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A new proof of the density
Hales-Jewett theorem

By D. H. J. Polymath

Abstract

The Hales-Jewett theorem asserts that for every r and every k there

exists n such that every r-colouring of the n-dimensional grid {1, . . . , k}n

contains a monochromatic combinatorial line. This result is a generaliza-

tion of van der Waerden’s theorem, and it is one of the fundamental results

of Ramsey theory. The theorem of van der Waerden has a famous density

version, conjectured by Erdős and Turán in 1936, proved by Szemerédi in

1975, and given a different proof by Furstenberg in 1977. The Hales-Jewett

theorem has a density version as well, proved by Furstenberg and Katznel-

son in 1991 by means of a significant extension of the ergodic techniques

that had been pioneered by Furstenberg in his proof of Szemerédi’s theo-

rem. In this paper, we give the first elementary proof of the theorem of

Furstenberg and Katznelson and the first to provide a quantitative bound

on how large n needs to be. In particular, we show that a subset of {1, 2, 3}n

of density δ contains a combinatorial line if n is at least as big as a tower

of 2s of height O(1/δ2). Our proof is surprisingly simple: indeed, it gives

arguably the simplest known proof of Szemerédi’s theorem.

1. Introduction

1.1. Statement of our main result. The purpose of this paper is to give

the first elementary proof of the density Hales-Jewett theorem. This theorem,

first proved by Furstenberg and Katznelson [FK89a], [FK91], has the same

relation to the Hales-Jewett theorem [HJ63] as Szemerédi’s theorem [Sze75]

has to van der Waerden’s theorem [vdW27]. Before we go any further, let

us state all four theorems. We shall use the notation [k] to stand for the set

{1, 2, . . . , k}. If X is a set and r is a positive integer, then an r-colouring of X

will mean a function κ : X → [r]. A subset Y of X is called monochromatic if

κ(y) is the same for every y ∈ Y .

We begin with van der Waerden’s theorem.

Theorem 1.1. For every pair of positive integers k and r, there exists

N such that for every r-colouring of [N ] there is a monochromatic arithmetic

progression of length k.
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Szemerédi’s theorem is the density version of van der Waerden’s theorem.

That is, it says that in van der Waerden’s theorem one can always find an

arithmetic progression in any colour class that is used reasonably often.

Theorem 1.2. For every positive integer k and every δ > 0, there exists

N such that every subset A ⊆ [N ] of size at least δN contains an arithmetic

progression of length k.

The reason it is called a density version is that we think of |A|/N as the

density of A inside [N ], so the condition on A is that it has density at least δ.

To state the Hales-Jewett theorem, we need a little more terminology.

The theorem is concerned with subsets of [k]n, elements of which we refer to as

points (or strings). Instead of looking for arithmetic progressions, the Hales-

Jewett theorem looks for structures known as combinatorial lines. There are

many equivalent ways of defining these, of which one is the following. Let [n]

be partitioned into sets X1, . . . , Xk,W in such a way that W is nonempty.

Then take the set of all points x such that xi = j whenever j ≤ k and i ∈ Xj ,

and xi takes the same value for every i ∈ W . The only choice we have in

specifying such an x is the value we assign to the coordinates xi with i ∈ W ,

so each line contains k points.

Here is a simple example of a combinatorial line when k = 3 and n = 8:

{(1, 3,1, 2, 2,1, 1, 2), (2, 3,2, 2, 2,2, 1, 2), (3, 3,3, 2, 2,3, 1, 2)}.

In this case the sets X1, X2, X3, and W are {7}, {4, 5, 8}, {2}, and {1, 3, 6},
respectively.

The coordinates in X1 ∪ · · · ∪ Xk are called the fixed coordinates of the

line, and the coordinates in W are the variable coordinates or wildcards.

Another way of thinking of a line is as an element of the set ([k] ∪ {∗})n,

where at least one coordinate takes the wildcard value ∗. To obtain the k

points in the line, one lets j run from 1 to k and sets all the wildcards equal

to j. For instance, in this notation the line above is

(∗, 3, ∗, 2, 2, ∗, 1, 2).

With both these ways of thinking of combinatorial lines, it is clear that

there is a close relationship between lines in [k]n and points in [k+1]n. Indeed,

if one allows “degenerate lines” in which the wildcard sets are empty, then there

is an obvious one-to-one correspondence between the two sets. This will be

very important to us later.

We are now ready to state the Hales-Jewett theorem.

Theorem 1.3. For every pair of positive integers k and r, there exists a

positive number HJ(k, r) such that for every n ≥ HJ(k, r) and every r-colouring

of the set [k]n there is a monochromatic combinatorial line.
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As with van der Waerden’s theorem, we may consider the density version

of the Hales-Jewett theorem, where the density of A ⊆ [k]n is |A|/kn. The

following theorem was first proved by Furstenberg and Katznelson [FK91].

Theorem 1.4. For every positive integer k and every real number δ > 0,

there exists a positive integer dhj(k, δ) such that if n ≥ dhj(k, δ) and A is any

subset of [k]n of density at least δ, then A contains a combinatorial line.

We sometimes write “DHJk” to mean the k case of this theorem. The

first nontrivial case, DHJ2, is a weak version of Sperner’s theorem [Spe28];

we discuss this further in Section 2. We also remark that the Hales-Jewett

theorem easily implies van der Waerden’s theorem, and likewise for the density

versions. To see this, temporarily interpret [m] as {0, 1, . . . ,m−1} rather than

{1, 2, . . . ,m} for each positive integer m, and identify integers in [N ] with their

base-k representations, which are points in [k]n. It is then easy to see that a

combinatorial line in [k]n corresponds to an arithmetic progression of length

k in [N ]: if the wildcard set of the line is S, then the common difference of

the progression is
∑
i∈S k

n−i. However, only very few arithmetic progressions

of length k in [N ] arise in this way, so finding combinatorial lines is strictly

harder than finding arithmetic progressions. (Further evidence for this is that

several other results are easy consequences of the Hales-Jewett theorem and its

density version: in particular, it is an exercise to deduce the multidimensional

Szemerédi theorem from DHJ.)

In this paper, we give a new, elementary proof of the density Hales-Jewett

theorem, very different from that of Furstenberg and Katznelson (though the

discovery of one part of the argument, sketched in Section 5.4, was in part

inspired by ergodic methods). Our proof gives rise to the first known quanti-

tative bounds for the theorem. Define the tower function T (n) inductively by

taking T (1) = 2 and T (n) = 2T (n−1) (so for instance T (4) = 22
22

= 65536).

More generally, define (not quite standardly) the kth function Ak in the Ack-

ermann hierarchy by setting Ak(1) = 2 and Ak(n) = Ak−1(Ak(n − 1)), with

A1(n) = 2n. Thus, the kth function is obtained by iterating the (k − 1)st

function, so A2(n) = 2n and A3(n) = T (n).

Theorem 1.5. In the density Hales-Jewett theorem, one may take dhj(3,δ)

= T (O(1/δ2)). For k ≥ 4, the bound dhj(k, δ) we achieve is broadly comparable

to the function Ak(1/δ).

By “broadly comparable” we mean something like that it is much nearer

to Ak(1/δ) than to Ak+1(1/δ). In fact, the bound we obtain is something like

Ak(Ak−1(1/δ)). (To give an idea, if we were to apply a composition of this

kind to the function Ak−1(n) = 2n, then Ak(n) would be a tower of height n

whereas Ak(Ak−1(n)) would be a tower of height 2n.)
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Another way of phrasing our result is in terms of the number cn,3, the car-

dinality of the largest subset of [3]n without a combinatorial line. Theorem 1.5

states that cn,3/3
n ≤ O(1/

√
log∗ n). The only known lower bounds appear in

a parallel paper to this one that is by an overlapping set of authors [Pol10]:

in that paper it is shown that cn,3 = 2, 6, 18, 52, 150, 450 for n = 1, 2, 3, 4, 5, 6,

and for large n that cn,3/3
n ≥ exp(−O(

√
log n)). Generalizing to DHJk, the

authors show that cn,k/k
n ≥ exp(−O(log n)1/dlog2 ke), using ideas from recent

work on the construction of Behrend [Beh46].

A detailed sketch of our argument (written after this paper was completed)

can be found in [Gow10].

1.2. The motivation for finding a new proof. Why is it interesting to give

a new proof of the density Hales-Jewett theorem? There are two main reasons.

The first is connected with the history of results and techniques in this area.

One of the main benefits of Furstenberg’s proof of Szemerédi’s theorem was

that it introduced a technique—ergodic methods—that could be developed in

many directions, which did not seem to be the case with Szemerédi’s proof.

As a result, several far-reaching generalizations of Szemerédi’s theorem were

proved [BL96], [FK78], [FK85], [FK91], and for a long time nobody could

prove them in any other way than by using Furstenberg’s methods. In the

last few years that has changed, and a programme has developed to find new

and finitary proofs of the results that were previously known only by infinitary

ergodic methods; see, e.g., [RS04], [NRS06], [RS06], [RS07b], [RS07a], [Gow06],

[Gow07], [Tao06], [Tao07]. Giving a nonergodic proof of the density Hales-

Jewett theorem was seen as a key goal for this programme, especially since

Furstenberg and Katznelson’s ergodic proof was significantly harder than the

ergodic proof of Szemerédi’s theorem. Having given a purely finitary proof, we

are able to obtain explicit bounds for how large n needs to be as a function

of δ and k in the density Hales-Jewett theorem. Such bounds could not be

obtained via the ergodic methods even in principle, because these proofs rely

on the Axiom of Choice. Admittedly, our explicit bounds are not particularly

good: we start with a tower-type dependence for k = 3 and go up a level of

the Ackermann hierarchy each time we go from k to k + 1. However, they are

in line with several other bounds in the area. For example, the best known

bounds for the multidimensional Szemerédi theorem [Gow07], [NRS06] (which

is an easy consequence of DHJ) are also of this type.

A second reason that a new proof of the density Hales-Jewett theorem

is interesting is that it immediately implies Szemerédi’s theorem, and finding

a new proof of Szemerédi’s theorem seems always to be illuminating—or at

least this has been the case for the four main approaches discovered so far
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(combinatorial [Sze75], ergodic [Fur77], [FKO82], Fourier [Gow01], hypergraph

removal [Gow06], [Gow07], [RS04], [NRS06]). Surprisingly, in view of the

fact that DHJ is considerably more general than Szemerédi’s theorem and the

ergodic-theory proof of DHJ is considerably more complicated than the ergodic-

theory proof of Szemerédi’s theorem, the new proof we have discovered gives

arguably the simplest proof yet known of Szemerédi’s theorem. It seems that

by looking at a more general problem we have removed some of the difficulty.

Related to this is another surprise. We started out by trying to prove the first

difficult case of the theorem, DHJ3. The experience of all four of the earlier

proofs of Szemerédi’s theorem has been that interesting ideas are needed to

prove results about progressions of length 3, but significant extra difficulties

arise when one tries to generalize an argument from the length-3 case to the

general case. Unexpectedly, it turned out that once we had proved the case

k = 3 of the density Hales-Jewett theorem, it was straightforward to generalize

the argument to the k ≥ 4 cases. We do not fully understand why our proof

should be different in this respect, but it is perhaps a sign that the density

Hales-Jewett theorem is at a “natural level of generality.”

One might ask, if this is the case, why the proof of Furstenberg and

Katznelson seems to be more complicated than the ergodic-theoretic proofs of

Szemerédi’s theorem and its multidimensional version. An explanation for this

discrepancy is that our proof appears to be genuinely different from theirs (that

is, not just a translation of their proof into a more elementary language). The

clearest sign of this is that they prove [FK89b] and then apply a strengthening

of Carlson’s theorem, a powerful result in Ramsey theory, in an essential way,

whereas we have no need of any colouring results in our argument (unless you

count the occasional use of the pigeonhole principle).

Before we start working towards the proof of the theorem, we would like

briefly to mention that it was proved in a rather unusual “open source” way,

which is why it is being published under a pseudonym. The work was carried

out by several researchers, who wrote their thoughts, as they had them, in the

form of blog comments at http://gowers.wordpress.com. Anybody who wanted

to could participate, and at all stages of the process the comments were fully

open to anybody who was interested. (Indeed, taking some inspiration from a

few of these blog comments, Austin provided another new (ergodic) proof of

the density Hales-Jewett theorem [Aus11].) This open process was in complete

contrast to the usual way that results are proved in private and presented in a

finished form. The blog comments are still available, so although this paper is

a polished account of the DHJk argument, it is possible to read a record of the

entire thought process that led to the proof. The constructions of new lower

bounds for the DHJk problem, mentioned in Section 1.1, are being published

by a partially overlapping set of researchers [Pol10]. The participants in the

http://gowers.wordpress.com
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project also created a wiki, http://michaelnielsen.org/polymath1/, which con-

tains sketches of the arguments, links to the blog comments, and a great deal

of related material.

1.3. Combinatorial subspaces and multidimensional DHJ. We know from

the density Hales-Jewett theorem that dense subsets of [k]n contain combinato-

rial lines. It is natural to wonder whether there is a higher-dimensional version

of this result, in which one finds d-dimensional subspaces. Such a result does

indeed exist, and is a straightforward consequence of DHJ, as was observed

by Furstenberg and Katznelson. Since we shall need this extension, we briefly

define the relevant concepts and give the proof.

A d-dimensional combinatorial subspace is just like a combinatorial line

except that there are d wildcard sets instead of just one. In other words we

partition the ground set [n] into k + d sets X1, . . . , Xk,W1, . . . ,Wd such that

W1, . . . ,Wd are nonempty, and the subspace consists of all sequences x such

that xi = j whenever i ∈ Xj and x is constant on each set Wr. There is

an obvious isomorphism between [k]d and any d-dimensional combinatorial

subspace: the sequence z = (z1, . . . , zd) is sent to the sequence x such that

xi = j whenever i ∈ Xj and xi = zr whenever x ∈Wr.

Note that there is an obvious injection from the set of all d-dimensional

combinatorial subspaces of [k]n to [k + d]n (which becomes a bijection if one

allows the subspaces to be degenerate).

The multidimensional density Hales-Jewett theorem is the following.

