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On sharp transitions in making squares

By Ernie Croot, Andrew Granville, Robin Pemantle, and Prasad Tetali

Abstract

In the fastest-performing integer factoring algorithms, one creates a se-

quence of integers (in a pseudo-random way) and wishes to rapidly deter-

mine a subsequence whose product is a square. In 1994 Pomerance stated

the following problem which encapsulates all of the key issues: Select inte-

gers a1, a2, . . . , at random from the interval [1, x], until some (nonempty)

subsequence has product equal to a square. Find a good estimate for the

expected stopping time of this process. A good solution should allow one to

determine the optimal choice of parameters in many factoring algorithms.

Pomerance (1994), using an idea of Schroeppel (1985), showed that with

probability 1 − o(1) the first subsequence whose product equals a square

occurs after at least J
1−o(1)
0 integers have been selected, but no more than

J0, for an appropriate (explicitly determined) J0 = J0(x). We tighten

Pomerance’s interval to

[(π/4)(e−γ − o(1))J0, (e−γ + o(1))J0],

where γ = 0.577... is the Euler-Mascheroni constant, and believe that the

correct interval is [(e−γ − o(1))J0, (e−γ + o(1))J0], a “sharp threshold”. In

our proof we confirm the well-established belief that, typically, none of the

integers in the square product have large prime factors.

The heart of the proof of our upper bound lies in delicate calculations in

probabilistic graph theory, supported by comparative estimates on smooth

numbers using precise information on saddle points.

1. Introduction

Several algorithms for factoring integers n (including Dixon’s random

squares algorithm [6], the quadratic sieve [10], the multiple polynomial qua-

dratic sieve [14], and the number field sieve [2] — see [13] for a nice expository

article on factoring algorithms) work by generating a pseudo-random sequence

of integers a1, a2, . . . , with each

ai ≡ b2i (mod n)
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until some subsequence of the ai’s has product equal to a square. Say we have

such a subsequence

ai1 , . . . , aik , where Y 2 = ai1 · · · aik
and set

X2 = (bi1 · · · bik)2.

Then

n | Y 2 −X2 = (Y −X)(Y +X),

and there is a fair chance that gcd(n, Y −X) is a nontrivial factor of n. If so,

we have factored n.

In his lecture at the 1994 International Congress of Mathematicians,

Pomerance [11], [12] observed that in the (heuristic) analysis of such factoring

algorithms one assumes that the pseudo-random sequence a1, a2, . . . is close

enough to random that we can make predictions based on this assumption.

Hence it makes sense to formulate this question in its own right, in particular

to determine whether this part of the factoring algorithm can be significantly

sped up.

Pomerance’s Problem. Select positive integers a1, a2, . . . ≤ x indepen-

dently at random (that is, aj = m with probability 1/x for each integer

m, 1 ≤ m ≤ x) until some subsequence of the ai’s has product equal to a

square. When this occurs, we say that the sequence has a square dependence.

What is the expected stopping time of this process?

To discuss the history of this problem, and our own work, we need to

introduce some notation. Let π(y) denote the number of primes up to y. Call

n a y-smooth integer if all of its prime factors are ≤ y, and let Ψ(x, y) denote

the number of y-smooth integers up to x. Let y0 = y0(x) be a value of y which

maximizes Ψ(x, y)/y, and let

J0(x) :=
π(y0)

Ψ(x, y0)
· x.(1)

(We will see later, in (9), that log J0(x) ∼ 2 log y0(x) ∼
√

2 log x log log x.)

In Pomerance’s problem, let T be the smallest integer t for which a1, . . . , at
has a square dependence. (Note that T is itself a random variable.) In 1985,

Schroeppel gave a simple argument to justify that for any ε > 0, we have

Prob(T < (1 + ε)J0(x)) = 1− o(1)

as x→∞, and in 1994 Pomerance showed that

Prob(T > J0(x)1−ε) = 1− o(1)

as x → ∞. Therefore there is a transition from “unlikely to have a square

product” to “almost certain to have a square product” at T = J0(x)1+o(1).
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An estimate with an exponent of 1+o(1) is actually quite weak. To address

this problem, Pomerance asked in [12] whether there is a sharper transition.

We conjecture that T has a sharp threshold : This would mean that there exists

a function f(x) such that for every ε > 0,

(2) Prob(T ∈ [(1− ε)f(x), (1 + ε)f(x)]) = 1− o(1)

as x→∞. In fact, we believe that this threshold is f(x) = e−γJ0(x).

Conjecture 1.1. For every ε > 0, we have

(3) Prob(T ∈ [(e−γ − ε)J0(x), (e−γ + ε)J0(x)]) = 1− o(1)

as x→∞, where γ = 0.577 · · · is the Euler-Mascheroni constant.

The constant e−γ in this conjecture is well known to number theorists. It

appears as the ratio of the proportion of integers free of prime divisors smaller

than y, to the proportion of integers up to y that are prime. However, this is

not how it appears in our discussion, and we have failed to find a more direct

route to this prediction.

The bulk of this article will be devoted to establishing the upper bound

in the above conjecture. We will prove something a little weaker than the

conjectured lower bound.

Theorem 1.2. We have

Prob(T ∈ [(π/4)(e−γ − ε)J0(x), (e−γ + ε)J0(x)]) = 1− o(1)

for any ε > 0 as x→∞.

To obtain the lower bound in our theorem, we used a “first moment

method” approach, which is not straightforward for the following reason. The

methods of Pomerance and Schroeppel lead to a sequence of more precise es-

timates for the expectation of T by considering more terms in the expansion

of log T . This leads, however, to an unwieldy infinite sum, whose limit does

not appear tractable. Expresssing T instead in terms of saddle points as in the

work of Hildebrand and Tennenbaum [9] allowed us to bypass this problem.

Schroeppel established his upper bound, T ≤ (1 + o(1))J0(x), by show-

ing that by then one expects more than π(y0) y0-smooth integers amongst

a1, a2, . . . , aT , which guarantees that the sequence has a square dependence.

(To see this, create a matrix over F2 whose columns are indexed by the primes

up to y0, whose rows are indexed by the numbers i such that ai is y0-smooth,

and whose (i, p)th entry is given by the exponent on p in the factorization of ai,

for each y0-smooth ai. Then a square dependence amongst the ai is equivalent

to a dependence amongst the corresponding rows of our matrix so that we are

guaranteed a square dependence once the matrix has more than π(y0) rows.)
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If we replace the complicated random model that creates this matrix by one

in which any given row appears as a row of this matrix with equal probabil-

ity, then one expects a linear dependence only once the matrix has more than

π(y0) − O(1) rows. (See [5, §3.1] for details; also see [3] for a lower bound

in a related model of choosing binary vectors of fixed weight randomly, until

finding a GF (2)-dependent set.)

Schroeppel’s approach is not only good for theoretical analysis; in practice

one searches among the ai for y0-smooth integers and hunts amongst these for

a square dependence, using linear algebra in F2 on the primes’ exponents.

Computing specialists have also found that it is easy and profitable to keep

track of ai of the form siqi, where si is y0-smooth and qi is a prime exceeding

y0; if both ai and aj have exactly the same large prime factor qi = qj , then

their product is a y0-smooth integer times a square and so can be used in our

matrix as an extra smooth number. This is called the large prime variation,

and the upper bound in Theorem 1 of [5] is obtained by computing the limit of

this method (to obtain a constant, in place of e−γ which is a tiny bit smaller

than 3/4).

One can also consider the double large prime variation in which one allows

two largish prime factors so that, for example, the product of three ais of the

form pqs1, prs2, qrs3 can be used as an extra smooth number. Experience has

shown that each of these variations has allowed a small speed up of various

factoring algorithms (though at the cost of some nontrivial extra program-

ming), and a long open question has been to formulate all of the possibilities

for multi-large prime variations and to analyze how they affect the running

time. Sorting out this combinatorial maze has been the most difficult part of

our work.

When our process terminates (at time T ) we have some subset I of

a1, . . . , aT , including aT , whose product equals a square.1 It is not hard to

show that this square product is T 2-smooth with probability 1 − o(1) (see

[5, §3.2]); here we give a more precise idea of what I looks like.

Theorem 1.3. (a) In the special case that for ε > 0, conditional on the

event {T < (π/4)(e−γ − ε)J0(x)}, we find that I consists of a single number ai
(which is therefore a square) with probability 1− o(1).

(b) In general, with probability 1− o(1), we have that

(4) y0 exp(−(c3 + ε)
√

log y0) ≤ |I| ≤ y0 exp((c3 + ε)
√

log y0)],

1Note that I is unique, else if we have two such subsets I and J , then (I ∪ J) \ (I ∩ J) is

also a set whose product equals a square but does not contain aT , and so the process would

have stopped earlier than at time T .
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where c3 =
√

2− log 2. In other words, when the algorithm terminates the

square product I is, almost certainly, composed of y
1+o(1)
0 = J0(x)1/2+o(1) num-

bers ai.

(c) Also, with probability 1− o(1), all the elements of I are

y2
0 exp((2 + ε)

√
log y0 log log y0)−smooth.

The last part of this result confirms the long held suspicion that the earliest

occurring square products are almost always composed only of smooth numbers

with a suitable smoothness parameter, though the smoothness bound that we

give may be significantly larger than is possible, for all we know.

We expect that one can give more precise descriptions of I, specifying

more precisely how large I is and improving the smoothness bound on the

elements of I, perhaps even to y0φ(x) for any function φ for which φ(x)→∞
as x→∞.

There are now several theorems along the lines of Conjecture 1.1 in the

literature, including some quite general approaches. Friedgut’s theorem [8],

characterizing a coarse threshold for monotone or symmetric2 graph properties,

has been instrumental in proving the existence of a sharp threshold for several

graph properties. However it does not seem to be applicable in the present

context since the square dependence problem is not symmetric. Bourgain’s

strengthening of sorts of Friedgut’s theorem (see the appendix to [8]) is in

principle applicable in the present context, though various researchers have

not yet succeeded in doing so.

Pomerance’s main goal in enunciating the random squares problem was to

provide a model that would prove useful in analyzing the running time of fac-

toring algorithms, such as the quadratic sieve. In [5] we analyzed the running

time of Pomerance’s random squares problem to show that the running time

will be inevitably dominated by finding the actual square product once we have

enough integers. Indeed this carries over to an analysis of the quadratic sieve

factoring algorithm (and presumably the other factoring algorithms as well);

a consequence is that to optimize the running time of the quadratic sieve we

look for a square dependence among the y-smooth integers with y significantly

smaller than y0, so that Pomerance’s problem is not quite so germane to the

question as it had at first appeared. See [5] for further discussion of these

issues.

In discussion, David Moulton noted that a slight variation of Pomerance’s

problem allows us to fully analyze a slight variation of Dixon’s random squares

algorithm; we will give details at the end of Section 5.

2That is, invariant under permutations of the elements involved.
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The paper is organized as follows. In Section 2, we derive the neces-

sary technical lemmas involving smooth numbers. In Section 3, we derive the

lower bound for T given in Theorem 1.2 and develop these ideas to prove

Theorem 1.3. In Section 4, we develop our analysis of multiprime variations.

Finally, in Section 5, we discuss the actual implications for factoring algorithms

of our results.

Acknowledgements. We wish to thank David Moulton for allowing us to

include his argument reducing Dixon’s original algorithm to Pomerance’s prob-

lem; thanks also to a referee for suggestions that led to streamlining the proof

of the upper bound.

2. Smooth numbers

In previous analyses of these questions, authors have typically used esti-

mates for Ψ(x, y) for y a fixed power of y0. In this range one can determine an

asymptotic for Ψ(x, y) in terms of a saddle point, an implicit quantity. It has

proved to be difficult to deduce an asymptotic for Ψ(x, y), or even something

close, in terms of simple explicit functions. One of the key innovations in this

article is to by-pass this issue by comparing values of Ψ(x, y) for different, but

closely related, values of x and y. Since the saddle points are not too different,

one can obtain sharp explicit estimates for the ratio of two such Ψ-values. In

this technical section we deduce several such results, primarily from the deep

work of Hildebrand and Tenenbaum [9], which will be useful later.

2.1. Classical smooth number estimates. From [9] we have that the esti-

mate

(5) Ψ(x, y) = xρ(u)

®
1 +O

Ç
log(u+ 1)

log y

å´
, where x = yu

holds in the range

(6) exp
Ä
(log log x)2

ä
≤ y ≤ x,

where ρ(u) = 1 for 0 ≤ u ≤ 1, and where

ρ(u) =
1

u

∫ u

u−1
ρ(t) dt for all u > 1.

This function ρ(u) satisfies

ρ(u) = exp(−u(log u+ log log u− 1 + o(1))) = exp(−(u+ o(u)) log u);

and so

(7) Ψ(x, y) = x

Ç
e+ o(1)

u log u

åu
= x/uu+o(u).
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Now let

L := L(x) = exp

( 
1

2
log x log log x

)
.

