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Quadratic Julia sets with positive area

By XAVIER BUFF and ARNAUD CHERITAT

To Adrien Douady

Abstract

We prove the existence of quadratic polynomials having a Julia set with
positive Lebesgue measure. We find such examples with a Cremer fixed
point, with a Siegel disk, or with infinitely many satellite renormalizations.
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Assume P : C — C is a polynomial of degree 2. Its Julia set J(P) is a
compact subset of C with empty interior. Fatou suggested that one should
apply to J(P) the methods of Borel-Lebesgue for the measure of sets.

It is known that the area (Lebesgue measure) of J(P) is zero in several
cases including

e if P is hyperbolic;!

1Conjecturally, this is true for a dense and open set of quadratic polynomials. If there

were an open set of nonhyperbolic quadratic polynomials, those would have a Julia set of
positive area (see [MSS83]).
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e if P has a parabolic cycle ([DH84], [DH85a] or [Lyu83]),
e if P is not infinitely renormalizable ([Lyu] or [Shi95]),
e if P has a (linearizable) indifferent cycle with multiplier e*7* such that

a=ag+ 11 with loga, = O(v/n) ([PZ04]).2
ap+—
ag+ -
In [Lyu83|, Lyubich showed that the postcritical set is a measure-theoretic
attractor, which implies that the Julia sets of Misiurewicz and parabolic maps
have area zero. In the same note, he also observed that the filled-in Julia set
depends upper semi-continuously on the map and concluded that generic (in
the Baire sense) quadratic maps in the boundary of the Mandelbrot set have
Julia set of zero area (see also [Lyu84]). Of course, the later result of [Lyu] and
[Shi95] implies this since nonrenormalizable maps are generic in the boundary
of the Mandelbrot set.

In late 2005, we completed a program initiated by Douady with major
advances by the second author in [Ché00]: there exist quadratic polynomials
with a Cremer fixed point and a Julia set of positive area. For a presenta-
tion of Douady’s initial program, the reader is invited to consult [Ché09]. In
this article, we present a slightly different approach. (The general ideas are
essentially the same.)

THEOREM 1. There exist quadratic polynomials that have a Cremer fized
point and a Julia set of positive area.

We also have the following two results.

THEOREM 2. There exist quadratic polynomials that have a Siegel disk
and a Julia set of positive area.

THEOREM 3. There exist infinitely satellite renormalizable quadratic poly-
nomials with a Julia set of positive area.

We will give a detailed proof of Theorems 1 and 2. We will only sketch
the proof of Theorem 3.
The proofs are based on

e McMullen’s results [McM98] regarding the measurable density of the filled-
in Julia set near the boundary of a Siegel disk with bounded type rotation
number,

e Chéritat’s techniques of parabolic explosion [Ché00] and Yoccoz’s renor-
malization techniques [Yoc95] to control the shape of Siegel disks,

2This is true for almost every a € R/Z.
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e Inou and Shishikura’s results [IS] to control the post-critical sets of per-
turbations of polynomials having an indifferent fixed point.
In [Yam08], Yampolsky outlines an alternative to deal with the final piece
of the argument by means of the Renormalization Theorem for Siegel disks
(also using the Inou-Shishikura’s result).

Acknowledgements. We would like to thank Adrien Douady, John H. Hub-
bard, Hiroyuki Inou, Curtis T. McMullen, Mitsuhiro Shishikura, Misha Yam-
polsky and Jean-Christophe Yoccoz whose contributions were decisive in prov-
ing these results. We would like to thank Misha Lyubich and the referees for
carefully reading our manuscript and suggesting several improvements in the
presentation.

1. The Cremer case
Let us introduce some notations.
Definition 1. For a € C, we denote by P, the quadratic polynomial
P,z e?my 4 22
We denote by K, the filled-in Julia set of P, and by J, its Julia set.
1.1. Strategy of the proof. The main gear is the following

PROPOSITION 1. There exists a nonempty set S of bounded type irra-
tionals such that for all « € S and all € > 0, there exists o' € S with

o [0/ —al <e,

e P, has a cycle in D(0,¢) \ {0},

o area(Ky ) > (1 —e)area(K,).

The proof of Proposition 1 will occupy Sections 1.2 to 1.7.

Remark. Since a € S has bounded type, K, contains a Siegel disk [Sie42]
and thus has positive area.

Remark. We do not know what is the largest set S for which Proposition 1
holds. It might be the set of all bounded type irrationals.

PROPOSITION 2. The function o € C — area(K,) € [0,+00[ is upper
Semi-continuous.

Proof. Assume «;,, — «. By [Dou94], for any neighborhood V of K,,
we have K,, C V for n large enough. According to the theory of Lebsegue
measure, area(K,) is the infimum of the area of the open sets containing K.
Thus,

area(K,) > limsup area(K,,, ). O

n—-+o0o
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Figure 1. Two filled-in Julia sets K, and K/, with o/ a well-
chosen perturbation of « as in Proposition 1. This proposition
asserts that if o and o' are chosen carefully enough, the loss of
measure from K, to K,/ is small.

Figure 2. A zoom on K,/ near its linearizable fixed point. The
small cycle is highlighted.

Proof of Theorem 1 assuming Proposition 1. We choose a sequence of real
numbers &, in (0,1) such that [[(1 —&,) > 0. We construct inductively a
sequence ¢, € S such that for all n > 1,

e Py has a cycle in D(0,1/n)\ {0},
o area(Ky,) > (1 — e, )area(Ky, ,).

Every polynomial Py with 6 sufficiently close to 6,, has a cycle in D(0,1/n)\{0}.
By choosing 6,, sufficiently close to 6,,_1 at each step, we guarantee that

e the sequence (6,) is a Cauchy sequence that converges to a limit 6;
e for all n > 1, Py has a cycle in D(0,1/n) \ {0}.
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So, the polynomial Py has small cycles and thus is a Cremer polynomial. In
that case, Jy = Ky. By Proposition 2,

area(Jy) = area(Ky) > limsup area(Ky, ) > area(Kp,) - H (1-e,)>0. O

n—-+4o00 n>1

1.2. A stronger version of Proposition 1. For a finite or infinite sequence
of integers, we will use the following continued fraction notation:

1
[ao,al,ag, .. ] = ag +

a; +

1

ag + -
For o € R, we will denote by |« the integral part of a.

Definition 2. If N > 1 is an integer, we set
Sy = {a = [ag,a1,a9,...] € R\Q ‘ (ax) is bounded and a; > N for all k> 1}.

Note that Sy11 C Sy C --- C 8§ and &7 is the set of bounded type
irrationals. If a € &7, the polynomial P, has a Siegel disk bounded by a
quasicircle containing the critical point (see [Dou87], [Her86], [Swi98]). In
particular, the post-critical set of P, is contained in the boundary of the Siegel
disk.

Proposition 1 is an immediate consequence of the following proposition.

PROPOSITION 3. If N is sufficiently large, then the following holds.>
Assume o € Sy and choose a sequence (Ay,) such that

WA, n_}—+>oo 400 and %/log A, n_>—+>oo 1.4

Set
ap = [ag,a1,...,an, An, N, N, N,...].
Then, for all € > 0, if n is sufficiently large,

e P, has a cycle in D(0,¢) \ {0},
o area(K,,) > (1 —¢)area(K,).

The rest of Section 1 is devoted to the proof of Proposition 3. In the
sequel, unless otherwise specified,

e « is an irrational number of bounded type;

3The choice of N will be specified in equation 3

AFor example, one can choose A, := ¢l*. However, we think that the proposition holds
for more general sequences (), for instance, as soon as /A, — +oco. This condition
guarantees the existence of a small cycle. The condition %/log A, — 1 is used at the

n—-+4oo

end of the proof of Lemma 5.
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e pi/qi are the approximants to « given by the continued fraction algo-
rithm;

e (a,) is a sequence converging to «, defined as in Proposition 3.
Note that for k£ < n, the approximants py /gy are the same for o and for «,. The
polynomial P, (resp. P,, ) has a Siegel disk A (resp. A,,). We let r (resp. ry,)
be the conformal radius of A (resp. A,) at 0 and we let ¢ : D(0,7) — A (resp.
¢n = D(0,7,) — A,) be the conformal isomorphism that maps 0 to 0 with
derivative 1.

1.3. The control of the cycle. We first recall results of [Ché00] (see also
[BC04, Props. 1 and 2]), which we reformulate as follows.

The first proposition asserts that as @ varies in the disk D(p/q,1/¢%),
the polynomial Py has a cycle of period ¢ that depends holomorphically on

{/0 — p/q and coalesces at z = 0 when 6 = p/q.

PROPOSITION 4. For each rational number p/q (with p and q coprime),
there exists a holomorphic function

D(0,1/¢*%) — C

with the following properties:

(1) x(0) = 0

(2) x'(0) #

(3) Ifd € D(O 1/%/9) \ {0}, then x(8) # 0.

(4) If 6 € D(0,1/¢%9) \ {0} and if we set ¢ := e*™/1 and § = 5+5q
then <X(5),X(C5),...,X(Cq*15)> forms a cycle of period q of Py. In

particular,

VS € DO,1/a%%),  (¢o) = Pa(x())-

A function x : D(0,1/¢%%) — C as in Proposition 4 is called an ezplosion
function at p/q. Such a function is not unique. However, if x; and xy are two
explosions functions at p/q, they are related by x1(8) = x2(e*™*/4§) for some
integer k € Z.

The second proposition studies how the explosion functions behave as p/q
ranges in the set of approximants of an irrational number « such that P, has
a Siegel disk.

PROPOSITION 5. Assume o € R\ Q is an irrational number such that P,
has a Siegel disk A. Let py/qx be the approximants to . Let r be the conformal
radius of A at 0 and let ¢ : D(0,r) — A be the isomorphism that sends 0 to 0
with derivative 1. For k > 1, let xi be an explosion function at py/q, and set
Xk = X (0). Then
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(D) (Al — 7,

k—4o00
(2) the sequence of maps Py, : § — xx(d/A) converges uniformly on every
compact subset of D(0,7) to ¢ : D(0,r) — A.

COROLLARY 1. Let (o) be the sequence defined in Proposition 3. Then,
for all e > 0, if n is sufficiently large, P,, has a cycle in D(0,¢) \ {0}.

Proof. Let x, be an explosion at p,/g, and let C,, be the set of g,-th
roots of

Pn _ (="
qn Qn(QnA;l + Qn—l)

oy — with A! :=[A,, N,N,N,...].

Since %/A;, — +o0, for n large enough, the set C), is contained in an

n—+00
arbitrarily small neighborhood of 0 and x,(C,,) is a cycle of P,, contained in

an arbitrarily small neighborhood of 0. (]
1.4. Perturbed Siegel disks.

Definition 3. If U and X are measurable subsets of C, with 0 < area(U) <
400, we use the notation

area(U N X)

densy (X) := arca (D))

In the whole section, « is a Bruno number, p,/q, are its approximants,
and x,, : D, := D(0,1/ qf’/ ) — C are explosion functions at p,/qn.
PROPOSITION 6 (see Figure 3). Assume a:= [agp,a1,...] and § :=[0,t1,...]
are Brjuno numbers and let p,/q, be the approximants to a.. Assume
ap = [ag, a1, ..., an, An, t1,t2,...]

with (Ay) a sequence of positive integers such that

(1) limsup %/log A, < 1.°

n—-+00

Let A be the Siegel disk of P, and let A, be the Siegel disk of the restriction
of P,, to A.5 For any nonempty open set U C A,

lﬁgligof densy (A) >

N |

5We think that the condition limsup “%/log A, < 1 is not needed. It is used at the end
of the proof of Lemma 5.

GA'R is the largest connected open subset of A containing 0, on which P,,, is conjugate to
a rotation. It is contained in the Siegel disk of P,,,.
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Figure 3. Hlustration of Proposition 6 for « = 6 = [0,1,1,.. ],
n =7 and A, = 10'°. We see the Siegel disk A of P, (light
grey), the Siegel disk Al of the restriction of P,, to A (dark
grey), and the boundary of the Siegel disk of P, .

Proof. Set
_m (~1)" (—1)"

dn B q%(An + 9) + qnQn—1 "=+ Q%An .

En 1= Qp

Note that
1

enl e A

(where the notation u,, ~ v, means u,, = v, - (1+9,) with §, — 0). For p < 1,
define

X (p) = {z eC;

q

an pQﬂ

pin + |en|
This domain is star-like with respect to 0 and avoids the g,-th roots of
€n.7 Tt is contained but not relatively compact in D(0, p). For all nonempty
open set U contained in D(0, p),

m S D(O7 Sn)} with Sp -

lim inf densyy (Xn(p)) >

n——+o00

N | =

Since the limit values of the sequence (x, : D, — C) are isomorphisms x :
D — A, Proposition 6 is a corollary of Proposition 7. ([l

It is the preimage by the map z — 29" of a disk that is not centered at 0, contains 0 but
not €,.
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Figure 4. The boundary of a set X, (p).

PROPOSITION 7. Under the same assumptions as in Proposition 6, for all
p <1, if n is large enough, the Siegel disk A!, contains xy, (Xn(p)>

Proof. We will proceed by contradiction. Assume there exist p < 1 and
an increasing sequence of integers ny, such that x,, (Xn,C (p)) is not contained
in A;lk. Extracting a subsequence, we may assume

Ay A e 1, o0,
To simplify notations, we will drop the index k.

e Assume A = 1. Then, any compact K C A is contained in A/, for n
large enough. (For a proof, see for example in [ABC04, Prop. 2, the
remark following Prop. 2, and Th. 3].) Note that X, (p) € D(0,p)
and the limit values of the sequence (x, : D, — C) are isomorphisms
x : D — A. It follows that for n large enough,

Xn(Xn(p)) € xn(D(0,p)) € x(D(0,y/p)) C A,

This contradicts our assumption.

e Assume A > 1. Without loss of generality, increasing p if necessary, we
may assume that p > 1/A. We will show that for p < p’ < 1, if n is large
enough, the orbit under iteration of P,, of any point z € y, (Xn(p))
remains in Xn(D(O,p’)) C A. This will show that x, (Xn(p)> c AL,
completing the proof of Proposition 7.

Since the limit values of the sequence x,, : D, — C are isomorphisms
X : D — A, there is a sequence 7/, tending to 1 such that y,, is univalent
on D), := D(0,r],) and the domain of the map

-1
Jn = (Xn’D;L) o Pa, o XalD!,
eventually contains any compact subset of D. So, Proposition 7 is a
corollary of Proposition 7/ below. O
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PROPOSITION 7'. Assume

1
0<—<p<p <l
SysPsr
If n is large enough, the orbit under iteration of f, of any point z € X, (p)
remains in D(0, p').

