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Isoparametric hypersurfaces
with (g,m) = (6, 2)

By Reiko Miyaoka

Abstract

We prove that isoparametric hypersurfaces with (g,m) = (6, 2) are

homogeneous, which answers Dorfmeister-Neher’s conjecture affirmatively

and solves Yau’s problem in the case g = 6.

1. Introduction

A one-parameter family of isoparametric hypersurfaces is a particularly

beautiful object that fills space by means of the evolution of wave fronts for a

certain kind of wave equation, the solutions of which are called isoparametric

functions.

These hypersurfaces were studied systematically by E. Cartan [Car38],

[Car39a], [Car39b], [Car40] and classified completely in the euclidean and the

hyperbolic spaces as homogeneous hypersurfaces with one or two principal

curvatures. On the other hand, in the sphere, Cartan showed the existence

of more examples. Münzner [Mün80], [Mün81] proved then, by a topological

argument, that the number of principal curvatures g is limited to g = 1, 2, 3, 4

and 6. While Cartan had already shown that they are all homogeneous if

g ≤ 3, a surprising discovery was made by Ozeki-Takeuchi [OT76], in which

they found infinitely many nonhomogeneous isoparametric hypersurfaces with

g = 4, by using the Clifford algebra. Since many more examples were con-

structed by Ferus-Karcher-Münzner [FKM81], the case g = 4 seems to be

very special. Nevertheless, Cecil-Chi-Jensen [CCJ07] obtained a remarkable

result to the effect that isoparametric hypersurfaces with g = 4 are exhausted

by these examples and homogeneous ones, except for four cases with lower

multiplicities. Later on, Immervoll [Imm08] gave a new proof of the result in

[CCJ07], based on Dorfmeister-Neher’s work [DN83]. Recently, Q. S. Chi made

further progress for g = 4, and at this stage, only the case (m1,m2) = (7, 8) is

remaining [Chi09], [Chi11b], [Chi11a], [Chi12], [Chi11c].
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We should mention that the isoparametric submanifolds in Rn+1 ([Ter85])

with codimension greater than 2 are homogeneous [Tho91], [Olm93]. Isopara-

metric hypersurfaces in Sn are the case of codimension 2 in Rn+1, and the

classification problem turns out to be most difficult.

As for the case g = 6, Abresch [Abr83] shows that the multiplicity of each

principal curvature is the same number m, which takes only the values 1 or 2.

In the former case, Dorfmeister-Neher [DN85] proved the homogeneity of such

hypersurfaces and conjectured that it is true for the case m = 2. Because

their proof depends on a very intricate algebraic calculation, it seems hard to

extend it to the case (g,m) = (6, 2). This was the motivation when the author

studied the case (g,m) = (6, 1) in [Miy93] and characterized the homogeneity

by the invariant kernel of the shape operators of its focal submanifolds (which

is called “Condition A” in the case g = 4 by Ozeki-Takeuchi and Chi). In this

context, we give a new proof for Dorfmeister-Neher’s theorem in [Miy09]. In

this paper, in the same principle, we solve the conjecture affirmatively, which

settles Yau’s 34-th problem [Yau92] for g = 6.

Theorem 1.1. Isoparametric hypersurfaces in the sphere with (g,m) =

(6, 2) are homogeneous.

The homogeneous hypersurfaces with (g,m) = (6, 2) are given by the

adjoint orbits of G2 in its Lie algebra g [Miy11]. These orbits sweep out the

unit sphere S13 ⊂ g ∼= R14 as a family of isoparametric hypersurfaces Mt,

−1 < t < 1, and two focal submanifolds M± = M±1. The former are principal,

and the latter are singular orbits, respectively. In [Miy11], we describe the

structure of the G2 orbits in detail, which turns out to be closely related to

Bryant’s twistor fibration of symmetric spaces S6 and G2/SO(4).

The strategy of the proof and the organization of this papar are as follows.

For the principal curvatures λ1 > · · · > λ6, we denote the curvature distribu-

tions of M by D1(p), . . . , D6(p). Let M− and M+ be the focal submanifolds

obtained by making D1(p) and D6(p) collapse, respectively. The shape opera-

tors of M± are known to be isospectral. In our case, the eigenvalues are given

by ±
√

3,±1/
√

3 and 0, each of which has multiplicity two (Section 2). As in

the case (g,m) = (6, 1) [Miy93], the homogeneity follows if we show that the

kernel of these operators is independent of normal directions (Section 15).

When (g,m) = (6, 2), the normal space T⊥M+ is of dimension three, and

unit normal vectors are parametrized by 2-sphere S2 in T⊥M+. In order to

carry out the calculation, we take a geodesic c = N(t) of S2 and consider the

one-parameter family of shape operators L(t) = BN(t). Then L(t) is expressed

as L(t) = cos tBη + sin tBζ , where η and ζ are mutually orthogonal unit nor-

mals. On the other hand, M is an S2 bundle over M+ with fiber consisting

of the leaf L6 corresponding to the curvature distribution D6. Naturally, L6
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is identified with the space of the unit normals to M+ at a point. Under this

identification, the kernel of L(t) turns out to coincide with D3(t) = D3(p(t)),

where p(t) ∈ c is the point corresponding to cos tη + sin tζ. Now, consider

the space E(c) spanned by the kernel of L(t) for all t. If we suppose that the

kernel changes with t, then d = dimE(c) ≥ 3. On the other hand, we can

show that each L(t) maps E(c) into its orthogonal complement E(c)⊥ in TM+

(Section 5), and this implies d ≤ 6. Then, with respect to the decomposition

TM+ = E(c)⊕ E(c)⊥, we can express (Section 6)

(1) L(t) =

Ç
0 R
tR S

å
,

which plays an important role in the whole argument. Namely, if we express

an eigenvector of L(t) with eigenvalue µ by e =
(
X
Y

)
, we obtainR(t)Y = µX,

tR(t)X + S(t)Y = µY.

Thus for µ 6= 0, a solution Y to

(2) (tR(t)R(t) + µS(t)− µ2)Y = 0

gives an eigenvector e =
Ä

(1/µ)R(t)Y
Y

ä
for µ. In this way, the equation L(t)e =

µe reduces to equation (2), and it makes it possible to carry out the calculation.

Actually, in our calculation in Section 13, 10-by-10 matrices are reduced to 4-

by-4 matrices.

Taking a suitable moving frame of kerL(t) along c, we can show d = 6

if d > 2 (Section 8). The description of E(c) in terms of principal vectors is

given in Sections 9–12, and we find many possibilities of E(c) with continuous

parameters. However, using that E(c) is parallel along c, we can show that the

eigenvalues of T (t) = tR(t)R(t) and S(t) are constant, so that these operators

become again isospectral (Section 12). Then calculating the characteristic

polynomials of T (t) and S(t), which are 4-by-4 matrices, we show that some

eigenvalues of S(t) should vanish (Section 13). This makes it possible to restrict

E(c) to only two types (Theorem 13.11).

In these arguments, there are two main difficulties. One is caused by the

nonlinear motion of a kernel vector e3(t), and another by m = 2. In fact, on the

supposition that kerL(t) depends on t, it turns out that we must investigate the

derivatives of e3(t) up to at least second order, and e3(t) behaves nonlinearly.

Moreover, when m = 2, if, for instance, M is Kähler (as in the homogeneous

case), the principal vectors ei(t), eī(t) ∈ Di(t) move in a unified way. However,

in our case, we have no way to choose a frame of curvature spaces in a canonical

way. These considerations make it much more difficult to determine the space

E(c) than in the case m = 1 [Miy09].
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Using these difficulties as an advantage, we find a natural choice of a basis

e3(t), e3̄(t) of D3(t) by “rotating” them in D3(t), so that they become an “even”

or “odd” vector, by which we mean e3(t + π) = e3(t), or e3(t + π) = −e3(t),

respectively. We use an argument such that odd-dimensional parallel space

cannot have a continuous frame consisting of odd vectors for the reason of

orientation (Section 8). Such investigation is essential because the “spin ac-

tion” of the orthogonal group is always a concern. In fact, since the shape

operators are isospectral, L(t) is expressed as L(t) = U(t)L(0)tU(t) for some

U(t) ∈ O(10), and it causes the signature ambiguity. Moreover, the isospectral-

ity is, in some sense, a weak condition for dimension as high as dimO(10) = 45.

Much stronger is the condition that L(t) is expressed in a linear combination

cos tBη + sin tBζ . Using this combination in the computation of the charac-

teristic polynomials (in the reduced size), we can restrict E(c) to two types at

last. Then by using mainly the Gauss equation and taking both the focal sub-

manifolds into account, we show that these cases are impossible (Section 14).

Thus we know that the kernel of the shape operators of the focal submanifolds

does not depend on the choice of normal directions.

Once we show that the shape operators have an invariant kernel, many

components of the matrix expression of the shape operators vanish at the same

time, and we can express them explicitly, which turn out to coincide with those

of the homogeneous case given in [Miy11].

Even if we do not know the homogeneous data, we can show the homogene-

ity by using Singer’s strongly curvature-homogeneous theorem. By definition

([KN69, p. 357]), a Riemannian manifold X is strongly curvature-homogeneous

if, for any two points x, y ∈ X, there is a linear isomorphism of TxX onto TyX

that maps gx (the metric at x) and (∇kR)x (higher covariant derivatives of the

curvature tensor R), k = 0, 1, 2, . . . upon gy and (∇kR)y, k = 0, 1, 2, . . . .

Theorem 1.2 ([Sin60], [Nom62], [KN69, Th. 2, p. 357]). If a connected

Riemannian manifold X is strongly curvature-homogeneous, then it is locally

homogeneous. Moreover, if M is complete and simply connected, it is homo-

geneous.

In our case, the shape operators are expressed in terms of the structure

coefficients Λγαβ of M with respect to a frame ei consisting of principal vectors.

This frame defines an isometry between TpM and TqM . The explicit expression

of the shape operators implies that the structure coefficients Λγαβ are locally

constant. Then the components of (∇kR)x are given by polynomials in Λγαβ
and again are all locally constant. Moreover, since M is complete and simply

connected, applying Theorem 1.2, we know M is intrinsically homogeneous.

Finally by using the rigidity theorem of hypersurfaces with type number larger

than two [KN69, p. 45], we conclude that M is extrinsically homogeneous.
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2. Preliminaries

2.1. Isoparametric hypersurfaces. We refer the readers to [Tho00] for a

nice survey of isoparametric hypersurfaces. In this subsection as well as in

the next subsection, we review fundamental facts and the notation given in

[Miy93].

A hypersurface M in the unit sphere Sn+1 is called isoparametric when all

the principal curvatures are constant. Obviously, homogeneous hypersurfaces

[HL71] are isoparametric hypersurfaces. Throughout the paper, we assume M

to be isoparametric. Let ξ be a unit normal vector field of M . We denote

the Riemannian connection on Sn+1 by ∇̃ and the induced connection on M

by ∇. Let λ1 ≥ · · · ≥ λn be the constant principal curvatures of M , and let

Dλ(p) be the curvature distribution of λ ∈ {λi, i = 1, 2 . . . , n}. We denote the

multiplicity of λ by mλ. Then Dλ is completely integrable and the leaf Lλ of

Dλ is an mλ-dimensional sphere [Rec76]. Choose a local orthonormal frame

e1, . . . , en consisting of unit principal vectors corresponding to λ1, . . . , λn. We

express

(3) ∇̃eαeβ = Λσαβeσ + λαδαβξ,

where 1 ≤ α, β, σ ≤ n, using the Einstein convention. We have

(4) Λγαβ = −Λβαγ ,

and the curvature tensor Rαβγδ of M is given by

Rαβγδ = (1 + λαλβ)(δβγδαδ − δαγδβδ)(5)

= eα(Λδβγ)− eβ(Λδαγ) + ΛσβγΛδασ − ΛσαγΛδβσ − ΛσαβΛδσγ + ΛσβαΛδσγ .

The covariant derivative of the coefficients of the second fundamental tensor

hαβ = λαδαβ is given by

hαβ,γ = eγ(hαβ)− Λσγαhσβ − Λσγβhασ(6)

= eγ(λα)δαβ + Λβγα(λα − λβ).

From the equation of Codazzi,

(7) hαβ,γ = hβγ,α = hγα,β,

we obtain

(8) eβ(λα) = Λβαα(λα − λβ) for α 6= β.
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If λα, λβ, λγ are distinct, we have

(9) Λγαβ(λβ − λγ) = Λβγα(λα − λβ) = Λαβγ(λγ − λα).

Moreover,

(10) Λγab = 0, Λγaa = Λγbb, if λa = λb 6= λγ and a 6= b,

hold, and since λα is constant on M , it follows from (8)

(11) Λγαα = 0 if λγ 6= λα.

Remark 2.1. Formula (9) shows that if λα, λβ, λγ are distinct, Λγαβ is de-

termined by eα, eβ, eγ at a point and is independent of the extension of these

vectors.

Remark 2.2. In (10), note that Λbγa 6= 0 in general, where λa = λb 6= λγ .

In fact, we can “rotate” ea arbitrarily in Da, which makes Λbγa 6= 0. We call a

frame such that Λbγa = 0 for λa = λb 6= λγ admissible (see (32)).

2.2. The focal submanifolds. LetM be an isoparametric hypersurface with

(g,m)=(6, 2), i.e., a hypersurface with six constant principal curvatures, each

of which has multiplicity two. As is well known [Mün80], λi=cot(θ1+ (i−1)π
6 ),

1 ≤ i ≤ 6, 0 < θ1 <
π
6 . Since the homogeneity is independent of the choice of

θ1, and cotangent has the period π, we take

θ1 =
π

12
= −θ6, θ2 =

π

4
= −θ5, θ3 =

5π

12
= −θ4

so that

(12) λ1 = −λ6 = 2 +
√

3, λ2 = −λ5 = 1, λ3 = −λ4 = 2−
√

3.

In particular, we have chosen θi ∈ (−π
2 ,

π
2 ), so that the first focal point in the

direction ±ξ is nearest to p; see (13). Denote Di = Dλi . We choose a local

orthonormal frame field e1, e1̄, . . . , e6, e6̄, where {ei, eī} is an orthonormal frame

of Di. For convenience, we put λī = λi, and i always stands for i or ī. By

(10) and (11), a leaf Li = Li(p) of Di is a totally geodesic 2-sphere in the

corresponding curvature sphere Si since T⊥p Li ∩ TpSi = ⊕j 6=iDj(p). For a = 6

or 1, define the focal map fa : M → S13 by

(13) fa(p) = cos θap+ sin θaξp,

where La(p) shrinks into a point p̄ = fa(p). Then we have

(14) dfa(ej) = sin θa(λa − λj)ej and dfa(ej̄) = sin θa(λa − λj)ej̄ ,

where the right-hand side is considered as a vector in Tp̄S
13 by a parallel

translation in S13. In the following, we always use such identification. The

rank of fa is constant and we obtain the focal submanifold Ma of M :

Ma = {cos θap+ sin θaξp | p ∈M}.
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We denote M+ = M6 and M− = M1. It follows Tp̄Ma = ⊕j 6=aDj(q) from (14)

for any q ∈ fa−1(p̄). An orthonormal basis of the normal space of Ma at p̄ is

given by

ηq = − sin θaq + cos θaξq, ζq = ea(q), ζ̄q = eā(q)

for any q ∈ La(p) = f−1
a (p̄).

We consider the connection ∇̄ on Ma induced from the connection ∇̃ of

S13; that is,

(15) ∇̃ejX = ∇̄ejX̃ + Ō⊥ejX̃, λj 6= λa,

where X is a tangent field on S13 in a neighborhood of p and X̃ is the one near

p̄ obtained by the parallel transport from X. We denote by Ō⊥ejX̃ the normal

component in S13 at p̄. In particular, we have for j 6= a,

∇̃ejek =
1

sin θa(λa − λj)

{∑
Λ
l
jkel + δjk(λjξp − p)

}
and hence

Ōej ẽk =
1

sin θa(λa − λj)
∑
l 6=a

Λ
l
jkel,(16)

Ō⊥ej ẽk =
1

sin θa(λa − λj)

(
Λajkea + Λājkeā

)
+

1 + λjλa
λa − λj

δjkηp,(17)

where we use 〈λjξp − p, ηp〉 = sin θa(1 + λaλj). In the following, we identify ẽi
with ei. Denote by BN the shape operator of Ma with respect to the normal

vector N . Then from (16) and (17), we obtain

Lemma 2.3. When we identify Tp̄Ma with ⊕5
j=1Da+j(p) where the indices

are modulo 6, the shape operators Bηp ,Bζp and Bζ̄p at p̄ with respect to the basis

of Tp̄Ma given by ea+1, ea+1, . . . , ea+5, ea+5 at p are expressed respectively by

symmetric matrices :

Bηp =



√
3I 0 0 0 0

0 1√
3
I 0 0 0

0 0 0 0 0

0 0 0 − 1√
3
I 0

0 0 0 0 −
√

3I

 ,

Bζp =

â
0 Ba+1 a+2 Ba+1 a+3 Ba+1 a+4 Ba+1 a+5

Ba+2 a+1 0 Ba+2 a+3 Ba+2 a+4 Ba+2 a+5

Ba+3 a+1 Ba+3 a+2 0 Ba+3 a+4 Ba+3 a+5

Ba+4 a+1 Ba+4 a+2 Ba+4 a+3 0 Ba+4 a+5

Ba+5 a+1 Ba+5 a+2 Ba+5 a+3 Ba+5 a+4 0

ì
,
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Bζ̄p =

â
0 B̄a+1 a+2 B̄a+1 a+3 B̄a+1 a+4 B̄a+1 a+5

B̄a+2 a+1 0 B̄a+2 a+3 B̄a+2 a+4 B̄a+2 a+5

B̄a+3 a+1 B̄a+3 a+2 0 B̄a+3 a+4 B̄a+3 a+5

B̄a+4 a+1 B̄a+4 a+2 B̄a+4 a+3 0 B̄a+4 a+5

B̄a+5 a+1 B̄a+5 a+2 B̄a+5 a+3 B̄a+5 a+4 0

ì
,

where I (0, resp.) is the 2× 2 unit (zero, resp.) matrix, and

Bij =
1

sin θa(λi − λa)

Ö
Λjia Λj̄ia

Λj
īa

Λj̄
īa

è
= tBji,(18)

B̄ij =
1

sin θa(λi − λa)

Ö
Λjiā Λj̄iā

Λj
īā

Λj̄
īā

è
= tB̄ji.

