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The universal relation between scaling
exponents in first-passage percolation

By Sourav Chatterjee

Abstract

It has been conjectured in numerous physics papers that in ordinary

first-passage percolation on integer lattices, the fluctuation exponent χ and

the wandering exponent ξ are related through the universal relation χ =

2ξ − 1, irrespective of the dimension. This is sometimes called the KPZ

relation between the two exponents. This article gives a rigorous proof of

this conjecture assuming that the exponents exist in a certain sense.

1. Introduction

Consider the space Rd with Euclidean norm | · |, where d ≥ 2. Consider

Zd as a subset of this space, and say that two points x and y in Zd are nearest

neighbors if |x− y| = 1. Let E(Zd) be the set of nearest neighbor bonds in Zd.
Let t = (te)e∈E(Zd) be a collection of independent and identically distributed

nonnegative random variables. In first-passage percolation, the variable te is

usually called the ‘passage time’ through the edge e, alternately called the

‘edge-weight’ of e. We will sometimes refer to the collection t of edge-weights

as the ‘environment.’ The total passage time, or total weight, of a path P

in the environment t is simply the sum of the weights of the edges in P and

will be denoted by t(P ) in this article. The first-passage time T (x, y) from a

point x to a point y is the minimum total passage time among all lattice paths

from x to y. For all our purposes, it will suffice to consider self-avoiding paths;

henceforth, ‘lattice path’ will refer to only self-avoiding paths.

Note that if the edge-weights are continuous random variables, then with

probability one there is a unique ‘geodesic’ between any two points x and y.

This is denoted byG(x, y) in this paper. LetD(x, y) be the maximum deviation

(in Euclidean distance) of this path from the straight line segment joining x

and y (see Figure 1).
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Figure 1. The geodesic G(x, y) and the deviation D(x, y).

Although invented by mathematicians [11], the first-passage percolation

and related models have attracted considerable attention in the theoretical

physics literature. (See [21] for a survey.) Among other things, the physicists

are particularly interested in two ‘scaling exponents,’ sometimes denoted by

χ and ξ in the mathematical physics literature. The fluctuation exponent χ

is a number that quantifies the order of fluctuations of the first-passage time

T (x, y). Roughly speaking, for any x, y,

the typical value of T (x, y)− ET (x, y) is of the order |x− y|χ.

The wandering exponent ξ quantifies the magnitude of D(x, y). Again, roughly

speaking, for any x, y,

the typical value of D(x, y) is of the order |x− y|ξ.

There have been several attempts to give precise mathematical definitions for

these exponents (see [23] for some examples), but I could not find a consensus

in the literature. The main hurdle is that no one knows whether the exponents

actually exist, and if they do, in what sense.

There are many conjectures related to χ and ξ. The main among these,

to be found in numerous physics papers [14], [15], [16], [19], [20], [21], [24],

[25], [30], including the famous paper of Kardar, Parisi and Zhang [15], is

that although χ and ξ may depend on the dimension, they always satisfy the

relation

χ = 2ξ − 1.

A well-known conjecture from [15] is that when d = 2, χ = 1/3 and ξ = 2/3.

Yet another belief is that χ = 0 if d is sufficiently large. Incidentally, due

to its connection with [15], I have heard in private conversations the relation

χ = 2ξ − 1 being referred to as the ‘KPZ relation’ between χ and ξ.

There are a number of rigorous results for χ and ξ, mainly from the late

eighties and early nineties. One of the first nontrivial results is due to Kesten

[18, Th. 1], who proved that χ ≤ 1/2 in any dimension. To date, the only

improvement on Kesten’s result is due to Benjamini, Kalai and Schramm [6],



SCALING EXPONENTS IN FIRST-PASSAGE PERCOLATION 665

who proved that for first-passage percolation in d ≥ 2 with binary edge-weights,

(1) sup
v∈Zd, |v|>1

VarT (0, v)

|v|/ log |v|
<∞.

Benäım and Rossignol [5] extended this result to a large class of edge-weight

distributions that they call ‘nearly gamma’ distributions. The definition of a

nearly gamma distribution is as follows. A positive random variable X is said

to have a nearly gamma distribution if it has a continuous probability density

function h supported on an interval I (which may be unbounded), and its

distribution function H satisfies, for all y ∈ I,

Φ′ ◦ Φ−1(H(y)) ≤ A√yh(y),

for some constant A, where Φ is the distribution function of the standard

normal distribution. Although the definition may seem a bit strange, Benäım

and Rossignol [5] proved that this class is actually quite large, including e.g.,

exponential, gamma, beta and uniform distributions on intervals.

The only nontrivial lower bound on the fluctuations of passage times is

due to Newman and Piza [26] and Pemantle and Peres [27], who showed that

in d = 2, VarT (0, v) must grow at least as fast as log |v|. Better lower bounds

can be proved if one can show that with high probability, the geodesics lie in

‘thin cylinders’ [7].

For the wandering exponent ξ, the main rigorous results are due to Licea,

Newman and Piza [23] who showed that ξ(2) ≥ 1/2 in any dimension, and

ξ(3) ≥ 3/5 when d = 2, where ξ(2) and ξ(3) are exponents defined in their

paper that may be equal to ξ.

Besides the bounds on χ and ξ mentioned above, there are some rigorous

results relating χ and ξ through inequalities. Wehr and Aizenman [29] proved

the inequality χ ≥ (1 − (d − 1)ξ)/2 in a related model, and the version of

this inequality for first-passage percolation was proved by Licea, Newman and

Piza [23]. The closest that anyone came to proving χ = 2ξ − 1 is a result of

Newman and Piza [26], who proved that χ′ ≥ 2ξ − 1, where χ′ is a related

exponent that may be equal to χ. This has also been observed by Howard [13]

under different assumptions.

Incidentally, in the model of Brownian motion in a Poissonian potential,

Wüthrich [31] proved the equivalent of the KPZ relation assuming that the

exponents exist.

The following theorem establishes the relation χ = 2ξ − 1 assuming that

the exponents χ and ξ exist in a certain sense (to be defined in the statement

of the theorem) and that the distribution of edge-weights is nearly gamma.

Theorem 1.1. Consider the first-passage percolation model on Zd, d ≥ 2,

with independent and identically distributed edge-weights. Assume that the
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distribution of edge-weights is ‘nearly gamma’ in the sense of Benäım and

Rossignol [5] (which includes exponential, gamma, beta and uniform distribu-

tions, among others) and has a finite moment generating function in a neigh-

borhood of zero. Let χa and ξa be the smallest real numbers such that for all

χ′ > χa and ξ′ > ξa, there exists α > 0 such that

sup
v∈Zd\{0}

E exp

Ç
α
|T (0, v)− ET (0, v)|

|v|χ′
å
<∞,(A1)

sup
v∈Zd\{0}

E exp

Ç
α
D(0, v)

|v|ξ′
å
<∞.(A2)

Let χb and ξb be the largest real numbers such that for all χ′ < χb and ξ′ < ξb,

there exists C > 0 such that

inf
v∈Zd, |v|>C

Var(T (0, v))

|v|2χ′
> 0,(A3)

inf
v∈Zd, |v|>C

ED(0, v)

|v|ξ′
> 0.(A4)

Then 0 ≤ χb ≤ χa ≤ 1/2, 0 ≤ ξb ≤ ξa ≤ 1 and χa ≥ 2ξb − 1. Moreover, if it

so happens that χa = χb and ξa = ξb, and these two numbers are denoted by χ

and ξ, then they must necessarily satisfy the relation χ = 2ξ − 1.

Note that if χa = χb and ξa = ξb and these two numbers are denoted by χ

and ξ, then χ and ξ are characterized by the properties that for every χ′ > χ

and ξ′ > ξ, there are some positive α and C such that for all v 6= 0,

E exp

Ç
α
|T (0, v)− ET (0, v)|

|v|χ′
å
< C and E exp

Ç
α
D(0, v)

|v|ξ′
å
< C,

and for every χ′ < χ and ξ′ < ξ, there are some positive B and C such that

for all v with |v| > C,

Var(T (0, v)) > B|v|2χ′ and ED(0, v) > B|v|ξ′ .

It seems reasonable to expect that if the two exponents χ and ξ indeed exist,

then they should satisfy the above properties.

Incidentally, a few months after the first draft of this paper was put up

on arXiv, Auffinger and Damron [4] were able to replace a crucial part of the

proof of Theorem 1.1 with a simpler argument that allowed them to remove

the assumption that the edge-weights are nearly-gamma.

Section 2 has a sketch of the proof of Theorem 1.1. The rest of the

paper is devoted to the actual proof. Proving that 0 ≤ χb ≤ χa ≤ 1/2 and

0 ≤ ξb ≤ ξa ≤ 1 is a routine exercise; this is done in Section 3. Proving

that χa ≥ 2ξb − 1 is also relatively easy and similar to the existing proofs of

analogous inequalities, e.g., in [26], [13]. This is done in Section 6. The ‘hard
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part’ is proving the opposite inequality; that is, χ ≤ 2ξ − 1 when χ = χa = χb
and ξ = ξa = ξb. This is done in Sections 7, 8 and 9.

2. Proof sketch

I will try to give a sketch of the proof in this section. I have found it very

hard to aptly summarize the main ideas in the proof without going into the

details. This proof-sketch represents the end-result of my best efforts in this

direction. If the interested reader finds the proof sketch too obscure, I would

like to request him to return to this section after going through the complete

proof, whereupon this high-level sketch may shed some illuminating insights.

