3, we conclude that W(Σ) ≥ 8π if Σ is knotted. Li and

Yau [26] introduced the notion of conformal volume and proved the conjecture

for a class of conformal structures on T 2 that includes that of the square torus.

The family of conformal structures for which their method applies was later

enlarged by Montiel and Ros [29]. Ros [35] proved the conjecture for tori

Σ ⊂ S3 that are invariant under the antipodal map. This result also follows

from the work of Topping [43], [44] on integral geometry. The conjecture was

also known to be true for tori in R3 that are symmetric with respect to a point

(Ros [36]).

Due to its connection to mathematical biology, evidence for the fact that

the Clifford torus and its Dupin cyclides minimize the Willmore energy was

experimentally observed in membranes with the aide of a microscope by Mutz

and Bensimon [30] (see also [28]).

Finally, our understanding of the analytical aspects of the Willmore equa-

tion has been greatly improved in recent years thanks to the work of Kuwert-

Schätzle (e.g., [22]) and Rivière (e.g., [34]).

The next result is a corollary of Theorem A, but in fact we will prove it

first. This theorem rules out the existence of a minimal surface of higher genus

in S3 with area less than 2π2.

Theorem B. Let Σ ⊂ S3 be an embedded closed minimal surface of genus

g ≥ 1. Then area(Σ) ≥ 2π2, and area(Σ) = 2π2 if and only if Σ is the Clifford

torus up to isometries of S3.

1.3. Remark. We note that a closed minimal surface Σ ⊂ S3 of genus zero

has to be totally geodesic (Almgren [4]), and so its area is 4π. If g ≥ 1 and Σ

is not embedded, then area(Σ) =W(Σ) ≥ 8π > 2π2, by Li and Yau [26].

Finally, Theorem B will follow from the min-max theorem below. The

relevant definitions are in Sections 7 and 8.
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Theorem C. Let Σ ⊂ S3 be an embedded closed surface of genus g ≥ 1,

and let Π be the homotopy class associated with Σ (see Definition 8.3) with

width L(Π). Then there exists an embedded closed minimal surface ‹Σ ⊂ S3

such that

4π < area(‹Σ) = L(Π) ≤ W(Σ).

Theorems B and C together immediately imply the next corollary. The

corollary presents the Clifford torus as the min-max surface of a 5-dimensional

family in S3.

Corollary D. Let “Π be the homotopy class associated with the Clifford

torus “Σ = S1( 1√
2
)× S1( 1√

2
) ⊂ S3. Then

L(“Π) = area(“Σ) = 2π2.

We give an outline of our proof in the next section. Very briefly, to

each embedded closed surface Σ in S3, we associate a continuous 5-parameter

family of surfaces (integral 2-currents with boundary zero, to be more precise)

in S3 such that the area of each surface in the family is bounded above by

W(Σ). This family is parametrized by a map Φ defined on the 5-cube I5 and

is constructed so that

• Φ(x, 0) = Φ(x, 1) = 0 (trivial surface) for any x ∈ I4;

• Φ(x, t) is an oriented round sphere in S3 for any x ∈ ∂I4, t ∈ [0, 1];

• {Φ(x, t)}t∈[0,1] is a homotopically nontrivial sweepout of S3 for any

x ∈ ∂I4.

If genus(Σ) ≥ 1, this map Φ has the crucial property that its restriction to

∂I4×{1/2} is a homotopically nontrivial map into the space of oriented great

spheres, which is homeomorphic to S3. The min-max theory developed in this

paper shows that for any such family Φ, there must exist y ∈ I5 such that

area(Φ(y)) ≥ 2π2.

Acknowledgements. The authors would like to thank Brian White for his

constant availability and helpful discussions. The authors are also thankful

to Richard Schoen for his friendliness and encouragement while this work was

being completed. Finally we would like to thank Rob Kusner for his interest

and useful comments. Part of this work was done while the authors were

visiting Stanford University.

2. Main ideas and organization

We outline our proof of the Willmore conjecture. For the purpose of this

discussion, we will ignore several technical issues until Section 2.11. Until then,

we will appeal mainly to intuition in order to explain the principal ideas behind

our approach.
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2.1. The min-max theory. We begin by describing the min-max theory of

minimal surfaces in an informal way. We restrict our discussion to the case of

2-surfaces in a compact Riemannian 3-manifold M .

Let In = [0, 1]n, and suppose we have a continuous map Φ defined on In

such that Φ(x) is a compact surface with no boundary in M for each x ∈ In.

Two such maps Φ and Φ′ are homotopic to each other relatively to ∂In if there

exists a continuous map Ψ, defined on In+1, such that

• Ψ(y) is a compact surface with no boundary in M for each y ∈ In+1;

• Ψ(0, x) = Φ(x) and Ψ(1, x) = Φ′(x) for each x ∈ In;

• Ψ(t, x) = Φ(x) = Φ′(x) for every t ∈ I, x ∈ ∂In.

The set Π of all maps Φ′ that are homotopic to Φ is called the homotopy class

of Φ. The width of Π is then defined to be the min-max invariant:

L(Π) = inf
Φ′∈Π

sup
x∈In

area(Φ′(x)).

For instance, we could define Φ(s) = {x4 = 2s − 1} ⊂ S3 for s ∈ [0, 1].

If Π1 denotes its homotopy class, one should have L(Π1) = 4π. Informally, Φ

can be thought of as an element of π1(S, {0}), where S denotes the space of

2-surfaces in S3. (0 means the trivial surface, of area zero.)

The main goal of what we call the min-max theory is to realize the width

as the area of a minimal surface. The prototypical result is

Min-Max Theorem. If

L(Π) > sup
x∈∂In

area(Φ(x)),

then there exists a smooth embedded closed minimal surface Σ ⊂ M (possibly

disconnected, with multiplicities) whose area is equal to L(Π). Moreover, if

{Φi} is a sequence of maps in Π such that

lim
i→∞

sup
x∈In

area(Φi(x)) = L(Π),

then we can choose Σ to be the limit, as i→∞, of Φi(xi) for some xi ∈ In.

2.2. Remark. By analogy with standard Morse theory, and since n is the

number of parameters, one should expect that the index of Σ as a minimal

surface is at most n. In general, verifying this could be a delicate issue.

2.3. Canonical family. Let B4 be the unit ball. For every v ∈ B4, we

consider the conformal map

Fv : S3 → S3, Fv(x) =
(1− |v|2)

|x− v|2
(x− v)− v.

Note that if v 6= 0, then Fv is a centered dilation of S3 that fixes v/|v| and

−v/|v|. To each smooth embedded closed surface Σ ⊂ S3, we associate a
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canonical 5-dimensional family of surfaces:

Σ(v,t) = ∂
¶
x ∈ S3 : dv(x) < t

©
, (v, t) ∈ B4 × [−π, π].

Here dv : S3 → S3 denotes the signed distance function to the oriented surface

Σv = Fv(Σ), which becomes well defined after we choose a unit normal vector

field N to Σ in S3. The distance is computed with respect to the standard

metric of S3. Note that Σ(v, π) = Σ(v,−π) = ∅ for every v ∈ B4.

The fundamental relation between the canonical family and the Willmore

energy is given by Ros [35] (see also [14]):

(2) area(Σ(v,t)) ≤ W(Σv) =W(Σ) for all (v, t) ∈ B4 × [−π, π],

where the last equality follows from the conformal invariance of the Willmore

energy.

2.4. Boundary blow-up. In view of (2), we would like to apply the min-

max method to the 5-dimensional family

{Σ(v,t)}(v,t)∈B4×[−π,π].

Unfortunately this family is not continuous in any reasonable sense if we try

to extend it to B
4 × [−π, π] ≈ I5. As v ∈ B4 converges to p ∈ Σ, we will see

that the limit depends on the angle of convergence. In fact, if

vn = |vn|(cos(sn)p+ sin(sn)N(p))

is a sequence in B4 converging to p ∈ Σ, i.e., |vn| tends to one, |vn| < 1, and

sn tends to zero, then the limit of Σ(vn,t) is the geodesic sphere

∂Bπ
2
−θ+t(− sin(θ)p− cos(θ)N(p)),

where

θ = lim
n→∞

arctan
sn

1− |vn|
∈
ï
−π

2
,
π

2

ò
.

2.5. Remark. As v ∈ B4 converges to p ∈ S3 \ Σ, Σ(v,t) converges to

∂Bπ+t(p) or ∂Bt(−p),

depending on which connected component of S3 \ Σ contains p.

In order to fix the failure of continuity, and after computing every bound-

ary limit, we reparametrize the canonical family to make it continuous on

B
4× [π, π]. This is done by “blowing-up” B

4
along the surface Σ, a procedure

that we describe now.

We first choose ε > 0 to be small and Ωε to be a tubular neighborhood of

radius ε around Σ in B
4
:

Ωε = {(1− s1)(cos(s2)p+ sin(s2)N(p)) : |(s1, s2)| < ε, s1 ≥ 0}.

Then we construct a continuous map T : B
4 → B

4
such that
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• T maps B4 \ Ωε homeomorphically onto B4;

• T maps Ωε onto Σ by nearest point projection;

• the map

C(v, t) = Σ(T (v),t), (v, t) ∈ (B4 \ Ωε)× [−π, π],

admits a continuous extension to (B4 \ Ωε) × [−π, π], which we still

denote by C.

Finally we extend C to Ωε so that C is constant along the radial directions.

The resulting map C, defined on B
4×[−π, π], satisfies the following properties:

(i) area(C(v, π)) = area(C(v,−π)) = 0 for every v ∈ B4
;

(ii) C(v, t) is a geodesic sphere whenever v ∈ S3 ∪ Ωε;

(iii) for each v ∈ S3, there exists a unique s(v) ∈ [−π/2, π/2] such that

C(v, s(v)) is a great sphere, i.e., such that

C(v, s(v)) = ∂Bπ/2(Q(v))

for some Q(v) ∈ S3.

If we take into account the orientation, then ∂Bπ/2(p) 6= ∂Bπ/2(−p). Hence

Q(v) is also unique. In particular,

(3) sup
(v,t)∈∂(B

4×[−π,π])

area(C(v, t)) = 4π.

Because of condition (i), we can extend C to be zero (trivial surface) on B
4 ×

(R \ [−π, π]).

2.6. The min-max family. To apply the min-max theory described earlier,

we will reparametrize C to get a map Φ defined on I5. The min-max family is

given by

Φ(x, t) = C(f(x), 2π(2t− 1) + ŝ(f(x))), x ∈ I4, t ∈ I,

for some choice of homeomorphism f : I4 → B
4

and some extension ŝ : B
4 →

[−π/2, π/2] of the function s to B
4
. Note that this reparametrization is chosen

so that when x ∈ ∂I4, we have that

(4) Φ(x, t) is a great sphere if and only if t = 1/2.

Estimate (2) becomes

(5) sup
x∈I5

area(Φ(x)) ≤ W(Σ).

From (3), we also get

(6) sup
x∈∂I5

area(Φ(x)) = 4π.
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Informally, the min-max family Φ can be thought of as an element of the

relative homotopy group π5(S,G), where S denotes the space of 2-surfaces in

S3 as before and G denotes the space of geodesic spheres.

2.7. Degree of Q. The map Φ is continuous and defined on I5, so let Π

be its homotopy class. Because of (6), we have that supx∈∂I5 area(Φ(x)) = 4π.

Therefore we need to check that L(Π) > 4π in order to apply the Min-Max

Theorem to this class. Of course this might not be the case if Σ is a topological

sphere, but we will prove that L(Π) > 4π whenever g = genus(Σ) ≥ 1.

The main topological ingredient in the proof of this fact is

Q : S3 → S3 is a continuous map with degree equal to g.

This means that the canonical family detects the genus of Σ, and this is what

will make the min-max approach work. The above fact, derived in Section 3,

is a consequence of the Gauss-Bonnet Theorem.

This has an important homological implication as follows. First note that

(7) Φ(x, 1/2) = ∂Bπ/2(Q(f(x)))

for every x ∈ ∂I4. Now let T denote the set of all unoriented great spheres

in S3. By associating to each sphere in T the line generated by its center, we

see that T is naturally homeomorphic to RP3. If |Φ|(x) = |Φ(x)| denotes the

surface Φ(x) after forgetting orientations (the reason we introduce this will be

explained in Section 2.11), then |Φ| maps ∂I4 × {1/2} into T . The fact that

deg(Q) = g and equation (7) then imply

(8) |Φ|∗(∂I4 × {1/2}) = 2g ∈ H3(RP3,Z).

This will play a crucial role in the proof that L(Π) > 4π.

2.8. L(Π) > 4π. Here we assume g ≥ 1. The proof is by contradiction,

therefore assume we can find a sequence of maps {φi}i∈N in Π such that

sup
x∈I5

area(φi(x)) ≤ 4π +
1

i
.

Note that φi = Φ on ∂I5.

First we summarize the argument. We will construct a 4-dimensional

submanifold R(i) ⊂ I5, with ∂R(i) ⊂ ∂I4 × I, that separates I4 × {0} from

I4 × {1}. We construct R(i) so that for every x ∈ R(i), the surface |φi(x)| is

close to a great sphere in T . This can be used to produce by approximation a

continuous function

fi : R(i)→ T such that fi((x, t)) = |Φ(x, 1/2)| for (x, t) ∈ ∂R(i).

Since we prove that ∂R(i) is homologous to ∂I4 × {1/2} in ∂I4 × I, the

existence of fi implies that |Φ|∗(∂I4 × {1/2}) = 0 in H3(RP3,Z). This is in

contradiction with (8).
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We now give more details. In what follows ε > 0 is a fixed small number.

We denote by A(i) the set of all x ∈ I5 such that the distance of the surface

|φi(x)| to T (in an appropriate sense) is at least ε. Since φi, like Φ, vanishes

on I4 × {0} and I4 × {1}, these sets are both contained in A(i).

We define A(i) to be the connected component of A(i) that contains

I4 × {0}. For the purpose of this discussion, we assume A(i) and A(i) are

compact manifolds with boundary.

We claim that A(i) does not intersect I4 × {1} if i is sufficiently large.

Suppose this is false. Then we find, after passing to a subsequence, a sequence

of continuous paths

γi : [0, 1]→ A(i) ⊂ A(i) with γi(0) ∈ I4 × {0}, γi(1) ∈ I4 × {1}.

The maps σi = φi ◦ γi, defined on I = [0, 1], are all homotopic to each other.

Their homotopy class Π1, just like in the 1-dimensional example in Section 2.1,

satisfies L(Π1) = 4π. Moreover, we have

4π = L(Π1) ≤ sup
t∈I

area(σi(t)) ≤ sup
x∈I5

area(φi(x)) ≤ 4π +
1

i
.

Therefore, by the Min-Max Theorem, we can find ti ∈ I such that σi(ti)

converges to an embedded minimal surface S with area 4π. We must have

that S is a great sphere, but this contradicts the fact that the distance of

|σi(ti)| = |φi(γi(ti))| to T is at least ε.

One immediate consequence of the claim is that

∂A(i) ∩ ∂I5 ⊂ (∂I4 × I) ∪ (I4 × {0}).

Let R(i) be the closure of ∂A(i) ∩ int(I5). It follows from the definition

of A(i) that

(9) d(|φi(x)|, T ) ≤ ε for every x ∈ R(i).

In particular, ∂R(i) ⊂ ∂I4×I. In fact it follows from (4) that, given any δ > 0,

we can choose ε > 0 sufficiently small so that

(10) ∂R(i) ⊂ ∂I4 × [1/2− δ, 1/2 + δ].

Let C(i) = ∂A(i) ∩ (∂I4 × I). Since ∂A(i) has no boundary, we get that

∂C(i) = ∂R(i) ∪ ∂(I4 × {0}).

Therefore, since C(i) ⊂ ∂I4×I, we have that ∂R(i) is homologous to ∂I4×{0}
in ∂I4× I. Consequently, ∂R(i) is also homologous to ∂I4×{1/2} in ∂I4× I.

Now let Φ̂(x, t) = |Φ(x, 1/2)| ∈ T for x ∈ ∂I4. Because φi = Φ on ∂I5,

we get from (31) that |φi||∂R(i) is close to Φ̂|∂R(i). We use this, together with

(9), to approximate |φi| on R(i) by a continuous map fi : R(i)→ T such that

fi = Φ̂ on ∂R(i). This implies in homology that

Φ̂∗[∂R(i)] = fi∗[∂R(i)] = [fi#∂(R(i))] = [∂fi#(R(i))] = 0.
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On the other hand, we have

Φ̂∗[∂R(i)] = Φ̂∗[∂I
4 × {1/2}] = |Φ|∗([∂I4 × {1/2}]) = 2g ∈ H3(RP3,Z).

We have reached a contradiction.

2.9. Proof of Theorem B. Let Σ be the minimal surface with least area

among all minimal surfaces in S3 with genus greater than or equal to 1. (The

existence of Σ follows from standard arguments in Geometric Measure Theory.

This is explained in Appendix A.) The area of Σ is of course bounded above

by 2π2, the area of the Clifford torus.

We claim that index(Σ) ≤ 5. This claim implies, by a theorem of Urbano

[45], that Σ must be the Clifford torus up to isometries of S3.

Suppose, by contradiction, that index(Σ) > 6. If {Σ(v,t)}(v,t)∈B4×[−π,π]

denotes the canonical family, then (2) gives

sup
(v,t)∈B4×[−π,π]

area(Σ(v,t)) ≤ W(Σ) = area(Σ).

The last equality follows from the fact that Σ is a minimal surface. The fact

that Σ is minimal also implies that the function (v, t) 7→ area(Σ(v,t)) has an

isolated global maximum point at (0, 0). Since we are assuming that the index

is strictly bigger than the dimension of the parameter space, we can slightly

perturb {Σ(v,t)} in a neighborhood of (0, 0) to produce a new family {Σ′(v,t)}
with

(11) sup
(v,t)∈B4×[−π,π]

area(Σ′(v,t)) < area(Σ).

Let Φ′ be the min-max family produced out of {Σ′(v,t)}, just like we con-

structed Φ out of {Σ(v,t)}. Let Π′ be the homotopy class of Φ′. Since Φ′ agrees

with Φ on ∂I5, and since g = genus(Σ) ≥ 1, we can argue similarly as in

Section 2.8 to get L(Π′) > 4π. Therefore, because of (6), we can apply the

Min-Max Theorem to Π′ in order to find an embedded minimal surface “Σ (with

possible multiplicities) in S3 such that

area(“Σ) = L(Π′) > 4π.

But it follows from (11) that

L(Π′) ≤ sup
x∈I5

area(Φ′(x)) < area(Σ) ≤ 2π2.

Thus area(“Σ) < area(Σ) ≤ 2π2.

The area of any embedded minimal surface in S3 is at least 4π. It follows

that the multiplicity of “Σ must be equal to one. (Otherwise area(“Σ) ≥ 8π.)

Moreover, since area(“Σ) > 4π, we get that genus(“Σ) ≥ 1. Since area(“Σ) <

area(Σ), we obtain a contradiction with the least-area property of Σ. Therefore

index(Σ) ≤ 5 and Σ is the Clifford torus up to isometries of S3.
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2.10. Proof of Theorem A. Let Σ be an embedded closed surface in S3,

not necessarily minimal, with genus g ≥ 1. We can suppose W(Σ) < 8π.

(Otherwise the theorem follows immediately.) Let Φ be the min-max family

associated with Σ, and let Π be its homotopy class. From 2.8, we get that

L(Π) > 4π. Because of (6), we can apply the Min-Max Theorem to Π in order

to find an embedded minimal surface “Σ (with possible multiplicities) in S3

such that
area(“Σ) = L(Π) > 4π.

But it follows from (2) that

L(Π) ≤ sup
x∈I5

area(Φ(x)) ≤ W(Σ) < 8π.

Thus 4π < area(“Σ) ≤ W(Σ) < 8π. As in Section 2.9, this implies that the

multiplicity of “Σ is equal to one and that genus(“Σ) ≥ 1. It follows from The-

orem B that area(“Σ) ≥ 2π2. Hence W(Σ) ≥ 2π2 and the Willmore conjecture

holds. The rigidity statement follows by a perturbation argument similar to

the one in 2.9.

2.11. The technique. We discuss the technical work that is necessary to

rigorously implement the min-max argument described above. In this subsec-

tion we assume the reader is familiar with some concepts of Geometric Measure

Theory; see Section 4 for definitions.

In 1981, building on the work of Almgren [3], Pitts [32] succeeded in prov-

ing by min-max methods that any compact Riemannian manifold of dimension

n ≤ 7 contains a smooth embedded closed minimal hypersurface, where the

regularity for the case n = 7 was provided by Schoen and Simon in [37]. The

methods of [3] and [32] are based in tools from Geometric Measure Theory,

and comprise what we refer to in this paper as the Almgren-Pitts Min-Max

Theory. The surfaces of a min-max family in this theory are integral currents,

while the convergence to the min-max minimal hypersurface is in the sense of

varifolds.

There are other treatments of the min-max theory, such as [41], [11].

These impose stronger regularity and convergence conditions on the surfaces

of a min-max family. These conditions are not satisfied by our sets Σ(v,t).

In particular, the family {Σ(v,t)} can exhibit the well-known phenomenon of

cancellation of mass: the possibility that two pieces of the surface match with

opposite orientations and cancel out.

In Section 2.1, we considered families of surfaces parametrized by the

n-cube. In reality, Almgren and Pitts work with a discretized version: the

maps are defined on the vertices of grids in In that become finer and finer.

The notion of continuity is replaced by the concept of fineness of a map, and

appropriate discretized notions of homotopy have to be provided. Pitts chooses

to work with families of currents that are fine in the mass norm M. The
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advantage of using the M-norm in Z2(S3) is that it can easily be localized

(unlike the F-metric), making it ideal for area comparisons, cut-and-paste

arguments, and thus, regularity theory. The other advantage is that the mass

functional is continuous in the M-norm, as in the F-metric (but not in the flat

topology).

The disadvantage is that even the simplest family, like the 1-dimensional

family {x4 = s} described in Section 2.1, is not continuous with respect to

the mass norm. This issue is addressed by discretizing the family {x4 = s},
and then interpolating, which means adding currents to the family or grid so

that it becomes fine in the M-norm. This is done in a way that both the

original and the new families represent, under a suitable homomorphism, the

same element in H3(S3,Z). The min-max procedure is then applied to the

interpolated family.

In this work we deal with the technical difficulties mentioned above by

following the Almgren-Pitts approach. The min-max family Φ is defined on

I5 (as in Section 2.6), takes values in Z2(S3), and is continuous in the flat

topology. By discretizing and interpolating, we construct a sequence of discrete

maps φi that are fine in the mass norm and approximate Φ in the flat topology.

Since the original map Φ is already continuous in varifold sense when restricted

to ∂I5, we can take φi to approximate Φ on ∂I5 in the F-metric. We also

need to keep the fact that the width is bounded by the Willmore energy of

Σ. Therefore the interpolation has to be carried out in such a way that the

supremum of M(φi) is not much bigger than the supremum of M(Φ).

The sets A(i) and R(i) that appear in Section 2.8 will be replaced by

cubical singular chains in the rigorous argument. This is more appropriate for

the homological conclusions and fits nicely with the discrete nature of φi. The

reason we sometimes need to forget orientations and work with |φi|, |Φ| instead

of φi,Φ, as in Section 2.8, is that the convergence to the minimal surface in the

Min-Max Theorem, using the Almgren-Pitts Min-Max Theory, is in the sense

of varifolds. Later |T | will denote the varifold associated with the integral

current T .

The construction of the interpolating maps φi follows basic ideas of Alm-

gren and Pitts, but it is quite lengthy and technical. We dedicate a considerable

part of the paper to carry it out.

2.12. Organization. The remaining material of this paper is organized as

follows.

The main work needed to prove the Willmore conjecture is in Part I. This

contains Sections 3, 4, 5, 6, 7, 8, 9, 10, and 11.

In Section 3, we define the 5-dimensional canonical family {Σ(v,t)} asso-

ciated with an embedded closed surface Σ in S3. We prove that the area of
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Σ(v,t) is bounded above by W(Σ), and we compute the degree of the map

Q : S3 → S3.

In Section 4, we collect the notation and the definitions from Geometric

Measure Theory that are relevant in this paper.

In Section 5, we reparametrize the canonical family and then we extend

it to obtain the continuous map C (in the sense of currents).

In Section 6, we define the min-max family Φ to which we will apply the

Almgren-Pitts Min-Max Theory. We collect all of its relevant properties.

In Section 7, we give the basic definitions of the Almgren-Pitts min-max

theory, adapted to our setting.

In Section 8, we state a theorem that produces a discrete sequence of maps,

needed by the Almgren-Pitts min-max theory, out of the min-max family Φ.

We also discuss the Pitts Min-Max Theorem, adapted to our setting.

In Section 9, we show that the width is strictly bigger than 4π if the genus

of Σ is at least one.

In Section 10, we prove Theorem B.

In Section 11, we prove Theorem A.

The technical machinery that makes the min-max argument work is done

in Part II. This contains Sections 12, 13, 14, and 15.

In Section 12, we prove that the canonical family has no concentration of

area.

In Section 13, we construct the discrete sequence of maps mentioned in

Section 8. This is done by discretizing Φ and then interpolating.

In Section 14, we prove an interpolation theorem that associates to a

discrete map a continuous map in the mass norm. This is needed in the pull-

tight argument of Section 15.

In Section 15, we adapt the pull-tight procedure of Almgren and Pitts to

our setting.

In Appendix A, we use standard arguments of Geometric Measure Theory

to show that there exists a minimal surface with least area among all embedded

closed minimal surfaces with genus g ≥ 1 in S3.

In Appendix B, we compute the conformal images of geodesic spheres

in S3.

In Appendix C, we construct the map rm(j) used in Section 13.

Part I. Proof of the Willmore conjecture

3. Canonical family: First properties

Before we construct the canonical family, we need to introduce some no-

tation.
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3.1. Notation and definitions. We use the following notation:

• B4 ⊂ R4 is the open unit ball, and S3 = ∂B4 is the unit sphere.
• B4

R(Q) = {x ∈ R4 : |x −Q| < R} and Br(p) = {x ∈ S3 : d(x, p) < r},
where Q ∈ R4, p ∈ S3, R, r > 0, and d is the spherical geodesic

distance.

For each v ∈ B4, we consider the conformal map

Fv : S3 → S3, Fv(x) =
(1− |v|2)

|x− v|2
(x− v)− v.

Consider Σ ⊂ S3 an embedded closed surface of genus g. We make several

definitions regarding the geometry of a tubular neighborhood of Σ in B
4
.

• A and A∗ denote the disjoint connected components of S3 \ Σ = A ∪A∗.
• N denotes the unit normal to Σ that points into A∗.

• Denote
D2

+(r) = {s = (s1, s2) ∈ R2 : |s| < r, s1 ≥ 0}.
• If ε > 0 is sufficiently small, the map Λ : Σ×D2

+(3ε)→ B
4

given by

(12) Λ(p, s) = (1− s1)(cos(s2)p+ sin(s2)N(p))

is a diffeomorphism onto a neighborhood of Σ in B
4
.

• Let Ωr = Λ(Σ×D2
+(r)) for all r ≤ 3ε.