Proof. First, consider the case a = 6. From (17), it follows Bηp(ej) = µjej ,

where

(19) µj =
1 + λjλ6

λ6 − λj
, µ1 =

√
3 = −µ5, µ2 = 1/

√
3 = −µ4, µ3 = 0.

When a = 1, Tp̄M1 = ⊕5
j=1D1+j(p) holds, and if we denote Bηp(e1+j) = νje1+j ,

we have

(20) νj =
1 + λ1+jλ1

λ1 − λ1+j
, ν1 =

√
3 = −ν5, ν2 = 1/

√
3 = −ν4, ν3 = 0

and obtain the matrix Bηp . Next from

Bij =

(
〈Ō⊥ejei, ea〉 〈Ō

⊥
ej̄
ei, ea〉

〈Ō⊥ejeī, ea〉 〈Ō
⊥
ej̄
eī, ea〉

)
, B̄ij =

(
〈Ō⊥ejei, eā〉 〈Ō

⊥
ej̄
ei, eā〉

〈Ō⊥ejeī, eā〉 〈Ō
⊥
ej̄
eī, eā〉

)
,

we obtain (18) by using (17) because

1

sin θa(λa − λj)
Λaji =

1

sin θa(λj − λa)
Λ
i
ja =

1

sin θa(λi − λa)
Λ
j

ia,

where we use (9). Moreover, Bii = 0 follows from (10). �

By this lemma, Ma is minimal [Nom75]. In fact, trBη = 0 in the expression

(19) is nothing but the Cartan formula [Car38, eq. (21)]. The following is

important.

Lemma 2.4 ([Mün81], [Miy93]). For any unit normal vector N of Ma at

p̄, BN is isospectral, i.e., the eigenvalues of BN are ±
√

3, ± 1√
3
, 0, and each

eigenspace is of dimension 2.



ISOPARAMETRIC HYPERSURFACES WITH (g,m) = (6, 2) 61

Proof. For any q ∈ La(p), Lemma 2.3 implies that Bηq has eigenvalues

±
√

3, ±1/
√

3, 0 with 2-dimensional eigenspaces. It is easy to see that the map

given by S2 ∼= La(p) 3 q 7→ − sin θaq + cos θaξq ∈ S2(1) ⊂ T⊥q̄ Ma = T⊥p̄ Ma

is of full rank and one-to-one, and hence bijective, so any unit normal vector

N ∈ T⊥p̄ M is expressed as N = ηq = − sin θaq+cos θaξq for some q ∈ La(p). �

Remark 2.5. Since Λāja does not vanish in general by Remark 2.3, we

should express the covariant derivative of a normal vector ea of Ma as

(21) ∇̃ejea = ∇̄ejea +
1

sin θa(λa − λj)
Λājaeā,

see (15), and 〈∇̃ejea, η〉 = −〈ea, ∇̃ejη〉 = 0.

3. Isospectral operators and Gauss equation

From now on, we take a = 6 and consider the focal submanifold M+. A

similar argument holds for M− with a suitable change of indices.

By Lemma 2.4, L(t) = cos tBη+sin tBζ is isospectral and so can be written

as

(22) L(t) = U(t)L(0)U−1(t)

for some U(t) ∈ O(10). Moreover, this implies the Lax equation

(23) Lt(t) =
d

dt
L(t) = [H(t), L(t)],

where

H(t) = Ut(t)U(t)−1 ∈ o(10).

In particular, we have L(0) = Bη, and

(24) Lt(t) = − sin tBη + cos tBζ = L(t+ π/2).

Hence for Lt(0) = Bζ = (Bij), where Bij = tBji, putting H(0) = (Hij),

Hji = −tHij , we can express

Bζ = L(π/2) = [H(0), Bη](25)

=



0 − 2√
3
H12 −

√
3H13 − 4√

3
H14 −2

√
3H15

2√
3
H21 0 − 1√

3
H23 − 2√

3
H24 − 4√

3
H25√

3H31
1√
3
H32 0 − 1√

3
H34 −

√
3H35

4√
3
H41

2√
3
H42

1√
3
H43 0 − 2√

3
H45

2
√

3H51
4√
3
H52

√
3H53

2√
3
H54 0

 .

Note that the eigenvectors of L(t) are given by

(26) ei(t) = U(t)ei(0),
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which implies

(27) ∇ d
dt
ej(t) = H(t)ej(t).

In the proof of Lemma 2.4, we identify L6(p) with the unit sphere of the normal

space of M+ at p̄. In particular, we identify the one-parameter family of L(t),

or more precisely, of the normal directions cos tηp + sin tζp, with the geodesic

of L6(p) through p in the direction ζp = e6(p). Then we have

(28) ∇ d
dt

= c0∇e6 , c0 = | sin θ6| =
√

2(
√

3− 1)/4.

Remark 3.1. Because of sin θ6 < 0 by our definition, cos tηp + sin tζp cor-

responds to the geodesic p(t) of L6 parametrized by

(29) p(t)− cos θ6p̄ = cos t(p− cos θ6p̄)− sin t sin θ6ζp.

In fact, from p̄ = cos θ6p+ sin θ6ξp, we obtain

(30) p− cos θ6p̄ = − sin θ6ηp, ṗ(0) = − sin θ6ζp = − sin θ6e6(p),

which is in the positive direction of ηp and ζp = e6(p), and L(t) is compatible

with p(t) ∈ L6 parametrized in this way. Thus ∇ d
dt

is the derivation in the

positive direction of e6(p), and (28) follows. The signature of c0 is important

in the proof of Lemma 5.1.

Now we obtain H(0) =
Ä
Hij(0)

ä
, where

(31) Hij(0) = c0

Ö
Λi6j(0) Λi

6j̄
(0)

Λī6j(0) Λī
6j̄

(0)

è
= −c0

Ö
Λj6i(0) Λj̄6i(0)

Λj
6̄i

(0) Λj̄
6̄i

(0)

è
.

For a suitable frame, we may consider Hii(0) = 0. In fact, if we “rotate” a

moving frame ei(t), eī(t) in Di(t), so that

vi(t) = (cosϕ(t))ei(t) + (sinϕ(t))eī(t),(32)

vī(t) = −(sinϕ(t))ei(t) + (cosϕ(t))eī(t)

along c, we have

〈∇e6vi(t), vī(t)〉 = Λī6i(t) + ϕ̇(t).

Thus if we choose ϕ(t) (locally) so that ϕ̇(t) = −Λī6i(t), we obtain Λī6i = 0

with respect to vi(t), vī(t). We call such a frame admissible.

Remark 3.2. Note that Bii = 0 holds for any frame, but Hii = 0 holds

only for an admissible frame.

Now, denoting the (i, j) block of L(t + π/2) by Bij =
(
bij bij̄
bīj bīj̄

)
, where

bij = bji (note that this is not the component of L(t) but of L(t + π/2)), we
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have at p(t),

Lt(t+ π/2)ij = c0∇e6(bij)

= c0{e6(bij)− bkjΛ
k
6i(t)− bikΛ

k
6j(t)},

and hence putting t = 0 and noting that Lt(π/2) = −Bη, L(π/2) = Bζ , we

obtain

(33) Bη = −c0e6(Bζ)− [H(0), Bζ ].

With respect to an admissible frame, we can rewrite (25) as

H(0) =



0 −
√

3
2 B12 − 1√

3
B13 −

√
3

4 B14 − 1
2
√

3
B15√

3
2 B21 0 −

√
3B23 −

√
3

2 B24 −
√

3
4 B25

1√
3
B31

√
3B32 0 −

√
3B34 − 1√

3
B35√

3
4 B41

√
3

2 B42

√
3B43 0 −

√
3

2 B45
1

2
√

3
B51

√
3

4 B52
1√
3
B53

√
3

2 B54 0


.

Substituting this into (33), for each [i.j], we have

[1.1]
√

3I = 2(
√

3
2 B12B21 + 1√

3
B13B31 +

√
3

4 B14B41 + 1
2
√

3
B15B51)

[2.2] 1√
3
I = 2(−

√
3

2 B21B12 +
√

3B23B32 +
√

3
2 B24B42 +

√
3

4 B25B52)

[3.3] 0 = 2(− 1√
3
B31B13 −

√
3B32B23 +

√
3B34B43 + 1√

3
B35B53)

[4.4] − 1√
3
I = 2(−

√
3

4 B41B14 −
√

3
2 B42B24 −

√
3B43B34 +

√
3

2 B45B54)

[5.5] −
√

3I = −2( 1
2
√

3
B51B15 +

√
3

4 B52B25 + 1√
3
B53B35 +

√
3

2 B54B45)

[1.2] 0 = −c0e6(B12) + 4√
3
B13B32 + 3

√
3

4 B14B42 + 5
4
√

3
B15B52

[1.3] 0 = −c0e6(B13)−
√

3
2 B12B23 + 5

√
3

4 B14B43 +
√

3
2 B15B53

[1.4] 0 = −c0e6(B14)− 2√
3
B13B34 + 2√

3
B15B54

[1.5] 0 = −c0e6(B15) +
√

3
4 B12B25 −

√
3

4 B14B45

[2.3] 0 = −c0e6(B23)− 5
2
√

3
B21B13 + 3

√
3

2 B24B43 + 7
4
√

3
B25B53

[2.4] 0 = −c0e6(B24)− 3
√

3
4 B21B14 + 3

√
3

4 B25B54

[2.5] 0 = −c0e6(B25)− 2√
3
B21B15 + 2√

3
B23B35

[3.4] 0 = −c0e6(B34)− 7
4
√

3
B31B14 − 3

√
3

2 B32B24 + 5
2
√

3
B35B54

[3.5] 0 = −c0e6(B35)−
√

3
2 B31B15 − 5

√
3

4 B32B25 +
√

3
2 B34B45

[4.5] 0 = −c0e6(B45)− 5
4
√

3
B41B15 − 3

√
3

4 B42B25 − 4√
3
B43B35

Remark 3.3. These are nothing but another description of the Gauss equa-

tions (5) where bij , say, corresponds to R6ij6/ sin θ6(λ6 − λi) [Miy08]. Since

(5) is a bit messy, we can use the above formula, taking an admissible frame.

Although [i.j], i 6= j holds only for an admissible frame, [i.i] holds for any
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orthonormal frame of Dj ’s. In fact, if we “rotate” an orthonormal frame of Dj

by Uj(t) ∈ O(2), Bij changes into Ui(t)Bij
tUj(t), and hence BijBji changes

into Ui(t)(BijBji)
tUi(t). Thus the relation [i.i] is preserved.

4. Global symmetry

Any isoparametric hypersurface M can be uniquely extended to a closed

one [Car38]. We now treat global properties of M .

Let p ∈ M , and let γ be the normal geodesic at p. We know that γ ∩M
consists of twelve points p1, . . . , p12 that are vertices of certain dodecagon; see

Figure 1, where indices are changed from [M1, Lemma 6] and [M2, p. 197]. At

p1, the segment joining p1 with p2, p4, p6, p8, p10, p12 corresponds, respectively,

to the leaf L1, L2, L3, L4, L5, L6. Leaves are expressed in a similar way at each

point. A remarkable fact is that the leaves expressed by parallel segments in

Figure 1 are really parallel with respect to the connection of S13.

Lemma 4.1 ([Miy89, Lemma 6]). We have the relations

Di(p1) = D2−i(p2) = Di+4(p3) = D4−i(p4) = Di+2(p5) = D6−i(p6),

Di(pj) = Di(pj+6), j = 1, . . . , 6,

where the equality means “be parallel to with respect to the connection of S13,”

and the indices are modulo 6.

The author uses tautness to prove this in [Miy89]. Since D6(p1) = D2(p2)

holds by Lemma 4.1, choosing e6(p1) parallel with e2(p2), let p(t) be the ge-

odesic of L6(p1) in the direction e6(p1) such that p1 = p(0), prametrized by

the center angle, where the center means that of a circle on a plane. Similarly,

let q(t) be the geodesic of L2(p2) in the direction e2(p2) parametrized from

p2 = q(0). Extend e6 and e2 as the unit tangent vectors of p(t) and q(t), re-

spectively. Consider the normal geodesic γt at p′1 = p(t), and let p′2 = q(t)∩γt.
By Lemma 4.1, we can take e3(p′1) parallel with e5(p′2). Then we obtain

1

sin θ6
∇ d

dt
e3(p′1) =

sin θ2

sin θ6

1

sin θ2
∇ d

dt
e5(p′2).

Thus the Dj component of (∇̃e6e3)(p1) is the D2−j component of (∇̃e2e5)(p2)

multiplied by sin θ2/ sin θ6. We denote such a relation by

Λj63(p1) ∼ Λ2−j
25 (p2), Λj̄63(p1) ∼ Λ2−j

25 (p2).

A similar argument at every pm implies the global correspondence among

Λγαβ’s. Here, the vanishing of Λγαβ concerns us later, and we do not care about

coefficients.
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Lemma 4.2. For suitable frames around pm, we have the correspondences

Λ
i
jk(pm) ∼ Λ

i′

j′k′
(pn), where i, j, k at pm correspond to i′, j′, k′ at pn in Table 1.

 

p1 p2 p3 p4 p5 p6
 

 p1

p2

p3

p4

p5

p6p7

p8

p9

p10

p11

p 12

Table 1 Figure 1

Remark 4.3. A local frame ei, eī i = 1, . . . , 6 determines Λγαβ locally, and at

the same time, it determines Λγαβ globally in some sense, by the correspondence

along normal geodesics through each point in a neighborhood of M .

5. The kernel of the shape operators

Fix p̄ ∈ M+ and let L6 = f−1(p̄), denoting f = f6. At p ∈ L6, we

consider Bηp and Bζp , where ζp = e6(p) ∈ D6(p) is arbitrarily chosen. Define

the subspace E(p, ζp) of Tp̄M+ to be the space spanned by the kernels of all

the shape operators of the form L(t) = cos tBηp + sin tBζp ; i.e.,

E(p, ζp) = span{KerL(t) | t ∈ [0, 2π)}.

By definition, E(p, ζp) is determined by the geodesic c of L6 through p in the

direction e6(p), and hence we can express

E(c) = E(p, ζp) = span {D3(q) | q ∈ c}.

In Section 15, we show that M is homogeneous if and only if dimE(c) = 2

holds for all c.

Recall (19): Bη(ei) = µiei, µ1 = −µ5 =
√

3, µ2 = −µ4 =
1√
3

, where

(34) µi =
1 + λiλ6

λ6 − λi
=

1− λiλ1

λ6 − λi
= λ1

λ3 − λi
λ6 − λi

because of 1/λ1 = λ3. Recall (16) and (28), and we obtain

(35) sin θ6(λ6 − λ3) = 4c0 =
√

2(
√

3− 1).
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Put

c1 = 4c0λ1 =
√

2(
√

3 + 1) = 1/c0.

The following lemma is important.

Lemma 5.1. Take p ∈ f−1(p̄), and identify Tp̄M+ with ⊕5
j=1Dj(p). Then

for fixed e3 ∈ D3(p) and e6 ∈ D6(p), we have

Bη(∇e6e3) = c1∇̄e3e6,(36)

Bζ(e3) = −∇̄e3e6, Bζ̄(e3) = −∇̄e3e6̄,(37)

Bη(∇2
e6e3) = 2c1∇e6∇̄e3e6,(38)

Bζ(∇e6e3) = −∇e6∇̄e3e6, Bζ̄(∇e6̄e3) = −∇e6̄∇̄e3e6̄.(39)

Remark 5.2. Note that (36) implies ∇e6e3 ≡ 0 modulo D3(p) if and only

if ∇̄e3e6 = 0, and (37) implies that the kernel is independent of the normal

direction only when ∇̄e3e6 = 0, thus, when ∇e6e3 ≡ 0 modulo D3(p). See

Remark 2.5.

Proof. Using (9), (17) and noting (35), we have

Bη(∇e6e3) = Λ
i
63µiei = Λ

i
63λ1

λ3 − λi
λ6 − λi

ei(40)

= λ1Λ
i
36ei = λ1(4c0)∇̄e3e6 = c1∇̄e3e6,

where i is summed over i 6= 6. On the other hand, by the definition of the

shape operators, we have

Bζ(e3) = −∇̄e3e6, Bζ̄(e3) = −∇̄e3e6̄.

Recall (24) and (27), namely, L(t + π/2) = Lt(t) = c0∇e6L(t), where ∇ d
dt

=

c0∇e6 . Taking the covariant derivative of (37), we have

−∇e6∇̄e3e6 = ∇e6 (Bζ(e3)) = −1/c0Bη(e3) +Bζ(∇e6e3) = Bζ(∇e6e3).

Finally taking the covariant derivative of (36), and using (39), we have

c1∇e6∇̄e3e6 = ∇e6 (Bη(∇e6e3))

= 1/c0Bζ(∇e6e3) +Bη(∇2
e6e3)

= −1/c0∇e6∇̄e3e6 +Bη(∇2
e6e3).