Then, using the second part of (7), we deduce that for β > 0,

(8) Ψ(x, L(x)β+o(1)) = xL(x)−1/β+o(1).

From this one can easily deduce that

(9) y0(x) = L(x)1+o(1), and J0(x) = y
2−{1+o(1)}/ log log y0
0 = L(x)2+o(1),

where y0 and J0 are as in the introduction (see (1)). From this we can deduce

the following basic estimate, which we will use in later proofs.

Lemma 2.1. Fix constant β > 0. If y = y
β+o(1)
0 , then

Ψ(x, y)/y

Ψ(x, y0)/y0
= y

2−β−β−1+o(1)
0 .

2.2. Hildebrand-Tenenbaum saddle point method estimates. For any α>0,

one has

(10) Ψ(x, y) ≤
∑
n≤x

P (n)≤y

(x/n)α ≤ xαξ(α, y),

where

ξ(s, y) =
∏
p≤y

(
1− 1

ps

)−1
.

Define α = α(x, y) to be the solution to

(11) log x =
∑
p≤y

log p

pα − 1
.

By [9, Th. 1 and (7.19)] we obtain in the range (6) with u→∞,

(12) Ψ(x, y) ∼ xαξ(α, y)

α
√

2π log x log y
.

Let ξ = ξ(u) be the solution to eξ = uξ + 1 so that

(13) ξ(u) = log(u log u) +
(1 + o(1)) log log u

log u
as u→∞.

Note also that ξ′(u) ∼ 1/u. In the range (6), it turns out that

(14) (1− α(x, y)) log y = ξ(u) +O(1/u)

which implies that

(15) y1−α = eξ(u)(1 +O(1/u)) = uξ(u)(1 +O(1/u)).

So, for

y = L(x)β+o(1) = y
β+o(1)
0 ,
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we have

(16) y1−α ∼ β−2 log y ∼ β−1 log y0.

By [9, Th. 3] and (14) above, we have

(17) Ψ

Å
x

d
, y

ã
=

Ψ(x, y)

dα(x,y)

ß
1 +O

Å
1

u
+

log y

y

ã™
when 1 ≤ d ≤ y ≤ x

d
.

Proposition 2.2. There exists a constant U > 0 such that throughout

the range (6) with x ≥ yU , and for any d ≥ 1, we have

Ψ

Å
x

d
, y

ã
≤ Ψ(x, y)

dα(x,y)
{1 + o(1)}

as x→∞, where α is the solution to (11). In fact,

Ψ

Å
x

d
, y

ã
<

Ψ(x, y)

dα(x,y)

when log d� log u log y +
√
u log u log y and u ≥ U ; and

Ψ

Å
x

d
, y

ã
=

Ψ(x, y)

dα(x,y)

®
1 +O

Ç
log2 u

u
+

log(u+ 1)

log y

å´
when log d� log u log y +

√
u log u log y or u < U .

Proof. If d > x, then the results are all trivial. Let ν = u/3 log u. If

x ≥ d ≥ x/yν , then dα(x,y)Ψ
(x
d , y

)
≤ dα(x,y)(x/d) ≤ x/(x/yν)1−α(x,y) =

x/(y1−α(x,y))u−ν � x/e(u−ν)ξ(u) by (15), which is � Ψ(x, y)e−u/2 combining

(13) with the first part of (7). This implies the Proposition for large d. Hence-

forth we may assume that 1 ≤ d ≤ x/yν.
By (5), for d = yr with 0 ≤ r ≤ u− ν, we have

Ψ
(x
d , y

)
dα

Ψ(x, y)
=

d−(1−α)ρ(u− r)
ρ(u)

Ç
1 +O

Ç
log(u+ 1)

log y

åå
.

The logarithm of the main term on the right side is

−(1− α)r log y + log(ρ(u− r)/ρ(u)).

Using the fact that u = (log x)/(log y), this can be rewritten as

r(ξ(u)− (1− α) log y) +

Ç
−
∫ u

u−r

ρ′(v)

ρ(v)
dv − rξ(u)

å
.

The first term is O(r/u) by (14). Corollary 8.3 of [15] gives that

(18) − ρ′(v)/ρ(v) = ξ(v)(1 +O(1/v))

so that the second term equals

−
∫ r

0
(ξ(u)− ξ(u− t))dt+O

Å
(log u) log

u

u− r

ã
.
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Now, differentiating eξ = uξ + 1, we obtain

ξ + uξ′ = ξ′eξ = ξ′(uξ + 1)

so that

ξ′ =
1

u− (u− 1)ξ−1
=

1

u(1 +O(1/ log u))
=

1

u

Å
1 +O

Å
1

log u

ãã
.

Therefore,∫ r

0
(ξ(u)− ξ(u− t))dt =

∫ r

0
(r − v)ξ′(u− v)dv(19)

=

Å
1 +O

Å
1

log u

ãã ∫ r

0

(r − v)

(u− v)
dv

=

Å
1 +O

Å
1

log u

ãã
(r − (r − u) log(1− r/u)).

Since

r − (r − u) log(1− r/u) =
∞∑
k=2

rk

k(k − 1)uk−1
=
r2

2u
(1 +A), 0 ≤ A� r

u
,

we obtain

log

Ç
Ψ
(x
d , y

)
dα

Ψ(x, y)

å
= −

Å
1 +O

Å
1

log u

ãã
(r − (r − u) log(1− r/u))

+ O

Ç
(log u) log

Å
u

u− r

ã
+

log(u+ 1)

log y

å
= − r

2

2u

®
1 +A+O

Ç
1

log u
+
u(log u) log u

u−r
r2

å´
+O

Ç
log(u+ 1)

log y

å
.

The first claimed inequality follows. The last expression is negative provided

that u is sufficiently large and (log u+
»
u(log u)/ log y)/r is sufficiently small.

If u is bounded or if r � log u+
»
u(log u)/ log y, then this is� log2 u

u + log(u+1)
log y

in the range (6). �

We will require the following lemma, which is in one sense stronger, and

in another sense weaker, than Lemma 2.1.

Lemma 2.3. We have

Ψ(x, y)

y
= o

Ç
Ψ(x, y0)

y0(log y0)1+ε/4

å
as x→∞, uniformly over y outside of the range

(20)

y0 exp(−(1 + ε)
√

log y0 log log y0) ≤ y ≤ y0 exp((1 + ε)
√

log y0 log log y0);
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and
Ψ(x, y)

y
≤ (2/e2 − ε)Ψ(x, y0)

y0

for all y outside of the range

(21) y0 exp(−(c3 + ε)
√

log y0) ≤ y ≤ y0 exp((c3 + ε)
√

log y0).

Proof. Let x = yu00 . Define g(u) = gx(u) = log ρ(u) − u−1 log x. By (5)

we have log(Ψ(x, y)/xy) = g(u) + O(1/u), provided log y � logL. Select u1

to maximize g(u). Therefore g(u1) ≥ g(u0) by definition of u1; and g(u0) ≥
g(u1) + O(1/u0) by the definition of u0 and the above estimate; therefore

g(u0) = g(u1) +O(1/u0).

By (18), we have g′(v) = ρ′(v)/ρ(v) + v−2 log x = −ξ(v) + v−2 log x +

O(log v/v); thus, for t = O(u1/ log u1),

g′(u1 + t) = g′(u1 + t)− g′(u1)

= ξ(u1)− ξ(u1 + t) +

Ç
1

(u1 + t)2
− 1

u2
1

å
log x+O

Å
log u1

u1

ã
=O

Å
t+ log u1

u1

ã
− 2tu−3

1 log x(1 +O(t/u1))

=−2t
ξ(u1)

u1
+O

Å
t+ log u1

u1

ã
since 0 = g′(u1) = −ξ(u1) + u−2

1 log x+O(log u1/u1). Therefore

(22) g(u1)−g(u1+T ) = −
∫ T

0
g′(u1+t)dt =

T 2

u1
(ξ(u1)+O(1))+O

Å
T log u1

u1

ã
for T = O(u1/ log u1). We deduce that u0 = u1 +O(1), as well as both

g(u) < g(u0)− (1 + ε/3) log u0 for |u− u0| > (1 + ε/2)
√
u0

and

g(u) < g(u0)− log(e2/2 + ε) for |u− u0| > (c3 + ε)
»
u0/ log u0,

which are the desired results. �

Next we obtain a more accurate estimate for y0 than (9).

Lemma 2.4. We have

log y0 = logL(x)

(
1 +

log3 x− log 2

2 log2 x
+O

(Ç
log3 x

log2 x

å2
))

and
u0ξ(u0)

log y0
= 1 +O

Å
1

u0

ã
.
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Proof. In the notation of the Lemma 2.3, we see by (22) that |g(u1 +T )| =
o(1/u1) as T →∞ so that u0 = u1+O(1). We saw that u2

1ξ(u1)(1+O(1/u1)) =

log x, so the same equation is satisfied by u0 (in place of u1) and the estimate

for log y0 = (1/u0) log x follows from (13). Moreover

u0ξ(u0) = (log y0)(1 +O(1/u0)). �

Corollary 2.5. If d = p1p2 · · · pk, where each pj is a prime in (y0,My0],

we have

(23)
ψ(x/(p1 · · · pk), y0)

ψ(x, y0)
∼ (log y0)k

p1 · · · pk

uniformly in 1≤ k≤ log log x and logM = o(
»

(log x)/(log log x)3) as x→∞.

Also,

(24)
ψ(x/(p1 · · · pk), y0)

ψ(x, y0)
≤ 2k

(log y0)k

p1 · · · pk
uniformly for logM ≤ (log y0)/2 log log y0, and all k ≥ 0, for x sufficiently

large.

Proof. Each pj ≤ y2
0. Hence, by the last part of Proposition 2.2, we have

Ψ

Å
x

p1 · · · pk
, y0

ã
∼ Ψ(x, y0)

(p1 · · · pk)α(x,y0)

for k ≤ r � log log x (where yr0 = p1 · · · pk). Now by (15) and the last part of

Lemma 2.4, we know that y
1−α(x,y0)
0 = log y0(1 +O(1/u0)); hence

(p1 · · · pk)1−α(x,y0) = MO(1−α(x,y0))(log y0(1 +O(1/u0)))r ∼ logr y0.

Now yr−k0 ≤Mk so that if k logM = o(log y0/ log log y0), then logr y0 ∼ logk y0,

as desired. (23) follows in the given range for M .

For the second part, note that by the first part of Proposition 2.2, we have

Ψ

Å
x

p1 · · · pk
, y0

ã
≤ {1 + o(1)}Ψ(x, y0)

p1 · · · pk
(p1 · · · pk)1−α(x,y0).

By (16), y1−α
0 ∼ log y0, and so

1 ≤
Å
pi
y0

ã1−α
≤M1−α = ({1 + o(1)} log y0)logM/ log y0 ≤ e1/2 + o(1).

Hence

{1 + o(1)}(p1 · · · pk)1−α ≤ {1 + o(1)}({e1/2 + o(1)} log y0)k ≤ (2 log y0)k

for y0 sufficiently large and hence for x sufficiently large. �
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2.3. Straightforward analytic estimates. We complete this section by col-

lecting together various straightforward analytic estimates that will be needed

later.

Fix 0 < a < b. By the prime number theorem, we have

(25)
∑

ay<q≤by

log y

q
∼ log

Å
b

a

ã
,

where the sum is over primes q, and also that

(26)
∑

ay<q≤by

log y

q
≤ 2 log

Å
b

a

ã
,

for all 1 ≤ a ≤ b/2, once y is sufficiently large. To see this note that, since∑
q≤Q(log q)/q = logQ+ C + o(1), for some constant C, the sum is

≤
∑

ay<q≤by

log q

q
= log

Å
b

a

ã
+ oy→∞(1),

and the result follows.

Lemma 2.6. Let

(27) g(β,C) := β−2
∫ C/β2

0
log

Ç
ez + e−z

2

å
dz

z2
+ 1− log(C).

The function g(1, C) is decreasing for C > 0, with

lim
C→∞

g(1, C) = γ + log(4/π).

Proof. Since

dg(1, C)

dC
=

log(1
2(eC + e−C))

C2
− 1

C
< 0,

for all C > 0, we minimize by letting C → ∞. Integrating by parts, we have

that

lim
C→∞

g(1, C) =

∫ 1

0

ez − e−z

ez + e−z
dz

z
− 2

∫ ∞
1

e−z

ez + e−z
dz

z
.

Now 6.1.50 of [1] states that

log Γ(s) =

∫ ∞
0

Ç
(s− 1)e−t − e−t − e−st

1− e−t

å
dt

t
;

and the third line of 6.3.22 of [1] readily implies that

(28) γ =

∫ 1

0
(1− e−t)dt

t
−
∫ ∞

1
e−t

dt

t
.