Throughout this proof sketch, C will denote any positive constant that

depends only on the edge-weight distribution and the dimension. Let h(x) :=

E(T (0, x)). The function h is subadditive. Therefore the limit

g(x) := lim
n→∞

h(nx)

n

exists for all x ∈ Zd. The definition can be extended to all x ∈ Qd by taking

n → ∞ through a subsequence, and it can be further extended to all x ∈ Rd
by uniform continuity. The function g is a norm on Rd.

The function g is a norm, and hence much more well behaved than h. If |x|
is large, g(x) is supposed to be a good approximation of h(x). A method devel-

oped by Ken Alexander [1], [2] uses the order of fluctuations of passage times

to infer bounds on |h(x) − g(x)|. In the setting of Theorem 1.1, Alexander’s

method yields that for any ε > 0, there exists C such that for all x 6= 0,

(2) g(x) ≤ h(x) ≤ g(x) + C|x|χa+ε.

This is formally recorded in Theorem 4.1. In the proof of the main result, the

above approximation will allow us to replace the expected passage time h(x)

by the norm g(x).

In Lemma 5.1, we prove that there is a unit vector x0 and a hyperplane

H0 perpendicular to x0 such that for some C > 0, for all z ∈ H0,

|g(x0 + z)− g(x0)| ≤ C|z|2.

Similarly, there is a unit vector x1 and a hyperplane H1 perpendicular to x1
such that for some C > 0, for all z ∈ H1, |z| ≤ 1,

g(x1 + z) ≥ g(x1) + C|z|2.

The interpretations of these two inequalities is as follows. In the direction x0,

the unit sphere of the norm g is ‘at most as curved as an Euclidean sphere’

and in the direction x1, it is ‘at least as curved as an Euclidean sphere.’
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Now take a look at Figure 2. Think of m as a fraction of n. By the

definition of the direction of curvature x1 and Alexander’s approximation (2),

for any ε > 0,

Expected passage time of the path P

≥ g(mx1 + z) + g(nx1 − (mx1 + z)) +O(nχ+ε)

= mg(x1 + z/m) + (n−m)g(x1 + z/(n−m)) +O(nχ+ε)

≥ ng(x1) + C|z|2/n+O(nχ+ε)

≥ E(T (0, nx1)) + C|z|2/n+O(nχ+ε).

Suppose |z| = nξ. Then |z|2/n = n2ξ−1. Fluctuations of T (0, nx1) are of order

nχ. Thus, if 2ξ−1 > χ, then P cannot be a geodesic from 0 to nx1. This sketch

is formalized into a rigorous argument in Section 6 to prove that χa ≥ 2ξb− 1.

0 nx1mx1

mx1 + z

P

Figure 2. Proving χ ≥ 2ξ − 1.

Next, let me sketch the proof of χ ≤ 2ξ − 1 when χ > 0. The methods

developed in [7] for first-passage percolation in thin cylinders have some bearing

on this part of the proof. Recall the direction of curvature x0. Let a = nβ,

β < 1. Let m = n/a = n1−β. Under the conditions χ > 2ξ − 1 and χ > 0, we

will show that there is a β < 1 such that

(?) T (0, nx0) =
m−1∑
i=0

T (iax0, (i+ 1)ax0) + o(nχ).

This will lead to a contradiction, as follows. Let f(n) := VarT (0, nx0). Then

by Benäım and Rossignol [5], f(n) ≤ Cn/ log n. Under (?), by the Harris-FKG

inequality,

f(n) = VarT (0, nx0) ≥ mVarT (0, ax0) + o(n2χ)

= n1−βf(nβ) + o(n2χ).

If β is chosen sufficiently small, the first term on the right will dominate the

second. Consequently,

(†) lim inf
n→∞

f(n)

n1−βf(nβ)
≥ 1.
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Choose n0 > 1, and define ni+1 = n
1/β
i for each i. Let v(n) := f(n)/n. Then

v(ni) ≤ C/ log ni ≤ Cβi. But by (†), lim inf v(ni+1)/v(ni) ≥ 1, and so for all i

large enough, v(ni+1) ≥ β1/2v(ni). In particular, there is a positive constant c

such that for all i, v(ni) ≥ cβi/2. Since β < 1, this gives a contradiction for i

large, therefore proving that χ ≤ 2ξ − 1.

Let me now sketch a proof of (?) under the conditions χ > 2ξ − 1 and

χ > 0. Let a = nβ and b = nβ
′
, where β′ < β < 1. Consider a cylinder of width

nξ around the line joining 0 and nx0. Partition the cylinder into alternating

big and small cylinders of widths a and b respectively. Call the boundary walls

of these cylinders U0, V0, U1, V1, . . . , Vm−1, Um, where m is roughly n1−β (see

Figure 3).

U0 V0 U1 V1 U2 Vm−1 Um

0 nx0a b

Figure 3. Cylinder of width nξ around the line joining 0 and nx0.

Let Gi := G(Ui, Vi); that is, the path with minimum passage time between

any vertex in Ui and any vertex in Vi. Let ui and vi be the endpoints of Gi.

Let G′i := G(vi, ui+1). The concatenation of the paths G′0, G1, G
′
1, G2, . . . ,

G′m−1, Gm is a path from U0 to Um. Therefore,

T (U0, Um) ≤
m−1∑
i=1

T (Ui, Vi) +
m−1∑
i=0

T (vi, ui+1).

Next, let G := G(U0, Um). Let u′i be the first vertex in Ui visited by G, and

let v′i be the first vertex in Vi visited by G. If G stays within the cylinder

throughout, then T (u′i, v
′
i) ≥ T (Ui, Vi) and T (v′i, u

′
i+1) ≥ T (Vi, Ui+1). Thus,

T (U0, Um) ≥
m−1∑
i=0

T (Ui, Vi) +
m−1∑
i=0

T (Vi, Ui+1).

Thus, if G(U0, Um) stays in a cylinder of width nξ, then

0 ≤ T (U0, Um)−
m−1∑
i=0

(T (Ui, Vi) + T (Vi, Ui+1))

≤
m−1∑
i=0

(T (vi, ui+1)− T (Vi, Ui+1)).

Therefore, ∣∣∣∣∣T (U0, Um)−
m−1∑
i=0

(T (Ui, Vi) + T (Vi, Ui+1))

∣∣∣∣∣ ≤ m−1∑
i=0

Mi,
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where Mi := maxv,v′∈Vi, u,u′∈Ui+1
|T (v, u)− T (v′, u′)|. Note that the errors Mi

come only from the small blocks. By curvature estimate in direction x0, for

any v, v′ ∈ Vi and u, u′ ∈ Ui+1,

|ET (v, u)− ET (v′, u′)| ≤ C(nξ)2/nβ
′

= Cn2ξ−β
′
.

Fluctuations of T (v, u) are of order nβ
′χ. If 2ξ−1 < χ, then we can choose β′ so

close to 1 that 2ξ − β′ < β′χ. That is, fluctuations dominate while estimating

Mi. Consequently, Mi is of order nβ
′χ. Thus, total error = n1−β+β

′χ. Since

β′ < β and χ > 0, this gives us the opportunity of choosing β′, β such that

the exponent is < χ. This proves (?) for passage times from ‘boundary to

boundary.’ Proving (?) for ‘point to point’ passage times is only slightly more

complicated. The program is carried out in Sections 7 and 8.

Finally, for the case χ = 0, we have to prove that ξ ≥ 1/2. This was proved

by Licea, Newman and Piza [23] for a different definition of the wandering

exponent. The argument does not seem to work with our definition. A proof

is given in Section 9; I will omit this part from the proof sketch.

3. A priori bounds

In this section we prove the a priori bounds 0 ≤ χb ≤ χa ≤ 1/2 and

0 ≤ ξb ≤ ξa ≤ 1. First, note that the inequalities χb ≤ χa and ξb ≤ ξa are easy.

For example, if χb > χa, then for any χa < χ′ < χ′′ < χb, (A1) implies that

sup
v∈Zd\{0}

Var(T (0, v))

|v|2χ′
<∞,

and hence for any sequence vn such that |vn| → ∞,

lim
n→∞

Var(T (0, vn))

|vn|2χ′′
= 0,

which contradicts (A3). A similar argument shows that ξb ≤ ξa.
To show that χb ≥ 0, let E0 denote the set of all edges incident to the

origin. Let F0 denote the sigma-algebra generated by (te)e6∈E0 . Since the edge-

weight distribution is nondegenerate, there exists c1 < c2 such that for an

edge e, P(te < c1) > 0 and P(te > c2) > 0. Therefore,

(3) P(max
e∈E0

te < c1) > 0, P(min
e∈E0

te > c2) > 0.

Let (t′e)e∈E0 be an independent configuration of edge weights. Define t′e = te
if e 6∈ E0. Let T ′(0, v) be the first-passage time from 0 to a vertex v in the

new environment t′. If te < c1 and t′e > c2 for all e ∈ E0, then T ′(0, v) >

T (0, v) + c2 − c1. Thus, by (3), there exists δ > 0 such that for any v with

|v| ≥ 2,

EVar(T (0, v)|F0) =
1

2
E(T (0, v)− T ′(0, v))2 > δ.

Therefore Var(T (0, v)) > δ, and so χb ≥ 0.
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To show that ξb ≥ 0, note that there is an ε > 0 small enough such that

for any v ∈ Zd with |v| ≥ 2, there can be at most one lattice path from 0 to v

that stays within distance ε from the straight line segment joining 0 to v. Fix

such a vertex v and such a path P . If the number of edges in P is sufficiently

large, one can use the nondegeneracy of the edge-weight distribution to show

by an explicit assignment of edge weights that

P(P is a geodesic) < δ,

where δ < 1 is a constant that depends only on the edge-weight distribution

(and not on v or P ). This shows that for |v| sufficiently large, ED(0, v) is

bounded below by a positive constant that does not depend on v, thereby

proving that ξb ≥ 0.