Then from c1 + 1/c0 = 2c1, (38) follows. Similar formulas hold for indices with

a bar. �

Let E⊥(c) be the orthogonal complement of E(c) in Tp̄M+, and let

W (c) = span{∇̄e3e6(q), ∇̄e3̄e6(q), | q ∈ c} ⊂ Tp̄M+,

where e6(q) is the unit tangent vector of c at q. Note that it does not depend

on the choice of the frame e3, e3̄ of D3(q).
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Lemma 5.3. W (c) ⊂ E⊥(c).

Proof. Take any q ∈ c, and express L(t) = cos tBη + sin tBζ with respect

to ei(q), eī(q), i = 1, . . . 5, as in Lemma 2.3:

L(t) =



√
3c sB12 sB13 sB14 sB15

sB21
1√
3
c sB23 sB24 sB25

sB31 sB32 0 sB34 sB35

sB41 sB42 sB43 − 1√
3
c sB45

sB51 sB52 sB53 sB54 −
√

3c

 ,
c = cos t,

s = sin t.

Let e3(t) = t(u1(t), u1̄(t), . . . , u5(t), u5̄(t)) belong to the kernel of L(t). Then

the third block of L(t)(e3(t)) must satisfy

sin t

sin θ6

1

λ3 − λ6

5∑
j=1

(
Λj36(q) Λj̄36(q)

Λj
3̄6

(q) Λj̄
3̄6

(q)

)Ç
uj(t)

uj̄(t)

å
= 0.

Thus we obtain

(41) 〈∇̄e3e6(q), e3(t)〉 = 0, 〈∇̄e3̄e6(q), e3(t)〉 = 0

for all t and any q ∈ c. This means ∇̄e3e6(q), ∇̄e3̄e6(q) ∈ E⊥(c). �

By the analyticity and the definition of E(c) and W (c), we can express

for a fixed q ∈ c,

E(c) = span{e3(q),∇ke6e3(q), k = 1, 2, . . . },(42)

W (c) = span{∇̄e3e6(q),∇ke6∇̄e3e6(q), k = 1, 2, . . . },

which do not depend on the choice of q. Thus for any frame of D3(q), we have

(43) 〈∇ke6e3,∇le6∇̄e3e6〉 = 0,

where k, l = 0, 1, 2, . . . and e3 ∈ D3.

Lemma 5.4. For any t, L(t) maps E(c) onto W (c) ⊂ E⊥(c).

Proof. We can express L(t) = cos tL(τ) + sin tLt(τ) for any τ . Then

L(τ)(e3(τ)) = 0 and Lt(τ)(e3(τ)) = −∇̄e3e6(τ) (see (37)) imply

L(t)(e3(τ)) = (cos tL(τ) + sin tLt(τ))(e3(τ))(44)

= − sin t∇̄e3e6(τ) ∈W (c).

Since e3(τ) for τ ∈ [0, 2π) spans E(c), L(t)(E(c)) is a subset of W (c). Surjec-

tivity follows from (37). �

Lemma 5.5. dim E(c) ≤ 6 holds for any geodesic c of L6.
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Proof. Take any p∈c. Since KerBηp =D3(p)⊂E(c), we have dimBη(E(c))

= dimE(c)− 2. Because Bηp(E(c)) is a subspace of E⊥(c), the lemma follows

from R10 ∼= Tp̄M+ = E(c)⊕ E⊥(c). �

6. Reduction of the matrix size

Fix a geodesic c of L6(p), and let ζ = e6(p) be its unit tangent vector at p.

Consider L(t) = cos tBη + sin tBζ . The following lemma is fundamental.

Lemma 6.1. When dimE(c) = d where 2 ≤ d ≤ 6, we can express L =

L(t) as

L =

Ç
0 R
tR S

å
,

with respect to the decomposition Tp̄M+ = E(c)⊕E⊥(c), where 0 is d by d, R

is d by 10− d and S is 10− d by 10− d matrices. The kernel of L is given by

(45)

Ç
X

0

å
∈ E(c), tRX = 0,

and

(46) rank tR = rankR = d− 2.

The eigenvectors with respect to µi, i = 1, 2, 4, 5 are given by

(47)

Ç
1
µi
RY

Y

å
,

where Y ∈ E(c)⊥ is a solution of

(48) (tRR+ µiS − µ2
i I)Y = 0.

Proof. The first part follows from Lemma 5.4. Let
(
X
Y

)
be an eigenvector

of L with respect to µi, where X ∈ E(c) and Y ∈ E(c)⊥, abusing the notation

X =
(
X
0

)
and Y =

(
0
Y

)
. Then we haveÇ

0 R
tR S

åÇ
X

Y

å
=

Ç
RY

tRX + SY

å
= µi

Ç
X

Y

å
,

and hence RY = µiX,
tRX + SY = µiY.

For µ3 = 0, Y = 0 and tRX = 0 hold since the kernel belongs to E(c). Thus

the image of E(c) under tR is of dimension d − 2, which implies (46). When

µi 6= 0, multiplying µi to the second equation, and substituting the first one

into it, we obtain
tRRY + µiSY = µ2

iY.

Then the eigenvector of L for an eigenvalue µi is given by (47). �
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Proposition 6.2. When d = 6, we have for any t,

det(tR(t)R(t)) = 1.(49)

In particular, tR(t)R(t) is positive definite.

Proof. When d= 6, tRR is a 4-by-4 matrix. Equation (48) has 2-dimen-

sional solutions for µ ∈ {±
√

3, ±1/
√

3} (see (19)), and hence we obtain

det(tR(t)R(t) + µS(t)− µ2I) = (µ2 − 3)2
Å
µ2 − 1

3

ã2

.(50)

If we put µ = 0, then (49) follows. �

7. Basic investigation

7.1. Behavior of D3(t).

Lemma 7.1. Let c be a geodesic of L6(p), and let p, q ∈ c, which are not

antipodal. If e3(p) = ±e3(q) holds, then e3(p) ∈ D3(t) holds for all t, and

e3(t) = e3(p) is parallel along c. In particular, if ∇e6e3(p) ≡ 0 modulo D3(p),

then e3(t) = e3(p) is parallel along c.

Proof. If two linear operators have a common kernel vector v, all the

linear combinations of these operators have v as a kernel vector. Thus when

e3(p) = ±e3(q) holds, L(t) = cos tBη + sin tBζ has a kernel e3(t) = e3(p),

independent of t. If ∇e6e3(p) ≡ 0 modulo D3(p), then Bζ(e3) = −∇̄e3e6(p) =

−1/c1Bη(∇e6e3(p)) = 0 follows from (36) and (37), which means e3(π/2) =

e3(p). Thus e3(t) = e3(p) is parallel along c. �

Corollary 7.2. Let c be a geodesic of L6(p), and let p, q ∈ c, which are

not antipodal. If D3(p) = D3(q) holds, then dimE(c) = 2.

Lemma 7.3. Let dimE(c) = 2 hold for at least two distinct geodesics of

L6(p). Then dimE(γ) = 2 holds for any geodesic γ, and E(γ) = D3(p) is

parallel along L6(p).

Proof. When dimE(c1) = 2 = dimE(c2), let p ∈ c1∩c2. Because D3(p) ⊂
E(ci), i = 1, 2, dimE(ci) = 2 implies E(c1) = D3(p) = E(c2). Then for any

geodesic γ, taking q ∈ γ∩c1 and r ∈ γ∩c2, we obtain D3(q) = D3(r) = D3(p).

Thus the lemma follows from Corollary 7.2. �

Remark 7.4. Therefore, dimE(c) = 2 holds either for at most one geodesic

of L6 or for all the geodesics of L6.

In the following, we identify L6(p) with the unit sphere S2 ⊂ T⊥p̄ M+ by the

correspondence L6(p) 3 q 7→ ηq ∈ S2 given in the proof of Lemma 2.4. Through

this identification, a geodesic c of L6(p) corresponds to the one-parameter

family of the shape operators L(t). Note that the space of oriented geodesics
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of S2 is identified with S2 itself, by assigning c to the point pc ∈ S2 normal

to the plane on which c lies, where we distinguish the orientation of c. Let

T⊥1 M+ be the unit normal bundle of M+. When we regard T⊥1 M+ as the

sphere bundle with fibers consisting of oriented geodesics of S2, we denote it

by G+ → M+. It is easy to see that the total space of G+ is diffeomorphic

to M . When the complement of a subset U of G+ is of measure zero, we call

elements of U generic, where G+ is equipped with the natural metric. Since

dimE(c) is a lower semi-continuous function on G+, dimE(c) > 2 is an open

condition. More precisely, using the analyticity, we have (see also the remark

above)

Lemma 7.5. When dimE(c) > 2 holds for some c ∈ G+, dimE(c′) > 2

holds for generic c′ ∈ G+.

Now consider the other focal submanifold M−. We denote by G− → M−
the S2 bundle of which the fiber is the space of oriented geodesics of S2 ⊂
T⊥q̄ M−. Let γ ∈ G−, and define

F (γ) = span{D4(q) | q ∈ γ},

where D4(q) is the kernel of the shape operator of M− in the normal direc-

tion ηq. The argument on M+ can be applied to M− if we replace E(c) by

F (γ) and change indices suitably. Moreover, if dimE(c) = 2 holds on an open

subset of G+, then Λα36 = 0, α 6= 6, holds identically on M by the analyticity.

Thus Λα14 = 0, α 6= 4, follows by the global correspondence in Section 4, and

dimF (γ) = 2 holds for any γ. As a conclusion, we have

Lemma 7.6. If dimE(c) = 2 holds on an open subset of G+, then this

holds over all G+, and moreover, dimF (γ) = 2 holds over all G−. The same

is true if we replace E(c) by F (γ) and G+ by G−.

7.2. Behavior at p(t+π). Take a point p∈M , and let e1(p), e1̄(p), . . . , e5(p),

e5̄(p) be an orthonormal basis of Tp̄M+. Let c be a geodesic of L6(p) through

p, and let q ∈ L6(p) be not on c. Since Di → L6(p) is a vector bundle

over L6(p) ∼= S2, it is trivial on L6(p) \ {q}, and we can extend the frame

ei(p), eī(p) ∈ Di(p) over L6(p) \ {q} continuously, or more strongly, analyti-

cally since Di is analytic. In particular, along c = c(t), we obtain an analytic

frame ei(t), eī(t) ∈ Di(c(t)) such that

(51) ei(2π) = ei(0), eī(2π) = eī(0).

This is an advantage of m = 2 since when m = 1, ei(2π) equals to ei(0) only

up to sign. As for D3(t), we have more.
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Lemma 7.7. Along a geodesic c of L6(p), we have an analytic frame e3(t),

e3̄(t) of D3(t) such that

e3(π) = εe3(0), e3̄(π) = εe3̄(0), ε = ±1.

Proof. By the above argument, we may choose a frame of D1(t), D2(t) so

that

e1(t+ 2π) = e1(t), e2(t+ 2π) = e2(t).

Since D6−i(t + π) = Di(t) holds by the global symmetry (see Section 4), we

may define

e5(t) = e1(t+ π), e4(t) = e2(t+ π),

and we may choose a frame of D3(t) so that

e3(t+ π) = εe3(t), e3̄(t+ π) = ε′e3̄(t), ε, ε′ = ±1.

Let U(t) be such that ei(t) = U(t)ei(0). Since U(0) = I ∈ SO(10), U(t) ∈
SO(10) follows by the continuity. Then from

e1(π) = e5(0), e2(π) = e4(0),

e5(π) = e1(2π) = e1(0), e4(π) = e2(2π) = e2(0),

and because U(π) ∈ SO(10), we obtain

�(52) ε = ε′.

Remark 7.8. In Section 11, we construct such a frame explicitly.

8. Dimension of E(c)

The purpose of this section is to prove the following crucial proposition.

Proposition 8.1. dimE(c) = 6 holds if dimE(c) > 2.

To show this, we need a special frame of D3(t) along c. For a vector field

v(t) on c, we call v(t) even when v(t+π) = v(t) and odd when v(t+π) = −v(t).

We sometimes denote v(0) = v(p).

Put d = dimE(c), and let E′ be the orthogonal complement of e3̄(0)

in E(c). Note that D3(t) depends on t analytically, and dimD3(t) ∩ E′ ≥
2 + (d−1)−d = 1 holds for each t. Here the equality holds for small t as e3̄(p)

is orthogonal to E′. Thus we have an analytic field e3(t) ∈ D3(t) ∩ E′ for t in

some interval I containing 0. At this moment, we are not sure if I covers c or

not.

Lemma 8.2. dimD3(t) ∩ E′ = 1 holds for all t, and we have an analytic

field e3(t) ∈ D3(t) on c, which is always orthogonal to e3̄(0). If we put S =

spant{e3(t)}, then the space L(t)(S) does not depend on t, which we denote

by V . In particular, dimV = dimS − 1 holds.
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Proof. Put S̃ = spant (D3(t) ∩ E′) ⊂ E′. For any e3(τ) ∈ S̃, we can ex-

press L(t) = cos tL(τ) + sin tLt(τ), and so L(τ)(e3(τ)) = 0 and Lt(τ)(e3(τ)) =

−∇̄e3e6(τ) (see (37)) imply

(53) L(t)(e3(τ)) = (cos tL(τ) + sin tLt(τ))(e3(τ)) = − sin t∇̄e3e6(τ),

of which direction is independent of t. Therefore,

Ṽ = L(t)(S̃) = span{∇̄e3e6(τ) | e3(τ) ∈ S̃}

is independent of t. Suppose dim Ṽ = dim S̃ − 2. Then S̃ contains kerL(t);

namely, D3(t) ⊂ S̃ ⊂ E′ holds for all t ∈ I, which contradicts that e3̄(0) is

orthogonal to E′. Thus dim Ṽ = dim S̃ − 1. This means D3(t) ∩ E′ is of

dimension one for all t, and we obtain I = [0, 2π). Moreover, S̃ = S and

Ṽ = V follow. �

Next, take ê3(t) ∈ D3(t) orthogonal to e3(0).

Claim. For each t, e3(t) and ê3(t) are independent.

In fact, suppose these are dependent for some t0. Let E′0 be the orthogonal

complement of e3(t0) = ±ê3(t0) in E(c). Then D3(0) ⊂ E′0 follows. However,

applying the above argument to E′0, we have a contradition.

Because dimD3(t) ∩ E′ = 1 holds for all t ∈ [0, 2π), any ẽ3(t) ∈ D3(t)

that is independent of e3(t) does not belong to E′, namely, is not orthogonal

to e3̄(0) = ê3(0) for each t. Thus ê3(t) ∈ D3(t) satisfies

(54) 〈ê3(0), ê3(t)〉 6= 0,

and hence ê3(t) is an even vector since we have ê3(t+π) = ±ê3(t). This is also

true for e3(t).

Lemma 8.3. If we choose e3(t) orthogonal to e3̄(0), then e3(t), ∇e6e3(t),

∇2
e6e3(t), . . . are even vectors in S. On the other hand, ∇̄e3e6(t), ∇e6∇̄e3e6(t),

∇2
e6∇̄e3e6(t), . . . are odd vectors in V . These are true if we replace e3(t) by

ê3(t).

Proof. The former is clear from∇ke6e3(t+π) = ∇ke6e3(t). The latter follows

from L(t + π) = −L(t) and L(t)(∇e6e3(t)) = c1∇̄e3e6(t). Then its derivatives

in the direction e6(t) are all odd. �

Since D3(t) = span{e3(t), ê3(t)} at each t, putting Ŝ = spant{ê3(t)} and

V̂ = L(t)(Ŝ), we have

E(c) = S + Ŝ, W (c) = V + V̂ .

As S (Ŝ, resp.) is orthogonal to e3̄(0) (e3(0), resp.), we have

(55) dimS,dim Ŝ ≤ 5, dimV,dim V̂ ≤ 4.
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For the same reason, dimE(c) = 6 follows if dimS = 5 or dim Ŝ = 5 holds.

Thus to prove Proposition 8.1, we may consider the cases dimS, dim Ŝ ∈
{1, 2, 3, 4}. First, we prove

Lemma 8.4. For any c, and for any continuous vector field e3(t) ∈ D3(t)

along c, dim spant{e3(t)} = 2 implies dimE(c) = 2. Thus dimE(c) > 2

implies dim spant{e3(t)} > 2, unless dim spant{e3(t)} = 1.

Proof. This lemma holds for any continous e3(t), and so we put K =

spant{e3(t)} instead of S. Assume dimK = 2. Then it follows ∇e6e3(p) 6≡ 0

modulo D3(p). For q = p(π/2), we have K = span{e3(p), e3(q)} by Lemma 7.1.

Thus we may express

e3(t) = a(t)e3(p) + b(t)e3(q) ∈ K.

Recall (37)

Bζ(e3(p)) = −∇̄e3e6(p)

and, because e3(q) ∈KerL(π/2) =kerBζ , exchanging p and q, we have

Bη(e3(q)) = ε∇̄e3e6(q), ε = ±1.

