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Addendum to:
Subelliptic SpinC Dirac operators, III

By Charles L. Epstein

Abstract

We prove the relative index conjecture, which in turn implies that the

set of embeddable deformations of a strictly pseudoconvex CR-structure on

a compact 3-manifold is closed in the C∞-topology.

1. Proof of the Relative Index Conjecture

Let Y denote an oriented, compact, 3-dimensional manifold, with H ⊂ TY
a plane field, defining a contact structure. A strictly pseudoconvex CR-struc-

ture on Y is defined by a complex structure on the fibers of H, which we can

represent as the bundle of −i-eigenspaces, denoted T 0,1
b Y. The CR-structure,

in turn, defines a differential operator,

(1) ∂̄bf = df �
T 0,1
b

Y
.

The space of CR-functions on Y is the null-space of ∂̄b. A Szegő projector is

an L2-orthogonal projection onto the L2-closure of the ker ∂̄b, defined by the

choice of a smooth, nondegenerate density on Y. None of our results depend

upon the choice of this density.

A CR-structure is embeddable, or fillable if the ker ∂̄b contains sufficiently

many functions to embed Y into CN for some N. This is equivalent to the

requirement that the CR-manifold (Y, T 0,1
b Y ) arises as the boundary of a com-

pact normal Stein space; see pp. 4 and 5 of [2].

Recall that the deformations of a reference CR-structure, 0T 0,1
b Y, on (Y,H)

are parametrized by

(2) Def(Y,H,S0) = {Φ ∈ C∞(Y ; Hom(0T 0,1
b Y, 0T 1,0

b Y )) : ‖Φ‖L∞ < 1}

via the prescription

(3) ΦT 0,1
b,y Y = {Zy + Φy(Zy) : Zy ∈ 0T 0,1

b,y Y }.
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Here and in the sequel we often use the Szegő projector (instead of Φ) to label

a CR-structure. From now on we assume that the reference CR-structure, with

Szegő projector S0, is fillable.

Let E ⊂ Def(Y,H,S0) be the subset consisting of the fillable deformations.

In Theorem A of [2], [3] we showed that if S0 is the Szegő projector defined

by the (fillable) reference CR-structure and S1 that defined by a deformation,

then the deformed structure is fillable if and only if the restriction

(4) S1 : ImS0 −→ ImS1

is a Fredholm operator. Let R-Ind(S0,S1) denote its Fredholm index, which

we call the relative index. For each m ∈ N ∪ {0} and any δ > 0, let

(5) Sδ
m =

{
S1 ∈ Def(Y,H,S0) : −∞ < R-Ind(S0,S1) ≤ m

and ‖Φ‖2L∞ ≤
1

2
− δ

}
.

Proposition 10.1 in [2] shows that there is an integer k0, so that if a sequence

〈Φn〉 ⊂ Sδ
m converges to Φ in the Ck0-norm, then the structure defined by Φ

is fillable.

In this addendum to [5], we show how the formula for the relative index

between the Szegő projectors S0,S1, defined by two fillable CR-structures on

a contact 3-manifold (Y,H), gives a proof of the Relative Index Conjecture.

Theorem 1. Let (Y,H) be a compact 3-dimensional co-oriented, contact

manifold, and let S0 be the Szegő projector defined by an fillable CR-structure

on Y, with underlying plane field H. There is a nonnegative integer M such that

for the Szegő projector S1 defined by any fillable deformation of the reference

structure, with underlying plane field, H, we have the upper bound

(6) R-Ind(S0,S1) ≤M.

Combining (6) with Proposition 10.1 of [2] we prove

Corollary 1. Under the hypotheses of Theorem 1, the set of fillable

deformations of the CR-structure on Y is closed in the C∞-topology.

Proof of the corollary. Suppose that 〈Φn〉 is a sequence of fillable deforma-

tions in E ⊂ Def(Y,H,S0) converging to Φ ∈ Def(Y,H,S0), in the C∞-topology.

