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Quadratic Julia sets with positive area

By Xavier Buff and Arnaud Chéritat

To Adrien Douady

Abstract

We prove the existence of quadratic polynomials having a Julia set with

positive Lebesgue measure. We find such examples with a Cremer fixed

point, with a Siegel disk, or with infinitely many satellite renormalizations.
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Introduction

Assume P : C → C is a polynomial of degree 2. Its Julia set J(P ) is a

compact subset of C with empty interior. Fatou suggested that one should

apply to J(P ) the methods of Borel-Lebesgue for the measure of sets.

It is known that the area (Lebesgue measure) of J(P ) is zero in several

cases including

• if P is hyperbolic;1

1Conjecturally, this is true for a dense and open set of quadratic polynomials. If there

were an open set of nonhyperbolic quadratic polynomials, those would have a Julia set of

positive area (see [MSS83]).
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• if P has a parabolic cycle ([DH84], [DH85a] or [Lyu83]),

• if P is not infinitely renormalizable ([Lyu] or [Shi95]),

• if P has a (linearizable) indifferent cycle with multiplier e2iπα such that

α = a0 +
1

a1 +
1

a2 +
.. .

with log an = O(
√
n) ([PZ04]).2

In [Lyu83], Lyubich showed that the postcritical set is a measure-theoretic

attractor, which implies that the Julia sets of Misiurewicz and parabolic maps

have area zero. In the same note, he also observed that the filled-in Julia set

depends upper semi-continuously on the map and concluded that generic (in

the Baire sense) quadratic maps in the boundary of the Mandelbrot set have

Julia set of zero area (see also [Lyu84]). Of course, the later result of [Lyu] and

[Shi95] implies this since nonrenormalizable maps are generic in the boundary

of the Mandelbrot set.

In late 2005, we completed a program initiated by Douady with major

advances by the second author in [Ché00]: there exist quadratic polynomials

with a Cremer fixed point and a Julia set of positive area. For a presenta-

tion of Douady’s initial program, the reader is invited to consult [Ché09]. In

this article, we present a slightly different approach. (The general ideas are

essentially the same.)

Theorem 1. There exist quadratic polynomials that have a Cremer fixed

point and a Julia set of positive area.

We also have the following two results.

Theorem 2. There exist quadratic polynomials that have a Siegel disk

and a Julia set of positive area.

Theorem 3. There exist infinitely satellite renormalizable quadratic poly-

nomials with a Julia set of positive area.

We will give a detailed proof of Theorems 1 and 2. We will only sketch

the proof of Theorem 3.

The proofs are based on

• McMullen’s results [McM98] regarding the measurable density of the filled-

in Julia set near the boundary of a Siegel disk with bounded type rotation

number,

• Chéritat’s techniques of parabolic explosion [Ché00] and Yoccoz’s renor-

malization techniques [Yoc95] to control the shape of Siegel disks,

2This is true for almost every α ∈ R/Z.
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• Inou and Shishikura’s results [IS] to control the post-critical sets of per-

turbations of polynomials having an indifferent fixed point.

In [Yam08], Yampolsky outlines an alternative to deal with the final piece

of the argument by means of the Renormalization Theorem for Siegel disks

(also using the Inou-Shishikura’s result).

Acknowledgements. We would like to thank Adrien Douady, John H. Hub-

bard, Hiroyuki Inou, Curtis T. McMullen, Mitsuhiro Shishikura, Misha Yam-

polsky and Jean-Christophe Yoccoz whose contributions were decisive in prov-

ing these results. We would like to thank Misha Lyubich and the referees for

carefully reading our manuscript and suggesting several improvements in the

presentation.

1. The Cremer case

Let us introduce some notations.

Definition 1. For α ∈ C, we denote by Pα the quadratic polynomial

Pα : z 7→ e2iπαz + z2.

We denote by Kα the filled-in Julia set of Pα and by Jα its Julia set.

1.1. Strategy of the proof. The main gear is the following

Proposition 1. There exists a nonempty set S of bounded type irra-

tionals such that for all α ∈ S and all ε > 0, there exists α′ ∈ S with

• |α′ − α| < ε,

• Pα′ has a cycle in D(0, ε) \ {0},
• area(Kα′) ≥ (1− ε)area(Kα).

The proof of Proposition 1 will occupy Sections 1.2 to 1.7.

Remark. Since α ∈ S has bounded type, Kα contains a Siegel disk [Sie42]

and thus has positive area.

Remark. We do not know what is the largest set S for which Proposition 1

holds. It might be the set of all bounded type irrationals.

Proposition 2. The function α ∈ C 7→ area(Kα) ∈ [0,+∞[ is upper

semi-continuous.

Proof. Assume αn → α. By [Dou94], for any neighborhood V of Kα,

we have Kαn ⊂ V for n large enough. According to the theory of Lebsegue

measure, area(Kα) is the infimum of the area of the open sets containing Kα.

Thus,

area(Kα) ≥ lim sup
n→+∞

area(Kαn). �



676 XAVIER BUFF and ARNAUD CHÉRITAT

Figure 1. Two filled-in Julia sets Kα and Kα′ , with α′ a well-

chosen perturbation of α as in Proposition 1. This proposition

asserts that if α and α′ are chosen carefully enough, the loss of

measure from Kα to Kα′ is small.

Figure 2. A zoom on Kα′ near its linearizable fixed point. The

small cycle is highlighted.

Proof of Theorem 1 assuming Proposition 1. We choose a sequence of real

numbers εn in (0, 1) such that
∏

(1 − εn) > 0. We construct inductively a

sequence θn ∈ S such that for all n ≥ 1,

• Pθn has a cycle in D(0, 1/n) \ {0},
• area(Kθn) ≥ (1− εn)area(Kθn−1).

Every polynomial Pθ with θ sufficiently close to θn has a cycle in D(0, 1/n)\{0}.
By choosing θn sufficiently close to θn−1 at each step, we guarantee that

• the sequence (θn) is a Cauchy sequence that converges to a limit θ;

• for all n ≥ 1, Pθ has a cycle in D(0, 1/n) \ {0}.
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So, the polynomial Pθ has small cycles and thus is a Cremer polynomial. In

that case, Jθ = Kθ. By Proposition 2,

area(Jθ) = area(Kθ) ≥ lim sup
n→+∞

area(Kθn) ≥ area(Kθ0) ·
∏
n≥1

(1− εn) > 0. �

1.2. A stronger version of Proposition 1. For a finite or infinite sequence

of integers, we will use the following continued fraction notation:

[a0, a1, a2, . . .] := a0 +
1

a1 +
1

a2 +
.. .

.

For α ∈ R, we will denote by bαc the integral part of α.

Definition 2. If N ≥ 1 is an integer, we set

SN :=
¶
α = [a0, a1, a2, . . .] ∈ R\Q

∣∣∣ (ak) is bounded and ak≥N for all k≥ 1
©
.

Note that SN+1 ⊂ SN ⊂ · · · ⊂ S1 and S1 is the set of bounded type

irrationals. If α ∈ S1, the polynomial Pα has a Siegel disk bounded by a

quasicircle containing the critical point (see [Dou87], [Her86], [Świ98]). In

particular, the post-critical set of Pα is contained in the boundary of the Siegel

disk.

Proposition 1 is an immediate consequence of the following proposition.

Proposition 3. If N is sufficiently large, then the following holds.3

Assume α ∈ SN and choose a sequence (An) such that

qn
√
An −→

n→+∞
+∞ and qn

√
logAn −→

n→+∞
1.4

Set

αn := [a0, a1, . . . , an, An, N,N,N, . . .].

Then, for all ε > 0, if n is sufficiently large,

• Pαn has a cycle in D(0, ε) \ {0},
• area(Kαn) ≥ (1− ε)area(Kα).

The rest of Section 1 is devoted to the proof of Proposition 3. In the

sequel, unless otherwise specified,

• α is an irrational number of bounded type;

3The choice of N will be specified in equation 3
4For example, one can choose An := qqnn . However, we think that the proposition holds

for more general sequences (αn), for instance, as soon as qn
√
An → +∞. This condition

guarantees the existence of a small cycle. The condition qn
√

logAn −→
n→+∞

1 is used at the

end of the proof of Lemma 5.
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• pk/qk are the approximants to α given by the continued fraction algo-

rithm;

• (αn) is a sequence converging to α, defined as in Proposition 3.

Note that for k ≤ n, the approximants pk/qk are the same for α and for αn. The

polynomial Pα (resp. Pαn) has a Siegel disk ∆ (resp. ∆n). We let r (resp. rn)

be the conformal radius of ∆ (resp. ∆n) at 0 and we let φ : D(0, r)→ ∆ (resp.

φn : D(0, rn) → ∆n) be the conformal isomorphism that maps 0 to 0 with

derivative 1.

1.3. The control of the cycle. We first recall results of [Ché00] (see also

[BC04, Props. 1 and 2]), which we reformulate as follows.

The first proposition asserts that as θ varies in the disk D(p/q, 1/q3),

the polynomial Pθ has a cycle of period q that depends holomorphically on
q
»
θ − p/q and coalesces at z = 0 when θ = p/q.

Proposition 4. For each rational number p/q (with p and q coprime),

there exists a holomorphic function

χ : D(0, 1/q3/q)→ C

with the following properties :

(1) χ(0) = 0.

(2) χ′(0) 6= 0.

(3) If δ ∈ D(0, 1/q3/q) \ {0}, then χ(δ) 6= 0.

(4) If δ ∈ D(0, 1/q3/q) \ {0} and if we set ζ := e2iπp/q and θ :=
p

q
+ δq ,

then
〈
χ(δ), χ(ζδ), . . . , χ(ζq−1δ)

〉
forms a cycle of period q of Pθ. In

particular,

∀δ ∈ D(0, 1/q3/q), χ(ζδ) = Pθ
Ä
χ(δ)

ä
.

A function χ : D(0, 1/q3/q)→ C as in Proposition 4 is called an explosion

function at p/q. Such a function is not unique. However, if χ1 and χ2 are two

explosions functions at p/q, they are related by χ1(δ) = χ2(e2iπkp/qδ) for some

integer k ∈ Z.

The second proposition studies how the explosion functions behave as p/q

ranges in the set of approximants of an irrational number α such that Pα has

a Siegel disk.

Proposition 5. Assume α ∈ R \Q is an irrational number such that Pα
has a Siegel disk ∆. Let pk/qk be the approximants to α. Let r be the conformal

radius of ∆ at 0 and let φ : D(0, r)→ ∆ be the isomorphism that sends 0 to 0

with derivative 1. For k ≥ 1, let χk be an explosion function at pk/qk and set

λk := χ′k(0). Then
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(1) |λk| −→
k→+∞

r,

(2) the sequence of maps ψk : δ 7→ χk(δ/λk) converges uniformly on every

compact subset of D(0, r) to φ : D(0, r)→ ∆.

Corollary 1. Let (αn) be the sequence defined in Proposition 3. Then,

for all ε > 0, if n is sufficiently large, Pαn has a cycle in D(0, ε) \ {0}.
Proof. Let χn be an explosion at pn/qn and let Cn be the set of qn-th

roots of

αn −
pn
qn

=
(−1)n

qn(qnA′n + qn−1)
with A′n := [An, N,N,N, . . .].

Since qn
»
A′n −→

n→+∞
+∞, for n large enough, the set Cn is contained in an

arbitrarily small neighborhood of 0 and χn(Cn) is a cycle of Pαn contained in

an arbitrarily small neighborhood of 0. �

1.4. Perturbed Siegel disks.

Definition 3. If U and X are measurable subsets of C, with 0 < area(U) <

+∞, we use the notation

densU (X) :=
area(U ∩X)

area(U)
.

In the whole section, α is a Bruno number, pn/qn are its approximants,

and χn : Dn := D(0, 1/q
3/qn
n )→ C are explosion functions at pn/qn.

Proposition 6 (see Figure 3). Assume α := [a0, a1, . . .] and θ := [0, t1, . . .]

are Brjuno numbers and let pn/qn be the approximants to α. Assume

αn := [a0, a1, . . . , an, An, t1, t2, . . .]

with (An) a sequence of positive integers such that

(1) lim sup
n→+∞

qn
√

logAn ≤ 1.5

Let ∆ be the Siegel disk of Pα and let ∆′n be the Siegel disk of the restriction

of Pαn to ∆.6 For any nonempty open set U ⊂ ∆,

lim inf
n→+∞

densU (∆′n) ≥ 1

2
.

5We think that the condition lim sup qn
√

logAn ≤ 1 is not needed. It is used at the end

of the proof of Lemma 5.
6∆′n is the largest connected open subset of ∆ containing 0, on which Pαn is conjugate to

a rotation. It is contained in the Siegel disk of Pαn .
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Figure 3. Illustration of Proposition 6 for α = θ = [0, 1, 1, . . .],

n = 7 and An = 1010. We see the Siegel disk ∆ of Pα (light

grey), the Siegel disk ∆′n of the restriction of Pαn to ∆ (dark

grey), and the boundary of the Siegel disk of Pαn .

Proof. Set

εn := αn −
pn
qn

=
(−1)n

q2
n(An + θ) + qnqn−1

∼
n→+∞

(−1)n

q2
nAn

.

Note that
qn
»
|εn| ∼

n→+∞

1
qn
√
An

(where the notation un ∼ vn means un = vn · (1 + δn) with δn → 0). For ρ < 1,

define

Xn(ρ) :=

ß
z ∈ C ;

zqn

zqn − εn
∈ D(0, sn)

™
with sn :=

ρqn

ρqn + |εn|
.

This domain is star-like with respect to 0 and avoids the qn-th roots of

εn.7 It is contained but not relatively compact in D(0, ρ). For all nonempty

open set U contained in D(0, ρ),

lim inf
n→+∞

densU
Ä
Xn(ρ)

ä
≥ 1

2
.

Since the limit values of the sequence (χn : Dn → C) are isomorphisms χ :

D→ ∆, Proposition 6 is a corollary of Proposition 7. �

7It is the preimage by the map z 7→ zqn of a disk that is not centered at 0, contains 0 but

not εn.
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0

ρ

D

Xn(ρ)

Figure 4. The boundary of a set Xn(ρ).

Proposition 7. Under the same assumptions as in Proposition 6, for all

ρ < 1, if n is large enough, the Siegel disk ∆′n contains χn
Ä
Xn(ρ)

ä
.

Proof. We will proceed by contradiction. Assume there exist ρ < 1 and

an increasing sequence of integers nk such that χnk
Ä
Xnk(ρ)

ä
is not contained

in ∆′nk . Extracting a subsequence, we may assume

A
1/qnk
nk → A ∈ [1,+∞].

To simplify notations, we will drop the index k.

• Assume A = 1. Then, any compact K ⊂ ∆ is contained in ∆′n for n

large enough. (For a proof, see for example in [ABC04, Prop. 2, the

remark following Prop. 2, and Th. 3].) Note that Xn(ρ) ⊂ D(0, ρ)

and the limit values of the sequence (χn : Dn → C) are isomorphisms

χ : D→ ∆. It follows that for n large enough,

χn
Ä
Xn(ρ)

ä
⊂ χn

Ä
D(0, ρ)

ä
⊂ χ
Ä
D(0,

√
ρ)
ä
⊂ ∆′n.

This contradicts our assumption.

• Assume A > 1. Without loss of generality, increasing ρ if necessary, we

may assume that ρ > 1/A. We will show that for ρ < ρ′ < 1, if n is large

enough, the orbit under iteration of Pαn of any point z ∈ χn
Ä
Xn(ρ)

ä
remains in χn

Ä
D(0, ρ′)

ä
⊂ ∆. This will show that χn

Ä
Xn(ρ)

ä
⊂ ∆′n,

completing the proof of Proposition 7.

Since the limit values of the sequence χn : Dn → C are isomorphisms

χ : D→ ∆, there is a sequence r′n tending to 1 such that χn is univalent

on D′n := D(0, r′n) and the domain of the map

fn :=
Ä
χn|D′n

ä−1 ◦ Pαn ◦ χn|D′n
eventually contains any compact subset of D. So, Proposition 7 is a

corollary of Proposition 7′ below. �
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Proposition 7′. Assume

0 ≤ 1

A
< ρ < ρ′ < 1.

If n is large enough, the orbit under iteration of fn of any point z ∈ Xn(ρ)

remains in D(0, ρ′).

The rest of Section 1.4 is devoted to the proof of Proposition 7′. There will

be several changes of coordinates, which are summarized on Figure 5 in order

to help the reader. (We would like to thank Misha Lyubich for suggesting this

picture.)

1.4.1. A vector field. Let εn and fn be defined as previously. To prove

Proposition 7′, it is not enough to compare the dynamics of fn with the dy-

namics of a rotation. Instead, we will compare it with the (real) dynamics

of the polynomial vector field ξn that has simple roots exactly at 0 and the

qn-th roots of εn and that has derivative 2πiqnεn at 0. Then, the time-1 map

of ξn fixes 0 and the qn-th roots of εn (which are also fixed points of f◦qnn )

with multiplier e2πiqnεn at 0 (which is also the multiplier of f◦qnn at 0). Thanks

to those properties, there is a good hope that the time-1 map of ξn very well

approximates f◦qnn . This vector field is

ξn = ξn(z)
d

dz
:= 2πiqnz(εn − zqn)

d

dz
.

The vector field ξn is invariant by the rotation z 7→ e2πi/qnz. It is semi-

conjugate by z 7→ v = zqn to the vector field

2πiq2
nv(εn − v)

d

dv
,

which vanishes at 0 and εn. Let us now consider the further change of coordi-

nates v 7→ w = v/(v − εn) in which the vector field becomes

2πiq2
nw

d

dw
.

This vector field is tangent to Euclidean circles centered at 0. The boundary of

Xn(ρ) is mapped to such a Euclidean circle by the map z 7→ w = zqn/(zqn−εn).