Therefore, denoting c = cos t, s = sin t, a = a(t) and b = b(t), we have

0 = L(t)e3(t) = (cBη + sBζ)(ae3(p) + be3(q))

= bcBη(e3(q)) + asBζ(e3(p)) = −bcε∇̄e3e6(q)− as∇̄e3e6(p),

from which it follows

(56) ∇̄e3e6(q) = u∇̄e3e6(p)

for some nonzero u. Thus multiplying by 1/µi on both sides of

Λ
i
36(q)ei(q) = uΛ

i
36(p)ei(p),

and summing up in i 6= 6, via (36) and

(57) 〈∇e6e3, e3〉 = 0,

we obtain

(58) ∇⊥e6e3(q) = u∇⊥e6e3(p),

where ∇⊥e6e3 is the component of ∇e6e3 orthogonal to D3. Note that (58)

implies ∇⊥e6e3(p) is orthogonal to D3(q), too. Thus we can express

0 6= ∇e6e3(p) = ∇⊥e6e3(p) + ke3̄(p) ∈ K,(59)

0 6= ∇e6e3(q) = ∇⊥e6e3(q) + le3̄(q) = u∇⊥e6e3(p) + le3̄(q) ∈ K;

see Remark 5.2. On the other hand, by (57), we can express

(60) K = Re3(p)⊕ R∇e6e3(p) = Re3(q)⊕ R∇e6e3(q).
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Thus if K is orthogonal to ∇⊥e6e3(p), then ∇⊥e6e3(p) = 0 follows, and from

(59) and (60), we obtain K = D3(p) = D3(q), which implies dimE(c) = 2 by

Corollary 7.2. When ∇⊥e6e3(p) 6= 0, K is not orthogonal to ∇⊥e6e3(p). Thus an

element of K orthogonal to ∇⊥e6e3(p) lies in the 1-dimensional space, which we

may express as

(61) e′3(p) = ue3(p) + ve3̄(p) = we3(q) + ze3̄(q) = e′′3(q) ∈ K

for some u, v, w, z, v2 + z2 6= 0. Therefore, e′3(p) turns out to be parallel along

c by Lemma 7.1. Since e3(t) ∈ K is independent of e′3(p) for generic t, e3(t)

and e′3(p) span D3(t), and we conclude that

E(c) = span{e3(t), e′3(p)} = K

and dimE(c) = 2. �

Even if we assume dimE(c) > 2, there might exist e3 parallel along c.

The following proposition, based on the previous lemma, implies this is not

the case.

Proposition 8.5. When dimE(c) > 2, for a generic geodesic c through

p, there does not exist e3 parallel along c.

Proof. Let cs be a geodesic through p in the direction es6(p) = cos se6(p)+

sin se6̄(p). Suppose there exists an interval J containing s = 0 such that for

each s ∈ J , there exists es3(p) parallel along cs. For 0 < s < π, e0
3(p) and es3(p)

are independent. In fact, if e0
3(p) = es3(p) holds for some s, then∇e06e

0
3(p) ≡ 0 ≡

∇es6e
0
3(p) modulo D3(p) holds for this s, which implies ∇e6̄e

0
3(p) ≡ 0. Hence

∇̄e03e6(p) = 0 = ∇̄e03e6̄(p) holds by (37), and by the global correspondence (see

Figure 1 in Section 4), we have ∇̄−e1e4(p3) = ∇̄−e1e4̄(p3) = 0, where ∇̄− is the

connection of M−, which implies ∇e1e4(p3) ≡ ∇e1e4̄(p3) ≡ 0 modulo D4(p3).

Thus the kernel vector of the shape operator of M− at f1(p3) is parallel, which

does not occur generically under our assumption (Lemma 7.6).

Thus e0
3(p) and es3(p) are independent in D3(p) for s 6= 0 modulo π. Let

c′ be a geodesic of L6 intersecting both c and c̄ = cπ/2. Since es3(p) is parallel

along cs, e
s
3(p) lies in D3(ps) where ps ∈ cs ∩ c′. Hence e3(s) = es3(p) ∈ E(c′)

spans a 2-dimensional space D3(p) along c′. This implies dimE(c′) = 2 by

Lemma 8.4, and since c′ is arbitrarily chosen, Lemma 7.3 implies dimE(c) = 2,

a contradiction. (It is sufficient to consider a family of geodesics through a

point, since an open set of G+ always contains such a family.) �

Corollary 8.6. When dimE(c) > 2, dimS, dimS′ ≥ 3, and hence e3(t)

and ê3(t) move nonlinearly.

Lemma 8.7. dimS = 4 or dim Ŝ = 4 never occurs ; i.e., dimS, dim Ŝ ∈
{3, 5}.
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Proof. Suppose dimS = 4, and let S′ ⊂ S be the 3-dimensional subspace

orthogonal to e3(0). Then L(t) is of rank 3 on S′ for all t because its kernel e3(t)

has a nontrivial e3(0) component (see (54)). Thus for a fixed frame u1,u2,u3

of S′, we obtain a continuous frame of V by

v1(t) = L(t)(u1), v2(t) = L(t)(u2), v3(t) = L(t)(u3).

However, these are odd vectors as before, and they reverse the orientation of V ,

contradicting that dimV = 3 and V is parallel. �

Thus by the statement before Lemma 8.4, it is sufficient for the proof of

Proposition 8.1 to consider the case dimS = 3 = dim Ŝ. In this case, it is

obvious that dimE(c) = dim(S + Ŝ) ≥ 4 since S is orthogonal to e3̄(p) ∈ Ŝ ⊂
E(c). Now we show

Lemma 8.8. dimE(c) = 5 does not occur.

Proof. If it occurs, dimW (c) = 3 follows, where W (c) = L(t)(E(c)). Let

E′ ⊂ E(c) be the 3-dimensional subspace orthogonal to D3(0). Then L(t) is

of rank 3 on E′ for all t since e3(t) has a nontrivial e3(0) component, and ê3(t)

has a nontrivial ê3(0) component by (54). Thus for a fixed frame u1,u2,u3 of

E′, we obtain a continuous frame of W (c):

v1(t) = L(t)(u1), v2(t) = L(t)(u2), v3(t) = L(t)(u3).

However, these are odd vectors as before, and they reverse the orientation of

W (c), a contradiction. Thus dimE(c) 6= 5. �

The following depends on Proposition 8.5, and the proof is similar to that

of Lemma 8.4.

Lemma 8.9. dimE(c) = 4 does not occur.

Proof. Suppose dimE(c) = 4 occurs on a nonempty open set of G+.

Then, denoting by∇⊥e6e3 the component orthogonal to D3, for any independent

e3(0), e′3(0), we can express

(62) E(c) = D3(0)⊕ span{∇⊥e6e3(0),∇⊥e6e
′
3(0)}.

In fact, if ∇⊥e6e3(0) and ∇⊥e6e
′
3(0) are dependent, we have ẽ3(0) such that

∇⊥e6 ẽ3(0) = 0; namely, ∇e6 ẽ3(0) ≡ 0 modulo D3(0). However, then by Re-

mark 5.2, ẽ3(0) is parallel along c, contradicting Proposition 8.5. Thus (62)

holds, and we have orthogonal decompositions at p = p(0) and q = p(π/2):

E(c) = D3(p)⊕ span{∇⊥e6e3(p),∇⊥e6e
′
3(p)}(63)

= D3(q)⊕ span{∇⊥e6e3(q),∇⊥e6e
′
3(q)}.
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Also E(c) = D3(p) +D3(q) holds since D3(p) ∩D3(q) = {0} (Lemma 7.1 and

Proposition 8.5). Thus we may express

e3(t) = ae3(p) + be3(q), e3̄(t) = ā(t)e′3(p) + b̄(t)e′3(q)

for some e3(p), e′3(p) ∈ D3(p), e3(q), e′3(q) ∈ D3(q), which are independent for

generic t. Just as we obtain (56) in the proof of Lemma 8.4, we have

∇⊥e6e3(q) = u∇⊥e6e3(p), ∇⊥e6e
′
3(q) = v∇⊥e6e

′
3(p)

for some nonzero u, v. Thus it follows

span{∇⊥e6e3(p),∇⊥e6e
′
3(p)} = span{∇⊥e6e3(q),∇⊥e6e

′
3(q)}.

However, because of (63), this implies D3(p) = D3(q), a contradiction. �

Finally, Proposition 8.1 is proved.

9. Investigation of E(c) when dimE(c) = 6

9.1. Description of T and S. When dimE(c) = 6, E(c)⊥ = L(t)(E(c))

holds for all t by Lemma 5.4. Using the notation in Section 6, we can express

each eigenvector ei of L as

ei =

Ç
1
µi
RYi
Yi

å
, i = 1, 2, 4, 5,

where Yi ∈ E(c)⊥ is a solution of (48). Obviously, Yi and Yī are independent.

Let Πi be the 2-dimensional subspace in E(c)⊥ spanned by Yi and Yī. Since

T = tRR is positive definite (see Proposition 6.2), we have

TY1 + Y1 6= 0, TY1̄ + Y1̄ 6= 0.

Moreover, these two vectors in E(c)⊥ are independent since, otherwise,

TY1 + Y1 = a(TY1̄ + Y1̄), a 6= 0

implies

T (Y1 − aY1̄) + Y1 − aY1̄ = 0,

and hence Y1 = aY1̄, a contradiction. From 〈ei, ej〉 = 0 for i 6= j, we have

(64) 0 =

Æ
1

µi
RYi,

1

µj
RYj

∏
+ 〈Yi, Yj〉 =

Æ
1

µiµj
tRRYi + Yi, Yj

∏
,

namely, for i ∈ {i, ī},

〈Y1, TY2 + Y2〉 = 〈Y1,−TY4 + Y4〉 = 〈Y1,−
1

3
TY5 + Y5〉 = 0,(65)

〈Y2, TY1 + Y1〉 = 〈Y2,−3TY4 + Y4〉 = 〈Y2,−TY5 + Y5〉 = 0,(66)

〈Y4, TY5 + Y5〉 = 〈Y4,−TY1 + Y1〉 = 〈Y4,−3TY2 + Y2〉 = 0,(67)

〈Y5, TY4 + Y4〉 =

≠
Y5,−

1

3
TY1 + Y1

∑
= 〈Y5,−TY2 + Y2〉 = 0.(68)
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Lemma 9.1. When dimE(c) = 6, the four vectors Y1, Y1̄, Y2, Y2̄ ∈ E(c)⊥

give a basis of E(c)⊥. Similarly, Y4, Y4̄, Y5, Y5̄ ∈ E(c)⊥ give a basis of E(c)⊥;

i.e., Π1 + Π2 = E(c)⊥ = Π4 + Π5 holds.

Proof. Since Yi and Yī are independent, we may show that any vector Y1

in Π1 is independent of any vector Y2 in Π2. This follows from

0 = 〈e1, e2〉 = 〈RY1, RY2〉+ 〈Y1, Y2〉

because Y2 = kY1 implies k = 0. Similarly, we have E(c)⊥ = Π4 + Π5. �

Now we investigate how Π1,Π2 are related to Π4,Π5. Diagonalize T as

T =diag(ν1, ν2, ν3, ν4), and let v1,v2,v3,v4 be the corresponding unit eigen-

vectors.

9.2. Easy case. When Yi is an eigenvector of T , the argument is simple

and basic.

Lemma 9.2. When dimE(c) = 6 and if Y1 is an eigenvector of T , say

Y1 = v1, then one of the following occurs :

(i) TY1 = Y1, i.e., ν1 = 1, and there exists Y4 ∈ Π4 such that Y1 = Y4.

(ii) TY1 = 3Y1, i.e., ν1 = 3, and there exists Y5 ∈ Π5 such that Y1 = Y5.

When Y2 is an eigenvector of T , say Y2 = v2, one of the following occurs :

(iii) TY2 = Y2, i.e., ν2 = 1, and there exists Y5 ∈ Π⊥5 such that Y2 = Y5.

(iv) TY2 = 1
3Y2, i.e., ν2 = 1

3 , and there exists Y4 ∈ Π4 such that Y2 = Y4.

When Y4 is an eigenvector of T , the conclusion of (i) or (iv) occurs. When Y5

is an eigenvector of T , the conclusion of (ii) or (iii) occurs.

Proof. When Y1 = v1, from

〈Y4, TY1 − Y1〉 = 0,
〈
Y5, TY1 − 3Y1

〉
= 0,

we have either TY1 − Y1 = 0 or TY1 − 3Y1 = 0 because Y4, Y4̄, Y5, Y5̄ span

E(c)⊥. In the former case, Y1 satisfies

(69) TY1 +
√

3SY1 − 3Y1 = 0

by (48), and we have

SY1 =
2√
3
Y1.

Thus v1 = Y1 satisfies

Tv1 −
1√
3
Sv1 −

1

3
v1 = 0

and hence belongs to Π4. In the case TY1 = 3Y1, (69) implies SY1 = 0, and

hence v1 = Y1 belongs also to Π5. When Y2 = v2, from

〈Y5, TY2 − Y2〉 = 0,

≠
Y4, TY2 −

1

3
Y2

∑
= 0,
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we have either TY2 − Y2 = 0 or TY2 − 1
3Y2 = 0 because Y4, Y4̄, Y5, Y5̄ span

E(c)⊥. In the former case, Y2 satisfies

(70) TY2 +
1√
3
SY2 −

1

3
Y2 = 0

and we have

SY2 = − 2√
3
Y2.

Thus v2 = Y2 satisfies

Tv2 −
√

3Sv2 − 3v2 = 0

and belongs to Π5. In the latter case, from (70) we obtain SY2 = 0. Then v2 =

Y2 belongs to Π4. The proof of the remaining part is obtained similarly. �

We put W1 = span{v1,v2} and W2 = span{v3,v4}, i.e., E⊥(c) = W1⊕W2,

where v1,v2 are some two fixed eigenvectors of T . Certainly, W1 = Πi, i ∈
{1, 2, 4, 5} means that we can take Yi = v1 and Yī = v2.

Lemma 9.3. If W1 = Πi holds for some i ∈ {1, 2, 4, 5}, then ν1, ν2 ∈
{1/3, 1, 3}, and one of the following occurs. In particular, all Yi are eigenvec-

tors of T .

(0) T = I4 and S =

Ç
2√
3
I2 0

0 − 2√
3
I2

å
where E(c)⊥ = Π1⊕Π2, the orthogonal

direct sum, and Π1 = Π4, Π2 = Π5.

(I) T =
(

3I2 0
0 1

3
I2

)
and S = 04 where E(c)⊥ = Π1 ⊕ Π2, the orthogonal

direct sum, and Π1 = Π5, Π2 = Π4.

(II) T =
Ä
T1 0
0 T2

ä
, where T1 = ( 1 0

0 3 ), T2 =
Ä

1 0
0 1/3

ä
, S =

Ä
S1 0
0 S2

ä
, where

S1 =
Ä

2/
√

3 0
0 0

ä
and S2 =

Ä
−2/
√

3 0
0 0

ä
.

Proof. We treat the case W1 = Π1. Other cases follow similarly. In this

case, we may assume Y1 = v1, Y1̄ = v2. Since {Y2, Y2̄} is orthogonal to W1 by

(66), W2 = Π2 follows, where we may consider Y2 = v3, Y2̄ = v4. Thus using

Lemma 9.2, we have either of the following:

(0) Π1 = W1 = Π4 and ν1 = ν2 = 1. In this case, Π2 = W2 = Π5 follows

and ν3 = ν4 = 1.

(I) Π1 = W1 = Π5 and ν1 = ν2 = 3. In this case, Π2 = W2 = Π4 follows

and ν3 = ν4 = 1/3.

(II) Π1 = W1 = {Y4, Y5̄} and ν1 = 1, ν2 = 3. In this case, Π2 = W2 =

{Y5, Y4̄} follows and ν3 = 1 and ν4 = 1/3.

Thus T is given by (0), (I), or the mixture of these, (II). �

Corollary 9.4. When W1 = Πi holds for some i ∈ {1, 2, 4, 5}, we can

rechoose W1, W2 so that Y1, Y2, Y4, Y5 ∈W1 and Y1̄, Y2̄, Y4̄, Y5̄ ∈W2.
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Proof. Take W1 spanned by (0) Y1 = Y4 and Y2 = Y5, (I) Y1 = Y5 and

Y2 = Y4, and (II) Y1 = Y4 and Y2 = Y5. �

In the next section, we show that we can choose W1,W2 as in the corollary,

even when Yi’s are not eigenvectors of T (Proposition 10.3).

10. General case

Let v1,v2,v3,v4 be an orthonormal frame of E(c)⊥ consisting of eigen-

vectors of T . In general, Yi is not an eigenvector of T , and νi 6∈ {1/3, 1, 3}. For

W1 = span{v1,v2} and W2 = span{v3,v4}, put ER1 = span{Rv1, Rv2} and

ER2 = span{Rv3, Rv4}, where we consider R : E(c)⊥ → E(c). Then ER1 and

ER2 are orthogonal to each other because 〈Rv1, Rv3〉 = 〈Tv1,v3〉 = 0, etc. The

situation of the following proposition will be shown to hold in Proposition 10.3.

Proposition 10.1. When W1 contains Y1, Y2, Y4, Y5, we can take Y1̄, Y2̄,

Y4̄, Y5̄ in W2, and T has eigenvalues in pairs σ, 1/σ and τ, 1/τ , which belong

to the interval [1/3, 3]. Moreover, with respect to the decomposition E(c)⊥ =

W1 ⊕W2, we can express

(71) T =

Ç
T1 0

0 T2

å
, S =

Ç
S1 0

0 S2

å
,

where T = diag(ν1, ν2, ν3, ν4), and

S1 =

Ç
0 a

a 0

å
, σ +

1

σ
+ a2 =

10

3
,(72)

S2 =

Ç
0 b

b 0

å
, τ +

1

τ
+ b2 =

10

3
.

Remark 10.2. The decomposition W1 ⊕W2 depends on p(t) ∈ c.

Proof. Since T maps W1 onto itself, from

(73) TYi + µiSYi − µ2
iYi = 0, Yi ∈W1,

we know that S maps W1 into itself. Here, S is symmetric, and so we have

(71). This implies the splitting of (48) into

(74)

T1Y + µiS1Y − µ2
iY = 0, µi 6= 0,

T2Y + µiS2Y − µ2
iY = 0, i = 1, 2, 4, 5.

Since the former has solutions Y1, Y2, Y4, Y5 for each µi by our assumption, and

since the solution space of (48) for each µi is of dimension two, the second

equation must have solutions Y1̄, Y2̄, Y4̄, Y5̄ for each µi, which span W2. Then
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the following argument can be applied to both W1 and W2. Put S1 = ( s1 s2s2 s3 )

and S2 =
Ä
t1 t2
t2 t3

ä
. Let

(75) Y = xv1 + yv2 or

Ç
x

y

å
∈W1 ⊂ E⊥(c)

be a nontrivial solution of

(76) T1Y + µiS1Y − µ2
iY = 0, µi 6= 0.