Consider the continuous map T : B
4 → B

4
such that

• T is the identity on B
4 \ Ω3ε;

• on Ω3ε, we have

T (Λ(p, s))) = Λ(p, φ(|s|)s),
where φ is smooth, zero on [0, ε], strictly increasing on [ε, 2ε], and one

on [2ε, 3ε].

The map T collapses a tubular neighborhood of Σ onto Σ.

Define

Av = Fv(A), A∗v = Fv(A
∗), and Σv = Fv(Σ) = ∂Av,

and let dv : S3 → R be the signed distance to Σv ⊂ S3:

dv(x) =

d(x,Σv) if x /∈ Av,
−d(x,Σv) if x ∈ Av.

3.2. Definition. The canonical family of Σ is the 5-dimensional family of

2-rectifiable subsets of S3 given by

Σ(v,t) = ∂A(v,t), where A(v,t) = {x ∈ S3 : dv(x) < t }

and (v, t) ∈ B4 × [−π, π].
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3.3. Remark.

(1) Let Nv be the normal vector to Σv given by Nv = DFv(N)/|DFv(N)|
and consider the smooth map

ψ(v,t) : Σv → S3, ψ(v,t)(y) = expy(tNv(y)) = cos t y + sin tNv(y).

We have

Σ(v,t) ⊂ ψ(v,t)({Jac ψ(v,t) ≥ 0}),

and so Σ(v,t) is indeed a 2-rectifiable set.

(2) Notice that A(v,0) = Av, A(v,π) = S3, and A(v,−π) = ∅, which means

that

Σ(v,0) = Σv, Σ(v,π) = ∅, and Σ(v,−π) = ∅.

The importance of this family is described in the next theorem. A related

result appears in Proposition 1 of [35].

3.4. Theorem. We have, for every (v, t) ∈ B4 × (−π, π),

area
Ä
Σ(v,t)

ä
≤ W(Σ).

Moreover, if Σ is not a geodesic sphere and

area
Ä
Σ(v,t)

ä
=W(Σ),

then t = 0 and Σv is a minimal surface.

Proof. The following calculation can be found in [35]:

3.5. Lemma. We have

Jac ψ(v,t)(y) = (1 +H(v)2)− (sin t+H(v) cos t)2 − (k1(v)− k2(v))2

4
sin2 t,

where k1(v) and k2(v) are the principal curvatures of Σv at y and H(v) =
k1(v)+k2(v)

2 is the mean curvature.

Proof. Let {e1, e2} ⊂ TyΣv be an orthonormal basis of principal directions,

with principal curvatures k1(v) and k2(v), respectively. Hence

Dψ(v,t)|yei = (cos t− ki(v) sin t)ei,

from which we conclude that

Jac ψ(v,t)(y) = (cos t− k1(v) sin t)(cos t− k2(v) sin t).

The lemma follows by expanding this out. �



MIN-MAX THEORY AND THE WILLMORE CONJECTURE 699

Using this lemma we can finish the proof. From Lemma 3.5, the area

formula, and conformal invariance of the Willmore energy we obtain

area(Σ(v,t)) ≤ area
Ä
ψ(v,t)({Jac ψ(v,t)(p) ≥ 0})

ä
≤
∫
{Jac ψ(v,t)≥0}

(Jac ψ(v,t)) dΣv

≤
∫
{Jac ψ(v,t)(p)≥0}

(1 +H(v)2)− sin2 t
(k1(v)− k2(v))2

4
dΣv

≤
∫

Σ
(1 +H(v)2) dΣv =W(Σ).

If equality holds for some (v, t) ∈ B4 × (−π, π), we obtain from the set of

inequalities above that {Jac ψ(v,t) ≥ 0} = Σ and

sin2 t

2

∫
Σv

|Å|2dΣv =
sin2 t

2

∫
Σ
|Å|2dΣ = 0,

where Å denotes the trace-free part of the second fundamental form. This

implies the rigidity statement. �

3.6. Extended Gauss map. For every p ∈ Σ and k ∈ [−∞,+∞], consider

(13) Qp,k = − k√
1 + k2

p− 1√
1 + k2

N(p) ∈ S3.

This induces a function Q : Ωε → S3 such that

Q (Λ(p, s)) = Qp,k, where k =
s2»
ε2 − s2

2

.

We extend this map in the following way:

Q : S3 ∪ Ωε → S3, Q(v) =


−T (v) if v ∈ A∗ \ Ωε,

T (v) if v ∈ A \ Ωε,

Q(v) if v ∈ Ωε.

(14)

Remark. If p ∈ Σ, i.e, p = Λ(p, (0, 0)), then Q(p) = −N(p) is the classical

Gauss map for surfaces in S3.

The next theorem is absolutely crucial to the proof of the Willmore con-

jecture.

3.7. Theorem. The map Q is continuous and

Q : S3 → S3

has degree g.
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Proof. We start by showing that Q : S3 → S3 is continuous. Clearly Q is

continuous on S3 ∩ Ωε, A
∗ \ Ωε, and A \ Ωε. Assume

v = Λ(p, (0, t)) = cos t p+ sin tN(p) ∈ Ω2ε.

If v ∈ S3 ∩ Ωε, we see from (14) that

lim
t→ε−

Q(v) = Qp,+∞ = −p and lim
t→−ε+

Q(v) = Qp,−∞ = p.

If v ∈ A \ Ωε, we see from the definition of T and (14) that

lim
t→−ε−

Q(v) = lim
t→−ε−

T (v) = − lim
t→0−

Λ(p, (0, t)) = p.

If v ∈ A∗ \ Ωε, we see from the definition of T and (14) that

lim
t→ε+

Q(v) = − lim
t→ε+

T (v) = − lim
t→0+

Λ(p, (0, t)) = −p.

Hence Q : S3 → S3 is continuous.

3.8. Lemma. The degree of Q : S3 → S3 is g.

Proof. We will use the fact that Q is piecewise smooth. Let dV denote

the volume form of S3 and ∇ the induced connection on S3.

Since Q = −T on A∗ \ Ωε, we have from the definition of T that Q is an

orientation-preserving diffeomorphism of A∗ \ Ωε onto −A∗. Therefore

(15)

∫
A∗\Ωε

Q
∗
(dV ) =

∫
−A∗

dV = vol(A∗).

SinceQ = T on A\Ωε, we have from the definition of T thatQ is an orientation-

preserving diffeomorphism of A \ Ωε onto A. Therefore

(16)

∫
A\Ωε

Q
∗
(dV ) =

∫
A
dV = vol(A).

Recall that {e1, e2, e3} ∈ TpS3 is a positive basis if {e1, e2, e3, p} is a pos-

itive basis of R4, and {e1, e2} ∈ TpΣ is a positive basis if {e1, e2, N(p)} is a

positive basis of TpS
3.

Consider the diffeomorphism G : Σ× [−ε, ε]→ S3 ∩ Ωε defined by

G(p, t) = Λ(p, (0, t)) = cos t p+ sin tN(p).

The orientation of Σ × [−ε, ε] is chosen so that {e1, e2, ∂t} is a positive basis

whenever {e1, e2} is a positive basis of TΣ. We have

G∗(e1 ∧ e2 ∧ ∂t)|(p,0) = e1 ∧ e2 ∧N(p),

and thus G is orientation preserving.

Consider Q = Q ◦G : Σ× [−ε, ε]→ S3, which is given by

Q(p, t) = − t
ε
p−
√
ε2 − t2
ε

N(p).
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Hence ∫
S3∩Ωε

Q
∗
(dV ) =

∫
Σ×[−ε,ε]

G∗(Q
∗
(dV )) =

∫
Σ×[−ε,ε]

Q∗(dV ).

Let {e1, e2} be a positive orthonormal basis of TpΣ that diagonalizes the

second fundamental form:

∇eiN = −kiei for i = 1, 2.

We have

DQ|(p,t)(∂t) = −1

ε
p+

t

ε
√
ε2 − t2

N(p)

and

DQ|(p,t)(ei) =

Ç
− t
ε

+

√
ε2 − t2
ε

ki

å
ei for i = 1, 2,

and thus, denoting by volR4 the standard volume form of R4, we have

Q∗(dV )|(p,t)(e1, e2, ∂t) = dV|Q(p,t)(DQ(e1), DQ(e2), DQ(∂t))

= volR4 |Q(p,t)(DQ(e1), DQ(e2), DQ(∂t), Q(p, t))

=

Ç
− t
ε

+

√
ε2 − t2
ε

k1

åÇ
− t
ε

+

√
ε2 − t2
ε

k2

å
(−1)√
ε2 − t2

since

DQ|(p,t)(∂t) ∧Q(p, t)

=

Ç
−1

ε
p+

t

ε
√
ε2 − t2

N(p)

å
∧
Ç
− t
ε
p−
√
ε2 − t2
ε

N(p)

å
= − 1√

ε2 − t2
N(p) ∧ p.

The Gauss equation implies that K = 1 + k1k2, where K denotes the

Gauss curvature of Σ, and so we conclude that∫
Σ×[−ε,ε]

Q∗(dV )(17)

= −
∫

Σ

∫ ε

−ε

1

ε2

Ç
k1k2

√
ε2 − t2 − (k1 + k2)t+

t2√
ε2 − t2

å
dt dΣ

= −π
2

∫
Σ

(K − 1) dΣ− π

2

∫
Σ
dΣ = −π2χ(Σ) = π2(2g − 2).

In the calculation above we have used that

•
∫ ε
−ε
√
ε2 − t2dt = ε2

∫ π/2
−π/2 cos2 θ dθ = πε2

2 ,

•
∫ ε
−ε t dt = 0,

•
∫ ε
−ε

t2√
ε2−t2dt = ε2

∫ π/2
−π/2 sin2 θ dθ = πε2

2 .
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Finally, since vol(S3) = 2π2, we combine (15), (16), and (17) to obtain∫
S3
Q
∗
(dV ) =

∫
A∗\Ωε

Q
∗
(dV ) +

∫
A\Ωε

Q
∗
(dV ) +

∫
S3∩Ωε

Q
∗
(dV )

= vol(A∗) + vol(A) +

∫
Σ×[−ε,ε]

Q∗(dV )

= 2π2 + π2(2g − 2) = 2π2g = g ·
∫
S3
dV.

It follows that deg(Q) = g. �

This lemma finishes the proof of Theorem 3.7. �

For technical reasons that will be relevant later, we need to ensure that

the areas of the sets Σ(v,t) cannot concentrate at a point:

3.9. Theorem. For every δ > 0, there exists r > 0 such that

area(Σ(v,t) ∩Br(q)) ≤ δ for every q ∈ S3 and (v, t) ∈ B4 × [−π, π].

The proof of Theorem 3.9 will be postponed to Section 12.

4. Definitions from Geometric Measure Theory

In this section we recall some definitions and notation from Geometric

Measure Theory. A standard reference is the book of Simon [39]. Sometimes

we will also follow the notation of Pitts book [32].

Let (M, g) be an orientable compact Riemannian 3-manifold. We assume

M is isometrically embedded in RL. We denote by Br(p) the open geodesic

ball in M of radius r and center p ∈M .

The spaces we will work with in this paper are

• the space Ik(M) of k-dimensional integral currents in RL with support

contained in M ;

• the space Zk(M) of integral currents T ∈ Ik(M) with ∂T = 0;

• the closure Vk(M), in the weak topology, of the space of k-dimensional

rectifiable varifolds in RL with support contained in M .

Given T ∈ Ik(M), we denote by |T | and ||T || the integral varifold and

Radon measure in M associated with T , respectively; given V ∈ Vk(M), ||V ||
denotes the Radon measure in M associated with V . If U ⊂M is an open set

of finite perimeter, the associated current in I3(M) is denoted by [|U |].
The above spaces come with several relevant metrics. The mass of T ∈

Ik(M), defined by

M(T ) = sup{T (φ) : φ ∈ Dk(RL), ||φ|| ≤ 1},

induces the metric M(S, T ) = M(S − T ) on Ik(M). Here Dk(RL) denotes the

space of smooth k-forms in RL with compact support, and ||φ|| denotes the

comass norm of φ.
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The flat metric is defined by

F(S, T ) = inf{M(P ) + M(Q) : S − T = P + ∂Q,P ∈ Ik(M), Q ∈ Ik+1(M)}

for S, T ∈ Ik(M). We also use F(T ) = F(T, 0). Note that

F(T ) ≤M(T ) for all T ∈ Ik(M).

The F-metric on Vk(M) is defined in Pitts book [32, p. 66] as

F(V,W ) = sup{V (f)−W (f) : f ∈ Cc(Gk(RL)), |f | ≤ 1,Lip(f) ≤ 1}

for V,W ∈ Vk(M). Here Cc(Gk(RL)) denotes the space of all real-valued

continuous functions with compact support defined on Gk(RL) — the k-dimen-

sional Grassmannian bundle over RL. The F-metric induces the varifold weak

topology on Vk(M), and it satisfies

F(|S|, |T |) ≤M(S − T ) for all S, T ∈ Ik(M).

Finally, the F-metric on Ik(M) is defined by

F(S, T ) = F(S − T ) + F(|S|, |T |).

We assume that Ik(M) and Zk(M) both have the topology induced by the

flat metric. When endowed with the topology of the mass norm, these spaces

will be denoted by Ik(M ; M) and Zk(M ; M), respectively. If endowed with

the F-metric, we will denote them by Ik(M ; F) and Zk(M ; F), respectively.

The space Vk(M) is considered with the weak topology of varifolds.

If ν is either the flat, mass, or F-metric, then

Bν
r (T ) = {S ∈ Zk(M) : ν(T, S) < r}.

Given A,B ⊂ Vk(M), we also define

F(A,B) = inf{F(V,W ) : V ∈ A,W ∈ B}.

The mass M is continuous in the topology induced by the F-metric but

not in the flat topology. In the flat topology the mass functional is only lower

semicontinuous. Keep in mind that

F(S − T ) ≤ F(S, T ) ≤ 2M(S − T )

for every S, T ∈ Ik(M).

The following lemma will be useful:
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4.1. Lemma. Let S be a compact subset of Zk(M ; F). For every ε > 0,

there is δ > 0 so that for every S ∈ S and T ∈ Zk(M),

M(T ) < M(S) + δ and F(T − S) ≤ δ ⇒ F(S, T ) ≤ ε.

Proof. In [32, p. 68], it is observed that limi→∞F(S, Ti) = 0 if and only

if limi→∞M(Ti) = M(S) and limi→∞F(S − Ti) = 0 for Ti, S ∈ Zk(M). The

lemma then follows from the continuity properties of the mass functional and

the compactness of S in Zk(M ; F), via a standard finite covering argument. �

Given a C1-map F : M → M , the push-forwards of V ∈ Vk(M) and

T ∈ Ik(M) are denoted by F#(V ) and F#(T ), respectively. Denote by X (M)

the space of smooth vector fields of M with the C1-topology. The first variation

δ : Vk(M)×X (M)→ R

is defined as

δV (X) =
d

dt |t=0
||Ft#(V )||(M), where

dFt
dt |t=0

= X.

The first variation is continuous with respect to the product topology of Vk(M)

× X (M). Recall that a varifold V is said to be stationary if δV (X) = 0 for

every X ∈ X (M).

We will also need the following definition. In denotes the n-dimensional

cube.

4.2. Definition. Given a continuous map Φ : In → Z2(M), with respect

to the flat topology, we define

m(Φ, r) = sup{||Φ(x)||(Br(p)) : x ∈ In, p ∈M}.

5. Canonical family: Boundary blow-up

Following the discussion in Section 2.4, we want to reparametrize and

extend the canonical family to be defined on all of B
4× [−π, π]. The resulting

family will be continuous in the sense of currents.

The goal is to produce, out of the canonical family, a 5-dimensional family

of integral currents of boundary zero that is continuous in the flat topology of

currents (Theorem 5.1).

For every k ∈ [−∞,+∞], consider

rk =
π

2
− arctan k ∈ [0, π].

We note that

(18) B4
Rk

(Qp,k) ∩ S3 = Brk(Qp,k), where Rk =

√
2

Ç
1− k√

1 + k2

å
.
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Also consider r : Ωε → [0, π] given by

r̄ (Λ(p, s)) = r̄k, where k =
s2»
ε2 − s2

2

.

We extend this function in the following way:

r : S3 ∪ Ωε → [0, π], r(v) =


0 if v ∈ A∗ \ Ωε,

π if v ∈ A \ Ωε,

r(v) if v ∈ Ωε.

(19)

The goal of this section is to prove the following result.

5.1. Theorem. The map below is well defined and continuous in the flat

topology :

C : B
4 × [−π, π]→ Z2(S3),

C(v, t) =

∂[|A(T (v),t)|] if v ∈ B4 \ Ωε,

∂[|Br(v)+t(Q(v))|] if v ∈ S3 ∪ Ωε.

Furthermore,

M(C(v, t)) ≤ W(Σ) for all (v, t) ∈ B4 × [−π, π]

and C(v, π) = C(v,−π) = 0 for every v ∈ B4
.

5.2. Preliminary results. Given sets A,B of R4, the symmetric difference

is denoted by

A∆B = (A \B) ∪ (B \A).

Recall the definition of the map Λ in (12). If vn ∈ B4 is a sequence

converging to p ∈ Σ, then for all n sufficiently large, there are unique pn ∈ Σ

and sn ∈ D2
+(3ε) so that vn = Λ(pn, sn). Necessarily, pn tends to p and sn

tends to zero. By passing to a subsequence, we can also assume that

lim
n→∞

sn2

sn1
= k ∈ [−∞,+∞].

5.3. Proposition. Consider a sequence (vn, tn) ∈ B4×[−π, π] converging

to (v, t) ∈ B4 × [−π, π].

(i) If v ∈ B4, then

lim
n→∞

vol
Ä
A(vn,tn) ∆A(v,t)

ä
= 0.

(ii) If v ∈ A, then

lim
n→∞

vol
Ä
A(vn,tn) ∆Bπ+t(v)

ä
= 0

and, given any δ > 0,

Σ(vn,tn) ⊂ Bπ+t+δ(v) \Bπ+t−δ(v) for all n sufficiently large.
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(iii) If v ∈ A∗, then

lim
n→∞

vol
Ä
A(vn,tn) ∆Bt(−v)

ä
= 0

and, given any δ > 0,

Σ(vn,tn) ⊂ Bt+δ(−v) \Bt−δ(−v) for all n sufficiently large.

(iv) If v = p ∈ Σ and

vn = Λ(pn, (sn1, sn2)) with lim
n→∞

sn2

sn1
= k ∈ [−∞,+∞],

then

lim
n→∞

vol
Ä
A(vn,tn) ∆Brk+t(Qp,k)

ä
= 0

and, given any δ > 0,

Σ(vn,tn) ⊂ Brk+t+δ(Qp,k) \Brk+t−δ(Qp,k) for all n sufficiently large.

Proof. We denote by Nv the normal vector to Σv with the same direction

as DFv(N). Consider the normal exponential map of Σv given by

expv : Σv × R→ S3, expv(y, t) = cos t y + sin tNv(y).

For every x ∈ S3, there exists y ∈ Σv such that x = expv(y, dv(x)). In partic-

ular,

(20)
Ä
A(v,t) \A(v,s)

ä
⊂ expv(Σv × [s, t)) for s ≤ t.

We now prove Proposition 5.3(i). Let δ > 0, and choose η > 0 such that

vol (expv(Σv × [t− η, t+ η])) ≤ δ.

The sequence of surfaces Σvn converges smoothly to Σv since vn tends to

v ∈ B4. This, together with the triangle inequality and the fact that tn tends

to t, implies that we can choose n0 such that

A(v,t−η) ⊂ A(vn,tn) ⊂ A(v,t+η) for all n ≥ n0.

Hence, for n ≥ n0, we have

A(vn,tn) ∆A(v,t) ⊂
Ä
A(v,t+η) \A(v,t−η)

ä
.

From (20), we haveÄ
A(v,t+η) \A(v,t−η)

ä
⊂ expv(Σ× [t− η, t+ η])

and thus

vol
Ä
A(vn,tn) ∆A(v,t)

ä
≤ δ

for each n ≥ n0.
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We now prove Proposition 5.3(ii). Let r > 0 be such that Br(v) ⊂ A.

Given δ > 0, there exists n0 ∈ N such that for all n ≥ n0,

(21) Bπ−δ/2(v) ⊂ Fvn(Br(v)) ⊂ Fvn(A) = A(vn,0) and |tn − t| ≤
δ

2
.

In particular,

(22) Σvn ⊂ Bδ/2(−v) for all n ≥ n0.

If t ≥ 0, then from (21) and the triangle inequality we have, for all n ≥ n0,

S3 \Bδ(−v) = Bπ−δ(v) ⊂ A(vn,−δ/2) ⊂ A(vn,tn).

Hence, because Bπ+t(v) = S3,

(23) vol
Ä
A(vn,tn) ∆Bπ+t(v)

ä
≤ vol (Bδ(−v)) and Σ(vn,tn) ⊂ Bδ(−v).

Notice that if t > 0, then (21) implies that A(vn,tn) = S3 and hence Σ(vn,tn) = ∅
for any sufficiently large n.

If t < 0, choose n1 ≥ n0 such that tn < 0 for each n ≥ n1. We have

A(vn,tn) ⊂ Bπ+t+δ(v) for all n ≥ n1

because, picking x ∈ A(vn,tn) and y ∈ Σvn with dvn(x) = −d(x, y), we obtain

from (22) and the triangle inequality

d(x,−v) ≥ d(x, y)− d(y,−v) = −dvn(x)− d(y,−v) ≥ −tn −
δ

2
≥ −t− δ.

Also

Bπ+t−δ(v) ⊂ A(vn,tn) for all n ≥ n1

because if x ∈ Bπ+t−δ(v), then x /∈ Bδ−t(−v) and we obtain from (22)

d(x,Σvn) > d(x, ∂Bδ/2(−v)) > −t+
δ

2
≥ −tn.

Hence, for all n ≥ n1,

(24)
Ä
A(vn,tn) ∆Bπ+t(v)

ä
∪ Σ(vn,tn) ⊂ Bπ+t+δ(v) \Bπ+t−δ(v).

In any case, Proposition 5.3(ii) follows from (23) and (24) since we can choose

δ arbitrarily small.

Proposition 5.3(iii) is proven exactly in the same way as Proposition 5.3(ii).

We now prove Proposition 5.3(iv).
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5.4. Lemma. There exists r0 > 0 such that for every p ∈ Σ, we have

Br0 ((cos r0)p− (sin r0)N(p)) ⊂ A
and

A ⊂ S3 \Br0 ((cos r0)p+ (sin r0)N(p)) .

Proof. Choose r0 > 0 sufficiently small such that for every x ∈ S3 with

d(x,Σ) ≤ r0, there exists a unique q ∈ Σ such that the shortest geodesic

segment joining x and q is orthogonal to Σ at q. We must have d(x, q) =

d(x,Σ).

If x1 = (cos r0)p − (sin r0)N(p) and x2 = (cos r0)p + (sin r0)N(p), then

d(x1,Σ) = d(x2,Σ) = r0. Therefore Br0(x1)∩Σ = Br0(x2)∩Σ = ∅. The result

follows since x1 ∈ A and x2 ∈ A∗. �

Write vn = Λ(pn, (sn1, sn2)), where kn = sn2/sn1 tends to k and pn tends

to p. Set Bq = Bπ/2(−N(q)) = B4√
2
(−N(q)) ∩ S3 for q ∈ Σ. It follows from

Lemma 5.4 that

A∆Bpn ⊂ S3 \ (Br0 ((cos r0)pn + (sin r0)N(pn))

∪Br0 ((cos r0)pn − (sin r0)N(pn))) .

From Proposition B.1 of Appendix B, we obtain the existence of C > 0

and n0 ∈ N such that

S3 ∩B4
Rkn−C

√
an

(Qpn,kn) ⊂ Fvn(A) ⊂ S3 ∩B4
Rkn+C

√
an

(Qpn,kn)

for all n ≥ n0, where an =
»

1 + k2
n sn1. Notice that an → 0.

Therefore, from (18), we see that for each δ > 0, there exists n1 ≥ n0 such

that for every n ≥ n1, we have

(25) Brkn−δ/2(Qpn,kn) ⊂ Fvn(A) ⊂ Brkn+δ/2(Qpn,kn)

and

(26) Σvn ⊂ Brkn+δ/2(Qpn,kn) \Brkn−δ/2(Qpn,kn).

Assume rk ∈ (0, π) and 0 < δ < min{rk, π − rk}. The cases rk = 0 and

rk = π can be dealt with as in the proof of Proposition 5.3(ii).

We can find n2 ≥ n1 such that for each n ≥ n2, we have

|tn − t|+ d(Qpn,kn , Qp,k) + |rkn − rk| ≤ δ/2.

Thus, from (25), we have Qp,k ∈ Fvn(A) and −Qp,k /∈ Fvn(A) for n ≥ n2.

We claim

A(vn,tn) ⊂ Brk+t+δ(Qp,k) for all n ≥ n2.

Let n ≥ n2 and x ∈ A(vn,tn). Then dvn(x) < tn, and x = expvn(y, dvn(x))

for some y ∈ Σvn .



MIN-MAX THEORY AND THE WILLMORE CONJECTURE 709

If dvn(x) ≥ 0, we obtain from that (25)

d(x,Qp,k)≤ d(x, y) + d(y,Qp,k)

≤ d(x, y) + d(y,Qpn,kn) + d(Qpn,kn , Qp,k)

≤ dvn(x) + rkn + δ/2 + d(Qpn,kn , Qp,k)

< tn + rkn + δ/2 + d(Qpn,kn , Qp,k)

<rk + t+ δ.

If dvn(x) < 0, then x ∈ Fvn(A). Thus, from (25), any continuous path

joining x to −Qpn,kn must intersect Σvn and using (26), we obtain

d(x,−Qp,k) ≥ d(x,−Qpn,kn)− d(Qpn,kn , Qp,k)

≥ d(x,Σvn) + d(Σvn ,−Qpn,kn)− d(Qpn,kn , Qp,k)

≥ d(x,Σvn) + π − rkn − δ/2− d(Qpn,kn , Qp,k)

= −dvn(x) + π − rkn − δ/2− d(Qpn,kn , Qp,k)

> −tn + π − rkn − δ/2− d(Qpn,kn , Qp,k)

> −t+ π − rk − δ.

In any case, d(x,Qp,k) < rk + t+ δ and the claim follows.

Arguing in the very same way, one can also show that

Brk+t−δ(Qp,k) ⊂ A(vn,tn) for all n ≥ n2.

Hence, for n ≥ n2,

Brk+t−δ(Qp,k) ⊂ A(vn,tn) ⊂ Brk+t+δ(Qp,k).

This impliesÄ
A(vn,tn) ∆Brk+t(Qp,k)

ä
∪ Σ(vn,tn) ⊂ Brk+t+δ(Qp,k) \Brk+t−δ(Qp,k).

The result follows since δ > 0 can be chosen arbitrarily small. �

5.5. Proof of Theorem 5.1. We start by arguing that the function r defined

on S3 ∪ Ωε is continuous. Clearly r is continuous on S3 ∩ Ωε, A
∗ \ Ωε, and

A \ Ωε. Assume

v = Λ(p, (0, t)) = cos t p+ sin tN(p) ∈ Ω2ε.