The rest of Section 1.4 is devoted to the proof of Proposition 7/. There will
be several changes of coordinates, which are summarized on Figure 5 in order
to help the reader. (We would like to thank Misha Lyubich for suggesting this
picture.)

1.4.1. A wvector field. Let &, and f, be defined as previously. To prove
Proposition 7', it is not enough to compare the dynamics of f,, with the dy-
namics of a rotation. Instead, we will compare it with the (real) dynamics
of the polynomial vector field &, that has simple roots exactly at 0 and the
gn-th roots of ¢, and that has derivative 2mwig,e,, at 0. Then, the time-1 map
of &, fixes 0 and the g,-th roots of ¢, (which are also fixed points of f)
with multiplier e? ¢ at 0 (which is also the multiplier of f3% at 0). Thanks
to those properties, there is a good hope that the time-1 map of &, very well
approximates f 9. This vector field is

d d

=& (2)— = 2mignz(e, — 2%)—.

The vector field &, is invariant by the rotation z — €27/ 2. It is semi-
conjugate by z — v = z% to the vector field

d
)

QWanU(En - 0)57

which vanishes at 0 and ¢,. Let us now consider the further change of coordi-
nates v — w = v/(v — &,) in which the vector field becomes

2ﬂiqzwd—i.
This vector field is tangent to Fuclidean circles centered at 0. The boundary of
Xn(p) is mapped to such a Euclidean circle by the map z — w = 2 /(2% —g,,).
It follows that the vector field &, is tangent to the boundary of X, (p) which
is therefore invariant be the real dynamics of &,.
In addition, the unit disk is invariant by its real flow, and the open set

qn
Qn::{z€C|w: ED}

zin — gy

is invariant by the real flow of the vector field &,.
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Figure 5. Several changes of coordinates involved in the proof.
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Figure 6. Some real trajectories for the vector field &,; zeroes
of the vector field are shown.

Figure 7. An example of open set , for ¢, = 3 is shown in
gray. It extends to infinity, and is bounded by the black curves.
Some trajectories of the vector field &, are shown.

The map

zqn
2z w=———:0Q,—>D
zIn — g,

is a ramified covering of degree ¢, ramified at 0. Thus, there is an isomorphism
Uy Q, — D such that

24n

(¢n(2)" =

20n — g
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The change of coordinates €, 3 z — 0 = 1,,(z) € D conjugates the vector field
&n to

27Tiqn@.
Finally, let m, : H — €, \ {0} (H is the upper half-plane) be the universal
covering given by
Wn(Z) — w;l (€2i7rqnanZ>_
Then,
4
dz°
1.4.2. Working in the coordinate straightening the vector field. For sim-

ﬂ:zgn =

plicity, we assume from now on that n is even in which case €, > 0. In the
sequel, r € [p,1). Then, X, (p) C X,(r) C Q, and the preimage of X, (r) is
the half-plane

H,,(r) := {Z €eC; Im(2) > Tn(T)}

En 1
log <1 + Tﬁ) n—)joo 727”]7217@” .

with

) Sz

The map 7, : H,,(r) — X,,(r) \ {0} is a universal covering.

Remark. Note that 7,(r) increases exponentially fast with respect to gp,.

More precisely,

. 1
Tn (1) n_>—+>oo o

Definition 4. We say that a sequence (B,,) is sub-exponential with respect

to q, if
limsup %/|B,| < 1.
n—-+0oo

PRrROPOSITION 8. Assume v < 1. If n is large enough, there exist holo-
morphic maps Fy, : Hy(r) — H and G, : Hy(r) — H such that
o T, semi-conjugates F,, to fo% and G, to fr,"" '
o Fy,=fI"om, and m,oG, = fIr"1om,.
e F, —1Id and G,, — 1d are periodic of period 1/(qnen)-
e AsIm(Z) — 400, we have
Fo.(Z)=Z4+140(1) and G.(Z)=7—(A,+6)+o(1).

In addition, the sequences

sup
ZeHn (r)

Fn(Z)—Z—l‘ and  sup
Z€Hp (r)

Gu(Z) = Z + Ao +0|

are sub-exponential with respect to q,.
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Proof. We will use the following theorem of Jellouli (see [Jel94] or [Jel00,
Th. 1]) to show that the domains of f2% and f,”' eventually contain any
compact subset of .

THEOREM (Jellouli). Assume P, has a Siegel disk A and let x : D — A
be a linearizing isomorphism. For r < 1, set A(r) := X(D(O,r)). Assume
an € R and b, € N are such that by, - |, — o] = o(1).® For all v} <1 <1, if
n 1is sufficiently large,

Arh) € {z € A(rh) 5 Vi < bn, PY(2) € A(ry)}.

COROLLARY 2. For all ry <1y < 1, if n is sufficiently large, then for all

z € D(0,71) and for all j < qn, we have 3 (z) € D(0,73).

Proof. Choose ] and 74, such that r1 < r] <714 <ry. Let x : D — A be
a linearizing isomorphism of P,. Set

A(r) = x(D(0,r))) and  A(rh) := x(D(0,75)).

Since limit values of the sequence x,, : D), — C are linearizing isomorphisms
x : D = A, for n sufficiently large,

Xn(D(()?Tl)) - A(Tll) - A(Té) - Xn(D(O77“2)>-
It is therefore enough to show that for n large enough,

A(r) € {z € A(rh) 5 ¥j < an, P (2) € A(rh)}.

Qn

This is Jellouli’s theorem with b,, = g, since

qnlan — @ et Gn o(1). O

In particular, for r < 1, if n is large enough, then f29 and f," ' are
defined on X,,(r). We will show that if n is large enough, then

Vz e Xp(r)\ {0}, f%(2) € Q,\ {0} and [, (2)e€ Q,\{0}.
We can then lift them via m, so that the following diagrams commute:

Fn

H,(r) H H,,(r) H
-] iﬂn wd | im
Xn(r) — {0} o Q, — {0} Xo(r) — {O}f;%ﬁ Q, — {0}.

8In fact, Jellouli’s theorem is stated for the sequence o, = pn/gn and b, = 0(gngn+1) but
the adaptation to by - |an — | = o(1) is straightforward.
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The periodicity of F}, and G,, then follows from
=
=mn(2).
nen n(2)
The lifts F}, and G,, are determined uniquely up to addition of a integer mul-
tiple of 1/(gnen). We have

T (Z+

qnQn — Pn = Gné€n 4n—1Qn — Pn—1 = _? + gn—1&n.
n
So, the lift F;, and G,, are uniquely determined if we require that
1 _
Fu(Z)-Z — 1 and Gu(2)-2 — ———+L_ 4,9
Im(Z)—+o0 Im(Z)—+o00  Qrpén dn

Lemma 1 below asserts that f,9 is very close to the identity and bounds
the difference.

LEMMA 1. There exists a holomorphic function g,, defined on the same
set as fo9", such that

fnoqn(z) =z+ gn(z) : gn(z)
For all r < 1, the sequence s(up |gn| is sub-exponential with respect to qy,.
D(0,r)

Proof. According to the definition of the map Xy, the map f;9 fixes 0
and the ¢,-th roots of €. This shows that f;9" can be written as prescribed.
To prove the estimate on the modulus of g,, note that f 9 takes its values
in D, and thus ’ﬁn(z) 'gn(z)’ < 2. Choose a sequence 1, € ]0, 1] tending to 1
so that g, is defined on D(0,7,). By the maximum modulus principle, if n is
large enough so that r, > max(r, 1/A), we have
2

&nl2)|

sup
|z|<r

gn(2)] < By = sup

|zl=rn

gn(z)’ < sup

2 <rn

As n — o0,

inf
|z|=rn

{n(z)‘ ~ 27an7"1+qn and thus K¢ Bn ~ Ty — 1. O

n

Recall that we assume n even, in which case
1
en >0 and g, 1- Pn 1 mod (1).
n qn
Lemma 2 asserts that f, """ is very close to the rotation of angle —1/¢, and

bounds the difference.
LEMMA 2. There exists a holomorphic function h,, defined on the same
set as frn™" ", such that
eZi“/q”fsq"*l(z) =2+ & (2) - ha(2).

For all r < 1, the sequence sup |hy| is sub-exponential with respect to qy,.
D(0,r)
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Proof. According to the definition of the map y,, the map f, coincides
with the rotation of angle p, /g, on the set of g,-th roots of ¢, and ¢,_1 -
(Pn/qn) = —1/g, mod(1). Thus, 7/ f79~1(2) fixes 0 and the g,-th roots
of &,. This shows that e/ f9"~1 can be written as prescribed. The same
method as in Lemma 1 yields the bound on h,,. O

Proof of Proposition 8, continued. Now, given r < 1, set

R, := min (L, Tn(T‘)> .

InEn
Note that
® R, — min (A, 1) .
n—+o00 r
Hence, R, increases exponentially fast with respect to gy.
For all n and all Z € H,(r), the map 7, is univalent on D(Z, R,) and

takes its values in €, \ {0}. By Koebe 1/4-theorem, its image contains a disk
centered at z := m,(Z) with radius
R R
m(Z) = ala)
In particular, if the sequence (B,,) is sub-exponential with respect to g, and if
n is large enough so that B, < R,,/4, we have
Vz € Xu(r), D(2,6n(2)- Bn) C 2\ {0}

Therefore, it follows from Lemmas 1 and 2 that for all » < 1, if n is large
enough, then

Vze Xn(r)\ {0}, fi"(2) € 2\ {0} and fi"'(z) € Q2 \ {0}

Lemmas 1 and 2 and Koebe distortion theorem applied to m, : D(Z, Rn)
— C imply that the sequences

Fn(Z)—Z—l‘ and Zs}gp()
clily (r

sup Gn(Z)—Z—I—An—i—H‘

Z€Hy (r)

are sub-exponential with respect to g,.
This completes the proof of Proposition 8. U

We will need the following improved estimate for F,.

PROPOSITION 9. Assume r < 1. There exists a sequence (By), sub-
exponential with respect to qn, such that for all Z € H,(r),

Proof. Lemma 3 gives a similar estimate for f;% on X, (r). This estimate

(Fn(Z) - 1‘ <B,- (|5n| n )en — (2

transfers to the required one by Koebe distortion theorem as in the previous
proof. O
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LEMMA 3. There exist a complex number n, and a holomorphic function
ky, defined on the same set as fJ9, such that

Fa(2) = 24 &a(2) - (L4 + (en — 29 kn(2)).

For all r < 1, there exists a sequence (By,), sub-exponential with respect to gy,
such that

nn| < Bn - |en| and Yz € D(0,r) \kn(z)] < B,.

Proof. By Lemma 1, we know that

fa?"(2) = 2+ &n(2) - gn(2),

with By, := sup |gn| a sub-exponential sequence with respect to ¢,. The map
D(0,r)
frd» has the same multiplier at each g,-th roots of ¢,. If w is a g,-th root of

€n, then
(f28) (w) = 1 = 2migpengn(w).
Thus, g,(w) is independent of the choice of ¢,-th root and we set

M = gn(w) — 1.
It follows that
gn(2) = 1+, + (60 — 2% kn(2)

as prescribed. Since w/e, — 1/A < r < 1, the g,-th roots of &, belong to
D(0,r) for n large enough. In that case, the bound on g,, taken at any of the
gn-th roots of €,, shows that

|1+ 1| < By,
and thus
Vz € D(0,r), \(sn - zq”)k:n(z)‘ < 2B,.

As in Lemma 1, we have for any sequence r, — 1 and for n large enough
and (B],) is sub-exponential with respect to ¢,,. Looking at z = 0 gives
(5 (0) =1 _ mimen — 1

& (0) - 2Miqnen
As n — 400, the left hand of this equality expands to 1 + img,e, + o(qnen)-
Therefore

1+ Nn + Enkn(o) = gn(o) =

[1n] < € (|kn(0)] + 7gn + 0(gn))-
Since |k, (0)] < BJ,, we get the desired bound on 7,. O
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COROLLARY 3. Assume r < 1. Then,

Fn(Z)—Z—l‘ — 0 and  sup
n—+00 Z€Hp (r)

sup
Z€Hn (r)

Fl(Z) - 1( — 0.

n—+oo

Proof. The first is an immediate consequence of Proposition 9. For the
second, use the first on H,(r') with r < ' < 1. O

1.4.3. Iterating the commuting pair (Fy,, Gy,).

PROPOSITION 10. Assume 1/A < r1 < 1o < 1. If n is sufficiently large,
the following holds. Given any point Z € H,(r1), there exists a sequence of
integers (j¢)e>0 such that for any integer £ > 0 and any integer j € [0, ji], the
point

Frfj 0GroE " oG, 00 F;L)jl oGy o0 F;L)jo(Z)
is well defined and belongs to H,,(r2).

Proof. We will need to control iterates of F, for a large number of iterates.
We will use the following lemma.

LEMMA 4. Assume F : H — C satisfies
F(2) - 2 =1| < u(Re(2)),

with w: R — 10,1/10[ a function such that logu is 1/2-Lipschitz. Let I" be the
graph of an antiderivative of —2u. Then, every Z € H that is above I' has an
image above I.

Proof. Let U be the antiderivative whose graph is I'. Let Z = X +¢Y € H.
The point Z’ = X' + Y’ = F(Z) satisfies X’ € [X + 5, X + 15]. Since logu
is 1/2-Lipschitz,
11
20"

11
X, X + ﬁ} , logu(z) >logu(X) —

Therefore, from X to X', U decreases of at least

Vo €

X' 1
2/ u(z)dz > 2(X' — X)e /20y (X) > %e_ll/ZOU(X) >u(X)>Y Y.
X
U

Z=X+iY ﬂ+x
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LEMMA 5. Assume 1/A <r < v’ < 1. If n is sufficiently large, then for
all Z € H,,(r), there exists an integer j(Z) such that

e for all j < j(Z), we have FY o G, (Z) € H,(r');

o Re(F7 0 Gy(2)) > Re(2).

Proof. Let us first recall that there exists a sequence (B,,), sub-exponential
with respect to gy, such that for n large enough, for all Z € H,,(r),

(Gn(2) = Z + A+ 60| < Ba.
In particular, if n is sufficiently large,
Re(Gn(Z)) > Re(Z) — Ay —0— B, and Im(Gn(Z)) > 7(r) — By.

We will apply Lemma 4 to control the orbit of G, (Z) under iteration of F),.
More precisely, we will prove the existence of a function wu,, such that
(a) |Fu(2) = Z = 1| < un(Re(2));
(b) for n large enough u,, €1]0,1/10];
(c) for n large enough, log u, is 1/2-Lipschitz;
)

Re(2)
(d) the sequence C), := /

2up (X)) dX is sub-exponential with re-
Re(Gn(2))

spect to gp.
Since 7,(r)/mn(r") grow exponentially with respect to ¢, if n is taken

sufficiently large, we have

1
Tn(r) > 70 (r") + Bp + Cp, + 10"

It then follows from Lemma 4 that there is an integer j(Z) such that
e for all j < j(Z), we have FJ 0 G,,(Z) € H,(r');
o Re(F/? 0 G,(2)) > Re(2).

