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The existence of an abelian variety
over Q isogenous to no Jacobian

By Jacob Tsimerman

Abstract

We prove the existence of an abelian variety A of dimension g over Q
that is not isogenous to any Jacobian, subject to the necessary condition

g>3. Recently, C. Chai and F. Oort gave such a proof assuming the André-

Oort conjecture. We modify their proof by constructing a special sequence

of CM points for which we can avoid any unproven hypotheses. We make

use of various techniques from the recent work of Klingler-Yafaev et al.

1. Introduction

This article is motivated by the following question of Nicholas Katz and

Frans Oort: Does there exist an abelian variety of genus g over Q that is not

isogenous to a Jacobian of a stable curve?

For g ≤ 3, the answer is no because every principally polarized abelian

variety is a Jacobian, while for g ≥ 4, the answer is expected to be yes. In [1],

C. Chai and F. Oort establish this under the André-Oort conjecture, which we

recall in Section 2. In fact, they prove the following stronger statement.

Theorem 1.1 ([1]). Denote by Ag,1/Q the coarse moduli space of princi-

pally polarized abelian varieties of dimension g defined over Q, and let X (
Ag,1 be a proper closed subvariety. Then assuming the André-Oort conjecture,

there exists a closed point y = [A, λ] in Ag,1(Q) such that for all closed points

x = [B, λ′] in X , the abelian varieties A and B are not isogenous.

The question about Jacobians follows by taking for X the closed Torelli

locus.

The way Chai and Oort proved Theorem 1.2 is roughly by looking at

the sequence of all CM points y and using the fact that CM type is preserved

under isogeny. Hence, if Theorem 1.2 is false, X must contain points with every

possible CM type. One then applies the André-Oort conjecture to conclude

that X contains a finite set of Shimura subvarieties containing CM points

of each possible CM type. In [1], this is ruled out using algebraic methods,

finishing the proof.
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In [11], the André-Oort conjecture is proven assuming the Generalized

Riemann Hypothesis for Dedekind zeta functions of CM fields, henceforth re-

ferred to as GRH. The reason GRH is used is that they need to produce, for the

CM fields K that occur, many small1 split primes. Our idea is to construct an

infinite sequence of CM fields that we can prove have many small split primes.

(Of course, assuming GRH, they all do.)

We do this in Section 3 by using a powerful equidistribution theorem

from Chavdarov[2], which is due to Nick Katz. We then go into the proof

of André-Oort in [11] and carry it through for our sequence of CM points

without assuming GRH. Finally, in Section 4 we apply the arguments in [1] to

our sequence. Thus, our main result is

Theorem 1.2. Denote by Ag,1/Q the coarse moduli space of principally

polarized abelian varieties of dimension g over Q, and let X ( Ag,1 be a proper

closed subvariety. Then there exists a closed point y = [A, λ] in Ag,1 such that

for all closed points x = [B, λ′] in X , the abelian varieties A and B are not

isogenous.

We point out that we make no progress on the André-Oort conjecture

itself, as the conjecture is about the ‘worst’ possible sequence of CM points,

whereas we only show that it holds for certain carefully constructed sequences.
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version of this note and made helpful remarks. Thanks to Peter Sarnak who

introduced the author to the subject matter and helped improve the exposition.

Finally, thanks to the referee who pointed out several minor errors and helped

improve the exposition.

2. Notation and background

2.1. Weyl CM fields. Following [1], we say that a field L over Q of degree

2g is CM if it is a totally complex quadratic extension of a totally real field F .

Given a CM field L, a CM type for L is a set SL = {φ1, φ2, . . . φg} of g distinct

embeddings of L into C such that no two of them are complex conjugates. We

let Wg denote the Weyl group

Wg := (Z/2Z)g n Sg.

Suppose we are given a CM field L with a CM type SL, and let M denote the

normal closure of L over Q. Then there is a natural embedding of Gal(M/Q)

1Here “small” is with respect to the discriminant DK .
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into Wg given as follows. An element h ∈ Gal(M/Q) permutes the pairs of em-

beddings Pi = (φi, φi), and for each i, it either takes φi to some φj or to φj . We

thus get a signed permutation for each element, and hence an element of Wg.