Since Γ(1/2) = π1/2, and taking s = 1/2 and t = 4z, our result follows. �



ON SHARP TRANSITIONS IN MAKING SQUARES 1519

3. The lower bound for T in Theorems 1.2 and 1.3

3.1. Proof strategy. To establish that

Prob
(
T > (π/4)(e−γ − ε)J0(x)

)
= 1− o(1),

we show that the expected number of nontrivial subsets S of {1, . . . , J} for

which
∏
i∈S ai is a square is o(1) for J(x) = (π/4)(e−γ − ε)J0(x).

3.2. Structure of a square product. We begin with the following proposi-

tion.

Proposition 3.1. Select integers a1, . . . , aJ at random from [1, x]. The

probability that there exists a subsequence I of the ai with

2 ≤ |I| ≤ log x

2 log log x
for which

∏
a∈I

a is a square

is O(J2 log x/x) provided J < xo(1).

Proof. Suppose that b1, . . . , bk were chosen at random from [1, x]. The

probability that b1b2 . . . bk is a square equals

x−k|{b1, . . . , bk ≤ x : b1b2 . . . bk is a square}|.

Now write each bi uniquely as

bi = ciu
2
i , where ci is squarefree.

Assuming that b1 · · · bk is a square, which implies c1 · · · ck is a square,

define the doubly indexed sequence ci,j , where i, j = 1, . . . , k and i 6= j, to be

any satisfying the relations

(29) ci,j = cj,i, with ci =
∏
j 6=i

ci,j for each i.

The fact that such ci,j exist can be seen as follows. For each prime p dividing

c1 · · · ck, we will need to decide which ci,j that p divides; and, to do this,

suppose that p divides ci1 , . . . , ci2t . (The reason it is 2t is that all the ci are

square-free and have product a square.) Then, the following ci,j are to be

divisible by p, and no others:

ci1,i2 , ci2,i1 , ci3,i4 , ci4,i3 , . . . , ci2t−1,i2t , ci2t,i2t−1 .

Each ci,j is then the product of the primes dividing c1 · · · ck that divide it; and

if this process leaves some ci,j not divisible by any prime p|c1 · · · ck, then we

set ci,j = 1.

Given c1, . . . , ck, the number of sequences b1, . . . , bk satisfying bi = ciu
2
i is

the number of possibilities for the numbers ui, which is ≤ (x/ci)
1/2; and so,



1520 E. CROOT, A. GRANVILLE, R. PEMANTLE, and P. TETALI

the probability that b1 · · · bk is a square is

≤ 1

xk

∑
ci,j≤x

for 1≤i<j≤k

k∏
i=1

Ç
x∏

j 6=i ci,j

å1/2

(30)

≤ 1

xk/2

∑
1≤i<j≤k

Ñ ∏
ci,j≤x

1

ci,j

é
≤ 1

xk/2
(1 + log x)k(k−1)/2

since each ci,j appears twice in the above product. Therefore the probability

that there exists I ⊂ {1, 2, . . . , J} for which
∏
i∈I ai is a square, with |I| = k,

is

≤
Ç
J

k

å
1

xk/2
(1 + log x)k(k−1)/2 ≤

Ç
J2(1 + log x)k−1

x

åk/2
,

which gives O(J2 log x/x) for k = 2 and is ≤ 1/x for 3 ≤ k ≤ log x/2 log log x.

�

3.3. The main argument. In this subsection, we prove that

Prob
(
T > (π/4)(e−γ − ε)J0(x)

)
= 1− o(1).

As a consequence of the upper bound proved in [5], we may assume

that T < (3/4)J0(x) holds with probability 1 − o(1). Furthermore, follow-

ing Proposition 3.1, we need only focus on subsequences I of a1, . . . , aJ (where

J = T < J0(x)) of length exceeding log x/2 log log x that have product equal

to a square.

Throughout we shall write ai = bidi where P (bi) ≤ y and where either

di = 1 or p(di) > y for 1 ≤ i ≤ k. In this subsection we shall select y =

J0(x)O(1). Recall here that p(n) denotes the smallest and P (n) the largest

prime divisor of n. If a1, . . . , ak are chosen at random from [1, x], then

Prob(a1 . . . ak is a square) ≤ Prob(d1 . . . dk is a square)(31)

=
∑

d1,...,dk≥1

d1...dk is a square
di=1 or p(di)>y

k∏
i=1

Ψ (x/di, y)

x

≤
Ç
{1 + o(1)}Ψ(x, y)

x

åk ∑
n=1 or p(n)>y

τk(n
2)

n2α

by Proposition 2.2, where τk(m) denotes the number of different ways of writing

m as the product of k positive integers.
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Out of J = ηJ0 integers, the number of k-tuples is
(J
k

)
≤ (eJ/k)k; and so

the expected number of k-tuples whose product is a square is

(32) ≤
Ç

(e+ o(1))
ηy

k log y0

Ψ(x, y)/y

Ψ(x, y0)/y0

åk ∏
p>y

Ç
1 +

τk(p
2)

p2α
+
τk(p

4)

p4α
+ . . .

å
.

We now consider k in two different ranges, and in both ranges we will

select different values for y so as to give good upper bounds for (32).

• First, if
log x

2 log log x
< k ≤ y

1/4
0 ,

then let y = y
1/3
0 so that k = o(yα0 ). Therefore the Euler product in (32) is

≤ exp

Ñ
O

Ñ∑
p>y

k2

p2α

éé
≤ exp

Ç
O

Ç
k2y2(1−α)

y log y

åå
= eo(k).

Now Ψ(x, yγ0 ) = x/y
1/γ+o(1)
0 by (8), and therefore the quantity in (32) is

(33) ≤
(

1/y
3+o(1)
0

k/y
2+o(1)
0

)k
≤ y−k+o(k)

0 ,

which is < 1/x2 in this first range for k.

• Next, we consider the range

y
1/4
0 ≤ k = yβ0 ≤ J ≤ J0.

In this case we will choose y so that [k/C] = π(y); then we will optimize the

C later. For this choice of y, a simple calculation reveals that

τk(p
2)

p2α
+
τk(p

4)

p4α
+ · · · ∼ (k/pα)2

2!
+

(k/pα)4

4!
+ · · ·

=
ek/p

α
+ e−k/p

α

2
− 1.

In order to evaluate (32), we need to take the product of this over the primes

p > y. The logarithm of this product equals∑
p>y

p prime

log

Ç
ek/p

α
+ e−k/p

α

2

å
∼
∫ ∞
y

1

log t
log

Ç
ek/t

α
+ e−k/t

α

2

å
dt

by the prime number theorem. Letting z = k/tα, from (16) this last integral

is

∼
∫ C/β2

0

(k/z)1/α

z log(k/z)
log

Ç
ez + e−z

2

å
dz.
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Now, k1/α−1 ∼ β−2 log y by (16) so that

(k/z)1/α

log(k/z)
∼ (k/z)β−2

as z = O(1). It follows that the quantity in (32) is bounded from above by

(34)

Ç
(1 + o(1))eg(β,C)βη

Ψ(x, y)/y

Ψ(x, y0)/y0

åk
,

where g(β,C) is defined in (27).

Now, for any fixed C we have, as a consequence of Lemma 2.1, that

(34) is o(1/x2) unless β = 1 + o(1); and so, we really only need to consider

k = y
1+o(1)
0 , as the total expected number of k-tuples for other values of k add

only o(1/x2+o(1)). If C = C(ε) is sufficiently large, then eg(1,C) < 4eγ/π+ ε by

Lemma 2.6 and, since y0 maximizes Ψ(x, y)/y for y = y0, we deduce that (32)

is at most

≤ ((1 + ε)4ηeγ/π)k.

Therefore, if η < (1 − ε)e−γπ/4, then this is less than 1/x2. This finishes the

proof of the lower bound in Theorem 1.2. �

3.4. Proof of Theorem 1.3, part (a). This last proof yields further useful

information: If either J < (π/4)(e−γ−ε)J0(x), or if k < y
1−o(1)
0 or k > y

1+o(1)
0 ,

then the expected number of square products with k > 1 is O(J0(x)2 log x/x),

whereas the expected number of squares in our sequence is ∼ J/
√
x. This

justifies Theorem 1.3(a).

3.5. Proof of Theorem 1.3, part (b). The proof in Section 3.3 yielded that

if we have a square product then, with probability 1 + o(1), we have |I| = k =

y
1+o(1)
0 . We now assume that k = y

1+o(1)
0 with

(35) k 6∈ [y0 exp(−(c3 + ε)
√

log y0), y0 exp((c3 + ε)
√

log y0)].

From the discussion following (34) above, we know, by taking C large, that

the expected number of such k-tuples is at mostÇ
(4eγ/π + ε)

ηΨ(x, y)/y

Ψ(x, y0)/y0

åk
.

By Lemma 2.3, this is at mostÄ
(4eγ/π + ε)(2/e2 + o(1))η

äk
< 1/2k

for sufficiently small ε > 0, using the fact that η < 3/4. Therefore the expected

number of k- tuples with product a square is o(1) for all k satisfying (35), so

that Theorem 1.3(b) follows. �
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3.6. Proof of Theorem 1.3, part (c). In the previous subsection we proved

that

|I| ≤ y1 := y0 exp((1 + ε)
√

log y0 log log y0),

with probability 1 − o(1). In this section we prove, among other results, part

(c) of Theorem 1.3.

Proposition 3.2. Write each ai = bidi where P (bi) ≤ y = y1 < p(di),

and suppose that di1 . . . dil is a subproduct which equals a square n2, but such

that no subproduct of this is a square. Then, with probability 1 − o(1), for all

such products, we have l = o(log y0) and n is a squarefree integer composed of

precisely l − 1 prime factors, each < y2, where n ≤ y2l.

Proof. For ease of notation we will relabel, replacing di1 . . . dil by d1 . . . dl.

Note that with the choice of y = y1, we have y/l log y → ∞ and y = y
1+o(1)
0 ,

so we know that yα ∼ y/ log y by (16).

We now show that n has at least l − 1 (not necessarily distinct) prime

factors so that n2 = d1 . . . dl > y2(l−1). Let d′j be the product of the primes

which divide dj to an odd power so that each d′j is squarefree. Then n2 ≥
d′1 . . . d

′
l = N2 and no proper subproduct can be a square. We now create a

graph G on l vertices v1, . . . , vl, representing d′1, . . . , d
′
l, respectively. For each

prime p dividing N , suppose that pk is the highest power of p dividing N .

Since each d′j is squarefree, and p2k is the highest power of p dividing their

product, it follows that Jp := {j : p|d′j} has exactly 2k elements. We now

create a perfect matching of k edges, colored p, in the subgraph {vj : j ∈ Jp}
of 2k vertices, in G; that is, we draw k edges colored p in G, with each vj with

j ∈ Jp on the end of one such edge (and this matching can be done arbitrarily

within these constraints). Hence we derive each vj from the corresponding d′j
and, vice-versa, d′j is the product of those primes p for which there is an edge

of color p adjacent to vj . Now, the product over the (d′j corresponding to the)

vertices in each connected component of such a graph is a square since each

edge corresponds to the square of a prime. By the minimality of the product∏
j d
′
j , there can therefore only be one component, meaning that the graph

is connected. Hence the graph has at least l − 1 edges, implying that there

are at least l − 1 (not necessarily distinct) primes dividing N and hence that

n ≥ N > yl−1.

We now modify the argument from the start of Section 3.3 (with k re-

placed by l) to restrict our attention to cases in which d1 . . . dl ≥ y2lφ(x)2,

where φ(x) = yO(1). To obtain an upper bound we may multiply through

the summand, in (31), by (n/ylφ(x))2θ, where we have chosen θ > 0 so

that y2θ = (2y log l)/(l(log y)2). Then we must multiply the right side of

(32) through by 1/(y2θ)lφ(x)2θ and change the terms in the Euler product to

(1 + τl(p
2)/p2(α−θ) + τl(p

4)/p4(α−θ) + · · · ).
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First we bound the Euler product using the prime number theorem. Recall

that the function τl(n) counts the number of sequences of positive integers

d1, . . . , dl such that d1 · · · dl = n. In the case n = p2k, this amounts to

computing the number of ordered partitions of 2k into l parts that are ≥ 0; so,

τl(p
2k) =

Ç
2k + l − 1

2k

å
≤
{
l(l + 1)/2, if k = 1,

(2k+l−1)2k

(2k)!, if k ≥ 2.

For p = y
1+o(1)
0 = L(x)1+o(1), using (16) with β = 1, we have that

1

p2α
∼ log2 p

p2
,

making the summation of terms involving p in the Euler product become

{1 + o(1)} l(l + 1)

2
· log2 p

p2
· p2θ.

Via the prime number theorem, the logarithm of the Euler product is therefore

∼ l(l + 1)

2

∑
y<p<y4

log2 p

p2−2θ
∼ l(l + 1)

2

∫ y4

y

log t

t2−2θ
dt.

(Here the primes p, with y < p < y4+o(1), being the only relevant ones follows

from comments made above the statement of Theorem 1.3.) Now θ < 1/2 by

definition, so the above calculation becomes

∼ l(l + 1)

2
· log y

(1− 2θ)y1−2θ
=
l(l + 1)

2
· log2 y

y1−2θ(1− 2θ) log y
.

