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Abstract

Let Xn → PN be a smooth, linearly normal algebraic variety. It is shown

that the Mabuchi energy of (X,ωFS |X) restricted to the Bergman metrics

is completely determined by the X-hyperdiscriminant of format (n − 1)

and the Chow form of X. As a corollary it is shown that the Mabuchi

energy is bounded from below for all degenerations in G if and only if the

hyperdiscriminant polytope dominates the Chow polytope for all maximal

algebraic tori H of G.
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1. Introduction and statement of results

Let Xn −→ PN be a smooth complex projective variety of degree d≥2 em-

bedded by a very ample complete linear system. Let ωFS denote the associated

Fubini-Study Kähler form. We set ω := ωFS |X . To σ ∈ G (the automorphism

group of PN ) we associate the Bergman potential ϕσ ∈ C∞(X)

σ∗ω = ω +

√
−1

2π
∂∂ϕσ > 0 .
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Let νω denote the Mabuchi energy of (X,ω). For any σ ∈ G, we define

νω(σ) := νω(ϕσ) .

Let λ : C∗ −→ G be an algebraic one parameter subgroup of G. We shall refer

to such maps, and their associated potentials ϕλ(t), as degenerations. Three

basic problems in the field of Kähler geometry are the following.

Problem 1. Give a complete description of the behavior of the Mabuchi

energy along all degenerations. That is, describe

lim
|t|−→0

νω(λ(t)), t ∈ C∗ .

Problem 2. Provide necessary and sufficient conditions in terms of the

geometry of the embedding X −→ PN which ensure that νω is bounded below

along all degenerations.

Problem 3. Provide necessary and sufficient conditions in terms of the

geometry of the embedding which ensure that νω is proper along all degener-

ations.

In this paper we provide complete solutions to all of these problems. The

author’s solution is given in terms of the X-resultant (the Cayley-Chow form

of X) and the X-hyperdiscriminant of format (n− 1) (the defining polynomial

of the variety of tangent hyperplanes to X × Pn−1 in the Segre embedding).

That the X-resultant appears in the K-energy is not new and is due to Gang

Tian (see [22]). The author’s original contribution is the discovery that the

X-hyperdiscriminant also appears in the Mabuchi energy of an algebraic man-

ifold. In fact, it is the hyperdiscriminant that reflects the presence of the Ricci

curvature. The Chow form does not.

Theorem A. Let Xn ↪→ PN be a smooth, linearly normal, complex alge-

braic variety of degree d ≥ 2. Let RX denote the X-resultant (the Cayley-

Chow form of X). Let ∆X×Pn−1 denote the X-hyperdiscriminant of format

(n− 1) (the defining polynomial for the dual of X × Pn−1 in the Segre embed-

ding).1 Then there are norms such that the Mabuchi energy restricted to the

Bergman metrics is given as follows :

(1.1) νω(ϕσ) = deg(RX) log
||σ ·∆X×Pn−1 ||2

||∆X×Pn−1 ||2
− deg(∆X×Pn−1) log

||σ ·RX ||2

||RX ||2
.

Remark 1. The norms which appear on the right-hand side of (1.1) are

conformally equivalent to the standard norms on the respective spaces of poly-

nomials. These norms are described in Section 4 and were first constructed

in [22].

1We collect all of the basic definitions in Section 2.
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Remark 2. The Mabuchi energy restricted to G is not manifestly, and

most likely not, a convex function.

Theorem A reduces the problem of bounding the Mabuchi energy from

below to the problem of analyzing the simultaneous G orbit of the resultant and

hyperdiscriminant polynomials inside certain irreducible G modules Sλ•(CN+1)

and Sµ•(CN+1) respectively. The precise definitions of these modules appear

in Section 2 below. We are now prepared to state our fundamental corollary;

it provides the first complete algebraic characterization of the existence of a

lower bound for the Mabuchi energy on the space of Bergman metrics.

Corollary. Let Xn ↪→ PN be a smooth, linearly normal complex al-

gebraic variety of degree d ≥ 2. Let R := RX denote the X-resultant and

∆ := ∆X×Pn−1 denote the X-hyperdiscriminant. There is a constant C > 0

such that

νω(ϕσ) ≥ −C for all σ ∈ G(1.2)

if and only if

G · [(Rdeg(∆),∆deg(R))] ∩G · [(Rdeg(∆), 0)] = ∅

(the Zariski closure in P(Sλ• ⊕ Sµ•)).

It follows from Theorem A that the asymptotic expansion of the Mabuchi

energy along any algebraic one parameter subgroup of H (a maximal algebraic

torus of G)2 is completely determined by the Chow polytope N (RX) and the

hyperdiscriminant polytope N (∆X×Pn−1) (see (2.4)). We remark that these

are compact convex lattice polytopes inside MR := MZ(H)⊗Z R ∼= RN , where

MZ = MZ(H) denotes the rank N lattice of rational characters of H. In the

statement of Theorem B below lλ denotes the integral linear functional on MR
corresponding to the degeneration λ ∈ NZ := M∨Z (dual lattice).

Theorem B. There is an asymptotic expansion as |t| → 0:

νω(λ(t)) = FP (λ) log |t|2 +O(1) ,(1.3)

FP (λ) := deg(RX)min{x∈N (∆X×Pn−1 )} lλ(x)

− deg(∆X×Pn−1)min{x∈N (RX)}lλ(x) .

In particular, νω(λ(t)) has a logarithmic singularity as |t| → 0 and the coeffi-

cient of blow up is an integer.

Theorem B provides a complete solution to Problem 1.