Definition. We say that L is a Weyl CM field if the Galois group Gal(M/Q)

is isomorphic to Wg.

2.2. Shimura varieties and the André-Oort conjecture. Here we recall some

of the basic theory of Shimura varieties. For more details, we refer to [4]

and [5]. A Shimura variety is a pair (G,X), where G is a reductive algebraic

group defined over Q and X is a conjugacy class of maps from S1 = ResC/RGm

to G satisfying the axioms of a Shimura datum, together with an open com-

pact subgroup K of G(Af ), where Af are the finite adeles. The X then ac-

quires the structure of a hermitian symmetric space, and we define the space

Sh(G,X)K := G(Q)\X × G(Af )/K, which is then naturally endowed with

the structure of a quasi-projective algebraic variety over Q. Given another

Shimura variety Sh(G1, X1)K1 and homomorphism φ : G1 → G that send X1

to X and send K1 to K, we get a map φ̃ : Sh(G1, X1)K1 → Sh(G,X)K . A

special subvariety of Sh(G,X)K is defined to be an irreducible component of

a “Hecke translate” by an element of G(Af ) of such an image. A Shimura

subvariety of dimension 0 is called a CM point.

An important special case of a Shimura variety is the moduli space of prin-

cipally polarized abelian varieties Ag,1. It corresponds to the pair (GSp2g,Hg)

together with the standard maximal compact subgroup of GSp2g(Af ). In this

case special points correspond exactly to abelian varieties with complex mul-

tiplication.

Conjecture 2.1 (André-Oort). Let S be a Shimura variety and Γ ⊂ S

be a set of special points in S. Then the Zariski closure of Γ is a finite union

of Shimura subvarieties.

We call a point x ∈ Ag,1 a Weyl CM point if the associated abelian variety

has complex multiplication by a Weyl CM field of degree 2g.

2.3. Siegel zeroes and totally split primes. Later on we shall need to pro-

duce totally split primes in algebraic number fields, so we collect the relevant

analytic results here for convenience. Fix d > 0 throughout this section. Take

K to be a Galois extension of Q of degree d and discriminant DK . For a posi-

tive real number, define NK(X) to be the number of primes p < X such that p

is a totally split prime in K. By Chebotarev’s density theorem, we know that

NK(X) ∼ X

d · logX

as X → ∞. However, we shall need a quantified version of this result. For

this, we introduce the concept of an exceptional (Siegel) zero.
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Theorem 2.1. For d > 1, there exists a Cd > 0 depending only on d such

that the Dedekind zeta function ζK(s) has at most one real zero in the range

1− Cd
log(DK)

≤ σ < 1.

Such a zero, if it exists, is called an exceptional zero, or Siegel zero.

Note that the definition of an exceptional zero is with reference to a con-

stant Cd (more precisely, to a family of constants, parametrized by d). We will

make use of this later on by picking a small enough family of constants Cd.

Exceptional zeroes, though conjectured to not exist, must be entertained

all over analytic number theory, and the reason they are important for us is

the following result, due to Lagarias and Odlyzko [12].

Theorem 2.2. For K a Galois number field of degree d, we have

NK(X) =
X

d logX
+O

Ç
Xβ

logX

å
+O

Ñ»
|DK |Xe−Cd

√
logX

logX

é
,

where β is the possible exceptional zero of ζK(s). The O
(
Xβ

logX

)
term can be

removed if there is no exceptional zero.

It is a well-established principle that exceptional zeroes, if they exist at

all, are very rare. We recall this below, and later we shall construct our CM

fields so as to avoid exceptional zeroes. By the following result of Heilbronn

[9], exceptional zeroes can genuinely show up only in degree-2 extensions.

Theorem 2.3. If K is a Galois number field with β as an exceptional

zero of ζK(s), then there is a quadratic field F ⊂ K with ζF (β) = 0, so that β

is an exceptional zero of ζF (s).