Recall that, by definition, ‖Φ‖L∞ < 1.

Let Ψ1 and Ψ2 be deformations of the reference structure, with local

representations

(7) Ψj = ψjZ ⊗ ω̄,

where Z locally spans 0T 1,0
b Y and ω̄ is the (0, 1)-form dual to Z; see page 12

in [2]. The analogous local coordinate representation of Ψ2 as a deformation
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of Ψ1 is given by

(8) ψ21 =
ψ2 − ψ1

1− ψ1ψ2
;

see equation (5.5) in [2]. We can represent Φ as a deformation of any of the

structures in the sequence. From equation (8) it is clear that there is an integer

N so that, as deformations of ΦN , a tail of the sequence and its limit lie in the

L∞-ball in Def(Y,H,SN ), centered at 0, of radius 1
4 . Theorem 1 shows that

there is an M so that

(9) R-Ind(SN ,Sn) ≤M for all n ∈ N.

Proposition 10.1 from [2] then implies that the limiting structure Φ is also

fillable, completing the proof of the corollary. �

Before proving Theorem 1 we recall the formula for the relative index,

which is Theorem 13 in [5]. This formula involves topological and analytic

invariants, which we now define, of the complex manifolds that fill the pair

of CR-structures. Let X be a 4-dimensional manifold with boundary, and let“H2(X) denote the image of H2(X, bX) in H2(X) under the natural map. The

signature of the nondegenerate quadratic form on “H2(X), defined by

(10) ([α], [β]) 7→
∫
X
α ∧ β,

is denoted sig[X], and χ[X] is the topological Euler characteristic

(11) χ[X] =
4∑
j=0

bj(X)(−1)j , where bj(X) = dimHj(X;Q).

The final element needed for the proof of Theorem 1 is the relative index

formula itself.

Theorem 2. Let (Y,H) be a compact 3-dimensional co-oriented, contact

manifold, and let S0,S1 be Szegő projectors for fillable CR-structures with un-

derlying plane field H. Suppose that (X0, J0), (X1, J1) are strictly pseudoconvex

complex manifolds with boundary (Y,H,S0), (Y,H,S1), respectively. Then

R-Ind(S0,S1) = dimH0,1(X0, J0)− dimH0,1(X1, J1)(12)

+
sig[X0]− sig[X1] + χ[X0]− χ[X1]

4
.

If (Y, T 0,1
b Y ) is fillable, then the normal Stein space, X, that it bounds is

unique. By the definition of a normal singularity, the algebra of CR-functions

on (Y, T 0,1
b Y ) is isomorphic to the algebra of holomorphic functions on X.

If “X is obtained from X by resolving the singularities, then the algebras of

holomorphic functions on X and “X are isomorphic, and therefore the Szegő
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projector defined by this CR-structure is the projection onto the boundary

values of holomorphic functions on X, or any resolution of X.

Proof of Theorem 1. Recall that S0,S1 are Szegő projectors defined by fil-

lable CR-structures on (Y,H). We let X0 and X1 denote complex manifolds

with strictly pseudoconvex boundaries, obtained as the minimal resolutions

of the normal Stein spaces bounded by (Y,S0) and (Y,S1) respectively. In

Theorem 2′ of [1], Bogomolov and De Oliveira prove that there are small per-

turbations of the complex structures on X0 and X1 making them into Stein

manifolds. Hence it follows that X0 and X1, with the deformed complex struc-

tures, have strictly plurisubharmonic exhaustion functions. Therefore both X0

and X1 have the homotopy type of 2-dimensional CW-complexes. This implies

that the Betti numbers b3(Xi) and b4(Xi) are zero.

The long exact sequence of the pair (Xi, bXi) in homology, reads, in part

(13) · · · −→ H1(bXi) −→ H1(Xi) −→ H1(Xi, bXi) −→ · · · .

