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Diophantine geometry over groups VIII:
Stability

By Z. Sela

Abstract

This paper is the eighth in a sequence on the structure of sets of solutions

to systems of equations in free and hyperbolic groups, projections of such

sets (Diophantine sets), and the structure of definable sets over free and

hyperbolic groups. In this eighth paper we use a modification of the sieve

procedure, which was used in proving quantifier elimination in the theory

of a free group, to prove that free and torsion-free (Gromov) hyperbolic

groups are stable.

In the first six papers in the sequence on Diophantine geometry over groups

we studied sets of solutions to systems of equations in a free group and devel-

oped basic techniques and objects that are required for the analysis of sentences

and elementary sets that are defined over a free group. The techniques we de-

veloped enabled us to present an iterative procedure that analyzes EAE sets

defined over a free group (i.e., sets defined using three quantifiers) and shows

that every such set is in the Boolean algebra generated by AE sets [Sel06, 41];

hence, we obtained a quantifier elimination over a free group.

In 1983 B. Poizat [Poi83] proved that free groups are not super-stable.

(W. Hodges pointed out to us that this was also known to Gibone around

1976.) In this paper we use our analysis of definable sets, and the geometric

structure they admit as a consequence from our quantifier elimination pro-

cedure, together with the tools and the techniques that are presented in the

previous papers in the sequence, to prove that free groups are stable (The-

orem 5.1; for a definition of a stable theory, see [Pil83] or the beginning of

Section 5). Since in [Sel09] it was shown that the structure of definable sets

and the tools that were developed for the analysis of them generalize to nonele-

mentary, torsion-free hyperbolic groups, the argument that we use for proving

the stability of a free group generalizes to an arbitrary nonelementary, torsion-

free hyperbolic group (Theorem 5.2).
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The stability of free and hyperbolic groups gives a linkage between neg-

ative curvature in Riemannian and coarse geometry and in geometric group

theory and stability theory. With stability it is possible to continue the study

of the first order theories of free and hyperbolic groups using well-developed

objects and notions from model theory. Furthermore, following Shelah, logi-

cians often view stability as the border line between “controlled” and “wild”

structures. From certain points of view, and in certain aspects, this border line

is reflected in group theory (see [Poi87], [Poi01]). Negatively curved groups are

stable. For nonpositively curved groups we do not really know, but we suspect

that there should be unstable nonpositively curved groups. For other classes

of groups the question of stability is still wide open.

To prove the stability of free and hyperbolic groups, we start by analyzing

a special class of definable sets that we call minimal rank. These sets are

easier to analyze than general definable sets, and in Section 1 we prove that

minimal rank definable sets are in the Boolean algebra generated by equational

sets. (Recall that equational sets and theories were defined by G. Srour. For

a definition, see the beginning of Section 1 and [PS84].)

In Section 2 we slightly modify the sieve procedure that was presented

in [Sel06] (and used for quantifier elimination) to prove that Diophantine sets

are equational. The equationality of Diophantine sets is essentially equivalent

to the termination of the sieve procedure for quantifier elimination in [Sel06],

and it is a key in obtaining stability for general definable sets in the sequel. In

Section 3 we present a basic object that we use repeatedly in proving stability

— Duo limit groups (Definition 3.1) — and their rectangles (Definition 3.2). We

further prove a boundedness property of duo limit groups and their rectangles

(Theorem 3.3), which is not required in the sequel but still motivates our

approach to stability.

In Section 4 we use duo limit groups and their rectangles, together with

the sieve procedure and the equationality of Diophantine sets, to prove the

stability of some families of definable sets, which are in a sense the building

blocks of general definable sets (over a free group). These include the set of

values of the defining parameters of a rigid and solid limit groups for which

the rigid (solid) limit group has precisely s rigid (strictly solid families of)

specializations for some fixed integer s. (See [Sel01, §10] and [Sel05a, §1] for

these notions.)

In Section 5 we use the geometric structure of a general definable set that

was proved using the sieve procedure in [Sel06], together with the stability of

the families of definable sets that are considered in Section 4, to prove the

stability of a general definable set over a free group and hence to obtain the

stability of a free group (Theorem 5.1). Using the results of [Sel09] we further
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generalize our results to a nonelementary, torsion-free (Gromov) hyperbolic

group (Theorem 5.2).

The objects, techniques and arguments that we use in proving stability

are all based on the work on Tarski’s problems and, in particular, on the sieve

procedure for quantifier elimination ([Sel01]–[Sel06]). Parts of the arguments

require not only familiarity with the main objects that are presented in these

papers, but also with the procedures that are used in them. We give the exact

references wherever we apply these procedures, or we use previously defined

notions.

Quite a few people have assisted us along the course of this work. In par-

ticular we would like to thank G. Cherlin, W. Hodges, O. Belegradek, A. Pillay,

B. Zilber, and especially E. Hrushovski for their help and suggestions. David

Gabai has encouraged us to revise this paper, and Eliyahu Rips read it thor-

oughly and made us double its length. I am grateful to both of them.

1. The minimal (graded) rank case

Our aim in this paper is to prove that free and hyperbolic groups are

stable. Before treating the stability of these groups, we study a subcollection

of definable sets, which we called minimal rank (in [Sel05b, §1]), and prove

that these sets are in the Boolean algebra generated by equational sets (and

hence are, in particular, stable).

Recall that a Diophantine set over a free group, Fk = 〈a〉, is a projection

of a variety; i.e., it is defined as

D(p) = {p | ∃x Σ(x, p, a) = 1}.

With the (set of solutions to the) system of equations, Σ(x, p, a) = 1, one

can associate canonically finitely many limit groups (see [Sel01, Th. 7.2]),

L1(x, p, a), . . . , Lt(x, p, a). If we denote the parameter (free variables) sub-

group P = 〈p〉, then the Diophantine set, D(p), is determined by the finitely

many homomorphisms, hi : P → Li, i = 1, . . . , t.

Definition 1.1. A Diophantine set, D(p), is called minimal rank if the

targets Li, in the homomorphisms: hi : P → Li, i = 1, . . . , t, that determine

the Diophantine set, D(p), admit no restricted epimorphism onto a free product

of the coefficient group and an infinite cyclic group, Fk ∗ 〈t〉 = 〈a〉 ∗ 〈t〉. A

definable set is called minimal rank, if it is contained in the union of finitely

many minimal rank Diophantine sets.

A parametric family of Diophantine sets is defined as:

D(p, q) = {(p, q) | ∃x Σ(x, p, q, a) = 1}

(where the variables q are considered to be the parameters of the family, and

for each value of the variables q the fiber is a Diophantine set).
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The parametric family, D(p, q), is called minimal rank if the targets

Li(x, p, q, a), in the homomorphisms: ui : 〈p, q〉 → Li(x, p, q, a), that deter-

mine the family, D(p, q), admit no restricted epimorphism onto a free product

of the coefficient group and an infinite cyclic group, Fk ∗ 〈t〉 = 〈a〉 ∗ 〈t〉, that

maps the subgroup 〈q〉 into the coefficient group Fk = 〈a〉. A parametric fam-

ily of definable sets is called minimal rank, if it is contained in the union of

finitely many minimal rank parametric families of Diophantine sets.

Minimal (graded) rank sets were treated separately in our procedure for

quantifier elimination ([Sel05b]–[Sel06]), and it was indicated there that our

procedure for quantifier elimination for minimal (graded) rank formulas is far

easier than it is for general formulas; see [Sel05b, §1] for the analysis of minimal

rank sets.

In order to prove that minimal rank families of definable sets are contained

in a Boolean algebra of equational sets, we introduce a collection of (minimal

rank) equational sets for which

(i) The Boolean algebra generated by the collection of equational sets

contains the collection of minimal rank families of definable sets.

(ii) If ϕ(p, q) is (the formula that defines) an equational set, then there

exists a constant Nϕ, so that for every sequence of values {qi}mi=1

for which the sequence of sets that corresponds to the intersections:

{∧ji=1ϕ(p, qi)}mj=1 is a strictly decreasing sequence, satisfies: m ≤ Nϕ.

(O. Belegradek has pointed out to us that this is the definition of

equationality that one needs to use in case the underlying model is

not necessarily saturated.)

To define the subcollection of equational sets, and prove the descending

chain condition that they satisfy, we study the Boolean algebra of minimal

rank definable sets gradually.

(1) Diophantine sets; we show that minimal rank parametric families of Dio-

phantine sets are equational.

(2) Rigid limit groups are defined in Section 10 of [Sel01], and their rigid values

are analyzed in Sections 1–2 of [Sel05a]. In Theorem 2.5 in [Sel05a] it is

proved that given a rigid limit group, there exists a global bound on the

number of rigid values that are associated with any possible value of the

defining parameters.

With a given minimal rank rigid limit group Rgd(x, p, q, a) (where 〈p, q〉
is the parameters group), we associate a natural existential formula, ϕ(p, q),

that specifies those values of the defining parameters p, q for which

Rgd(x, p, q, a) admits at least m rigid values for some fixed integer m.

We prove the existence of a collection of equational formulas, so that
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the Boolean algebra generated by this collection contains all the formu-

las ϕ(p, q), that are associated with all minimal rank rigid limit groups

and an arbitrary integer m.

(3) Solid limit groups are defined in Section 10 of [Sel01], and their strictly

solid families of specializations are analyzed in Sections 1–2 of [Sel05a]

(see [Sel05a, Def. 1.5]). In parallel with rigid limit groups, it is proved in

Theorem 2.9 of [Sel05a] that given a solid limit group, there exists a global

bound on the number of strictly solid families that are associated with any

possible value of the defining parameters. (Strictly solid families of a solid

limit group are defined in [Sel05a, Def. 1.5].)

With a given minimal rank solid limit group Sld(x, p, q, a) we associate

a natural EA formula, ϕ(p, q), that specifies those values of the defining

parameters p, q for which Sld(x, p, q, a) admits at least m strictly solid fam-

ilies of values for some fixed integer m. As for rigid limit groups, we show

the existence of a collection of equational formulas, so that the Boolean

algebra generated by this collection contains all the formulas ϕ(p, q), that

are associated with minimal rank solid limit groups and an arbitrary inte-

ger m.

(4) Given a graded resolution (which terminates in either a rigid or a solid limit

group) and a finite collection of (graded) closures of that graded resolution,

we define a natural formula, α(p, q) (which is in the Boolean algebra of

AE formulas), that specifies those values of the defining parameters for

which the given set of closures forms a covering closure of the given graded

resolution. (See [Sel03, Defs. 1.15 and 1.16] for a closure and a covering

closure.) We show the existence of a collection of equational sets, so that

the Boolean algebra generated by this collection contains all the sets that

are defined by the formulas α(p, q) that are associated with all the graded

resolutions for which their terminal rigid or solid limit group is of minimal

(graded) rank.

(5) Finally, we show the existence of a subcollection of equational sets that

generates the Boolean algebra of minimal rank parametric families of de-

finable sets.

Theorem 1.2. Let Fk = 〈a1, . . . , ak〉 be a non-abelian free group, and let

D(p, q) = {(p, q) | ∃x Σ(x, p, q, a) = 1}

be a minimal rank parametric family of Diophantine sets that is defined over

Fk (where the variables q are considered to be the parameters of the family).

Then D(p, q) is equational.

We need to show that D(p, q) is equational, i.e., that there exists an

integer ND, so that every sequence of values, {qi}mi=1 for which the sequence
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of intersections: {∩ji=1D(p, qi)}mj=1 is a strictly decreasing sequence, satisfies:

m ≤ ND.

Let L1(x, p, q, a), . . . , Lt(x, p, q, a) be the finite collection of maximal limit

groups that is canonically associated with the system of equations Σ(x, p, q, a)

= 1. (See [Sel01, Th. 7.2] for the existence of this canonical finite collection.)

Since we assume that D(p, q) is a minimal rank family of Diophantine sets, each

of the limit groups Li(x, p, q, a) is of minimal rank, when viewed as a graded

limit group with respect to the parameter subgroup 〈q〉. (That is, Li(x, p, q, a)

admits no restricted epimorphism onto a free group Fk∗F where F is nontrivial

free group, and the subgroup 〈q〉 is mapped into the coefficient group Fk.)

To prove the existence of a bound ND, we associate with the set D(p, q)

a universal finite diagram. The construction of the diagram is based on the

sieve procedure for quantifier elimination in the minimal rank case, which is

presented in Section 1 of [Sel05b]. Once the universal diagram is constructed,

equationality of the original family of Diophantine sets, D(p, q), will be de-

duced, by uniformly bounding the lengths of certain (decreasing) paths along

the constructed diagram. In particular, the equationality constant, ND, can

be computed from the diagram.

We start the construction of the universal finite diagram with each of

the maximal limit groups, L1(x, p, q, a), . . . , Lt(x, p, q, a), in parallel. With a

limit group, Li(x, p, q, a), viewed as a graded limit group with respect to the

parameter subgroup 〈q〉, we associate its strict graded Makanin-Razborov di-

agram. (For the construction of the strict Makanin-Razborov diagram, see

[Sel03, Prop. 1.10]. The modification of a graded Makanin-Razborov diagram

to a strict diagram is identical to the ungraded case, and the strict graded

Makanin-Razborov diagram is used repeatedly in the quantifier elimination

procedure, e.g., in the proof of Theorem 1.4 in [Sel05b].) With each resolu-

tion in the graded strict Makanin-Razborov diagram, we further associate its

singular locus (the singular locus of a graded resolution collects all the rigid

or strictly solid values of the rigid or solid terminal limit group of the graded

resolution for which the fiber of specializations that is associated with such

value is degenerate; see [Sel01, §1] for the exact definition, stratification, and

the construction of the singular locus) and the strict graded resolutions that

are associated with each of the strata in the singular locus.

Altogether we have a finite collection of strict graded resolutions, those

that appear in the strict graded Makanin-Razborov diagrams of the groups Li,

and those that are associated with the strata in their singular loci. We conclude

the first step of the construction of the diagram, by associating the (graded)

completion with each of the graded resolutions in our finite collection, which

we denote, Comp(x, p, z, q, a) (see [Sel03, Def. 1.12] for the completion of a

strict resolution), and with each graded completion we associate its complexity,
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according to Definition 1.16 in [Sel05b]. These (finitely many) completions

form the first level of the universal diagram.

We continue to the construction of the second level of the diagram with

each of the completions Comp(x, p, z, q, a) in parallel. With each such com-

pletion we associate the collection of all the values (x01, x
0
2, p0, z0, q

0
1, q

0
2, a) for

which

(1) (x01, p0, z0, q
0
1, a) is a specialization of the completion, Comp(x, p, z, q, a);

(2) (x02, p0, q
0
2, a) is a specialization of at least one of the maximal limit groups,

Li(x, p, q, a), that is (canonically) associated with the system of equations

Σ(x, p, q, a) (which defines the Diophantine set D(p, q)).

By the standard arguments that are presented in Section 5 of [Sel01],

with this collection of values we can canonically associate a canonical finite

collection of maximal limit groups, Mj(x1, x2, p, z, q1, q2, a), which we view as

graded limit groups with respect to the parameter subgroup 〈q1, q2〉. (Note

that the finite collection of limit groups, {Mj}, is dual to the Zariski closure

of the given collection of values.)

Since we assume that each of the limit groups, Li(x, p, q, a), is of minimal

rank, each of the completions, Comp(x, p, z, q, a), is of minimal rank as well (as

the limit groups that are associated with the various levels of these completions

are quotients of the limit groups, Li).

The limit groups, Mj(x1, x2, p, z, q1, q2, a), are constructed from specializa-

tions of the completions, Comp(x, p, z, q, a), and the limit groups, Li(x, p, q, a).

Since both the completions, Comp(x, p, z, q, a), and the limit groups,

Li(x, p, q, a), are of minimal rank, so are the limit groups, Mj , i.e., each of the

limit groups, Mj , admits no epimorphism onto a free group, Fk∗F , where F is a

nontrivial free group, and the subgroup, 〈q1, q2〉, is mapped into the coefficient

group Fk. To analyze the values of the defining parameters, (p, q), that extend

to values of the constructed limit groups, Mj , we need the following theorem.

Theorem 1.3. Let L(x, p, q, a) be a minimal rank graded limit group

(graded with respect to the parameter subgroup 〈q〉), let LRes(x, p, q, a) be a

graded resolution of L(x, p, q, a), and let Comp(LRes)(x, p, z, q, a) be the com-

pletion of the resolution, LRes. With the resolution LRes we can associate a

complexity according to Definition 1.16 in [Sel05b].

Let U(u, p, q, a) be a minimal rank limit group, and let S(u, x, p, z, q1, q2, a)

be a limit group that is obtained as a limit of a sequence of values

{(u(n), x(n), p(n), z(n), q1(n), q2(n), a)}∞n=1,

where the tuples, (x(n), p(n), z(n), q1(n), a), are specializations of the comple-

tion, Comp(LRes)(x, p, z, q, a), and the tuples, (u(n), p(n), q2(n), a), are spe-

cializations of the limit group, U(u, p, q, a).
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With the graded limit group, S(u, x, p, z, q1, q2, a), it is possible to associate

finitely many strict graded resolutions

V Res1(v, x, p, z, q1, q2, a), . . . , V Res`(v, x, p, z, q1, q2, a)

that are graded with respect to the parameter subgroup, 〈q1, q2〉 for which

(1) Every value, (p0, q
0
1, q

0
2), of the variables p, q1, q2, that can be extended to

a specialization of the limit group, S(u, x, p, z, q1, q2, a), can be extended

to a value, (v0, x0, p0, z0, q
0
1, q

0
2, a), that factors through at least one of the

resolutions, V Resi, i = 1, . . . , `.

(2) The complexity of each of the resolutions, V Resi, is bounded by the com-

plexity of the resolution that we have started with, LRes (where the com-

plexity of a minimal rank resolution is the one presented in [Sel05b, Def.

1.16]).

(3) If the complexity of a resolution, V Resi, is equal to the complexity of

the graded resolution, LRes, then the completion of V Resi, Comp(V Resi),

has the same structure as a graded closure of the completion of LRes,

Comp(GRes) (see [Sel03, Def. 1.14] for a closure of a completion). That

is, Comp(V Resi) is obtained from Comp(LRes) by possibly adding roots to

abelian vertex groups in abelian decompositions that are associated with

the various levels of Comp(LRes) and replacing the terminal rigid or solid

limit group of Comp(LRes) (which is graded with respect to the parameter

subgroup 〈q〉) with a rigid or solid limit group with respect to the parameter

subgroup 〈q1, q2〉.

Proof. The construction of such a finite set of resolutions is precisely the

construction that is conducted in the general step of the sieve procedure for

quantifier elimination in the minimal rank case in Section 1 of [Sel05b]. (See

the proof of Theorem 1.22 in [Sel05b].) �

Both the completions, Comp(x, p, z, q, a), and the limit groups, Mj(x1, x2,

p, z, q1, q2, a), that we have associated with the Diophantine set, D(p, q), are

of minimal rank, and the limit groups, Mj , are obtained from a collection of

specializations of a minimal rank completion, Comp(x, p, z, q, a), by imposing

on them an additional (minimal rank) Diophantine conditions. Hence, the as-

sumptions of Theorem 1.3 are satisfied, with Comp(x, p, z, q, a), Li(x, p, q, a),

and Mj in place of Comp(LRes), U(u, p, q, a), and S, in the statement of Theo-

rem 1.3. By the conclusion of the theorem, with each of the limit groups, Mj ,

we can associate finitely many strict graded resolutions that satisfy properties

(1)–(3) in the statement of Theorem 1.3.

Therefore, some of the strict graded resolutions that are associated with

a limit group, Mj , have the structure of (graded) closures of the completion,

Comp(x, p, z, q, , a), from which Mj was constructed (part (3) in Theorem 1.3),
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and the other resolutions have strictly smaller complexity than the complexity

of Comp(x, p, z, q, a). Those constructed resolutions that have strictly smaller

complexity than their associated completion, Comp(x, p, z, q, a), or the struc-

ture of proper closures of the completion, Comp(x, p, z, q, a), i.e., the structure

of closures that contain nontrivial roots of elements in abelian vertex groups

that are associated with with (abelian decompositions of) Comp(x, p, a, q, a),

form the second level of the universal diagram that is associated with the Dio-

phantine set, D(p, q). We add a directed edge from each of the completions,

Comp(x, p, z, q, a), that form the first level of the diagram, to each of the graded

resolutions that are associated with it in the second level of the diagram.

We continue to the third step of the construction of the diagram with

each of the graded resolutions in the second level, and we continue in parallel.

Given such a (graded) resolution, we repeat the same operations that we have

conducted in the second step. Given a graded resolution in the second level

of the diagram, we take its completion, and look at all the specializations of

that completion, for which there exists a value (x03, q
0
3), so that the combined

value, (x03, p
0, q03, a), is a specialization of one of the limit groups, Li(x, p, q, a),

that are associated with the system of equations Σ(x, p, q, a) (which was used

to define the Diophantine set D(p, q)). With the collection of these values,

we canonically associate a finite collection of maximal limit groups (which is

associated with the Zariski closure of the given collection of values according to

[Sel01, §5]). Each such maximal limit group has to be of minimal rank; it does

not admit an epimorphism onto a free group Fk ∗ F (where F is nontrivial)

that maps the parameter subgroup 〈q1, q2, q3〉 into the coefficient group Fk.

By Theorem 1.3 with the obtained (minimal rank) maximal limit groups

and the completions of the resolutions in the second level from which they

were constructed, we associate a finite collection of minimal rank graded res-

olutions (with respect to the parameter subgroup 〈q1, q2, q3〉). By part (2) of

Theorem 1.3, the complexity of each of the constructed resolutions is bounded

by the complexity of the resolution in the second level of the diagram from

which it was constructed. Furthermore, by part (3) of Theorem 1.3, in case of

equality in the complexities of a graded resolution that appears in the second

level of the diagram, and a constructed graded resolution that was constructed

from it, the constructed resolution has to have the structure of a closure of the

graded resolution from the second level (the structure of a closure in the sense

of part (3) in Theorem 1.3).

Those constructed resolutions that have strictly smaller complexity than

the resolution in the second level from which they were constructed, or those

constructed resolutions that have the structure of (proper) closures of the asso-

ciated resolutions in the second level, in which nontrivial roots were added to

abelian vertex groups that are associated with the resolution from the second
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level, form the third level of the universal diagram that is associated with the

Diophantine set, D(p, q). We add a directed edge from each of the resolutions

in the second level to any of the (finitely many) graded resolutions that were

constructed from it in the third level of the diagram.

We continue the construction iteratively and repeat the same operations

at each step. Given a graded resolution that appears in level n of the diagram,

we associate its completion with it. Then we collect all the specializations

that factor through this completion, and satisfy an additional Diophantine

condition, i.e., their restrictions to the variables p, extend to values that factor

through one of the finitely maximal limit groups, Li, that are associated with

the system of equations Σ, that was used to define the Diophantine set, D(p, q),

and these values of the limit groups Li restrict to values q0n+1 of the variables

q in the generating set of the limit groups Li. We associate with the collection

of the combined values (the value of the completion of the graded resolution

in level n and the corresponding value of some limit group Li) its canonical

collection of maximal limit groups. By part (2) of Theorem 1.3, the complexity

of each of the constructed resolutions is bounded by the complexity of the

resolution in the second level of the diagram from which it was constructed.

By part (3) of Theorem 1.3, in case of equality in the complexities of a graded

resolution that appears in the n-th level of the diagram, and a constructed

graded resolution that was constructed from it, the constructed resolution has

to have the structure of a closure of the graded resolution from the n-th level

(the structure of a closure in the sense of part (3) in Theorem 1.3).

We continue to level n + 1 of the diagram only with those constructed

resolutions that have strictly smaller complexity than the resolution in the

n-th level from which they were constructed, or those constructed resolutions

that have the structure of proper closures of the associated resolutions in n-th

level. We add a directed edge from each of the resolutions in the n-th level to

any of the (finitely many) graded resolutions that were constructed from it in

the n+ 1-th level of the diagram.

The diagram that we constructed is locally finite; hence, we may apply

Konig’s lemma to prove that its construction terminates. The complexities of

graded resolutions along a path in the diagram are nonincreasing. By Theorem

1.18 in [Sel05b], a strict reduction in the complexities of successive resolutions

along a path in the diagram can occur only at finitely many levels. Given a

resolution in the diagram, and a subpath (that have the structures) of proper

closures of it (in the sense of part (3) in Theorem 1.3), its successive resolutions

along the path are obtained from it by imposing one of (fixed) finitely many

Diophantine conditions.

A graded resolution that has the structure of a proper closure of its pre-

ceding one along a path in the diagram is obtained from the completion of
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its preceding one by adding proper roots to some of the abelian vertex groups

that are associated with the preceding completion. By Theorem 1.3, given a

completion along a path, there are finitely many graded resolutions that are

associated with it in the next level of the diagram and, in particular, finitely

many graded resolutions that have the structure of proper closures of the orig-

inal completion.

Therefore, given a completion along a path in the constructed diagram,

there is a global bound (which depends only on the completion and the finitely

many Diophantine conditions) on the index of abelian supergroups of abelian

vertex groups that are associated with the given completion for all the graded

resolutions that have the structure of proper closures of the given completion

along the given path. Hence, there is a bound on the length of a subpath that

starts with the completion and continues from it with a sequence of resolutions

that have the structure of proper closures of it. The finiteness of subpaths

of proper closures, together with the finiteness of the number of levels with a

complexity reduction, along a given path in the diagram, imply that every path

in the diagram has to be finite. Therefore, by Konig’s lemma, the constructed

diagram is finite.

Note that the obtained diagram is a directed forest, where at each vertex

we placed a (strict) graded resolution, or alternatively its completion. Further-

more, the constructed diagram is universal which, in particular, means that

given an arbitrary sequence of values of the defining parameters, q1, q2, . . . , qm,

we can analyze the structure of the intersections, {∩ji=1D(p, qi)}mj=1, using the

constructed diagram.

By Theorems 2.5, 2.9, and 2.13 of [Sel05a] the number of rigid or strictly

solid families of values of a rigid or solid limit group, that are associated with a

given value of the defining parameters, is uniformly bounded by a bound that

depends only on the rigid or solid limit group (and not on the specific value of

the defining parameters).

Let depth be the number of levels in the universal diagram that we have

associated with the Diophantine set, D(p, q), and let w be the maximal number

of vertices in a single level of the diagram. At each vertex in the diagram we

have placed a graded resolution (or alternatively, a graded completion of that

resolution). Each such graded resolution terminates in either a rigid or a solid

limit group, and by Theorems 2.3, 2.9, and 2.13 in [Sel05a], with each such

terminal rigid or solid limit group, there is a corresponding global bound on

the number of rigid or strictly solid families of values that is associated with

any possible value of its defining parameters. Let b be the maximum of all

the global bounds that are associated with the terminal rigid or solid limit

groups of all the graded resolutions that are associated with the vertices in the

constructed universal diagram.
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In the sequel we will often need the following notion.