For quadratic fields, we have the following repulsion result.

Theorem 2.4. Let F1, F2 be two distinct quadratic number fields of dis-

criminants D1, D2 respectively, and let β1, β2 be real zeroes of ζF1(s), ζF2(s)

respectively. There exists an absolute constant c > 0 such that

min(β1, β2) < 1− c

log(D1D2)
.

From now on, when speaking of an exceptional zero, we will be speaking

with reference to a family of constants Cd satisfying

(1) C2d·d! ≤
c

70 · 2d+1 · d! · d5
,

where c is the constant in Theorem 2.4.

The proof of the Theorem 2.4 can be found in Theorem 5.27 of [10].

Chapter 5 of [10] is also a great introduction to Siegel zeroes and the analytic

theory of L-functions in general.



AN ABELIAN VARIETY OVER Q ISOGENOUS TO NO JACOBIAN 641

3. Producing Weyl CM fields

In [11], the André-Oort conjecture (2.1) was proven under the assumption

of GRH. The reason for their assuming of GRH was to guarantee that certain

CM fields have many small split primes. As such, our first task is to produce

a sequence of Weyl CM fields of fixed degree g containing many small split

primes. This is a problem in algebraic number theory. We construct our CM

fields by using zeta functions of families of curves over finite fields. One ad-

vantage of our approach is that we immediately produce CM fields, without

having to filter out the CM condition. In the next section, we follow the meth-

ods of [11] and prove conjecture (2.1) about Zariski closures for our sequence

of CM points unconditionally.

We fix an integer g > 1 and pick a prime number q > 2g, which shall

remain fixed for the rest of the section.

In [2], N. Chavdarov studies the following situation. Consider a family

of proper, smooth curves of genus g, ψ : C → U , where U is a smooth affine

curve over Fq. Assume that for l 6= 2, q, the mod-l monodromy of R1ψ!Zl is

the full symplectic group Sp2g(Fl). Such a family can be constructed by taking

the family of curves, ®
y2 = (x− t)

2g∏
i=1

(x− i)
´
,

parametrized by t ∈ A1
Fq , as was proven by J. K. Yu (unpublished). The result

was also reproven and generalized by Hall in [8]. Fix a symplectic pairing 〈 , 〉
and define

GSp2g(Fl) = {A ∈M2g(Fl) | 〈Av,Aw〉 = γ〈v, w〉 for some γ ∈ F×l }.

For each prime l, fix a symplectic isomorphism H1
et(C0,Fl) ∼= F2g

l . We shall

use heavily the following theorem from [2], where it is attributed to N. Katz.

Theorem 3.1 ([2, Thm. 4.1]). With notation as above, let l1, l2, . . . , lr be

a distinct set of primes not equal to 2 or q. Set

G0 =
r∏
i=1

Sp2g(Fli), G =
r∏
i=1

GSp2g(Fli).

Then we have the following commutative diagram, where the rows are exact :

1 // πgeom1 (U, 0)

λ0
��

// π1(U, 0)

λ

��

deg
// Ẑ

1→γ−1

��

// 1

1 // G0
// G

mult
// Γ // 1,

and λ, λ0 denote monodromy actions on H1
et(C0,

∏
i Fli).
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For each conjugacy class C of G, we have∣∣∣∣∣Prob{u ∈ U(Fqn) | Frobu ∈ C} −
|C ∩mult−1(γn)|

|G0|

∣∣∣∣∣�ψ |G|q−n/2.

In the above theorem the notation �ψ |G|q−n/2 means there exists some

constant c(ψ) > 0 depending only on the family ψ such that the left-hand side

is at most c(ψ)|G|q−n/2. It is critical for us to have the uniform dependence

on G as the group itself varies.

For each u ∈ U(Fqn), we consider the numerator Pu(T ) of the zeta function

of Cu. Theorem 2.3 of [2] says that Pu(T ) is irreducible for a density 1 subset

of U(Fq), where the density of a set S is defined by

limn→∞
|S ∩ U(Fqn)|
|U(Fqn)|

.

