A correction to "Propagation of singularities for the wave equation on manifolds with corners"

By András Vasy

Abstract

We correct an error in the proof of Proposition 7.3 of the author's paper on the propagation of singularities for the wave equation on manifolds with corners. The correction does not affect the statement of Proposition 7.3, and it does not affect any other part of the paper.

There is a mistake in the proof of Proposition 7.3^{1} of [1]; namely, a term was omitted in (7.9) so that the displayed equation after (7.15), as well as its analogues after (7.16), do not hold. The term omitted corresponds to the term $|x|^{2}$ in (7.8) being differentiated by the term $2 A \xi \cdot \partial_{x}$ in the Hamilton vector field appearing in (6.3).

This mistake can be easily remedied as follows. First, after the displayed equation following (7.7) we specify one of the ρ_{j} slightly more carefully; namely, we require

$$
\rho_{1}=1-\tau^{-2}|\zeta|_{y}^{2} .
$$

Note that $d \rho_{1} \neq 0$ at q_{0} for $\zeta \neq 0$ there. Then

$$
\left|\tau^{-1} W^{\mathrm{b}} \omega_{0}\right| \leq C_{1}^{\prime} \omega_{0}^{1 / 2}\left(\omega_{0}^{1 / 2}+\left|t-t_{0}\right|\right)
$$

still holds.
The argument of [1] proceeds with a motivational calculation, followed by the precise version of what is needed. We follow this approach here. So first the correct motivational calculation is presented.

We still have $\left.p\right|_{x=0}=\tau^{2}-|\xi|_{y}^{2}-|\zeta|_{y}^{2}$. Thus, the equation after (7.9) can be strengthened to

$$
\tau^{-2}|\xi|_{y}^{2} \leq C\left(\tau^{-2}|p|+|x|+\omega_{0}^{1 / 2}\right),
$$

[^0]i.e., with $\left|t-t_{0}\right|$ dropped, using that $\left|\rho_{1}\right|=\left.\left|1-\tau^{-2}\right| \zeta\right|_{y} ^{2} \mid \leq \omega_{0}^{1 / 2}$. The analogue of (7.9) for ω_{0} in place of ω still holds:
\[

$$
\begin{aligned}
\left|\tau^{-1} H_{p} \omega_{0}\right| & \leq \tilde{C}_{1}^{\prime \prime} \omega_{0}^{1 / 2}\left(\omega_{0}^{1 / 2}+|x|+\left|t-t_{0}\right|+\tau^{-2}|\xi|^{2}\right) \\
& \leq C_{1}^{\prime \prime} \omega^{1 / 2}\left(\omega^{1 / 2}+\left|t-t_{0}\right|+\tau^{-2}|p|\right)
\end{aligned}
$$
\]

But we also have (and this was the dropped expression)

$$
\left.\left|\tau^{-1} H_{p}\right| x\right|^{2}\left|\leq \tilde{C}_{1}^{\prime}\right| x \mid\left(|x|+|\tau|^{-1}|\xi|\right) \leq C_{1}^{\prime} \omega^{1 / 2}\left(\omega^{1 / 2}+\left(\tau^{-2}|p|+\omega^{1 / 2}\right)^{1 / 2}\right)
$$

Thus, the displayed equation after (7.15) becomes (at $p=0$), with $C_{1}=$ $C_{1}^{\prime}+C_{1}^{\prime \prime}$,

$$
\begin{aligned}
\tau^{-1} H_{p} \phi & =H_{p}\left(t-t_{0}\right)+\frac{1}{\epsilon^{2} \delta} H_{p} \omega \\
& \geq c_{0} / 2-\frac{1}{\epsilon^{2} \delta} C_{1} \omega^{1 / 2}\left(\omega^{1 / 2}+\left|t-t_{0}\right|+\omega^{1 / 4}\right) \\
& \geq c_{0} / 2-4 C_{1}\left(\delta+\frac{\delta}{\epsilon}+\left(\frac{\delta}{\epsilon}\right)^{1 / 2}\right) \geq c_{0} / 4>0
\end{aligned}
$$

provided that $\delta<\frac{c_{0}}{64 C_{1}}, \frac{\epsilon}{\delta}>\max \left(\frac{64 C_{1}}{c_{0}},\left(\frac{64 C_{1}}{c_{0}}\right)^{2}\right)$, i.e., that δ is small, but ϵ / δ is not too small - roughly, ϵ can go to 0 at most proportionally to δ (with an appropriate constant) as $\delta \rightarrow 0$. The rest of the rough argument then goes through.

The precise version is similar. In (7.10) the estimate on the f_{i} term must be weakened:

$$
\begin{aligned}
& \tau^{-1} H_{p} \omega=f_{0}+\sum_{i} f_{i} \tau^{-1} \xi_{i}+\sum_{i, j} f_{i j} \tau^{-2} \xi_{i} \xi_{j} \\
& \quad f_{i}, f_{i j} \in \mathcal{C}^{\infty}\left({ }^{\mathrm{b}} T^{*} X\right), \quad\left|f_{i}\right| \leq C_{1} \omega^{1 / 2}, \quad\left|f_{i j}\right| \leq C_{1} \omega^{1 / 2}
\end{aligned}
$$