H,, (")
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(a) By Proposition 9, there is a sequence (Bj,), sub-exponential with re-
spect to ¢, such that for all Z € H,,(r'),

(Fu(2) = 2~ 1| < By (en + |on — ma(2)

Set T), := 1/(2mq2e,) — +oo. We have (see Figure 5)
an
(m(2))™ =

€n
1— e—z‘Z/Tn‘

Using
B (en + |0 — mal2)
we see that for all Z € H,(r'),

’Fn(Z) —Z - 1’ < B en (2 + 1)

‘1 _ e—iZ/Tn

1
<Ble,| 2+ -
‘Sne_ZRe(Z)/T" _ 1‘

Im(Z)/Tn e T(r") /T _ En
em(2)/ > s, =€ )/ —1—|—W.

Since 1/A < 7/, we have £,/(r")? — 0 and thus s,, — 1. Thus, for n large
enough,

);

) < B (220 + |ma(2)™

with

1 < 1
3= |spe—Re(2)/Ta — 1|’

and for all Z € H,,(r'),

TBlen

(b) Let us show that for n large enough, u, € ]0,1/10[. Note that
7Bl e
< n-n — ! (.\qn
VX ER, |un(X)| < T =B o 0.
Thus, u, tends uniformly to 0 as n — +o0.
(c) Let us now check that for n large enough, logu, is 1/2-Lipschitz.

Letting s, = cotan(w/2), we have

iX/Th

log |spe — 1]2 = log(1 — sinw cos 3) 4 const

where 5 = X /T,, and the constant stands for something independent of it. The
(-derivative of this expression is equal to

cosw sin 3 1 —sin(f + w)
— 0 =tanw|l—-———=
1 —sinwcos 1 —sinwcos 8

tan w ) < tanw =

s2 —1°



QUADRATIC JULIA SETS WITH POSITIVE AREA 693

It follows that

_1d
2dX

log s, /T —12 < 00—~ xgd()m.

d
— log u, (X) To(s2 = 1) niloc

dX

d
Thus, ﬁlog un(X) converges uniformly to 0 as n — +o0, and for n large
enough, log u,, is 1/2-Lipschitz.
(d) Let us finally show that the sequence

Re(2)
2, (X) dX

TL::

Re(Gn(2))

is sub-exponential with respect to g,,. Let us recall that 277}, ~ 1/(q2e,) ~ A,.
If n is large enough,

Re(Gn(Z)) > Re(Z) — Ap — 0 — By, > Re(Z) — 4nT,.

Since u,, is 27T, -periodic,

Cn < B] := /
Re(Z)—4nT,

The change of variable § = X /T,,, which yields

Re(Z) 'y
2up(X)dX =4 un(X) dX.
—7T;

B — 14B], /W dé
g, J-x \/sn—l—l—ancosﬁ
It follows that
28B! 1 28B! ran 28B!
B! ~ 5 log = ——"log ! ~ log(r'" Ay,).
n—+oo mWqs Sp—1 Tq; €p n—too mWqs

By assumption (condition (1) in the statement of Proposition 6; this is the only
place where it is used), the sequence log A4,, is sub-exponential with respect
to gn. As a consequence, (B]!), and thus (C,,), is sub-exponential with respect
to qp- U

Proof of Proposition 10, continued. Remember that we are given r; and
ro with 1/A <11 < re < 1 and we want to prove that for n sufficiently large,
any point of H,,(r1) has an infinite orbit remaining in H,(r2) along a well-
chosen composition of F;, and G,. It is enough to show that this is true for
any sequence of points

Zn = Xp + 1Y, € Hy(ry).

We will use Douady-Ghys-Yoccoz’s renormalization techniques and follow the
presentation in [ABC04, §3.2].
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Step 1. Construction of a Riemann surface: V,. Choose n sufficiently
large so that F), is defined in the upper half-plane {Z €C; Im(Z) > 1p(re) —
1/10} with

|Fu(2) -2 1| < % and |F;(Z) - 1| < 1%.9
Set .
P, =X, +1 (Tn(T’Q) - 1—0> )
Let
Ln = {X, +it; t >Im(P,)}
be the vertical half-line starting at P, and passing through Z,, (see Figure 8).
The union
Ln U [Py, Fo(Py)] U Fy(Ly) U {00}
forms a Jordan curve in the Riemann sphere bounding a region U,, such that
for Y > Im(P,), the segment [Xn +1Y, F (X, + ZY)] is contained in U,
(see [ABCO4, §3.2]). We set U,, := U, U L,. If we glue the sides L,, and
F,(Ly) of U, via F,, we obtain a topological surface V,,. We denote by &, :
U,, — V, the canonical projection. The space V,, is a topological surface with
boundary, whose boundary Ln<[Pn,Fn(Pn)]> is denoted 9V,,. We set V,, =
Vi \ OV,. Since the gluing map F), is analytic, the surface V,, has a canonical
analytic structure induced by the one of U,,. It is possible to show that V,, is
quasiconformally homeomorphic, thus isomorphic to H/Z ~ D*. (See [ABC04,
§3.2] for details.) Let ¢, : V,, — D* be an isomorphism. Hence, we have the
following composition:
Op 0 Ly - Uy — D,
We set
Cn i= Pn o tn(Zy) €D,

Step 2. The renormalized map g,. Choose r3 € |ri,ra[. Set

) 1
P =X, +i <7‘n(?”3) + 1—0> :
Let U, be the set of points of U, that are above the segment {P,’l, Fn(P,;)] and
let V! be the image of U, in V,,. Choose n sufficiently large so that Lemma 5
can be applied with » = r3 and ' = ro. Then, for all Z € U], C H,,(r3), there
exists an integer j(Z) such that

W= F3%) oGy (Z) €U, and Vj € [0,5(Z)], FyoGn(Z) € Hn(ra).

9This is possible by Corollary 3 applied with r > r2. Indeed, for n large enough, we have
that 7,,(r2) —1/10 > 7,(r) and thus {Z €C; Im(Z) > mn(r2) — 1/10} C Hy(r).
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Ly Fn(Ln)
Hn(rl) Z b CTLI
U Vn
Ha(r) Pir i |
Gn Z. ®© 6 ¢ ¢ 0 0 ¢ 0000 0 o ° °
) o 12)
Uy
H,, (r2)
2 —F,.(p,) L

n
Figure 8. Construction of the Riemann surface V, and the
renormalized map g,.

The map Z + W induces a univalent map g, : ¢,(V,) — D*.10 By the
removable singularity theorem, this map extends holomorphically to the origin
by ¢,(0) = 0. Since

Fo.(Z2)=Z4+1+0(1) and Gn(Z)=Z—-A,—0+0(1)
as Im(Z) — +o00, we have that

g/ (O) _ e—2i7r(An+9) — o 2imd
n .
(See the proposition on page 33 in [Yoc95] for details.)

Step 3. The orbit of (,,. We will show that the orbit of (,, under iteration
of g, is infinite. For this, let p, be the radius of the largest disk centered at 0
and contained in ¢, (V),). We will show that

(a) there exists ¢ > 0 such that g, has a Siegel disk which contains
D(0, cpn),
(b) [Cnl = o(pn)-

(a) The restriction of g, to D(0, py,) is univalent. It fixes 0 with derivative
e~2m9  Remember that 6 is a Brjuno number. It follows (see [Brj71], [Brj72]
or [Yoc95], for example) that there is a constant ¢y > 0 depending only on
6 such that g, has a Siegel disk containing D(0, cgpy). Indeed, according to
the theorem on page 21 in [Yoc95], there is a constant ¢ > 0 such that for

10The fact that gn : n(V5,) — D* is continuous and univalent is not completely obvious;
see the proposition on page 33 in [Yoc95] for details.
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all Brjuno number 0, any univalent map f : D(0,1) — C that fixes 0 with
derivative 2™ has a Siegel disk containing D(0,ce=5®)), where B(f) is the
Brjuno function.

(b) Denote by B,, the half-strip
B,={ZecC; 0<Re(Z)<1andIm(Z)>Im(P,)},
and consider the map H,, : B,, — U,, defined by
H,(Z2)=(1-X) (X, +1iY)+ X F,(X, +1iY),

where Z = X +1Y, (X,Y) € [0,1] x [Im(Pn),—}—oo[. The map H,, sends each
segment [1Y,7Y + 1] to the segment [Xn +1iY, F (X, + zY)} An elementary
computation shows that H,, is a 5/4-quasiconformal homeomorphism between
B, and U,.'' Since H,(iY + 1) = F, (Hn(iY)), the quasiconformal homeo-
morphism H,, : B,, — U, induces a homeomorphism between the half cylinder
H/Z and the Riemann surface V,,. This homeomorphism is clearly quasicon-
formal on the image of B,, in H/Z, i.e., outside a straight line. It is therefore
quasiconformal in the whole half cylinder. (R-analytic curves are removable
for quasiconformal homeomorphisms.)
Let R, be the rectangle

Ry:={ZeC; 0<Re(Z)<1andIm(P)) < Im(Z) < Im(Z,)}.
Note that H,(R,) C U], and observe that
Ay, = ¢p 0ty 0 Hy(Ry)

is an annulus contained in ¢, (V)) that surrounds 0 and (.
The image of R, in H/Z is an annulus of modulus

1
M, :==1m(Z,) —Im(P.) > 7n(r1) — Tn(r3) — 10 nS7he
Note that H,, induces a 5/4-quasiconformal homeomorphism between this an-

nulus and A,,. It follows that

4
modulus(A4,,) > gMn — +o00.

n—-+00

Since A,, separates 0 and (, from oo and a point of modulus p, in d¢,(V),),
the claim follows: as n — +00, |(,| = o(pn).

Hpor a proof that H,, is 5/4-quasiconformal homeomorphism, see, for example, [ABC04,
§3.2] or [Shi00, §2.5].
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Zn
ZNEZ)
Hn(Rn) ln —
P! $n

Im(Z,
R, Z~Z+1
Im(P),
Im(P, B, \___/ H/Z

Step 4. Controlling the orbit of Z,. We know that the orbit of ¢, under
iteration of g, is infinite. Thus, we have a sequence
eV, Inelev, I ey, I
Now, for each £ > 0, we have
¢t = ppou,(Z) for some Z° el
Moreover, by definition of g, there exists an integer j, such that
ZE = Fito Go(Zh) and Vi €(0,5i), FoGn(Zh) € Hy(ra).
In other words, ¢! € V, 2% ¢t € V!, corresponds to
ZL e, S e Hy(ry) 2 - € Ho(rg) 2 - Iz e !

Thus, for n sufficiently large, any point Z,, € H,(r1) has an infinite orbit
remaining in H,(r2) along a well-chosen composition of F,, and G,. This
completes the proof of Proposition 10. O

Proof of Proposition 7', continued. Remember that 0 < 1/A<p<p/ < 1.
Choose 11 = p < r9 < p/. By Proposition 10, for n sufficiently large, any
point Z € H,(p) has an infinite orbit remaining in H,, (r2) under a well-chosen
composition of F,, and G,. This means that any point z € X,(p) has an

infinite orbit remaining in X,,(r2) under a well chosen composition of f>% and
fal»=1 By Corollary 2, if n is sufficiently large, we know that any point in
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Xn(re) C D(0,79) has its first g, iterates in D(0,p’). This shows that any
point z € X,,(p) has an infinite orbit remaining in D(0, p’) under iteration of
fn, as required.

In other words,

%dn—1
- € Hy,(re) Gn, ¢ H,(r2) corresponds to - € X,(rq) W € Xy (re)

and

°dn

- € Hy(r2) Iy e H,,(r2) corresponds to - € X, (r2) == - € X (r2).

Moreover, for n sufficiently large,

0Gn—1 o
fn n an

€ Xp(re) "= € X,(re) and - € X,(re) == - € Xp(re)
decompose as
L€ Xn(r2) C D(0,12) L% - € D0, ) L2 . I e D(0,p) L € Xin(r).
This completes the proof of Proposition 7’. U
1.5. The control of the post-critical set.
Definition 5. We denote by 0 the Hausdorff semi-distance:
0(X,Y) =supd(z,Y).

rzeX
Definition 6. We denote by PC(FP,) the post-critical set of Py:
% e2i7ra
PC(P,) :== U P (wq) with  wy = — 5

k>1

This section is devoted to the proof of the following proposition. Remem-
ber that Sy is the set of irrational numbers of bounded type whose continued
fractions have all entries greater than or equal to N.

PROPOSITION 11. There exists N such that as o/ € Sy — o € Sy, we
have

O(PC(Par), Na) — 0,
with A, being the Siegel disk of P,.

The corollary we will use later is the following.

COROLLARY 4. Let (ay,) be the sequence defined in Proposition 3. For all
0, if n is large enough, the post-critical set of P,,, is contained in the d-neigh-
borhood of the Siegel disk of P,.

The proof of Proposition 11 will rely on some (almost) classical results on
Fatou coordinates and perturbed Fatou coordinates. We refer the reader to
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Appendix A and to [Shi00] for more details. The proof will also rely on results
of Inou and Shishikura [IS] that we will now recall.

1.5.1. The class of Inou and Shishikura. Consider the cubic polynomial
P(z) = z(1+ 2)2

This polynomial has a multiple fixed point at 0, a critical point at —1/3 which
is mapped to the critical value at —4/27, and a second critical point at —1
which is mapped to 0. We set

R:=¢' and w:= —4/2T.
Let U be the open set defined by
U :=P 1(D(0,[v|R)) \ (]J—o0, -1] U B),

where B is the connected component of P! (D(O, |v\/R)) that contains —1.
Consider the following class of maps (Inou and Shishikura use the notation
F¥ in [19)):

TSy = {f _Poy L Ur - C with ¢ : U — Uy isomorphism such that } .

©(0) =0 and ¢'(0) =1

Remark. The set ZSy is identified with the space of univalent maps in U
fixing 0 with derivative 1, which is compact. A sequence of univalent maps
(pn : U — C) satistying ¢,(0) = 0 and ¢},(0) = 1 converges uniformly to
¢ : U — C on every compact subset of U, if and only if the sequence (f, =

P o, 1) converges to f = Po ! on every compact subset of Uy = ¢(U).

Figure 9. A schematic representation of the set U. We colored
gray the set of points in U whose image by P is contained in

the lower half-plane.
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A map f € IS fixes 0 with multiplier 1. The map f: Us — D(O, |v|R)
is surjective. It is not a proper map. Inou and Shishikura call it a partial
covering. The map f has a critical point wy := ¢(—1/3) which depends on f
and a critical value v := —4/27 which does not depend on f.