It follows that the vector field ξn is tangent to the boundary of Xn(ρ) which

is therefore invariant be the real dynamics of ξn.

In addition, the unit disk is invariant by its real flow, and the open set

Ωn :=

ß
z ∈ C | w =

zqn

zqn − εn
∈ D
™

is invariant by the real flow of the vector field ξn.
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ε1
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q

X
(ρ
)

z
ξ

Ω

∆

w
=
u
q

w
=

v

v
−
ε

ψ

v
=
z
q

v
=
e2

π
iq
ε
Z

π

χ
n

f

P
α

n

D

w

s
=

ρ
q

ρ
q
+
ε

D

η
=
qε

d d
θ

u

0
ε

ε/
2

−
ρ
2

v

H

1 qε

Z

d dZ
τ
(ρ
)

Figure 5. Several changes of coordinates involved in the proof.
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Figure 6. Some real trajectories for the vector field ξn; zeroes

of the vector field are shown.

Figure 7. An example of open set Ωn for qn = 3 is shown in

gray. It extends to infinity, and is bounded by the black curves.

Some trajectories of the vector field ξn are shown.

The map

z 7→ w =
zqn

zqn − εn
: Ωn → D

is a ramified covering of degree qn, ramified at 0. Thus, there is an isomorphism

ψn : Ωn → D such that Ä
ψn(z)

äqn
=

zqn

zqn − εn
.
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The change of coordinates Ωn 3 z 7→ θ = ψn(z) ∈ D conjugates the vector field

ξn to

2πiqn
d

dθ
.

Finally, let πn : H→ Ωn \ {0} (H is the upper half-plane) be the universal

covering given by

πn(Z) := ψ−1
n

Ä
e2iπqnεnZ

ä
.

Then,

π∗nξn =
d

dZ
.

1.4.2. Working in the coordinate straightening the vector field. For sim-

plicity, we assume from now on that n is even in which case εn > 0. In the

sequel, r ∈ [ρ, 1). Then, Xn(ρ) ⊂ Xn(r) ⊂ Ωn and the preimage of Xn(r) is

the half-plane

Hn(r) :=
¶
Z ∈ C ; Im(Z) > τn(r)

©
with

τn(r) :=
1

2πq2
nεn

log

Å
1 +

εn
rqn

ã
∼

n→+∞

1

2πq2
nr
qn
.

The map πn : Hn(r)→ Xn(r) \ {0} is a universal covering.

Remark. Note that τn(r) increases exponentially fast with respect to qn.

More precisely,

qn
»
τn(r) −→

n→+∞

1

r
.

Definition 4. We say that a sequence (Bn) is sub-exponential with respect

to qn if

lim sup
n→+∞

qn
»
|Bn| ≤ 1.

Proposition 8. Assume r < 1. If n is large enough, there exist holo-

morphic maps Fn : Hn(r)→ H and Gn : Hn(r)→ H such that

• πn semi-conjugates Fn to f◦qnn and Gn to f
◦qn−1
n :

πn ◦ Fn = f qnn ◦ πn and πn ◦Gn = f qn−1
n ◦ πn.

• Fn − Id and Gn − Id are periodic of period 1/(qnεn).

• As Im(Z)→ +∞, we have

Fn(Z) = Z + 1 + o(1) and Gn(Z) = Z − (An + θ) + o(1).

In addition, the sequences

sup
Z∈Hn(r)

∣∣∣Fn(Z)− Z − 1
∣∣∣ and sup

Z∈Hn(r)

∣∣∣Gn(Z)− Z +An + θ
∣∣∣

are sub-exponential with respect to qn.
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Proof. We will use the following theorem of Jellouli (see [Jel94] or [Jel00,

Th. 1]) to show that the domains of f◦qnn and f
◦qn−1
n eventually contain any

compact subset of D.

Theorem (Jellouli). Assume Pα has a Siegel disk ∆ and let χ : D → ∆

be a linearizing isomorphism. For r < 1, set ∆(r) := χ
Ä
D(0, r)

ä
. Assume

αn ∈ R and bn ∈ N are such that bn · |αn − α| = o(1).8 For all r′1 < r′2 < 1, if

n is sufficiently large,

∆(r′1) ⊂
¶
z ∈ ∆(r′2) ; ∀j ≤ bn, P ◦jαn(z) ∈ ∆(r′2)

©
.

Corollary 2. For all r1 < r2 < 1, if n is sufficiently large, then for all

z ∈ D(0, r1) and for all j ≤ qn, we have f◦jn (z) ∈ D(0, r2).

Proof. Choose r′1 and r′2 such that r1 < r′1 < r′2 < r2. Let χ : D → ∆ be

a linearizing isomorphism of Pα. Set

∆(r′1) := χ
Ä
D(0, r′1)

ä
and ∆(r′2) := χ

Ä
D(0, r′2)

ä
.

Since limit values of the sequence χn : D′n → C are linearizing isomorphisms

χ : D→ ∆, for n sufficiently large,

χn
Ä
D(0, r1)

ä
⊂ ∆(r′1) ⊂ ∆(r′2) ⊂ χn

Ä
D(0, r2)

ä
.

It is therefore enough to show that for n large enough,

∆(r′1) ⊂
¶
z ∈ ∆(r′2) ; ∀j ≤ qn, P ◦jαn(z) ∈ ∆(r′2)

©
.

This is Jellouli’s theorem with bn = qn since

qn|αn − α| ∼
n→+∞

qn

∣∣∣∣pnqn − α
∣∣∣∣ =
n→+∞

o(1). �

In particular, for r < 1, if n is large enough, then f◦qnn and f
◦qn−1
n are

defined on Xn(r). We will show that if n is large enough, then

∀z ∈ Xn(r) \ {0}, f◦qnn (z) ∈ Ωn \ {0} and f◦qn−1
n (z) ∈ Ωn \ {0}.

We can then lift them via πn so that the following diagrams commute:

Hn(r)
Fn //

πn
��

H

πn
��

Xn(r)− {0}
f◦qnn

// Ωn − {0}
and

Hn(r)
Gn //

πn
��

H

πn
��

Xn(r)− {0}
f
◦qn−1
n

// Ωn − {0}.

8In fact, Jellouli’s theorem is stated for the sequence αn = pn/qn and bn = o(qnqn+1) but

the adaptation to bn · |αn − α| = o(1) is straightforward.
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The periodicity of Fn and Gn then follows from

πn

Å
Z +

1

qnεn

ã
= πn(Z).

The lifts Fn and Gn are determined uniquely up to addition of a integer mul-

tiple of 1/(qnεn). We have

qnαn − pn = qnεn qn−1αn − pn−1 = − 1

qn
+ qn−1εn.

So, the lift Fn and Gn are uniquely determined if we require that

Fn(Z)−Z −→
Im(Z)→+∞

1 and Gn(Z)−Z −→
Im(Z)→+∞

− 1

q2
nεn

+
qn−1

qn
= −An−θ.

Lemma 1 below asserts that f◦qnn is very close to the identity and bounds

the difference.

Lemma 1. There exists a holomorphic function gn, defined on the same

set as f◦qnn , such that

f◦qnn (z) = z + ξn(z) · gn(z).

For all r < 1, the sequence sup
D(0,r)

|gn| is sub-exponential with respect to qn.

Proof. According to the definition of the map χn, the map f◦qnn fixes 0

and the qn-th roots of εn. This shows that f◦qnn can be written as prescribed.

To prove the estimate on the modulus of gn, note that f◦qnn takes its values

in D, and thus
∣∣∣ξn(z) · gn(z)

∣∣∣ ≤ 2. Choose a sequence rn ∈ ]0, 1[ tending to 1

so that gn is defined on D(0, rn). By the maximum modulus principle, if n is

large enough so that rn > max(r, 1/A), we have

sup
|z|≤r

∣∣∣gn(z)
∣∣∣ ≤ sup

|z|≤rn

∣∣∣gn(z)
∣∣∣ ≤ Bn := sup

|z|=rn

2∣∣∣ξn(z)
∣∣∣ .

As n→ +∞,

inf
|z|=rn

∣∣∣ξn(z)
∣∣∣ ∼ 2πqnr

1+qn
n and thus qn

√
Bn ∼ rn → 1. �

Recall that we assume n even, in which case

εn > 0 and qn−1 ·
pn
qn

= − 1

qn
mod (1).

Lemma 2 asserts that f
◦qn−1
n is very close to the rotation of angle −1/qn and

bounds the difference.

Lemma 2. There exists a holomorphic function hn, defined on the same

set as f
◦qn−1
n , such that

e2iπ/qnf◦qn−1
n (z) = z + ξn(z) · hn(z).

For all r < 1, the sequence sup
D(0,r)

|hn| is sub-exponential with respect to qn.
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Proof. According to the definition of the map χn, the map fn coincides

with the rotation of angle pn/qn on the set of qn-th roots of εn and qn−1 ·
(pn/qn) = −1/qn mod(1). Thus, e2iπ/qnf

◦qn−1
n (z) fixes 0 and the qn-th roots

of εn. This shows that e2iπ/qnf
◦qn−1
n can be written as prescribed. The same

method as in Lemma 1 yields the bound on hn. �

Proof of Proposition 8, continued. Now, given r < 1, set

Rn := min

Å
1

qnεn
, τn(r)

ã
.

Note that
qn
√
Rn −→

n→+∞
min

Å
A,

1

r

ã
.

Hence, Rn increases exponentially fast with respect to qn.

For all n and all Z ∈ Hn(r), the map πn is univalent on D(Z,Rn) and

takes its values in Ωn \ {0}. By Koebe 1/4-theorem, its image contains a disk

centered at z := πn(Z) with radius

π′n(Z) · Rn
4

= ξn(z) · Rn
4
.

In particular, if the sequence (Bn) is sub-exponential with respect to qn and if

n is large enough so that Bn ≤ Rn/4, we have

∀z ∈ Xn(r), D
Ä
z, ξn(z) ·Bn

ä
⊂ Ωn \ {0}.

Therefore, it follows from Lemmas 1 and 2 that for all r < 1, if n is large

enough, then

∀z ∈ Xn(r) \ {0}, f qnn (z) ∈ Ωn \ {0} and f qn−1
n (z) ∈ Ωn \ {0}.

Lemmas 1 and 2 and Koebe distortion theorem applied to πn : D
Ä
Z,Rn

ä
→ C imply that the sequences

sup
Z∈Hn(r)

∣∣∣Fn(Z)− Z − 1
∣∣∣ and sup

Z∈Hn(r)

∣∣∣Gn(Z)− Z +An + θ
∣∣∣

are sub-exponential with respect to qn.

This completes the proof of Proposition 8. �

We will need the following improved estimate for Fn.

Proposition 9. Assume r < 1. There exists a sequence (Bn), sub-

exponential with respect to qn, such that for all Z ∈ Hn(r),∣∣∣Fn(Z)− Z − 1
∣∣∣ ≤ Bn · (|εn|+ ∣∣∣εn − πn(Z)qn

∣∣∣) .
Proof. Lemma 3 gives a similar estimate for f◦qnn on Xn(r). This estimate

transfers to the required one by Koebe distortion theorem as in the previous

proof. �
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Lemma 3. There exist a complex number ηn and a holomorphic function

kn, defined on the same set as f◦qnn , such that

f◦qnn (z) = z + ξn(z) ·
Ä
1 + ηn + (εn − zqn)kn(z)

ä
.

For all r < 1, there exists a sequence (Bn), sub-exponential with respect to qn,

such that

|ηn| ≤ Bn · |εn| and ∀z ∈ D(0, r)
∣∣∣kn(z)

∣∣∣ ≤ Bn.
Proof. By Lemma 1, we know that

f◦qnn (z) = z + ξn(z) · gn(z),

with Bn := sup
D(0,r)

|gn| a sub-exponential sequence with respect to qn. The map

f◦qnn has the same multiplier at each qn-th roots of εn. If ω is a qn-th root of

εn, then

(f◦qnn )′(ω) = 1− 2πiq2
nεngn(ω).

Thus, gn(ω) is independent of the choice of qn-th root and we set

ηn := gn(ω)− 1.

It follows that

gn(z) = 1 + ηn + (εn − zqn)kn(z)

as prescribed. Since qn
√
εn → 1/A < r < 1, the qn-th roots of εn belong to

D(0, r) for n large enough. In that case, the bound on gn, taken at any of the

qn-th roots of εn, shows that

|1 + ηn| ≤ Bn,
and thus

∀z ∈ D(0, r),
∣∣∣(εn − zqn)kn(z)

∣∣∣ ≤ 2Bn.

As in Lemma 1, we have for any sequence rn → 1 and for n large enough

sup
|z|≤r
|kn(z)| ≤ B′n :=

2Bn
rqnn − εn

and (B′n) is sub-exponential with respect to qn. Looking at z = 0 gives

1 + ηn + εnkn(0) = gn(0) =
(f◦qnn )′(0)− 1

ξ′n(0)
=
e2πiqnεn − 1

2πiqnεn
.

As n → +∞, the left hand of this equality expands to 1 + iπqnεn + o(qnεn).

Therefore

|ηn| ≤ εn
Ä
|kn(0)|+ πqn + o(qn)

ä
.

Since |kn(0)| ≤ B′n, we get the desired bound on ηn. �
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Corollary 3. Assume r < 1. Then,

sup
Z∈Hn(r)

∣∣∣Fn(Z)− Z − 1
∣∣∣ −→
n→+∞

0 and sup
Z∈Hn(r)

∣∣∣F ′n(Z)− 1
∣∣∣ −→
n→+∞

0.

Proof. The first is an immediate consequence of Proposition 9. For the

second, use the first on Hn(r′) with r < r′ < 1. �

1.4.3. Iterating the commuting pair (Fn, Gn).

Proposition 10. Assume 1/A < r1 < r2 < 1. If n is sufficiently large,

the following holds. Given any point Z ∈ Hn(r1), there exists a sequence of

integers (j`)`≥0 such that for any integer ` ≥ 0 and any integer j ∈ [0, j`], the

point

F ◦jn ◦Gn ◦ F
◦j`−1
n ◦Gn ◦ · · · ◦ F ◦j1n ◦Gn ◦ F ◦j0n (Z)

is well defined and belongs to Hn(r2).

Proof. We will need to control iterates of Fn for a large number of iterates.

We will use the following lemma.

Lemma 4. Assume F : H→ C satisfies∣∣∣F (Z)− Z − 1
∣∣∣ < u

Ä
Re(Z)

ä
,

with u : R→ ]0, 1/10[ a function such that log u is 1/2-Lipschitz. Let Γ be the

graph of an antiderivative of −2u. Then, every Z ∈ H that is above Γ has an

image above Γ.

Proof. Let U be the antiderivative whose graph is Γ. Let Z = X+iY ∈ H.

The point Z ′ = X ′ + iY ′ = F (Z) satisfies X ′ ∈ [X + 9
10 , X + 11

10 ]. Since log u

is 1/2-Lipschitz,

∀x ∈
ï
X,X +

11

10

ò
, log u(x) ≥ log u(X)− 11

20
.

Therefore, from X to X ′, U decreases of at least

2

∫ X′

X
u(x) dx ≥ 2(X ′ −X)e−11/20u(X) ≥ 18

10
e−11/20u(X) > u(X) > Y − Y ′.

�

Γ

Z = X + iY Z + 1

u(X)
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Lemma 5. Assume 1/A < r < r′ < 1. If n is sufficiently large, then for

all Z ∈ Hn(r), there exists an integer j(Z) such that

• for all j ≤ j(Z), we have F ◦jn ◦Gn(Z) ∈ Hn(r′);

• Re
Ä
F
◦j(Z)
n ◦Gn(Z)

ä
> Re(Z).

Proof. Let us first recall that there exists a sequence (Bn), sub-exponential

with respect to qn, such that for n large enough, for all Z ∈ Hn(r),∣∣∣Gn(Z)− Z +An + θ
∣∣∣ ≤ Bn.

In particular, if n is sufficiently large,

Re
Ä
Gn(Z)

ä
≥ Re(Z)−An − θ −Bn and Im

Ä
Gn(Z)

ä
≥ τn(r)−Bn.

We will apply Lemma 4 to control the orbit of Gn(Z) under iteration of Fn.

More precisely, we will prove the existence of a function un such that

(a)
∣∣∣Fn(Z)− Z − 1

∣∣∣ ≤ unÄRe(Z)
ä
;

(b) for n large enough un ∈ ]0, 1/10[;

(c) for n large enough, log un is 1/2-Lipschitz;

(d) the sequence Cn :=

∫ Re(Z)

Re
Ä
Gn(Z)

ä 2un(X) dX is sub-exponential with re-

spect to qn.

Since τn(r)/τn(r′) grow exponentially with respect to qn, if n is taken

sufficiently large, we have

τn(r) ≥ τn(r′) +Bn + Cn +
1

10
.

It then follows from Lemma 4 that there is an integer j(Z) such that

• for all j ≤ j(Z), we have F ◦jn ◦Gn(Z) ∈ Hn(r′);

• Re
Ä
F
◦j(Z)
n ◦Gn(Z)

ä
> Re(Z).

≤Bn

Cn

Gn(Z)

Z

Hn(r′)

Hn(r)

F
◦j(Z)
n ◦Gn(Z)
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(a) By Proposition 9, there is a sequence (B′n), sub-exponential with re-

spect to qn, such that for all Z ∈ Hn(r′),∣∣∣Fn(Z)− Z − 1
∣∣∣ ≤ B′nÄεn +

∣∣∣εn − πn(Z)qn
∣∣∣ä.

Set Tn := 1/(2πq2
nεn)→ +∞. We have (see Figure 5)Ä

πn(Z)
äqn

=
εn

1− e−iZ/Tn .

