Annals of Mathematics 179 (2014), 683-782
http://dx.doi.org/10.4007 /annals.2014.179.2.6

Min-Max theory and
the Willmore conjecture

By FERNANDO C. MARQUES and ANDRE NEVES

Abstract

In 1965, T. J. Willmore conjectured that the integral of the square of
the mean curvature of a torus immersed in R® is at least 272, We prove
this conjecture using the min-max theory of minimal surfaces.
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1. Introduction

The most basic geometric invariants of a closed surface ¥ immersed in
Euclidean three-space are the Gauss curvature K and the mean curvature H.
These invariants have been studied in differential geometry since its very be-
ginning. The total integral of the Gauss curvature is a topological invariant by
the Gauss-Bonnet theorem. The integral of the square of the mean curvature,
known as the Willmore energy, is especially interesting because it has the re-
markable property of being invariant under conformal transformations of R?
[7], [47]. This fact was already known to Blaschke [7] and Thomsen [42] in the
1920’s (see also [47]).

Sometimes called bending energy, the Willmore energy appears naturally
in some physical contexts. For instance, it had been proposed in 1812 by Pois-
son [33] and later by Germain [13] to describe elastic shells. In mathematical
biology it appears in the Helfrich model [15] as one of the terms that contribute
to the energy of cell membranes.

If we fix the topological type of 3 and ask the question of what is the
optimal immersion of ¥ in R3, it is natural to search among solutions to geo-
metric variational problems. It is not difficult to see that the Willmore energy
is minimized, among the class of all closed surfaces, precisely by the round
spheres with value 47. The global problem of minimizing the Willmore energy
among the class of immersed tori was proposed by T. J. Willmore [48].

The main purpose of this paper is to prove the Willmore conjecture:

1.1. WILLMORE CONJECTURE (1965, [48]). The integral of the square of
the mean curvature of a torus immersed in R® is at least 2m2.

The equality is achieved by the torus of revolution whose generating circle
has radius 1 and center at distance v/2 from the axis of revolution:

(u,v) — ((\@Jr cos ) cos v, (V2 + cos u) sin v,sin u) € R3.

This torus can also be seen as a stereographic projection of the Clifford torus
Sl(%) X Sl(%) c S3.

The Willmore conjecture can be reformulated as a question about sur-
faces in the three-sphere because if m : $3\ {(0,0,0,1)} — R? denotes the

stereographic projection and ¥ C S\ {(0,0,0,1)} is a closed surface, then

(1) /iﬁQdi:/Z(1+H2)dZ.
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Here H and H are the mean curvature functions of ¥ € $3 and & = 7(%) C R3,
respectively.

The conformal invariance of (1) motivates the following definition. Unless
otherwise stated, we will assume throughout the paper that surfaces are smooth
and connected.

1.2. Definition. The Willmore energy of a closed surface ¥ C S® is the
quantity

W(B) = /2(1 + H?)dx.

Here H denotes the mean curvature of X; i.e., H = %, where k1 and ko are
the principal curvatures. Note that if F': S3 — S2 is a conformal map, then
W(F(X)) = W(E).

The Willmore conjecture follows as a consequence of our main theorem:

THEOREM A. Let ¥ C S® be an embedded closed surface of genus g > 1.
Then

W(E) > 272,

and the equality holds if and only if 3 is the Clifford torus up to conformal
transformations of S®.

Theorem A indeed implies the Willmore conjecture because Li and Yau
[26] proved that if an immersion f : 3 — S? covers a point z € S? at least k
times, then W(X) > 4xk . Therefore a nonembedded surface ¥ has W(X) >
8w > 2712,

If ¥ is a critical point for the functional W, we say that 3 is a Willmore
surface. The Euler-Lagrange equation for this variational problem, attributed
by Thomsen [42] to Schadow, is

AH +2(H? - K)H =0,

where K denotes the Gauss curvature. Hence the image of a minimal surface
under a conformal transformation of S? is a Willmore surface. (Minimal sur-
faces in 93 with arbitrary genus were constructed by Lawson [25].) These are
the simplest examples of Willmore surfaces but not the only ones. Bryant [8]
found and classified immersed Willmore spheres and Pinkall [31] constructed
infinitely many embedded Willmore tori in S that are not conformal to a
minimal surface. Weiner [46] checked that the second variation of W at the
Clifford torus is nonnegative.

The existence of a torus that minimizes the Willmore energy was estab-
lished by Simon [40]. His work was later extended to surfaces of higher genus
by Bauer and Kuwert [6] (see also [20]). We note that the existence of mini-
mizers among higher genus surfaces in three-space also follows from our work
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since Theorem A immediately implies the Douglas-type condition of [40]. The
minimum Willmore energy among all orientable closed surfaces of genus g is
less than 87 [25], [17], [19], and converges to 87 as g — oo [21]. The minimum
Willmore energy among all immersed projective planes in R? is known to be
127 [9], [18].

Conjecture 1.1 was known to be true in some particular cases. Willmore
himself [49], and independently Shiohama and Takagi [38], proved it when
the torus is a tube of constant radius around a space curve in R3. Chen [10]
proved it for conformal images of flat tori in S3. (See [43] and [5] for related
results.) Langer and Singer [23] proved it for tori of revolution. (Also see [16]
for a generalization.) Langevin and Rosenberg [24] proved that any embedded
knotted torus ¥ in R? satisfies [y, |K|dX > 16m. (Recall that a torus is knotted
if it is not isotopic to the standard embedding.) Since [y H?dY > 1 [ |K|dE
for any torus ¥ C R3, we conclude that W(X) > 87 if ¥ is knotted. Li and
Yau [26] introduced the notion of conformal volume and proved the conjecture
for a class of conformal structures on 72 that includes that of the square torus.
The family of conformal structures for which their method applies was later
enlarged by Montiel and Ros [29]. Ros [35] proved the conjecture for tori
¥ C 83 that are invariant under the antipodal map. This result also follows
from the work of Topping [43], [44] on integral geometry. The conjecture was
also known to be true for tori in R3 that are symmetric with respect to a point
(Ros [36])).

Due to its connection to mathematical biology, evidence for the fact that
the Clifford torus and its Dupin cyclides minimize the Willmore energy was
experimentally observed in membranes with the aide of a microscope by Mutz
and Bensimon [30] (see also [28]).

Finally, our understanding of the analytical aspects of the Willmore equa-
tion has been greatly improved in recent years thanks to the work of Kuwert-
Schétzle (e.g., [22]) and Riviere (e.g., [34]).

The next result is a corollary of Theorem A, but in fact we will prove it
first. This theorem rules out the existence of a minimal surface of higher genus
in S with area less than 272

THEOREM B. Let ¥ C S® be an embedded closed minimal surface of genus
g > 1. Then area(X) > 272, and area(X) = 272 if and only if ¥ is the Clifford
torus up to isometries of S3.

1.3. Remark. We note that a closed minimal surface ¥ C S® of genus zero
has to be totally geodesic (Almgren [4]), and so its area is 4. If g > 1 and ¥
is not embedded, then area(X) = W(X) > 87 > 272, by Li and Yau [26].

Finally, Theorem B will follow from the min-max theorem below. The
relevant definitions are in Sections 7 and 8.
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THEOREM C. Let ¥ C S3 be an embedded closed surface of genus g > 1,
and let TI be the homotopy class associated with ¥ (see Definition 8.3) with
width L(IT). Then there exists an embedded closed minimal surface ¥ c s
such that

4 < area(3) = L(IT) < W(D).

Theorems B and C together immediately imply the next corollary. The
corollary presents the Clifford torus as the min-max surface of a 5-dimensional
family in S3.

COROLLARY D. Let II be the homotopy class associated with the Clifford

torus & = Sl(%) X Sl(%) C S3. Then

L(II) = area(X) = 27°.

We give an outline of our proof in the next section. Very briefly, to
each embedded closed surface ¥ in S3, we associate a continuous 5-parameter
family of surfaces (integral 2-currents with boundary zero, to be more precise)
in S3 such that the area of each surface in the family is bounded above by
W(X). This family is parametrized by a map ® defined on the 5-cube I® and
is constructed so that

o &(x,0) = ®(x,1) = 0 (trivial surface) for any x € I*;

e ®(x,t) is an oriented round sphere in S® for any = € oI, t € [0,1];

o {®(z,1)}4c(0,1] 1s a homotopically nontrivial sweepout of S3 for any
x € oI

If genus(X) > 1, this map ® has the crucial property that its restriction to
OI* x {1/2} is a homotopically nontrivial map into the space of oriented great
spheres, which is homeomorphic to S3. The min-max theory developed in this
paper shows that for any such family ®, there must exist y € I° such that
area(®(y)) > 272

Acknowledgements. The authors would like to thank Brian White for his
constant availability and helpful discussions. The authors are also thankful
to Richard Schoen for his friendliness and encouragement while this work was
being completed. Finally we would like to thank Rob Kusner for his interest
and useful comments. Part of this work was done while the authors were
visiting Stanford University.

2. Main ideas and organization

We outline our proof of the Willmore conjecture. For the purpose of this
discussion, we will ignore several technical issues until Section 2.11. Until then,
we will appeal mainly to intuition in order to explain the principal ideas behind
our approach.
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2.1. The min-max theory. We begin by describing the min-max theory of
minimal surfaces in an informal way. We restrict our discussion to the case of
2-surfaces in a compact Riemannian 3-manifold M.

Let I™ = [0,1]", and suppose we have a continuous map ® defined on I
such that ®(z) is a compact surface with no boundary in M for each x € I"™.
Two such maps ® and ®’ are homotopic to each other relatively to OI™ if there
exists a continuous map W, defined on I™*!, such that

e U(y) is a compact surface with no boundary in M for each y € I"*1;

e U(0,z) = ®(x) and ¥(1,z) = ®'(z) for each z € I™;

o U(t,z) = P(x) = ®'(x) for every t € I, x € OI"™.
The set II of all maps ®' that are homotopic to ® is called the homotopy class
of ®. The width of II is then defined to be the min-max invariant:

: /
L(II) = q)l/réfn 5&1}; area(®'(x)).

For instance, we could define ®(s) = {z4 = 25 — 1} C S for s € [0,1].
If TI; denotes its homotopy class, one should have L(II;) = 47. Informally, ®
can be thought of as an element of 71(S,{0}), where S denotes the space of
2-surfaces in S3. (0 means the trivial surface, of area zero.)

The main goal of what we call the min-max theory is to realize the width
as the area of a minimal surface. The prototypical result is

MiIN-MAX THEOREM. If
L(II) > sup area(®(x)),
xedIn
then there exists a smooth embedded closed minimal surface ¥ C M (possibly

disconnected, with multiplicities) whose area is equal to L(IT). Moreover, if
{®;} is a sequence of maps in 11 such that

lim sup area(®;(x)) = L(II),

then we can choose ¥ to be the limit, as i — oo, of ®;(x;) for some x; € I"™.

2.2. Remark. By analogy with standard Morse theory, and since n is the
number of parameters, one should expect that the index of ¥ as a minimal
surface is at most n. In general, verifying this could be a delicate issue.

2.3. Canonical family. Let B* be the unit ball. For every v € B*, we
consider the conformal map

1—Jvu|?
F,:8% =83 F,(z)= (|x—|v‘|2)(x —v) —v.
Note that if v # 0, then F, is a centered dilation of S3 that fixes v/|v| and
—v/|v|. To each smooth embedded closed surface ¥ C 53, we associate a



MIN-MAX THEORY AND THE WILLMORE CONJECTURE 689

canonical 5-dimensional family of surfaces:
Vv =0 {:n € 83 :dy(x) < t} . (v,t) € BY x [-m, 7.

Here d, : S® — S® denotes the signed distance function to the oriented surface
¥, = F,(¥), which becomes well defined after we choose a unit normal vector
field N to ¥ in S3. The distance is computed with respect to the standard
metric of S3. Note that X (v, 7) = X(v, —7) = 0 for every v € B%.

The fundamental relation between the canonical family and the Willmore
energy is given by Ros [35] (see also [14]):
(2) area(X(, ) < W(S,) = W(E) for all (v,t) € B* x [-m, 7],

where the last equality follows from the conformal invariance of the Willmore
energy.

2.4. Boundary blow-up. In view of (2), we would like to apply the min-
max method to the 5-dimensional family
{Zwn}eBix—mm-
Unfortunately this family is not continuous in any reasonable sense if we try
to extend it to B x [-7, 7] ~ I°. As v € B* converges to p € 3, we will see
that the limit depends on the angle of convergence. In fact, if
Un, = |Up|(cos(sp)p + sin(s, )N (p))

is a sequence in B* converging to p € ¥, i.e., |v,| tends to one, |v,| < 1, and
sp tends to zero, then the limit of X, ;) is the geodesic sphere

3Bg_9+t(— sin(6)p — cos(0) N (p)),

where

oy n_[nm
G—Jgrgoarctanl_’vde{ 2,2}.

2.5. Remark. As v € B* converges to p € S3\ X, Y(v,1) converges to
OBrii(p) or 9Bi(—p),

depending on which connected component of S3 \ ¥ contains p.

In order to fix the failure of continuity, and after computing every bound-
ary limit, we reparametrize the canonical family to make it continuous on
B x [, 7]. This is done by “blowing-up” B along the surface 3, a procedure
that we describe now.

We first choose € > 0 to be small and €. to be a tubular neighborhood of
radius ¢ around ¥ in B

Q. = {(1 — s1)(cos(s2)p + sin(s2)N(p)) : |(s1,s2)| < €,51 > 0}.

Then we construct a continuous map 71" : B* = B such that
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e T maps B*\ Q. homeomorphically onto B*;
e T maps (), onto ¥ by nearest point projection;
e the map

C(th) = E(T(v),t)v (th) € (B4 \ﬁa) X [_71-77.‘-]7
admits a continuous extension to (B*\ 2.) x [—m, 7], which we still

denote by C.

Finally we extend C to €. so that C'is constant along the radial directions.
The resulting map C, defined on B x [—7, 7], satisfies the following properties:
(i) area(C(v, 7)) = area(C (v, —7)) = 0 for every v € §4;
(ii) C(v,t) is a geodesic sphere whenever v € S3 U Q;
(iii) for each v € 83, there exists a unique s(v) € [—7/2,7/2] such that
C(v, s(v)) is a great sphere, i.e., such that

C(v,5(v)) = 0Br2(Q(v))
for some Q(v) € S3.

If we take into account the orientation, then 0By y(p) # 0By 2(—p). Hence
Q(v) is also unique. In particular,

(3) sup area(C'(v,t)) = 4.
(v,8)€d(B* x[~m,7))

Because of condition (i), we can extend C' to be zero (trivial surface) on B' x
(R [=m,7]).

2.6. The min-max family. To apply the min-max theory described earlier,
we will reparametrize C' to get a map ® defined on I°. The min-max family is
given by

d(z,t) = C(f(z),2m(2t — 1) + 5(f(x))), xzel* tel,
for some choice of homeomorphism f : I* — B and some extension § : B —

[—7/2,7/2] of the function s to B*. Note that this reparametrization is chosen
so that when = € 9I*, we have that

(4) ®(x,t) 1is a great sphere if and only if ¢ =1/2.
Estimate (2) becomes

(5) sup area(®(z)) < W(X).

zel®

From (3), we also get

(6) sup area(®(x)) = 4.
z€dId
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Informally, the min-max family ® can be thought of as an element of the
relative homotopy group 75(S,G), where S denotes the space of 2-surfaces in
53 as before and G denotes the space of geodesic spheres.

2.7. Degree of Q. The map & is continuous and defined on I°, so let II
be its homotopy class. Because of (6), we have that sup,cgss area(®(z)) = 4.
Therefore we need to check that L(IT) > 47 in order to apply the Min-Max
Theorem to this class. Of course this might not be the case if X is a topological
sphere, but we will prove that L(II) > 47 whenever g = genus(X) > 1.

The main topological ingredient in the proof of this fact is

Q: 5% = 83 is a continuous map with degree equal to g.

This means that the canonical family detects the genus of ¥, and this is what
will make the min-max approach work. The above fact, derived in Section 3,
is a consequence of the Gauss-Bonnet Theorem.

This has an important homological implication as follows. First note that

(7) ®(z,1/2) = 0B /2(Q(f(2)))

for every x € OI*. Now let T denote the set of all unoriented great spheres
in $3. By associating to each sphere in 7 the line generated by its center, we
see that 7 is naturally homeomorphic to RP3. If |®|(x) = |®(z)| denotes the
surface ®(x) after forgetting orientations (the reason we introduce this will be
explained in Section 2.11), then |®| maps OI* x {1/2} into 7. The fact that

deg(Q) = g and equation (7) then imply
(3) D11 % {1/2}) = 29 € Hy(RP?, 7).
This will play a crucial role in the proof that L(IT) > 4.

2.8. L(II) > 4m. Here we assume g > 1. The proof is by contradiction,
therefore assume we can find a sequence of maps {¢; };en in IT such that

sup area(¢;(z)) < 4w + 1
xel® ?
Note that ¢; = ® on OI°.

First we summarize the argument. We will construct a 4-dimensional
submanifold R(i) C I°, with OR(i) C 0I* x I, that separates I* x {0} from
I* x {1}. We construct R(7) so that for every x € R(i), the surface |¢;(z)] is
close to a great sphere in 7. This can be used to produce by approximation a
continuous function

fi: R(i) - T such that fi((z,t)) = |®(x,1/2)| for (x,t) € OR(3).

Since we prove that OR(i) is homologous to 9I* x {1/2} in dI* x I, the
existence of f; implies that |®[,(dI* x {1/2}) = 0 in H3(RP3,Z). This is in
contradiction with (8).
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We now give more details. In what follows € > 0 is a fixed small number.
We denote by A(i) the set of all 2 € I° such that the distance of the surface
|pi(z)| to T (in an appropriate sense) is at least . Since ¢;, like @, vanishes
on I* x {0} and I* x {1}, these sets are both contained in A(7).

We define A(i) to be the connected component of A(i) that contains
I* x {0}. For the purpose of this discussion, we assume A(i) and A(i) are
compact manifolds with boundary.

We claim that A(i) does not intersect I* x {1} if i is sufficiently large.
Suppose this is false. Then we find, after passing to a subsequence, a sequence
of continuous paths

v 0 [0,1] = A(i) € A(i) with ~;(0) € I* x {0}, ~(1) € I* x {1}.

The maps o; = ¢; 0 ;, defined on I = [0, 1], are all homotopic to each other.
Their homotopy class I1;, just like in the 1-dimensional example in Section 2.1,
satisfies L(Il;) = 47. Moreover, we have

1
47 = L(II;) < suparea(o;(t)) < sup area(¢;(z)) < 4w + .
tel z€ld t
Therefore, by the Min-Max Theorem, we can find ¢; € I such that o;(t;)
converges to an embedded minimal surface S with area 47w. We must have
that S is a great sphere, but this contradicts the fact that the distance of
loi(ts)| = |#i(vi(ti))| to T is at least .
One immediate consequence of the claim is that
QA1) NAI° C (OI* x I) U (I* x {0}).
Let R(i) be the closure of 9A(i) Nint(I%). Tt follows from the definition
of A(7) that
(9) d(|¢i(x)]|,T) <e forevery z€ R(3).
In particular, OR(i) C I* x I. In fact it follows from (4) that, given any § > 0,
we can choose € > 0 sufficiently small so that
(10) OR(i) C OI* x [1/2 —6,1/2 4 6].
Let C(i) = 0A(i) N (0I* x I). Since DA(i) has no boundary, we get that
dC (i) = OR(i) U A(I* x {0}).

Therefore, since C(i) C 0I* x I, we have that OR(i) is homologous to dI* x {0}
in OI* x I. Consequently, OR(i) is also homologous to OI* x {1/2} in 9I* x I.

Now let ®(z,t) = |®(x,1/2)] € T for z € HI*. Because ¢; = ® on dI°,
we get from (31) that "bi“BR(i) is close to @|3R(i). We use this, together with
(9), to approximate |¢;| on R(i) by a continuous map f; : R(i) — T such that
fi = ® on AR(i). This implies in homology that

b [0R(0)] = fi.[OR(D)] = [fixd(R())] = [0fip(R())] = 0.
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On the other hand, we have
D, [OR(i)] = ©.[0I* x {1/2}] = |®|.([0I* x {1/2}]) = 2¢ € H3(RP?, Z).
We have reached a contradiction.

2.9. Proof of Theorem B. Let ¥ be the minimal surface with least area
among all minimal surfaces in S% with genus greater than or equal to 1. (The
existence of % follows from standard arguments in Geometric Measure Theory.
This is explained in Appendix A.) The area of ¥ is of course bounded above
by 272, the area of the Clifford torus.

We claim that index(X) < 5. This claim implies, by a theorem of Urbano
[45], that ¥ must be the Clifford torus up to isometries of S3.

Suppose, by contradiction, that index(X) > 6. If {3, ) }w)eBix[—mx]
denotes the canonical family, then (2) gives

sup area(X(,4)) < W(X) = area(X).

(v,t)EB* X [—m,m]

The last equality follows from the fact that ¥ is a minimal surface. The fact
that ¥ is minimal also implies that the function (v,t) > area(X(,;)) has an
isolated global maximum point at (0,0). Since we are assuming that the index
is strictly bigger than the dimension of the parameter space, we can slightly
perturb {¥(, } in a neighborhood of (0,0) to produce a new family {E’(U’t)}
with
(11) sup area(E'(v,t)) < area(X).

(v,t)EB* X [—m,m]

Let @ be the min-max family produced out of {E’(v’ t)}, just like we con-
structed @ out of {¥(, 4 }. Let II' be the homotopy class of ®'. Since ®' agrees
with ® on 9I°, and since ¢ = genus(X) > 1, we can argue similarly as in
Section 2.8 to get L(II') > 4m. Therefore, because of (6), we can apply the
Min-Max Theorem to II' in order to find an embedded minimal surface 3 (with
possible multiplicities) in S® such that

area(3) = L(IT') > 4.
But it follows from (11) that

L(IT') < sup area(®’(z)) < area(X) < 272
xz€l®
Thus area(f) < area(¥) < 272
The area of any embedded minimal surface in S is at least 47. It follows
that the multiplicity of ¥ must be equal to one. (Otherwise area(X) > 8m.)
Moreover, since area(i) > 4w, we get that genus(i) > 1. Since area(i) <
area(X), we obtain a contradiction with the least-area property of ¥. Therefore

index(X) < 5 and ¥ is the Clifford torus up to isometries of 3.
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2.10. Proof of Theorem A. Let ¥ be an embedded closed surface in S3,
not necessarily minimal, with genus ¢ > 1. We can suppose W(X) < 8.
(Otherwise the theorem follows immediately.) Let ® be the min-max family
associated with 3, and let II be its homotopy class. From 2.8, we get that
L(II) > 47m. Because of (6), we can apply the Min-Max Theorem to II in order
to find an embedded minimal surface & (with possible multiplicities) in S3
such that

—~

area(X) = L(IT) > 4.
But it follows from (2) that
L(II) < sup area(®(z)) < W(X) < 8.

zeld
Thus 47 < area(X) < W(E) < 8. As in Section 2.9, this implies that the
multiplicity of Y is equal to one and that genus(i) > 1. It follows from The-
orem B that area(/Z\) > 272, Hence W(X) > 272 and the Willmore conjecture
holds. The rigidity statement follows by a perturbation argument similar to
the one in 2.9.

2.11. The technique. We discuss the technical work that is necessary to
rigorously implement the min-max argument described above. In this subsec-
tion we assume the reader is familiar with some concepts of Geometric Measure
Theory; see Section 4 for definitions.