2In this paper G always denotes SL(N + 1,C).
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Theorem C. The Mabuchi energy of (X,ωFS |X) is bounded from below

along all degenerations in G if and only if for all maximal tori H the hyper-

discriminant polytope dominates the Chow polytop

deg(∆X×Pn−1)N (RX) ⊆ deg(RX)N (∆X×Pn−1) .(1.4)

Theorem C provides a complete solution to Problem 2.

Theorem D. The Mabuchi energy of (X,ωFS |X) is proper along all

degenerations in G if and only if for all maximal tori H and all m� 0,m ∈ Z,

we have

(m− 1) deg(∆X×Pn−1)N (RX) + deg(∆X×Pn−1) deg(RX)SN(1.5)

⊆ mdeg(RX)N (∆X×Pn−1) .

SN is the standard N -simplex in RN , and the addition on the left side of (1.5)

denotes Minkowski summation of polyhedra.

Theorem D provides a complete solution to Problem 3. The next result

provides a weak form of the numerical criterion for the Mabuchi K-energy

map.

Theorem E. Let H be any maximal algebraic torus of G. Assume that

there is a sequence {τi} ⊂ H such that

lim inf
i−→∞

νω(ϕτi) = −∞ .

Then there exists a one parameter subgroup λ : C∗ −→ H such that

lim
|t|−→0

νω(λ(t)) = −∞ .

It seems to be a tacit assumption among researchers in the field that

the Mabuchi energy is bounded below generically. The next result provides a

precise quantitative statement to that effect in the context of algebraic degen-

erations induced from an arbitrary projective embedding.

Theorem F. Fix a maximal algebraic torus T of G. Then there is an

explicitly computable algebraic hypersurface Z = Z(T ) ⊂ G such that for all

σ ∈ G \ Z , there is a positive constant C(σ) such that

νω(ϕτ ) ≥ −C(σ) for all τ ∈ σTσ−1 .(1.6)

Applications of Theorem A to canonical Kähler metrics are as follows.

The precise definition of K-(semi)stability is new and appears below (see Def-

initions 2 and 12).
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Corollary 1.1. i) If a polarized manifold (X,L) admits a metric of

constant scalar curvature in the class c1(L), then it is K-semistable with respect

to all embeddings X
Lm−→ PNm .

ii) In particular, a Fano manifold (X,−KX) admits a Kähler Einstein

metric only if all pluri-anticanonical models are K-semistable.

iii) If (X,−KX) has a discrete symmetry group and admits a Kähler Ein-

stein metric, then it is K-stable.

We single out the following special cases.

Corollary 1.2. i) Any canonically polarized manifold (X,KX) is K-

stable with respect to its pluricanonical embeddings.

ii) Any polarized Calabi-Yau manifold (X,L) is K-stable with respect to

all embeddings X
Lm−→ PNm .

iii) Any compact homogeneous Kähler manifold is K-semistable with re-

spect to any polarization.

It should be noted that there is no error term Ψ in (1.1), unlike the main

results of Tian in [22, Th. 4.1, p. 258], [23, eq. (8.16), p. 34], as well as Tian

and the author (see [20, Th. 3.5, p. 2564]). In particular, the Mabuchi energy

restricted to the Bergman metrics is not a singular, or “degenerate” norm of

the Cayley-Chow form of X, but simply the difference of two quite honest

norms, one involving RX and the other ∆X×Pn−1 . Consequently the approach

of the author is quite down to earth and focuses on concrete (tangents, secants,

Gauss maps, etc.) projective geometric constructions with subvarieties (not

schemes) of PN very much in the spirit of F. L. Zak [27] and the seminal paper

of Griffiths and Harris [15].

The new perspective in this paper is that the generalized Futaki

invariant should not be considered as a number, but rather be

interpreted as a pair of polytopes associated to any smooth,

linearly normal projective algebraic variety X ↪→ PN .

The polytopes in question are the hyperdiscriminant and Chow polytopes

of Cayley and Gelfand, Kapranov, and Zelevinsky (see [10], [12], and [16]).

The test configurations in the literature on K-stability are linear functionals

on these polytopes. The difference of the minima of these functionals is what

controls the K-energy map for any smooth algebraic variety. From the author’s

new point of view degenerating the variety is not necessary. The problem is

to understand the relative positions of these polytopes. This does not require

full knowledge of the X-resultant and X-discriminant; only their supports are

relevant. We should point out that our expression (1.1) for the K-energy map

is given for all the Bergman metrics, not merely the diagonal ones.
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Theorem B extends the definition of K-stability first introduced by Tian

in 1997 (see [23]). This extended definition has two good properties: (i) it does

not require smoothness (or normality) of the limit cycle, and (ii) it completely

captures the behavior of the Mabuchi energy along the degeneration. In the

case of a smooth limit cycle, our definition of the generalized Futaki invariant

agrees with the original definition of Ding and Tian (see [6]). The generalized

Futaki invariant (and the corresponding notion of stability) proposed by Don-

aldson in 2002 (see [8]) satisfies (i) but only satisfies (ii) in the special case of

reduced limit cycle. However, it is possible that all of these formulations are

equivalent to one another, and for this reason the author has not introduced

any new terminology.

1.1. Plan of the Proof of Theorem A. In order to assist the reader we indi-

cate the steps required to prove the main result. Full details and explanations

of notation appear in the sections that follow.

Step 1. Let X −→ PN be a smooth, linearly normal dually nondegener-

ate complex projective variety. Let ∆X denote the X-discriminant ; that is,

{∆X =0} = X∨ is the defining polynomial of the projective dual to X. Let

J1(OX(1))∨ denote the bundle of one-jets of the hyperplane bundle restricted

to X. Let D(σ) denote the Donaldson functional associated to the invariant

form cn+1, the bundle J1(OX(1))∨, and the Hermitian metrics H (the standard

metric on CN+1) and H(σ) where σ ∈ G := SL(N + 1,C). Then we have the

identity

(1.7) (−1)n+1D(σ) = log
||σ ·∆X ||2

||∆X ||2
.