1.5.2. Fatou coordinates. Near z = 0, elements f € 7.5y have an expansion
of the form
f(2) = 2+ ¢z + O(2%).
The following result of Inou and Shishikura is an immediate consequence of
the Koebe Distortion Theorem.

RESULT OF INOU-SHISHIKURA (Main Theorem 1, part a). The set {cs; f €
ISy} is a compact subset of C*.

In particular, for all f € Z.Sg, ¢y # 0 and f has a multiple fixed point of
multiplicity 2 at 0. If we make the change of variables

1
z=T1¢(w) := “ow
we find F(w) = w+ 1 + o(1) near infinity. To lighten notation, we will write
f and F for pairs of functions related as above; wy := ¢;(—1/3) and wp :=

T !(wy) will denote their critical points.

LEMMA 6. There exists Ry such that for all f € .5,
e F is defined and univalent in a neighborhood of C\ D(0, Ry);

e for allw € C\ D(0, Ry),
1 ) 1
M@»—w—q<1 and M@@—Q<Z.
Proof. This follows from the compactness of ZS). U
If Ry > V2R, the regions
QA = {w € C; Re(w) > Ry — ]Im(w)]}
and
QP .= {w € C; Re(w) < —Ry + |Im(w)|}
are contained in C\ D(0, Ry).
Then, for all f € S,
F(Q™) c Q™ and  F(QP) > Q™.

In addition, there are univalent maps ®3* : Q** — C (attracting Fatou co-
ordinate for F') and ®" : QP — C (repelling Fatou coordinate for F') such
that

PP o F(w) = 0% (w)+1 and PR o F(w) = PP (w) + 1
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- ~
\
\
/
0 <
\
Qrep,f/,
~ -

Figure 10. Right: the sets Q" and Q™P. Left: the set Qu
and Qep ¢ for a map f with ¢y = 1. The sets Ot and Qagt, f

are shaded. The boundaries of the sets QP and (2., ; are
dashed.

when both sides of the equations are defined. The maps ®3' and @’ are

unique up to an additive constant. In addition, as w € QN QP tends to
infinity, ®3* — ®<P tends to a constant.

RESULT OF INOU-SHISHIKURA (Main Theorem 1, part a). For all f €
ISy, the critical point wy is attracted to 0.

The following lemma easily follows, using the compactness of the class Z.5.

LEMMA 7. There exists k such that for all f € ISy, we have F°F(wr)
c Qatt_

Proof. By contradiction, suppose that there is a sequence (fy,) € ZS( such
that for k < n, we have FSF(wr,) ¢ Q. By compactness of 7Sy, we may
assume that the sequence F;, converges to Fi,. But since fo, € Z.Sg, the orbit of
the critical point wy, converges to 0, so for some k, we have F3¥(wp, ) € Q.
But

ok 1 ok
Foo (wFoo) - nh—{go Fn (an)7
and this is a contradiction. O

Since the maps ®3%* and @< are only defined up to an additive constant,
we can normalize &3 so that

O (FF(wp)) = k.
Then, we can normalize ®" so that

P (w) — PP (w) = 0 when Im(w) — 400 with w € Q¥ N QP
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Coming back to the z-coordinate, we define
Qate.f := (%) and  Quep, f 1= 74(Q°P)

and we set

Pate,f = P’ o 7_171 and  ®pep j:= PLP 0 7_f71‘

The univalent maps @qe 7 @ Qate,r — C and Prep ¢ 1 Qpep,r — C are called
attracting and repelling Fatou coordinates for f. Note that our normalization
of the attracting coordinates is given by

(I)att,f (fok(u.)f)) =k.

The following result of Inou and Shishikura asserts that the attracting
Fatou coordinate can be extended univalently up to the critical point of f. It
easily follows from [IS, Prop. 5.6].

RESULT OF INOU-SHISHIKURA (see Figure 11). For all f € ISy, there
exists an attracting petal Pag, p and an extension of the Fatou coordinate, which
we will still denote Pyt ¢ 1 Pate,r — C, such that

v € Phatt,f>
‘I’att,f(v) =1,
Dot 18 univalent on Pag f,

Pt f (Patt,f) = {w ; Re(w) > 0}.

q)att f

7Dafct f

Figure 11. Left: the attracting petal Pu s of some map f €
ZS); the critical point is wy, the critical value v, and 0 is a fixed
point. Right: its image by ®,, r; we divided the right half-plane
10, +00[xR into vertical strips of width 1 of alternating color,
highlighted the real axis in red, and put a black dot at the point
z = 1. On the left, we pulled this coloring back by ® .
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Figure 12. On the right, we divided ]0,2[x] — 2, 4o0[ into 3
regions of different colors. We subdivided each by a vertical line
through z = 1. These 6 pieces were then pulled back on the left
by @4t f, for the same parabolic f € .Sy as in Figure 11. The
set V; is the union of the green and red regions (these are the
colors of the top and middle regions on the right). The set Wy
is the union of the red and yellow regions (corresponding to the
middle and bottom regions on the right).

Definition 7 (see Figure 12). For f € .Sy, we set
Vi= {z € Patt,f Im(CI)amf(z)) >0and 0 < Re(@attyf(z)) < 2}
and
Wy = {z € Patt,f 3 —2< Im(@att,f(z)) <2and 0 < Re(CI)amf(z)) < 2} )

We now come to the key result of Inou and Shishikura. The result stated
below easily follows from [IS, Props. 5.7 and 5.8 and §5.M]. Our domain Vf_k U

3 ¥ below corresponds in [IS] to the interior of
D_4uUD ,UD",UD_4 UD", ,UD 4,
The set Wf_ ¥ itself corresponds to the interior of
D 4uUD’,UD 1 UD ..
RESULT OF INOU-SHISHIKURA (see Figure 13). For all f € TSy and all
k>0,
e the unique connected component fok of f_k(Vf) that contains 0 in its

closure is relatively compact in Uy (the domain of f) and fok Vf_k —
V¢ is an isomorphism,
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Qrep

Figure 13. Above: among the successive preimages of Vy and
W; by f, those that compose the sets Vf_k , Wf_ k are shown.
The colors are preserved by f. Below: preimage of the left part
by 79. We hatched Wr U Vp and W U Ve 7

e the unique connected component W Fof fR(W}) that intersects Vf_k
is relatively compact in Uy and fok Wj?k — Wy is a covering of degree
2 ramified above v.

In addition, if k is large enough, then Vf_k U V[/'f_]€ C Qrep, f-

The following lemma asserts that if k is large enough, then for all map
f € ISy, the set Vf_’c U Wf_k is contained in a repelling petal of f, i.e., the
preimage of a left half-plane by @, ;.
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fok

Figure 14. If k is large enough, Vlf}C UWwg ¥ is contained in the
repelling petal Prep, -

LEMMA 8 (see Figure 14). There is an Ry > 0 such that for all f € ISy,
the set @i f(Srep,f) contains the half-plane {w € C ; Re w < —Ry}. There
is an integer kg > 0 such that for all k > ko, we have

ViFUW* C {2 € Quep.s i Re(Prep,s(2)) < —Ra}.

Remark. Of course, Ry can be replaced by any R3 > R, replacing if
necessary ko by ki := ko + | Rs — Ra] + 1.

Proof. Forall f € ISo, ®(ep, ) contains a left half-plane. The existence
of Ry follows from the compactness of ZS.

By Inou and Shishikura’s result, we know that for all f € 7Sy, there is an
integer k > 0 such that Wf_ ¥ is relatively compact in Qrep, - It follows from
the compactness of Z.5g that there is an integer k1 > 0 and a constant M, such
that for all f € Z8o, W™ C Qyep,r and

sup Re(fbrep,f(w)) < M.
wEWf_k1

Set ko := k1 + M + |Rs] + 3. Then,
sup Re(CI)rep’f(w)) < —Rp—2.

wEWf_kO
We will show that we then automatically have
(2) foko C Qep,r and  sup Re(q)rep,f(w)) < —Ry.
wEVf_kO

It will follow immediately that
Vk > ko and Vw € Vi F U, Re(®yep,p(w)) < —Ra,

which will conclude the proof of the lemma.
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In order to get (2), we fix f € ZSy and consider k > ko large enough so
that Vf_k C hep,f- (This is possible thanks to Inou and Shishikura.) Note
that

sup Re(@regf(w)) < —Ry—2—Fk+ k.
wew

Denote by g : V — fok the inverse branch of f°F : fok — V. Set
B:={weC; 0<Re(w)<2and 0 < Im(w)}.

Note that B = @4 ¢(Vy). Consider the map ¥ : B — C defined by

-1

Vi=®.,r0g0 q)att,f'

Since ¥ commutes with translation by 1, so that ¥(w) — w is 1-periodic, the
maximum modulus principle yields

2161% Re(@(w) - w) = sup Re(\If(w) — w).

wel0,2]
Note that
go @yt ,([0,2]) c Wit
and thus
sup Re(\I’(w) — w) < —Ry—2—Fk+ko.
wel0,2]
Hence,

sup Re(q)repj(w)) = sup Re(\I’(w)) < —Ry — k + ko.
wer_k weB

It now follows that

sup Re(@repj(w)) < —Rs.
wEV[kO

This completes the proof of (2) and of Lemma 8. O

1.5.3. Perturbed Fatou coordinates. For a € R, we denote by Z.S,, the set
of maps of the form z +— f(e?™2) with f € ZSy. If A is a subset of R, we
denote by Z.5 4 the set

IS4 := |J ZSa.
acA
Note that
78, — { f=Poy':U; = C with i ('o)U:oZJ; Cllsgfzgipf:giifh that }

and

1 ) ¢ : U — Uy isomorphism such that
ISg =qf=Poy  :U; — C with

p(0) = 0 and |¢(0)| = 1
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Figure 15. The perturbed petal Py whose image by the per-
turbed Fatou coordinate ® is the strip {0 <Re(w) <1/ay—R3}.

The map f depends on ¢ in a one-to-one way. Thus we get a one-to-one
correspondence between ZSg and the set of univalent maps on U fixing 0 with
derivative of modulus 1. We put the compact-open topology on this set of
univalent maps. This induces a topology on ZSg.

Remark. A sequence (f, = Po ¢, ! € ISRr) converges to f = Pop~! €
ZSg if and only if the sequence (f,) converges to f on every compact subset
of Up = ¢(U).

If f € ZS(y,1|, we denote by ay € [0, 1] the rotation number of f at 0, i.e.,
the real number o € [0, 1] such that

f/(o) — €2i7raf .

LEMMA 9. There exist g9 € |0, 1] and r > 0 such that for all f € LS|y,
the map f has two fized points in D(0, 1) (counting multiplicities), one at z = 0
the other one denoted by oy. The map o : ISy .o — D(0,7) defined by f + oy
18 continuous.

Proof. According to Inou and Shishikura, maps f € Z.Sg have a double
fixed point at 0. By compactness of Z.Sg, there is an ' > 0 such that maps
f € ISy have only 2 fixed points in D(0,7’). Choose r € ]0,7'[. By Rouché’s
theorem and by compactness of 7Sy, there is an g9 > 0 such that maps f €
Z8So,c,[ have exactly two fixed points in D(0,7). The result follows easily. [

The following results are consequences of results in [Shi00], the compact-
ness of the class Z.5g and the results of the previous paragraph. It is a classical
phenomenon in the theory of parabolic implosion, the point here being unifor-
mity over the considered class of maps.

PROPOSITION 12 (see Figure 15). There are constants K > 0, 1 > 0,
and R3 > Ry with 1/e1 — R3 > 1, such that for all f € IS)y.,[, the following
holds:
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(1) There is a Jordan domain Py C Uy (a perturbed petal) containing v,
bounded by two arcs joining 0 to oy, and there is a branch of argument
defined on Py such that

sup arg(z) — inf arg(z) < K.
2€Py z€Py
(2) There is a univalent map ®¢ : Py — C (a perturbed Fatou coordinate)
such that
[ (I>f(v) = 1;
o &4(Pf) = {w €C; 0<Re(w) <1/ay— Rg};
Im(iy(z)) — 400 as w — 0 and Im(éf(z)) — —00 as W — O f;
when z € Py and Re<<1>f(z)) < 1/ay — R3 — 1, then f(z) € Pr and
®rof(z)=Dp(z)+1.
For f € TSy, we set

Prep,f = {z € Qrep, s ; Re(@rep,f(z)) < —RS},

(3) If (fn) is a sequence of maps in LSy .,| converging to a map fo € LSy,
then
o any compact K C Pag 1, 18 contained in Py, for n large enough and

the sequence (®y,) converges to Py 5, uniformly on K,
o any compact K C Prep,f, 15 contained in Py, for n large enough and
the sequence (®y, — #) converges to ®rep 1, uniformly on K.

Proof. Thanks to the compactness of the class Z.5g, it is enough to show
that if (f,) is a sequence of maps in ZS)g | converging to a map fo € ZSo,
there is a number R3 > Ry such that properties (1), (2), and (3) hold.

So, assume f, is such a sequence, and for simplicity, write oy, on, ...
instead of ay,, o7, ... .

Let 7, : C — PY\ {0,0,} be the universal covering given by
On
Tn(w) = 1~ o=2imanw
so that

To(w) — 0 and 7,(w) —  op.
Im(w)—+o00 Im(w)——o0

Denote by T, : C — C the translation

1
T, cw—w— —.

Qn
Recall that fo(2) = 2 + coz? + O(23) with ¢ # 0, and
1
TQ(Z) = _007

The following observations follow from [Shi00]. We let Ry and R; be the
constants introduced in paragraph 1.5.2.
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Figure 16. The domain D,, (grey) is the complement of a union
of disks and the hourglass Q™ (dark grey) is contained in D,,.

(1) The sequence (7,,) converges to 7o uniformly on every compact subset
of C*.

(2) If n is sufficiently large, there is a map F, : D,, — C, defined and
univalent in

D, :=C\ U D(k/an, Ro),
keZ
which satisfies
i anTTL:TTLOan
e F(w) —wis 1/ay-periodic (or equivalently, F, o T,, =T, o F},),
e Fo(w) —w — 1 as Im(w) — +oo.

Remark. This lift F,, of f,, may be defined by

! (fn(z) — oy z
og .
fn(2) z—0p
(3) As n tends to +oo, the sequence (F),) converges to Fy uniformly on
every compact subset of C\ D(0, Ry).
(4) The set

Fo(w) = w + ) with 2 = 7, (w).