In 1981, building on the work of Almgren [3], Pitts [32] succeeded in prov-
ing by min-max methods that any compact Riemannian manifold of dimension
n < 7 contains a smooth embedded closed minimal hypersurface, where the
regularity for the case n = 7 was provided by Schoen and Simon in [37]. The
methods of [3] and [32] are based in tools from Geometric Measure Theory,
and comprise what we refer to in this paper as the Almgren-Pitts Min-Max
Theory. The surfaces of a min-max family in this theory are integral currents,
while the convergence to the min-max minimal hypersurface is in the sense of
varifolds.

There are other treatments of the min-max theory, such as [41], [11].
These impose stronger regularity and convergence conditions on the surfaces
of a min-max family. These conditions are not satisfied by our sets X, ;.
In particular, the family {X(,;} can exhibit the well-known phenomenon of
cancellation of mass: the possibility that two pieces of the surface match with
opposite orientations and cancel out.

In Section 2.1, we considered families of surfaces parametrized by the
n-cube. In reality, Almgren and Pitts work with a discretized version: the
maps are defined on the vertices of grids in I"™ that become finer and finer.
The notion of continuity is replaced by the concept of fineness of a map, and
appropriate discretized notions of homotopy have to be provided. Pitts chooses
to work with families of currents that are fine in the mass norm M. The
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advantage of using the M-norm in 2Z5(S%) is that it can easily be localized
(unlike the F-metric), making it ideal for area comparisons, cut-and-paste
arguments, and thus, regularity theory. The other advantage is that the mass
functional is continuous in the M-norm, as in the F-metric (but not in the flat
topology).

The disadvantage is that even the simplest family, like the 1-dimensional
family {x4 = s} described in Section 2.1, is not continuous with respect to
the mass norm. This issue is addressed by discretizing the family {z4 = s},
and then interpolating, which means adding currents to the family or grid so
that it becomes fine in the M-norm. This is done in a way that both the
original and the new families represent, under a suitable homomorphism, the
same element in H3(S%,Z). The min-max procedure is then applied to the
interpolated family.

In this work we deal with the technical difficulties mentioned above by
following the Almgren-Pitts approach. The min-max family ® is defined on
I’ (as in Section 2.6), takes values in Z5(S%), and is continuous in the flat
topology. By discretizing and interpolating, we construct a sequence of discrete
maps ¢; that are fine in the mass norm and approximate ® in the flat topology.
Since the original map @ is already continuous in varifold sense when restricted
to OI°, we can take ¢; to approximate ® on OI° in the F-metric. We also
need to keep the fact that the width is bounded by the Willmore energy of
>.. Therefore the interpolation has to be carried out in such a way that the
supremum of M(¢;) is not much bigger than the supremum of M(®).

The sets A(i) and R(7) that appear in Section 2.8 will be replaced by
cubical singular chains in the rigorous argument. This is more appropriate for
the homological conclusions and fits nicely with the discrete nature of ¢;. The
reason we sometimes need to forget orientations and work with |¢;|, |®| instead
of ¢;, ®, as in Section 2.8, is that the convergence to the minimal surface in the
Min-Max Theorem, using the Almgren-Pitts Min-Max Theory, is in the sense
of varifolds. Later |T'| will denote the varifold associated with the integral
current 7.

The construction of the interpolating maps ¢; follows basic ideas of Alm-
gren and Pitts, but it is quite lengthy and technical. We dedicate a considerable
part of the paper to carry it out.

2.12. Organization. The remaining material of this paper is organized as
follows.

The main work needed to prove the Willmore conjecture is in Part I. This
contains Sections 3, 4, 5, 6, 7, 8, 9, 10, and 11.

In Section 3, we define the 5-dimensional canonical family {¥,} asso-
ciated with an embedded closed surface ¥ in S3. We prove that the area of
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Y(v,t) is bounded above by W(X), and we compute the degree of the map
Q:5% = 53

In Section 4, we collect the notation and the definitions from Geometric
Measure Theory that are relevant in this paper.

In Section 5, we reparametrize the canonical family and then we extend
it to obtain the continuous map C (in the sense of currents).

In Section 6, we define the min-max family ® to which we will apply the
Almgren-Pitts Min-Max Theory. We collect all of its relevant properties.

In Section 7, we give the basic definitions of the Almgren-Pitts min-max
theory, adapted to our setting.

In Section 8, we state a theorem that produces a discrete sequence of maps,
needed by the Almgren-Pitts min-max theory, out of the min-max family .
We also discuss the Pitts Min-Max Theorem, adapted to our setting.

In Section 9, we show that the width is strictly bigger than 4 if the genus
of 3 is at least one.

In Section 10, we prove Theorem B.

In Section 11, we prove Theorem A.

The technical machinery that makes the min-max argument work is done
in Part II. This contains Sections 12, 13, 14, and 15.

In Section 12, we prove that the canonical family has no concentration of
area.

In Section 13, we construct the discrete sequence of maps mentioned in
Section 8. This is done by discretizing ® and then interpolating.

In Section 14, we prove an interpolation theorem that associates to a
discrete map a continuous map in the mass norm. This is needed in the pull-
tight argument of Section 15.

In Section 15, we adapt the pull-tight procedure of Almgren and Pitts to
our setting.

In Appendix A, we use standard arguments of Geometric Measure Theory
to show that there exists a minimal surface with least area among all embedded
closed minimal surfaces with genus g > 1 in S3.

In Appendix B, we compute the conformal images of geodesic spheres
in S3.

In Appendix C, we construct the map r,(j) used in Section 13.

Part I. Proof of the Willmore conjecture
3. Canonical family: First properties

Before we construct the canonical family, we need to introduce some no-
tation.
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3.1. Notation and definitions. We use the following notation:

e B* C R is the open unit ball, and S® = 9B* is the unit sphere.

e BH(Q)={z eR': |z — Q| < R} and B,(p) = {z € S3: d(z,p) < r},
where Q € R*, p € S3, R,r > 0, and d is the spherical geodesic
distance.

For each v € B*, we consider the conformal map
(1— )
|z —[?

F,:8 = 8% F,(x)= (x —v) —w.

Consider ¥ C 83 an embedded closed surface of genus g. We make several

definitions regarding the geometry of a tubular neighborhood of ¥ in B

e A and A* denote the disjoint connected components of S3\ ¥ = AU A*.
e N denotes the unit normal to ¥ that points into A*.

e Denote
Dy (r) ={s=(s1,s2) ER*: |s| <r,s1 > 0}.

e If ¢ > 0 is sufficiently small, the map A : ¥ x D% (3¢) — B given by
(12) A(p, s) = (1 — s1)(cos(s2)p + sin(s2) N (p))

is a diffeomorphism onto a neighborhood of ¥ in B
e Let Q, = A(X x D%(r)) for all r < 3e.

Consider the continuous map 7T : B = B" such that

e T is the identity on B \ Qsc;
e on (13-, we have

T(A(p,s))) = Ap, ¢(|s])s),
where ¢ is smooth, zero on [0, €], strictly increasing on [, 2¢], and one
on [2¢, 3¢].

The map T collapses a tubular neighborhood of ¥ onto X.
Define

A, =F,(A), A =F,(A"), andX, =F,(X)=0A4,,
and let d, : S® — R be the signed distance to 3, C S3:
d(xz,%, if Ay,
a(w) = M2
—d(z,%,) if z € A,.

3.2. Definition. The canonical family of ¥ is the 5-dimensional family of
2-rectifiable subsets of S? given by

E(v,t) = 8A(v,t)v where A(v,t) = {.T €53 dv(l‘) < t}

and (v,t) € Bt x [—m, 7).
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3.3. Remark.

(1) Let N, be the normal vector to ¥, given by N, = DF,(N)/|DF,(N)]
and consider the smooth map

Doyt Bo = 8%, Y (y) = expy (tN,(y)) = costy +sint Ny(y).
We have
Yot) C Yoy ({Jac ¥y > 0}),

and so ¥, ) is indeed a 2-rectifiable set.
(2) Notice that A, ) = Ay, Apr) = S3, and Ay,—x) = 0, which means
that

E(’U’O) = 21” E(v,ﬂ') = @, and E(”L),—ﬂ') = @

The importance of this family is described in the next theorem. A related
result appears in Proposition 1 of [35].

3.4. THEOREM. We have, for every (v,t) € B* x (—m,7),
area (E(U,t)> <W(X).
Moreover, if 3 is not a geodesic sphere and
area (E(wt)) =W(X),
then t =0 and %, is a minimal surface.

Proof. The following calculation can be found in [35]:

3.5. LEMMA. We have

(k1(v) — ks(v))”
4

Jac (y) =1+ H(”)Q) — (sint 4+ H(v) cos t)2 — sin’t,

where ki(v) and ka(v) are the principal curvatures of ¥, at y and H(v) =

k k .
w is the mean curvature.

Proof. Let {e1, ez} C T)%, be an orthonormal basis of principal directions,
with principal curvatures ki (v) and ko(v), respectively. Hence

Dw(v,t)‘yei = (cost — k;(v) sint)e;,
from which we conclude that
Jac ¥, 4)(y) = (cost — ki(v) sint)(cost — ka(v) sint).

The lemma follows by expanding this out. O
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Using this lemma we can finish the proof. From Lemma 3.5, the area
formula, and conformal invariance of the Willmore energy we obtain

area(S(, 1)) < area (Y, ({Jac ¥,y (p) > 0}))

< (Jac 1/}(v,t)) dX,

/{Jac Y(v,t) >0}

(k1(v) — ka(v))?
4

<

(1+ H(v)?) —sin®t s,

/{Jac P(v,) (p)>0}
< / (1+ H(v)?) d%, = W(%).
P

If equality holds for some (v,t) € B* x (=, m), we obtain from the set of
inequalities above that {Jac 1, ;) > 0} = X and

-2 -2
sin“ ¢ o sin“t o
5 |A?d%, = / |A?d% = 0,
o pX
where A denotes the trace-free part of the second fundamental form. This
implies the rigidity statement. O

3.6. Extended Gauss map. For every p € ¥ and k € [—o0, +00], consider

(13) Qpi = (p) € S3.

k |
_ _ N
NN ANy

This induces a function @ : Q. — S such that

Q(A(p,s) = Q. where k =

We extend this map in the following way:
~T(v) ifveA*\ Q.
(14) Q:5°U0. - S, Q)= T (v) ifveA\Q.,
Qv) ifveQ..

Remark. If p e ¥, i.e, p= A(p, (0,0)), then Q(p) = —N(p) is the classical
Gauss map for surfaces in S3.

The next theorem is absolutely crucial to the proof of the Willmore con-
jecture.

3.7. THEOREM. The map Q is continuous and
Q5% 53

has degree g.
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Proof. We start by showing that @ : S3 — S3 is continuous. Clearly @ is
continuous on S N ., A*\ Q, and A\ Q.. Assume

v=A(p,(0,t)) =costp+sint N(p) € Q..
If v € 83N Q., we see from (14) that

im Q(v) = Qp_o =D

Am Qv) = Q4o =—p and i m

If v € A\ Qc, we see from the definition of 7" and (14) that
Jim Qv) = lim T(v) =~ lim A(p, (0,7)) = p.

If v € A%\ Q., we see from the definition of T and (14) that

lim Q) = = Jim T(e) = = Jim A(p, (0,0) = .

t—eg

Hence @ : S? — S3 is continuous.
3.8. LEMMA. The degree of Q : S3 — S3 is g.

Proof. We will use the fact that Q is piecewise smooth. Let dV denote
the volume form of S and V the induced connection on S3.

Since Q = —T on A* \ Q., we have from the definition of 7' that Q is an
orientation-preserving diffeomorphism of A* \ . onto —A*. Therefore

(15) /A*\QS Q" (dV) = /_A* dV = vol(A*).

Since @ = T on A\, we have from the definition of T that @ is an orientation-
preserving diffeomorphism of A\ Q. onto A. Therefore

(16) /A - g av) = /A 4V = vol(A).

Recall that {e1,e2,e3} € T,5% is a positive basis if {e1, e, e3,p} is a pos-
itive basis of R?, and {e1,e2} € T,X is a positive basis if {e1,e2, N(p)} is a
positive basis of TpS3 .

Consider the diffeomorphism G : ¥ x [—¢,¢] — S3 N Q. defined by

G(p,t) = A(p, (0,t)) = cos tp+sin t N(p).

The orientation of ¥ x [—&,¢] is chosen so that {e1,es,0;} is a positive basis
whenever {e1,e2} is a positive basis of 7'3. We have

Gi(e1 Nea A at)|(p,0) =e1 ANea A N(p),
and thus G is orientation preserving.
Consider Q = Qo G : ¥ x [—¢,¢] — 83, which is given by
A /62 — 12

Qp,t) = —gp— fN(p)-
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Hence

/5'3mQ€ @ (dV) - /Z)x[—s,s] G*(Q (dV)) B /EX[—E,E} @ (dV).

Let {e1, ez} be a positive orthonormal basis of 7,2 that diagonalizes the
second fundamental form:

Vel.N = —k:iei for i = 1,2.

We have
1 t
Q|(p,t)(0) _P + Y (p)
and
t 2 _ 2
DQpy(ei) = (_5 + 68]%) e; fori=1,2,

and thus, denoting by volgs the standard volume form of R*, we have

Q*(dV)|pp) (€1, €2,01) = dVigp) (DQ(e1), DQ(e2), DQ(3r))
= volg1 g (DQ(e1), DQ(e2), DQ(), Q(p. 1))
:< ‘ mkl)< t+mk2> 1)

— 4+
g £ 62—t2

9 9

since

The Gauss equation implies that K = 1 + kiks, where K denotes the
Gauss curvature of X, and so we conclude that

an [ @@

1 2
— | kikovVe? —t2 — (k1 + k t—}-)dtdz
//_€2<12 (s + )t + s

=—3 ( —1)d2——/d2——7rx(2)—ﬂ(29—2)

In the calculation above we have used that
o [T VT dt =2 fj7/32 cos? 0.df = =,
o [f.tdt=0,

o J5 dt =2 [T, sin 0 d) = 75~
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Finally, since vol(S®) = 272, we combine (15) (16), and ( ) to obtain

/SgQ(dV)—/ dV+/ dV+/

= vol(A*) + vol(A) + Q*(dV)
Ex[—ee]

=272 + 1%(29 — 2) :27r2g:g-/ av.
S3

It follows that deg(Q) = g. O
This lemma finishes the proof of Theorem 3.7. ([l

For technical reasons that will be relevant later, we need to ensure that
the areas of the sets ¥, ;) cannot concentrate at a point:

3.9. THEOREM. For every 6 > 0, there exists r > 0 such that
area(X(,4) N Br(q)) <6 for every q € S3 and (v,t) € B* x [—m, 7).

The proof of Theorem 3.9 will be postponed to Section 12.

4. Definitions from Geometric Measure Theory

In this section we recall some definitions and notation from Geometric
Measure Theory. A standard reference is the book of Simon [39]. Sometimes
we will also follow the notation of Pitts book [32].

Let (M, g) be an orientable compact Riemannian 3-manifold. We assume
M is isometrically embedded in R*. We denote by B,(p) the open geodesic
ball in M of radius r and center p € M.

The spaces we will work with in this paper are

e the space I(M) of k-dimensional integral currents in R with support
contained in M;

e the space Z,(M) of integral currents T' € I (M) with 0T = 0;

e the closure Vi (M), in the weak topology, of the space of k-dimensional
rectifiable varifolds in R” with support contained in M.

Given T € Ix(M), we denote by |T'| and ||T|| the integral varifold and
Radon measure in M associated with T, respectively; given V' € Vi.(M), ||V]]
denotes the Radon measure in M associated with V. If U C M is an open set
of finite perimeter, the associated current in I3(M) is denoted by [|U]].

The above spaces come with several relevant metrics. The mass of T €
I;(M), defined by

M(T) = sup{T'(¢) : 6 € D*(R"), l¢|| < 1},

induces the metric M(S,T) = M(S — T) on I;(M). Here D¥(R”) denotes the
space of smooth k-forms in R” with compact support, and ||$|| denotes the
comass norm of ¢.
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The flat metric is defined by
F(S,T) =inf{M(P)+M(Q):S—T=P+0Q,P cI;(M),Q € L1 (M)}
for S,T € I;(M). We also use F(T') = F(T,0). Note that
F(T)<M(T) foralT eIy(M).
The F-metric on Vi (M) is defined in Pitts book [32, p. 66] as
F(V.W) = sup{V(f) = W(f) : f € Ce(G(R")), |f] < 1, Lip(f) < 1}

for V,W € Vi(M). Here C.(Gr(R¥)) denotes the space of all real-valued
continuous functions with compact support defined on G (R*) — the k-dimen-
sional Grassmannian bundle over RY. The F-metric induces the varifold weak
topology on Vi (M), and it satisfies

F(S],|T|) <M(S —-T) forall S,T € I;(M).
Finally, the F-metric on I;(M) is defined by
F(S5,T) = F(S =T)+F(|S],[T]).

We assume that I (M) and Z;(M) both have the topology induced by the
flat metric. When endowed with the topology of the mass norm, these spaces
will be denoted by I(M;M) and Zi(M;M), respectively. If endowed with
the F-metric, we will denote them by Iy (M;F) and Zi(M;F), respectively.
The space Vi (M) is considered with the weak topology of varifolds.

If v is either the flat, mass, or F-metric, then

B/(T)={S € Z,(M):v(T,S)<r}.
Given A, B C Vi (M), we also define
F(A,B) =inf{F(V,IW):V € A, W € B}.

The mass M is continuous in the topology induced by the F-metric but
not in the flat topology. In the flat topology the mass functional is only lower
semicontinuous. Keep in mind that

F(S—T)<F(S,T) < 2M(S — T)

for every S,T € I(M).
The following lemma will be useful:
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4.1. LEMMA. Let S be a compact subset of Zi(M;F). For every e > 0,
there is 6 > 0 so that for every S € S and T € Z,(M),

M(T) < M(S) + 6 and F(T — §) <6 = F(S,T) < e.

Proof. In [32, p. 68], it is observed that lim; ,~, F(S,T;) = 0 if and only
if lim; 0o M(T;) = M(S) and lim; oo F(S —T;) = 0 for T;, S € Z,(M). The
lemma then follows from the continuity properties of the mass functional and
the compactness of § in Zi(M; F), via a standard finite covering argument. [

Given a Cl-map F : M — M, the push-forwards of V € V(M) and
T € 1,(M) are denoted by Fy (V) and Fy(T), respectively. Denote by X (M)
the space of smooth vector fields of M with the C'-topology. The first variation

5 Vi(M) x X(M) > R

is defined as
d dF;
oV(X)=— Fiy (VH||(M here — =X
(X) = G MWD, where L

The first variation is continuous with respect to the product topology of Vi (M)
X X(M). Recall that a varifold V' is said to be stationary if 6V (X) = 0 for
every X € X(M).

We will also need the following definition. I™ denotes the n-dimensional
cube.

4.2. Definition. Given a continuous map ® : I — Z5(M), with respect
to the flat topology, we define

m(P,r) = sup{||®(z)||(Br(p)) : x € I",p € M}.

5. Canonical family: Boundary blow-up

Following the discussion in Section 2.4, we want to reparametrize and
extend the canonical family to be defined on all of B x [—m,7]. The resulting
family will be continuous in the sense of currents.

The goal is to produce, out of the canonical family, a 5-dimensional family
of integral currents of boundary zero that is continuous in the flat topology of
currents (Theorem 5.1).

For every k € [—o00, +00], consider

Tr = g —arctank € [0, 7).

We note that

B o o k
(18) B%k (an) nss = Bz, (Qp,k)> where 1, = \/2 (1 B m)
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Also consider 7 : Q. — [0, 7] given by
52

2 _ 2
€ 55

7 (A(p,s)) =T, where k=

We extend this function in the following way:
0 if v e A"\ Q,
(19) F:S3UQ. = [0,7], Tlv)={~ ifve A\ Qe,
7(v) ifv e Q..
The goal of this section is to prove the following result.

5.1. THEOREM. The map below is well defined and continuous in the flat
topology:
C B x [~ 7] = 25(5%),

{8[’A(T(v),t)u ifve B\ Q,

C(v,t) = o B
| Brwy+:(Qw))[] ifv e SPUQ..

Furthermore,
M(C(v,t)) < W(B) for all (v,t) € B x [~m, 7]
and C(v,7) = C(v,—7) = 0 for everyv € B

5.2. Preliminary results. Given sets A, B of R*, the symmetric difference

is denoted by
AAB=(A\B)U(B\A).

Recall the definition of the map A in (12). If v, € B* is a sequence
converging to p € 3, then for all n sufficiently large, there are unique p, € X
and s, € D2 (3¢) so that v, = A(py,s,). Necessarily, p, tends to p and s,
tends to zero. By passing to a subsequence, we can also assume that

lim "2 = e [—00, +00].

5.3. PROPOSITION. Consider a sequence (vp,t,) € B*x[—m, 7| converging
to (v,t) € B x [—7, 7).

(i) If v € B, then

lim vol (A(vn,tn) A A(v,t)) = 0.

n—oo
(ii) Ifv € A, then
lim_vol (A@n.tn) A Brit(v)) =0

and, given any d > 0,
Y (ontn) C Bryers() \ Brii—s(v)  for all n sufficiently large.
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(iii) If v € A*, then
nhﬁnolo vol (A(vn,tn) A Bt(—v)) =0
and, given any 6 > 0,
Y (ontn) C Biys(—v) \ Bi_s(—v) for all n sufficiently large.
(iv) Ifv=pe X and
Sn2

Un = A(Pn, (Sn1,Sn2))  with nh_)ngo P k € [—o0, +00],

then
nh_}rrolo vol (A('Un,tn) A B?k+t(©p,k)) =0
and, given any 6 > 0,

Sontn) C Brtt+6(Qpr) \ Broyit—s(Qpr)  for all n sufficiently large.

Proof. We denote by N, the normal vector to ¥, with the same direction
as DF,(N). Consider the normal exponential map of 3, given by

exp, : By x R = S% exp,(y,t) = costy + sint N,(y).

For every x € S3, there exists y € 3, such that z = exp,(y, d,(x)). In partic-
ular,

(20) (A \ A@ys)) C exp,(Sy x [5,)) for s <t.
We now prove Proposition 5.3(i). Let 6 > 0, and choose 1 > 0 such that
vol (exp, (Ey x [t =0, + 1)) < 4.

The sequence of surfaces ¥, converges smoothly to X, since v, tends to
v € B%. This, together with the triangle inequality and the fact that ¢, tends
to t, implies that we can choose ng such that

Awi—n) C Awntn) C Aw,try) for all n > ng.
Hence, for n > ng, we have
Antn) A Awn € (Awin \ Awi-n) -
From (20), we have
(At \ Awim) € exp, (S [t = .t + 1))

and thus
vol (A(vn,tn) A A(%t)) < )

for each n > nyg.
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We now prove Proposition 5.3(ii). Let r» > 0 be such that B,(v) C A.
Given § > 0, there exists ng € N such that for all n > ny,

(21) Bn—&/z(’U) C Fy,(Br(v)) C Fy, (A) = Aw,0) and [tn — 1] <

NS

In particular,
(22) Yy, C Bsja(—v) for all n > ny.
If t > 0, then from (21) and the triangle inequality we have, for all n > ny,
S%\ Bs(—v) = Br—5(v) C A, ,—5/2) € Afwtn):
Hence, because B,y¢(v) = S3,

(23) vol(A(Umtn)ABm(v))gvol(Bg(—v)) and X, ;) C Bs(—v).

Notice that if t > 0, then (21) implies that A, ;) = S3 and hence Slonitn) =0
for any sufficiently large n.
If t < 0, choose ny > ng such that t,, < 0 for each n > ny. We have

A(ontn) C Bryts(v) foralln>mny

because, picking z € A, +,) and y € %, with d, (z) = —d(z,y), we obtain
from (22) and the triangle inequality

d(z,—v) > d(z,y) — d(y, —v) = —d,, () — d(y, —v) > —t, — g > —t — 4.