Theorem 1.6. For every δ > 0 and every pair of integers k and d, there

exists a positive integer mdhj(k, d, δ) such that, for every n ≥ mdhj(k, d, δ),

every subset A ⊂ [k]n of density at least δ contains a d-dimensional combina-

torial subspace of [k]n.

We shall refer to this theorem as MDHJ, and for each k we shall refer

to the result for that k as MDHJk. It will sometimes be convenient to write

mdhjk(d, δ) instead of mdhj(k, d, δ), so that we can refer to the function

mdhjk.01

Proposition 1.7. For every k, MDHJk follows from DHJk.

Proof. We prove the result by induction on d. Suppose we know MDHJk
for dimension d − 1, and let A ⊆ [k]n have density at least δ. Let m =

mdhj(k, d−1, δ/2), and write a typical string z ∈ [k]n as (x, y), where x ∈ [k]m

and y ∈ [k]n−m. Call a string y ∈ [k]n−m “good” ifAy = {x ∈ [k]m : (x, y) ∈ A}
has density at least δ/2 within [k]m. Let G ⊆ [k]n−m be the set of good y’s.

Then the density of G within [k]n−m must be at least δ/2, or A could not have

density at least δ in [k]n.
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By induction, for any good y, the set Ay contains a (d − 1)-dimensional

combinatorial subspace. There are at most M = (k+ d− 1)m such subspaces,

because of the injection mentioned above. Therefore, there must be some

(d− 1)-dimensional subspace σ ⊆ [k]m such that the set

Gσ = {y ∈ [k]n−m : (x, y) ∈ A ∀x ∈ σ}

has density at least (δ/2)/M within [k]n−m.

Provided that n ≥ m+ dhj(k, δ/2M), we may conclude from DHJk that

Gσ contains a combinatorial line, λ. Then σ × λ is the desired d-dimensional

subspace of [k]n that is contained in A. �

Because we have to iterate DHJk with rapidly decreasing densities in order

to obtain this result, the bound that we get from it is very bad indeed: it is

this that causes the Ackermann-type dependence on k in our main theorem.

1.4. Density-increment strategies. Very briefly, our proof of DHJk follows

a density-increment strategy, a technique that was pioneered by Roth [Rot53]

in his proof of the k = 3 case of Szemerédi’s theorem. There are now many

such proofs in the literature, of which most have the following form. One

would like to prove that every dense subset A of a mathematical structure S

(such as an arithmetic progression or the set [k]n) contains a subset X of a

certain type (such as a subprogression of length k or a combinatorial line). It

is usually hard to show this in one step, so instead one proves that if A has

density δ in S and does not contain a subset of the desired kind, then S has a

substructure S′ such that the density of A inside S′ is at least δ+ c, where c is

some positive constant that depends only on δ. This is the density increment.

If S′ is of a similar nature to S, then one can iterate this argument, and if S is

large enough, then one can continue iterating until the density exceeds 1 and

one has a contradiction, from which one deduces that A must after all contain

a subset X of the desired kind.

Even getting directly from S to a density increment on a substructure

S′ in one step is usually too hard, so typically there is an intermediate stage.

First, one finds a set T that is in some sense “simple” such that the density

of A inside T is at least δ + c. Then one proves that “simple” sets T can be

partitioned into substructures S1, . . . , SN and uses an averaging argument to

show that the density of A inside some Si is also at least δ+ c. There are also

variants of this: for instance, it is enough to find subsets S1, . . . , SN of T such

that every element of T is in the same number of Si, or even in approximately

the same number of Si.

A few proofs that have this basic structure are Roth’s proof itself (where

the intermediate structure is a mod-N arithmetic progression, which can be

partitioned into genuine arithmetic progressions), Gowers’s proof of Szemerédi’s
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theorem [Gow01], and an argument of Shkredov [Shk06a], [Shk06b] that gives

strong bounds for the “corners problem,” a result that we shall discuss in detail

in Section 4. (Other results proved by means of density-increment strategies

can be found in [Sze75] and [LM08], but this is still by no means an exhaus-

tive list.)

2. Sperner’s theorem and its multidimensional version

The case k = 2 of the density Hales-Jewett theorem is equivalent to the

following statement: for every δ > 0, there exists n such that if A is a collection

of at least δ2n subsets of [n], then there exist distinct sets A,B ∈ A such

that A ⊂ B. The equivalence is easily seen if one looks at the characteristic

functions of the sets, in which case one sees that a pair (A,B) with A ⊂ B

corresponds to a combinatorial line in {0, 1}n.

Exact bounds are known for this theorem, which is a result of Sperner

[Spe28]. The nicest proof, due to Lubell [Lub66], is the following one, which

will have a considerable influence on our later proofs. Recall that an antichain

is a collection of sets such that no set in the collection is a proper subset of

any other.

Theorem 2.1. Let n be a positive integer, and let A be an antichain of

subsets of [n]. Then |A| ≤
( n
bn/2c

)
.

Proof. Consider the following way of choosing a random subset of [n]. One

chooses a random permutation π of [n] and a random integer m ∈ {0, 1, . . . , n}
and takes the set A = {π(1), . . . , π(m)}. Since A is an antichain, for each π,

there is at most one m such that the resulting set belongs to A. Thus, the

probability of choosing a set in A is at most 1/(n+ 1).

The probability of choosing a particular set A of size m is (n+1)−1
(n
m

)−1.
Therefore, if we want A to be as large as possible but for the probability of

choosing a set in A to be at most (n+ 1)−1, then we must choose A to consist

of sets of size m such that
(n
m

)
is maximized. It follows that we cannot choose

more than
( n
bn/2c

)
sets, as claimed. �

A quick remark about terminology: note that the word “random” was

used in various different senses in the proof above. Our convention is that

“random” means “chosen randomly from the uniform distribution” unless the

context makes it clear that another meaning is intended. Here, for instance, the

subset of [n] is not chosen uniformly (since we go on to explain the distribution

from which it is chosen) but the permutation π and the integer m are chosen

uniformly, from Sn and from {0, 1, . . . ,m}, respectively. Similar considerations

apply to our informal use of the word “dense.”
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We shall also need a multidimensional version of Sperner’s theorem. This

time we are trying to maximize the size of A subject to the condition that

it is not possible to find a d-dimensional combinatorial subspace, which in

set-theoretic terms means a collection of disjoint sets A,A1, . . . , Ad such that

A1, . . . , Ad are nonempty and A ∪ ⋃i∈E Ai ∈ A for every E ⊂ {1, 2, . . . , d}.
The result we need was proved by Gunderson, Rödl, and Sidorenko [GRS99].

However, for the convenience of the reader we give a proof here, which is some-

what simpler than theirs and gives a slightly better bound. (This improvement

has an imperceptible effect on our bound for DHJ3 though.) Note that, just as

Sperner’s theorem is DHJ2, the multidimensional version is MDHJ2. In other

words, we are reproving the first nontrivial case of Theorem 1.6 but with a

better bound.

We begin with an easy and standard lemma. As usual, if X is a finite set

and Y is a subset of X, we write µ(Y ) for |Y |/|X|.

Lemma 2.2. Let X be a finite set, and let Xγ be a random subset of X ,

where γ is an element of a probability space Γ. Suppose that Eγµ(Xγ) = δ.

Now let γ and γ′ be chosen independently from Γ. Then Eγ,γ′µ(Xγ∩Xγ′) ≥ δ2.

Proof. Let ξγ be the characteristic function of Xγ . Then

δ2 = (Eγµ(Xγ))2

= (EγExξγ(x))2

≤ Ex(Eγξγ(x))2

= ExEγ,γ′ξγ(x)ξγ′(x)

= Eγ,γ′µ(Xγ ∩Xγ′).

The inequality above is Cauchy-Schwarz. The result follows. �

Theorem 2.3. Let n and d be positive integers with n ≥ 4d−1, and let A
be a collection of subsets of [n] that contains no d-dimensional combinatorial

subspace. Then the density of A is at most (25/n)1/2
d
.

Proof. Let δ be the density of A. (That is, A has cardinality δ2n.) For

i = 1, 2, . . . , d− 1, let ni = bn/4d−ic and let nd = n− (n1 + · · ·+ nd−1). Note

that nd ≥ (2/3)n.

Let us partition [n] into sets J1∪· · ·∪Jd−1∪E with |Ji| = bn/4d−ic. Note

that |E| ≥ (2/3)n.

Now consider the following way of choosing a random subset A of [n].

First we choose a random permutation π of [n]. Then we choose a random

integer s according to the binomial distribution with parameters n1 and 1/2.

Next, we let B be a random subset of {π(n1 + 1), . . . , π(n)}. Finally, we let A

be the set {π(1), . . . , π(s)} ∪B. The resulting distribution on A is uniform, as

can be seen by conditioning on the set {π(1), . . . , π(n1)}.
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Let us write Aπ,s for the set {π(1), . . . , π(s)} and Xπ,s for the set of all

B ⊂ {π(n1 + 1), . . . , π(n)} such that Aπ,s ∪ B ∈ A. Let δ(π) be the average

density of Xπ,s in the set of all subsets of {π(n1 + 1), . . . , π(n)}, and note

that the average of δ(π) is δ. By Lemma 2.2, for each π if we choose s and t

independently at random from the binomial distribution as we did for s above,

then the average density of Xπ,s∩Xπ,t is at least δ(π)2. Therefore, if we choose

π randomly as well, then the average density of Xπ,s ∩Xπ,t is at least δ2.

We would like s and t to be distinct. The probability that s = t is equal

to 2−2n1
(2n1

n1

)
(since it is the same as the probability that s + t = n1), which,

by standard estimates, is at most 2d−1n−1/2. Therefore, the expected density

of Xπ,s ∩Xπ,t conditional on s 6= t is at least δ2 − 2d−1n−1/2.

Let us choose π and s < t such that µ(Xπ,s ∩ Xπ,t) ≥ δ2 − 2d−1n−1/2,

and let us write A
(1)
0 and A

(1)
1 for Aπ,s and Aπ,t. Note that A

(1)
0 is a proper

subset of A
(1)
1 , that both are disjoint from the set {π(n1 + 1), . . . , π(n)}, and

that A
(1)
0 ∪B and A

(1)
1 ∪B both belong to A for every B ∈ Xπ,s ∩Xπ,t.

Now let us run the argument again, with n replaced by n−n1, n1 replaced

by n2, and A replaced by the set A1 = Xπ,s ∩Xπ,t. It gives us sets A
(2)
0 and

A
(2)
1 and a set A2 of subsets of {π(n2 + 1), . . . , π(n)} such that A

(2)
0 is a proper

subset of A
(2)
1 , both A

(2)
0 and A

(2)
1 are disjoint from {π(n2 +1), . . . , π(n)}, both

A
(2)
0 ∪ B and A

(2)
1 ∪ B belong to A1 for every B ∈ A2, and the density of A2

is at least

(δ2 − 2d−1n−1/2)2 − 2d−2n−1/2 ≥ δ4 − 2d−1n−1/2,

where for the last inequality we used the fact that δ < 1/2.

If we continue this process and have shown that Ar has density at least

δ2
r −2d−r+1n−1/2, then at the next stage we obtain Ar+1 with density at least

(δ2
r − 2d−r+1n−1/2)2 − 2d−r−1n−1/2 ≥ δ2r+1 − 2d−rn−1/2.

Therefore, as long as δ2
d−1 − 4n−1/2 ≥ 1/2

»
2n/3, then by Sperner’s theorem

Ad−1 contains two sets A
(d)
0 and A

(d)
1 , with A

(d)
0 a proper subset of A

(d)
1 . This

gives us the desired combinatorial subspace, which consists of all sets of the

form A
(1)
ε1 ∪ · · · ∪A

(d)
εd such that each εi is either 0 or 1.

The inequality we need is true if n ≥ 52/δ2
d
, so the theorem is proved. �

3. Equal-slices measure and probabilistic DHJ

The proof of Sperner’s theorem can be regarded as follows. First, one

chooses a different measure on the power set of [n], where to choose a set

you first choose its cardinality m uniformly at random from {0, 1, 2, . . . , n}
and you then choose a random set of size m. The set of all subsets of [n] of

size m is sometimes denoted by [n](m) and called a layer or slice of the cube.



A NEW PROOF OF THE DENSITY HALES-JEWETT THEOREM 1293

We therefore call the resulting probability measure on the power set of [n], or

equivalently on [2]n, the equal-slices measure.

This measure arises so naturally in the averaging argument that we used

to prove Sperner’s theorem that it is tempting to say that the “real” theorem

is that the maximum possible equal-slices measure of an antichain is 1/(n+1).

One then converts that into a slightly artificial (and weaker) statement about

the uniform measure.

The advantage of equal-slices measure is not just cosmetic, however: it

and its obvious generalization to [k]n will play a crucial role in our proof.

Rather than saying straight away why this should be, we shall prove a result

using equal-slices measure and explain why it would be problematic to give a

uniform version.

But before we do that, let us give a formal definition of the equal-slices

measure on [k]n. This time we choose, uniformly at random from all possibili-

ties, a k-tuple (a1, . . . , ak) of nonnegative integers that add up to n, and then

we choose a sequence x ∈ [k]n such that for each j the set Xj = {i : xi = j}
has cardinality aj , again uniformly from all possibilities (of which there are( n
a1,...,ak

)
).

Another way to think of this is to consider the obvious action of the

symmetric group Sn on [k]n. The slices are then the orbits of this action. The

equal-slices measure gives equal measure to each orbit and equal measure to

any two points in the same orbit.

The number of slices can be worked out by a “holes and pegs” argument:

given any subset B = {b1, . . . , bk−1} of {1, 2, . . . , n+ k− 1} of size k− 1, let ai
be the number of integers strictly between bi−1 and bi, where we treat b0 as 0

and bk as n+ k. This gives us all possible sequences (a1, . . . , ak) exactly once

each, so the number of slices is
(n+k−1
k−1

)
.

For use in the proof of the next theorem, we note that if k = 3, then

the number of slices with a2 = 0 is n + 1, so the probability that a2 = 0 is

(n+ 1)/
(n+2

2

)
, which equals 2/(n+ 2).

We can easily define equal-slices measure for combinatorial lines as well.