The continuity follows at once from

lim
t→ε−

r(v) = lim
k→∞

Å
π

2
− arctan(k)

ã
= 0

and

lim
t→−ε+

r(v) = lim
k→−∞

Å
π

2
− arctan(k)

ã
= π.
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Consider the map

U : B
4 × [−π, π]→ I3(S3),

U(v, t) =

[|A(T (v),t)|]if v ∈ B4 \ Ωε,

[|Br(v)+t(Q(v))|] if v ∈ S3 ∪ Ωε.
(27)

Note that, by Theorem 3.4, A(T (v),t) has finite perimeter and so indeed U(v, t) ∈
I3(S3) for all (v, t) ∈ B4 × [−π, π].

5.6. Lemma. The map U is continuous with respect to the mass topology

of currents.

Proof. We will use the fact that if V1, V2 ⊂ S3 are open sets, then

M([|V1|]− [|V 2|]) = vol (V1 ∆V2) .

Let (vn, tn) tend to (v, t) with vn, v ∈ B4 \Ωε. Hence (T (vn), tn) tends to

(T (v), t) and we obtain from Proposition 5.3(i) that

lim
n→∞

M(U(vn, tn)− U(v, t)) = 0.

Suppose now that (vn, tn) tends to (v, t) with v ∈ A \Ωε. We have T (vn)

converging to T (v) ∈ A \ Σ and r(v) = π. Thus U(v, t) = [|Bπ+t(T (v))|]. For

every n sufficiently large,

U(vn, tn) = [|Bπ+tn(T (vn))|] if vn ∈ S3

or

U(vn, tn) = [|A(T (vn),tn)|] if vn ∈ B4.

In any case, using Proposition 5.3(ii), we get that

lim
n→∞

M(U(vn, tn)− U(v, t)) = 0.

The case (vn, tn) tending to (v, t) with v ∈ A∗ \Ωε follows similarly, using

Proposition 5.3(iii).

The restriction of U to Ωε is clearly continuous in the mass topology

because Q and r are continuous functions.

It remains to consider the case (vn, tn) converging to (v, t) with vn ∈
B4 \ Ωε and v ∈ ∂Ωε. We write

vn = Λ(pn, sn) and v = Λ(p, s),

where ε = |s| < |sn|, s, sn ∈ D2
+(2ε), and we set

lim
n→∞

sn2

sn1
=
s2

s1
= k ∈ [−∞,+∞].

Recalling the definition of T in Section 3.1, we have

T (vn) = Λ(pn, un), where un = φ(|sn|)sn,
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and so

lim
n→∞

un2

un1
= k.

Therefore, Proposition 5.3(iv) implies that

lim
n→∞

M(U(vn, tn)− [|Brk+t(Qp,k)|])

= lim
n→∞

M([|A(T (vn),tn)|]− [|Brk+t(Qp,k)|]) = 0.

We claim that U(v, t) = [|Brk+t(Qp,k)|], and this implies the desired continuity

at once.

Indeed, since

|s| = ε =⇒ k =
s2»
ε2 − s2

2

,

we see from the definition of Q in (13) and r in (19) that

Q(v) = Qp,k and r(v) = rk.

This implies U(v, t) = [|Brk+t(Qp,k)|]. �

From the Boundary Rectifiability Theorem (Theorem 30.3 of [39]) we know

that C(v, t) = ∂U(v, t) ∈ Z2(S3), and Lemma 5.6 implies at once that C is

continuous in the flat topology.

We now argue that

M(C(v, t)) ≤ W(Σ) for all (v, t) ∈ B4 × [−π, π].

This only needs justification if v ∈ B4 \ Ωε.

If ∂∗A(T (v),t) ⊂ Σ(T (v),t) denotes the reduced boundary of A(T (v),t) (see

[12, §5.7] for the definition), we have from [39, Rem. 27.7] and the Structure

Theorem in [12, p. 205] that

M(C(v, t)) = H2(∂∗A(T (v),t)) ≤ area(Σ(T (v),t)).

Theorem 3.4 then proves the desired inequality.

We are left to prove the final statement of Theorem 5.1. If v ∈ S3 ∪Ωε, it

is clear from (27) that U(v, π) = [|S3|] and U(v,−π) = 0, and thus C(v,±π) =

∂U(v,±π) = 0.

If v ∈ B4 \ Ωε, set w = T (v) ∈ B4. Since Σw is a smooth surface, there

can be no point p ∈ S3 with d(p,Σw) ≥ π (otherwise Σw ⊂ {−p}). Therefore

A(w,π) = S3 and A(w,−π) = ∅. Since in this case U(v, t) = [|A(w,t)|], we again

have C(v,±π) = ∂U(v,±π) = 0.
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6. The min-max family

In this section we construct the continuous map Φ into Z2(S3) to which

we apply the Almgren-Pitts Min-Max Theory.

Recall the definition of the map C in Section 5. From Theorem 5.1 we

can extend C continuously to B
4×R by defining C(v, t) = 0 when |t| ≥ π. We

denote this extension by C as well.

We also choose a continuous extension of r, defined in (19), to a function

r : B
4 → [0, π].

Choose an orientation preserving homeomorphism f : I4 → B
4

(hence

f|∂I4 is a homeomorphism from ∂I4 onto S3), and consider

γ : R→ R, γ(s) = 0 if s ≤ 1

2
, γ(s) = 2s− 1 if s ≥ 1

2
.

6.1. Definition. The min-max family of Σ is the map Φ : I5 → Z2(S3)

given by

Φ(x, t) = C

Å
f(x), 2π (2t− 1) + γ(|f(x)|)

Å
π

2
− r (f(x))

ãã
.

6.2. Remark. The motivation for this definition is that if x ∈ ∂I4, then

we see from the definition of the map C in Theorem 5.1 that

Φ(x, t)=C

Å
f(x), 2π (2t− 1)+

π

2
−r(f(x))

ã
=∂[|B2π (2t−1)+π/2(Q(f(x))|].

The properties of Φ that are important for our proof are collected in the

next theorem. We denote by T ⊂ V2(S3) the set of all (unoriented) great

spheres, which is homeomorphic to RP3. The quantity m(Φ, r) appears in

Definition 4.2.

6.3. Theorem. Let Σ ⊂ S3 be an embedded closed surface of genus g.

The map

Φ : I5 → Z2(S3)

satisfies the following properties :

(i) Φ is continuous with respect to the flat topology of currents.

(ii) Φ(I4 × {0}) = Φ(I4 × {1}) = {0}.
(iii) sup{M(Φ(x)) : x ∈ I5} ≤ W(Σ).

(iv) The restriction Φ : ∂I4 × I → Z2(S3) is continuous in the F-metric.

(v) For every c ∈ I4, the map γ : I → Z2(S3), γ(t) = Φ(c, t) is such that

• γ(t) = ∂[|U(t)|] for all 0 ≤ t ≤ 1, where U(t) are open sets of finite

perimeter of S3;

• U(0) = ∅ and U(1) = S3;

• the map t→ [|U(t)|] is continuous in the mass norm.

(vi) max{M(Φ(x)) : x ∈ ∂I5}=4π, x ∈ ∂I5, and M(Φ(x)) = 4π ⇒ |Φ(x)| ∈ T .



MIN-MAX THEORY AND THE WILLMORE CONJECTURE 713

(vii) For every δ > 0, there is ε > 0 so that, for all (x, t) ∈ ∂I5,

F(|Φ(x, t)|, T ) ≤ ε =⇒ |t− 1/2| ≤ δ.

(viii) The map |Φ| : ∂I4 × {1/2} → T defined by

|Φ|(x, 1/2) = |Φ(x, 1/2)| = |∂Bπ/2(Q(f(x))|

has

|Φ|∗([∂I4 × {1/2}])| = 2g ∈ H3(RP3,Z).

(ix) limr→0 m(Φ, r) = 0.

Proof. Property (i) comes from the fact that Φ is a composition of con-

tinuous functions.

Because 0 ≤ r ≤ π, we have from Theorem 5.1 that

Φ(x, 1) = C

Å
f(x), 2π + γ(|f(x)|)

Å
π

2
− r(f(x))

ãã
= 0 for all x ∈ I4.

Likewise, Φ(x, 0) = 0 and this shows property (ii). Property (iii) follows from

the mass estimate in Theorem 5.1.

From the definition of C it is clear that C restricted to S3 × [−π, π] is

continuous in the F-metric and thus Φ restricted to ∂I4 × I is also continuous

in the F-metric. This proves property (iv).

Property (v) follows at once from the fact that C(v, t) = ∂U(v, t), where

the map U is defined in (27), and from Lemma 5.6.

Property (vi) follows from Remark 6.2. Property (vii) follows from prop-

erty (iv) and the fact that, from Remark 6.2, for every x ∈ ∂I4,

|Φ(x, t)| ∈ T ⇐⇒ t = 1/2.

Consider the 2-fold cover of T given by

π : S3 → T , π(p) = |∂Bπ/2(p)|.

We have |Φ|(x, 1/2) = π ◦Q ◦ f(x), and so Theorem 3.7 implies the degree of

x 7→ |Φ|(x, 1/2) is 2g. This implies property (viii).

Property (ix) is a consequence of Theorem 3.9. �

7. The Almgren-Pitts Min-Max Theory I

We will set up the notation needed to apply the Almgren-Pitts Min-Max

Theory to our setting. (M, g) will denote an orientable compact Riemannian

3-manifold.
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7.1. Cell complexes. We denote by In = [0, 1]n ⊂ Rn the n-dimensional

cube, with boundary In0 = ∂In = In \ (0, 1)n.

For each j ∈ N, I(1, j) denotes the cell complex on I1 whose 1-cells and

0-cells (those are sometimes called vertices) are, respectively,

[0, 3−j ], [3−j , 2 · 3−j ], . . . , [1− 3−j , 1] and [0], [3−j ], . . . , [1− 3−j ], [1].

We consider the n-dimensional cell complex on In:

I(n, j) = I(1, j)⊗ . . .⊗ I(1, j) (n times).

α = α1 ⊗ · · · ⊗ αn is a p-cell of I(n, j) if and only if αi is a cell of I(1, j) for

each i, and
∑n
i=1 dim(αi) = p. We often abuse notation by identifying a p-cell

α with its support: α1 × · · · × αn ⊂ In.

We use the following notation:

• I(n, j)p denotes the set of all p-cells in I(n, j);

• I0(n, j)p denotes the set of all p-cells of I(n, j) that are contained in the

boundary In0 ;

• I0(n, j) is the subcomplex of I(n, j) generated by all cells that are contained

in the boundary In0 .

Given a p-cell α ∈ I(n, j)p, we use the following notation:

• α(0) denotes the p-dimensional subcomplex of I(n, j) whose cells are those

with support contained in α;

• α(k) denotes the p-dimensional subcomplex of I(n, j + k) formed by all

cells that are contained in α;

• α(k)q, with q ≤ p, denotes the set of all q-dimensional cells of α(k);

• α0(k)q, with q ≤ p, denotes the set of all q-dimensional cells of α(k) whose

support is contained in the boundary of α;

• αq = α(0)q denotes the q-dimensional faces of α.

We also define the following cell subcomplexes of I(n, j):

(top) T (n, j) = I(n− 1, j)⊗ 〈[1]〉,
(bottom) B(n, j) = I(n− 1, j)⊗ 〈[0]〉,

(side) S(n, j) = I0(n− 1, j)⊗ I(1, j).

(Here 〈[x]〉 is the cell complex whose only cell is [x].) Let T (n, j)p, B(n, j)p,

and S(n, j)p be the corresponding sets of p-cells. Note that T (1, j) = 〈[1]〉 and

B(1, j) = 〈[0]〉.
The boundary homomorphism

∂ : I(n, j)→ I(n, j)

is defined by

∂(θ1 ⊗ · · · ⊗ θn) =
n∑
i=1

(−1)σ(i)θ1 ⊗ · · · ⊗ ∂θi ⊗ · · · ⊗ θn,
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where

σ(i) =
∑
p<i

dim(θp)

and

∂([a, b]) = [b]− [a] if [a, b] ∈ I(1, j)1, ∂([a]) = 0 if [a] ∈ I(1, j)0.

The distance between two vertices of I(n, j) is defined by

d : I(n, j)0 × I(n, j)0 → Z+, d(x, y) = 3j
n∑
i=1

|xi − yi|.

It has the property that two vertices x, y satisfy d(x, y) = 1 if and only if [x, y]

is a 1-cell of I(n, j).

We will also need the map n(i, j) : I(n, i)0 → I(n, j)0, defined as follows:

For each x ∈ I(n, i)0, n(i, j)(x) is the unique element of I(n, j)0 such that

d(x,n(i, j)(x)) = inf{d(x, y) : y ∈ I(n, j)0}.

Note that n(i, j)(x) = x if i ≤ j and n(k, i) = n(j, i) ◦ n(k, j) if i ≤ j ≤ k.

7.2. Maps into currents. Given a map φ : I(n, j)0 → Z2(M), we define

the fineness of φ to be

f(φ) = sup

®
M(φ(x)− φ(y))

d(x, y)
: x, y ∈ I(n, j)0, x 6= y

´
.

The reader should think of the notion of fineness as being a discrete mea-

sure of continuity with respect to the mass norm. The following lemma is

useful for computational purposes.

7.3. Lemma. f(φ) < δ if and only if M(φ(x) − φ(y)) < δ whenever

d(x, y) = 1.

Proof. If f(φ) < δ, then it follows directly from the definition of fine-

ness that M(φ(x) − φ(y)) < δ whenever d(x, y) = 1. Suppose now that

M(φ(x)− φ(y)) < δ if d(x, y) = 1. Given any x, y ∈ I(n, j)0 with d(x, y) = k,

we can find a sequence {yi}ki=0 in I(n, j)0 so that y0 = y, yk = x, and [yi, yi+1]

is a 1-cell of I(n, j). Thus

M(φ(x)− φ(y))

d(x, y)
≤ 1

k

k∑
i=1

M(φ(yi)− φ(yi−1)) <
1

k
kδ = δ. �

7.4. Homotopy notions. Suppose we have a map

Φ0 : ∂In → Z2(M)

that satisfies

• Φ0 is continuous in the F-metric,

• Φ0(In−1 × {0}) = Φ0(In−1 × {1}) = 0.
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Let φi : I(n, ki)0 → Z2(M), i = 1, 2. We say that φ1 is n-homotopic to φ2

in (Z2(M ; M),Φ0) with fineness δ if we can find k ∈ N and a map

ψ : I(1, k)0 × I(n, k)0 → Z2(M)

such that

(i) f(ψ) < δ;

(ii) if i = 1, 2 and x ∈ I(n, k)0, then ψ([i− 1], x) = φi(n(k, ki)(x));

(iii) ψ(I(1, k)0 × T (n, k)0) = ψ(I(1, k)0 ×B(n, k)0) = {0};
(iv) sup {F(ψ(t, x)− Φ0(x)) : (t, x) ∈ I(1, k)0 × S(n, k)0} ≤ δ,

M(ψ(t, x)) ≤M(Φ0(x)) + δ for any (t, x) ∈ I(1, k)0 × S(n, k)0.

In particular, we must have that φi = 0 on T (n, ki)0 ∪B(n, ki)0,

sup{F(φi(x)− Φ0(x)) : x ∈ S(n, ki)0} ≤ δ,

and

sup{M(φi(x))−M(Φ0(x)) : x ∈ S(n, ki)0} ≤ δ

for each i = 1, 2.

We note that if φ1 is homotopic to φ2 with fineness δ1 and φ2 is homotopic

to φ3 with fineness δ2, then φ1 is homotopic to φ3 with fineness max{δ1, δ2}.

7.5. Remark. There is a related definition used by Pitts [32, §4.1]: φ1 is

n-homotopic to φ2 in (Z2(M ; M), {0}) with fineness δ, according to Pitts, if

we can find k ∈ N and a map

ψ : I(1, k)0 × I(n, k)0 → Z2(M)

such that

(i) f(ψ) < δ;

(ii) if i = 1, 2 and x ∈ I(n, k)0, then

ψ([i− 1], x) = φi(n(k, ki)(x));

(iii) ψ(S(n+ 1, k)0) = {0}.

Note that for the definition of Pitts to make sense, it is required that

φi(I0(n, ki)0) ={0} for each i= 1, 2. In the 1-dimensional case (n= 1,Φ0 = 0),

our notion is equivalent to the definition of Pitts.

Instead of considering continuous maps from In into Z2(M ; M), Almgren-

Pitts consider sequences of discrete maps into Z2(M) with fineness tending to

zero.
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7.6. Definition. An

(n,M)-homotopy sequence of mappings into (Z2(M ; M),Φ0)

is a sequence of mappings {φi}i∈N,

φi : I(n, ki)0 → Z2(M),

such that φi is n-homotopic to φi+1 in (Z2(M ; M),Φ0) with fineness δi and

(i) limi→∞ δi = 0;

(ii) sup{M(φi(x)) : x ∈ I(n, ki)0, i ∈ N} < +∞.

7.7. Remark. This is similar to the notion of an

(n,M)-homotopy sequence of mappings into (Z2(M ; M), {0})

in [32, §4.1]. Both notions coincide in the 1-dimensional case (n = 1,Φ0 = 0).

The next lemma says that φi restricted to the boundary of its domain

tends to Φ0 in the F-metric.

7.8. Lemma. Let S = {φi}i∈N be an (n,M)-homotopy sequence of map-

pings into (Z2(M ; M),Φ0). If I(n, ki)0 denotes the domain of φi, then

lim
i→∞

sup{F(φi(x),Φ0(x)) : x ∈ I0(n, ki)0} = 0.

Proof. First note that φi(x) = Φ0(x) = 0 for x ∈ T (n, ki)0 ∪ B(n, ki)0.

Since Φ0 is continuous in the F-metric, Φ0(In0 ) is a compact subset of Z2(M,F).

The lemma follows from condition (iv) in the definition of “homotopic to” by

using Lemma 4.1. �

The next definition explains what it means for two distinct homotopy

sequences of mappings into (Z2(M ; M),Φ0) to be homotopic.

7.9. Definition. Given S1 = {φ1
i }i∈N and S2 = {φ2

i }i∈N (n,M)-homotopy

sequences of mappings into (Z2(M ; M),Φ0), we say that S1 is homotopic with

S2 if there exists {δi}i∈N such that

• φ1
i is n-homotopic to φ2

i in (Z2(M ; M),Φ0) with fineness δi;

• limi→∞ δi = 0.

7.10. Remark. There is a similar definition for (n,M)-homotopy sequences

of mappings into (Z2(M ; M), {0}) [32, §4.1]. Once again these definitions co-

incide in the 1-dimensional case (n = 1,Φ0 = 0).

The relation “is homotopic with” is an equivalence relation on the set

of all (n,M)-homotopy sequences of mappings into (Z2(M ; M),Φ0). We call

the equivalence class of any such sequence an (n,M)-homotopy class of map-

pings into (Z2(M ; M),Φ0). We denote by π#
n (Z2(M ; M),Φ0) the set of all

equivalence classes.
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Finally, a

(n,F)-homotopy sequence (or class) of mappings into (Z2(M ;F)), {0})

is defined similarly to what we just did but with the mass M in the definition

of f being replaced by the flat metric F . The set of all equivalence classes is de-

noted by π#
n (Z2(M ;F), {0}). In [32, §4.1] (see also [2, §3]), π1(Z2(M ;F), {0})

is also considered to be the usual homotopy group of equivalence classes of

continuous mappings (I, I0)→ (Z2(M ;F), {0}).

7.11. Min-Max definitions. Given Π ∈ π#
n (Z2(M ; M),Φ0), let

L : Π→ [0,+∞]

be defined by

L(S) = lim sup
i→∞

max{M(φi(x)) : x ∈ dmn(φi)}, where S = {φi}i∈N.

Note that L(S) is the discrete replacement for the maximum area of a contin-

uous map into Z2(M ; M).

7.12. Definition. The width of Π is defined by

L(Π) = inf{L(S) : S ∈ Π}.

We also consider

K : Π→ {K : K compact subset of V2(M)}

given by

K(S) = {V : V = lim
j→∞

|φij (xj)| as varifolds, for some increasing

sequence {ij}j∈N and xj ∈ dmn(φij )}

for S = {φi}i∈N ∈ Π.

We say S ∈ Π is a critical sequence for Π if

L(S) = L(Π).

The critical set C(S) of a critical sequence S ∈ Π is given by

C(S) = K(S) ∩ {V : ||V ||(M) = L(S)}.

The set C(S) ⊂ V2(M) is nonempty and compact.
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8. The Almgren-Pitts Min-Max Theory II

In our setting, the Almgren-Pitts Min-Max Theory applies to elements of

π#
n (Z2(M ; M),Φ0). Therefore it is important to generate an (n,M)-homotopy

sequence of mappings into (Z2(M ; M),Φ0) out of a continuous map Φ : In →
Z2(M) in the flat topology. This is the content of Theorem 8.2 below. In this

section we also discuss the Pitts Min-Max Theorem.

Let

c =
1

3
(1, . . . , 1, 0) ∈ In−1 × {0},

and let en be the coordinate vector corresponding to the xn-axis.

We consider the following hypotheses for the continuous map in the flat

topology Φ : In → Z2(M).

(A0) Φ|In0 is continuous in the F-metric.

(A1) Φ(In−1 × {0}) = Φ(In−1 × {1}) = 0.

(A2) L(Φ) = sup{M(Φ(x)) : x ∈ In} < +∞.
(A3) limr→0 m(Φ, r) = 0 (recall Definition 4.2).

(A4) The map t 7→ Φ(c + txn), 0 ≤ t ≤ 1, defines a nontrivial class in

π1(Z2(M ;F), {0}).
The next lemma assures that the min-max family Φ associated to an

embedded closed surface Σ of S3 satisfies the conditions above.

8.1. Lemma. Let Φ be the min-max family defined in Definition 6.1. Then

Φ satisfies hypotheses (A0)–(A4).

Proof. From Theorem 6.3 it is clear that hypotheses (A0)–(A3) are satis-

fied. Let [γ] ∈ π1(Z2(S3;F), {0}) be the class generated by the map γ(t) =

Φ(c+ txn), 0 ≤ t ≤ 1. For each i sufficiently large, Corollary 1.14 of Almgren

[2] guarantees the existence, for each x ∈ I(1, i)0 \ {[1]}, of Ai(x) ∈ I3(S3) so

that

(28) ∂Ai(x) = γ(x+ 3−i)− γ(x) and M(Ai(x)) = F(∂Ai(x)).

If F : π1(Z2(S3;F), {0}) → H3(S3,Z) is the natural isomorphism con-

structed by Almgren in Section 3 of [2] (see also Theorem 13.4 of [3]), then

F [γ] =

3i−1∑
j=0

Ai(j3
−i)

 ∈ H3(S3,Z)

for every i is sufficiently large.

We now argue that F [γ] =
î
S3
ó
∈ H3(S3,Z), and so condition (A4) is also

satisfied.

From Theorem 6.3(v), we know that

γ(x+ 3−i)− γi(x) = ∂([|U(x+ 3−i)|]− [|U(x)|]).
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Thus

B(x) = [|U(x+ 3−ki)|]− [|U(x)|]−Ai(x) ∈ I3(S3)

satisfies ∂B(x) = 0. The Constancy Theorem (see [39]) then implies that

B(x) = k[|M |] for some k = k(x) ∈ Z. On the other hand, the continuity of

t→ [|U(t)|] in the mass norm, together with continuity of γ and (28), implies

that the mass of B(x) becomes uniformly and arbitrarily small as i→∞. We

conclude that if i is sufficiently large, then B(x) = 0 for all x ∈ I(1, ki)0.

Therefore, for large i,

F [γ] =

3i−1∑
j=0

Ä
[|U((j + 1)3−i)|]− [|U(j3−i)|]

ä
=
î
[|U(1)|]− [|U(0)|]

ó
=
î
S3
ó
∈ H3(S3,Z). �

Then

8.2. Theorem. Assume Φ satisfies hypotheses (A0)–(A4). There exists

an (n,M)-homotopy sequence of mappings into (Z2(M ; M),Φ|In0 )

φ̃i : I(n, ki)0 → Z2(M)

with the following properties :

(i) There is a sequence {li}i∈N tending to infinity such that for every sequence

xi ∈ I(n, ki)0, we have

lim sup
i→∞

M(φ̃i(xi)) ≤ lim sup
i→∞

{M(Φ(x)) : α ∈ I(n, li)n, x, xi ∈ α}.

In particular, L({φ̃i}i∈N) ≤ sup{M(Φ(x)) : x ∈ In}.
(ii) limi→∞ sup{F(φ̃i(x)− Φ(x)) |x ∈ I(n, ki)0} = 0.

(iii) The sequence of mappings

vi : I(1, ki)0 → Z2(M ; M), vi(x) = φ̃i(c+ xen)

is a (1,M)-homotopy sequence of mappings into (Z2(M ; M), {0}) that be-

longs to a nontrivial element of π#
1 (Z2(M ; M), {0}).

The proof of Theorem 8.2 is postponed to Section 13.

8.3. Definition. Let Σ be an embedded closed surface in S3, and let Φ be

the min-max family associated to Σ constructed in Section 6. The homotopy

class associated with Σ is defined to be the homotopy class of S = {φ̃i}i∈N
given by Theorem 8.2 applied to Φ.
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8.4. The Min-Max Theorem. We now adapt the celebrated Pitts Min-Max

Theorem to our setting. Assume we have a continuous map in the flat topology

Φ : In → Z2(M)

that satisfies the hypotheses (A0)–(A1). We denote by |Φ| : In → V2(M) the

map given by |Φ|(x) = |Φ(x)| for x ∈ In.

Consider Π ∈ π#
n (Z2(M ; M),Φ|In0 ).

8.5. Proposition. There exists a critical sequence S∗ ∈ Π. For each

critical sequence S∗, there exists a critical sequence S ∈ Π such that

• C(S) ⊂ C(S∗),

• every Σ ∈ C(S) is either a stationary varifold or belongs to |Φ|(In0 ).

The sequence S is obtained from a pull-tight procedure applied to S∗. The

proof follows very closely Theorem 4.3 of [32] and is postponed to Section 15.

One consequence of Proposition 8.5 is the following theorem, established

by Pitts [32] when Π is a nontrivial element of π#
n (Z2(M ; M), {0}). The proof

follows by simple adaptation of the arguments in [32].

8.6. Theorem. Assume Φ satisfies (A0)–(A1).

Let Π ∈ π#
n (Z2(M ; M),Φ|In0 ) with

max{M(Φ(x)) : x ∈ In0 } < L(Π) <∞.

There exists a stationary integral varifold Σ, whose support is a smooth em-

bedded minimal surface, such that

||Σ||(M) = L(Π).

Moreover, if S∗ is a critical sequence, then we can choose Σ ∈ C(S∗).

Proof. Consider S = {ϕi}i∈N ∈ Π given by Proposition 8.5, and let

0 < ε = L(S)−max{M(Φ(x)) : x ∈ In0 }.

Because every Σ ∈ C(S) satisfies

||Σ||(M) = L(Π) > max{M(Φ(x)) : x ∈ In0 },

we obtain that every Σ in C(S) must be stationary. Since the construction of

[32, Th. 4.10] can be made to not affect those ϕi(x) with

M(ϕi(x)) ≤ L(S)− ε/2,

and since

M(ϕi(x)) ≤ max{M(Φ(x)) : x ∈ In0 }+ ε/2

for every x ∈ dmn(ϕi) ∩ In0 and sufficiently large i, we can see that the com-

petitor {ϕ∗i }i∈N constructed by Pitts belongs to Π. Therefore, as in [32], we

can find an almost-minimizing (in annular regions) Σ ∈ C(S). The regularity
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theory developed in [32, §7] implies that Σ is an integral varifold whose support

is a smooth embedded minimal surface. �

9. Lower bound on width

Let T ⊂ V2(S3) be the set of all varifolds that correspond to a great sphere

in S3 with multiplicity one. Note that T is naturally homeomorphic to RP3.