Now y1−2θ = l log2 y/2 log l, so the above is

=
(l + 1) log l

log
Ä
l log2 y/2 log l

ä ≤ l + 1

since l ≤ y. So putting (32) to use as explained above, the expected number

of such l-tuples is

≤ 1

φ(x)2θ

Ç
(e+ o(1))

ηy

ly2θ log y0

Ψ(x, y)/y

Ψ(x, y0)/y0

ål
el+1(36)

=
1

φ(x)2θ

Ç
(e+ o(1))

η(log2 y)

(2 log l)(log y0)

Ψ(x, y)/y

Ψ(x, y0)/y0

ål
el+1(37)

� 1

φ(x)2θ(log y0)εl/5
(38)

as η ≤ 1 and by Lemma 2.3 for y = y1.

Now we are ready to establish the conclusions of the proposition. Take

φ(x) = 1/y in the above, and as 2θ < 1 by definition, (38) becomes �
y/(log y)εl/5. This is o(1) provided l ≥ 6 log y/(ε log log y), hence we expect
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o(1) products with l � log y0, yielding l = o(log y0) with probability 1− o(1).

In this case, 2θ ∼ 1.

Regarding the structure of the factorization of n: Taking φ(x) = 1, we

expect o(1) products with d1 . . . dl ≥ y2l; hence d1 . . . dl = n2 < y2l with

probability 1−o(1). Since each prime divisor is > y, evidently n has < l prime

factors, and so exactly l − 1. Also, if p is the largest, then yl−2p < yl; that is,

p < y2.

Finally, we are left with showing that n is squarefree. To obtain an upper

bound on the expected number of square products n2 for which n is divisible

by the square of a prime > y, we proceed much as above with φ(x) = 1/y, but

now the Euler product has an additional factor∑
p>y

Ç
τl(p

4)

p4α−4θ
+
τl(p

6)

p6α−6θ
+ · · ·

å
� l4(log y)3

y3−4θ
=

(2l log l)2

y log y
.

From (38) we thus deduce that we expect o(1) such square products. �

4. Hypergraphs

The main result of this section is to prove the upper bound in Theorem 1.2.

A roadmap for the proof is as follows.

Recall that the numbers a1, a2, . . ., chosen uniformly at random from

{1, 2, . . . , x}, are encoded as row vectors over F2. Subsets whose product is

a square are determined by combinatorial relations among these row vectors.

Schroeppel’s method, and its variants ignore columns corresponding to primes

less than y0. This makes the relations easier to satisfy, but we pay for it by

requiring π(y0) many relations. To make the search more tractable, we restrict

our attention to the more obvious ways of finding linear relations. Schroeppel’s

original method considers only the most obvious: after removing columns less

than y0, we must be left with all zeros. The one large prime variation consid-

ers also the next most obvious: when we have two identical rows containing a

single 1.

The upper bound in Theorem 1.2 is proved via the many large primes

variation. Tractability of the analysis rests on the fact that the combinatorial

structure converges as x → ∞ to a random object built from a Poisson point

process. In order for the convergence to be uniform, we must restrict the

columns: specifically, fixing M > 1, we must not use any ai with a prime factor

greater than My0. We must also restrict the combinatorial complexity of the

search for linear relations as follows. Calling two rows “neighbors” if they share

a nonzero column entry (whose index is now forced to be between y0 and My0),

any linear relation must take place within a ball of some fixed radius m in the

neighbor graph on rows. We may then prove that the combinatorial structure

converges in an appropriate sense to a tree-like random hypergraph defined on
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a Poisson point process. The number of samples needed to accumulate π(y0)

linear relations in the limiting model is computable explicitly in terms of some

functions γm,M . For fixed m and M , these are ugly, but as m,M → ∞, this

number decreases to e−γJ0.

An outline of this section is as follows. Section 4.1 defines some functions

that include the family {γm,M}. A result (Theorem 4.1) is then formulated

in terms of these functions that implies the upper bound in Theorem 1.2.

The subsection ends with the definition of some combinatorial structures such

as tree-like hypergraphs that will be used in the search for linear relations.

Section 4.2 formally defines the probability model and the random objects

(hypergraphs with distinguished vertices) that will witness linear relations.

The number of rows neighboring any given row is shown to have finite first and

second moments (Proposition 4.3), which is then parlayed into an upper bound

on the mean of size of the m-ball in the neighbor graph on rows. Section 4.3

constructs the limit object, an informal description of which appears at the

beginning of that subsection. Section 4.4 proves convergence of the random

hypergraphs in Section 4.2 to the limit object of Section 4.3. Although it takes

several pages, it consists merely of repeated applications of Proposition 4.3.

Section 4.5 evaluates the probability θM,η
m (ρ), which is the probability in the

limit model that if a row containing a single 1 in column ρy0 arises at time ηJ0,

it will form a new linear relation. The key result here (Lemma 4.18) is that

this is 1 when m and M are sufficiently large and η > e−γ . Finally, Section 4.6

finishes the proof of the main theorems.

4.1. Preliminary results. To begin in earnest, we define the following func-

tions, which will arise in the branching processes with finite values of m and M :

AM (z) :=

∫ 1

1/M

1− e−zt

t
dt.

Clearly, as M →∞, we have the limit

AM (z) ↑ A(z) :=

∫ 1

0

1− e−zt

t
dt.

Recursively, define functions γm,M for m = 0, 1, 2, . . . by

γ0,M (u) := u,(39)

γm+1,M (u) := u exp [AM (γm,M (u))] .

Note that γm,M (u) is increasing in all three arguments. From this it follows

that γm,M (u) increases to γM (u) as m → ∞, a fixed point of the map z 7→
u exp(AM (z)), so that

(40) γM (u) := u exp [AM (γM (u))] .
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We now establish that γM (u) < ∞ except perhaps when M = ∞. We have

0 ≤ AM (z) ≤ logM for all z, so that u < γM (u) ≤Mu for all u; in particular

γM (u) < ∞ if M < ∞. As M → ∞, the fixed point γM (u) increases to the

fixed point γ(u) of the map z 7→ ueA(z), or to∞ if there is no such fixed point,

in which case we write γ(u) =∞. In Lemma 4.18 we show that this map has

a fixed point if and only if u ≤ e−γ . Otherwise γ(u) =∞ for u > e−γ so that

(41)

∫ η

0

γ(u)

u
du =∞ > 1

for any η > e−γ .

Our main result in this section is the following.

Theorem 4.1. If η,m,M are such that∫ η

0

γm+1,M (u)

u
du > 1,

then with probability approaching 1, as x → ∞, among ηJ0 uniform random

samples from {1, . . . , x}, the subset of numbers that are (My0)-smooth will

contain a square subproduct. Furthermore, this will be witnessed in diameter

at most m, in a sense to be made precise in Definitions 4.7 and 4.9 below.

Together with (41), this establishes the upper bound in Theorem 1.2.

Our conjecture that the upper bound is sharp is supported by the fact that

limt↑η∗
∫ t

0
γ(u)
u du = 1, where η∗ := e−γ .

Hypergraphs. A hypergraph on a vertex set V is simply a collection H of

finite subsets of V of cardinality at least 2. Each S ∈ H is called a hyperedge

of H; the cardinality of a hyperedge S is its cardinality as a set. Define the

support of a hypergraph H, denoted by supp (H) :=
⋃
S∈H S, to be the union

of all of its hyperedges. By a hypergraph H with vertex set V , we mean

that supp (H) ⊆ V . (Note: in the literature, often this language would imply

supp (H) = V .) We will typically use script letters for hypergraphs: G,H, and

so forth. A rooted hypergraph is simply a hypergraph together with a choice

of a distinguished element in its support. Thus, the hypergraphs on V rooted

at p are in one-to-one correspondence with hypergraphs on V containing p in

their support.

Definition 4.2 (tree-like hypergraphs). A finite hypergraph G rooted at

p is tree-like if supp (G) may be given the structure of a tree T , rooted at

p, in such a way that the following decomposition holds. Let I denote the

set of vertices that are not leaves of T . We require that for each q ∈ I, the

set of children of q may be partitioned into sets Vq,1, . . . , Vq,n(q) so that each

hyperedge of G is equal to Vq,j ∪ {q} for a unique pair (q, j) with q ∈ I and

j ≤ n(q).
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A moment’s thought shows that if G is a tree-like hypergraph rooted at p,

then the tree structure on supp (G) satisfying the definition is unique (when p

is specified as the root). Denote this tree by Tp(G).

Sometimes it will be desirable to allow singleton hyperedges (hyperedges

consisting of a single vertex, p). Rather than change the definitions, we in-

troduce the notion of a marked hypergraph. This is just a pair (G, U), where

G is a finite hypergraph and U is any subset of supp (G). We think of U

as telling us (by marking) which singleton edges {p} have been added to G.

Hypergraphs G and G′ are defined to be isomorphic if there is a bijection

φ : supp (G) → supp (G′) inducing a bijection at the level of hyperedges.

Marked hypergraphs (G, U) and (G′, U ′) are isomorphic if φ can be chosen

so that also φ(U) = U ′.

In what follows, we will require a notion of weak convergence of probability

measures on hypergraphs and marked hypergraphs, which in turn requires a

metric on the space of marked hypergraphs on the vertex set R rooted at p.

(We will re-normalize, replacing prime p by the real number ρ = ρp := p/y,

which will thus lie in the fixed interval (1,M ].) It will turn out that all but a

vanishing fraction of our hypergraphs are tree-like, so we need only to define

the metric on tree-like hypergraphs (e.g., by convention we take the distance

between hypergraphs to be +∞ if either one is not tree-like). If G and H are

two tree-like hypergraphs, define the distance to be +∞ if the two hypergraphs

are not isomorphic, and otherwise define the distance to be the least ε > 0 such

that there is a bijection φ : supp (G)→ supp (H) inducing an isomorphism on

the hypergraphs, and satisfying |φ(ρ)−ρ| ≤ ε for all ρ ∈ supp (G). (Here we are

dealing with re-normalized values of p; that is, ρp = p/y, which are bounded.)

In other words, the topology is discrete on the graph structure along with the

product topology on the names of the vertices. Formally,

d(G,H) := min
φ

®
max

ρ∈supp (G)
|φ(ρ)− ρ| : φ is an isomorphism from

supp (G) to supp (H)

´
.

Define the distance between marked hypergraphs similarly, with φ now re-

stricted to isomorphisms of the marked hypergraphs. Let µ and µ′ be two

probability measures on the space of hypergraphs on the vertex set R. Say

that a random pair (G,G′) of hypergraphs is a coupling of µ and µ′ when G has

law µ and G′ has law µ′. Define the distance d(µ, µ′) between the probability

measures µ and µ′ to be the infimum of values ε > 0 such that there is a cou-

pling (G,G′) of µ and µ′ for which the probability of d(G,G′) > ε is at most ε.

This is a standard metrization of the weak topology, that is, d(µn, µ)→ 0 if and

only if
∫
f dµn →

∫
f dµ for all bounded and weakly continuous functions f .
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Remark. Let πk(µ) denote the restriction of µ to the subspace Hk of hyper-

graphs all of whose hyperedges have cardinality at most k. Weak convergence

of µn to µ is equivalent to πk(µn) → πk(µ) for all k, together with tightness:

µn(Hc
k) ≤ g(k) for all n, where limk→∞ g(k) = 0.

4.2. The random hypergraph G of (My0)-smooth numbers. Before we get

started, here are a few words on notation. As before, we are selecting random

positive integers in {1, . . . , x} with y = y0(x) and J0(x) as in Section 1. Also,

as before, we will choose an integer J := bηJ0c for some η > 0. We will choose

a real M > 1 and keep track of large prime factors in the interval (y,My).

By the term large prime, we will mean a prime in the interval (y,My). We

will specify an integer m ≥ 1 that is interpreted as the maximum chain length

our algorithm will exploit when counting pseudosmooths, where a chain is a

sequence a1, a2, . . . , ar, r ≤ m, such that each consecutive pair ai, ai+1 share

a large prime factor pi ∈ (y,My). The first mission of this subsection is to

define a random hypergraph that will depend on M,J, x,m and a large prime

p ∈ (y,My). The full notation for this will be GM,J,x
m,p . However, in most of

the results and constructions that follow, M and J are fixed and x is a size

parameter fixed during each construction, while m and p are dynamic. (The

constructions are recursive in m and p and the proofs inductive.) Because

of this, we often reduce clutter in the notation by writing simply Gm,p with

the other three parameters understood. In many of our lemmas, the following

phrase arises: “f = o(1) as x→∞, uniformly as M and η vary over bounded

intervals and y < p < My.” To be precise about this once and for all, it

means that there is a function g, going to zero as x goes to infinity, such that

f(M,J, x,m, p) < g(M0, η, x,m) for all M ≤M0, J ≤ ηJ0 and y < p < My as

x→∞. This holds for any fixed m,M0, η. Several times in Section 4.4 below

we prove weak convergence results. (Note: such convergence results needing

to be uniform, in the manner just described, was the reason for metrizing the

weak topology.)