Also

Bﬂ_i_t_(;(v) C A(Umtn) for all n > ny

because if © € Briy—s(v), then z ¢ Bs_(—v) and we obtain from (22)

)
d(x,3y,) > d(x,0B5/5(—v)) > —t + 3 > —tn.
Hence, for all n > nq,
(24) (A tn) A Brse(v)) UL, 1) € Brsrrs(v) \ Brye—s(v).

In any case, Proposition 5.3(ii) follows from (23) and (24) since we can choose
0 arbitrarily small.

Proposition 5.3(iii) is proven exactly in the same way as Proposition 5.3(ii).
We now prove Proposition 5.3(iv).
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5.4. LEMMA. There exists ro > 0 such that for every p € X, we have

By, ((cosro)p — (sinrg)N(p)) C A
and
A C S3\ By, ((coso)p + (sinrg)N(p)).

Proof. Choose ry > 0 sufficiently small such that for every x € S3 with
d(xz,X) < 719, there exists a unique ¢ € ¥ such that the shortest geodesic
segment joining x and ¢ is orthogonal to ¥ at ¢. We must have d(z,q) =
d(xz,X).

If x1 = (cosrg)p — (sinrg)N(p) and xo2 = (cosrg)p + (sinrg)N(p), then
d(z1,%) = d(x2,%) = rg. Therefore By, (x1)NE = By (x2) NE = (. The result
follows since x1 € A and x5 € A*. O

Write v, = A(pn, (Sn1, Sn2)), where k,, = s,9/5,1 tends to k and p,, tends
to p. Set By = Br/2(—N(q)) = B%(—N(q)) N S3 for ¢ € X. Tt follows from
Lemma 5.4 that

AAB,, C S\ (B, ((cosro)pn + (sinro)N(pn))
UBy, ((cos70)pn — (sinro) N (pn))) -

From Proposition B.1 of Appendix B, we obtain the existence of C' > 0
and ng € N such that
3 4

3 4
C Fy,(A) C S°NBg

n,cm(épn,kn) k,ﬂrcﬁ(@p”’k”)

for all n > ng, where a,, = /1 + k2 s,1. Notice that a,, — 0.
Therefore, from (18), we see that for each 6 > 0, there exists ny > ng such
that for every n > nji, we have

(25> B?kn75/2(Qpn,kn) - F'Un(A) C B?kn+5/2(Qpn,kn)
and
(26) Yo C By, 15/2(Qpn i) \ Bry, —5/2(Qp kn)-

Assume T, € (0,7) and 0 < 6 < min{7g, ™ — T }. The cases 7, = 0 and
T, = 7 can be dealt with as in the proof of Proposition 5.3(ii).
We can find ny > nq such that for each n > no, we have

tn — t| + d(Qp, ks Qpi) + |Thy — Tl < 6/2.
Thus, from (25), we have ap,k’ € F,,(A) and _@p,k ¢ F,, (A) for n > ng.
We claim
A tn) C Brygt46(Qpy)  for all n > ny.

Let n > ny and x € Ay, 4,)- Then d,, (7) < t,, and z = exp,, (y, dy, (7))
for some y € ¥,,,.
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If d,, (z) > 0, we obtain from that (25)

d(z,Qpr) < d(z,y) +d(y, Qp )
<d(z,y) +d(y,Qp, k) T+ AQp, x> Qpi)
< du,(2) +Tr, +0/2+d(Qp, &, Qpi)
<tp+Tr, +6/2+d(Q, 1, Qpr)
<Tr+t+0.

If dy,(x) < 0, then z € F,, (A). Thus, from (25), any continuous path
joining x to _@pn,kn must intersect 3, and using (26), we obtain

d(z,—Qpr) > d(x,—Q, 1) —d(Q, 1., Qpr)
> d(z,5y,) + d(Bv,, —Qp, 1) — AQp, 1, Qpr)
> d(x,%y,) + 7 =T, —0/2=d(Qp, 1, Qpr)
= —dy, () + 7 — T, —06/2—d(@Qp, 1, Qpi)
> —ty + 71 —Th, —06/2—d(Qp, k> Qpi)
>—t+7m—T — 0.

In any case, d(z,Q, ) < T+t +d and the claim follows.
Arguing in the very same way, one can also show that

B-

et t—5(Qpr) C Ay for all m > ny.

Hence, for n > no,
B?ﬁt—é(@p,k) C Awntn) C BFk+t+6(@p,k)-
This implies
(A i) A Brot(@y ) U S0 t) € Brptts(@pi) \ Brysi—s(Qp)-
The result follows since § > 0 can be chosen arbitrarily small. O

5.5. Proof of Theorem 5.1. We start by arguing that the function 7 defined
on S3 U Q. is continuous. Clearly 7 is continuous on S N Q., A*\ ., and
A\ Q.. Assume

v=A(p, (0,t)) =costp+sint N(p) € Qa..

The continuity follows at once from
. _ . ™
tl_lglﬁ T(v) = klggo (5 - arctan(k)) =0

and
lim 7(v) = lim (g — arctan(k:)) = .

t——eyp k——o0
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Consider the map
U:B" x [-7, 7] — I3(S%),

HA v), ’]lfU€B4\ﬁaa
(27) U(v, 1) = { Ty

[1Brw)+:(Q(v))] if v e $*UQ..
Note that, by Theorem 3.4, A7) +) has finite perimeter and so indeed U (v, t) €
I3(S3) for all (v,t) € B x [—m, 7).

5.6. LEMMA. The map U is continuous with respect to the mass topology
of currents.

Proof. We will use the fact that if V;, Vo C S2 are open sets, then
M([[Vi]] = [IV2[]}) = vol (Vi A V).
Let (v, t,) tend to (v,t) with v,,v € B\ Q.. Hence (T'(v,),t,) tends to
(T'(v),t) and we obtain from Proposition 5.3(i) that
Jim M(U (vp, ty) — U(v,t)) = 0.
Suppose now that (vy,t,) tends to (v,t) with v € A\ Q.. We have T'(v,)

converging to T'(v) € A\ ¥ and 7(v) = m. Thus U(v,t) = [|Br++(T(v))|]. For
every n sufficiently large,

U(vn,tn) = [| Brrs (T(vn))]] i v, € 57
or
U(vn, tn) = [’A(T(vn),tn)” if v, € B*.

In any case, using Proposition 5.3(ii), we get that
Jim M(U (vp, tn) — U(v,t)) = 0.

The case (vy,t,) tending to (v,t) with v € A*\ Q. follows similarly, using
Proposition 5.3(iii).

The restriction of U to ). is clearly continuous in the mass topology
because Q and 7 are continuous functions.

It remains to consider the case (vn,t,) converging to (v,t) with v, €
B*\ Q. and v € 99Q.. We write

vn = A(pp,sn) and v = A(p,s),

where € = |s| < |sp|, 5,8, € D%(2¢), and we set
lim "2 = %2 _ e [—00, +00].
n—o0 Sn1 S1

Recalling the definition of T in Section 3.1, we have

T(vn) = A(pn,uyn), where uy, = ¢(|sn|)Sn,
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and so
Un2

lim —= =k.

Therefore, Proposition 5.3(iv) implies that

Jim M(U (vn, tn) — [|Br+t(Qpx)[])
= lim M([|A7).e0l] = [ Brtt(@pr)]]) =0

n—oo
We claim that U(v,t) = [| By, 14(Q, 1)|], and this implies the desired continuity
at once.
Indeed, since
52

2 _ 2
€2 — 55

|s| = = k=

)

we see from the definition of @ in (13) and 7 in (19) that

Qv) = Qp,k and T(v) = T.

This implies U(v,t) = [|Br, ++(Qp x)]]- -

From the Boundary Rectifiability Theorem (Theorem 30.3 of [39]) we know
that C(v,t) = OU(v,t) € Z5(S?), and Lemma 5.6 implies at once that C is
continuous in the flat topology.

We now argue that

M(C(v,t)) <W(S) forall (v,t) € B x [—, 7).

This only needs justification if v € B*\ Q..

If 0" A(r(y) C E(r(w),) denotes the reduced boundary of Ap(,) s (see
[12, §5.7] for the definition), we have from [39, Rem. 27.7] and the Structure
Theorem in [12, p. 205] that

M(C(v,t)) = H*(0* A1) < area(E 1) 0)-

Theorem 3.4 then proves the desired inequality.

We are left to prove the final statement of Theorem 5.1. If v € S3UQ,, it
is clear from (27) that U(v,7) = [|S?|] and U (v, —7) = 0, and thus C (v, +7) =
oU (v,+m) = 0.

If v € BY\ Q, set w = T(v) € B*. Since ¥, is a smooth surface, there
can be no point p € S with d(p,¥,) > 7 (otherwise ¥, C {—p}). Therefore
Ay = S3 and A~z = 0. Since in this case U(v,t) = [| Ay pl], we again
have C(v, £7) = 90U (v, £7) = 0.
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6. The min-max family

In this section we construct the continuous map ® into Z9(S?) to which
we apply the Almgren-Pitts Min-Max Theory.

Recall the definition of the map C' in Section 5. From Theorem 5.1 we
can extend C' continuously to B'xR by defining C(v,t) = 0 when [t| > 7. We
denote this extension by C' as well.

We also choose a continuous extension of 7, defined in (19), to a function
7B — [0, 7].

Choose an orientation preserving homeomorphism f : I* — B (hence
fiar+ is a homeomorphism from 01 4 onto %), and consider

1 1
v:R—=R, 7(3):Oifs§§, 7(8):23—1if825.

6.1. Definition. The min-maz family of ¥ is the map ® : I? — Z5(S%)
given by

a(z,t) = C (f@), 27 2 = 1) + (£ @) (5 -7 (@) ).

6.2. Remark. The motivation for this definition is that if € 9I*, then
we see from the definition of the map C' in Theorem 5.1 that

O, 0)=C ( f(), 27 (26— 1)+ 5 ~7(f(2)) ) =0l Bar 2112 (@S (@)1

The properties of ® that are important for our proof are collected in the
next theorem. We denote by 7 C V5(S3) the set of all (unoriented) great
spheres, which is homeomorphic to RP?. The quantity m(®,r) appears in
Definition 4.2.

6.3. THEOREM. Let ¥ C S° be an embedded closed surface of genus g.
The map
D15 — Z5(5%)
satisfies the following properties:

(i) @ is continuous with respect to the flat topology of currents.
(i) B(* x {0}) = (I* x {1}) = {0}.
(iii) sup{M(®(z)) : x € I’} < W().
(iv) The restriction ® : OI* x I — Z5(S3) is continuous in the F-metric.
(v) For every c € I*, the map v : I — 2Z5(S%), v(t) = ®(c, t) is such that
e (t) = 9[|U(t)|] for all 0 < t < 1, where U(t) are open sets of finite
perimeter of S3;
e U(0) =0 and U(1) = S3;
o the map t — [|U(t)|] is continuous in the mass norm.

(vi) max{M(®(z)) : x € OI°}=4r, x € OI°, and M(®(z)) = 47 = |®(z)| € T.
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(vii) For every 6 > 0, there is ¢ > 0 so that, for all (z,t) € OI°,
F(|®(z,t)],T)<e = |t—1/2| <.
(viii) The map |®|: 0I* x {1/2} — T defined by

|2|(2,1/2) = |®(z,1/2)| = |0B,2(Q(f(2))]
has
1], ([0 x {1/2}])| = 2 € H(RP5, Z).

(ix) lim,_,om(®,r) = 0.

Proof. Property (i) comes from the fact that ® is a composition of con-
tinuous functions.
Because 0 <7 < m, we have from Theorem 5.1 that

B(z,1) = C <f(x),27r (I f @) (g —?(f(m)))) —0 forallzeI*
Likewise, ®(x,0) = 0 and this shows property (ii). Property (iii) follows from
the mass estimate in Theorem 5.1.

From the definition of C it is clear that C restricted to S x [—m, 7] is
continuous in the F-metric and thus ® restricted to OI* x I is also continuous
in the F-metric. This proves property (iv).

Property (v) follows at once from the fact that C(v,t) = 0U (v, t), where
the map U is defined in (27), and from Lemma 5.6.

Property (vi) follows from Remark 6.2. Property (vii) follows from prop-
erty (iv) and the fact that, from Remark 6.2, for every x € OI*,

|®(z,t)| € T <= t=1/2.
Consider the 2-fold cover of T given by
7:8 =T, w(p) = 0B 2(p)|-

We have |®|(z,1/2) = mo Qo f(x), and so Theorem 3.7 implies the degree of
x +— |®|(x,1/2) is 2¢g. This implies property (viii).
Property (ix) is a consequence of Theorem 3.9. O

7. The Almgren-Pitts Min-Max Theory 1

We will set up the notation needed to apply the Almgren-Pitts Min-Max
Theory to our setting. (M, g) will denote an orientable compact Riemannian
3-manifold.
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7.1. Cell complexes. We denote by I" = [0,1]" C R™ the n-dimensional
cube, with boundary I§ = oI™ = 1"\ (0,1)".

For each j € N, I(1,5) denotes the cell complex on I' whose 1-cells and
O-cells (those are sometimes called vertices) are, respectively,

[0,377],[377,2-377],...,[1=379,1] and [0],[377),...,[1—377],[1].
We consider the n-dimensional cell complex on I™:
I(n,j) =1(1,j)®...®I(1,7) (n times).

a=a;®- - Qay is a p-cell of I(n,j) if and only if «; is a cell of I(1, ) for
each 4, and Y1 | dim(a;) = p. We often abuse notation by identifying a p-cell
« with its support: oy X -+ X a,, C I™.
We use the following notation:
e I(n,j), denotes the set of all p-cells in I(n, j);
e Iy(n,j), denotes the set of all p-cells of I(n,j) that are contained in the
boundary I});
e Iy(n,j)is the subcomplex of I(n, j) generated by all cells that are contained
in the boundary Ijy.
Given a p-cell a € I(n, j),, we use the following notation:
e a(0) denotes the p-dimensional subcomplex of I(n, j) whose cells are those
with support contained in «;
e (k) denotes the p-dimensional subcomplex of I(n,j + k) formed by all
cells that are contained in «;
e a(k)y, with ¢ < p, denotes the set of all g-dimensional cells of a(k);
e ag(k)q, with ¢ < p, denotes the set of all g-dimensional cells of «(k) whose
support is contained in the boundary of «;
e oy = a(0), denotes the g-dimensional faces of o

We also define the following cell subcomplexes of I(n, j):
(bottom) B(n,j)=1I(n—1,7)® ([0]),
(side) S(n,j) =1Ip(n—1,5)®I(1,7).

(Here ([z]) is the cell complex whose only cell is [z].) Let T'(n,j)p,, B(n,j)p,
and S(n, j), be the corresponding sets of p-cells. Note that T'(1,j) = ([1]) and

B(1,5) = ([0]).
The boundary homomorphism
9:1(n,j) = I(n,j)
is defined by

8(91®...®9”) :Z(_l)g(i)gl®...®39i®...®9”’
=1
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where

— 3" dim(6)

p<i
and

I(la,b]) = [b] — la] if [a,b] € I(1,5)1, O([a]) = O if [a] € I(1,j)o.
The distance between two vertices of I(n, j) is defined by

d:I(naj)OXI(naj)O_)ZJr’ .’L‘y _3]Z|xl ’L

It has the property that two vertices z, y satisfy d(z, y) = 1if and only if [z, y]
is a 1-cell of I(n,j).

We will also need the map n(i,j) : I(n,i)o — I(n,j)o, defined as follows:
For each = € I(n,i)o, n(i,7)(x) is the unique element of I(n, j)o such that

d(z,n(i, j)(z)) = inf{d(z,y) : y € I(n, j)o}.
Note that n(i,j)(z) =z if i <j and n(k,i) =n(j,7) on(k,j) if i <j <k.

7.2. Maps into currents. Given a map ¢ : I(n,j)o — Z2(M), we define
the fineness of ¢ to be
M(¢(z) — 6(y))

f(¢) = sup { d(r.9)

The reader should think of the notion of fineness as being a discrete mea-

:x,yEI(n,j)o,m#y} .

sure of continuity with respect to the mass norm. The following lemma is
useful for computational purposes.

7.3. LEMMA. f(¢) < 0 if and only if M(¢(z) — é(y)) < & whenever
d(z,y) = 1.

Proof. If f(¢) < 6, then it follows directly from the definition of fine-
ness that M(¢(z) — ¢(y)) < 6 whenever d(z,y) = 1. Suppose now that
M(p(z) — ¢(y)) < 6 if d(=, y) = 1. Given any z,y € I(n, j)o with d(z,y) = k,
we can find a sequence {y;}¥_ in I(n, ) so that yo = y, yx = =, and [y;, yi+1]
is a 1-cell of I(n,j). Thus

M(o(z) - ¢(y)) _
d(z,y)
7.4. Homotopy notions. Suppose we have a map

(I)O 201" — ZQ(M)

1 k
%g yz gb(yz 1)) < kk5_6 U

that satisfies

e ®( is continuous in the F-metric,

o Oo(I" 1 x {0}) = ®o(I" ! x {1}) =0.
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Let ¢; : I(n,ki)o — Z2(M), i = 1,2. We say that ¢; is n-homotopic to ¢o
in (Zo(M; M), ®g) with fineness § if we can find k € N and a map

w : I(l,k)(] X I(n,k)o — ZQ(M)

such that
(i) £(¥) <é;
(i) if i = 1,2 and = € I(n, k)o, then ¢([i — 1],2) = ¢i(n(k, k;)(z));
(i) $(I(1, k)0 x T(n, k)o) = $(I(1, K)o x B(n, ko) = {0};
(iv) sup {F(¢(t, ) — Po(x)) : (t,2) € I(1,k)o X S(n, k)o} <6,
M(y(t,z)) < M(®Po(x)) + d for any (t,z) € I(1,k)g x S(n, k)o.
In particular, we must have that ¢; = 0 on T'(n, k;)o U B(n, k;)o,

sup{F(¢i(z) — ®o(z)) : x € S(n, ki)o} <9,

and
sup{M(¢i(z)) — M(®o(z)) : 2 € S(n, ki)o} <9

for each i =1, 2.
We note that if ¢ is homotopic to ¢o with fineness d; and ¢ is homotopic
to ¢3 with fineness d2, then ¢, is homotopic to ¢3 with fineness max{dy,d2}.

7.5. Remark. There is a related definition used by Pitts [32, §4.1]: ¢ is
n-homotopic to ¢2 in (Z2(M;M),{0}) with fineness d, according to Pitts, if
we can find £ € N and a map

’Lﬂ : I(l,k)o X I(n,k)o — ZQ(M)

such that

(i) £(¢) <d;
(i) if ¢ = 1,2 and = € I(n, k)o, then

¥([i = 1], ) = ¢i(n(k, ki) (2));

(iii) ¥ (S(n+ 1,k)o) = {0}.

Note that for the definition of Pitts to make sense, it is required that
¢i(Ip(n, ki)o) ={0} for each i=1,2. In the 1-dimensional case (n=1, P, =0),
our notion is equivalent to the definition of Pitts.

Instead of considering continuous maps from I" into Z2(M; M), Almgren-
Pitts consider sequences of discrete maps into Z9(M) with fineness tending to
Z€ro.
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7.6. Definition. An
(n, M)-homotopy sequence of mappings into (Z2(M; M), @)
is a sequence of mappings {®; }ien,
¢ I(n,ki)o — Z2(M),
such that ¢; is n-homotopic to ¢;41 in (Z2(M; M), &) with fineness §; and
(i) lim;_y00 0; = 05
(ii) sup{M(¢i(z)) : z € I(n, k;)o,7 € N} < 4o00.
7.7. Remark. This is similar to the notion of an
(n, M)-homotopy sequence of mappings into (Z2(M; M), {0})

in [32, §4.1]. Both notions coincide in the 1-dimensional case (n = 1, ®y = 0).
The next lemma says that ¢; restricted to the boundary of its domain
tends to ®¢ in the F-metric.

7.8. LEMMA. Let S = {¢i}ien be an (n, M)-homotopy sequence of map-
pings into (Z9(M; M), ®g). If I(n,k;)o denotes the domain of ¢;, then

zg& sup{F(¢;(z), Po(x)) : € Io(n,k;)o} = 0.

Proof. First note that ¢;(z) = ®o(x) = 0 for = € T'(n,ki)o U B(n, k;)o.
Since @ is continuous in the F-metric, ®¢(I}) is a compact subset of Z5(M, F).
The lemma follows from condition (iv) in the definition of “homotopic to” by
using Lemma 4.1. O

The next definition explains what it means for two distinct homotopy
sequences of mappings into (Z2(M; M), ®g) to be homotopic.

7.9. Definition. Given S' = {¢!};en and S? = {¢?}ien (n, M)-homotopy
sequences of mappings into (Z2(M; M), ®), we say that S! is homotopic with
S? if there exists {6; }sen such that

e ¢! is n-homotopic to ¢7 in (Z2(M; M), ®¢) with fineness d;;

7.10. Remark. There is a similar definition for (n, M)-homotopy sequences
of mappings into (Z2(M; M), {0}) [32, §4.1]. Once again these definitions co-
incide in the 1-dimensional case (n =1, % = 0).

The relation “is homotopic with” is an equivalence relation on the set
of all (n, M)-homotopy sequences of mappings into (Z2(M; M), ®g). We call
the equivalence class of any such sequence an (n, M)-homotopy class of map-
pings into (Zo(M; M), ®g). We denote by mjf (Z2(M;M),dg) the set of all
equivalence classes.
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Finally, a
(n, F)-homotopy sequence (or class) of mappings into (Z2(M;F)),{0})

is defined similarly to what we just did but with the mass M in the definition
of f being replaced by the flat metric F. The set of all equivalence classes is de-
noted by 777 (Z2(M; F),{0}). In [32, §4.1] (see also [2, §3]), 71 (Z2(M; F),{0})
is also considered to be the usual homotopy group of equivalence classes of
continuous mappings (I, Ip) — (22(M; F),{0}).

7.11. Min-Maz definitions. Given Il € 77 (Z2(M; M), ®g), let
L: 1 — [0, +00]
be defined by

L(S) = limsup max{M(¢;(z)) : © € dmn(¢;)}, where S = {¢; }ien.

1—00

Note that L(S) is the discrete replacement for the maximum area of a contin-
uous map into Zo(M;M).

7.12. Definition. The width of II is defined by
L(IT) = inf{L(S) : S € IT}.
We also consider
K :II — {K : K compact subset of Vo(M)}
given by
K(S)={Vv:V= Jliglo ¢, ()| as varifolds, for some increasing
sequence {i;};en and x; € dmn(é;;)}

for S = {¢i}ieN e Il
We say S € Il is a critical sequence for II if

The critical set C(S) of a critical sequence S € II is given by
C(S) = K(5) n{V : [[V[|(M) = L(S)}.

The set C(S) C V(M) is nonempty and compact.
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8. The Almgren-Pitts Min-Max Theory 11

In our setting, the Almgren-Pitts Min-Max Theory applies to elements of
77 (Z2(M; M), ®g). Therefore it is important to generate an (n, M)-homotopy
sequence of mappings into (Z2(M; M), ®y) out of a continuous map ¢ : I —
Z5(M) in the flat topology. This is the content of Theorem 8.2 below. In this
section we also discuss the Pitts Min-Max Theorem.
Let
c= %(1,...,1,0) e 1"t x {0},
and let e, be the coordinate vector corresponding to the z,-axis.
We consider the following hypotheses for the continuous map in the flat
topology @ : I — Z9(M).
(Ao) @7 is continuous in the F-metric.
(Ay) (1" x {0}) = @It x {1}) = 0.
(A2) L(®) = sup{M(®(z)) : x € I"} < +o0.
(A3) lim,,om(®,7) = 0 (recall Definition 4.2).
(A4) The map t — ®(c + tx,), 0 < ¢t < 1, defines a nontrivial class in
m(22(M; F),{0}).
The next lemma assures that the min-max family ® associated to an
embedded closed surface ¥ of S3 satisfies the conditions above.