The norm on the right-hand side was constructed by Tian in [22]. The proof of

this identity is established in two steps. The first step is due to Tian (see [22])

and consists of identifying the right-hand side with an integral over X∨ of am-

bient forms induced from the embedding X∨ −→ PN∨. We should emphasize

that this step has nothing to do with duality; it applies to any hypersurface in

any projective space (or a more general homogeneous space). The second step

consists of transforming this (simple) integral over the dual to a much more

complicated integral (the Donaldson functional D(σ)) over X itself. This new

integral involves intrinsic curvature forms of X. This step follows, mutatis mu-

tandis, the argument from the author’s earlier paper [19]. All of this employs

Tian’s very useful “∂∂ ” technique.

Step 2. This step requires Griffith’s second fundamental form. Precisely,

we require the well-known decomposition of the curvature tensor of the middle

term in the short exact sequence of Hermitian holomorphic vector bundles:

0→ OX(−1)
ι→J1(OX(1))∨

π→ T 1,0(X)⊗OX(−1)→ 0 .(1.8)
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This enables us to identify the integral on the left-hand side of Step 1:

D(σ) =

∫ 1

0

∫
X
ϕ̇t cn(J1(O(1)|X)∨; Ht) dt .(1.9)

This is not particularly difficult. On the other hand, unlike Tian’s work in

Section 2 of [24], it is more than a formal computation with polynomials.

Next, to deal with the integrand we need to show that the Chern forms (with

respect to the Euclidean Hermitian metrics) of the short exact sequence split

pointwise. This is somewhat surprising since the extension is nontrivial. This

requires understanding more detailed combinatorial properties of the second

fundamental form operator S.

It should be kept in mind that we have been assuming that X has a

codimension one dual variety. Many varieties do not posses this property.

Moreover one can easily observe that the form cn(J1(O(1)|X)∨; Ht) involves

much more curvature than the Ricci curvature (when n > 1) and so can never

be identified with the Mabuchi energy. To deal with these two difficulties we

proceed to the third and final step, the Cayley Trick. This step is the author’s

principal contribution to the subject.

Step 3. We apply the results of the first two steps not to X −→ PN but

to the Segre image X × Pn−1 −→ P(Mn×(N+1)(C)∨). This variety enjoys two

crucial properties. First, it is always dually nondegenerate (as long as X is

nonlinear). Second, the integrand in Step 2 applied to X × Pn−1 (and the

obvious representation of G on the matrices) involves no curvature forms of

order higher than the Ricci curvature.

1.2. Notations and preliminaries. Let (X,ω) be a Kähler manifold. We

always set µ to be the average of the scalar curvature of ω and V to be the

volume

µ :=
1

V

∫
X

Scal(ω)ωn, V :=

∫
X
ωn .

The space of Kähler potentials will be denoted by Hω:

Hω :=

®
ϕ ∈ C∞(X)|ωϕ := ω +

√
−1

2π
∂∂ϕ > 0

´
.

The Mabuchi K-energy, denoted by νω, is a map νω : Hω −→ R and is

given by the following expression:3

(1.10) νω(ϕ) := −(n+ 1)V

∫ 1

0

∫
X
ϕ̇t(Scal(ϕt)− µ)ωnt dt.

3We warn the reader that our definition of νω differs from the usual one by a factor of

V 2(n+ 1).
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Above, ϕt is a smooth path in Hω joining 0 with ϕ. It is well known that the

K-energy does not depend on the path chosen (see [17]). ϕ is a critical point

of the Mabuchi energy if and only if Scalω(ϕ) ≡ µ.

2. The K-(semi)stability of pairs

Let G be one of the classical subgroups of GL(N + 1,C). For the most

part we shall consider the case

G = SL(N + 1,C) .

Let (V, ρ) be a finite dimensional complex rational representation of G. Recall

that E is rational provided that for all α ∈ V ∨ (dual space) and v ∈ V \ {0},
the matrix coefficient

ϕα,v : G −→ C ϕα,v(σ) := α(ρ(σ) · v)

is a regular function on G; that is,

ϕα,v ∈ C[G] := affine coordinate ring of G.

To begin, let H denote any maximal algebraic torus of G. MZ = MZ(H)

denotes the character lattice of H

MZ := HomZ(H,C∗) .
MZ consists of algebraic homorphisms χ : H −→ C∗. If we fix an isomorphism

MZ ∼= ZN ,(2.1)

then we may express each such χ as a Laurent monomial

χ(t1, t2, . . . , tN ) = tm1
1 tm2

2 · · · t
mN
N , mi ∈ Z .

Therefore we make the identification

χ = (m1,m2, . . . ,mN ) ∈ ZN .

We denote the dual lattice by NZ. It is well known that NZ consists of the

algebraic one parameter subgroups λ of H. These are algebraic homomorphims

λ : C∗ −→ H. The duality is given by

〈· , ·〉 : NZ ×MZ −→ Z, χ(λ(t)) = t〈λ,χ〉 .(2.2)

Since we have fixed some isomorphism of H with the standard torus in G,

we have

λ(t) =

Ö
tn1 · · · · · · 0

0 tn2 · · · 0

0 · · · · · · tnN

è
.

In this case the pairing is given concretely as follows:

〈λ, χ〉 = m1n1 +m2n2 + · · ·+mNnN .
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We introduce the corresponding real vector spaces by extending scalars

MR := MZ ⊗Z R ∼= RN ,
NR := NZ ⊗Z R = M∨R .