Now we move on to the constructions. Fix an integer x > 0, and let

(Ωx,Fx,Px) be a probability space on which is defined a sequence {X1, X2, . . .}
of IID random variables whose common distribution is uniform on the set

{1, 2, . . . , x}. Let y = y0(x) and J0(x) = xπ(y)/ψ(x, y) be as in Section 1. For

each real M > 1 and each integer J > 0, we will define a random hypergraph

on the space (Ωx,Fx,Px), which we will denote by GM,J,x.

Given a real number M > 1, we keep track of prime factors up to My as

follows. For any integer X that is (My)-smooth, define the class [X] to be the

set of primes p for which y < p < My and X is divisible by p to an odd power;

that is, p ∈ [X] if and only if y < p < My and pi |X but pi+1 6 | X for some

odd integer i. If X is y-smooth, we define [X] to be the empty set. If X is not
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(My) smooth, we pick a symbol (for probabilists, the traditional symbol is ∆)

and set [X] = ∆.

Now we define a random hypergraph with vertices in R+ by

G := GM,J,x := {[Xj ] : [Xj ] 6= ∆ and #[Xj ] ≥ 2}1≤j≤J .

We remark that for a fixed x, the random hypergraphs GM,J,x are defined

simultaneously for all M and J . In case it seems strange to take V = R+

instead of Z+, it is because we will be taking scaling limits. Some easy but

useful estimates are as follows.

Proposition 4.3. Fix M > 1 and η > 0. Let J = bηJ0c and let

[X1], [X2], . . . and G denote the random variables on (Ωx,Fx,Px) constructed

above. For any finite set S of primes, let

N(S) := #{j : j ≤ J ; [Xj ] = S}.

(i) For any finite set S of primes in (y,My) with log log x ≥ |S| ≥ 2, the

number N(S) has asymptotic mean

(42) ExN(S) ∼ η y(log y)|S|−1∏
p∈S p

.

An upper bound, with an extra factor, is valid for all S:

(43) ExN(S) ≤ 2|S|+1 η
y(log y)|S|−1∏

p∈S p
.

(ii) For any set W of hyperedges S, let N(W) :=
∑
S∈W N(S) denote the

total number of hyperedges in W . Then, for any W , Px(N(W) ≥ 2) <

(1/2)(ExN(W))2.

(iii) For any p ∈ (y,My), the probability that there will be a prime q 6= p in

(y,My) such that more than one hyperedge of G contains both p and

q goes to zero uniformly in M ≤M0, η ≤ η0, and y < p ≤My.

Proof. The means are computed by counting the number of a ≤ x with

[a] = S. The number of integers of the form s
∏
p∈S p up to x where s is

y-smooth is ψ(x/
∏
p∈S p, y). The number of integers of this form that are di-

visible by q2 for some q ∈ S is bounded above by
∑
q∈S ψ

Å
x

q
∏
p∈S p

, y

ã
. This is

easily shown to be asymptotically negligible compared to BS := ψ

Å
x∏
p∈S p

, y

ã
by (17) and Proposition 2.2, using the fact that α remains bounded away from

zero; hence the number of a ≤ x with [a] = S is asymptotically equal to BS .
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By (23), and using π(y) ∼ y/ log y, we then have

ExN(S)∼ J
ψ(x/

∏
p∈S p, y)

x

∼ ηy(log y)|S|−1∏
p∈S p

,

which is (42). Using (24) instead of (23), and π(y) ≤ 2y/ log y instead of

π(y) ∼ y/ log y, gives (43).

The second statement follows because N(W) has a binomial distribution:

If Z has binomial distribution with any parameters n and p, write Z =
∑n
i=1 Yi

as the sum of independent Bernoulli variables to obtain

P(Z ≥ 2) ≤
∑

1≤i<j≤n
EYiYj <

1

2
EZ2.

For the third statement, let H(p) denote the event that there is some q

for which more than one hyperedge arises containing p and q. Fix any primes

p1 6= p2. Let Wk denote the set of sets S = {p1, p2, . . . , pk} of distinct primes

between y and My, and let W = ∪k≥2Wk. By the second statement of this

proposition, an upper bound for P(H(p1)) may be obtained by summing any

upper bound for (ExN(W))2 as p2 ranges over primes between y and My.

We compute this by bounding ExN(Wk), then summing over k, squaring, and

summing over p2. Thus we begin by using (43) with S = {p1, p2, . . . , pk} to

obtain

EN(S) ≤ 2k+1ηy(log y)k−1
∏
p∈S

1

p
.

Summing this over all choices of p3, . . . , pk and using (26) for the last inequality

then gives

EN(Wk)≤
2k+1η y log y

p1p2

∑
p3<···<pk

k∏
j=3

log y

pj

≤ 2k+1η y log y

p1p2

1

(k − 2)!

∑
p3,··· ,pk

k∏
j=3

log y

pj

≤ 2k+1η y log y

p1p2

1

(k − 2)!

k∏
j=3

(2 logM).

This is valid for all k ≥ 3, but also for k = 2 provided that we interpret an

empty product as equal to 1 and the sum in the penultimate line as summing

a single empty product. We now sum this over all integers k ≥ 2 so that

EN(W) ≤ 8M4ηy log y

p1p2
≤ 8M4

0 η0 log y

p2
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since y/p1 < 1. Squaring, noting that 1/p2 < 1/y and log y < log p2, we obtain

a quantity bounded above by a constant multiple of

log y

y

∑
y<p2≤My

log y

p2
.

By (25) this is O( log y
y ); this completes the proof, as we only needed to show

o(1). �
We now define sub-hypergraphs Gm,p of the random hypergraph G, culled

so as to be tree-like and rooted at p. They are deterministic functions of the

variables X1, . . . , XJ , and they will bear witness to the creation of smooth

products of several of the Xj . They depend on the parameters M,J , and x,

which are fixed throughout the construction and suppressed in the notation.

Definition 4.4 (The sub-hypergraph Gm,p and marked set Um,p). We define

hypergraphs Gm,p(j) recursively for m ≥ 1 and 1 ≤ j ≤ J as follows.

• Let T0(p) := {p} and G0,p := ∅, taking supp (G0,p) = {p} by conven-

tion.

• For each m ≥ 1, define Gm,p(0) := Gm−1,p. For j ≥ 1, define Gm,p(j) :=

Gm,p(j−1)∪{[Xj ]} if [Xj ] intersects supp (Gm,p(j−1)) in a single ele-

ment of Tm−1(p) and |[Xj ]| ≥ 2. Otherwise, let Gm,p(j) := Gm,p(j−1).

Define Gm,p := Gm,p(J). Define Tm(p) := supp (Gm,p) \ supp (Gm−1,p).

Let U denote the set of primes q with y < q < My such that [Xj ] = q for

some j ≤ J . Let Um,p := U ∩ supp (Gm,p). Then (Gm,p, Um,p) is a marked sub-

hypergraph, which we will use later to witness the creation of pseudo-smooths.

Informally, G1,p takes all hyperedges of G that contain p except for those

creating a collision (that is, a cycle on hyperedges), using the order in which

they were generated to settle collisions. Then, G2,p starts over, taking all

hyperedges containing each of the vertices added in the previous step, except

for those that cause collisions. In the end, the list of hyperedges is swept

through, in order, m times. The informal interpretation of Tm(p) is the set of

primes that first appear at distance m from p in our tree-like hypergraph; the

informal interpretation of Um,p is the set of primes within distance m of p that

appear as hyperedges of cardinality one.

Lemma 4.5. There are absolute constants C` such that for every η,M, x,

and p, ∑
k≥2

k`

(k − 1)!

∑
p2,...,pk

ExN(p, p2, . . . , pk) ≤
ηy

p
C`M

2(1 + logM)`,

where the sum is over ordered k-tuples of distinct primes in (y,My) beginning

with p.
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Proof. The sum
∑
k≥2

k`

(k−1)!u
k−1 may be computed exactly and is equal

to p`(u)eu − 1, where p` is a polynomial of degree `. Thus

(44)
∑
k≥2

k`

(k − 1)!
uk−1 ≤ c`(1 + u)`eu.

Using this, we may use (43) to compute the bound

∑
k≥2

k`

(k − 1)!

∑
p2,...,pk

ExN(p, p2, . . . , pk)≤
∑
k≥2

k`

(k − 1)!
2k+1

∑
p2,...,pk

ηy

p

k∏
i=2

log y

pi
;

this is an upper bound so we may include terms with pi = pj . The inner sum

factors as a power, and subsuming k − 1 factors of 2 from the term 2k+1 into

the product yields an upper bound of

4ηy

p

∑
k≥2

k`

(k − 1)!

Ñ ∑
y<q<My

2 log y

q

ék−1

.

By the prime number theorem,
∑
y<q<My(2 log y)/q → 2 logM and is never

more than 2 log(2M), whence this bounds becomes

4ηy

p

∑
k≥2

k`

(k − 1)!
(2 log(2M))k−1 .

This is of the form (44) after taking u = 2 log(2M), and applying this bound

completes the proof. �

Lemma 4.6. For any η ≤ 1 and any M,x, and p, we have the following

upper bounds :

(i) Ex |G1,p| ≤ cM2 ηy

p
,

(ii) Ex |suppG1,p| ≤ c′(1 + logM)M2 ηy

p
,

(iii) Ex |suppG1,p|2 ≤ c′′(1 + logM)2M4 ηy

p
,

(iv) Ex |suppGm,p| ≤ cm
Å

1 +M3 ηy

p

ãm
.

Proof. By construction, the hypergraph G1,p is a subset of the restriction

of G to hyperedges containing p. Therefore,

Ex|G1,p| ≤
∑
S

ExN(S),

where the sum is over such sets S. Break down the sum by the cardinality

of S. The sum over |S| = k is 1/(k − 1)! times the sum over ordered sets of
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distinct primes p = p1, p2, . . . , pk in the range (y,My). Thus

Ex|G1,p| ≤
∑
k≥2

1

(k − 1)!

∑
p2,...,pk

ExN(p, p2, . . . , pk).

Lemma 4.5 with ` = 0 now gives (i). For (ii), write

Ex|suppG1,p| ≤
∑
S

|S|ExN(S)

and proceed as before but with ` = 1.

For (iii), use

Ex|suppG1,p|2 ≤
∑
S,T

|S| |T | ExN(S)N(T ).

Observe that for S 6= T , the events {S ∈ G1,p} and {T ∈ G1,p} are negatively

correlated. (Recall that two events are negatively correlated if the probability

of their conjunction is at most the product of the probabilities of the events.)

This is because the events {[Xi] = S} and {[Xj ] = T} are independent, unless

i = j, in which case they are negatively correlated. It follows that∑
S,T

|S| |T | ExN(S)N(T ) ≤
∑
S,T

|S| |T | ExN(S)ExN(T ) +
∑
S

|S|2 ExN(S)2.

The first term on the right-hand side is (Ex|suppG1,p|)2. Using the upper

bound just established in (ii) and noting that ηy/p ≤ 1 bounds this term by

the RHS of (iii) for some constant c′′′. Lemma 4.5 with ` = 2 implies that the

second term is bounded by a similar expression with a different constant c′′′′,

and taking c′′ = c′′′ + c′′′′ establishes (iii).

Finally, for (iv), induct on m. Conditional on Gm−1,p, the random hy-

pergraph Gm,p is stochastically dominated by the union of Gm−1,p with a col-

lection of hyperedges whose conditional distribution given Gm−1,p is described

as follows: for each q ∈ Tm−1(p), and for each finite subset S of primes in

(y,My) containing q, the hyperedge S is added independently with proba-

bility P([Xj ] = S) which is at most ExN(S). We saw in (ii) that this gives

a mean of at most O(M3ηy/p) new vertices for each q (where we have used

O(M3) for an upper bound to M2(1 + logM)). By induction, is at most

cm−1(1 +M3ηy/p)m−1 and multiplying completes the inductive step. �

Let V denote the vector space over F2 whose basis is the set of symbols

{δp : p is a prime and y < p < My}.
Identify each class [X] with the element

∑
p∈[X] δp of V. It is useful to think

of finding “pseudo-smooth” numbers by taking products of the numbers Xj in

such a way that all exponents of primes greater than y0 are even. These pseudo-

smooth numbers may be added to the list of smooth numbers, enhancing the

efficiency of Schroeppel’s algorithm (see the discussion after the statement of

Theorem 1.2). Formally, by definition, the number of pseudo-smooths gener-

ated by time j is the difference between j and the F2-rank of the collection
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[X1], . . . , [Xj ], made into a F2-vector space by using the symmetric difference

operation [Xi]⊕[Xj ]. To count this, we count the number of j for which [Xj ] is

in the ⊕-span of [X1], . . . , [Xj−1], which we denote by 〈[X1], . . . , [Xj−1]〉. This

includes the case where [Xj ] = ∅ (y-smooth numbers), [Xj ] = [Xi] = {p} for

some i < j and p < My (the one large prime case), as well as more complicated

cases. It turns out that not much is lost if we include only one more class of

cases. For each prime p in the interval (y,My), and each positive integer j, we

define an event χM,j
m,p whose informal interpretation is that {p} is in the span

of {[X1, . . . , [Xj ]}. A proposition immediately following the definition verifies

the interpretation. The parameters x, j and M will now be fixed throughout

the definition and suppressed from the notation.