Poincaré-Lefschetz duality states that H1(Xi, bXi) ' H3(Xi), for i = 0, 1. As

X0 and X1 have the homotopy type of 2-complexes, and the singular cohomol-

ogy groups are homotopy invariant, it follows that H3(Xi) = 0, and therefore,

as bXi = Y,

(14) dimH1(Xi) ≤ dimH1(Y ), for i = 0, 1;

see also page 328 in [9]. Poincaré-Lefschetz duality implies the isomorphism

H2(Xi, bXi) ' H2(Xi). If b+2 (Xi) (b−2 (Xi)) is the dimension of the maximal

subspace on which the pairing in (10) is positive definite (negative definite), and

b02(Xi) is the dimension of the null-space of the map H2(Xi, bXi) → H2(Xi),

then we see that

dimH2(Xi) = b2(Xi) = b+2 (Xi) + b−2 (Xi) + b02(Xi) = dimH2(Xi, bXi)(15)

and sig[Xi] = b+2 (Xi)− b−2 (Xi).

Taking advantage of these facts we can rewrite the formula in (12) as

(16) R-Ind(S0,S1) = C0 − C1,

where Ci denotes the contribution of the terms from Xi:

(17) Ci = dimH0,1(Xi, Ji) +
2b+2 (Xi) + b02(Xi)− b1(Xi)

4
.

From equations (16) and (17), and the fact that b1(X1) ≤ b1(Y ), we conclude

that

(18) R-Ind(S0,S1) ≤ C0 +
b1(Y )

4
.

This completes the proof of the theorem. �
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1.1. A new proof of Lempert ’s stability. It is a consequence of Theorem D

in [2] that R-Ind(S0,S1) ≥ 0 for sufficiently small deformations. If Y = S3

and X0 ⊂ C2 is diffeomorphic to the 4-ball, then (14) shows that b1(X0) =

b1(X1) = 0 and C0 = 0 in (16). The relative index formula takes the very

simple form:

(19) R-Ind(S0,S1) = −
ñ
dimH0,1(X1, J1) +

2b+2 (X1) + b02(X1)

4

ô
.

The nonnegativity of R-Ind(S0,S1) for small deformations and (19) show,

in the present circumstance that for small deformations, the relative index

R-Ind(S0,S1) must vanish. When this is so, then a small extension of the re-

sults in Section 5 of [2] shows that for any nonnegative integer k, there is an

integer lk and a constant Mk so that the Ck-operator norm of the difference,

‖S0 − S1‖Ck , is bounded by Mk‖Φ‖Clk . Here Φ is the deformation tensor for

the CR-structure defining S1 as a deformation of that defining S0.

The coordinate functions z1 �bX0 , z2 �bX0 define a CR-embedding of (Y,S0)

into C2. By definition of the Szegő projector, the functions

(20) ϕi = S1[zi �bX0 ], for i = 1, 2,

are CR-functions relative to the deformed structure. If ‖S0 − S1‖C1 is suffi-

ciently small, then y 7→ (ϕ1(y), ϕ2(y)) defines a CR-embedding of (Y,ΦT 0,1Y )

into C2, which is a C1-small deformation of bX0. This completes the proof of

the following proposition.

Proposition 1. Suppose that X0 is an embedding of the standard 4-ball

into C2 with a smooth strictly pseudoconvex boundary diffeomorphic to S3.

There is an ε > 0 and an l so that any embeddable deformation of the induced

CR-structure on bX0 with deformation tensor Φ, satisfying ‖Φ‖Cl < ε, arises

as a small deformation of bX0 in C2.

This gives a new proof of a generalization of Lempert’s first stability theo-

rem, Theorem 4.5 in [6]. Lempert’s original result assumes that X0 is a strictly

linearly convex domain. He uses the existence of “inner and outer S1-actions”

to verify that the deformed structure can be embedded as a small perturbation

of the reference structure. In particular, Lempert’s argument makes extensive

usage of a “pseudoconcave cap” to compactify the deformed Stein space. This

type of compactification is not needed for our analysis, but our results also say

nothing about the existence of inner S1-actions.