Then this is rewritten as

(xν1v1 + yν2v2) + µi{(xs1 + ys2)v1 + (xs2 + ys3)v2} − µ2
i (xv1 + yv2) = 0.

Taking the coefficients of v1 and v2, we have

(ν1 − µ2
i + µis1)x+ µis2y = 0,(77)

µis2x+ (ν2 − µ2
i + µis3)y = 0.

Thus (x, y) 6= (0, 0) implies

(78) (ν1 − µ2
i + µis1)(ν2 − µ2

i + µis3)− µ2
i s

2
2 = 0;

i.e.,

(ν1 − µ2
i )(ν2 − µ2

i ) + µ2
i detS1 − µi(s3ν1 + s1ν2) = 0.

As this holds for µi = ±
√

3, ± 1√
3
, we have

(ν1 − 3)(ν2 − 3) + 3 detS1 = 0,(79)

s3ν1 + s1ν2 = 0,(80)

ν1ν2 = 1.(81)

By the last formula, we may put ν1 = σ and ν2 = 1/σ. Applying a similar

argument to W2, we obtain ν3 = τ and ν4 = 1/τ .

Next, when S1 = 02 (S2 = 02, respectively), (79) implies σ = 3 (τ = 3,

respectively) and (72) holds. In general, from (79), we have

σ +
1

σ
− s1s3 + s2

2 =
10

3
,(82)

τ +
1

τ
− t1t3 + t22 =

10

3
.

On the other hand, from

(83) ‖L‖2 = 2TrT + ‖S‖2 =
40

3
,

it follows

2

Å
σ +

1

σ
+ τ +

1

τ

ã
+ s2

1 + 2s2
2 + s2

3 + t21 + 2t22 + t23 =
40

3
.

Thus using (82), we obtain

(s1 + s3)2 + (t1 + t3)2 = 0.
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When s1 = −s3 = 0, putting a = s2 (t1 = −t3 = 0 putting b = t2, respectively)

in (77), we have (72). When s1 = −s3 6= 0 (t1 = −t3 6= 0, respectively), (80)

and (81) imply T1 = I2 (T2 = I2, respectively), and by (79), the eigenvalue

of S1 is ±a where a2 = 4/3 (of S2 is ±b where b2 = 4/3, respectively). Since

all the vectors in W1 (W2, respectively) are eigenvectors of T1 = I2 (T2 = I2

respectively), we can choose a basis of Wi so that Si is expressed as in (72). �

In fact, the situation of Proposition 10.1 is always satisfied.

Proposition 10.3. For a suitable choice of W1 and W2, W1 contains

Y1, Y2, Y4, Y5 and W2 contains Y1̄, Y2̄, Y4̄, Y5̄. Thus the eigenvalues of T are

given by σ, 1/σ, τ, 1/τ , where 1/3 ≤ σ, τ ≤ 3, and with respect to a suitable

choice of W1 and W2, T and S are given as in Proposition 10.1.

Proof. By Corollary 9.4 and Proposition 10.1, it is sufficient to show that

either W1 = Πi for some i or Y1, Y2, Y4, Y5 ∈ W1 occurs. Take an eigenvector

v4 of T , and put V = span{v1,v2,v3}, the orthogonal complement of v4 in

W (c). Since dim Πi = 2, dim Πi ∩ V ≥ 2 + 3 − 4 = 1, and we can choose Yi,

i = 1, 2, 4, 5 orthogonal to v4. This implies

〈TYi,v4〉 = 〈Yi, Tv4〉 = 0,

and hence

(84) TYi + xYi ∈ V, x ∈ R

holds. Denote the V component of Yī by Y V
ī

. If Y1 and Y V
1̄ are dependent in

V , i.e., if Y V
1̄ = kY1 holds for some k, then Ỹ1 = Y1̄− kY1 should be a nonzero

multiple of v4, and v4 ∈ Π1. Similarly if Y2 and Y V
2̄ are dependent in V , we

have v4 ∈ Π2. Note that Π1 ∩ Π2 = {0} since Y1 and Y2 are independent.

Thus, we have three cases:

(i) v4 6∈ Π1,Π2, and Y1 and Y V
1 , Y2 and Y V

2 are independent, respectively.

(ii) v4 = Y1̄ ∈ Π1, and Y2 and Y V
2̄ are independent.

(iii) v4 = Y2̄ ∈ Π2, and Y1 and Y V
1̄ are independent.

(i) In this case, the orthogonal complement of span{Y1, Y
V

1̄ } in V is of

dimension one. Thus, from

〈Y1, TY2 + Y2〉 = 0 = 〈Y1̄, TY2 + Y2〉 = 〈Y V
1̄ , TY2 + Y2〉,(85)

〈Y1, TY4 − Y4〉 = 0 = 〈Y1̄, TY4 − Y4〉 = 〈Y V
1̄ , TY4 − Y4〉,

〈Y1, TY5 − 3Y5〉 = 0 = 〈Y1̄, TY5 − 3Y5〉 = 〈Y V
1̄ , TY5 − 3Y5〉,

where we use (84), we obtain

TY4 − Y4 = k(TY2 + Y2),(86)

TY5 − 3Y5 = l(TY2 + Y2)
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for some k and l. Similarly, the orthogonal complement of span{Y2, Y
V

2̄ } in V

is of one dimension, and from

〈Y2, TY1 + Y1〉 = 0 = 〈Y2̄, TY1 + Y1〉 = 〈Y V
2̄ , TY1 + Y1〉,(87)

〈Y2, 3TY4 − Y4〉 = 0 = 〈Y2̄, 3TY4 − Y4〉 = 〈Y V
2̄ , 3TY4 − Y4〉,

〈Y2, TY5 − Y5〉 = 0 = 〈Y2̄, TY5 − Y5〉 = 〈Y V
2̄ , TY5 − Y5〉,

we obtain

3TY4 − Y4 = m(TY1 + Y1),(88)

TY5 − Y5 = n(TY1 + Y1)

for some m and n. Now from (86) and (88), it follows

T (lY4 − kY5)− lY4 + 3kY5 = 0,(89)

T (3nY4 −mY5)− nY4 +mY5 = 0.

Thus we obtain

T ((lm− 3kn)Y4) = (lm− kn)Y4 − 2kmY5,(90)

T (−3kn+ lm)Y5) = 2lnY4 + (lm− 9kn)Y5.

When lm = 3kn, i.e., the left-hand sides vanish, it is easy to see that l = k = 0

or m = n = 0 holds since Y4 is independent of Y5. Thus Y4, Y5 are eigenvectors

of T , and we may put W1 = span{Y4, Y5} = span{v1,v2}. Then we have either

one of the following:

(a) Y1 = Y4, Y2 = Y5, i.e., Y1, Y2, Y4, Y5 ∈W1;

(b) Y1 = Y4, Y1̄ = Y5, i.e., W1 = Π1;

(c) Y2 = Y4, Y2̄ = Y5, i.e., W1 = Π2.

Thus we have shown the first sentence of this proof.

When lm 6= 3kn in (90), T maps span{Y4, Y5} onto itself, where onto

follows because rank T = 4. As Y4 and Y5 are independent, the orthogo-

nal complement of span{Y4, Y5} in V is of one dimension, which is preserved

by T . Thus this is an eigenspace, of which vector we denote by v3. Then

span{Y4, Y5} = span{v1,v2} follows, which we denote by W1. When km = 0,

Y4 is an eigenvector of T . Then Y5 is orthogonal to Y4 by (68), and Y5 = v2

follows. As before, we are done. When k 6= 0 and m 6= 0 hold in (86) and (88),

TY1 + Y1, TY2 + Y2 ∈W1 holds, and this implies Y1, Y2 have no v3 component

since νi > 0. Thus Y1, Y2, Y4, Y5 belong to W1, and we are done.

(ii) In this case, Y2 and Y2̄ are independent, and (88) holds. If m = 0, we

may put Y4 = v1 since Y4 is orthogonal to v4. Therefore, applying Lemma 9.2

to W1 = span{Y1̄, Y4} = span{v1,v4}, we have either one of the following:

(d) Y1̄ = Y5̄, Y2 = Y4, i.e, Y1̄, Y2, Y4, Y5̄ ∈W1;
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(e) Y1̄ = Y5̄, Y1 = Y4, i.e., W1 = Π1;

(f) Y2 = Y4, Y1̄ = Y4̄, i.e., W1 = Π4, Y1̄, Y2, Y4, Y4̄ ∈ span{v1,v4},
and we are done.

When n = 0, a similar argument can be applied, which we omit. When

mn 6= 0, we consider as follows. By Lemma 9.2, either Y1̄ = Y4̄ or Y1̄ = Y5̄

occurs. In the former case, i.e., when ν4 = 1, from 〈Y5, −3TY1̄+Y1̄〉 = 0, Y5 and

Y5̄ are contained in V , and we may assume Y5 has no v3 component. Thus Y5 ∈
span{v1,v2} follows, which we putW1. Then TY5 has no v3 component, and by

(88), Y1, and hence Y4 cannot have a v3 component. Moreover, 〈Y2, TY1̄ + Y1̄〉
= 0 implies Y2, Y2̄ ∈ V , and so we may assume Y2 ∈ W1. Therefore we obtain

Y1, Y2, Y4, Y5 ∈ W1, and we are done. The latter case when Y1̄ = Y5̄ can be

treated similarly.

(iii) This case is similar to Case (ii), and we omit it. �

11. Frames of E(c) and E(c)⊥

Proposition 11.1. An orthonormal basis of E(c), and E(c)⊥, respec-

tively, is given by

e3, e3̄,(91)

X1 = α(e1 + e5) + β(e2 + e4),

X2 =
1√
σ

Ç
β√
3

(e1 − e5)−
√

3α(e2 − e4)

å
,

X1̄ = γ(e1̄ + e5̄) + δ(e2̄ + e4̄),

X2̄ =
1√
τ

Ç
δ√
3

(e1̄ − e5̄)−
√

3γ(e2̄ − e4̄)

å
and

Z1 =
1√
σ

Ç√
3α(e1 − e5) +

β√
3

(e2 − e4)

å
(92)

Z2 = β(e1 + e5)− α(e2 + e4),

Z1̄ =
1√
τ

Ç√
3γ(e1̄ − e5̄) +

δ√
3

(e2̄ − e4̄)

å
,

Z2̄ = δ(e1̄ + e5̄)− γ(e2̄ + e4̄),

where (3− σ)α2 = (σ− 1/3)β2, (3− τ)γ2 = (τ − 1/3)δ2, and α2 + β2 = 1/2 =

γ2 + δ2.

Proof. By Proposition 10.3, we may consider Y1, Y2, Y4, Y5 ∈ W1, and by

Proposition 10.1, we may put s1 = s3 = 0 = t1 = t3 and s2 = a and t2 = b.

First, consider the case a 6= 0; then 1/3 < σ < 3 follows from (72). Thus by
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(77), we can express

Y1 =

Ç
−
√

3a

σ − 3

å
, Y5=

Ç√
3a

σ − 3

å
,(93)

Y2 =

(
− a√

3

σ − 1
3

)
, Y4 =

(
a√
3

σ − 1
3

)
in W1, and in ER1 ⊕W1 ⊂ Tp̄M+,

ê1 =

Ö
1√
3
RY1

−
√

3a

σ − 3

è
, ê5=

Ö
− 1√

3
RY5√
3a

σ − 3

è
,(94)

ê2 =

Ö 1√
3
RY2

− a√
3

σ − 1
3

è
, ê4=

Ö− 1√
3
RY4

a√
3

σ − 1
3

è
.

Claim. |ê1| = |ê5|, |ê2| = |ê4|.

In fact, we have |Y1| = |Y5| and |Y2| = |Y4|. On the other hand, using

|RYi|2 = 〈RYi, RYi〉 = 〈TYi, Yi〉, we obtain

|RY1|2 = 〈TY1, Y1〉 =

ÆÇ
−
√

3aσ
σ−3
σ

å
,

Ç
−
√

3a

σ − 3

å∏
=

ÆÇ√
3aσ
σ−3
σ

å
,

Ç√
3a

σ − 3

å
〉 = 〈TY5, Y5

∏
= |RY5|2,

and hence |ê1| = |ê5| follows. Similarly, we have |ê2| = |ê4|.
In order that X = xê1 + yê2 + zê4 + wê5 belongs to E, we have

√
3a(−x+ w)− a√

3
(y − z) = 0,(95)

(σ − 3)(x+ w) +

Å
σ − 1

3

ã
(y + z) = 0.(96)

Since we can describe

X =
x+ w

2
(ê1 + ê5) +

x− w
2

(ê1 − ê5) +
y + z

2
(ê2 + ê4) +

y − z
2

(ê2 − ê4)

in the case a 6= 0, i.e., σ 6= 3, 1/3, (95) and (96) imply

X=k

ßÅ
σ− 1

3

ã
(ê1+ê5)− (σ − 3)(ê2+ê4)

™
+ l

®
a√
3

(ê1 − ê5)−
√

3a(ê2 − ê4)

´
for any k, l. Thus putting

(97) α =

Å
σ − 1

3

ã
|ê1|, β = (3− σ)|ê2|,

we can express X as a combination of

X̂1 = α(e1 + e5) + β(e2 + e4)
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and

X̂2 =
|ê1|√

3
(e1 − e5)−

√
3|ê2|(e2 − e4)

=
α√

3(σ − 1/3)
(e1 − e5)−

√
3β

3− σ
(e2 − e4),

where ei is normalized from êi. On the other hand, 〈BηX̂1, X̂2〉 = 0 implies

(98)
α2

σ − 1/3
=

β2

3− σ
.

Thus we may express

X̂2 =
β√
3

(e1 − e5)−
√

3α(e2 − e4).

If we normalize X̂1, (98) implies

(99) σ =
3α2 + β2/3

α2 + β2
= 2(3α2 + β2/3) = ‖X̂2‖2.

A similar argument holds for W2 when t1 = 0 and t2 = b 6= 0.

When a = 0, σ = 3 or 1/3 follows, i.e., T1 =
Ä

3
1/3

ä
and S1 = 0 follow.

Then (76) becomes TYi = µ2
iYi, and we may consider Y1 = ( 1

0 ), Y2 = ( 0
1 ) ∈W1,

where Y1 and Y5 (Y2 and Y4, respectively) coincide up to sign. If we put

Y1 = −Y5 and Y2 = −Y4, then it follows

(100) ê1 =

(
1√
3
RY1

Y1

)
, ê5 =

(
1√
3
RY1

−Y1

)
, ê2 =

(√
3RY2

Y2

)
, ê4 =

(√
3RY2

−Y2

)
,

and after normalization, we obtain

(101) ER1 = span{e1 + e5, e2 + e4}, W1 = span{e1 − e5, e2 − e4}.

A similar argument holds for E2,W2 when b = 0. �

In the following, we restrict our argument to the case when ab 6= 0, i.e.,

when 1/3 < σ, τ < 3. This is also the case when αβγδ 6= 0.

Remark 11.2. When a(t)b(t) 6≡ 0, applying above argument to each L(t) =

cos tBη + sin tBζ , and noting that

R(t+ π) = −R(t), a(t+ π) = −a(t), σ(t+ π) = σ(t), τ(t+ π) = τ(t)

hold in (94), we have

(102) e1(t+ π) = e5(t), e2(t+ π) = e4(t),

and it follows

(103) e3(t+ π) = εe3(t), ε = ±1.
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The normalization of êi(t) does not effect their directions. In particular,

(104) ei(t+ 2π) = ei(t)

holds for any 1 ≤ i ≤ 5, and we have an analytic frame along c.

Using the frame along c mentioned above, we obtain

Lemma 11.3. When 1/3 < σ, τ < 3, choose ei(t) as in (94). Then e1(t)+

e5(t), e2(t) + e4(t) are even vector fileds and e1(t)− e5(t), e2(t)− e4(t) are odd

vector fields along c.

12. Invariance of σ, τ when ab 6= 0

When we apply the previous argument to various points p(t) ∈ c, we

use the moving frame e3(t), Xi(t), Zi(t), with respect to which, the relations

satisfied by Bη and Bζ hold for L(t) and Lt(t).

In the next section we will prove a(t)b(t) ≡ 0. By (72), a = 0 is equivalent

to σ = 1/3 or 3, which is also equivalent to αβ = 0 by (97). When we argue

at various points p(t) of c, a choice of α(t), β(t) in (97) seems unnatural since

they are always nonnegative. The purpose of this section is to show, in fact,

α(t), β(t), γ(t), δ(t), and hence σ(t), τ(t) are constant along c. When a(t)b(t)

≡ 0 holds on an open interval, σ, τ = 1/3 or 3 holds over all c. Therefore, we

consider what happens when a(t)b(t) 6≡ 0.

12.1. Description of H(0) = Ut(0). With respect to the frame in (91) and

(92), we can express

L(0) = Bη =



0 0 0
... 0 0

0 0 0
... A1 0

0 0 0
... 0 A2

· · · · · · · · · · · · · · ·

0 tA1 0
... D1 0

0 0 tA2
... 0 D2


,(105)

A1 =

Ñ√
σ 0

0
1√
σ

é
, A2 =

Ñ√
τ 0

0
1√
τ

é
,

D1 =

Ç
0 a

a 0

å
, D2 =

Ç
0 b

b 0

å
,

where by (82), we have

σ +
1

σ
+ a2 =

10

3
= τ +

1

τ
+ b2.
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Now recall the argument in Section 3, where we put ei(t) = U(t)ei(p), U(t) ∈
O(10).