Indeed, there is a one-to-one correspondence between lines in [k]n and points

in [k+1]n, at least if one allows the lines to be degenerate. If y ∈ [k+1]n, then

the corresponding line consists of all points of the form yk+1→j with j ∈ [k];

in other words, the set of i such that yi = k + 1 is treated as a wildcard set.

3.1. A probabilistic version of Sperner ’s theorem. As mentioned in the

introduction, our proof of DHJ uses a density-increment strategy: that is, we

assume that A does not contain a line and deduce that A has increased density

inside some subspace. In almost all known proofs of this kind, one can in fact

get away with a weaker hypothesis. If A is a dense set inside which one wishes
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to find some structure, then one can find a density increment on the assumption

that A has “too few” subsets of the kind one is looking for, or more generally

“the wrong number” of such subsets, where “the right number” is the number

you would expect if A is a random subset of density δ. Similarly, it is also

possible to find equivalent versions of the theorems that say that a set A of

density δ contains not just one subset of the desired kind, but “many” such

subsets, where this means that if you choose a random such subset then with

probability at least c = c(δ) > 0 it will lie in A. A statement like this is called

a “probabilistic version” of the density theorem.

This is a sufficiently important feature of previously known arguments that

it is initially unsettling to observe that it is false for DHJ even when k = 2.

The reason is a simple one. By standard measure-concentration results, almost

all points in [2]n have roughly n/2 1s and n/2 2s. By the same results, almost

all combinatorial lines have roughly n/3 fixed 1s, n/3 fixed 2s and n/3 variable

coordinates. (A precise statement expressing this can be found in Lemma 6.2

below.) It follows that there is a set of density almost 1 (the set of sequences

with roughly equal numbers of 1s and 2s) that contains only a tiny fraction of

all lines (ones with roughly n/2 fixed 1s, roughly n/2 fixed 2s and a very small

wildcard set).

However, this does not mean that there is no probabilistic version of DHJ,

which is fortunate as we shall need one later. It merely means that the uniform

measure is the wrong measure in which to express it. To illustrate this point,

we now prove a “probabilistic” version of DHJ2. It tells us that an equal-slices-

dense subset of [2]n must contain an equal-slices-dense set of lines. (For the

proof, we shall think of [2] as the set {0, 1}.)

Theorem 3.1. Let A be a subset of [2]n of equal-slices density δ. Then

the set of (possibly degenerate) combinatorial lines in A has equal-slices density

at least δ2(n+ 1)/(n+ 2).

Proof. Let π be a random permutation of [n], and let s and t be elements

of {0, 1, 2, . . . , n} chosen independently and uniformly at random. Let us write

xπ,m for the sequence that takes the value 1 at π(1), . . . , π(m) and 0 everywhere

else, and let Xπ be the number of the sequences xπ,s that belong to A. Then

EXπ = δn, by the definition of equal-slices measure.

From this it follows that EX2
π is at least δ2n2. But X2

π is the number

of pairs (s, t) such that both xπ,s and xπ,t belong to A. Therefore, if we

choose a random pair {xπ,s, xπ,t}, then the probability that both its constituent

sequences belong to A is at least δ2.

Now each such pair forms a combinatorial line. If s ≤ t, then this line

consists of all sequences x such that xi = 1 if i ∈ {π(1), . . . , π(s)}, xi = 0

if i ∈ {π(t + 1), . . . , π(n)}, and x is constant on the set {π(s + 1), . . . , π(t)}.
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(Thus, the set {π(s + 1), . . . , π(t)} is the wildcard set.) If t ≤ s, then we

simply interchange the roles of s and t in the above. (If t = s, then we have a

degenerate line and interchanging the roles of s and t makes no difference.)

There is one technical detail that we need to address, which is that the

probability p(`) that we choose a particular combinatorial line ` is not quite

the equal-slices probability q(`). In particular, the probability that the line is

degenerate is (n+ 1)−1 instead of 2(n+ 2)−1. However, if we condition on the

event that s 6= t, then we are choosing a random subset of {0, 1, 2, . . . , n} of

size 2, and such pairs are in one-to-one correspondence with triples (a1, a2, a3)

such that a1 +a2 +a3 = n and a2 6= 0. Thus, p(`) = (n+ 2)q(`)/2(n+ 1) if ` is

degenerate, and p(`) = (1−(n+1)−1)q(`)/(1−2(n+2)−1) = (n+2)q(`)/(n+1)

if ` is nondegenerate.

From the above calculation it follows that the set of lines in A has equal-

slices density at least δ2(n+ 1)/(n+ 2), as claimed. �

The equal-slices density of the set of degenerate lines is O(n−1), so for

sufficiently large n this result implies that there is a dense set of nondegenerate

combinatorial lines in A as well.

3.2. Nondegenerate equal-slices measure. For technical reasons, it is some-

times convenient, when talking about equal-slices measure, to condition on the

event that every j ∈ [k] is equal to xi for some i. Indeed, we have already seen

in the proof of Theorem 3.1 that degenerate slices—that is, slices for which

this condition does not hold—can be slightly problematic. It turns out that

if we condition on the slices not being degenerate, then we can prove a useful

lemma that would hold only approximately, and after tedious consideration of

the degenerate cases, if we used the equal-slices measure itself.

Let us therefore define the nondegenerate equal-slices measure on [k]n as

follows. One first chooses a random k-tuple of positive (rather than nonnega-

tive) integers (a1, . . . , ak) that add up to n and then a random sequence x ∈ [k]n

such that |Xj | = aj for each j, where as before Xj is the set {i ∈ [n] : xi = j}.
A helpful equivalent way of defining this measure is as follows. To select

a random point x ∈ [k]n, one places n points q1, . . . , qn around a circle in a

random order. That creates n gaps between consecutive points. One chooses

a random set of k of these gaps and places further points r1, . . . , rk into the

gaps, again in a random order. Finally, one sets xi to be j if and only if rj
is the first point out of r1, . . . , rk that you come to if you go round clockwise

starting at qi.

Note that since the qi are in a random order, precisely the same distri-

bution will arise if the rj are placed in some fixed order rather than their

order too being randomized. However, it is more convenient to randomize

everything. Note also that since we do not allow two different rj to occupy
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the same gap, for each j there exists i such that xi = j. Finally, note that

apart from this constraint, all slices are equally likely. Therefore, we really

do have the equal-slices measure conditioned on the event that the slices are

nondegenerate.

To see the effect that this conditioning has, let us give an upper bound

for the probability that a slice is degenerate.

Lemma 3.2. Let x be an equal-slices random point of [k]n. Then the

probability that no coordinate of x is equal to k is k−1
n+k−1 . In particular, it is

at most k/n.

Proof. To choose k nonnegative integers a1, . . . , ak that add up to n, and

to do so uniformly from all possibilities, one can choose a random subset P =

{p1 < · · · < pk−1} ⊂ {1, 2, . . . , n + k − 1} of size k − 1 (of “pegs”) and let ai
be the number of integers strictly between pi−1 and pi, where we set p0 = 0

and pk = n + k. The probability that no coordinate of x is equal to k is the

probability that ak = 0, which is the probability that n+ k − 1 ∈ P , which is
k−1

n+k−1 , as claimed. �

The next result tells us that the total variation distance between ν and ν̃

is small. This makes it safe to pass from one to the other.

Corollary 3.3. Let ν and ν̃ be the equal-slices and nondegenerate equal-

slices measures on [k]n, respectively. Then for any set A ⊂ [k]n, we have

|ν(A)− ν̃(A)| ≤ k2/n.

Proof. It follows from Lemma 3.2 that the probability that a slice is de-

generate is at most k2/n. Therefore, if A is a set that consists only of non-

degenerate sequences, then its nondegenerate equal-slices measure is (1− c)−1
times its equal-slices measure for some c < k2/n. Therefore, for such a set,

0 ≤ ν̃(A)− ν(A) = cν̃(A) ≤ k2/n. If A consists only of degenerate sequences,

then 0 ≤ ν(A)− ν̃(A) = ν(A) ≤ k2/n. The result follows, since if one takes a

union of sets of the two different kinds, then the differences cancel out rather

than reinforcing each other. �

For later use, we slightly generalize Lemma 3.2.

Lemma 3.4. Let x be chosen randomly from [k]n using the equal-slices

distribution. Then the probability that fewer than m coordinates of x are equal

to k is at most mk/n.

Proof. Let P be as in the proof of Lemma 3.2. This time we are interested

in the probability that pk−1 ≥ n+ k −m. The number with pk−1 = n+ k − s
is
(n+k−s−1

k−2
)
, which is at most

(n+k−2
k−2

)
, which as we noted in the proof of

Lemma 3.2 is at most k
n

(n+k−1
k−1

)
. The result follows. �
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Corollary 3.5. Let x be chosen randomly from [k]n using the equal-

slices distribution. Then the probability that there exists j ∈ [k] such that

fewer than m coordinates of x are equal to j is at most mk2/n.

Proof. This follows immediately from Lemma 3.4. �

Now let us return to our discussion of the nondegenerate equal-slices mea-

sure. The next result tells us that it has a beautiful property. Let us use the

expression ν̃-random to mean “random and chosen according to the nonde-

generate equal-slices measure.” Then the property is that a ν̃-random point

in a ν̃-random subspace with no fixed coordinates is a ν̃-random point. This

result will enable us to carry out clean averaging arguments when we are using

equal-slices measure.

We have not said what we mean by a ν̃-random subspace with no fixed

coordinates, but the definition is a straightforward modification of our earlier

definition of the equal-slices density of a set of combinatorial lines. First, a

d-dimensional subspace with no fixed coordinates is simply a subspace obtained

by partitioning [n] into d nonempty sets X1, . . . , Xd and taking the set of all

sequences x ∈ [k]n that are constant on each Xi. For brevity, let us call these

special subspaces.

As we mentioned earlier, just as a combinatorial line in [k]n can be asso-

ciated with a point in [k + 1]n, so a d-dimensional combinatorial subspace in

[k]n can be associated with a point in [k+ d]n. If the subspace is special, then

it will in fact be associated with a point in [d]n.

In the reverse direction, if x∈ [k+d]n, then the corresponding d-dimensional

subspace is the set of all points y such that yi = j whenever j ∈ [k] and xi = j,

and y is constant on all sets of the form Xj = {i : xi = j} when j > k.

Thus, the wildcard sets are the d sets Xk+1, . . . , Xk+d. In the case of spe-

cial subspaces, we take instead x to belong to [d]n and the wildcard sets are

X1, . . . , Xd.

Therefore, when we talk about the equal-slices measure or nondegener-

ate equal-slices measure of a set of special d-dimensional subspaces, we are

associating with each subspace a point in [d]n and taking the corresponding

measure there. (A small detail is that for this to work we need the wildcard

sets in the combinatorial subspace to form a sequence rather than just a set.

In other words, if we permute the “basis,” then we are considering the result as

a different subspace, even though it consists of the same points. Alternatively,

one could regard the correspondence as being d!-to-one.)

Lemma 3.6. Let n, k, and d be positive integers with n ≥ d ≥ k. Suppose

that a point x ∈ [k]n is chosen randomly by first choosing a ν̃-random special d-

dimensional subspace V of [k]n and then choosing a ν̃-random point in V . Then

the resulting distribution is the nondegenerate equal-slices measure on [k]n.
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Proof. To prove this we use the second method of defining the nondegen-

erate equal-slices measure. That is, we choose a random subspace as follows.

First, we place n points q1, . . . , qn in a random order around a circle. Next,

we choose d points r1, . . . , rd and place them in random gaps between the qi,

with no two of the rh occupying the same gap. Then the wildcard set Xh

will consist of all h such that rh is the first of the points r1, . . . , rd if you go

clockwise round the circle from qi. Let us call the set of points qi with this

property, together with rh, the hth block.

How do we then choose a random point x in this subspace? We can think

of it as follows. We take the d blocks and randomly permute them. We then

randomly place k points s1, . . . , sk in gaps between blocks (with no two sj in

the same gap). Then xi = j if sj is the first of the points s1, . . . , sk if you go

clockwise round from qi (after the blocks have been permuted).

Now consider a second way of choosing a random point in [k]n. We proceed

exactly as above, except that this time we do not bother to permute the blocks.

We claim that this gives rise to exactly the same distribution.

To see this, let us call two valid arrangements of the points q1, . . . , qn and

r1, . . . , rd equivalent if one is obtained from the other by a permutation of the

blocks. Then all the equivalence classes have size d!, so randomly choosing

an arrangement is the same as randomly choosing an arrangement and then

randomly changing it to an equivalent arrangement.

Now the second way of choosing a random sequence amounts to choosing

the random points q1, . . . , qn and r1, . . . , rd, randomly choosing k of the points

r1, . . . , rd and calling them s1, . . . , sk (in a random order) and finally using the

points q1, . . . , qn, s1, . . . , sk to define a point in [k]n in the usual way. But this

is precisely the nondegenerate equal-slices measure on [k]n. �

3.3. A probabilistic version of the density Hales-Jewett theorem. With the

help of Corollary 3.3 and Lemma 3.6, it is straightforward to prove that a

probabilistic version of DHJk follows from an “equal-slices version.” Let us

begin by stating the equal-slices version.

Theorem 3.7. For every δ > 0 and every positive integer k, there exists

n0 such that for every n ≥ n0, every set A ⊂ [k]n of equal-slices density at

least δ contains a combinatorial line.

We shall show later that Theorem 3.7 follows from DHJk itself. For now

let us assume it and deduce a probabilistic version. We shall write edhj(k, δ)

for the smallest integer m such that every subset A ⊂ [k]m of equal-slices

density at least δ contains a combinatorial line.

Theorem 3.8. Let δ > 0, and let k be an integer greater than or equal

to 2. Then there exist θ = pdhj(k, δ) > 0 and m such that for every n ≥
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max{m, 4k2/δ} and every A ⊂ [k]n of equal-slices density at least δ, the equal-

slices density of the set of combinatorial lines in A is at least θ. Moreover, we

can take m = edhj(k, δ/4) and θ = (δ/9)(k + 1)−mm−(k+1).