Using

B′n
Ä
εn +

∣∣∣εn − πn(Z)qn
∣∣∣ä ≤ B′nÄ2εn +

∣∣∣πn(Z)qn
∣∣∣ä,

we see that for all Z ∈ Hn(r′),

∣∣∣Fn(Z)− Z − 1
∣∣∣≤B′nεn

Ñ
2 +

1∣∣∣1− e−iZ/Tn∣∣∣
é

≤B′nεn

Ñ
2 +

1∣∣∣sne−iRe(Z)/Tn − 1
∣∣∣
é

with

eIm(Z)/Tn ≥ sn := eτn(r′)/Tn = 1 +
εn

(r′)qn
.

Since 1/A < r′, we have εn/(r
′)qn → 0 and thus sn → 1. Thus, for n large

enough,
1

3
≤ 1

|sne−iRe(Z)/Tn − 1| ,

and for all Z ∈ Hn(r′),∣∣∣Fn(Z)− Z − 1
∣∣∣ ≤ unÄRe(Z)

ä
with un(X) :=

7B′nεn
|sneiX/Tn − 1| .

(b) Let us show that for n large enough, un ∈ ]0, 1/10[. Note that

∀X ∈ R,
∣∣∣un(X)

∣∣∣ ≤ 7B′nεn
sn − 1

= 7B′n(r′)qn −→
n→+∞

0.

Thus, un tends uniformly to 0 as n→ +∞.

(c) Let us now check that for n large enough, log un is 1/2-Lipschitz.

Letting sn = cotan(ω/2), we have

log |sneiX/Tn − 1|2 = log(1− sinω cosβ) + const

where β = X/Tn and the constant stands for something independent of it. The

β-derivative of this expression is equal to

tanω
cosω sinβ

1− sinω cosβ
= tanω

Ç
1− 1− sin(β + ω)

1− sinω cosβ

å
≤ tanω =

2sn
s2
n − 1

.
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It follows that

d

dX
log un(X) =

1

2

d

dX
log |sneiX/Tn − 1|2 ≤ sn

Tn(s2
n − 1)

∼
n→+∞

πq2
n(r′)qn .

Thus,
d

dX
log un(X) converges uniformly to 0 as n → +∞, and for n large

enough, log un is 1/2-Lipschitz.

(d) Let us finally show that the sequence

Cn :=

∫ Re(Z)

Re
Ä
Gn(Z)

ä 2un(X) dX

is sub-exponential with respect to qn. Let us recall that 2πTn ∼ 1/(q2
nεn) ∼ An.

If n is large enough,

Re
Ä
Gn(Z)

ä
≥ Re(Z)−An − θn −Bn ≥ Re(Z)− 4πTn.

Since un is 2πTn-periodic,

Cn ≤ B′′n :=

∫ Re(Z)

Re(Z)−4πTn

2un(X) dX = 4

∫ πTn

−πTn
un(X) dX.

The change of variable θ = X/Tn, which yields

B′′n =
14B′n
πq2

n

∫ π

−π

dθ»
s2
n + 1− 2sn cos θ

.

It follows that

B′′n ∼
n→+∞

28B′n
πq2

n

log
1

sn − 1
=

28B′n
πq2

n

log
r′qn

εn
∼

n→+∞

28B′n
πq2

n

log(r′
qnAn).

By assumption (condition (1) in the statement of Proposition 6; this is the only

place where it is used), the sequence logAn is sub-exponential with respect

to qn. As a consequence, (B′′n), and thus (Cn), is sub-exponential with respect

to qn. �

Proof of Proposition 10, continued. Remember that we are given r1 and

r2 with 1/A < r1 < r2 < 1 and we want to prove that for n sufficiently large,

any point of Hn(r1) has an infinite orbit remaining in Hn(r2) along a well-

chosen composition of Fn and Gn. It is enough to show that this is true for

any sequence of points

Zn = Xn + iYn ∈ Hn(r1).

We will use Douady-Ghys-Yoccoz’s renormalization techniques and follow the

presentation in [ABC04, §3.2].
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Step 1. Construction of a Riemann surface: Vn. Choose n sufficiently

large so that Fn is defined in the upper half-plane
¶
Z ∈ C ; Im(Z) ≥ τn(r2)−

1/10} with ∣∣∣Fn(Z)− Z − 1
∣∣∣ ≤ 1

10
and

∣∣∣F ′n(Z)− 1
∣∣∣ ≤ 1

10
.9

Set

Pn := Xn + i

Å
τn(r2)− 1

10

ã
.

Let

Ln :=
¶
Xn + it ; t > Im(Pn)

©
be the vertical half-line starting at Pn and passing through Zn (see Figure 8).

The union

Ln ∪
î
Pn, Fn(Pn)

ó
∪ Fn(Ln) ∪ {∞}

forms a Jordan curve in the Riemann sphere bounding a region Un such that

for Y > Im(Pn), the segment
î
Xn + iY, Fn(Xn + iY )

ó
is contained in Un

(see [ABC04, §3.2]). We set Un := Un ∪ Ln. If we glue the sides Ln and

Fn(Ln) of Un via Fn, we obtain a topological surface Vn. We denote by ιn :

Un → Vn the canonical projection. The space Vn is a topological surface with

boundary, whose boundary ιn
Ä
[Pn, Fn(Pn)]

ä
is denoted ∂Vn. We set Vn =

Vn \ ∂Vn. Since the gluing map Fn is analytic, the surface Vn has a canonical

analytic structure induced by the one of Un. It is possible to show that Vn is

quasiconformally homeomorphic, thus isomorphic to H/Z ' D∗. (See [ABC04,

§3.2] for details.) Let φn : Vn → D∗ be an isomorphism. Hence, we have the

following composition:

φn ◦ ιn : Un → D∗.
We set

ζn := φn ◦ ιn(Zn) ∈ D.

Step 2. The renormalized map gn. Choose r3 ∈ ]r1, r2[. Set

P ′n := Xn + i

Å
τn(r3) +

1

10

ã
.

Let U ′n be the set of points of Un that are above the segment
î
P ′n, Fn(P ′n)

ó
and

let V ′n be the image of U ′n in Vn. Choose n sufficiently large so that Lemma 5

can be applied with r = r3 and r′ = r2. Then, for all Z ∈ U ′n ⊂ Hn(r3), there

exists an integer j(Z) such that

W := F ◦j(Z)
n ◦Gn(Z) ∈ Un and ∀j ∈

î
0, j(Z)

ó
, F ◦jn ◦Gn(Z) ∈ Hn(r2).

9This is possible by Corollary 3 applied with r > r2. Indeed, for n large enough, we have

that τn(r2)− 1/10 > τn(r) and thus
{
Z ∈ C ; Im(Z) ≥ τn(r2)− 1/10} ⊂ Hn(r).
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Z

Gn(Z)
W

Un

U ′n

Hn(r2)

Hn(r3)

Hn(r1)

Ln Fn(Ln)

Pn

Zn

Fn(Pn)

P ′n Fn(P ′n)

Vn

ζn

[Z]

gn([Z])

Figure 8. Construction of the Riemann surface Vn and the

renormalized map gn.

The map Z 7→ W induces a univalent map gn : φn(V ′n) → D∗.10 By the

removable singularity theorem, this map extends holomorphically to the origin

by gn(0) = 0. Since

Fn(Z) = Z + 1 + o(1) and Gn(Z) = Z −An − θ + o(1)

as Im(Z)→ +∞, we have that

g′n(0) = e−2iπ(An+θ) = e−2iπθ.

(See the proposition on page 33 in [Yoc95] for details.)

Step 3. The orbit of ζn. We will show that the orbit of ζn under iteration

of gn is infinite. For this, let ρn be the radius of the largest disk centered at 0

and contained in φn(V ′n). We will show that

(a) there exists c > 0 such that gn has a Siegel disk which contains

D(0, cρn),

(b) |ζn| = o(ρn).

(a) The restriction of gn to D(0, ρn) is univalent. It fixes 0 with derivative

e−2iπθ. Remember that θ is a Brjuno number. It follows (see [Brj71], [Brj72]

or [Yoc95], for example) that there is a constant cθ > 0 depending only on

θ such that gn has a Siegel disk containing D(0, cθρn). Indeed, according to

the theorem on page 21 in [Yoc95], there is a constant c > 0 such that for

10The fact that gn : φn(V ′n)→ D∗ is continuous and univalent is not completely obvious;

see the proposition on page 33 in [Yoc95] for details.
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all Brjuno number θ, any univalent map f : D(0, 1) → C that fixes 0 with

derivative e2πiθ has a Siegel disk containing D(0, ce−B(θ)), where B(θ) is the

Brjuno function.

(b) Denote by Bn the half-strip

Bn = {Z ∈ C ; 0 < Re(Z) < 1 and Im(Z) > Im(Pn)},

and consider the map Hn : Bn → Un defined by

Hn(Z) = (1−X) · (Xn + iY ) +X · Fn(Xn + iY ),

where Z = X + iY , (X,Y ) ∈ [0, 1] ×
î
Im(Pn),+∞

î
. The map Hn sends each

segment [iY, iY + 1] to the segment
î
Xn + iY, Fn(Xn + iY )

ó
. An elementary

computation shows that Hn is a 5/4-quasiconformal homeomorphism between

Bn and Un.11 Since Hn(iY + 1) = Fn
Ä
Hn(iY )

ä
, the quasiconformal homeo-

morphism Hn : Bn → Un induces a homeomorphism between the half cylinder

H/Z and the Riemann surface Vn. This homeomorphism is clearly quasicon-

formal on the image of Bn in H/Z, i.e., outside a straight line. It is therefore

quasiconformal in the whole half cylinder. (R-analytic curves are removable

for quasiconformal homeomorphisms.)

Let Rn be the rectangle

Rn :=
¶
Z ∈ C ; 0 ≤ Re(Z) < 1 and Im(P ′n) < Im(Z) < Im(Zn)

©
.

Note that Hn(Rn) ⊂ U ′n and observe that

An := φn ◦ ιn ◦Hn(Rn)

is an annulus contained in φn(V ′n) that surrounds 0 and ζn.

The image of Rn in H/Z is an annulus of modulus

Mn := Im(Zn)− Im(P ′n) ≥ τn(r1)− τn(r3)− 1

10
−→

n→+∞
+∞.

Note that Hn induces a 5/4-quasiconformal homeomorphism between this an-

nulus and An. It follows that

modulus(An) ≥ 4

5
Mn −→

n→+∞
+∞.

Since An separates 0 and ζn from ∞ and a point of modulus ρn in ∂φn(V ′n),

the claim follows: as n→ +∞, |ζn| = o(ρn).

11For a proof that Hn is 5/4-quasiconformal homeomorphism, see, for example, [ABC04,

§3.2] or [Shi00, §2.5].
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Rn

Hn(Rn)

−→Hn

Im(Pn)

Im(P ′n)

Im(Zn)

Pn

P ′n

Zn

H/Z

Vn

Z∼Z+1−→

Z∼Fn(Z)−→
ιn −→

φn
ρn

ζn

0
An

Un

Bn

Step 4. Controlling the orbit of Zn. We know that the orbit of ζn under

iteration of gn is infinite. Thus, we have a sequence

ζn ∈ V ′n
gn−→ ζ1

n ∈ V ′n
gn−→ ζ2

n ∈ V ′n
gn−→ · · · .

Now, for each ` ≥ 0, we have

ζ`n = φn ◦ ιn(Z`n) for some Z`n ∈ U ′n.
Moreover, by definition of gn, there exists an integer j` such that

Z`+1
n = F ◦j`n ◦Gn(Z`n) and ∀j ∈ [0, j`], F ◦jn ◦Gn(Z`n) ∈ Hn(r2).

In other words, ζ`n ∈ V ′n
gn−→ ζ`+1

n ∈ V ′n corresponds to

Z`n ∈ U ′n
Gn−→ · ∈ Hn(r2)

Fn−→ · ∈ Hn(r2)
Fn−→ · · · Fn−→ Z`+1

n ∈ U ′n.
Thus, for n sufficiently large, any point Zn ∈ Hn(r1) has an infinite orbit

remaining in Hn(r2) along a well-chosen composition of Fn and Gn. This

completes the proof of Proposition 10. �

Proof of Proposition 7′, continued. Remember that 0< 1/A < ρ < ρ′ < 1.

Choose r1 = ρ < r2 < ρ′. By Proposition 10, for n sufficiently large, any

point Z ∈ Hn(ρ) has an infinite orbit remaining in Hn(r2) under a well-chosen

composition of Fn and Gn. This means that any point z ∈ Xn(ρ) has an

infinite orbit remaining in Xn(r2) under a well chosen composition of f◦qnn and

f
◦qn−1
n . By Corollary 2, if n is sufficiently large, we know that any point in
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Xn(r2) ⊂ D(0, r2) has its first qn iterates in D(0, ρ′). This shows that any

point z ∈ Xn(ρ) has an infinite orbit remaining in D(0, ρ′) under iteration of

fn, as required.

In other words,

· ∈ Hn(r2)
Gn−→ · ∈ Hn(r2) corresponds to · ∈ Xn(r2)

f
◦qn−1
n−→ · ∈ Xn(r2)

and

· ∈ Hn(r2)
Fn−→ · ∈ Hn(r2) corresponds to · ∈ Xn(r2)

f◦qnn−→ · ∈ Xn(r2).

Moreover, for n sufficiently large,

· ∈ Xn(r2)
f
◦qn−1
n−→ · ∈ Xn(r2) and · ∈ Xn(r2)

f◦qnn−→ · ∈ Xn(r2)

decompose as

· ∈ Xn(r2) ⊂ D(0, r2)
fn−→ · ∈ D(0, ρ′)

fn−→ · · · fn−→ · ∈ D(0, ρ′)
fn−→ · ∈ Xn(r2).

This completes the proof of Proposition 7′. �

1.5. The control of the post-critical set.

Definition 5. We denote by ∂ the Hausdorff semi-distance:

∂(X,Y ) = sup
x∈X

d(x, Y ).

Definition 6. We denote by PC(Pα) the post-critical set of Pα:

PC(Pα) :=
⋃
k≥1

P ◦kα (ωα) with ωα := −e
2iπα

2
.

This section is devoted to the proof of the following proposition. Remem-

ber that SN is the set of irrational numbers of bounded type whose continued

fractions have all entries greater than or equal to N .

Proposition 11. There exists N such that as α′ ∈ SN → α ∈ SN , we

have

∂
Ä
PC(Pα′),∆α

ä
→ 0,

with ∆α being the Siegel disk of Pα.

The corollary we will use later is the following.

Corollary 4. Let (αn) be the sequence defined in Proposition 3. For all

δ, if n is large enough, the post-critical set of Pαn is contained in the δ-neigh-

borhood of the Siegel disk of Pα.

The proof of Proposition 11 will rely on some (almost) classical results on

Fatou coordinates and perturbed Fatou coordinates. We refer the reader to
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Appendix A and to [Shi00] for more details. The proof will also rely on results

of Inou and Shishikura [IS] that we will now recall.

1.5.1. The class of Inou and Shishikura. Consider the cubic polynomial

P (z) = z(1 + z)2.

This polynomial has a multiple fixed point at 0, a critical point at −1/3 which

is mapped to the critical value at −4/27, and a second critical point at −1

which is mapped to 0. We set

R := e4π and v := −4/27.

Let U be the open set defined by

U := P−1
Ä
D(0, |v|R)

ä
\
Ä
]−∞,−1] ∪B

ä
,

where B is the connected component of P−1
Ä
D(0, |v|/R)

ä
that contains −1.

Consider the following class of maps (Inou and Shishikura use the notation

FP2 in [IS]):

IS0 :=

®
f = P ◦ ϕ−1 : Uf → C with

ϕ : U → Uf isomorphism such that

ϕ(0) = 0 and ϕ′(0) = 1

´
.

Remark. The set IS0 is identified with the space of univalent maps in U

fixing 0 with derivative 1, which is compact. A sequence of univalent maps

(ϕn : U → C) satisfying ϕn(0) = 0 and ϕ′n(0) = 1 converges uniformly to

ϕ : U → C on every compact subset of U , if and only if the sequence (fn =

P ◦ ϕ−1
n ) converges to f = P ◦ ϕ−1 on every compact subset of Uf = ϕ(U).

− 1
3B

0
− 4

27

PU

0

Figure 9. A schematic representation of the set U . We colored

gray the set of points in U whose image by P is contained in

the lower half-plane.
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A map f ∈ IS0 fixes 0 with multiplier 1. The map f : Uf → D
Ä
0, |v|R

ä
is surjective. It is not a proper map. Inou and Shishikura call it a partial

covering. The map f has a critical point ωf := ϕf (−1/3) which depends on f

and a critical value v := −4/27 which does not depend on f .

1.5.2. Fatou coordinates. Near z = 0, elements f ∈ IS0 have an expansion

of the form

f(z) = z + cfz
2 +O(z3).

The following result of Inou and Shishikura is an immediate consequence of

the Koebe Distortion Theorem.

Result of Inou-Shishikura (Main Theorem 1, part a). The set {cf ; f ∈
IS0} is a compact subset of C∗.

In particular, for all f ∈ IS0, cf 6= 0 and f has a multiple fixed point of

multiplicity 2 at 0. If we make the change of variables

z = τf (w) := − 1

cfw
,

we find F (w) = w + 1 + o(1) near infinity. To lighten notation, we will write

f and F for pairs of functions related as above; ωf := φf (−1/3) and ωF :=

τ−1
f (ωf ) will denote their critical points.

Lemma 6. There exists R0 such that for all f ∈ IS0,

• F is defined and univalent in a neighborhood of C \D(0, R0);

• for all w ∈ C \D(0, R0),∣∣∣F (w)− w − 1
∣∣∣ < 1

4
and

∣∣∣F ′(w)− 1
∣∣∣ < 1

4
.