Let

Φ : I5 → Z2(S3)

be a continuous map in the flat topology satisfying (A0)–(A4) (thus Theo-

rem 8.2 can be applied) and the following hypotheses:

(A5) max{M(Φ(x)) : x ∈ I5
0} = 4π, and

x ∈ I5
0 and M(Φ(x)) = 4π ⇒ Φ(x) ∈ T .

(A6) For every δ > 0, there exists ε > 0 such that

(29) x ∈ I5
0 and F(|Φ(x)|, T ) ≤ ε⇒ x ∈ Jδ = ∂I4 ×

ï
1

2
− δ, 1

2
+ δ

ò
.

(A7) |Φ|(∂I4 × [1/2]) ⊂ T and

|Φ|∗([∂I4 × {1/2}]) 6= 0 in H3(RP3,Z).

We define Φ̂ : ∂I4 × I → T by

Φ̂(z, t) = |Φ(z, 1/2)|

for (z, t) ∈ ∂I4 × I. In particular, Φ̂(x) = |Φ(x)| for any x ∈ ∂I4 × {1/2}.
By applying Theorem 8.2 to Φ, we obtain a (5,M)-homotopy sequence of

mappings into (Z2(S3; M),Φ|In0 ):

C = {φ̃i}i∈N such that L(C) ≤ sup{M(Φ(x)) : x ∈ I5}.

We denote by Π the corresponding (5,M)-homotopy class.

9.1. Theorem. Assume Φ satisfies hypotheses (A0)–(A7). Then

L(Π) > 4π.

This theorem has the following important corollary.

9.2. Corollary. Assume Φ satisfies hypotheses (A0)–(A7). If

sup{M(Φ(x)) : x ∈ I5} < 8π,

then there exists a smooth embedded minimal surface Σ ⊂ S3 with genus g ≥ 1

such that

area(Σ) = L(Π) > 4π.
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Proof. Using Theorem 9.1 and (A5) we obtain that

4π = sup{M(Φ(x)) : x ∈ I5
0} < L(Π).

Hence we can apply Theorem 8.6 to conclude the existence of a stationary

integral varifold Σ, whose support is a smooth embedded minimal surface,

such that

4π < ||Σ||(S3) = L(Π) ≤ L(C) < 8π.

Every minimal surface in S3 has area bounded below by 4π, and so the

inequality above implies that Σ has multiplicity one. Since by Almgren [4] the

great spheres are the only minimal surfaces in S3 that are topological spheres,

it follows that Σ has genus g ≥ 1. This implies the desired result. �

9.3. Proof of Theorem 9.1. We argue by contradiction. Assume that

L(Π) = 4π, and consider the critical sequence S = {φi}i∈N ∈ Π given by

Proposition 8.5. Suppose that φi has domain I(5, ki) and that f(φi) = δi.

Note that every varifold in C(S) is stationary since any varifold in |Φ|(I5
0 )

with area 4π belongs to T .

We will use cubical singular homology groups with integer coefficients (see

Massey [27]). If X is a topological space, we denote by Cn(X) the group of

cubical singular n-chains in X with integer coefficients. If f : X → Y is a

continuous map, we denote by f# : Cn(X) → Cn(Y ) and f∗ : Hn(X,Z) →
Hn(Y,Z) the homomorphisms induced by f .

Note that we can identify α ∈ I(5, ki)p with a p-singular cube α : Ip → I5

in I5 in a natural way (through an affine map). If R =
∑
α∈I(5,ki)p nαα ∈

Cp(I
5), nα ∈ Z, we denote by Rq the set of all q-cells of I(5, ki) that are faces

of some α with nα 6= 0. In this case we say that R is subordinated to I(5, ki).

The support of R is the union of the supports of all α with nα 6= 0.

The proof is divided in three steps.

9.4. First step. We construct a 4-chain R(i) ∈ C4(I5), subordinated to

I(5, ki), with

support(∂R(i)) ⊂ ∂I5.

The chain R(i) is constructed so that |φi(x)| is sufficiently close to T for any

x ∈ R(i)0.

Let ε0 > 0 be small, to be chosen later. Then we choose δ > 0 such that

(30) x ∈ Jδ = ∂I4 × [1/2− δ, 1/2 + δ]⇒ F(|Φ(x)|, Φ̂(x)) ≤ ε0.

It follows from condition (A6) that there exists 0 < ε ≤ ε0/2 such that

(31) x ∈ ∂I5, F(|Φ(x)|, T ) < 2ε⇒ x ∈ Jδ.
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Consider

ā(i) =

ß
α ∈ I(5, ki)5 : F(|φi(x)|, T ) ≥ ε

2
for allx ∈ α0

™
.

Let a(i) be the set of 5-cells α ∈ ā(i) for which we can find a sequence {αj}lj=1 ⊂
ā(i) with α1 = α, αl = β ⊗ [0, 3−ki ] for some β ∈ I(4, ki)4, and such that αj
and αj+1 share a common 4-face for each j = 1, . . . , l− 1. Because φi vanishes

on (I(4, ki)⊗〈[0]〉)0, if ε0 is sufficiently small, we have that β⊗ [0, 3−ki ] ∈ a(i)

for every β ∈ I(4, ki)4. Loosely speaking, ∪α∈a(i)α is the connected component

of ∪α∈ā(i)α that contains I4 × {0}.
Let b(i) denote the set of 4-cells in I(5, ki) that are faces of exactly one

5-cell in a(i). Consider the following 5-chain:

A(i) =
∑
α∈a(i)

α ∈ C5(I5).

We have

∂A(i) =
∑
α∈b(i)

sgn(α)α,

where sgn(α) is equal to 1 or −1. Note that β ⊗ [0] ∈ b(i) for every β ∈
I(4, ki)4. From the definition of the boundary homomorphism, we have that

sgn(β ⊗ [0]) = −1 for every β ∈ I(4, ki)4.

Let c(i) be the set of 4-cells of b(i) that belong to the subcomplex T (5, ki)∪
S(5, ki). Then we have the disjoint decomposition below:

(32) b(i) ∩ I0(5, ki)4 = c(i) ∪ {α = β ⊗ [0] : β ∈ I(4, ki)4}.

We define the 4-chain:

R(i) = ∂A(i)−
∑

α∈b(i)∩I0(5,ki)4

sgn(α)α(33)

= ∂A(i) +
∑

β∈I(4,ki)4

β ⊗ [0]−
∑
α∈c(i)

sgn(α)α.

Note that support(∂R(i)) ⊂ ∂I5.

9.5. Lemma. We have

sup{F(|φi(x)|, T ) : x ∈ R(i)0} ≤ ε

for every sufficiently large i such that R(i) 6= 0.

Proof. Let i be sufficiently large such that 5δi ≤ ε/2, and let x ∈ R(i)0.

From the definition of R(i) we see that we can find a 4-cell

α ∈ b(i) ∩ (I(5, ki)4 \ I0(5, ki)4) with x ∈ α0.

Thus α is the common 4-face of two distinct cells β, γ ∈ I(5, ki)5. Since

α ∈ b(i), we can suppose, after a possible relabeling, that β ∈ a(i) and γ /∈ a(i).
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It follows from the definition of a(i) that γ /∈ ā(i). This means that there exists

y ∈ γ0 with F(|φi(y)|, T ) < ε/2. Note that d(x, y) ≤ 5; hence

F(|φi(x)|, T ) ≤ F(|φi(y)|, T ) + F(|φi(y)|, |φi(x)|) < ε

2
+ 5δi < ε. �

9.6. Second step. We prove that the support of R(i) separates I4 × {0}
from I4×{1}. This uses the assumption that L(Π) = 4π in a fundamental way.

Then we prove that ∂R(i) is homologous to ∂I4 × {1/2} in H3(∂I4 × I,Z).

9.7. Lemma. If i is sufficiently large, no 5-cell of the type β⊗ [1−3−ki , 1],

β ∈ I(4, ki)4, belongs to a(i).

Proof. Suppose, by contradiction, that there exists α = β ⊗ [1 − 3−ki , 1],

β ∈ I(4, ki)4, with α ∈ a(i). Then we can find a sequence of maps

γi : I(1, ni)0 → I(5, ki)0,

with

• ni ≥ ki and d(γi(x), γi(y)) ≤ 1 if d(x, y) ≤ 1;

• γi([0]) ∈ (I(4, ki)⊗ 〈[0]〉)0 and γi([1]) ∈ (I(4, ki)⊗ 〈[1]〉)0;

• γi(I(1, ni)0) ⊂ ∪α∈a(i)α.

In particular, putting σi = φi ◦ γi, we have

(34) F(|σi(x)|, T ) ≥ ε

2

for all x ∈ I(1, ni)0.

We now show that γi is homotopic to a vertical path, meaning we can find

a map

ψi : I(1, si)0 × I(1, si)0 → I(5, ki)0

such that

(a) ψi([0], ·) = γi ◦ n(si, ni) and ψi([1], y) = c+ n(si, ki)(y)e5, where

c =
1

3
(1, 1, 1, 1, 0) and e5 = (0, 0, 0, 0, 1);

(b) ψi(·, [0]) ∈ (I(4, ki)⊗ 〈[0]〉)0 and ψi(·, [1]) ∈ (I(4, ki)⊗ 〈[1]〉)0;

(c) if x, y ∈ I(2, si)0, then

d(x, y) ≤ 1⇒ d(ψi(x), ψi(y)) ≤ 5.

In order to show this we associate to each γi a piecewise linear continuous

curve γ̃i : I → I5 given by

(35) γ̃i(t) = (j + 1− 3nit)γi

Å
j

3ni

ã
+ (3nit− j)γi

Å
j + 1

3ni

ã
for every j3−ni ≤ t ≤ (j + 1)3−ni , j = 0, . . . , 3ni − 1. Note that γ̃i(t) = γi([t])

if [t] ∈ I(1, ni)0.
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Let ψ : I2 → I5 be given by ψ(u, t) = (1− u)γ̃i(t) + u(c+ te5). Then

(36) ψ(0, t) = γ̃i(t), ψ(1, t) = c+ te5 for all t ∈ I,

and

(37) ψ(I × {0}) ⊂ I4 × {0}, ψ(I × {1}) ⊂ I4 × {1}.

Choose si ≥ ni sufficiently large so that

(38) |ψ(x)− ψ(y)| ≤ 1

3ki+2
for all x, y ∈ I(2, si)0 with d(x, y) ≤ 1.

For x ∈ I(2, si)0, we choose ψi(x) ∈ I(5, ki)0 to satisfy

d(ψi(x), ψ(x)) = d(ψ(x), I(5, ki)0).

Note that such a choice might not be unique. If ψ(x) ∈ I4 × {j}, j = 0 or 1,

then it follows from the definition that ψi(x) ∈ (I(4, ki)⊗ 〈[j]〉)0. This proves

property (b) for ψi. From (35) and (36) we obtain property (a) for ψi. Finally,

from (38) we have that ψi(x) and ψi(y) are vertices of a common 5-cell in

I(5, ki) if x, y ∈ I(2, si)0 satisfy d(x, y) ≤ 1. This establishes property (c).

Consider the sequence D = {σi}i∈N, where σi = φi ◦ γi. From the fact

that γi is homotopic to a vertical path, we obtain that D is a (1,M)-homotopy

sequence of mappings into (Z2(S3; M), {0}) that is homotopic with {vi}i∈N,

where

vi : I(1, ki)0 → Z2(S3), vi(x) = φi(c+ xe5).

Hence D and {vi}i∈N belong to the same element Ω in π#
1 (Z2(S3; M), {0}).

Since S is homotopic with C (S,C ∈ Π), we obtain from Theorem 8.2(iii)

that Ω is nontrivial in π#
1 (Z2(S3; M), {0}). Hence it follows from Pitts ([32],

Th. 4.6, Cor. 4.7) that L(Ω) > 0. From Theorem 8.6 (applied to Ω ∈
π#

1 (Z2(S3; M), {0})), we get the existence of a stationary integral varifold Σ

whose support is a smooth embedded minimal surface in S3 and such that

(39) 4π ≤ ||Σ||(S3) = L(Ω) ≤ L(D) ≤ L(S) = L(Π) = 4π.

The first inequality follows because the area of any minimal surface in S3 is at

least 4π. The second inequality follows because D ∈ Ω, and the third inequality

follows because the definition of D implies K(D) ⊂ K(S). We note that this

string of inequalities implies that Σ must be a great sphere.

From (39) we also get that D is a critical sequence (since L(Ω) = L(D))

and that C(D) ⊂ C(S) (since L(D) = L(S)). In particular, every element of

C(D) is a stationary varifold because every varifold in C(S) is stationary. We

know from Theorem 8.6 that the surface Σ in (39) can be chosen to belong to

C(D); hence,

F(C(D), T ) = 0.
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On the other hand, according to (34), we have F(C(D), T ) ≥ ε/2. This

gives us a contradiction. �

9.8. Lemma. For sufficiently large i, support(∂R(i)) ⊂ Jδ and

[∂R(i)] = [∂I4 × {1/2}] in H3(Jδ,Z).

In particular, R(i) 6= 0.

Proof. We obtain from Lemma 9.7 that no 4-cell in b(i) belongs to the

subcomplex I(4, ki)⊗ 〈[1]〉. Therefore c(i) ⊂ S(5, ki)4. If

C(i) =
∑
α∈c(i)

sgn(α)α,

we get that C(i) is a 4-chain in ∂I4 × I. Since, from (33),

∂R(i) = ∂

Ñ ∑
β∈I(4,ki)4

β ⊗ [0]

é
− ∂C(i),

we conclude that ∂R(i) is a 3-cycle in ∂I4 × I and

[∂R(i)] = [∂I4 × {0}] = [∂I4 × {1/2}] in H3(∂I4 × I,Z).

Since support(∂R(i)) ⊂ ∂I4 × I, we know from Lemma 7.8 that

lim
i→∞

sup{F(φi(x),Φ(x)) : x ∈ ∂R(i)0} = 0.

Combining this with Lemma 9.5 and (31), we obtain that support(∂R(i)) ⊂ Jδ
if i is sufficiently large. Now we use a deformation retraction of ∂I4 × I onto

Jδ to get

[∂R(i)] = [∂I4 × {1/2}] in H3(Jδ,Z). �

9.9. Third step. We construct a continuous map fi : support(R(i)) → T
that extends Φ̂|support(∂R(i)). From that we derive a contradiction, using that

|Φ|∗([∂I4 × {1/2}]) 6= 0 in H3(RP3,Z).

9.10. Lemma. For all sufficiently large i, there exists a continuous func-

tion

fi : support(R(i))→ T
such that fi|support(∂R(i)) = Φ̂|support(∂R(i)).

Proof. Throughout the proof of this lemma, Dr(p) denotes a ball centered

at p of radius r in RP3 with respect to the standard metric. Unless otherwise

stated, geometric quantities in RP3 such as convexity, diameter, or distances,

are computed with respect to the standard metric.

Let η > 0 be chosen so that every ball of radius 11η in RP3 is geodesically

convex. The topology induced by the F-metric on T ≈ RP3 coincides with the
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topology induced by the geodesic distance of RP3. Therefore, by compactness,

we can find c0 > 0 so that

(40) p, q ∈ T satisfy F(p, q) <
η

2c0
⇒ dist(p, q) <

η

2
.

At this point we can choose ε0 = η
20c0

.

Let i be sufficiently large such that Lemmas 9.5, 9.7, and 9.8 apply, and

we have

(a) f(φi) ≤ ε0.

(b) For every x ∈ S(5, ki)0, we have F(φi(x),Φ(x)) < ε0 (using Lemma 7.8).

(c) For every α ∈ I0(5, ki)4,

sup{F(Φ̂(x), Φ̂(y)) : x, y ∈ α ∩ Jδ} < ε0.

This combined with (40) gives

sup{dist(Φ̂(x), Φ̂(y)) : x, y ∈ α ∩ Jδ} <
η

2
.

Define f0
i : R(i)0 → T as follows: if x ∈ ∂R(i)0, we make f0

i (x) = Φ̂(x);

otherwise we choose f0
i (x) ∈ T such that

F(f0
i (x), |φi(x)|) = F(|φi(x)|, T ).

We now prove that

(41) diam(f0
i (α0)) <

η

2

for every α ∈ R(i)4. From (40), it suffices to show that

F(f0
i (x), f0

i (y)) <
η

2c0

for every α ∈ R(i)4 and x, y ∈ α0. To that end, consider α ∈ R(i)4 and

x, y ∈ α0. In particular, we have d(x, y) ≤ 4. If both x, y ∈ ∂R(i)0, then the

inequality above follows from property (c). If only one of the vertices, say x,

belongs to ∂R(i)0 then, using the definition of Φ̂, (30), Lemma 9.5, Lemma 9.8,

properties (a) and (b), we have that

F(f0
i (x), f0

i (y))≤F(Φ̂(x), |Φ(x)|) + F(|Φ(x)|, f0
i (y))

≤ ε0 + F(|Φ(x)|, f0
i (y))

≤ ε0 + F(|Φ(x)|, |φi(x)|) + F(|φi(x)|, f0
i (y))

≤ 2ε0 + F(|φi(x)|, |φi(y)|) + F(|φi(y)|, f0
i (y))

≤ 6ε0 + F(|φi(y)|, T )

≤ 7ε0 <
η

2c0
.
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Finally, if x, y /∈ ∂R(i)0, then we have from Lemma 9.5 and property (a) that

F(f0
i (x), f0

i (y))

≤ F(f0
i (x), |φi(x)|) + F(|φi(x)|, |φi(y)|) + F(|φi(y)|, f0

i (y))

= F(|φi(x)|, T ) + F(|φi(x)|, |φi(y)|) + F(|φi(y)|, T )

≤ 6ε0 <
η

2c0
.

We now proceed to the iterative construction of fi. We cover RP3 with a

finite union of balls {Dη/2(pk)}Nk=1, where each D11η(pk) is geodesically convex.

We denote by R(i)(j) (∂R(i)(j)) the union of the supports of all q-cells α ∈ R(i)q
(α ∈ ∂R(i)q) with q ≤ j. The map

f ji : R(i)(j) → T

is called a continuous j-extension of f0
i if

(1) f ji = f0
i on R(i)0, and f ji = Φ̂ on ∂R(i)(j);

(2) for every α ∈ R(i)j , with j ≥ 1, we have

diam(f ji (α)) ≤ (2j − 2 + 2j−2)η.

Assuming the existence of a continuous j-extension f ji of f0
i , j ≤ 3, we

will construct a continuous (j + 1)-extension f j+1
i of f0

i . Let α ∈ R(i)j+1. If

α ∈ ∂R(i)j+1, we set f j+1
i = Φ̂ on α. In this case it follows from property (c)

that property (2) holds for α. We note that, since f ji = Φ̂ on support(∂α),

we have f j+1
i = f ji on support(∂α). If α /∈ ∂R(i)j+1, we know from (41) and

property (1) that

f ji (α0) ⊂ Bη(pk) for some k = 1, . . . , N.

By applying property (2) to the j-faces of α, we obtain from the inclusion

above that

f ji (support(∂α)) ⊂ B(2j−1+2j−2)η(pk).

We can now use the convexity of B11η(pk) to construct a continuous map

f j+1
i : support(α)→ B(2j−1+2j−2)η(pk)

such that f j+1
i = f ji on support(∂α). Furthermore, we have

diam(f j+1
i (α)) ≤ 2(2j − 1 + 2j−2)η = (2j+1 − 2 + 2j−1)η.

It follows that f j+1
i is a continuous and well-defined (j + 1)-extension of f0

i .

Arguing inductively, we construct a 4-extension f4
i of f0

i . The map fi =

f4
i : support(R(i)) → T is continuous and satisfies fi = Φ̂ on support(∂R(i)).

�
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We now finish the argument. The map fi : support(R(i)) → T ≈ RP3

constructed in Lemma 9.10 induces a homomorphism in homology

fi∗ : H∗(support(R(i)),Z)→ H∗(RP3,Z).

Since fi = Φ̂ on support(∂R(i)), we have

Φ̂∗[∂R(i)] = fi∗[∂R(i)] = [fi#∂(R(i))] = [∂fi#(R(i))] = 0.

But Lemma 9.8 implies that

Φ̂∗[∂R(i)] = Φ̂∗[∂I
4 × {1/2}] = |Φ|∗([∂I4 × {1/2}]) ∈ H3(RP3,Z).

This is a contradiction since we have assumed from the beginning that |Φ|∗([∂I4

× {1/2}]) 6= 0 in H3(RP3,Z).

10. Proof of Theorem B

Let

F1 = {S ⊂ S3 : S is an embedded closed minimal surface of

genus g(S) ≥ 1}.

The Jacobi operator of Σ is given by L = ∆ + |A|2 + 2, where A denotes the

second fundamental form of Σ. The index of Σ, denoted by index(Σ), is defined

to be the number of negative eigenvalues of L.

Theorem B follows from the next theorem.

10.1. Theorem. We have

2π2 = inf
S∈F1

area(S)

and, for every Σ ∈ F1, area(Σ) = 2π2 if and only if Σ is the Clifford torus up

to isometries of S3.

Proof. From Theorem A.1, choose Σ ∈ F1 such that

area(Σ) = inf
S∈F1

area(S) ≤ 2π2.

Consider the min-max family Φ (see Definition 6.1) and the homotopy class Π

(see Definition 8.3) associated with Σ. Theorem 6.3(vi), (vii), and (viii) imply

that hypotheses (A5), (A6), and (A7) are satisfied. Thus we can apply Corol-

lary 9.2 and conclude the existence of S ∈ F1 so that, from Theorem 6.3(iii),

we have

area(S) = L(Π) ≤ sup{M(Φ(x)) : x ∈ I5} ≤ W(Σ) = area(Σ).

Thus L(Π) = area(Σ).

We want to show that index(Σ) ≤ 5 because, by a theorem of Urbano [45],

that implies Σ must be the Clifford torus up to isometries of S3. Before we do

so, we need to establish a nondegeneracy lemma for the Jacobi operator on Σ.
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Let {e1, e2, e3, e4} be the standard orthonormal basis of R4. For x ∈ Σ,

define ψi(x) = 〈N(x), ei〉 for each 1 ≤ i ≤ 4, and ψ5(x) = 1. Denote by E

the subspace of C∞(Σ) spanned by {ψj}1≤j≤5. Notice that Lψi = 2ψi for

1 ≤ i ≤ 4 (see [45]).

Recall the definitions of Fv in Section 3.1 andNv in Remark 3.3(1). Choose

δ > 0 such that the map

P : B4
δ (0)× (−δ, δ)× Σ→ S3, P(v,t)(x) = (cos t)Fv(x) + (sin t)Nv(x)

has Σ(v,t) = P(v,t)(Σ), where {Σ(v,t)} is the canonical family defined in Defini-

tion 3.2, and such that P(v,t) is an embedding of Σ into S3.

If 1 ≤ i ≤ 4, x ∈ Σ, we haveÆ
d

ds |s=0
P(sei,0)(x), N(x)

∏
= −2〈ei, N(x)〉 = −2ψi(x)

and so

(42)
d2

(ds)2
|s=0

area
Ä
P(sei,0)(Σ)

ä
= −4

∫
Σ
ψiLψi dΣ.

Similarly,

(43)
d2

(ds)2
|s=0

area
Ä
P(0,s)(Σ)

ä
= −

∫
Σ
ψ5Lψ5 dΣ.

10.2. Lemma.

−
∫

Σ
ψLψ dΣ < 0 for every ψ ∈ E \ {0}.

Proof. Let

f(v, t) = area(Σ(v,t)) = area(P(v,t)(Σ)), (v, t) ∈ B4
δ (0)× (−δ, δ).

Since Σ is minimal, we have f(0, 0) =W(Σ) and Df(0, 0) = 0. We also know,

from Theorem 3.4, that f(v, t) ≤ f(0, 0) for every (v, t) ∈ B4
δ (0) × (−δ, δ).

Hence D2f(0, 0) ≤ 0, and this means that

−
∫

Σ
ψLψ dΣ ≤ 0 for every ψ ∈ E.

Suppose the lemma is not true. We can find φ ∈ E \ {0} such that

−
∫

Σ
φLψ dΣ = −

∫
Σ
ψLφdΣ = 0 for every ψ ∈ E.

Hence

(44)

∫
Σ
φψi dΣ = 0 for every 1 ≤ i ≤ 4, and

∫
Σ
LφdΣ = 0.
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This implies, since ψ5 = 1 ∈ E, the existence of c ∈ R such that

1 = cφ+ ψ, where ψ =
4∑
i=1

aiψi.

Hence, because ψ is an eigenfunction of L, we have∫
Σ

(|A|2 + 2) dΣ =

∫
Σ
L(1) dΣ =

∫
Σ

(cLφ+ Lψ) dΣ = 2

∫
Σ
ψ dΣ.

On the other hand, we also have 1 = c2φ2 + 2cφψ + ψ2. If we integrate

over Σ, we obtain from (44) that

area(Σ) =

∫
Σ

(c2φ2 + 2cφψ + ψ2) dΣ

≥
∫

Σ
ψ2 dΣ =

∫
Σ
ψ(1− cφ) dΣ =

∫
Σ
ψ dΣ.

Hence

2 area(Σ) ≤
∫

Σ
(|A|2 + 2) dΣ = 2

∫
Σ
ψ dΣ ≤ 2 area(Σ).

This implies A = 0, and so Σ is a great sphere. This contradicts our assumption

that Σ ∈ F1. �

Suppose, by contradiction, that index(Σ) ≥ 6. The idea is to construct a

comparison map

C ′ : B
4 × [−π, π]→ Z2(S3)

that coincides with C, the map given by Theorem 5.1, outside a neighborhood

of the origin. Using this map we will conclude that

area(Σw) = area(Σ) for some w ∈ B4 \ {0}.

Finally, we show that this identity implies Σ is totally geodesic, which gives us

the desired contradiction.

Because index(Σ) ≥ 6, there exists ϕ ∈ C∞(Σ) such that

• −
∫
ϕLϕdΣ < 0,

• −
∫
ϕLψidΣ = 0 for 1 ≤ i ≤ 5.

Let X be any vector field such that X = ϕN along Σ, and let {Γs}s≥0 be the

1-parameter group of diffeomorphisms generated by X.

Define f : B4
δ (0)× (−δ, δ)× (−δ, δ)→ R by

f(v, t, s) = area(Γs ◦ P(v,t)(Σ)).

We have f(0, 0, 0) = area(Σ), and Df(0, 0, 0) = 0 since Σ is minimal. It follows

from the choice of ϕ, (42), (43), and Lemma 10.2 that D2f(0, 0, 0) < 0. This

means that there exists 0 < δ1 ≤ δ such that

(45) area(Γs ◦ P(v,t)(Σ)) < f(0, 0, 0) = area(Σ)
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for every (v, t, s) ∈ (B4
δ1

(0)× (−δ1, δ1)× (−δ1, δ1)) \ {(0, 0, 0)}.
Let β : R5 → R be a smooth function such that 0 ≤ β(y) ≤ δ1/2 for

y ∈ R5, β(y) = 0 if |y| ≥ δ1/2 and β(y) = δ1/2 if |y| ≤ δ1/4. We then define

C ′(v, t) = [|Γβ(v,t) ◦ P(v,t)(Σ)|] ∈ Z2(S3) for |(v, t)| < δ1.