8.1. LEMMA. Let ® be the min-max family defined in Definition 6.1. Then
® satisfies hypotheses (Ag)—(A4).

Proof. From Theorem 6.3 it is clear that hypotheses (Ag)—(As) are satis-
fied. Let [y] € m1(22(S8%;F),{0}) be the class generated by the map ~(t) =
®(c+txy,), 0 <t < 1. For each i sufficiently large, Corollary 1.14 of Almgren
[2] guarantees the existence, for each = € I(1,4)o \ {[1]}, of A;(x) € I3(S?) so
that

(28)  0Ai(x) =(z+37") —~(z) and M(Ai(x)) = F(9A(x)).
If F: m(29(8%F),{0}) — H3(S3,7Z) is the natural isomorphism con-
structed by Almgren in Section 3 of [2] (see also Theorem 13.4 of [3]), then

31

Fiyl= 1> Ai(j3_i):| € H3(5%,2)
i=0

for every ¢ is sufficiently large.

We now argue that F[y] = [5’3] € H3(S3,7Z), and so condition (Ay) is also
satisfied.

From Theorem 6.3(v), we know that

Y@ +37") = i(2) = o([[U(z + 37)]] = [[U(2)]).
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Thus
B(z) = [|U(x +37%)] = [[U(2)]] - Ai(z) € T3(5?)

satisfies 9B(z) = 0. The Constancy Theorem (see [39]) then implies that

B(z) = Ek[|M]] for some k = k(x) € Z. On the other hand, the continuity of

t — [|U(t)|] in the mass norm, together with continuity of v and (28), implies

that the mass of B(z) becomes uniformly and arbitrarily small as i — co. We

conclude that if i is sufficiently large, then B(z) = 0 for all = € I(1, k;)o.
Therefore, for large 7,

31
Fiol = | S (10(G + 1379 = [UE3)])
=0
= [lUM))] = [[U(0)]]] = [$*] € H3(S?,Z). 0

Then

8.2. THEOREM. Assume ® satisfies hypotheses (Ag)—(A4). There exists
an (n, M)-homotopy sequence of mappings into (Z2(M; M), (I)\ISL)

(ZBZ‘ : I(n, kz)O — ZQ(M)

with the following properties:

(i) There is a sequence {l;};cn tending to infinity such that for every sequence
x; € I(n, ki), we have

lim sup M(¢i(z;)) < limsup{M(®(z)) : a € I(n,l;)n, T, 7; € a}.
In particular, L({$; }ien) < sup{M(®(x)) : z € I"}.
(ii) limy o0 sUp{F(i(z) — ®(2)) |z € I(n, k;)o} = 0.
(iii) The sequence of mappings

v; : I(1, k)0 — Z2(M; M), vi(x) = di(c + zey)
is a (1, M)-homotopy sequence of mappings into (Z2(M;M),{0}) that be-
longs to a nontrivial element of w (Z5(M; M), {0}).
The proof of Theorem 8.2 is postponed to Section 13.
8.3. Definition. Let ¥ be an embedded closed surface in S3, and let ® be
the min-max family associated to ¥ constructed in Section 6. The homotopy

class associated with ¥ is defined to be the homotopy class of S = {q@i}ieN
given by Theorem 8.2 applied to ®.
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8.4. The Min-Max Theorem. We now adapt the celebrated Pitts Min-Max
Theorem to our setting. Assume we have a continuous map in the flat topology
O I" — Z9(M)
that satisfies the hypotheses (Ag)—(A1). We denote by |®| : I — V(M) the

map given by |®|(z) = |®(x)| for x € I".

Consider IT € 77 (Z2(M; M), ®|1n).

8.5. PROPOSITION. There exists a critical sequence S* € II. For each
critical sequence S*, there exists a critical sequence S € Il such that

o C(5) C C(57),
o cvery 3 € C(5) is either a stationary varifold or belongs to |®|(1).

The sequence S is obtained from a pull-tight procedure applied to S*. The
proof follows very closely Theorem 4.3 of [32] and is postponed to Section 15.

One consequence of Proposition 8.5 is the following theorem, established
by Pitts [32] when II is a nontrivial element of 77 (Z5(M; M), {0}). The proof
follows by simple adaptation of the arguments in [32].

8.6. THEOREM. Assume ® satisfies (Ag)—(Ay).
Let T € 7 (Z2(M; M), B|) with

max{M(®(z)) : z € I} < L(II) < oc.

There exists a stationary integral varifold X, whose support is a smooth em-
bedded minimal surface, such that

I511(M) = T(T).
Moreover, if S* is a critical sequence, then we can choose ¥ € C(S¥).
Proof. Consider S = {p;};en € II given by Proposition 8.5, and let
0 <e=L(S) — max{M(®(x)) : x € I} }.
Because every 3 € C(S) satisfies
ISI(M) = L(IT) > max{M(®(z)) : o € Ij},

we obtain that every ¥ in C(S) must be stationary. Since the construction of
[32, Th. 4.10] can be made to not affect those ¢;(x) with

M(pi(z)) < L(S) —¢/2,
and since
M(pi(z)) < max{M(®(z)) : x € Ij} +¢/2
for every x € dmn(y;) N I and sufficiently large ¢, we can see that the com-

petitor {¢}};en constructed by Pitts belongs to II. Therefore, as in [32], we
can find an almost-minimizing (in annular regions) ¥ € C(S). The regularity
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theory developed in [32, §7] implies that ¥ is an integral varifold whose support
is a smooth embedded minimal surface. ([

9. Lower bound on width

Let T C V2(5%) be the set of all varifolds that correspond to a great sphere
in S% with multiplicity one. Note that 7 is naturally homeomorphic to RP3.
Let

D I° = 2y(S%)
be a continuous map in the flat topology satisfying (Ag)—(A4) (thus Theo-
rem 8.2 can be applied) and the following hypotheses:

(As) max{M(®(z)) : x € I} = 47, and
rely and M(®(z)) =4r = d(z) € T.

(Ag) For every 6 > 0, there exists € > 0 such that
1 1
(29) welf and F(O().T)<ec=weJs=0l'x |5 0.5 +d|.

(A7) |®|(8I* x [1/2]) € T and
D[, ([OI* x {1/2}]) # 0 in H3(RP?, 7).
We define & : 0I* x I — T by
B(z,t) = |B(2,1/2)|

for (z,t) € dI* x I. In particular, ®(z) = |®(x)| for any = € dI* x {1/2}.
By applying Theorem 8.2 to ®, we obtain a (5, M)-homotopy sequence of
mappings into (Z(S%; M), ®m):

C = {¢i}ien such that L(C) < sup{M(®(z)):z € I°}.
We denote by II the corresponding (5, M)-homotopy class.
9.1. THEOREM. Assume ® satisfies hypotheses (Ag)—(A7). Then
L(II) > 4x.
This theorem has the following important corollary.
9.2. COROLLARY. Assume ® satisfies hypotheses (Ag)—(A7). If
sup{M(®(z)) : x € I°} < 8,

then there exists a smooth embedded minimal surface ¥ C S with genus g > 1
such that

area(X) = L(II) > 4.
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Proof. Using Theorem 9.1 and (As) we obtain that
4 = sup{M(®(z)) : x € I3} < L(IT).

Hence we can apply Theorem 8.6 to conclude the existence of a stationary
integral varifold X, whose support is a smooth embedded minimal surface,
such that

4 < ||%]](S?) = L(II) < L(C) < 8.

Every minimal surface in S% has area bounded below by 47, and so the
inequality above implies that ¥ has multiplicity one. Since by Almgren [4] the
great spheres are the only minimal surfaces in S? that are topological spheres,
it follows that 3 has genus ¢ > 1. This implies the desired result. O

9.3. Proof of Theorem 9.1. We argue by contradiction. Assume that
L(IT) = 4, and consider the critical sequence S = {¢;}ien € II given by
Proposition 8.5. Suppose that ¢; has domain I(5,%;) and that f(¢;) = J;.
Note that every varifold in C(S) is stationary since any varifold in |®|(I3)
with area 47 belongs to 7.

We will use cubical singular homology groups with integer coefficients (see
Massey [27]). If X is a topological space, we denote by C,,(X) the group of
cubical singular n-chains in X with integer coefficients. If f : X — Y is a
continuous map, we denote by fux : Cp(X) = Co(Y) and fi : Hy(X,Z) —
H, (Y,Z) the homomorphisms induced by f.

Note that we can identify a € I(5, k;),, with a p-singular cube a : IP — IE
in I° in a natural way (through an affine map). If R = Y a€l(5,ki), Mol €
Cp(I%), ng € Z, we denote by R, the set of all g-cells of I(5, k;) that are faces
of some a with n, # 0. In this case we say that R is subordinated to (5, k;).
The support of R is the union of the supports of all o with n, # 0.

The proof is divided in three steps.

9.4. First step. We construct a 4-chain R(i) € C4(I®), subordinated to
1(5, k), with

support(dR(i)) C OI°.

The chain R(7) is constructed so that |¢;(x)| is sufficiently close to T for any
S R(l)o

Let g9 > 0 be small, to be chosen later. Then we choose § > 0 such that
(30) r€Js=0I"x[1/2—-6,1/2+0] = F(|<I>(x)|,<i>(:c)) < &g.
It follows from condition (Ag) that there exists 0 < & < g¢/2 such that

(31) x € 0I°, F(|®(2)|,T) < 2e =z € Js.
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Consider
a(i) = {o € 1(5. k)5 : F16i(x)]. T) > = forallz € a0

Let a(7) be the set of 5-cells a € a() for which we can find a sequence {«; }221 C
a(i) with o = o, oy = B ® [0,37%] for some 8 € I(4,k;)4, and such that «;
and o4 share a common 4-face for each j = 1,...,1—1. Because ¢; vanishes
on (I(4,k;) ® ([0]))o, if ¢ is sufficiently small, we have that 3 ® [0,37%] € a(i)
for every B € I(4, k;)4. Loosely speaking, U,eq(;) is the connected component
of Upea(iya that contains I* x {0}.
Let b(i) denote the set of 4-cells in I(5,k;) that are faces of exactly one
5-cell in a(7). Consider the following 5-chain:
Ay = > aeC5(I°).
aca(i)
We have
0A(i) = Z sgn(a)a,
a€b(1)
where sgn(a) is equal to 1 or —1. Note that 8 ® [0] € b(i) for every €
I(4,k;)4. From the definition of the boundary homomorphism, we have that
sgn(B ® [0]) = —1 for every 8 € I(4,k;)4.
Let ¢(7) be the set of 4-cells of b(7) that belong to the subcomplex T'(5, k;)U
S(5,ki). Then we have the disjoint decomposition below:

(32) b(Z) N 10(5, ki)4 = C(l) U {a =B® [0] : B € 1(4, k1)4}
We define the 4-chain:
(33) R(i) = 0A(i) — > sgn(a)a

aeb(i)NIp(5,k;)a

=0A()+ > B0 - Y sgn(a)o

Bel(dki)a acc(i)
Note that support(9R(i)) C OI°.
9.5. LEMMA. We have
sup{F(|¢i(z)[,T) : x € R(i)o} <
for every sufficiently large i such that R(i) # 0.

Proof. Let i be sufficiently large such that 56; < /2, and let = € R(i)o.
From the definition of R(i) we see that we can find a 4-cell

a € b(l) N (1(5, ki)4 \ 10(5, k‘z)4) with =z € «ay.

Thus « is the common 4-face of two distinct cells 5,7 € I(5,k;)s. Since
a € b(i), we can suppose, after a possible relabeling, that 5 € a(i) and v ¢ a(i).
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It follows from the definition of a(i) that v ¢ a(i). This means that there exists
y € v with F(|¢:(y)|,T) < /2. Note that d(z,y) < 5; hence

F(joi(2), T) < F([oi(y)|, T) + F(|oi(y)l, [#:(2)]) < % +50; <e. O

9.6. Second step. We prove that the support of R(i) separates I* x {0}
from I* x {1}. This uses the assumption that L(IT) = 47 in a fundamental way.
Then we prove that OR(i) is homologous to 9I* x {1/2} in H3(0I* x I,7Z).

9.7. LEMMA. Ifi is sufficiently large, no 5-cell of the type B®[1—37% 1],
B € 1(4,k;)s, belongs to a(i).

Proof. Suppose, by contradiction, that there exists o = f® [1 — 37 1],
B € I(4,k;)s, with o € a(i). Then we can find a sequence of maps

Yi : I(l,ni)o — 1(5,/%)0,
with
o n; > k; and d(vi(x),7vi(y)) < 1lif d(z,y) < 1;
* %i([0]) € (I(4,k;) @ ([0]))o and v;([1]) € (1(4, k:) @ ([1]))o;
b %(I<17ni>0) - UaEa(i)a-

In particular, putting o; = ¢; o ;, we have

(34) F(|oi(@)|,T) >

for all x € I(1,n;)o.
We now show that ~; is homotopic to a vertical path, meaning we can find
a map
1,[)1' : I(l, Si)O X I(l, 51’)0 — 1(5, kil)o
such that
(a) ¥i([0],-) = i on(s;;n;) and ¥4([1],y) = ¢+ n(s;, ki) (y)es, where
1
c= g(l, 1,1,1,0) and e5=(0,0,0,0,1);
(c) if z,y € I(2,si)o, then
d(z,y) < 1= d(¢i(z), ¢i(y)) <5.

In order to show this we associate to each ~; a piecewise linear continuous
curve 7; : I — I° given by
- . . J : . j+1
@) w0 =G+1-30m () @ (B
for every j3 " <t < (j+1)37™, j=0,...,3" — 1. Note that 7;(t) = v:([t])
if [t] S I(l,ni)o.
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Let ¢ : I2 — I° be given by ¥ (u,t) = (1 — u)¥(t) + u(c + tes). Then

(36) ¥(0,t) =7 (t), »(,t)=c+tes foralltel,
and
(37) Y(I x {0}) € I* x {0}, (I x{1}) c I* x {1}.

Choose s; > n; sufficiently large so that

1 .
(38) [Y(z) —Y(y)| < T2 for all z,y € 1(2,s;)p with d(z,y) < 1.
For z € I(2,si)o, we choose ¢;(x) € I(5, k;)o to satisfy

d(¥i(x), (x)) = d(¢(x), (5, ki)o)-

Note that such a choice might not be unique. If ¥)(z) € I* x {j}, j =0 or 1,
then it follows from the definition that ¢;(z) € (I(4, k;) ® ([j]))o. This proves
property (b) for ;. From (35) and (36) we obtain property (a) for ;. Finally,
from (38) we have that ;(z) and ;(y) are vertices of a common 5-cell in
I(5,k;) if z,y € 1(2,s;)0 satisfy d(z,y) < 1. This establishes property (c).

Consider the sequence D = {0;};cn, where 0; = ¢; o ;. From the fact
that -; is homotopic to a vertical path, we obtain that D is a (1, M)-homotopy
sequence of mappings into (Z9(5%; M), {0}) that is homotopic with {v;}ien;,
where

Vi - [(1,]@')0 — ZQ(SS), UZ(.CC) = (ﬁi(C-F 1‘65).

Hence D and {v; };en belong to the same element €2 in W#(ZQ(SB; M), {0}).
Since S is homotopic with C' (S, C € II), we obtain from Theorem 8.2(iii)
that (2 is nontrivial in 7[':1#:(22(53; M), {0}). Hence it follows from Pitts ([32],
Th. 4.6, Cor. 4.7) that L(©2) > 0. From Theorem 8.6 (applied to £ €
Wf(Zg(S3; M), {0})), we get the existence of a stationary integral varifold X
whose support is a smooth embedded minimal surface in S® and such that

(39) 47 < ||D)|(S3) = L(Q) < L(D) < L(S) = L(II) = 4r.

The first inequality follows because the area of any minimal surface in S is at
least 4. The second inequality follows because D € €, and the third inequality
follows because the definition of D implies K(D) C K(S). We note that this
string of inequalities implies that 3 must be a great sphere.

From (39) we also get that D is a critical sequence (since L(Q2) = L(D))
and that C(D) C C(S) (since L(D) = L(Y5)). In particular, every element of
C(D) is a stationary varifold because every varifold in C(S) is stationary. We
know from Theorem 8.6 that the surface ¥ in (39) can be chosen to belong to
C(D); hence,

F(C(D), T)=0.
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On the other hand, according to (34), we have F(C(D),T) > ¢/2. This
gives us a contradiction. [l

9.8. LEMMA. For sufficiently large i, support(OR(i)) C Js and
[OR()] =[0I x {1/2}]  in H3(J5,Z).
In particular, R(i) # 0.

Proof. We obtain from Lemma 9.7 that no 4-cell in b(:) belongs to the
subcomplex I(4, k;) ® ([1]). Therefore c(i) C S(5, k;)4. If

C@i)= Y sen(a)a,
acc(i)

we get that C(i) is a 4-chain in OI* x I. Since, from (33),

OR(i) =0 ( > B [0]) —9C (i),

BEI(4,ki)a
we conclude that OR(i) is a 3-cycle in 9I* x I and
[OR(i)] = [0I* x {0}] = [OI* x {1/2}] in H3(dI* x I, 7).
Since support(9R(i)) C OI* x I, we know from Lemma 7.8 that
leglo sup{F(¢i(z), ®(z)) : x € OR(i)o} = 0.

Combining this with Lemma 9.5 and (31), we obtain that support(OR(i)) C Js
if 4 is sufficiently large. Now we use a deformation retraction of dI* x I onto
Js to get

[OR(i)] = [0I* x {1/2}] in H3(Js,Z). 0

9.9. Third step. We construct a continuous map f; : support(R(7)) — T
that extends P pport(ar(i))- From that we derive a contradiction, using that
|®|.([01* x {1/2}]) # 0 in H3(RP3,Z).

9.10. LEMMA. For all sufficiently large i, there exists a continuous func-
tion
fi : support(R(7)) — T
such that fi\support(@R(i)) = q>|support(8R(i))'

Proof. Throughout the proof of this lemma, D, (p) denotes a ball centered
at p of radius r in RP? with respect to the standard metric. Unless otherwise
stated, geometric quantities in RP? such as convexity, diameter, or distances,
are computed with respect to the standard metric.

Let n > 0 be chosen so that every ball of radius 117 in RP? is geodesically
convex. The topology induced by the F-metric on 7 ~ RP? coincides with the
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topology induced by the geodesic distance of RP3. Therefore, by compactness,
we can find ¢y > 0 so that

n

(40) p,q € T satisfy F(p,q) < e = dist(p, q) < g
0

At this point we can choose ¢y = 2(’)700.

Let ¢ be sufficiently large such that Lemmas 9.5, 9.7, and 9.8 apply, and
we have
(a) £(¢:) < eo.
(b) For every x € S(5, k;)o, we have F(¢;(x), (x)) < g (using Lemma 7.8).
(c) For every a € Ip(5, ki),

sup{F(®(z),®(y)) : 2,y € N J5} < e0.

This combined with (40) gives

sup{dist(®(z), B(y)) : 2,y € a N J5} < g

Define f : R(i)o — T as follows: if 2 € dR(i)y, we make f0(z) = &(z);
otherwise we choose f2(x) € T such that

F(f)(x),6:(2)]) = F(|¢i(2)], T).

We now prove that

(41) diam(f7(a0)) <

for every o € R(i)4. From (40), it suffices to show that

F(f)(x), f2(y) <

20(]

for every a € R(i)4 and z,y € «p. To that end, consider @ € R(i)4 and
x,y € ap. In particular, we have d(z,y) < 4. If both x,y € OR(i)o, then the
inequality above follows from property (c). If only one of the vertices, say z,
belongs to AR(i) then, using the definition of &, (30), Lemma 9.5, Lemma 9.8,
properties (a) and (b), we have that

F(f(2), £ (y)) F(®(2), |@()]) + F(|2 ()], [ ()
<o+ F(|®(2)], £ (1))
<eo+F(|2(2)],16i(2)]) + F(lgi(2)], 7 (1)

<2e0 + F(|gi(z)|, |¢s(w)]) + F(|oi(m)l, [7 ()
<6eo + F(|oi(y)], T)

n
<Tegg < —
=0 2¢co
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Finally, if z,y ¢ OR(i)o, then we have from Lemma 9.5 and property (a) that

F(f)(x), £ (y))
< F(f(@),10:(@)]) + F(|i(x)], 9:()]) + F(loi(w)], £ (y))
= F([0i(2)], T) + F(lgi()], |9 (v)]) + F(li(y)], T)

< bgg < i
200

We now proceed to the iterative construction of f;. We cover RP? with a
finite union of balls { D, /Q(pk)}szl, where each D11, (pg) is geodesically convex.

We denote by R(i)\7) (9R(7)1)) the union of the supports of all g-cells & € R(i),
(v € OR(i)q) with ¢ < j. The map

ROV =T
is called a continuous j-extension of f if
(1) f7 = % on R(i)o, and f/ = & on OR(i)Y);
(2) for every a € R(7);, with j > 1, we have
diam(f/(a) < (27— 24+ 272,

Assuming the existence of a continuous j-extension ff of f2, 5 < 3, we
will construct a continuous (j + 1)-extension f} toof fP. Let a € R(i)j41. If
a € AR(i)j41, we set f/T

77" = @ on a. In this case it follows from property (c)

that property (2) holds for a. We note that, since fzj =& on support(da),
we have f/™' = f7 on support(da). If o ¢ AR(i);41, we know from (41) and
property (1) that

fij(Oéo) C By(pr) forsome k=1,...,N.

By applying property (2) to the j-faces of «, we obtain from the inclusion
above that

17 (support(da)) C B(Qj_1+2j—2)n(pk).
We can now use the convexity of Bii,(pg) to construct a continuous map
j+1
fi7 : support(ar) — B2 _142i-2)y (k)
such that flj +— fzj on support(da). Furthermore, we have
diam(f7 T () <227 — 142072y = (2T — 24+ 277 ).

It follows that flj *1is a continuous and well-defined (4 + 1)-extension of f2.

Arguing inductively, we construct a 4-extension f# of f°. The map f; =
f+ : support(R(i)) — T is continuous and satisfies f; = ® on support(OR(3)).
O
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We now finish the argument. The map f; : support(R(i)) — 7 ~ RP?
constructed in Lemma 9.10 induces a homomorphism in homology
fix : Hu(support(R(i)), Z) — H.(RP3, 7).
Since f; = ® on support(dR(i)), we have

O, [0R(i)] = fi.[0R(i)] = [fixO(R(i))] = [0fi4(R())] = 0.
But Lemma 9.8 implies that
D, [OR(1)] = DL [0I* x {1/2}] = |®|.([0I* x {1/2}]) € H3(RP?,Z).

This is a contradiction since we have assumed from the beginning that |®|.([014
x {1/2}]) # 0 in H3(RP3,7Z).

10. Proof of Theorem B
Let

Fi1=1{S c S%: 8 is an embedded closed minimal surface of
genus g(S) > 1}.

The Jacobi operator of ¥ is given by L = A + |A|? + 2, where A denotes the
second fundamental form of 3. The index of ¥, denoted by index (), is defined
to be the number of negative eigenvalues of L.

Theorem B follows from the next theorem.