Definition 1.4. Let GRes(x, p, q, a) be a graded resolution that terminates

in either a rigid limit group, Rgd(x, p, q, a), or a solid limit group, Sld(x, p, q, a).

Let Comp(x, p, z, q, a) be the completion of GRes. A fiber of the graded res-

olution, GRes, or of its completion, Comp, is the set of specializations of the

completion, Comp, that extends a given rigid or strictly solid value of the

terminal rigid or solid limit group, Rgd or Sld, of the resolution GRes.

A q-fiber of the graded resolution, GRes, or of its completion, Comp, is

the bounded collection of fibers that extends a given value q0 of the defining

parameters q.

Let q01, q
0
2, . . . , be a given sequence of values (in the coefficient group Fk)

of the (free) variables q in the Diophantine set, D(p, q). First, we look at

q1 as parameters. There are at most w graded resolutions in the first level

of the constructed universal diagram, and there are at most b fibers that are

associated with each of these graded resolutions and with the specialization q01.

Hence, there are at most wb fibers of the graded resolutions in the first level

of the diagram that are associated with q01.

If D(p, q01) ∩ D(p, q02) = D(p, q01), there is no change. If D(p, q01) ∩
D(p, q02) 6= D(p, q01), the intersection of the two Diophantine sets is strictly

contained in D(p, q01). The Diophantine set D(p, q01) is a finite union of at most

wb fibers of the graded resolutions in the initial level of the diagram. Since

the intersection of the two Diophantine sets, D(p, q01) and D(p, q02), is strictly

contained in D(p, q01), it is a finite union of fibers — a proper (possibly empty)

subset of the fibers that are associated with D(p, q01), and at least one of the

fibers that is associated with D(p, q01), that is replaced by a (possibly empty)

finite collection of fibers that are associated with the pair, (q01, q
0
2), and with

some of the graded resolutions that appear in the second level of the diagram.

By the structure of the universal diagram, each fiber in the first level can be

replaced by at most wb fibers in the second level.

We repeat this argument iteratively. Each time a value q0n is added, and

the corresponding intersection is a proper subset of the previous intersection,

at least one of the fibers that was associated with the intersection of the first

n − 1 values is replaced by at most wb fibers in level that succeeds the level

of that fiber. (A fiber that is associated with the last level of the diagram

can only be replaced by the empty set.) As the diagram has depth levels, it

takes at most depth · (wb)depth−1 values of the variables qn (for which there

is a strict reduction in the corresponding intersection) to be left with at most

depth · (wb)depth fibers in the terminal level of the diagram and at most an

additional depth · (wb)depth values of the variables qn (for which there is a

strict reduction in the corresponding intersection) to eliminate these fibers
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in the terminal level. Therefore, altogether there can be at most 2 · depth ·
(wb)depth values of the variables qn for which there is a strict reduction in the

intersection: ∩ji=1D(p, qi), which proves the equationality of the set D(p, q)

(where the equationality constant satisfies ND = 2 · depth · (wb)depth). �

Theorem 1.5. Let Fk = 〈a1, . . . , ak〉 be a non-abelian free group, and

let Rgd(x, p, q, a) be a rigid limit group, with respect to the parameter subgroup

〈p, q〉. Let s be a positive integer, and let NRs be the set of values of the defining

parameters 〈p, q〉 for which the rigid limit group, Rgd(x, p, q, a), has at least s

rigid values.

There exists a collection of equational sets so that the Boolean algebra

generated by this collection contains the sets NRs for every minimal rank rigid

limit group Rgd(x, p, q, a) and every possible integer s.

Proof. We construct iteratively a collection of equational sets that gener-

ate a Boolean algebra that contains the sets of the form NRs. With a set of

the form NRs, we associate a minimal rank Diophantine set D1 and show that

NRs ∪D1 is equational. Clearly,

NRs = ((NRs ∪D1) \ D1) ∪ (D1 ∩ NRs).

Since by Theorem 1.2 the minimal rank Diophantine set D1 is equational,

to prove the theorem we further need to study the set D1 ∩ NRs. We study

this set in the same way we treated the set NRs. We further associate a

complexity with the sets NRs and NRs ∩ D1, and argue that the complexity

of the set D1 ∩ NRs is strictly smaller than the complexity of the original

set NRs. We continue iteratively. At each step, we add a (minimal rank)

Diophantine correction to the remaining set from the previous step, prove the

equationality of the union of the remaining set and the Diophantine correction,

and argue that the intersection of the Diophantine correction and the remaining

set from the previous step has strictly lower complexity. Finally, the reduction

in complexity forces the iterative procedure to terminate, hence, prove the

theorem for the sets NRs.

We start with the construction of the set D1 that is associated with the set

NRs. As a preparation to the definition of D1, we look at the collection of all

the tuples of values, (x01, . . . , x
0
s, p0, q0, a) for which for every index i, 1 ≤ i ≤ s,

(x0i , p0, q0, a) is a rigid value of the given rigid limit group Rgd(x, p, q, a), and

for every couple i, j, 1 ≤ i < j ≤ s, x0i 6= x0j . By our standard arguments,

with this collection of values we can associate canonically a finite collection of

maximal limit groups, Tj(x1, . . . , xs, p, q, a).

We continue with each of the limit groups Tj(x1, . . . , xs, p, q, a) in parallel.

With Tj viewed as a graded limit group with respect to the parameter subgroup

〈q〉, we associate its strict graded Makanin-Razborov diagram (according to the
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construction of this diagram as it appears in [Sel03, Prop. 1.10]). With each

resolution in the strict graded Makanin-Razborov diagram, we further associate

its singular locus and the strict graded resolutions that are associated with each

stratum in the singular locus. With each of the obtained graded resolutions we

further associate its (graded) completion (according to [Sel03, Def. 1.12]), and

with each graded completion we associate its complexity, according to [Sel05b,

Def. 1.16].

We continue with each of the completions in parallel. Given such a com-

pletion, we look at all its specializations, for which either one of the values

that are supposed to be rigid is flexible, or those for which two rigid values

that are supposed to be distinct coincide. Note that the conditions that we im-

pose on the specializations of the completions are all basic conditions; i.e., the

specializations are required to satisfy one of finitely many possible additional

equations. With the collection of all such specializations we can associate a

canonical finite collection of (graded) limit groups. Each such graded limit

group is minimal rank by our assumptions. Hence, we can associate with it a

finite collection of resolutions according to Theorem 1.3.

By Theorem 1.3, some of the associated graded resolutions have the struc-

ture of graded closures of the original resolution, and the rest have strictly

smaller complexity than the completion that they were constructed from. Since

the maximal limit groups that we analyze are obtained from specializations of

completions of the original resolutions that satisfy one of finitely many addi-

tional basic conditions, each of the graded resolutions of these limit groups

that have the structure of a graded closure of the completion from which it

was constructed (see part (3) of Theorem 1.3) has the precise structure of the

completion that it was constructed from; i.e., no proper roots were added to

any of the abelian vertex groups that are associated with the completion from

which the graded resolution was constructed.

We omit the subcollection of resolutions that have the structure of graded

closures from the list of associated graded resolutions that we constructed.

With each resolution that has strictly smaller complexity, we associate its

completion, and we set the Diophantine set D1 to be the disjunction of all the

Diophantine sets that are associated with completions of those resolutions that

are not of maximal complexity, i.e., resolutions that do not have the structure

of graded closures.

Remark. With the set NRs we have associated finitely many graded limit

groups, Tj . With these limit groups we have associated the resolutions in their

strict graded Makanin-Razborov diagrams. By adding the set D1 to the set

NRs, we fill all the fibers that are associated with these graded resolutions and

contain at least one (in fact, generic) point from the set NRs.

Proposition 1.6. The set NRs ∪D1 is equational.
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Proof. To prove the proposition, we associate with the set NRs∪D1 a finite

diagram, that is constructed iteratively, in a similar way to the construction of

the diagram that is associated with a minimal rank Diophantine set and that

was used in the proof of Theorem 1.2.

We start the construction of the diagram with the collection of all the

tuples of values, (x01, . . . , x
0
s, p0, q0, a) for which for every index i, 1 ≤ i ≤ s,

(x0i , p0, q0, a) is a rigid value of the given rigid limit group Rgd(x, p, q, a), and

the x0i ’s are distinct, and the collection of all tuples (u0, p0, q0, a) that are spe-

cializations of one of the (finitely many) completions that are associated with

the Diophantine set D1, Comp(u, p, q, a). By our standard arguments, with

this collection of values we associated canonically a finite collection of maxi-

mal limit groups, Tj(x1, . . . , xs, p, q, a), and the completions that are associated

with D1, Comp(u, p, q, a).

We continue with each of the limit groups Tj(x1, . . . , xs, p, q, a) in parallel.

With a maximal limit group Tj , viewed as a graded limit group with respect to

the parameter subgroup 〈q〉, we associate its strict graded Makanin-Razborov

diagram. With each resolution in the strict graded Makanin-Razborov dia-

gram, we further associate its singular locus, and the graded strict resolutions

that are associated with each of the strata in the singular locus. With each of

the obtained strict graded resolutions we further associate its (graded) comple-

tion, Comp(x1, . . . , xs, p, z, q, a), and with each graded completion we associate

its complexity, according to [Sel05b, Def. 1.16]. These graded resolutions and

their completions, together with the graded resolutions that are associated

with the Diophantine set D1, and their completions, Comp(u, p, q, a), form the

first level of the diagram that we associate with NRs ∪D1.

In the second level of the diagram we need to place resolutions that will

assist us in analyzing the intersections (NRs ∪D1)(p, q1) ∩ (NRs ∪D1)(p, q2).

These intersections can be written as unions of sets of the form NRs(p, q1) ∩
NRs(p, q2), NRs(p, q1) ∩D(p, q2), and D(p, q1) ∩D(p, q2).

We start the construction of the resolutions in the second level of the dia-

gram with each of the completions, Comp(x1, . . . , xs, p, z, q, a), and each of the

completions that are associated with D1, Comp(u, p, q, a), in parallel. With

each completion, Comp(x1, . . . , xs, p, z, q, a), we associate the collection of val-

ues, (y01, . . . , y
0
s , x

0
1, . . . , x

0
s, p0, z0, q

0
1, q

0
2, a) and (u02, x

0
1, . . . , x

0
s, p0, z0, q

0
1, q

0
2, a),

and with each completion that is associated with D1, Comp(u, p, q, a), we asso-

ciate the collection of values, (y01, . . . , y
0
s ,u

0
1,p0, q

0
1, q

0
2,a) and (u02,u

0
1,p0, q

0
1, q

0
2,a),

so that the restrictions of these values satisfy the following conditions:

(1) (x01, . . . , x
0
s, p0, z0, q

0
1, a) is a specialization of the completion, Comp(x1, . . . ,

xs, p, z, q, a).

(2) the values, (x0i , p0, q
0
1, a), i = 1, . . . , s, are distinct rigid values of the rigid

limit group, Rgd(x, p, q, a), and so are the values, (y0i , p0, q
0
2, a), i = 1, . . . , s.
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(3) (u0j , p0, q
0
j , a), j = 1, 2, is a specialization of one of the completions that is

associated with the set D1, Comp(u, p, q, a).

With this set of values we (canonically) associate a canonical finite collection of

maximal limit groups (according to [Sel01, Th. 7.2]), which we view as graded

limit groups with respect to the parameter subgroup 〈q1, q2〉.
By our assumptions each of the completions, Comp(x1, . . . , xs, p, z, q, a),

and each of the completions that is associated with D1, Comp(u, p, q, a), is of

minimal rank. Hence, we may apply Theorem 1.3 and associate with each of

the (finitely many) graded limit groups that is associated with the collection

of values under consideration a finite collection of minimal rank strict graded

resolutions (with respect to the parameter subgroup 〈q1, q2〉). By Theorem 1.3,

the complexity of each of these minimal rank resolutions is bounded above by

the complexity of the resolution from which the corresponding completion was

constructed (the completion in the first level of the diagram with which we

have started the construction of the corresponding part of the second level),

Comp(x1, . . . , xs, p, z, q, a) or Comp(u, p, q, a). By the same theorem, in case of

equality in complexities (between a constructed resolution and the completion

it was constructed from), the obtained resolution has to have the structure of a

graded closure of the completion from which it was constructed. (See part (3)

of Theorem 1.3 for the properties of that structure.) Therefore, some of the

obtained resolutions have the structure of (graded) closures of the completions,

Comp(x1, . . . , xs, p, z, q, a) and Comp(u, p, q, a), and the other resolutions have

strictly smaller complexity than the complexity of corresponding completion,

Comp(x1, . . . , xs, p, z, q, a) or Comp(u, p, q, a).

We continue to the third level only with those resolutions that have strictly

smaller complexity than the completion from which they were constructed, or

with resolutions that have the structure of proper closures of the completions

from which they were constructed. (See part (3) in Theorem 1.3.) Given

such a (graded) resolution, we perform the same operations that we have con-

ducted in constructing the second level; i.e., we take its completion and look at

all the specializations of that completion that satisfy the corresponding (non-

degeneration) rigidity conditions, and for which either there exists a value,

(t01, . . . , t
0
s, q

0
3), so that the combined values, (t0i , p0, q

0
3, a), are distinct rigid

values of Rgd(x, p, q, a), or a value, (u0, p0, q
0
3, a) that is a specialization of one

of the (finitely many) completions, Comp(u, p, q, a), that are associated with

the Diophantine set D1.

With the collection of these values, we canonically associate a finite col-

lection of maximal limit groups, that are all of minimal rank, and with them

we associate finitely many (minimal rank) strict graded resolutions by apply-

ing Theorem 1.3. By Theorem 1.3, the complexity of each of the associated
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graded resolutions is bounded by the complexity of the corresponding reso-

lution from the second level of the diagram from which it was constructed.

We continue to the fourth level, only with those resolutions that have strictly

smaller complexity than the resolution from the second level from which they

were constructed, or with graded resolutions that have the structure of proper

closures of the completion of that resolution (i.e., graded resolutions that sat-

isfy part (3) in Theorem 1.3 and for which proper roots were added to some of

the abelian vertex group that are associated with the completion from which

they were constructed).

We continue the construction iteratively. Since the obtained diagram is

locally finite, we may apply Konig’s lemma to prove the finiteness of the dia-

gram. By Theorem 1.32 in [Sel05b], a reduction in the complexity of successive

resolutions can occur only at finitely many steps along a path in the diagram.

By the same argument that we used in proving Theorem 1.2, every subpath in

the constructed diagram in which a successive resolution is a proper closure of

its predecessor has to be finite. Hence, every path in the constructed diagram

is finite, and by Konig’s lemma the entire diagram is finite.

At this stage we can deduce the equationality of the set NRs ∪ D1 from

the constructed diagram, using a modification of the argument that was used

in the proof of Theorem 1.2. Recall that by Theorems 2.5, 2.9, and 2.13 of

[Sel05a] the number of rigid or strictly solid families of values of a rigid or solid

limit group, that are associated with a given value of the defining parameters,

is uniformly bounded by a bound that depends only on the rigid or solid limit

group (and not on the specific value of the defining parameters).

Keeping our notation from the proof of Theorem 1.2, let depth be the

number of levels in the diagram that we have associated with the set, NRs∪D1,

and let w be the maximal number of vertices in a single level of the diagram.

At each vertex in the diagram we have placed a graded resolution. Each such

graded resolution terminates in either a rigid or a solid limit group, and by

Theorems 2.3, 2.9, and 2.13 in [Sel05a], with each such terminal rigid or solid

limit group, there is a corresponding global bound on the number of rigid or

strictly solid families of values that is associated with any possible value of

the defining parameters. Let b be the maximum of all the global bounds that

are associated with the terminal rigid or solid limit groups of all the graded

resolutions that are associated with the vertices in the constructed universal

diagram.

Let q01, q
0
2, . . ., be a given sequence of values (in the coefficient group Fk)

of the (free) variables q in the set, (NRs∪D1)(p, q). To prove equationality, we

need to prove that the intersection, ∩ji=1 (NRs∪D1)(p, qi), strictly decreases for

boundedly many indices j (where the bound does not depend on the specific

sequence {qi}).
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First, we look at q1 as parameters. There are at most w graded resolutions

in the first level of the constructed universal diagram, and there are at most b

fibers that are associated with each of these graded resolutions and with the

value q01. Hence, there are at most wb fibers of the graded resolutions in the

first level of the diagram that are associated with q01.

The fibers that are associated with the value q01 are either fibers of one of

the completions, Comp(u, p, q, a), or of one of the completions of the graded

resolutions of the limit groups, Tj(x1, . . . , xs, p, q, a). (These collections of

completions form the first level of the constructed diagram.) Values in a

fiber of a completion, Comp(u, p, q, a), are clearly in the Diophantine set,

D1(p, q). If a fiber in a graded resolution that is associated with a limit group,

Tj(x1, . . . , xs, p, q, a), contains a point, (x01, . . . , x
0
s, p0, q

0
1, a), for which the val-

ues, (x0i , p0, q
0
1, a), i = 1, . . . , s, are distinct rigid values of Rgd(x, p, q, a), then

the basic conditions that were imposed in constructing the Diophantine set D1

do not hold for generic points in the fiber. Hence, the basic conditions that

were imposed in constructing D1 may hold only for points in the fiber that are

contained in boundedly many fibers of graded resolutions that are associated

with q01 and D1, and have strictly smaller complexity than the original graded

resolution of Tj . These last fibers are contained in D1, and therefore, the entire

fiber (or rather the restrictions of the points in the fiber to the variables (p, q))

is contained in the definable set, NRs ∪D1.

If a fiber in a graded resolution that is associated with a limit group,

Tj(x1, . . . , xs, p, q, a), does not contain a point, (x01, . . . , x
0
s, p0, q

0
1, a), for which

the values, (x0i , p0, q
0
1, a), i = 1, . . . , s, are distinct rigid specializations of

Rgd(x, p, q, a), then we omit this fiber from the (bounded) list of fibers that

are associated with the value q01. The set (NRs ∪ D1)(p, q
0
1) is contained in

the union of the (restrictions to the variables (p, q) of points in the) remaining

fibers. Therefore, after omitting all such fibers, the set (NRs ∪ D1)(p, q
0
1) is

precisely the (bounded) union of the remaining fibers.

We continue as we did in the proof of Theorem 1.2. If ((NRs∪D1)(p, q
0
1)) ∩

((NRs ∪ D1)(p, q
0
2)) = (NRs ∪ D1)(p, q

0
1), there is no change; i.e., we remain

with the same bounded collection of fibers that were associated with q01. If

((NRs∪D1)(p, q
0
1))∩ ((NRs∪D1)(p, q

0
2)) 6= (NRs∪D1)(p, q

0
1), the intersection of

the two sets is strictly contained in (NRs∪D1)(p, q
0
1). The set (NRs∪D1)(p, q

0
1)

is a finite union of at most wb fibers of the graded resolutions in the first level

of the diagram. Since the intersection of the two sets, (NRs ∪ D1)(p, q
0
1) and

(NRs ∪D1)(p, q
0
2), is strictly contained in (NRs ∪D1)(p, q

0
1), it is a finite union

of fibers — a proper (possibly empty) subset of the fibers that are associated

with (NRs ∪ D1)(p, q
0
1), and at least one of the fibers that is associated with

(NRs ∪ D1)(p, q
0
1), that is replaced by a (possibly empty) finite collection of

fibers that are associated with the pair, (q01, q
0
2), and with some of the graded
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resolutions that appear in the second level of the constructed diagram. By the

structure of the universal diagram, each fiber in the first level can be replaced

by at most wb fibers in the second level.

As we argue for fibers of graded resolutions in the first level that are

associated with q01, from the bounded list of fibers that are associated with

the pair (q01, q
0
2), we omit fibers of graded resolutions in the second level that

are associated with (q01, q
0
2) for which for generic values in these fibers (i.e.,

test sequences), either at least one of the values, (xi, p, q
0
1, a) or (yi, p, q

0
1),

i = 1, . . . , s, is flexible, or if some pair of these values is not distinct.

As we did in the proof of Theorem 1.2, we repeat this argument iteratively.

Each time a value q0n is added, and the corresponding intersection is a proper

subset of the previous intersection, at least one of the fibers that was associated

with the intersection of the first n− 1 values, is replaced by at most wb fibers

in level that succeeds the level of that fiber. (A fiber that is associated with

the last level of the diagram can only be replaced by the empty set.) As the

digram has depth levels, the intersection ∩ji=1 (NRs ∪ D1)(p, qi) can strictly

decrease in at most 2 ·depth · (wb)depth indices, which proves the equationality

of the set (NRs ∪D1)(p, q). �

Proposition 1.6 proves that the set NRs∪D1 is equational. To prove The-

orem 1.5 we continue iteratively. With the set NRs ∩ D1 we associate a Dio-

phantine set D2, precisely as we associated the Diophantine set D1 with NRs.

Recall that D1 was defined by finitely many completions, which we de-

note Comp(u, p, q, a). These completions were constructed by first collecting

all the nondegenerate values (x01, . . . , x
0
s, p, q, a) and associating finitely many

graded limit groups with this collection of values. Then we defined the comple-

tions that are associated with D1 by further imposing a (basic) degeneration

condition, applying Theorem 1.3, and keeping only those graded resolutions

that have strictly smaller complexity than the completions that they were con-

structed from. (See the detailed description in the first part of the proof.)

To define D2, we start with the finitely many completions, Comp(u, p, q, a),

that are associated with the Diophantine set D1. We further look at all the

values, (y01, . . . , y
0
s , u0, p0, q0, a), where (u0, p0, q0, a) is a value of one of the

completions, Comp(u, p, q, a), and the values, (y0i , p0, q0, a), i = 1, . . . , s, are

distinct rigid values of the rigid limit group Rgd(x, p, q, a).

With this collection of values we canonically associate a finite collec-

tion of maximal limit groups (according to [Sel01, Th. 7.2]), and we further

apply Theorem 1.3, and associate with each limit group a finite collection

of graded resolutions, such that the complexity of each graded resolution is

bounded by the complexity of the completion that was used for its construc-

tion, Comp(u, p, q, a).
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At this point, we repeat what we did in constructing D1. We look at

all the values of the completions of the obtained graded resolutions for which

either one of the values, (y0i , p0, q0, a), i = 1, . . . , s, is a flexible (nonrigid) value

of Rgd(x, p, q, a), or at least two of these (rigid) values are not distinct. These

degenerate values of the obtained completions satisfy one of finitely additional

basic conditions (nontrivial equations), and with them we associate finitely

many limit groups, and by applying Theorem 1.3, we further associate with

them finitely many graded resolutions.

By Theorem 1.3, the complexity of each of the constructed graded reso-

lutions is bounded by the complexity of the completion that was used in its

construction,Comp(u, p, q, a). As we did in the construction of D1, and since as

in constructing D1 the new completions were obtained by forcing additional ba-

sic conditions, we keep only those graded resolutions that have strictly smaller

complexities than the completions, Comp(u, p, q, a), that they were constructed

from.

We define D2 to be the Diophantine set that is the union of the Dio-

phantine sets that are defined by the completions of those of the constructed

graded resolutions that have strictly smaller complexity than the completion,

Comp(u, p, q, a), that they were constructed from. Note that this last comple-

tion was associated with D1. By construction, D2 ⊂ D1, and the complexities

of the resolutions that are associated withD2, are strictly smaller than the com-

plexities of the corresponding resolutions that are associated with D1. (The

definition of the complexity of a minimal rank resolution appears in [Sel05b,

Def. 1.16].)

By the same argument that was used to prove Proposition 1.6, the set

(NRs ∩ D1) ∪ D2 is equational. We continue to the third step with the set

NRs ∩ D1 ∩ D2 = NRs ∩ D2 and treat it exactly in the same way. By the

descending chain condition for complexities of minimal rank resolutions (cf.

[Sel05b, Th. 1.18]), this iterative process terminates after finitely many steps,

and the finite termination finally implies that the original set, NRs, is in the

Boolean algebra of a collection of (minimal rank) equational sets, so Theo-

rem 1.5 follows. �

Essentially the same argument that was used to prove Theorem 1.5 for the

sets NRs, that are associated with minimal rank rigid graded limit groups, can

be used to prove a similar statement for sets of parameters for which a minimal

rank solid limit group admits at least s strictly solid families of specializations.

Theorem 1.7. Let Fk = 〈a1, . . . , ak〉 be a non-abelian free group, and

let Sld(x, p, q, a) be a solid limit group, with respect to the parameter subgroup

〈p, q〉. Let s be a positive integer, and let NSs be the set of values of the defining

parameters 〈p, q〉 for which the solid limit group, Sld(x, p, q, a), has at least s

strictly solid families of specializations.
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There exists a collection of (minimal rank) equational sets, so that the

Boolean algebra generated by this collection contains the sets NSs, for every

minimal rank solid limit group Sld(x, p, q, a) and every possible integer s.

Proof. The proof is similar to the proof of Theorem 1.5. With the set

NSs we associate a Diophantine set D1 for which NSs ∪D1 is equational. We

further argue that the intersection NSs ∩ D1 is simpler than the original set

NSs. We continue iteratively, precisely as we did in the proof of Theorem 1.5.

To construct the Diophantine set D1, we look at the entire collection of

values, (x1, . . . , xs, p, q, a), for which the values, (xi, p, q, a), 1 ≤ i ≤ s, belong

to distinct strictly solid families. With this collection we associate a canonical

finite collection of maximal limit groups, which we view as graded with respect

to the parameter subgroup 〈q〉. Since the solid limit group, Sld(x, p, q, a), is of

minimal rank, so are all the maximal limit groups that we associated with the

given collection of values. With these graded limit groups we further associate

the (graded) resolutions that appear in their strict graded Makanin-Razborov

diagrams, and the resolutions that are associated with the various strata in

the singular loci of the diagram.

Given a (graded) completion, Comp(x1, . . . , xs, p, z, q, a), of one of these

graded resolutions, we look at all the specializations of the completion for which

either (at least) one of the values, (xi, p, q, a), i = 1, . . . , s, that is supposed

to be strictly solid is not strictly solid, or two such values belong to the same

strictly solid family. Note that if such value is not strictly solid, or if two such

values belong to the same strictly solid family, then the (ambient) specialization

of the given completion has to satisfy at least one of finitely many (fixed)

Diophantine conditions that are associated with the given solid limit group,

Sld(x, p, q, a). (See [Sel05a, Def. 1.5] for these Diophantine conditions.)

With this collection of specializations of the (finitely many) completions,

that are extended by values of extra variables that are added to demonstrate

the validity of the Diophantine conditions they satisfy, we canonically associate

a finite collection of graded limit groups. Each of these maximal graded limit

group has to be of minimal rank, since the completions are of minimal rank,

and by the structure of the additional Diophantine conditions (see [Sel05a,

Def. 1.5]). We further start with each of these maximal graded limit groups

and apply Theorem 1.3 to associate finitely many minimal rank graded reso-

lutions with each of the (finitely many) maximal graded limit groups that is

associated with the given collection of values. By Theorem 1.3, the complexity

of each of the constructed resolutions is bounded above by the complexity of

the completion that was used for its construction, and in case of equality in

complexities, a constructed resolution has to have the structure of a graded

closure of the completion from which it was constructed (part (3) in Theo-

rem 1.3).
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The definition of the set D1 in the solid case slightly differs from its def-

inition in the rigid case. In the solid case, we define the Diophantine set D1

to be the disjunction of the Diophantine sets that are associated with the

completions of all the constructed graded resolutions that either have strictly

smaller complexity than the completion they were constructed from, or are

proper closures of the completion from which they were constructed. (That is,

nontrivial roots are added to abelian vertex groups that are associated with

the completion from which they were constructed.)