Proof (assuming Theorem 3.7). By Corollary 3.3 the nondegenerate equal-

slices density ν̃(A) of A is at least δ − k2/n. Since n ≥ 4k2/δ, this is at least

3δ/4.

Let V be a random m-dimensional special subspace of [k]n, chosen accord-

ing to the nondegenerate equal-slices measure. Then Lemma 3.6 implies that

the expected nondegenerate equal-slices density of A inside V is also at least

3δ/4, from which it follows that with probability at least δ/4 this density is at

least δ/2.

Let V be a subspace inside which A has nondegenerate equal-slices density

at least δ/2. Remove from A ∩ V all degenerate strings. The resulting set

A′ ∩ V still has density at least δ/2. By Corollary 3.3 again, this implies that

the equal-slices density of A′ inside V is at least δ/4.

But by our choice of m this means that with probability at least δ/4 the

set A′ ∩ V contains a combinatorial line. Moreover, since A′ ∩ V contains no

degenerate strings, this line must have fixed coordinates of every single value.

The number of such lines is at most (k + 1)m. Therefore, if you choose

a random special subspace and inside it you choose a line according to the

nondegenerate equal-slices measure, then the probability that it will be a line

in A is at least (δ/4)(k + 1)−mm−(k+1). (Here m−(k+1) is a lower bound for

the equal-slices measure of a singleton in [k + 1]m.)

But by Lemma 3.6 the way we have just chosen this line was according

to the nondegenerate equal-slices measure. By the proof of Corollary 3.3, the

equal-slices probability is at least (δ/4)(k+1)−mm−(k+1)(1− (k+1)2/n). This

is at least (δ/9)(k + 1)−mm−(k+1), by our assumption that n ≥ 4k2/δ (and

that k ≥ 2). �

4. A modification of an argument of Ajtai and Szemerédi

After Szemerédi proved his theorem on arithmetic progressions, it was

natural to try to prove the multidimensional version, which states that for

every finite subset H of Zd and every δ > 0, there exists N such that every

subset A of [N ]d of size at least δNd contains a subset of the form aH + b

with a > 0. A full proof of this result had to wait for the ergodic approach of

Furstenberg: the result is due to Furstenberg and Katznelson [FK78]. However,

Ajtai and Szemerédi managed to prove the first genuinely multidimensional

case of the theorem, where H is the set {(0, 0), (1, 0), (0, 1)}, by means of a

clever deduction from Szemerédi’s theorem itself [AS74]. Their argument is

based on a density-increment strategy, but it is not organized in quite the way
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that was described in Section 1.4. However, it is possible to reorganize the

steps so that it follows that general outline very closely: in this section we

briefly sketch this slight modification of their argument because it provides a

template for our proof of the density Hales-Jewett theorem.

Let δ > 0, let N be a large integer, and let A be a subset of [N ]2 of

density at least δ. Our aim is to show that A contains a triple of the form

{(x, y), (x + d, y), (x, y + d)} with d > 0. We shall call such configurations

corners. The theorem of Ajtai and Szemerédi is the following.

Theorem 4.1. For every δ > 0, there exists N such that every subset

A ⊂ [N ]2 of density at least δ contains a triple {(x, y), (x + d, y), (x, y + d)}
with d > 0.

Before we sketch the proof, we make the general remark that there are

three privileged directions, horizontal, vertical, and parallel to the line x+y=0,

which correspond to the three lines that are defined by pairs of points from

the set {(0, 0), (1, 0), (0, 1)}. Indeed, one could argue that the formulation of

the problem is an unnatural one, and that instead of the grid [N ]2 one should

consider a triangular portion of a triangular lattice, so that there is a symmetry

between the three directions. We shall not do this, but when we come to relate

the argument of this section to the proof of DHJ, it will help to bear this point

in mind.

We shall regard certain subsets of [N ]2 as “simple” or “somewhat struc-

tured.” We define a 1-set to be a subset of the form X × [N ]. We call such

sets 1-sets because whether or not a point (x, y) belongs to X × [N ] depends

only on its first coordinate x. A more symmetrical, and therefore preferable,

explanation is this. We represent our points not by pairs (x, y) with x, y ∈ [N ]

but as triples (x, y, z) such that x, y ∈ [N ] and x+ y + z = 2N + 1. (We have

chosen 2N so that z lies between 1 and 2N − 1, but all we care about is that

x + y + z should be constant.) It is still true that whether or not the point

represented by a triple (x, y, z) belongs to X× [N ] depends only on x. In other

words, if (x, y, z) belongs to a 1-set, then so does (x, y + u, z − u) for every u.

Another way of looking at this, which turns out to correspond more closely to

what we shall do when we prove DHJ, is to think of a 1-set as a 23-insensitive

set, meaning that membership of the set is unaffected by changes to the second

and third coordinates.

Another special kind of set is one of the form X × Y . This is the inter-

section of the 1-set X × [N ] and the 2-set [N ]× Y . (A 2-set is of course a set

that depends only on the second coordinate.) In this section we shall call it

a 12-set (which is not to be confused with a 12-insensitive set, which we are

calling a 3-set).
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Now let us sketch the argument that gives us corners. The basic idea is a

density increment strategy. We shall show that if A does not contain a corner,

then there is some subset of [N ]2 that looks like [m]2 for some m that tends

to infinity with N , and inside that subset A has an increased density. We can

iterate this argument until eventually we show that the relative density of A

inside some subset becomes greater than 1, thereby reaching a contradiction.

4.1. Finding a dense diagonal. The first step is to find a set of the form

{(x, y) : x + y = t} that contains a reasonable number of points of A. Since

there are 2N − 1 such sets and A has size at least δN2, at least one such set

contains at least δN/2 points of A.

4.2. A dense 12-set that is disjoint from A. Suppose that we have found

t such that the number of points of A in the diagonal {(x, y) : x + y = t}
is at least δN/2. Let us write these points as (x1, y1), . . . , (x2m, y2m) with

x1 < · · · < x2m. If the number of points of A on the diagonal is odd, we

just omit one of them. Let X = {x1, . . . , xm}, and let Y = {ym+1, . . . , y2m}.
Then no point of X × Y can belong to A, since if (xi, yj) ∈ A, then the three

points (xi, yj), (xj , yj) and (xi, yi) all belong to A, and they form a corner since

xj − xi = yi − yj > 0. The size of X × Y is m2, and m ≥ bδN/4c, so (ignoring

the integer part) X × Y has density at least δ2/16 or so.

4.3. A dense 12-set that correlates with A. If A is disjoint from a dense

12-set X × Y , then it must make up for this with an increased density in the

complement of X × Y . However, the complement of X × Y splits up into the

three 12-sets X × Y c, Xc × Y , and Xc × Y c. A simple averaging argument

shows that in at least one of these three 12-sets the relative density of A is at

least δ+ δ3/48. Thus, we have sets U and V such that the density of A inside

the 12-set U ×V is at least δ+ δ3/48. Moreover, a very crude argument shows

that the U × V must have density at least δ3/48 inside [N ]2.

4.4. A dense 1-set can be almost entirely partitioned into large grids. As

mentioned earlier, our eventual aim is to find a subset of [N ]2 of a similar type,

inside which A has increased density. The subsets that will interest us are grids,

which are sets of the form P ×Q, where P is an arithmetic progression and Q

is a translate of P .

Given a dense 1-set X × [N ], we can partition almost all of it into grids

as follows. Suppose that the density of X is θ, and let ε be some positive

constant that is much smaller than θ (but independent of N). Since X has

density at least ε, by Szemerédi’s theorem it contains an arithmetic progression

P1 of length at least m, where m tends to infinity with N . If the set X \
P1 still has density at least ε, then it contains an arithmetic progression of

length m. Indeed, we can partition X into sets P0, P1, . . . , Pr, where P1, . . . , Pr
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are arithmetic progressions of length at least m and P0 is a residual set of

density less than ε.

For each i, we can then straightforwardly partition almost all of Pi × [N ]

into sets of the form Pi ×Qij , where each Qij is a translate of Pi. (It helps if

each Pi has diameter at most εN , but it is easy to ensure that this is the case.)

We can therefore partition all but an arbitrarily small proportion of X × [N ]

into grids of size tending to infinity with N .

4.5. A dense 12-set can be almost entirely partitioned into large grids. It

is easy to deduce from the previous step a similar statement about 12-sets.

Indeed, let X and Y be dense sets, and begin by partitioning almost all of

X×[N ] into large grids Pi×Qi. (We have changed the indexing of these grids.)

The intersection of X × Y with any of these grids Pi × Qi is Pi × (Y ∩ Qi),
since Pi ⊂ X. Therefore, if Y ∩Qi has positive density inside Qi, we can use

the previous step to partition almost all of Pi × (Y ∩ Qi) into subgrids, still

with size tending to infinity. By a simple averaging argument, the proportion

of points in X ×Y that are contained in grids Pi×Qi inside which Y is sparse

is small. So by this means, we have partitioned almost all of X × Y into grids

with sizes that tend to infinity.

4.6. A density increment on a large grid. By Step 3, we have a dense

12-set X × Y inside which the density of A is at least δ + δ3/48. By Step 5,

we can partition almost all of X × Y into large grids. If we choose “almost”

appropriately, we can ensure that the density of that part of A that lies in

these large grids is at least δ + δ3/100. But then by averaging we can find a

large grid P ×Q such that the density of A inside P ×Q is at least δ+ δ3/100.

This is exactly what we need for our density-increment strategy, so the proof

is complete.

5. A detailed sketch of a proof of DHJ3

In this section, we shall explain in some detail how our proof works in the

case k = 3. As mentioned in the previous section, the structure of our proof is

closely modelled on the structure of the argument of Ajtai and Szemerédi (in

the slightly modified form in which we have presented it). However, to make

that clear, we need to explain what the counterparts are of concepts such as

“grid,” “12-set” and the like. So let us begin by discussing a dictionary that

will guide us in our proof.

Everything flows from the following simple thought: whereas a typical

point in [N ]2 can be thought of as a triple (x, y, z) such that x+y+z = 2N+1,

a typical point in [3]n can be thought of as a triple of disjoint sets (X,Y, Z)

such that X ∪ Y ∪ Z = [n]: to turn such a triple into a sequence (x1, . . . , xn)

let xi = 1 if i ∈ X, 2 if i ∈ Y , and 3 if i ∈ Z.
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A corner in [N ]2 can be defined symmetrically as a triple of points of the

form {(x+ u, y, z), (x, y+ u, z), (x, y, z+ u)} such that x+ y+ z+ u = 2N + 1

and u > 0. This translates very nicely: a combinatorial line is a triple of points

of the form {(X ∪U, Y, Z), (X,Y ∪U,Z), (X,Y, Z ∪U)} such that X,Y, Z, and

U partition [n] and U 6= ∅.
A diagonal in [N ]2 is a set of the form Dt = {(x, y, z) : x + y = t}. It

therefore makes sense to define a “diagonal” in [3]n to be a set of the form

{(X,Y, Z) : X ∪ Y = T} for some subset T ⊂ [n]. In other words, it is the

collection of all triples (X,Y, Z) that partition [n], but now Z is a fixed set

(equal to the complement of T above).

Recall that a 1-set in [N ]2 is a set of the form X × [N ], or in symmetric

notation a set of the form {(x, y, z) : x ∈ X}. The obvious generalization

of this notion to [3]n is a set of the form {(X,Y, Z) : X ∈ X} for some

collection X of subsets of [n]. A subset S of [3]n is a 1-set if and only if it

is 23-insensitive in the following sense: if (X,Y, Z) ∈ S, then (X,Y ′, Z ′) ∈ S
whenever Y ′ ∪ Z ′ = Y ∪ Z. Equivalently, if a sequence x ∈ [3]n belongs to S,

then so do all sequences that can be formed from x by changing some 2s to 3s

and/or some 3s to 2s.

The natural definition of a 12-set is now clear: as in the case of subsets of

[N ]2, it should be the intersection of a 1-set with a 2-set.

We should also mention that the notion of Cartesian product has an ana-

logue. The Cartesian product of X and Y is the intersection of the 1-set

X × [N ] with the 2-set [N ] × Y . So if we are given two collections X and Y
of subsets of [n], then the analogue of their Cartesian product ought to be the

12-set {(X,Y, Z) : X ∈ X , Y ∈ Y, X ∩ Y = ∅}. Since X and Y determine Z,

we can think of this as a set of pairs, and then the resemblance with a true

Cartesian product is that much closer: it is (equivalent to) the set of all pairs

(X,Y ) such that X ∈ X , Y ∈ Y, and X and Y are disjoint. We shall call this

the disjoint product of X and Y and write it as X � Y.

There is one concept that has a nonobvious (though still natural) trans-

lation from the [N ]2 world to the [3]n world, namely that of a grid. At first

sight, it might seem extremely unlikely that the Ajtai-Szemerédi can be gener-

alized to give a proof of DHJ3. After all, their proof could be regarded as the

beginnings of a sort of induction: they deduce the first nontrivial case of the

two-dimensional theorem from the full one-dimensional theorem (namely Sze-

merédi’s theorem). If one is attempting to prove DHJ3, the obvious candidate

for a statement “one level down” is DHJ2, but that is a much less deep state-

ment than Szemerédi’s theorem. So it seems that our only hope will be if Ajtai

and Szemerédi did not after all need a tool as powerful as Szemerédi’s theorem.

One of the key ideas of our proof is that this is indeed the case, though the

result we need is not DHJ2 but its multidimensional version MDHJ2 proved
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in Proposition 1.7 and with a better bound in Theorem 2.3. The appropriate

replacement of the notion of a long arithmetic progression in [N ] is a combi-

natorial subspace of [2]n. We then have to decide what the analogue of a grid

is. Given the concepts so far, it should be something like the disjoint product

of two “parallel” combinatorial subspaces of [2]n, and we would like that to

give us a combinatorial subspace of [3]n (since we want the analogue of a grid

to be a structure that resembles [3]n). All this can be done. A d-dimensional

combinatorial subspace of [2]n is defined by taking disjoint sets X0, X1, . . . , Xd

and defining U to be the set of all unions X0 ∪
⋃
i∈AXi such that A ⊂ [d]. It

is natural to define two such subspaces to be parallel if they are defined by

sequences of sets (X0, X1, . . . , Xd) and (Y0, Y1, . . . , Yd) such that Xi = Yi for

every i ≥ 1, and also, since we want to take a disjoint product, to add the

condition that X0 and Y0 should be disjoint. If we do that, then a typical

point in the disjoint product is a pair (X,Y ) such that X = X0 ∪
⋃
i∈AXi and

Y = Y0 ∪
⋃
i∈BXi such that A ∩ B = ∅. If we set Z = [n] \ (X ∪ Y ), we see

easily that this is precisely a d-dimensional combinatorial subspace of [3]n: X0

and Y0 are the sets where the fixed coordinates are 1 and 2, respectively, and

the wildcard sets are X1, . . . , Xd.