10.1. THEOREM. We have

2% = inf area(S)
SeFi1

and, for every ¥ € Fy, area(X) = 2r2 if and only if ¥ is the Clifford torus up
to isometries of S>.

Proof. From Theorem A.1, choose . € F; such that

area(X) = Sin]f_ area(S) < 272
S|

Consider the min-max family ® (see Definition 6.1) and the homotopy class I
(see Definition 8.3) associated with ¥. Theorem 6.3(vi), (vii), and (viii) imply
that hypotheses (A4s), (Ag), and (A7) are satisfied. Thus we can apply Corol-
lary 9.2 and conclude the existence of S € F; so that, from Theorem 6.3(iii),
we have

area(S) = L(IT) < sup{M(®(z)) : 2 € I°} < W(X) = area(X).

Thus L(IT) = area(X).

We want to show that index(X) < 5 because, by a theorem of Urbano [45],
that implies ¥ must be the Clifford torus up to isometries of S. Before we do
so, we need to establish a nondegeneracy lemma for the Jacobi operator on 3.
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Let {e1,e2,e3,e4} be the standard orthonormal basis of R*. For z € %,
define 9;(z) = (N(x),e;) for each 1 < ¢ < 4, and 95(x) = 1. Denote by E
the subspace of C°°(X) spanned by {t;}1<j<5. Notice that Li; = 21); for
1 <1 <4 (see [45]).

Recall the definitions of F,, in Section 3.1 and N, in Remark 3.3(1). Choose
d > 0 such that the map

P:Bj(0) x (—6,8) x £ = 8%, P p(x) = (cost)Fy(z) + (sint)Ny(z)

has ¥, ) = Py 1)(2), where {3, ;)} is the canonical family defined in Defini-
tion 3.2, and such that P, ;) is an embedding of ¥ into 53,
If1<i<4, xe€X, we have

< d P<sei,o><x>,zv<x>> — a{er, N(2)) = ~2s(a)

%\3:0

and so

d2
42 Prge. 0)(2 :—4/ i L dX.
( ) (d8)2|80area< ( 1,0)( )) Z¢ 1/}
Similarly,

d?
43 — P o (2 :—/ Lips dX.
(43) (ds)gsoarea( (0,5)( )) Z1ﬁ5 s

10.2. LEMMA.

—/¢L¢d2<0 for every ¢ € E '\ {0}.
b

Proof. Let
f(v,t) = area(S(, ) = area(P (%)),  (v,t) € B5(0) x (=6, 6).

Since ¥ is minimal, we have f(0,0) =W(X) and D f(0,0) = 0. We also know,
from Theorem 3.4, that f(v,t) < f(0,0) for every (v,t) € B3(0) x (—4,0).
Hence D?£(0,0) < 0, and this means that

—/ Yl dy <0 for every ¢ € E.
2
Suppose the lemma is not true. We can find ¢ € E'\ {0} such that
—/ oLy dy = —/ YLpdY =0 for every ¢ € E.
P P

Hence

(44) /qﬂ[)idE:O for every 1 <i <4, and /L(JSdZ‘:O.
% %
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This implies, since ¥5 = 1 € E, the existence of ¢ € R such that

4
1=cp+1, where o= Zaﬂ/}i.

i=1

Hence, because v is an eigenfunction of L, we have

/Z(]A|2+2)d2:/ZL(l)dE:/Z(cL¢+L¢)dE:2/E¢dE.

On the other hand, we also have 1 = c¢?¢? + 2cotp + )%, If we integrate
over ¥, we obtain from (44) that

area(X) :/2(02¢2+2c¢1/)—|—w2)d2
2 — — =
>/Z¢ dE—/Zw(l ch) dS /Ede.

Hence
2area(X) < / (JA]? +2)dx = 2/ P d¥ < 2area(X).
b by

This implies A = 0, and so X is a great sphere. This contradicts our assumption
that > € Fi. O

Suppose, by contradiction, that index(X¥) > 6. The idea is to construct a
comparison map
C' B x [-m, 7] = 25(S?)
that coincides with C, the map given by Theorem 5.1, outside a neighborhood
of the origin. Using this map we will conclude that

area(X,,) = area(¥) for some w € B*\ {0}.

Finally, we show that this identity implies X is totally geodesic, which gives us
the desired contradiction.
Because index(X) > 6, there exists ¢ € C*°(X) such that

e — [pLpdY <0,
o — [wLipd>X =0for1<i<H5.
Let X be any vector field such that X = ¢ N along X, and let {I's}s>0 be the

1-parameter group of diffeomorphisms generated by X.
Define f : B$(0) x (—6,68) x (—4,5) — R by

f(v,t,s) =area(I's o P(M)(E)).

We have f(0,0,0) = area(X), and D f(0,0,0) = 0 since X is minimal. It follows
from the choice of ¢, (42), (43), and Lemma 10.2 that D?f£(0,0,0) < 0. This
means that there exists 0 < 47 < § such that

(45) area(I's o P, 4 (X)) < £(0,0,0) = area(X)
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for every (v,t,s) € (B, (0) x (=01,01) x (=61,61)) \ {(0,0,0)}.
Let 8 : RS — R be a smooth function such that 0 < B(y) < /2 for
y € RS, B(y) = 0if |y| > §1/2 and B(y) = 61/2 if |y| < 61/4. We then define
C'(0,8) = [Ca(uy ® Py (D) € Z2(5) for |(0.6)] < b1

We have that C'(v,t) = C(v,t) if 61/2 < |(v,t)] < 01, where C is the map
given by Theorem 5.1, and this means we can extend C’ to a continuous map
in the flat topology
' B* x [—m, 7] = 2Z5(S5%)

by defining C’(v,t) = C(v,t) if |(v,t)| > d1. Note that from (45), we have
(46) sup{M(C’(v,t)) : |(v,t)] < 61} < area(X)
and so

sup{M(C'(v,t)) : (v,t) € B x [—7,m]} < area(X).
We use the map C’ to show:

10.3. LEMMA. There is w € B*\ {0} so that area(%,,) = area(X).

Proof. If we replace C' by C’ in Definition 6.1, we get a continuous map
in the flat topology ® : I® — Z5(S3) that, according to Theorem 6.3, satisfies
hypotheses (Ag)—(A7), and thus Theorem 9.1 can be applied.

Consider the (5, M)-homotopy sequence S = {¢;}ien of mappings into
(Z2(S3;, M), <I>" 13) given by Theorem 8.2, and denote by II' the corresponding
(5, M)-homotopy class. From Corollary 9.2 we get the existence of a smooth
embedded minimal surface ¥’ with genus g > 1 such that

47 < area(Y) = L(IT).
Thus
area(X) < area(Y') = L(IT') < L(S) < sup{M(®'(z)) : z € I’} < area(%).

This implies that S is a critical sequence and hence, according to Theorem 8.6,
we can choose X' € C(S5).

After passing to a subsequence, pick z; € dmn(¢;) so that |¢;(z;)| con-
verges to Y in the sense of varifolds. It follows from Theorem 8.2(i) that, for
some sequence {l; };cn tending to infinity, we have

area(X) = lim M(¢y(r:)
< leglo sup{M(®'(y)) : « € 1(5,1;)5, i,y € a} < area(X).
Thus from Theorem 8.2(ii) we obtain the existence of a sequence {y; }sen in I°
such that
(47)  lim F(®'(y;), ¢i(ws)) =0 and  lim M(®'(y;)) = W(E) = area(%).

11— 00
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From the definition of ® we have ®(y;) = C’(v;,t;) for some sequence
(vi, t;) € B'x [—7, 7] and we can extract a subsequence {(v;, t;) };en converging
to (v,t) € B* x [—m, 7).

Moreover, (46) implies that C(v;,t;) = C'(vi, t;) and |(vi, t;)] > 61/2 for
all ¢ sufficiently large.

10.4. LEMMA. w = T(v) € B*.

Proof. Suppose T'(v) € S3,i.e., v € S3UQ.. Theorem 5.1 implies the exis-
tence of a geodesic sphere S such that, after passing to a further subsequence,
we have

lim F(®'(y;),S) = lim F(C'(vi,t;),8) = lim F(C(v;,t;),S) = 0.

1—00 1—00 i—00

If F(S) = area(S) = 0, from Proposition 5.3 we obtain the existence of ¢ € S3
such that for every r, we have

S(T(wi)ts) € Br(q) for all i sufficiently large.

Thus, Theorem 3.9 gives us that M(C(v;,t;)) tends to zero. This is a contra-
diction, and hence F(S) > 0.
Combining with (47), we obtained two subsequences {z;}ien, {vi}ien in
I° and a geodesic sphere S with F(S) > 0 such that
lim F(&'(y;), ) =0,  lim F(®'(y3), i(w:)) =0,

1—00
and

,lim F(]¢Z(xz)|, E/) =0.

1—00
Lower semicontinuity of mass implies that SL(S*\¥') = 0 and so S C ¥'. This
is a contradiction because S is a geodesic sphere and ¥’ has genus g > 1. 0O

From Lemma 10.4 we have w = T(v) € B* Recall that M(C(v;,t;))
= M(C'(vi, t;)) tends to area(X), and so we obtain from Theorem 3.4 that
either t = 0 or |t| = 7, because otherwise ¥ would be totally geodesic.

We argue that [t = 7 does not occur. Choose p € Xp(,). Theorem 3.9
tells us that there exist » > 0 and ¢’ > 0 such that

(48) area(X(, 5 N Br(—p)) <0 < W(E)

for every (u,s) € BY x [—m, 7).
For all i sufficiently large, we have

71'*’1“/2 < |tl| <7 and dH(ZT(vi)aET(v)) < T/2,
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where dy denotes the Hausdorfl distance. Hence

(X)) P) = AB (T (i) ,t)> 2T(w))
> d(E(1 (i) t) 2T(0:)) — CH(ET(0), 27(0))
= |ti| = du(Er@,), 1)) =7 — 7

Thus X7 (y,),t;) C Br(—p) and (48) contradicts the fact that M(C'(v;, t;)) tends
to W(X).

Therefore ¢ = 0 and so, recalling that |(v;,t;)| > 61/2 for all i sufficiently
large, we have v # 0, which means that

area(X,,) = area(¥), w=T(v)e B*\{0}. O

Using Lemma 10.3 we now claim that > must be totally geodesic. From
formula (1.12) of [29], by substituting g = %, we have that

(w0, N (@) o,

area(X,,) = area(X) — 4/2 P—T

Thus Lemma 10.3 implies that (w, N(x)) = 0 for every z € X.

On the other hand, let h : S® — R be given by h(x) = (z,w). Because
(w,N(z)) = 0 for every € X, the conformal vector field V(z) = Vh(z) of
S3 satisfies V(z) € T,X for all z € ¥. This means ¥ is invariant by the flow
generated by V, but this is only possible if 3 is totally geodesic.

This is impossible because ¥ € F; and thus index(X) < 5. Hence we
obtain from [45] that X is the Clifford torus up to ambient isometries. O

11. Proof of Theorem A

Let ¥ C S2 be an embedded closed surface of genus g > 1. We can assume
W(XE) < 8.

Consider the min-max family ® (see Definition 6.1) and the homotopy
class II (see Definition 8.3) associated with 3. We have from Theorem 6.3 that
all conditions required in Section 9 are met, and so we can apply Corollary 9.2
to conclude the existence of a minimal surface ¥’ with genus g > 1 so that,
from Theorem 6.3(iii), we have

area(Y') = L(II) < sup{M(®(z)) : z € I’} < W(Z).

From Theorem B we have area(X) >272, so we have proved that W(X) > 272,
Suppose now W(X) = 272
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11.1. LEMMA. There is w € B* so that area(X,) = W(X) = 2r2.

Proof. Consider the map C' given by Theorem 5.1 and the (5, M)-homo-
topy sequence S = {¢;}ien € II of mappings into (Z(S%; M), <I>|]g) given by
Theorem 8.2. Thus, from Theorem B,

21? < area(X') = L(II)
< L(S) < sup{M(®(x)) : 2 € I’} < W(X) = 272
This implies that S is a critical sequence and hence, according to Theorem 8.6,
we can choose ¥’ € C(S5).
After passing to a subsequence, pick z; € dmn(¢;) so that |¢;(z;)| con-

verges to ¥ in the sense of varifolds. It follows from Theorem 8.2(i) that, for
some sequence {l;};cn tending to infinity, we have

area(Y) = lim M(gi(z;))
< zli{go sup{M(CI)(y)) tae 1(57 li)5a Ti,Y € Oé} < W(E)

Thus we obtain from Theorem 8.2(ii) the existence of a sequence {y; };en in I°
such that

lim F(®(y), () =0 and  lim M(®(yy) = W(E).

From the definition of ® we have ®(y;) = C(v;,t;) for some sequence (v;,t;) €
74 .

B x [—m,m] and we can extract a subsequence {(v;,t;)}ieny converging to
(v,t) € B' x [-m, 7.

11.2. LEMMA. w = T(v) € B4

Proof. If v € S3 U Q. we argue like in Lemma 10.4, and obtain two sub-
sequences {z;}ien, {¥itien in I° and a geodesic sphere S with F(S) > 0 such
that

11— 00 1— 00

and
lim F(|¢;(z)],2') = 0.
71— 00

Lower semicontinuity of mass implies that SL(S3\¥/) = 0 and so S C ¥'. This
is a contradiction because S is a geodesic sphere and ¥’ has genus g > 1. 0O

Because M(C'(v;,t;)) tends to W(X), we combine the above lemma with
Theorem 3.4 to conclude that either ¢ = 0 or |¢| = w. The same arguments as
in Lemma 10.3 show that |t| = 7 does not occur.

Thus t = 0, which means that

area(¥,) = W(X) = 2r°. O
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Lemma 11.1 at once implies Theorem A because in that case ¥, must be
a minimal surface with genus g > 1 and area 272 and thus, by Theorem B, the
Clifford torus up to ambient isometries. As a result, X is the Clifford torus up
to conformal transformations.

Part II. Technical work

12. No area concentration
The goal of this section is to prove Theorem 3.9.

Theorem 3.9. For every 6 > 0, there exists v > 0 such that
area(X(, 4 N Br(q)) <0 for every q € S3 and (v,t) € B x [—-7, 7).

The strategy for the proof is the following. From Remark 3.3 we know that
Y(v,¢) 18 contained in the immersed surface

Pty =Y o Fy: E— 52,

where

(49) (v,t)(7) = (cost) Fy(x) + (sint) W
= (cos — o) — v
_ (cost) (<1 i )

+ (sint) (N(:v) +2(N(x), U>H> :

|z —vf?

It suffices to show that P(w)(E) has no area concentration, meaning that
area( P, (2) N By (g)) is small if r is small. The Jacobian of P, ;) is uniformly
bounded outside a tubular neighborhood of ¥ and so we need to analyze what
happens when v approaches p € . We will do that by dividing ¥ in three
regions: a tiny disc D around p, where P, (D) tends to a geodesic sphere and
so there is no area concentration, a small annular region N, where P, ;)(N) is
forming a neck with area smaller than § and so there is no area concentration,
and the remaining region ¥\ (DUN), where the Jacobian of P, ;) is uniformly
bounded and so there is no area concentration.
Theorem 3.9 is proven at the end of this section.

12.1. Preliminary results. We derive three auxiliary results. Recall the
definition of A in Section 3.1.
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12.2. LEMMA. There ezists a constant C > 0 such that if v = A(p,s) €
B* with |s| < C71, then

|s|
DP, < 1
| (v,t)‘(x) = C ( + ‘S|2 + |.’E _p|2 )
1
D?P, <O(14 —5———
| (v,t)|(1")—c( + |S|2+|l’—p|2)

for allp,x € 3.

Proof. For v € B*, consider
x—v

hy: X = RY hy(z) = ———.
— () o

We claim the existence of C; > 0 such that if v = A(p, s) € B* with |s| < C] !,
then

C
(50)  |D*hy|(z) < e

(Is]* + |z —p[?) 2
There is Co > 0 so that, for all z,p € X,

forall p,xr € ¥, k=0,1,2.

_ _ |z —pP 2
(51) 1—(z,p) = 5 and  [(z, N(p))| < Colz — p|".

Therefore, recalling
A(p,s) = (1 — s1)(cos(s2)p + sin(s2) N (p)),
we obtain
|z —v]?=1-2(z,v) + |v|?
=1—2(z, (1 — s1)(cos(s2) p+ sin(s2) N(p))) + (1 — s1)>
=1—2cos so(x,p) — 2sin sa{x, N(p)) + 251 cos s2(x, p)
4 251 sin so(z, N(p)) + 1 — 251 + 57
= (1= 51)(2 = 2(z,p)) + 51 + 55+ O(s185 + 55 + |sal[o — p|?).
Thus, from (51) we see that we can find C3 > 0 such that
(52 o= o > Lz —p +IsP) i Is| < O3
Direct computation shows that
|D*hy|(z) = O (Jo — o[ *FD)  for k=0,1,2,

and thus the claim follows from (52).
From (51), we have for |s| < C5!

(53) [(N(2),v)| = (1 — s1)[ cos s2 (N (), p) + sin sz (N(z), N(p))|
< Co(sy + |z —pl?).
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Using the fact that (DN|,(Z),z) = 0 for all Z € T,.%, we have
[(DN|3(2),v)| = (DNg(2),v — x)| = O(|Z||z — v])
for all x € ¥ and Z € T,;3. Finally, we have
(54) 1—|v]? =251 — 57 = O(s1).
Since
Py gy (@) = (cost) (1= [v]*)hy(z) =)
+ (sint) (N(z) + 2(N(x),v)hy(2)),
we use (50), (53), and (54), to conclude the existence of C' > 0 such that if
|s|] <1/C, then
sl

DP, <of1+ "

rue) <€ (14
and

|D?*Py, pl(z) < C (1 - O

_
8|2+ |z —p|? )
Let B, : T,X — X C 53 be the exponential map of ¥ at p. We denote by
D, (0) C T,X the disk of radius r, centered at the origin, and by D, (p) C X the
geodesic disk of radius r, centered at p, with respect to the induced metric.

12.3. LEMMA. For every 6 > 0, there exist L > 0 and o > 0 such that
the following holds: if v = A(p, (s, ks)) and (1 + k?)s> < a, then

/ Tac(Py o By)| dw < 6.
Da(O\D, /s (0)
Proof. Tt follows from Lemma 12.2 that
/ |Jac(P(v7t) o E,)ldw
Da(O\D, s (0)
(s, ks)| >2
<C 1+ dw
RN 2.0 ( (s, ks)[> + [ Ep(w) — pf?
2
302a2+02/ < (2, o) 2) duw
R2\D, o (0) \|(s,ks)|* + |w]|

for some constants C1,Cy > 0 depending only on X.
After the change of variables w = m, we obtain

2 2
1
/ ( (5. ks) 2) o — (2> di< ™.
RAD, sz (0) \ (5, ks)[* + |w] R2\Dp(0) \ 1 +[@] L

Hence, if a > 0 is sufficiently small and L > 0 is sufficiently large, we have

/ |Jac(P(v7t) (¢] Ep)| S (5 O
Da(0)\D,

1+k25(0)
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For every x € S3, denote by 7, : S\ {z} — {z}* the stereographic
projection centered at x:
1
T2(p) =2 + m(ﬁ — ).
The inverse of m, is given by
2

-1
T, (w)
12.4. LEMMA. Let (vn,t,) € B* x [—7, 7] with v, tending to v = p € .
After passing to a subsequence, write

U = N(pn, (Sn, knspn))  with Jim K, =k € [—00, +00],

and set

fa(w) = Py, 1) © Ep, (V1 + kZspw).

Then fr, converges uniformly in CL . to

7T71w —
f(w):(cost—i—ksint)( T ( )

m) — (costp —sint N(p)),

where x = _\/111# p+ \/1ik2N(p) € S3.
12.5. Remark.
(1) With z = —\/111# p+ Vlin(p), we have
a(w) —x 1
L p=a_(V1+k?w - kN for all w € T,X.
/1 + ]{2 p p ( (p)> P
Thus, as expected when ¢t = 0,
o, (TY) — —
f(TpX) = N p= 0B (Qp )

(2) For the definition of f,, to make sense we choose sequences of orthonormal
sets {el,e2} C T,, % such that e}, — €' € T,,%, i = 1,2. Then we identify
w = (w1, wsz) € R? with wyel, + wqe? € T,, X for each n.

Proof. Note that both s,, and k,s, must tend to zero. We have
(55) U = (1 = sp,)(cos (knsn)ppn + sin (ky$n) N (pn))
= Pn — SnPn + annN(pn) + O((l + ]{Z)Si)

E, (W1+k2s,w) =p, +/1+k2spw+ O((1+ k%)si|w|2)

and

Hence

E,,(V1+ k2sp,w) — vy, = /1 + kZs,w + sppn — knsp N (pn)
+O((1+ kp)sn(1+ |w]?))
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and, using the fact that {w, p,, N(p,)} is a orthogonal set of vectors,

B, (V1 + K2snw) — val* = (1+ k2)s2 (1 + |w]) (1 + O(y/1 + k2sn)).
Therefore
(56) Ep,(\/1+ k2spw) — vy,
|Ep, (\/1+ kZspw) — vy]?
_ 1+ E2w + pp — kN (py) Loq).
(1+ k2)s(1 + [w]2) (1 + O(\/1 + k2sy,))
Combining 1 — |v,|* = 2s,, — s2 with (56), we obtain

(57) nh_{{)lo Fy, 0 Ep, (/14 kZsnw)
2 EN
_ ( w_ P (p)> _p

QI+ |w) \Vitkz 1+k2 1+4k2
o t(w) —x
V1+ k2 P

where x = _\/1irk2 P+ \/likQN(p).
From the fact that (N (z) — N(pn), N(pn)) = O(|7 — pn|?), we obtain from
(51) and (55) that

(N (@), 0n) = knsn(N(2), N(pn)) + O|z = pal® + (1 + k3)s7)
= knsn + knsn(N(z) — N(pn), N(pn)) + O(|z — pn’2 +(1+ k%)si)
= knsn + Oz — pal* + (1 + k3)s7).
Thus
(N o E,, (\/1+k2s,w),vn) = knsn +O((1 + k2)s2(1 + |w]?)),
which when combined with (56) implies

Epu (/15 Bsa) = v
(58) lim 2<N0Epn(m,snw),vn> p"(\/is w) — v
n—co |E n(msnw) — vy
i V14 k2w + pp = kN (pn)
= lim (| 2k,s,
(14 kZ)sn (1 + [w]?)
ArwP) \VITR  1+k2  1+k2
Kz (w) )
itk

where z = _\/1}%2 p+ \/lljrk2N(p).
From (49), (57), and (58) we obtain that f,, converges to f pointwise

n—oo
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Fix K > 0. It follows from Lemma 12.2 that for every w € Dg(0),

|(3mkn5n)|
Df,(w)|<Cy\/1+Ek2s, [ 1+ <C
| ) ! ( | (8 knsn)‘2 + |E n(\/ 1+ k?zsnw) — pnl?

and

1
D2 f(w)| <C(1+k2)s2 | 1+ <c
(s P+ By, (/15 Rsaw) — pal?

Since we already know that f,, converges to f pointwise, the estimates above
give C'! convergence on compact subsets. (]

12.6. Proof of Theorem 3.9. It suffices to show that for every § > 0 and
q € 53, we can find r = r(q,d) so that

area(X(, ) N Br(q)) <90

because, via a standard finite covering argument, we can then find r indepen-
dent of gq.