Moreover, the field Ku = Q(πu) is a Weyl CM field for a subset of density 1,

where πu is a root of Pu(T ). We remind the reader that by the Weil conjectures

for curves, all conjugates of πu have absolute value qn/2. We shall use the fact

that how a prime l 6= q factors in Ku can be read off from the image in

GSp2g(Fl) of Frobu.

The idea of the proof is that a conjugacy class mod l tells us how Pu(T )

reduces mod l. It is proven in [2] that by fixing a finite set of primes m1,m2,

. . . ,mh and conjugacy classes Ci in GSp2g(Fmi), one can force Pu(T ) to be ir-

reducible and for the associated field to be a Weyl CM field. (See [2, Lemmas

5.5, 5.6].)

We will now use Theorem 3.1 to construct Weyl CM fields Ku with many

small split primes. Throughout the rest of this section, n will be an integer

parameter that will be tending to infinity, and we shall be picking primes li
to depend on n. First, note that since the ring of integers OKu contains Z[πu]

as a subring of finite index, we have Disc(Ku) ≤ Disc(Z[πu]) � qng
2
, where

the last inequality follows from the fact that all conjugates of πu have absolute

value qn/2. Fix a prime l such that n5 < l < 2n5. Applying Theorem 3.1 to

this prime, we see that l splits completely in |U(Fqn)|( 1
2gg! + on(1)) fields Ku.

Since this is true for each prime l, we see that on average, each field Ku has

n5

2gg! log(n5)
· (1 + on(1))

primes between n5 and 2n5 split completely. (Note that since most fields are

Weyl CM fields, this is what is expected from Chebatorev’s density theorem.)

In particular, there exists at least one CM field Ku with at least n5

2g+1g! log(n5)

primes between n5 and 2n5 that split completely in Ku. By varying over n, we

can thus create an infinite such sequence.
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We are almost done, but there is still an issue to deal with: We have

produced a sequence of Weyl CM fields with lots of split primes, but for these

primes to be ‘small’ compared to the discriminant, we need to ensure that

the discriminant of Ku is large. For that, we have the following bound by

W. Schmidt [13].

Theorem 3.2. Let Ng(X) be the number of fields K of degree g over Q
with DK ≤ X . Then

Ng(X)�g X
g+2
4 .

We mention that it is conjectured that Ng(X) ∼ cgX, and better bounds

towards this conjecture have been obtained by Ellenberg and Venkatesh [7].

As a corollary of Theorem 3.2, we have the following useful lemma, which we

shall use to rule out Ku having small discriminant.

Lemma 3.3. There exists a prime l′ �g q
n

32g2 and a conjugacy class C ⊂
GSpg(F′l) with mult(C) = γn such that if u ∈ U(Fqn) and Frobu ∈ C , then

DiscKu � q
n

64g3 .

Note that we have made no attempt to optimize exponents.

Proof. Suppose not. Corresponding to u there is an algebraic integer πu
with all its conjugates of absolute value qn/2 such that πu ∈ Ku. Note that

NK/Q(u) = qng. Now, each Ku contains at most (ng)2g different ideals I

with norm qng, and each such ideal is generated by at most Og(1) different

algebraic integers π such that all of the conjugates of π have the same norm.

Thus, by Theorem 3.2 the number of algebraic integers π having all their

conjugates of absolute value qn/2 that generate a field of degree 2g over K

with DiscK ≤ q
n

64g3 is at most Og(1) ·n2g ·q
(2g+2)n

256g3 ≤ Og(1) ·q
n

64g2 . Thus, there

are at most Og(1) · q
n

64g2 characteristic polynomials of those algebraic integers

modulo l′. Now simply pick C with a distinct characteristic polynomial. �

We can now prove the main result of this section.