Lemma 12.1. With respect to (91) and (92) at p, we can express

(106) H(0) = Ut(0) =



H0 X Y
... 0 0

−tX H1 Z
... K1 0

−tY −tZ H2
... 0 K2

· · · · · · · · · · · · · · ·

0 −tK1 0
... H3 V

0 0 −tK2
... −tV H4


,

where Hi, i = 0, 1, 2, 3, 4 are skew, and

(107) K1 =

Ç
0 k1

−k1/σ 0

å
, K2 =

Ç
0 k2

−k2/τ 0

å
.

Proof. First, we can put

(108) H(0) = Ut(0)tU(0) =



H0 X Y
... 0 0

−tX H1 Z
... K1 G1

−tY −tZ H2
... G2 K2

· · · · · · · · · · · · · · ·

0 −tK1 −tG2
... H3 V

0 −tG1 −tK2
... −tV H4


because H(0) maps D3(p) to {∇e6e3(p),∇e6e3̄(p)} ⊂ E(c). In general, H(0)Xi

6= c0∇e6Xi because α(t), β(t), γ(t), δ(t) as well as σ(t), τ(t) are not neccesarily

constant. In fact, from (27), it follows

∇ d
dt
X1 = α̇(e1 + e5) + β̇(e2 + e4) +H(0)X1,(109)

∇ d
dt
X2 =

d

dt

Ç
β√
3σ

å
(e1 − e5) +

d

dt

Ç√
3α√
σ

å
(e2 − e4) +H(0)X2.(110)

However, we know ∇ d
dt
X1 ∈ D3 ⊕ span{X2, X1̄, X2̄} and ∇ d

dt
X2 ∈ D3 ⊕

span{X1, X1̄, X2̄} because Xi is a unit vector. Thus in view of (92), H(0)X1

cannot have components in E(c)⊥ except for Z2. Similarly, H(0)X2 has no

components in E(c)⊥ except for Z1. This implies G1 = 0, K1 =
Ä

0 k1
l1 0

ä
, and

similarly, G2 = 0, K2 =
Ä

0 k2
l2 0

ä
. Now, if we denote

H(0) =

Ç
J1 J3

−tJ3 J2

å
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with respect to the decomposition E(c)⊕ E(c)⊥, we have

Bζ = [H(0), Bη]

=

Ç
J1 J3

−tJ3 J2

åÇ
0 A
tA D

å
−
Ç

0 A
tA D

åÇ
J1 J3

−tJ3 J2

å
=

Ç
J3
tA+AtJ3 ∗
∗ ∗

å
,

where J3 =

Å
0 0
K1 0
0 K2

ã
. Then from

J3
tA =

Ö
0 0 0

0 K1
tA1 0

0 0 K2
tA2

è
,

we obtain

K1
tA1 =

Ç
0 k1

l1 0

åÇ√
σ 0

0 1/
√
σ

å
=

Ç
0 k1/

√
σ

l1
√
σ 0

å
.

Since J3
tA + AtJ3 = 0, i.e., J3

tA is skew, l1 = −k1/σ follows. A similar

argument holds for K2. �

12.2. Splitting of U(t). In the following discussion, it is again important

that a vector field v(t) along c is even or odd.

Proposition 12.2. When a(t)b(t) 6≡ 0, in the expression (108) of H at

any fixed point of c, K1 = K2 = 0 holds, and the orthogonal group U(t) such

that ei(t) = U(t)ei splits into

(111) U(t) =

Ç
U1(t) 0

0 U2(t)

å
, U1(t) ∈ O(6), U2(t) ∈ O(4),

with respect to the decomposition E(c)⊕ E(c)⊥.

Proof. Recall

(112) L(t) = U(t)Bη
tU(t) =

Ç
0 R(t)

tR(t) S(t)

å
.

However, the splitting of U(t) never follows from this. Now, since D3(t) =

U(t)D3(p) belongs to E(c) where

D3(p) =
Ä
e3(p) e3̄(p)

ä
=


1 0

0 1

0 0
...

...

0 0

 ,
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we can express U(t) with respect to the decomposition (D3(p)⊕E1)⊕E(c)⊥,

where E1 = span{X1, X2, X1̄, X2̄}, as

(113) U(t) =


V1(t) V2(t)

... 0

V3(t) V4(t)
... V5(t)

. . . . . . · . . .

0 V6(t)
... V7(t)

 ,
V1(t) ∈M2(R),

V2(t), tV3(t) ∈M2,4(R),

V4(t), V5(t), V6(t), V7(t) ∈M4(R),

where Mi,j(R) denotes the space of i× j matrices and Mi(R) = Mi,i(R). Here,

we have an expansion of the analytic U(t):

U(t) = I + Ut(0)t+ [t2] = I +H(0)t+ [t2],

denoting [tj ] the term of order not less than j. In particular, it follows

V3(t) = t

Ç
−tX
−tY

å
+ [t2], V5(t) = t

Ç
K1 0

0 K2

å
+ [t2].

On the other hand, taking the (1, 3) block of tU(t)U(t) = I10, we have

(114) tV3(t)V5(t) = 0.

Then it follows

0 =
Ä
t
Ä
−X −Y

ä
+ [t2]

äÇ
t

Ç
K1 0

0 K2

å
+ [t2]

å
,

and from the coefficient of t2, we obtainÄ
XK1 Y K2

ä
= 0.

By (107), K1 and K2 are of rank either 0 or 2. Moreover, rank
Ä
X Y

ä
= 2

because

span{∇e6e3(p)} = HD3(p) ⊂ span



â
H0

−tX
−tY

0

0

ì
⊂ E(c),

and dim span{∇⊥e6e3(p),∇⊥e6e3̄(p)} = 2, where ∇⊥ denotes the component or-

thogonal to D3; see Lemma 7.1 and Proposition 8.5. Thus we have either

(i) K1 = K2 = 0;

(ii) K2 6= 0, K1 = Y = 0; or

(iii) K1 6= 0, X = K2 = 0.

The above argument can be applied at any point p(t) on c with respect to the

moving frame e3(t), Xi(t), Zi(t) at p(t). In this case, although Ki(t), X(t), Y (t)

depends on t, the decomposition E(c)⊕E(c)⊥ is independent of t. Thus if we
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show (i) occurs over all c with respect to the moving frame, the right upper

6× 4 part of H(t) always vanishes, and this proves the proposition.

If (ii) occurs at a point, it occurs on an open interval because K2(t) 6= 0 is

an open condition. Moreover by the analyticity, K1(t) = Y (t) = 0 holds over

all c. Thus we have

(115) span{∇⊥e6e3(t),∇⊥e6e3̄(t)} = span{X1(t), X2(t)}

for each t. By (103), the orientation of the left-hand side is preserved at t = π.

When a(t)b(t) 6≡ 0, namely, when αβγδ 6≡ 0, we can see X1(t) is even (odd,

resp.) if and only if X2(t) is odd (even, resp.), which depends on evenness and

oddness of (α(t), β(t)) and (γ(t), δ(t)), by Lemma 11.3 and by (91). Thus the

orientation of the right-hand side of (115) is reversed at t = π, a contradiction.

In the same way, we can show that (iii) does not occur. �

Therefore, we have the following fundamental result.

Corollary 12.3. When a(t)b(t) 6≡ 0, with respect to the frame (91) and

(92) of E(c)⊕ E(c)⊥ at any point, we have

(116) H(0) =

Ç
J1 0

0 J2

å
, J1 =

Ö
H0 X Y

−tX H1 Z

−tY −tZ H2

è
, J2 =

Ç
H3 V

−tV H4

å
.

Moreover, σ, τ , as well as α, β, γ, δ are constant along c. Therefore, X1(t), Z2(t)

are even, and X2(t), Z1(t) are odd.

Proof. Since K1 = K2 = 0, we know from (109) and similar formulas for

Xi that ∇e6Xi belongs to E(c) if and only if α̇ = β̇ = γ̇ = δ̇ = 0. Then

σ̇ = τ̇ = 0 follows from (99) and a similar formula for τ . This holds at

any point of c, and the conclusion follows. The last assertion follows from

Lemma 11.3. �

Remark 12.4. If we know ∇e6e3(t) is even and ∇̄e3e6(t) is odd as in

Lemma 8.3, these never mean that ∇e6e3(t) is a combination of X1(t) and

X1̄(t) nor that ∇̄e3e6(t) is a combination of Z1(t) and Z1̄(t). This is because

even vectors multiplied by odd functions are odd, and odd vectors multiplied

by odd functions are even.

A final consequence obtained from the constantness of α, β is

Corollary 12.5. When a(t)b(t) 6≡ 0, let U(t) =
(
U1(t) 0

0 U2(t)

)
be such

that ei(t) = U(t)ei(0). Then

(117) Xi(t) = U1(t)Xi(0), Zi(t) = U2(t)Zi(0)

holds for i = 1, 2.
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By (111), L(t) =
(

06 R(t)
tR(t) S(t)

)
= U(t)Bη

tU(t) is given by

(118) R(t) = U1(t)A tU2(t), S(t) = U2(t)D tU2(t),

where A = R(0) and D = S(0), i.e., Bη =
Ä

06 A
tA D

ä
. In particular,

(119) tR(t)R(t) = U2(t)(tAA)tU2(t)

holds. Thus we obtain the following proposition.

Proposition 12.6. When a(t)b(t) 6≡ 0, in the expressions

Bη =

Ç
0 A
tA D

å
, L(t) =

Ç
06 R(t)

tR(t) S(t)

å
,

T (t) = tR(t)R(t) is isospectral with tAA and S(t) is isospectral with D.

13. Properties of T (t) and S(t)

13.1. The case a2 6= b2 and ab 6= 0. Now, we consider what occurs when

ab 6= 0, equivalently, when 1/3 < σ, τ < 3. First, assume a2 6= b2. With respect

to the decomposition Tp̄M+ = E ⊕ E⊥, we express

Bη =

Ç
0 A
tA D

å
, Bζ =

Ç
0 M
tM N

å
.

In particular, by Propositions 10.1 and 10.3, we have

T = tAA = diag

Å
σ

1

σ
τ

1

τ

ã
,(120)

D =

Ç
D1 0

0 D2

å
, D1 =

Ç
0 a

a 0

å
, D2 =

Ç
0 b

b 0

å
with respect to the orthonormal basis Z1, Z2, Z1̄, Z2̄ of E(c)⊥ at the point.

From (116) and from Bζ = [H(0), Bη], we have

(121) M = J1A−AJ2,

and from (108), we have

N = [J2, D] =

Ç
H3 V

−tV H4

åÇ
D1 0

0 D2

å
−
Ç
D1 0

0 D2

åÇ
H3 V

−tV H4

å
(122)

=

Ç
H3D1 −D1H3 V D2 −D1V

−tV D1 +D2
tV H4D2 −D2H4

å
.

Moreover, if we put

H3 =

Ç
0 h3

−h3 0

å
, H4 =

Ç
0 h4

−h4 0

å
,
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we obtain

(123) N =

á
d 0 f g

0 −d k l

f k m 0

g l 0 −m

ë
, d = 2ah3,m = 2bh4.

Lemma 13.1. When a2 6= b2 and ab 6= 0, d = m = 0 holds.

Proof. Since cos tD + sin tN has eigenvalues ±a,±b, we have

det(cos tD + sin tN − xI) = (x2 − a2)(x2 − b2).

Then, putting c = cos t, s = sin t, we calculate the the left-hand side (by

Mathematica):

det(cos tD + sin tN − xI)

= det

á
sd− x ca sf sg

ca −sd− x sk sl

sf sk sm− x cb

sg sl cb −sm− x

ë
= x4 − x2{c2(a2 + b2) + s2(d2 + f2 + g2 + k2 + l2 +m2)}

− 2xs2{c(a(fk + gl) + b(fg + kl))

+ s(d(f2 + g2 − k2 − l2) +m(f2 − g2 + k2 − l2))}

+ s2{c2(b2d2 − 2ab(fl + gk) + a2m2)

+ 2cs(am(fk − gl) + bd(fg − kl))

+ s2((fl − gk)2 + d2m2 + dm(−f2 + g2 + k2 − l2))}.

We obtain

d2 + f2 + g2 + k2 + l2 +m2 = a2 + b2,(124)

a(fk + gl) + b(fg + kl) = 0,(125)

d(f2 + g2 − k2 − l2) +m(f2 − g2 + k2 − l2) = 0,(126)

b2d2 − 2ab(fl + gk) + a2m2 = 2a2b2,(127)

am(fk − gl) + bd(fg − kl) = 0,(128)

(fl − gk)2 + d2m2 + dm(−f2 + g2 + k2 − l2) = a2b2,(129)

which are, respectively, the coeffcients of s2x2, cs2x, s3x, c2s2, cs3 and s4.

Note that there exist many matrices which satisfy these equations.

Consider the moving frame Z1(t), Z2(t), Z1̄(t), Z2̄(t) along c consisting

of eigenvectors of the isospectral operator T (t) for eigenvalues σ, 1/σ, τ, 1/τ ,

respectively. Then the argument before the lemma holds for each L(t) =
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0 A(t)

tA(t) D(t)

)
with respect to this moving frame. On the other hand, h3(t) =

〈H(t)Z1(t), Z2(t)〉 = 〈∇e6Z1(t), Z2(t)〉 is odd since Z1(t) is odd and Z2(t) is

even. Thus there exists t0 at which h3(t0) = 0. If we take p = p(t0), d = 0

follows from (123). Now putting d = 0 in (124) and (126) ∼ (129), we obtain

f2 + g2 + k2 + l2 +m2 = a2 + b2,(130)

a(fk + gl) + b(fg + kl) = 0,(131)

m(f2 − g2 + k2 − l2) = 0,(132)

−2ab(fl + gk) + a2m2 = 2a2b2,(133)

am(fk − gl) = 0,(134)

(fl − gk)2 = a2b2.(135)

Claim. Let a2 6= b2, ab 6= 0. If d = 0 and m 6= 0 hold, then we have

a = 3εb for ε = ±1.

In fact, if m 6= 0, from (132) and (134) follows (f ± k)2 = (g ± l)2, and

hence we may put

f + k = ε(g + l), f − k = ε′(g − l), ε, ε′ = ±1,

which imply

(136) f =
ε+ ε′

2
g +

ε− ε′

2
l, k =

ε− ε′

2
g +

ε+ ε′

2
l.

Then

fl − gk =

Ç
ε+ ε′

2
g +

ε− ε′

2
l

å
l − g

Ç
ε− ε′

2
g +

ε+ ε′

2
l

å
=
ε− ε′

2
(l2 − g2)

follows. Since the right-hand side of (135) does not vanish, ε 6= ε′ and g2 6= l2

follow. Thus we obtain f = εl, k = εg from (136). Substituting these into

(131), we have

(a+ bε)gl = 0,

and from a2 6= b2, gl = 0 follows. When l = 0, we have f = 0, and (130), (133)

and (135) imply

2k2 +m2 = a2 + b2,

−2εabk2 + a2m2 = 2a2b2,

k4 = a2b2.

If we put k2 = εab, ε = ε follows from the second one since am 6= 0, and so

m2 = 4b2.



94 REIKO MIYAOKA

On the other hand, from the first one follows

m2 = (a− εb)2,

and we have

a− εb = ±2b.

Now from a2 6= b2, we obtain a = 3εb. When g = 0, a parallel argument holds,

and we also obtain a = 3εb.

In the above argument, we choose a point p(t0) at which h3(t0) = 0, and

we obtain a = 3εb when m 6= 0. Similarly, if we use the oddness of

h4(t) = 〈H(t)Z1̄(t), Z2̄(t)〉 = 〈∇e6Z1̄(t), Z2̄(t)〉,

there exists t1 such that h4(t1) = 0. Although the frame at p(t1) differs from

the one at p(t0), we can apply a similar argument at p(t1) with respect to the

frame at p(t1). Note that (124) ∼ (129) are preserved if we exchange the triple

(a, d, g) with (b,m, k). Thus putting m = 0 in (123) at p = p(t1), we obtain

b = 3ε′a under the assumption d 6= 0. However, since a and b are constant, i.e.,

independent of a choice of the frame, a = 3εb and b = 3ε′a imply a = b = 0, a

contradiction. Therefore, at p(t0) and p(t1), d = m = 0 holds. �

Thus taking p = p(t0), we may put N =
Ä

0 N1
tN1 0

ä
.

Lemma 13.2. When a2 6= b2 and ab 6= 0, we have either one of the

following :

(i) N1 = ε
Ä
a 0
0 −b
ä
;

(ii) N1 = ε
Ä
b 0
0 −a

ä
;

(iii) N1 = ε
Ä

0 a
−b 0

ä
;

(iv) N1 = ε
Ä

0 b
−a 0

ä
, ε = ±1.

Proof. Since d = m = 0 and ab 6= 0, dividing (133) by 2ab and deleting

its square from (135), we obtain fgkl = 0. When g = 0, fl = −ab holds by

(133), and f = εb, l = −εa follows from (131) unless k = 0. However then

(130) implies k = 0, a contradiction. Thus we have g = k = 0. Similarly k = 0

implies g = 0, and (i) or (ii) follows from (130) and (133). When gk 6= 0,

f = l = 0 follows by a similar argument, and we obtain (iii) or (iv). �

Proposition 13.3. When a2 6= b2 and ab 6= 0, only Case (iv) N1 =Ä
0 b
−a 0

ä
is possible, and U2(t) is given by

U2(t) =

á
c 0 s 0

0 1 0 0

−s 0 c 0

0 0 0 1

ë
, c = cos t, s = sin t.
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Proof. Consider the case ε = 1. The case ε = −1 is similarly treated.