2imay,

Q"= {w € C; Re(w) > Ry — ‘Im(w)' and Re(w) < ai — it ‘Im(w)‘}

n

is contained in D,, (see Figure 16).
(5) Remember that for all w € C\ D(0, Ry),

’Fo(w) —w — 1‘ < % and ’Fé(w) - 1‘ < i
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It follows from the convergence of (F),) to Fy that if n is sufficiently
large, then for all w € Q",

‘Fn(w) —w — 1‘ < % and ’F{L(w) - 1’ < %

(6) Increasing n if necessary, we may assume that 1/a,, > 2R; + 2. Then,

there is a univalent map ®" : Q" — C, called a perturbed Fatou coor-
dinate for F},, such that

Q" o F(w) = Fp(w) + 1

when w € Q" and F,(w) € Q" This map is unique up to post-
composition with a translation.

(7) Remember that there is a k such that f§¥(wp) € Qag, with wp the

critical point of fy. For n large enough, f°F(w,) is in 7,(Q"), with w,
the critical point of f,,. There is a point w,, € 2" such that

__ pok : —1/( pok
To(wn) = fF(wyp)  with  wy, WS T0 ( 0 (wo)).

We can normalize ®" by ®"(wy,) = k. Then,

uniformly on every compact subset of Q*'. Due to the normalization
Pt (w) — DP(w) — 0 as Im(w) — +oo with w € Q** N Q™ we have

T,o®"oT 1 — &P
n n n—-+o0o 0

uniformly on every compact subset of (27P.

Coming back to the z-coordinate is not immediate. Indeed, the map 7, is

not injective on Q" and we cannot define a Fatou coordinate for f,, on 7,(").
We will instead restrict to a subset P C 2" whose image by ®" is a vertical
strip and on which 7, is injective. Let us give a precise statement. Its proof is
given in Appendix A. It follows from results in [Shi00], but was not stated in
the latter.

LEMMA 10 (see Figure 17). If K > 0 and R > Rs are sufficiently large,

then for n large enough,

o O"(Q") contains the vertical strip
u" .= {w €C; R<Re(w) <1l/ay —R},

e 7, is injective on P" := (&™)~ (U"),

e there is a branch of argument defined on 7,(P™) such that

sup arg(z) — inf arg(z) < K.
ZETn(Pn) ZET"(PH)
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™ P

R 1

Figure 17. The map 7, is injective on P" := (&™)~ (U").

Let M > R be an integer. Note that
{w € C; Re(w) > M} C Patt,0(Qatt,0)

and
{’LU eC ; Re(w) < —M} - q)rep,O(Qrep,O)'
Set

P(/) = {Z c Qatt,o ; Re(@am’o(z» > M} U {Z S Qrep,(] N Re(@rep’()(Z)) < —M}

and
Pl = Tn<{w epP, M< Re(@"(w)) <1l/ay — M})
For any r > 0, if n is sufficiently large so that o, € D(0,r), then points with
large (positive or negative) imaginary part are mapped by 7, into D(0,7). It
therefore follows from point (7) above that P/, — P} as n — +o0.
Set
Po := Patt70 U {Z € Qrepp ; Re(@rep,o(z)) < —QM}.

Note that Py is compactly contained in the domain of f§™ and that f™ :
Po — P}y is an isomorphism. In addition, for n sufficiently large, fo™ does not
have any critical value in P),.

It follows from Rouché’s theorem that for n large enough, the connected
component P, of fM(P!) that contains 0 in its boundary is relatively compact
in the domain of f,,, and f°™ : P, — P’ is an isomorphism. The perturbed
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Figure 18. Definition of the perturbed Fatou coordinate ®,,.
The perturbed petal P, is grey and the set P, is hatched.

Fatou coordinate ®™ : P® — C induces a perturbed Fatou coordinate ®,, :=

d"o7, P! — C. This extends analytically to a perturbed Fatou coordinates
®, : P, = C defined by

®,,(2) := ®"(w) — M where w € P" is chosen so that 7,(w) = foM(2) € P..

n

See Figure 18.

In a simply connected neighborhood of 737(’), the function f§™(z)/z does
not vanish (and extends by 1 at z = 0). It follows that for n large enough,
there are branches of argument of f°(z)/z that are uniformly bounded on

Pn. It is now easy to check that Proposition 12 holds for the maps f,, with n
large enough. O

1.5.4. Renormalization. Recall that for maps f € ZSy, we defined sets
Vi C Pagt,f and Wy C Page r. We claimed (see Lemma 8) that for & > 0, there
are components Vf*k and WJ? * properly mapped by f°F respectively to Vi with

degree 1 and W with degree 2. In addition, there is an integer kg > 0 such
that

Vf€ZISo, ViR UW C Py

NOANAANAANAASNNANNAANNNNN
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Figure 19. If k is large enough, fok UWw, ¥ is contained in the
perturbed petal Py.

We will now generalize this to maps f € Z.S)g [ with € sufficiently small.
It f €ZS)p,[, we set

Vi = {z € Py Im(q)f(z)) >0 and 0 < Re(@f(z)) < 2}
and
Wy = {z €Pr; —2< Im(<I>f(z)) <2and 0< Re(CI)f(z)) < 2} .
PROPOSITION 13 (see Figure 19). There is a number ez > 0 and an integer
k1 > 1 such that for all f € IS)y.,; and for all integer k € [1, k1],
(1) The unique connected component Vf_k of f=¥(V}) that contains 0 in its

closure is relatively compact in Uy (the domain of f) and fok - Vf_k — Vi

18 an isomorphism.
(2) The unique connected component Wf_k of f~*(Wy) which intersects Vf_k

is relatiwely compact in Uy and fok - Wf_k — Wy is a covering of degree

2 ramified above v.

(3) Vi uw M c {z € Py 2 <Re(@4(2)) < o — Ry — 5}

Proof. Set k1 := kg + 7. By compactness of Z.5y, there is an €5 > 0 such
that for all f € Z.S)q.,[, properties (1) and (2) hold for all integers k € [1, k1],
and further, Wf_k1 is contained in {z ePr; 4< Re(qu(z)) < % — R3 — 7}.

Ky . 1 _

To see that V™ is a subset of {z €ePr; 2< Re(q)f(z)) <& R3 5},

we proceed as in the proof of Lemma 8. U
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We now come to the definition of the renormalization of maps f € Z.S)q ., |-

RESULT OF INOU-SHISHIKURA (Main Theorem 3 and Section 5.M). If

J €ZIS)0,, the map
Do fFod; (VM UW M) = &p(VyUWY)

projects via w +— —%62"”’ to a map R(f) € IS 1)a;-

Definition 8. The map R(f) is called the renormalization of f.

The polynomial P, does not belong to the class Z.S,. However, according
to [IS], the construction we described also works for polynomials P, with & > 0
sufficiently close to 0. In other words, if &« > 0 is sufficiently close to 0,
there are perturbed petals and perturbed Fatou coordinates, and there is a
renormalization R(F,) that belongs to ZS_; /,. In the sequel, £2 > 0 is chosen
sufficiently small so that for a € ]0,e3], a map f that either is a polynomial
Py, or belongs to Z.S,, has a renormalization R(f) € ZS_ /4.

1.5.5. Renormalization tower. Assume 1/N < 9. Denote by Irrat>y the
set

Irrat>y = {a = [ag,a1,a9,...] ER\Q; ap > N for all k > 1}.
Assume a = [ag, a1, ag,...] € Irrat>y. For j > 0, set

Q1= [0, Aj41, Aj42, - - ]

1 1
Q41 = — — | —|.
Q; Q;

The requirement o € Irrat>y translates into

Vi,  «a; €]0,1/N[.

Note that for all 7 > 1,

Denote by p;/q; the approximants to ag given by the continued fraction algo-
rithm.

Now, if either fy = P, or fo € Z.S,, we can define inductively an infinite
sequence of renormalizations, also called a renormalization tower, by

fis1:=s0R(fj)os™",
the conjugacy by s : z — z being introduced so that

f]/ (0) — eQi?Taj .

It will be convenient to define
Exp: C — C*

)
w oo —%s(ezmw).
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Figure 20. The branch ¢;11 maps Py, , univalently into Py, .

For j > 0, we define
¢j = Expo @y, : Py, — C.
The map ¢; goes from the j-th level of the renormalization tower to the next
level.
We now want to relate the dynamics of maps at different levels of the
renormalization tower. For this purpose, we will use the following lemma.

LEMMA 11. There is a constant K > 0 such that for all f € IS),[, there
is an inverse branch of Exp that is defined on Py and takes its values in the
strip {w €C; 0<Re(w) < K}

Proof. This is an immediate consequence of Proposition 12, part (1). O

From now on, we assume that N is sufficiently large so that
1 1
3 — d — —Rs>K.
(3) N < &9 an N 3 >

Then, according to Lemma 11, for all j > 1, there is an inverse branch ;
of ¢;—1 defined on the perturbed petal Py, with values in Py, _,. (There are
several possible choices; we choose any one.) See Figure 20.

The map

Uji=1t¢10¢g0...09;
is then defined and univalent on Py, with values in the dynamical plane of the
polynomial fy.
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Remember that
Qs (Py;) = {w €C; 0<Re(w) <1/aj — R3}.
Define P; C Py, and P; C Py; by
Pj = {2z € Py, ; 0<Re(®y,(w)) <1/a; — Rz —1}
and
P = {z EPyr; 1< Re(q)fj(w)) <1/aj — Rg}.
Note that f; maps P; to P; isomorphically. Set
Q;:==V;(P;) and Qj:=W;(P).
PROPOSITION 14. The map W; conjugates f; : Pj— P} to fob Qj— Q.

In other words, we have the following commutative diagram:

Oqj

f
Q; C \I/j(Pfj) = Q; C \Ilj(Pfj)

T@j ij

Pj C Pfj 7 77;- C Pfj.

Proof. We must show that if z; € P; and z§ = fi(z) € 77]’-, then the
points zg := W;(2;) and 2y := W;(2}) are related by
20 = fo (20)-

Let us first show that there is an integer k such that z{ = f5¥(zp). Our proof
is based on the following lemma.

LEMMA 12. Assume £ > 0, w € Uy, ,, and w' := for1(w). Let z € Py,
and %' € Py, be such that

Expo®y,(z) =w and Expo®(2) =1
Then, there is an integer k > 1 such that 2 = f5¥(z).
Proof. Let z] € Py, be the unique point such that
Re(q)fe(zi)) €10,1] and Expo®y(2]) =w'.

By definition of the renormalization fy,1, there is a point z; € Vf;kl Uw,, L
such that

Expo ®f,(z1) =w and fi¥(z) = 2}.
We then have

Dy (21) = @p,(2) +m1 and Py, (2') = @y, (27) +m)
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with my € Z and m} € N. If my > 0, we have
z1=f;""(2) and 2 = ;mll(zi).
Since k; > 0, we then have
7 = fOk(z) with  k:=k; +mi +m) > 1.
If m; <0, then z = f;” "™ (27). However, for m < —mq, we have fj™(2]) €
P¢,, and so, k1 > —mq + 1. Thus, we can write
21 = f;"(z) with mg =k +m; > 1.

In that case,

2= k() with k:=mg+m)|>1. O

It follows by decreasing induction on ¢ from j to 0 that for all z; € P,
there is an integer k£ > 1 such that

20 = 5" (20)-
We will now show that we have a common integer £, valid for all points z; € P;.

LEMMA 13. There is an integer ko > 1 such that for all point z; € Pj, we
have

20 = f5"° (20)-
Proof. We will use the connectedness of P;. For k& > 1, set
Op:={2€P;; fé’k(‘lfj(z)) is deﬁned}.
This is an open set. Set
Xk = {Z S Ok 5 8k(\I/J(Z>) = \IJJ(fJ(z))}

Note that for every component O of O, either Xz N O = O, or X is
discrete in O, in particular countable. Indeed, X} is the set of zeroes of the
holomorphic function f§% o ¥; — W, 0 f; : O — C.

Since
Py = U X,
E>1
there is a smallest integer kg > 1 such that X}, is not countable. Then, there
is a component O of Oy, such that on O, we have Sko oW; =V,o f;.
Since O is a component of Oy, we have

aOﬂ'Pj C C\Oko
It follows that
80ﬂpj CXqiU... Xp—1

since the remaining X’s are contained in Oy,. So, 90 NP; is countable. This
is only possible if 90ONP; = P since in any neighborhood of a point z € C\ Oy,
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there are uncountably many points in C \ O,. As a consequence, O = P,
which concludes the proof of the lemma. [l
We must now show that ky = ¢;. Let L; C P; be the curve defined by
Lj = {z € P; ; Re(®y,(2)) =1}.
Set L’ := f;(L;), i.e., the curve
L} = {z €P;; Re(q)fj(z)) = 2}.

Those curves both have an end point at z = 0. They both have tangents at
z = 0. Since the linear part of f; at z = 0 is the rotation of angle o, the angle
between L; and L at z = 0 is ;. It follows that the curves W;(L;) and W;(L})
have tangents at z = 0 and the angle between those curves is apag - - - ;. So,

the linear part of fgko at z = 0 is the rotation of angle oo - - - ;. It follows
that k’o =4qj. U
Set

-k —k —
Dj = ij ! Uij ' D} =V, UWy,,
Cj = \I/j(Dj), and CJI = \I/](D;>
Note that f;kl maps D; to Dj.
PROPOSITION 15. The map V; conjugates the map f;k1 Dy — D;» to the
map fg(qu"—kq]‘*l) :Cj— .
In other words, we have the following commutative diagram:

O(quj‘Fq]'fl)

Cj C \Ilj(Pfj) 0 CJ/ C \I/j(Pfj)
T\I/j T\I/j
Dj C Py, T D’ C Py,.
J
Proof. The proof is similar to that of Proposition 14. O

1.5.6. Neighborhoods of the postcritical set. We can now see that the post-
critical set of maps f € ZS, with o € Irrat>y is infinite.

PROPOSITION 16 (Inou-Shishikura Corollary 4.2). For all o € Irratsy
and all f € TS,, the postcritical set of f is infinite.

Proof. For 7 > 1, the map f;kl : Wf;kl — Wy, is a ramified covering of
degree 2, ramified above v. Denote by w; the critical point of this ramified
covering. Set wp := ¥;(w;). According to Proposition 15, we can iterate fj
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k1gj+qi—1)

at least k1q; + ¢j—1 times at wg, wp is a critical point of fg( , and its

critical value is W;(v). In particular, ¥;(v) is a point of the postcritical set

of fo.