Proof. This follows from the compactness of IS0. �

If R1 >
√

2R0, the regions

Ωatt :=
¶
w ∈ C ; Re(w) > R1 − |Im(w)|

©
and

Ωrep :=
¶
w ∈ C ; Re(w) < −R1 + |Im(w)|

©
are contained in C \D(0, R0).

Then, for all f ∈ IS0,

F (Ωatt) ⊂ Ωatt and F
Ä
Ωrep

ä
⊃ Ωrep.

In addition, there are univalent maps Φatt
F : Ωatt → C (attracting Fatou co-

ordinate for F ) and Φrep
F : Ωrep → C (repelling Fatou coordinate for F ) such

that

Φatt
F ◦ F (w) = Φatt

F (w) + 1 and Φrep
F ◦ F (w) = Φrep

F (w) + 1
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τf←−

Ωatt,f Ωrep,f

Ωatt

Ωrep

0 R1−R1

Figure 10. Right: the sets Ωatt and Ωrep. Left: the set Ωatt,f

and Ωrep,f for a map f with cf = 1. The sets Ωatt and Ωatt,f

are shaded. The boundaries of the sets Ωrep and Ωrep,f are

dashed.

when both sides of the equations are defined. The maps Φatt
F and Φrep

F are

unique up to an additive constant. In addition, as w ∈ Ωatt ∩ Ωrep tends to

infinity, Φatt
F − Φrep

F tends to a constant.

Result of Inou-Shishikura (Main Theorem 1, part a). For all f ∈
IS0, the critical point ωf is attracted to 0.

The following lemma easily follows, using the compactness of the class IS0.

Lemma 7. There exists k such that for all f ∈ IS0, we have F ◦k(ωF )

∈ Ωatt.

Proof. By contradiction, suppose that there is a sequence (fn) ∈ IS0 such

that for k ≤ n, we have F ◦kn (ωFn) /∈ Ωatt. By compactness of IS0, we may

assume that the sequence Fn converges to F∞. But since f∞ ∈ IS0, the orbit of

the critical point ωf∞ converges to 0, so for some k, we have F ◦k∞ (ωF∞) ∈ Ωatt.

But

F ◦k∞ (ωF∞) = lim
n→∞

F ◦kn (ωFn),

and this is a contradiction. �

Since the maps Φatt
F and Φrep

F are only defined up to an additive constant,

we can normalize Φatt
F so that

Φatt
F

Ä
F ◦k(ωF )

ä
= k.

Then, we can normalize Φrep
F so that

Φatt
F (w)− Φrep

F (w)→ 0 when Im(w)→ +∞ with w ∈ Ωatt ∩ Ωrep.
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Coming back to the z-coordinate, we define

Ωatt,f := τf (Ωatt) and Ωrep,f := τf (Ωrep)

and we set

Φatt,f := Φatt
F ◦ τ−1

f and Φrep,f := Φrep
F ◦ τ−1

f .

The univalent maps Φatt,f : Ωatt,f → C and Φrep,f : Ωrep,f → C are called

attracting and repelling Fatou coordinates for f . Note that our normalization

of the attracting coordinates is given by

Φatt,f

Ä
f◦k(ωf )

ä
= k.

The following result of Inou and Shishikura asserts that the attracting

Fatou coordinate can be extended univalently up to the critical point of f . It

easily follows from [IS, Prop. 5.6].

Result of Inou-Shishikura (see Figure 11). For all f ∈ IS0, there

exists an attracting petal Patt,f and an extension of the Fatou coordinate, which

we will still denote Φatt,f : Patt,f → C, such that

• v ∈ Patt,f ,

• Φatt,f (v) = 1,

• Φatt,f is univalent on Patt,f ,

• Φatt,f (Patt,f ) =
¶
w ; Re(w) > 0

©
.

Φatt,f−→

Patt,f

v

ωf

0

Figure 11. Left: the attracting petal Patt,f of some map f ∈
IS0; the critical point is ωf , the critical value v, and 0 is a fixed

point. Right: its image by Φatt,f ; we divided the right half-plane

]0,+∞[×R into vertical strips of width 1 of alternating color,

highlighted the real axis in red, and put a black dot at the point

z = 1. On the left, we pulled this coloring back by Φatt,f .
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Φatt,f−→

Vf

Wf

Figure 12. On the right, we divided ]0, 2[×] − 2,+∞[ into 3

regions of different colors. We subdivided each by a vertical line

through z = 1. These 6 pieces were then pulled back on the left

by Φatt,f , for the same parabolic f ∈ IS0 as in Figure 11. The

set Vf is the union of the green and red regions (these are the

colors of the top and middle regions on the right). The set Wf

is the union of the red and yellow regions (corresponding to the

middle and bottom regions on the right).

Definition 7 (see Figure 12). For f ∈ IS0, we set

Vf :=
¶
z ∈ Patt,f ; Im

Ä
Φatt,f (z)

ä
> 0 and 0 < Re

Ä
Φatt,f (z)

ä
< 2
©

and

Wf :=
¶
z ∈ Patt,f ; −2 < Im

Ä
Φatt,f (z)

ä
< 2 and 0 < Re

Ä
Φatt,f (z)

ä
< 2
©
.

We now come to the key result of Inou and Shishikura. The result stated

below easily follows from [IS, Props. 5.7 and 5.8 and §5.M]. Our domain V −kf ∪
W−kf below corresponds in [IS] to the interior of

D−k ∪D]
−k ∪D

′′
−k ∪D−k+1 ∪D]

−k+1 ∪D
′
−k+1.

The set W−kf itself corresponds to the interior of

D−k ∪D′′−k ∪D−k+1 ∪D′−k+1.

Result of Inou-Shishikura (see Figure 13). For all f ∈ IS0 and all

k ≥ 0,

• the unique connected component V −kf of f−k(Vf ) that contains 0 in its

closure is relatively compact in Uf (the domain of f ) and f◦k : V −kf →
Vf is an isomorphism,
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Ωrep

τ0
6

Figure 13. Above: among the successive preimages of Vf and

Wf by f , those that compose the sets V −kf , W−kf are shown.

The colors are preserved by f . Below: preimage of the left part

by τ0. We hatched WF ∪ VF and W−7
F ∪ V −7

F .

• the unique connected component W−kf of f−k(Wf ) that intersects V −kf

is relatively compact in Uf and f◦k : W−kf →Wf is a covering of degree

2 ramified above v.

In addition, if k is large enough, then V −kf ∪W−kf ⊂ Ωrep,f .

The following lemma asserts that if k is large enough, then for all map

f ∈ IS0, the set V −kf ∪W−kf is contained in a repelling petal of f , i.e., the

preimage of a left half-plane by Φrep,f .



QUADRATIC JULIA SETS WITH POSITIVE AREA 705

Vf ∪Wf

V −kf ∪W−kf

Prep,f

Patt,f

f◦k

Figure 14. If k is large enough, V −kf ∪W−kf is contained in the

repelling petal Prep,f .

Lemma 8 (see Figure 14). There is an R2 > 0 such that for all f ∈ IS0,

the set Φrep,f (Ωrep,f ) contains the half-plane {w ∈ C ; Re w < −R2}. There

is an integer k0 > 0 such that for all k ≥ k0, we have

V −kf ∪W−kf ⊂
¶
z ∈ Ωrep,f ; Re

Ä
Φrep,f (z)

ä
< −R2

©
.

Remark. Of course, R2 can be replaced by any R3 ≥ R2, replacing if

necessary k0 by k1 := k0 + bR3 −R2c+ 1.

Proof. For all f ∈ IS0, Φf (Ωrep,f ) contains a left half-plane. The existence

of R2 follows from the compactness of IS0.

By Inou and Shishikura’s result, we know that for all f ∈ IS0, there is an

integer k > 0 such that W−kf is relatively compact in Ωrep,f . It follows from

the compactness of IS0 that there is an integer k1 > 0 and a constant M , such

that for all f ∈ IS0, W−k1f ⊂ Ωrep,f and

sup
w∈W−k1

f

Re
Ä
Φrep,f (w)

ä
< M.

Set k0 := k1 +M + bR2c+ 3. Then,

sup
w∈W−k0

f

Re
Ä
Φrep,f (w)

ä
< −R2 − 2.

We will show that we then automatically have

(2) V −k0f ⊂ Ωrep,f and sup
w∈V −k0

f

Re
Ä
Φrep,f (w)

ä
< −R2.

It will follow immediately that

∀k ≥ k0 and ∀w ∈ V −kf ∪W−kf , Re
Ä
Φrep,f (w)

ä
< −R2,

which will conclude the proof of the lemma.
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In order to get (2), we fix f ∈ IS0 and consider k ≥ k0 large enough so

that V −kf ⊂ Ωrep,f . (This is possible thanks to Inou and Shishikura.) Note

that
sup

w∈W−k
f

Re
Ä
Φrep,f (w)

ä
< −R2 − 2− k + k0.

Denote by g : V f → V −kf the inverse branch of f◦k : V −kf → V f . Set

B :=
¶
w ∈ C ; 0 < Re(w) < 2 and 0 < Im(w)

©
.

Note that B = Φatt,f (Vf ). Consider the map Ψ : B → C defined by

Ψ := Φrep,f ◦ g ◦ Φ−1
att,f .

Since Ψ commutes with translation by 1, so that Ψ(w) − w is 1-periodic, the

maximum modulus principle yields

sup
w∈B

Re
Ä
Ψ(w)− w

ä
= sup

w∈[0,2]
Re
Ä
Ψ(w)− w

ä
.

Note that

g ◦ Φ−1
att,f

Ä
[0, 2]

ä
⊂W−kf

and thus

sup
w∈[0,2]

Re
Ä
Ψ(w)− w

ä
< −R2 − 2− k + k0.

Hence,

sup
w∈V −k

f

Re
Ä
Φrep,f (w)

ä
= sup

w∈B
Re
Ä
Ψ(w)

ä
< −R2 − k + k0.

It now follows that

sup
w∈V −k0

f

Re
Ä
Φrep,f (w)

ä
< −R2.

This completes the proof of (2) and of Lemma 8. �

1.5.3. Perturbed Fatou coordinates. For α ∈ R, we denote by ISα the set

of maps of the form z 7→ f(e2iπαz) with f ∈ IS0. If A is a subset of R, we

denote by ISA the set

ISA :=
⋃
α∈A
ISα.

Note that

ISα =

®
f = P ◦ ϕ−1 : Uf → C with

ϕ : U → Uf isomorphism such that

ϕ(0) = 0 and ϕ′(0) = e−2iπα

´
and

ISR =

{
f = P ◦ ϕ−1 : Uf → C with

ϕ : U → Uf isomorphism such that

ϕ(0) = 0 and
∣∣∣ϕ′(0)

∣∣∣ = 1

}
.
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Φf−→
Pf

ωf v
0 1 1

αf
−R3

s s ss

Figure 15. The perturbed petal Pf whose image by the per-

turbed Fatou coordinate Φf is the strip {0<Re(w)<1/αf−R3}.

The map f depends on φ in a one-to-one way. Thus we get a one-to-one

correspondence between ISR and the set of univalent maps on U fixing 0 with

derivative of modulus 1. We put the compact-open topology on this set of

univalent maps. This induces a topology on ISR.

Remark. A sequence (fn = P ◦ ϕ−1
n ∈ ISR) converges to f = P ◦ ϕ−1 ∈

ISR if and only if the sequence (fn) converges to f on every compact subset

of Uf = ϕ(U).

If f ∈ IS[0,1[, we denote by αf ∈ [0, 1[ the rotation number of f at 0, i.e.,

the real number αf ∈ [0, 1[ such that

f ′(0) = e2iπαf .

Lemma 9. There exist ε0 ∈ ]0, 1[ and r > 0 such that for all f ∈ IS[0,ε0[,

the map f has two fixed points in D(0, r) (counting multiplicities), one at z = 0

the other one denoted by σf . The map σ : IS[0,ε0[ → D(0, r) defined by f 7→ σf
is continuous.

Proof. According to Inou and Shishikura, maps f ∈ IS0 have a double

fixed point at 0. By compactness of IS0, there is an r′ > 0 such that maps

f ∈ IS0 have only 2 fixed points in D(0, r′). Choose r ∈ ]0, r′[. By Rouché’s

theorem and by compactness of IS0, there is an ε0 > 0 such that maps f ∈
IS[0,ε0[ have exactly two fixed points in D(0, r). The result follows easily. �

The following results are consequences of results in [Shi00], the compact-

ness of the class IS0 and the results of the previous paragraph. It is a classical

phenomenon in the theory of parabolic implosion, the point here being unifor-

mity over the considered class of maps.

Proposition 12 (see Figure 15). There are constants K > 0, ε1 > 0,

and R3 ≥ R2 with 1/ε1 − R3 > 1, such that for all f ∈ IS]0,ε1[, the following

holds :
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(1) There is a Jordan domain Pf ⊂ Uf (a perturbed petal) containing v,

bounded by two arcs joining 0 to σf , and there is a branch of argument

defined on Pf such that

sup
z∈Pf

arg(z)− inf
z∈Pf

arg(z) < K.

(2) There is a univalent map Φf : Pf → C (a perturbed Fatou coordinate)

such that

• Φf (v) = 1;

• Φf (Pf ) =
¶
w ∈ C ; 0 < Re(w) < 1/αf −R3

©
;

• Im
Ä
Φf (z)

ä
→ +∞ as w → 0 and Im

Ä
Φf (z)

ä
→ −∞ as w → σf ;

• when z ∈ Pf and Re
Ä
Φf (z)

ä
< 1/αf − R3 − 1, then f(z) ∈ Pf and

Φf ◦ f(z) = Φf (z) + 1.

For f ∈ IS0, we set

Prep,f :=
¶
z ∈ Ωrep,f ; Re

Ä
Φrep,f (z)

ä
< −R3

©
.

(3) If (fn) is a sequence of maps in IS]0,ε1[ converging to a map f0 ∈ IS0,

then

• any compact K ⊂ Patt,f0 is contained in Pfn for n large enough and

the sequence (Φfn) converges to Φatt,f0 uniformly on K ,

• any compact K ⊂ Prep,f0 is contained in Pfn for n large enough and

the sequence (Φfn − 1
αfn

) converges to Φrep,f0 uniformly on K .

Proof. Thanks to the compactness of the class IS0, it is enough to show

that if (fn) is a sequence of maps in IS]0,1[ converging to a map f0 ∈ IS0,

there is a number R3 ≥ R2 such that properties (1), (2), and (3) hold.

So, assume fn is such a sequence, and for simplicity, write αn, σn, . . .

instead of αfn , σfn , . . . .

Let τn : C→ P1 \ {0, σn} be the universal covering given by

τn(w) :=
σn

1− e−2iπαnw

so that
τn(w) −→

Im(w)→+∞
0 and τn(w) −→

Im(w)→−∞
σn.

Denote by Tn : C→ C the translation

Tn : w 7→ w − 1

αn
.

Recall that f0(z) = z + c0z
2 +O(z3) with c0 6= 0, and

τ0(z) := − 1

c0z
.

The following observations follow from [Shi00]. We let R0 and R1 be the

constants introduced in paragraph 1.5.2.
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Ωn

1
αn
−R1

R1−R1

R1− 1
αn

Dn

Figure 16. The domain Dn (grey) is the complement of a union

of disks and the hourglass Ωn (dark grey) is contained in Dn.

(1) The sequence (τn) converges to τ0 uniformly on every compact subset

of C∗.
(2) If n is sufficiently large, there is a map Fn : Dn → C, defined and

univalent in

Dn := C \
⋃
k∈Z

D(k/αn, R0),

which satisfies

• fn ◦ τn = τn ◦ Fn,

• Fn(w)− w is 1/αn-periodic (or equivalently, Fn ◦ Tn = Tn ◦ Fn),

• Fn(w)− w → 1 as Im(w)→ +∞.

Remark. This lift Fn of fn may be defined by

Fn(w) := w +
1

2iπαn
log

Ç
fn(z)− σn
fn(z)

· z

z − σn

å
with z = τn(w).

(3) As n tends to +∞, the sequence (Fn) converges to F0 uniformly on

every compact subset of C \D(0, R0).

(4) The set

Ωn :=

ß
w ∈ C ; Re(w) > R1 −

∣∣∣Im(w)
∣∣∣ and Re(w) <

1

αn
−R1 +

∣∣∣Im(w)
∣∣∣™

is contained in Dn (see Figure 16).

(5) Remember that for all w ∈ C \D(0, R0),∣∣∣F0(w)− w − 1
∣∣∣ < 1

4
and

∣∣∣F ′0(w)− 1
∣∣∣ < 1

4
.
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It follows from the convergence of (Fn) to F0 that if n is sufficiently

large, then for all w ∈ Ωn,∣∣∣Fn(w)− w − 1
∣∣∣ < 1

4
and

∣∣∣F ′n(w)− 1
∣∣∣ < 1

4
.

(6) Increasing n if necessary, we may assume that 1/αn > 2R1 + 2. Then,

there is a univalent map Φn : Ωn → C, called a perturbed Fatou coor-

dinate for Fn, such that

Φn ◦ Fn(w) = Fn(w) + 1

when w ∈ Ωn and Fn(w) ∈ Ωn. This map is unique up to post-

composition with a translation.

(7) Remember that there is a k such that f◦k0 (ω0) ∈ Ωatt, with ω0 the

critical point of f0. For n large enough, f◦kn (ωn) is in τn(Ωn), with ωn
the critical point of fn. There is a point wn ∈ Ωn such that

τn(wn) = f◦kn (ωn) with wn −→
n→+∞

τ−1
0

Ä
f◦k0 (ω0)

ä
.

We can normalize Φn by Φn(wn) = k. Then,

Φn −→
n→+∞

Φatt
0

uniformly on every compact subset of Ωatt. Due to the normalization

Φatt
0 (w)− Φrep

0 (w)→ 0 as Im(w)→ +∞ with w ∈ Ωatt ∩ Ωrep, we have

Tn ◦ Φn ◦ T−1
n −→

n→+∞
Φrep

0

uniformly on every compact subset of Ωrep.