With these concepts in mind, let us now give an overview of the proof of

DHJ3. (To generalize this discussion to DHJk is straightforward: the Ajtai-

Szemerédi argument can be used to deduce a “k-dimensional corners” theorem

from the (k−1)-dimensional Szemerédi theorem, and that provides a template

for our deduction of DHJk+1 from MDHJk, which itself can be deduced from

PDHJk, which follows from DHJk.)

5.1. Finding a dense diagonal. Recall that we are defining a diagonal in

[3]n to be a set of the form {(X,Y, Z) : X ∪ Y = T}. Equivalently, one fixes a

set Z and defines the associated diagonal to be the set of all sequences in [3]n

that take the value 3 in Z and 1 or 2 everywhere else.

Obviously the diagonals form a partition of [3]n, so if A ⊂ [3]n is a set of

density δ > 0, then by averaging we can find a diagonal inside which A still has

density δ. We can also ensure that this diagonal is not too small by throwing

away the very small fraction of [3]n that is contained in small diagonals.

It is not completely obvious at this stage what probability measure we

want to take on [3]n, but note that the argument so far is general enough to

apply to any measure.

5.2. A dense 12-set that is disjoint from A. What should we do next?

In the equivalent stage of the corners argument we were assuming that A

contained no corners. Then every pair of points of A in our dense diagonal

implied that a third point (the bottom of the corner of which those two points

formed the diagonal) did not belong to A. Moreover, the set of points that we
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showed did not belong to A formed a dense 12-set. So now we would like to

do something similar.

At first, the situation looks very promising, since if (X,Y, Z) and (X ′, Y ′, Z)

are two points with X ⊂ X ′, both belonging to the diagonal determined by the

set Z, then we can set U = X ′ \X and write these two points as (X,Y ′∪U,Z)

and (X ∪ U, Y ′, Z). Then the point (X,Y ′, Z ∪ U) cannot lie in A, since

otherwise the three points would form a combinatorial line in A.

So what can we say about the set of all forbidden points? These are all

points of the form (X,Y, Z∪U) such that both (X ∪U, Y, Z) and (X,Y ∪U,Z)

belong to A. Now Z is a fixed set (that defines the particular diagonal we

are talking about), so if we are presented with a point (X,Y, Z ∪ U), then

we can work out what U is. Let X be the set of all X ⊂ [n] \ Z such

that (X, [n] \ (X ∪ Z), Z) ∈ A. Then the set of all (X,Y, Z ∪ U) such that

(X,Y ∪ U,Z) ∈ A is precisely the set of all (X,Y, Z ∪ U) such that X ∈ X .

This would be a 1-set if we were not insisting that every point took the value 3

in the set Z. However, the set of all such points forms a subspace of [3]n (of di-

mension n−|Z|), and inside that subspace we have a 1-set. Similarly, the set of

all (X,Y, Z∪U) such that (X∪U, Y, Z) ∈ A is a 2-set inside the same subspace:

this time we define Y to be the set of all Y such that ([n] \ (Y ∪Z), Y, Z) ∈ A
and take the set of all points (X,Y, Z ∪ U) such that Y ∈ Y.

Thus, the good news is that we have found a 12-set that is disjoint from

A, but the bad news is that this 12-set is in a subspace of [3]n rather than in

the whole space.

5.3. A dense 12-set that correlates with A. In the proof of the result about

corners, we used a simple averaging argument at this stage: if there is a dense

12-set that is disjoint from A, then one of three other 12-sets must have an

unexpectedly large intersection with A. However, we cannot argue as straight-

forwardly here, since the 12-set we have found is not dense.

There are in fact two problems here. The first is the obvious one that we

have restricted to a subspace, the density of which will be very small. To see

this, note that for almost all points (X,Y, Z) in [3]n, the sets X, Y , and Z

have size very close to n/3. Therefore, it may well be that A consists solely of

such points, in which case when we pass to the subspace that takes the value

3 on some fixed Z we will lose approximately n/3 dimensions.

The second problem is that even when we do restrict to such a subspace

we find that A may well have tiny density, since almost all triples in such a

subspace will be of the form (X,Y, Z∪U) withX, Y , and U all of approximately

the same size, and it may well be that no such triples belong to A, since then

X, Y , and Z ∪ U do not all have approximately the same size.
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To get around these problems, we do two things. First, we do not use the

uniform measure on [3]n but instead the equal-slices measure. This deals with

the second problem, since for an equal-slices random triple (X,Y, Z) it is no

longer the case that the sets X, Y , and Z almost always have approximately

the same size. Second, we argue that we may assume that the restriction of A

to almost all subspaces has density at least δ − η for some very small η. This

observation is standard in proofs of density theorems: roughly speaking, if A

often has smaller density than this, then somewhere it must have substantially

larger density (by averaging), and then we have completed the iteration step

in a particularly simple way. But if A almost always has density at least δ− η,

then when we use an averaging argument to find a diagonal that contains many

points of A, we can also ask for A to have density at least δ − η inside the

subspace we are forced to drop down to.

Once all these arguments have been made precise, the conclusion is that

there is a subspace V of [3]n of reasonably large dimension such that the density

of A inside V is at least δ − η, and a dense 12-set inside that subspace that is

disjoint from A. Then a simple averaging argument similar to the one in the

corners proof gives us a dense 12-set in that subspace inside which the relative

density of A is at least δ + c(δ). (For this we must make sure we choose η

sufficiently small for the small density decrease to be more than compensated

for by the subsequent density increase.)

Thus, although the statement and proof of this step are directly modelled

on the corresponding step for the corners proof, there are some important

differences: we show that A correlates locally (that is, in some subspace of

density that tends to zero) with a 12-set, whereas in the corners proof a global

correlation is found. We do not know whether a dense subset of [3]n that

contains no combinatorial line must correlate globally with a 12-set. (Strictly

speaking, we do know, since we have proved that every dense subset of [3]n

contains a combinatorial line. However, one can obtain a better formulation of

the question by replacing the assumption that the set contains no lines by the

assumption that it contains few lines.) A second difference is that although

we start with a set A that is equal-slices dense, the local correlation that the

proof ends up giving is with respect to the uniform measure. (There is a general

principle operating here, which is that equal-slices measure does not behave

well when you restrict to combinatorial subspaces.)

5.4. A dense 1-set can be almost entirely partitioned into large combina-

torial subspaces. Bearing in mind our dictionary, the next stage of the proof

should be to partition almost all of a dense 1-set into combinatorial subspaces

of dimension tending to infinity.
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Let us recall what a 1-set, or a 23-insensitive set, is. It is a set A ⊂ [3]n

with the property that if x ∈ A, y ∈ [3]n and {i : xi = 1} = {i : yi = 1}, then

y ∈ A. Equivalently, using set-theoretic notation, it is a set of triples of the

form {(X,Y, Z) : X ∈ X} for some collection X of subsets of [n].

At this stage of the corners proof, one starts with a 1-set X × [N ], applies

Szemerédi’s theorem over and over again to remove arithmetic progressions Pi
from X until it is no longer dense, and then partitions the sets Pi × [N ] into

sets of the form Pi ×Qij , where the Qij are translates of Pi.

If we follow the proof of the corners theorem, then we should expect

an argument along the following lines. We start with the 1-set {(X,Y, Z) :

X ∈ X}. We then partition almost all of X , which can be thought of as a

subset of [2]n, into large combinatorial subspaces using repeated applications

of MDHJ2. For each one of these subspaces U , we then partition the disjoint

product U � [3]n into combinatorial subspaces.

Unfortunately, this last step does not work, which leads us to the sec-

ond point where our argument is more complicated than that of Ajtai and

Szemerédi, and the second place where we use localization to get us out of

trouble. The difficulty is this. If U is the d-dimensional subspace defined

by the sets (X0, X1, . . . , Xd), then U � [3]n consists of all triples (X,Y, Z) of

disjoint sets such that X is a union of X0 with some of the sets Xi. A combi-

natorial subspace inside this set must have wildcard sets that are unions of the

Xi with i ≥ 1, which means that it cannot contain any point (X,Y, Z) such

that Y ∩Xi and Z ∩Xi are nonempty for every i.

This is a genuine difficulty, but we can get round it. The way we do so

may at first look a little dangerous, but it turns out to work. The argument

proceeds in five steps as follows.

• Let B be a 23-insensitive set of density η. Let m be a positive integer

to be chosen later (for now it is sufficient to think of it as a number that

tends to infinity but is much much smaller than n), and choose a random

element of [3]n by randomly permuting the ground set [n] and then taking

a pair (x, y), where x is chosen uniformly from [2]m and y is chosen uni-

formly from [3]n−m. (Here we are regarding x as supported on the first m

elements of the randomly permuted ground set and y as supported on the

last n−m elements.) For sufficiently small m, the distribution of (x, y) is

approximately uniform, so if for each y we let Ey = {x : (x, y) ∈ B}, then

Ey has density at least η/3 in [2]m for a set of y of density at least η/3.

(This is not the main reason that we need m to be small, so this step will

be true with a great deal of room to spare.)

• For each such y, use MDHJ2 to find a d-dimensional combinatorial sub-

space U of [2]m that lives inside Ey and hence has the property that

(x, y) ∈ B for every x ∈ U . (Here, d depends on m and η.)
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• By the pigeonhole principle, we can find a subset T of [3]n−m of density

θ = θ(m, d, η) and a combinatorial subspace U ⊂ [2]m such that U×T ⊂ B.

Let us choose T to be maximal: that is, T is the set of all y ∈ [3]n−m such

that U×{y} ⊂ B. Since B is a 23-insensitive set, it follows that if we allow

the wildcard sets of U to take the value 3 as well, then all the resulting

points will still belong to B. That is, we have the same statement as above

but now U is a combinatorial subspace of [3]m. This is the point of our

argument “where the induction happens.”

• U × T is a union of combinatorial subspaces, and there are quite a lot of

them. It is tempting at this stage to remove them from B and start again.

But unfortunately there is no reason to suppose that B \ (U × T ) will be

23-insensitive. (We give an example to illustrate this just after this proof

outline.) However, this turns out not to be too serious a problem, because

for every x ∈ X, the set (B \ (U × T )) ∩ ({x} × [3]n−m) is a 23-insensitive

subset of {x} × [3]n−m. In other words, we can partition B \ (U × T ) into

locally 23-insensitive sets and run the argument again.

• Using this basic idea, we develop an iterative proof. Whenever we are

faced with a set of small density we regard it as part of our “error set”

and leave it alone. And from any set of large density we remove a disjoint

union of combinatorial subspaces and partition the rest into locally 23-

insensitive sets. If we are careful, we can choose m in such a way that

the combinatorial subspaces have dimension that tends to infinity with n,

but the number of iterations before there are no dense sets left is smaller

than n/m, so we never “run out of dimensions.” In this way we prove that

a 23-insensitive set can be almost entirely partitioned into combinatorial

subspaces.

Here, as promised, is an example of a 23-insensitive set B such that re-

moving U × T leaves us with a set that is no longer 23-insensitive. Let m = 2

and n = 3, and let B be the 23-insensitive set {11, 22, 23, 32, 33}×{2, 3}. Then

B contains the set {11, 22, 33} × {2, 3}, which is of the form U × T with U a

subspace and T 23-insensitive (and it is the only nontrivial subset of this form).

If we remove this from B, we end up with the set {23, 32} × {2, 3}, which is

no longer 23-insensitive. It is, however, 23-insensitive in the third coordinate.

5.5. A dense 12-set can be almost entirely partitioned into large combina-

torial subspaces. This stage of the argument is very similar to the correspond-

ing stage of the corners argument and needs little comment. One simply checks

that the intersection of a 13-insensitive set with a combinatorial subspace is

13-insensitive inside that subspace (which is almost trivial). Then, given an

intersection of a 23-insensitive set and a 13-insensitive set, one applies the re-

sult of the previous section to the 23-insensitive set, partitioning almost all of
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it into subspaces, and then applies the same argument to the 13-insensitive set

inside each subspace.

5.6. A density increment on a large combinatorial subspace. Again, this

stage of the argument is very similar to the corresponding stage of the corners

argument. If A has increased density on a (locally) 23-insensitive set, and

if that set can be almost entirely partitioned into combinatorial subspaces of

dimension tending to infinity, then by averaging we must be able to find one

of these combinatorial subspaces inside which A has increased density.

We are not quite in a position to iterate at this point, because we started

out with a set of equal-slices measure δ and ended up finding a combinatorial

subspace on which the uniform density had gone up. However, it turns out to

be quite easy to pass from that to a further subspace inside which A has an

equal-slices density increment, at which point we are done.

6. Measure for measure

As we have already mentioned, there are some arguments that work better

when we use product measures and others when we use equal-slices measures.

This appears to be an unavoidable situation, so we need a few results that

will tell us that if we can prove a statement in terms of one measure, then we

can deduce a statement in terms of another. In this section, we shall collect

together a number of such results, so that later on in the paper we can simply

apply them when the need arises. The results we prove are just technical

calculations, so the reader may prefer to take them on trust. The statements

we shall need later are Corollary 6.4, Corollary 6.5, and Lemma 6.6.

We begin with a standard definition that will tell us when we regard two

probability measures as being close.

Definition. Let µ and ν be two probability measures on a finite set X .

The total variation distance d(µ, ν) is defined to be maxA⊂X |µ(A)− ν(A)|.

In order to prove that we can switch from one probability measure to

another, we shall make use of the following very simple general principle.