Note that v € Pj. According to Proposition 14, we can iterate fy at least
g; times at W;(v). This shows that we can iterate fy at least ¢; times at v.
Since j > 1 is arbitrary, the postcritical set of fy is infinite. O

For every a € Irrats v, we are going to define a sequence (U;) of open sets
containing the post-critical set of P,. We still use the notations of the previous
paragraph. In particular, for j > 1, the j-th renormalization of fy := P, has a
perturbed petal Py, and a perturbed Fatou coordinate

O T {w €C; 0<Re(w)<1/aj— Rg}.
The set
—k —k
D] = ij . UWf] ! C Pfj
is mapped by f;kl to
Dj:={z€ Py ; 0<Re(Py,(2)) <2 and Im(®y,(2)) > —2}.
There is a map V;, univalent on Py, with values in the dynamical plane of
P,, conjugating f;kl : Dj — Dj to pokraitai-y) Cj — C} with
Cj = \I’J(Dj) and C], = \I’](D;)
Definition 9. For o € Irrat>y and j > 1, we set

qj+1+4q;

Uila):== |J Py,
k=0

where £ :=k; — |R3] —4 € N.
Figure 21 shows the open set U;(«a) for an a of bounded type.

PROPOSITION 17. For all o € Irrat>n and all j > 1, the post-critical set
PC(P,) is contained in Uj(c).

Proof. We will show that for all j > 1, there is a point 29 € C; that is a

precritical point of P,, and a sequence of positive integers with tg < t1 < to <
- such that

o tp =0,

e for all m >0, tmtl — tm < qj+1 + (kl — {RgJ — 4)(]j, and

e for all m > 0, P3'™(z) € C;.
The proof follows immediately.

Denote by w;41 the critical point of f;41. According to Proposition 16 the
orbit of w41 under iteration of f;i; is infinite. In particular, for all m > 0,
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Figure 21. If f € 7S, with a € Irrat> v, the set Uy (f) contains
the postcritical set PC(f). If « is of bounded type, this post-
critical set is dense in the boundary of the Siegel disk of f.

fiTi(wj41) is in the domain Uy, , of fj11. Remember that the map ¢; =
Expo @y : Dj — Uy, is surjective. So, for all m > 0, we can find a point
wp, € Dj such that

¢ (wm) = 711 (Wj+1).
Set

Zm = Vj(wp,) € Cj.
Then, zq is a precritical point of P,, and according to Lemma 12, there is an
increasing sequence (t,,) such that z, = P (z). It is therefore enough to
show that for all m > 1, t;,41 — ty < gj1 + (k:l — | R3] — 4)q;.

Note that for m > 0, w,, € D;, w), = f;kl (wm) € Dj. By definition of

the renormalization fj1, we have

o(m—+1
65 (wh) = fiv1(65(wm)) = [ @551) = & (wmsn).
In addition, since wy, € D} and w11 € Dy,
1

0 <Re(®y,(w),)) <2 and 2<Re(®y,(wms1)) < o b
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Thus, @y, (wimi1) — @y, (wy,) is a positive integer £y,

otm

W1 = f77 (W),
and since aj11 = |1/a;],
by < ajy1 — R3] —4.
Set 2], := ¥;(w;,). According to Proposition 14 and 15, we have

oy = PA BTG and 2 = PY (2,

Thus,
b1 — tm = k15 + ¢j—1 + lng; < (3541 + k1 — [ R3] —4)q; +gj-1.
The result now follows immediately from gj11 = aj119; + gj—1. ([

We will now assume that a € Sy, i.e., a € Irrat>y is a bounded type
irrational number. (The coefficients of the continued fraction are bounded.)
We will use the additional hypothesis that « has bounded type in order to
obtain the following result (which cannot hold, for instance, for a map whose
closed Siegel disk is strictly contained in the post critical set, and there are
values of a € Irrat>y for which this happens).

ProprosITION 18. For all a € Sy, for all € > 0, if j is large enough, the
set Uj(a) is contained in the e-neighborhood of the Siegel disk A .

Proof. Consider the renormalization tower associated to fo := P, and let
us keep the notations we have introduced so far. Set

DY = [ (D).
Define
1
Nj = a1 — LRgJ — 1< — —Rs.
Qj
Note that
DY ={2eC; Nj -3 <Re(®y,(2)) <N; —1 and Im(w) > —2}.
In particular, DY C Py,. Set
O} = ;(D).
According to Propositions 14 and 15,
o — P;(Qj+1+€q]')(cj)
] .

LEMMA 14. There exists M such that for all j > 1, the disk D(O7 \v\e*%M)
is contained in the Siegel disk of f;.
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Proof. Let B(a;) be the Brjuno sum defined by Yoccoz as

1
Qjtk

+oo
B(Oéj) = Z Qg Qg1 log
k=0

Since « is of bounded type, there is a constant B such that for all j > 1,
B(Oéj) S B.
The map f; has a univalent inverse branch g; : D(O, |v|> — C fixing 0

with derivative e=2"%. According to a theorem of Yoccoz [Yoc95], there is

a constant C, which does not depend on j, such that the Siegel disk of g;
contains the disk centered at 0 with radius

|U’e—27r(B(o¢j)+C) > |’U|6_27T(B+C).
The lemma is proved with M := B + C. U

Let us now show that for any € > 0, for j large enough, C]’-’ is contained
in the e-neighborhood of A,. Denote by D;-’ﬁ the set of points in D} that are
mapped by ¢; = Exp o @y, in D(O, |v\e_27rM) and set D;’b = Dj\ D;-’ﬁ. In
addition, set

= v; (D) and O :=0;(DY).
Points in D(O, lv|e=2M ) have an infinite orbit under iteration of fj11. It
follows that points in D}’ ¥ have an infinite orbit under iteration of fj- Thus,
the orbit of points in C]’-’ ¥ remains in U (), thus is bounded. As a consequence,
cy # (which is open) is contained in the Fatou set of Py, and since it contains

0 in its boundary, C7 ? is contained in the Siegel disk of P,.
So, in order to show that C']’-’ is contained in the e-neighborhood of A,

it is enough to show that C7 > is contained in the e-neighborhood of A,. Note
that DY > is the image of the rectangle

{weC; Nj -3 <Re(w) <N;—1and —2<Im(w) < M}
by the map @;jl which is univalent on the strip
{w €C; 0<Re(w) <1/aj— Rg}.

Since
1 <Nj—3<Nj < l/Otj—Rg,

the modulus of the annulus Py, \ D} > is bounded from below independently
of j.
It follows from Koebe’s distortion lemma that there is a constant K such
that
diam(C]/-/b) < K -d(z,7)),
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where
zj=V;o0 <I>]7j1(Nj —3) and zj:=Vjo CIDJle(Nj —2).

According to Proposition 14,
zj = P34 (wa) and 2= P (z)).

The boundary of A, is a Jordan curve, and P, : 0A, — 0A, is conjugate to
the rotation of angle aw on R/Z. It follows that

diam(Cj’/b) < K - max
2€E0A

P (2) - z‘.

Without loss of generality, we may assume that M > 2. If z € Uj(a),
then there is a k < g;+1 + £g; such that P2¥(z) € C?7. Then,

e cither P2%(2) € C'J//ﬁ, in which case z € A,,

e or PF(2) € C]’-’ > in which case z belongs to the connected component

O;k of Pa_k(C]’-’b) intersecting A,.

In the second case, Oj_k contains two points zj_k and z;-_k that are in the

boundary of A, and that are respectively mapped to z; and z} by PF. We
have zé»_k = PY (z;k)
Note that since « is of bounded type, there is a constant A such that

Vji>1, qj+1 + g < A-qj.

According to Lemma 15 below, there is a constant K’ such that for all 7 > 1
and all £ < g1 + £gj,

diam(Oj_k) <K'

_k _
zé —z.k‘<K"max
J 2€0A4

PV (2) — z'.

So, we see that

sup d(z,A,) < max(K, K') - max
zeUj(a) 2€0Aq

P (2) -4 0.
]—> o0

This completes the proof of Proposition 18. U

Assume « € R\ Q is of bounded type. If z € 0A,, we set
ri(z) = ‘quj(z) — z’.

LEMMA 15. For all « € R\ Q of bounded type, all A > 1, and all K > 1,
there exists a K' such that the following holds. If j > 1, if k < A-gqj, if z0 €
OAy, if 2, = P*(20), and if O is the connected component of Py* (D(zk,K-

rj(zk))) containing zo, then

diam(0) < K" - rj(20).
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Proof. The constants M and m, which will be introduced in the proof,
depend on «, A, and K, but they do not depend on j, k, or z.
Set

D := D(zk,K . rj(zk)> and D := D(Zk,QK . T‘j(Zk)).

Since JA, is a quasicircle and since P, : 0A, — JA, is conjugate to the
rotation of angle o on R/Z, the number of critical values of P2 in D is bounded
by a constant M that only depends on o, A and K.

Let O (respectively O) be the connected component of P;¥(D) (respec-
tively Pa_k(b\)) containing zg. The degree of PSF O — D is bounded by 2M.

On the one hand, it easily follows from the Grotzsch inequality that the
modulus of the annulus O\ O is bounded from below by log 2/(2m2M) (see, for
example, [SL00, Lemma 2.1]).

On the other hand, it follows from Schwarz’s lemma that the hyperbolic
distance in O between zg and Ps” (z0) is greater than the hyperbolic distance
in D between 2, and Paoqj(zk), i.e., a constant m that only depends on «, A,
and K.

Lemma 15 now follows easily from the Koebe distortion lemma. O

Note that for each fixed j, the set U;j(«) depends continuously on « as long
as the first 7 + 1 approximants remain unchanged. Hence, given a € Sy and
d >0, if o € Irrat> v is sufficiently close to « (in particular, the first j entries
of the continued fractions of @ and o' coincide), then U;(c) is contained in
the d-neighborhood of U,(«). This completes the proof of Proposition 11.

1.6. Lebesgue density near the boundary of a Siegel disk.

Definition 10. If « is a Brjuno number and if § > 0, we denote by A the
Siegel disk of P, and by K () the set of points whose orbit under iteration of
P, remains at distance less than 6 from A.

Our proof will be based on the following theorem of Curtis T. McMullen
[McM9S].

THEOREM 4 (McMullen). Assume « is a bounded type irrational and 6 > 0.
Then, every point z € A is a Lebesgue density point of K (0).

COROLLARY 5. Assume « is a bounded type irrational and 6 > 0. Then
d:=d(z,0A) >0 withz¢ A = densp(, g ((C \ K(é)) — 0.
Proof. We proceed by contradiction. Assume we can find a sequence (z;)
such that
o dj:=d(z;,0A) =0,
® pj = densD(Zj,dj)((C \ K(é)) # 0.
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Figure 22. If o = (/5 — 1)/2, the critical point of P, is a
Lebesgue density point of the set of points whose orbit remain in
D(0,1). Left: the set of points whose orbit remains in D(0,1).
Right: a zoom near the critical point.

Extracting a subsequence if necessary, we may assume that the sequence (z;)
converges to a point zgp € A and that lim p; = p > 0.
Set 1 := p/5 and for i > 1, set

X; = {w € 0A ‘ (Vr < 1/1) densD(w,r)((C \ K((S)) < 77}.

The sets X; are closed. By McMullen’s Theorem 4, [JX; = 0A. By Baire
category, one of these sets X; contains an open subset W of OA. Then, for all
sequence of points w; € W and all sequence of real number 7; converging to 0,
we have

: P
(4) lim sup densD(wjmj)((C \ K((S)) <n= 2

Jj——+o0o
We claim that there is a map g defined and univalent in a neighborhood
U of zp, such that

® g(z0) =wo €W,

o 9(K(6)NU) = K(6) Ng(U),

e g(OANU) =0ANg(U).
Indeed, if g is not precritical, we can find an integer k > 0 such that f°F(z) €
W and we let g be the restriction of f°F to a sufficiently small neighborhood
of zg. If 2 is precritical, we can find a point wg € W and an integer £ > 0
such that f%(wg) = 29 and we let ¢ coincide the restriction of the branch of
f7F sending 2o to wp, to a sufficiently small neighborhood of z.

Let z; € OA be such that |z; — zj| = dj. Then, 2 — 2. Let j
J—+o0

be sufficiently large so that 27 € U and set w; := g(z}). On the one hand,
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W T wp. Thus, w; € W for j large enough. On the other hand,
j—+oo

densp(z1 24;) (C\K(6)) >

and so
lim inf densD(z;72dj) ((C \ K(5)> >

Jj—+o0
Since g is holomorphic at zg,
o P . 0 '
?glﬁgdens[)(wj,rj)@C \ K(5)> > 1 with 7 := ’g (wo)’ -2d; — 0.

This contradicts (4). O

1.7. The proof. We will now prove Proposition 3. We let N be sufficiently
large so that the conclusions of Proposition 11 and Corollary 4 apply. Assume
a € Sy and choose a sequence (A4,) such that

R/ An _)—+> 400 and ®/logAd, — L
n [e.9]

n—-+o0o
Set
an = [a07a17"'7an7ATL7N7N7N7"’]'

Note that since « is of bounded type, the Julia set J, has zero Lebesgue
measure (see [Pet96]). Proposition 6 then easily implies that

1
lim inf area(K,, ) > §area(Ka).

Everything relies on our ability to promote the coefficient 1/2 to the coeffi-
cient 1.

Let us first give an overall idea of the strategy of the proof. Denote by
K (resp. K,,) the filled-in Julia set of P, (resp. P,,) and by A (resp. A,) its
Siegel disk.

The idea of the proof is the following. For all S > 1, one can find a nested
sequence of toll belts (Ws)1<s<s (see Figure 23):

W,:={zeC \ 26, < d(2,A) < 83,} with 80,41 < Js,

surrounding the Siegel disk A such that for n large enough the following holds:

e The orbit under iteration of P,, of any point in A \ K, must pass
through all the toll belts.

e Thanks to Corollary 4, the toll belts surround the Siegel disk A,,.

e Thanks to Corollary 5 and Proposition 6, under the iterates of F,,,, at
least 1/2 — ¢ of points in the toll belt Wsy; will be captured by the
Siegel disk A,, without being able to enter the toll belt W.
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Figure 23. Schematic illustration of toll belts. The thick black
line represents a Siegel disk A. The dotted line represents a
d-neighborhood of A, containing A,, for all n big enough. Such a
A,, is drawn with a think black line. Two toll belts are drawn in
gray. (For readability, the ratio 895/2ds = 4 has been replaced
by the smaller value 2.)

e Since the toll belts surround the Siegel disk A,,, they are free of the
postcritical set of F,,. This gives us Koebe control of points passing
through the belt, implying that at most 1/2 4 ¢ of points in A that
manage to reach W11 under iteration of P,, will manage to reach W.

As a consequence, at most (1/2 + ¢)° points in A can have an orbit under
iteration of P,, that passes through all the belts and we are done by choosing
S large enough.