$f_{i}, f_{i j}$ homogeneous of degree 0 . This affects the estimates on r_{i} below (7.16):

$$
\left|r_{0}\right| \leq \frac{C_{2}}{\epsilon^{2} \delta} \omega^{1 / 2}\left(\left|t-t_{0}\right|+\omega^{1 / 2}\right), \quad\left|\tau r_{i}\right| \leq \frac{C_{2}}{\epsilon^{2} \delta} \omega^{1 / 2}, \quad\left|\tau^{2} r_{i j}\right| \leq \frac{C_{2}}{\epsilon^{2} \delta} \omega^{1 / 2}
$$

and supp r_{i} lying in $\omega^{1 / 2} \leq 3 \epsilon \delta,\left|t-t_{0}\right|<3 \delta$. Thus,

$$
\left|r_{0}\right| \leq 3 C_{2}\left(\delta+\frac{\delta}{\epsilon}\right), \quad\left|\tau r_{i}\right| \leq 3 C_{2} \epsilon^{-1}, \quad\left|\tau^{2} r_{i j}\right| \leq 3 C_{2} \epsilon^{-1}
$$

Thus, only the R_{i} term needs to be treated differently from [1]. We again let $T \in \Psi_{\mathrm{b}}^{-1}(X)$ be elliptic with principal symbol $|\tau|^{-1}$ near $\dot{\Sigma}$ (more precisely, on a neighborhood of $\operatorname{supp} a), T^{-} \in \Psi_{\mathrm{b}}^{1}(X)$ a parametrix, so $T^{-} T=\operatorname{Id}+F$, $F \in \Psi_{\mathrm{b}}^{-\infty}(X)$. Then there exists $R_{i}^{\prime} \in \Psi_{\mathrm{b}}^{-1}(X)$ such that for any $\gamma>0$,

$$
\begin{aligned}
\left\|R_{i} w\right\|=\left\|R_{i}\left(T^{-} T-F\right) w\right\| & \leq\left\|\left(R_{i} T^{-}\right)(T w)\right\|+\left\|R_{i} F w\right\| \\
& \leq 6 C_{2} \epsilon^{-1}\|T w\|+\left\|R_{i}^{\prime} T w\right\|+\left\|R_{i} F w\right\|
\end{aligned}
$$

for all w with $T w \in L^{2}(X)$; hence,

$$
\begin{aligned}
&\left|\left\langle R_{i} D_{x_{i}} v, v\right\rangle\right| \leq 6 C_{2} \epsilon^{-1}\left\|T D_{x_{i}} v\right\|\|v\| \\
&+2 \gamma\|v\|^{2}+\gamma^{-1}\left\|R_{i}^{\prime} T D_{x_{i}} v\right\|^{2}+\gamma^{-1}\left\|F_{i} D_{x_{i}} v\right\|^{2},
\end{aligned}
$$

with $F_{i} \in \Psi_{\mathrm{b}}^{-\infty}(X)$. Now we use that R_{i} is microlocalized in an $\epsilon \delta$-neighborhood of \mathcal{G}, rather than merely a δ-neighborhood, as in [1], due to the more careful choice of $\rho_{1}: \mathcal{G}$ is given by $\rho_{1}=0, x=0$, and we are microlocalized to the region where $\left|\rho_{1}\right| \leq 3 \epsilon \delta,|x| \leq 3 \epsilon \delta$. For $v=\tilde{B}_{r} u, \tilde{B}_{r}=\tilde{B} \Lambda_{r}$, Lemma 7.1 thus gives (taking into account that we need to estimate $\left\|T D_{x_{i}} v\right\|$ rather than its square)

$$
\begin{aligned}
& \left|\left\langle R_{i} D_{x_{i}} v, v\right\rangle\right| \leq 6 C_{2}^{\prime} \epsilon^{-1}(\epsilon \delta)^{1 / 2}\left\|\tilde{B}_{r} u\right\|^{2} \\
& \quad+C_{0} \gamma^{-1}\left(\left\|G \tilde{B}_{r} u\right\|_{H^{1}(X)}^{2}+\left\|\tilde{B}_{r} u\right\|_{H_{\mathrm{loc}}^{1}(X)}^{2}+\|\tilde{G} P u\|_{H^{-1}(X)}^{2}+\|P u\|_{H_{\mathrm{loc}}^{1}(X)}^{2}\right) \\
& \quad+3 \gamma\left\|\tilde{B}_{r} u\right\|^{2}+\gamma^{-1}\left\|R_{i}^{\prime} T D_{x_{i}} \tilde{B}_{r} u\right\|^{2}+\gamma^{-1}\left\|F_{i} D_{x_{i}} \tilde{B}_{r} u\right\|^{2},
\end{aligned}
$$

where the first term is the main change compared to [1]. Its coefficient, $(\delta / \epsilon)^{1 / 2}$, means that it can then be handled exactly as the $R_{i j}$ term in [1], thus completing the proof.

References

[1] A. Vasy, Propagation of singularities for the wave equation on manifolds with corners, Ann. of Math. 168 (2008), 749-812. MR 2456883. Zbl 1171.58007. http: //dx.doi.org/10.4007/annals.2008.168.749.
(Received: December 1, 2008)
Stanford University, Stanford, CA
E-mail: andras@math.stanford.edu

[^0]: This work is partially supported by NSF grant DMS-0801226.
 (c) 2013 Department of Mathematics, Princeton University.
 ${ }^{1}$ All equation and proposition numbers of the form (7.xx) or 7.xx refer to [1].