Coming back to the z-coordinate is not immediate. Indeed, the map τn is

not injective on Ωn and we cannot define a Fatou coordinate for fn on τn(Ωn).

We will instead restrict to a subset Pn ⊂ Ωn whose image by Φn is a vertical

strip and on which τn is injective. Let us give a precise statement. Its proof is

given in Appendix A. It follows from results in [Shi00], but was not stated in

the latter.

Lemma 10 (see Figure 17). If K > 0 and R ≥ R2 are sufficiently large,

then for n large enough,

• Φn(Ωn) contains the vertical strip

Un :=
¶
w ∈ C ; R < Re(w) < 1/αn −R

©
,

• τn is injective on Pn := (Φn)−1(Un),

• there is a branch of argument defined on τn(Pn) such that

sup
z∈τn(Pn)

arg(z)− inf
z∈τn(Pn)

arg(z) < K.
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τn�

Φn ����)

τn(Pn) Pn

Un

0

σn

s sR 1
αn
−R

Figure 17. The map τn is injective on Pn := (Φn)−1(Un).

Let M > R be an integer. Note that¶
w ∈ C ; Re(w) > M

©
⊂ Φatt,0(Ωatt,0)

and ¶
w ∈ C ; Re(w) < −M

©
⊂ Φrep,0(Ωrep,0).

Set

P ′0 :=
¶
z ∈ Ωatt,0 ; Re

Ä
Φatt,0(z)

ä
> M

©
∪
¶
z ∈ Ωrep,0 ; Re

Ä
Φrep,0(z)

ä
< −M

©
and

P ′n := τn
Ä¶
w ∈ Pn ; M < Re

Ä
Φn(w)

ä
< 1/αn −M

©ä
.

For any r > 0, if n is sufficiently large so that σn ∈ D(0, r), then points with

large (positive or negative) imaginary part are mapped by τn into D(0, r). It

therefore follows from point (7) above that P ′n → P ′0 as n→ +∞.

Set

P0 := Patt,0 ∪
¶
z ∈ Ωrep,0 ; Re

Ä
Φrep,0(z)

ä
< −2M

©
.

Note that P0 is compactly contained in the domain of f◦M0 and that f◦M0 :

P0 → P ′0 is an isomorphism. In addition, for n sufficiently large, f◦Mn does not

have any critical value in P ′n.

It follows from Rouché’s theorem that for n large enough, the connected

component Pn of f−Mn (P ′n) that contains 0 in its boundary is relatively compact

in the domain of fn, and f◦Mn : Pn → P ′n is an isomorphism. The perturbed
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Pn

z P ′n

f◦Mn (z) = τn(w)

Φn

τn

w

Φn(z) := Φn(w)−M

Φn(w)

Φn

Figure 18. Definition of the perturbed Fatou coordinate Φn.

The perturbed petal Pn is grey and the set P ′n is hatched.

Fatou coordinate Φn : Pn → C induces a perturbed Fatou coordinate Φn :=

Φn◦τ−1
n : P ′n → C. This extends analytically to a perturbed Fatou coordinates

Φn : Pn → C defined by

Φn(z) := Φn(w)−M where w ∈ Pn is chosen so that τn(w) = f◦Mn (z) ∈ P ′n.

See Figure 18.

In a simply connected neighborhood of P ′0, the function f◦M0 (z)/z does

not vanish (and extends by 1 at z = 0). It follows that for n large enough,

there are branches of argument of f◦Mn (z)/z that are uniformly bounded on

Pn. It is now easy to check that Proposition 12 holds for the maps fn with n

large enough. �

1.5.4. Renormalization. Recall that for maps f ∈ IS0, we defined sets

Vf ⊂ Patt,f and Wf ⊂ Patt,f . We claimed (see Lemma 8) that for k ≥ 0, there

are components V −kf and W−kf properly mapped by f◦k respectively to Vf with

degree 1 and Wf with degree 2. In addition, there is an integer k0 > 0 such

that

∀f ∈ IS0, V −k0f ∪W−k0f ⊂ Prep,f .
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Vf ∪Wf V −k
f
∪W−k

f

Pf

f◦k

Figure 19. If k is large enough, V −kf ∪W−kf is contained in the

perturbed petal Pf .

We will now generalize this to maps f ∈ IS]0,ε[ with ε sufficiently small.

If f ∈ IS]0,ε1[, we set

Vf :=
¶
z ∈ Pf ; Im

Ä
Φf (z)

ä
> 0 and 0 < Re

Ä
Φf (z)

ä
< 2
©

and

Wf :=
¶
z ∈ Pf ; −2 < Im

Ä
Φf (z)

ä
< 2 and 0 < Re

Ä
Φf (z)

ä
< 2
©
.

Proposition 13 (see Figure 19). There is a number ε2 > 0 and an integer

k1 ≥ 1 such that for all f ∈ IS]0,ε2[ and for all integer k ∈ [1, k1],

(1) The unique connected component V −kf of f−k(Vf ) that contains 0 in its

closure is relatively compact in Uf (the domain of f ) and f◦k : V −kf → Vf
is an isomorphism.

(2) The unique connected component W−kf of f−k(Wf ) which intersects V −kf

is relatively compact in Uf and f◦k : W−kf →Wf is a covering of degree

2 ramified above v.

(3) V −k1f ∪W−k1f ⊂
¶
z ∈ Pf ; 2 < Re

Ä
Φf (z)

ä
< 1

αf
−R3 − 5

©
.

Proof. Set k1 := k0 + 7. By compactness of IS0, there is an ε2 > 0 such

that for all f ∈ IS]0,ε2[, properties (1) and (2) hold for all integers k ∈ [1, k1],

and further, W−k1f is contained in
¶
z ∈ Pf ; 4 < Re

Ä
Φf (z)

ä
< 1

αf
−R3 − 7

©
.

To see that V −k1f is a subset of
¶
z ∈ Pf ; 2 < Re

Ä
Φf (z)

ä
< 1

αf
−R3− 5

©
,

we proceed as in the proof of Lemma 8. �
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We now come to the definition of the renormalization of maps f ∈ IS]0,ε2[.

Result of Inou-Shishikura (Main Theorem 3 and Section 5.M). If

f ∈ IS]0,ε2[, the map

Φf ◦ f◦k1 ◦ Φ−1
f : Φf

Ä
V −k1f ∪W−k1f

ä
→ Φf

Ä
Vf ∪Wf

ä
projects via w 7→ − 4

27e
2iπw to a map R(f) ∈ IS−1/αf .

Definition 8. The map R(f) is called the renormalization of f .

The polynomial Pα does not belong to the class ISα. However, according

to [IS], the construction we described also works for polynomials Pα with α > 0

sufficiently close to 0. In other words, if α > 0 is sufficiently close to 0,

there are perturbed petals and perturbed Fatou coordinates, and there is a

renormalization R(Pα) that belongs to IS−1/α. In the sequel, ε2 > 0 is chosen

sufficiently small so that for α ∈ ]0, ε2[, a map f that either is a polynomial

Pα, or belongs to ISα, has a renormalization R(f) ∈ IS−1/α.

1.5.5. Renormalization tower. Assume 1/N < ε2. Denote by Irrat≥N the

set

Irrat≥N :=
¶
α = [a0, a1, a2, . . .] ∈ R \Q ; ak ≥ N for all k ≥ 1

©
.

Assume α = [a0, a1, a2, . . .] ∈ Irrat≥N . For j ≥ 0, set

αj := [0, aj+1, aj+2, . . .].

Note that for all j ≥ 1,

αj+1 =
1

αj
−
ú

1

αj

ü
.

The requirement α ∈ Irrat≥N translates into

∀j, αj ∈]0, 1/N [.

Denote by pj/qj the approximants to α0 given by the continued fraction algo-

rithm.

Now, if either f0 = Pα or f0 ∈ ISα, we can define inductively an infinite

sequence of renormalizations, also called a renormalization tower, by

fj+1 := s ◦ R(fj) ◦ s−1,

the conjugacy by s : z 7→ z̄ being introduced so that

f ′j(0) = e2iπαj .

It will be convenient to define

Exp : C → C∗,
w 7→ − 4

27s(e
2iπw).
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Pfj+1

Pfj

-Φfj

�
�
�
�
�
�
�
���

Exp

-

ψj+1

Figure 20. The branch ψj+1 maps Pfj+1
univalently into Pfj .

For j ≥ 0, we define

φj := Exp ◦ Φfj : Pfj → C.
The map φj goes from the j-th level of the renormalization tower to the next

level.

We now want to relate the dynamics of maps at different levels of the

renormalization tower. For this purpose, we will use the following lemma.

Lemma 11. There is a constant K > 0 such that for all f ∈ IS]0,ε2[, there

is an inverse branch of Exp that is defined on Pf and takes its values in the

strip
¶
w ∈ C ; 0 < Re(w) < K

©
.

Proof. This is an immediate consequence of Proposition 12, part (1). �

From now on, we assume that N is sufficiently large so that

(3)
1

N
< ε2 and

1

N
−R3 > K.

Then, according to Lemma 11, for all j ≥ 1, there is an inverse branch ψj
of φj−1 defined on the perturbed petal Pfj with values in Pfj−1

. (There are

several possible choices; we choose any one.) See Figure 20.

The map

Ψj := ψ1 ◦ ψ2 ◦ . . . ◦ ψj
is then defined and univalent on Pfj with values in the dynamical plane of the

polynomial f0.
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Remember that

Φfj (Pfj ) =
¶
w ∈ C ; 0 < Re(w) < 1/αj −R3

©
.

Define Pj ⊂ Pfj and P ′j ⊂ Pfj by

Pj :=
¶
z ∈ Pfj ; 0 < Re

Ä
Φfj (w)

ä
< 1/αj −R3 − 1

©
and

P ′j :=
¶
z ∈ Pfj ; 1 < Re

Ä
Φfj (w)

ä
< 1/αj −R3

©
.

Note that fj maps Pj to P ′j isomorphically. Set

Qj := Ψj(Pj) and Q′j := Ψj(P ′j).

Proposition 14. The map Ψj conjugates fj : Pj→P ′j to f
◦qj
0 : Qj→Q′j .

In other words, we have the following commutative diagram:

Qj ⊂ Ψj(Pfj )
f
◦qj
0 // Q′j ⊂ Ψj(Pfj )

Pj ⊂ Pfj fj

//

Ψj

OO

P ′j ⊂ Pfj .

Ψj

OO

Proof. We must show that if zj ∈ Pj and z′j := fj(zj) ∈ P ′j , then the

points z0 := Ψj(zj) and z′0 := Ψj(z
′
j) are related by

z′0 = f
◦qj
0 (z0).

Let us first show that there is an integer k such that z′0 = f◦k0 (z0). Our proof

is based on the following lemma.

Lemma 12. Assume ` ≥ 0, w ∈ Uf`+1
, and w′ := f`+1(w). Let z ∈ Pf`

and z′ ∈ Pf` be such that

Exp ◦ Φf`(z) = w and Exp ◦ Φf`(z
′) = w′.

Then, there is an integer k ≥ 1 such that z′ = f◦k` (z).

Proof. Let z′1 ∈ Pf` be the unique point such that

Re
Ä
Φf`(z

′
1)
ä
∈ ]0, 1] and Exp ◦ Φf`(z

′
1) = w′.

By definition of the renormalization f`+1, there is a point z1 ∈ V −k1f`
∪W−k1f`

such that

Exp ◦ Φf`(z1) = w and f◦k1` (z1) = z′1.

We then have

Φf`(z1) = Φf`(z) +m1 and Φf`(z
′) = Φf`(z

′
1) +m′1
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with m1 ∈ Z and m′1 ∈ N. If m1 ≥ 0, we have

z1 = f◦m1
` (z) and z′ = f

◦m′1
` (z′1).

Since k1 ≥ 0, we then have

z′ = f◦k(z) with k := k1 +m1 +m′1 ≥ 1.

If m1 < 0, then z = f◦−m1
` (z′1). However, for m ≤ −m1, we have f◦m` (z′1) ∈

Pf` , and so, k1 ≥ −m1 + 1. Thus, we can write

z′1 = f◦m2
` (z) with m2 := k1 +m1 ≥ 1.

In that case,

z′ = f◦k(z) with k := m2 +m′1 ≥ 1. �

It follows by decreasing induction on ` from j to 0 that for all zj ∈ Pj ,
there is an integer k ≥ 1 such that

z′0 = f◦k0 (z0).

We will now show that we have a common integer k, valid for all points zj ∈ Pj .
Lemma 13. There is an integer k0 ≥ 1 such that for all point zj ∈ Pj , we

have

z′0 = f◦k00 (z0).

Proof. We will use the connectedness of Pj . For k ≥ 1, set

Ok := {z ∈ Pj ; f◦k0

Ä
Ψj(z)

ä
is defined

©
.

This is an open set. Set

Xk :=
¶
z ∈ Ok ; f◦k0

Ä
Ψj(z)

ä
= Ψj

Ä
fj(z)

ä©
.

Note that for every component O of Ok, either Xk ∩ O = O, or Xk is

discrete in O, in particular countable. Indeed, Xk is the set of zeroes of the

holomorphic function f◦k0 ◦Ψj −Ψj ◦ fj : Ok → C.

Since

Pj =
⋃
k≥1

Xk,

there is a smallest integer k0 ≥ 1 such that Xk0 is not countable. Then, there

is a component O of Ok0 such that on O, we have f◦k00 ◦Ψj = Ψj ◦ fj .
Since O is a component of Ok0 , we have

∂O ∩ Pj ⊂ C \ Ok0 .
It follows that

∂O ∩ Pj ⊂ X1 ∪ . . . Xk0−1

since the remaining Xk’s are contained in Ok0 . So, ∂O ∩Pj is countable. This

is only possible if ∂O∩Pj = ∅ since in any neighborhood of a point z ∈ C\Ok0 ,



718 XAVIER BUFF and ARNAUD CHÉRITAT

there are uncountably many points in C \ Ok0 . As a consequence, O = Pj ,
which concludes the proof of the lemma. �

We must now show that k0 = qj . Let Lj ⊂ Pj be the curve defined by

Lj :=
¶
z ∈ Pj ; Re

Ä
Φfj (z)

ä
= 1
©
.

Set L′j := fj(Lj), i.e., the curve

L′j :=
¶
z ∈ Pj ; Re

Ä
Φfj (z)

ä
= 2
©
.

Those curves both have an end point at z = 0. They both have tangents at

z = 0. Since the linear part of fj at z = 0 is the rotation of angle αj , the angle

between Lj and L′j at z = 0 is αj . It follows that the curves Ψj(Lj) and Ψj(L
′
j)

have tangents at z = 0 and the angle between those curves is α0α1 · · ·αj . So,

the linear part of f◦k00 at z = 0 is the rotation of angle α0α1 · · ·αj . It follows

that k0 = qj . �

Set

Dj := V −k1fj
∪W−k1fj

, D′j := Vfj ∪Wfj ,

Cj := Ψj(Dj), and C ′j := Ψj(D
′
j).

Note that f◦k1j maps Dj to D′j .

Proposition 15. The map Ψj conjugates the map f◦k1j : Dj → D′j to the

map f
◦(k1qj+qj−1)
0 : Cj → C ′j .

In other words, we have the following commutative diagram:

Cj ⊂ Ψj(Pfj )
f
◦(k1qj+qj−1)

0 // C ′j ⊂ Ψj(Pfj )

Dj ⊂ Pfj
f
◦k1
j

//

Ψj

OO

D′j ⊂ Pfj .

Ψj

OO

Proof. The proof is similar to that of Proposition 14. �

1.5.6. Neighborhoods of the postcritical set. We can now see that the post-

critical set of maps f ∈ ISα with α ∈ Irrat≥N is infinite.

Proposition 16 (Inou-Shishikura Corollary 4.2). For all α ∈ Irrat≥N
and all f ∈ ISα, the postcritical set of f is infinite.

Proof. For j ≥ 1, the map f◦k1j : W−k1fj
→ Wfj is a ramified covering of

degree 2, ramified above v. Denote by wj the critical point of this ramified

covering. Set w0 := Ψj(wj). According to Proposition 15, we can iterate f0
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at least k1qj + qj−1 times at w0, w0 is a critical point of f
◦(k1qj+qj−1)
0 , and its

critical value is Ψj(v). In particular, Ψj(v) is a point of the postcritical set

of f0.

Note that v ∈ Pj . According to Proposition 14, we can iterate f0 at least

qj times at Ψj(v). This shows that we can iterate f0 at least qj times at v.

Since j ≥ 1 is arbitrary, the postcritical set of f0 is infinite. �

For every α ∈ Irrat≥N , we are going to define a sequence (Uj) of open sets

containing the post-critical set of Pα. We still use the notations of the previous

paragraph. In particular, for j ≥ 1, the j-th renormalization of f0 := Pα has a

perturbed petal Pfj and a perturbed Fatou coordinate

Φfj : Pfj →
¶
w ∈ C ; 0 < Re(w) < 1/αj −R3

©
.

The set

Dj := V −k1fj
∪W−k1fj

⊂ Pfj
is mapped by f◦k1j to

D′j :=
¶
z ∈ Pfj ; 0 < Re

Ä
Φfj (z)

ä
< 2 and Im

Ä
Φfj (z)

ä
> −2

©
.

There is a map Ψj , univalent on Pfj , with values in the dynamical plane of

Pα, conjugating f◦k1j : Dj → D′j to P
◦(k1qj+qj−1)
α : Cj → C ′j with

Cj := Ψj(Dj) and C ′j := Ψj(D
′
j).