Let us next show that χa ≤ 1/2. Essentially, this follows from [18, Th. 1]

or [28, Prop. 8.3], with a little bit of extra work. Below, we give a proof using

[5, Th. 5.4]. First, note that there is a constant C0 such that for all v,

ET (0, v) ≤ C0|v|1,(4)

where |v|1 is the `1 norm of v. From the assumptions about the distribution

of edge-weights, [5, Th. 5.4] implies that there are positive constants C1 and

C2 such that for any v ∈ Zd with |v|1 ≥ 2, and any 0 ≤ t ≤ |v|1,

(5) P
Ç
|T (0, v)− ET (0, v)| ≥ t

√
|v|1

log |v|1

å
≤ C1e

−C2t.

Fix a path P from 0 to v with |v|1 edges. Recall that t(P ) denotes the sum

of the weights of the edges in P . Since the edge-weight distribution has finite

moment generating function in a neighborhood of zero and (4) holds, it is easy

to see that there are positive constants C3, C4 and C ′4 such that if |v|1 > C3,

then for any t > |v|1,

P
Ç
|T (0, v)− ET (0, v)| ≥ t

√
|v|1

log |v|1

å
(6)

≤ P
Ç
T (0, v) ≥ C0|v|1 + t

√
|v|1

log |v|1

å
≤ P
Ç
t(P ) ≥ C0|v|1 + t

√
|v|1

log |v|1

å
≤ eC4|v|1−C′4t

√
|v|1/ log |v|1 .

Combining (5) and (6), it follows that there are constants C5, C6 and C7 such

that for any v with |v|1 > C5,

E exp

Ç
C6
|T (0, v)− ET (0, v)|»

|v|1/ log |v|1

å
≤ C7.
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Appropriately increasing C7, one sees that the above inequality holds for all v

with |v|1 ≥ 2. In particular, χa ≤ 1/2.

Finally, let us prove that ξa ≤ 1. Consider a self-avoiding path P starting

at the origin, containing m edges. By the strict positivity of the edge-weight

distributions, for any edge e,

lim
θ→∞

E(e−θte) = 0.

Now, for any θ, c > 0,

P(t(P ) ≤ cm) = P(e−t(P )/c ≥ e−m) ≤ (eE(e−te/c))m.

Thus, given any δ > 0, there exists c small enough such that for any m and

any self-avoiding path P with m edges,

P(t(P ) ≤ cm) ≤ δm.

Since there are at most (2d)m paths with m edges, therefore there exists c

small enough such that

P(t(P ) ≤ cm for some P with m edges) ≤ 2−m−1,

and therefore

(7) P(t(P ) ≤ cm for some P with ≥ m edges) ≤ 2−m.

There is a constant B > 0 such that for any t ≥ 1 and any vertex v 6= 0, if

D(0, v) ≥ t|v|, then G(0, v) has at least Bt|v| edges. Therefore from (7),

P(D(0, v) ≥ t|v|) ≤ P(T (0, v) ≥ Bt|v|/c) + 2−Bt|v|.

As in (6), there is a constant C such that if P is a path from 0 to v with |v|1
edges,

P(T (0, v) ≥ Bt|v|/c) ≤ P(t(P ) ≥ Bt|v|/c) ≤ eC|v|−Bt|v|/c.
Combining the last two displays shows that for some α small enough,

sup
v 6=0

E exp

Ç
α
D(0, v)

|v|

å
<∞,

and thus, ξa ≤ 1.

4. Alexander’s subadditive approximation theory

The first step in the proof of Theorem 1.1 is to find a suitable approxima-

tion of ET (0, x) by a convex function g(x). For x ∈ Zd, define

(8) h(x) := ET (0, x).

It is easy to see that h satisfies the subadditive inequality

h(x+ y) ≤ h(x) + h(y).
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By the standard subadditive argument, it follows that

(9) g(x) := lim
n→∞

h(nx)

n

exists for each x ∈ Zd. In fact, g(x) may be defined similarly for x ∈ Qd by

taking n → ∞ through a sequence of n such that nx ∈ Zd. The function g

extends continuously to the whole of Rd, and the extension is a norm on Rd
(see e.g., [2, Lemma 1.5]). Note that by subadditivity,

(10) g(x) ≤ h(x) for all x ∈ Zd.

Since the edge-weight distribution is continuous in the setting of Theorem 1.1,

it follows by a well-known result (see [17]) that g(x) > 0 for each x 6= 0. Let ei
denote the ith coordinate vector in Rd. Since g is symmetric with respect to

interchange of coordinates and reflections across all coordinate hyperplanes, it

is easy to show, using subadditivity, that

(11) |x|∞ ≤ g(x)/g(e1) ≤ |x|1 for all x 6= 0,

where |x|p denotes the `p norm of the vector x.

How well does g(x) approximate h(x)? Following the work of Kesten [17],

[18], Alexander [1], [2] developed a general theory for tackling such questions.

One of the main results of Alexander [2] is that under appropriate hypotheses

on the edge-weights, there exists some C > 0 such that for all x ∈ Zd\{0},

g(x) ≤ h(x) ≤ g(x) + C|x|1/2 log |x|.

Incidentally, Alexander has recently been able to obtain slightly improved re-

sults for nearly gamma edge-weights [3]. It turns out that under the hypotheses

of Theorem 1.1, Alexander’s argument goes through almost verbatim to yield

the following result.

Theorem 4.1. Consider the setup of Theorem 1.1. Let g and h be defined

as in (9) and (8) above. Then for any χ′ > χa, there exists C > 0 such that

for all x ∈ Zd with |x| > 1,

g(x) ≤ h(x) ≤ g(x) + C|x|χ′ log |x|.

Sacrificing brevity for the sake of completeness, I will now prove The-

orem 4.1 by copying Alexander’s argument with only minor changes at the

appropriate points.

Fix χ′ > χa. Since 0 ≤ χa ≤ 1/2, so χ′ can be chosen to satisfy 0 < χ′ < 1.

Let B0 := {x : g(x) ≤ 1}. Given x ∈ Rd, let Hx denote a hyperplane

tangent to the boundary of g(x)B0 at x. Note that if the boundary is not

smooth, the choice of Hx may not be unique. Let H0
x be the hyperplane
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through the origin that is parallel to Hx. There is a unique linear functional

gx on Rd satisfying

gx(y) = 0 for all y ∈ H0
x, gx(x) = g(x).

For each x ∈ Rd, C > 0 and K > 0, let

Qx(C,K)

:= {y ∈ Zd : |y| ≤ K|x|, gx(y) ≤ g(x), h(y) ≤ gx(y) + C|x|χ′ log |x|}.

The following key result is taken from [2].

Lemma 4.2 (Alexander [2, Th. 1.8]). Consider the setting of Theorem 4.1.

Suppose that for some M > 1, C > 0, K > 0 and a > 1, the following holds.

For each x ∈ Qd with |x| ≥ M , there exists an integer n ≥ 1, a lattice path γ

from 0 to nx and a sequence of sites 0 = v0, v1, . . . , vm = nx in γ such that

m ≤ an and vi − vi−1 ∈ Qx(C,K) for all 1 ≤ i ≤ m. Then the conclusion of

Theorem 4.1 holds.

Before proving that the conditions of Lemma 4.2 hold, we need some

preliminary definitions and results. Define

sx(y) := h(y)− gx(y), y ∈ Zd.

By the definition of gx and the fact that g is a norm, it is easy to see that

(12) |gx(y)| ≤ g(y),

and by subadditivity, g(y) ≤ h(y). Therefore sx(y) ≥ 0. Again from subaddi-

tivity of h and linearity of gx,

(13) sx(y + z) ≤ sx(y) + sx(z) for all y, z ∈ Zd.

Let C1 := 320d2/α, where α is from the statement of Theorem 1.1. As in [2],

define

Qx := Qx(C1, 2d+ 1),

Gx := {y ∈ Zd : gx(y) > g(x)},

∆x := {y ∈ Qx : y adjacent to Zd\Qx, y not adjacent to Gx},
Dx := {y ∈ Qx : y adjacent to Gx}.

The following lemma is simply a slightly altered copy of Lemma 3.3 in [2].

Lemma 4.3. Assume the conditions of Theorem 1.1. Then there exists a

constant C2 such that if |x| ≥ C2, the following hold :

(i) If y ∈ Qx, then g(y) ≤ 2g(x) and |y| ≤ 2d|x|.
(ii) If y ∈ ∆x, then sx(y) ≥ C1|x|χ

′
(log |x|)/2.

(iii) If y ∈ Dx, then gx(y) ≥ 5g(x)/6.
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Proof. (i) Suppose g(y) > 2g(x) and gx(y) ≤ g(x). Then using (10) and

(12),

2g(x) < g(y) ≤ h(y) = gx(y) + sx(y) ≤ g(x) + sx(y),

so from (11), sx(y) > g(x) > C1|x|χ
′
log |x|, provided |x| ≥ C2. Thus y 6∈ Qx

and the first conclusion in (i) follows. The second conclusion then follows

from (11).