Suppose this statement is false. There exist ¢ € 52, § > 0, and a sequence
(Vn, tn) € B* x [—7, 7] such that

area(X(y, +,) N Bi/n(q)) =6

for every n € N. By passing to a subsequence, we can assume (v, t,,) converges
o (v,t) € B x [—7, 7).
In what follows, we repeatedly use the fact that, from the area formula,

area(X(, ) N Br(q)) < /71 |Jac P, 4| d¥ for all 7 > 0.
P(mt)(Br'(Q))

If v € B, then P, t,) converges uniformly to P,y in the C*° topology
and so we can find r > 0 such that, for all n sufficiently large,

0
]Jac P(Unatn)| dx S 5

P! (Br(9))

(vn,tn)

This gives us a contradiction.

If v € S\ X, we see from (49) that again P, ; y converges uniformly,
in the C* topology, to some P; : ¥ — S3. The proof proceeds as in the case
v € B

Finally we have to consider the case v = p € Y. After passing to a
subsequence, we can write

Un = A(pn, (Sn, knsn))  with nh_)rgo kn =k € [—00, +00].
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According to Lemma 12.3, we can choose L > 0 and o > 0 so that

(59) / [Jac(Ply, 0,y © By, dw <
Da(ON\D | ros (0)

if n is sufficiently large.

[ sY)

Using Lemma 12.2, we extract a subsequence P, ;) that converges, ct
uniformly, on X\ D, /4(p) to some C' map P, : Y\ Dqoja(p) = S3. There exists

r1 > 0 such that
)
/ |[Jac Po|dY < —
P; (B2, (0)) 12

and so, if n is sufficiently large, we have

(60) / |Jac Py, 1) dX <
P(; tn )(B?“l(Q))\Da/Q(p)

03\04

Consider f, : Da(0) = S? given by fn(w) = Py, 1) © Ep, (/1 + k2spw). The
sequence f,, converges in the C'! topology to f given by Lemma 12.4, and hence
we can find ro > 0 such that

)
|Jac f|dw < —

/flu% (@))ND2.(0) 12°

Therefore, if n is sufficiently large, we have

5
(61) / _ |Jac fp]dw < =
f (Bry ()DL (0) 6
If r = min{ry, r2}, we have the decomposition
/ \Jac P(Unytn)’ dE
(Zn n)(Br(Q))
:/_ |Jac Py, ¢,y d%

P(Un tn ) ﬁD /1+k2 (pn

+/_

|JaCP(vn,tn)|dZ
L Br@)N(Data\D, mgﬂ(pm)

\Jac P(Un,tn)| dE
P(; ot )( #(@))\Da(pn)

g/ _ |Jac fu| dw
fo ' (Bry(2))ND L (0)

+ 98¢ (Pluy ) © Bpy)| du
Da(O)\DL\/H-?Sn (0)

|Jac Py, +,)] dX.
Pt (Bry(@)\Daya(p)
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Using (59), (60), and (61) in the identity above we obtain
o

]Jac P(Un,tn)| dx S =

Pl (Be(@) 2

(vn,

for all n sufficiently large. This is a contradiction.

13. Interpolation results: Continuous to discrete

In this section we prove an interpolation theorem and use it to show
Theorem 8.2.
Assume that we have a continuous map in the flat topology

O 1" — Z9(M)
with the following properties:
o O Iy is continuous in the F-metric,
o L(®) =sup{M(®(z)) : z € I"} < +o0,
e limsup, ,om(®P,r) =0.
13.1. THEOREM. There exist sequences of mappings
gf)i : I(n, kz)O — ZQ(M),
¢i : I(l, kz)() X I(n, kz)() — ZQ(M)

with ki < kip1, ¥i([0],-) = @i, Yi([1], 1) = (Dit1)|1(nk:)0» and sequences {0;}ien
tending to zero and {l;}ien tending to infinity, such that

(i) For everyy € I(n,k;)o,
M(¢i(y)) < sup{M(®(x)) : a« € I(n,l;)n,x,y € a} + J;.
In particular,
max{M(¢;(z)) : x € I(n,k;)o} < L(P) + d;.
(i) £(i) < 0.

(iil) sup{F(¢i(y,z) — ®(x)) [y € (1, ki)o,x € I(n, ki)o} < b;.
(iv) if x € Ip(n, ki)o and y € I(1, k;)o, then we have

M(i(y, x)) < M(®()) + 4.

Moreover, if oy -1 is continuous in the mass topology, then we can choose
¢; so that
¢i(x) = ®(x) for all x € B(n,k;)o.

For the reader’s convenience we recall Theorem 8.2. Let
c=-(1,...,1,0) € I""' x {0},

and let e, be the coordinate vector corresponding to the x,-axis.
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We recall the following hypotheses for the continuous map in the flat
topology ® : I"™ — Z9(M). Set ¢ = %(1, ...,1,0) € 1"t x {0}.
(Ag) @7 is continuous in the F-metric.
) @I x {0}) =d(I" "t x {1}) = 0.
) L(®) = sup{M(®(x)) : x € I"} < 4o0.
3) lim,_,om(®,7) = 0.
Ay) The map t — ®(c + tx,), 0 < t < 1, defines a nontrivial class in
m1(Z2(M; F),{0}).
Then

(A1) @
(As) L
(A
(

THEOREM 8.2. Assume ® satisfies hypotheses (Ag)—(Ay4). There exists
an (n, M)-homotopy sequence of mappings into (Z2(M; M), (I)\ISL)
with the following properties:

(i) There is a sequence {l;};en tending to infinity such that for every se-
quence x; € 1(n, k;)o, we have

lim sup M(¢;(z;)) < limsup{M(®(z)) : o € I(n, i), z, z; € a}.
1—00 i—00
In particular,

L({¢}ien) < sup{M(®(x)) : z € I"}.

(ii) limj—eo sup{]-"(q;i(x) —®(z)) |z € I(n,ki)o} =0.
(iii) The sequence of mappings

v I(1, k)0 — Z2(M; M), vi(x) = ¢ic + zey),

is a (1, M)-homotopy sequence of mappings into (Z2(M; M), {0}) that
belongs to a nontrivial element of W#(ZQ(M; M), {0}).

Proof. Let ¢;, 1;, §; be given by Theorem 13.1. It follows from property
(iv) of Theorem 13.1 and (A;) that

(62) M(i(y, x)) < 6
for all y € I(1,k;)p and = € T'(n, k;)o U B(n, ki)o.

Define 9); : I(1, k;)o x I(n, k;)o = Zo(M) by ¢i(y,z) = 0if 2 € T(n, k;)oU
B(n, ki) and 9;(y, ) = ;(y,x) otherwise. Also define ¢;(z) = ;([0], z)
for 2 € I(n,k;)o. Note that f(;) < 20; by (62) and Theorem 13.1 part
(ii). Tt follows that {¢;}ien is an (n, M)-homotopy sequence of mappings into
(Z22(M;M), @|jn). Theorem 13.1(i) and (iii) imply Theorem 8.2(i) and (ii),
respectively.
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It remains to prove property (iii) of Theorem 8.2. Consider the auxiliary
sequence

i I(1,ki)o = Z2(M), ~i(z) = ®(c+ zey)
and the continuous map in the flat topology
v:10,1] = Z2(M), ~(x) = P(c+ xey).

Because ® is continuous in the flat topology, we have that

(63) lim  sup {F(vi(x) = 7i(y)) : 2,y € o} = 0.

10 e I(1,ki)1
From that we get that ¥ = {7;}ien is a (1, F)-homotopy sequence of mappings
into (Z2(M; F),{0}). Furthermore, it follows from Theorem 13.1(ii) that

sup{F(¢i(z) — ®(x)) : z € I(n, ki)o} < 26;.

This implies that v = {v; };eny and ¥ = {7; }ien are in the same (1, F)-homotopy
class of mappings into (Z2(M;F),{0}):

0] = [y] € 7} (Z2(M; F), {0}).

Since 77 (Zo(M; M), {0}), 7 (Z5(M; F), {0}), and 71 (Z5(M; F), {0}) are all
naturally isomorphic by [32, Th. 4.6], we get that [v] is nontrivial in

7} (Z22(M; M), {0})

if and only if [§] is nontrivial in 77 (Z5(M; F), {0}), which occurs if and only
if [y] is nontrivial in m(Z22(M;F),{0}). The latter condition is assured by
hypothesis (Ay). O

The remainder of this section is devoted to the proof of Theorem 13.1.

13.2. Technical Results. We prove two technical results that will be used
in the proof of Theorem 13.1. The first proposition is an extension result. It
states that if 7" € Z5(M) and I,m € N are fixed, then we can find k € N,
k > 1, such that any map ¢ that sends Iy(m, ()¢ into a small neighborhood of
T (with respect to the flat metric) can be extended to I(m,k)o in a way that
the fineness of the extension ¢ and the maximum value of M(¢) are not much
bigger than the fineness of ¢ and the maximum value of M(¢), respectively.
The issue of controlling the fineness of d~> is nontrivial because a priori we only
know that ¢(Ip(m,l)o) is close to T in the flat metric, which is weaker than
the mass norm. A similar problem was addressed by Pitts in [32, Lemma 3.7].
The fact, proven in Section 12, that there is no mass concentration will be used
in the proof (although we think it might not be necessary).

Let a(n) = 274 +2°=2 where n € N is fixed.
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13.3. PROPOSITION. Let I,m € N, with m < n+ 1, and let §,r,L be
positive real numbers. Fix

T € Z9(M)N{S:M(S) <2L}.
There erxist 0 < ¢ = e(I,m,T,d,r,L) < 6 and k = k(l,m,T,0,r,L) € N for
which the following holds: Given 0 < s < € and
¢ : Io(m,l)o — BI (T)N{S: M(S) < 2L}
with m(¢,r) < 0/4, there exists

¢ : 1(m, k)o — B (T)

with
(i) £(¢) <6 if m =1, and £(§) < m(£(¢) +6) if m # 1;
(i) ¢ = ¢ on(k,1) on Io(m, k)o;

(i) sup {M(d(2))} < sup {M(é(x))} +

zel(m,k)o z€lg(m,l)o n+1 ’
(iv) m(¢,r) < 2(m(¢,7) + a(n)d).

Proof. We assume m > 1 (the case m = 1 is easier) and argue by contra-
diction. In this case we can find

ok To(m, 1) — BL (T) N {S: M(S) < 2L}

for each k > mazc{l,é_l}, with e < 1/k and m(¢g,r) < §/4, such that there
is no extension ¢y, of ¢y to I(m,k)g satisfying (i)—(iv).
The next lemma is a straightforward adaptation of [32, Lemma 3.7].

4

13.4. LEMMA. There exists N € N, N > I, such that for a subsequence
{¢;}, we can find
¥j: I(1,N)o x Io(m,1)o — BL (T)
satisfying
(1) £(yj) <5 if m=1 and £(sh;) < £(¢;) +6 if m # 1;
(i) ¥;([0], z) = ¢j(x) and ;([1],2) =T for all x € Io(m, L)o;
(111) SUP{M(%‘(Q, m)) : (yv x) 61(17 N)O X IO(m7 l)O}

1)
< sup {M(¢ij(zx))}+ ——;
xe[o(m,l)o{ (&5 (@)} + =

(iv) m(vj,7) < 2(m(pj,7) + a(n)d).

Proof. Since the set of varifolds in Vo(M) with mass bounded above by 2L
is compact in the weak topology, we can find a subsequence {¢;} of {¢x}ren
and a map

Ve Io(m,l)o — VQ(M)
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so that
lim [¢;(x)| = V(x) as varifolds

Jj—00
for each x € Ip(m,1)o. Note that

lim ¢j(x) =T as currents.
J—o0

Since the mass is lower semicontinuous in the flat topology, and since
m(¢;j,r) < /4, we have

(64) ITI[(Br(p)) < IV (@)|[(Br(p)) < m(ej,r) +a(n)d < g

for all j sufficiently large, p € M, and z € Iy(m,1)o.
We can choose points {p;}}_;, and positive real numbers {r;}}_;, r; <,
so that

Bn‘l (piy) N BriQ (piy) =0 if iy # o
and such that

(65) ITH(Br, (p0) < IV @) (Bro) < 5.

(66) T8, (pi)) = IV (2)|[(Br; (pi)) = 0,

and

(67) V@I UL B ) <

for all x € In(m,l)p and i = 1,...,v. We can assume v = 3V — 1 for some

N € N satisfying N > [.
From [2, Cor. 1.14], we get that there exists Q;(z) € I3(M), for all j
sufficiently large and x € Iy(m,1)p, such that

0Q;(x) = ¢j(x) =T, M(Qj(x)) = F(g;(x) = T).

In particular, we have M(Q;(x)) < &; < 1/j.

For each i = 1,...,v, consider the distance function d;(x) = d(p;,x).
Using [39, Lemma 28.5], we find a decreasing subsequence {7“5 } converging to
r; with rzj < r and such that the slices (Q;(z), d;, rf) are in Io(M) and satisfy

(63)  (Qy(a).dirr]) = O(Qs(w) B,y (pi)) — (&5(x) — T) B, (ps)

for every z € Ip(m,1)o. Note that since lim;_,oo M(Q;(z)) = 0, by the coarea
formula we can choose {r]} such that

(69) > M@ () i) < a(m)s <

welo(mil)o i=1 (n+1)
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for every sufficiently large j. Furthermore, using (65), (66), (67), and the lower
semicontinuity of the mass functional, we get that

(70) los@II(B ) < 5 ITIB o) < 5,
(T1) 1165\ Uy B () < 3, T\ Ufzy By, (p0) < 5.
and
o
(72) (17 - Hﬁbj(x)H)(Bri(pz)) < m

for every sufficiently large j, i = 1,...,v, and = € Iy(m,1)o.
We consider the map given by

b (L)LN} 796') = j(x) — il@(Qj(%‘)LBrg(pa)) if0<i<3V -1,

¢j([1]7x) =T,
defined on I(l,N)O X Io(m,l)o.
Note that

0 ([ax) ) = T = 0@ 1\ Uiy B, (),

from which it follows that ), ([3%\,} ,a;) € ij (T'). From (68), we also have

@) v ([ax] ) = 6@\ UL B ) + émﬁ; (pa)

—Z Qj(x), da, ") B ; i (Pa)-

It follows from (6

9),
M (45 |3

(70), (71), and (73) that

o) = ([ ] 2)

M(¢;(x)oB,s(pi)) + M(TLB ;5 (pi)) <0

Wl >

for1<i<v=3Y—-1and
M (45 ([1 - 5] o#) = T) < M3 @M\ U1 B, ()

+ M(T\_(M \ UZ:lBrﬁ (pa))) + g < 0.
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If d(x,y) = 1, we also have

M (v ([5v] #) — o ([5v] )
< M ((65(2) — 03 ()M \ Uiy By () +
< £(¢;) + 0.

Hence f(1);) < f(¢;) + 9.
To prove Lemma 13.4(iii), we use (69), (72), and (73) to conclude

M (45 ([ o] 2)) < les@lON UGB, ()

: o
# ST 400 + 555
< lls;(@lla)
! 5
+ ST = @B 00) + 55y
< llgs(@lon + .

Finally, Lemma 13.4(iv) follows from (64), (69), and (73):
]
[+ L5 ) =)

In order to finish the proof of Proposition 13.3, we will use Lemma 13.4
to construct an extension ¢; for every sufficiently large j. This will imply a

‘(Br(P)) < lle;(@)[[(B:(p)) + IT1|(Br(p)) + a(n)d
<2m(¢g,r) + 2a(n)d. O

contradiction.
Define

¢j  I(1,N)o x Io(m, N)o — BZ(T)

by

Recall that S(m + 1,N)o = I(1,N)g x Iop(m, N)o. We extend Qf;j to
S(m+1,N)0UT(m+1,N)0

by setting it equal to T on T'(m—+1, N)g. The extension qgj :I(m,j)o — Bg (T)
is defined by
¢j = ¢jorm(N)on(j, N +q),

where r,,(N) and ¢ are as in Appendix C. O
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The next result removes the dependence of € and k£ on the parameters [
and m in Proposition 13.3. Roughly speaking, it says that with T € Zy(M)
fixed we can find k£ € N such that every map ¢ from Ip(m,j)o into a small
neighborhood of T (with respect to the flat metric) can be extended to a map
é from I (m,k + j)o into the same neighborhood of 7" and having the same
properties as the map constructed in Proposition 13.3.

The constant b(n) mentioned below is universal.

13.5. PROPOSITION. Let d,r, L be positive real numbers, and let
T e Zy(M)N{S:M(S) <2L}.
There exist 0 < ¢ = ¢(T,0,m,L) < 6 and k = k(T,6,r,L) € N for which the
following holds: Given 0 < s < e, j,m € N withm <n-+1, and
¢ : Io(m, 7)o — BT (T) N {S: M(S) < 2L — 6}
with
"2 (m(¢p, ) + a(n)d) < /4,
there exists
¢ I(m,j+k)o— BI(T)
with
(i) £(¢) < if m =1 and £(¢) < b(n)(£(¢) +6) if m # 1;
(ii) ¢ =pon(k+j.4) on Io(m, k+ j)o;
(i) sup {M(¢(x))} < sup {M(¢(z))} +5;

zel(m,k+5)o z€lo(m,j)o
(iv) m(¢,r) < 2"*2(m(¢,r) + a(n)d).

Proof. Assume m > 1 (the case m = 1 is easier). Using the notation of
Proposition 13.3, set

kio == 0, k?l = k:((), 1,T, (5, r, L), k‘l = k’(k‘ifl,i,T, 5, r, L),
where i =1,...,n+1, and
e = min{e(k;—1,1, 7,6, r, L) :i=1,...,n+ 1}.

In what follows, we will apply Proposition 13.3 to maps defined on vertices of
a p-cell a € I(m, j),, after identifying o with I” through an affine map.

Let V), be the set of vertices of I(m,j + k,) that belong to the p-skeleton
of I(m, j); i.e., Vp = Uaer(m,j),@(kp)o. We say a map

¢p:Vy, = BI(T)N{S: M(S) < 2L}

is a p-extension of ¢ if the following conditions are met:
(1) ¢p(x) = pon(j + ky, j)(z) for z € I
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(2) If p =1, we require f(¢1) < f(¢) + 0. If p > 1, we ask that there exists
¢p—1, a (p — 1)-extension of ¢, so that

£(¢p) < p(£(Pp-1) + ).

(3) sup (M(g,(2))} < sup  {M(6(x))} + 2.

2€EVp z€Io(m,5)o n+1
(4) m(¢p,7) < 2Pm(¢,r) + 2(2P — 1)a(n)d.

We will now construct a l-extension ¢; of ¢. First fix y € Iy(m, j)o, and
define

do: I(m,j)o — BI(T)N{S: M(S) < 2L — 6}

by ¢o(z) = ¢(z) if & € Io(m, j)o and do(x) = ¢(y) if & Io(m, j)o. By applying
Proposition 13.3 to ¢g in each 1-cell of I(m, 5), we get a map ¢ : Vi — B (T).
Let a« € I(m,j)1. If a is a 1-cell of Iy(m, j), we set ¢1 = pon(j + ki1,7)
on afkr)o. If a ¢ Io(m,j), we set ¢1 = ¢o on a(ki)o. The fact that ¢ is a
1-extension of ¢ follows directly from the construction and Proposition 13.3.

13.6. LEMMA. Given a p-extension ¢, of ¢, we can find a (p+1)-extension

$p+1 of 9.

Proof. By applying Proposition 13.3 to ¢, in a (p + 1)-cell a of I(m, j),
we get a map ¢pq : a(kpr1)o — B (T). If a and @ are adjacent (p 4 1)-cells
of I(m,j), then property (ii) of Proposition 13.3 guarantees that qu@ = qu,a
on a(kpy1)o N@(kpy1)o. Therefore there exists ¢y, : V11 — B (T) such that
bp = bpa on a(kpyy1)o for each o of I(m,j)pr1.

Note that ¢, satisfies
o £(9p) < (p+ 1)(f(ep) +0); .

e sup {M((]Bp(l‘))} < sup {M(¢p(7))} + ——
z€Vpt1 z€Vp n+l

(p+1)5
< xeli?gvj)o{M(sb(w))} T
e m(¢,,7) < 2(m(dp, )+ a(n)d) < 2t m(p, ) + 2(2PH — 1)a(n)d.
Let o € I(m,j)pt1. If ais a (p + 1)-cell of Ip(m,j), we set ¢p11 =

pon(j+kpi1,j) on alkpii)o. I a & Io(m, j)p+1, weset dpiy = ‘Z;p on a(kpt1)o-
The fact that ¢, is a (p+ 1)-extension follows from the construction and the

properties of d;p listed above. ([

It follows by induction that there exists an m-extension ¢, : V, —
B (T) N {S : M(S) < 2L} of ¢. Note that V,, = I(m,j + kmn)o. To fin-

ish the proof of Proposition 13.5, we make k = k,,, and ¢ = ¢,,. O
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13.7. Proof of Theorem 13.1. The idea of the proof is the following. First,
we cover {T : M(T) < 2L(®)} with a finite union of balls {B;}¥; such that
Proposition 13.5 can be applied in each ball. Then we choose j large enough
so that, for every o € I(n,j)n, ®(ap) belongs to some ball B;. Finally, we
use Proposition 13.5 to first construct ¢ along 3¥ subdivisions of 1-cells in
32k subdivisions of 2-cells of I(n, j), and argue inductively
until we have constructed ¢ defined on I(n,j + nk)y. Some care is in order

I(n,7), then along

to make sure that at every step of the inductive construction the hypotheses
of Proposition 13.5 are still satisfied. The procedure is straightforward but
slightly long and tedious.

Choose 9, r small so that

(74) L=L(®)<2L—-2(n+1)6 and m(®,r) < a(n)d.

Compactness of Zo(M)N{T : M(T) < 2L} in the flat topology implies we can
cover this set with a finite number of balls Bg’;(Ti), 1=1,...,N, where

e(T;,0,r, L)
In +4
Here we use the notation of Proposition 13.5. We can assume g1 < --- < gn.
Note that (9n +4)ey < 0. Let k; = k(T;, 0,7, L) denote the constant given by
Proposition 13.5, and let k = max{k;}icq1,.. ny-
Choose j sufficiently large so that for all « € I(n, j), and 8 € Ip(n,j)n-1,
we have

T, € Zo(M)N{T :M(T) <2L} and ¢ =

(75) sup (F((x) - 9(1)} <<
and
(76) Sup, IM(®(2)) — M(®(y))| < 0.

Additionally, if ®|{gyx»-1 is continuous in the mass norm, we also require that
for all v € [0] ® I(n — 1, ), we have

(77) xSngW{M(@(w) —®(y)} <.

Consider the function
c:I(n,j) —{1,...,N}
given by
c(x) = max{i: ®(x) € BE};(E)} if z € I(n,j)o,
and
c(a) =max{c(z) 1z € ap} if o € I(n,]),.
The key property of c is described below.
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13.8. LEMMA. Let o € I(n,j). Then ®(z) € Bg';c(a)(TC(a)) for every
T € a. If x € agy, we also have

Tc(;t) € BSfEC(a> (Tc(a))'

Proof. There exists a vertex y € ag such that c(y) = c(«). Hence, by
(75), we know that
]:((I)({L‘) - (I)(y)) <e < Ec(a)-
Furthermore, from the definition of c, we get
(I)<y) € B’ (Tc(a))'

Ee(a)

Hence ®(z) € B, (Te(y) for every z € a.

2Ec(a)
If x € o, we also have ®(z) € Bg’;(l) (Te(z))- The lemma follows from the
triangle inequality and the fact that c(x) < c(a). O

Let V,, be the set of vertices of I(n,j + pk) that belong to the p-skeleton
of I(n, j), i.e., Vo = Uaer(n,j),@(Pk)o. In particular, V;, = I(n,j + nk)o. We
say a map

Pp i Vp = Z2(M)
is a p-extension of @ if the following conditions are met:
(1) If p =1, we require that f(¢;1) < 4. If p > 1, we ask that there exists a
(p — 1)-extension ¢,_1 of ® so that

£(¢p) < b(n)(£(dp-1) +9).
(2) For every a € I(n, j),, we have

up (M(6,(0)} < sup (M(B(2)} + 5 < 2L =5

(3) For every a € I(n, j), with ¢ < p, we have

Sp(a(pk)o) € B, (Te(w)-

(4) m(¢p,r) < 272 (p + 1)a(n)d.