Definition 9. For α ∈ Irrat≥N and j ≥ 1, we set

Uj(α) :=

qj+1+`qj⋃
k=0

P ◦kα (Cj),

where ` := k1 − bR3c − 4 ∈ N.

Figure 21 shows the open set U1(α) for an α of bounded type.

Proposition 17. For all α ∈ Irrat≥N and all j ≥ 1, the post-critical set

PC(Pα) is contained in Uj(α).

Proof. We will show that for all j ≥ 1, there is a point z0 ∈ Cj that is a

precritical point of Pα, and a sequence of positive integers with t0 < t1 < t2 <

· · · such that

• t0 = 0,

• for all m ≥ 0, tm+1 − tm < qj+1 +
Ä
k1 − bR3c − 4)qj , and

• for all m ≥ 0, P ◦tmα (z0) ∈ Cj .
The proof follows immediately.

Denote by ωj+1 the critical point of fj+1. According to Proposition 16 the

orbit of ωj+1 under iteration of fj+1 is infinite. In particular, for all m ≥ 0,
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Figure 21. If f ∈ ISα with α ∈ Irrat≥N , the set U1(f) contains

the postcritical set PC(f). If α is of bounded type, this post-

critical set is dense in the boundary of the Siegel disk of f .

f◦mj+1(ωj+1) is in the domain Ufj+1
of fj+1. Remember that the map φj :=

Exp ◦ Φfj : Dj → Ufj+1
is surjective. So, for all m ≥ 0, we can find a point

wm ∈ Dj such that

φj(wm) = f◦mj+1(ωj+1).

Set

zm := Ψj(wm) ∈ Cj .
Then, z0 is a precritical point of Pα, and according to Lemma 12, there is an

increasing sequence (tm) such that zm = P ◦tmα (z0). It is therefore enough to

show that for all m ≥ 1, tm+1 − tm < qj+1 +
Ä
k1 − bR3c − 4)qj .

Note that for m ≥ 0, wm ∈ Dj , w
′
m := f◦k1j (wm) ∈ D′j . By definition of

the renormalization fj+1, we have

φj(w
′
m) = fj+1

Ä
φj(wm)

ä
= f

◦(m+1)
j+1 (ωj+1) = φj(wm+1).

In addition, since w′m ∈ D′j and wm+1 ∈ Dj ,

0 < Re
Ä
Φfj (w

′
m)
ä
< 2 and 2 < Re

Ä
Φfj (wm+1)

ä
<

1

αj
−R3 − 5.
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Thus, Φfj (wm+1)− Φfj (w
′
m) is a positive integer `m,

wm+1 = f◦`mj (w′m),

and since aj+1 = b1/αjc,
`m ≤ aj+1 − bR3c − 4.

Set z′m := Ψj(w
′
m). According to Proposition 14 and 15, we have

z′m = P
◦(k1qj+qj−1)
α (zm) and zm+1 = P

◦`mqj
α (z′m).

Thus,

tm+1 − tm = k1qj + qj−1 + `mqj ≤ (aj+1 + k1 − bR3c − 4)qj + qj−1.

The result now follows immediately from qj+1 = aj+1qj + qj−1. �

We will now assume that α ∈ SN , i.e., α ∈ Irrat≥N is a bounded type

irrational number. (The coefficients of the continued fraction are bounded.)

We will use the additional hypothesis that α has bounded type in order to

obtain the following result (which cannot hold, for instance, for a map whose

closed Siegel disk is strictly contained in the post critical set, and there are

values of α ∈ Irrat≥N for which this happens).

Proposition 18. For all α ∈ SN , for all ε > 0, if j is large enough, the

set Uj(α) is contained in the ε-neighborhood of the Siegel disk ∆α.

Proof. Consider the renormalization tower associated to f0 := Pα and let

us keep the notations we have introduced so far. Set

D′′j := f
◦(aj+1+`)
j (Dj).

Define

Nj := aj+1 − bR3c − 1 <
1

αj
−R3.

Note that

D′′j =
¶
z ∈ C ; Nj − 3 < Re

Ä
Φfj (z)

ä
< Nj − 1 and Im(w) > −2

©
.

In particular, D′′j ⊂ Pfj . Set

C ′′j := Ψj(D
′′
j ).

According to Propositions 14 and 15,

C ′′j = P
◦(qj+1+`qj)
α (Cj).

Lemma 14. There exists M such that for all j ≥ 1, the disk D
Ä
0, |v|e−2πM

ä
is contained in the Siegel disk of fj .
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Proof. Let B(αj) be the Brjuno sum defined by Yoccoz as

B(αj) :=
+∞∑
k=0

αj · · ·αj+k−1 log
1

αj+k
.

Since α is of bounded type, there is a constant B such that for all j ≥ 1,

B(αj) ≤ B.

The map fj has a univalent inverse branch gj : D
Ä
0, |v|

ä
→ C fixing 0

with derivative e−2iπαj . According to a theorem of Yoccoz [Yoc95], there is

a constant C, which does not depend on j, such that the Siegel disk of gj
contains the disk centered at 0 with radius

|v|e−2π(B(αj)+C) ≥ |v|e−2π(B+C).

The lemma is proved with M := B + C. �

Let us now show that for any ε > 0, for j large enough, C ′′j is contained

in the ε-neighborhood of ∆α. Denote by D′′j
] the set of points in D′′j that are

mapped by φj = Exp ◦ Φfj in D
Ä
0, |v|e−2πM

ä
and set D′′j

[ := D′′j \ D′′j ]. In

addition, set

C ′′j
]

:= Ψj

Ä
D′′j

]
ä

and C ′′j
[

:= Ψj

Ä
D′′j

[
ä
.

Points in D
Ä
0, |v|e−2πM

ä
have an infinite orbit under iteration of fj+1. It

follows that points in D′′j
] have an infinite orbit under iteration of fj . Thus,

the orbit of points in C ′′j
] remains in Uj(α), thus is bounded. As a consequence,

C ′′j
] (which is open) is contained in the Fatou set of Pα, and since it contains

0 in its boundary, C ′′j
] is contained in the Siegel disk of Pα.

So, in order to show that C ′′j is contained in the ε-neighborhood of ∆α,

it is enough to show that C ′′j
[ is contained in the ε-neighborhood of ∆α. Note

that D′′j
[ is the image of the rectangle¶
w ∈ C ; Nj − 3 < Re(w) < Nj − 1 and − 2 < Im(w) ≤M

©
by the map Φ−1

fj
which is univalent on the strip¶

w ∈ C ; 0 < Re(w) < 1/αj −R3

©
.

Since

1 < Nj − 3 < Nj < 1/αj −R3,

the modulus of the annulus Pfj \ D′′j [ is bounded from below independently

of j.

It follows from Koebe’s distortion lemma that there is a constant K such

that

diam(C ′′j
[
) ≤ K · d(zj , z

′
j),
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where

zj := Ψj ◦ Φ−1
fj

(Nj − 3) and z′j := Ψj ◦ Φ−1
fj

(Nj − 2).

According to Proposition 14,

zj = P
◦(Nj−3)qj
α (ωα) and z′j = P

◦qj
α (zj).

The boundary of ∆α is a Jordan curve, and Pα : ∂∆α → ∂∆α is conjugate to

the rotation of angle α on R/Z. It follows that

diam(C ′′j
[
) ≤ K · max

z∈∂∆α

∣∣∣P ◦qjα (z)− z
∣∣∣.

Without loss of generality, we may assume that M ≥ 2. If z ∈ Uj(α),

then there is a k ≤ qj+1 + `qj such that P ◦kα (z) ∈ C ′′j . Then,

• either P ◦kα (z) ∈ C ′′j ], in which case z ∈ ∆α,

• or P ◦kα (z) ∈ C ′′j [ in which case z belongs to the connected component

O−kj of P−kα (C ′′j
[) intersecting ∆α.

In the second case, O−kj contains two points z−kj and z′j
−k that are in the

boundary of ∆α and that are respectively mapped to zj and z′j by P kα . We

have z′j
−k = P

◦qj
α (z−kj ).

Note that since α is of bounded type, there is a constant A such that

∀j ≥ 1, qj+1 + `qj ≤ A · qj .

According to Lemma 15 below, there is a constant K ′ such that for all j ≥ 1

and all k ≤ qj+1 + `qj ,

diam(O−kj ) ≤ K ′ ·
∣∣∣z′j−k − z−kj ∣∣∣ ≤ K ′ · max

z∈∂∆α

∣∣∣P ◦qjα (z)− z
∣∣∣.

So, we see that

sup
z∈Uj(α)

d(z,∆α) ≤ max(K,K ′) · max
z∈∂∆α

∣∣∣P ◦qjα (z)− z
∣∣∣ −→
j→+∞

0.

This completes the proof of Proposition 18. �

Assume α ∈ R \Q is of bounded type. If z ∈ ∂∆α, we set

rj(z) =
∣∣∣P ◦qjα (z)− z

∣∣∣.
Lemma 15. For all α ∈ R \Q of bounded type, all A ≥ 1, and all K ≥ 1,

there exists a K ′ such that the following holds. If j ≥ 1, if k ≤ A · qj , if z0 ∈
∂∆α, if zk = P ◦kα (z0), and if O is the connected component of P−kα

Ä
D(zk,K ·

rj(zk))
ä

containing z0, then

diam(O) ≤ K ′ · rj(z0).
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Proof. The constants M and m, which will be introduced in the proof,

depend on α, A, and K, but they do not depend on j, k, or z.

Set

D := D
Ä
zk,K · rj(zk)

ä
and “D := D

Ä
zk, 2K · rj(zk)

ä
.

Since ∂∆α is a quasicircle and since Pα : ∂∆α → ∂∆α is conjugate to the

rotation of angle α on R/Z, the number of critical values of P ◦kα in “D is bounded

by a constant M that only depends on α, A and K.

Let O (respectively “O) be the connected component of P−kα (D) (respec-

tively P−kα (“D)) containing z0. The degree of P ◦kα : “O → “D is bounded by 2M .

On the one hand, it easily follows from the Grötzsch inequality that the

modulus of the annulus “O \O is bounded from below by log 2/(2π2M ) (see, for

example, [SL00, Lemma 2.1]).

On the other hand, it follows from Schwarz’s lemma that the hyperbolic

distance in “O between z0 and P
◦qj
α (z0) is greater than the hyperbolic distance

in “D between zk and P
◦qj
α (zk), i.e., a constant m that only depends on α, A,

and K.

Lemma 15 now follows easily from the Koebe distortion lemma. �

Note that for each fixed j, the set Uj(α) depends continuously on α as long

as the first j + 1 approximants remain unchanged. Hence, given α ∈ SN and

δ > 0, if α′ ∈ Irrat≥N is sufficiently close to α (in particular, the first j entries

of the continued fractions of α and α′ coincide), then U j(α
′) is contained in

the δ-neighborhood of U j(α). This completes the proof of Proposition 11.

1.6. Lebesgue density near the boundary of a Siegel disk.

Definition 10. If α is a Brjuno number and if δ > 0, we denote by ∆ the

Siegel disk of Pα and by K(δ) the set of points whose orbit under iteration of

Pα remains at distance less than δ from ∆.

Our proof will be based on the following theorem of Curtis T. McMullen

[McM98].

Theorem 4 (McMullen). Assume α is a bounded type irrational and δ>0.

Then, every point z ∈ ∂∆ is a Lebesgue density point of K(δ).

Corollary 5. Assume α is a bounded type irrational and δ > 0. Then

d := d(z, ∂∆)→ 0 with z 6∈ ∆ =⇒ densD(z,d)

Ä
C \K(δ)

ä
→ 0.

Proof. We proceed by contradiction. Assume we can find a sequence (zj)

such that

• dj := d(zj , ∂∆)→ 0,

• ρj := densD(zj ,dj)

Ä
C \K(δ)

ä
6→ 0.
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Figure 22. If α = (
√

5 − 1)/2, the critical point of Pα is a

Lebesgue density point of the set of points whose orbit remain in

D(0, 1). Left: the set of points whose orbit remains in D(0, 1).

Right: a zoom near the critical point.

Extracting a subsequence if necessary, we may assume that the sequence (zj)

converges to a point z0 ∈ ∂∆ and that lim ρj = ρ > 0.

Set η := ρ/5 and for i ≥ 1, set

Xi :=
¶
w ∈ ∂∆

∣∣∣ (∀r ≤ 1/i) densD(w,r)

Ä
C \K(δ)

ä
≤ η
©
.

The sets Xi are closed. By McMullen’s Theorem 4,
⋃
Xi = ∂∆. By Baire

category, one of these sets Xi contains an open subset W of ∂∆. Then, for all

sequence of points wj ∈W and all sequence of real number rj converging to 0,

we have

(4) lim sup
j→+∞

densD(wj ,rj)

Ä
C \K(δ)

ä
≤ η =

ρ

5
.

We claim that there is a map g defined and univalent in a neighborhood

U of z0, such that

• g(z0) = w0 ∈W ,

• g
Ä
K(δ) ∩ U

ä
= K(δ) ∩ g(U),

• g(∂∆ ∩ U) = ∂∆ ∩ g(U).

Indeed, if z0 is not precritical, we can find an integer k ≥ 0 such that f◦k(z0) ∈
W and we let g be the restriction of f◦k to a sufficiently small neighborhood

of z0. If z0 is precritical, we can find a point w0 ∈ W and an integer k ≥ 0

such that f◦k(w0) = z0 and we let g coincide the restriction of the branch of

f−k sending z0 to w0, to a sufficiently small neighborhood of z0.

Let z′j ∈ ∂∆ be such that |zj − z′j | = dj . Then, z′j −→
j→+∞

z0. Let j

be sufficiently large so that z′j ∈ U and set wj := g(z′j). On the one hand,
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wj −→
j→+∞

w0. Thus, wj ∈W for j large enough. On the other hand,

densD(z′j ,2dj)

Ä
C \K(δ)

ä
≥ 1

4
densD(zj ,dj)

Ä
C \K(δ)

ä
and so

lim inf
j→+∞

densD(z′j ,2dj)

Ä
C \K(δ)

ä
≥ ρ

4
.

Since g is holomorphic at z0,

lim inf
j→+∞

densD(wj ,rj)

Ä
C \K(δ)

ä
≥ ρ

4
with rj :=

∣∣∣g′(w0)
∣∣∣ · 2dj −→

j→+∞
0.

This contradicts (4). �

1.7. The proof. We will now prove Proposition 3. We let N be sufficiently

large so that the conclusions of Proposition 11 and Corollary 4 apply. Assume

α ∈ SN and choose a sequence (An) such that

qn
√
An −→

n→+∞
+∞ and qn

√
logAn −→

n→+∞
1.

Set

αn := [a0, a1, . . . , an, An, N,N,N, . . .].

Note that since α is of bounded type, the Julia set Jα has zero Lebesgue

measure (see [Pet96]). Proposition 6 then easily implies that

lim inf area(Kαn) ≥ 1

2
area(Kα).

Everything relies on our ability to promote the coefficient 1/2 to the coeffi-

cient 1.

Let us first give an overall idea of the strategy of the proof. Denote by

K (resp. Kn) the filled-in Julia set of Pα (resp. Pαn) and by ∆ (resp. ∆n) its

Siegel disk.

The idea of the proof is the following. For all S ≥ 1, one can find a nested

sequence of toll belts (Ws)1≤s≤S (see Figure 23):

Ws :=
¶
z ∈ C

∣∣∣ 2δs < d(z,∆) < 8δs
©

with 8δs+1 < δs,

surrounding the Siegel disk ∆ such that for n large enough the following holds:

• The orbit under iteration of Pαn of any point in ∆ \ Kn must pass

through all the toll belts.

• Thanks to Corollary 4, the toll belts surround the Siegel disk ∆n.

• Thanks to Corollary 5 and Proposition 6, under the iterates of Pαn , at

least 1/2 − ε of points in the toll belt Ws+1 will be captured by the

Siegel disk ∆n without being able to enter the toll belt Ws.
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Figure 23. Schematic illustration of toll belts. The thick black

line represents a Siegel disk ∆. The dotted line represents a

δ-neighborhood of ∆, containing ∆n for all n big enough. Such a

∆n is drawn with a think black line. Two toll belts are drawn in

gray. (For readability, the ratio 8δs/2δs = 4 has been replaced

by the smaller value 2.)

• Since the toll belts surround the Siegel disk ∆n, they are free of the

postcritical set of Pαn . This gives us Koebe control of points passing

through the belt, implying that at most 1/2 + ε of points in ∆ that

manage to reach Ws+1 under iteration of Pαn will manage to reach Ws.

As a consequence, at most (1/2 + ε)S points in ∆ can have an orbit under

iteration of Pαn that passes through all the belts and we are done by choosing

S large enough.

There are minor boundary effects which slightly complicate the argument

and we proceed as follows. For δ > 0, set

V (δ) :=
¶
z ∈ C

∣∣∣ d(z,∆) < δ
©
,

K(δ) :=
¶
z ∈ V (δ)

∣∣∣ (∀k ≥ 0) P ◦kα (z) ∈ V (δ)
©
,

Kn(δ) :=
¶
z ∈ V (δ)

∣∣∣ (∀k ≥ 0) P ◦kαn(z) ∈ V (δ)
©
.

Define ρn : ]0,+∞[→ [0, 1] by

ρn(δ) := dens∆

Ä
C \Kn(δ)

ä
.
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Lemma 16. For all δ > 0, there exist δ′ > 0 (with δ′ < δ) and a sequence

(cn > 0) converging to 0 such that

ρn(δ) ≤ 3

4
ρn(δ′) + cn.

12

This lemma enables us to complete the proof of Proposition 3 as follows.

We set

ρ(δ) := lim sup
n→+∞

ρn(δ) (≤ 1).

Then, for all δ > 0, there is a δ′ > 0 such that ρ(δ) ≤ 3
4ρ(δ′). Since ρ is

bounded from above by 1, this implies that ρ identically vanishes. In other

words,

(5) (∀δ > 0) dens∆

Ä
Kn(δ)

ä
−→

n→+∞
1.