Definition 4.7 (χ for general marked rooted trees).

(i) Let (G,U) be any marked hypergraph rooted at a vertex p. For

q ∈ supp (G), define the height `(q) to be the length of the longest

nonbacktracking path from q to the leaves of G, or more accurately,

of the tree Tp(G).

(ii) Define an event χ(q) = χ(G,U, q) by recursion on `(q). If `(q) = 0,

define the event χ(q) to hold if and only q ∈ U . If `(q) > 0, let r denote

the distance from p to q in Tp(G) and define χ(q) to hold if and only if

there is some hyperedge S ∈ G such that (a) S ⊆ Tr+1(p) ∪ {q} (that

is, S is a hyperedge that appears first at distance r+ 1 from p, and is

a “child” of q), and (b) the event χ(q′) occurs for each q′ ∈ S other

than q.

(iii) Finally, let χ(G,U) denote the event χ(G,U, p). (This is unambiguous

because p is the root of G.)

Remarks 4.8. Note that the recursion is well founded because `(q′) ≤
`(q) − 1 for all such q′. Also note that in the recursive part of the definition,

we allow S to equal {q}, in which case (b) is vacuously satisfied.

Definition 4.9 (primes witnessed in an m-neighborhood). If Gm,p is not

tree-like, we define χm,p not to occur. If Gm,p is tree-like, we define χm,p(q) :=

χm,p(Gm,p, Um,p, q), whence, χm,p := χ(Gm,p, Um,p, p).

In the next proposition, 〈[X1], . . . , [Xj ]〉 denotes the span of {[X1], . . . , [Xj ]}
in V.

Proposition 4.10. For any m ≥ 1, the event χm,p(q) implies {q} ∈
〈[X1], . . . , [Xj ]〉. In particular,

χm,p =⇒ {p} ∈ 〈[X1], . . . , [Xj ]〉.

Proof. By induction on `(q) ≥ 0. If `(q) = 0, then χm,p(q) implies [Xj ] =

{q} for some j ≤ J , which immediately implies {q} ∈ 〈[X1], . . . , [Xj ]〉. Now
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suppose `(q) ≥ 1. If χm,p(q) holds, let j satisfy (a) and (b) of the definition

with q = p. For each q′ ∈ [Xj ] distinct from q, `(q′) ≤ `(q) − 1, whence by

induction, {q′} ∈ 〈[X1], . . . , [Xj ]〉 for all such q′. This, along with the trivial

observation that [Xj ] ∈ 〈[X1], . . . , [Xj ]〉, implies {q} ∈ 〈[X1], . . . , [Xj ]〉, which

completes the induction. �

The purpose of χm,p is to witness the event that {p} is in the span of

[X1], . . . , [Xj−1]. We wish to count this because for any J , the number of

linear dependences among {[X1], . . . , [XJ ]} is bounded from below by

#{j ≤ J : for all p ∈ [Xj ], the singleton {p}(45)

is in the span 〈[X1], . . . , [Xj−1]〉}.

4.3. Construction of the limit object Hm. An informal description of the

limit object is as follows. For each k ≥ 2, the root, ρ, gets hyperedges

{ρ, ρ1, . . . , ρk} independently, with the probability of such a hyperedge aris-

ing in a small volume element {ρ} × [ρ1, ρ1 + dρ1] × · · · × [ρk, ρk + dρk] equal

to
dρ1 · · · dρk
ρρ1 · ρk

.

Recursively, for m iterations, each vertex newly added in the last iteration gets

new hyperedges in the same way.

Formally, the limit object is best described in terms of Poisson processes.

We briefly summarize definitions and properties of these, referring the reader

to [7] for further details. Given a measure space (S,B) with a σ-finite mea-

sure µ, a Poisson process with intensity µ is a collection of random variables

{N(S) = N(S)(ω) : S ∈ B} on some probability space (Ω,F ,P) satisfying the

following properties:

(i) Countable additivity in S: if A is a collection of disjoint elements of

B, then N (
⋃
S∈A S) =

∑
S∈AN(S);

(ii) Counting measure: N(S) takes values in the nonnegative integers;

(iii) Poisson distribution: for fixed S, the random variable N(S) is dis-

tributed as a Poisson distribution with mean µ(S);

(iv) Independence: if S, T are disjoint elements of B, then N(S) and N(T )

are independent.

A number of constructions are available to prove the existence of such a process.

If µ is nonatomic, then with probability 1, the random counting measure

N gives measure at most 1 to every point s ∈ S. It follows that the random

measure N(S) is the sum of point masses δs as s ranges over some finite or

countable subset of S; we denote this set by supp (N), and refer to supp (N) as

“the points of the Poisson process.” The cardinality of supp (N) is a Poisson

random variable with mean µ(S).
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Fix a real number M > 1. Fix also a real η > 0. We construct a random

hypergraph Hm,ρ = HM,η
m,ρ on a new probability space (Ω,F ,P) whose vertex

set is the real interval [1,M ]. The collection [1,M ]k of subsets of [1,M ] of

cardinality k may be identified with the sector Wk ⊆ Rk defined by

Wk := {(ρ1, . . . , ρk) ∈ Rk : 1 ≤ ρ1 < · · · < ρk ≤M}.

Let µk := dp/(ρ1, . . . , ρk) denote the image under this identification of the

measure whose density with respect to Lebesgue measure is 1/(ρ1 · · · ρk). Ob-

serve that the total mass of the measure dp/(ρ1 · · · ρk) is given (logM)k/k!.

Now define a measure µ on the union
⋃∞
k=1[1,M ]k by µ =

∑∞
k=1 µk. We see

that µ has finite total mass:

||µ|| =
∞∑
k=2

(logM)k

k!
= M − 1− logM.

Fix ρ ∈ [1,M ], and define an operation σρ by σρ(S) = S ∪ {ρ}. Define the

measure µ+ρ
k by µ+ρ

k = µk ◦ σ−1
ρ . In other words, µ+ρ

k is the measure corre-

sponding to “choosing a set according to µk” and then adding the element ρ.

(Here the quotes are to remind the reader that the finite measure µk is not a

probability measure.) Thus all the measures µ+ρ
k as well as the sum µ+ρ are

finite measures supported on sets of finite (but not bounded) cardinality at

least 2.

Let τ ∈ [1,M ] (here τ plays the role of q/y, just as ρ plays the role of p/y).

Let ντ = νM,η
τ (as usual, we suppress quantities that are, for the moment, fixed)

be the law of the points of a Poisson process with intensity ηµ+ρ/τ . Observe

that each point of the process is a finite subset S of [1,M ] with ρ ∈ S. Because

the intensity measure has finite mass, the law of the set of points is the law

of a random finite set of hyperedges S ⊆ [1,M ]. By nonatomicity of Lebesgue

measure, we see that with probability 1, this is a tree-like hypergraph rooted

at ρ, all of whose hyperedges contain ρ.

Definition 4.11 (The marked graph (Hm,ρ, Ũm,ρ)). We now construct the

random hypergraphs Hm,ρ = HM,η
m,ρ by recursion on m. For m = 1, choose

H1,ρ from the law νρ. For m ≥ 1, let Tm,ρ = supp (Hm,ρ) \ supp (Hm−1,ρ),

taking supp (H0,ρ) = {ρ} by convention. For the recursion step, choose random

hypergraphs Hm,τ independently from respective laws ντ , as τ varies over Tm,ρ,

and let Hm+1,ρ be the union of Hm,ρ with all the sets Hm+1,τ . It is again

immediate that each Hm,ρ is tree-like. Finally, we define a set of marks Ũm,ρ,

by choosing each τ ∈ supp (Hm,ρ) independently, with probability 1 − e−η/τ .

(We will see that 1 − e−ητ is the limiting probability for the mark Um,p; cf.

Lemma 4.16.)
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Now, using Definition 4.9 once more, define events

χ′m,ρ(τ) := χ(Hm,ρ, Ũm,ρ, τ),

χ′m,ρ := χ(Hm,ρ, Ũm,ρ).

These are events on the space Ω analogous to the events χm,p(q) and χm,p
defined on the space Ωx. Denote

θm(ρ) := θM,η
m (ρ) := P(χ′m,ρ).

4.4. Convergence of G to H, and consequently, of Px(χ) to θ. In this sub-

section we prove convergence results that will be used to compute the rate of

accumulation of pseudo-smooth numbers.

Theorem 4.12. Fix an integer m ≥ 1 and any real M > 1. Then

(46) Px(χM,j
m,p) = (1 + o(1))θM,j/J0

m (p/y)

uniformly as p varies over primes in the interval (y,My) and j/J0 remains

bounded. More generally, for any fixed r ≥ 1 and any p1, . . . , pr,

(47) Px

(
r⋂
i=1

χM,j
m,pi

)
= (1 + o(1))

r∏
i=1

θM,j/J0
m (pi/y)

uniformly as p1, . . . , pr vary over primes in the interval (y,My).

The proof of this theorem is essentially to show that the rescaled random

graph y−1Gm,p converges weakly to Hm,p/y. We encapsulate what we need in

the following lemmas. All of these are routine Poisson convergence lemmas.

Lemma 4.13. As x → ∞, the distance in the weak metric between the

random hypergraph GM,j,x
1,p and the random hypergraph HM,j/J0

1,p/y goes to zero

uniformly as M and j/J0 vary over bounded intervals and y < p < My.

Proof. As a preliminary computation, let G′1,p denote the subset of G of

all hyperedges containing {p}. We claim that P(G1,p = G′1,p)→ 1. Indeed, the

complementary event requires that a collision occur, entailing two hyperedges

both to contain {p} and {q} for some q. By the last part of Proposition 4.3,

this probability goes to zero uniformly.

Next, let Ξ = (τ1, τ
′
1]×· · ·×(τk, τ

′
k] be any rectangular subset of the sector

Wk, and let Ξx denote the set of sets, S, of k primes, each between y and My,

such that y−1S ∈ Ξ. As in Proposition 4.3, let N(σp(Ξx)) denote the number

of j ≤ J such that [Xj ] ∈ σp(Ξx). Using (42), we estimate

ExN(σp(Ξx)) =
∑

S∈σp(Ξx)

ExN(S)

∼
∑

S∈σp(Ξx)

η
y(log y)k

p
∏
q∈S q

.
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Factoring the sum of products gives the equivalent expression

ExN(σp(Ξx)) ∼ ηy
p

k∏
i=1

∑
τiy<q≤τ ′iy

log y

q
.

By the prime number theorem, this converges to νp/y(Ξ).

Finally, let us see that y−1G1,p converges to a Poisson process with inten-

sity νρ where ρ = p/y; by construction, this is the distribution of H1,ρ, and

therefore this will complete the proof of the lemma. Recalling the remark at

the end of Section 4.1, we need to show (i) tightness and (ii) that for any dis-

joint sets Ξ(1), . . . ,Ξ(k), the respective numbers N (i) of hyperedges in y−1G1,p

in Ξ(i) converge in disribution to independent Poissons with means νρ(Ξi). It

suffices to prove these for G′1,p in place of G1,p because we have seen these are

equal with probability 1− o(1).

We have already verified that the means are νρ(Ξ
(i)) when Ξ(i) are rect-

angles, which implies the same result for all measurable Ξ. To obtain the

joint Poisson distribution, it is easiest to Poissonize. Replace G′1,p by G′′1,p,
defined identically to G′1,p except with J replaced by a Poisson variable J ′ of

mean J . For this random graph, the numbers (N (i))′′ of hyperedges of G′′1,p in

the rescaled Ξ(i) are exactly independent Poissons with the given means. The

key observation is that

Px(G′1,p 6= G′′1,p) = O(J
−1/2
0 ).

To see this, note that Ex|J ′ − J | = O(
√
J0). Therefore,

(48)

Px(G′1,p 6= G′′1,p) = O
Ä√

J0 Px(p ∈ [X1])
ä

= O
(
J
−1/2
0 Ex|G′1,p|

)
= O

(
J
−1/2
0

)
by Lemma 4.6. Finally, tightness also follows from Lemma 4.6. �

Lemma 4.14. As x → ∞, the distance in the weak metric between the

n-tuple of random hypergraphs

y−1
Ä
GM,j,x

1,pi

ä
1≤i≤n

and the product of the laws of the hypergraphs HM,j/J0
1,pi/y

goes to zero uniformly

as M and j/J0 vary over bounded intervals and y < pi < My.