(ii) Note that z = y ± ei for some z ∈ Zd ∩Qcx ∩Gcx and i ≤ d. From (i),

we have |y| ≤ 2d|x|, so |z| ≤ (2d + 1)|x|, provided |x| > 1. Since z 6∈ Qx, we

must then have sx(z) > C1|x|χ
′
log |x|, while using (12),

h(±ei) = sx(±ei) + gx(±ei) ≥ sx(±ei)− g(±ei).

Consequently, by (13), if |x| ≥ C2,

sx(y) ≥ sx(z)− sx(±ei)

≥ C1|x|χ
′
log |x| − h(±ei)− g(±ei)

≥ C1|x|χ
′
(log |x|)/2.

(iii) As in (ii), we have z = y ± ei for some z ∈ Zd ∩ Gx and i ≤ d.

Therefore using (11) and (12),

gx(y) = gx(z)− gx(±ei) ≥ gx(z)− g(±ei) ≥ 5g(x)/6

for all |x| ≥ C2. �

Let us call the m+1 sites in Lemma 4.2 marked sites. If m is unrestricted,

it is easy to find inductively a sequence of marked sites for any path γ from 0

to nx, as follows. One can start at v0 = 0, and given vi, let v′i+1 be the first

site (if any) in γ, coming after vi, such that v′i+1 − vi 6∈ Qx; then let vi+1 be

the last site in γ before v′i+1 if v′i+1 exists; otherwise let vi+1 = nx and end the

construction. If |x| is large enough, then it is easy to deduce from (11) and

(12) that all neighbors of the origin must belong to Qx and therefore vi+1 6= vi
for each i, and hence the construction must end after a finite number of steps.

We call the sequence of marked sites obtained from a self-avoiding path γ in

this way ‘the Qx-skeleton of γ.’

Given such a skeleton (v0, . . . , vm), abbreviated (vi), of some lattice path,

we divide the corresponding indices into two classes, corresponding to ‘long’

and ‘short’ increments:

S((vi)) := {i : 0 ≤ i < m− 1, vi+1 − vi ∈ ∆x},
L((vi)) := {i : 0 ≤ i < m− 1, vi+1 − vi ∈ Dx}.

Note that the final index m is in neither class, and by Lemma 4.3(ii),

(14) j ∈ S((vi)) implies sx(vj+1 − vj) > C1|x|χ
′
(log |x|)/2.
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The next result is analogous to Proposition 3.4 in [2].

Proposition 4.4. Assume the conditions of Theorem 1.1. There exists

a constant C3 such that if |x| ≥ C3, then for sufficiently large n, there exists a

lattice path from 0 to nx with Qx-skeleton of 2n+ 1 or fewer vertices.

Proof. Let (v0, . . . , vm) be a Qx-skeleton of some lattice path, and let

Yi := ET (vi, vi+1)− T (vi, vi+1).

Then by (A1) of Theorem 1.1 and Lemma 4.3(i), there are constants C4 :=

α/(2d)χ
′ ≥ α/2d and C5 such that for 0 ≤ i ≤ m− 1,

(15) E exp(C4|Yi|/|x|χ
′
) ≤ C5.

Let Y ′0 , Y
′
1 , . . . , Y

′
m−1 be independent random variables with Y ′i having the same

distribution as Yi. Let T (0, w; (vj)) be the minimum passage time among all

lattice paths from 0 to a site w with Qx-skeleton (vj). By [17, eq. (4.13)] or

[1, Th. 2.3], for all t ≥ 0,

P
Çm−1∑
i=0

Y ′i ≥ t
å
≥ P
Çm−1∑
i=0

ET (vi, vi+1)− T (0, vm; (vj)) ≥ t
å
.

Now by (15),

P
Çm−1∑
i=0

Y ′i ≥ t
å
≤ e−C4t/|x|χ

′
Cm5 .

Let C6 := 20d2/α. Taking t = C6m|x|χ
′
log |x|, the above display shows that

there is a constant C7 such that for all |x| ≥ C7,

P
Çm−1∑
i=0

ET (vi, vi+1)− T (0, vm; (vj)) ≥ C6m|x|χ
′
log |x|

å
≤ (C5e

−10d log |x|)m.

From the definition of a Qx-skeleton, it is easy to see that there is a constant

C8 such that there are at most (C8|x|d)m Qx-skeletons with m + 1 vertices.

Therefore, the above display shows that there are constants C9 and C10 such

that when |x| ≥ C9,

P
Çm−1∑
i=0

ET (vi, vi+1)− T (0, vm; (vj)) ≥ C6m|x|χ
′
log |x|

for some Qx-skeleton with m+ 1 vertices

å
≤ e−C10m log |x|.
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This in turn yields that for some constant C11, for all |x| ≥ C11,

P
Çm−1∑
i=0

ET (vi, vi+1)− T (0, vm; (vj)) ≥ C6m|x|χ
′
log |x|(16)

for some m ≥ 1 and some Qx-skeleton with m+ 1 vertices

å
≤ 2e−C10 log |x|.

Now let ω := {te : e is an edge in Zd} be a fixed configuration of passage times

(to be further specified later), and let (v0, . . . , vm) be the Qx-skeleton of a route

from 0 to nx. Then since vi+1 − vi ∈ Qx,

mg(x) ≥
m−1∑
i=0

gx(vi+1 − vi) = gx(nx) = ng(x).

Therefore,

(17) n ≤ m.

From the concentration of first-passage times,

P(T (0, nx) ≤ ng(x) + n)→ 1 as n→∞,

so by (16), if n is large, there exists a configuration ω and a Qx-skeleton

(v0, . . . , vm) of a path from 0 to nx such that

T (0, nx; (vj)) = T (0, nx) ≤ ng(x) + n(18)

and

m−1∑
i=0

ET (vi, vi+1)− T (0, nx; (vj)) < C6m|x|χ
′
log |x|.(19)

Thus for some constant C12, if |x| ≥ C12, then by (17), (18) and (19),

m−1∑
i=0

ET (vi, vi+1) < ng(x) + n+ C6m|x|χ
′
log |x|(20)

≤ ng(x) + 2C6m|x|χ
′
log |x|.

But by (14),

m−1∑
i=0

ET (vi, vi+1) =
m−1∑
i=0

(gx(vi+1 − vi) + sx(vi+1 − vi))

≥ gx(nx) + C1|S((vi))||x|χ
′
(log |x|)/2

which, together with (20), yields

(21) |S((vi))| ≤ 4C6m/C1 = m/4.
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At the same time, using Lemma 4.3(iii),

m−1∑
i=0

ET (vi, vi+1) =
m−1∑
i=0

(gx(vi+1 − vi) + sx(vi+1 − vi))

≥ 5|L((vi))|g(x)/6.

With (20), (11) and the assumption that χ′ < 1, this implies that there is a

constant C13 such that, provided |x| ≥ C13,

|L((vi))| ≤ 6n/5 +
12C6m|x|χ

′
log |x|

6g(e1)|x|/
√
d
≤ 6n/5 +m/8.

This and (21) give

m = |L((vi))|+ |S((vi))|+ 1 ≤ 6n/5 + 3m/8 + 1

which, for n large, implies m ≤ 2n, proving the proposition. �

Proof of Theorem 4.1. Lemma 4.2 and Proposition 4.4 prove the conclu-

sion of Theorem 4.1 for x with sufficiently large Euclidean norm. To prove this

for all x with |x| > 1, one simply has to increase the value of C. �

5. Curvature bounds

The unit ball of the g-norm, usually called the ‘limit shape’ of first-passage

percolation, is an object of great interest and intrigue in this literature. Very

little is known rigorously about the limit shape, except for a fundamental

result about convergence to the limit shape due to Cox and Durrett [8], some

qualitative results of Kesten [17] who proved, in particular, that the limit shape

may not be an Euclidean ball, an important result of Durrett and Liggett [9]

who showed that the boundary of the limit shape may contain straight lines,

and some bounds on the rate of convergence to the limit shape [18], [2]. In

particular, it is not even known whether the limit shape may be strictly convex

in every direction (except for the related continuum model of ‘Riemannian first-

passage percolation’ [22] and first-passage percolation with stationary ergodic

edge-weights [10]).

The following proposition lists two properties of the limit shape that are

crucial for our purposes.

Proposition 5.1. Let g be defined as in (9), and assume that the distri-

bution of edge-weights is continuous. Then there exists x0 ∈ Rd with |x0| = 1,

a constant C ≥ 0 and a hyperplane H0 through the origin perpendicular to x0
such that for all z ∈ H0,

|g(x0 + z)− g(x0)| ≤ C|z|2.
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There also exist x1 ∈ Rd with |x1| = 1 and a hyperplane H1 through the origin

perpendicular to x1 such that for all z ∈ H1,

g(x1 + z) ≥
»

1 + |z|2g(x1).

Proof. The proof is similar to that of [26, Lemma 5]. Let B(0, r) denote

the Euclidean ball of radius r centered at the origin, and let

Bg(0, r) := {x : g(x) ≤ r}

denote the ball of radius r centered at the origin for the norm g. Let r be the

smallest number such that Bg(0, r) ⊇ B(0, 1). Let x0 be a point of intersection

of ∂Bg(0, r) and ∂B(0, 1). Let H0 be a hyperplane tangent to ∂Bg(0, r) at

x0, translated to contain the origin. Note that x0 + H0 is also a tangent

hyperplane for B(0, 1) at x0, since it touches B(0, 1) only at x0. Therefore H0

is perpendicular to x0. Now for any z ∈ H0, the point y := (x0 + z)/|x0 + z|
is a point on ∂B(0, 1) and hence contained in Bg(0, r). Therefore,

g(x0) = r ≥ g(y) =
1

|x0 + z|
g(x0 + z) =

1»
1 + |z|2

g(x0 + z).