By precisely the same argument that was used to prove Proposition 1.6

(in the rigid case), the set NSs ∪D1 is equational.

As in the proof of Theorem 1.5, we continue by analyzing the set NSs ∩
D1. With this set we associate a Diophantine set D2 in a similar way to

the construction of the Diophantine set D1. Now D2 is a union of finitely

many Diophantine sets that are associated with completions of resolutions that

have strictly smaller complexities than the complexities of the corresponding

completions and closures that define the set D1, together with some proper

closures of the completions and closures that define D1. By the same argument

that was used to prove Proposition 1.6, (NSs ∩D1) ∪D2 is equational.

We continue iteratively, precisely as we did in proving Theorem 1.5 in

the rigid case. As we argued in proving the termination of the construction

of the diagram that was used in proving the equationality of minimal rank

Diophantine sets (Theorem 1.2), given a completion that is associated with

the Diophantine set D1, there is a bound (that depends only on D1) on the

indices of supergroups of abelian vertex groups that are associated with that

completion, in all the completions of graded resolutions that are used to define

any of the sets Dn, and are proper closures of a completion that was used to

define D1. Hence, at some step n0, all the completions and closures that define

the Diophantine set, Dn0 , have strictly smaller complexity than the maximal

complexity of the completions and closures that define the Diophantine set

D1. Continuing with this argument iteratively, and combining it with the de-

scending chain condition for complexities of minimal rank resolutions ([Sel05b,

1.18]), guarantees that the iterative process (of corrections with minimal rank

Diophantine sets) for the analysis of the set NSs terminates after finitely many

steps, and the finite termination implies that the sets NSs are in the Boolean

algebra of (minimal rank) equational sets. �

Theorem 1.2 proves that in the minimal rank case, Diophantine sets are

equational. Theorems 1.5 and 1.7 prove that sets of values of the defining

parameters for which a minimal rank rigid or solid limit group have at least s

rigid (strictly solid families of) values are in the Boolean algebra of equational

sets. Before we analyze general minimal rank definable sets, we need to analyze

the (definable) set of values of the defining parameters for which a given (finite)
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collection of covers of a graded resolution forms a covering closure. (See [Sel03,

Def. 1.16] for a covering closure.)

Theorem 1.8. Let Fk = 〈a1, . . . , ak〉 be a non-abelian free group, let

G(x, p, q, a) be a graded limit group (with respect to the parameter subgroup

〈p, q〉), and let GRes(x, p, q, a) be a graded strict resolution of G(x, p, q, a) that

terminates in the rigid (solid) limit group, Rgd(x, p, q, a) (Sld(x, p, q, a)). Sup-

pose that the terminating rigid (solid) limit group, Rgd(x, p, q, a) (Sld(x, p, q, a)),

is of minimal (graded) rank.

Let GCl1(z, x, p, q, a), . . . ,GClt(z, x, p, q, a) be a given set of graded closures

of GRes(x, p, q, a). Then the set of values of the parameters 〈p, q〉 for which the

given set of the (associated fibers of the) graded closures forms a covering

closure of the (associated fibers of the) graded resolution GRes(x, p, q, a), which

we denote Cov(p, q), is in the Boolean algebra of equational sets.

Proof. The proof is similar to the proofs of Theorems 1.5 and 1.7. The set

Cov(p, q) is defined to be the set of values of the defining parameters, 〈p, q〉, for

which the fibers that are associated with the given (finite) set of closures and

the given values of the parameters, form a covering closure of the fibers that

are associated with the graded resolution, GRes(x, p, q, a) (and the given values

of the parameters). As in the proofs of Theorems 1.5 and 1.7, with Cov(p, q)

we associate a minimal rank Diophantine set D1 for which Cov(p, q) ∪ D1 is

equational, and D1 and D1 ∩ Cov(p, q) are simpler than Cov(p, q), in a similar

way to what was shown in Theorems 1.5 and 1.7.

To analyze the set Cov(p, q) and construct the Diophantine set D1, we

look at the collection of values

(x01, . . . , x
0
s, y

0
1, . . . , y

0
m, r

0
1, . . . , r

0
s , p0, q0, a)

for which

(i) For the tuple (p0, q0), there exist precisely s distinct rigid (strictly solid

families of) specializations of the rigid (solid) limit group, Rgd(x, p, q, a)

(Sld(x, p, q, a)), and at least (total number of) m distinct rigid and strictly

solid families of specializations of the terminal (rigid and solid) limit groups

of the closures: GCl1(z, x, p, q, a), . . . ,GClt(z, x, p, q, a).

(ii) In case the terminal limit groups of GRes is rigid, the values, (x0i , p0, q0, a),

i = 1, . . . , s, denote the distinct rigid values of Rgd(x, p, q, a). In case the

terminal limit group of GRes is solid, the values, (x0i , p0, q0, a), i = 1, . . . , s,

belong to the s distinct strictly solid families of Sld(x, p, q, a).

(iii) The values, (y0j , p0, q0, a), j = 1, . . . ,m, are either distinct rigid values

or belong to distinct strictly solid families of values of the terminal limit

groups of the closures GCl1, . . . ,GClt.
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(iv) The values r0i are added only in case the terminal limit group of GRes is

solid. In this case the values, r0i , demonstrate that the fibers that are asso-

ciated with the given closures and the values, y01, . . . , y
0
m, form a covering

closure of the fibers that are associated with the resolution GRes and the

(strictly solid) values, x01, . . . , x
0
s. These include values of primitive roots of

the specializations of all the noncyclic abelian groups, and edge groups, in

the abelian decomposition that is associated with the solid terminal limit

group of GRes, Sld(x, p, q, a), and values of elements that demonstrate that

multiples of these primitive roots up to the least common multiples of the

indices of the finite index subgroups that are associated with the graded

closures, GCl1, . . . ,GClt, do belong to the fibers that are associated with

the values, y01, . . . , y
0
m, and their corresponding closures; cf. [Sel05b, §1]

in which we added similar values of elements, to indicate that a proof

statement is a valid proof statement.

We look at the collection of all such values for all the possible values of s

and m. (Note that s and m are bounded, since the number of rigid values of a

rigid limit group, and the number of strictly solid families of values of a solid

limit group, that are associated with a given value of the defining parameters

are globally bounded by Theorems 2.5, 2.9, and 2.13 in [Sel05a].)

With this collection of values we associate a canonical finite collection of

maximal limit groups, which we view as graded (limit groups) with respect

to the parameter subgroup 〈q〉. With these graded limit groups we associate

the (graded) resolutions that appear in their strict graded Makanin-Razborov

diagrams, and the strict resolutions that are associated with the various strata

in the singular loci of the diagrams. Since we assumed that the terminal limit

group Rgd(x, p, q, a) (Sld(x, p, q, a)) are of minimal (graded) rank, all the res-

olutions in these graded Makanin-Razborov diagrams are of minimal (graded)

rank; i.e., all the limit groups that appear along these graded resolutions are

of minimal (graded) rank.

Given a (graded) completion,

Comp(x1, . . . , xs, y1, . . . , ym, r1, . . . , rs, z, p, q, a),

of one of these graded resolutions, we look at all the specializations of the

completion for which either

(1) (At least) one of the values, x01, . . . , x
0
s, y

0
1, . . . , y

0
m, that is supposed to

be rigid or strictly solid is not rigid or not strictly solid.

(2) Two of these values that are supposed to be rigid and distinct coincide,

or two of these values that are supposed to be values in distinct strictly

solid families. Note that (as in the proofs of Theorems 1.5 and 1.7)

the condition that a given value is not rigid or not strictly solid, or

that two values are equal or belong to the same strictly solid family,
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translates into one of finitely many Diophantine conditions that the

specializations of the given completion have to satisfy. (See [Sel05a,

Def. 1.5] for the definition of these Diophantine conditions.)

(3) A value of what is supposed to be a primitive root, r0i , has a root of

order that is not co-prime to the least common multiple of the indices

of the finite index subgroups that are associated with the correspond-

ing graded closures, GCl1, . . . ,GClt. Note that once again (as in part

(2)), this condition translates into one of finitely many Diophantine

conditions that the ambient specializations of the given completion

have to satisfy.

(4) There exists an extra rigid (strictly solid family of) value(s) of the

rigid limit group Rgd(x, p, q, a) (Sld(x, p, q, a)), in addition to those

specified by the values, x01, . . . , x
0
s.

With this collection of specializations of the (finitely many) completions

of graded resolutions in the constructed Makanin-Razborov diagrams, in ad-

dition to values of extra variables that are being added to demonstrate the

specializations of the completions satisfy one of the Diophantine conditions

(1)–(3), or the existence of an extra rigid or strictly solid value (condition (4)),

we canonically associate a finite collection of graded limit groups. We further

apply Theorem 1.3 and associate finitely many graded resolutions with these

graded limit groups, which we denote DGRes. By Theorem 1.3, the complexity

of each of the associated resolutions, DGRes, is bounded above by the complex-

ity of the completion from which they were constructed, and in case of equality

in complexities, an associated resolution DGRes has to be a graded closure of

the completion from which it was constructed.

At this point we look at the subcollection of graded closures of the original

completions, Comp(x1, . . . , xs, y1, . . . , ym, r, z, p, q, a), that were constructed

from values that are obtained from specializations of one of these completions

and values of an extra rigid or strictly solid value of the terminal rigid or solid

limit group of the given resolution GRes, i.e., that are constructed according

to case (4). With each such graded closure, which we denote BCl, we associate

an additional collection of graded minimal rank resolutions.

We collect all the of specializations of each of the closures, BCl, for which

the restriction to the value of the elements that represent the extra rigid or

strictly solid value is either flexible (i.e., not rigid) or it coincides with one of

the rigid values, x01, . . . , x
0
s, that are the restrictions of the specialization of the

completion from which the closure BCl was constructed, or it is not strictly

solid or belongs to one of the strictly solid families that are associated with

the values, x01, . . . , x
0
s (in the solid case). Note that these degenerations of

the extra rigid or strictly solid value can be enforced by one of finitely many

Diophantine conditions, as we did in cases (1) and (2).
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With these values that are obtained from specializations of the closures,

BCl, and values of elements that demonstrate that one of the extra Diophan-

tine conditions that are imposed on these specializations is fulfilled, we canon-

ically associate a finite collection of maximal limit groups (according to [Sel01,

Th. 7.2]). By Theorem 1.3, with these limit groups we can associate a finite

collection of graded resolutions, which we denote EFRes. The complexities

of these graded resolutions, EFRes, are bounded by the complexities of the

corresponding closures, BCl, and in case of equality, a corresponding graded

resolution is a graded closure of (the closure) BCl, hence, a graded closure of

the completion, Comp(x1, . . . , xs, y1, . . . , ym, r, z, p, q, a), from which BCl was

constructed.

With the set, Cov(p, q), we first associated finitely many completions,

Comp(x1, . . . , xs, y1, . . . , ym, r, z, p, q, a), that were constructed from values that

satisfy properties (i)–(iv). With these completions we further associated finitely

many graded resolutions, DGRes, by extending the specializations of these com-

pletions to values that satisfy one of the properties (1)–(4). By Theorem 1.3

the complexities of these graded resolutions, DGRes, are bounded by the com-

plexity of the completion from which they were constructed. We denoted those

of the constructed graded resolutions that were constructed from values that

satisfy part (4) and are graded closures of the completions from which they

were constructed by BCl. With each graded closure BCl we further associated a

collection of graded resolutions that we denoted EFRes, and in which the values

that correspond to the extra rigid or strictly solid element are degenerate.

We define the Diophantine set D1 to be the disjunction of all the Dio-

phantine sets that are associated with completions of (the constructed) graded

resolutions, DGRes and EFRes, that have either strictly smaller complexity

than the completion they were constructed from, or they are proper graded

closures of the completions that they were constructed from. (Recall that a

proper graded closure is a closure in which proper roots were added to some

of the abelian vertex groups that are associated with the various levels of the

completion from which the closure was constructed.)

Note that to analyze the sets, NRs and NSs, we started with their config-

uration limit groups and the completions of the resolutions in their Makanin-

Razborov diagrams. The degeneracy of a configuration homomorphism can be

expressed by a basic condition (in the rigid case) or by a Diophantine condi-

tion (in the solid case). If a nonproper closure of such a completion satisfies

the nondegeneracy basic or Diophantine condition, then the entire fibers that

are associated with this closure can be removed and ignored when we analyze

the sets NRs or NSs. However, when we analyze the set Cov(p, q), it may be

that a nonproper closure satisfies the degeneracy condition (4), and still there

will be values in the corresponding fiber that restrict to values of the defining
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parameters p, q that are in the set Cov(p, q), i.e., values for which the degen-

eracy condition (4) collapses. Precisely for this reason we need to construct

the resolutions, EFRes, and add the Diophantine sets that are associated with

their completions to the (correcting) set D1.

By the same argument that was used in proving Proposition 1.6 and The-

orem 1.7, the set Cov(p, q) ∪ D1 is equational. As in proving Theorems 1.5

and 1.7, we continue by analyzing the set Cov(p, q) ∩ D1. The rest (iterative

continuation) of the argument is identical to the one that is used in proving

Theorems 1.5 and 1.7. �

Proving that (minimal rank) Diophantine sets are equational, that (in

minimal (graded) rank) sets for which a rigid or solid limit group have at

least s rigid (strictly solid families of) values, are in the Boolean algebra of

equational sets, and that the set of values of the defining parameters for which

a given set of closures forms a covering closure of a given graded resolution

(assuming its terminating rigid or solid limit group is of minimal (graded)

rank) is in the Boolean algebra of equational sets, we are finally ready to prove

the main theorem of this section, i.e., that minimal rank definable sets are in

the Boolean algebra of equational sets.

Theorem 1.9. Let Fk = 〈a1, . . . , ak〉 be a non-abelian free group, and let

L(p, q) be a minimal rank definable set (see Definition 1.1). Then L(p, q) is in

the Boolean algebra of equational sets.

Proof. To analyze the minimal (graded) rank set L(p, q), we use the precise

description of a definable set that was obtained using the sieve procedure for

quantifier elimination that is presented in [Sel05b] and [Sel06]. The quantifier

elimination procedure is long and uses a long list of objects and terms that we

cannot present here in detail. In the minimal rank it is described in detail in

Section 1 of [Sel05b]. We use the terminology that is presented and used in

this section in [Sel05b].

Recall that with the set L(p, q) the sieve procedure associates a finite col-

lection of graded PS resolutions that terminate in rigid and solid limit groups

(with respect to the parameter subgroup 〈p, q〉), and with each such graded

resolution it associates a finite collection of graded closures of these resolutions

that contains Non-Rigid, Non-Solid, Left, Root, Extra PS, and collapse extra

PS resolutions. (See [Sel05b, Defs. 1.25–1.30] for the exact definitions of these

resolutions.)

By the construction of the sieve procedure, since the definable set L(p, q)

is assumed to be of minimal (graded) rank, all the terminating rigid and solid

limit groups of the PS resolutions that are associated with L(p, q) by the sieve

procedure are of minimal (graded) rank as well.
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As there are finitely many PS resolutions that are associated by the sieve

procedure with the definable set L(p, q), with any given value of the defining

parameters p, q there can be at most boundedly many fibers that are associated

with a given value of p, q and with one of the PS resolutions that are associated

with L(p, q). (See Definition 1.4 for a fiber of a graded resolution.)

By the sieve procedure, that eventually leads to quantifier elimination over

a free group, the definable set L(p, q) is precisely the union of those values of

the defining parameters p, q for which

(1) There exists a fiber of one of the (finitely many) PS resolutions that

are associated with L(p, q), and is associated with the given value of

the parameters p, q.

(2) This fiber is not covered by the bounded collection of fibers that are

associated with the given value of p, q and with the (finite) collection

of Non-Rigid, Non-Solid, Left, Root and extra PS resolutions, minus

the fibers that are associated with the collapse extra PS resolutions.

(See [Sel03, Def. 1.16] for a covering closure.)

Let PSResi, i = 1, . . . , r, be the finitely many PS resolutions that are

associated with the given minimal rank definable set L(p, q). For each index

i, i = 1, . . . , r, let Rgdi(x, p, q, a) (Sldi(x, p, q, a)) be the terminal rigid (solid)

limit group of PSResi. With the PS resolution PSResi and its terminal rigid

or solid limit group Rgdi or Sldi, we associate the definable set, NRi
1(p, q) or

NSi1(p, q), that defines those values of the defining parameters p, q that extend

to rigid or strictly solid values of Rgdi or Sldi. By Theorems 1.5 and 1.7 the

sets NRi
1 and NSi1 are in the boolean algebra of equational sets.

With each of the PS resolutions, PSResi, the sieve procedure associates a fi-

nite collection of graded closures of it that contains Non-Rigid, Non-Solid, Left,

Root, Extra PS, and collapse extra PS resolutions. With the graded resolution

PSResi, and its given set of closures, we associate a definable set Covi(p, q),

that defines those values of the defining parameters p, q for which the associated

fibers of PSResi that are associated with the value p, q are covered by the fibers

that are associated with the given finite set of closures of it and with the value

of p, q. By Theorem 1.8, Covi(p, q) is in the Boolean algebra of equational sets.

By the sieve procedure, as indicated by (1) and (2) above, the definable

set L(p, q) is the finite union:
r⋃

i=1

NRi
1(p, q) (NSi1(p, q)) \ Covi(p, q).

In particular, L(p, q) is a Boolean combination of the sets NRi
1 (NSi1) and Covi.

Since by Theorems 1.5, 1.7, and 1.8, the sets, NRi
1, NSi1 and Covi(p, q), are

all in the Boolean algebra of equational sets, so is their Boolean combination

L(p, q), and Theorem 1.9 follows. �
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2. Diophantine sets

Our first step in approaching the stability of free (and hyperbolic) groups,

is proving that Diophantine sets are equational. This was proved in Theo-

rem 1.2 in the minimal rank case and is more involved though still valid in

general.

Theorem 2.1. Let Fk = 〈a1, . . . , ak〉 be a non-abelian free group, and let

D(p, q) = {(p, q) ?∃x Σ(x, p, q, a) = 1}

be a Diophantine set defined over Fk. Then D(p, q) is equational.

Proof. With the system of equations Σ(x, p, q, a) = 1 we associate its

graded Makanin-Razborov diagram (with respect to the parameter subgroup

〈p, q〉), and we look at the (finite) collection of rigid limit groups, Rgd(x, p, q, a),

and solid limit groups, Sld(x, p, q, a), along the diagram. By the properties of

the graded diagram, the Diophantine set D(p, q) is precisely the collection of

values of the parameter subgroup 〈p, q〉 for which at least one of the rigid or

solid limit groups along the graded Makanin-Razborov diagram of Σ(x, p, q, a)

admits a rigid or a strictly solid value.

To prove the equationality of a general Diophantine set D(p, q), we as-

sociate with it a finite diagram, similar but somewhat different to the one

we associated with a minimal rank Diophantine set in proving Theorem 1.2.

To prove the termination of the iterative procedure that is used for the con-

struction of the diagram, we apply the techniques that were used in proving

the termination of the sieve procedure that was used in obtaining quantifier

elimination in [Sel06].

We start the construction of the diagram by collecting all the values of

the tuple, (x, p, q, a), that are rigid or strictly solid values of one of the rigid or

solid limit groups that appear along the graded Makanin-Razborov diagram of

the system Σ(x, p, q, a). With this collection of values, we associate its Zariski

closure, which by Theorem 7.2 in [Sel01] is dual to a canonical finite collection

of maximal limit groups, which we denote Li(x, p, q, a).

With a limit group Li(x, p, q, a), viewed as a graded limit group with

respect to the parameter subgroup 〈q〉, we associate its taut graded Makanin-

Razborov diagram. (See [Sel04, §2] for the construction of the taut diagram of

a limit group.) With each resolution in the taut Makanin-Razborov diagram,

we further associate its singular locus and the graded resolutions that are

associated with each of the strata in the singular locus. We conclude the first

step of the construction of the diagram, by associating the (graded) completion

with each of the graded resolutions in our finite collection (of resolutions), that

we denote, Comp(z, x, p, q, a).
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We continue to the construction of the second step of the diagram with

each of the completions Comp(z, x, p, q, a) in parallel. With each such comple-

tion we associate the collection of values (x02, z0, x
0
1, p0, q

0
1, q

0
2, a), for which

(1) (z0, x
0
1, p0, q

0
1, a) factors through the completion, Comp(z, x, p, q, a),

and (x01, p0, q
0
1, a) is rigid or strictly solid with respect to one of the

rigid or solid limit groups in the graded diagram of Σ(x, p, q, a).

(2) (x02, p0, q
0
2, a) is a rigid or a strictly solid value of one of the rigid or solid

limit groups in the graded Makanin-Razborov diagram of Σ(x, p, q, a).

In case it is strictly solid, it is the shortest in its strictly solid family.

First, for each completion, Comp(z, x, p, q, a), that is placed in the initial

level of the diagram, we collect all its test sequences that extend to values that

satisfy properties (1) and (2). By the techniques that were used in constructing

formal limit groups ([Sel03, §3]), with these test sequences and their extended

values it is possible to associate (canonically) a finite (possibly empty) collec-

tion of graded limit groups that have a similar structure as (graded) closures

of the completions Comp(z, x, p, q, a).

With each of the completions that are placed in the initial level of the

diagram, Comp(z, x, p, q, a), we associate the collection of all the sequences:

{(x2(n), z(n), x1(n), p(n), q1(n), q2(n), a)}∞n=1

so that for each n, the corresponding value satisfies conditions (1) and (2), and

the sequence {(z(n), x1(n), p(n), q1(n), a)}∞n=1 forms a (graded) test sequence

with respect to the given (graded) completion Comp(z, x, p, q, a). In addition,

we require that for every index n, the lengths of the values of fixed set of gen-

erators of the vertex groups in the abelian decompositions that are associated

with all the levels of the completion, Comp(z, x, p, q, a), except for its terminal

level, are at least n times longer than the lengths of the values q2(n).

By the techniques that are used to analyze graded formal limit groups,

which are presented in Section 3 of [Sel03], with this collection of sequences it is

possible to canonically associate a finite collection of limit groups that have the

same structure as (graded) closures of the initial completion, Comp(z, x, p, q, a),

through which they all factor. These limit groups are obtained from the com-

pletion Comp(z, x, p, q, a) by possibly adding roots to abelian vertex groups in

the abelian decompositions that are associated with the various levels of the

completion, Comp(z, x, p, q, a), and replacing the terminal rigid or solid limit

group of Comp(z, x, p, q, a) (with respect to the parameter subgroup 〈q〉) with

a rigid or solid limit groups with respect to the parameter subgroup 〈q1, q2〉.
We will denote the finitely many limit groups that are associated with all

these sequences, DQCli(x2, z, x1, p, q1, q2, a). (Note that they are graded with

respect to the parameter subgroup 〈q1, q2〉.)
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We further look at all the values, (x2, z, x1, p, q1, q2, a), that satisfy con-

ditions (1) and (2), and do not factor through any of the (finite set of) limit

groups, DQCli(x2, z, x1, p, q1, q2, a). By Section 5 in [Sel01], with this collection

of values we can associate a canonical finite collection of maximal limit groups,

that we denote {Mj(x2, z, x1, p, q1, q2)}, which we view as graded limit groups

with respect to the parameter subgroup 〈q1, q2〉.
Using the iterative procedure for the construction of (quotient) resolu-

tions, that is used in each step of the sieve method for quantifier elimination

and presented in [Sel06], we associate with this collection of values and limit

groups, {Mj}, finitely many multi-graded resolutions with respect to the defin-

ing parameters 〈q1, q2〉, and with each such graded resolution we associate its

finitely many core resolutions, anvils, developing resolutions, and (possibly)

sculpted resolutions and carriers; see (the first step in) [Sel06] for a detailed

description of the iterative construction of the multi-graded resolutions and

the anvils and developing resolutions that are attached to them.

Note that in the sense of the sieve procedure that is presented in [Sel06],

each of the constructed anvils has a smaller complexity than the completion,

Comp(x, z, p, q, a), that is associated with it (i.e., the completion with which

we have started this branch).

At the vertices in the second level of the diagram we place the finite

collection of anvils that were constructed from the limit groups, {Mj}, and with

each anvil we associate the (graded) completion of its developing resolution.

In the other vertices in the second level we place those limit groups DQCli, for

which proper roots were added to (abelian vertex groups in) the completion,

Comp(z, x, p, q, a), from which they were constructed. (By construction, each

of the groups DQCli has in particular a structure of a completion.) Note that

with each vertex in the second level there is an associated completion, either

one of the groups DQCli or a completion of the developing resolution of the

associated anvil. Each vertex in the second level is connected by a directed

edge that points to it and starts at a vertex in the first level of the diagram in

which the completion, Comp(z, x, p, q, a), that was used in its construction, is

placed.

We continue iteratively. With each vertex in level s there in an associated

completion. This completion is either a limit group that is obtained from a

completion of level s− 1 by adding proper roots to some of the abelian vertex

groups that are associated with its various completions, or it is the completion

of a developing resolution of an anvil that was constructed in step s of the

procedure, according to the general step of the sieve procedure [Sel06].

Given a completion that is placed in level s, and its associated developing

resolution and anvil, we look at the collection of sequences of values

(xs+1(n), w(n), p(n), q1(n), . . . , qs+1(n), a)
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for which the values (xs+1(n), p(n), qs+1(n)) are rigid or strictly solid with

respect to one of the (finitely many) rigid or solid limit groups that are associ-

ated with our given Diophantine set, and the corresponding restricted values,

(w(n), p(n), q1(n), . . . , qs(n), a), form a test sequence of the given completion.

Given all these sequences, we apply the techniques for the construction of

(graded) formal limit groups, that are presented in Section 3 of [Sel03], and

associate with the given completion a finite set of limit groups that are ob-

tained from the given completion by (possibly) adding roots to some of the

abelian vertex groups that are associated with its various levels, and replacing

its terminal limit group with a rigid or solid limit groups that is graded with

respect to the parameter subgroup, q1, . . . , qs+1. We denote these limit groups

DQCl. As in the second step of the construction, in the s + 1 level of the

diagram, we place only those limit groups to which proper roots were added

to the abelian vertex groups that are associated with the various levels of their

associated completion from level s.

At this point we look at all the values

(xs+1(n), t(n), p(n), q1(n), . . . , qs+1(n), a)

for which

(1) The restricted values, (xs+1(n), p(n), qs+1(n), a), are rigid or strictly solid

values of one of the (finitely many) rigid or solid limit groups that are

associated with our given Diophantine set.