We have that C ′(v, t) = C(v, t) if δ1/2 < |(v, t)| < δ1, where C is the map

given by Theorem 5.1, and this means we can extend C ′ to a continuous map

in the flat topology

C ′ : B
4 × [−π, π]→ Z2(S3)

by defining C ′(v, t) = C(v, t) if |(v, t)| ≥ δ1. Note that from (45), we have

(46) sup{M(C ′(v, t)) : |(v, t)| ≤ δ1} < area(Σ)

and so

sup{M(C ′(v, t)) : (v, t) ∈ B4 × [−π, π]} ≤ area(Σ).

We use the map C ′ to show:

10.3. Lemma. There is w ∈ B4 \ {0} so that area(Σw) = area(Σ).

Proof. If we replace C by C ′ in Definition 6.1, we get a continuous map

in the flat topology Φ′ : I5 → Z2(S3) that, according to Theorem 6.3, satisfies

hypotheses (A0)–(A7), and thus Theorem 9.1 can be applied.

Consider the (5,M)-homotopy sequence S = {φi}i∈N of mappings into

(Z2(S3; M),Φ′|I5
0
) given by Theorem 8.2, and denote by Π′ the corresponding

(5,M)-homotopy class. From Corollary 9.2 we get the existence of a smooth

embedded minimal surface Σ′ with genus g ≥ 1 such that

4π < area(Σ′) = L(Π′).

Thus

area(Σ) ≤ area(Σ′) = L(Π′) ≤ L(S) ≤ sup{M(Φ′(x)) : x ∈ I5} ≤ area(Σ).

This implies that S is a critical sequence and hence, according to Theorem 8.6,

we can choose Σ′ ∈ C(S).

After passing to a subsequence, pick xi ∈ dmn(φi) so that |φi(xi)| con-

verges to Σ′ in the sense of varifolds. It follows from Theorem 8.2(i) that, for

some sequence {li}i∈N tending to infinity, we have

area(Σ′) = lim
i→∞

M(φi(xi))

≤ lim
i→∞

sup{M(Φ′(y)) : α ∈ I(5, li)5, xi, y ∈ α} ≤ area(Σ).

Thus from Theorem 8.2(ii) we obtain the existence of a sequence {yi}i∈N in I5

such that

(47) lim
i→∞
F(Φ′(yi), φi(xi)) = 0 and lim

i→∞
M(Φ′(yi)) =W(Σ) = area(Σ).
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From the definition of Φ′ we have Φ′(yi) = C ′(vi, ti) for some sequence

(vi, ti) ∈ B
4×[−π, π] and we can extract a subsequence {(vi, ti)}i∈N converging

to (v, t) ∈ B4 × [−π, π].

Moreover, (46) implies that C(vi, ti) = C ′(vi, ti) and |(vi, ti)| ≥ δ1/2 for

all i sufficiently large.

10.4. Lemma. w = T (v) ∈ B4.

Proof. Suppose T (v) ∈ S3, i.e., v ∈ S3∪Ωε. Theorem 5.1 implies the exis-

tence of a geodesic sphere S such that, after passing to a further subsequence,

we have

lim
i→∞
F(Φ′(yi), S) = lim

i→∞
F(C ′(vi, ti), S) = lim

i→∞
F(C(vi, ti), S) = 0.

If F(S) = area(S) = 0, from Proposition 5.3 we obtain the existence of q ∈ S3

such that for every r, we have

Σ(T (vi),ti) ⊂ Br(q) for all i sufficiently large.

Thus, Theorem 3.9 gives us that M(C(vi, ti)) tends to zero. This is a contra-

diction, and hence F(S) > 0.

Combining with (47), we obtained two subsequences {xi}i∈N, {yi}i∈N in

I5 and a geodesic sphere S with F(S) > 0 such that

lim
i→∞
F(Φ′(yi), S) = 0, lim

i→∞
F(Φ′(yi), φi(xi)) = 0,

and

lim
i→∞

F(|φi(xi)|,Σ′) = 0.

Lower semicontinuity of mass implies that Sx(S3\Σ′) = 0 and so S ⊂ Σ′. This

is a contradiction because S is a geodesic sphere and Σ′ has genus g ≥ 1. �

From Lemma 10.4 we have w = T (v) ∈ B4. Recall that M(C(vi, ti))

= M(C ′(vi, ti)) tends to area(Σ), and so we obtain from Theorem 3.4 that

either t = 0 or |t| = π, because otherwise Σ would be totally geodesic.

We argue that |t| = π does not occur. Choose p ∈ ΣT (v). Theorem 3.9

tells us that there exist r > 0 and δ′ > 0 such that

(48) area(Σ(u,s) ∩Br(−p)) ≤ δ′ <W(Σ)

for every (u, s) ∈ B4 × [−π, π].

For all i sufficiently large, we have

π − r/2 < |ti| ≤ π and dH(ΣT (vi),ΣT (v)) ≤ r/2,
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where dH denotes the Hausdorff distance. Hence

d(Σ(T (vi),ti), p) ≥ d(Σ(T (vi),ti),ΣT (v))

≥ d(Σ(T (vi),ti),ΣT (vi))− dH(ΣT (vi),ΣT (v))

= |ti| − dH(ΣT (vi),ΣT (v)) ≥ π − r.

Thus Σ(T (vi),ti) ⊂ Br(−p) and (48) contradicts the fact that M(C(vi, ti)) tends

to W(Σ).

Therefore t = 0 and so, recalling that |(vi, ti)| ≥ δ1/2 for all i sufficiently

large, we have v 6= 0, which means that

area(Σw) = area(Σ), w = T (v)∈ B4 \ {0}. �

Using Lemma 10.3 we now claim that Σ must be totally geodesic. From

formula (1.12) of [29], by substituting g = −2w
(1+|w|2)

, we have that

area(Σw) = area(Σ)− 4

∫
Σ

〈w,N(x)〉2

|x− w|4
dΣ.

Thus Lemma 10.3 implies that 〈w,N(x)〉 = 0 for every x ∈ Σ.

On the other hand, let h : S3 → R be given by h(x) = 〈x,w〉. Because

〈w,N(x)〉 = 0 for every x ∈ Σ, the conformal vector field V (x) = ∇h(x) of

S3 satisfies V (x) ∈ TxΣ for all x ∈ Σ. This means Σ is invariant by the flow

generated by V , but this is only possible if Σ is totally geodesic.

This is impossible because Σ ∈ F1 and thus index(Σ) ≤ 5. Hence we

obtain from [45] that Σ is the Clifford torus up to ambient isometries. �

11. Proof of Theorem A

Let Σ ⊂ S3 be an embedded closed surface of genus g ≥ 1. We can assume

W(Σ) < 8π.

Consider the min-max family Φ (see Definition 6.1) and the homotopy

class Π (see Definition 8.3) associated with Σ. We have from Theorem 6.3 that

all conditions required in Section 9 are met, and so we can apply Corollary 9.2

to conclude the existence of a minimal surface Σ′ with genus g ≥ 1 so that,

from Theorem 6.3(iii), we have

area(Σ′) = L(Π) ≤ sup{M(Φ(x)) : x ∈ I5} ≤ W(Σ).

From Theorem B we have area(Σ′)≥2π2, so we have proved that W(Σ)≥2π2.

Suppose now W(Σ) = 2π2.
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11.1. Lemma. There is w ∈ B4 so that area(Σw) =W(Σ) = 2π2.

Proof. Consider the map C given by Theorem 5.1 and the (5,M)-homo-

topy sequence S = {φi}i∈N ∈ Π of mappings into (Z2(S3; M),Φ|I5
0
) given by

Theorem 8.2. Thus, from Theorem B,

2π2 ≤ area(Σ′) = L(Π)

≤ L(S) ≤ sup{M(Φ(x)) : x ∈ I5} ≤ W(Σ) = 2π2.

This implies that S is a critical sequence and hence, according to Theorem 8.6,

we can choose Σ′ ∈ C(S).

After passing to a subsequence, pick xi ∈ dmn(φi) so that |φi(xi)| con-

verges to Σ′ in the sense of varifolds. It follows from Theorem 8.2(i) that, for

some sequence {li}i∈N tending to infinity, we have

area(Σ′) = lim
i→∞

M(φi(xi))

≤ lim
i→∞

sup{M(Φ(y)) : α ∈ I(5, li)5, xi, y ∈ α} ≤ W(Σ).

Thus we obtain from Theorem 8.2(ii) the existence of a sequence {yi}i∈N in I5

such that

lim
i→∞
F(Φ(yi), φi(xi)) = 0 and lim

i→∞
M(Φ(yi)) =W(Σ).

From the definition of Φ we have Φ(yi) = C(vi, ti) for some sequence (vi, ti) ∈
B

4 × [−π, π] and we can extract a subsequence {(vi, ti)}i∈N converging to

(v, t) ∈ B4 × [−π, π].

11.2. Lemma. w = T (v) ∈ B4.

Proof. If v ∈ S3 ∪ Ωε we argue like in Lemma 10.4, and obtain two sub-

sequences {xi}i∈N, {yi}i∈N in I5 and a geodesic sphere S with F(S) > 0 such

that

lim
i→∞
F(Φ(yi), S) = 0, lim

i→∞
F(Φ(yi), φi(xi)) = 0,

and

lim
i→∞

F(|φi(xi)|,Σ′) = 0.

Lower semicontinuity of mass implies that Sx(S3\Σ′) = 0 and so S ⊂ Σ′. This

is a contradiction because S is a geodesic sphere and Σ′ has genus g ≥ 1. �

Because M(C(vi, ti)) tends to W(Σ), we combine the above lemma with

Theorem 3.4 to conclude that either t = 0 or |t| = π. The same arguments as

in Lemma 10.3 show that |t| = π does not occur.

Thus t = 0, which means that

area(Σw) =W(Σ) = 2π2. �
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Lemma 11.1 at once implies Theorem A because in that case Σw must be

a minimal surface with genus g ≥ 1 and area 2π2 and thus, by Theorem B, the

Clifford torus up to ambient isometries. As a result, Σ is the Clifford torus up

to conformal transformations.

Part II. Technical work

12. No area concentration

The goal of this section is to prove Theorem 3.9.

Theorem 3.9. For every δ > 0, there exists r > 0 such that

area(Σ(v,t) ∩Br(q)) ≤ δ for every q ∈ S3 and (v, t) ∈ B4 × [−π, π].

The strategy for the proof is the following. From Remark 3.3 we know that

Σ(v,t) is contained in the immersed surface

P(v,t) = ψ(v,t) ◦ Fv : Σ→ S3,

where

P(v,t)(x) = (cos t)Fv(x) + (sin t)
DFv |x(N)

|DFv |x(N)|
(49)

= (cos t)

Ç
(1− |v|2)

x− v
|x− v|2

− v
å

+ (sin t)

Ç
N(x) + 2〈N(x), v〉 x− v

|x− v|2

å
.

It suffices to show that P(v,t)(Σ) has no area concentration, meaning that

area(P(v,t)(Σ)∩Br(q)) is small if r is small. The Jacobian of P(v,t) is uniformly

bounded outside a tubular neighborhood of Σ and so we need to analyze what

happens when v approaches p ∈ Σ. We will do that by dividing Σ in three

regions: a tiny disc D around p, where P(v,t)(D) tends to a geodesic sphere and

so there is no area concentration, a small annular region N , where P(v,t)(N) is

forming a neck with area smaller than δ and so there is no area concentration,

and the remaining region Σ\ (D∪N), where the Jacobian of P(v,t) is uniformly

bounded and so there is no area concentration.

Theorem 3.9 is proven at the end of this section.

12.1. Preliminary results. We derive three auxiliary results. Recall the

definition of Λ in Section 3.1.
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12.2. Lemma. There exists a constant C > 0 such that if v = Λ(p, s) ∈
B4 with |s| < C−1, then

|DP(v,t)|(x)≤C
Ç

1 +
|s|

|s|2 + |x− p|2

å
,

|D2P(v,t)|(x)≤C
Ç

1 +
1

|s|2 + |x− p|2

å
for all p, x ∈ Σ.

Proof. For v ∈ B4, consider

hv : Σ→ R4, hv(x) =
x− v
|x− v|2

.

We claim the existence of C1 > 0 such that if v = Λ(p, s) ∈ B4 with |s| < C−1
1 ,

then

(50) |Dkhv|(x) ≤ C1

(|s|2 + |x− p|2)
k+1

2

for all p, x ∈ Σ, k = 0, 1, 2.

There is C2 > 0 so that, for all x, p ∈ Σ,

(51) 1− 〈x, p〉 =
|x− p|2

2
and |〈x,N(p)〉| ≤ C2|x− p|2.

Therefore, recalling

Λ(p, s) = (1− s1)(cos(s2)p+ sin(s2)N(p)),

we obtain

|x− v|2 = 1− 2〈x, v〉+ |v|2

= 1− 2〈x, (1− s1)(cos(s2) p+ sin(s2)N(p))〉+ (1− s1)2

= 1− 2 cos s2〈x, p〉 − 2 sin s2〈x,N(p)〉+ 2s1 cos s2〈x, p〉
+ 2s1 sin s2〈x,N(p)〉+ 1− 2s1 + s2

1

= (1− s1)(2− 2〈x, p〉) + s2
1 + s2

2 +O(s1s
2
2 + s4

2 + |s2||x− p|2).

Thus, from (51) we see that we can find C3 > 0 such that

(52) |x− v|2 ≥ 1

2
(|x− p|2 + |s|2) if |s| ≤ C−1

3 .

Direct computation shows that

|Dkhv|(x) = O
Ä
|x− v|−(k+1)

ä
for k = 0, 1, 2,

and thus the claim follows from (52).

From (51), we have for |s| < C−1
2

|〈N(x), v〉| = (1− s1)| cos s2 〈N(x), p〉+ sin s2 〈N(x), N(p)〉|(53)

≤ C2(s2 + |x− p|2).
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Using the fact that 〈DN|x(Z), x〉 = 0 for all Z ∈ TxΣ, we have

|〈DN|x(Z), v〉| = |〈DN|x(Z), v − x〉| = O(|Z||x− v|)
for all x ∈ Σ and Z ∈ TxΣ. Finally, we have

(54) 1− |v|2 = 2s1 − s2
1 = O(s1).

Since

P(v,t)(x) = (cos t)
Ä
(1− |v|2)hv(x)− v

ä
+ (sin t) (N(x) + 2〈N(x), v〉hv(x)) ,

we use (50), (53), and (54), to conclude the existence of C > 0 such that if

|s| ≤ 1/C, then

|DP(v,t)|(x) ≤ C
Ç

1 +
|s|

|s|2 + |x− p|2

å
and

|D2P(v,t)|(x) ≤ C
Ç

1 +
1

|s|2 + |x− p|2

å
. �

Let Ep : TpΣ→ Σ ⊂ S3 be the exponential map of Σ at p. We denote by

Dr(0) ⊂ TpΣ the disk of radius r, centered at the origin, and by Dr(p) ⊂ Σ the

geodesic disk of radius r, centered at p, with respect to the induced metric.

12.3. Lemma. For every δ > 0, there exist L > 0 and α > 0 such that

the following holds : if v = Λ(p, (s, ks)) and (1 + k2)s2 ≤ α, then∫
Dα(0)\D

L
√

1+k2s
(0)
|Jac(P(v,t) ◦ Ep)| dw ≤ δ.

Proof. It follows from Lemma 12.2 that∫
Dα(0)\D

L
√

1+k2s
(0)
|Jac(P(v,t) ◦ Ep)|dw

≤ C1

∫
Dα(0)\D

L
√

1+k2s
(0)

Ç
1 +

|(s, ks)|
|(s, ks)|2 + |Ep(w)− p|2

å2

dw

≤ C2α
2 + C2

∫
R2\D

L
√

1+k2s
(0)

Ç
|(s, ks)|

|(s, ks)|2 + |w|2

å2

dw

for some constants C1, C2 > 0 depending only on Σ.

After the change of variables w̃ = w
|(1,k)|s , we obtain∫

R2\D
L
√

1+k2s
(0)

Ç
|(s, ks)|

|(s, ks)|2 + |w|2

å2

dw =

∫
R2\DL(0)

Ç
1

1 + |w̃|2

å2

dw̃ ≤ π

L2
.

Hence, if α > 0 is sufficiently small and L > 0 is sufficiently large, we have∫
Dα(0)\D

L
√

1+k2s
(0)
|Jac(P(v,t) ◦ Ep)| ≤ δ. �
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For every x ∈ S3, denote by πx : S3 \ {x} → {x}⊥ the stereographic

projection centered at x:

πx(p) = x+
1

1− 〈p, x〉
(p− x).

The inverse of πx is given by

π−1
x (w) =

2

1 + |w|2
(w − x) + x, w ∈ {x}⊥.

12.4. Lemma. Let (vn, tn) ∈ B4 × [−π, π] with vn tending to v = p ∈ Σ.

After passing to a subsequence, write

vn = Λ(pn, (sn, knsn)) with lim
n→∞

kn = k ∈ [−∞,+∞],

and set

fn(w) = P(vn,tn) ◦ Epn(
»

1 + k2
nsnw).

Then fn converges uniformly in C1
loc to

f(w) = (cos t+ k sin t)

Ç
π−1
x (w)− x√

1 + k2

å
− (cos t p− sin tN(p)),

where x = − 1√
1+k2

p+ k√
1+k2

N(p) ∈ S3.

12.5. Remark.

(1) With x = − 1√
1+k2

p+ k√
1+k2

N(p), we have

π−1
x (w)− x√

1 + k2
− p = π−1

−p
Ä√

1 + k2w − kN(p)
ä

for all w ∈ TpΣ.

Thus, as expected when t = 0,

f(TpΣ) =
π−1
x (TpΣ)− x√

1 + k2
− p = ∂Brk(Qp,k).

(2) For the definition of fn to make sense we choose sequences of orthonormal

sets {e1
n, e

2
n} ⊂ TpnΣ such that ein → ei ∈ TpΣ, i = 1, 2. Then we identify

w = (w1, w2) ∈ R2 with w1e
1
n + w2e

2
n ∈ TpnΣ for each n.

Proof. Note that both sn and knsn must tend to zero. We have

vn = (1− sn)(cos (knsn)pn + sin (knsn)N(pn))(55)

= pn − snpn + knsnN(pn) +O((1 + k2
n)s2

n)

and

Epn(
»

1 + k2
nsnw) = pn +

»
1 + k2

nsnw +O((1 + k2
n)s2

n|w|2).

Hence

Epn(
»

1 + k2
nsnw)− vn =

»
1 + k2

nsnw + snpn − knsnN(pn)

+O((1 + k2
n)s2

n(1 + |w|2))
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and, using the fact that {w, pn, N(pn)} is a orthogonal set of vectors,

|Epn(
»

1 + k2
nsnw)− vn|2 = (1 + k2

n)s2
n(1 + |w|2)

Ä
1 +O(

»
1 + k2

nsn)
ä
.

Therefore

(56)
Epn(

»
1 + k2

nsnw)− vn
|Epn(

»
1 + k2

nsnw)− vn|2

=

»
1 + k2

nw + pn − knN(pn)

(1 + k2
n)sn(1 + |w|2)

Ä
1 +O(

»
1 + k2

nsn)
ä +O(1).

Combining 1− |vn|2 = 2sn − s2
n with (56), we obtain

lim
n→∞

Fvn ◦ Epn(
»

1 + k2
nsnw)(57)

=
2

(1 + |w|2)

Ç
w√

1 + k2
+

p

1 + k2
− kN(p)

1 + k2

å
− p

=
π−1
x (w)− x√

1 + k2
− p,

where x = − 1√
1+k2

p+ k√
1+k2

N(p).

From the fact that 〈N(x)−N(pn), N(pn)〉 = O(|x−pn|2), we obtain from

(51) and (55) that

〈N(x), vn〉 = knsn〈N(x), N(pn)〉+O(|x− pn|2 + (1 + k2
n)s2

n)

= knsn + knsn〈N(x)−N(pn), N(pn)〉+O(|x− pn|2 + (1 + k2
n)s2

n)

= knsn +O(|x− pn|2 + (1 + k2
n)s2

n).

Thus

〈N ◦ Epn(
»

1 + k2
nsnw), vn〉 = knsn +O((1 + k2

n)s2
n(1 + |w|2)),

which when combined with (56) implies

lim
n→∞

2〈N ◦ Epn(
»

1 + k2
nsnw), vn〉

Epn(
»

1 + k2
nsnw)− vn

|Epn(
»

1 + k2
nsnw)− vn|2

(58)

= lim
n→∞

Ñ
2knsn

»
1 + k2

nw + pn − knN(pn)

(1 + k2
n)sn(1 + |w|2)

é
=

2

(1 + |w|2)

Ç
kw√

1 + k2
+

kp

1 + k2
− k2N(p)

1 + k2

å
=
k(π−1

x (w)− x)√
1 + k2

,

where x = − 1√
1+k2

p+ k√
1+k2

N(p).

From (49), (57), and (58) we obtain that fn converges to f pointwise
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Fix K > 0. It follows from Lemma 12.2 that for every w ∈ DK(0),

|Dfn(w)|≤C
»

1 + k2
nsn

Ñ
1 +

|(sn, knsn)|
|(sn, knsn)|2 + |Epn(

»
1 + k2

nsnw)− pn|2

é
≤C

and

|D2fn(w)|≤C(1+k2
n)s2

n

Ñ
1 +

1

|(sn, knsn)|2 + |Epn(
»

1 + k2
nsnw)− pn|2

é
≤C.

Since we already know that fn converges to f pointwise, the estimates above

give C1 convergence on compact subsets. �

12.6. Proof of Theorem 3.9. It suffices to show that for every δ > 0 and

q ∈ S3, we can find r = r(q, δ) so that

area(Σ(v,t) ∩Br(q)) ≤ δ

because, via a standard finite covering argument, we can then find r indepen-

dent of q.

Suppose this statement is false. There exist q ∈ S3, δ > 0, and a sequence

(vn, tn) ∈ B4 × [−π, π] such that

area(Σ(vn,tn) ∩B1/n(q)) ≥ δ

for every n ∈ N. By passing to a subsequence, we can assume (vn, tn) converges

to (v, t) ∈ B4 × [−π, π].

In what follows, we repeatedly use the fact that, from the area formula,

area(Σ(v,t) ∩Br(q)) ≤
∫
P−1

(v,t)
(Br(q))

|JacP(v,t)| dΣ for all r > 0.

If v ∈ B4, then P(vn,tn) converges uniformly to P(v,t) in the C∞ topology

and so we can find r > 0 such that, for all n sufficiently large,∫
P−1

(vn,tn)
(Br(q))

|JacP(vn,tn)| dΣ ≤ δ

2
.

This gives us a contradiction.

If v ∈ S3 \ Σ, we see from (49) that again P(vn,tn) converges uniformly,

in the C∞ topology, to some P1 : Σ → S3. The proof proceeds as in the case

v ∈ B4.

Finally we have to consider the case v = p ∈ Σ. After passing to a

subsequence, we can write

vn = Λ(pn, (sn, knsn)) with lim
n→∞

kn = k ∈ [−∞,+∞].
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According to Lemma 12.3, we can choose L > 0 and α > 0 so that

(59)

∫
Dα(0)\D

L
√

1+k2
nsn

(0)
|Jac(P(vn,tn) ◦ Epn)| dw ≤ δ

6

if n is sufficiently large.

Using Lemma 12.2, we extract a subsequence P(vn,tn) that converges, C1

uniformly, on Σ\Dα/4(p) to some C1 map P2 : Σ\Dα/4(p)→ S3. There exists

r1 > 0 such that ∫
P−1

2 (B2r1 (q))
|JacP2| dΣ ≤ δ

12

and so, if n is sufficiently large, we have

(60)

∫
P−1

(vn,tn)
(Br1 (q))\Dα/2(p)

|JacP(vn,tn)| dΣ ≤ δ

6
.

Consider fn : D2L(0)→ S3 given by fn(w) = P(vn,tn) ◦Epn(
»

1 + k2
nsnw). The

sequence fn converges in the C1 topology to f given by Lemma 12.4, and hence

we can find r2 > 0 such that∫
f−1(B2r2 (q))∩D2L(0)

|Jac f | dw ≤ δ

12
.

Therefore, if n is sufficiently large, we have

(61)

∫
f−1
n (Br2 (q))∩DL(0)

|Jac fn| dw ≤
δ

6
.

If r = min{r1, r2}, we have the decomposition∫
P−1

(vn,tn)
(Br(q))

|JacP(vn,tn)| dΣ

=

∫
P−1

(vn,tn)
(Br(q))∩D

L
√

1+k2
nsn

(pn)
|JacP(vn,tn)| dΣ

+

∫
P−1

(vn,tn)
(Br(q))∩

Ä
Dα(pn)\D

L
√

1+k2
nsn

(pn)
ä |JacP(vn,tn)| dΣ

+

∫
P−1

(vn,tn)
(Br(q))\Dα(pn)

|JacP(vn,tn)| dΣ

≤
∫
f−1
n (Br2 (q))∩DL(0)

|Jac fn| dw

+

∫
Dα(0)\D

L
√

1+k2
nsn

(0)
|Jac (P(vn,tn) ◦ Epn)| dw

+

∫
P−1

(vn,tn)
(Br1 (q))\Dα/2(p)

|JacP(vn,tn)| dΣ.
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Using (59), (60), and (61) in the identity above we obtain∫
P−1

(vn,tn)
(Br(q))

|JacP(vn,tn)| dΣ ≤ δ

2

for all n sufficiently large. This is a contradiction.

13. Interpolation results: Continuous to discrete

In this section we prove an interpolation theorem and use it to show

Theorem 8.2.

Assume that we have a continuous map in the flat topology

Φ : In → Z2(M)

with the following properties:

• Φ|In0 is continuous in the F-metric,

• L(Φ) = sup{M(Φ(x)) : x ∈ In} < +∞,
• lim supr→0 m(Φ, r) = 0.

13.1. Theorem. There exist sequences of mappings

φi : I(n, ki)0 → Z2(M),

ψi : I(1, ki)0 × I(n, ki)0 → Z2(M)

with ki < ki+1, ψi([0], ·) = φi, ψi([1], ·) = (φi+1)|I(n,ki)0
, and sequences {δi}i∈N

tending to zero and {li}i∈N tending to infinity, such that

(i) For every y ∈ I(n, ki)0,

M(φi(y)) ≤ sup{M(Φ(x)) : α ∈ I(n, li)n, x, y ∈ α}+ δi.

In particular,

max{M(φi(x)) : x ∈ I(n, ki)0} ≤ L(Φ) + δi.

(ii) f(ψi) < δi.

(iii) sup{F(ψi(y, x)− Φ(x)) | y ∈ I(1, ki)0, x ∈ I(n, ki)0} ≤ δi.
(iv) if x ∈ I0(n, ki)0 and y ∈ I(1, ki)0, then we have

M(ψi(y, x)) ≤M(Φ(x)) + δi.