Recall Corollary 12.5, where U(t) =
(
U1(t) 0

0 U2(t)

)
, and Zi(t) = U2(t)Zi(0)

holds for i = 1, 2. The eigenvectors of S(t) = cos tD + sin tN = U2(t)DtU2(t)

for eigenvalues a,−a, b,−b are given by vi(t) = U2(t)vi, where

(137) v1 = Z1 + Z2, v2 = Z1 − Z2, v3 = Z1̄ + Z2̄, v4 = Z1̄ − Z2̄

are eigenvectors of D, Zi = Zi(0). Conversely, we know U2(t) from v1(t), v2(t),

v3(t), v4(t). For instance, in Case (i), from S(t) =

Ç
0 ca sa 0
ca 0 0 −sb
sa 0 0 cb
0 −sb cb 0

å
, it is easy

to see

v1(t) =

á
1

c

s

0

ë
, v2(t) =

á
1

−c
−s
0

ë
, v3(t) =

á
0

−s
c

1

ë
, v4(t) =

á
0

−s
c

−1

ë
,

and U2(t) =

Ç
1 0 0 0
0 c −s 0
0 s c 0
0 0 0 1

å
follows. In this way, we conclude that

(i) When N1 =
Ä
a 0
0 −b
ä
, U2(t) =

Ç
1 0 0 0
0 c −s 0
0 s c 0
0 0 0 1

å
. Thus the odd vector Z1 is

parallel along c, a contradiction.

(ii) When N1 =
Ä
b 0
0 −a

ä
, U2(t) =

Ç
c 0 0 s
0 1 0 0
0 0 1 0
−s 0 0 c

å
. Thus the odd vector Z1̄ is

parallel along c, a contradiction.

(iii) When N1 =
Ä

0 a
−b 0

ä
, U2(t) =

Ç
1 0 0 0
0 c 0 −s
0 0 1 0
0 s 0 c

å
. Thus the odd vector Z1 is

parallel along c, a contradiction.

(iv) When N1 =
Ä

0 b
−a 0

ä
, we have

(138) U2(t) =

Ç
c 0 s 0
0 1 0 0
−s 0 c 0
0 0 0 1

å
.

In this case, we have no contradiction up to here. �

13.2. The case a2 = b2 6= 0. Now, we consider the case a2 = b2.

Proposition 13.4. a2 =b2 6= 0 implies case (iv) with a=εb, ε=±1.

Proof. The argument in the proof of Lemma 13.1 implies that we can

choose a suitable t0 so that d = 0 holds in (122). Taking p = p(t0) and putting

a = εb, ε = ±1, in (124) ∼ (129), we have

f2 + g2 + k2 + l2 +m2 = 2a2,(139)

a(f + εl)(k + εg) = 0,(140)

m(f2 − g2 + k2 − l2) = 0,(141)

−2εa2(fl + gk) + a2m2 = 2a4,(142)
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am(fk − gl) = 0,(143)

(fl − gk)2 = a4.(144)

When a 6= 0, from (139), and (142) divided by a2, it follows (f+εl)2+(g+εk)2

= 0, and we obtain f = −εl and g = −εk. Then from (139) and (144), it

follows

(145) f2 + g2 +m2/2 = a2 = ±(f2 − g2).

Thus we obtain g = m = 0 (and f2 = a2) or f = m = 0 (and g2 = a2).

When ε = 1, (i) ∼ (iv) of Lemma 13.2 with a = b follow just as before, and

S(t) = cos tD + sin tN = U2(t)DtU2(t) holds for each U2(t) given there. Then

we can apply the argument on evenness and oddness of the eigenvectors of S(t)

as in the proof of Proposition 13.3 to conclude that only Case (iv) is possible.

When a = −b, with respect to Z1(t), Z2(t), Z1̄(t) and −Z2̄(t), we may consider

a = b, and applying the same argument, we can show that only Case (iv) is

possible since the evenness and oddness of Zi(t) are not changed. �

Remark 13.5. The assumption ab 6= 0 is essential in the above argument.

In fact, when ab = 0, in particular, when a = b = 0, we have no information

on U2 since D = 0. Thus we need another argument (see Section 14.2).

13.3. Case (iv). We need a more detailed argument to eliminate Case (iv).

The following argument is independent of the choice of the signature of Z2̄,

and so we may consider a = b when a2 = b2. Recall (iv) occurs under the

assumption a(t)b(t) 6≡ 0.

Proposition 13.6. Let N be as in (iv) where we allow a = b. Then

a(t)b(t) ≡ 0 follows, and hence (iv) cannot occur.

Proof. When a(t)b(t) 6≡ 0, Z1(t) and Z1̄(t) are odd and Z2(t) and Z2̄(t) are

even vectors (Corollary 12.3). It is easy to see that S(t) = cos tD + sin tN =

U2(t)DtU2(t) holds for U2(t) in (138), and hence Z2(t) = U2(t)Z2 = Z2 is

parallel along c. Let W ′ be the orthogonal complement of Z2̄ in E(c)⊥, and put

W (t) = span{∇̄e3e6(t), ∇̄e3̄e6(t)} for fixed t. Then we have dimW ′ ∩W (t) ≥
3 + 2− 4 = 1 for each t. Since W (t) spans E(c)⊥, not all of W (t) is contained

in W ′, namely, there exists an interval I on which dimW ′∩W (t) = 1. On this

interval, e3(t) so that ∇⊥e3e6(t) ∈W ′ can be continuously defined.

Lemma 13.7. dimW ′∩W (t) = 1 holds for all t, and we have an analytic

field e3(t) ∈ D3(t) on c, satisfying ∇⊥e3e6(t) ∈W ′. If we put K = spant{e3(t)},
then all L(t) map K into W ′, and W = L(t)(K) is independent of t. In

particular, dimW = dimK − 1.
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Proof. Put K̃ = spant{e3(t) | ∇⊥e3e6(t) ∈ W ′}. For any τ , we can express

L(t) = cos tL(τ) + sin tLt(τ), and so L(τ)(e3(τ)) = 0 and Lt(τ)(e3(τ)) =

∇̄e3e6(τ) (see (37)) imply

L(t)(e3(τ)) = (cos tL(τ) + sin tLt(τ))(e3(τ)) = sin t∇̄e3e6(τ),

of which direction is independent of t. Therefore,

W̃ = L(t)(K̃) = span{∇̄e3e6(τ) | e3(τ) ∈ K̃} ⊂W ′

is independent of t. Suppose dim W̃ = dim K̃−2. Then K̃ contains all kerL(t),

namely, W̃ = E(c)⊥, contradicting W̃ ⊂ W ′. Thus dim W̃ = dim K̃ − 1. This

means dimW ′ ∩W (t) = 1 for all t, and we have I = [0, 2π). Thus K̃ = K and

W̃ = W hold, and the lemma is proved. �

Corollary 13.8. K is orthogonal to X2̄(t) for each t. In particular,

dimK ≤ 5.

Proof. If a vector v in K has nonzero X2̄(t1) component (and thus not a

kernel vector of L(t1)) for some t1, then L(t1)(v) has nonzero Z2̄ component,

a contradiction. �

Lemma 13.9. dimK 6= 4, 5.

Proof. Since K is orthogonal to X2̄(τ) for any fixed τ , dimK = 5 implies

both e3(τ), e3̄(τ) belong to K, which contradicts Lemma 13.7. If dimK = 4,

then dimW = 3 follows, and we can express W = span{Z1(t), Z1̄(t), Z2} for

each t. Thus K contains e3(t), X1(t), X1̄(t), X2(t), and hence K = span{e3(t),

X1(t), X1̄(t), X2(t)} holds for each t. Then the orthogonal complement of K in

E(c) is given by K⊥ = spant{e3̄(t), X2̄(t)} for each t, which is parallel along c.

However, then spant{e3̄(t)} ⊂ K⊥ is of dimension at most 2, contradicting

Lemma 8.4 and Proposition 8.5. �

Lemma 13.10. dimK 6= 3.

Proof. When dimK = 3, W (⊂ W ′) is of dimension 2, and it contains a

vector in span{Z1(t), Z1̄(t)} by the dimension count. Since (138) implies

Z1(t) = cos tZ1(0)− sin tZ1̄(0), Z1̄(t) = sin tZ1(0) + cos tZ1̄(0),

W = span{Z1(t), Z1̄(t)} follows. Then K = span{e3(t), X1(t), X1̄(t)} holds for

each t. Therefore, e3̄(t) is orthogonal to K, in particular, orthogonal to e3(p),

and hence we have

span{e3̄(t)} = K⊥ = span{e3̄(t1), X2(t1), X2̄(t1)}

for any t1 (see Section 8). Thus Lemma 8.2 implies

(146) dimL(t)(K⊥) = 2.
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On the other hand, c0∇e6Xi = H(0)Xi holds for i = 1, 2, and we have

〈H(0)X1, X2〉 = 0

since K and K⊥ are parallel. Then we can express

J1 =

Ö
H0 X Y

−tX 0 Z

−tY −tZ 0

è
, Z =

Ç
z1 0

0 z2

å
,

and because He3 ∈ K and He3̄ ∈ K⊥ hold, we can put

(147) X =

Ç
x1 0

0 x2

å
, Y =

Ç
y1 0

0 y2

å
,

where (x1, y1), (x2, y2) 6= (0, 0). Recall from (138) and H(0) = Ut(0) that

J2 =

Ç
0 V

−tV 0

å
, V =

Ç
1 0

0 0

å
.

Therefore, from (121), we have

M = J1A−AJ2(148)

=

Ö
H0 X Y

−tX 0 Z

−tY −tZ 0

èÖ
0 0

A1 0

0 A2

è
−

Ö
0 0

A1 0

0 A2

èÇ
0 V

−tV 0

å
=

Ö
XA1 Y A2

0 ZA2 −A1V

−tZA1 +A2
tV 0

è

=



x1
√
σ 0 y1

√
τ 0

0 x2/
√
σ 0 y2/

√
τ

0 0 z1
√
τ −
√
σ 0

0 0 0 z2/
√
τ

−
√
σz1 +

√
τ 0 0 0

0 −z2/
√
σ 0 0


.

On the other hand, from Bζ = UBη
tU where U = U(π/2) =

Ä
U1 0
0 U2

ä
, and

M = U1A
tU2 where U2 =

Ç
0 0 1 0
0 1 0 0
−1 0 0 0
0 0 0 1

å
, we have, putting A =

Ä
a1 a2 a4 a4

ä
and M =

Ä
m1 m2 m3 m4

ä
,

m1 = −U1a3, m2 = U1a2, m3 = U1a1, m4 = U1a4.

In particular, 〈mi,mj〉 = 0 holds for i 6= j. Then from (148), we obtain

x1y1 = 0, x2y2 = 0,
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and either

(1) X = 0,

(2) Y = 0,

(3) (X Y ) =
Ä
x1 0 0 0
0 0 0 y2

ä
, or

(4)
Ä

0 0 y1 0
0 x2 0 0

ä
occurs. Since these are mutually exclusive cases, only one of the cases occurs

on c where we may apply the argument at any p(t). In Cases (1) and (3),

H(t)e3̄(t) = c0∇e6e3̄(t) is in the direction of X2̄(t), and hence ∇̄e3̄e6(t) is in

the direction of Z2̄ that is parallel, contradicting (146). In Cases (2) and (4),

H(t)e3̄(t) is in the direction of X2(t), and hence ∇̄e3̄e6(t) is in the direction of

Z2 that is parallel, a contradiction. Thus dimK 6= 3 follows. Since dimK 6= 2

by Lemma 8.4, we have a contradiction caused by a(t)b(t) 6≡ 0. �

As a summary, we conclude

Theorem 13.11. When dimE(c) = 6, any shape operator
Ä

0 R
tR S

ä
satis-

fies either one of the following, where T = tRR:

(I) T =
(

3I2 0
0 1

3
I2

)
and S = 04.

(II) T =
Ä
T1

T2

ä
, T2 =

(
3

1
3

)
and S =

Ä
S1

0

ä
.

Proof. By Proposition 13.6, we obtain ab ≡ 0. When a = b = 0, T =Ä
3I2

1/3I2

ä
follows. When a 6= 0 and b = 0, for instance, (II) occurs. (Thus

Case (0) in Lemma 9.3 cannot occur). �

14. Investigation of the remaining cases

14.1. Case (II). We investigate Case (II) first.

Proposition 14.1. Case (II) does not occur.

Proof. Note that we cannot apply the argument in Section 12 as we are

dealing with the case ab = 0. However, we can use the argument in Section 11.

First, we have

T (0) = tAA =

Ç
T1

T2

å
, T2 =

Ç
3

1/3

å
, D =

Ç
D1 0

0 0

å
,

where rank D = 2. Similarly, we have rank S(t) = 2, where S(t) = cos tD +

sin tN . Therefore, N should be of the form N =
Ä
N1 0
0 0

ä
, and we have a

parallel decomposition E(c)⊥ = W1⊕W2, where W2 is spanned by eigenvectors

Z1̄(t), Z2̄(t) of T (t) for eigenvalues 3 and 1/3.

Next, we can take eigenvectors Z1(t), Z2(t) for σ(t) and 1/σ(t) continu-

ously along c, even where σ(t0) = 1, so that S1(t) =
(

0 a(t)
a(t) 0

)
holds with

respect to this moving frame. We have L(π) = −L(0) from L(t) = cos tBη +
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sin tBζ and T (π) = T (0) from T (t) = tR(t)R(t). The latter implies σ = σ(π) =

σ(0). As an eigenvector of T1(0) for σ, Z1(π) is parallel to Z1(0). Then fromL(π)(X1(π)) =
√
σZ1(π),

L(0)(X1(0)) =
√
σZ1(0),

we have

X1(π) = εX1(0), Z1(π) = −εZ1(0), ε = ±1.

Similarly from L(π)(X2(π)) = 1/
√
σZ2(π),

L(0)(X2(0)) = 1/
√
σZ2(0),

when αβ 6≡ 0, equivalently, a(t) 6≡ 0, we have

X2(π) = −εX2(0), Z2(π) = εZ2(0),

where we use ei(π) ∈ D6−i(0) by the global correspondence in (91) and (92).

However, since W1 is parallel along c and the pair Z1(t), Z2(t) is a continuous

orthonormal frame of W1, this contradicts the fact that a continuous frame

preserves the orientation. Therefore, αβ ≡ 0, namely a(t) ≡ 0, follows, a

contradiction. �

14.2. Case (I): Autoparallel distribution. To eliminate Case (I), we need

an argument using both M+ and M−. In this case, using a frame at a point

p ∈ c, we can express (see (101))

E(c) = D3 ⊕ span{e1 + e5, e1̄ + e5̄, e2 + e4, e2̄ + e4̄},(149)

E(c)⊥ = span{e1 − e5, e1̄ − e5̄, e2 − e4, e2̄ − e4̄}.

From these, we easily see B31 = −B35 and B32 = −B34. Moreover, B15 and

B24 are skew because 〈Bζ(e1 +e5), e1̄ +e5̄〉 = 0, etc. Recall Bζ = (Bij) depends

on ζ = e6 ∈ T⊥M+
∼= G+ (see Section 7).

Lemma 14.2. In Case (I), B31 = 0 or B32 = 0 does not occur for generic

e6 ∈ G+.

Proof. First, suppose B23 = B34 = 0 occurs on an open subset of G+;

namely,

Λ
2
36 = 0 = Λ

4
36.

Then this holds over all G+ by the analyticity. Thus by the global symmetry

in Section 4, we have

(150) B14 = B25 = 0.



ISOPARAMETRIC HYPERSURFACES WITH (g,m) = (6, 2) 101

In the following, we use the Gauss equation [i.j], and so we need an admissible

frame. From 〈∇e6(e1 + e5), e1̄ − e5̄〉 = 0, we obtain

0 = Λ1̄
61 − Λ5̄

65 − Λ5̄
61 + Λ1̄

65 = Λ1̄
61 − Λ5̄

65 − Λ5̄
61 − Λ5

61̄ = Λ1̄
61 − Λ5̄

65,

where the last equality follows since B15 is skew, where b15, etc., is related to

Λ5
61 by (9). Thus e1(t), e1̄(t) ∈ D1(t) is admissible if and only if e5(t), e5̄(t) ∈

D5(t) is admissible in our pair e1 + e5, e1̄ + e5̄. Similarly, e2(t), e2̄(t) ∈ D2(t)

is admissible if and only if e4(t), e4̄(t) ∈ D4(t) is admissible. Thus taking an

admissible ei(t), eī(t) ∈ Di(t), we obtain an admissible frame compatible with

the expression of (149).

Now from [1.4] and [2.5], we obtain B15B54 = B15B12 = 0. Since B15 is

skew, rank B15 = 0 or 2. In the latter case, we have B12 = B54 = 0. However,

this means

〈∇e6(e1 + e5), e2〉 = 0 = 〈∇e6(e1 + e5), e4〉,
which holds everywhere. Then D3 ⊕ span{e1 + e5, e1̄ + e5̄} is parallel, which

implies dimE(c) = 4, a contradiction. Thus B15 = 0 follows. In this case,

from [2.3] it follows

B21B13 = 0.

If rank B13 < 2, we may choose e1, e1̄ and e3, e3̄ so that B31 = ( ∗ 0
0 0 ) = −B35,

namely, e3̄ is parallel along c, contradicting Proposition 8.5. Thus we obtain

B12 = 0, which implies B54 = 0 by the global symmetry, but this cannot occur

as before.

Next, suppose B31 = B35 = 0 occurs in a neighborhood of G+, which

implies

(151) Λ
1
63 = 0 = Λ

5
63.

Now consider M−, of which shape operators we now denote by

Cζ = (Cij)2≤i,j≤6, ζ = e1(p)

with respect to D2(p)⊕D3(p)⊕D4(p)⊕D5(p)⊕D6(p). From (151), it follows

by the global symmetry that

0 = Λ
1
25 = Λ

5
41 = Λ

3
41.

Hence, we have

Cζ =

â
0 C23 C24 0 C26

C32 0 0 C35 0

C42 0 0 0 C46

0 C53 0 0 C56

C62 0 C42 C65 0

ì
.