Since g(x0 + z) grows like |z| as |z| → ∞, this shows that there is a constant

C such that

g(x0 + z) ≤ g(x0) + C|z|2

for all z ∈ H0. Also, since x0 + z 6∈ Bg(0, r) for z ∈ H0\{0}, therefore g(x0) ≤
g(x0 + z) for all z ∈ H0. This proves the first assertion of the proposition.

For the second, we proceed similarly. Let r be the largest number such

that Bg(0, r) ⊆ B(0, 1). Let x1 be a point in the intersection of ∂Bg(0, r)

and ∂B(0, 1). Let H1 be the hyperplane tangent to ∂B(0, 1) at x1, translated

to contain the origin. Note that this is simply the hyperplane through the

origin that is perpendicular to x1. Since B(0, 1) contains Bg(0, r), and y :=

(x1 + z)/|x1 + z| is a point in ∂B(0, 1), therefore

g(x1) = r ≤ g(y) =
1

|x1 + z|
g(x1 + z) =

1»
1 + |z|2

g(x1 + z).

This completes the argument. �

6. Proof of χa ≥ 2ξb − 1

We will prove by contradiction. Suppose that 2ξb − 1 > χa. Choose ξ′

such that
1 + χa

2
< ξ′ < ξb.

Note that ξ′ < 1. Let x1 and H1 be as in Proposition 5.1. Let n be a positive

integer, to be chosen later. Throughout this proof, C will denote any positive

constant that does not depend on n. The value of C may change from line to
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line. Also, we will assume without mention that ‘n is large enough’ wherever

required.

Let y be the closest point in Zd to nx1. Note that

(22) |y − nx1| ≤
√
d.

Let L denote the line passing through 0 and nx1, and let L′ denote the line

segment joining 0 to nx1 (but not including the endpoints). Let V be the set

of all points in Zd whose distance from L′ lies in the interval [nξ
′
, 2nξ

′
]. Take

any v ∈ V . We claim that there is a constant C (not depending on n) such

that for any v ∈ V ,

g(v) + g(nx1 − v) ≥ g(nx1) + Cn2ξ
′−1.(23)

Let us now prove this claim. Let w be the projection of v onto L along H1 (i.e.

the perpendicular projection). To prove (23), there are three cases to consider.

First suppose that w lies in L′. Note that w/|w| = x1. Let v′ := v/|w| and

z := v′ − x1 = (v − w)/|w|.

w0 nx1

v

v′

x1

Figure 4. The relative positions of x1, v
′, v, w, nx1.

Note that z ∈ H1. Thus by Proposition 5.1,

g(v′) = g(x1 + z) ≥
»

1 + |z|2g(x1).

Consequently,

(24) g(v) ≥ |w|
»

1 + |z|2g(x1).

Next, let w′ := nx1−w. Note that w′/|w′| = x1. Let v′′ := (nx1− v)/|w′| and

z′ := v′′ − x1 = (w − v)/|w′|.

Then z′ ∈ H1, and hence by Proposition 5.1,

g(v′′) = g(x1 + z′) ≥
»

1 + |z′|2g(x1).

Consequently,

(25) g(nx1 − v) ≥ |w′|
»

1 + |z′|2g(x1).

Since v ∈ V , therefore |v − w| ≥ nξ′ . Again, |w|+ |w′| = n. Thus,

min{|z|, |z′|} ≥ nξ′−1.
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Combining this with (24), (25), (11) and the fact that ξ′ < 1, we have

g(v) + g(nx1 − v) ≥ (|w|+ |w′|)
√

1 + n2ξ′−2g(x1)

=
√

1 + n2ξ′−2g(nx1)

≥ g(nx1) + Cn2ξ
′−1.

Next, suppose that w lies in L\L′, on the side closer to nx1. As above, let

z := (v − w)/|w|. As in (24), we conclude that

(26) g(v) ≥ |w|
»

1 + |z|2g(x1).

By the definition of V , the distance between v and nx1 must be greater than

nξ
′
. But in this case,

|v − nx1|2 = (|w| − n)2 + |v − w|2 = (|w| − n)2 + |w|2|z|2,

and we also have n ≤ |w| ≤ 3n. Thus, either |w|2|z|2 > n2ξ
′
/2 (which implies

|z|2 ≥ Cn2ξ
′−2), or |w| ≥ n+ nξ

′
/
√

2. Since ξ′ > 2ξ′ − 1, therefore by (26), in

either situation, we have

g(v) ≥ g(nx1) + Cn2ξ
′−1.

Similarly, if w lies in L\L′, on the side closer to 0, then

g(nx1 − v) ≥ g(nx1) + Cn2ξ
′−1.

This completes the proof of (23). Now (23) combined with Theorem 4.1, (22)

and the fact that 2ξ′ − 1 > χa implies that if n is large enough, then for any

v ∈ V ,

(27) h(v) + h(y − v) ≥ h(y) + Cn2ξ
′−1.

Choose χ1, χ2 such that χa < χ1 < χ2 < 2ξ′−1. Then by (A1) of Theorem 1.1,

there is a constant C such that for n large enough,

P(T (0, y) > h(y) + nχ2) ≤ e−Cnχ2−χ1 .

Now, for any v ∈ V , both |v| and |y− v| are bounded above by Cn. Therefore,

again by (A1),

P(T (0, v) < h(v)− nχ2) ≤ e−Cnχ2−χ1 ,

P(T (v, y) < h(y − v)− nχ2) ≤ e−Cnχ2−χ1 .

This, together with (27), shows that if n is large enough, then for any v ∈ V ,

P(T (0, y) = T (0, v) + T (v, y)) ≤ e−Cnχ2−χ1 .

Since the size of V grows polynomially with n, this shows that

P(T (0, y) = T (0, v) + T (v, y) for some v ∈ V ) ≤ e−Cnχ2−χ1 .
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Note that if the geodesic from 0 to y passes through V , then T (0, y) =

T (0, v) + T (v, y) for some v ∈ V . If D(0, y) > nξ
′
, then the geodesic must

pass through V . Thus, the above inequality implies that

P(D(0, y) > nξ
′
) ≤ e−Cnχ2−χ1 .

By (A2) of Theorem 1.1, this gives

ED(0, y) ≤ nξ′ + E(D(0, y)1{D(0,y)>nξ′})

≤ nξ′ +
»
E(D(0, y)2)P(D(0, y) > nξ′)

≤ nξ′ + C1n
C1e−C2nχ2−χ1 .

Taking n→∞, this shows that (A4) of Theorem 1.1 is violated (since ξ′ < ξb),

leading to a contradiction to our original assumption that χa < 2ξb− 1. Thus,

χa ≥ 2ξb − 1.

7. Proof of χ ≤ 2ξ − 1 when 0 < χ < 1/2

In this section and the rest of the manuscript, we assume that χa = χb
and ξa = ξb and denote these two numbers by χ and ξ.

Again we prove by contradiction. Suppose that 0 < χ < 1/2 and χ >

2ξ − 1. Fix χ1 < χ < χ2, to be chosen later. Choose ξ′ such that

ξ < ξ′ <
1 + χ

2
.

Define

β′ :=
1

2
+

ξ′

1 + χ
,

β := 1− χ

2
+
χ

2
β′,

ε := (1− β)

Ç
1− χ

2

å
.

We need several inequalities involving the numbers β′, β and ε. Since

0 <
ξ′

1 + χ
<

1

2
,

therefore

(28)
1

2
< β′ < 1.

Since χ < 1 and ξ′ < (1 + χ)/2 < 1,

(29) β′ >
1

2
+
ξ′

2
> ξ′.

Since β is a convex combination of 1 and β′ and χ > 0,

(30) β′ < β < 1.
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Since 0 < χ < 1 and 0 < β < 1,

(31) 0 < ε < 1− β.

Since β′ is the average of 1 and 2ξ′/(1 + χ) ∈ (0, 1), therefore β′ is strictly

bigger than 2ξ′/(1 + χ) and hence

2ξ′ − β′ < 2ξ′ − 2ξ′

1 + χ
(32)

=
2ξ′

1 + χ
χ < β′χ.

By (30), this implies that

(33) 2ξ′ − β < 2ξ′ − β′ < β′χ < βχ.

Next, by (28),

(34) 1− β + β′χ =
χ

2
(1 + β′) < χ.

And finally by (28),

(35) βχ+ 1− β − ε = βχ+ (1− β)
χ

2
< χ.

Let q be a large positive integer, to be chosen later. Throughout this proof, we

will assume without mention that q is ‘large enough’ wherever required. Also,

C will denote any constant that does not depend on our choice of q but may

depend on all other parameters.

Let r be an integer between 1
2q

(1−β−ε)/ε and 2q(1−β−ε)/ε, recalling that

by (31), 1− β − ε > 0. Let k = rq. Let a be a real number between qβ/ε and

2qβ/ε. Let n = ak. Note that n = arq, which gives 1
2q

1/ε ≤ n ≤ 4q1/ε. From

this it is easy to see that there are positive constants C1 and C2, depending

only on β and ε, such that

C1n
ε ≤ q ≤ C2n

ε,(36)

C1n
1−β ≤ k ≤ C2n

1−β,(37)

C1n
β ≤ a ≤ C2n

β,(38)

C1n
1−β−ε < r < C2n

1−β−ε.(39)

Let b := nβ
′
. Note that by (30), b is negligible compared to a if q is large.

Note also that, although r, k and q are integers, a, n and b need not be.