Moreover, if Φ|{0}×In−1 is continuous in the mass topology, then we can choose

φi so that

φi(x) = Φ(x) for all x ∈ B(n, ki)0.

For the reader’s convenience we recall Theorem 8.2. Let

c =
1

3
(1, . . . , 1, 0) ∈ In−1 × {0},

and let en be the coordinate vector corresponding to the xn-axis.
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We recall the following hypotheses for the continuous map in the flat

topology Φ : In → Z2(M). Set c = 1
3(1, . . . , 1, 0) ∈ In−1 × {0}.

(A0) Φ|In0 is continuous in the F-metric.

(A1) Φ(In−1 × {0}) = Φ(In−1 × {1}) = 0.

(A2) L(Φ) = sup{M(Φ(x)) : x ∈ In} < +∞.
(A3) limr→0 m(Φ, r) = 0.

(A4) The map t 7→ Φ(c + txn), 0 ≤ t ≤ 1, defines a nontrivial class in

π1(Z2(M ;F), {0}).
Then

Theorem 8.2. Assume Φ satisfies hypotheses (A0)–(A4). There exists

an (n,M)-homotopy sequence of mappings into (Z2(M ; M),Φ|In0 )

φ̃i : I(n, ki)→ Z2(M)

with the following properties :

(i) There is a sequence {li}i∈N tending to infinity such that for every se-

quence xi ∈ I(n, ki)0, we have

lim sup
i→∞

M(φ̃i(xi)) ≤ lim sup
i→∞

{M(Φ(x)) : α ∈ I(n, li)n, x, xi ∈ α}.

In particular,

L({φ̃i}i∈N) ≤ sup{M(Φ(x)) : x ∈ In}.

(ii) limi→∞ sup{F(φ̃i(x)− Φ(x)) |x ∈ I(n, ki)0} = 0.

(iii) The sequence of mappings

vi : I(1, ki)0 → Z2(M ; M), vi(x) = φ̃i(c+ xen),

is a (1,M)-homotopy sequence of mappings into (Z2(M ; M), {0}) that

belongs to a nontrivial element of π#
1 (Z2(M ; M), {0}).

Proof. Let φi, ψi, δi be given by Theorem 13.1. It follows from property

(iv) of Theorem 13.1 and (A1) that

(62) M(ψi(y, x)) ≤ δi

for all y ∈ I(1, ki)0 and x ∈ T (n, ki)0 ∪B(n, ki)0.

Define ψ̃i : I(1, ki)0× I(n, ki)0 → Z2(M) by ψ̃i(y, x) = 0 if x ∈ T (n, ki)0∪
B(n, ki)0 and ψ̃i(y, x) = ψi(y, x) otherwise. Also define φ̃i(x) = ψ̃i([0], x)

for x ∈ I(n, ki)0. Note that f(ψ̃i) < 2δi by (62) and Theorem 13.1 part

(ii). It follows that {φ̃i}i∈N is an (n,M)-homotopy sequence of mappings into

(Z2(M ; M),Φ|In0 ). Theorem 13.1(i) and (iii) imply Theorem 8.2(i) and (ii),

respectively.
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It remains to prove property (iii) of Theorem 8.2. Consider the auxiliary

sequence

γi : I(1, ki)0 → Z2(M), γi(x) = Φ(c+ xen)

and the continuous map in the flat topology

γ : [0, 1]→ Z2(M), γ(x) = Φ(c+ xen).

Because Φ is continuous in the flat topology, we have that

(63) lim
i→∞

sup
α∈I(1,ki)1

{F(γi(x)− γi(y)) : x, y ∈ α0} = 0.

From that we get that γ̃ = {γi}i∈N is a (1,F)-homotopy sequence of mappings

into (Z2(M ;F), {0}). Furthermore, it follows from Theorem 13.1(ii) that

sup{F(φ̃i(x)− Φ(x)) : x ∈ I(n, ki)0} ≤ 2δi.

This implies that v = {vi}i∈N and γ̃ = {γi}i∈N are in the same (1,F)-homotopy

class of mappings into (Z2(M ;F), {0}):

[v] = [γ] ∈ π#
1 (Z2(M ;F), {0}).

Since π#
1 (Z2(M ; M), {0}), π#

1 (Z2(M ;F), {0}), and π1(Z2(M ;F), {0}) are all

naturally isomorphic by [32, Th. 4.6], we get that [v] is nontrivial in

π#
1 (Z2(M ; M), {0})

if and only if [γ̃] is nontrivial in π#
1 (Z2(M ;F), {0}), which occurs if and only

if [γ] is nontrivial in π1(Z2(M ;F), {0}). The latter condition is assured by

hypothesis (A4). �

The remainder of this section is devoted to the proof of Theorem 13.1.

13.2. Technical Results. We prove two technical results that will be used

in the proof of Theorem 13.1. The first proposition is an extension result. It

states that if T ∈ Z2(M) and l,m ∈ N are fixed, then we can find k ∈ N,

k ≥ l, such that any map φ that sends I0(m, l)0 into a small neighborhood of

T (with respect to the flat metric) can be extended to I(m, k)0 in a way that

the fineness of the extension φ̃ and the maximum value of M(φ̃) are not much

bigger than the fineness of φ and the maximum value of M(φ), respectively.

The issue of controlling the fineness of φ̃ is nontrivial because a priori we only

know that φ(I0(m, l)0) is close to T in the flat metric, which is weaker than

the mass norm. A similar problem was addressed by Pitts in [32, Lemma 3.7].

The fact, proven in Section 12, that there is no mass concentration will be used

in the proof (although we think it might not be necessary).

Let a(n) = 2−4(n+2)2−2, where n ∈ N is fixed.
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13.3. Proposition. Let l,m ∈ N, with m ≤ n + 1, and let δ, r, L be

positive real numbers. Fix

T ∈ Z2(M) ∩ {S : M(S) ≤ 2L}.

There exist 0 < ε = ε(l,m, T, δ, r, L) < δ and k = k(l,m, T, δ, r, L) ∈ N for

which the following holds : Given 0 < s < ε and

φ : I0(m, l)0 → BFs (T ) ∩ {S : M(S) ≤ 2L}

with m(φ, r) ≤ δ/4, there exists

φ̃ : I(m, k)0 → BFs (T )

with

(i) f(φ̃) ≤ δ if m = 1, and f(φ̃) ≤ m(f(φ) + δ) if m 6= 1;

(ii) φ̃ = φ ◦ n(k, l) on I0(m, k)0;

(iii) sup
x∈I(m,k)0

{M(φ̃(x))} ≤ sup
x∈I0(m,l)0

{M(φ(x))}+
δ

n+ 1
;

(iv) m(φ̃, r) ≤ 2(m(φ, r) + a(n)δ).

Proof. We assume m > 1 (the case m = 1 is easier) and argue by contra-

diction. In this case we can find

φk : I0(m, l)0 → BFεk(T ) ∩ {S : M(S) ≤ 2L}

for each k > max{l, δ−1}, with εk < 1/k and m(φk, r) ≤ δ/4, such that there

is no extension φ̃k of φk to I(m, k)0 satisfying (i)–(iv).

The next lemma is a straightforward adaptation of [32, Lemma 3.7].

13.4. Lemma. There exists N ∈ N, N ≥ l, such that for a subsequence

{φj}, we can find

ψj : I(1, N)0 × I0(m, l)0 → BFεj (T )

satisfying

(i) f(ψj) ≤ δ if m = 1 and f(ψj) ≤ f(φj) + δ if m 6= 1;

(ii) ψj([0], x) = φj(x) and ψj([1], x) = T for all x ∈ I0(m, l)0;

(iii) sup{M(ψj(y, x)) : (y, x)∈I(1, N)0 × I0(m, l)0}

≤ sup
x∈I0(m,l)0

{M(φj(x))}+
δ

n+ 1
;

(iv) m(ψj , r) ≤ 2(m(φj , r) + a(n)δ).

Proof. Since the set of varifolds in V2(M) with mass bounded above by 2L

is compact in the weak topology, we can find a subsequence {φj} of {φk}k∈N
and a map

V : I0(m, l)0 → V2(M)
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so that

lim
j→∞

|φj(x)| = V (x) as varifolds

for each x ∈ I0(m, l)0. Note that

lim
j→∞

φj(x) = T as currents.

Since the mass is lower semicontinuous in the flat topology, and since

m(φj , r) ≤ δ/4, we have

(64) ||T ||(Br(p)) ≤ ||V (x)||(Br(p)) ≤m(φj , r) + a(n)δ <
δ

3

for all j sufficiently large, p ∈M, and x ∈ I0(m, l)0.

We can choose points {pi}vi=1, and positive real numbers {ri}vi=1, ri < r,

so that

Bri1 (pi1) ∩Bri2 (pi2) = ∅ if i1 6= i2

and such that

(65) ||T ||(Bri(pi)) ≤ ||V (x)||(Bri(pi)) <
δ

3
,

(66) ||T ||(∂Bri(pi)) = ||V (x)||(∂Bri(pi)) = 0,

and

(67) ||V (x)||(M \ ∪vi=1Bri(pi)) <
δ

3

for all x ∈ I0(m, l)0 and i = 1, . . . , v. We can assume v = 3N − 1 for some

N ∈ N satisfying N ≥ l.
From [2, Cor. 1.14], we get that there exists Qj(x) ∈ I3(M), for all j

sufficiently large and x ∈ I0(m, l)0, such that

∂Qj(x) = φj(x)− T, M(Qj(x)) = F(φj(x)− T ).

In particular, we have M(Qj(x)) < εj < 1/j.

For each i = 1, . . . , v, consider the distance function di(x) = d(pi, x).

Using [39, Lemma 28.5], we find a decreasing subsequence {rji } converging to

ri with rji < r and such that the slices 〈Qj(x), di, r
j
i 〉 are in I2(M) and satisfy

(68) 〈Qj(x), di, r
j
i 〉 = ∂(Qj(x)xB

rji
(pi))− (φj(x)− T )xB

rji
(pi)

for every x ∈ I0(m, l)0. Note that since limj→∞M(Qj(x)) = 0, by the coarea

formula we can choose {rji } such that

(69)
∑

x∈I0(m,l)0

v∑
i=1

M(〈Qj(x), di, r
j
i 〉) ≤ a(n)δ <

δ

2(n+ 1)
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for every sufficiently large j. Furthermore, using (65), (66), (67), and the lower

semicontinuity of the mass functional, we get that

(70) ||φj(x)||(B
rji

(pi)) <
δ

3
, ||T ||(B

rji
(pi)) <

δ

3
,

(71) ||φj(x)||(M \ ∪vi=1Bri(pi)) <
δ

3
, ||T ||(M \ ∪vi=1Bri(pi)) <

δ

3
,

and

(72) (||T || − ||φj(x)||)(B
rji

(pi)) ≤
δ

2(n+ 1)v

for every sufficiently large j, i = 1, . . . , v, and x ∈ I0(m, l)0.

We consider the map given by

ψj

Åï
i

3N

ò
, x

ã
= φj(x)−

i∑
a=1

∂(Qj(x)xB
rja

(pa)) if 0 ≤ i ≤ 3N − 1,

ψj([1], x) = T,

defined on I(1, N)0 × I0(m, l)0.

Note that

ψj

Åï
i

3N

ò
, x

ã
− T = ∂(Qj(x)x(M \ ∪ia=1Brja

(pa)),

from which it follows that ψj
Äî

i
3N

ó
, x
ä
∈ BFεj (T ). From (68), we also have

ψj

Åï
i

3N

ò
, x

ã
= φj(x)x(M \ ∪ia=1Brja

(pa)) +
i∑

a=1

TxB
rja

(pa)(73)

−
i∑

a=1

〈Qj(x), da, r
j
a〉xBrja(pa).

It follows from (69), (70), (71), and (73) that

M

Å
ψj

Åï
i

3N

ò
, x

ã
− ψj

Åï
i− 1

3N

ò
, x

ãã
≤ δ

3
+ M(φj(x)xB

rji
(pi)) + M(TxB

rji
(pi)) < δ

for 1 ≤ i ≤ v = 3N − 1 and

M

Å
ψj

Åï
1− 1

3N

ò
, x

ã
− T
ã
≤M(φj(x)x(M \ ∪va=1Brja

(pa)))

+ M(Tx(M \ ∪va=1Brja
(pa))) +

δ

3
< δ.
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If d(x, y) = 1, we also have

M

Å
ψj

Åï
i

3N

ò
, x

ã
− ψj

Åï
i

3N

ò
, y

ãã
≤M

Ä
(φj(x)− φj(y))x(M \ ∪ia=1Brja

(pa))
ä

+
δ

2
≤ f(φj) + δ.

Hence f(ψj) ≤ f(φj) + δ.

To prove Lemma 13.4(iii), we use (69), (72), and (73) to conclude

M

Å
ψj

Åï
i

3N

ò
, x

ãã
≤ ||φj(x)||(M \ ∪ia=1Brja

(pa))

+
i∑

a=1

||T ||(B
rja

(pa)) +
δ

2(n+ 1)

≤ ||φj(x)||(M)

+
i∑

a=1

(||T || − ||φj(x)||)(B
rja

(pa)) +
δ

2(n+ 1)

≤ ||φj(x)||(M) +
δ

n+ 1
.

Finally, Lemma 13.4(iv) follows from (64), (69), and (73):∣∣∣∣∣∣∣∣ψj Åï i3N ò , xã∣∣∣∣∣∣∣∣ (Br(p)) ≤ ||φj(x)||(Br(p)) + ||T ||(Br(p)) + a(n)δ

≤ 2m(φk, r) + 2a(n)δ. �

In order to finish the proof of Proposition 13.3, we will use Lemma 13.4

to construct an extension φ̃j for every sufficiently large j. This will imply a

contradiction.

Define

φ̂j : I(1, N)0 × I0(m,N)0 → BFεj (T )

by

φ̂j(y, x) = ψj(y,n(N, l)(x)).

Recall that S(m+ 1, N)0 = I(1, N)0 × I0(m,N)0. We extend φ̂j to

S(m+ 1, N)0 ∪ T (m+ 1, N)0

by setting it equal to T on T (m+1, N)0. The extension φ̃j : I(m, j)0 → BFεj (T )

is defined by

φ̃j = φ̂j ◦ rm(N) ◦ n(j,N + q),

where rm(N) and q are as in Appendix C. �
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The next result removes the dependence of ε and k on the parameters l

and m in Proposition 13.3. Roughly speaking, it says that with T ∈ Z2(M)

fixed we can find k ∈ N such that every map φ from I0(m, j)0 into a small

neighborhood of T (with respect to the flat metric) can be extended to a map

φ̃ from I(m, k + j)0 into the same neighborhood of T and having the same

properties as the map constructed in Proposition 13.3.

The constant b(n) mentioned below is universal.

13.5. Proposition. Let δ, r, L be positive real numbers, and let

T ∈ Z2(M) ∩ {S : M(S) ≤ 2L}.

There exist 0 < ε = ε(T, δ, r, L) < δ and k = k(T, δ, r, L) ∈ N for which the

following holds : Given 0 < s < ε, j,m ∈ N with m ≤ n+ 1, and

φ : I0(m, j)0 → BFs (T ) ∩ {S : M(S) ≤ 2L− δ}

with

2n+2(m(φ, r) + a(n)δ) ≤ δ/4,
there exists

φ̃ : I(m, j + k)0 → BFs (T )

with

(i) f(φ̃) ≤ δ if m = 1 and f(φ̃) ≤ b(n)(f(φ) + δ) if m 6= 1;

(ii) φ̃ = φ ◦ n(k + j, j) on I0(m, k + j)0;

(iii) sup
x∈I(m,k+j)0

{M(φ̃(x))} ≤ sup
x∈I0(m,j)0

{M(φ(x))}+ δ;

(iv) m(φ̃, r) ≤ 2n+2(m(φ, r) + a(n)δ).

Proof. Assume m > 1 (the case m = 1 is easier). Using the notation of

Proposition 13.3, set

k0 = 0, k1 = k(0, 1, T, δ, r, L), ki = k(ki−1, i, T, δ, r, L),

where i = 1, . . . , n+ 1, and

ε = min{ε(ki−1, i, T, δ, r, L) : i = 1, . . . , n+ 1}.

In what follows, we will apply Proposition 13.3 to maps defined on vertices of

a p-cell α ∈ I(m, j)p, after identifying α with Ip through an affine map.

Let Vp be the set of vertices of I(m, j + kp) that belong to the p-skeleton

of I(m, j); i.e., Vp = ∪α∈I(m,j)pα(kp)0. We say a map

φp : Vp → BFs (T ) ∩ {S : M(S) ≤ 2L}

is a p-extension of φ if the following conditions are met:

(1) φp(x) = φ ◦ n(j + kp, j)(x) for x ∈ Im0 .
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(2) If p = 1, we require f(φ1) ≤ f(φ) + δ. If p > 1, we ask that there exists

φp−1, a (p− 1)-extension of φ, so that

f(φp) ≤ p(f(φp−1) + δ).

(3) sup
x∈Vp
{M(φp(x))} ≤ sup

x∈I0(m,j)0

{M(φ(x))}+
pδ

n+ 1
.

(4) m(φp, r) ≤ 2pm(φ, r) + 2(2p − 1)a(n)δ.

We will now construct a 1-extension φ1 of φ. First fix y ∈ I0(m, j)0, and

define

φ0 : I(m, j)0 → BFs (T ) ∩ {S : M(S) ≤ 2L− δ}

by φ0(x) = φ(x) if x ∈ I0(m, j)0 and φ0(x) = φ(y) if x /∈ I0(m, j)0. By applying

Proposition 13.3 to φ0 in each 1-cell of I(m, j), we get a map φ̃0 : V1 → BFs (T ).

Let α ∈ I(m, j)1. If α is a 1-cell of I0(m, j), we set φ1 = φ ◦ n(j + k1, j)

on α(k1)0. If α /∈ I0(m, j), we set φ1 = φ̃0 on α(k1)0. The fact that φ1 is a

1-extension of φ follows directly from the construction and Proposition 13.3.

13.6. Lemma. Given a p-extension φp of φ, we can find a (p+1)-extension

φp+1 of φ.

Proof. By applying Proposition 13.3 to φp in a (p + 1)-cell α of I(m, j),

we get a map φ̃p,α : α(kp+1)0 → BFs (T ). If α and α are adjacent (p + 1)-cells

of I(m, j), then property (ii) of Proposition 13.3 guarantees that φ̃p,α = φ̃p,α
on α(kp+1)0 ∩ α(kp+1)0. Therefore there exists φ̃p : Vp+1 → BFs (T ) such that

φ̃p = φ̃p,α on α(kp+1)0 for each α of I(m, j)p+1.

Note that φ̃p satisfies

• f(φ̃p) ≤ (p+ 1)(f(φp) + δ);

• sup
x∈Vp+1

{M(φ̃p(x))} ≤ sup
x∈Vp
{M(φp(x))}+

δ

n+ 1

≤ sup
x∈I0(m,j)0

{M(φ(x))}+
(p+ 1)δ

n+ 1
;

• m(φ̃p, r) ≤ 2(m(φp, r) + a(n)δ) ≤ 2p+1m(φ, r) + 2(2p+1 − 1)a(n)δ.

Let α ∈ I(m, j)p+1. If α is a (p + 1)-cell of I0(m, j), we set φp+1 =

φ◦n(j+kp+1, j) on α(kp+1)0. If α /∈ I0(m, j)p+1, we set φp+1 = φ̃p on α(kp+1)0.

The fact that φp+1 is a (p+ 1)-extension follows from the construction and the

properties of φ̃p listed above. �

It follows by induction that there exists an m-extension φm : Vm →
BFs (T ) ∩ {S : M(S) ≤ 2L} of φ. Note that Vm = I(m, j + km)0. To fin-

ish the proof of Proposition 13.5, we make k = km and φ̃ = φm. �
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13.7. Proof of Theorem 13.1. The idea of the proof is the following. First,

we cover {T : M(T ) ≤ 2L(Φ)} with a finite union of balls {Bi}Ni=1 such that

Proposition 13.5 can be applied in each ball. Then we choose j large enough

so that, for every α ∈ I(n, j)n, Φ(α0) belongs to some ball Bi. Finally, we

use Proposition 13.5 to first construct φ along 3k subdivisions of 1-cells in

I(n, j), then along 32k subdivisions of 2-cells of I(n, j), and argue inductively

until we have constructed φ defined on I(n, j + nk)0. Some care is in order

to make sure that at every step of the inductive construction the hypotheses

of Proposition 13.5 are still satisfied. The procedure is straightforward but

slightly long and tedious.

Choose δ, r small so that

(74) L = L(Φ) < 2L− 2(n+ 1)δ and m(Φ, r) < a(n)δ.

Compactness of Z2(M)∩{T : M(T ) ≤ 2L} in the flat topology implies we can

cover this set with a finite number of balls BFεi(Ti), i = 1, . . . , N , where

Ti ∈ Z2(M) ∩ {T : M(T ) ≤ 2L} and εi =
ε(Ti, δ, r, L)

9n+ 4
.

Here we use the notation of Proposition 13.5. We can assume ε1 < · · · < εN .

Note that (9n+ 4)εN < δ. Let ki = k(Ti, δ, r, L) denote the constant given by

Proposition 13.5, and let k = max{ki}i∈{1,...,N}.
Choose j sufficiently large so that for all α ∈ I(n, j)n and β ∈ I0(n, j)n−1,

we have

(75) sup
x,y∈α

{F(Φ(x)− Φ(y))} < ε1

and

(76) sup
x,y∈β

|M(Φ(x))−M(Φ(y))| < δ.

Additionally, if Φ|{0}×In−1 is continuous in the mass norm, we also require that

for all γ ∈ [0]⊗ I(n− 1, j), we have

(77) sup
x,y∈γ

{M(Φ(x)− Φ(y))} < δ.

Consider the function

c : I(n, j)→ {1, . . . , N}

given by

c(x) = max{i : Φ(x) ∈ BFεi(Ti)} if x ∈ I(n, j)0,

and

c(α) = max{c(x) : x ∈ α0} if α ∈ I(n, j)p.

The key property of c is described below.
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13.8. Lemma. Let α ∈ I(n, j). Then Φ(x) ∈ BF2εc(α)
(Tc(α)) for every

x ∈ α. If x ∈ α0, we also have

Tc(x) ∈ BF3εc(α)
(Tc(α)).

Proof. There exists a vertex y ∈ α0 such that c(y) = c(α). Hence, by

(75), we know that
F(Φ(x)− Φ(y)) < ε1 ≤ εc(α).

Furthermore, from the definition of c, we get

Φ(y) ∈ BFεc(α)
(Tc(α)).

Hence Φ(x) ∈ BF2εc(α)
(Tc(α)) for every x ∈ α.

If x ∈ α0, we also have Φ(x) ∈ BFεc(x)
(Tc(x)). The lemma follows from the

triangle inequality and the fact that c(x) ≤ c(α). �

Let Vp be the set of vertices of I(n, j + pk) that belong to the p-skeleton

of I(n, j), i.e., Vp = ∪α∈I(n,j)pα(pk)0. In particular, Vn = I(n, j + nk)0. We

say a map
φp : Vp → Z2(M)

is a p-extension of Φ if the following conditions are met:

(1) If p = 1, we require that f(φ1) ≤ δ. If p > 1, we ask that there exists a

(p− 1)-extension φp−1 of Φ so that

f(φp) ≤ b(n)(f(φp−1) + δ).

(2) For every α ∈ I(n, j)p, we have

sup
x∈α(pk)0

{M(φp(x))} ≤ sup
x∈α0

{M(Φ(x))}+ pδ < 2L− δ.

(3) For every α ∈ I(n, j)q with q ≤ p, we have

φp(α(pk)0) ∈ BF3pεc(α)
(Tc(α)).

(4) m(φp, r) ≤ 2p(n+2)(p+ 1)a(n)δ.

We start by constructing a 1-extension of Φ. In what follows, we will

apply Proposition 13.5 to maps defined on vertices of a p-cell α ∈ I(n, j)p,

after identifying α with Ip through an affine map.

Let φ0 : I(n, j)0 → Z2(M) be the restriction of Φ to I(n, j)0. Given a

1-cell α ∈ I(n, j), we have from Lemma 13.8 that

φ0(α0) ⊂ BF3εc(α)
(Tc(α)).

By applying Proposition 13.5 to φ0 on α, with T = Tc(α), we get a map

φ̃0,α : α(kc(α)) → BF3εc(α)
(Tc(α)). Since φ̃0,α(x) = φ0(x) for x ∈ α0, the map

φ1 : V1 → Z2(M) given by φ1 = φ̃0,α ◦n(j+k, j+kc(α)) on α(k)0, α ∈ I(n, j)1,

is well defined. It follows directly from Proposition 13.5 that φ1 is a 1-extension

of Φ.
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13.9. Lemma. Assume 1 ≤ p ≤ n − 1. Given a p-extension φp of Φ, we

can find a (p+ 1)-extension φp+1 of Φ.

Proof. Given α ∈ I(n, j)p+1, we have from condition (3) and Lemma 13.8

that
φp(α0(pk)0) ∈ BF3(p+1)εc(α)

(Tc(α)).

Because of conditions (2) and (4) we can apply Proposition 13.5 to φp in α,

with j = pk, m = p+ 1, T = Tc(α), and get a map

φ̃p,α : α(pk + kc(α))0 → BF3(p+1)εc(α)
(Tc(α)).

By property (ii) of Proposition 13.5 we get that

φ̃p,α = φp ◦ n(j + pk + kc(α), j + pk)

on the p-faces of α. Hence the map φp+1 : Vp+1 → Z2(M) given by

φp+1 = φ̃p,α ◦ n(j + (p+ 1)k, j + pk + kc(α))

on α((p+ 1)k)0, α ∈ I(n, j)p+1, is well defined.

Note that φp+1 satisfies

• if α ∈ I(n, j)p+1, then

φp+1 = φp ◦ n(j + (p+ 1)k, j + pk) on α0((p+ 1)k)0;

• f(φp+1) ≤ b(n)(f(φp) + δ);

• if α ∈ I(n, j)p+1, then

sup
x∈α((p+1)k)0

{M(φp+1(x))} ≤ sup
x∈α0(pk)0

{M(φp(x))}+ δ(78)

≤ sup
x∈α0

{M(Φ(x))}+ (p+ 1)δ;

• if α ∈ I(n, j)p+1, then

φp+1(α((p+ 1)k)0) ∈ BF3(p+1)εc(α)
(Tc(α));

• m(φp+1, r) ≤ 2n+2(2p(n+2)(p+ 1)a(n)δ + a(n)δ)

≤ 2(p+1)(n+2)(p+ 2)a(n)δ.

Furthermore, if β ∈ I(n, j)q with q ≤ p, we can find α ∈ I(n, j)p+1 such

that β is a face of α. Hence, by the first property of φp+1 listed above,

φp+1(β((p+ 1)k)0) = φp(β(pk)0) ⊂ BF3pεc(β)
(Tc(β)).

We conclude that φp+1 is a (p+ 1)-extension of Φ. �

Applying Lemma 13.9 inductively, we obtain the existence of an n-exten-

sion φδ = φn of Φ:

φδ : I(n, j + nk)0 → Z2(M).

The map φδ has the following properties:

(a) f(φδ) ≤ c(n)δ for some universal constant c(n).
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(b) For every x ∈ I(n, j + nk)0,

(79) M(φδ(x)) ≤ sup{M(Φ(y)) : α ∈ I(n, j)0, x, y ∈ α}+ nδ.