The image of λ in NR is denoted by lλ. Then lλ is an integral linear

functional on MR. Since V is rational, it decomposes under the action of H

into weight spaces

V =
⊕

χ∈supp(V )

Vχ ,(2.3)

Vχ := {v ∈ V | h · v = χ(h)v, h ∈ H},

where we have defined the support of V by

supp(V ) := {χ ∈MZ | Vχ 6= 0} .

Given v ∈ V \ {0} the projection of v into Vχ is denoted by vχ. The support

of any (nonzero) vector v is then defined by

supp(v) := {χ ∈MZ | vχ 6= 0} .

Definition 1. Let H be any maximal torus in G. Let v ∈ V \ {0}. The

weight polytope of v is the compact convex integral polytope N (v) given by

N (v) := convex hull of the lattice points{χ ∈ supp(v)} ⊂MR .(2.4)

In the same vein we define the weight polytope of the module itself by

N (V ) := convex hull of {supp(V )} ⊂MR .(2.5)

Obviously N (v) ⊆ N (V ) for any v ∈ V \{0} and H ≤ G. When equality holds

we say that v is generic with respect to H.

Let CN+1 denote the standard representation ofG, and letH be a maximal

algebraic torus. The standard simplex denoted by SN is defined to be the

weight polytope of any H generic vector u ∈ CN+1 \ {0}:

SN := N (u) ⊂MR .

This is an N -dimensional polytope containing the origin in its interior. Next

fix any H ≤ G. We define the degree q(V ) of the representation as follows:

q(V ) := min
{
k ∈ Z+ | N (V ) ⊆ kSN

}
.(2.6)

Now we are prepared to introduce our fundamental definition. Below,

G = SL(N + 1,C) and H ≤ G is a maximal algebraic torus.

Definition 2. Let V and W be finite dimensional complex rational repre-

sentations of G. Let v ∈ V \ {0} and w ∈W \ {0}.
(1) The pair (v, w) is K-semistable with respect to H if and only if N (v) ⊆
N (w).
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(2) (v, w) is K-semistable with respect to G if and only if it is K-semistable

for all maximal tori H in G.

(3) (v, w) is K-stable with respect to H if and only if there exists m0 ∈ N
such that

(v(m−1) ⊗ uq(V ), wm)

is K-semistable with respect to H for all m ≥ m0, and u is any

H-generic vector in the standard representation of G.

(4) (v, w) is K-stable with respect to G if and only if it is K-stable with

respect to all maximal tori H in G.

When V is irreducible it is well known that V is located in a unique tensor

power of the standard representation

V ⊂ (CN+1)⊗p, p ∈ Z+ .(2.7)

In this case we have p = q(V ).

That q depends only on (V, ρ) and not on H in the general case follows

from

Proposition 2.1. Fix a maximal torus H , let v ∈ V \{0}, and let σ ∈ G.

Then we have the relation

Ad(σ)
(
NH(σ · v)

)
= Nσ−1Hσ(v) ,(2.8)

where Ad(σ) denotes the linear extension of the induced equivalence of Z mod-

ules

Ad(σ) : MZ(H)
∼=−→MZ(σ−1Hσ) ,(2.9)

Ad(σ)(χ)(τ) := χ(στσ−1) for all τ ∈ σ−1Hσ .

We have formulated K-stability in terms of arbitrary finite dimensional

G-modules V and W . In our main applications the modules are not only both

irreducible but satisfy further conditions which we will now consider.

To begin, let λ• be a partition consisting of N parts:

λ• = (λ1 ≥ λ2 ≥ · · · ≥ λN ≥ λN+1 = 0) .(2.10)

We let Sλ•(CN+1) denote the corresponding irreducible representation of G

with highest weight λ• (with respect to a maximal algebraic torus H). Let

WG denote the Weyl group of G with respect to H. Then the weight polytope

of the module is given by

N (λ•) = convexhull
¶
WG · λ•

©
,(2.11)

where WG · λ• denotes the orbit of the highest weight under the action of the

Weyl group. Consider two irreducible G modules Sλ•(CN+1) and Sµ•(CN+1)
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satisfying the following two conditions (we shall say that the partitions are

admissible):

i) |λ•| = |µ•| ,(2.12)

ii) λ• E µ• ,

where |λ•| :=
∑N
j=0 λj and E denotes dominance order :

λ• E µ• if and only if, for all 1 ≤ i ≤ N , we have
i∑

k=1

λk ≤
i∑

k=1

µk .(2.13)

The following proposition seems to be well known.

Proposition 2.2. Let Sλ•(CN+1) and Sµ•(CN+1) be two irreducible G-

modules. Assume that |λ•| = |µ•|; then

λ• E µ• if and only if N (λ•) ⊆ N (µ•) .(2.14)

Fix n ∈ Z+ and choose d ∈ Z+ satisfying d ≡ 0 mod n(n+ 1). Our main

application of K-stability involves the following specific highest weights:

λ• =
1

n+ 1

Ä n+1︷ ︸︸ ︷
d, d, . . . , d,

N−n︷ ︸︸ ︷
0, . . . , 0

ä
and µ• =

1

n

Ä n︷ ︸︸ ︷
d, d, . . . , d,

N+1−n︷ ︸︸ ︷
0, . . . , 0

ä
.(2.15)

Then it is well known that (see [9]) the corresponding irreducible modules are

given by

Sλ•(CN+1) ∼= H0
Å
G(N − n− 1,PN ),O

Å
d

n+ 1

ãã
,(2.16)

Sµ•(CN+1) ∼= H0
Å
G(N − n,PN ),O

Å
d

n

ãã
.