Let x0 and H0 be as in Proposition 5.1. For 0 ≤ i ≤ k, define

U ′i := H0 + iax0,

V ′i := H0 + (ia+ a− b)x0.

Let Ui be the set of points in Zd that are within distance
√
d from U ′i . Let Vi

be the set of points in Zd that are within distance
√
d from V ′i .
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For 0 ≤ i ≤ k, let yi be the closest point in Zd to iax0, and let zi be the

closest point in Zd to (ia+a−b)x0, applying some arbitrary rule to break ties.

Note that if x ∈ Rd, and y ∈ Zd is closest to x, then |x− y| ≤
√
d. Therefore

yi ∈ Ui and zi ∈ Vi. Figure 5 gives a pictorial representation of the above

definitions, assuming for simplicity that Ui = U ′i and Vi = V ′i .

a

b

yi zi yi+1

Ui Vi Ui+1

Figure 5. Diagrammatic representation of yi, zi, Ui and Vi.

Let Uoi be the subset of Ui that is within distance nξ
′

from yi. Similarly

let V o
i be the subset of Vi that is within distance nξ

′
from zi.

For any A,B ⊆ Zd, let T (A,B) denote the minimum passage time from A

to B. Let G(A,B) denote the (unique) geodesic from A to B, so that T (A,B)

is the sum of edge-weights of G(A,B).

Fix any two integers 0 ≤ l < m ≤ k such that m − l > 3. Consider the

geodesic G := G(yl, ym). Since x0 6∈ H0, it is easy to see that G must ‘hit’ each

Ui and Vi, l ≤ i ≤ m− 1. Arranging the vertices of G in a sequence starting at

yl and ending at ym, for each l ≤ i < m, let u′i be the first vertex in Ui visited

by G and let v′i be the first vertex in Vi visited by G. Let u′m := ym. Note

that G visits these vertices in the order u′l, v
′
l, u
′
l+1, v

′
l+1, . . . , v

′
m−1, u

′
m. Figure 6

gives a pictorial representation of the points u′i and v′i on the geodesic G. Let

T ′i be the sum of edge-weights of the portion of G from u′i to v′i. Let E be the

event that u′i ∈ Uoi and v′i ∈ V o
i for each i. If E happens, then clearly

T ′i ≥ T (Uoi , V
o
i ).

G

u′
0

v′0

u′
1

nβ nβ′

Figure 6. Location of u′0, v
′
0, u
′
1, v
′
1, . . . on the geodesic G.
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u0

v0

u1 v1 u2

v2
u3G0

G′
0

G1

G′
1

G2

G′
2

nβ nβ′

Figure 7. The paths G0, G
′
0, G1, G

′
1, . . . .

Similarly, note that weight of the part of G from v′i to u′i+1 must exceed or

equal T (v′i, u
′
i+1). Therefore, if E happens, then

T (yl, ym) ≥
m−1∑
i=l

T ′i +
m−1∑
i=l

T (v′i, u
′
i+1)(40)

≥
m−1∑
i=l

T (Uoi , V
o
i ) +

m−1∑
i=l

T (v′i, u
′
i+1).

Next, for each 0 ≤ i < k, let Gi := G(Uoi , V
o
i ). Let ui and vi be the end-

points of Gi. Let G′i := G(vi, ui+1). Figure 7 gives a picture illustrating the

paths Gi and G′i. The concatenation of the paths G(yl, vl), G
′
l, Gl+1, G

′
l+1,

Gl+2, . . . , G
′
m−2, Gm−1, G(vm−1, ym) is a path from yl to ym (need not be

self-avoiding). Therefore,

T (yl, ym) ≤ T (yl, vl) +
m−1∑
i=l+1

T (Uoi , V
o
i ) +

m−2∑
i=l

T (vi, ui+1)(41)

+ T (vm−1, ym).

Define

∆l,m := T (yl, ym)−
m−1∑
i=l

(T (Uoi , V
o
i ) + T (V o

i , U
o
i+1)).

Combining (40) and (41) implies that if E happens, then

|∆l,m| ≤
m−1∑
i=l

|T (V o
i , U

o
i+1)− T (v′i, u

′
i+1)|+

m−2∑
i=l

|T (V o
i , U

o
i+1)− T (vi, ui+1)|

+ |T (Uol , V
o
l )− T (yl, vl)|+ |T (V o

m−1, U
o
m)− T (vm−1, ym)|.

Thus, if

Mi := max
v,v′∈V oi , u,u′∈U

o
i+1

|T (v, u)− T (v′, u′)|,

Ni := max
u,u′∈Uoi , v,v′∈V

o
i

|T (u, v)− T (u′, v′)|
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and the event E happens, then

(42) |∆l,m| ≤ 2
m−1∑
i=l

Mi +Nl.

For a random variable X, let ‖X‖p := (E|X|p)1/p denote its Lp norm. It is

easy to see that ‖∆l,m‖4 ≤ nC , where we recall that C stands for any constant

that does not depend on our choice of the integer q but may depend on χ,

ξ, ξ′ and the distribution of edge weights. Take any ξ1 ∈ (ξ, ξ′). By (A2) of

Theorem 1.1, P(Ec) ≤ e−Cnξ
′−ξ1 . Together with (42), this shows that for some

constants C3 and C4,

‖∆l,m‖2 ≤ ‖∆l,m1Ec‖2 + ‖∆l,m1E‖2(43)

≤ ‖∆l,m‖4(P(Ec))1/4 + ‖∆l,m1E‖2

≤ nC3e−C4nξ
′−ξ1

+ 2
m−1∑
i=l

‖Mi‖2 + ‖Nl‖2.

Fix 0 ≤ i ≤ k − 1 and v ∈ V o
i , u ∈ Uoi+1. Let x be the nearest point to v in V ′i

and y be the nearest point to u in U ′i+1. Then by definition of V ′i and U ′i+1,

there are vectors z, z′ ∈ H0 such that |z| and |z′| are bounded by Cnξ
′
, and

x = (ia+ a− b)x0 + z and y = (ia+ a)x0 + z′. Thus by Proposition 5.1,

|g(y − x)− g(bx0)| = |g(bx0 + z′ − z)− g(bx0)|
= b|g(x0 + (z′ − z)/b)− g(x0)|

≤ C|z′ − z|2

b
≤ Cn2ξ′−β′ .

Thus, for any v, v′ ∈ V o
i and u, u′ ∈ Uoi+1,

|g(u− v)− g(u′ − v′)| ≤ Cn2ξ′−β′ .

Note also that |y − x| ≤ C(nβ
′

+ nξ
′
) ≤ Cnβ

′
by (29). This, together with

Theorem 4.1, shows that for any v, v′ ∈ V o
i and u, u′ ∈ Uoi+1,

|ET (v, u)− ET (v′, u′)| ≤ Cn2ξ′−β′ + Cnβ
′χ2 log n.

By (32), this implies

(44) |ET (v, u)− ET (v′, u′)| ≤ Cnβ′χ2 log n.

Let

M := max
v∈V oi , u∈U

o
i+1

|T (v, u)− ET (v, u)|
|u− v|χ2

.
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By (A1) of Theorem 1.1,

E(eαM ) ≤
∑

v∈V oi , u∈U
o
i+1

E exp

Ç
α
|T (v, u)− ET (v, u)|

|u− v|χ2

å
≤ C|V o

i ||Uoi+1| ≤ CnC .

This implies that P(M > t) ≤ CnCe−αt, which in turn gives ‖M‖2 ≤ C log n.

Let

M ′ := max
v∈V oi , u∈U

o
i+1

|T (v, u)− ET (v, u)|.

Since by (29), |u−v| ≤ C(nβ
′
+nξ

′
) ≤ Cnβ′ for all v ∈ V o

i , u ∈ Uoi+1, therefore

M ′ ≤ Cnβ′χ2M . Thus,

‖M ′‖2 ≤ Cnβ
′χ2 log n.

From this and (44) it follows that

‖Mi‖2 ≤ Cnβ
′χ2 log n.

By an exactly similar sequence of steps, replacing β′ by β everywhere and using

(33) instead of (32), one can deduce that

‖Ni‖2 ≤ Cnβχ2 log n.

Combining with (43) this gives

(45) ‖∆l,m‖2 ≤ Cnβχ2 log n+ C(m− l)nβ′χ2 log n,

since the exponential term in (43) is negligible compared to the rest.

Now, from the definition of ∆l,m, the fact that k = rq and the triangle

inequality, it is easy to see that∣∣∣∣∣T (y0, yk)−
r−1∑
j=0

T (yjq, y(j+1)q)

∣∣∣∣∣ ≤ |∆0,k|+
r−1∑
j=0

|∆jq,(j+1)q|.

Thus by (45), (39) and (37),∥∥∥∥∥T (y0, yk)−
r−1∑
j=0

T (yjq, y(j+1)q)

∥∥∥∥∥
2

≤ ‖∆0,k‖2 +
r−1∑
j=0

‖∆jq,(j+1)q‖2(46)

≤ C(r + 1)nβχ2 log n+ Cknβ
′χ2 log n

≤ Cn1−β−ε+βχ2 log n+ Cn1−β+β
′χ2 log n.

For any two random variables X and Y ,∣∣∣»Var(X)−
»

Var(Y )
∣∣∣ = |‖X − EX‖2 − ‖Y − EY ‖2|(47)

≤ ‖(X − EX)− (Y − EY )‖2
≤ ‖X − Y ‖2 + |EX − EY | ≤ 2‖X − Y ‖2.
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Therefore it follows from (46) that∣∣∣∣∣(VarT (y0, yk))
1/2 −

Ç
Var

r−1∑
j=0

T (yjq, y(j+1)q)

å1/2
∣∣∣∣∣(48)

≤ Cn1−β−ε+βχ2 log n+ Cn1−β+β
′χ2 log n.