Since Kn(δ) ⊂ Kn, we deduce that dens∆(Kn) −→
n→+∞

1. We know that

• Pαn converges locally uniformly to Pα,

• the orbit under iteration of Pα of any point in K \∂K eventually lands

in ∆,

• P−1
αn (Kn) = Kn.

It follows that densK\∂K(Kn) −→
n→+∞

1. Since the Julia set ∂K has Lebesgue

measure zero, this implies that lim inf area(Kn) ≥ area(K). This completes

the proof of Proposition 3 modulo Lemma 16.

Proof of Lemma 16. Let us sum up what we obtained in Sections 1.4, 1.5

and 1.6.

(A) For all open set U ⊂ ∆ and all δ > 0, lim inf
n→+∞

densU
Ä
Kn(δ)

ä
≥ 1

2
. This is

an immediate consequence of Proposition 6 in Section 1.4.

(B) For all δ > 0, if n is sufficiently large, the post-critical set of Pαn is

contained in V (δ). This is just a restatement of Corollary 4 in Section 1.5.

(C) For all η > 0 and all δ > 0, there exists δ′0 > 0 such that if δ′ < δ′0 and

if z ∈ V (8δ′) \ V (2δ′), then densD(z,δ′)

Ä
C \ K(δ)

ä
< η. This is an easy

consequence of Corollary 5 in Section 1.6.

Step 1. By Koebe’s distortion theorem, there exists a constant κ such that

for every map φ : D := D(a, r) → C that extends univalently to D(a, 3r/2),

we have

sup
D
|φ′| ≤ κ inf

D
|φ′|.

We choose η > 0 such that

8πκ2η <
1

4
.

12The coefficient 3
4

could have been replaced by any λ > 1
2
.
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Step 2. Fix δ > 0. We claim that there exists δ′ > 0 such that

(i) 9δ′ < δ and (2 + 3κ) · δ′ < δ;13

(ii) if d(z,∆) < 2δ′, then d
Ä
Pα(z),∆

ä
< 8δ′;

(iii) if z ∈ V (8δ′) \ V (2δ′), then densD(z,δ′)

Ä
C \K(δ)

ä
< η.

Indeed, it is well known and easy to check that for α ∈ R,
∣∣∣P ′α∣∣∣ < 4 on Kα.

As a consequence, if δ′ > 0 is sufficiently small, then
∣∣∣P ′α∣∣∣ < 4 on V (2δ′). It

follows that (ii) holds for δ′ > 0 sufficiently small. Claim (iii) follows from the

aforementioned point (C).

From now on, we assume that δ′ is chosen so that the above claims hold and

we set

W := V (8δ′) \ V (2δ′).

Step 3. Set

Y ` :=
¶
z ∈ K(δ)

∣∣∣ P ◦`α (z) ∈ ∆
©
.

The set of points in K(δ) whose orbits do not intersect ∆ is contained in

the Julia set of Pα. This set has zero Lebesgue measure. Thus, K(δ) and⋃
Y ` coincide up to a set of zero Lebesgue measure. The sequence (Y `)`≥0 is

increasing. From now on, we assume that ` is sufficiently large so thatÄ
∀w ∈W

ä
densD(w,δ′)(C \ Y `) < η.

Step 4. Assume φ is univalent on D(w, 3δ′/2) with w ∈ W , r is the radius

of the largest disk centered at φ(w) and contained in φ
Ä
D(w, δ′)

ä
, and Q is

a square contained in φ
Ä
D(w, δ′)

ä
with side length at least r/

√
8. Set D :=

D(w, δ′). Then, r ≥ infD |φ′| · δ′ and thus

area(Q) ≥ inf
D
|φ′|2 · (δ′)2

8
.

In addition, sup
D
|φ′| ≤ κ inf

D
|φ′| and so

densQ
Ä
C \ φ(Y `)

ä
≤

area
Ä
φ(D \ Y `)

ä
area(Q)

≤
sup
D
|φ′|2 · π(δ′)2 · η

inf
D
|φ′|2 · (δ′)2/8

≤ 8πκ2η <
1

4
.

As a consequence,

densQ
Ä
φ(Y `)

ä
>

3

4
.

Step 5. If X ⊂ C is a measurable set, we use the notation m|X for the

Lebesgue measure on X, extended by 0 outside X. If U ⊂ C is an open set,

(Xn) is a sequence of measurable subsets of C, and λ ∈ [0, 1], we say that

lim inf
n→+∞

m|Xn ≥ λ ·m|U

13Those requirements will be used in Step 9.
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if for all nonempty open set U ′ relatively compact in U , we have

lim inf
n→+∞

densU ′(Xn) ≥ λ.14

Assume f : V → U is a holomorphic map, nowhere locally constant, and

(fn : Vn → C) is a sequence of holomorphic maps such that

• every compact subset of V is eventually contained in Vn,

• the sequence (fn) converges uniformly to f on every compact subset of V .

Then,

lim inf
n→+∞

m|Xn ≥ λ ·m|U =⇒ lim inf
n→+∞

m|f−1
n (Xn) ≥ λ ·m|V .

Step 6. Set

Y `
n :=

¶
z ∈ V (δ)

∣∣∣ (∀j ≤ `) P ◦jαn(z) ∈ V (δ) and P ◦`αn(z) ∈ ∆
©
.

On the one hand, if z ∈ Y `
n and P ◦`αn(z) ∈ Kn(δ), then z ∈ Kn(δ). On the

other hand, every compact subset of Y ` is eventually contained in Y `
n and the

sequence (P ◦`αn) converges uniformly to P ◦`α on every compact subset of Y `. By

the aforementioned point (A), we have

lim inf
n→+∞

m|Kn(δ) ≥
1

2
m|∆.

So, according to Step 5,

lim inf
n→+∞

m|Kn(δ) ≥
1

2
m|Y ` .

Step 7. Assume φn is univalent on D(wn, 3δ
′/2) with wn ∈ W , rn is the

radius of the largest disk centered at φn(wn) and contained in φn
Ä
D(wn, δ

′)
ä
,

and Qn is a square contained in φn
Ä
D(wn, δ

′)
ä

with side length at least rn/
√

8.

Then,

lim inf
n→+∞

densQn
Ä
φn
Ä
Kn(δ)

ää
≥ 3

8
.

Indeed, assume λ is a limit value of the sequence

densQn
Ä
φn
Ä
Kn(δ)

ää
.

Post-composing the maps φn with affine maps and extracting a subsequence

if necessary, we may assume that (wn) converges to w ∈ W , (φn) converges

locally uniformly to φ : D(w, 3δ′/2) → C, rn converges to the radius r of the

largest disk centered at φ(w) and contained in φ
Ä
D(w, δ′)

ä
, and Qn converges

to a square Q with side length at least r/
√

8. According to Steps 5 and 6,

lim inf
n→+∞

m|φn(Kn(δ)) ≥
1

2
m|φ(Y `).

14Equivalently, for all nonempty open set U ′ ⊂ C with finite area, lim inf
n→+∞

densU′(Xn) ≥

λ · densU′(U).
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According to Step 4, it follows that

λ ≥ 1

2
densQ

Ä
φ(Y `)

ä
≥ 3

8
.

Step 8. From now on, we assume that n is sufficiently large, so that

(i) ∆ \Kn(δ) ⊂ Xn ⊂ ∆ \Kn(δ′) with

Xn :=
¶
z ∈ ∆

∣∣∣ (∃k) P ◦kαn(z) ∈W
©

(this is possible by Step 2);

(ii) sn < δ′ with

sn := sup
z∈∆

d
Ä
z,Kn(δ′)

ä
(this is possible since sn −→

n→+∞
0 in order for the aforementioned point

(A) to hold);

(iii) the post-critical set of Pαn is contained in V (δ′/2) (this is possible by the

aforementioned point (B));

(iv) if φ is univalent on D(w, 3δ′/2) with w ∈ W , if r is the radius of the

largest disk centered at φ(w) and contained in φ
Ä
D(w, δ′)

ä
, and if Q is a

square contained in φ
Ä
D(w, δ′)

ä
with side length at least r/

√
8, then

densQ
Ä
φ
Ä
Kn(δ)

ää
≥ 1

4

(this is easily follows from Step 7 by contradiction).

Step 9. Assume z0 ∈ Xn. Then, we have

z0 ∈ Xn
Pαn7→ z1 ∈ V (2δ′)

Pαn7→ · · · Pαn7→ zk−1 ∈ V (2δ′)
Pαn7→ zk ∈W

for some integer k > 0. Since the post-critical set of Pαn is contained in

V (δ′/2), for j ≤ k there exists a univalent map φj : D := D(zk, δ
′) → C such

that

• φj is the inverse branch of P ◦k−jαn that maps zk to zj ,

• φj extends univalently to D(zk, 3δ
′/2).

In particular,

sup
D
|φ′j | ≤ κ inf

D
|φ′j |.

Let D(zj , rj) be the largest disk centered at zj and contained in φj(D) and

D(zj , Rj) be the smallest disk centered at zj and containing φj(D). Note that

D is contained in C\V (δ′) and so, for j ≤ k−1, D(zj , rj) ⊂ φj(D) ⊂ C\Kn(δ′).

On the one hand, d(zj ,∆) < 2δ′, and on the other hand, every point of ∆ is

at distance at most sn from a point of Kn(δ′). It follows that

Rj ≤ κrj ≤ κ · (sn + 2δ′).

If w0 ∈ φ0(D) and wj := P ◦jαn(w0), then for j ≤ k − 1,

d(wj ,∆) ≤ d(wj , zj) + d(zj ,∆) ≤ κ · (sn + 2δ′) + 2δ′ < (2 + 3κ) · δ′ < δ
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and for j = k,

d(wk,∆) ≤ d(wk, zk) + d(zk,∆) ≤ 9δ′ < δ.

In other words, w0, w1, . . . , wk all belong to V (δ). As a consequence,

φ0

Ä
Kn(δ)

ä
⊂ Kn(δ).

Step 10. Continuing with the notations of Step 9, we denote by Qz0 the

largest douadic square (i.e., a square of the form s(Q) where Q is the unit

square defined by 0 < Re(z) < 1 and 0 < Im(z) < 1 and s : z 7→ 1
2n (z+ a+ bi)

where a, b ∈ Z) containing z0 and contained in D(z0, r0). On the one hand,

since z0 ∈ ∆ and since φ0(D) ⊂ C \Kn(δ′), we have r0 ≤ sn, and so

Qz0 ⊂ D(z0, r0) ⊂ V (sn) \Kn(δ′).

On the other hand, Qz0 has an edge of length greater than r0/2
√

2 and so,

according to Step 8, point (iv),

densQz0

Ä
Kn(δ)

ä
>

1

4
.

As a consequence,

densQz0

Ä
C \Kn(δ)

ä
<

3

4
.

Given two douadic squares Q and Q′, either Q ∩ Q′ = ∅, or Q ⊂ Q′, or

Q′ ⊂ Q. It follows that

area
Ä
∆ \Kn(δ)

ä
≤ 3

4
area

Ñ ⋃
z∈Xn

Qz

é
≤ 3

4
area

Ä
V (sn) \Kn(δ′)

ä
≤ 3

4
area

Ä
∆ \Kn(δ′)

ä
+

3

4
area

Ä
V (sn) \∆

ä
=

3

4
area

Ä
∆ \Kn(δ′)

ä
+ cn · area(∆),

with

cn :=
3

4

area
Ä
V (sn) \∆

ä
area(∆)

.

Step 11. Since sn → 0 and since the boundary of ∆ has zero Lebesgue

measure,

area
Ä
V (sn) \∆

ä
−→

n→+∞
0.

Thus,

dens∆

Ä
C \Kn(δ)

ä
<

3

4
dens∆

Ä
C \Kn(δ′)

ä
+ cn with cn −→

n→+∞
0.

This completes the proof of Lemma 16. �
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2. The linearizable case

In order to find a quadratic polynomial with a linearizable fixed point and

a Julia set of positive area, we need to modify the argument.

Definition 11. If α is a Brjuno number, we denote by ∆α the Siegel disk

of Pα and by rα its conformal radius. For ρ ≤ rα, we denote by ∆α(ρ) the

invariant sub-disk with conformal radius ρ and by Lα(ρ) the set of points in

Kα whose orbits do not intersect ∆α(ρ).

Figure 24. Two sets Lα(ρ) and Lα′(ρ), with α′ a well-chosen

perturbation of α as in Proposition 19. This proposition asserts

that if α and α′ are chosen carefully enough, the loss of measure

from Lα(ρ) to Lα′(ρ) is small. We colored white the basin

of infinity, the invariant subdisks ∆α(ρ) and ∆α′(ρ) and their

preimages; we colored light grey the remaining parts of the

Siegel disks and their preimages; on the right, we colored dark

grey the pixels where the preimages are too small to be drawn.

Most points in the dark gray part belong in fact to Lα′(ρ).

Proposition 19. There exists a set S of bounded type irrationals such

that for all α ∈ S , all ρ < ρ′ < rα, and all ε > 0, there exists α′ ∈ S with

• |α′ − α| < ε,

• max
Ä
ρ, (1− ε)ρ′

ä
< rα′ < (1 + ε)ρ′,

• area
Ä
Lα′(ρ)

ä
≥ (1− ε)area

Ä
Lα(ρ)

ä
.
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Proof. We let N be sufficiently large so that the conclusions of Proposi-

tion 11 and Corollary 4 apply. We will work with S = SN . Assume α ∈ SN
and choose a sequence (An) such that

lim
n→+∞

qn
√
An =

rα
ρ′
.

Set

αn := [a0, a1, . . . , an, An, N,N,N, . . .].

This guarantees that rαn −→n→+∞
ρ′ (see [ABC04]).

Let ∆ be the Siegel disk of Pα. Let us use the notations V (δ), K(δ) and

Kn(δ) introduced in Section 1.7. With an abuse of notations, set ∆(ρ) :=

∆α(ρ) and ∆n(ρ) := ∆αn(ρ). Set

∆′(ρ) := P−1
α

Ä
∆(ρ)

ä
\∆(ρ).

Then, ∆(ρ) and ∆′(ρ) are symmetric with respect to the critical point of Pα.

The orbit under iteration of Pα of a point z /∈ ∆(ρ) lands in ∆(ρ) if and only

if it passes through ∆′(ρ). We have a similar property for

∆′n(ρ) := P−1
αn

Ä
∆n(ρ)

ä
\∆n(ρ).

We have proved — see equation (5) — that

(∀δ > 0) dens∆

Ä
Kn(δ)

ä
−→

n→+∞
1.

The sequence of compact sets
Ä
∆n(ρ)

ä
converges to ∆(ρ) for the Hausdorff

topology on compact subsets of C, because lim rαn > ρ. It immediately follows

that for all δ > 0,

dens∆\∆(ρ)

Ä
Kn(δ) \∆n(ρ)

ä
−→

n→+∞
1.

Choose δ sufficiently small so that V (δ) does not intersect ∆
′
(ρ). Then,

for n large enough, V (δ) does not intersect ∆
′
n(ρ). In that case, the orbit under

iteration of Pαn of a point in Kn(δ) cannot pass through ∆′n(ρ), and so

Kn(δ) \∆n(ρ) ⊂ Lαn(ρ).

Thus,

dens∆\∆(ρ)

Ä
Lαn(ρ)

ä
−→

n→+∞
1.

The points of Lα(ρ) whose orbits do not intersect ∆\∆(ρ) are contained in the

union of the Julia set Jα and the countably many preimages of ∂∆(ρ). Thus,

they form a set of zero Lebesgue measure. It follows that

area
Ä
Lαn(ρ)

ä
−→

n→+∞
area

Ä
Lα(ρ)

ä
. �
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Proof of Theorem 2. We start with α0 ∈ S and set ρ0 := rα0 . We then

choose ρ ∈ ]0, ρ0[ and two sequences of real numbers εn in (0, 1) and ρn in

(0, ρ0) such that
∏

(1− εn) > 0 and ρn ↘ ρ > 0. We can construct inductively

a Cauchy sequence (αn ∈ S) such that for all n ≥ 1,

• rαn ∈ (ρn, ρn−1),

• area
Ä
Lαn(ρ)

ä
≥ (1− εn)area

Ä
Lαn−1(ρ)

ä
.

Let α be the limit of the sequence (αn). The conformal radius of a fixed

Siegel disk depends upper semi-continuously on the polynomial (a limit of

linearizations linearizes the limit). So, rα ≥ lim rαn = ρ. Also, by choosing αn
sufficiently close to αn−1 at each step, we can guarantee that rα ≤ ρ, in which

case rα = ρ.

In addition, the sequence of pointed domains
Ä
∆αn(ρ), 0

ä
converges for

the Carathéodory topology to (∆α, 0). In particular, every compact subset of

∆α is contained in ∆αn(ρ) for n large enough. Similarly, every compact subset

of C \Kα is contained in C \Kαn for n large enough. It follows that

lim supLαn(ρ) :=
⋂
m

⋃
n≥m

Lαn(ρ) ⊂ Lα(ρ).

Since rα = ρ, ∆α(ρ) = ∆α and Lα(ρ) = Jα. Thus, lim supLαn(ρ) ⊂ Jα and

area(Jα) ≥ area(lim supLαn(ρ)) ≥ area
Ä
Lα0(ρ)

ä
·
∏

(1− εn) > 0. �

3. The infinitely renormalizable case

In order to find an infinitely renormalizable quadratic polynomial with a

Julia set of positive area, we need a modification based on Sørensen’s construc-

tion of an infinitely renormalizable quadratic polynomial with a non locally

connected Julia set.