Obviously |λ•| = |µ•| and λ• E µ•. In this case we may verify the polytope

inclusion directly. To begin let 0 < k < l; define

Ak,l :=
¶
ei1 + ei2 + · · ·+ eik | 1 ≤ i1 < i2 < · · · < ik ≤ l

©
.(2.17)

Then the hypersimplex ∆(k, l) of type (k, l) is given by

∆(k, l) := convex hull Ak,l = convex hull Sl · (e1 + e2 + · · ·+ ek) .(2.18)

Sl ∼= WSL(l,C) denotes the symmetric group. It is clear that when the weights

are given by (2.15), we have

N (λ•) =
d

n+ 1
∆(n+ 1, N + 1) ,(2.19)

N (µ•) =
d

n
∆(n,N + 1) .

The inclusion

n∆(n+ 1, N + 1) ⊆ (n+ 1)∆(n,N + 1)(2.20)
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follows at once from the equality

n(ei1 + ei2 + · · ·+ ein+1) =
1

(n+ 1)

( ∑
J⊂{i1,i2,...,in+1} |J |=n

(n+ 1)
∑
j∈J

ej
)
.

(2.21)

Let (λ•, µ•) be admissible; then the K-semistability of a pair (v, w) holds

for generic maximal algebraic tori. One sees this as follows. Fix v ∈ Sλ•(CN+1)

\ {0}, where we have fixed a maximal algebraic torus T . Then we define a

nontrivial polynomial Q on G as follows:

Qλ•; v(σ) :=
∏
s∈WG

〈σ · v, es·λ•〉 .

〈 , 〉 denotes any inner product rendering the weight space decomposition of

Sλ•(CN+1) under T as an orthogonal decomposition. Once more, WG denotes

the Weyl group of G with respect to T , and es·λ• denotes the (unique up to

scale) weight vector corresponding to the image of the highest weight under

the action of s ∈ WG. In particular, Qλ•;v is given only up to scale. Now we

define

Zλ•; v := {σ ∈ G | Qλ•;v(σ) = 0} ,(2.22)

Uλ•; v := G \ Zλ•;v .

Then we have the following

Proposition 2.3. For all σ ∈ Uλ•; v , we have the equality of polytopes

N (σ · v) = N (λ•) .(2.23)

Given two irreducible G modules with admissible highest weights λ• and

µ• respectively, we have the following corollary.

Corollary 2.1. Fix a maximal algebraic torus T . Let v ∈ Sλ•(CN+1) \
{0} and w ∈ Sµ•(CN+1) \ {0}. Then for all σ ∈ Uµ•;w, the pair (v, w) is

K-semistable with respect to σTσ−1.

Example 1 (Irreducible representations of SL(2,C)). Let Ve and Vd be

irreducible SL(2,C) modules with highest weights e ∈ N and d ∈ N respec-

tively. These are well known to be spaces of homogeneous polynomials in two

variables. Let f and g be two such polynomials in Ve \ {0} and Wd \ {0}
respectively. Then the pair (f, g) is K-semistable if and only if

e ≤ d and for all p ∈ P1, multp(g)−multp(f) ≤ d− e
2

.(2.24)
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In particular, when d = 2e and g = f2 we see that (f, f2) is K-semistable if

and only if

multp(f) ≤ e

2
for all p ∈ P1 .(2.25)

Obviously e E d if and only if e = d, and in this case we have that (f, g) is

K-semistable if and only if

Cf = Cg .(2.26)

In words, two polynomials of the same degree are K-semistable if and only if

they are proportional.

Example 2 (Relation to Hilbert-Mumford stability). The reader may easily

verify the following proposition which demonstrates, among other things, that

Hilbert-Mumford stability is a special case of K-stability. In particular, it

provides many examples of K-semistable pairs.

Proposition 2.4. Let d ∈ Z, d ≥ 2. Let V be a rational representation

of G, v ∈ V \ {0}.
(1) (v, v⊗d) is K-semistable if and only if v is Hilbert-Mumford stable in

the ordinary sense; that is, 0 /∈ G · v.

(2) If (v, v⊗d), then K-stable if and only if v is (strictly) Hilbert Mumford

stable in the ordinary sense; that is, G · v = G · v and Gv is finite.

(3) Assume that (v, w) is K-semistable. If v is Hilbert-Mumford stable,

then so is w.

Example 3 (Classical discriminant and resultants). Consider two polyno-

mials P and Q in one variable of degrees m and n respectively:

P (z) = amz
m + am−1z

m−1 + · · ·+ a1z + a0 ,

Q(z) = bnz
n + bn−1z

n−1 + · · ·+ b1z + b0 .

Recall that the classical resultant of P and Q is the (quasi)homogeneous poly-

nomial of the coefficients (a0, . . . , am; b0, . . . , bn) defined by

Rm,n(P,Q) = Rm,n(a0, . . . , am ; b0, . . . , bn)

:= bmn
∏

βi∈zer(Q)

P (βi) = (−1)mnRn,m(Q,P ) .

When m = n = d ≥ 2, we denote the resultant by Rd. Then

Rd ∈ C2d[M2×(d+1)] .

G = SL(d+ 1,C) acts on Rd by the rule

σ ·Rd(A) := Rd(A · σ), σ ∈ G, A ∈M2×(d+1) .
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The discriminant, ∆d, of a polynomial P of degree d is defined by

∆d(a0, . . . , ad) := Rd,d−1

Å
P,
∂P

∂z

ã
,

∆d ∈ C2d−2[M1×(d+1)] .

The action of G is given by

σ ·∆d(a) = ∆d(a · σ) .

It follows from beautiful work of Gelfand, Kapranov and Zelevinsky ([10])

that the pair (R
deg(∆d)
d ,∆

deg(Rd)
d ) is K-semistable with respect to the standard

torus, i.e., the torus corresponding to the dth Veronese embedding of P1.