For any x, y ∈ Zd, T (x, y) is an increasing function of the edge weights. So

by the Harris-FKG inequality [12], Cov(T (x, y), T (x′, y′)) ≥ 0 for any x, y, x′,

y′ ∈ Zd. Therefore by (A3) of Theorem 1.1 and (38), (39) and (36),

Var
r−1∑
j=0

T (yjq, y(j+1)q) ≥
r−1∑
j=0

VarT (yjq, y(j+1)q)(49)

≥ C
r−1∑
j=0

|yjq − y(j+1)q|2χ1

≥ Cr(aq)2χ1 ≥ Cn(1−β−ε)+(β+ε)2χ1 .

By the inequalities (34) and (35), we see that if χ1 and χ2 are chosen sufficiently

close to χ, then χ1 is strictly bigger than both 1−β−ε+βχ2 and 1−β+β′χ2.

Therefore by (48) and (49), and since 1− β − ε+ (β + ε)2χ1 > 2χ1,

VarT (y0, yk) ≥ Cn(1−β−ε)+(β+ε)2χ1 .

By (31) and the assumption that χ < 1/2, we again have that if χ1 is chosen

sufficiently close to χ,

(1− β − ε) + (β + ε)2χ1 > 2χ.

Since |y0 − yk| ≤ Cak ≤ Cn by (38) and (37), therefore taking q → ∞ (and

hence n → ∞) gives a contradiction to (A1) of Theorem 1.1, thereby proving

that χ ≤ 2ξ − 1 when 0 < χ < 1/2.

8. Proof of χ ≤ 2ξ − 1 when χ = 1/2

Suppose that χ = 1/2 and χ > 2ξ − 1. Define χ1, χ2, x0, H0, ξ
′, β, β′,

ε, q, a, r, k, n, yi and zi exactly as in Section 7, considering a, r, k and n as

functions of q. Then all steps go through, except the very last, where we used

χ < 1/2 to get a contradiction. Therefore all we need to do is modify this

last step to get a contradiction in a different way. This is where we need the

sublinear variance inequality (1). As before, throughout the proof C denotes

any constant that does not depend on q.

For each real number m ≥ 1, let wm be the nearest lattice point to mx0.

Note that yi = wia. Let

f(m) := VarT (0, wm).
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Note that there is a constant C0 such that f(m) ≤ C0m for all m. Again by

(A3), there is a C1 > 0 such that for all m,

(50) f(m) ≥ C1m
2χ1 .

Now, |(w(j+1)aq −wjaq)−waq| ≤ C. Again, as a consequence of (47), we have

that for any two random variables X and Y ,∣∣∣Var(X)−Var(Y )
∣∣∣ =

∣∣∣»Var(X)−
»

Var(Y )
∣∣∣Ä»Var(X) +

»
Var(Y )

ä
(51)

≤ 2‖X − Y ‖2
Ä
2
»

Var(X) + 2‖X − Y ‖2).

By (51) and the subadditivity of first-passage times,

Var(T (wjaq, w(j+1)aq)) ≥ f(aq)− C
»
f(aq)− C

≥ f(n/r)− C
»
n/r.

Therefore by the Harris-FKG inequality,

(52) Var

Çr−1∑
j=0

T (wjaq, w(j+1)aq)

å
≥ rf(n/r)− C

√
nr.

Now, by (34) and (35), if χ2 is sufficiently close to χ, then both 1−β−ε+βχ2

and 1−β+β′χ2 are strictly smaller than 1/2. Therefore by (46), (51) and the

fact that f(n) ≤ Cn,∣∣∣∣∣f(n)−Var

Çr−1∑
j=0

T (wjaq, w(j+1)aq)

å∣∣∣∣∣
≤ C
√
n(n1−β−ε+βχ2 log n+ n1−β+β

′χ2 log n).

Combining this with (52) gives

f(n) ≥ rf(n/r)− C
√
nr − C

√
n(n1−β−ε+βχ2 log n+ n1−β+β

′χ2 log n).

Again by (39) and (50),

rf(n/r) ≥ Cn(1−β−ε)+(β+ε)2χ1 .

Combining (39) with the last two displays, it follows that we can choose χ1

and χ2 so close to 1/2 that as q →∞,

lim inf
f(n)

rf(n/r)
≥ 1.

In particular, for any δ > 0, there exists an integer q(δ) such that if q ≥ q(δ),

then

(53) f(n) ≥ (1− δ)rf(n/r).
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Fix δ = (1−β− ε)/2 and choose q(δ) satisfying the above criterion. Note that

q(δ) can be chosen as large as we like. Let m0 := aq = n/r and m1 = n. The

above inequality implies that

f(m1)

m1
≥ (1− δ)f(m0)

m0
.

Note that by (36), if q(δ) is chosen sufficiently large to begin with, then

m
ε/(β+ε)
1 > Cq1/(β+ε) > q(δ).

We now inductively define an increasing sequence m2,m3, . . . as follows. Sup-

pose that mi−1 has been defined such that

(54) m
ε/(β+ε)
i−1 > q(δ).

Let

qi := [m
ε/(β+ε)
i−1 ] + 1,

where [x] denotes the integer part of a real number x. By (54), qi ≥ q(δ). Let

ai := mi−1/qi. Then if q(δ) is chosen large enough,

ai ≥
2

3
m
β/(β+ε)
i−1 ≥ 1

2
q
β/ε
i

and

ai ≤ mβ/(β+ε)
i−1 ≤ qβ/εi .

Let ri be an integer between q
(1−β−ε)/ε
i and 2q

(1−β−ε)/ε
i . Let ki = riqi and

ni = aiki = airiqi = rimi−1. If we carry out the argument of Section 7 with

qi, ri, ki, ai, ni in place of q, r, k, a, n, then, since qi ≥ q(δ), as before we arrive

at the inequality

f(ni) ≥ (1− δ)rif(ni/ri) = (1− δ)rif(mi−1).

Define mi := ni. Then the above inequality shows that

(55)
f(mi)

mi
≥ (1− δ)f(mi−1)

mi−1
.

Note that since ri is a positive integer and mi = rimi−1, therefore mi ≥ mi−1.

In particular, (54) is satisfied with mi in place of mi−1. This allows us to carry

on the inductive construction such that (55) is satisfied for each i.

Now, the above construction shows that if the initial q was chosen large

enough, then for each i,

mi = rimi−1 ≥ q(1−β−ε)/εi mi−1 ≥ m1/(β+ε)
i−1 .

Therefore, for all i ≥ 2,

mi ≥ m(β+ε)−(i−1)

1 .
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So, by (1), there exists a constant C3 such that

f(mi)

mi
≤ C

logmi
≤ C3(β + ε)i−1.

However, (55) shows that there is C4 > 0 such that

f(mi)

mi
≥ C4(1− δ)i−1.

Since 1− δ > β + ε, we get a contradiction for sufficiently large i.

9. Proof of χ ≤ 2ξ − 1 when χ = 0

As usual, we prove by contradiction. Assume that χ = 0 and 2ξ − 1 < χ.

Then ξ < 1/2. Choose ξ1, ξ
′ and ξ′′ such that ξ < ξ1 < ξ′′ < ξ′ < 1/2.

From this point on, however, the proof is quite different from the case χ > 0.

Recall that t(P ) is the sum of edge-weights of a path P in the environment

t = (te)e∈E(Zd). This notation is used several times in this section. First, we

need a simple lemma about the norm g.

Lemma 9.1. Assume that the edge-weight distribution is continuous, and

let L denote the infimum of its support. Then there exists M > L such that

for all x ∈ Rd\{0}, g(x) ≥M |x|1, where |x|1 is the `1 norm of x.

Proof. Since g is a norm on Rd,

M := inf
x 6=0

g(x)

|x|1
> 0,

and the infimum is attained. Choose x 6= 0 such that g(x) = M |x|1. Define a

new set of edge-weights se as se := te − L. Then se are nonnegative and inde-

pendent and identically distributed. Let the function gs be defined for these

new edge-weights the same way g was defined for the old weights. Similarly,

define hs and T s. Since any path P from a point y to a point z must have at

least |z − y|1 many edges, therefore s(P ) ≤ t(P )− L|z − y|1. Thus,

T s(y, z) ≤ T (y, z)− L|z − y|1.

In particular, hs(y) ≤ h(y)−L|y|1 for any y. Considering a sequence yn in Zd
such that yn/n→ x, we see that

gs(x) = lim
n→∞

hs(yn)

n
≤ lim

n→∞
h(yn)− L|yn|1

n
= g(x)− L|x|1 = (M − L)|x|1.

Since te has a continuous distribution, se has no mass at 0. Therefore, by a

well-known result (see [17]), gs(x) > 0. This shows that M > L. �
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Choose β, ε′ and ε so small that 0 < ε′ < ε < β < (ξ′′ − ξ1)/d. Choose

x0 and H0 as in Proposition 5.1. Let n be a positive integer, to be chosen

arbitrarily large at the end of the proof. Again, as usual, C denotes any

positive constant that does not depend on our choice of n.

Choose a point z ∈ H0 such that |z| ∈ [nξ
′
, 2nξ

′
]. Let v := nx0/2 + z.