Lemma 3.4. For each g, there exists a sequence of distinct Weyl CM fields

Ki with discriminant Di satisfying the following properties :

(1) There exists a constant cg such that at least cg
log5Di

log logDi
primes p ≤

2 log(Di)
5 split completely in Ki.

(2) For each number field L, the Galois closure of Ki does not contain L

for i�L 0.

(3) There exist c1, c2 such that c1q
n

64g3 ≤ Dn ≤ c2qng
2
.

Proof. We build the Kn in a few steps. First, we pick a finite set of

primes m1,m2, . . . ,mh and conjugacy classes Ci in the corresponding groups
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GSp2g(Fmi) such that mult(Ci) = γn and that for any u with λ(Frobu) ∈ Ci,
the polynomial Pu(T ) is irreducible and Ku is a Weyl CM field. Next, pick for

each n a prime l′ distinct from the mi such that l′ �g q
n

32g2 , and a conjugacy

class C ⊂ GSpg(F′l) as in Lemma 3.3. Finally, we pick an auxiliary prime l

such that n5 < l < 2n5 and let El denote the union of all conjugacy classes

in GSp2g(Fl) such that mult(El) = γn and also the characteristic polynomials

of all elements El split completely over Fl. We now apply Theorem 3.1 to

the primes mi, l
′ with the union of conjugacy classes C =

∏h
i=1Ci × C. In

the notation of Theorem 3.1, we have G =
∏h
i=1 GSp2g(Fmi) × GSp2g(Fl′),

G0 =
∏h
i=1 Sp2g(Fmi)× Sp2g(Fl′), and

Prob{u ∈ U(Fqn) | Frobu ∈ C} =
|C ∩Gmultγn |
|G0|

+O(|G|q−n/2)

=
|C ∩Gmultγn |
|G0|

+O(q−3n/8).

As |G0| � qn/4 and U(Fqn) � qn, we see that we have a set S ⊂ U(Fqn)

of points u with Frobu ∈ C of size

|S| = U(Fqn)× |C ∩Gmultγn |
|G0|

+O(q5n/8)

such that Q(πu) is a Weyl CM field Ku with discriminant

q
n

64g3 ≤ Disc(Ku)� qng
2

so that (3) holds.

Now, we apply a similar calculation to the primes mi, l
′, l, where now we

take the union of conjugacy classes

C0 =
h∏
i=1

Ci × C × El.

This shows that the number of points u ∈ S such that the prime l splits

completely in Ku is

|El|
|Sp2g(Fl)|

× U(Fqn)× |C0 ∩Gmultγn |
|G0|

+O(|GSp2g(Fl)|q5n/8).

By [2, Thm. 3.5], it follows that |El|
| Sp2g(Fl)|

−→ 1
2g×g! . Averaging over l between

n5 and 2n5, we see that at least one of the Ku satisfies conditions (1) and (3).

Finally, for condition (2), enumerate all number fields L1, L2, . . . , Ln, . . .

and pick a totally inert prime pi in each. We can then repeat the above

construction of the Ki, insisting that Kn is eventually totally split at each of

p1, p2, . . . pm, . . . by picking appropriate conjugacy classes. This will ensure

that (2) holds. �
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In order to produce primes later on, we shall need a subsequence of the

Ki that has no exceptional zeroes.

Lemma 3.5. There is an infinite subsequence Wj of the Ki such that for

Vj the Galois closure of Wj , ζVj (s) has no exceptional zero.

Proof. Assume not. Since there are only finitely many number fields with

a fixed degree and bounded discriminant, there is some real number r such

that for Di ≥ r, the Dedekind zeta function ζLi(s) has an exceptional zero,

where Li is the Galois closure of Ki. By Theorem 2.3, this implies that there

is a quadratic subfield Fi ⊂ Li such that ζFi(s) has a zero βi such that

1− C2g ·g!
log Disc(Fi)

< 1− C2g ·g!
logDi

< βi < 1

for any sufficiently large i. By (3) of Lemma 3.4, there is some Kj with

Dj > Di > r such that

1− 70g5 · C2g ·g!
logDj

< βi < 1− C2g ·g!
logDj

.