Claim 2.1.(R
deg(∆d)
d ,∆

deg(Rd)
d ) is K-semistable with respect to SL(d+1,C).

The claim follows from part three of Corollary 1.2.

K-(semi)stability is formulated in terms of a numerical criterion modeled

after Hilbert and Mumford’s geometric invariant theory. We make this explicit

by introducing the following

Definition 3. Let V be a finite dimensional rational representation of G,

and let λ be any degeneration in H(a maximal algebraic torus of G). The

weight wλ(v) of λ on v ∈ V \ {0} is the integer

wλ(v) := min{x∈N (v)} lλ(x) = min{〈χ, λ〉|χ ∈ supp(v)} .

Alternatively, wλ(v) is the unique integer such that

lim
|t|→0

t−wλ(v)λ(t)v exists in V and is not zero.

The precise relationship between weights and K-(semi)stability is brought

out in the following

Proposition 2.5. (v, w) is K-semistable if and only if

wλ(w) ≤ wλ(v)(2.27)

for all degenerations λ in G.

Next we equip V and W with Hermitian norms which we denote by || ||.
Observe that for v ∈ V \ {0} (for example), we have the following asymptotic

expansion:

lim
|t|→0

log ||λ(t)v||2 = wλ(v) log |t|2 +O(1) .(2.28)

Definition 4. The energy of the pair (v, w) is the function on G given by

pw,v(σ) := log
||σ · w||2

||w||2
− log

||σ · v||2

||v||2
, σ ∈ G .(2.29)
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Whether or not pw,v is bounded from below depends only on the orbit of

the pair (v, w) ∈ V ⊕W and not on the norms.

Proposition 2.6. pw,v is bounded below on G if and only if G · [(v, w)]∩
P(V ⊕ {0}) = ∅.

It follows at once from (2.28) that the asymptotic behavior of the energy

of the pair along any degeneration λ is given by

(2.30) pw,v(λ(t)) = (wλ(w)− wλ(v)) log |t|2 +O(1) .

Definition 5. Let G be a reductive algebraic group over C. Consider ra-

tional representations ρV : G −→ GL(V ) (respectively ρW : G −→ GL(W )).

Then the data {G ; (v, w)} has Property P if and only if the following state-

ments are equivalent:

i) There exists a degeneration λ such that lim|α|−→0 pw,v(λ(α)) = −∞.

ii) There is a sequence {σj} ⊂ G such that limj−→∞ pw,v(σj) = −∞.

Proposition 2.7 (Sun’s lemma). Let G ∼= (C∗)N be an algebraic torus.

Then {G ; (v, w)} has Property P for all pairs (v, w).

We summarize the relationship among K-semistability, the energy func-

tion, and Property P as follows.

Proposition 2.8. Let G be a reductive algebraic group. Fix (v, w). Then

the following are equivalent :

a) pw,v is bounded below along all degenerations.

b) pw,v is bounded below along all algebraic tori.

c) (v, w) is K-semistable.

If {G ; (v, w)} has Property P, then any one of the above implies that

d) pw,v is bounded below on G.

Definition 6. pw,v is proper on S ⊆ G if and only if, for all m� 0,

(2.31) pw,v(σ) +
1

m
log
||σ · v||2

||v||2
≥ q(V )

m
log ||σ||2Op −B, σ ∈ S .

B=B(v, w, || ||, S) is a positive constant, and ||σ||Op denotes the operator norm

of σ with respect to some Hermitian metric on the standard representation.

Applications to Kähler Einstein manifolds with discrete automorphism

groups require the following proposition.

Proposition 2.9. The following statements are equivalent :

a) The pair (v, w) is K-stable in the strict sense.

b) pw,v is proper along all degenerations λ in G.

c) pw,v is proper along all algebraic tori H ≤ G.
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2.1. K-stability of complex projective varieties. A nontrivial special case

of K-stability arises in connection with complex projective varieties. In order

to proceed, let us first recall the Hilbert-Mumford stability theory. The core

of this theory consists in associating to a vector bundle E over a curve X (for

example) or a subvariety X −→ PN , a “projective geometric gadget” that

encodes the object up to projective equivalence. More precisely one associates

to these data an orbit G · v of some nonzero vector v in a finite dimensional

complex rational G module E. For example, to E −→ X one associates the

Gieseker point, and to a subvariety X −→ PN one associates either the Hilbert

point or the Chow form. Similarly, in order to apply K-stability to a smooth

projective variety X −→ PN we must associate to our embedded variety X a

pair v(X) ∈ V \ {0}, w(X) ∈W \ {0}, where V and W are finite dimensional

rational G-representations. The notation is intended to suggest that X is

“encoded” by the pair (v, w). As the reader shall see, each vector is projectively

natural and by this we mean

(2.32) σ · v(X) = v(σX) for all σ ∈ G .

Definition 7 (Cayley-Chow Forms). Let Xn ↪→ PN be an irreducible, lin-

early normal subvariety of degree d. The Cayley-Chow form of X, denoted by

RX , is the defining polynomial (unique up to scaling) of the divisor

{L ∈ G(N − n,CN+1) | L ∩X 6= ∅} = {L | RX(L) = 0} .(2.33)

RX has degree d in the Plücker coordinates. Moreover, the irreducibility of X

implies that RX is also irreducible.

Definition 8. Let Xn ↪→ PN be a nonlinear, linearly normal subvariety

of degree d. The dual variety to X, denoted by X∨, is the variety of tangent

hyperplanes to X:

X∨ = Zariski closure
Ä
{f ∈ PN∨ | Tp(X) ⊂ ker(f) for some p ∈ X \Xsing}

ä
.

(2.34)

Tp(X) denotes the embedded tangent space to X at the point p. Tp(X) is

an n-dimensional linear subspace of PN .