Suppose that X0 is strictly linearly convex. As noted above, if the defor-

mation tensor is sufficiently small in the Cl2-norm, then the C2-operator norm

of the difference ‖S0 − S1‖C2 will also be small. From this it follows, as in [6],

that the deformed structure has an embedding that is also strictly linearly

convex. In a subsequent paper, [7], Lempert removed the hypothesis of strict
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linear convexity and extended his stability result to the boundaries of smoothly

bounded, strictly pseudoconvex domains in C2.

1.2. Remarks on the Ozbagci-Stipsicz Conjecture. As noted above, sig[X1]

+ b2(X1) = 2b+2 (X1) + b02(X1). A global bound on |R-Ind(S0,S1)|, among all

Szegő projectors S1 defined by elements of E , is therefore equivalent to an

upper bound for the quantity

b+2 (X1) + b02(X1) + dimH0,1(X1),

among all Stein spaces, X1 filling (Y,H). The existence of an upper bound on

b+2 (X1) + b02(X1) was conjectured by Ozbagci and Stipsicz, and proved in some

special cases; see [9].

The fact, noted above, that R-Ind(S0,S1) ≥ 0, for sufficiently small defor-

mations and (16) show that for such deformations,

dimH0,1(X1) +
2b+2 (X1) + b02(X1)

4
(21)

≤ dimH0,1(X0) +
2b+2 (X0) + b02(X0) + b1(Y )− b1(X0)

4
.

On page 328 of [9], Stipsicz proves the existence of a constant K(Y,H) (which

may be positive or negative) so that for any Stein filling of (Y,H), we have the

estimate

(22) b−2 (X1) ≤ 5b+2 (X1) + 2−K(Y,H) + 2b1(Y ).

These estimates, along with (15) and (21), prove a “germ” form of the Ozbagci–

Stipsicz conjecture.

Proposition 2. With (Y,H) as above, let S0 be a fillable reference CR-

structure. Among sufficiently small, fillable deformations of this CR-structure

the set of numbers

{b1(X1), sig(X1), χ(X1)}

is finite. Here X1 ranges over the minimal resolutions of the normal Stein

spaces bounded by the deformed structures (Y,H,S1).

The notion of smallness here depends on the size of the gap at 0 in the

spectrum of the �b-operator of the reference CR-structure. This can vary quite

dramatically from fillable structure to fillable structure, which is why we call

this a germ form of the Ozbagci–Stipsicz conjecture.

1.3. Open problems and a possible strategy : Our results suggest a strat-

egy for proving a lower bound on R-Ind(S0,S1), among deformations Φ with

‖Φ‖L∞ < 1 − ε, for an ε > 0. Suppose that no such bound exists, one could

then choose a sequence 〈Φn〉 ⊂ E for which R-Ind(S0,Sn) tends to −∞. A
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contradiction would follow immediately if we could show that 〈Φn〉 is bounded

in the Ck0+1-norm.

While such an a priori bound seems unlikely for the original sequence, it

would suffice to replace the sequence 〈Φn〉 with a “wiggle-equivalent” sequence.

Let Mn denote a projective surface containing (Y,ΦnT 0,1
b Y ) as a separating hy-

persurface; see Theorem 8.1 in [8]. An equivalent sequence with better regu-

larity might be obtained by wiggling the hypersurfaces defined by (Y,ΦnT 0,1
b Y )

within Mn, perhaps using some sort of heat-flow. After composing the resul-

tant deformations with suitable contact transformations, we might be able to

obtain a sequence 〈Φ′n〉 with R-Ind(S0,S ′n) = R-Ind(S0,Sn) that does satisfy

an a priori Ck0+1-bound. Such an argument would seem to require an im-

proved understanding of the metric geometry of Def(Y,H,S0), as well as the

relationship of an abstract deformation to the local extrinsic geometry of Y as

a hypersurface in Mn.
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