Proof. This is the same proof with only one difference, as follows. To check

that G1,pi = G′1,pi with probability tending to 1, one observes that (3) of Propo-

sition 4.3 holds simultaneously for p1, . . . , pn. All else is the same, once one

observes that Poissonization gives (48) simultaneously for all p1, . . . , pn. �

Lemma 4.15. As x → ∞, the distance in the weak metric between the

random hypergraph y−1GM,j,x
m,p and the random hypergraph HM,j/J0

m,p/y goes to zero

uniformly as M and j/J0 vary over bounded intervals and y < p < My.

Similarly, the distance between the law of the random n-tuple y−1(GM,j,x
m,pi )1≤i≤n
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and the product of the laws of HM,j/J0
m,pi/y

goes to zero with the same uniformity

in M, j/J0 and {pi}.

Proof. We induct on m. For m = 1, this was shown in Lemma 4.13.

Now let m ≥ 2, and assume for induction that the result holds for m − 1.

If Gm,p is tree-like, let r := |T1(p)| and let G1, . . . , Gr denote the subtrees

of Tp(Gm,p) from the vertices q1, . . . , qr of T1(p). Let G(1), . . . ,G(r) denote

the corresponding hypergraphs; that is, G(i) is the hypergraph rooted at qi
whose hyperedges are those of Gm,p whose support is a subset of the vertices of

Gi. We will show that the joint conditional distribution of y−1(G(1), . . . ,G(r))

given G1,p converges to the product of the laws of Hm−1,qi/y. By the recursive

construction of Hm,p/y and the fact that Gm,p is tree-like with probability

approaching 1, this will complete the proof of the lemma.

Consider the hypergraph G′m−1,qi
. If this is tree-like, let Hi be the subtree

obtained by removing the unique hyperdege containing p and qi, and restricting

to the connected component rooted at qi. If these are disjoint for 1 ≤ i ≤ r,

then G(i) = Hi for each i. The probability that all the hypergraphs G′m−1,qi
are

tree-like is asymptotically 1. The probability of a collision is bounded above by∑
y<q<My

r∑
i,j=1

Px
Ä
q ∈ supp (G′m−1,qi) ∩ supp (G′m−1,qj )

ä
.

The probability that q ∈ supp (G′m−1,qj
), conditional on |suppG′m−1,qj

|, is at

most a constant multiple of |suppG′m−1,qj
|/π(y). This is true as well for qi, and

the two events are independent. Therefore, the probability of a collision is

O

Ç
(Exr2)

(Ex|suppGm−1,qi |)2

π(y)

å
.

By Lemma 4.6, we obtain the upper bound O(1/π(y)).

Next, we claim that the conditional distribution of Hi given G′1,p is asymp-

totically equal to the unconditional distribution of G′m−1,qi
. Indeed, G′1,p is mea-

surable with respect to the σ-field generated by the events {S ∈ G : p ∈ S}.
This is independent of the events {S ∈ G : p /∈ S}, so conditional on G′1,p, Hi

has the distribution of G′′m−1,qi
, where the double prime means that all hyper-

edges containing p were excluded at every step of the construction. We already

know that G′′m−1,q−1 is asymptotically distributed as G′m−1,q−1, verifying the

claim. Moreover, the same argument shows that the joint conditional law of

H1, . . . ,Hr) given G′1,p is asymptotically the product of the laws for each i ≤ r.
Finally, by the induction hypothesis, the unconditional distribution of

G′mi,qi is asymptotically that of Hm−1,qi/y. Therefore, since with probability

approaching 1 all the graphs G′m−1,qi
are tree-like and there are no collisions,

we have shown what we need. �
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Lemma 4.16. As x→∞, the distance in the weak metric between the ran-

dom marked hypergraph y−1(GM,j,x
m,p , Um,p) and the random marked hypergraph

(HM,j/J0
m,p/y , Ũm,p/y) goes to zero uniformly as M and j/J0 vary over bounded

intervals and y < p < My. More generally, the distance between an n-tuple of

marked graphs

y−1
Ä
GM,j,x
m,pi , Um,pi

ä
1≤i≤n

and the product of the laws of the random marked hypergraphs (HM,j/J0
m,pi/y

,Ũm,pi/y)

goes to zero uniformly as M and j/J0 vary over bounded intervals and y <

p1, . . . , pn < My.

Proof. Observe that the conditional probabilities of q ∈ Um,p given Gm,p
are independent and given by 1 − e−ηy/q as q varies over supp (Gm,p). This

is true since, in the limit (x, y → ∞ and J = ηxπ(y)/ψ(x, y)), the events

|{j : [Xj ] = {qi}, j = 1, . . . , J}| for fixed q1, q2, . . . , qr are independent Poisson

random variables with mean ∼ ηy/qi. And once it is known, in the limit,

that the events {q ∈ Um,p} given Gm,p, with q running over supp (Gm,p) are

independent with probability 1 − e−ηy/q, then the first part of the lemma is

proven; the second part is analogous. �

Proof of Theorem 4.12. Begin with (46). For any marked graph (G,U),

χ(G,U) depends only on the marked hypergraph structure of (G,U) and not

the names of the vertices. Because the topology on graph structure is discrete,

χ is continuous. The weak topology on measure is characterized by conver-

gence of integrals of bounded continuous functions, so (46) follows from the

first conclusion of Lemma 4.16. For any fixed bounded continuous function,

such as χ, the difference in the integrals is bounded as a function of the dis-

tance bewteen the measures, whence the uniform convergence in Lemma 4.16

transfers to the required uniform convergence in (46). The proof of (47) is

identical, using the n-tuple convergence in Lemma 4.16 in place of convergence

of the single marked hypergraph. �

4.5. Computation of θ. We begin by computing θm(ρ). Recall the defini-

tion of the functions γm,M (u) in (39).

Lemma 4.17.

θM,η
m (ρ) = 1− e−γm,M (η)/ρ.

Proof. The quantities M and η will be fixed throughout the proof, so we

write θm for θM,η
m . The proof is by induction on m. By definition, 1− θ0(ρ) is

the probability that ρ /∈ Ũm,ρ, which is e−η/ρ by construction. This establishes

the result for m = 0.

Now suppose that m ≥ 1. The set of hyperedges S ∈ H1,ρ is, by con-

struction, a Poisson process with intensity νρ. The complement of χm,ρ is the
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intersection of ρ /∈ Ũm,ρ with the event that for all hyperedges S ∈ H1,ρ of car-

dinality between 2 and k, there is some τ ∈ S \ {ρ} with χm−1,τ not occurring.

We have, by induction,

1− θm+1(ρ) = e−η/ρ E
ñ ∏
S∈H1,ρ

Ç
1−

∏
τ∈S\{ρ}

θm(τ)

åô
(49)

= e−η/ρ E
ñ ∏
S∈H1,ρ

Ç
1−

∏
τ∈S\{ρ}

θm(τ)

åô
,

where the first product is over hyperedges of cardinality up to k and the product

over τ ∈ S \ {ρ} is taken to be 1 if S = {ρ}. If f : Ξ → [0, 1] is any function

on a space Ξ on which is defined a Poisson process with intensity ν, then the

expected product of f at points of the Poisson process is given by

exp

ï∫
(f(ξ)− 1) dν(ξ)

ò
.

Applying this to (49) with ν = νρ and f(S) = 1−∏τ∈S\{ρ} θm(τ) gives

log(1− θm+1(ρ)) = −η
ρ
−
∫ ∏

τ∈S\{ρ}
θm(τ) dν(S).

Break up the integral according to |S|. Recall that for k ≥ 2, the law of S \{ρ}
on {|S| = k} is ηµk−1/ρ. We may incorporate −η/ρ as the k = 1 term if we

define µ0 to be a point mass of 1 at the empty set and the empty product to

be 1. These substitutions yield

log(1− θm+1(ρ)) = −η
ρ

∞∑
k=1

∫ ∏
τ∈S\{ρ}

θm(τ) dµk−1(S).

Observe that µk is 1/k! times a product measure. Therefore the integral of the

product factors, yielding (with j := k − 1)

log(1− θm+1(ρ)) = −η
ρ

∞∑
j=0

1

j!

Ç∫ M

1
θm(τ)

dτ

τ

åj
= −η

ρ
exp

Ç∫ M

1
θm(τ)

dτ

τ

å
.

Using the induction hypothesis again we substitute 1 − e−γm,M (η)/τ for θm(τ)

to arrive at

log(1− θm+1(ρ)) = −η
ρ

exp

Ç∫ M

1

Ä
1− e−γm,M (η)/τ

ä dτ
τ

å
.

Changing variables to t = 1/τ so that dt/t = −dτ/τ yields

log(1− θm+1(ρ)) =−η
ρ

exp

Ç∫ 1

1/M

1− e−tγm,M (η)

t
dt

å
=−η

ρ
AM (γm,M (η)).

The right-hand side is equal to −(1/ρ)γm+1,M (η), completing the induction.

�
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Lemma 4.18. Fix any η > η∗ = e−γ . Then

θM,η
m (ρ)→ 1

uniformly over ρ in any bounded interval [1, L] as m,M →∞.

Proof. The function z/ exp(A(z)) is the real analytic function

exp

Ç∫ z

1

e−u

u
du−

∫ 1

0

1− e−u

u
du

å
= exp(−γ − Γ(0, z)),

where Γ(0, z) :=
∫∞
z e−t dtt . By (28), which evidently increases to η∗ as z ↑ ∞.

It follows that for η > η∗, if we choose any positive δ < (η/η∗)− 1, then
η

1 + δ
> η∗ >

z

eA(z)
,

which implies that
ηeA(z) > (1 + δ)z

for all z > 0. Applying this to (39) with z = γm,∞,∞(u) leads to

γm+1,∞(η) > (1 + δ)γm,∞(η)

which, in turn, leads inductively to

γm,∞(η) > η∗(1 + δ)m−1.

Since γ is increasing in all its arguments, this is true for all greater η as well.

Now, given L, ε > 0, choose m sufficiently large so that γm,∞(η) >

L log(1/ε). The function γ is continuous in M at infinity, so we may choose

M such that γm,M (η) > L log(1/ε). It follows from Lemma 4.17 that

θM,η
m (ρ) = 1− e−γm,M (η)/ρ > 1− e− log(1/ε) = 1− ε

for 1 ≤ ρ ≤ L, proving the lemma. �

4.6. Proof of main theorems.

Proof of Theorem 1.2. Fix ε > 0. The first step is to use Lemma 4.18 to

pick m and M such that

θM,η∗+ε
m (ρ) >

3

4
for all 1 ≤ ρ ≤ L := exp

Å
3

ε

ã
.

Take M to be larger if necessary so that we may assume M ≥ L. We deduce

from the last displayed estimate with ρ = p/y and from Theorem 4.12 that,

for any prime p in the interval (y,My) and for x sufficiently large, we have

Px
Ä
χM,(η∗+ε)J0
m,p

ä
>

3

4
.

Now let Y be the number of j in the interval I := [(η + ε)J0, (η + 2ε)J0]

such that [Xj ] = {p} for some prime p with y < p < My and χM,j−1
m,p holds.

Write Y =
∑
j∈I Yj , where Yj is 1 if [Xj ] = {p} for some prime y < p < My

and χM,j−1
m,p holds, and zero otherwise. We compute a lower bound on ExY as
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follows. The event χM,j−1
m,p is independent of the event [Xj ] = {p}. By (23)

and the definition of J0, we have ψ(x/p, y)/ψ(x, y) ∼ (log y)/p. Hence,

ExY =
∑
j∈I

∑
y<p<My

P([Xj ] = {p})P(χM,j−1
m,p )

=
∑
j∈I

∑
y<p<My

ψ(x/p, y)

x
P(χM,j−1

m,p )

≥ 1

2

∑
j∈I

∑
y<p<My

π(y)

J0

log y

p

for x sufficiently large. By the prime number theorem,∑
y<p<My

(log y)/p ∼ logM ≥ logL = 3ε−1.

The outer sum has at least εJ0 terms; hence,

(50) ExY ≥
1

2
(εJ0)

π(y)

J0
(3ε−1) =

3

2
π(y).

In Lemma 4.19 below, we will prove the second moment bound

Cov (Yi, Yj) = o (ExYiExYj) .

Using, this lemma,

Var (Y ) =
∑
i,j∈I

Cov (Yi, Yj)

≤ExY + 2
∑

i,j∈I,i<j
Cov (Yi, Yj)

= o(ExY )2.

Together with (50), this implies that Px(Y > π(y))→ 1. Recall from (45) that

this implies more than π(y) linear dependences among the classes [Xj ] with

j ≤ (η∗ + 2ε)J0. Since ε > 0 was arbitrary, this completes the proof of the

theorem, modulo the lemma. �

Proof of Theorem 4.1. In the previous section, we chose M to be absurdly

large, which allowed us to use only those j in the interval [(η∗+ε)J0, (η∗+2ε)J0].

We can get much more reasonable values of m and M if we are willing to let

η be a little bigger and to use all the values of j up to ηJ . The computations

are in fact no harder (although the required convergence lemmas did involve

more work in the previous sections).