Definition 9. The dual defect of X ↪→ PN is the nonnegative integer

δ(X) := N − dim(X∨)− 1 .(2.35)

Most varieties have dual defect equal to 0. There is a well-known upper

bound on the defect which we require for the definition of K-stability.

Theorem (F.L. Zak [27]). Let Xn −→ PN (n ≥ 2) be a linearly normal

irreducible variety which is not a linear space. Then

δ ≤ n− 2 .(2.36)
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When X∨ is indeed a hypersurface (i.e., δ = 0) following Gelfand, Kapra-

nov and Zelevinsky the defining polynomial, unique modulo scaling is denoted

by ∆X , which we shall call the X-discriminant:

X∨ = {f ∈ PN∨| ∆X(f) = 0} .(2.37)

Just as in the case of resultants and discriminants of polynomials in one

variable, we may view the general X-discriminant and Cayley-Chow form as

homogeneous polynomials on spaces of matrices:

∆X ∈ C[M1×(N+1)] ,(2.38)

RX ∈ C[M(n+1)×(N+1)] .

The action of σ ∈ GL(N + 1,C) on these two polynomials is given by

σ ·∆X((ai)) = ∆X((ai) · σ) ,(2.39)

σ ·RX((cij)) = RX((cij) · σ) .

Next, fix k ∈ N+ and (l1, l2, . . . , lk) with li ∈ N+. We set P(l•) := Pl1×· · ·×Plk .

Consider the Segre embedding

X × P(l•) −→ P(CN+1 ⊗ C(l1+1) ⊗ · · · ⊗ C(lk+1)) .

Definition 10. Assume the dual defect of X×P(l•) vanishes. The X-hyper-

discriminant of format (l•) is the irreducible defining polynomial ∆(l•) of (X×
P(l•))∨.

The hyperdiscriminant ∆(l•) is an irreducible polynomial in the entries of

a“hypermatrix”

∆(l•) ∈ C[M(l1+1)×···×(lk+1)×(N+1)] .

The circumstances which ensure that the dual defect of the Segre image

of X × P(l•) is equal to zero has been completely worked out by Weyman

and Zelevinsky in [26]. In these cases we say that the hyperdiscriminant is

well formed. When N = n, and therefore X = Pn, the hyperdiscriminant

is the hyperdeterminant of Cayley, Gelfand, Kapranov, and Zelevinsky; see

[11]. What is relevant for our applications to the Mabuchi energy are the

hyperdiscriminants of format (n− 1).

Theorem (Weyman, Zelevinsky [26]). Let Xn be an n-dimensional, lin-

early normal subvariety of PN where N > n. Then the X-hyperdiscriminant of

format (l•) exists if and only if the following two inequalities hold :

a) li ≤ n+
∑
i 6=j lj , 1 ≤ i ≤ n.

b) δ ≤∑1≤i≤k li.

In particular, X × Pn, X × Pn−1, . . . , X × Pδ(X) are all dually nondegenerate

in their Segre embeddings. Moreover,
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i) ∆X×Pn = RX (the “Cayley trick”).

ii) ∆X×Pδ(X) = RX∨ (the “dual Cayley trick”) .

When X is a smooth subvariety we may make use of a result due to

Beltrametti, Fania, and Sommese which exhibits the degree and codimension

of the dual in terms of the top Chern class of the jet bundle J1(OX(1)); see

Section 5.2. This result is used extensively in the main argument of the paper,

we shall use it to find the degree of the hyperdiscriminant.

Theorem (Beltrametti, Fania, and Sommese [2]). Assume X is smooth.

Then X∨ is a hypersurface if and only if cn(J1(OX(1))) 6= 0. Moreover,

i) deg(∆X) =
∫
X cn(J1(OX(1))).

More generally, when δ(X) > 0, we have the following :

ii) deg(X∨) =
∫
X cn−δ(X)(J1(OX(1)))ωδ(X).

iii) δ(X) = min{k | cn−k(J1(OX(1))) 6= 0}.

Definition 11. Let X ↪→ PN be a linearly normal n-dimensional variety

with degree d ≥ 2. Fix a maximal algebraic torus H ≤ G. The weight polytope

of the X-resultant N (RX) is called the Chow polytope of X, and the weight

polytope of the X-hyperdiscriminant N (∆X×Pn−1) is the hyperdiscriminant

polytope.

Remark 3. Once more, the reader should bear in mind that there are

smooth varieties X whose dimensions exceed 2 such that δ(X) > 0 (for example

P2×P1 in its Segre embedding , or Gr(2,C2n+1) in its Plücker embedding (see

[18])). Zaks’ bound δ(X) ≤ n−2 (see 2.36) implies that the hyperdiscriminant

∆X×Pn−1 is well formed4 for any X (irreducible, linearly normal, deg(X) ≥ 2).

With these preparations we introduce the following new stability con-

cept for complex projective varieties, which we call K-(semi)stability in order

to avoid proliferation of terminology. Our new idea extends the concept of

K-semistability proposed by Tian in [23]. Our definition seems to be quite

different from that proposed by Donaldson in [8] and developed by his many

followers. The reader should keep in mind that the crucial difference between

our formulation and the conventional one is that from our new viewpoint the

limit cycle plays no role.

Definition 12. Let X −→ PN be a nonlinear, linearly normal, complex

projective variety (not necessarily smooth). Then X is K-semistable provided

4The reader should realize that this amounts to the fact that ∆X×Pn−1 is a nonconstant

polynomial.
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the pair of polynomialsÅ
R

deg(∆X×Pn−1 )

X ,∆
deg(RX)
X×Pn−1

ã
(∗)

is K-semistable in the sense of Definition 2 with respect to the natural action

of G = SL(N + 1,C) on the irreducible modules

∆
deg(RX)
X×Pn−1 ∈ Cdeg(∆) deg(R)[Mn×(N+1)]

SL(n,C) =: Sµ•(CN+1),(2.40)

R
deg(∆X×Pn−1 )

X ∈ Cdeg(∆) deg(R)[M(n+1)×(N+1)]
SL(n+1,C) =: Sλ•(CN+1) .