We start by constructing a l-extension of ®. In what follows, we will
apply Proposition 13.5 to maps defined on vertices of a p-cell a € I(n,j)p,
after identifying a with IP through an affine map.

Let ¢o : I(n,j)0 — Z2(M) be the restriction of ® to I(n,j)o. Given a
1-cell &« € I(n, j), we have from Lemma 13.8 that

¢0(O‘0) - B.?fec(M(Tc(a))'
By applying Proposition 13.5 to ¢ on «, with ' = T,), we get a map
A alkea)) — Bgfsc<a) (Te(ay)- Since b0.a(r) = ¢o(z) for & € ap, the map
¢1: Vi = Z9(M) given by ¢1 = ¢oaon(j+k,j+kea)) on a(k)y, a € I(n,j)1,

is well defined. It follows directly from Proposition 13.5 that ¢, is a 1-extension
of .
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13.9. LEMMA. Assume 1 < p <n —1. Given a p-extension ¢, of ®, we
can find a (p + 1)-extension ¢pi1 of .

Proof. Given a € I(n, j)p+1, we have from condition (3) and Lemma 13.8
that -
QZ)P(aO(pk)O) € BS(p—i—l)ac(a) (Tc(a))'
Because of conditions (2) and (4) we can apply Proposition 13.5 to ¢, in «a,
with j =pk, m =p+1, T =T), and get a map
bpo : (pk + Ke(a))o — B§p+l)s
By property (ii) of Proposition 13.5 we get that
Opa = 0pon(j + Pk + ko(ay, J + Pk)

on the p-faces of a. Hence the map ¢pi1 : Vpp1 — Z2(M) given by

Gpi1 = Ppaon(j + (p+ 1)k, j + pk + ke(w))

on a((p+ 1)k)o, @ € I(n,j)p+1, is well defined.
Note that ¢,41 satisfies

o if a € I(n,j)pt1, then
Gpt1 = Ppon(j+ (p+ 1)k, j+pk) on ao((p+1)k)o;

£(dp+1) < b(n)(£(dp) + 6);
if o € I(n,j)p+1, then

(Tc(oz))'

c(a)

(78) sup  {M(¢p+1(2))} < sup {M(¢p(x))}+0
zea((p+1)k)o z€ao(pk)o
< zsggj{M(@(x))} +(p+1)5;

if a € I(n,j)p+1, then

Spr1(a((p+1)k)o) € By (Te():
o m(¢p41,7) < 2722702 (p + 1)a(n)s + a(n)d)
< 2(eHD)+2) (p 4+ 2)a(n)d.

Furthermore, if 8 € I(n,j), with ¢ < p, we can find o € I(n, j),+1 such
that 3 is a face of a. Hence, by the first property of ¢, listed above,

Spr1(B((p+ Dk)o) = $p(B(Pk)o) C B, (Te())-
We conclude that ¢p,11 is a (p + 1)-extension of ®. O
Applying Lemma 13.9 inductively, we obtain the existence of an n-exten-
sion ¢5 = ¢, of P:
o5 I(n,j+ nk)og — Z2(M).
The map ¢s has the following properties:

(a) f(ps) < ¢(n)d for some universal constant c(n).
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(b) For every x € I(n,j + nk)o,

(79) M(¢s(z)) < sup{M(®(y)) : a € I(n,j)o, z,y € a} + nd.
In particular,
(80) sup  {M(¢s(2))} < L(®) + nd.
z€l(n,j+nk)o

(¢) M(¢s(x)) < M(®(z)) + (n+ 1) for all x € Ip(n,j + nk)o.
(d) m(es,7) < 22 (n 4+ 1)a(n)d.
(e) For every a € I(n,j), with p <mn,

d5(a(nk)o) € B, . (Te(w)-

We note that property (c) follows from (76) and (78). Furthermore,
Lemma 13.8, (75), and property (e) imply that

(81) sup{F(¢ps(x) — ®(x)) : x € I(n,j +nk)o} < 3(n+ 1)ey < 4.

Before proceeding with the construction, we need one more definition. A

map
é:I(n,k)g — Z2(M)N{S:M(S) < 2L}
is called an (n, 6, k)-extension of ® if it satisfies
(@) £(¢) < c(n)d;

b') SUP e r(n ) IM(6(2))} < L(®) + né; )
c') M(¢(x)) < M(®(x)) + (n+ 1)§ for all z € Io(n, k)o;
d') m(¢,r) < 2" (n + 1)a(n)o;
e) sup{}'( (x) — ¢(x)) :x € I(n,k)o} < e1.

The constant d(n) mentioned below is universal.

—~ N~

13.10. PROPOSITION. Let ¢ be an (n,d, k)-estension of ®, with k > j+nk.
Then there exists A R
Y I(1,k)g x I(n,k)g — Z2(M),
with k = (n+ 1)k + k, such that
$([0),) = ¢y om(k,j +nk), ¥([1],-) = don(k,k),
and

() £(2) < d(n)s: A A
(i) sup(F0(.3) = 00)) - v € 101 B € LB} < 5. A
(iii) M(¢(y,z)) < M(®(x)) +2(n+2)d for all (y,x) € I(1,k)o x Io(n, k)o.

Proof. Let ¢5 = ¢5 on(k,nk + j) on I(n,k)o. We also define
I(n,k) = {1,...,N}

c(a) =sup{c(B): B € I(n,j) and aN B # 0}.
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Note that ¢(a) < &(¢) if & C o/. The next lemma is similar to Lemma 13.8.
13.11. LEMMA. Let o € I(n, k). We have
¢5(0), dan) C Bl a)eq o) (Te(a)

and

(I)(x) € B.37_j€5(a) (TE(CX))

for every x € ag. In particular, if a,a’ € I(n, k) satisfy o C o/, then

Té(a) € Bg:aa(a/) (TE(o/))'

Proof. Let n € I(n,j) with @ C 1. From the definition of €, there exists
B € I(n,j) with a N B # () such that €(a) = ¢(8). In particular, ¢(n) < ¢(B)
and SN n # (. It follows from Lemma 13.8 and property (e) that

$s5(a0) C ds(n(nk)o) C B (Tuiy)

and
®(y) € By, (Tup) NBI., (Tuy) forallye nm.
Hence T, € stc(ﬁ) (Te(p))- It follows that ds(ag) C B{E’m+4)ac(5) (Te(s))-

Let y € apNB C 1. From property (¢/) and (75), we get ¢(z) € B (®(y))
and ®(z) € B (®(y)) for each z € ap. Therefore,

dlao) C B, (Tup) and @(z) € B, (Ty(p)- O

We say a p-cell a of I(n+1,k) = I(1,k)®1(n, k) is horizontal if a = [y|®f
for some [y] € I(1,k)o and B € I(n,k),. We say it is vertical if « = vy ® j for
some v € I(1,k); and 8 € I(n,k)p_1.

Let W), be the set of vertices of I(n+1, k+pk) that belong to the p-skeleton
of I(n+1,k);ie, W, = Uaer(nt1,k),®(Pk)o. In particular, Wy41 = I(n+1, k)o.

Consider

g : I(l, lg)() X I(?’L, E‘)O — ZQ(M)
given by
¢0([O]7‘/E) :¢5($)7 ¢0([i'3_k]7x) :¢($),

where 0 < i < 3%. We say that a map
Yy Wy — Z9(M)

is a p-homotopy if the following conditions hold:

(1) (0], ) = @5 o m(k + pk, k), ¢p([1],-) = & o n(k + pk, k).
(2) If p = 1, we require that f(1)1) < ¢(n)d. If p > 1, we ask that there

exists a (p — 1)-homotopy 1,1 so that
f(Yp) < b(n)(£(vp-1) +9).
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(3) If a =y ® B is a p-cell of I(n +1,k), then

sup  {M(¢p(y, 2))} < sup{M(¢s(x)), M(¢(x))} + ps.
(y,z)€c(pk)o x€fo

(4) If a =y ® B is a p-cell of I(n+ 1,k), then
Up(@Dh)) € Bl gy e, (Tei):

(5) m(¢y, ) < 20FPH2) (4 4 1)a(n)s.
(6) If v is a horizontal p-cell of I(n + 1,k), then

Up = o o n(k + pk, k)
on a(pk)o.

We start by defining a 1-homotopy 1. Let a=+ ® 5 be a vertical 1-cell
of I(n + 1,k). By applying Proposition 13.5 to vy on «, with T = Tap)s
we get a map o @ alkep) — B(f3n+4)€e(3)
Proposition 13.5 here because of Lemma 13.11 and properties (b), (d), (b'),
(d') above. Since 9pq(z) = ¢o(x) for z € ap, the map ¢y : Wi — Zo(M)
given by ¥1 = g on(k + k, k + ke(gy) on a(k)o if o is a vertical 1-cell, and
by ¢1 = Yo on(k + k, k) on a(k) if a is a horizontal 1-cell, is well defined. It
follows directly from Proposition 13.5 that v is a 1-homotopy.

(Te(s))- Note that we can apply

13.12. LEMMA. Assume p < n. Given a p-homotopy vp, we can find a
(p + 1)-homotopy Ypi1.

Proof. Let a = v ® 3 be a vertical (p + 1)-cell of I(n + 1,k). Hence
B € I(n,k),. From condition (4) of the definition of a p-homotopy and
Lemma 13.11, we have

¢p(a0(pk)o) C Bén+6(p+1)*2)55(3) (TE(IB))

From condition (3) of the definition of a p-homotopy, and properties (b), (b’),
we also have

sup {M(Yp(y,2))} < L+ (n+p)d <2L—6.

zao (pk)o

Now because of condition (5) we can apply Proposition 13.5 to v, in «, with
T =Tgp), m=p+1, j = pk, to get a map

Upa + Pk + ke(5))o = Blsnso(pr1)-2)ee s (Te(5))-
By property (ii) of Proposition 13.5, we get that
Up.a = Up o n(k + pk + ke(g), k + pk)

on the p-faces of a.
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If & =y ® f3 is a horizontal (p + 1)-cell of I(n + 1,k), we define
Vp,a  a(pk + ké(ﬁ))O - Bén+4)€e(3> (TE(B))

by 1j~}p7a = 9o on(k + pk + ey k). Since the p-faces of a are again horizontal
cells, we get from condition (6) of the definition of a p-homotopy that

Up.a = Up o0k + pk + ke(g), k + pk)
on the p-faces of a.
Hence the map 1 : Wpp1 — Z2(M) given by
Ups1 = Upa on(k+ (p+ 1)k, k + pk + kg(g))

on a((p+ 1)k)o, a =y ® B € I(n, k)pt1, is well defined.
Arguing as in the proofs of Lemmas 13.6 and Lemma 13.9, we can check
that 1,11 is a (p + 1)-homotopy. O

Proceeding inductively, we construct an (n + 1)-homotopy
) =Ung1 : I(n+1,k)o — Za(M).

From condition (2) of the definition of a p-homotopy it follows that there
exists a universal constant d(n) so that f(1)) < d(n)d. From condition (4) of
the definition of a p-homotopy, we have that

Y(a((n+1)k)o) C B@n+4)ga<ﬁ> (Ta(s))
Thus, we obtain from Lemma 13.11 that
sup{F(¥(y, @) — ®(x)) : y € I(1,k)o,x € I(n, k)o} < (In+ T)en < 6.

Finally, from (76), and property (c), we have that for every 8 € Io(n,k)n_1
and z € 3,

Sup {M(¢5(2)), M((x))} < M(®(2)) + (n +2)s.

Therefore, condition (3) of the definition of a p-homotopy implies that
M(¥(y, z)) < M(®(z)) +2(n+2)5 for all (y,x) € I(1,k)o x Io(n, k)o. O
We now finish the proof of Theorem 13.1. Let
e(n) = max{d(n),c(n),2(n+2)},

and let {d;};en be a decreasing sequence of positive numbers converging to
zero. Consider

Pi = G5, /e(n) + L(n, ki)o = Z2(M),
k; — oo, defined as before. From (79
M(¢;(y)) < sup{M(&(z)

and this proves Theorem 13.1(i).

we see that for every y € I(n, k;)o,

~— —

ca € I(n,l)n,x,y € al +0;
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We can extract a subsequence {¢; = ¢, } such that ¢;;1 is an (n, dj;, kj,,, )-
extension of ®. Proposition 13.10 applied to ¢; and ¢;+1 (replacing ¢s and ¢,
respectively) gives us a map 1; that satisfies Theorem 13.1(ii), (iii), and(iv).

To prove Theorem 13.1(v), we change the construction of the p-extension
¢p of @ so that, whenever o € [0] ® I(n — 1, j),, we have ¢, = ®on(j + pk, j)
on a(pk)o. This is still a p-extension because of (77). Then we redefine ¢s5 so
that, instead of having ¢5 = ® on(j +nk,j) on a € [0 @ I(n — 1,5)p_1, we
have ¢5 = ® on a(nk)o. The rest of the construction follows exactly as in the
previous case.

14. Interpolation results: Discrete to continuous

In this section we give conditions under which a discrete map is approxi-
mated by a continuous map in the mass norm. The main result is important
to prove Proposition 8.5 in Section 15.

We observe from Corollary 1.14 in [2] that there exists dp > 0, depending
only on M, such that for every

’gb : I(TL, 0)0 — ZQ(M)
with f(¢)) < do, and « € I(n,0); with da = [b] — [a], we can find Q(«) € I3(M)
with
9Q(a) = ¢([b]) — ¢([a]) and M(Q(e)) = F(9Q(a)).
The main result of this section is
14.1. THEOREM. There exists Cy > 0, depending only on M and n, such
that for every map
1/} : I(n,O)o — ZQ(M)
with £(1)) < dg, we can find a continuous map in the mass norm
U I — Z9(M; M)
such that

(i) U(z) = (x) for all x € I(n,0)o;
(ii) for every a € I(n,0),, V|, depends only on the values assumed by v
on the vertices of «;

(i) sup{M(¥(z) = ¥(y)) : 2,y € I"} < Co S {M(9Q(c))}-

An immediate consequence is
14.2. THEOREM. For every map
v I(n,k)g — Z2(M)
with £(1)) < dg, we can find a continuous map in the mass norm

U I — Z9(M;M)
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such that
o U(x) =1(x) for all x € I(n,k)o;
o for every o € I(n, k)p,
sup{M(¥(z) — ¥(y)) : =,y € a} < Cof (¥).

Proof. Let o be an n-cell of I(n, k). By identifying o with I"™ and applying
Theorem 14.1 t0 9o,
sup{M (Vo (2) — Wa(y)) : 7,y € a} < Cof (¥).

It follows from Theorem 14.1(ii) that these continuous maps obtained from

we get a continuous map W, : @ — Z9(M; M) satisfying

different n-cells coincide along common faces, thus giving us a well-defined
map U : I" — Z5(M;M). O

14.3. Proof of Theorem 14.1. We note that a similar result was proven by
Almgren in Theorem 6.6 of [2]. In our case the situation is simpler because we
are dealing with codimension one currents (2-currents in a 3-manifold). The
work of Almgren gives us a map V¥ that is continuous in the flat metric and
satisfies (i), (ii), and

(i) sup{F(¥(z) - U(y)) s,y € '} < Cy sup  {M(Q(a))}.
a€cl(n,0)1
In Theorem 4.6 of [32], Pitts explains how to adapt the methods of [2] to
make them work in the context of maps that are continuous in the mass norm.
This involves the construction of the continuous map W : I — Zo(M;M). It
follows from the proof of [2, Th. 6.6], with no modification whatsoever, that
properties (i) and (ii) of Theorem 14.1 are satisfied. Hence the statement of
Theorem 14.1 that requires justification is the third one. We will briefly sketch
the proof of Theorem 6.6 of [2] and show that Theorem 14.1(iii) indeed holds.

Let A be a differentiable triangulation of M. Hence if s € A, then the
faces of s also belong to A. Choose a linear order < on A such that s’ < s
if dim(s’) < dim(s). Given s,s € A, we use ' C s if ' is a face of s. Let
U(s) = Uscgs’. In what follows we will denote by C varying constants that
depend only on A and n.

The first ingredient in the construction of W is to consider, for every s € A,
a deformation map

D(s): I xI(U(s); M) — Io(U(s); M)
such that

e D(s) is continuous in the mass norm;
e D(s,0,T) =T and D(s,1,T) =0 for every s € A, T € I1(U(s); M);
o forall se Ayt €I, and T € Io(U(s)), we have

(82) M(D(s,t,T)) < CM(T).
Here D(s,t,T) = D(s)(t, T).
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The construction of such maps uses the deformation maps of [32, Th. 4.5]. In
the context of flat metrics, this construction was carried out in [2, §5].

The second ingredient is to consider the cutting functions, which we de-
scribe now. Let A C I3(M) be a finite set with ¢ elements. Almgren [2, §5]
associates to every s € A a neighborhood L(s) of s and constructs a function

Cp: A x A — T3(M)

satisfying, according to Definition 5.4, Theorem 5.8, and Lemma 5.9 of [2],

s'<s

(83) Ca(s,T) = <T — Z CA(S’,T)> N L(s);

§'<s

SC'Q-M<T—ZCA(S/7T)>§

(85) support (Ca(s,T)) C U(s) for all (s,T) € A x A.
From (83) we see that
M(Cx(s,T)) < CM(T) for every (s,T) € A x A.
This inequality and (84) imply that
M(OCa(s, T)) < CqM(T) +M(IT) + Y M(ICx(s', T)).

s/'<s
Thus we conclude that

(86) M(OC\(s,T)) <C-q-(M(T)+M(9T)) forevery (s,T) € A x A.

Having defined the basic ingredients, we recall Almgren’s construction of
the map W. For every p-cell « of I(n,0), we consider the continuous function

ha : IP — Z9(M; M)

given by hy(0) = ¥(a) if p = 0, and by the following formula if p > 0 [2,
Interpolation Formula 6.3]:

(87) halzi,...,xp) = Z sign ()
7€l
Z D(s1,x1) 0 -0D(sp,xp) 000 CA(wp)(Sp) ©---0 CA('Yl)(S]-) (Q(n)),

$1,...,5pEA

where
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e I', denotes the set of all sequences {v;}}_; such that v, = a and such
that, for each 1 <i <p—1, v is a (dim(y;41) — 1)-face of v;41.
e sign () is equal to 1 or —1, according to [2, Def. 6.2].
e The finite sets A(f3) are defined inductively in the following way: If
B € I(n,0);, we have A(B) = {Q(B)}; if € I(n,0); with j > 1, we
have
A(B) = {Ch(g;-1)(8j-1) 0+ 0 Cp () (51)(Q(B1)) = sk € A
and [ is a k-cell of 8 for every k =1,...,5 — 1}.
Having fixed the triangulation A, the deformation maps (which depend
only on A), and the cutting function Cyg) for each cell 3, it is clear that
ho is continuous in the mass norm and that it depends only on the values

assumed by 1 on the vertices of a. In [2, §6.5], Almgren describes an inductive
procedure to construct ¥ using the various maps h,, described above.

14.4. LEMMA. For every x € IP and o € 1(n,0),, with p > 1, we have
M(ha(z)) < Csup{M(9Q(B)) : B € I(n,0)1,8 C a}.

Proof. The cardinality of every finite set A(8) is bounded above by a
constant depending only on A and n. Hence we obtain from (86) that

(88) M (90 Cy(y,)(sp) 0+ 0 Co(y) (51)(Q()))
< C(M(Q(m1)) + M(9Q(m1))) < CM(9Q(71))

for every {y;}¥_, € I'y, where the last inequality comes from the fact that
M(Q(m1)) = F(0Q(m)) < M(9Q(m)).

The number of elements of I', is bounded above by a constant depending only
on n, hence the desired result follows from the expression (87) for h,, combined
with (82) and (88). O

Using Lemma 14.4, the proof of [2, Th. 6.6(2) (b)] applies with no modi-
fications to conclude Theorem 14.1(iii).

15. Pull-tight
Assume we have a continuous map in the flat topology
O I" — Z9(M)

that satisfies the following hypotheses:

(Bo) @7p is continuous in the F-metric;
(B1) @(I" ' x {0}) = ¢(I"t x {1}) =0.
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We denote by |®| : I — V(M) the map given by |®|(x) = |®(x)| for
xzel.

Consider II € 7 (Z5(M; M), Pn).

ProprosITION 8.5.  There exists a critical sequence S* € Il. For each
critical sequence S*, there exists a critical sequence S € Il such that

e C(S) C C(5%)
o cvery 3 € C(5) is either a stationary varifold or belongs to |P|(1}).

Proof. We start with a basic lemma that proves the existence of critical
sequences. This is just like [32, §4.1, Prop. 4].

15.1. LEMMA. There exists a critical sequence S* € II.

Proof. We choose S7 = {qﬁ{}ieN € II such that L(S7) < L(II) + 1/4, and
we pick an increasing sequence {n;};en so that we have, for all i > nj,

o max{M(¢}(2)) : @ € dmn(6})} < L(S9) + 1/,

e ¢} is n-homotopic to ¢/, with fineness 1/7,

e ¢! and ¢! are n-homotopic to gbgﬂ with fineness 1/j.
Let ¢f be given by ¢f = ¢! if i < ny — 1 and ¢F = ¢ if n; <i < njyq — 1.
Then S* = {¢}} € II and L(S*) = L(II). O

Given a critical sequence S* € II, we apply a “pull-tight” procedure to
S* to find another critical sequence S € II such that all elements of C(S5)
are either stationary varifolds or belong to |®[([}). We essentially follow the
method of [32, Th. 4.3].

Suppose S* = {¢} }ien, and set

¢ =sup{M(¢;(x)) : i € Nz € dmn(¢;)}.
We define the following compact sets of Vo(M):
A=A{V e Vo(M) : [|[V][(M) < ¢},
B =|®[(Iy) C 4,
Ag=BU{V € A:V is stationary in M},
Ay ={V € A:F(V,A) >27"},
A;={VeA: 27" <F(V,A) <27}, ie{2,3,...}.
For every V € A;, i > 1, we choose a vector field Xy € X(M) with
|Xv|cr <1 and such that

SV(Xy) < %inf{éV(Y) LY € X(M) with |V < 1} < 0.
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The map S € Vo(M) — 05(Xy) is continuous. Hence we can find for every
Ve A;,i>1,aradius 0 < ry < 277 so that we have

5S(Xy) < %inf{dS(Y) LY € X(M) with [V]er < 1} < 0

for every S € BfV(V). The compactness of A; implies that the open cover
BF (V) admits a finite subcover. Thus we can find ¢; € N and

e a set of radii {rij};l-izl, i <27

e a set of varifolds {V}; };1-7;1 C A

e aset of vector fields {X;;}7., C X (M) with [Xjj|cn <15

e a set of balls U;; = ng (Vij)MA, j=1,...,¢, with A; C U‘JZ-;1 Uijs
a set of positive real numbers {e;;}J2, such that

05(Xi5) < —giy <0forall S e U, =1,...,4.

The condition 7;; < 27% implies that {U;;}ien1<j<q 1S a locally finite
covering of A\ Ag. Therefore we can choose a partition of unity {¢;;}ien,1<j<q
of A\ Ay with support(¢;;) C Uj;.

We define

XA X(M),

continuous in the F-metric, by

X(V)=0 ifV e Ay,

X(V)=F(V,40) > ¢5(V)Xy ifVeA\A.