Lemma 6.1. Let µ and ν1, . . . , νm be probability measures, let a1, . . . , am
be positive real numbers that add up to 1, and suppose that d(µ,

∑m
i=1 aiνi) ≤ η.

Then for every α ∈ [0, 1] and every set A such that µ(A) ≥ α, there exists i

such that νi(A) ≥ α− η.

Proof. From our assumptions it follows that
∑m
i=1 aiνi(A) ≥ α− η, so by

averaging it follows that there exists i such that νi(A) ≥ α− η. �

6.1. From uniform measure to equal-slices measure. Let us prove a simple

but useful technical lemma before we apply Lemma 6.1.
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Lemma 6.2. Let x be an element of [k]n chosen uniformly at random,

and for each j ∈ [k], let Xj = {i : xi = j}. Then with probability at least

1−2k exp(−2n1/3), the sets Xj all have size between n/k−n2/3 and n/k+n2/3.

Proof. The size of Xj is binomial with parameters n and 1/k. Standard

bounds for the tail of the binomial distribution therefore tell us that the prob-

ability that |Xi| differs from n/k by at least r is at most 2 exp(−2r2/n). (This

particular bound follows from the Chernoff bound.) The result follows. �

As a first application of Lemma 6.1 we shall prove that a set of uniform

density δ has equal-slices density almost as great on some combinatorial sub-

space. The actual result we shall prove is, however, slightly more general. To

set it up, we shall need a little notation.

Let m < n, let σ be an injection from [m] to [n], let J = σ([m]), and

let J be the complement of J . Then we can write each element of [k]n as

a pair (x, y) with x ∈ [k]J and y ∈ [k]J . An element of [k]J is a function

from J to [k]. Given an element x = (x1, . . . , xm) of [k]m, let φσ(x) be the

element of [k]J that takes j ∈ J to xσ−1(j). In other words, φσ takes an

element of [k]m and uses σ to turn it into an element of [k]J in the obvious

way. Given y ∈ [k]J , we also define a map φσ,y : [k]m → [k]n by taking φσ,y(x)

to be (φσ(x), y). Thus, φσ,y is a bijection between [k]m and the combinatorial

subspace SJ,y = {(x, y) : x ∈ [k]J} (in which the wildcard sets are all singletons

{i} such that i ∈ J).

Now let ν be a probability measure on [k]m. For each pair (σ, y) as above,

we can define a probability measure νσ,y on [k]n by “copying” ν in the obvious

way. That is, given a subset A ⊂ [k]n we let νσ,y(A) = ν(φ−1σ,y(A)).

We now show that if m is sufficiently small, then the average of all the

measures νσ,y is close to the uniform measure on [k]n.

Lemma 6.3. Let η > 0, let k ≥ 2 be a positive integer, let n ≥ (16k/η)12,

let m ≤ n1/4, let ν be a probability measure on [k]m, and let µ be the uniform

measure on [k]n. Then d(µ,Eσ,yνσ,y) ≤ η, where the average is over all pairs

(σ, y) as defined above.

Proof. We shall prove the result in the case where all of ν is concentrated

at a single point. Since all other probability measures are convex combinations

of these “delta measures” (and their copies are the same convex combinations

of the copies of the delta measures), the result will follow.

Let u, then, be an element of [k]m, and for each C ⊂ [k]m, let ν(C) = 1

if u ∈ C and 0 otherwise. For each injection σ : [m] → [n] and each y ∈ [k]J

(where J is again the complement of σ([m])), the measure νσ,y is the delta

measure at φσ,y(u). That is, νσ,y(A) = 1 if φσ,y(u) ∈ A and νσ,y(A) = 0

otherwise.
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What, then, is Eσ,yνσ,y(A)? To answer this, let us see what happens when

A is a singleton {z}. Then νσ,y(A) = 1 if and only if the restriction of z to J

is φσ(u) and the restriction of z to J is y. So Eσ,yνσ,y(A) is the probability,

for a randomly chosen pair (σ, y), that zσ(i) = ui for every i ∈ [m] and the

restriction of z to J is y.

For every σ, the probability of the second event given σ is km−n, so it

remains to calculate the probability that zσ(i) = ui for every i. For each

j ∈ [k], let Xj = {i : zi = j} and let nj be the cardinality of Xj . Now

let us choose the values σ(1), σ(2), . . . , σ(m) one at a time and estimate the

conditional probability that σ(i) ∈ Xui given that σ(h) ∈ Xuh for every h < i.

If we set p = minj nj and q = maxj nj , then each conditional probability of

this kind will be at most q/(n−m) and at least (p−m)/(n−m).

Lemma 6.2 tells us that with probability at least 1 − 2k exp(−2n1/3) we

have the bounds n/k−n2/3 ≤ p and q ≤ n/k+n2/3. If those bounds hold, then

the probability that σ(i) ∈ Xui for every i ∈ [m] lies between (1/k− 2n−1/3)m

and (1/k+2n−1/3)m. (Here we are using the inequality (n/k+n2/3)/(n−n1/4)
≤ 1/k + 2n−1/3, which holds if k ≥ 2 and n ≥ 8.) Therefore, it lies between

k−m(1− η/4) and k−m(1 + η/4). (This inequality is valid if n ≥ (16k/η)12, as

we are assuming.)

We have just shown that the value of the measure Eσ,yνσ,y on a singleton

{z} is approximately equal to the value taken by the uniform measure, provided

that the singleton has roughly the same number of coordinates of each value.

Let B be the set of all “balanced” sequences z. That is, B is the set

of z such that the assumptions of the above argument are satisfied. Then

Eσ,yνσ,y(B) ≥ (1 − 2k exp(−2n1/3)(1 − η/4) ≥ 1 − η/2, from which it follows

that Eσ,yνσ,y(Bc) ≤ η/2. Therefore, if A is any subset of [k]n, we have that

Eσ,yνσ,y(A) ≤ µ(A)(1 + η/4) + η/2

and

Eσ,yνσ,y(A) ≥ µ(A)(1− η/4)− η/2.
Since µ(A) ≤ 1, it follows that |µ(A)− Eσ,yνσ,y(A)| ≤ η.

As commented at the beginning of the proof, the result for arbitrary ν

follows from this result, since we can write it as a convex combination of delta

measures and apply the triangle inequality. �

Armed with this result, we now prove two statements that will be helpful

to us later on.

Corollary 6.4. Let A be a subset of [k]n of uniform density δ, let η > 0,

let m ≤ n1/4, and suppose that n ≥ (16k/η)12. Let J be a random subset of

[n] of size m, and let y be a random element of [k]J . Then the expected equal-

slices density of A inside the combinatorial subspace SJ,y is at least δ − η. In
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particular, there exist J and y such that the equal-slices density of A inside

SJ,y is at least δ − η.

Proof. Let ν be the equal-slices measure on [k]m and apply Lemma 6.3. It

implies that Eσ,yνσ,y(A) ≥ δ− η, from which it follows that there exists a pair

(σ, y) such that νσ,y(A) ≥ δ − η. But νσ,y is the equal-slices measure on the

combinatorial subspace SJ,y, where J = σ([m]), which is m-dimensional. �

For the next lemma we need some notation. Given a subset J ⊂ [n] of

size m and a sequence y ∈ [k]J , let us write S′J,y for the set of all sequences in

SJ,y that never take the value k in J . Thus, S′J,y is a copy of [k − 1]m. By the

equal-slices density on S′J,y we mean the image of the equal-slices density on

[k−1]m (where this is considered as a set in itself and not as a subset of [k]m).

Corollary 6.5. Let A be a subset of [k]n of uniform density δ, let η > 0,

let m ≤ n1/4, and suppose that n ≥ (16k/η)12. Let J be a random subset of [n]

of size m, and let y be a random element of [k]J . Then the expected equal-slices

density of A inside the set S′J,y is at least δ − η. In particular, there exist J

and y such that the equal-slices density of A inside S′J,y is at least δ − η.

Proof. Let ν ′ be the measure on [k]m defined by taking ν ′(A) to be the

equal-slices measure of A∩[k−1]m (considered as a subset of [k−1]m). In other

words, ν ′(A) is the probability that x ∈ A if you choose a random (k−1)-tuple

(r1, . . . , rk−1) of positive integers that add up to m and then let x be a random

element of [k − 1]m with rj js for each j.

Applying Lemma 6.3, we find that Eσ,yν ′σ,y(A) ≥ δ − η, from which it

follows that there exists a pair (σ, y) such that ν ′σ,y(A) ≥ δ− η. But ν ′σ,y is the

equal-slices measure on the set S′J,y, where J = σ([m]). �

6.2. From equal-slices measure to uniform measure. We would now like

to go in the other direction, passing from a set of equal-slices density δ to a

subspace inside which the uniform density is at least δ − η for some small η.

As before, we need to use a result that says that a typical sequence x is not

too imbalanced. Since we are choosing x from the equal-slices measure, the

conclusion we can hope for is much weaker than the conclusion of Lemma 6.2:

the result we use is Corollary 3.5, which tells us that with high probability

every value will be taken a reasonable number of times.

The result we prove in this subsection states that if A has equal-slices

density δ, then there is a distribution on the m-dimensional subspaces of [k]n

such that if you choose one at random, then the expected uniform density of

A in that subspace is at least δ − β.

Lemma 6.6. Let δ > 0 and let m,n, and k be positive integers with m ≤
n/k. Consider the following way of choosing a random element of [k]n. First,



A NEW PROOF OF THE DENSITY HALES-JEWETT THEOREM 1313

choose a random subset J ⊂ [n] of size m, then choose x ∈ [k]J uniformly at

random and choose y ∈ [k]J according to the equal-slices measure on [k]J (with

this choice made independently of the choice of x). Then the total variation

distance between the resulting probability distribution on [k]n and equal-slices

measure on [k]n is at most km/n.

Proof. Let z be an element of [k]n. We shall estimate the probability that

(x, y) = z, when x and y are chosen as in the statement of the theorem, and

compare that with the equal-slices probability of the singleton {z}. To do this,

let us define uj , for each j ∈ [k], to be the number of i such that zi = j.

We start by considering the case m = 1. In other words, we first pick

a random i and randomly choose some j ∈ [k]. Then we randomly choose y

from equal-slices measure on [k][n]\{i}. And then we would like to know the

probability that j = zi and yh = zh for every h 6= i.

The probability that j = zi is 1/k, since we chose j uniformly. Now let

us suppose for convenience that zi is in fact equal to 1 (the other cases being

similar). Then the probability that yh = zh for every h 6= i is the equal-slices

measure of a singleton that consists of a sequence in [k]n−1 with u1− 1 1s and

uj js for every j > 1. That measure is equal toÇ
n+ k − 2

k − 1

å−1Ç
n− 1

u1 − 1, u2, . . . , uk

å−1
.

(Note that this makes sense since u1 6= 0.) For comparison, the equal-slices

measure of {z} in [k]n isÇ
n+ k − 1

k − 1

å−1Ç
n

u1, u2, . . . , uk

å−1
.

The first measure divided by the second equals (n+ k − 1)/u1.

The probability that (x, y) = z given that zi = 1 is thus (n+ k − 1)/ku1.

Therefore, by the law of total probability, the probability that (x, y) = z is∑
uj 6=0

1

k

uj
n

n+ k − 1

uj
=
n+ k − 1

n

times the equal-slices probability of z. In particular, it is at most 1+(k−1)/n

times the equal-slices probability of z.

Since that is true for every z, the total-variation distance between the two

measures in the case where m = 1 is at most (k − 1)/n. Indeed, if we write ξ1
for the new measure and ν for equal-slices measure, then for any set A we have

ξ1(A) ≤ ν(A) + k/n and ξ1(A
c) ≤ ν(Ac) + k/n, which implies the assertion.

Note that this is slightly better than the result we state in the theorem, but

we shall use this.
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Let ξm be the new measure in the general case. Then to select a point

ξm−1-randomly, we choose a random set J of size m − 1, then we choose x

uniformly from [k]J and we choose y from the equal-slices measure on [k]J .

We can convert ξm−1 into ξm as follows. Instead of choosing y according to

the equal-slices measure on [k]J , we first pick a random t ∈ J , we choose yt
uniformly at random, and we choose the rest of y independently according

to the equal-slices measure on J \ {t}. By the m = 1 case of the result, the

total variation distance between the new and old ways of choosing y is at most

(k− 1)/(n−m+ 1). It follows that the total variation distance between ξm−1
and ξm is also at most (k−1)/(n−m+1). We may assume that m ≤ n/k since

otherwise the conclusion of the lemma is trivial. This assumption implies that

(k − 1)/(n −m + 1) ≤ k/n, and the triangle inequality now implies that the

total variation distance between equal-slices measure and ξm is at most km/n,

as claimed. �

We now show that DHJ implies the equal-slices version of DHJ (which we

stated earlier as Theorem 3.7).

Corollary 6.7. Let k be a positive integer, and suppose that DHJk is

true. Let δ > 0, and let n ≥ (2k/δ)dhj(k, δ/2). Then every subset of [k]n of

equal-slices density at least δ contains a combinatorial line.

Proof. The bounds are chosen such that kdhj(k, δ/2)/n ≤ δ/2. Lemma 6.6

with m = dhj(k, δ/2) then implies that there exists a combinatorial subspace

V of dimension dhj(k, δ/2) such that the uniform density of A in V is at least

δ/2. The result follows. �

6.3. From uniform measure on [k]n to uniform measure on [k − 1]m. We

need one more result of a similar kind. This time it says that if we choose

a random set J ⊂ [n] of size m and choose y uniformly at random from [k]J

and x uniformly at random from [k − 1]J , then the distribution of (x, y) is

approximately uniform. This can be proved as another almost immediate

corollary of Lemma 6.3. However, we shall give a direct proof instead, since

this case is an easy one and the proof is short.

Lemma 6.8. Let η > 0, and let m and n be positive integers with m ≤ n1/4
and n ≥ (12/η)12. Let J be a random subset of [n] of size m, let y be a random

element of [k]J , and let x be a random element of [k−1]J (in both cases chosen

uniformly). Then the total variation distance between the resulting distribution

on (x, y) and the uniform distribution on [k]n is at most η.