Then by Proposition 5.1 and the fact that ξ′ < 1/2,

|g(v)− g(nx0/2)| = (n/2)|g(x0 + 2z/n)− g(x0)|(56)

≤ C|z|2/n ≤ Cn2ξ′−1 ≤ C.

Similarly,

(57) |g(nx0 − v)− g(nx0/2)| ≤ Cn2ξ′−1 ≤ C.

Let w be the closest lattice point to v, and let y be the closest lattice point

to nx0. Then |w − v| and |y − nx0| are bounded by
√
d. Therefore, inequali-

ties (56) and (57) imply that

(58) |g(y)− (g(w) + g(y − w))| ≤ C.

Figure 8 has an illustration of the relative locations of y and w, together with

some other objects that will be defined below.

By Theorem 4.1 and the assumption that χ = 0, |h(y)−g(y)|, |h(w)−g(w)|
and |h(y−w)−g(y−w)| are all bounded by Cnε. Again by (A1) of Theorem 1.1

and the assumption that χ = 0, the probabilities P(|T (0, w) − h(w)| > nε),

P(|T (w, y) − h(y − w)| > nε) and P(|T (0, y) − h(y)| > nε) are all bounded

by e−Cn
ε−ε′

. These observations, together with (58), imply that there are

constants C1 and C2, independent of our choice of n, such that

(59) P(|T (0, y)− (T (0, w) + T (w, y))| > C1n
ε) ≤ e−C2nε−ε

′
.

Let To(0, y) be the minimum passage time from 0 to y among all paths that do

not deviate by more than nξ
′′

from the straight line segment joining 0 and y.

By assumption (A2) of Theorem 1.1,

P(To(0, y) = T (0, y)) ≥ 1− e−Cnξ
′′−ξ1

.

Combining this with (59), we see that if E1 is the event

(60) E1 := {|To(0, y)− (T (0, w) + T (w, y))| ≤ C1n
ε},

where C1 is the constant from (59), then there is a constant C3 such that

(61) P(E1) ≥ 1− e−C3nξ
′′−ξ1 − e−C3nε−ε

′
.

Let V be the set of all lattice points within `1 distance nβ from w. Let ∂V

denote the boundary of V in Zd; that is, all points in V that have at least one

neighbor outside of V . Let w1 be the first point in G(0, w) that belongs to

∂V , when the points are arranged in a sequence from 0 to w. Let w2 be the
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last point in G(w, y) that belongs to ∂V , when the points are arranged in a

sequence from w to y. Let G1 denote the portion of G(0, w) connecting w1 and

w, and let G2 denote the portion of G(w, y) connecting w and w2. Let G0 be

the portion of G(0, w) from 0 to w1 and let G3 be the portion of G(w, y) from

w2 to y. Note that G0 and G3 lie entirely outside of V . Figure 8 provides a

schematic diagram to illustrate the above definitions.

0 y

w

w1

w2

G0

G1

G2

G3

V

G(0, y)

Figure 8. Schematic diagram for V,w,w1, w2 and G0, G1, G2, G3.

Let L and M be as in Lemma 9.1. Choose L′,M ′ such that L < L′ <

M ′ < M . Take any u ∈ ∂V . By Lemma 9.1, g(u−w) ≥M |u−w|1. Therefore

by Theorem 4.1,

h(u− w) ≥M |u− w|1 − C|u− w|ε ≥M |u− w|1 − Cnβε.

Now, |u− w|1 ≥ Cnβ. Therefore by assumption (A1) of Theorem 1.1 and the

above inequality,

P(T (u,w) < M ′|u− w|1)

≤ P(|T (u,w)− h(u− w)| > (M −M ′)|u− w|1 − Cnβε)

≤ P(|T (u,w)− h(u− w)| > Cnβ) ≤ e−nβ−ε
′
/C .

Since there are at most nC points in ∂V , the above bound shows that

P(T (u,w) < M ′|u− w|1 for some u ∈ ∂V ) ≤ nCe−nβ−ε
′
/C .

In particular, if E2 and E3 are the events

E2 := {t(G1) ≥M ′|w − w1|1},
E3 := {t(G2) ≥M ′|w − w2|1},

then there is a constant C4 such that

P(E2 ∩ E3) ≥ 1− nC4e−n
β−ε′/C4 .(62)
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Let E(V ) denote the set of edges between members of V . Let (t′e)e∈E(V )

be a collection of independent and identically distributed random variables,

independent of the original edge-weights, but having the same distribution.

For e 6∈ E(V ), let t′e := te. Let E4 be the event

E4 := {t′e ≤ L′ for each e ∈ E(V )}.

If E4 happens, then there is a path P1 from w1 to w and a path P2 from w

to w2 such that t′(P1) ≤ L′|w − w1|1 and t′(P2) ≤ L′|w − w2|1. Let P be

the concatenation of the paths G0, P1, P2 and G3. Since t′(G0) = t(G0) and

t′(G3) = t(G3), therefore under E4,

t′(P ) ≤ t(G0) + t(G3) + L′|w − w1|1 + L′|w − w2|1.

On the other hand, under E2 ∩ E3,

T (0, w) + T (w, y) = t(G0) + t(G1) + t(G2) + t(G3)

≥ t(G0) + t(G3) +M ′|w − w1|1 +M ′|w − w2|1.

Consequently, if E1, E2, E3, E4 all happen simultaneously, then there is a (de-

terministic) positive constant C5 such that

To(0, y) ≥ t′(P ) + C5n
β − C1n

ε,

where C1 is the constant in the definition (60) of E1. Since β < ξ′′ < ξ′ and

x0 6∈ H0, the edges within distance nξ
′′

of the line segment joining 0 and y have

the same weights in the environment t′ as in t. Since β > ε, this observation

and the above display proves that E1 ∩ E2 ∩ E3 ∩ E4 implies D′(0, y) ≥ nξ
′′
,

where D′(0, y) is the value of D(0, y) in the new environment t′. (To put it

differently, if E1 ∩E2 ∩E3 ∩E4 happens, then there is a path P that has less

t′-weight than the least t′-weight path within distance nξ
′′

of the straight line

connecting 0 to y, and therefore D′(0, y) must be greater than or equal to nξ
′′
.)

Now note that the event E4 is independent of E1, E2 and E3. Moreover,

since L′ > L, there is a constant C6 such that P(E4) ≥ e−C6nβd . Combining

this with (61), (62) and the last observation from the previous paragraph, we

get

P(D′(0, y) ≥ nξ′′) ≥ P(E1 ∩ E2 ∩ E3 ∩ E4)

= P(E1 ∩ E2 ∩ E3)P(E4)

≥ (1− e−C3nξ
′′−ξ1 − e−C3nε−ε

′
− nC4e−n

β−ε′/C4)e−C6nβd

≥ e−C7nβd .

Now D′(0, y) has the same distribution as D(0, y). But by (A2) of Theorem 1.1,

P(D(0, y) ≥ nξ′′) ≤ e−C8nξ
′′−ξ1 , and βd < ξ′′ − ξ1 by our choice of β. Together

with the above display, this gives a contradiction, thereby proving that χ ≤
2ξ − 1 when χ = 0.
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de Saint-Flour, XIV—1984, Lecture Notes in Math. 1180, Springer-Verlag, New

York, 1986, pp. 125–264. MR 0876084. Zbl 0602.60098. http://dx.doi.org/10.

1007/BFb0074919.

[18] H. Kesten, On the speed of convergence in first-passage percolation, Ann. Appl.

Probab. 3 (1993), 296–338. MR 1221154. Zbl 0783.60103. http://dx.doi.org/10.

1214/aoap/1177005426.

[19] J. Krug, Scaling relation for a growing surface, Phys. Rev. A 36 (1987), 5465–

5466. http://dx.doi.org/10.1103/PhysRevA.36.5465.

[20] J. Krug and P. Meakin, Microstructure and surface scaling in ballistic deposi-

tion at oblique incidence, Phys. Rev. A 40 (1989), 2064–2077. http://dx.doi.org/

10.1103/PhysRevA.40.2064.

[21] J. Krug and H. Spohn, Kinetic roughening of growing surfaces, in Solids Far

from Equilibrium : Growth, Morphology and Defects (C. Godréche, ed.), Cam-
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[31] M. V. Wüthrich, Scaling identity for crossing Brownian motion in a Poissonian

potential, Probab. Theory Related Fields 112 (1998), 299–319. MR 1660910. http:

//dx.doi.org/10.1007/s004400050192.

(Received: June 10, 2011)

(Revised: August 6, 2012)

Courant Institute of Mathematical Sciences, New York University, New

York, NY

E-mail : sourav@cims.nyu.edu

http://www.ams.org/mathscinet-getitem?mr=1283187
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0830.60096
http://www.ams.org/mathscinet-getitem?mr=1361756
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0864.60013
http://www.numdam.org/item?id=PMIHES_1995__81__73_0
http://www.numdam.org/item?id=PMIHES_1995__81__73_0
http://www.ams.org/mathscinet-getitem?mr=1069633
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0718.60129
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0718.60129
http://dx.doi.org/10.1007/BF01314921
http://www.ams.org/mathscinet-getitem?mr=1660910
http://dx.doi.org/10.1007/s004400050192
http://dx.doi.org/10.1007/s004400050192
mailto:sourav@cims.nyu.edu

	1. Introduction
	2. Proof sketch
	3. A priori bounds
	4. Alexander's subadditive approximation theory
	5. Curvature bounds
	6. Proof of a 2b -1 
	7. Proof of 2-1 when 0 < < 1/2
	8. Proof of 2-1 when = 1/2
	9. Proof of 2- 1 when = 0
	References