In particular,

(80) sup
x∈I(n,j+nk)0

{M(φδ(x))} ≤ L(Φ) + nδ.

(c) M(φδ(x)) ≤M(Φ(x)) + (n+ 1) for all x ∈ I0(n, j + nk)0.

(d) m(φδ, r) ≤ 2n(n+2)(n+ 1)a(n)δ.

(e) For every α ∈ I(n, j)p with p ≤ n,

φδ(α(nk)0) ∈ BF3nεc(α)
(Tc(α)).

We note that property (c) follows from (76) and (78). Furthermore,

Lemma 13.8, (75), and property (e) imply that

(81) sup{F(φδ(x)− Φ(x)) : x ∈ I(n, j + nk)0} ≤ 3(n+ 1)εN < δ.

Before proceeding with the construction, we need one more definition. A

map

φ̄ : I(n, k̄)0 → Z2(M) ∩ {S : M(S) ≤ 2L}
is called an (n, δ, k̄)-extension of Φ if it satisfies

(a′) f(φ̄) ≤ c(n)δ;

(b′) supx∈I(n,k̄)0
{M(φ̄(x))} ≤ L(Φ) + nδ;

(c′) M(φ̄(x)) ≤M(Φ(x)) + (n+ 1)δ for all x ∈ I0(n, k̄)0;

(d′) m(φ̄, r) ≤ 2n(n+2)(n+ 1)a(n)δ;

(e′) sup{F(Φ(x)− φ̄(x)) : x ∈ I(n, k̄)0} < ε1.

The constant d(n) mentioned below is universal.

13.10. Proposition. Let φ̄ be an (n, δ, k̄)-extension of Φ, with k̄ ≥ j+nk.

Then there exists

ψ : I(1, k̂)0 × I(n, k̂)0 → Z2(M),

with k̂ = (n+ 1)k + k̄, such that

ψ([0], ·) = φδ ◦ n(k̂, j + nk), ψ([1], ·) = φ̄ ◦ n(k̂, k̄),

and

(i) f(ψ) < d(n)δ;

(ii) sup{F(ψ(y, x)− Φ(x)) : y ∈ I(1, k̂)0, x ∈ I(n, k̂)0} ≤ δ;
(iii) M(ψ(y, x)) ≤M(Φ(x)) + 2(n+ 2)δ for all (y, x) ∈ I(1, k̂)0 × I0(n, k̂)0.

Proof. Let φ̃δ = φδ ◦ n(k̄, nk + j) on I(n, k̄)0. We also define

c̄ : I(n, k̄)→ {1, . . . , N}

by

c̄(α) = sup{c(β) : β ∈ I(n, j) and α ∩ β 6= ∅}.



MIN-MAX THEORY AND THE WILLMORE CONJECTURE 757

Note that c̄(α) ≤ c̄(α′) if α ⊂ α′. The next lemma is similar to Lemma 13.8.

13.11. Lemma. Let α ∈ I(n, k̄). We have

φ̃δ(α0), φ̄(α0) ⊂ BF(3n+4)εc̄(α)
(Tc̄(α))

and

Φ(x) ∈ BF3εc̄(α)
(Tc̄(α))

for every x ∈ α0. In particular, if α, α′ ∈ I(n, k̄) satisfy α ⊂ α′, then

Tc̄(α) ∈ BF6εc̄(α′)
(Tc̄(α′)).

Proof. Let η ∈ I(n, j) with α ⊂ η. From the definition of c̄, there exists

β ∈ I(n, j) with α ∩ β 6= ∅ such that c̄(α) = c(β). In particular, c(η) ≤ c(β)

and β ∩ η 6= ∅. It follows from Lemma 13.8 and property (e) that

φ̃δ(α0) ⊂ φδ(η(nk)0) ⊂ BF3nεc(η)
(Tc(η))

and

Φ(y) ∈ BF2εc(β)
(Tc(β)) ∩BF2εc(η)

(Tc(η)) for all y ∈ β ∩ η.

Hence Tc(η) ∈ BF4εc(β)
(Tc(β)). It follows that φ̃δ(α0) ⊂ BF(3n+4)εc(β)

(Tc(β)).

Let y ∈ α0∩β ⊂ η. From property (e′) and (75), we get φ̄(x) ∈ BF2ε1(Φ(y))

and Φ(x) ∈ BFε1(Φ(y)) for each x ∈ α0. Therefore,

φ̄(α0) ⊂ BF4εc(β)
(Tc(β)) and Φ(x) ∈ BF3εc(β)

(Tc(β)). �

We say a p-cell α of I(n+1, k̄) = I(1, k̄)⊗I(n, k̄) is horizontal if α = [y]⊗β
for some [y] ∈ I(1, k̄)0 and β ∈ I(n, k̄)p. We say it is vertical if α = γ ⊗ β for

some γ ∈ I(1, k̄)1 and β ∈ I(n, k̄)p−1.

Let Wp be the set of vertices of I(n+1, k̄+pk) that belong to the p-skeleton

of I(n+1, k̄); i.e., Wp = ∪α∈I(n+1,k̄)pα(pk)0. In particular, Wn+1 = I(n+1, k̂)0.

Consider

ψ0 : I(1, k̄)0 × I(n, k̄)0 → Z2(M)

given by

ψ0([0], x) = φ̃δ(x), ψ0([i · 3−k̄], x) = φ̄(x),

where 0 < i ≤ 3k̄. We say that a map

ψp : Wp → Z2(M)

is a p-homotopy if the following conditions hold:

(1) ψp([0], ·) = φ̃δ ◦ n(k̄ + pk, k̄), ψp([1], ·) = φ̄ ◦ n(k̄ + pk, k̄).

(2) If p = 1, we require that f(ψ1) ≤ c(n)δ. If p > 1, we ask that there

exists a (p− 1)-homotopy ψp−1 so that

f(ψp) ≤ b(n)(f(ψp−1) + δ).
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(3) If α = γ ⊗ β is a p-cell of I(n+ 1, k̄), then

sup
(y,x)∈α(pk)0

{M(ψp(y, x))} ≤ sup
x∈β0

{M(φ̃δ(x)),M(φ̄(x))}+ pδ.

(4) If α = γ ⊗ β is a p-cell of I(n+ 1, k̄), then

ψp(α(pk)0) ⊂ BF(3n+6p−2)εc̄(β)
(Tc̄(β)).

(5) m(ψp, r) < 2(n+p)(n+2)(n+ p+ 1)a(n)δ.

(6) If α is a horizontal p-cell of I(n+ 1, k̄), then

ψp = ψ0 ◦ n(k̄ + pk, k̄)

on α(pk)0.

We start by defining a 1-homotopy ψ1. Let α=γ ⊗ β be a vertical 1-cell

of I(n + 1, k̄). By applying Proposition 13.5 to ψ0 on α, with T = Tc̄(β),

we get a map ψ̃0,α : α(kc̄(β)) → BF(3n+4)εc̄(β)
(Tc̄(β)). Note that we can apply

Proposition 13.5 here because of Lemma 13.11 and properties (b), (d), (b′),

(d′) above. Since ψ̃0,α(x) = ψ0(x) for x ∈ α0, the map ψ1 : W1 → Z2(M)

given by ψ1 = ψ̃0,α ◦ n(k̄ + k, k̄ + kc̄(β)) on α(k)0 if α is a vertical 1-cell, and

by ψ1 = ψ0 ◦ n(k̄ + k, k̄) on α(k)0 if α is a horizontal 1-cell, is well defined. It

follows directly from Proposition 13.5 that ψ1 is a 1-homotopy.

13.12. Lemma. Assume p ≤ n. Given a p-homotopy ψp, we can find a

(p+ 1)-homotopy ψp+1.

Proof. Let α = γ ⊗ β be a vertical (p + 1)-cell of I(n + 1, k̄). Hence

β ∈ I(n, k̄)p. From condition (4) of the definition of a p-homotopy and

Lemma 13.11, we have

ψp(α0(pk)0) ⊂ BF(3n+6(p+1)−2)εc̄(β)
(Tc̄(β)).

From condition (3) of the definition of a p-homotopy, and properties (b), (b′),

we also have

sup
xα0(pk)0

{M(ψp(y, x))} ≤ L+ (n+ p)δ < 2L− δ.

Now because of condition (5) we can apply Proposition 13.5 to ψp in α, with

T = Tc̄(β), m = p+ 1, j = pk, to get a map

ψ̃p,α : α(pk + kc̄(β))0 → BF(3n+6(p+1)−2)εc̄(β)
(Tc̄(β)).

By property (ii) of Proposition 13.5, we get that

ψ̃p,α = ψp ◦ n(k̄ + pk + kc̄(β), k̄ + pk)

on the p-faces of α.
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If α = γ ⊗ β is a horizontal (p+ 1)-cell of I(n+ 1, k̄), we define

ψ̃p,α : α(pk + kc̄(β))0 → BF(3n+4)εc̄(β)
(Tc̄(β))

by ψ̃p,α = ψ0 ◦ n(k̄ + pk + kc̄(β), k̄). Since the p-faces of α are again horizontal

cells, we get from condition (6) of the definition of a p-homotopy that

ψ̃p,α = ψp ◦ n(k̄ + pk + kc̄(β), k̄ + pk)

on the p-faces of α.

Hence the map ψp+1 : Wp+1 → Z2(M) given by

ψp+1 = ψ̃p,α ◦ n(k̄ + (p+ 1)k, k̄ + pk + kc̄(β))

on α((p+ 1)k)0, α = γ ⊗ β ∈ I(n, k̄)p+1, is well defined.

Arguing as in the proofs of Lemmas 13.6 and Lemma 13.9, we can check

that ψp+1 is a (p+ 1)-homotopy. �

Proceeding inductively, we construct an (n+ 1)-homotopy

ψ = ψn+1 : I(n+ 1, k̂)0 → Z2(M).

From condition (2) of the definition of a p-homotopy it follows that there

exists a universal constant d(n) so that f(ψ) ≤ d(n)δ. From condition (4) of

the definition of a p-homotopy, we have that

ψ(α((n+ 1)k)0) ⊂ BF(9n+4)εc̄(β)
(Tc̄(β))

Thus, we obtain from Lemma 13.11 that

sup{F(ψ(y, x)− Φ(x)) : y ∈ I(1, k̂)0, x ∈ I(n, k̂)0} ≤ (9n+ 7)εN < δ.

Finally, from (76), and property (c), we have that for every β ∈ I0(n, k̄)n−1

and z ∈ β,

sup
x∈β0

{M(φ̃δ(x)),M(φ̄(x))} ≤M(Φ(z)) + (n+ 2)δ.

Therefore, condition (3) of the definition of a p-homotopy implies that

M(ψ(y, x)) ≤M(Φ(x)) + 2(n+ 2)δ for all (y, x) ∈ I(1, k̂)0 × I0(n, k̂)0. �

We now finish the proof of Theorem 13.1. Let

e(n) = max{d(n), c(n), 2(n+ 2)},

and let {δi}i∈N be a decreasing sequence of positive numbers converging to

zero. Consider

ϕi = φδi/e(n) : I(n, ki)0 → Z2(M),

ki →∞, defined as before. From (79) we see that for every y ∈ I(n, ki)0,

M(φi(y)) ≤ sup{M(Φ(x)) : α ∈ I(n, li)n, x, y ∈ α}+ δi

and this proves Theorem 13.1(i).
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We can extract a subsequence {φi = ϕji} such that φi+1 is an (n, δji , kji+1)-

extension of Φ. Proposition 13.10 applied to φi and φi+1 (replacing φδ and φ̄,

respectively) gives us a map ψi that satisfies Theorem 13.1(ii), (iii), and(iv).

To prove Theorem 13.1(v), we change the construction of the p-extension

φp of Φ so that, whenever α ∈ [0]⊗ I(n− 1, j)p, we have φp = Φ ◦ n(j + pk, j)

on α(pk)0. This is still a p-extension because of (77). Then we redefine φδ so

that, instead of having φδ = Φ ◦ n(j + nk, j) on α ∈ [0] ⊗ I(n − 1, j)n−1, we

have φδ = Φ on α(nk)0. The rest of the construction follows exactly as in the

previous case.

14. Interpolation results: Discrete to continuous

In this section we give conditions under which a discrete map is approxi-

mated by a continuous map in the mass norm. The main result is important

to prove Proposition 8.5 in Section 15.

We observe from Corollary 1.14 in [2] that there exists δ0 > 0, depending

only on M , such that for every

ψ : I(n, 0)0 → Z2(M)

with f(ψ) < δ0, and α ∈ I(n, 0)1 with ∂α = [b]− [a], we can find Q(α) ∈ I3(M)

with

∂Q(α) = ψ([b])− ψ([a]) and M(Q(α)) = F(∂Q(α)).

The main result of this section is

14.1. Theorem. There exists C0 > 0, depending only on M and n, such

that for every map

ψ : I(n, 0)0 → Z2(M)

with f(ψ) < δ0, we can find a continuous map in the mass norm

Ψ : In → Z2(M ; M)

such that

(i) Ψ(x) = ψ(x) for all x ∈ I(n, 0)0;

(ii) for every α ∈ I(n, 0)p, Ψ|α depends only on the values assumed by ψ

on the vertices of α;

(iii) sup{M(Ψ(x)−Ψ(y)) : x, y ∈ In} ≤ C0 sup
α∈I(n,0)1

{M(∂Q(α))}.

An immediate consequence is

14.2. Theorem. For every map

ψ : I(n, k)0 → Z2(M)

with f(ψ) < δ0, we can find a continuous map in the mass norm

Ψ : In → Z2(M ; M)
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such that

• Ψ(x) = ψ(x) for all x ∈ I(n, k)0;

• for every α ∈ I(n, k)p,

sup{M(Ψ(x)−Ψ(y)) : x, y ∈ α} ≤ C0f(ψ).

Proof. Let α be an n-cell of I(n, k). By identifying α with In and applying

Theorem 14.1 to ψ|α0
, we get a continuous map Ψα : α→ Z2(M ; M) satisfying

sup{M(Ψα(x)−Ψα(y)) : x, y ∈ α} ≤ C0f(ψ).

It follows from Theorem 14.1(ii) that these continuous maps obtained from

different n-cells coincide along common faces, thus giving us a well-defined

map Ψ : In → Z2(M ; M). �

14.3. Proof of Theorem 14.1. We note that a similar result was proven by

Almgren in Theorem 6.6 of [2]. In our case the situation is simpler because we

are dealing with codimension one currents (2-currents in a 3-manifold). The

work of Almgren gives us a map Ψ that is continuous in the flat metric and

satisfies (i), (ii), and

(iii′) sup{F(Ψ(x)−Ψ(y)) : x, y ∈ In} ≤ C0 sup
α∈I(n,0)1

{M(Q(α))}.

In Theorem 4.6 of [32], Pitts explains how to adapt the methods of [2] to

make them work in the context of maps that are continuous in the mass norm.

This involves the construction of the continuous map Ψ : In → Z2(M ; M). It

follows from the proof of [2, Th. 6.6], with no modification whatsoever, that

properties (i) and (ii) of Theorem 14.1 are satisfied. Hence the statement of

Theorem 14.1 that requires justification is the third one. We will briefly sketch

the proof of Theorem 6.6 of [2] and show that Theorem 14.1(iii) indeed holds.

Let ∆ be a differentiable triangulation of M . Hence if s ∈ ∆, then the

faces of s also belong to ∆. Choose a linear order ≺ on ∆ such that s′ ≺ s

if dim(s′) < dim(s). Given s, s′ ∈ ∆, we use s′ ⊂ s if s′ is a face of s. Let

U(s) = ∪s⊂s′s′. In what follows we will denote by C varying constants that

depend only on ∆ and n.

The first ingredient in the construction of Ψ is to consider, for every s ∈ ∆,

a deformation map

D(s) : I × I2(U(s); M)→ I2(U(s); M)

such that

• D(s) is continuous in the mass norm;

• D(s, 0, T ) = T and D(s, 1, T ) = 0 for every s ∈ ∆, T ∈ I2(U(s); M);

• for all s ∈ ∆, t ∈ I, and T ∈ I2(U(s)), we have

(82) M(D(s, t, T )) ≤ CM(T ).

Here D(s, t, T ) = D(s)(t, T ).



762 FERNANDO C. MARQUES and ANDRÉ NEVES

The construction of such maps uses the deformation maps of [32, Th. 4.5]. In

the context of flat metrics, this construction was carried out in [2, §5].

The second ingredient is to consider the cutting functions, which we de-

scribe now. Let Λ ⊂ I3(M) be a finite set with q elements. Almgren [2, §5]

associates to every s ∈ ∆ a neighborhood L(s) of s and constructs a function

CΛ : ∆× Λ→ I3(M)

satisfying, according to Definition 5.4, Theorem 5.8, and Lemma 5.9 of [2],

(83) CΛ(s, T ) =

Ñ
T −

∑
s′≺s

CΛ(s′, T )

é
∩ L(s);

(84) M

Ñ
∂CΛ(s, T )− ∂

Ñ
T −

∑
s′≺s

CΛ(s′, T )

é
∩ L(s)

é
≤ C · q ·M

Ñ
T −

∑
s′≺s

CΛ(s′, T )

é
;

(85) support (CΛ(s, T )) ⊂ U(s) for all (s, T ) ∈ ∆× Λ.

From (83) we see that

M(CΛ(s, T )) ≤ CM(T ) for every (s, T ) ∈ ∆× Λ.

This inequality and (84) imply that

M(∂CΛ(s, T )) ≤ CqM(T ) + M(∂T ) +
∑
s′≺s

M(∂CΛ(s′, T )).

Thus we conclude that

(86) M(∂CΛ(s, T )) ≤ C · q · (M(T ) + M(∂T )) for every (s, T ) ∈ ∆× Λ.

Having defined the basic ingredients, we recall Almgren’s construction of

the map Ψ. For every p-cell α of I(n, 0), we consider the continuous function

hα : Ip → Z2(M ; M)

given by hα(0) = ψ(α) if p = 0, and by the following formula if p > 0 [2,

Interpolation Formula 6.3]:

(87) hα(x1, . . . , xp) =
∑
γ∈Γα

sign (γ)

·
∑

s1,...,sp∈∆

D(s1, x1) ◦ · · · ◦D(sp, xp) ◦ ∂ ◦CΛ(γp)(sp) ◦ · · · ◦CΛ(γ1)(s1) (Q(γ1)) ,

where
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• Γα denotes the set of all sequences {γi}pi=1 such that γp = α and such

that, for each 1 ≤ i ≤ p− 1, γi is a (dim(γi+1)− 1)-face of γi+1.

• sign (γ) is equal to 1 or −1, according to [2, Def. 6.2].

• The finite sets Λ(β) are defined inductively in the following way: If

β ∈ I(n, 0)1, we have Λ(β) = {Q(β)}; if β ∈ I(n, 0)j with j > 1, we

have

Λ(β) = {CΛ(βj−1)(sj−1) ◦ · · · ◦ CΛ(β1)(s1)(Q(β1)) : sk ∈ ∆

and βk is a k-cell of β for every k = 1, . . . , j − 1}.

Having fixed the triangulation ∆, the deformation maps (which depend

only on ∆), and the cutting function CΛ(β) for each cell β, it is clear that

hα is continuous in the mass norm and that it depends only on the values

assumed by ψ on the vertices of α. In [2, §6.5], Almgren describes an inductive

procedure to construct Ψ using the various maps hα described above.

14.4. Lemma. For every x ∈ Ip and α ∈ I(n, 0)p, with p ≥ 1, we have

M(hα(x)) ≤ C sup{M(∂Q(β)) : β ∈ I(n, 0)1, β ⊂ α}.

Proof. The cardinality of every finite set Λ(β) is bounded above by a

constant depending only on ∆ and n. Hence we obtain from (86) that

(88) M
Ä
∂ ◦ CΛ(γp)(sp) ◦ · · · ◦ CΛ(γ1)(s1)(Q(γ1))

ä
≤ C (M(Q(γ1)) + M(∂Q(γ1))) ≤ CM(∂Q(γ1))

for every {γi}pi=1 ∈ Γα, where the last inequality comes from the fact that

M(Q(γ1)) = F(∂Q(γ1)) ≤M(∂Q(γ1)).

The number of elements of Γα is bounded above by a constant depending only

on n, hence the desired result follows from the expression (87) for hα, combined

with (82) and (88). �

Using Lemma 14.4, the proof of [2, Th. 6.6(2) (b)] applies with no modi-

fications to conclude Theorem 14.1(iii).

15. Pull-tight

Assume we have a continuous map in the flat topology

Φ : In → Z2(M)

that satisfies the following hypotheses:

(B0) Φ|In0 is continuous in the F-metric;

(B1) Φ(In−1 × {0}) = Φ(In−1 × {1}) = 0.
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We denote by |Φ| : In → V2(M) the map given by |Φ|(x) = |Φ(x)| for

x ∈ In.

Consider Π ∈ π#
n (Z2(M ; M),Φ|In0 ).

Proposition 8.5. There exists a critical sequence S∗ ∈ Π. For each

critical sequence S∗, there exists a critical sequence S ∈ Π such that

• C(S) ⊂ C(S∗)

• every Σ ∈ C(S) is either a stationary varifold or belongs to |Φ|(In0 ).

Proof. We start with a basic lemma that proves the existence of critical

sequences. This is just like [32, §4.1, Prop. 4].

15.1. Lemma. There exists a critical sequence S∗ ∈ Π.

Proof. We choose Sj = {φji}i∈N ∈ Π such that L(Sj) ≤ L(Π) + 1/j, and

we pick an increasing sequence {nj}j∈N so that we have, for all i ≥ nj ,

• max{M(φji (x)) : x ∈ dmn(φji )} ≤ L(Sj) + 1/j,

• φji is n-homotopic to φji+1 with fineness 1/j,

• φ1
i and φji are n-homotopic to φj+1

i with fineness 1/j.

Let φ∗i be given by φ∗i = φ1
i if i ≤ n2 − 1 and φ∗i = φji if nj ≤ i ≤ nj+1 − 1.

Then S∗ = {φ∗i } ∈ Π and L(S∗) = L(Π). �

Given a critical sequence S∗ ∈ Π, we apply a “pull-tight” procedure to

S∗ to find another critical sequence S ∈ Π such that all elements of C(S)

are either stationary varifolds or belong to |Φ|(In0 ). We essentially follow the

method of [32, Th. 4.3].

Suppose S∗ = {φ∗i }i∈N, and set

c = sup{M(φ∗i (x)) : i ∈ N, x ∈ dmn(φ∗i )}.

We define the following compact sets of V2(M):

A = {V ∈ V2(M) : ||V ||(M) ≤ c},
B = |Φ|(In0 ) ⊂ A,
A0 = B ∪ {V ∈ A : V is stationary in M},

A1 = {V ∈ A : F(V,A0) ≥ 2−1},

Ai = {V ∈ A : 2−i ≤ F(V,A0) ≤ 2−i+1}, i ∈ {2, 3, . . .}.

For every V ∈ Ai, i ≥ 1, we choose a vector field XV ∈ X (M) with

|XV |C1 ≤ 1 and such that

δV (XV ) ≤ 2

3
inf{δV (Y ) : Y ∈ X (M) with |Y |C1 ≤ 1} < 0.
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The map S ∈ V2(M) 7→ δS(XV ) is continuous. Hence we can find for every

V ∈ Ai, i ≥ 1, a radius 0 < rV < 2−i so that we have

δS(XV ) ≤ 1

2
inf{δS(Y ) : Y ∈ X (M) with |Y |C1 ≤ 1} < 0

for every S ∈ BF
rV

(V ). The compactness of Ai implies that the open cover

BF
rV

(V ) admits a finite subcover. Thus we can find qi ∈ N and

• a set of radii {rij}qij=1, rij < 2−i;

• a set of varifolds {Vij}qij=1 ⊂ Ai;
• a set of vector fields {Xij}qij=1 ⊂ X (M) with |Xij |C1 ≤ 1;

• a set of balls Uij = BF
rij (Vij) ∩A, j = 1, . . . , qi, with Ai ⊂

⋃qi
j=1 Uij ;

• a set of positive real numbers {εij}qij=1 such that

δS(Xij) ≤ −εij < 0 for all S ∈ Uij , j = 1, . . . , qi.

The condition rij < 2−i implies that {Uij}i∈N,1≤j≤qi is a locally finite

covering of A\A0. Therefore we can choose a partition of unity {φij}i∈N,1≤j≤qi
of A \A0 with support(φij) ⊂ Uij .

We define

X : A→ X (M),

continuous in the F-metric, by

X(V ) = 0 if V ∈ A0,

X(V ) = F(V,A0)
∑

i∈N,1≤j≤qi
φij(V )Xij if V ∈ A \A0.

It follows that

δV (X(V )) = 0 if V ∈ A0 and δV (X(V )) < 0 if V ∈ A \A0.

This implies that we can find a continuous function

h : A→ [0, 1]

such that

• h = 0 on A0 and h(V ) > 0 if V ∈ A \A0,

• and ||f(s, V )#(V )||(M) < ||f(t, V )#(V )||(M) if 0 ≤ t < s ≤ h(V ),

where f(t, V ) denotes the 1-parameter group of diffeomorphisms generated by

X(V ).

Now let

H : [0, 1]× (Z2(M ; F) ∩ {S : M(S) ≤ c})→ Z2(M ; F) ∩ {S : M(S) ≤ c}

be given by

H(t, T ) = f(t, |T |)#(T ) if 0 ≤ t ≤ h(|T |),
H(t, T ) = f(h(|T |), |T |)#(T ) if h(|T |) ≤ t ≤ 1.
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The key properties of H are

(i) H is continuous in the product topology;

(ii) H(t, T ) = T for all 0 ≤ t ≤ 1 if |T | ∈ A0;

(iii) ||H(1, T )||(M) < ||T ||(M) unless T ∈ A0;

(iv) for every ε > 0, there exists δ > 0 so that for all x ∈ In0 and all

0 ≤ t ≤ 1,

F(T,Φ(x)) < δ ⇒ F(H(t, T ),Φ(x)) < ε.

Property (iv) is a consequence of the first two since B = |Φ|(In0 ) ⊂ A0 and

Φ|In0 is continuous in the F-metric.

We now proceed to the construction of S = {φi}i∈N ∈ Π with C(S) ⊂
A0 ∩C(S∗). We would like to put φi = H(1, φ∗i ). Since the map

G : Z2(M)→ Z2(M), G(T ) = F#(T ),

where F ∈ Diff(M) is fixed, is continuous in the F-metric but not in the mass

norm, the fineness of φi could be large even when f(φ∗i ) is small. Thus we

need to interpolate H(1, φ∗i ) one more time, as in Theorem 13.1. When doing

this, it is important to check that the values assumed by φi stay close in the

F-metric to those assumed by H(1, φ∗i ).

This minor issue was overlooked by Pitts [32, p. 153]. We overcome this

difficulty using the Interpolation Theorem 14.2 of Section 14. This requires a

bit of extra work, which we do now.

Denote the domain of φ∗i by I(n, ki)0, and let δi = f(φ∗i ). Apply Theo-

rem 14.2 to obtain a continuous map in the mass norm

Ω̄i : In → Z2(M ; M)

such that for all x ∈ I(n, ki)0 and α ∈ I(n, ki)n, we have

(89) Ω̄i(x) = φ∗i (x) and sup
y,z∈α

{M(Ω̄i(z)− Ω̄i(y))} ≤ C0δi.