This corresponds to the case when B32 = B34 = 0 on M+, where the Gauss

equations [i.j] holds if we replace Bij by Ci+1 j+1, because the eigenspaces
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of Cη (η = − sin θ1p+ cos θ1ξp) for eigenvectors
√

3, 1/
√

3, 0,−1/
√

3,−
√

3 are

shifted to D2(p), D3(p), D4(p), D5(p), D6(p), respectively; see (20). Therefore,

a similar argument as before implies a contradiction. �

Proposition 14.3. When Case (I) occurs, E(c) is independent of c, and

so is F (γ) of γ. Let p = p1 and q = p3 in Figure 1. Then with respect to the

basis at p = p1, we have

(152) F (γ) = D6(p)⊕ E(c)⊥, E(c) = F (γ)⊥ ⊕D3(p).

Proof. It is sufficient to show E(c) = E(cs) for any geodesic cs through

p in the direction es6 = cos se6 + sin se6̄. In fact, then for any geodesic c′ not

through p, a point p′ ∈ c′ lies on some cs, and so D3(p′) ⊂ E(cs) = E(c), and

dimE(c′) = 6 implies E(c′) = E(c).

For generic e3 ∈ D3(p), by Lemma 14.2 we may express

(153) ∇e3e6(p) = u(e1 − e5) + v(e2 − e4), uv 6= 0,

where we use ei = ei(p). Because ∇e3e6(p) = ∇e1e4(q) holds up to a scalar

multiple, denoting by γ the geodesic of L1(q) through q in the direction e1(q) =

e3(p), we obtain ∇e3e6(p) ∈ F (γ). Since only Case (I) is possible for M− too,

using the frame ei at p (not q), we can express

F (γ) = D6(p)⊕ span{e1 − e5, e2 − e4, e1̄ − ε1e5̄, e2̄ − ε2e4̄},

where εi = ±1. Next, for any es6, s 6= 0 modulo π, ∇e3es6(p), identified with

∇e1es4(q), belongs to F (γ). If this has e1̄ − ε1e5̄, e2̄ − ε2e4̄ components, ∇es6e3

has e1̄ + ε1e5̄, e2̄ + ε2e4̄ components, which belong to E(cs). As s tends to 0,

E(cs) tends to E(c), and by continuity, we have εi = 1. Thus, when ∇e3es6 has

eī components, e1̄ + e5̄, e2̄ + e4̄ belong to E(cs), and

F (γ) = D6(p)⊕ span{e1 − e5, e2 − e4, e1̄ − e5̄, e2̄ − e4̄}

= D6(p)⊕ E(c)⊥

follows. Then two elements of E(cs) orthogonal to D3(p) and e1̄ + e5̄, e2̄ + e4̄

are given by e1 + ε1e5, e2 + ε2e4, and εi = 1 follows by continuity as before,

and E(cs) does not depend on s.

On the other hand, when ∇e3es6 has no eī(p) components, namely, belong

to span{e1 − e5, e2 − e4}, ∇es6e3(p) ∈ span{e1 + e5, e2 + e4} follows, and

E(cs) = D3(p)⊕ span{e1 + e5, e2 + e4, e1̄ + ε1e5̄, e2̄ + ε2e4̄},

where εi = ±1. Again, as E(cs) tends to E(c), we have εi = 1 by continuity.

Thus we conclude that E(c) is independent of c. Then ∇e3es6 ∈ F (γ) implies

F (γ) = D6(p)⊕ E(c)⊥. �

By Proposition 14.3, E(c) depends only on p̄ ∈M+, and we express it as

E(p̄). Now we prove
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Proposition 14.4. Case (I) does not occur.

For the proof, define a distribution Ẽ on M by

Ẽ(p) = E(p̄), p ∈M ;

namely, for p ∈ f−1
6 (p̄), Ẽ(p) is the parallel transport of E(p̄) along the normal

geodesic at p of M with respect to the connection of S13. Similarly, we define

a distribution F̃ on M by F̃ (q) = F (q̄), q ∈M .

Lemma 14.5. E(p̄) = F̃ (q̄)⊥ is parallel in the direction D6(p) and D3(p).

Proof. E(p̄) = E(c) is parallel along c, i.e., in the direction of D6(p).

Moreover, E(p̄)⊥ = F (γ) = F (q̄) is parallel along D1(q) = D3(p), and the

lemma follows. �

Proof of Proposition 14.4. Now, we may express E(p̄) = span{D3(xj) |
x1, . . . , xk ∈ L6(p)}, where k ≥ 3. In fact, E(p̄) = D3(x1) + D3(x2) + D3(x3)

holds if (D(x1) +D3(x2)) ∩ D3(x3) = {0}. At worst, we can find k finite.

Then, a vector X ∈ Ẽ(p) is expressed as

X =
k∑
j=1

(uje3(xj) + vje3̄(xj)).

Since x̄j = f(xj) = p̄, E(x̄j) is identified with Ẽ(p). Moreover, since E(x̄j) is

parallel in the direction D3(xj) by Lemma 14.5, for any Y ∈ Ẽ(p),

∇XY =
1

c2

∑
(uj∇̄e3(xj)Y + vj∇̄e3̄(xj)Y )

belongs to spanj{E(x̄j)} = Ẽ(p). Thus Ẽ is autoparallel, by which we mean

∇XY ∈ Ẽ for any X,Y ∈ Ẽ with respect to the connection of M . In other

words, Ẽ is a totally geodesic distribution on M . On the other hand, with

respect to the connection ∇̃ of S13, we have

∇̃XY = ∇XY + h(X,Y )ξp,

where ξp is the unit normal of M at p, and h( , )ξp is the second fundamental

tensor of M in S13. In particular, for e3 ∈ D3(x), x ∈ L6(p), we have

∇̃e3e3 = λ3ξx,

where we use (3) and (11). Here, Ẽ(p) contains six independent e3(xj), xj ∈
L6(p), and so all the eigenvalues of the shape operators h( , ) of a leaf L of Ẽ

are λ3, and Ẽ is totally umbilic in S13. Hence, L is a 6-sphere S6, which is

totally geodesic in M . Now the same is true for F̃ , and we obtain M = S6×S6,

which is an isoparametric hypersurface in S13 with two principal curvatures,

contradicting our assumption. �
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Finally, we obtain

Theorem 14.6. The focal submanifolds of an isoparametric hypersurface

with (g,m) = (6, 2) have the shape operators Bn whose kernel does not depend

on n.

15. Homogeneity

In this section, we prove Theorem 1.1. The shape operators of M+ have

the invariant kernel, and so

(154) Λ
j

63 = 0, j = 1, 2, 3, 4, 5

holds over all M . Then by the global correspondence, we have

(155) Λ
j

14 = 0, Λ
j

25 = 0.

Note that the former implies that the kernel of the shape operators CN of M−
is also independent of N . By (155), for the shape operator BN of M+, we have

(156) BN =

â
0 B12 0 0 B15

B21 0 0 B24 0

0 0 0 0 0

0 B42 0 0 B45

B51 0 0 B54 0

ì
for any N = cos tζ + sin sζ̄, where we use the expression with respect to the

frame e1, e1̄, . . . , e5, e5̄ at p as in Lemma 2.3. Here, we may choose an admissible

frame, with respect to which the Gauss equation [i.j] holds in each direction

e6 ∈ D6(p).

Proposition 15.1. Either B12 = B45 = 0, or B15 = 0 occurs.

For the proof, note that in (33), e6(Bij) vanishes for i = j, i = 3, j = 3,

(i, j) = (1, 4) and (i, j) = (2, 5). Using these, we rewrite some of the Gauss

equation [i.j]:

[1.1]
√

3I = 2(
√

3
2 B12B21 + 1

2
√

3
B15B51),

[2.2] 1√
3
I = 2(−

√
3

2 B21B12 +
√

3
2 B24B42),

[4.4] − 1√
3
I = 2(−

√
3

2 B42B24 +
√

3
2 B45B54),

[5.5] −
√

3I = −2( 1
2
√

3
B51B15 +

√
3

2 B54B45),

[1.4] 0 = 2√
3
B15B54,

[2.5] 0 = − 2√
3
B21B15.

Obviously, rankBij is independent of the choice of the frame of Di(p)

and Dj(p). Here, Bij depends on e6 ∈ D6, and we denote it by Bij(e6). By

[1.4], [2.5], and because rank Bζ = 8, rankB15(e6) = 2 holds if and only
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if B12(e6) = B45(e6) = 0. Since the former is an open, and the latter is a

closed condition, rankB15(e6) = 2 holds for all e6 ∈ D6, or never holds on D6.

Similarly, B15 = 0 holds or never holds on D6, and rankB15 = 1 holds or never

holds on D6. Therefore, rankB15 is either 0, 1 or 2 over all D6 at all p ∈ M .

In more detail, we have the following.

Lemma 15.2. For any N = cos sζ + sin sζ̄ and BN =
Ä
Bij
ä
, rankBij is

independent of s. Moreover, choosing a suitable basis of Di for each s, we have

one of the following :

(i) B15 =
√

3J , B12 = B45 = 0 and B24 = 1/
√

3J , where J =
(

0 −1
1 0

)
;

(ii) B15 = 0 and B12 = J , B24 = −(2/
√

3)J , and B45 = J ;

(iii) B15 =
Ä√

3 0
0 0

ä
, B45 = ( 0 0

0 1 ) , B12 = ( 0 0
0 1 ),

B24 =

Å
ε/
√

3 0

0 2ε′/
√

3

ã
, ε, ε′ = ±1.

Proof. (i) When B15 is of rank 2, choose e5 parallel with ∇e6e1̄ so that

B15 = ( u v
w 0 ) holds. Then from [1.1], we have

3I = B15B51 =

Ç
u2 + v2 uw

uw w2

å
,

and hence u = 0 follows. Therefore, we can express B15 =
√

3J . Similarly,

choosing e4 parallel with ∇e6e2̄, we obtain (i) by [2.2].

(ii) When B15 = 0, we may put B12 = J by [1.1], choosing e2 parallel with

∇e6e1̄. In view of [2.2], this implies B24 = − 2√
3
J , with respect to a suitable

basis of D4. Then from [4.4] and [5.5], we may consider B45 = J by a suitable

choice of a basis of D5.

(iii) When rankB15 = 1, taking a suitable basis of D1(p) and D5(p), we

may assume B15 = ( a 0
0 0 ). Then choosing e4̄ parallel with the D4 component of

∇e6e5̄, we have B54 =
Ä
b1 b2
0 b

ä
. Substituting this into [1.4], we have b1 = b2 =

0. Moreover, choosing e2̄ parallel with the D2 component of ∇e6e1̄, we have

B12 = ( c1 c20 c ). Then [2.5] implies c1 = c2 = 0. From [1.1] and [5.5], we obtain

a2 = 3, b2 = c2 = 1. Now put B24 = ( x y
z w ). Since it follows from [2.2] and [4.4]

that

B24B42 = B42B24 =

Ç
1
3 0

0 4
3

å
.

we obtain 
x2 + y2 = x2 + z2 = 1

3 ,

y2 + w2 = z2 + w2 = 4
3 ,

xz + yw = 0,

xy + zw = 0,
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and solving these, we have

B24 =

( ε√
3

0

0 2ε′√
3

)
, ε, ε′ = ±1. �

Proof of Proposition 15.1.We show the mixed case (iii) in the above lemma

does not occur. To investigate Bζ̄ , using (9), we calculate

0 = R1̄66̄1̄ = Λ
i
1̄6̄

Λ1̄
6i − Λ

i
1̄6

Λ1̄
6̄i − Λ

i
1̄6

Λ1̄
i6̄ + Λ

i
61̄

Λ1̄
i6̄ = Λ

i
1̄6

Λ
i
6̄1̄
,

where the repetition of i means taking sum over i and ī. Thus, we have

Λ
2
1̄6

Λ
2
6̄1̄

+ Λ
5
1̄6

Λ
5
6̄1̄

= 0.

Then from Λ2̄
1̄6 6= 0 and Λ

5
1̄6

= 0, we have

(157) Λ2̄
1̄6̄ = 0.

Next, from 0 = R2̄66̄2̄ = c′Λ4̄
2̄6Λ4̄

6̄2̄, it follows Λ4̄
2̄6̄ = 0, and from 0 = R266̄2 =

cΛ4
26Λ4

6̄2, it follows Λ4
26̄ = 0. Thus we may put B̄24 =

(
0 k
l 0

)
, where kl 6= 0

since rank B̄24 = 2 follows from Lemma 15.2. On the other hand, since

rank(cos sB12 + sin sB̄12) = 1 holds for any s, Λ2
16̄ must vanish, and using

(157), we may put B̄12 = ( 0 m
n 0 ), where mn = 0. On the other hand, from

0 = R1̄66̄4 = −Λ
k
1̄6̄

Λ4
6k − Λ

k
1̄6

Λ4
k6̄

λ1 − λ6

λ1 − λk
= −Λ2

1̄6̄Λ4
62 − Λ2̄

1̄6Λ4
2̄6̄

λ1 − λ6

λ1 − λ2
,

n 6= 0 follows from l 6= 0, and we obtain m = 0. Therefore, we have

(158)

B12 = c

Ö
Λ2

16 Λ2̄
16

Λ2
1̄6 Λ2̄

1̄6

è
=

Ç
0 0

0 1

å
, B̄12 = c

Ö
Λ2

16̄ Λ2̄
16̄

Λ2
1̄6̄ Λ2̄

1̄6̄

è
=

Ç
0 0

n 0

å
.

Next, consider the shape operators CN of M−. We denote C = Ce1 =
Ä
Cij
ä

and C̄ = Ce1̄ =
Ä
C̄ij
ä
, with respect to the decomposition TM− = D2⊕· · ·⊕D6.

Then by (158), C26 and C̄26 are given by

C26 = c′

Ö
Λ6

21 Λ6̄
21

Λ6
2̄1 Λ6̄

2̄1

è
= 0, C̄26 = c′

Ö
Λ6

21̄ Λ6̄
21̄

Λ6
2̄1̄ Λ6̄

2̄1̄

è
6= 0.

However, this contradicts that rank(cos sC26 + sin sC̄26) is independent of s,

which follows from Lemma 15.2 applied to M−. Thus we obtain Proposi-

tion 15.1. �
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Proof of Theorem 1.1. In Case (i), with respect to a suitable basis, we have

(159)

Bζ =


0 0 0 0

√
3J

0 0 0 1√
3
J 0

0 0 0 0 0

0 − 1√
3
J 0 0 0

−
√

3J 0 0 0 0

 , Bζ̄ =


0 0 0 0

√
3I

0 0 0 1√
3
I 0

0 0 0 0 0

0 1√
3
I 0 0 0√

3I 0 0 0 0

,

using rankBij =rank B̄ij , applying the Gauss equation, and using that cos sBζ
+ sin sBζ̄ is isospectral. Next we show

(160) C =


0 J 0 0 0

−J 0 0 − 2√
3
J 0

0 0 0 0 0

0 2√
3
J 0 0 J

0 0 0 −J 0

 , C̄ =


0 −I 0 0 0

−I 0 0 2√
3
I 0

0 0 0 0 0

0 2√
3
I 0 0 −I

0 0 0 −I 0

 .

Because of C26 = C̄26 = 0, C or C̄ is of type (ii) in Lemma 15.2, where Bij
corresponds to Ci+1 j+1. Moreover, since

C56 =
1

sin θ1(λ5 − λ1)

Ç
0 Λ6̄

51

Λ6
5̄1 0

å
, C̄56 =

1

sin θ1(λ5 − λ1)

Ç
Λ6

51̄ 0

0 Λ6̄
5̄1̄

å
,

C56 = J follows. Then, it is not difficult to show (160), by using Ri66̄j as well

as the global correspondence, with respect to our frame ei(p).

Next, to show that M is homogeneous, consider those Λ
k
ij that do not ap-

pear above. Though they are those without indices 1 and 6, we can determine

these by the global correspondence in Section 4. Namely, Λ
5
23 = 0 and Λ

5
24 = 0

follow from (155), Λ
4
23 = 0 follows from Λ

4
65 = 0, and Λ

5
34 is determined by Λ

5
16.

In this way, all the structure coefficients are determined from the coefficients

of the shape operators of the focal submanifolds M± and turn out to be locally

constant.

In Case (ii), we can exchange M+ with M− and apply the same argument

to determine all Λ
k
ij . Thus in both cases, we have a local frame with respect

to which all the structure coefficients are constant.

Now recall Singer’s strongly curvature-homogeneous theorem. By defini-

tion ([KN69, p. 357]), a Riemannian manifold X is strongly curvature-homo-

geneous if, for any two points x, y ∈ X, there is a linear isomorphism of

TxX onto TyX that maps gx (the metric at x) and (∇kR)x (higher covariant

derivatives of the curvature tensor R), k = 0, 1, 2, . . . upon gy and (∇kR)y,

k = 0, 1, 2, . . . .
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Theorem 15.3 ([Sin60], [Nom62], [KN69, Th. 2, p. 357]). If a connected

Riemannian manifold X is strongly curvature-homogeneous, then it is locally

homogeneous. Moreover, if M is complete and simply connected, it is homo-

geneous.

In our case, the local frame ei defines an isometry between TpM and TqM ,

and since Λγαβ are locally constant, components of (∇kR)x are given by poly-

nomials in Λγαβ (see (5)), and so are all locally constant. Moreover, since M is

complete and simply connected, where the latter holds since M is an iterated

S2 bundle over S2, applying Theorem 15.3, we know that M is intrinsically ho-

mogeneous. Finally by using the rigidity theorem of hypersurfaces with type

number larger than two [KN69, p. 45], we conclude that M is extrinsically

homogeneous. �

In [Miy11], we calculate all the structure constants of the G2 orbits, which

coincide with those calculated above, and corroborate the proof.
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