Proposition 20. There exists a set S of bounded type irrationals such

that for all α ∈ S and all ε > 0, there exists α′ ∈ C \ R with

• |α′ − α| < ε,

• Pα′ has a periodic Siegel disk with period > 1 and rotation number in

S ,

• area(Kα′) ≥ (1− ε)area(Kα).

Proof. We can choose S = SN with N large enough (in order to be able

to apply Inou and Shishikura techniques). The proof essentially goes as in the

Cremer case.

Given α ∈ S, we let pk/qk be its approximants, and we consider the

functions of explosion χk given by Proposition 4. If α′ belongs to the disk
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centered at pk/qk with radius 1/q3
k, the set

Ck(α′) := χk
{
qk

»
αk − pk/qk

}
is a cycle of Pα′ . Its multiplier is e2iπθk(α′) with θk : D(pk/qk, 1/q

3
k) → C a

nonconstant holomorphic function that vanishes at pk/qk.

We consider a sequence (αn) converging to α so that

• lim sup
n→+∞

qn
»
|αn − pn/qn| = 0,

• θn(αn) := [An, N,N,N, . . .] with

lim
n→+∞

qn
√
An = +∞ and lim

n→+∞
qn
√

logAn = 1.

We control the shape of the cycle of Siegel disk as in the Cremer case.

For all ρ < 1 and all n sufficiently large, the cycle of Siegel disks contains the

Figure 25. Two filled-in Julia sets Kα and Kα′ , with α′ a well-

chosen perturbation of α as in Proposition 20. This proposition

asserts that if α and α′ are chosen carefully enough, Pα′ has a

periodic Siegel disk and the loss of measure from Kα to Kα′

is small. Left: we hatched the fixed Siegel disk. Right: we

hatched the cycle of Siegel disks.
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χn
Ä
Yn(ρ)

ä
with

Yn(ρ) :=

ß
z ∈ C ;

zqn − εn
zqn

∈ D(0, sn)

™
with sn :=

ρqn − |εn|
ρqn

.

For this purpose, we work in the coordinate given by χn and compare the

dynamics of the conjugated map to the flow of a vector field.

We control the post-critical set of Pαn via Inou-Shishikura’s techniques.

We then control the loss of area as in the Cremer case. �

Definition 12. For c ∈ C, we denote by Qc the quadratic polynomial

Qc : z 7→ z2 +c. With an abuse of notations, we denote by Kc its filled-in Julia

set and by Jc its Julia set. We denote by M the Mandelbrot set, i.e., the set

of parameters c for which Kc is connected.

The previous proposition can be restated as follows.

Proposition 21. Assume Pc has a fixed Siegel disk with rotation number

in S . Then, for all ε > 0, there exists c′ such that

• |c′ − c| < ε,

• Pc′ has a periodic Siegel disk with period > 1 and rotation number in

S ,

• area(Kc′) > (1− ε)area(Kc).

In fact, such a c is on the boundary of the main cardioid of M , and the

proof we proposed yields a c′ that is on the boundary of a satellite component

of the main cardioid of M .

Using the theory of quadratic-like maps introduced by Douady and Hub-

bard [DH85b], we can transfer this statement to perturbations of quadratic

polynomials having periodic Siegel disks. We will use the notions of renormal-

ization and tuning (see, for example, [Häı00]).

If 0 is periodic of period p under iteration of Qc0 , then c0 is the center of a

hyperbolic component Ω of the Mandelbrot set. This component Ω has a root:

the parameter c1 ∈ ∂Ω such that Qc1 has an indifferent cycle with multiplier 1.

In addition, there exist

• a compact set M ′ ⊂M such that ∂M ′ ⊂ ∂M ,

• a simply connected neighborhood Λ of M ′ \ {c1},
• a continuous map χ : Λ ∪ {c1} → C,

• two families of open sets (U ′λ)λ∈Λ and (Uλ)λ∈Λ,

such that

•
Ä
fλ := Q◦pλ : U ′λ → Uλ

ä
λ∈Λ

is an analytic family of quadratic-like maps;
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• for all λ ∈M , fλ is hybrid conjugate15 to Qχ(λ);

• the Julia set of fλ is connected if and only if λ ∈M ′;
• χ : M ′ →M is a homeomorphism (sending c0 to 0 and c1 to 1/4).

We denote by c0 ⊥ · : M → M ′ the homeomorphism (χ|M ′)−1. We say that

c0 ⊥ c is c0 is tuned by c and that
Ä
fλ := Q◦pλ : U ′λ → Uλ

ä
λ∈Λ

is a Mandelbrot-

like family centered at c0.

Proposition 22. Assume 0 is periodic under iteration of Qc0 and c′ ∈
M → c ∈M with area(Kc′)→ area(Kc). Then

area(Kc0⊥c′)→ area(Kc0⊥c).

Proof. Let p be the period of 0 under iteration of Qc0 and let
Ä
fλ := Q◦pλ :

U ′λ → Uλ
ä
λ∈Λ

be a Mandelbrot-like family centered at c0.

Let φc′ : Uc0⊥c′ → C be hybrid conjugacies. As c′ → c, the modulus

of the annulus Uc0⊥c′ \ U
′
c0⊥c′ is bounded from below. So, the φc′ can be

chosen to have a uniformly bounded quasiconformal dilatation. It follows that

if c′ ∈M → c ∈M with area(Kc′)→ area(Kc), we have

area
Ä
φ−1
c′ (Kc′)

ä
−→
c′→c

area
Ä
φ−1
c (Kc)

ä
.

It follows easily that area(Kc0⊥c′) → area(Kc0⊥c) since almost every point in

Kc0⊥c has an orbit terminating in φ−1
c (Kc). �

Proof of Theorem 3. If Pc has a periodic Siegel disk, then c is on the

boundary of a hyperbolic component with center c0. We denote by Ωc this

hyperbolic component and we set Mc := c0 ⊥M .

We will denote by S the image of S by the map α 7→ e2iπα/2 − e4iπα/4.

Then, c ∈ S if and only if Pc has a fixed Siegel disk with rotation number in S.

Moreover, Pc has a periodic Siegel disk with rotation number in S whenever

c = c0 ⊥ s with c0 the center of the hyperbolic component containing c in its

boundary and s ∈ S.

It follows from Proposition 21 and 22 that if Qc has a periodic Siegel disk

with rotation number in S, then for all ε > 0, we can find c′ ∈ Mc \ Ωc such

that

• |c′ − c| < ε,

• Pc′ has a periodic Siegel disk with rotation number in S,

• area(Kc′) > (1− ε)area(Kc).

Let us choose a parameter c0 ∈ S and a sequence of real number εn in

(0, 1) such that
∏

(1 − εn) > 0. We can construct inductively a sequence (cn)

such that

15See [Häı00] for a definition.
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• (cn) is a Cauchy sequence that converges to a parameter c;

• Qcn has a periodic Siegel disk with rotation number in S;

• for n ≥ 1, cn ∈Mcn−1 \ Ωcn−1 ;

• area(Kcn) > (1− εn)area(Kcn−1).

Then, Pc is infinitely renormalizable. (It is in the intersection of the nested

copies Mcn .) Thus, Jc = Kc = limKcn . Finally,

area(Jc) = area(Kc) ≥ area(Kc0) ·
∏

(1− εn) > 0. �

Appendix A. Parabolic implosion and perturbed petals

The notations used in this appendix are those of Section 1.5.3. We post-

poned the proof of the following lemma to this appendix.

Lemma 17. If R > 0 and K > 0 are sufficiently large, then for n large

enough,

(1) Φn(Ωn) contains the vertical strip

Un :=
¶
w ∈ C ; R < Re(w) < 1/αn −R

©
,

(2) τn is injective on Pn := (Φn)−1(Un),

(3) there is a branch of argument defined on τn(Pn) such that

sup
z∈τn(Pn)

arg(z)− inf
z∈τn(Pn)

arg(z) < K.

Proof. As in [Shi00], the argument consists in comparing the Fatou coor-

dinate Φn to the Fatou coordinate Ψn of the time one map of the vector field

ζn defined on Dn by

ζn = ζn(w)
d

dw
:=
Ä
Fn(w)− w

ä d

dw
.

In other words, set wn :=
1

2αn
and let Ψn : Ωn → C be defined by

Ψn(w) = Φn(wn) +

∫ w

wn

du

Fn(u)− u.

Claim 1. Increasing R1 if necessary, there is a constant C > 0 such that

for all n sufficiently large,

sup
w∈Ωn

∣∣∣Φn(w)−Ψn(w)
∣∣∣ < C.

Proof of Claim 1. According to [Shi00, Prop. 2.6.2], there are constants R

and C such that for all sufficiently large n and for all w ∈ Ωn with d(w, ∂Ωn) ≥
R, we have∣∣∣(Φn)′(w)− (Ψn)′(w)

∣∣∣ ≤ C Ç 1

d(w, ∂Ωn)2
+
∣∣∣F ′n(w)− 1

∣∣∣å .
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We will first show that we can get rid of
∣∣∣F ′n(w)− 1

∣∣∣. Set

Gn(w) := F ′n(w)− 1 and Sn(w) :=

Ç
παn

sin(παnw)

å2

.

Those functions are 1/αn periodic. On the one hand, as n→ +∞,

• the functions Gn are uniformly bounded by 1/4 on ∂Ωn;

• the sequence (Sn) converges uniformly to w 7→ 1/w2 on ∂Ωn, and thus

the functions Sn are uniformly bounded away from 0 on ∂Ωn.

As a consequence, the functions Gn/Sn are uniformly bounded on ∂Ωn. On the

other hand, as Im(w)→ ±∞, Gn(w)→ 0. Thus, in C/ 1
αn

Z, Gn has removable

singularities at ±i∞ and vanishes at those points. Since in C/ 1
αn

Z, Sn has

simple zeros at ±i∞, the function Gn/Sn has removable singularities at ±i∞
in C/ 1

αn
Z. It follows from the maximum modulus principle that there is a

constant C1 such that for all sufficiently large n and all w ∈ Ωn, we have

∣∣∣F ′n(w)− 1
∣∣∣ ≤ C1

∣∣∣∣∣ παn
sin(παnw)

∣∣∣∣∣
2

.

Note that there is a constant C2 > 0 such that

∀w ∈ C, d(w,Z) ≤ C2

∣∣∣sin(πw)
∣∣∣.

Indeed, the quotient
d(w,Z)∣∣∣sin(πw)

∣∣∣ extends continuously to (C/Z)∪{±i∞}, which

is compact. It follows that for all w ∈ Ωn,∣∣∣∣∣ παn
sin(παnw)

∣∣∣∣∣
2

≤ C2
2π

2|αn|2
d(αnw,Z)2

≤ C2
2π

2

d(w, ∂Ωn)2
.

Thus, there is a constant C ′ such that for all sufficiently large n and for all

w ∈ Ωn with d(w, ∂Ωn) ≥ R, we have∣∣∣(Φn)′(w)− (Ψn)′(w)
∣∣∣ ≤ C ′

d(w, ∂Ωn)2
.

Taking R ≥ 1 and replacing R1 by R1 +
√

2R, this can be rewritten as: there

is a constant C such that for all sufficiently large n and for all w ∈ Ωn,∣∣∣(Φn)′(w)− (Ψn)′(w)
∣∣∣ ≤ C ′Ä

1 + d(w, ∂Ωn)
ä2 .

Let us now assume n is sufficiently large, so that

Xn :=
1

2αn
−R1 > 0.
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Then, wn :=
1

2αn
belongs to Ωn. Fix w := wn + x+ iy ∈ Ωn. Note that

|x| < Xn + |y| and d(w, ∂Ωn) >
√

2
Ä
Xn + |y| − |x|

ä
.

It follows that∣∣∣Φn(w)−Ψn(w)
∣∣∣ ≤ ∫

[wn,wn+iy]∪[wn+iy,w]

C ′|du|Ä
1+d(u, ∂Ωn)

ä2
≤
∫ +∞

0

C ′dsÄ
1+
√

2(Xn+s)
ä2 +

∫ Xn+|y|

0

C ′dtÄ
1+
√

2(Xn+ |y| − t)
ä2

≤ 2C ′.

This completes the proof of Claim 1. �

Claim 2. The map Ψn is univalent on Ωn, Ψn(Ωn) contains the vertical

strip

V n :=
¶
w ∈ C ; Re

Ä
Ψn(R1)

ä
< Re(w) < Re

Ä
Ψn(1/αn −R1)

ä©
,

and τn is injective on Qn := (Ψn)−1(V n).

Proof of Claim 2. Note that Ψn is a straightening map for the vector

field ζn:

(Ψn)∗ζn =
d

dw
.

Since Fn(w) − w ∈ D(1, 1/4) on Ωn, the trajectories of the vector field ζn
are curves that enter Ωn through its left boundary and exit Ωn through the

right boundary. In particular, no trajectory is periodic. Since two distinct

trajectories cannot intersect, the map Ψn is injective.

Observe that for w ∈ ∂Ωn,

arg
Ä
(Ψn)′(w)

ä
= −arg

Ä
Fn(w)− w

ä
∈
ó
− arcsin(1/4), arcsin(1/4)

î
⊂
ó
−π/12, π/12

î
.

Integrating (Ψn)′(w) along ∂Ωn, we conclude that

2π

3
< arg

Ä
Ψn(w)−Ψn(R1)

ä
<

4π

3

on the left boundary of Ωn and that

−π
3
< arg

Ä
Ψn(w)−Ψn(1/αn −R1)

ä
<
π

3

on the right boundary of Ωn. This proves that Ψn(Ωn) contains the vertical

strip V n.

Assume by contradiction that τn is not injective on V n. Then, there is

an integer k ∈ Z \ {0} and a point w ∈ V n such that w + k/αn is in V n.

Note that V n is a union of trajectories for the rotated vector field iζn. As w
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runs along those trajectories, the imaginary part of w increases from −i∞ to

+i∞. In particular, every trajectory intersects R. Since for all w ∈ Dnwe have

iζn(w) = iζn(w + 1/αn), the trajectory for iζn passing through w + k/αn is

obtained from the trajectory passing through w by translation by k/αn. This

is not possible since the intersection of those trajectories with R is contained

in Ωn ∩ R = ]R1, 1/αn −R1[. This completes the proof of Claim 2. �

Let us now come to the proof of parts (1) and (2) of Lemma 17. Assume

n is sufficiently large, so that

sup
w∈Ωn

∣∣∣Φn(w)−Ψn(w)
∣∣∣ ≤ C.

Then, Φn(Qn) contains the vertical strip¶
w ∈ C ; Re

Ä
Ψn(R1)

ä
+ C < Re(w) < Re

Ä
Ψn(1/αn −R1)

ä
− C
©
.

Note that

Ψn(R1) = Φn(R1) +O(1) = O(1)

and

Ψn(1/αn −R1) = Φn(1/αn −R1) +O(1) = 1/αn +O(1).

Thus, if R is large enough and if n is sufficiently large, then Φn(Qn) contains

the vertical strip

Un :=
¶
w ∈ C ; R < Re(w) < 1/αn −R

©
.

Since τn is injective on Qn, this proves parts (1) and (2) of Lemma 17.

Let us now come to the proof of part (3) of Lemma 17. Note that τn sends

the segment ]0, 1/αn[ to the perpendicular bisector of the segment [0, σn]. The

map τn sends the lower half-plane H− :=
¶
w ∈ C ; Im(w) < 0

©
in the half-

plane
¶
z ∈ C ; |z| > |z − σn|

©
. This takes care of τn(Pn ∩H−).

The map τn is a universal covering from the upper half-plane

H+ :=
¶
w ∈ C ; Im(w) > 0

©
to the punctured half-plane

¶
z ∈ C ; 0 < |z| < |z − σn|

©
, with covering

transformation group generated by the translation Tn : w 7→ w + 1/αn. It

sends the lines

Lk :=

ß
w ∈ C ; Re(w) =

2k + 1

2αn

™
, k ∈ Z

to the segment ]0, σn[. It is therefore enough to show that there is a constant

M such that for n large enough, Pn ∩H+ is contained in the vertical stripß
w ∈ C ; −M

αn
< Re(w) <

M

αn

™
.
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For all w ∈ Pn, we have

R ≤ Re
Ä
Φn(w)

ä
≤ 1

αn
−R.

It is therefore enough to show that

sup
w∈Ωn∩H+

∣∣∣Φn(w)− w
∣∣∣ = O

Å
1

αn

ã
or equivalently that

sup
w∈Ωn∩H+

∣∣∣Ψn(w)− w
∣∣∣ = O

Å
1

αn

ã
.

Note that
1

Fn(w)− w − 1 is periodic of period 1/αn, bounded by 1/3 in Ωn

and tends to 0 as Im(w) tends to +∞. It follows from the maximum modulus

principle that∣∣∣∣∣ 1

Fn(w)− w − 1

∣∣∣∣∣ < 1

3
·
Ç

inf
w∈∂(Ωn∩H+)

|e2iπαnw|
å
· |e2iπαnw| ≤ Ce−2παnIm(w)

for some constant C that does not depend on n. If w := R+x+ iy ∈ Ωn∩H+,

then |x| < y + 1/αn. So

sup
w∈Ωn∩H+

∣∣∣Ψn(w)− w
∣∣∣ ≤ ∣∣∣Ψn(R)−R

∣∣∣
+ sup

y>0
|x|<y+1/αn

Ç∫ y

0
Ce−2παntdt+

∫ |x|
0

Ce−2παnydt

å
= C

Ç
1− e−2παny

2παn
+ e−2παny · (y + 1/αn)

å
+O(1)

≤ C

αn

Ç
1

2π
+
e−1

2π
+ 1

å
+O(1)

= O
Å

1

αn

ã
.

This completes the proof of part (3) of Lemma 17. �
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Norm. Sup. 18 (1985), 287–343. MR 0816367. Zbl 0587.30028. Available

at http://www.numdam.org/item?id=ASENS 1985 4 18 2 287 0.
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