There are minor boundary effects which slightly complicate the argument
and we proceed as follows. For § > 0, set

V(§):={reC ] d(z,A) < 8},
K(6):={ze V() \ (Vk > 0) P2F(2) € V(5)},
Kq(8):={z € V(9) \ (Vk > 0) P2E(2) € V(5)}.
Define py, : |0, +oo[ — [0,1] by
pn(8) := densa (C\ K, (9)).
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LEMMA 16. For all 6 > 0, there exist 6’ > 0 (with &' < 0) and a sequence
(¢n, > 0) converging to 0 such that
3
pn(6) < an(dl) +ept?
This lemma enables us to complete the proof of Proposition 3 as follows.
We set

p(0) = limsup p,(9) (< 1).

n——+0o00
Then, for all § > 0, there is a & > 0 such that p(§) < 2p(¢’). Since p is
bounded from above by 1, this implies that p identically vanishes. In other
words,
(5) (V6 >0) densa(Kn(0)) b

Since K, (0) C K, we deduce that densa(K,) — 1. We know that

n—-+00
e P, converges locally uniformly to P,,
e the orbit under iteration of P, of any point in K \ K eventually lands
in A,
e PU(K,) =K,.
It follows that densy\gx (Kn) e 1. Since the Julia set QK has Lebesgue

measure zero, this implies that liminf area(K,) > area(K). This completes
the proof of Proposition 3 modulo Lemma 16.

Proof of Lemma 16. Let us sum up what we obtained in Sections 1.4, 1.5
and 1.6.

(A) For all open set U C A and all 6 > 0, liminf densy (Kn(5)) >

n—-+00
an immediate consequence of Proposition 6 in Section 1.4.

. This is

| =

(B) For all 6 > 0, if n is sufficiently large, the post-critical set of P,, is
contained in V(). This is just a restatement of Corollary 4 in Section 1.5.

(C) For all n > 0 and all § > 0, there exists d; > 0 such that if ¢’ < d, and
if 2 € V(8)\ V(2¢), then densD(275/)<C \ K(é)) < n. This is an easy
consequence of Corollary 5 in Section 1.6.

Step 1. By Koebe’s distortion theorem, there exists a constant x such that
for every map ¢ : D := D(a,r) — C that extends univalently to D(a,3r/2),
we have

sup |¢'| < kinf |¢/].
D D
We choose 1 > 0 such that
1
8mrin < —.
TR < o

12 ; 3 1
The coefficient § could have been replaced by any A > 3.
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Step 2. Fix § > 0. We claim that there exists 6’ > 0 such that
(i) 968’ < 6 and (2 +3k) -8 < §;13
(ii) if d(z,A) < 20, then d(Pa(2), A) < 85';
(ii) if = € V(80") \ V(28'), then densp. 51 (C\ K(6)) < 1.
Indeed, it is well known and easy to check that for a € R, ’P(;

< 4 on K,.

As a consequence, if ¢ > 0 is sufficiently small, then ‘PO’C‘ <4onV(2)). It
follows that (ii) holds for ¢’ > 0 sufficiently small. Claim (iii) follows from the
aforementioned point (C).

From now on, we assume that ¢’ is chosen so that the above claims hold and
we set

W :=V(8)\ V(25).
Step 3. Set
Y= {z € K(9) \ P(z) € A}
The set of points in K(J) whose orbits do not intersect A is contained in
the Julia set of P,. This set has zero Lebesgue measure. Thus, K(J) and
UY?* coincide up to a set of zero Lebesgue measure. The sequence (Y*)y>g is
increasing. From now on, we assume that /¢ is sufficiently large so that
(Vw € W) densp 51 (C\ Y4 <.

Step 4. Assume ¢ is univalent on D(w, 36'/2) with w € W, r is the radius
of the largest disk centered at ¢(w) and contained in ¢(D(w,5’ )), and @ is
a square contained in ¢<D(w,5’)) with side length at least 7/v/8. Set D :=
D(w,¢"). Then, r > infp |¢'| - 6" and thus

area(Q) > i%f CARE (5&;)2

In addition, sup |¢/| < Ki%f |¢'| and so
D

area(¢(D \ Y@)) 51[1)1) |62 - m(&') -
area(Q) = irll)f 1o'12- (6")2/8

densg (C \ (;S(YE)) < < 8Ky < %

As a consequence,
3

densg (qS(YZ)) >

Step 5. If X C C is a measurable set, we use the notation m|x for the
Lebesgue measure on X, extended by 0 outside X. If U C C is an open set,
(X,) is a sequence of measurable subsets of C, and A € [0, 1], we say that

liminf m|x, > X -mly
n——+00

BThose requirements will be used in Step 9.
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if for all nonempty open set U’ relatively compact in U, we have

14
lﬁglirgdens(]/( n) > A

Assume f : V — U is a holomorphic map, nowhere locally constant, and
(fn : Vi, — C) is a sequence of holomorphic maps such that

e every compact subset of V' is eventually contained in V,,

e the sequence (f,,) converges uniformly to f on every compact subset of V.
Then,

liminfm|x, > A-mly = hmlnfm\f y = A-mly.
n——+00

Step 6. Set
Vil = {2 € V(0) | (vj <€) P3i(2) € V(5) and Py’ (2) € A}.

On the one hand, if z € V! and P (z) € K,(J), then z € K,(5). On the
other hand, every compact subset of Y is eventually contained in Y,f and the
sequence (Pgi ) converges uniformly to P¢ on every compact subset of Y. By
the aforementioned point (A), we have

lim inf mlg, ) > <l
égin m|g, gmla.
So, according to Step 5,

lim inf mlx, ) > <l
imin m —m
n—+00 Kn 2 ve

Step 7. Assume ¢, is univalent on D(wn,35'/2) with w, € W, r, is the
radius of the largest disk centered at ¢, (w,) and contained in ¢, (D(wn, o’ )),
and (), is a square contained in ¢, (D(wn, o’ )) with side length at least r,,/v/8.
Then,

3
imi n(Kn(0))) > =.
lim inf densg, (én (Ka(9))) >

Indeed, assume A is a limit value of the sequence

densg, (an (Kn(é)) )
Post-composing the maps ¢,, with affine maps and extracting a subsequence
if necessary, we may assume that (w,) converges to w € W, (¢,) converges
locally uniformly to ¢ : D(w,36’/2) — C, r,, converges to the radius r of the
largest disk centered at ¢(w) and contained in qu(D(w, o' )), and @, converges
to a square @ with side length at least r/4/8. According to Steps 5 and 6,

1
lim inf mly, (k. 3)) = 5msre):

14Equivalently, for all nonempty open set U’ C C with finite area, lim inf densy/ (X,,) >
n——+oo
A - densy (U).
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According to Step 4, it follows that

A > %densQ <¢(YZ)) >

| w

Step 8. From now on, we assume that n is sufficiently large, so that
(i) A\ K,(8) € X,, € A\ K,(¢") with

Xni={z€A \ (3k) PF(2) e W}

(this is possible by Step 2);

(ii) s, < ¢’ with

Sp 1= sup d(z, Kn(dl))
zEA

(this is possible since sy, njm 0 in order for the aforementioned point
(A) to hold);

(iii) the post-critical set of P,, is contained in V' (¢'/2) (this is possible by the
aforementioned point (B));

(iv) if ¢ is univalent on D(w,3d’/2) with w € W, if r is the radius of the
largest disk centered at ¢(w) and contained in <Z>(D(w, (5')), and if Q is a
square contained in gb(D(w, 5’)) with side length at least r/+/8, then

densq (6(Kn(6))) > |

(this is easily follows from Step 7 by contradiction).
Step 9. Assume zg € X,,. Then, we have

Py

Pan Pan Pan v
20€ X, ¥ 21 €V(20) & W 21 €V(20) W e W

for some integer £ > 0. Since the post-critical set of P,, is contained in
V(0'/2), for j < k there exists a univalent map ¢; : D := D(z, ") — C such
that

e ¢; is the inverse branch of Pa"f_j that maps z; to zj,

e ¢; extends univalently to D(z,3d'/2).
In particular,

Sup |01 < rinf |¢5].

Let D(zj,7j) be the largest disk centered at z; and contained in ¢;(D) and
D(zj, Rj) be the smallest disk centered at z; and containing ¢;(D). Note that
D is contained in C\V'(¢') and so, for j < k—1, D(z;,r;) C ¢;(D) C C\K,(d").
On the one hand, d(zj, A) < 2¢’, and on the other hand, every point of A is
at distance at most s, from a point of K, (d"). It follows that

Rj <krj<k-(sp+ 25').
If wy € ¢o(D) and w; := P (wp), then for j <k — 1,
d(wj, A) < d(wj, 2j) +d(zj,A) < k- (s, +28") +20 < (2+3K) -8 <&
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and for j =k,
d(wg, A) < d(wg, 2x) + d(z1, A) < 98" < 6.
In other words, wy, wi, ..., wy all belong to V(4). As a consequence,
¢0(Kn(6)) C Kn(0).

Step 10. Continuing with the notations of Step 9, we denote by @, the
largest douadic square (i.e., a square of the form s(Q) where @ is the unit
square defined by 0 < Re(z) <1and 0 < Im(z) < 1 and s:z +— 5 (2 +a+ bi)
where a,b € Z) containing zy and contained in D(zp,79). On the one hand,
since zp € A and since ¢o(D) C C\ K, ("), we have 9 < s,, and so

Q: C D(20,7m0) C V(sn) \ Kn(&).
On the other hand, @, has an edge of length greater than ro/2v/2 and so,
according to Step 8, point (iv),

densg, (Kn(5)) >

| =

As a consequence,

densq, ((C \ Kn(é)) < Z

Given two douadic squares @ and @Q’, either QN Q' = 0, or Q C Q’, or

Q' C Q. It follows that
U e
zeXn

area(V(sn) \ Kn(é'))

area(A \ Kn(5)>

IN
o
=
@
S

IN

IN

area(A \ Kn(él)) + %area(V(sn) \ A)

W kW kW W

area(A \ Kn(é’)) + ¢, - area(A),
with
3 area(V(sn) \ A)
T area(A)
Step 11. Since s, — 0 and since the boundary of A has zero Lebesgue

measure,

area(V(sn)\A> — 0.

n—-+o00

Thus,

n—-+oo

densA((C \ Kn(é)) < %denSA ((C \ Kn(él)) +¢, with ¢, — 0.

This completes the proof of Lemma 16. O
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2. The linearizable case

In order to find a quadratic polynomial with a linearizable fixed point and
a Julia set of positive area, we need to modify the argument.

Definition 11. If a is a Brjuno number, we denote by A, the Siegel disk
of P, and by 7, its conformal radius. For p < r,, we denote by A,(p) the
invariant sub-disk with conformal radius p and by L,(p) the set of points in
K, whose orbits do not intersect A, (p).

Figure 24. Two sets Lo (p) and Ly (p), with o a well-chosen
perturbation of « as in Proposition 19. This proposition asserts

that if @ and o' are chosen carefully enough, the loss of measure
from L,(p) to Ly/(p) is small. We colored white the basin
of infinity, the invariant subdisks A, (p) and A,/ (p) and their
preimages; we colored light grey the remaining parts of the
Siegel disks and their preimages; on the right, we colored dark
grey the pixels where the preimages are too small to be drawn.
Most points in the dark gray part belong in fact to Lo/ (p).

PROPOSITION 19. There exists a set S of bounded type irrationals such
that for all « € S, all p < p’ < 1o, and all € > 0, there exists o/ € S with

o |0/ —a| <e,

o max(p, (1- s)p’) <re <(l+4+¢e)p,

o area(La/(p)> >(1- s)area(La(p)).
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Proof. We let N be sufficiently large so that the conclusions of Proposi-
tion 11 and Corollary 4 apply. We will work with & = Sy. Assume a € Sy
and choose a sequence (Ajy) such that

lim %A, = T—O/{
P

n=+oo
Set

ap = [ag, a1, ..., an, Ap, NN, N, .. ].
This guarantees that r,,, AT o (see [ABCO04]).

Let A be the Siegel disk of P,. Let us use the notations V(9), K(4) and
K, (9) introduced in Section 1.7. With an abuse of notations, set A(p) :=
Au(p) and A, (p) := Aq, (p). Set

A (p) == Py (A(p)) \ A(p).

Then, A(p) and A’(p) are symmetric with respect to the critical point of P,.
The orbit under iteration of P, of a point z ¢ A(p) lands in A(p) if and only
if it passes through A’(p). We have a similar property for

AL(p) = Py (An(p) \ An(p).
We have proved — see equation (5) — that
(V6 >0) densa(Kn(0)) — 1.

n—-+oo

The sequence of compact sets (Zn(p)) converges to A(p) for the Hausdorff
topology on compact subsets of C, because lim r,,, > p. It immediately follows
that for all § > 0,

dens 5\ x5, (Kn(6) \ An(p)) — 1.

n—-+o0o

Choose § sufficiently small so that V(3) does not intersect A'(p). Then,
for n large enough, V (8) does not intersect A, (p). In that case, the orbit under
iteration of P,, of a point in K, () cannot pass through A/ (p), and so

a(8)\ Da(p) € Lo ().
Thus,
densA\Z(p)<Lan(p)) — L

n—-+4o0o

The points of L (p) whose orbits do not intersect A\ A(p) are contained in the
union of the Julia set J, and the countably many preimages of dA(p). Thus,
they form a set of zero Lebesgue measure. It follows that

area(Lan (p)) ST area(La (p)) O
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Proof of Theorem 2. We start with ap € S and set pg := 74, We then
choose p € 10, pp[ and two sequences of real numbers ¢, in (0,1) and p, in
(0, po) such that [J(1 —&,) > 0 and p, N\, p > 0. We can construct inductively
a Cauchy sequence (o, € S) such that for all n > 1,

® Ty, € (pn;pn—l)u

o area(Lan(p)> > (1- 5n)area<Lan71(p)).
Let « be the limit of the sequence (ay,). The conformal radius of a fixed
Siegel disk depends upper semi-continuously on the polynomial (a limit of
linearizations linearizes the limit). So, r, > limr,, = p. Also, by choosing «,
sufficiently close to ay,—1 at each step, we can guarantee that r, < p, in which
case ro = p.

In addition, the sequence of pointed domains (Aan (p),O) converges for
the Carathéodory topology to (A,,0). In particular, every compact subset of
A, is contained in A, (p) for n large enough. Similarly, every compact subset
of C\ K, is contained in C\ K, for n large enough. It follows that

lim sup Lozn(p) = ﬂ U Lan(p) C La(p)'

m n>m
Since r4 = p, Aa(p) = Aq and Ly (p) = Jo. Thus, limsup Ly, (p) C Jo and

area(Jy) > area(limsup L, (p)) > area(La0 (p)) . H(l —epn) > 0. O

3. The infinitely renormalizable case

In order to find an infinitely renormalizable quadratic polynomial with a
Julia set of positive area, we need a modification based on Sgrensen’s construc-
tion of an infinitely renormalizable quadratic polynomial with a non locally
connected Julia set.