(2) With the completion in level s there is an associated developing resolution

and an associated anvil. The value, (t(n), p(n), q1(n), . . . , qs(n), a), is a

value of the anvil that is associated with the completion.

(3) The value (xs+1(n), t(n), p(n), q1(n), . . . , qs+1(n), a) restricts to a value

(xs+1(n), w(n), p(n), q1(n), . . . , qs+1(n), a),

that further restricts to a value (w(n), p(n), q1(n), . . . , qs+1(n), a), which is

a value of the completion from level s that we have started with. We further

assume that the value: (xs+1(n), w(n), p(n), q1(n), . . . , qs+1(n), a), does not

factor through any of the limit groups DQCl that we have associated with

the given completion from level s.

By our standard techniques, which were presented in Section 5 of [Sel01],

with this collection of values we associate its Zariski closure, and with it we

canonically associate its dual finite collection of (graded) limit groups. Given

these limit groups, we apply the construction that was used in the general step

of the sieve procedure and presented in [Sel06], to construct a finite collection

of multi-graded resolutions, with which there are associated core resolutions,

developing resolutions, (possible) sculpted resolution and carriers, and anvils.

As in the second step of the procedure, we add to the vertices in level s + 1,
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a finite collection of vertices, and in each such vertex we place a completion

of the developing resolution of an anvil that was constructed from one of the

completions in level s.

Proposition 2.2. The iterative procedure that is associated with a Dio-

phantine set terminates after finitely many steps.

Proof. To prove termination we use essentially the same argument that

was used to prove the termination of the sieve procedure in [Sel06, 22]. Un-

fortunately, the sieve procedure is long and technical; hence, we cannot repeat

even the definitions of the objects that are constructed along it and are used

in proving the termination. Therefore, for the rest of the proof we will assume

that the reader is familiar with the structure of the sieve procedure, the objects

that are constructed along it, and the proof of its termination, which are all

presented in [Sel06].

Since our procedure is a locally finite branching process, if it does not

terminate it must contain an infinite path. Given a completion that is placed

in some vertex in the diagram that we constructed, we have associated with it

finitely many limit groups that have a structure of a closure; hence, there is a

bound on the order of proper roots that we can add to the abelian vertex groups

that are associated with the various levels of the completion along the next

steps of the procedure. Hence, given a completion that is placed in a vertex

of the diagram, we can start from it and continue along a path of the diagram

that passes only through limit groups that are obtained from the completion

by adding proper roots to abelian vertex groups that are associated with the

completion for only finitely many steps, and then we must pass to an anvil

that was constructed from the last closure of the completion according to the

general step of the sieve procedure.

Since the construction of the resolutions and the anvils that we use is

identical to the construction that is used in the sieve procedure, Proposition

26 in [Sel06] remains valid; i.e., given an infinite path of our procedure, for each

positive integer m, there exists a step nm and width dm, so that the sculpted

and penetrated sculpted resolutions of width dm at step nm are all eventual

(i.e., they do not change along the rest of the infinite path), and the number

of nm sculpted resolutions of width dm, sc(nm, dm), satisfies sc(nm, dm) = m.

Therefore, as in Theorem 27 in [Sel06], to conclude the proof of Propo-

sition 2.2, i.e., to prove the termination of the procedure for the construction

of the diagram that is associated with a Diophantine set after finitely many

steps, we need to show the existence of a global bound on the number of even-

tual sculpted resolutions of the same width that are associated with the anvils

along an infinite path of the procedure.
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Our approach towards obtaining a bound on the number of eventual

sculpted resolutions with the same width along an infinite path of the pro-

cedure is essentially identical to the one that is used to prove Theorem 27 in

[Sel06], and it is based on the argument that was used to obtain a bound on

the number of rigid and strictly solid families of values of rigid and solid limit

groups, that is presented in the first two sections of [Sel05a] ([Sel05a, Ths. 2.5,

2.9, 2.13]).

Recall that in proving Theorem 27 in [Sel06], we argued that if there

is no bound (independent of the width) on the number of eventual sculpted

resolutions of the same width that is associated with an anvil along a given

infinite path of the sieve procedure, then there must be two sequences of

values of the same rigid or solid limit group: {(xi(n), w(n), p(n), a)} and

{(xj(n), w(n), p(n), a)}, for some j > i, so for every index n: xi(n) = xj(n) in

the rigid case, and (xi(n), p(n), a) belongs to the same family of (xj(n), p(n), a)

in the solid case. However, the values, {(xj(n), (n), a)}, are assumed to be

either (extra) rigid or strictly solid, and the values, {(xi(n), p(n), a)}, are as-

sumed to be flexible (or not strictly solid), and we get a contradiction; hence,

we obtain a bound on the number of eventual sculpted resolutions of the same

width.

Assume that our procedure for the construction of the diagram that is

associated with a Diophantine set contains an infinite path, and along this

path there is no bound (independent of the width) on the number of eventual

sculpted resolutions of the same width that are associated with an anvil along

this given infinite path of the procedure.

First, we observe that in a test sequence of each of the developing and

sculpted resolutions that are associated with the anvils along our iterative pro-

cedure, we may assume that the lengths of the parts of the variables xi(n), and

the parameters p(n), that do not belong to the terminal level of the graded

sculpted resolutions, are much bigger than the lengths of the values qi(n) (that

are assumed to be part of the distinguished vertex group in the terminal level).

Therefore, in applying the argument that was used in proving Theorem 27 in

[Sel06] to the sculpted resolutions that were constructed along an infinite path

of our procedure, in obtaining a sequence of compatible JSJ decompositions

that are used in analyzing the sequences, {(xi(n), p(n), qi(n), a)} (see [Sel06,

Th. 36] for the compatible JSJ decomposition), where these values are restric-

tions of a test sequence of some developing resolution along the infinite path,

the subgroup 〈qi〉 remains elliptic, until we reach the terminal level of the

(eventual) sculpted resolution in question.

Hence, by applying the same argument that was used to prove Theorem 27

in [Sel06], we obtain two sequences of rigid or strictly solid values of the same

rigid or solid limit group: {(xi(n), p(n), qi(n), a)} and {(xj(n), p(n), qj(n), a)},
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for some j > i, along a given infinite path, that are compatible in all the

levels except, perhaps, the terminal level. This contradicts the assumption

that along our iterative procedure, we collected rigid and strictly solid values

that do not factor through the closures that were associated with completions

of developing resolutions of anvils that were constructed in previous steps of

the procedure. Therefore, as in the proof of Theorem 27 in [Sel06] we get

a contradiction, and hence we prove that there exists a global bound on the

number of eventual sculpted resolutions of the same width along an infinite

path of our procedure (i.e., along a path in the constructed diagram). This

global bound contradicts the existence of an infinite path in the procedure for

the construction of the diagram that we associated with a Diophantine set,

which finally implies that the procedure for the construction of the diagram

terminates after finitely many steps. (See the proof of Theorem 27 in [Sel06]

for a detailed description of the notions, constructions, and arguments that we

applied.) �

Proposition 2.2 enables one to associate a finite diagram with a Diophan-

tine family. The existence of such a diagram together with the existence of

a global bound on the number of rigid and strictly solid values of rigid and

solid limit groups (for any given value of the parameter subgroup), that was

proved in Theorems 2.5, 2.9, and 2.13 in [Sel05a], enable us to conclude the

equationality of Diophantine families.

Let D(p, q) be a Diophantine family. Let q1, . . . , qn be a sequence of values

of the parameters of the family D(p, q) for which the intersections ∩mj=1D(p, qj),

is a strictly decreasing sequence for m = 1, . . . , n.

With the Diophantine family D(p, q) we associate its diagram, which we

denote DiagD. The diagram is a finite forest in which with each vertex we

have associated, in particular, a completion. Let depthD be the depth of the

diagram. By the global bounds on the number of rigid and strictly solid families

of values of rigid and solid limit groups, and since there are only finitely many

(graded) completions in the initial level of the diagram DiagD, there exists a

global bound on the number of fibers that are associated with a value q1 of

the parameter group 〈q〉, and the finitely many completions that are placed in

the initial level of DiagD. We denote this bound initD. By applying the same

argument, the finiteness of the completions that are placed in each level of the

diagram DiagD, together with the existence of a global bound on the number

of rigid and strictly solid families of values, given a fiber in a completion that

is placed in level m of the diagram, there is a global bound on the number of

fibers that are associated with the finitely many completions that are placed

in level m+ 1 of the diagram DiagD, and are further associated with the given

fiber (of a completion in level m of the diagram), and with a value of the

parameters qm+1, where the global bound does not depend on the level m, the
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given fiber (in level m), or the value of the parameters qm+1. We denote this

global bound widthD.

By the construction of the diagram DiagD, given the value q1 there are

at most initD fibers that are associated with it and with completions that are

placed in the initial level of DiagD. Since by our assumptions, D(p, q1)∩D(p, q2)

is strictly contained in D(p, q1), in the set of fibers that are associated with

D(p, q1) ∩D(p, q2), at least one of the fibers that are associated with D(p, q1)

is replaced by at most widthD fibers that are associated with completions that

are placed in vertices in the second level of DiagD. Continuing iteratively, since

the intersections: ∩mj=1D(p, qj) m = 1, . . . , n, are strictly decreasing, for each

index m, at least one of the fibers that are associated with ∩mj=1D(p, qj) is

replaced by at most widthD fibers that are associated with completions in the

next level in the diagram DiagD, in the set of fibers that is associated with the

intersection: ∩m+1
j=1 D(p, qj). In particular, since the diagram DiagD is finite, if

a fiber that is associated with a completion that is placed at a terminal vertex

of DiagD and with ∩mj=1D(p, qj) is replaced in ∩m+1
j=1 D(p, qj), then such a fiber

is replaced by the empty set.

Therefore, if the intersections: ∩mj=1D(p, qj), is a strictly decreasing se-

quence for m = 1, . . . , n, then n ≤ 2 · initD · (widthD)depthd−1, so the Diophan-

tine family D(p, q) is equational. �

3. Duo limit groups

In Section 1 we have shown that in the minimal rank case Diophantine sets

are equational and then used it to show that the sets NRs (NSs), that indicate

those values of the parameter set 〈p, q〉 for which a minimal rank rigid limit

group Rgd(x, p, q, a) (solid limit group Sld(x, p, q, a)) admits at least s rigid

(strictly solid families of) specializations, is in the Boolean algebra generated

by equational sets (Theorems 1.5 and 1.7).

In the previous section, we have shown that general Diophantine sets are

equational. In the next section, we show that sets of the form NRs and NSs
are stable. In this section we present the main tool that we are going to use

in proving the stability of the sets NRs and NSs (and afterwards the stability

of general definable sets over a free group), that we call duo limit groups.

In Section 4 of [Sel05a] we defined configuration limit groups that are as-

sociated with rigid and solid limit groups ([Sel05a, Def. 4.1]). Recall that given

a positive integer s and a rigid or solid limit group, Rgd(x, p, a) or Sld(x, p, a),

a configuration limit group is obtained as a limit of a convergent sequence of

tuples, {x1(n), . . . , xs(n), pn, a)}, where for each index n, and every index i,

1 ≤ i ≤ s, the values, (xi(n), pn, a), are rigid or strictly solid, and for differ-

ent indices, 1 ≤ i1 < i2 ≤ s, the rigid or strictly solid values, (xij (n), pn, a),
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j = 1, 2, are distinct or belong to distinct strictly solid families. (See [Sel05a,

Def. 4.1] for the exact definition.)

We start by presenting duo limit groups that are associated with configu-

ration limit groups of rigid and solid limit groups. Then we prove the existence

of a (universal) finite collection of duo limit groups that are associated with

a configuration limit group, that “covers” all the other duo limit groups that

are associated with a rigid or a solid limit group. We conclude this section by

proving a strong uniform bound for that covering property in the rigid case

(Theorem 3.3), and we leave the analogous statement for solid limit groups as

an open question. We note, that the strong bound for the covering property is

not needed for proving stability in the sequel.

Definition 3.1. Let Fk be a non-abelian free group, and let Rgd(x, p, q, a)

(Sld(x, p, q, a)) be a rigid (solid) limit group with respect to the parameter sub-

group 〈p, q〉. Let s be a (fixed) positive integer, and let Conf(x1, . . . , xs, p, q, a)

be a configuration limit group associated with the limit group Rgd(x, p, q, a)

(Sld(x, p, q, a)). (See [Sel05a, Def. 4.1] for configuration limit groups.)

A duo limit group, Duo(d1, p, d2, q, d0, a) (shortened as Duo), is a limit

group that is obtained as an amalgamated free product of two completions

along the common distinguished vertex group in the abelian decompositions

that are associated with their terminal levels, and such that the amalgamated

free product has the following properties:

(1) With Duo there exists an associated map

η : Conf(x1, . . . , xs, p, q, a)→ Duo.

For brevity, we denote η(p), η(q), η(a) by p, q, a in correspondence.

(2) η(Fk) = η(〈a〉) < 〈d0〉, η(〈p〉) < 〈d1〉, and η(〈q〉) < 〈d2〉.
(3) Duo = Comp1(d1, p, a) ∗〈d0〉 Comp2(d2, q, a), where Comp1(d1, p, a) = 〈d1〉

and Comp2(d2, q, a) = 〈d2〉 are (graded) completions with respect to the

parameter subgroup 〈d0〉, and the subgroup 〈d0〉 is the distinguished vertex

group in the (two) abelian decompositions that are associated with the

terminal levels of the two completions.

(4) There exists a tuple of values, (x01, . . . , x
0
s, p0, q0, a), which is a specialization

of the configuration limit group Conf for which

(i) the corresponding values, (x0i , p0, q0, a), i = 1, . . . , s, are distinct and

rigid specializations of the rigid limit group, Rgd(x, p, q, a) (strictly

solid and belong to distinct strictly solid families of Sld(x, p, q, a)).

(ii) the value, (x01, . . . , x
0
s, p0, q0, a), can be extended to a specialization of

the duo limit group Duo; i.e., there exists a configuration homomor-

phism that can be extended to a specialization of Duo.
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With a duo limit group we naturally associate their duo-families, which

are the (duo) analogue of a fiber of a completion.

Definition 3.2. Let Duo(d1, p, d2, q, d0, a) be a duo limit group, so that

Duo = Comp1(d1, p, a) ∗〈d0〉 Comp2(d2, q, a). We call a set of specializations of

Duo a rectangle, if there exists some value d00 of the variables d0, and a fiber

of the completion Comp1 and a fiber of the completion Comp2, that are both

associated with the value d00 , such that the specializations in the rectangle are

precisely all the specializations of Duo that restrict to values in the fibers of

Comp1 and Comp2.

A sequence of specializations of the duo limit group Duo is called a duo

test sequence if it restricts to test sequences of the completions, Comp1 and

Comp2. We say that a finite collection of duo limit groups, Duo1, . . . ,Duot,

covers a rectangle rectangle, that is associated with some duo limit group Duo,

if there exists a finite collection of rectangles that are associated with the

duo limit groups, Duo1, . . . ,Duot, such that every duo test sequence in the

given rectangle rectangle has a subsequence that restricts to a sequence of

configuration homomorphisms (i.e., values that satisfy condition (i) in part (4)

in Definition 3.1), and the values of these configuration homomorphisms can

be extended to values in one of the rectangles from the (fixed) finite collection

of rectangles that are associated with Duo1, . . . ,Duot.

The procedure that was used to prove the equationality of Diophantine sets

in the previous section enables one to prove the existence of a finite collection

of duo limit groups that cover all the rectangles that are associated with a duo

limit group that is associated with a given rigid or a solid limit group. We note

that the strong boundedness that is proved in Theorem 3.3 only in the rigid

case is not used in proving stability in the sequel. However, the main diagram

that is constructed in order to prove the theorem, and its associated duo limit

groups (that generalize to solid limit groups as well), are the main tools in our

approach to stability.

Theorem 3.3. Let Fk be a non-abelian free group, let s be a positive inte-

ger, and let Rgd(x, p, q, a) be a rigid limit group defined over Fk. There exists

a finite collection of duo limit groups that are associated with configuration

homomorphisms of s distinct rigid homomorphisms of Rgd, Duo1, . . . ,Duot,

and some global bound b, so that every rectangle that is associated with a duo

limit group Duo, that is associated with configuration homomorphisms of s

distinct rigid homomorphisms of Rgd, is covered by the given finite collection

Duo1, . . . ,Duot. Furthermore, every rectangle that is associated with an arbi-

trary duo limit group Duo is covered by at most b rectangles that are associated

with the given finite collection, Duo1, . . . ,Duot.
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Proof. To construct the (finite) universal collection of duo limit groups,

we apply the iterative procedure that was used to prove the equationality of

Diophantine sets (Theorem 2.1).

First, we associate a finite collection of configuration limit groups with

the given rigid limit group Rgd(x, p, q, a) and the given positive integer s (as

we did in [Sel05a, §4]). To do that we collect all the tuples of the form

(x01, . . . , x
0
s, p0, q0, a) for which each value, (x0i , p0, q0, a), is a rigid specialization

of the rigid limit group Rgd(x, p, q, a), with respect to the parameter subgroup

〈p, q〉, and so that for each i, j, 1 ≤ i < j ≤ s, the rigid values, (x0i , p0, q0, a)

and (x0j , p0, q0, a) are distinct. By the standard arguments that are presented in

Section 5 of [Sel01], with this collection of tuples, {(x01, . . . , x0s, p0, q0, a)}, we

can canonically associate a finite collection of maximal (configuration) limit

groups, Confi(x1, . . . , xs, p, q, a), 1 ≤ i ≤ m.

With each of the configuration limit groups, Confi(x1, . . . , xs, p, q, a), seen

as a graded limit group with respect to the parameter subgroup 〈q〉, we asso-

ciate its taut graded Makanin-Razborov diagram; see [Sel04, Prop. 2.5] for the

construction of the taut Makanin-Razborov diagram. With each resolution in

the taut Makanin-Razborov diagram, we further associate its singular locus

and the graded resolutions that are associated with each of the strata in the

singular locus. We conclude the first step of the construction of the diagram,

by associating the (graded) completion with each of the graded resolutions in

our finite collection, that we denote Comp(z, p, q, a). Note that each of the

constructed completions is graded with respect to the parameter subgroup 〈q〉.
We continue to the construction of the second step of the diagram with

each of the completions Comp(z, p, q, a) in parallel. (Note that the elements

x1, . . . , xs ∈ Comp(z, p, q, a) can be expressed as words in the generators z of

the completion Comp(z, p, q, a).) With each such completion we associate the

collection of tuples of values, (y01, . . . , y
0
s , z0, p0, q

0
1, q

0
2, a), for which

(1) (z0, p0, q
0
1, a) factors through the completion, Comp(z, p, q, a). Each

of the associated values (the restrictions), (x0i , p0, q
0
1, a), 1 ≤ i ≤ s,

is a rigid specialization of the given rigid limit group Rgd(x, p, q, a),

and any two rigid specializations, (x0i , p0, q0, a) and (x0j , p0, q0, a), are

distinct for 1 ≤ i < j ≤ s.
(2) Each of the values, (y0i , p0, q

0
2, a), 1 ≤ i ≤ s, is a rigid specialization

of the rigid limit group Rgd(x, p, q, a). Any two rigid specializations,

(y0i , p0, q
0
2, a) and (y0j , p0, q

0
2, a), are distinct for 1 ≤ i < j ≤ s.

With the completion, Comp(z, p, q, a), we associate the collection of all the

sequences

{(y1(n), . . . , ys(n), z(n), p(n), q1(n), q2(n), a)}∞n=1
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so that for each n, the corresponding tuple of values satisfies conditions (1) and

(2), and the (restricted) sequence {(z(n), p(n), q1(n), a)}∞n=1 forms a (graded)

test sequence with respect to the given (graded) completion Comp(z, p, q, a).

By the techniques that were used to analyze graded formal limit groups, which

are presented in Section 3 of [Sel03], with this collection of sequences it is

possible to canonically associate a finite collection of (graded) limit groups,

that have the structure of closures of the completion, Comp(z, p, q, a). (That

is, they differ from the completion, Comp(z, p, q, a), in additional roots that are

possibly added to abelian vertex groups in the abelian decompositions that are

associated with the various levels of the completion, Comp(z, p, q, a), and they

also differ from the completion in the limit group that is associated with their

terminal level.) However, note that the constructed limit groups are graded

with respect to the parameter subgroup, 〈q1, q2〉, and not with respect to the

parameter subgroup 〈q〉 = 〈q1〉 like the original completion, Comp(z, p, q, a).

We will denote these limit groups, which we view and call graded closures,

DQCli(s, z, p, q1, q2, a).

We continue by looking at all the tuples of values (y01, . . . , y
0
s , z0, p0, q

0
1, q

0
2, a)

that satisfy conditions (1) and (2), and do not factor through any of the (finite)

closures, DQCli(s, z, p, q1, q2, a). With this collection of tuples we can associate

a canonical finite collection of maximal limit groups, Mj(y1, . . . , ys, z, p, q1, q2),

which we view as graded limit groups with respect to the parameter subgroup

〈q1, q2〉.
Using the construction of quotient resolutions, that is used in the general

step of the sieve procedure [Sel06], we associate with this collection of tuples

of values, and with the finitely many graded limit groups, Mj , that are asso-

ciated with their Zariski closure, finitely many multi-graded resolutions, and

with each such multi-graded resolution we associate its (multi-graded) core

resolutions, developing resolutions, anvils, and (possibly) sculpted resolutions

and carriers. (See [Sel06] for a detailed description of the iterative construction

of these multi-graded resolutions and the finite collection of resolutions that

are attached to them.)

We continue iteratively, precisely as we did in proving the equationality

of Diophantine sets (Theorem 2.1). We start each step with the completions

that were constructed in the previous step, and we continue with each of them

in parallel. We first look at all the test sequences of such a completion that

can be extended to tuples of values that satisfy the properties (1) and (2)

above. With these collections of test sequences we associate finitely many

closures of the completions that were constructed in the previous step of the

procedure. Then we consider all the specializations of the completions that

were constructed in the previous step of the procedure, that can be extended

to tuples of values that satisfy properties (1) and (2), and these tuples of
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values do not factor through any of the previously constructed closures (of the

completions that were constructed in the previous step). We analyze these

tuples of values by applying the construction of quotient resolutions that was

used in the general step of the sieve procedure for quantifier elimination [Sel06].

This analysis associated with the given collection of tuples of values finitely

many multi-graded resolutions, together with their core resolutions, anvils,

developing resolutions, and possibly sculpted resolutions and their carriers.

(All these are presented in detail in [Sel06].)

Finally, like the sieve procedure for quantifier elimination [Sel06], and like

the iterative procedure that was used in proving the equationality of Diophan-

tine sets in the previous section, the iterative procedure that we described

terminates after finitely many steps.

Proposition 3.4. The iterative procedure that is presented above termi-

nates after finitely many steps.

Proof. Identical to the proof of Proposition 2.2. �

When the iterative procedure terminates, we obtain a finite diagram that

we denote, Diag. In each vertex of the diagram there is a completion. The

completions that are placed in vertices in the initial level of the diagram, Diag,

are the completions of the resolutions in the graded taut Makanin-Razborov

diagrams of the maximal configuration limit groups that are associated with

the given rigid limit group, Rgd(x, p, q, a). Note that the resolutions and their

completions in the initial level are graded with respect to the parameter sub-

group, 〈q1〉.
The completions that are placed in vertices in the second level of the di-

agram are either closures DQCli in which proper roots were added to abelian

vertex groups in the completion, Comp(z, p, q, a), that they were constructed

from, or completions of the developing resolutions of anvils that were con-

structed in the second step of the iterative procedure. These closures and

developing resolutions and their completions are graded with respect to the pa-

rameter subgroup, 〈q1, q2〉. Each completion in the initial level of the diagram

is connected by finitely many (possibly no) directed edges to the closures and

the completions of developing resolutions of the anvils that were constructed

from it in the second step of the iterative procedure.

The completions that are placed in vertices in the next levels of the dia-

gram are similar. The completions that are placed in vertices in level m of the

diagram are either closures of completions in level m−1 in which proper roots

were added to abelian vertex groups of these completions (from level m − 1),

or the completions of developing resolutions of anvils that were constructed

in step m of the iterative procedure. These closures, developing resolutions,

and their completions are graded with respect to the parameter subgroup,
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〈q1, . . . , qm〉. A completion of a developing resolution in level m − 1 is con-

nected by finitely many (possibly no) directed edges to its closures and to the

completions of developing resolutions of the anvils that were constructed from

it in level m of the iterative procedure.

To define the universal set of duo limit groups, that are claimed in The-

orem 3.3, we start with the collection of completions that were constructed

along the terminating iterative procedure, and with each such completion we

associate a finite collection of duo limit groups.

Given a (graded) completion that was constructed along the diagram Diag,

that we denote Comp, we associate with it finitely many duo limit groups. To

construct these duo limit groups, we fix a generating set of each vertex group in

each of the abelian decompositions that are associated with the various levels

of the completion, Comp, and a generating set of the parameter subgroup, 〈q〉.
We look at the entire collection of graded test sequences that factor through

the given graded completion, Comp, for which the restrictions of the values

in these test sequences to the variables p can be extended to configuration

homomorphisms of at least one of the (finitely many) maximal configuration

limit groups that are associated with the given rigid limit group, Rgd(x, p, q, a).

We further require that the n-th value in each of these test sequences, and

its extension to a configuration homomorphism, will satisfy that the maximal

length of the (restricted) values of the fixed generating sets of each of the

nondistinguished vertex groups in the completion, Comp, are at least n times

bigger than the maximal length of the (restricted) values of a fixed generating

set of the parameter subgroup, 〈q〉.
With this entire collection of graded test sequences, and their extensions to

configuration homomorphisms, we associate a graded Makanin-Razborov dia-

gram, precisely as we did in constructing the formal graded Makanin-Razborov

diagram in Section 3 of [Sel03]. By the construction of formal graded Makanin-

Razborov diagrams, the abelian decompositions that are associated with the

various limit groups that appear along the resolutions of the diagrams are the

graded abelian decompositions of these limit groups where the parameter sub-

group is taken to be the completion Comp, from the diagram Diag, that we

have started the construction with. Furthermore, by the analysis of graded

formal resolutions, as it appears in Section 3 of [Sel03], each of the resolutions

in the constructed Makanin-Razborov diagrams terminates with a (graded)

closure of the graded completion, Comp, with which we have started.

The sequences of values that we analyze are values from test sequences of

the completion, Comp, together with extensions of the values of the subgroup,

〈p, q〉, to (nondegenerate) configuration homomorphisms of one of the finitely

many configuration limit groups that are associated with the rigid limit group,

Rgd(x, p, q, a). Hence, each value in these sequences is obtained from a value
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of the completion, Comp, a value of the parameters q, and s rigid values of the

rigid limit group, Rgd(x, p, q, a).