Hence there is some quadratic field Fj ⊂ Lj such that ζFj (s) has a zero

βj with

1− C2g ·g!
logDj

< βj < 1.

However, note that

log (|Disc(Fi)| · |Disc(Fj)|) ≤ 2 log(|Disc(Lj)|) ≤ 2g+1 · g! log(Dj).

Applying Theorem 2.4, we arrive at

1− 70g5C2g ·g!
logDj

< min(β1, β2) < 1− c

log (|Disc(Fi)| · |Disc(Fj)|)

< 1− c

2g+1 · g! log(Dj)
.

This last statement contradicts equation (1), completing the proof. �

4. Proof of Theorem 1.2

In this section we combine the arguments of [1] with our Lemma 3.4 to

prove Theorem 1.2. First, we recall the following bound of Yafaev.

Lemma 4.1 (Yafaev). Fix a Shimura variety Sh(G,X)K defined over a

number field F . For any ε > 0 and N > 0, there exist c1, c2 > 0 such that the

following holds.

Let s be a special point, with CM by a field K , in Sh(G,X). Let K

have discriminant DK , and suppose there are at least ε log(DK)
log(log(DK)) primes p <
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1
ε (logDK)5 that split completely in K . Then

|Gal(Q/F ) · s| ≥ c1 · (logDK)N ·
∏

p prime
MT(s)/Fp is not a torus

c2p,

where MT(s) denotes the Mumford-Tate group associated to s.

Proof. The above is Theorem 2.1 in [15]. The theorem is stated with the

assumptions of GRH, but this assumption is only used in Theorem 2.15 to

produce small split primes, whose existence we are assuming in the statement

of the lemma. In [15], the theorem is stated in terms of DL, the discriminant of

the normal closure of K. Since log(DL)
log(DK) = O[K:Q](1), the version above follows

at a cost of enlarging the constant c1. �

Before proceeding with the proof of Theorem 1.2, we make a definition:

Following [1], we define a Hilbert modular variety attached to a totally real field

F of degree g over Q to be any irreducible component of a closed subvariety

AOg,1 ⊂ Ag,1 over Q. Here O is an order in F and AOg,1 is the locus of all points

[A, λ], where the endomorphisms ring of A contains O as a subring. Note that

each Hilbert modular variety is a Shimura subvariety of Ag,1 corresponding to

the pair (GF ,Hg), where GF is the subgroup of ResF/Q GL2 with determinant

in Q×.

Lemma 4.2. If S ( Ag,1 is a positive dimensional Shimura subvariety

that contains a Weyl CM point, then S is a Hilbert modular variety.

Proof. This is Lemma 3.5 in [1]. �

Proof of Theorem 1.2. Pick a sequence of points yi ∈ Ag,1(Q) such that yi
corresponds to a principally polarized abelian variety with complex multiplica-

tion by a subring of the field Wi, where Wi are the Weyl CM fields constructed

in Lemma 3.5. That one can do this is a standard fact in the theory of abelian

varieties; see [14] for details. Assume the statement of the theorem is false.

Then X contains xi such that xi is isogenous to yi and therefore has complex

multiplication by Wi. If Theorem 8.3.1 in [11] holds for Z = X and V = xi,

then for i� 0 we can conclude that X contains a Shimura subvariety Si con-

taining xi. By Lemma 4.2, Si must be a Hilbert modular variety. Moreover,

the Si form an infinite set since the Wi eventually have distinct totally real

subfields by (2) of Lemma 3.4. However, by Theorem 1.2 of [3], some sub-

sequence Sni becomes equidistributed for the unique homogeneous measure

corresponding to a Shimura subvariety S ⊂ Ag,1 that must contain Sni for

large enough i. We can thus conclude that S is not a finite union of Hilbert

modular varieties, and so by Lemma 4.2, this means that S must be all of Ag,1.

The Si thus become equidistributed for the natural measure in Ag,1, which is
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a contradiction to Si ⊂ X. Hence, its enough to verify Theorem 8.3.1 of [11]

in our case.