We claim that

(90) lim
i→∞

sup{F(Ω̄i(x),Φ(x)) : x ∈ In0 } = 0.

Indeed, from Lemma 7.8, we have that

lim
i→∞

sup{F(φ∗i (x),Φ(x)) : x ∈ I0(n, ki)0} = 0.

The claim then follows from (89).

Consider the continuous map in the F-metric

Ωi : I × In → Z2(M ; F), Ωi(t, x) = H(t, Ω̄i(x)).

From property (iii) of H, we have

(91) max{M(Ωi(t, x)) : (t, x) ∈ I × In} ≤ max
x∈In
{M(Ω̄i(x))}.
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From property (iv) of H and (90), it follows that

(92) lim
i→∞

sup{F(Ωi(t, x),Φ(x)) : (t, x) ∈ I × In0 } = 0.

15.2. Lemma. For every i ∈ N, limr→0 m(Ωi, r) = 0.

Proof. Let δ > 0. Note that C = Ωi(I × In) is a compact subset of

Z2(M ; F). For every p ∈M and T ∈ C, and since T is an integral current, we

can choose r = r(p, T ) > 0 so that

||S||(Br(p)) < δ for all S ∈ BF
r (T ).

By compactness, we can select a finite covering {Brk(pk) × BF
rk

(Tk)}Nk=1 of

M × C, where rk = r(pk, Tk)/2.

If r̄ = min{rk}Nk=1, then

||T ||(Br̄(p)) < δ for all (p, T ) ∈M × C. �

We can now apply Theorem 13.1 to Ωi and obtain

φ̄ij : I(1, sij)0 × I(n, sij)0 → Z2(M)

such that

(a) sup{M(φ̄ij(t, x)) : (t, x) ∈ I(n+ 1, sij)0} ≤ maxx∈In{M(Ω̄i(x))}+ 1
j ;

(b) f(φ̄ij) <
1
j ;

(c) sup{F(φ̄ij(t, x)− Ωi(t, x)) : (t, x) ∈ I(n+ 1, sij)0} ≤ 1
j ;

(d) M(φ̄ij(t, x)) ≤M(Ωi(t, x)) + 1
j for all (t, x) ∈ I0(n+ 1, sij)0;

(e) φ̄ij([0], x) = Ωi(0, x) = Ω̄i(x) for all x ∈ I(n, sij)0.

From Lemma 4.1 and properties (c) and (d), we get

lim
j→∞

sup{F(φ̄ij(t, x),Ωi(t, x)) : (t, x) ∈ I0(n+ 1, sij)0} = 0.

Hence, using (92) and a diagonal sequence argument, we can find {φ̄i = φ̄ij(i)}
such that

(93) lim
i→∞

sup{F(φ̄i(t, x),Ωi(t, x)) : (t, x) ∈ I0(n+ 1, sij)0} = 0

and

(94) lim
i→∞

sup{F(φ̄i(t, x),Φ(x)) : t ∈ I(1, sij)0, x ∈ I0(n, sij)0} = 0.

We define φ̂i : I(1, sij(i))0 × I(n, sij(i))0 → Z2(M) to be equal to zero on

I(1, sij(i))0 × (T (n, sij(i))0 ∪B(n, sij(i))0)

and equal to φ̄i otherwise. Since f(φ̂i) tends to zero, we obtain from (94) that

φi = φ̂i([1], ·) is n-homotopic to φ̂i([0], ·) in (Z2(M ; M),Φ|In0 ) with fineness

tending to zero.
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On the other hand, it follows from (89) and property (e) that φ̂i([0], ·) is

n-homotopic to φ∗i in (Z2(M ; M),Φ|In0 ) with fineness tending to zero. Hence

S = {φi}i∈N ∈ Π. From property (a) and (89) we obtain that S is a critical

sequence; i.e., L(S) = L(Π).

We are left to show that

C(S) ⊂ A0 ∩C(S∗).

Given V ∈ C(S), there exists a sequence {|φki(xi)|}i∈N, ki → ∞, that con-

verges to V in the sense of varifolds. It follows from (93) that |Ωki(1, xi)| also

tends to V as varifolds. Moreover, from (89) we see that a subsequence of

|Ω̄ki(xi)| converges as varifolds to an element W of K(S∗). Since the map H

is continuous in the F-metric, we have

V = lim
i→∞
|Ωki(1, xi)| = lim

i→∞
|H(1, Ω̄ki(xi))| = f(h(W ),W )#W.

If V /∈ A0 then, from property (iii) of H, we get

L(Π) = ||V ||(M) = ||f(h(W ),W )#W ||(M) < ||W ||(M) ≤ L(Π).

This is a contradiction; hence V ∈ A0. Property (ii) of H implies that V =

W ∈ C(S∗). �

Appendix A. Proof of Theorem A.1

Let

F1 = {S ⊂ S3 : S is an embedded closed minimal surface of genus g(S) ≥ 1}.

The goal of this appendix is to prove

A.1. Theorem. There exists Σ in F1 such that

area(Σ) = inf
S∈F1

area(S).

The proof is largely standard and the method well known among the

experts. (See, for instance, [21, Th. 2.1].)

Proof. Let Σi ∈ F1 be a minimizing sequence, i.e., such that

lim
i→∞

area(Σi) = inf
S∈F1

area(S).

The Allard Compactness Theorem [39, Th. 42.7] implies that we can extract

a subsequence converging in V2(S3) to an integral stationary varifold Σ. Since

the Clifford torus has area 2π2, we have

||Σ||(S3) = lim
i→∞

area(Σi) ≤ 2π2 < 8π(1− δ)

for some δ > 0.
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A.2. Lemma. There is r0 so that

||Σ||(Br(p))
πr2

≤ 2− δ for all r ≤ r0, p ∈ S3.

Proof. Suppose not. Then we could find sequences {qi}i∈N, {ri}i∈N tend-

ing to q ∈ Σ and zero, respectively, such that

lim
i→∞

||Σ||(Bri(qi))
πri2

≥ 2− δ.

The monotonicity formula [39, Th. 17.6] on a general ambient manifold implies

that

lim
r→0

||Σ||(Br(q))
πr2

≥ 2− δ.
Consider the cone C in R4 defined by

C = µ#(Σ× R), where µ : S3 × R→ R4 µ(p, r) = rp.

Because Σ is a stationary varifold in S3, C is a stationary integral varifold in

R4 where, denoting by ω3 the volume of a 3-ball, we have

• ||C||(B
4
r (0))

ω3r3
=
||Σ||(S3)

4π
≤ 2(1− δ) for all r > 0,

• lim
r→0

||C||(B4
r (q))

ω3r3
= lim

r→0

||Σ||(Br(q))
πr2

≥ 2− δ.

Combining these two facts with the monotonicity formula we obtain a contra-

diction because

2−δ ≤ lim
r→0

||C||(B4
r (q))

ω3r3
≤ lim

r→∞
||C||(B4

r (q))

ω3r3
= lim

r→∞
||C||(B4

r (0))

ω3r3
= 2−2δ. �

A.3. Lemma. Σ is smooth with multiplicity one.

Proof. From the Allard Regularity Theorem [39, Th. 24.2] it suffices to

see that

(95) lim
r→0

||Σ||(Br(p))
πr2

= 1 for all p ∈ Σ.

Choose p ∈ Σ, and for every λ ∈ R, consider the dilation map µλ(x) = λx

defined in R4. Set

Σj = µj#(Σ− p), j ∈ N,
which is a varifold in R4 with generalized mean curvature tending to zero uni-

formly. From the Allard Compactness Theorem, we have that a subsequence

converges to a stationary varifold V ⊂ p⊥, where p⊥ ⊂ R4 denotes the hy-

perplane orthogonal to p. Moreover, we must have from scale invariance and

Lemma A.2 that, for all s > 0,

(96)
||V ||(B4

s (0))

πs2
= lim

j→∞

||Σj ||(B4
s (0))

πs2
= lim

r→0

||Σ||(Br(p))
πr2

≤ 2− δ,

and so the monotonicity formula implies that V is a stationary cone in p⊥.
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From [1] we know that V is a cone over a stationary 1-varifold γ ⊂ S2,

which is a network consisting of geodesic segments meeting at triple junctions.

If we show that γ has no triple junctions, then V must be a plane, which has

multiplicity one from (96), and so (95) follows at once.

Suppose x0 is a triple junction of γ, and consider the sequence of integral

stationary varifolds

Vk = µk#(V − x0), k ∈ N.
From [39, Th. A.4] we know that, after passing to a subsequence, Vk converges

to a stationary varifold U , which consists of three half-planes {P1, P2, P3} of

p⊥ meeting along a common line L. Note that these half-planes must have

multiplicity one from (96). We can extract a diagonal subsequence from

Σi,j,k = µk#(µj#(Σ(i) − p)− x0), i, j, k ∈ N,

denoted simply by {Σi}i∈N, where the relevant properties are

(a) ∂Σi = 0;

(b) Σi has generalized mean curvature tending to zero uniformly;

(c) from Lemma A.2 there is C > 0 such that for every R and i sufficiently

large, we have

||Σi||(B4
s (x)) ≤ Cs2 for all x ∈ B4

R(0), 0 ≤ s ≤ R.

From Federer Compactness Theorem we know that Σi converges to T ∈ Z2(S3)

in the flat topology. We claim that we can assign orientations to the half-planes

{P1, P2, P3} so that U = T . This gives a contradiction because, regardless the

orientation we assign to each half-plane, we have ∂U 6= 0.

Denote by Lj the set of all points at distance 2−j from the line L, which is

the line of common intersection of the half-planes Pk. We have that U \ Lj con-

sists of multiplicity-one planes and thus, from property (b) and the Allard Reg-

ularity Theorem, we obtain that Σix(R4\Lj) converges strongly to Ux(R4 \ Lj)
for every j ∈ N. This induces an orientation on U .

Consider any 2-form ω with support contained in B4
R(0) ⊂ R4, for some

R, and comass ||ω|| ≤ 1. We now argue that U(ω) = T (ω), and this finishes

the proof. There is an integer N , independent of j, such that we can cover

Lj ∩B4
R(0) with balls {Bk}N2j

k=1 of radius 2−j . Hence, we obtain from property

(c) that for all i sufficiently large,

||Σi||(Lj ∩B4
R(0)) ≤

N2j∑
k=1

||Σi||(Bk) ≤ CN2−j .

The strong convergence property of Σi outside Lj implies at once that

|T (ω)− U(ω)| ≤ 2CN2−j

and thus, making j →∞, we obtain U(ω) = T (ω). �
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We are left to argue that the genus of Σ must be bigger than zero. Indeed,

because Σ has multiplicity one, the Allard Regularity Theorem implies that

the sequence Σi converges strongly to Σ and thus its genus g(Σ) ≥ 1. �

Appendix B. Conformal images

In this appendix we collect some facts about conformal transformations

of R4. For each v ∈ B4, let Fv : S3 → S3 be given by

Fv(x) =
(1− |v|2)

|x− v|2
(x− v)− v.

Given p,N ∈ S3 with 〈p,N〉 = 0, we define

∆(p,N, r) = S3 \
(
Br
Ä
(cos r)p+ (sin r)N

ä
∪ Br

Ä
(cos r)p− (sin r)N

ä)
= S3 \

Å
B4√

2(1−cos r)

Ä
(cos r)p+ (sin r)N

ä
∪ B4√

2(1−cos r)

Ä
(cos r)p− (sin r)N

äã
.

B.1. Proposition. There is C0 > 0 and, for each r ∈ (0, π/4), C1 =

C1(r) > 0 and ε0 = ε0(r) > 0 such that the following holds : For every

v = (1− s)(cos t p+ sin tN),

with

p,N ∈ S3, 〈p,N〉 = 0, 0 < s ≤ ε0, and |t| ≤ ε0,

we have

B4
R−C0

√
|(s,t)|(Q) ∩ S3 ⊂ Fv

Ä
B4√

2
(−N) ∩ S3

ä
⊂ B4

R+C0

√
|(s,t)|(Q) ∩ S3

and

Fv(∆(p,N, r)) ⊂ B4
R+C1

√
|(s,t)|(Q) \B4

R−C1

√
|(s,t)|(Q),

where

Q=− t/s»
1 + (t/s)2

p− 1»
1 + (t/s)2

N,

R=

Õ
2

Ñ
1− t/s»

1 + (t/s)2

é
.

Proof. The next lemma collects some basic identities, the proof of which

is left to the reader.
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B.2. Lemma.

(i) Let Q̃ ∈ R4 \ {0} and R̃ ≥ 0 such that (1− |Q̃|)2 ≤ R̃2. Then

B4
R̃

(Q̃) ∩ S3 = B4
R

Ç
Q̃

|Q̃|

å
∩ S3, where R =

Ã
2 +

R̃2 − |Q̃|2 − 1

|Q̃|
.

(ii) Let Q ∈ S3. Then

S3 \B4√
2(1−cosα)

(Q) = B
4√

2(1+cosα)(−Q) ∩ S3.

(iii) Let h ∈ R4 \ {0}, |h| ≤ 1, and

E = {x ∈ R4 : 〈x− h, h〉 ≥ 0}.

Then E ∩ S3 = B4√
2(1−|h|)

(h/|h|) ∩ S3.

Let i : R4 \ {0} → R4, Tw : R4 → R4, and Dλ : R4 → R4 be the conformal

transformations given by

i(x) =
x

|x|2
, Tw(x) = x+ w, Dλ(x) = λx,

where λ ∈ R and w ∈ R4. We have

(97) Fv = D1−|v|2 ◦ T− v
1−|v|2

◦ i ◦ T−v.

B.3. Lemma. Let h ∈ R4 \ {0} and E = {x ∈ R4 : 〈x− h, h〉 ≥ 0}. Then

i(E) = B
4
r(c), where c =

h

2|h|2
, r =

1

2|h|
.

Proof. The lemma follows from the calculation:

|i(x)− c|2 − r2 =

∣∣∣∣∣ x|x|2 − h

2|h|2

∣∣∣∣∣
2

− 1

4|h|2

= −〈x− h, h〉
|h|2|x|2

. �

B.4. Lemma. Let h ∈ R4 \ {0}, |h| ≤ 1. If v ∈ B4, then

Fv

Ç
B4√

2(1−|h|)

Ç
h

|h|

å
∩ S3

å
= B4

R

Ç
Q

|Q|

å
∩ S3,

where

Q= (1− |v|2)h− 2(|h|2 − 〈h, v〉)v,

R=

√
2

Ç
1− |h|

2(1 + |v|2)− 2〈h, v〉
|Q|

å
.
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Proof. From Lemma B.2(iii) and (97), we have

Fv

Ç
B4√

2(1−|h|)

Ç
h

|h|

å
∩ S3

å
=D1−|v|2 ◦ T− v

1−|v|2
◦ i ◦ T−v(E ∩ S3)

=

Å
D1−|v|2 ◦ T− v

1−|v|2
◦ i ◦ T−v(E)

ã
∩ S3,

where E = {x ∈ R4 : 〈x− h, h〉 ≥ 0}.
Suppose |h|2 − 〈h, v〉 6= 0, and set

σ = 1 if v ∈ E, σ = −1 if v /∈ E, and hv =
|h|2 − 〈h, v〉
|h|2

h.

Then

(98) T−v(E) = {x ∈ R4 : σ〈x− hv, hv〉 ≥ 0}.

Suppose |h|2− 〈h, v〉 > 0; i.e., v is in the interior of E. From Lemma B.3,

we have

i(T−v(E)) = B
4
r(c),

where

(99) c =
h

2(|h|2 − 〈h, v〉)
and r =

|h|
2||h|2 − 〈h, v〉|

.

Therefore,

D1−|v|2 ◦ T− v
1−|v|2

◦ i ◦ T−v(E) = B
4
(1−|v|2)r

Ä
(1− |v|2)c− v

ä
.

and we conclude that Fv(E) = B4
R̃

(Q̃), where

Q̃=
(1− |v|2)h

2(|h|2 − 〈h, v〉)
− v,

R̃=
(1− |v|2)|h|

2||h|2 − 〈h, v〉|
.

It follows from Lemma B.2(i) that

Fv(E) = B4
R̂

Ç
Q̃

|Q̃|

å
, where R̂ =

Ã
2 +

R̃2 − |Q̃|2 − 1

|Q̃|
.

Since

R̃2 − |Q̃|2 − 1 =
(1− |v|2)〈h, v〉
|h|2 − 〈h, v〉

− (1 + |v|2)

=
2〈h, v〉 − |h|2(1 + |v|2)

|h|2 − 〈h, v〉
,

we have

R̂ =

√
2

Ç
1− σ |h|

2(1 + |v|2)− 2〈h, v〉
|Q|

å
.
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Lemma B.4 follows immediately when |h|2 − 〈h, v〉 > 0 because Q
|Q| = Q̃

|Q̃| and

R = R̂.

Suppose now |h|2− 〈h, v〉 < 0; i.e., v /∈ E. From (98) and Lemma B.3, we

have

i(T−v(E)) = R4 \B4
r (c),

where c and r are as in (99). Therefore,

D1−|v|2 ◦ T− v
1−|v|2

◦ i ◦ T−v(E) = R4 \B4
(1−|v|2)r

Ä
(1− |v|2)c− v

ä
.

Thus

Fv(E) = R4 \B4
R̃

(Q̃) = R4 \B4
R̂

(
Q̃

|Q̃|
),

where Q̃, R̃ and R̂ are as above. Since |h|2 − 〈h, v〉 > 0, we have Q
|Q| = − Q̃

|Q̃|
and R2 + R̂2 = 4. We apply Lemma B.2(ii) and conclude Lemma B.4.

Finally, if |h|2−〈h, v〉 = 0, then the result follows from the previous cases

by approximation, since the set of all v with |h|2 − 〈h, v〉 6= 0 is everywhere

dense in B4. �

Next we compute the conformal image of a geodesic ball in S3.

B.5. Lemma. Let x ∈ S3. If v ∈ B4, then

Fv
Ä
B4√

2
(x) ∩ S3

ä
= B4

R

Ç
Q

|Q|

å
∩ S3,

where

Q = (1− |v|2)x+ 2〈x, v〉v and R =

√
2

Ç
1 +

2〈x, v〉
|Q|

å
.

Proof. We apply Lemma B.4 with ht = tx in place of h, and we let t go

to zero. �

We can now prove the first statement of Proposition B.1.

B.6. Lemma. There is C0 so that for every

v = (1− s)(cos t p+ sin tN),

with

p,N ∈ S3, 〈p,N〉 = 0, 0 < s ≤ 1/2, and |t| ≤ 1/2,

we have

B4
R−C0

√
|(s,t)|(Q) ∩ S3 ⊂ Fv

Ä
B4√

2
(−N) ∩ S3

ä
⊂ B4

R+C0

√
|(s,t)|(Q) ∩ S3,

where Q and R are defined in Proposition B.1.
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Proof. From Lemma B.5,

Fv
Ä
B4√

2
(−N(p)) ∩ S3

ä
= B4

R

Ç
− Q

|Q|

å
∩ S3,

where

Q = (1− |v|2)N + 2〈N, v〉v and R =

√
2

Ç
1− 2〈N, v〉

|Q|

å
.

Thus

Q = (2s− s2)N + 2(1− s)2 sin t(cos t p+ sin tN)(100)

= (2s− s2 + 2(1− s)2 sin2 t)N + 2(1− s)2 sin t cos t p

and
|Q|2 = (2s− s2)2 + 4(1− s)2 sin2 t.

Hence we can find C1 so that for all |s| ≤ 1/2 and |t| ≤ 1/2, we have

(101)
s2 + t2

C1
≤ |Q|2 ≤ 4(s2 + t2)(1 + C1|(s, t)|).

This implies the existence of C2 so that for all |s| ≤ 1/2 and |t| ≤ 1/2, we have

(102)

∣∣∣∣∣ 2

|Q|
− 1√

s2 + t2

∣∣∣∣∣ ≤ C2.

From this inequality, (101), (100), and s> 0, we obtain constants C3 and C4

so that∣∣∣∣∣Q−
Ç
− Q

|Q|

å∣∣∣∣∣2 =

Ç
2s− s2 + 2(1− s)2 sin2 t

|Q|
− s√

s2 + t2

å2

+

Ç
2(1− s)2 sin t cos t

|Q|
− t√

s2 + t2

å2

≤ 2

Ç
−s2 + 2(1− s)2 sin2 t

|Q|

å2

+2

Ç
2(1− s)2 sin t cos t− 2t

|Q|

å2

+ C3|(s, t)|2 ≤ C4|(s, t)|2.

From (102), (101), and s > 0, we obtain constants C5 and C6 so that

|R2 −R2| =
∣∣∣∣∣2
Ç

1− 2〈N, v〉
|Q|

å
− 2

Ç
1− t/s»

1 + (t/s)2

å∣∣∣∣∣
=

∣∣∣∣∣− 4(1− s) sin t

|Q|
+

2t√
s2 + t2

∣∣∣∣∣
≤
∣∣∣∣∣4t− 4(1− s) sin t

|Q|

∣∣∣∣∣+ C5|(s, t)|

≤ C6|(s, t)|.

Hence |R−R| ≤
√
C6

»
|(s, t)|.
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If we choose C =
√
C4 +

√
C6, the result follows by applying the triangle

inequality. �

The next lemma finishes the proof of Proposition B.1

B.7. Lemma. For every r ∈ (0, π/4), there is C1 = C1(r) and ε0 = ε0(r)

so that for every

v = (1− s)(cos t p+ sin tN),

with

p,N ∈ S3, 〈p,N〉 = 0, 0 < s ≤ ε0, and |t| ≤ ε0,

we have

Fv(∆(p,N, r) ∩ S3) ⊂ B4
R+C1

√
|(s,t)|(Q) \B4

R−C1

√
|(s,t)|(Q),

where Q and R are defined in Proposition B.1.

Proof. Let σi = (−1)i+1, i = 1, 2. Define

Bi = B4√
2(1−cos r)

Ä
(cos r)p+ σi(sin r)N

ä
∩ S3

and hi = (cos r)(cos r p+ σi sin r N). Then, by Lemma B.4,

Fv(Bi) = B4
Ri

Ç
Qi
|Qi|

å
∩ S3,

where

Qi = (1− |v|2)hi − 2(|hi|2 − 〈hi, v〉)v,

Ri =

√
2

Ç
1− |hi|

2(1 + |v|2)− 2〈hi, v〉
|Qi|

å
.

Notice that

|hi|2 − 〈hi, v〉= cos2 r − (1− s)(cos2 r cos t+ σi cos r sin r sin t)

=−σit cos r sin r + s cos2 r + cos r O(|(s, t)|2),

and so

Qi = (2s− s2)(cos r)(cos r p+ σi sin r N)(103)

− 2(1− s)(cos t p+ sin tN)(|hi|2 − 〈hi, v〉)

= 2σit cos r sin r p+ 2σis cos r sin r N +O(|(s, t)|2)

and

|Qi|2 = 4 cos2 r sin2 r (s2 + t2) +O(|(s, t)|3).(104)

= 4 cos2 r sin2 r (s2 + t2)

Ç
1 +

O(|(s, t)|)
sin2 r

å
.
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Choose ε0 = ε0(r) so that for all 0 < s ≤ ε0, |t| ≤ ε0, we have

(105) |Qi|2 ≥ 2 cos2 r sin2 r (s2 + t2).

This inequality and (104) implies that for some C2 = C2(r), we have

(106)

∣∣∣∣∣2 cos r sin r

|Qi|
− 1√

s2 + t2

∣∣∣∣∣ ≤ C2

and therefore, from (103) and (105), we have∣∣∣∣∣ Qi|Qi| − (−σiQ)

∣∣∣∣∣ ≤
∣∣∣∣∣ Qi|Qi| − 2σi cos r sin r

|Qi|
(tp+ sN)

∣∣∣∣∣+ C3|(s, t)|

≤ O(|(s, t)2|)
|Qi|

+ C3|(s, t)| ≤ C4|(s, t)|

for some constants C3 = C3(r), C4 = C4(r).

Now

|hi|2(1 + |v|2)− 2〈hi, v〉= 2(|hi|2 − 〈hi, v〉) + 2 cos2 r(−2s+ s2)

=−2σit cos r sin r +O(|(s, t)|2)

and thus, combining with the expression for Ri, (105), and (106), we obtain∣∣∣∣R2
i − 2− 2

σit√
t2 + s2

∣∣∣∣ ≤
∣∣∣∣∣R2

i − 2− 2
σit cos r sin r

|Qi|

∣∣∣∣∣+ C2|(s, t)|

≤ O(|(s, t)|2)

|Qi|
+ C2|(s, t)| ≤ C5|(s, t)|

for some C5 = C5(r). We can then find C6 = C6(r) such that

|R2
1 − (4−R2

)| ≤ C6|(s, t)|, |R2
2 −R

2| ≤ C6|(s, t)|,

which means

|R1 −
√

(4−R2
)| ≤

√
C6

»
|(s, t)| and |R2 −R| ≤

√
C6

»
|(s, t)|.

If we choose C1 =
√
C4 +

√
C6, then

B4√
4−R2−C3

√
|(s,t)|

(−Q) ∩ S3⊂Fv(B1),

B4
R−C3

√
|(s,t)|(Q) ∩ S3⊂Fv(B2).

We conclude that

Fv(∆(p,N, r) ∩ S3) = Fv(S
3 \ (B1 ∪B2))

⊂ S3 \
Ç
B4√

4−R2−C3

√
|(s,t)|

(−Q) ∪ B4
R−C3

√
|(s,t)|(Q)

å
.

The result follows from Lemma B.2(ii). �

This completes the proof of Proposition B.1 �
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Appendix C. The map rm(j)

Given m, j ∈ N, we construct

rm(j) : I(m, j + q)0 → S(m+ 1, j)0 ∪ T (m+ 1, j)0

satisfying

• q depends on m but not on j;

• if x, y ∈ I(m, j + q)0 satisfy d(x, y) = 1, then

(107) d(rm(j)(x), rm(j)(y)) ≤ m;

• if x ∈ I0(m, j + q)0, then

(108) rm(j)(x) = (n(j + q, j)(x), [0]).

Let

Rm : Im → (Im0 × [0, 1]) ∪ (Im × {1}) ⊂ Im+1
0

be a Lipschitz homeomorphism such that

(109) Rm(x) = (x, 0) for all x ∈ Im0 .

We choose q ∈ N such that

(110) |Rm(x)−Rm(y)| ≤ 3q−2|x− y| for all x, y ∈ Im.

Let K = S(m + 1, j)0 ∪ T (m + 1, j)0. Given x ∈ I(m, j + q)0, we choose

rm(j)(x) ∈ K such that d(rm(j)(x), Rm(x)) = d(Rm(x),K). This choice might

not be unique, but if x ∈ I0(m, j + q)0, we obtain from (109) that

rm(j)(x) = (n(j + q, j)(x), [0]).

This shows (108). If x, y ∈ I(m, j + q)0 satisfy d(x, y) = 1, we get from (110)

that

|Rm(x)−Rm(y)| ≤ 3q−23−(j+q) = 3−(j+2).

This implies that rm(j)(x) and rm(j)(y) must be contained in a common m-cell

of I0(m+ 1, j). Hence property (107) follows as well.
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