We further require that the lengths of the values of the variables q is much

smaller than the lengths of the values of the fixed generating sets of the vertices

in the abelian decompositions that are associated with the various levels of the

completion, Comp.

At this point we analyze the algebraic structure of a limit group that is

obtained as a limit of a sequence of values that we consider. We do that by

looking at the limit tree to which a subsequence of such a sequence converges.

Since each value in the sequences we analyze is obtained from a value of the

completion, Comp, a value of the parameters q, that is much shorter than

the values of fixed generating sets of the vertex groups in the abelian decom-

positions that are associated with the various levels of Comp, except for the

terminal level, by adjoining s rigid values of Rgd(x, p, q, a), and the values of

the completion Comp form a test sequence of it, the abelian decomposition

of the obtained limit group that can be read from the limit tree, must have

similar structure as the abelian decomposition that is associated with the top

level of the completion, Comp.

By going down through the levels of the completion Comp, the same argu-

ment implies that the obtained limit group is the amalgamation of a quotient

of the completion, Comp, with a slow limit group that contains the subgroup

〈q〉, that are amalgamated along a quotient of the terminal level of the com-

pletion Comp. Hence, the (formal) abelian JSJ decomposition of this obtained

limit group (that is an abelian JSJ decomposition with respect to the image

of Comp) can be constructed from a graded abelian decomposition, ∆, of this

slow limit group with respect to a parameter subgroup which is the terminal

level of the completion, Comp, where the distinguished vertex in the graded

abelian decomposition of slow, ∆, is amalgamated with the image of the com-

pletion, Comp, along the image of the terminal level of Comp, that is contained

in the distinguished vertex of the abelian JSJ decomposition of the subgroup

slow, ∆.

By going through the levels of each of the resolutions in the (formal)

Makanin-Razborov diagrams that we have associated with the finitely many

limit groups that are associated with the sequences of values that we consider,

the (formal) abelian JSJ decompositions that are associated with the limit

groups that are placed along these resolutions have a similar structure; i.e.,

they are obtained from graded JSJ decompositions of the corresponding slow

subgroups with respect to the image of the terminal level of the completion,

Comp, where the distinguished vertex group in each such abelian decomposition

is replaced by a limit group that is obtained from it by an amalgamated product
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with the image of the completion Comp, along an amalgamated subgroup which

is the image of the terminal level of Comp.

Therefore, the completion of a resolution in the constructed Makanin-

Razborov diagrams is the amalgamated product of a graded closure of the

completion, Comp, with another completion (that contains the subgroup 〈q〉
as a subgroup), that are amalgamated along the common distinguished ver-

tex groups in the abelian decompositions that are associated with the ter-

minal levels of the two completions. By the construction of the completions

in these (formal) graded Makanin-Razborov diagrams, there is also a natu-

ral map from a (maximal) configuration limit group of the original rigid limit

group, Rgd(x, p, q, a), into it. The subgroup 〈p〉 is mapped into the closure of

the given completion Comp, and the subgroup 〈q〉 is mapped into the other

completion. Hence, the obtained amalgamated product is a duo limit group.

We take the completions of the resolutions that appear in the entire finite

collection of Makanin-Razborov diagrams that are associated with the various

completions, Comp, that are placed in the various vertices of the diagram Diag,

to be the finite collection of (universal) duo limit groups, Duo1, . . . ,Duot, that

is indicated in the statement of Theorem 3.3.

Let Duo be a duo limit group that is associated with the given rigid

limit group, and suppose that we are given a rectangle, rectangle, that fac-

tors through it, i.e., a rectangle that is associated with a given value, d00 , of

the variables d0 in the duo limit group Duo. We need to show that the given

rectangle, rectangle, which factors through the duo limit groups Duo, is cov-

ered by a bounded collection of rectangles that factor through the (universal)

finite collection of duo limit groups Duo1, . . . ,Duot. Note that the bound on

the number of rectangles of Duo1, . . . ,Duot is supposed to be global and does

not depend on the particular duo limit group Duo, or the rectangle rectangle.

By definition, the duo limit group, Duo, contains an image of a config-

uration limit group of the rigid limit group, Rgd(x, p, q, a). We denote this

configuration limit group as Conf. Given the rectangle, rectangle, we start

with a value q1 of the parameters q, that can be extended to a value in the

rectangle, rectangle, that restricts to a configuration homomorphism of the

configuration limit group Conf; that is, a value in the rectangle that satisfies

property (4) of a duo limit group (Definition 3.1). With this value q1 of the

parameters q we associate the boundedly many fibers that are associated with

it in the initial level of the diagram, Diag, that was constructed iteratively from

the sets of configuration homomorphisms. We further associate with the value

q1 the boundedly many rectangles of those duo limit groups, Duo1, . . . ,Duot,

that were constructed from completions that appear in the initial level of the

diagram Diag. Note that by the construction of the diagram Diag, and the duo
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limit groups, Duo1, . . . ,Duot, there is a global bound on the number of rect-

angles that are associated with any given value of the parameters q, and with

those duo limit groups, Duo1, . . . ,Duot, that are associated with completions

in the initial level of Diag.

We consider all the duo test sequences that factor through the given rec-

tangle, rectangle, and restrict to configuration homomorphisms of the config-

uration limit group Conf (that is mapped into the Duo limit group Duo that

covers the given rectangle rectangle); that is, duo test sequences of values in

the rectangle rectangle, that satisfy property (4) in Definition 3.1.

Given this collection of duo test sequences of the given rectangle rectangle,

we look at those duo test sequences for which their restrictions to configura-

tion homomorphisms ([Sel05a, Def. 4.1]) can be extended to values of one of

the (boundedly many) rectangles that are associated with the value q1 of the

parameters q, and with those duo limit groups, Duo1, . . . ,Duot, that were con-

structed from completions that are placed in the initial level of the diagram,

Diag.

For each such duo test sequence, we extended the restrictions of the val-

ues in the duo test sequence to configuration homomorphisms to the shortest

possible value in the (boundedly many) rectangles that are associated with

q1 and with the duo limit groups Duo1, . . . ,Duot, that were constructed from

completions in the initial level of the diagram Diag.

By the techniques that are presented in Section 3 of [Sel03] (that con-

structs graded formal limit groups), with this collection of duo test sequences

and their extended values, we can associate finitely many limit groups, that are

all duo closures of the given duo limit group that is dual to (i.e., the coordinate

group of) the rectangle, rectangle, i.e., limit groups that are amalgamated prod-

ucts of closures of the two completions, Comp1(d1, p, a) and Comp2(d2, q, a),

that are associated with the rectangle, rectangle.

Furthermore, by the construction of the duo closures, with each such duo

closure, there is an associated map from the limit group which is the dual to

one of the boundedly many rectangles that are associated with the duo limit

groups, Duo1, . . . ,Duot, and with the value q1, into the duo closure.

Note that it can be that no sequence of restrictions of duo test sequences

in the rectangle, rectangle, to configuration homomorphisms can be extended

to values in the rectangles that are associated with q1 and with the duo limit

groups, Duo1, . . . ,Duot, that are associated with the initial level of the diagram

Diag. In this (empty) case, no duo closures are associated with the rectangles

that are associated with q1 and with the duo limit groups, Duo1, . . . ,Duot, that

are associated with the initial level of the diagram Diag.

We have associated finitely many (possibly none) duo closure with the

given rectangle, rectangle. With each duo closure of rectangle, there is a pair of
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associated closures of the two completions, Comp1(d1, p, a) and Comp2(d2, q, a).

By Definitions 1.14 and 1.15 in [Sel03], with a closure of a completion one

naturally associates with each abelian vertex group of an abelian decomposition

that is associated with one of the levels of the corresponding completion, a

coset of a finite index subgroup. Hence with each duo closure of rectangle, we

associate a coset of a finite index subgroup with each abelian vertex group that

is associated with one of the levels of Comp1 and Comp2.

Since there are finitely many duo closures of rectangle, for each abelian

vertex group that is associated with a level of Comp1 or Comp2, we can take

the intersection of the finitely many finite index subgroups that are associated

with it. Hence, with each abelian vertex group that is associated with one of

the levels of Comp1 or Comp2 we associate a finite index subgroup, and with

each duo closure of the given rectangle we can associate a finite set of collections

of cosets of each of these finite index subgroups.

We can place the (finite) set of all possible collections of cosets of the

finite index subgroups that are associated with the abelian vertex groups in

Comp1 and Comp2 in a planar diagram, where one axis is for collections of

cosets of the finite index subgroups of abelian vertex groups in Comp1 and

the second axis is for collections of cosets of finite index subgroups of abelian

vertex groups in Comp2. The given set of duo closures of the given rectangle,

rectangle, cover some (possibly none) of the possible collections of cosets. To

prove Theorem 3.3, we show that even though the number of duo closures of

the given rectangle is finite and not necessarily bounded, and the indices of

the finite index subgroups need not be bounded either, it is possible to get a

combinatorial bound on the form of the collections of cosets that are associated

with the duo closures that we constructed.

Proposition 3.5. After possibly replacing the set of closures {cldi} and

their associated maps, {ηi}, and hence possibly changing the planar diagram

that is associated with the set of closures (as we may need to refine the collec-

tions of cosets of finite index abelian subgroups that need to be considered), the

points in the finite planar diagram that are associated with (the new) collections

of cosets of the finite index subgroups in the planar diagram that are associated

with the finitely many (new) duo closures, that we constructed from boundedly

many rectangles of the duo limit groups, Duo1, . . . ,Duot, and from the given

rectangle, rectangle, are the union of boundedly many product domains, where

each such product domain is determined by a subset of rows and columns of

the finite planar diagram. Furthermore, the bound on the number of product

domains depends only on the (universal) duo limit groups, Duo1, . . . ,Duot.

Proof. With the given rectangle, rectangle, and the boundedly many rect-

angles of Duo1, . . . ,Duot, we have associated finitely many (possibly none) duo
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closures of the duo limit group which is dual to rectangle, where into each

such closure there is a map from one of the rectangles of Duo1, . . . ,Duot. The

points in the planar diagram are associated with these duo closures. (With

each closure we have associated finitely many points in the planar diagram.)

We fix one of the boundedly many chosen rectangles of Duo1, . . . ,Duot, and

denote it Rectangle. We denote the duo limit group that is dual to Rectangle,

duoR, and the duo limit group that is dual to the rectangle that we have started

with, rectangle, we denote duor. With the rectangles, Rectangle and rectangle,

we have associated finitely many (possibly none) duo closures of duor, which

we denote cld1, . . . , cldm, and maps ηi : duoR → cldi, i = 1, . . . ,m.

In order to prove the proposition our goal is to show that the points in

the planar diagram that are associated with the closures, cld1, . . . , cldm, are a

bounded union of product domains, where the bound on the number of product

domains depend only on the (universal) duo limit groups, Duo1, . . . ,Duot, and

not on the given duo limit group, Duo, or its rectangle, rectangle. Since we have

chosen only boundedly many (possibly none) rectangles of Duo1, . . . ,Duot, a

presentation of the points in the planar diagram that are associated with one

of these rectangles, Rectangle, as a bounded union of product domains, clearly

implies the statement of the proposition.

The duo limit groups that are dual to rectangle and Rectangle can be

represented as amalgamated products over the coefficient group 〈a〉 = Fk:

duor = Comp1(d1, p, a) ∗〈a〉 Comp2(d2, q, a) and duoR = RComp1(u1, p, a) ∗〈a〉
RComp2(u2, q, a), and so is each of the closures of duor:

cldi = CCompi1(d
i
1, p, a) ∗〈a〉 CCompi2(d

i
2, q, a), i = 1, . . . ,m.

The maps ηi : duoR → cldi map the image of the configuration limit group

in duoR onto the image of the configuration limit group in cldi. Hence, in

particular, it maps the subgroups, 〈p〉 and 〈q〉 in duoR, onto the corresponding

subgroups 〈p〉 and 〈q〉 in cldi. However, it may be that RComp1 is not mapped

into CCompi1 or RComp2 is not mapped into CCompi2. To prove the proposition,

we first replace the given set of closures, {cldi}, and their associated maps,

{ηi}, by a different collection of closures and maps, so that for the new set

of closures, RComp1 and RComp2 are mapped into CCompi1 and CCompi2 in

correspondence.

Lemma 3.6. It is possible to replace the given set of closures of duor, by a

new (finite) set of closures (still denoted cldi), that cover the same collections

of cosets of finite index subgroups of the abelian vertex groups that appear in

the various levels of the completions Comp1 and Comp2 as the previous set of

closures, so that for every new map ηi : duoR → cldi, RComp1 is mapped into

CCompi1 and RComp2 is mapped into CCompi2.
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Proof. The closure cldi can be written as an amalgamated product

CCompi1〈a〉 CCompi2.

Suppose that for one of the closures, cldi, i = 1, . . . ,m, either the completion

RComp1 is not mapped by ηi into CCompi1 or RComp2 is not mapped by ηi into

CCompi2. Without loss of generality, we can assume that the image of RComp1
is not in CCompi1.

As the subgroup 〈p, a〉 is contained in CCompi1, and the image of RComp1 is

not in CCompi1, the image of RComp1 in cldi, IRC1, inherits a nontrivial graph

of groups from the presentation of cldi as an amalgamated product: cldi =

CCompi1 ∗〈a〉 CCompi2. By going through the various levels of the completion

CCompi2 from top to bottom, there is a highest level of CCompi2, which we

denote level h, for which the inherited graph of groups IRC1 is nontrivial.

We denote this inherited abelian decomposition ∆. Since the decomposition

that is associated with every level of the completion CCompi2 is an abelian

decomposition, the graph of groups ∆ is an abelian graph of groups of IRC1.

The abelian graph of groups ∆ of IRC1 naturally extends to an abelian

graph of groups ∆′ of the amalgamation of IRC1 with the completion RComp2
along the amalgamated (coefficient) subgroup 〈a〉 = Fk. By construction the

map ηi : duoR → cldi factors through that amalgamated subgroup.

Since the subgroup 〈p, a〉 is contained in the distinguished vertex group of

the abelian decomposition ∆, and the subgroup 〈q, a〉 is contained in RComp2,

the subgroup 〈p, q, a〉 is contained in the distinguished vertex group of the

abelian decomposition ∆′. The image of the configuration subgroup Conf

in the amalgamation of IRC1 and RComp2, 〈x1, . . . , xs, p, q, a〉, is generated

by the subgroup 〈p, q, a〉 and the elements x1, . . . , xs, where each of the sub-

groups 〈xj , p, q, a〉 is rigid with respect to the parameter subgroup 〈p, q, a〉.
Since the (parameter) subgroup 〈p, q, a〉 is elliptic in ∆′, and the subgroups

〈xj , p, q, a〉 are rigid, the abelian decomposition that is inherited by the sub-

group, 〈x1, . . . , xs, p, q, a〉, from ∆′ has to be trivial, and so the entire image

of the configuration limit group Conf is contained in the distinguished vertex

group in ∆′.

With every test sequence of the closure, cldi, we can associate a sequence

of homomorphisms of duoR into the coefficient group (by precomposing homo-

morphisms of cldi with the map ηi). We consider all the test sequences of the

closure cldi and use the modular groups that are associated with the abelian

decomposition, ∆′, that act trivially on the image of the configuration limit

group Conf, to shorten the restrictions of these homomorphisms to homomor-

phisms of the completion, RComp1. By the construction of formal limit groups

([Sel03, §3]), with the collection of all these (shortened) sequences we can asso-

ciate a finite collection of closures of cldi (that are closures of duor), that form a
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covering closure of cldi (see [Sel03, Def. 1.16] for a covering closure), so that (by

shortening the restrictions of the homomorphisms of duoR to homomorphisms

of RComp1) the image of the completion RComp1 in each of these closures in-

herit a trivial decomposition from each of the abelian decompositions that is

associated with the top h levels of CCompi
′
2 .

By repeating this argument iteratively, we can replace the closure cldi
by finitely many closures of it, so that the image of RComp1 in each of these

closures is contained in CCompi
′
1 . An identical argument proves the same for

the image of RComp2, and the lemma follows. �

In the sequel we continue with the new set of closures, still denoted {cldi},
i = 1, . . . ,m, with the properties that are claimed in Lemma 3.6. Note that

this new set of closures covers the same collections of cosets of finite index

subgroups of abelian vertex groups in the various levels of Comp1 and Comp2.

However, by replacing the set of closures, we may need to replace the finite

diagram of collection of such cosets, and in the sequel we continue with this

new diagram.

In the duo limit groups, duoR (that is dual to the rectangle, Rectangle),

there is an image of the configuration limit group, Conf(x1, . . . , xs, p, q, a). We

denote this image as 〈x1, . . . , xs, p, q, a〉. In the rectangle, Rectangle, there is a

value that restricts to a (nondegenerate) value of the configuration limit group,

Conf, i.e., a value for which the values of the xj ’s are rigid and distinct values of

the given rigid limit group Rgd(x, p, q, a) (rigid with respect to the parameter

subgroup 〈p, q〉).
Each of the elements xj ∈ duoR can be written in a normal form with

respect to the amalgamated product: duoR = RComp1 ∗〈a〉 RComp2. For

each j let this normal form be xj = f j1s
j
1 . . . f

j
rjs

j
rj , where f j` ∈ RComp1 and

sj` ∈ RComp2, ` = 1, . . . , rj . We now look at the completion RComp1(u1, p, a)

as a graded limit group with respect to the parameter subgroup 〈p, a〉 and at

the completion RComp2(u2, q, a) as a graded limit group with respect to the

parameter subgroup 〈q, a〉. With each of these graded limit groups we asso-

ciate its graded Makanin-Razborov diagram. Clearly, all the values of the two

completions, RComp1 and RComp2, factor through these two completions.

Suppose that (x01, . . . , x
0
s, p0, q0, a) is a (nondegenerate) configuration ho-

momorphism that extends to a value in the rectangle, Rectangle, i.e., it extends

to a value that factors through the duo limit group duoR. This extended value

restricts to values of the two completions, (u01, p0, a) and (u02, q0, a), and to val-

ues of the elements f j` ∈ RComp1 and sj` ∈ RComp2, j = 1, . . . , s, ` = 1, . . . , rj .

The values (u01, p0, a) and (u02, q0, a) factor through graded resolutions in

the graded Makanin-Razborov diagrams of RComp1 and RComp2 in correspon-

dence. Since the values, x01, . . . , x
0
s, are rigid values of Rgd(x, p, q, a) (with
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respect to the parameter subgroup 〈p, a〉), the elements, f j` ∈ Rcomp1 and

sj` ∈ RComp2, must belong to the distinguished vertex groups (the vertex

groups that contain the parameter subgroups 〈p, a〉 and 〈q, a〉 in correspon-

dence) in all the abelian decompositions along the various levels of the two

graded resolutions of Rcomp1 and RComp2. (They must belong to the distin-

guished vertex groups, since otherwise at least one of the subgroups 〈xj , p, q, a〉
inherits a nontrivial abelian splitting, a contradiction to the rigidity of the val-

ues x0j .) Therefore, by the bounds on the number of rigid and strictly solid

families of rigid and strictly solid limit groups ([Sel05a, Ths. 2.5, 2.9]), for fixed

values p0 and q0 of the variables p and q, there is a global bound on the possible

values of the variables, f j` ∈ Rcomp1 and sj` ∈ RComp2, that determine (non-

degenerate) configuration homomorphisms, i.e., values (x01, . . . , x
0
s, p0, q0, a) for

which the values x0j , j = 1, . . . , s, are rigid and distinct. Furthermore, this

global bound depends only on the (universal) duo limit groups, Duo1, . . . ,Duot,

and not on the specific rectangle that is associated with it.

We now deduce the conclusion of Proposition 3.5 from the universal bounds

on the values of the variables xj for given values of the variables p and q. Let

cld1, . . . , cldm′ be the closures of the duo limit group duor that are associated

with one of the boundedly many rectangles, Rectangle, of the duo limit groups:

Duo1, . . . ,Duot. We may assume that these closures satisfy the conclusion of

Proposition 3.5. With each such duo closure there is an associated collection of

cosets of finite index subgroups of the abelian vertex groups that are associated

with the various levels of the completions, Comp1 and Comp2, that are part of

the duo limit group duor, that is dual to the given rectangle, rectangle.

Given the closures, cld1, . . . , cldm′ , we construct a new closure ucld of duor.

We construct ucld to be a closure for which the finite index subgroups of the

abelian groups that are associated with the various levels of Comp1 and Comp2,

are the intersections of the finite index subgroups that are associated with these

abelian groups in the set of closures, cld1, . . . , cldm′ . By construction, each of

the closures, cldi, is embedded in ucld.

Since the duo limit group duoR is mapped by ηi into each of the closures,

cldi, the elements f j` and sj` are mapped by ηi into cldi. Since cldi is mapped

into the closure ucld, the elements f j` and sj` are mapped into ucld via the

composition of ηi with this embedding, which we denote νi. Because there is a

global bound (that depends only on Duo1, . . . ,Duot) on the number of distinct

values of the elements f j` and sj` for a given value of the variables p and q,

there is a global bound (that depends only on Duo1, . . . ,Duot) on the distinct

images of the set of elements f j` and sj` under the maps νi, i = 1, . . . ,m′.

We divide the images under the maps ηi of the completions, RComp1
and RComp2, into the closures cldi into boundedly many equivalence classes,
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according to the image under the map νi of the subsets of elements f j` and sj`
(in correspondence) in the closure ucld.

Suppose that cldi1 and cldi2 are two closures for which the maps of both

Rcomp1 and Rcomp2 into cldi1 and cldi2 belong to the same equivalence classes.

Let CCompi11 ,CCompi12 ,CCompi21 ,CCompi22 be the completions that are asso-

ciated with the two closures, cldi1 and cldi2 , in correspondence. Then the

groups: CCompi11 ∗〈a〉 CCompi22 and CCompi21 ∗〈a〉 CCompi12 are also closures

of duor. Furthermore, each of the elements xj ∈ duor can be represented as

xj = f j1s
j
1 . . . f

j
rjs

j
rj in these two closures of duor. Hence there are values that

factor through these two closures that restrict to (nondegenerate) configuration

homomorphisms.

Therefore, the set of points in the planar diagram that was associated with

the set of closures that satisfy the conclusion of Lemma 3.6, and for which

the two completions, CCompi1 and CCompi2, of these closures belong to the

same equivalence classes, form a product domain. Since there are boundedly

many equivalence classes of the completions CCompi1 and CCompi2, the collec-

tions of points in the diagram that are associated with one of the closures,

4ld1, . . . , cldm′ , that are all associated with the same rectangle, Rectangle, of

Duo1, . . . ,Duot, is a bounded union of product domains. Since there is a bound

on the number of rectangles that are associated with Duo1, . . . ,Duot that are

associated with the initial level of the diagram Diag, and with the value q1 of

the variables q, the set of points in the diagram that are associated with the

entire set of closures, cld1, . . . , cldm, is a bounded union of product domains.

Furthermore, the bound depends only on the duo limit groups, Duo1, . . . ,Duot,

and hence it depends only on the given rigid limit groups, Rgd(x, p, q, a), that

we have started with. �

Suppose that the given (bounded) set of product domains that are asso-

ciated with the closures of the rectangle rectangle, that were constructed from

boundedly many rectangles that are associated with the duo limit groups,

Duo1, . . . ,Duot, that were constructed in the initial level of the diagram, Diag,

and are associated with the value q1, do not cover all the duo test sequences of

the given rectangle, rectangle. That is, there are still duo test sequences of val-

ues in rectangle that do not have subsequences, so that the restrictions of these

subsequences to configuration homomorphisms cannot be extended to values

that factor through the (chosen) boundedly many rectangles of Duo1, . . . ,Duot.

In this case we look at the planar diagram that has finitely many points

and contain the product domains that appear in the statement of Proposi-

tion 3.5. One of the axis of this diagram has finitely many collections of cosets

of finite index subgroups of abelian vertex groups that appear in the various

levels of the completion, Comp1, and the other axis has collections of cosets
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of finite index subgroups of abelian vertex groups that appear in the various

levels of Comp2.

The boundedly many product domains in the diagram naturally define a

stratification of the axis that is associated with Comp2. Two collections of finite

index subgroups of abelian vertex groups in Comp2 are set to be in the same

stratum if they appear in the projection of the same product domains. Since

there are boundedly many product domains (by Proposition 3.5), the number

of strata in the constructed stratification is bounded (where the bound depends

only on the universal duo limit groups, Duo1, . . . ,Duot).

For each stratum in the stratification of the axis that is associated with

Comp2, we choose a value q2 of the defining parameters q, that extends to a

value d02 of the variables d2 (i.e., a specialization of Comp2(d2, q, a)), with the

following properties, if such a value exists:

(i) d02 belongs to a collection of cosets of finite index subgroups of abelian

vertex groups in Comp2 that is in the specified stratum of the stratification

(of the axis that is associated with Comp2).

(ii) For any product domain whose projection contains the given stratum,

there exists a test sequence of the completion, Comp(d1, p, a) (which is

the completion that contain the subgroup 〈p〉 in the given duo limit group

Duo) for which the sequence {(d1(n), p(n), d02 , q2, d
0
0 , a)} is contained in

the rectangle, rectangle, and restricts to configuration homomorphisms,

that further extend to values in the closure of rectangle that is associated

with that product domain.

(iii) Let {(d1(n), p(n), d00 , a)} be an arbitrary test sequence of specializations

of Comp(d1, p, a) for which the sequence {(d1(n), p(n), d02 , q2, d
0
0 , a)} is

contained in the rectangle, rectangle, and restricts to configuration ho-

momorphisms. Suppose, in addition, that the values in the sequence,

{(d1(n), p(n), d00 , a)}, belong to a fixed collection of cosets of finite index

subgroups of the abelian vertex groups in the completion Comp1, and

this collection is not in the projection to the axis that is associated with

Comp1, of any of the product domains that its projection to the axis that

is associated with Comp2 contains the given stratum.

Then no (infinite) subsequence of the sequence {d1(n), p(n), d02 , q2, a)}
(which is a sequence of values in duo) restricts to configuration homomor-

phisms that can be extended to values in the (boundedly many) rectangles

that are associated with the value q1, and with those duo limit groups,

Duo1, . . . ,Duot, that were associated with completions in the initial level

of the diagram Diag.

Since there are boundedly many strata in the stratification of the axis

that is associated with Comp2, we have chosen at most boundedly many values

q2 of the parameters q. We continue with all the boundedly many pairs of
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values, (q1, q2), where q1 is the value of the parameters q that was chosen for

the initial level of the diagram Diag, and q2 are all the boundedly many values

of the parameters q that were chosen for the various strata in the stratification

of the axis that is associated with Comp2.

With each such pair, (q1, q2), we associate the boundedly many rectangles

that are associated with it, and with the duo limit groups, Duo1, . . . ,Duot,

that are associated with the second level of the diagram Diag. As there are

boundedly many pairs, (q1, q2), and with each pair there are at most boundedly

many associated rectangles, we have altogether associated boundedly many

rectangles with the second level of the diagram Diag.