1€N,1<j<g;
It follows that
V(X (V) =0if Ve Agand V(X (V)) <0if Ve A\ Ap.
This implies that we can find a continuous function
h:A—10,1]

such that

e h=0o0n Apand h(V) >0if V € A\ A,

o and ||f(s, V), (MI(M) < [[f(£,V)x(V)I(M) if 0 <t < s < h(V),
where f(¢, V') denotes the 1-parameter group of diffeomorphisms generated by
X(V).

Now let

H :[0,1] x (Z2(M;F)N{S : M(S) < c}) = Z2(M;F)n{S : M(S) < ¢}
be given by
H(t,T) = f(t,|T) x(T) if 0 <t < h(|T]),
H(t,T) = f(h(|T)), |T|) x(T) if h(]T]) <t < 1.



766 FERNANDO C. MARQUES and ANDRE NEVES

The key properties of H are

(i) H is continuous in the product topology;

(ii) H(t,T) =T for all 0 <t < 1if |T| € Ap;

(iii) [|[H(1,D)|[(M) < ||T||[(M) unless T' € Ao;

(iv) for every e > 0, there exists § > 0 so that for all z € I} and all
0<t<1,

F(T,®(z)) < 6 = F(H(t,T), ®(z)) < .

Property (iv) is a consequence of the first two since B = |®|(I§) C Ay and
P I is continuous in the F-metric.

We now proceed to the construction of S = {¢;};eny € II with C(S) C
Ay N C(S5*). We would like to put ¢; = H(1, ¢}). Since the map

G : 25(M) — Zo(M), G(T) = Fu(T),

where F' € Diff (M) is fixed, is continuous in the F-metric but not in the mass
norm, the fineness of ¢; could be large even when f(¢}) is small. Thus we
need to interpolate H (1, ¢}) one more time, as in Theorem 13.1. When doing
this, it is important to check that the values assumed by ¢; stay close in the
F-metric to those assumed by H(1, ¢7).

This minor issue was overlooked by Pitts [32, p. 153]. We overcome this
difficulty using the Interpolation Theorem 14.2 of Section 14. This requires a
bit of extra work, which we do now.

Denote the domain of ¢} by I(n,k;)o, and let 6; = f(¢}). Apply Theo-
rem 14.2 to obtain a continuous map in the mass norm

Qi I — ZQ(M;M)
such that for all x € I(n, k;)o and « € I(n,k;)n, we have
(89) Qi(x) = ¢;(z) and  sup {M(Q(2) — (y))} < Codi.

Y,zEQ

We claim that
(90) lim sup{F(Q;(z), ®(x)) : z € IJ} = 0.

1—00

Indeed, from Lemma 7.8, we have that
lim sup{F(¢; (z), ®(x)) : « € Iy(n,ki)o} = 0.
1—00
The claim then follows from (89).
Consider the continuous map in the F-metric
Qi I x I — Z5(M;F), Qi(t,x) = H(t,Q4(z)).
From property (iii) of H, we have

(91) max{M((t,2)) : (t,2) € T x I"} < max{M(D;(x))}
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From property (iv) of H and (90), it follows that
(92) lim sup{F(Qi(t,z), ®(z)) : (t,x) € I x I} = 0.
1—00
15.2. LEMMA. For every i € N, lim,_,o m(€;,7) = 0.

Proof. Let 6 > 0. Note that C = Q;(I x I"™) is a compact subset of
Z5(M;F). For every p € M and T € C, and since T is an integral current, we
can choose r = r(p,T) > 0 so that

I1S||(B,(p)) <6 forall S € BF(T).

By compactness, we can select a finite covering {B,, (px) X Bfk (Tp) Y0, of
M x C, where ri, = r(pg, Tx)/2.
If 7 = min{ry }4_,, then

||T||(B#(p)) < ¢ for all (p,T) € M xC. O
We can now apply Theorem 13.1 to €2; and obtain
bij : 1(1,8i5)0 x I(n, sij)o — Zo(M)
such that
(a) sup{M(¢;
(b) £(¢5) < %7
(c) sup{F(¢s(t, ) — ( z)) : (t,x) € I(n+1,si5)0} < 53
(d) M(ey;(t,z)) < M(Q(t, ) + 3 for all (t,x) € Io(n + 1, s47)o;
(e) ¢i;([0],2) = (0, ) i
From Lemma 4.1 and properties

hm sup{F(@](t x),Qi(t,x)) : (t,x) € lo(n+ 1,545)0} = 0.

(t,2)) s (t,x) € I(n+1,8i)0} < maxzem {M(Q;i(z))} + %;

Qi(x) for all x € I(n, sij)o-
(

¢) and (d), we get

Hence, using (92) and a diagonal sequence argument, we can find {¢; = ng'j(i)}
such that

(93) Zliglo sup{F(q_ﬁi(t,x), Qi(t,x)) : (t,x) € lo(n+1,545)0} =0
and
(94) Zlg& sup{F(¢;(t,z), ®(x)) : t € I(1, 8ij)0,2 € Io(n, sij)o} = 0.

We define ¢; : I(1, 8ij(i))o X 1(n, sij5))o — Z2(M) to be equal to zero on
I<17 sij(i))o X (T(n7 Sz'j(z)) U B(” 87,](7,)) )

and equal to ¢; otherwise. Since f(¢;) tends to zero, we obtain from (94) that
¢i = ¢i([1],-) is n-homotopic to ¢;([0],-) in (Z2(M;M), ;) with fineness
tending to zero.
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On the other hand, it follows from (89) and property (e) that 452([0], )) is
n-homotopic to ¢} in (Z2(M;M), ®|rn) with fineness tending to zero. Hence
S = {¢i}ien € II. From property (a) and (89) we obtain that S is a critical
sequence; i.e., L(S) = L(II).

We are left to show that

C(S) € Ay N C(S%).

Given V € C(95), there exists a sequence {|¢y, (xi)|}ien, ki — oo, that con-
verges to V' in the sense of varifolds. It follows from (93) that |Q, (1, ;)| also
tends to V' as varifolds. Moreover, from (89) we see that a subsequence of
|Qx, (z;)] converges as varifolds to an element W of K(S*). Since the map H
is continuous in the F-metric, we have

V = lim Qg (L) = lm [H(L Qg ()] = F(OV), W) 4 W.
If V ¢ Ag then, from property (iii) of H, we get
L(I) = [[VI[(M) = |[f(h(W), W)xWI[(M) < [[W][(M) < L(II).

This is a contradiction; hence V' € Ag. Property (ii) of H implies that V =
W e C(S5%). O
Appendix A. Proof of Theorem A.1

Let
Fi1=1{S c S%:8 is an embedded closed minimal surface of genus g(S) > 1}.
The goal of this appendix is to prove

A.1. THEOREM. There exists X in F1 such that

area(X) = Siéljﬁ_l area(.S).

The proof is largely standard and the method well known among the
experts. (See, for instance, [21, Th. 2.1].)

Proof. Let X' € Fi be a minimizing sequence, i.e., such that

lim area(X') = inf area(S).
—00 SeF

The Allard Compactness Theorem [39, Th. 42.7] implies that we can extract
a subsequence converging in V(S%) to an integral stationary varifold . Since
the Clifford torus has area 272, we have

1211(8%) = lim area(3) < 27% < 8m(1 - 0)

for some § > 0.
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A.2. LEMMA. There is rg so that
[IZ]1(Br(p))

g <2—46 forallr <ry,pe S3
wr
Proof. Suppose not. Then we could find sequences {g; }ien, {7i}ien tend-

ing to ¢ € ¥ and zero, respectively, such that

2l >0 s,

lim
1—00 g

The monotonicity formula [39, Th. 17.6] on a general ambient manifold implies

that
1B, )
r—0 mr2
Consider the cone C in R* defined by

C = pug(X xR), where y: 5% xR = R* ju(p,r) = rp.

>2-46.

Because X is a stationary varifold in S2, C is a stationary integral varifold in
R* where, denoting by w3 the volume of a 3-ball, we have

1C1[(B,(0)) _ [15]I(S°)

= < —
° our3 - <2(1—90) forallr>D0,
4
o o JCNBHD) _ o ISIB@) oy
r—0 w37“3 r—0 7T7“2

Combining these two facts with the monotonicity formula we obtain a contra-
diction because

25 < tig ICIBr @)y, WO _ vy, ICIBOD) _ o5

r—=0  wsrsd r=oo  (w3rs r—oo  (grd
A.3. LEMMA. Y is smooth with multiplicity one.

Proof. From the Allard Regularity Theorem [39, Th. 24.2] it suffices to
see that
Y||(B

1 3 =1 forallpeX.
r— r

Choose p € ¥, and for every A € R, consider the dilation map p*(z) = Az
defined in R*. Set ‘
Yj=puy(X-p), jeEN,

which is a varifold in R* with generalized mean curvature tending to zero uni-
formly. From the Allard Compactness Theorem, we have that a subsequence
converges to a stationary varifold V C p*, where p- C R* denotes the hy-
perplane orthogonal to p. Moreover, we must have from scale invariance and
Lemma A.2 that, for all s > 0,

4 j 4
oo WVIBHO) L ISIBH) IS

- — Y

7s? Jj—r00 T2 r—0 2

and so the monotonicity formula implies that V is a stationary cone in p*.
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From [1] we know that V is a cone over a stationary l-varifold v C S?,
which is a network consisting of geodesic segments meeting at triple junctions.
If we show that + has no triple junctions, then V must be a plane, which has
multiplicity one from (96), and so (95) follows at once.

Suppose zq is a triple junction of v, and consider the sequence of integral
stationary varifolds

Vi = by (V — ), keN.

From [39, Th. A.4] we know that, after passing to a subsequence, Vj, converges
to a stationary varifold U, which consists of three half-planes { Py, Py, P3} of
pT meeting along a common line L. Note that these half-planes must have
multiplicity one from (96). We can extract a diagonal subsequence from

EZ’JJ? = M;ﬁ(u;&(zj(l) - p) - l'()), iaj7 k € N7
denoted simply by {3;};en, where the relevant properties are
(a) 0%; = 0;
(b) ¥; has generalized mean curvature tending to zero uniformly;

(¢) from Lemma A.2 there is C' > 0 such that for every R and i sufficiently
large, we have

||Z:]|(Bi(2)) < Cs* for all z € BR(0),0 < s <R.

From Federer Compactness Theorem we know that 3; converges to T' € Z5(S?)
in the flat topology. We claim that we can assign orientations to the half-planes
{P1, P», P3} so that U = T'. This gives a contradiction because, regardless the
orientation we assign to each half-plane, we have oU # 0.

Denote by L; the set of all points at distance 277 from the line L, which is
the line of common intersection of the half-planes P,. We have that U \ L; con-
sists of multiplicity-one planes and thus, from property (b) and the Allard Reg-
ularity Theorem, we obtain that ¥;_ (R*\ L;) converges strongly to UL (R* \ L;)
for every j € N. This induces an orientation on U.

Consider any 2-form w with support contained in le%(O) C R4, for some
R, and comass ||w|| < 1. We now argue that U(w) = T'(w), and this finishes
the proof. There is an integer N, independent of j, such that we can cover
L; N B4(0) with balls { By }22] of radius 277. Hence, we obtain from property
(c) that for all 7 sufficiently large,

N27
IZil[(L; N BR(0)) < > |IZill(By) < CN277.
k=1

The strong convergence property of 3; outside L; implies at once that
IT(w) — U(w)| < 20N277
and thus, making j — oo, we obtain U(w) = T'(w). O



MIN-MAX THEORY AND THE WILLMORE CONJECTURE 771

We are left to argue that the genus of 3 must be bigger than zero. Indeed,
because ¥ has multiplicity one, the Allard Regularity Theorem implies that
the sequence ¥; converges strongly to 3 and thus its genus g(X) > 1. ([

Appendix B. Conformal images

In this appendix we collect some facts about conformal transformations
of R*. For each v € B4, let F, : 3 — S3 be given by

Given p, N € S3 with (p, N) = 0, we define
A(p, N,7) = 83\ (B, ((cosr)p + (sinr)N) U B,((cos7)p — (sinr)N))

=53\ (B4 T )((cos r)p + (sin T’)N)

l—cosr

U Bf/m((cos r)p — (sinr)N)) .

B.1. PROPOSITION. There is Cy > 0 and, for each r € (0,7/4), C1 =
Ci(r) > 0 and g9 = €o(r) > 0 such that the following holds: For every

v=(1-s)(costp+sintN),
with
p7N6537 <p>N>:O7 0<3§€0a and ’t’§€07

we have

4 0O 3 4 3 4 = 3
Br oo @ NS C o (Blg(-N)NS°) € By o (@08

and
FuBp.N.) € BY o s @\ BE_ (@),
where
~_ t/s B 1
0= V1+ /52 V1+ (t/s)2N’
R=

t/s
211 - ——— .
( \/1+(t/s)2>

Proof. The next lemma collects some basic identities, the proof of which
is left to the reader.
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B.2. LEMMA.
(i) Let Q € R*\ {0} and R >0 such that (1 —|Q|)? < R®. Then

~ A ~2_ .,2_
B?—?(Q) nss = B;l% (Q) ﬂ537 where R = \/2+ w

Q| [o]
(ii) Let Q € S®. Then

—4
S\ B frimes) (@) = B airema (- Q) N S*
(iii) Let h € R*\ {0}, |h| <1, and
E={zcR': (x—h,h) >0}

3_ 4 3

Then ENS° =B 2(1_|h|)(h/]h]) n.s°.

Let i : R*\ {0} —» R, T, : R* = R* and D) : R* — R* be the conformal
transformations given by

. T
Z(LL‘) = Wv Tw($> =T+ w, D)\(-’E):)\[B,

where A € R and w € R*. We have

(97) Fy=Dy_jppp0T_ v O ioT_,.
B.3. LEMMA. Let h € R*\ {0} and E = {x € R*: (x — h,h) > 0}. Then

i(F) = B,(c), where c= W’ - m

Proof. The lemma follows from the calculation:
2

. 22 | r h _ 1
i) = el == 10p ~ amp| ~ amp
<x_h7h>
— g 0
DEEE

B.4. LEMMA. Let h € R*\ {0}, |h| < 1. Ifv € B*, then
h Q

4 v 3y — pd [ X 3

o (Bwﬂh) (w) ° ) b (!Q\) e

Q= (1~ [vf)h —2(|h|* — (h,v))v,

L AR P — 20k )
i ‘\/ ? (1 Q )

where
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Proof. From Lemma B.2(iii) and (97), we have

h
4 3) _ ; 3
F, (B ey (h‘> S >—D1_|U|2 T 0ioT,(ENS)

= (Dl—\vP ol v oi oT_U(E)) ns3,

]2
where E = {x € R*: (x — h,h) > 0}.
Suppose |h|? — (h,v) # 0, and set
h|? — (h
o=1 ifve B, o=-1 ifvd¢E, and hv:Wh.
Then

(98) T o(E) ={z € R*: o(x — hy, hy) > 0}.

Suppose |h|2 — (h,v) > 0; i.e., v is in the interior of E. From Lemma B.3,
we have

i(T_y(E)) = B, (0),

where
h 1h]

99 c=———"  and r=-—11_
(%9) AP — (o)) A — o)
Therefore,

. —4

Dy 0 T oy 010 Toy(E) = Bly_pyjz), (1 = [v]*)e = v).

and we conclude that F,(FE) = B%(Q), where

AP
=50 ()
A P
B= S = o))

It follows from Lemma B.2(i) that

Fv(E):B;%(Q), where RZ\/Q—FR2_|Q’2_1.

Q| Q|
Since
2
R = o - 1= oy
2(h,v) — |h*(1 +[v[?)
|h> = (ko)
we have

o (RO o)~ 2(hv)
= \/2 (1 Q )
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Lemma B.4 follows immediately when |h|? — (h,v) > 0 because % = % and
R=R.
Suppose now |h|? — (h,v) < 0; i.e., v ¢ E. From (98) and Lemma B.3, we
have
i(T-(B)) = R\ By(e),

where ¢ and r are as in (99). Therefore,

Dy_pppoT- v oioT_y(E)=R"\ By (1= 0)e = v).

,‘U‘Q

Thus ~
RAE) =R\ By(@) =R\ B(E),
where Q, R and R are as above. Since |h|? — (h,v) > 0, we have % = —%

and R? + R? = 4. We apply Lemma B.2(ii) and conclude Lemma B.4.
Finally, if |h|? — (h,v) = 0, then the result follows from the previous cases

by approximation, since the set of all v with |h|? — (h,v) # 0 is everywhere

dense in B*. 0

Next we compute the conformal image of a geodesic ball in S3.

B.5. LEMMA. Letx € S3. Ifv e B*, then

F, (B!5(x)NS*) = By, (&) ns3,

where

Q=>0—|v*z+2(x,v)v and R—\/2<1+2<’g‘v>>.

Proof. We apply Lemma B.4 with h; = tx in place of h, and we let ¢ go
to zero. (]

We can now prove the first statement of Proposition B.1.
B.6. LEMMA. There is Cy so that for every

v=(1—-s)(costp+sintN),

with
p,NeS® (p,NY=0, 0<s<1/2, and |t|<1/2,
we have
4 ol 3 4 3 4 = 3
B o i@ NS CFy (Bs(-N)N &%) € By s (@0 52,

where Q and R are defined in Proposition B.1.
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Proof. From Lemma B.5,

Fu (B o(-N(p) 1 5%) = B (%) s,

where

2<N,v)>.

Q= (1—|v*)N +2(N,v)v and R:\/2<1— ]

Thus
(100) Q= (25 —s*)N +2(1 — s)*sint(costp +sint N)
= (25 — 52 +2(1 — 5)?sin®t)N 4+ 2(1 — s)?sint costp

and
Q> = (25 — s*)? +4(1 — 5)?sin’ t.
Hence we can find C; so that for all |s| <1/2 and |¢| < 1/2, we have
2, 42
+1
o <IQP <4+ )1+ Cil(s, ).

This implies the existence of C so that for all |s| < 1/2 and |t| < 1/2, we have

(101)

1

2
’IQ\ V2 £ 12
From this inequality, (101), (100), and s >0, we obtain constants C3 and Cy
so that

o-(-4)

(102) < C.

2_ 25 — 52 +2(1 — 5)%sin? ¢ s 2
( QI Ve +t2)
+<2(1—3)251ntcost_ t >2
Q| V2 + 12
<9 (—32 +2(1 — 5)? sin2t>2+2 (2(1 — s)%sintcost — 2t>2
- Q) Q
+ Cs)(s, ) < Cal(s, 1)
From (102), (101), and s > 0, we obtain constants C5 and Cp so that

w25 ) ()

3 4(1—s)sint+ 2t
Q Vs +12

4t — 4(1 — s)sint
Q)

< Cs|(s,1)].

Hence |R — R| < /Cs+/|(s,1)].

<

+ Csl(s, 1))
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If we choose C = +/C4 + +/Cs, the result follows by applying the triangle
inequality. (]

The next lemma finishes the proof of Proposition B.1

B.7. LEMMA. For every r € (0,m/4), there is C1 = C1(r) and €9 = €o(r)
so that for every
v=(1—-s)(costp+sintN),
with
p,NeS (p,N)=0, 0<s<ey and |t|<eo,

we have

Fy(A(p,N,7)n S3) B%Jrcl\/m(@) \ B%_Cl\/m(@)7

where Q and R are defined in Proposition B.1.
Proof. Let o; = (—1)"*1 i =1,2. Define
B; = Bi/m((cos 7)p + 04 (sin r)N) ns3
and h; = (cosr)(cosrp + o;sinr N). Then, by Lemma B.4,

Fy(B;) = B, (|g|) ns3,

where

Qi = (1 —|v[*)h; = 2(|hi|* = (hi, v))v,
o P []?) = 2(hisv)
RZ_\/2 (1 Qi )

|hi|? — (hy,v) = cos® r — (1 — 5)(cos? r cost + o; cos T sin rsin t)

Notice that

= —gitcosrsinr + scos? 7 + cosr O(|(s, 1) [?),

and so
(103) Qi = (25 — 5%)(cosr)(cos T p + o;sinr N)
—2(1 = 8)(costp+sint N)(|hi|*> = (hs,v))
= 20t cosT sinrp 4 2035 cosr sinr N 4 O(|(s,t)]?)
and
(104) |Qi|*> = 4cos?r sin®r (s + %) + O(|(s, 1) *).

sin? r

= 4cos?r sin®r (52 + t2) (1 + O(’(S’t)’)> .
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Choose g9 = eo(r) so that for all 0 < s < g, [t| < &9, we have

(105) |Qi|> > 2cos® r sin? r (s + t2).
This inequality and (104) implies that for some Cy = Cs(r), we have
2cosrsinr 1
106 — <C
(106) ‘ Qi Vet
and therefore, from (103) and (105), we have
Qi — Q; 20; cosrsinT
—(—0iQ)| < — (tp + sN)| + Cs](s,t)]
|Qil |Qil |Qsl
O(|(s,t)?
< s s e < il
for some constants C3 = C3(r), Cy = Cy(r).
Now

|hil2(1 + [v]?) = 2(hs,v) = 2(|hi|> = (hi,v)) + 2 cos® r(—2s + s?)
= —20;tcost sinr 4+ O(|(s,1)]?)
and thus, combining with the expression for R;, (105), and (106), we obtain

+ o;tcosrsinr
RZ-Q 9_ 9 Tt & < R?—Q—inQ Cal(s,t
o o + Cal(s, )]
O(|(s, )2
<w+02](s,t)fﬁc5|(svt)|

for some C5 = C5(r). We can then find Cs = Cg(r) such that
B} — (4= R < Col(s, )], |B3 —R’| < Col(s,1)],
which means
|R1 — (4= R*)| < /Cs\/|(s,t)] and |Ry — R| < V/Ts/|(s,1)].
If we choose C1 = /Cy4 + /Cg, then

Bi/ﬁfcs e t)‘(—@) NS*c Fy(By),

4 a) 3
BL . (@0 S CE(By).

We conclude that

FU(A(p7N7T) N 53) = Fv(Sg \ (Bl U BQ))

3 4 _ 4 2]
S (B\/ 47}7%2703\/|(S,t)|( @)U BE—C% (S,t)|(Q)> '
The result follows from Lemma B.2(ii). O

This completes the proof of Proposition B.1 O
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Appendix C. The map r,,(j)
Given m, j € N, we construct
rm(j)  I(m, j+q)o = S(m+1,5)o UT(m+1,j)o
satisfying

e g depends on m but not on j;
o if z,y € I(m,j + q)o satisty d(z,y) = 1, then

(107) d(rm (5)(2), rm(5)(y)) < m;
o if z € Iy(m,j + q)o, then

(108) rm(j)(2) = () + ¢, ) (@), [0]).
Let

Ry i I™ — (I x [0,1])) U (I™ x {1}) c 1"+
be a Lipschitz homeomorphism such that
(109) Ry (z) = (x,0) for all x € I}".
We choose ¢ € N such that
(110) IRy () — R(y)| <397 2|z —y| forall z,y € I™.

Let K =S(m+1,7)UT(m+1,5)9. Given z € I(m,j + q)o, we choose
rm(7)(z) € K such that d(r,,(j)(x), Rm(x)) = d(Rm(z), K). This choice might

not be unique, but if x € Iy(m, j + ¢)o, we obtain from (109) that
rm (i) (@) = (0(j + ¢, 7)(x), [0]).

This shows (108). If z,y € I(m,j + q)o satisfy d(z,y) = 1, we get from (110)

that
|Rin(2) — R (y)] < 397237010 = 3=0+2),

This implies that r,,(j)(x) and r,,(7)(y) must be contained in a common m-cell

of In(m + 1, 7). Hence property (107) follows as well.
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