Proof. Let z be an element of [k]n, let X be the set of coordinates i such

that zi = k, and let r be the cardinality of X. By the proof of Lemma 6.2,

the probability that r lies between n/k − n2/3 and n/k + n2/3 is at least
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1 − 2 exp(−2n1/3), which is at least 1 − η/3. Let us assume that z has this

property. Now choose J and let us calculate the probability that (x, y) = z

conditional on this choice of J .

If J ∩X 6= ∅, then the probability is zero. If, however, J ∩X = ∅, then

it is (k − 1)−mk−(n−m). The probability that J ∩ X = ∅ is
(n−r
m

)
, which lies

between (1−1/k−n−1/3−m/n)m and (1−1/k+n−1/3)m. A simple calculation

shows that it therefore lies between (1 − 1/k)m(1 ± 4n−1/12). Therefore, the

probability that (x, y) = z lies between k−n(1± η/3).

Let B be the set of all z such that r does not lie between n/k − n2/3 and

n/k+n2/3. Then the probability that (x, y) ∈ B is at most 1−(1−η/3)2 ≤ 2η/3.

Therefore, if A is any subset of [k]n and δ is the density of A, the probability

that (x, y) ∈ A lies between (δ − η/3)(1 − η/3) and δ(1 + η/3) + 2η/3, which

proves the lemma. �

7. A dense set with no combinatorial line correlates locally

with an intersection of insensitive sets

In this section we shall carry out the first three stages of the proof of DHJk
(corresponding to the first three stages of the sketch proofs given earlier of the

corners theorem and DHJ3).

7.1. Finding a dense diagonal. Let A be a subset of [k]n of density δ. The

aim of this subsection is to find a combinatorial subspace V of [k]n with two

properties. First, the density of A inside V is not much smaller than δ, and

second, there are many points of A in V for which the variable coordinates take

values in [k − 1]. The densities in both cases are with respect to equal-slices

measure. The second statement corresponds to the title of this subsection: this

step is analogous to finding a dense diagonal in the corners proof. However,

that proof gave us a dense structured set that was disjoint from A. Here, what

we get is a structured set that is dense in a subspace. This will not help us

at all unless A still has density almost δ (or better) in that subspace. Thus,

there is slightly more to this step than there was in the corners proof.

Lemma 7.1. Let A ⊂ [k]n be a set of uniform density δ, let 0 < η ≤ δ/4,

let m ≤ n1/4, and suppose that n ≥ (16k/η)12. Then there exists a pair (J, y),

where J is a subset of [n] of size m and y ∈ [k]J , such that one of the following

two possibilities holds :

(i) the equal-slices density of A in the subspace SJ,y is at least δ + η;

(ii) the equal-slices density of A in SJ,y is at least δ−4ηδ−1, and the equal-

slices density of A in S′J,y is at least δ/4.

Proof. By Corollary 6.4, if we choose J and y randomly, then the expected

equal-slices density of A in SJ,y is at least δ − η. If the density is never more
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than δ + η, then the probability that it is less than δ − 4ηδ−1 is less than δ/2,

since otherwise the average would be at most

(1− δ/2)(δ + η) + (δ/2)(δ − 4ηδ−1) = δ + (1− δ/2)η − 2η < δ − η,

a contradiction.

By Corollary 6.5 the average density of A in a random set S′J,y is at least

δ − η. Therefore, the probability that A has density less than δ/4 in S′J,y is at

most 1− δ/2, since otherwise the average would be at most

δ/2 + (1− δ/2)(δ/4) < 3δ/4 ≤ δ − η,

another contradiction.

It follows that if (i) does not hold, then with positive probability (ii)

holds. �

What Lemma 7.1 tells us is that either we can pass to a subspace and get

a density increment of η, in which case we can move to the next stage of the

iteration (after passing to a further subspace to convert this density increment

into a uniform density increment), or we find a “dense diagonal” in a subspace

in which A has not lost a significant amount of density.

7.2. A “simple” locally dense set that is almost disjoint from A. Let us

suppose that the second possible conclusion of Lemma 7.1 holds (for an η

that we are free to choose later). Then we have a combinatorial subspace V

of m dimensions, and A contains many points in V for which the variable

coordinates are all in [k− 1]. For simplicity, and without loss of generality, let

us assume that V = [k]m, and let us write A for A ∩ V . So we are given that

A has equal-slices density at least δ− γ (where γ = 4ηδ−1) and inside [k− 1]m

has equal-slices density at least δ/4. Let us write B for A ∩ [k − 1]m. Finally,

if x ∈ [k]m and i, j ∈ [k], let us write xi→j for the sequence that turns all the

is of x into js.

Lemma 7.2. Let A be a subset of [k]m that contains no combinatorial line,

and let B = A ∩ [k − 1]m. For each j ≤ k − 1, let Cj be the set {x ∈ [k]m :

xk→j ∈ B}. Then Cj is a jk-insensitive set, and A∩C1∩· · ·∩Ck−1 ⊂ [k−1]m.

Proof. Since the condition for belonging to Cj depends only on xk→j , it

is trivial that Cj is jk-insensitive.

Suppose now that x ∈ C1 ∩ · · · ∩Ck−1 and that at least one coordinate of

x takes the value k. Let X be the set of coordinates where x = k. Then if you

change all the coordinates in X to j, you end up with a point that belongs to

A, since x ∈ Cj . Therefore, since A contains no combinatorial line, it follows

that x itself does not belong to A. �
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Lemma 7.3. Let A, B and C1, . . . , Ck−1 be the subsets of [k]m defined in

Lemma 7.2, and let C = C1∩· · ·∩Ck−1. Let δ > 0, and let θ = pdhj(k−1, δ/4).

Then if m ≥ max{edhj(k − 1, δ/16), 16(k − 1)2/δ} and B has equal-slices

density at least δ/4 in [k − 1]m, it follows that C \ [k − 1]m has equal-slices

density at least θ in [k]m.

Proof. There is a one-to-one correspondence between combinatorial lines

in B and points in C \ [k − 1]m. Moreover, this one-to-one correspondence

preserves equal-slices measure (for the trivial reason that we defined the equal-

slices measure on the set of combinatorial lines in [k− 1]m by treating them as

points in [k]m). Since θ = pdhj(k − 1, δ/4) > 0, Theorem 3.8 (which requires

the lower bound on m) implies that the equal-slices density of combinatorial

lines in B is at least θ, as claimed. �

From this lemma and Lemma 3.2 we see that ν(A ∩ C) ≤ (k/θm)ν(C).

(Recall that ν is the equal-slices measure.) If m is large enough, that will

be significantly less than δ. This is the sense in which A is “almost disjoint”

from C.

7.3. A “simple” locally dense set that correlates with A.

Lemma 7.4. Let A, B, and C1, . . . , Ck−1 be the subsets of [k]m defined in

Lemma 7.2, let C = C1 ∩ · · · ∩ Ck−1, and suppose that C has density θ. Let

0 < γ ≤ δ/4, and suppose also that ν(A) ≥ δ−γ and that ν(A∩C) ≤ (δ/2)ν(C).

Then there exist sets D1, . . . , Dk−1 such that Di is ik-insensitive for each i and

such that ν(A ∩D) ≥ (δ − γ)ν(D) + δθ/4k, where D = D1 ∩ · · · ∩Dk−1.

Proof. We begin with the observation that

[k]m =
k⋃
i=1

C1 ∩ · · · ∩ Ci−1 ∩ Cci

and that this union is in fact a partition of [k]m. For each i, let us write D(i)

for the set C1 ∩ · · · ∩ Ci−1 ∩ Cci . Then D(k) = C. From our assumptions, we

know that

ν(A ∩ (D(1) ∪ · · · ∪D(k−1))) ≥ δ − γ − (δ/2)ν(D(k))

= (δ − γ)(1− ν(D(k))) + (δ/2− γ)ν(D(k))

≥ (δ − γ)(1− ν(D(k))) + δθ/4.

Since 1 − ν(D(k)) = ν(D(1) ∪ · · · ∪D(k−1)), it follows by averaging that there

exists j such that ν(A∩D(j)) ≥ δ−γ+δθ/4(k−1). Now set Di = Ci for i < j,

Dj = Ccj and Di = [k]m for i > j. Since both Ci and Cci are ik-insensitive,

this proves the lemma. �
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Now for the next part of our argument, we need to use the uniform mea-

sure. In order to do this, we must use our measure-transfer results again.

Basically, all we do is randomly restrict to a small subspace V with the uni-

form measure on it and apply Lemma 6.6, but that is not quite the whole story

since we want two things to happen: that the relative density of A ∩ D ∩ V
inside D ∩ V is still bigger than δ, and also that the relative density of D ∩ V
inside V is not too small.

Lemma 7.5. Let β > 0, and let k, r, and m be positive integers such that

r ≤ βm/k. Let A and D be subsets of [k]m such that ν(A∩D) ≥ (δ−γ)ν(D)+

3β. Then there exists a combinatorial subspace V of [k]m of dimension r such

that µV (A∩D∩V ) ≥ (δ−γ)µV (D∩V )+β, where µV is the uniform probability

measure on V .

Proof. Let us choose V by randomly choosing a set J ⊂ [m] of size r,

randomly choosing y ∈ [k]J using equal-slices measure, and taking the subspace

SJ,y. By Lemma 6.6, the expectation of µV (A∩D ∩ V )− (δ− γ)µV (D ∩ V ) is

at least ν(A ∩D) − β − (δ − γ)ν(D) − β, which is at least β by our assumed

lower bound for ν(A ∩D). �

Let us now put together the results of this section.

Lemma 7.6. Let δ > 0, let k be a positive integer, let θ = pdhj(k−1, δ/4),

let η = δ2θ/96k, let β = δθ/12k, and let γ = 4δ−1η = δθ/24k = β/2. Let n

be a positive integer, let m = bn1/4c, and let r = bβm/kc. Suppose that

n ≥ (16k/η)12 and also that m ≥ edhj(k − 1, δ/16). Let A be a subset of [k]n

of uniform density δ. Then either A contains a combinatorial line or there is an

r-dimensional combinatorial subspace W of [k]n and sets D1, . . . , Dk−1 ⊂ W

such that Dj is jk-insensitive for each j and such that if we set D to be

D1 ∩ · · · ∩Dk−1, then µW (D) ≥ γ and µW (A ∩D) ≥ (δ + γ)µW (D).

Proof. By Lemma 7.1, either there is an m-dimensional subspace V such

that µV (A) ≥ δ+ η, in which case we are done (since we can pass to a random

r-dimensional subspace of V and on average we will have the same density

increment) or there is an m-dimensional subspace V such that the equal-slices

density of A in V is at least δ − 4ηδ−1 and the equal-slices density of A in V ′

is at least δ/4, where V ′ is the set of points in V with no variable coordinate

equal to k.

Let B = A∩V ′. Then Lemma 7.3 gives us sets C1, . . . , Ck−1 such that Ci
is ik-insensitive, the intersection C = C1 ∩ · · · ∩ Ck−1 is such that C \ V ′ has

equal-slices density at least θ, and C \ V ′ is disjoint from A. The value of θ

can be taken to be pdhj(k − 1, δ/4).

Let γ = 4ηδ−1 = β/2. It is easily checked that k/θm ≤ δ/2 and that

δθ/4k ≥ 2γ. Therefore, Lemma 7.4 tells us that we can find sets D1, . . . , Dk−1
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such that Di is ik-insensitive and such that if D = D1 ∩ · · · ∩ Dk−1, then

ν(A ∩D) ≥ (δ − γ)ν(D) + δθ/4k.

Finally, Lemma 7.5 with β = δθ/12k gives us an r-dimensional subspace

W of V such that µW (A ∩ D ∩W ) ≥ (δ − γ)µW (D ∩W ) + β. This implies

that µW (A ∩ D ∩ W ) ≥ (δ + γ)µW (D ∩ W ) and that µW (D ∩ W ) ≥ γ, as

claimed. �

8. Almost partitioning low-complexity sets into subspaces

We have completed one of the two main stages of the proof, which corre-

sponds to the first three steps of the proof we sketched of the corners theorem

(and also to the first three steps of our sketch proof of DHJ3). In this sec-

tion we shall carry out a task that corresponds to the next two steps. So far,

we have obtained a density increment on a dense subset D of a subspace W .

This helps us, because D is an intersection of ik-insensitive sets, and therefore

has low complexity, in a certain useful sense. Our job now is to show that

low-complexity sets can be almost completely partitioned into combinatorial

subspaces with dimension tending to infinity. To prove this, we shall follow the

scheme of argument presented in Section 5.4. (That argument was presented

for the case k = 3, but it can be straightforwardly generalized.)

8.1. A 1k-insensitive set can be almost entirely partitioned into large sub-

spaces. We begin by proving the result for 1k-insensitive sets, and hence for

jk-insensitive sets whenever j < k. It will then be straightforward to deduce

the result for intersections of such sets.

Lemma 8.1. Let η > 0, and let d, m, and n be positive integers with

m ≥mdhj(k− 1, d, η) and n ≥ η−1m(k+d)m +m4. Let D be a 1k-insensitive

subset of [k]n. Then there are disjoint combinatorial subspaces V1, . . . , VN , each

of which has dimension d and is a subset of D, such that µ(V1 ∪ · · · ∪ VN ) ≥
µ(D)− 3η.

Proof. If µ(D) < 3η, then we are done. Otherwise, let γ = µ(D) ≥ 3η,

let J be a random subset of [n] of size m, and let us write a typical element

of [k]n as (x, y), where x ∈ [k]J and y ∈ [k]J . For each y, let us write Dy for

the set {x ∈ [k]J : (x, y) ∈ D} and Ey for the set {x ∈ [k − 1]J : (x, y) ∈ D} =

Dy ∩ [k− 1]J . Then by Lemma 6.8 the average density of the sets Ey (in [k]J)

is at least γ − η ≥ 2η. We may therefore fix J such that the average density

of the sets Ey (this time over all y ∈ [k]J but not over all J as well) is still at

least 2η. It follows that the density of y such that Ey has density at least η in

[k − 1]J is at least η.