At this stage we repeat what we did with the rectangles of the duo limit

groups, Duo1, . . . ,Duot, that are associated with the initial level of the dia-

gram Diag, and analyze the (bounded) collection of rectangles of the duo limit

groups, Duo1, . . . ,Duot, that appear in the first two levels of the diagram Diag.

We first associate with the collection of rectangles a finite collection of duo

closures of the given duo limit group that is associated with the rectangle,

rectangle. With this collection of duo closures we associate a finite planar di-

agram with axes that consist of collections of cosets of finite index subgroups

of abelian vertex groups that appear in the various levels of the completions,

Comp1 and Comp2. In this diagram we indicate all the collections of cosets

that are covered by the closures that were constructed from the rectangles of

duo limit groups that are associated with the first two levels of the diagram

Diag. By Proposition 3.5, the collections that are covered by these closures

are the union of boundedly many product domains. These product domains

give rise to a stratification of the axes that are associated with the collection

of cosets of abelian vertex groups in Comp2, and in this stratification there are

boundedly many strata. As we did in the first step of the diagram Diag, with

each stratum of this stratification we associate a value q3 of the parameters q

that satisfy properties (i)–(iii).

We continue iteratively. At level m of the diagram Diag, we look at all

the boundedly many m-tuples of values of the parameters q, (q1, . . . , qm), that

were chosen in the previous m−1 levels. With each such m-tuple, we associate

the boundedly many rectangles that are associated with it, and with the duo

limit groups, Duo1, . . . ,Duot, that are associated with the m-th level of the

diagram Diag. Given the boundedly many rectangles that are associated with

the chosen values of the parameter subgroup q, and with the duo limit groups,

Duo1, . . . ,Duot, that appear in all the first m levels of the diagram Diag, we

construct finitely many duo closures of the duo limit group that is dual to the

given rectangle, rectangle.

As we did in the first two steps of the diagram Diag, with this collection of

duo closures we associate a finite planar diagram. In this diagram we indicate
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all the collections of cosets that are covered by the closures that were con-

structed from the rectangles of duo limit groups that are associated with the

first m levels of the diagram Diag. By Proposition 3.5, the collections that are

covered by these closures are the union of boundedly many product domains.

These product domains give rise to a bounded stratification of the axes that is

associated with collection of cosets of abelian vertex groups in Comp2. As we

did in the first step of the diagram Diag, with each stratum of this stratification

we associate a value qm+1 of the parameters q that satisfy properties (i)–(iii).

The iterative process that we presented terminates with the duo limit

groups, Duo1, . . . ,Duot, that are associated with the terminal level of the (fi-

nite) diagram Diag. By construction, when the process terminates we have

associated boundedly many rectangles (that are all associated with the duo

limit groups, Duo1, . . . ,Duot) with the given rectangle rectangle. From the

universality of the diagram Diag, we obtain the covering property, which con-

cludes the proof of Theorem 3.3.

Proposition 3.7. The bounded collection of rectangles of the universal

duo limit groups, Duo1, . . . ,Duot, that were constructed iteratively by going

through the levels of the universal diagram Diag, covers the given rectangle

duo.

Proof. The completions that appear in the initial level of the diagram,

Diag, are completions of the resolutions in the graded Makanin-Razborov dia-

grams of the maximal configuration limit groups of the given rigid limit group,

Rgd(x, p, q, a), with respect to the parameter subgroup 〈q〉. Hence, by the uni-

versality of the Makanin-Razborov diagrams and the maximal configuration

limit groups, given a value q1 of the parameters q, the boundedly many fibers

of the completions that appear in the initial level of the diagram Diag, and

are associated with the value q1, restrict to all the possible values p0 of the

variables p, so that the pair (p0, q1) can be extended to a configuration ho-

momorphism that is associated with the given rigid limit group Rgd(x, p, q, a),

i.e., a configuration homomorphism of one of the maximal configuration limit

groups that are associated with Rgd(x, p, q, a).

The duo limit group that is dual to the given rectangle, rectangle, is an

amalgamated product of two completions, 〈d1〉 = Comp1(d1, p, a) and 〈d2〉 =

Comp2(d2, q, a), that are amalgamated along the coefficient group Fk = 〈a〉.
The value q1 of the parameters q was chosen so that it extends to a value

in the rectangle rectangle, that restricts to a (nondegenerate) configuration

homomorphism. Hence, q1 extends to a value d02 of the variables d2, such that

from every test sequence of the completion Comp1 it is possible to pass to a

subsequence, {d1(n)}, so that all the combined values, {(d1(n), d02)}, restrict

to (nondegenerate) configuration homomorphisms.
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Therefore, from every test sequence of Comp1 it is possible to extract

a subsequence, {d1(n)}, such that the restrictions of the values d1(n) to the

variables p extend to values in the boundedly many fibers that are associated

with the completions that appear in the initial level of the diagram Diag and

with the value q1.

With the rectangle rectangle, and the boundedly many rectangles that are

associated with those duo limit groups, Duo1, . . . ,Duot, that are associated

with the completions in the initial level of Diag, and with the value q1, we have

associated a finite planar diagram. The planar diagram and the boundedly

many product domains in it (see Proposition 3.5) give a bounded stratification

of the axis of the planar diagram in which there are collections of cosets of

finite index subgroups of abelian vertex groups in the various levels of Comp2.

In each of the boundedly many strata we chose an element q2 that satisfies

properties (i)–(iii) above.

Therefore, q2 extends to a value d02 of the variables d2, such that from

every test sequence of Comp1 that restrict to values of the abelian groups in

the various levels of Comp1, that do not belong to a collection of cosets of

finite index subgroups of these abelian groups that is in the projection of a

planar domain that projects to the stratum of q2, it is possible to extract a

subsequence, {d1(n)}, so that all the combined values, {(d1(n), d02)}, restrict to

(nondegenerate) configuration homomorphisms. Furthermore, the restrictions

of the values d1(n) to the variables p extend to values in the boundedly many

fibers that are associated with the completions that appear in the second level

of the diagram Diag, and with the pair (q1, q2).

We continue by applying this argument iteratively. At each level the re-

strictions to the variables p of the values in the fibers that are associated with

the completions in level m of the diagram Diag, and with a tuple, (q1, . . . , qm),

contain all the restrictions to the variables p of test sequences of Comp1 for

which the restrictions of the values in the test sequence of Comp1 to values of

the abelian groups in the various levels of Comp1, do not belong to a collection

of cosets of finite index subgroups of these abelian groups that is in the pro-

jection of a planar domain that projects to the stratum of a fixed extension of

qm to a specialization of Comp2.

Since the diagram Diag is finite by Proposition 3.4, when we get to the

last level of the diagram, and there is no level to continue to, the boundedly

many product domains that are associated with the (boundedly many) rect-

angles that are associated with all the duo limit groups, Duo1, . . . ,Duot, and

the boundedly many values (q1, . . . , qi), i = 1, . . . ,m, cover the entire pla-

nar diagram that we constructed from the collections of cosets of finite index

subgroups of abelian vertex groups in Comp1 and Comp2. This proves that
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these boundedly many rectangles of Duo1, . . . ,Duot cover the given rectangle,

rectangle, of the given duo limit group Duo. �

Remark. For a given rigid limit group, Rgd(x, p, q, a), and a positive in-

teger s, Theorem 3.3 proves the existence of finitely many universal duo limit

groups, so that every rectangle that is associated with the corresponding set

NRs, is covered by boundedly many rectangles of the universal duo limit groups.

The diagram Diag that is used in the proof of Theorem 3.3 generalizes to solid

limit groups, and so does the construction of a finite collection of universal duo

limit groups that are associated with it. Given an arbitrary duo limit group

that is associated with a solid limit group, and a rectangle of this duo limit

group, it is not difficult to show that there are finitely many rectangles of the

universal duo limit groups that cover that rectangle. (See Definition 3.2 for

these notions.) However, it remains open if there exists a global bound on

the required number of the covering rectangles. Furthermore, using the notion

of duo envelopes of a general definable set, that is presented in Section 1 in

[Sel], it is possible to generalize the statement of Theorem 3.3 to rectangles

in general definable sets (over a free or a torsion-free hyperbolic group). The

validity of the statement for general definable sets remains open as well.

4. Rigid and solid values

In Section 1 we showed that in the minimal (graded) rank case Diophantine

sets are equational. We then used it to show that the sets NRs (NSs), that

indicate those values of the parameter set 〈p, q〉 for which a minimal (graded)

rank rigid (solid) limit group Rgd(x, p, q, a) (Sld(x, p, q, a)) admits at least s

rigid (strictly solid families of) values, are in the Boolean algebra generated by

(minimal rank) equational sets (Theorems 1.5 and 1.7).

In Section 2 we showed that Diophantine sets are equational in the gen-

eral case, omitting the minimal (graded) rank assumption. In this section we

combine the equationality of general Diophantine sets with the concept of duo

limit groups that is presented in the previous section, to show that the sets

NRs and NSs that are associated with general rigid and solid limit groups are

stable.

Theorem 4.1. Let Fk = 〈a1, . . . , ak〉 be a non-abelian free group, and let

Rgd(x, p, q, a) (Sld(x, p, a)) be a rigid (solid) limit group, with respect to the

parameter subgroup 〈p, q〉. Let s be a positive integer, and let NRs (NSs) be the

set of values of the defining parameters 〈p, q〉 for which the rigid (solid) limit

group, Rgd(x, p, q, a) (Sld(x, p, a)), has at least s rigid (strictly solid families

of ) values. Then the set NRs (NSs) is stable.
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Proof. To prove the stability of the set NRs (NSs), we bound the length

of a sequence of couples of values, (p1, q1), . . . , (pn, qn), for which the formula

that is associated with the set NRs (NSs) defines a linear order, i.e. for which

(pi, qj) ∈ NRs if and only if i < j.

We start with the construction of the diagrams that are needed in order to

get the bound on the lengths of linearly ordered sequences of couples. First, we

associate with the set NRs (NSs) the finite diagram Diag that was constructed in

proving Theorem 3.3. (The construction of the diagram Diag that is presented

in the rigid case in Theorem 3.3, generalizes in a straightforward way to the

solid case.) Recall that in each step of the diagram we collected all the values

({xi1, . . . , xis}`i=1, p0, q1, . . . , q`, a)

for which for all indices i, 1 ≤ i ≤ `, the values (xi1, . . . , x
i
s, p0, qi, a) are rigid

(strictly solid) and distinct (belong to distinct strictly solid families). We fur-

ther apply the construction of (quotient) resolutions that is presented and used

in the general step of the sieve procedure [Sel06] to analyze these values and as-

sociate finitely many completions, anvils, developing resolutions, and possibly

carriers and sculpted resolutions with them. By Proposition 3.4 the construc-

tion of the diagram terminates after finitely many steps, and we obtain a finite

diagram, which we denote Diag. The obtained diagram is a finite directed

forest, where at each vertex of the forest we place a (graded) completion, that

is either a closure of a completion in the previous level or is a completion of

the developing resolution of an anvil that was constructed along the iterative

procedure. (See the detailed construction of the diagram and its description in

the proof of Theorem 3.3.) The graded completions in the diagram are graded

with respect to the parameter subgroups 〈q1〉 (completions in the first level of

the diagram), 〈q1, q2〉 (in the second level), and 〈q1, . . . , qm〉 for completions in

the m-th level of the diagram.

With each of the graded completions in the diagram Diag we associate a

finite collection of duo limit groups, precisely as we associated duo limit groups

with the completions that were constructed in the proof of Theorem 3.3. (The

construction that is presented in the proof of Theorem 3.3 is in the rigid case,

and precisely the same construction works in the solid case.) Hence, with the

entire set of completions in the diagram Diag, we associate a finite collection

of universal duo limit groups, Duo1, . . . ,Duot, that are precisely the universal

duo limit groups that appear in the statement of Theorem 3.3.

The diagram Diag that we associated with NRs (NSs) is a directed graph

for which in each vertex we place a closure of a completion in the previous

level or the completion of the developing resolution of an anvil that was con-

structed at that level of the corresponding branch of the iterative procedure
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that constructs the diagram. We set depthNRs
(depthNSs

) to be the depth (or

the number of levels) of the directed graph that is associated with the diagram.

The parameter subgroup of the completions that appear in level m of the

diagram is denoted, 〈q1, . . . , qm〉. With each value of (the generators of) this

parameter subgroup one associates boundedly many fibers of the completions

that are placed in level m of the diagram Diag. With each such fiber (in level

m), and a value of the variables qm+1, there are boundedly many fibers of the

completions that appear in level m+ 1 of the diagram and are associated with

them. We further set widthNRs
(widthNSs

) to be the maximal number of fibers

of completions that are placed in level m+1 of the diagram, and are associated

with the same fiber of a completion in level m of the diagram, and the same

value of the variables qm+1 (where the maximum is over all the possible levels

m of the diagram Diag, including level 0, in which case there are no fibers in a

previous level, and with a value of the variables q1 there are at most boundedly

many associated fibers of completions that are placed in the initial level of the

diagram Diag).

By the existence of a global bound on the numbers of rigid values of a

rigid limit group, and strictly solid families of a solid limit group ([Sel05a,

Ths. 2.5, 2.9]), there exists a bound on the maximal number of rectangles that

are associated with one of the duo limit groups, Duo1, . . . ,Duot, and with a

fixed fiber of a completion that is placed in a vertex in the diagram Diag. We

set recNRs
(recNSs

) to be this bound.

Let Duo be one of the (universal) duo limit groups, Duo1, . . . ,Duot, that

are associated with NRs (NSs), and suppose that Duo = 〈d1, p, a〉∗〈d0〉 〈d2, q, a〉.
We view Duo as a graded limit group with respect to the parameter subgroup

〈d2, q〉. Every value of Duo restricts to a value of the associated configuration

limit group Conf, (x1, . . . , xs, p, q, a). (See Definition 3.1 for the properties of

a duo limit group. Note that the elements x1, . . . , xs can be written as words

in the elements d1 and d2.) With Duo we further associate the Diophantine

condition that forces the associated restriction of the configuration limit group,

Conf, not to be a configuration homomorphism (to be degenerate). That is,

either one of the values (xi, p, q, a) is flexible (not strictly solid), or two rigid

specializations (xi, p, q, a) and (xj , p, q, a), i < j, coincide. (They belong to the

same strictly solid family. See [Sel05a, Def. 1.5] for this Diophantine condition

in the solid case.) Note that this degeneracy condition is a Diophantine condi-

tion on specializations of the duo limit group Duo; we call it the degenerating

Diophantine condition.

By Theorem 2.1, Diophantine sets are equational. Hence, given a Dio-

phantine set D(p, q) there exists a global bound on any strictly decreasing

sequence of intersections: ∩mi=1D(p, qi). Therefore, starting with the duo limit

group Duo, viewed as a graded limit group with respect to the parameter
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subgroup 〈d2, q, a〉, and the specializations that factor through it, there exists

a global bound on the length of sequences of values d2(1), . . . , d2(u), of the

elements d2 in the duo limit group Duo for which the sets of values of the

variables d1, D1r, 1 ≤ r ≤ u for which these values together with the corre-

sponding values d2(1), . . . , d2(r), 1 ≤ r ≤ u, extend to specializations of Duo,

and the combined specializations of Duo satisfy the degenerating Diophantine

condition, strictly decreases for 1 ≤ r ≤ u. We set lengthNRS
(lengthNSS

) to

be the maximum of these bounds, where the maximum is taken over all the

universal duo limit groups Duo1, . . . ,Duot.

To get a bound on the cardinality of sets of values {(pi, qi)} that can be or-

dered by the sets NRs and NSs, we need another invariant of the universal duo

limit groups, Duo1, . . . ,Duot. Let Duo be one of these duo limit groups. By the

properties of duo limit groups (Definition 3.1), Duo = Comp1(d1, p, a) ∗〈d0,a〉
Comp2(d2, q, a), and there is a map from a (maximal) configuration limit group

Conf, that is associated with Rgd(x, p, q, a) (Sld(x, p, q, a)), into Duo. We de-

note the image of Conf in Duo, 〈x1, . . . , xs, p, q, a〉.
Each of the elements x`, ` = 1, . . . , s, can be written in a normal form

with respect to the amalgamated product, Comp1 ∗〈d0〉 Comp2. Let x` =

u`1v
`
1 · · ·u`r`v

`
r`

, u`e ∈ Comp1, v
`
e ∈ Comp2, ` = 1, . . . , s, be such normal forms.

We continue by viewing Comp1(d1, p, a) as a graded limit group with re-

spect to the parameter subgroup 〈d0, p, a〉, and Comp2(d2, q, a) as a graded

limit group with respect to the parameter subgroup 〈d0, q, a〉. With Comp1 and

Comp2, viewed as graded limit groups with respect to 〈d0, p, a〉 and 〈d0, q, a〉
in correspondence, we associate their graded Makanin-Razborov diagrams.

Suppose first that we are given a rigid limit group Rgd(x, p, q, a) and its as-

sociated set NRs. With each value of the elements x1, . . . , xs, that generate the

image of the configuration limit group Conf in Duo, there are associated values

of the elements u`e, v
`
e, 1 ≤ ` ≤ s, 1 ≤ e ≤ r`. If the values of x1, . . . , xs are

rigid values of Rgd(x, p, q, a), then extension of these values to values of d1 and

d2 must factor through graded resolutions in the graded Makanin-Razborov

diagrams of Comp1(d1, p, a) and Comp2(d2, q, a) with respect to the parame-

ter subgroups 〈d0, p, a〉 and 〈d0, q, a〉 in correspondence, in which the elements

u`e, v
`
e are contained in the distinguished vertex group in all the abelian decom-

positions along the graded resolutions (i.e., the vertex group that contains the

subgroups 〈d0, p, a〉 and 〈d0, q, a〉 in correspondence).

A graded resolution terminates in either a rigid or a solid limit group.

By [Sel05a, Ths. 2.5, 2.9], given a value of the parameter subgroups 〈d0, p〉
or 〈d0, q〉, it may extend to only boundedly many values that a fixed set of

generators of the distinguished vertex group in the abelian decomposition that

is associated with the terminal level of one of the graded resolutions in these

Makanin-Razborov diagrams. The number of these values of a fixed generating
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set of the distinguished vertex group is bounded by the number of rigid or

families of strictly solid families of values, that extend a given value of the

subgroup 〈d0, p〉 or 〈d0, q〉. We set excepNRs
to be the sum of the bounds

on the number of rigid or strictly solid families of values, that are associated

with a given value of 〈d0, p〉 and 〈d0, q〉), where the sum is taken over the

terminal rigid or solid limit groups of all the graded resolutions that appear in

the graded Makanin-Razborov diagrams of Comp1 and Comp2, for all the duo

limit groups Duo1, . . . ,Duot.

Suppose that we are given a solid limit group Sld(x, p, q, a) and its asso-

ciated set NSs. The duo limit group Duo admits a free product with amal-

gamation: Duo = Comp1(d1, p, a) ∗〈d0〉 Comp2(d2, q, a). Given a resolution in

the graded Makanin-Razborov diagram of Comp1(d1, p, a) with respect to the

parameter subgroup 〈p, d0〉, and a resolution in the graded Makanin-Razborov

diagram of Comp(d2, q, a) with respect to the parameter subgroup 〈q, d0〉, we

take the completions of these two graded resolutions, and then the (finitely

many) maximal limit quotients of the amalgamated product of these two com-

pletions. This amalgamation is a duo limit group that we denote PQDuo.

The image of the configuration limit group in Duo, 〈x1, . . . , xs, p, q, a〉, is nat-

urally mapped into PQDuo. This image of the configuration limit group in

PQDuo restricts to s images of the solid limit group that we have started with,

Sld(x, p, q, a), into PQDuo. A nondegenerate homomorphism of the configura-

tion limit group restricts to s strictly solid values, (xi, p, q, a), i = 1, . . . , s, of

the solid limit group Sld(x, p, q, a).

Hence, if such a nondegenerate homomorphism extends to a value of the

duo limit group Duo, and that value factors through PQDuo, then in the smaps

of Sld(x, p, q, a) into PQDuo, the image of every rigid vertex group, every edge

group, and every subgroup that is generated by edges that are adjacent to an

abelian vertex group in the graded abelian decomposition that is associated

with the solid limit group Sld(x, p, q, a), must be elliptic in all the abelian

decompositions that are associated with the various levels of PQDuo (i.e., in

all the abelian decompositions that are associated with the two completions

from which PQDuo is composed).

Therefore, like in the rigid case, and by the global bounds on the number

of rigid and strictly solid families of values of rigid and strictly solid limit

groups ([Sel05a, Ths. 2.5, 2.9]), those elements u`e, v
`
e, 1 ≤ ` ≤ s, 1 ≤ e ≤ r`,

that appear in the normal form of the elements, x1, . . . , xs, that generate rigid

vertex groups, edge groups, or the subgroups that are generated by the edge

groups that are adjacent to an abelian vertex group in the graded abelian

decomposition of Sld, admit only boundedly many values for every possible

value of the defining parameters 〈d0, p〉 and 〈d0, q〉 (in correspondence), for
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each terminal rigid or solid limit group of a resolution in the graded Makanin-

Razborov diagram of Comp1 or Comp2. We set excepNSs
to be the sum of the

bounds on the number of such rigid and strictly solid families, where the sum

is over all the terminal rigid and solid limit groups of graded resolutions that

appear in the graded Makanin-Razborov diagrams of Comp1 and Comp2, for

all the duo limit groups Duo1, . . . ,Duot.

Proposition 4.2. With the notation of Theorem 4.1, let (p1, q1), . . . ,

(pn, qn) be a sequence of values of the defining parameters p, q. Suppose that

(pi, qj) ∈ NRs if and only if i < j. Then n < M , where

M = (1 + widthNRs
)
(depthNRs

·L1)
, L1 = (t · recNRs

)
t·recNRs

·L2
,

L2 = excepNRs

L3 , L3 = excepNRs

L4 , L4 = lengthNRs
+ 2.

A similar statement holds for the sets NSs if we replace the constants for NRs

with those for NSs.

Proof. We prove the proposition for a set NRs (that is associated with a

rigid limit group). The proof for the sets NSs (that are associated with sold

limit groups) is identical. Let n ≥M , and let (p1, q1), . . . , (pn, qn) be a sequence

of values of the parameters p, q for which (pi, qj) ∈ NRs if and only if i < j. By

the definition of the set NRs, for every i < j, there exists an s-tuple of values

xi,j = (xi,j1 , . . . , x
i,j
s ), so that for every 1 ≤ m ≤ s, (xi,jm , pi, qj , a) is a rigid

value of the given rigid limit group Rgd(x, p, q, a), and for 1 ≤ m1 < m2 ≤ s,

the corresponding rigid values are distinct. For the rest of the argument, with

each couple (pi, qj), i < j, we further associate such an s-tuple of values xi,j .

We iteratively filter the tuples (xi,j , pi, qj) and then apply a simple pigeon-

hole principle. We start with qn. By the construction of the diagram Diag,

that is associated with the rigid limit group, Rgd(x, p, q, a), at least 1
widthNRs

of the values, {(xi,n, pi, qn, a)}n−1i=1 , belong to the same fiber that is associated

with qn in the initial level of the diagram Diag. We proceed only with those

indices i for which the values, (xi,n, pi, qn, a), belong to that fiber.

We continue with the largest index i, i < n for which the tuple, (xi,n, pi,

qn, a), belongs to that fiber. We denote that index i, u2. By the structure of

the diagram Diag, at least 1
1+widthNRs

of the values {(xi,u2 , xi,n, pi, qu2 , qn, a)},

for those indices i < u2 that remained after the first filtration, belong to either

a closure of the same fiber in the initial level, or to one of the fibers in the

second level of the constructed diagram. We proceed only with those indices

i for which the value, {(xi,u2 , xi,n, pi, qu2 , qn, a)}, belong to either a closure of

the same fiber in the initial level, or to the same fiber in the second level of

the diagram Diag.
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We proceed this filtration process iteratively. The diagram Diag is finite

and has depth depthNRs
. At each step we remain with at least 1

1+widthNRs

of the values that we have started the step with, and either we stay with the

same fiber that we reached in the previous step, or we continue to a fiber of

a completion that is placed in the next level of the diagram. Since we have

started with n ≥ M pairs of values, {(pi, qi)}, there must exist a subsequence

(still denoted) {(pi, qi)}L1
i=1 for which

(i) (pi, qj) ∈ NRs if and only if i < j.

(ii) There exists a fiber of one of the completions that is placed in a vertex

of the diagram Diag so that for i < j < L1, the value (pi, qj) extends to

a (nondegenerate) configuration homomorphism: (xi,j , pi, qj , a), that

further extends to a value of one of the boundedly many rectangles

that are associated with the fixed fiber and with one of the universal

duo limit groups, Duo1, . . . ,Duot.

We continue with the subsequence of pairs {(pi, qi)}L1
i=1 that satisfy prop-

erties (i) and (ii) and further filter it. By construction there are t duo limit

groups, and with any given fiber of one of the completions in the diagram Diag

and one of the duo limit groups, Duo1, . . . ,Duot, there are at most recNRs

associated rectangles. Hence the sequence of values (pi, qj), 1 ≤ i < j ≤ L1,

extends to (nondegenerate) configuration homomorphisms, (xi,j , pi, qj , a), 1 ≤
i < j ≤ L1, that further extend to values of at most t · recNRs

rectangles in

the duo limit groups, Duo1, . . . ,Duot.

By filtering the sequence of values, {(pi, qi)}, 1 ≤ i < j ≤ L1, accord-

ing to the rectangle that contains the extended configuration homomorphism,

(xi,j , pi, qj , a), using a similar filtration as was used to filter the subsequence

that satisfies properties (i) and (ii), we get a new subsequence (still denoted)

{(pi, qi)}L2
i=1 for which

(1) (pi, qj) ∈ NRs if and only if i < j.

(2) There exists a rectangle that is associated with one of the duo limit groups,

Duo1, . . . ,Duot, so that for i < j < L2, the value (pi, qj) extends to a

(nondegenerate) configuration homomorphism (xi,j , pi, qj , a), that further

extends to a value of that given rectangle.

The duo limit group that is associated with the rectangle in part (2) is an

amalgamated product: Duo = Comp1 ∗〈d0,a〉 Comp2. Viewing the completions,

Comp1(d1, p, a) and Comp2(d2, q, a), as graded limit groups with respect to

the parameter subgroups, 〈d0, p, a〉 and 〈d0, q, a〉 in correspondence, we have

associated graded Makanin-Razborov diagrams with Comp1 and Comp2, and

each graded resolution in these diagrams terminates in either a rigid or a solid

limit group. Each value of the variables p and q extend to at most excepNRs

rigid or families of strictly solid values of the terminal rigid and solid limit
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groups of the graded resolutions in the graded Makanin-Razborov diagrams of

Comp1 and Comp2.

Recall that we denote the image of the configuration limit group Conf in

the duo limit group Duo, 〈x1, . . . , xs, p, a, a〉. Each of the elements x1, . . . , xs
can be written in a normal form as a word in elements, u`e, v

`e , 1 ≤ ` ≤ s,

1 ≤ e ≤ r`, where u`e ∈ Comp1 and v`e ∈ Comp2.