Now, the assumption of GRH in Theorem 8.3.1 is used only in Proposi-

tion 9.1 of [11] to produce a small prime l as in the following Proposition 4.3.

By proving the following proposition unconditionally, we complete the proof

of Theorem 1.2.

Definition. Fix a positive constant B > 0. Define βi to be βi =
∏
p(Bp)

where the product goes over all primes p such that MT(xi)/Fp is not a torus,

where MT(xi) denotes the Mumford-Tate group associated to xi.

From now on, Di will denote the discriminant of Wi.

Proposition 4.3. Fix ε > 0, c > 0. Then for each i � 0, there exists a

prime l such that

(1) l is totally split in Wi,

(2) MT(xi)/Fl is a torus,

(3) l < c log(Di)
6βεi .

Proof. By construction, there is a constant cg such that there are at least

cg
(logDi)

5

log(log(Di))

primes p ≤ 2 log(Di)
5 split completely in Wi. Since βi is bounded from below

(there are only finitely many primes less than 1
B ), we see that for i � 0, all

these primes satisfy conditions (1) and (3). We are thus done unless MT(xi)/Fp
is not a torus for all these primes p. Assume this is the case from now on. We

thus have

(2) βi � e(logDi)
4
.

By Theorem 2.2, for X � e(logDi)
3
, the number of totally split primes in

Wi less than X is

πWi(X) =
1

2g · g!
· X

logX
+ o

Å
X

logX

ã
since by construction the Dedekind zeta function ζVi(s) has no exceptional

zero, where we define Vi to be the Galois closure of Wi. Thus, for i � 0, we

have

πWi(X)� X

logX
.

Since for large enough i we have e(logDi)
3
< c log(Di)

6βεi , there are at least
βεi

ε log(βi)
totally split primes l in Wi such that l < c log(Di)

6βεi for large enough i.
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Now, one of these primes l must be such that MT(xi)/Fl is a torus, since

otherwise we would have

βi � 2
βε
i

ε log(βi) ,

which is false for large enough i since βi →∞. This completes the proof. �

5. Final remarks: Effectivity

We end by discussing the effectivity of Theorem 1.2. Specifically, we

show how given enough computing power, one could actually provably produce

an abelian variety with no isogeny to a point in X ⊂ Ag,1. The proof of

Theorem 1.2 consists of two parts:

• getting a Weyl CM point x such that if x ∈ X, then x is contained in

a Shimura subvariety of X, which must be a Hilbert modular variety;

• getting a bound for the number of Hilbert modular varieties in X.

To get a sequence of points xi satisfying (i) effectively is easy: We simply

find a curve C → U/Fq and look at the sequence of all CM fields we get in

this way: K1,K2, . . . . As we proved, there is an effective constant δ(n) such

that there are at least n Weyl CM fields Wj among the Ki, i ≤ δ(n) such

that if x ∈ X corresponds to an abelian variety with endomorphism algebra

Wj , then x lies on a Hilbert modular variety inside X. But given a field

Ki, we can check if it works manually in the following way. All we need to

check is that sufficiently many primes l split in Ki up to a given number Y

for Proposition 4.3 to go through. Since by Brauer’s work there exist effective

(though very poor) bounds on the smallest nontrivial zeroes of L-functions,

the explicit Chebotarev Density in [12] shows that given a field, we only need

to check up to an effectively finite Y before Chebotarev guarantees sufficiently

many small split primes.

For (ii), we appeal to a theorem of Einsiedler, Margulis, and Venkatesh [6]

that gives an effective rate on how quickly Hilbert modular varieties equidis-

tribute in terms of their covolume. For Hilbert modular varieties corresponding

to SL2(F ), the volume is, up to some simple constants, equal to ζF (2)D
3
2
F , and

so it grows, effectively, like a power of the discriminant DF . Thus, for high

enough DF , we can guarantee that X does not contain a Hilbert modular

variety corresponding to F . This finishes the proof.
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