If Ey has density at least η, then by our assumption about m it follows

that it contains a d-dimensional combinatorial subspace U ′y (where this means
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a subspace of [k − 1]J). Since D is 1k-insensitive, and therefore so is Dy, it

follows that Dy contains a d-dimensional combinatorial subspace Uy (where

this means a subspace of [k]J).

The number of possible d-dimensional subspaces of [k]J is at most (k+d)m

(since we have to decide for each of the m coordinates i ∈ J whether to give

it a fixed value in [k] or to put it into one of the d wildcard sets), so by the

pigeonhole principle there must exist a subspace U ⊂ [k]J such that the set

T = {y ∈ [k]J : U × {y} ⊂ D} has density at least η(k + d)−m. Since D is

1k-insensitive, it follows that T is also 1k-insensitive.

The set U × T is a subset of D of density at least η(k + d)−m, and it is

a union of the d-dimensional subspaces U × {y} with y ∈ T . We now remove

U × T from D.

The resulting set D1 = D \ (U × T ) is not necessarily 1k-insensitive, but

for every x ∈ [k]m, the set {y : (x, y) ∈ D1} is 1k-insensitive: this follows

immediately from the fact that both D and T are 1k-insensitive. Thus, we can

at least partition [k]n into subspaces inside each of which D1 is 1k-insensitive.

This gives us the basis for an inductive argument. The inductive hypoth-

esis is that Dr is a set of density at least 3η and Jr ⊂ [n] is a set of size rm

such that for every x ∈ [k]Jr , the set (Dr)x = {y ∈ [k]Jr : (x, y) ∈ Dr} is

1k-insensitive, and also that D \Dr is a union of d-dimensional subspaces of

density at least η(k + d)−m. We have essentially just given the proof of the

inductive step, but we need to generalize the argument very slightly.

To do this, let us write a typical element of Dr as (x, y, z) with x ∈ [k]Jr ,

y ∈ [k]L, and z ∈ [k][n]\(Jr∪L), where L is a random subset of [n] \ Jr of size

m. For each pair (x, z), let (Er)x,z be the set {y ∈ [k − 1]L : (x, y, z) ∈ Dr}.
The average density of the sets (Dr)x is the density of Dr, which is at least

3η. It follows from Lemma 6.8 that the average density of the sets (Er)x,z is

at least 2η, provided that n − rm ≥ (12/η)12. We may fix L such that this

remains true. And then for this L, the density of pairs (x, z) such that (Er)x,z
has density at least η is at least η. Let Jr+1 = Jr ∪ L.

If (Er)x,z has density at least η, then it contains a d-dimensional combi-

natorial subspace U ′x,z, where this is a subspace of [k − 1]L. Since (Dr)x is

1k-insensitive, it follows that it also contains a d-dimensional combinatorial

subspace Ux,z, where this time we mean a subspace of [k]L. By the pigeon-

hole principle there is a d-dimensional subspace U ⊂ [k]L such that the set

T = {(x, z) ∈ [k]Jr × [k][n]\Jr+1 : {x} × U × {z} ⊂ Dr} has density at least

η(k + d)−m.

Let Dr+1 = Dr \ T × U (where we interpret T × U to mean {(x, y, z) :

(x, z) ∈ T, y ∈ U}). Then T × U is a union of d-dimensional subspaces,

the density of T × U is at least η(k + d)−m, and for every (x, y), the set

{z ∈ [k][n]\Jr+1 : (x, y, z) ∈ Dr+1} is 1k-insensitive.
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Clearly we cannot iterate this process more than η−1(k+d)m times. There-

fore, since n ≥ η−1m(k + d)m + m4, it follows that n − rm is always at least

m4 (this is needed for the application of Lemma 6.8) and therefore that we

can write D as a disjoint union of d-dimensional combinatorial subspaces and

a residual set of density at most 3η, as claimed. �

8.2. An intersection of jk-insensitive sets can be almost entirely parti-

tioned into large subspaces. The main result of this subsection is a very straight-

forward consequence of Lemma 8.1. Let F be the function that bounds n in

terms of d in that lemma (and also η and k, which we shall regard as fixed):

that is, F (d) = dη−1m(k + d)me, where m = mdhj(k − 1, d, η). Let F (k−1)(d)

denote the result of applying F to d k − 1 times.

Lemma 8.2. Let η > 0, and let d and n be positive integers such that

n ≥ F (k−1)(d). For each j ∈ [k − 1], let Dj be a jk-insensitive subset of [k]n

and let D = D1 ∩ · · · ∩Dk−1. Then there are disjoint combinatorial subspaces

V1, . . . , VN , each of which has dimension d and is a subset of D, such that

µ(V1 ∪ · · · ∪ VN ) ≥ µ(D)− 3(k − 1)η.

Proof. We prove the result by induction on the number of insensitive sets

in the intersection (which is not quite the same as proving it by induction

on k). That is, we prove by induction that if n ≥ F (j)(d), then the conclusion

of the lemma holds for D(j) = D1 ∩ · · · ∩Dj and with an error of at most 3jη

instead of 3(k − 1)η.

Lemma 8.1 does the case j = 1. In general, if we have the result for j− 1,

then let n ≥ F (j)(d) = F (F (j−1(d)). Then by Lemma 8.1 we can partition Dj

into combinatorial subspaces V1, . . . , VN of dimension F (j−1)(d) together with

a residual set of density at most 3η. The intersection of any Dh with any Vi is

hk-insensitive, and Vi ⊂ Dj , so

D(j) ∩ Vi = D(j−1) ∩ Vi = (D1 ∩ Vi) ∩ · · · ∩ (Dj−1 ∩ Vi)
is an intersection of insensitive sets to which we can apply the inductive hy-

pothesis.

That allows us to partition each Vi into combinatorial subspaces Vis of

dimension d together with a residual set of relative density (in Vi) at most

3(j − 1)η. The union of these new residual sets has density at most 3(j − 1)η

in [k]n (since the subspaces Vi are disjoint), so we have partitioned D(j) into

a union of d-dimensional combinatorial subspaces together with a residual set

of density at most 3jη. This completes the inductive step. �

9. Completing the proof

At this stage our argument is essentially finished. In this section we shall

spell out why our lemmas show that DHJk follows from DHJk−1. We shall
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begin with a qualitative argument. After that, we shall informally discuss how

the bounds we obtain for DHJk depend on those that we obtain for DHJk−1.

Finally, we shall exploit the fact that we have good bounds when k = 2 to give

a more careful analysis of the bounds we obtain for DHJ3, which turn out to

be of tower type.

9.1. Proof that DHJk−1 implies DHJk. Let A ⊂ [k]n be a set of density δ.

Our aim will be to find a combinatorial subspace V of dimension tending to

infinity with n such that the relative density of A ∩ V in V is at least δ + c,

where c depends only on δ and k (and c does not decrease as δ increases). If

we can do that, then we will be able to apply a simple iterative argument to

complete the proof.

Lemma 7.6 says that either A contains a combinatorial line or we can

find an r-dimensional subspace W and subsets D1, . . . , Dk−1 of W such that

if D = D1 ∩ · · · ∩ Dk−1, then µW (D) (the density of D inside W ) is at least

γ and µW (A ∩ D) ≥ (δ + γ)µ(D). Here, r tends to infinity with n for given

δ and k (and increases as δ increases), and γ is a parameter that depends on

δ and k only. To be precise, if we let θ = pdhj(k − 1, δ/4), then we can take

γ = δθ/24k and r = bδθbn1/4c/24k2c. Thus, this step depends on the fact that

DHJk−1 implies PDHJk−1.

Now apply Lemma 8.2 with [k]n replaced by the r-dimensional subspace

W and with η = γ2/6(k−1). Then we can find disjoint combinatorial subspaces

V1, . . . , VN of W such that each has dimension equal to the largest d for which

r ≥ F (k−1)(d), each is a subset of D, and µW (V1 ∪ · · · ∪ VN ) ≥ µW (D)− γ2/2.

Here d depends on η and k as well as r (the dependence was suppressed in our

notation for the function F ) and tends to infinity as r tends to infinity. The

function F is defined in terms of the function mdhjk−1, so this step depends

on the fact that DHJk−1 implies MDHJk−1.

It follows that

µW (A ∩ (V1 ∪ · · · ∪ VM )) ≥ (δ + γ)µ(D)− γ2/2
≥ (δ + γ/2)µ(D)

≥ (δ + γ/2)µW (V1 ∪ · · · ∪ VM ).

Thus, by averaging there must be some i such that µW (A∩Vi) ≥ (δ+γ/2)µ(Vi).

Since d, the dimension of Wi tends to infinity with r and r tends to

infinity with n, and since γ depends on δ and k only, we have found our

desired density increment on a subspace. We may now repeat the argument.

Either A∩Vi contains a combinatorial line, or we can pass to a further subspace

(with dimension tending to infinity with d and hence with n) inside which the

relative density is at least δ + γ. (In fact, we can do slightly better, since we

have now replaced δ by δ + γ/2 so the density increment at this second stage

will be better than γ/2.) Since the density of A inside any subspace is always
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at most 1, there can be at most 2/γ iterations of this procedure before we

eventually find a combinatorial line. Since this number of iterations depends

only on δ and k, if the original n is large enough, A must have contained a

combinatorial line.

Since DHJ1 is trivial and DHJ2 follows from Sperner’s theorem, the proof

of the general case of DHJ is complete.

9.2. What bound comes out of the above argument? Let us briefly consider

how the bound that we obtain for DHJk relates to the bound that we obtain

for DHJk−1.

We note first that edhj(k − 1, δ) is at most (2(k − 1)/δ)dhj(k − 1, δ/2),

by Corollary 6.7 (but all we really care about for the purposes of this discus-

sion is that the two functions are of broadly similar type). Next, recall from

Theorem 3.7 that if A ⊂ [k − 1]n has equal-slices density at least δ, then the

equal-slices density of the set of combinatorial lines in A is at least (δ/9)k−m,

where m = edhj(k − 1, δ/4). That is, pdhj(k − 1, δ) is exponentially small

as a function of edhj(k − 1, δ) and hence as a function of dhj(k − 1, δ). In

particular, if dhj(k−1, δ) is already a tower-type function, then pdhj(k−1, δ)

behaves broadly like the reciprocal of dhj(k−1, δ). It follows that the subspace

we pass to in Lemma 7.6 has dimension broadly comparable to n/dhj(k−1, δ).

Equivalently, if we want to pass to an r-dimensional subspace, then we need n

to be at least rdhj(k − 1, δ) or so.

The next step depends on MDHJk−1, and this is where things get very

expensive. The proof we gave of MDHJk−1 yields a bound that is obtained as

follows. Define Gk−1(x) to be exp(dhj(k − 1, 1/x)). Then mdhjk−1(d, δ) is

bounded above by G
(d)
k−1(1/δ), where G

(d)
k−1 is the d-fold iteration of Gk−1. The

function F that comes into Lemma 8.2 is broadly comparable to mdhjk−1(d, δ)

(again, assuming that mdhjk−1(d, δ) is at least of tower type), so F (k−1) is

something like G
(d(k−1))
k−1 .

This function is so much bigger than the function r 7→ dhj(k − 1, δ) that

we can more or less ignore the former. Therefore, if we want to end up with a

d-dimensional subspace after one round of the main iteration, we need to start

with n being something like the d(k − 1)-fold iteration of a function that has

similar behaviour to the function Gk−1 defined above, which is pretty similar

to the function d 7→ dhj(k − 1, 1/d). We then have to run the whole iteration

2/γ times, where γ is broadly comparable to dhj(k − 1, δ)−1. So eventually

we need n to be larger than (k − 1)ddhj(k − 1, δ) iterations of the function

d 7→ dhj(k − 1, 1/d), which is roughly dhj(k − 1, δ) iterations.

To rephrase slightly, if we let rdhjk−1(s) = dhj(k−1, 1/s) (the “r” stands

for “reciprocal” here), then rdhjk(s) is obtained by iterating the function

rdhjk−1 roughly rdhjk−1(s) times.
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This means that as k increases by 1, the function rdhjk goes up by one

level in the Ackermann hierarchy. (It is bigger than the corresponding level of

the Ackermann function, but not in an interesting way.)

9.3. Bounds for DHJ3. When k = 3, we can obtain much better bounds

because in this case we have reasonable bounds for mdhjk−1. Let us therefore

do the analysis a little more carefully.

First, note that Theorems 3.1 and 2.3 tell us that we can take pdhj(2, δ)

to be δ2/2 and mdhj2(d, δ) to be 25δ−2
d
. Therefore, returning to the argument

given in Section 9.1 and setting k = 3, we can take θ to be δ2/32, γ = δ3/2304,

and r = bδ3bn1/4c/41472c.
We apply Lemma 8.2 with η = γ2/6(k − 1) = δ6/12(2304)2, which is at

least δ6/227. Therefore, mdhj2(d, η) is at most 25(227δ−6)2
d
, and if d ≥ 10,

say, then F (d) can be bounded above by 2 ↑ δ−1 ↑ 2 ↑ 2d, where the symbol

↑ denotes exponentiation and x ↑ y ↑ z means x ↑ (y ↑ z). It follows that

F (2)(d) is at most 2 ↑ δ−1 ↑ 2 ↑ 2 ↑ δ−1 ↑ 2 ↑ 3d. (The final 3 instead of 2 is to

(over)compensate for losing a factor of 2 earlier on in the tower.)

We may therefore take d to be δ log(6) r, where log(6) is the six-fold iterated

logarithm. In fact, the factor of δ is unduly generous, so, bearing in mind our

bound for r in terms of n, it is safe to take d to be (δ/2) log(6) n. (Strictly

speaking, we need to assume that n is sufficiently large, but if we are generous

later, then this requirement will be met by a huge margin.)

The number of iterations we need is certainly no more than 2304/δ3, but

we can in fact do slightly better. It takes at most 2304/δ2 iterations for the

density to increase from δ to 2δ. Therefore, the total number of iterations is

at most 2304δ−2(1 + 1/4 + 1/16 + · · · ) = 3072δ−2. It follows that DHJ(3, δ) is

bounded above by a tower of 2s of height 20000δ−2. (Since 20000 > 6× 3072,

the dimension of the space will still be vast when the iterations come to an

end.) This proves the estimate claimed in Theorem 1.5.
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