By filtering the sequence of values, {(pi, qi)}, 1 ≤ i < j ≤ L2, according

to the boundedly many possible extensions of the values qi to a rigid or a

strictly solid (family of) values of a terminal rigid or solid limit group of one of

the finitely many graded resolutions in the graded Makanin-Razborov diagram

of Comp2(d2, q, a) with respect to the parameter subgroup 〈d0, q〉, we are left

with a sequence (still denoted), {(pi, qi)}, 1 ≤ i < j ≤ L3, that satisfies

properties (1) and (2). Furthermore for each pair of indices, 1 ≤ i < j ≤ L3,

the associated (nondegenerate) configuration homomorphism, (xi,j , pi, qj , a),

restricts to values of the elements v`e that depend only on the index j, and not

on the index i, i.e., these values can be associated with the values qj .

By further filter the sequence of values, {(pi, qi)}, 1 ≤ i < j ≤ L3, ac-

cording to the boundedly many possible extensions of the values pi to a rigid

or a strictly solid (family of) values of a terminal rigid or solid limit group of

one of the finitely many graded resolutions in the graded Makanin-Razborov

diagram of Comp1(d1, p, a) with respect to the parameter subgroup 〈d0, p〉, we

are left with a sequence (still denoted), {(pi, qi)}, 1 ≤ i < j ≤ L4, that satisfy

properties (1) and (2). Furthermore for each pair of indices, 1 ≤ i < j ≤ L4,

the associated (nondegenerate) configuration homomorphism, (xi,j , pi, qj , a),

restricts to values of the elements v`e that depend only on the index j, and not

on the index i, and values of the elements u`e that depend only on the index i,

and not on the index j. That is, these values of the elements u`e and v`e can be

associated with the values pi and qj in correspondence.

Finally L4= lengthNRs
+ 2. For the last sequence, {(pi, qj)}, 1≤ i<j≤L4,

(pi, qj) ∈ NRs if and only if i < j, and with each value pi we can associate a fixed

value of the elements u`e, and with each value qj we can associate a fixed value

of v`e, hence, with each value pi we can associate a fixed value of Comp1, and

with each value of qj we can associate a fixed value of Comp2. We view the duo

limit group Duo as a graded limit group with respect to the parameter subgroup

〈d2, q, a〉. We obtained a sequence of values d2(1), . . . , d2(lengthNRs
+ 1) of the

elements d2 in the duo limit group Duo. For these values of d2, the sets of

values of the elements d1 that together form values of the duo limit group Duo,

and these values of Duo satisfy the degenerating Diophantine condition, strictly

decreases for 1 ≤ r ≤ lengthNRs
+ 1. This contradicts the choice of lengthNRs

to be a global bound on the length of such strictly decreasing sequences of
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values of the variables d2 for all the rectangles in all the duo limit groups,

Duo1, . . . ,Duot. �

Proposition 4.2 proves the stability of the sets NRs and NSs. �

Theorem 4.1 proves the stability of the sets NRs and NSs, i.e., sets of

values of the defining parameters for which a rigid or solid limit group have at

least s rigid or strictly solid families of values are stable. Since stable sets are

closed under Boolean operations, this proves that sets of values of the defining

parameters for which there are precisely s rigid or strictly solid families of

values (of a given rigid or solid limit group) are stable. As we did in the

minimal rank case (Theorem 1.8), in order to prove that the theory of a free

group is stable, i.e., that a general definable set over a free group is stable,

we need to analyze the (definable) set of values of the defining parameters

for which a given (finite) collection of covers of a graded resolution forms a

covering closure. (See [Sel03, Def. 1.16] for a covering closure.)

Theorem 4.3 (cf. Theorem 1.8). Let Fk = 〈a1, . . . , ak〉 be a non-abelian

free group, let G(x, p, q, a) be a graded limit group (with respect to the parameter

subgroup 〈p, q〉), and let GRes(x, p, q, a) be a well-structured graded resolution

of G(x, p, q, a) that terminates in the rigid (solid) limit group, Rgd(x, p, q, a)

(Sld(x, p, q, a)).

Let GCl1(z, x, p, q, a), . . . ,GClv(z, x, p, q, a) be a given set of graded closures

of GRes(x, p, q, a). Then the set of specializations of the parameters 〈p, q〉 for

which the given set of closures forms a covering closure of the graded resolution

GRes(x, p, q, a), Cov(p, q) is stable.

Proof. The proof is based on the arguments that were used to prove The-

orems 1.8 and 4.1. We start with the construction of the diagrams that are

needed in order to get the bound on the lengths of linearly ordered sequences

of couples for Cov(p, q).

We begin with the construction of a diagram that is similar in nature

to the diagram Diag that was constructed in analyzing the sets NRs and NSs
(in proving Theorems 4.1 and 3.3). The construction starts with the same

collection of values as we did in analyzing the sets Cov(p, q) in the minimal

(graded) rank case (Theorem 1.8).

We look at the entire collection of values

(x1, . . . , xs, y1, . . . , ym, r1, . . . , rs, p, q, a)

for which (cf. the proof of Theorem 1.8):

(i) For the tuple p, q there exist precisely s rigid (strictly solid families of)

values of the rigid (solid) limit group, Rgd(x, p, q, a) (Sld(x, p, q, a)), and

at least (total number of) m distinct rigid and strictly solid families
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of values of the terminal (rigid and solid) limit groups of the closures:

GCl1(z, x, p, q, a), . . . ,GClv(z, x, p, q, a).

(ii) In case the terminal limit groups of GRes is rigid, the xi’s are the dis-

tinct rigid values of Rgd(x, p, q, a). In case the terminal limit group of

GRes is solid, the xi’s belong to the s distinct strictly solid families of

Sld(x, p, q, a).

(iii) The yj ’s are either distinct rigid values or belong to distinct strictly solid

families of values of the terminal (rigid or solid) limit groups of the clo-

sures: GCl1, . . . ,GClv.

(iv) The ri’s are variables that are added only in case the terminal limit group

of GRes is solid. In this case the ri’s demonstrate that the (ungraded)

resolutions that are associated with the given closures and the values,

y1, . . . , ym, form a covering closure of the (ungraded) resolutions that are

associated with the resolution GRes and the values x1, . . . , xs. These in-

clude primitive roots of the values of all the noncyclic abelian groups,

and edge groups, in the abelian decomposition that is associated with

the terminal solid limit group of GRes, Sld(x, p, q, a), and variables that

demonstrate that multiples of these primitive roots up to the least com-

mon multiples of the indices of the finite index subgroups of abelian vertex

groups along the resolution GRes that are associated with the graded clo-

sures, GCl1, . . . ,GClv, factor through the ungraded resolutions that are

associated with the values y1, . . . , ym and their corresponding closures;

cf. [Sel05b, §1] in which we added similar variables to form valid proof

statements, that initialize the sieve procedure.

We look at the collection of such values that satisfy properties (i)–(iv) for

all the possible values of s and m. (Note that s and m are bounded, since the

number of rigid values of a rigid limit group and the number of strictly solid

families of values of a solid limit group that are associated with a given value

of the defining parameters are globally bounded by [Sel05a, Ths. 2.5, 2.9].)

For each fixed s and m we associate with the collection of the values

that satisfy properties (i)–(iv) its Zariski closure. With the Zariski closure we

associate its dual, i.e., a canonical finite collection of maximal limit groups,

which we view as graded with respect to the parameter subgroup 〈q〉. With

these graded limit groups we associate the (graded) resolutions that appear

in their taut graded Makanin-Razborov diagrams and the resolutions that are

associated with the various strata in the singular loci of the diagrams. Given

the resolutions in the collections of the taut Makanin-Razborov diagrams for

all the possible values of s and m, we iteratively construct a diagram in a

similar way to the construction of the diagram Diag that is associated with

the sets NRs and NSs, in proving Theorems 4.1 and 3.3. This construction

terminates after finitely many steps (for precisely the same reasons that the
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construction of the diagram Diag that is associated with the sets NRs and NSs
terminates after finitely many steps; see Proposition 3.4), which finally gives

us the first diagram that is associated with the set Cov(p, q), which we denote

Diag1.

Like the diagram Diag that was constructed in proving Theorem 3.3 and

4.1, the diagram Diag1 is a directed forest, so that in each vertex we further

place a graded completion of either a closure of a completion in the previous

level or of the developing resolution of the anvil that was constructed at that

step (and branch) of the iterative procedure that constructed the diagram

Diag1. With every graded completion that is placed in one of the finitely many

vertices of the diagram Diag1, we further associate a finite collection of duo

limit groups by applying the same construction that associates duo limit groups

with the completions that are placed in the vertices of the diagram Diag in the

proofs of Theorem 3.3 and 4.1. We denote the union of the collections of duo

limit groups that are associated with all the vertices in Diag1, Duo
1
1, . . . ,Duo

1
t1 .

As we did in proving Theorem 4.1, we set depth1Cov to be the depth of

the directed graph associated with the diagram Diag1, and width1Cov to be the

maximal number of fibers (of completions) in level m+1 of the diagram Diag1,

to which one continues to from a given fiber of a completion in level m of the

diagram Diag1, and a given additional value of the parameters q, where the

maximum is taken over all the possible levels m, all the completions in these

levels, all their fibers, and all the possible values of the parameter subgroups.

(By the finiteness of the diagram Diag1 and the bounds on the number of rigid

and families of strictly solid families of rigid and solid limit groups ([Sel05a,

Ths. 2.5, 2.9]) there is a global bound on this maximum.)

Given each (graded) completion that appears along the diagram Diag1,

with it we associated its collection of (universal) duo limit groups. By Defini-

tion 3.1, each of the finitely many associated duo limit group can be written as

an amalgamated product: Duo = Comp1(d1, p, a)∗〈d0,a〉 Comp2(d2, q, a). As we

did in the proof of Proposition 4.2, we view the completion, Comp1(d1, p, a), as

a graded limit group with respect to the parameter subgroup 〈p, d0, a〉, and the

completion Comp2(d2, q, a) as graded limit group with respect to the parameter

subgroup 〈q, d0, a〉. With Comp1 and Comp2, viewed as graded limit groups, we

associate their graded Makanin-Razborov diagrams (with respect to the above

two subgroups of parameters). By [Sel05a, Ths. 2.5, 2.9], there exist global

bounds on the number of rigid and strictly solid families of values (having the

same specialization of the parameter subgroup) for each of the rigid and solid

limit groups in these graded Makanin-Razborov diagrams. For each duo limit

group, Duo11, . . . ,Duo
1
t1 , we look at the sum of these bounds for all the rigid

and solid limit groups that appear along the two graded Makanin-Razborov

diagrams that are associated with the corresponding two completions, Comp1
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and Comp2. We set excep1Cov to be the maximum of these sums, where the

maximum is taken over all the duo limit groups, Duo11, . . . ,Duo
1
t1 .

By the construction of the duo limit group Duo, in it there is a subgroup:

〈x1, . . . , xs, y1, . . . , ym, r1, . . . , rs, p, q, a〉 that we denote Wit. Each of the fixed

set of generators of this subgroup can be written in a normal form with respect

to the amalgamated product: Duo = Comp(d1, p, a) ∗〈d0,a〉 Comp(d2, q, a).

With a pair of resolutions in the Makanin-Razborov diagrams of

Comp1(d1, p, a) and Comp2(d2, q, a), with respect to the parameter subgroups

〈d0, p, a〉 and 〈d0, q, a〉 in correspondence, we construct finitely many duo limit

groups by taking the maximal limit quotients of the amalgamation of their com-

pletions along the subgroup 〈d0, a〉. We denote an obtained duo limit group

PQDuo. If a specialization of the subgroup Wit satisfies the properties (i)–(iv),

then an extension of this value to values of d1 and d2 must factor through one

of the duo limit groups PQDuo. The group Wit contains s images of the rigid

or solid limit group that we have started with, as well as images of the ter-

minal rigid or solid limit groups of the given graded cover resolutions. Since

the specialization of Wit satisfies the properties (i)–(iv), those elements in Wit

that are contained in a rigid vertex group, or an edge group, or in the group

that is generated by the edge groups that are adjacent to an abelian vertex

group in the abelian decompositions that are associated with the various rigid

and solid limit groups that are mapped into Wit, must be contained in rigid

vertex groups, or in edge groups, or in subgroups that are generated by edge

groups in abelian vertex groups, in all the abelian decompositions along the

duo limit groups Wit through which specializations of Wit that satisfy prop-

erties (i)–(iv) factor; i.e., the modular groups that are associated with these

abelian decompositions do not change their conjugacy class.

Hence, by [Sel05a, Ths. 2.5, 2.9] and using our notation, a value of the

parameter subgroups 〈d0, p〉 or 〈d0, q〉 may extend to at most excep1Cov families

of specializations of the subgroup Wit that satisfy the properties (i)–(iv), and

hence to at most excep1Cov families of specializations of the elements that appear

in a fixed normal forms of a fixed set of generators of Wit, and are contained

in rigid vertex groups, edge groups, or subgroups that are generated by edge

groups that are adjacent to an abelian vertex group in one of the rigid or solid

limit groups that are mapped into Wit.

By the construction of the duo limit groups that are associated with the

completions that appear in the diagram Diag1, and as we did in the proof of

Proposition 4.2, given a fiber of one of the completions that appear along the

diagram, Diag1, there are at most boundedly many rectangles of the duo limit

groups, Duo11, . . . ,Duo
1
t1 , that are associated with that fiber. We set rec1Cov to

be that bound on the number of rectangles (of Duo11, . . . ,Duo
1
t1) that can be

associated with a fiber (of a completion in Diag1).
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Let Duo be one of the (universal) duo limit groups Duo11, . . . ,Duo
1
t1 that

are associated with the completions in the diagram Diag1. Suppose that

Duo = Comp1(d1, p, a) ∗〈d0,a〉 Comp2(d2, q, a). We now view Duo as a graded

limit group with respect to the parameter subgroup Comp2(d2, q, a). With

each specialization of Duo there exists an induced value of the generators of

the subgroup Wit: (x01, . . . , x
0
s, y

0
1, . . . , y

0
m, r

0
1, . . . , r

0
s , p0, q0, a). (See the con-

struction of the diagram Diag1.) In the construction of the diagram Diag1, and

its duo limit groups, Duo11, . . . ,Duo
1
t1 , these values were assumed to satisfy (the

nondegeneracy) properties (i)–(iv) above.

With the specializations of Duo we further associate the Diophantine con-

dition that forces at least one of the conditions (ii)–(iv) that was imposed on

the restriction of these specializations to values of the generators of the sub-

group Wit to fail. That is, this Diophantine condition either forces the value

of one of the subgroups, (xi, p, q, a), to be nonrigid (not strictly solid), or the

value of two of the subgroups, (xi, p, q, a) and (xj , p, q, a), i < j, to coincide

(belong to the same strictly solid family), or it forces the same type of de-

generations for the values of the subgroups 〈yi, p, q, a〉, or one of the values

ri, which was assumed to be a primitive element (an element with no proper

roots), has a root with an order that divides the least common multiple of the

indices of the finite index subgroups that are associated with the given set of

graded closures GCl1, . . . ,GClv.

By the equationality of the Diophantine set (Theorem 2.1), there exists a

global bound on the length of a sequence of values, d2(1), . . . , d2(u), of the vari-

ables d2 (which generate Comp2(d2, q, a)) for which the intersections of the Dio-

phantine sets (of values of d1) that are associated with the prefixes, d2(1), . . . ,

d2(m), strictly decrease for 1 ≤ m ≤ u. We set length1Cov to be the maximum

of these bounds for all the universal duo limit groups Duo11, . . . ,Duo
1
t1 .

After constructing the first diagram that is associated with Cov(p, q),

Diag1, and its duo limit groups, Duo11, . . . ,Duo
1
t1 , we continue with each of

the (universal) duo limit groups, Duo1i , that is associated with Cov(p, q), and

we construct a second diagram, which is similar to the first one. Let Duo

be one of the duo limit groups, Duo11, . . . ,Duo
1
t1 . By the structure of a duo

limit group, Duo can be presented as the amalgamated product: Duo =

Comp1(d1, p, a) ∗〈d0,a〉 Comp2(d2, q, a). We start the second diagram that is

associated with Duo, which we denote Diag2, by collecting all the tuples of

values

(x0, p0, q0, d
0
1 , d

0
0 , d

0
2)

for which

(1) The value (d01 , d
0
0 , d

0
2) is a specialization of the duo limit group Duo.

The value d02 restricts to q0, and the value d01 restricts to p0.
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(2) The value (d01 , d
0
0 , d

0
2) restricts to a value of the elements

(x1, . . . , xs, y1, . . . , ym, r1, . . . , rs, p0, q0, a).

These (restricted) values satisfy (the nondegeneracy) properties (ii)–

(iv) that are listed in the construction of the first diagram, Diag1, that

is associated with Cov(p, q).

(3) The value (x0, p0, q0, a) is a rigid or a strictly solid specialization of

the terminal rigid or solid limit group of the graded resolution GRes

that we have started with, and it is an extra rigid or an extra strictly

solid specialization of that terminal rigid or solid limit group. That

is, it does not coincide with any rigid value or does not belong to the

strictly solid family of one of the strictly solid values that are obtained

as the restriction of the value (d01, d
0
0 , d

0
2) to the elements (x0i , p0, q0, a),

i = 1, . . . , s.

We continue to the next steps of the construction by collecting values in

the same form, precisely as we did in the construction of the first diagram,

Diag1, that is associated with Cov(p, q), where the subgroup 〈d1〉 plays the role

of the parameter subgroup 〈p〉 (in the construction of Diag1), and the subgroup

〈d2〉 plays the role of the parameter subgroup 〈q〉 in the construction of Diag1.

By the same argument that implies the termination of the construction of the

diagram Diag1 (see Proposition 3.4), the constructions of the diagrams that

are associated with the various duo limit groups, Duo1i , terminate after finitely

many steps. We denote each of the diagrams that are associated with the duo

limit groups Duo1i , Diag
2
i .

Recall that like the diagram Diag1, each of the diagrams, Diag2i , is a finite

directed forest so that at each vertex of the forest there is a graded completion.

With every graded completion that is placed at a vertex in a diagram, Diag2i ,

we further associate a finite collection of duo limit groups, precisely as we

associated the duo limit groups, Duo11, . . . ,Duo
1
t1 , with the graded completions

in the diagram Diag1. (See the proof of Theorem 3.3 for the construction of

these associated duo limit groups.) We denote the finite collection of duo limit

groups that are associated with the graded completions in all the diagrams,

Diag2i , i = 1, . . . , t1, Duo
2
1, . . . ,Duo

2
t2 .

As we did with the first diagram that is associated with Cov(p, q), we set

depth2Cov to be the maximal depth of the directed forests that are associated

with the constructed (second) diagrams, Diag2i . We set width2Cov to be the

maximal number of fibers (of completions) in level m+1 of any of the diagrams

Diag2i , to which one continues to from a given fiber of a completion in level m

in that diagram, and a given additional value of (the parameters) d2, where the

maximum is taken over all the diagrams, Diag2i , all the possible levels m, all



856 Z. SELA

the completions in these levels, all their fibers, and all the additional possible

values of the parameter subgroup d2.

Let Duo be one of the duo limit groups, Duo21, . . . ,Duo
2
t2 . Duo can be writ-

ten as an amalgamated product Duo = Comp1(e1, d1, a)∗〈e0,a〉 Comp2(e2, d2, a).

As we did in the proof of Proposition 4.2 and with the duo limit groups that are

associated with Diag1, we view the completion, Comp1(e1, d1, a), as a graded

limit group with respect to the parameter subgroup 〈d1, e0, a〉, and the comple-

tion Comp2(e2, d2, a) as graded limit group with respect to the parameter sub-

group 〈d2, e0, a〉. With Comp1 and Comp2, viewed as graded limit groups, we

associate their graded Makanin-Razborov diagrams (with respect to the above

two subgroups of parameters). In each of these graded Makanin-Razborov

diagrams there are finitely many rigid and solid limit groups. By [Sel05a,

Thms. 2.5, 2.9], there exist global bounds on the number of rigid and strictly

solid families of values (having the same specialization of the parameter sub-

group) for each of the rigid and solid limit groups in these graded Makanin-

Razborov diagrams. For each duo limit group, Duo21, . . . ,Duo
2
t2 , we look at the

sum of these bounds for all the rigid and solid limit groups that appear along

the two graded Makanin-Razborov diagrams that are associated with the cor-

responding two completions, Comp1 and Comp2, that are associated with that

duo limit group. We set excep2Cov to be the maximum of these sums, where

the maximum is taken over all the duo limit groups, Duo21, . . . ,Duo
2
t2 .

Given a fiber of one of the completions that appear along one of the

diagrams, Diag2i , there are at most boundedly many rectangles of the duo limit

groups, Duo21, . . . ,Duo
2
t2 , that are associated with that fiber. We set rec2Cov to

be that bound on the number of rectangles (of Duo21, . . . ,Duo
2
t2) that can be

associated with a fiber (of a completion in any of the diagrams Diag2i ).

Let Duo be one of the duo limit groups, Duo21, . . . ,Duo
2
t2 , that are as-

sociated with the completions in the diagrams Diag2i . Suppose that Duo =

Comp1(e1, d1, a) ∗〈e0,a〉 Comp2(e2, d2, a). We view Duo as a graded limit group

with respect to the parameter subgroup Comp2(e2, d2, a). With each value of

Duo there exists an associated extra value, (x0, p0, q0, a), of the terminal rigid

or solid limit group, Rgd(x, p, q, a) or Sld(x, p, q, a), of the given graded resolu-

tion GRes. In the construction of the diagrams Diag2i , and its duo limit groups

Duo21, . . . ,Duo
2
t2 , these values were assumed to be either rigid or strictly solid

and to satisfy (the nondegeneracy) property (3) above.

With Duo we further associate the Diophantine condition that forces the

associated extra specialization of the rigid or solid terminal limit group of GRes

to be either flexible (not rigid or not strictly solid), or to coincide with one

of the rigid values, or to belong to one of the strictly solid families of values,

that appear in the corresponding (induced) value of generators of the subgroup

Wit: (x01, . . . , x
0
s, y

0
1, . . . , y

0
m, r

0
1, . . . , r

0
s , p0, q0, a). That is, we add a Diophantine
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condition that forces the collection of values not to satisfy property (3) in

the definition of the collection of values that are collected in each step of

the construction of the diagrams Diag2i and their associated duo limit groups:

Duo21, . . . ,Duo
2
t2 .

By the equationality of Diophantine set (Theorem 2.1), there exists a

global bound on the length of a sequence of values, e2(1), . . . , e2(u), of the

variables e2 (which generate Comp2(e2, d2, a) for which the intersections of

the Diophantine sets (of values of e1) that are associated with the prefixes,

e2(1), . . . , e2(m), strictly decrease for 1 ≤ m ≤ u. We set length2Cov to be the

maximum of these bounds for all the duo limit groups Duo21, . . . ,Duo
2
t2 .

Proposition 4.4. With the notation of Theorem 4.3, let (p1, q1), . . . ,

(pn, qn) be a sequence of couples of values of the defining parameters p, q for

which (pi, qj) ∈ Cov(p, q) if and only if i < j. Then n < M , where

M = (1 + width1Cov)(depth
1

Cov·L1), L1 = (rec1Cov)
(rec1

Cov
·L2)

,

L2 = (excep1Cov)
L3 , L3 = (excep1Cov)

L4 , L4 = 22L5 ,

L5 = length1Cov + 2 + (1 + width2Cov)(depth
2

Cov·L6), L6 = (rec2Cov)
(rec2

Cov
·L7)

,

L7 = (excep2Cov)
L8 , L8 = (excep2Cov)

L9 , L9 = length2Cov + 2.

Proof. The argument that we use is a strengthening of the argument that

was used to prove Proposition 4.2. Let n ≥M and let (p1, q1), . . . , (pn, qn) be

a sequence of values of the parameters p, q for which (pi, qj) ∈ Cov(p, q) if and

only if i < j. By the definition of the set Cov(p, q), for every i < j, there exists

a tuple

(xi,j1 , . . . , x
i,j
si,j , y

i,j
1 , . . . , yi,jmi,j

, ri,j1 , . . . , ri,jsi,j , pi, qj , a)

that satisfies properties (i)–(iv). (These are the properties that the values from

which we construct the first diagram, Diag1, that is associated with the set

Cov(p, q) and its associated duo limit groups, Duo11, . . . ,Duo
1
t1 , have to satisfy.)

In the sequel we denote the subgroup that is generated by these elements in

the completions that are placed in Diag1 and its associated duo limit groups,

Wit.

We iteratively filter the tuples that are associated with the couples (pi, qj),

in a similar way to what we did in proving Proposition 4.2. We start with

qn. By the construction of the first diagram Diag1, at least 1

width1

Cov
of the

specializations of the subgroup Wit that are associated with the values (pi, qn),

1 ≤ i ≤ n − 1, belong to the same fiber that is associated with qn in one of

the completions that are placed in the initial level of the diagram Diag1. We

proceed only with those indices i for which the specializations of the subgroup

Wit that are associated with the values (pi, qn) belong to that fiber.
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We proceed as in the proof of Proposition 4.2. We continue with the

largest index i, i < n for which the specialization of Wit that is associated

with the tuple (pi, qn) belongs to that fiber. We denote that largest index i,

u2. By the structure of Diag1, at least 1

1+width1

Cov
of the specializations of

Wit that are associated with the values (pi, qu2) and (pi, qn), for those indices

i < u2 that remained after the first filtration, belong to either the same fiber

in the initial level of Diag1, or to a fixed fiber of a completion that is placed

in the second level of the diagram Diag1. We proceed only with those indices i

for which the specializations of Wit that are associated with the pairs, (pi, qu2)

and (pi, qn), belong either to the initial fiber or to a fixed fiber of a completion

in the second level of Diag1.

We proceed this filtration process iteratively (as in the proof of Propo-

sition 4.2). Since the diagram Diag1 is finite and has depth, depth1Cov, and

since at each step we remain with at least 1

1+width1

Cov
of the tuples that we

have started the step with, and since n, the number of tuples that we started

with, satisfies n ≥M , after we iteratively apply the filtration process we must

obtain a subsequence (still denoted) {(pi, qi)}L1
i=1 for which

(̂i) (pi, qj) ∈ Cov(p, q) if and only if i < j.

(îi) There exists a fiber of one of the completions that is placed in a ver-

tex of the diagram Diag1 so that for i < j < L1, the value (pi, qj)

extends to a (nondegenerate) specialization of the subgroup Wit (i.e.,

a specialization of Wit that satisfies properties (i)–(iv)), that further

extends to a value of one of the boundedly many rectangles that are

associated with the fixed fiber and with one of the universal duo limit

groups, Duo11, . . . ,Duo
1
t1 .