PRrOPOSITION 20. There exists a set S of bounded type irrationals such
that for all « € S and all € > 0, there exists o/ € C\ R with

o [0/ —a| <e,

e P, has a periodic Siegel disk with period > 1 and rotation number in
S,

o area(Ky) > (1 —e)area(K,).

Proof. We can choose § = Sy with N large enough (in order to be able
to apply Inou and Shishikura techniques). The proof essentially goes as in the
Cremer case.

Given o € S, we let pi/qr be its approximants, and we consider the
functions of explosion Yj given by Proposition 4. If o/ belongs to the disk
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centered at py /g with radius 1/¢3, the set

Cr(d) := x& { %/ o, — pk/Qk}

is a cycle of Py. Its multiplier is e2™(*) with 6}, : D(py/qx, 1/¢}) - C a
nonconstant holomorphic function that vanishes at pg/qx.
We consider a sequence (q,) converging to « so that

o limsup %/|ay, — pn/qn| =0,

n—-+o00

e Op(a) :=[An,N,N,N,...] with

lim %/A, =+oco and EIJIrl ?/log A, = 1.

n—-+oo

We control the shape of the cycle of Siegel disk as in the Cremer case.
For all p < 1 and all n sufficiently large, the cycle of Siegel disks contains the

Figure 25. Two filled-in Julia sets K, and K/, with o/ a well-
chosen perturbation of a as in Proposition 20. This proposition
asserts that if a and o’ are chosen carefully enough, P, has a
periodic Siegel disk and the loss of measure from K, to Ky
is small. Left: we hatched the fixed Siegel disk. Right: we
hatched the cycle of Siegel disks.
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Xn(Yn(p)) with

qn __
% € D(O,sn)} with s, :=
Z n

P — ey

Yu(p) = {zeC; o

For this purpose, we work in the coordinate given by x, and compare the
dynamics of the conjugated map to the flow of a vector field.

We control the post-critical set of P,, via Inou-Shishikura’s techniques.
We then control the loss of area as in the Cremer case. ([

Definition 12. For ¢ € C, we denote by Q. the quadratic polynomial
Q. : z — 2> +c. With an abuse of notations, we denote by K, its filled-in Julia
set and by J. its Julia set. We denote by M the Mandelbrot set, i.e., the set
of parameters ¢ for which K, is connected.

The previous proposition can be restated as follows.

PROPOSITION 21. Assume P. has a fixed Siegel disk with rotation number
in S. Then, for all € > 0, there exists ¢ such that

o | —c|l<e,

e P. has a periodic Siegel disk with period > 1 and rotation number in
S,

e area(Ky) > (1 —¢)area(K,).

In fact, such a ¢ is on the boundary of the main cardioid of M, and the
proof we proposed yields a ¢’ that is on the boundary of a satellite component
of the main cardioid of M.

Using the theory of quadratic-like maps introduced by Douady and Hub-
bard [DH85b], we can transfer this statement to perturbations of quadratic
polynomials having periodic Siegel disks. We will use the notions of renormal-
ization and tuning (see, for example, [Hai00]).

If 0 is periodic of period p under iteration of ()., then ¢y is the center of a
hyperbolic component €2 of the Mandelbrot set. This component €2 has a root:
the parameter c¢; € 0€) such that @), has an indifferent cycle with multiplier 1.
In addition, there exist

e a compact set M’ C M such that OM' C OM,

e a simply connected neighborhood A of M’ \ {¢1},
e a continuous map x : AU {e1} — C,

e two families of open sets (Uj)xea and (Ux)xea,

such that

° ( Hh=QF Uy - U ,\) AeA is an analytic family of quadratic-like maps;
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o for all A\ € M, fy is hybrid conjugate!® to Q)

e the Julia set of f) is connected if and only if A\ € M’;

e x: M — M is a homeomorphism (sending ¢o to 0 and ¢; to 1/4).
We denote by co L - : M — M’ the homeomorphism (x|yr)~!. We say that
co L cis ¢p is tuned by ¢ and that (f)\ = Qip :UN — UA)/\EA is a Mandelbrot-
like family centered at cg.

PROPOSITION 22. Assume 0 is periodic under iteration of Q. and ¢ €
M — ¢ € M with area(K.) — area(K.). Then

area(K,, ) — area(Kq1c)-

Proof. Let p be the period of 0 under iteration of @, and let (f)\ = QY :
Uy, —U. A) e be a Mandelbrot-like family centered at cg.

Let ¢ : Ugyre — C be hybrid conjugacies. As ¢ — ¢, the modulus
of the annulus U, \U;O e 1s bounded from below. So, the ¢ can be
chosen to have a uniformly bounded quasiconformal dilatation. It follows that
if ¢ € M — ¢ € M with area(K.) — area(K.), we have

area ((b;l(Kc/)) ~— area (d)c_l(Kc)) .

It follows easily that area(K,, ) — area(K., ) since almost every point in
K¢y 1o has an orbit terminating in ¢_ ! (K.). O

Proof of Theorem 3. If P, has a periodic Siegel disk, then ¢ is on the
boundary of a hyperbolic component with center cg. We denote by 2. this
hyperbolic component and we set M, :=cq L. M.

We will denote by S the image of S by the map a + €27 /2 — 47 /4,
Then, ¢ € S if and only if P, has a fixed Siegel disk with rotation number in S.
Moreover, P. has a periodic Siegel disk with rotation number in S whenever
¢ = co L s with ¢y the center of the hyperbolic component containing ¢ in its
boundary and s € S.

It follows from Proposition 21 and 22 that if Q). has a periodic Siegel disk
with rotation number in S, then for all £ > 0, we can find ¢ € M, \ Q. such
that

o | —¢|<e¢,

e P. has a periodic Siegel disk with rotation number in S,

o area(Ky) > (1 —¢)area(K,).

Let us choose a parameter ¢y € S and a sequence of real number &, in
(0,1) such that JJ(1 —&,) > 0. We can construct inductively a sequence (cy,)
such that

15Gee [Hai00] for a definition.
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e (c,) is a Cauchy sequence that converges to a parameter c;

® ()., has a periodic Siegel disk with rotation number in S;

o forn>1,c,€ M., _,\Q,_;;

o area(K,., ) > (1 —ep)area(K,, ).

Then, P, is infinitely renormalizable. (It is in the intersection of the nested
copies M., .) Thus, J. = K. =lim K.,. Finally,

area(J.) = area(K,) > area(K,,) - H(l —¢ep) > 0. O

Appendix A. Parabolic implosion and perturbed petals

The notations used in this appendix are those of Section 1.5.3. We post-
poned the proof of the following lemma to this appendix.

LEmMMA 17. If R > 0 and K > 0 are sufficiently large, then for n large
enough,

(1) @™(Q™) contains the vertical strip
u" .= {w €C; R<Re(w) <1/ay —R},

(2) 7, is injective on P™ 1= (®")~H({U"),
(3) there is a branch of argument defined on 7,(P™) such that
sup arg(z) — inf arg(z) < K.
2€7n (P™) 2E€Tn (P™)
Proof. As in [Shi00], the argument consists in comparing the Fatou coor-
dinate " to the Fatou coordinate W' of the time one map of the vector field
¢, defined on D,, by

G = Galw) o= (o) — )

1
In other words, set wy, := o and let ¥" : ), — C be defined by

Qn

T (w) = D" (w,) +/w _du
wy, Fn(u) —u
Claim 1. Increasing R; if necessary, there is a constant C' > 0 such that
for all n sufficiently large,

sup [®"(w) — \Il"(w)’ <C.

weN™

Proof of Claim 1. According to [Shi00, Prop. 2.6.2], there are constants R
and C such that for all sufficiently large n and for all w € Q" with d(w, 9Q™) >
R, we have

@ (@)~ 0] <€ (g +[Fr 1))
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We will first show that we can get rid of ‘F,fb(w) - 1’. Set

Gn(w) == F'(w)—1 and Sp(w) = (m”)y

sin(mapw
Those functions are 1/, periodic. On the one hand, as n — 400,

e the functions G,, are uniformly bounded by 1/4 on 9Q";
e the sequence (S,,) converges uniformly to w + 1/w? on 90", and thus
the functions S,, are uniformly bounded away from 0 on 0Q2".

As a consequence, the functions G,,/S,, are uniformly bounded on 9Q2™. On the
other hand, as Im(w) — +o00, G,,(w) — 0. Thus, in (C/iZ, G, has removable
singularities at +ioo and vanishes at those points. Since in C/ iZ, S, has
simple zeros at +ioco, the function G, /S, has removable singularities at +ico
in C/ éZ. It follows from the maximum modulus principle that there is a
constant C7 such that for all sufficiently large n and all w € Q" we have

2
T,

]F,g(w) - 1( <

sin(maw)
Note that there is a constant Cy > 0 such that

VweC, dw,Z)< C’g‘sin(ﬂw)'.
d(w,Z)

extends continuously to (C/Z)U{%ioco}, which
sin(mw)

Indeed, the quotient

is compact. It follows that for all w € Q"

? C3n2|a,|? C3n?

~ d(apw,2)? ~ d(w,00m)?

Ty,

sin(mapw)

Thus, there is a constant C’ such that for all sufficiently large n and for all
w € Q" with d(w, 9Q™) > R, we have
C/
ny/ _ ny\/
(@) = (VY ()| £ Z s

Taking R > 1 and replacing Ry by Ry + V2R, this can be rewritten as: there
is a constant C' such that for all sufficiently large n and for all w € Q",

C/
(1 + d(w, 00m))*

(@) (w) — (2" (w)| <

Let us now assume n is sufficiently large, so that

1
X, =——R; >0.
2au,



QUADRATIC JULIA SETS WITH POSITIVE AREA 741

1
Then, w, := Yo belongs to 2", Fix w := wy, + x + iy € Q™. Note that
Qo

7] < X+ |yl and  d(w,00") > V2(X, + |yl — |z]).
It follows that

C'\d
@7 (w) — 0" ()| s/ T e
[Wn wn+iy]Uwn+iy,w) (1 +d(u, 89”))

< /+°O C'ds N /Xn+|y C'dt
—Jo (1+\/§(Xn+s))2 0 (1+vV2(Xn+1yl — t))2
< 2C".

This completes the proof of Claim 1. ([

Claim 2. The map ¥" is univalent on Q", U"(Q") contains the vertical
strip

V= {w eC; Re(\II"(Rl)> < Re(w) < Re(\I/"(l/an - R1)>},
and 7, is injective on Q" := (¥")~L(V™).

Proof of Claim 2. Note that ¥" is a straightening map for the vector

field (p,:
d
n —

Since F,(w) —w € D(1,1/4) on Q", the trajectories of the vector field ¢,
are curves that enter Q" through its left boundary and exit " through the
right boundary. In particular, no trajectory is periodic. Since two distinct
trajectories cannot intersect, the map W™ is injective.

Observe that for w € 907,

arg((¥")'(w))
= —arg(Fn(w) - w) € }— arcsin(1/4),arcsin(1/4){ C ]—7‘(‘/12, 7r/12[.
Integrating (¥")'(w) along 90", we conclude that
2 dr
5 < arg(\I/"(w) - \I/"(Rl)) <3
on the left boundary of 2" and that
0 ™
3 < arg(\IJ”(w) -1/ — R1)> <3
on the right boundary of . This proves that ¥"(Q") contains the vertical
strip V™.
Assume by contradiction that 7, is not injective on V™. Then, there is
an integer k € Z \ {0} and a point w € V" such that w + k/a, is in V".
Note that V™ is a union of trajectories for the rotated vector field i(,. As w
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runs along those trajectories, the imaginary part of w increases from —ico to
+ico. In particular, every trajectory intersects R. Since for all w € D,,we have
iCn(w) = iCp(w + 1/a,), the trajectory for i¢, passing through w + k/ay, is
obtained from the trajectory passing through w by translation by k/a,,. This
is not possible since the intersection of those trajectories with R is contained
in Q"NR =|R;,1/a, — Ri[. This completes the proof of Claim 2. O

Let us now come to the proof of parts (1) and (2) of Lemma 17. Assume
n is sufficiently large, so that

sup
wenN™

Then, ®"(Q™) contains the vertical strip
{weC; Re(T"(R1)) + C < Re(w) < Re(¥"(1/a, — Ry)) — C}.

" (w) — "(w)| < C.

Note that
U™(Ry) =®"(R1) +0O(1) =0(1)
and
U(1/ap — R1) = " (1/a, — R1) + O(1) = 1/, + O(1).

Thus, if R is large enough and if n is sufficiently large, then ®"(Q") contains
the vertical strip

Uum .= {wE(C; R < Re(w) < 1/an—R}.

Since T, is injective on Q", this proves parts (1) and (2) of Lemma 17.

Let us now come to the proof of part (3) of Lemma 17. Note that 7,, sends
the segment ]0, 1/, [ to the perpendicular bisector of the segment [0, 0,,]. The
map 7, sends the lower half-plane H™ := {w € C; Im(w) < O} in the half-
plane {z eC; |z| >z — Un|}. This takes care of 7,,(P" NH™).

The map 7, is a universal covering from the upper half-plane

H .= {w € C; Im(w) >0}

to the punctured half-plane {z eC;0< |zl <|z—- Un\}, with covering
transformation group generated by the translation 7, : w — w + 1/a,. It
sends the lines

2k +1
Lk::{weC;Re(w): 2; }, kelZ

to the segment |0, 0,,[. It is therefore enough to show that there is a constant
M such that for n large enough, P™ N HT is contained in the vertical strip

{wE(C; —%<Re(u})<%}.

Qp Qn
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For all w € P™, we have

It is therefore enough to show that

sup ‘@"(w) - w‘ =0 <i)

weQmNH+ Qnp

or equivalently that
1
sup ‘\I/"(w) - w’ =0 (—) .
weQNHT Qp
1
Note that ———— — 1 is periodic of period 1/a,,, bounded by 1/3 in Q"
F(w) —w

and tends to 0 as Im(w) tends to +oo. It follows from the maximum modulus
principle that

b
F(w) —w

1| < 1 . inf ‘eQiﬂanw‘ . ‘eQiﬂanw‘ < CefQﬂanIm(w)
3 \wed(QrnH+)

for some constant C that does not depend on n. If w := R+x+iy € Q"NHT,
then |z| <y +1/ay,. So

sup ’\P"(w) — w‘ < '\I/”(R) - R’

weQrNH+
Vo oo el
+ sup /Ce Tan dt+/ Ce ™Yt
y>0 0 0

lz|<y+1/an

_ o, 2many
=C (1 ¢ + e Imamy . (y 4 l/an)> + O(1)

21,

This completes the proof of part (3) of Lemma 17. O
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