Fix η,m, and M satisfying the inequality in the hypothesis of the theorem.

Let

Z :=
J∑
j=1

Zj := #
¶
j ≤ J : χM,j−1

m,p occurs for all p ∈ [Xj ]
©
.
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Again, Lemma 4.19 implies Var (Z) = o(π(y)2). If we are able to show

(51) lim inf
x→∞

ExZ
π(y)

> 1,

then we will have Px(Z > π(y)) → 1, which will imply more than π(y) linear

dependences, thus establishing the theorem.

To prove (51), break down EZj according to the value of [Xj ] and using

independence of Xj from χM,j−1
m,p . This gives

ExZj =
∑
S

Px([Xj ] = S)
∏
p∈S

Px(χM,j−1
m,p )(52)

=
∑
S

ψ(x/
∏
p∈S p, y)

x

∏
p∈S

Px(χM,j−1
m,p )

∼
∑
S

(log y)|S|∏
p∈S p

ψ(x, y)

x

∏
p∈S

θM,j/J0
m (p/y).

The final asymptotic equality uses equation (23) and formula (47) of Theo-

rem 4.12 to identify the limit when summing over S of bounded cardinality.

This implies half the the asymptotic equality, i.e., lim inf[ExZj/RHS of (52)]

≥ 1, which is all we will need for (51). However, since it may be useful in the

future, we point out that (24) may be used to show that the contribution from

|S| > K is o(π(y)) as K →∞, establishing (52).

Continuing, we use the identity ψ(x, y)/x = π(y)/J0, factor out this term,

and rewrite the summand as a product:

EZj =
π(y)

J0

∑
S

∏
p∈S

Å
log y

p
θM,j/J0
m (p/y)

ã
.

Let B be any set and {zp : p ∈ B} be any positive real numbers with finite

sum. Let B denote the set of finite subsets of B. Then

∑
S∈B

∏
p∈S

zp =
∏
p∈S

(1 + zp)→ exp

Ç∑
p∈B

zp

å
as maxp∈B zp → 0. Using this identity, we obtain

ExZj ∼
π(y)

J0
exp

Ç
1

y

∑
y<p<My

log y

p/y
θM,j/J0
m (p/y)

å
∼ π(y)

J0
exp

Ç∫ M

1

1

t
θM,j/J0
m (t) dt

å
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by the prime number theorem. The asymptotic equivalence is uniform in j ≤
ηJ0. Summing from j = 1 to ηJ0 now gives

ExZ
π(y)

∼
∫ η

0
exp

Ç∫ M

1

1

t
θM,u
m (t) dt

å
du

=

∫ η

0

γm+1(u)

u
du.

By the hypothesized inequality, the right-hand side is greater than 1, which

establishes (51) and completes the proof of the theorem. �

Lemma 4.19. Fix a finite real M > 1 and η > 0 and an integer m ≥ 1.

Then

Cov (Zi, Zj) = o (ExZiExZj) = o

Ç
π(y)2

J2
0

å
for all 1 ≤ i < j ≤ ηJ0. The same is true with Cov (Yi, Yj) in place of

Cov (Zi, Zj).

Proof. Both arguments are the same, so we prove this just for Cov (Zi, Zj).

It is equivalent to show that

Ex(Zi · Zj) ∼ (ExZi) · (ExZj).

Conditioning on [Xi] and [Xj ], we see that this is the expectation of

Ex(Zi|[Xi], [Xj ]) · Ex(Zj |[Xi], [Xj ]).

The sets [Xi] and [Xj ] are disjoint with probability going to 1, so it suffices to

show that Ex(Zi|[Xi], [Xj ]) and Ex(Zj |[Xi], [Xj ]) are asymptotically indepen-

dent when [Xi] and [Xj ] are disjoint. We have seen in Lemma 4.15 that the

collection of hypergraphs GM,i−1,x
m,p for p ∈ [Xi] and GM,j−1,x

m,p for p ∈ [Xj ] are

disjoint and tree-like with probability going to 1, and asymptotically indepen-

dent. By Lemma 4.16, the same is true of the marked hypergraphs. Since Zi
is a bounded function of [Xi] and the marked hypergraphs (GM,i−1,x

m,p , UM,i−1,x
m,p )

for p ∈ [Xi], and likewise for [Zj ], we have the desired conditional indepen-

dence. �

5. Implications for factoring algorithms

In factoring algorithms we need to find a linear dependence mod 2 in

our matrix of exponents. We expect that the best algorithms known, due to

Wiedemann or Lanczos (see Section 6.1.3 of [4]), take time

∼ C y2

log y log log y

for a positive constant C when we use the primes up to y in our “factor base”.

If we were to take y = y0, then this number would be far larger than J0 and

so would dominate the running time of the algorithm. Hence, to optimize, we
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select y = y1, which is far smaller, chosen to equalize the running times of the

two main parts of the algorithm, so that

(53) c
π(y)

Ψ(x, y)/x
∼ y2

log y log log y

for an appropriate constant c > 0. One can show that one then has

y1 = y
1−(1+o(1))/ log log x
0

with expected running time

J0 y
(1+o(1))/(log log x)2

0

(see [5]).

The proofs in the previous section work as well for y1 as for y0. In partic-

ular, we can determine the speed-up for various choices of the parameters. We

always take m = ∞; instead of the many large prime variation, we consider

the k-large prime variations with 1 ≤ k ≤ 5, as has been done in algorithms

that have been implemented (see [5] for more details).

k M =∞ M = 100 M = 10

0 1 1 1

1 .7499 .7517 .7677

2 .6415 .6448 .6745

3 .5962 .6011 .6422

4 .5764 .5823 .6324

5 .567 .575 .630

Table 1. The value of η such that there are ∼ π(y) pseudos-

mooths amongst the aj with j ≤ ηπ(y)x/Ψ(x, y).

So what effect will this reduction in the number of aj examined have in the

actual running time? Suppose that we replace c in (53) by ηc and determine

that the new running time is given by (53), after solving (53) to determine

y = yη.

Now finding this solution is tantamount to finding a solution to h(uη) =

log(cη log log y) where h(u) := 1
u log x + log ρ(u). We have h′(u) = −1 − (1 +

o(1))/ log u), and so u1 − uη = log η(1 − (1 + o(1))/ log u). Our running time

therefore changes by a factor of

∼ x
2
uη
− 2
u1 = exp

Ç
2(u1 − uη) log x

u1uη

å
= exp

Ç
2 log η log x

u2
1

Ç
1− 1 + o(1)

log u

åå
= exp (log η(log log x+ log log log x− log 2− 4 + o(1)))

=

Ç
2e4 + o(1)

log x log log x

ålog(1/η)

since log2 y1 = log2 L(x)
(
1 + log log log x−log 2−4+o(1)

log log x

)
.
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Data on the effect of large prime variations that has been gathered from

running factoring algorithms seems rather different from what we have ob-

tained here. One reason for this is that, in our analysis, the variations in M

and k simply affect the number of aj being considered, whereas in reality these

affect not only the number of aj being considered but also several other impor-

tant quantities — for instance, the amount of sieving that needs to be done,

and also the amount of data that needs to be “swapped.” (Typically one saves

the aj with several large prime factors to the disk, or somewhere else suitable

for a lot of data.) It is an interesting problem to try to properly analyze the

construction of programs so as to incorporate the results that we have obtained

and to get predictions that would help the choice of parameters in computer

algorithms. In discussion, David Moulton noted that a slight variant of Pomer-

ance’s problem allows us to fully analyze a slight variant of Dixon’s random

squares algorithm. Let us suppose that n = pq, the product of two primes.

There are φ(n)/4 squares mod n up to n, and in Dixon’s algorithm the ai are

randomly chosen amongst these numbers. One usually makes the assumption

that this is not much different from choosing random numbers up to n for the

purpose of finding square products — we wish to make no assumptions.

Suppose that we know also u, v (mod n) for which (u/p) = −(v/p) = 1

and (u/q) = −(v/q) = −1. The sets A, uA, vA, uvA, where A is the set of

squares mod n, partition the reduced residues mod n. Hence each time we

choose bi randomly (as at the beginning of the introduction) we also select

σu,i, σv,i independently to have equal probability of being either 0 or 1, and

then we let ai be the least residue of b2iu
σu,ivσv,i (mod n). Then each reduced

residue mod n is chosen with equal probability. Our analysis of Pomerance’s

problem may be applied to these ai. (It is easy to see that restricting to

numbers relatively prime to n changes the algorithm with probability o(1).)

The upper bound in Theorem 1.2 implies that we obtain many independent

congruences over F2 once J > (e−γ + ε)J0. In particular, we obtain at least

three, which is good enough to imply that some sub-product of these three

has an even power of both u and v. The result is a congruence of two perfect

squares modulo n, which has at least a 1/2 probability of factoring n and which

was the goal of the original Dixon algorithm.

This shows that the upper bound of e−γJ0 for for Pomerance’s approxi-

mation to Dixon’s algorithm is an upper bound for Dixon’s actual algorithm

together with an oracle to produce u and v. Unfortunately the existence of

such an oracle is equivlent to already knowing how to factor n. This problem

may be surmounted as follows. Choose random numbers u1, . . . , ur in place of

u and v. It is easy to test and reject numbers u with (u/n) = 1, so we may

assume that uj are uniform on numbers with Jacobi symbol −1. Modify the
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previous algorithm by taking

Xi = b2i

r∏
j=1

u
tij
j (mod n),

where tij are independent Bernoulli (1/2) random variables (fair coin-flips).

The algorithm for Pomerance’s problem will eventually find r+ 1 independent

congruences. When it does so, some sub-product yields a congruence of squares

modulo n, and we are done. The question is, how long could this take? Our

analysis of Pomerance’s algorithm implies that time (e−γ + ε)J0 suffices, as

long as the numbers Xi are uniform on {1, . . . , n}. Again it is good enough to

be uniform on the multiplicative group G := (Z/nZ)∗. This will be the case as

long as u1, . . . , ur generate all of G/G2, which is isomorphic to (Z/2Z)2. Each

uj has probability 1/2 of being in each of the two cosets for which (u/n) = −1,

and they fail to generate G/G2 only if all are in the same coset, which has

probability 21−r. Letting r grow sufficiently slowly, we see that this modifi-

cation of Dixon’s algorithm terminates with success in time (e−γ + ε)J0 with

probability 1 − o(1). Thus our results for Pomerance’s problem is in fact a

bound for the original Dixon algorithm, provided we keep track of a few more

things along the way.
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E-mail : andrew@dms.umontreal.ca

University of Pennsylvania, Philadelphia, PA

E-mail : pemantle@math.upenn.edu

Georgia Institute of Technology, Atlanta, GA

E-mail : tetali@math.gatech.edu

http://www.ams.org/mathscinet-getitem?mr=1068527
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0709.60002
http://www.ams.org/mathscinet-getitem?mr=1678031
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0932.05084
http://dx.doi.org/10.1090/S0894-0347-99-00305-7
http://dx.doi.org/10.1090/S0894-0347-99-00305-7
http://www.ams.org/mathscinet-getitem?mr=0837811
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0601.10028
http://dx.doi.org/10.2307/2000573
http://www.ams.org/mathscinet-getitem?mr=0825590
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0596.10006
http://dx.doi.org/10.1007/3-540-39757-4_17
http://dx.doi.org/10.1007/3-540-39757-4_17
http://www.ams.org/mathscinet-getitem?mr=1403941
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0854.11047
http://www.ams.org/mathscinet-getitem?mr=1409387
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0865.11085
http://www.ams.org/mathscinet-getitem?mr=2467543
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1188.11065
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1188.11065
http://www.ams.org/mathscinet-getitem?mr=0866119
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0608.10004
http://dx.doi.org/10.2307/2007894
http://dx.doi.org/10.2307/2007894
http://www.ams.org/mathscinet-getitem?mr=1342300
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0880.11001
mailto:ecroot@math.gatech.edu
mailto:andrew@dms.umontreal.ca
mailto:pemantle@math.upenn.edu
mailto:tetali@math.gatech.edu

	1. Introduction
	Pomerance's Problem.
	Acknowledgements

	2. Smooth numbers
	2.1. Classical smooth number estimates
	2.2. Hildebrand-Tenenbaum saddle point method estimates
	2.3. Straightforward analytic estimates

	3. The lower bound for T in Theorems 1.2 and 1.3
	3.1. Proof strategy
	3.2. Structure of a square product
	3.3. The main argument
	3.4. Proof of [Theorem2]Theorem 1.3, part (a)
	3.5. Proof of [Theorem2]Theorem 1.3, part (b)
	3.6. Proof of [Theorem2]Theorem 1.3, part (c)

	4. Hypergraphs
	4.1. Preliminary results
	4.2. The random hypergraph G of (M y0)-smooth numbers
	4.3. Construction of the limit object Hm
	4.4. Convergence of G to H, and consequently, of ¶x () to 
	4.5. Computation of 
	4.6. Proof of main theorems

	5. Implications for factoring algorithms
	References