We continue as in the proof of Proposition 4.2, and further filter the

subsequence of pairs {(pi, qi)}L1
i=1 (that satisfy properties (̂i) and (îi)). By

construction there are t1 duo limit groups that are associated with the diagram

Diag1. With a given fiber of one of the completions in the diagram Diag1, and

one of the duo limit groups, Duo1, . . . ,Duot, there are at most rec1Cov associated

rectangles. Hence the sequence of values (pi, qj), 1 ≤ i < j ≤ L1, extends to

(nondegenerate) specializations of the subgroup Wit (i.e., specializations that

satisfy properties (i)–(iv)), that further extend to values of at most rec1Cov
rectangles in the duo limit groups, Duo11, . . . ,Duo

1
t1 .

By filtering the sequence of values, {(pi, qj)}, 1 ≤ i < j ≤ L1, according to

the rectangle that contains the extended specializations of the subgroup Wit,

using a similar filtration as was used to filter the subsequence that satisfies

properties (̂i) and (îi), we get a new subsequence (still denoted) {(pi, qi)}L2
i=1

for which

(1̂) (pi, qj) ∈ Cov if and only if i < j.
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(2̂) There exists a rectangle that is associated with one of the duo limit

groups, Duo11, . . . ,Duo
1
t1 , so that for i < j < L2, the value (pi, qj)

extends to a (nondegenerate) specializations of the subgroup Wit (a

value that satisfies properties (i)–(iv)), that further extends to a value

in that given rectangle.

The duo limit group that is associated with the rectangle in part (2̂) is an

amalgamated product: Duo = Comp1 ∗〈d0,a〉 Comp2. Viewing the completions,

Comp1(d1, p, a) and Comp2(d2, q, a), as graded limit groups with respect to

the parameter subgroups, 〈d0, p, a〉 and 〈d0, q, a〉 in correspondence, we have

associated graded Makanin-Razborov diagrams with Comp1 and Comp2, and

each graded resolution in these diagrams terminates in either a rigid or a solid

limit group. Each value of the variables p and q extends to at most excep1Cov
rigid or families of strictly solid values of the terminal rigid and solid limit

groups of the graded resolutions in the graded Makanin-Razborov diagrams of

Comp1 and Comp2.

Recall that given a pair of resolutions, one in the graded Makanin-Razborov

diagrams of Comp1(d1, p, a) (with respect to the parameter subgroup 〈p, d0〉),
and a resolution in the graded Makanin-Razborov diagram of Comp2(d2, q, a)

(with respect to the parameter subgroup 〈q, d0〉), we constructed from them

finitely many duo limit groups, PQDuo, that are the maximal limit quotients

of the amalgamation of the completions of the two given resolutions along the

amalgamated subgroup 〈d0, a〉.
Given a specialization of the subgroup Wit that satisfies the (nondegener-

ate) properties (i)–(iv), the extension of this value to values of d1 and d2 must

factor through duo limit groups PQDuo, in which elements in Wit that are con-

tained in the image (in Wit) of rigid vertex groups, edge groups, or subgroups

generated by edge groups that are adjacent to abelian vertex groups, in the

abelian decompositions of the given rigid or solid limit group Rgd (Sld) or of

the terminal rigid and solid limit groups of the given finite set of closures, are

contained in rigid vertex groups, or in edge groups, or in subgroups that are

generated by edge groups that are adjacent to abelian vertex groups, in all the

abelian decompositions along the various levels of the duo limit group PQDuo;

(i.e., the modular groups that are associated with these abelian decompositions

do not change their conjugacy class.

For 1 ≤ i < j ≤ L2, the specializations of the subgroup Wit that are as-

sociated with the pairs (pi, qj) satisfy properties (i)–(iv). The modular groups

that are associated with the various levels of a duo limit group PQDuo do not

change the families of the restrictions of the corresponding specializations of

Wit to values of its associated rigid and solid limit groups, hence, do not change

the fact that such a specialization of Wit satisfies properties (i)–(iv). Hence,

we may assume that the values of the variables d1 and d2 that are associated
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with the pairs (pi, qj) 1 ≤ i < j ≤ L2, are values of the terminal rigid or solid

limit groups of the two resolutions of Comp(d1, p, a) and of Comp(d2, q, a), with

respect to the parameter subgroups, 〈d0, p〉 and 〈d0, q〉, in correspondence.

By filtering the sequence of values, {(pi, qi)}, 1 ≤ i < j ≤ L2, according to

the boundedly many possible extensions of the values qi to a rigid or a strictly

solid (family of) values of a terminal rigid or solid limit group of one of the

finitely many graded resolutions in the graded Makanin-Razborov diagram of

Comp2(d2, q, a) with respect to the parameter subgroup 〈d0, q〉, we are left with

a sequence (still denoted), {(pi, qi)}, 1 ≤ i < j ≤ L3, that satisfy properties

(1̂) and (2̂).

By further filtering the sequence of values, {(pi, qi)}, 1 ≤ i < j ≤ L3,

according to the boundedly many possible extensions of the values pi to a rigid

or a strictly solid (family of) values of a terminal rigid or solid limit group of

one of the finitely many graded resolutions in the graded Makanin-Razborov

diagram of Comp1(d1, p, a) with respect to the parameter subgroup 〈d0, p〉, we

are left with a sequence (still denoted), {(pi, qi)}, 1 ≤ i < j ≤ L4, that satisfy

properties (1̂) and (2̂).

Furthermore, for each pair of indices, 1 ≤ i < j ≤ L4, the values of the

pairs (pi, qj) extend to values of the duo limit group Duo, hence, to values of

the two completions, Comp1 and Comp2, from which Duo is composed. By the

filtration that we used, the associated values of the elements d1 (the generators

of the completion Comp1(d1, p, a)), which we may assume to be values of one

of the rigid or solid limit groups in the graded Makanin-Razborov diagram

of Comp1 with respect to the parameter subgroup 〈p, d0, a〉, depend only on

the index i and not on the index j. The associated values of the elements d2
(the generators of the completion Comp2(d2, q, a)), that we may assume to be

values of one of the rigid or solid limit groups in the graded Makanin-Razborov

diagram of Comp2 with respect to the parameter subgroup 〈q, d0, a〉, depend

only on the index j and not on the index i.

For the rest of the argument, we continue with the sequence of values

that we filtered, which we still denote (pi, qi), 1 ≤ i ≤ L4. With each pair of

values from this sequence, (pi, qj), there is an associated specialization of the

subgroup Wit, and for 1 ≤ i < j ≤ L4, these values satisfy properties (i)–(iv),

which testify that the corresponding pairs, (pi, qj), are contained in Cov(p, q).

Furthermore, these specializations of the subgroup Wit, extend to values in

a fixed rectangle in one of the duo limit groups, Duo11, . . . ,Duo
1
t1 , that are

associated with the diagram Diag1. The extensions to values in the rectangle

restrict to values of the two completions, Comp1(d1, p, a) and Comp2(d2, q, a),

from which the rectangle (or its dual duo limit group) is composed. The

sequence (pi, qi), 1 ≤ i ≤ L4, and its associated specializations of the subgroup

Wit were filtered so that the values of the elements d1 and d2 that extend
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the corresponding specializations of the subgroup Wit, were chosen so that the

values of d1 depends only on the index i, and the value of d2 depends only on

the index j.

We denote the value of the elements d1 that is associated with pi as d1(i)

and the value of the elements d2 that is associated with qj as d2(j). The pairs

of values (d1(i), d2(j)) were filtered from values of the variables d1 and d2 that

are associated with pairs with indices, 1 ≤ i < j ≤ L4. However, every pair

(d1(i), d2(j)), 1 ≤ i, j ≤ L4 is in the rectangle that is associated with the

given sequence of values, {(pi, qj)}, and as a value in the rectangle it restricts

to a specialization of the subgroup Wit. For indices 1 ≤ i < j ≤ L4, these

specializations of Wit satisfy the properties (i)–(iv). For indices, 1 ≤ j ≤ i ≤
L4, the pairs (pi, qj) are not in Cov(p, q). Hence, the specializations of the

subgroup Wit that are associated with the corresponding value, (d1(i), d2(j)),

do not satisfy at least one of the properties (i)–(iv). Therefore, for the last

pairs of indices, 1 ≤ j ≤ i ≤ L4, one of the two following properties must hold

for each of the associated specialization of the subgroup Wit:

(a) The value (d1(i), d2(j)) restricts to a degenerate specialization of the sub-

group Wit, i.e., to a specialization of Wit that does not satisfy one of the

properties (ii)–(iv). In this case, the failure of each of the properties (i)–(iv)

can be translated to a Diophantine condition that the corresponding spe-

cialization of Wit has to satisfy. This is similar to the degeneration in

the corresponding value of the configuration limit group Conf, which was

translated into a Diophantine condition in the proof of Theorem 4.1.

(b) The value (d1(i), d2(j)) restricts to a specialization of the subgroup Wit

that does not satisfy property (i). In this case, for the corresponding

specialization of the subgroup Wit, there exists some extra rigid or strictly

solid value (xi,j0 , pi, qj , a) of the terminal rigid or solid limit group of the

graded resolution GRes that we have started with. This extra rigid or

strictly solid value does not coincide with a rigid value and does not belong

to any strictly solid family that is a part of the corresponding specialization

of the subgroup Wit.

We continue by filtering the set of values {(pi, qi)}, 1 ≤ i ≤ L4 according

to the two possibilities (a) and (b). We start with q1. At least half of the

specializations of the subgroup Wit that are associated with the values (pi, q1),

1 ≤ i ≤ L4 satisfy the same property, which is either (a) or (b). We proceed

only with those indices i for which the specializations of the subgroup Wit

satisfy that property. We proceed as in the proof of Proposition 4.2. We

continue with the smallest index i, 1 < i, which satisfies the property that the

majority of the specializations of the subgroup Wit that are associated with

the tuples {pi, q1)} satisfy. We denote that smallest index i, u2. At least half

of the specializations of the subgroup Wit that are associated with the values
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(pi, qu2) for those indices, u2 ≤ i ≤ L4, that remained after the initial filtration

(the filtration of the pairs (pi, q1)), satisfy the same property, which is either

(a) or (b). We proceed only with those indices i for which the specializations

of the subgroup Wit that are associated with the pairs, (pi, qu2), satisfy the

same property ((a) or (b)). The specializations of the subgroup Wit that are

associated with the pairs, (pi, qn), satisfy the same property (a) or (b).

We proceed this filtration process iteratively (as in the proof of Proposi-

tion 4.2). L4 = 22L5 , and at each step we are left with at least half of the pairs

that existed in the previous step. Hence, when the iterative filtration termi-

nates we are left with at least L5 pairs, (still denoted) {(pi, qi)}, 1 ≤ i ≤ L5, so

that for every pair (pi, qj), 1 ≤ j ≤ i ≤ L5, the specializations of the subgroup

Wit that are associated with these pairs either all satisfy property (a) or they

all satisfy property (b).

Suppose that the specializations of the subgroup Wit that are associated

with the pairs, (pi, qj), 1 ≤ j ≤ i ≤ L5, do all satisfy property (a); i.e., they

all do not satisfy at least one of the properties (ii)–(iv). The failure of the

properties (ii)–(iv) translates to a Diophantine condition that the specializa-

tions of Wit need to satisfy. Hence, it translates to a Diophantine condition

that the pairs of associated values, (d1(i), d2(j)), 1 ≤ i ≤ j ≤ L5, need to

satisfy. (d1 and d2 are the generators of the completions Comp1 and Comp2, in

correspondence, that together generate the duo limit group that is associated

with the rectangle that is associated with the sequence, {(pi, qi)}.)
Therefore, as in the end of the proof of Proposition 4.2, starting with the

duo limit group Duo that is associated with the sequence {(pi, qi)}, 1 ≤ i ≤
L5, viewed as a graded limit group with respect to the parameter subgroup

〈d2, q, a〉, we obtained a sequence of values d2(1), . . . , d2(L5), of the elements d2
in the duo limit group Duo (the fixed generators of Comp2) for which the sets of

values of the variables d1, D1r, 1 ≤ r ≤ L5 for which these values together with

the corresponding values d2(1), . . . , d2(r), 1 ≤ r ≤ L5, extend to values of Duo.

The combined value of Duo satisfy the (degenerating) Diophantine condition,

which is equivalent to the failure of at least one of the properties (ii)–(iv) for

the corresponding specializations of the subgroup Wit, strictly decreases for

1 ≤ r ≤ L5. Since we assumed that L5 ≥ length1Cov + 1, this contradicts

the choice of length1Cov to be a global bound on the length of such strictly

decreasing sequences of values of the variables d2 for all the rectangles in all

the duo limit groups, Duo11, . . . ,Duo
1
t1 .

Hence, for the rest of the argument, we may assume that the specializa-

tions of the subgroup Wit that are associated with the pairs, (pi, qj), 1 ≤ j ≤
i ≤ L5, do all satisfy property (b), i.e., that they do not satisfy property (i).

The failure of property (i) implies that with each specialization of the subgroup

Wit that is associated with such a pair, (pi, qj), there exists some extra rigid
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or strictly solid value (xi,j0 , pi, qj , a) of the terminal rigid or solid limit group

of the graded resolution GRes that we have started with. This extra rigid or

solid value does not coincide with a rigid value and does not belong to any

strictly solid family that is a part of the corresponding specialization of the

subgroup Wit.

At this point we analyze the sequence of values, (pi, qj), 1 ≤ j ≤ i ≤ L5,

and their associated values d1(i) and d2(j), 1 ≤ j ≤ i ≤ L5, by exactly the same

argument that was used to prove Proposition 4.2, in a reverse order (starting

with q1 instead of starting with qn).

We start with the set of values (xi,j0 , pi, d1(i), qj , d2(j), a), 1 ≤ j ≤ i ≤ L5,

so that for every for every pair 1 ≤ j ≤ i ≤ L5, the following properties hold:

(â) (d1(i), pi, d2(j), qj) is a value in a fixed rectangle (independent of i and

j) that is associated with one of the duo limit groups, Duo11, . . . ,Duo
1
t1

(which we will denote Duo1 in the sequel). Furthermore, this value restricts

to a specialization of the subgroup Wit that satisfies the nondegeneracy

properties (ii)–(iv).

(b̂) For each 1 ≤ j ≤ i ≤ L5, the value (xi,j0 , p,qj , a) is a rigid or a strictly

solid value of the terminal rigid or solid limit group of the given resolu-

tion GRes. This value is distinct from all the s rigid values (not in the

same strictly solid families) that are part of the restriction of the value

(d1(i), pi, d2(j), qj) to the subgroup Wit. That is, the values (xi,j0 , pi, qj , a)

demonstrate that (the nondegeneracy) condition (i) fails for the restriction

of the values (d1(i), pi, d2(j), qj) to the subgroup Wit.

As in the proof of Proposition 4.2, we start by iteratively filtering the

tuples (xi,j0 , pi, qj). We start with q1. By the construction of the diagram

Diag2i , which is associated with the duo limit group Duo1, at least 1

width2

Cov
of

the values, (xi,10 , pi, q1), 1 ≤ i ≤ n, belong to the same fiber that is associated

with q1 in one of the completions that are placed in the initial level of the

diagram Diag2i . We proceed only with those indices i for which the values,

(xi,10 , pi, q1), 1 ≤ i ≤ n, belong to that fiber.

We proceed this filtration process iteratively (as in the proof of Proposi-

tion 4.2). Since the diagram Diag2i is finite and has depth bounded by depth2Cov,

and since at each step we remain with at least 1

1+width2

Cov
of the tuples that

we have started the step with, and since the number of tuples that we started

with is (at least) L5, after we iteratively apply the filtration process we must

obtain a subsequence, (still denoted) {(pi, qi)}L6
i=1 for which

(̃i) (pi, qj) ∈ Cov(p, q) if and only if i < j.

(ĩi) There exists a fiber of one of the completions that is placed in a ver-

tex of the diagram Diag2i , so that for 1 ≤ j ≤ i ≤ L6, the value
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(xi,j0 , pi, d1(i), qj , d2(j), a), that satisfies properties (â) and (b̂), extends

to a value of one of the boundedly many rectangles that are associated

with the fixed fiber and with one of the universal duo limit groups,

Duo21, . . . ,Duo
2
t2 .

By filtering the sequence of values, {(pi, qj)}, 1 ≤ j ≤ i ≤ L6, according

to the rectangle that contains the values that extend the associated values

(xi,j0 , pi, d1(i), qj , d2(j), a), using a similar filtration as was used to filter the

subsequence that satisfies properties (̃i) and (ĩi), we get a new subsequence

(still denoted) {(pi, qi)}L7
i=1 for which

(1̃) (pi, qj) ∈ Cov if and only if i < j.

(2̃) There exists a (fixed) rectangle that is associated with one of the duo

limit groups, Duo21, . . . ,Duo
2
t2 , so that for 1 ≤ j ≤ i ≤ L7, the value

(xi,j0 , pi, d1(i), qj , d2(j), a) extends to a value of the fixed rectangle.

The duo limit group that is associated with the rectangle in part (2̃)

is an amalgamated product: Duo2 = Comp1(e1, d1, p) ∗〈e0,a〉 Comp2(e2, d2, a).

Viewing the completions, Comp1(e1, d1, a) and Comp2(e2, d2, a), as graded limit

groups with respect to the parameter subgroups, 〈e0, d1, a〉 and 〈e0, d2, a〉 in

correspondence, we have associated graded Makanin-Razborov diagrams with

Comp1 and Comp2. Each graded resolution in these diagrams terminates in

either a rigid or a solid limit group. Each value of the variables d1 and d2
extends to at most excep2Cov rigid or families of strictly solid values of the

terminal rigid and solid limit groups of the graded resolutions in the graded

Makanin-Razborov diagrams of Comp1 and Comp2.

As in the proof of Proposition 4.2, we continue by filtering the sequence of

values, (xi,j0 , pi, d1(i), qj , d2(j), a), 1 ≤ j ≤ i ≤ L7, according to the bound-

edly many possible extensions of the values d2(j) to a rigid or a strictly

solid (family of) values of a terminal rigid or solid limit group of one of the

finitely many graded resolutions in the graded Makanin-Razborov diagram of

Comp2(e2, d2, a) with respect to the parameter subgroup 〈e0, d2〉, we are left

with a sequence (still denoted), (xi,j0 , pi, d1(i), qj , d2(j), a), 1 ≤ j ≤ i ≤ L8,

that satisfy properties (1̃) and (2̃).

By further filtering the sequence of values, (xi,j0 , pi, d1(i), qj , d2(j), a), 1 ≤
j ≤ i ≤ L8, according to the boundedly many possible extensions of the

values d1(i) to a rigid or a strictly solid (family of) values of a terminal

rigid or solid limit group of one of the finitely many graded resolutions in

the graded Makanin-Razborov diagram of Comp1(e1, d1, a) with respect to

the parameter subgroup 〈e0, d1〉, we are left with a sequence (still denoted),

(xi,j0 , pi, d1(i), qj , d2(j), a), 1 ≤ j ≤ i ≤ L9, that satisfy properties (1̃) and (2̃).

Furthermore, for each pair of indices, 1 ≤ j ≤ i ≤ L9, the values of the

pair, (d1(i), d2(j)), extends to a value of the duo limit group Duo2, hence, to
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values of the two completions, Comp1 and Comp2, from which Duo2 is com-

posed. By the filtration that we used, the associated values of the elements

e1 (the generators of the completion Comp1(e1, d1, a)), which we may assume

to be values of one of the rigid or solid limit groups in the graded Makanin-

Razborov diagram of Comp1 with respect to the parameter subgroup 〈d1, e0, a〉,
depend only on the index i and not on the index j. The associated values of

the elements e2 (the generators of the completion Comp2(e2, d2, a)), which we

may assume to be values of one of the rigid or solid limit groups in the graded

Makanin-Razborov diagram of Comp2 with respect to the parameter subgroup

〈d2, e0, a〉, depend only on the index j and not on the index i.

Finally, L9= length2Cov+2. For the last sequence, (xi,j0 , pi, d1(i), qj , d2(j), a),

1 ≤ j ≤ i ≤ L9, we have associated a value e1(i) with each index i, 1 ≤ i ≤ L9,

that is independent of the index j, and a value e2(j) with each value d2(j),

1 ≤ j ≤ L9, which is independent of the index i. Since a pair (pi, qj) ∈ Cov(p, q)

if and only if i < j, and for i ≥ j, the restriction of the value (d1(i), d2(j)) to the

Wit subgroup satisfies the nondegeneracy properties (ii)–(iv), the values xi,j0 ,

and hence the values (e1(i), e2(j)), must satisfy the Diophantine condition that

demonstrates that the value xi,j0 is either not rigid or not strictly solid or that

it coincides or in the same strictly solid family of a rigid or a strictly solid value

that is one of the s rigid or strictly solid values that are part of the correspond-

ing specialization of the subgroup Wit. Therefore, starting with the duo limit

group Duo2, viewed as a graded limit group with respect to the parameter sub-

group 〈e0, d2, a〉, we obtained a sequence of values e2(1), . . . , e2(length
2
Cov + 1),

of the elements e2 in the duo limit group Duo2 (the fixed generators of Comp2),

for which the sets of values of the variables e1, E1r, 1 ≤ r ≤ length2Cov + 1

for which these values together with the corresponding values e2(1), . . . , e2(r),

1 ≤ r ≤ length2Cov + 1, extend to values of Duo2, and the combined values

of Duo2 satisfy the degenerating Diophantine condition, strictly decreases for

1 ≤ r ≤ length2Cov + 1. This contradicts the choice of length2Cov to be a global

bound on the length of such strictly decreasing sequences of values of the vari-

ables e2 for all the rectangles in all the duo limit groups, Duo21, . . . ,Duo
2
t2 . �

Proposition 4.4 proves the stability of the sets Cov(p, q), and Theorem 4.3

follows. �

5. Stability

In the previous section we have shown that the sets NRs(p, q), NSs(p, q),

and Cov(p, q), which indicate those values of the parameter set 〈p, q〉 for which

a rigid limit group Rgd(x, p, q, a) admits at least s rigid values, a solid limit

group admits at least s strictly solid families of values (Theorem 4.1), and a

given finite set of (graded) closures forms a covering closure of a given graded



866 Z. SELA

resolution (Theorem 4.3), are stable. In this section we combine these theo-

rems, with the arguments that were used in proving Theorem 1.9, to prove

that a general definable set over a free group is stable.

Theorem 5.1.The elementary theory of a non-abelian free group is stable.

Proof. The argument that we use is a rather straightforward modifica-

tion of the argument that was used in the minimal (graded) rank case (Theo-

rem 1.9). Let L(p, q) be a definable set over a non-abelian free group Fk. As

in the proof of Theorem 1.9, we need to use the objects and terminology that

is used in the sieve procedure that finally leads to quantifier elimination and is

presented in [Sel05b] and [Sel06]. The exact definitions of these objects is long

and involved, and we refer the reader to Section 1 in [Sel05b] for a detailed

presentation of them.

The sieve procedure, that is used to prove quantifier elimination, is much

more difficult in the general case [Sel06], in comparison with the minimal rank

case ([Sel05b, §1]). Still, the overall strategy for quantifier elimination and the

output of the sieve procedure in the general case and in the minimal rank case

are similar.

Recall that as for minimal rank definable sets, with a (general) definable

set, L(p, q), the sieve procedure associates a finite collection of graded PS

resolutions. With each such graded PS resolution it associates a finite collection

of graded closures of these resolutions that contains Non-Rigid, Non-Solid, Left,

Root, Extra PS, and collapse extra PS resolutions. (See [Sel05b, Defs. 1.25–

1.30] for the exact definitions of these resolutions.)

Let PSResi, i = 1, . . . , r, be the finitely many PS resolutions that are

associated with the given definable set L(p, q). For each index i, i = 1, . . . , r,

let Rgdi(x, p, q, a) (Sldi(x, p, q, a)) be the terminal rigid (solid) limit group of

PSResi. With the PS resolution PSResi and its terminal rigid or solid limit

group Rgdi or Sldi, we associate the definable set, NRi
1(p, q) or NSi1(p, q), that

defines those values of the defining parameters p, q for which Rgdi (Sldi) extends

to a rigid or a strictly solid value of Rgdi or Sldi. By Theorem 4.1 the sets NRi
1

and NSi1 are stable.

With each of the PS resolutions, PSResi, the sieve procedure associates

a finite collection of graded closures of it that contains Non-Rigid, Non-Solid,

Left, Root, Extra PS, and collapses extra PS resolutions. With the graded

resolution PSResi, and its given set of closures, we associate a definable set

Covi(p, q), that defines those values of the defining parameters p, q for which the

associated fibers of PSResi that are associated with the value p, q are covered

by the fibers that are associated with the given finite set of closures of it and

with the value of p, q. By Theorem 4.3, Covi(p, q) is stable.



DIOPHANTINE GEOMETRY OVER GROUPS 867

By the sieve procedure (cf. the proof of Theorem 1.9), the definable set

L(p, q) is the finite union

r⋃
i=1

NRi
1(p, q) (NSi1(p, q)) \ Covi(p, q)

In particular, L(p, q) is a Boolean combination of the sets NRi
1 (NSi1) and Covi.

Since by Theorems 4.1 and 4.3 the sets, NRi
1 (NSi1) and Covi(p, q), are stable,

and the collection of stable sets is closed under Boolean operations, so is their

Boolean combination L(p, q). Hence, the theory of a free group is stable. �

According to [Sel09], a definable set over a nonelementary, torsion-free

hyperbolic group can be analyzed using the same sieve procedure as the one

constructed over a free group (see [Sel09, §6]). As a corollary, like over a free

group, every definable set over a torsion-free hyperbolic group is a Boolean

combination of sets of the form NRi
1 (NSi1) and Covi(p, q), where these sets are

defined precisely as they are defined over free groups in Theorems 4.1 and 4.3.

As the sieve procedure generalizes to torsion-free hyperbolic groups, the

argument that proves that Diophantine sets are equational over free groups

(Theorem 2.1) generalizes to every torsion-free hyperbolic group. The defini-

tions of rigid and solid limit groups generalize to torsion-free hyperbolic groups,

and the global boundedness of the number of rigid and strictly solid families

of values of a rigid or a solid limit group for any given value of the defining pa-

rameters that holds over a free group holds over every torsion-free hyperbolic

group (see [Sel09, §3]).

Hence, one can define configuration limit groups that are associated with

a rigid or a solid limit group over a torsion-free hyperbolic group. The con-

struction of Duo limit groups that is presented in Section 3 generalizes to

torsion-free hyperbolic groups as well. Finally, the arguments that were used

in proving Theorems 4.1 and 4.3 over a free group generalize to torsion-free

group, so the sets NRS , NSS , and Cov, that are proved to be stable over a

free group, are stable over any torsion-free hyperbolic group. As any definable

set over a torsion-free hyperbolic group is a Boolean combination of sets of

the form NRs, NSs, and Cov, and the collection of stable sets is closed under

Boolean operations, every definable set over a torsion-free hyperbolic group is

stable.

Theorem 5.2. The elementary theory of a nonelementary (torsion-free)

hyperbolic group is stable.
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