That is, for all maximal algebraic tori H ≤ G, the scaled hyperdiscriminant

polytope dominates the scaled Chow polytope

deg(∆X×Pn−1)N (RX) ⊆ deg(RX)N (∆X×Pn−1) .(2.41)

X is K-stable (in the strict sense) if and only if the pair (∗) is K-stable where

the degree q is given by q = deg(∆X×Pn−1) deg(RX). A polarized algebraic

variety (X,L) is asymptotically K-(semi)stable provided X
Lr−→ PNr is K-

(semi)stable for all r � 0 where m0 is independent of r.

In the definition we have abused notation by setting

deg(∆) := deg(∆X×Pn−1).

Remark 4. H must be allowed to vary in our definition. This is due to

our requirement that the K stability of X imply (and be implied by) the K

stability of any subvariety of PN projectively equivalent to X.

Theorem B together with the considerations of the previous section on

the energy asymptotics of pairs (see (2.30)) completely justify the following

definition.

Definition 13. Let X be a smooth, linearly normal subvariety of PN . Fix

any maximal torus H of G, and let λ be any degeneration in H. Then the

generalized Futaki invariant FP (λ) of λ is the integer given by

FP (λ) := deg(RX)min{x∈N (∆X×Pn−1 )} lλ(x)(2.42)

− deg(∆X×Pn−1)min{x∈N (RX)} lλ(x) .

The following is a special case of Proposition 2.5.

Proposition 2.10. X ↪→ PN is K-semistable if and only if the gener-

alized Futaki invariant is less than or equal to zero for all degenerations λ

in G.

To close this section, we need to discuss the relationship between our en-

coding process and limit cycle formation. As we have mentioned, in Mumford’s
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G.I.T. v(X) may be given in terms of Hilbert points or Chow forms. In both

cases it is known that the encoding is natural:

Hilbm(σ ·X) = σ ·Hilbm(X), Rσ·X = σ ·RX .(2.43)

Let λ be an algebraic one parameter subgroup of G = SL(N + 1,C). For a

given X ⊂ PN , we let λ(0)X denote the flat limit cycle of X under λ. This

is considered to be a point in the Hilbert scheme. In Mumford’s theory, a

crucial property of Hilbert points and Cayley -Chow forms is the following

compatibility with cycle formation:

Hilbm(λ(0)X) = λ(0) ·Hilbm(X), Rλ(0)X = λ(0) ·RX .(2.44)

In K-stability this compatibility fails. Simply put, λ(0)X in general has no

meaningful tangent plane, and therefore the hyperdiscriminant is undefined.

3. Bott-Chern forms and Donaldson functionals

Let Φ be a GLn(C) invariant polynomial on Mn×n(C) which is homoge-

neous of degree d. The complete polarization of Φ is defined as follows. Let

τ1, τ2, . . . , τd be arbitrary real parameters. Then

Φ(τ1A1 + τ2A2 + · · ·+ τdAd) =
∑
|α|=d

Φα(A1, A2, . . . , Ad)τ
α ,

τα := τα1
1 τα2

2 . . . ταdd .

We let Φ(1)(A1, A2, . . . , Ad) denote the coefficient of τ1τ2 . . . τd. We define

Φ(1)(A ; B) := Φ(1)(A,

d−1︷ ︸︸ ︷
B,B, . . . , B) .

Let M be an n-dimensional complex manifold. E is a holomorphic vector

bundle of rank k over M . H0 and H1 are two Hermitian metrics on E. Let Ht

be a smooth path joining H0 and H1 in ME (the space of Hermitian metrics

on E). Define Ut := ( ∂∂tHt) · H−1
t . Ft := ∂{(∂Ht)H

−1
t } is the curvature of

Ht (a purely imaginary (1,1) form). Now suppose that Φ is a homogeneous

invariant polynomial on Mk×k(C) of degree d. Then

Φ(1)(Ut ; Ft)(3.1)

is a form of type (d− 1, d− 1). Observe that the following identity holds (this

is used below):

deg(Φ)Φ(1)(A ; B) =
∂

∂b
Φ(B + bA)|b=0 .(3.2)

The Bott Chern form is given as follows:

BC(E,Φ ; H0, H1) := − deg(Φ)

(n+ 1)!

∫ 1

0
Φ(1)

Ç
Ut ;

√
−1

2π
Ft

å
dt .(3.3)
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Proposition 3.1 (R. Bott , S. S. Chern [4]).
√
−1

2π
∂∂BC(E,Φ ; H0, H1) = Φ

Ç√
−1

2π
F1

å
− Φ

Ç√
−1

2π
F0

å
.(3.4)

When deg(Φ) has degree n+ 1 the form BC(E,Φ ; H0, H1) is top dimen-

sional on M and the following integral is well defined:

DE(Φ ; H0, H1) :=

∫
M

BC(E,Φ ; H0, H1) .(3.5)

Let H : Y →ME (the space of C∞ Hermitian metrics on E) be a smooth

map, where Y is a complex manifold of dimension m. Fix a Hermitian metric

H0 on E. Then we are interested in the smooth function on Y :

Y 3 y → DE(Φ ; H0, H(y)) .(3.6)

We call this the Donaldson functional associated to E and Φ.

Next we let p2 denote the projection from Y ×M onto M . Then H(y) is

a smooth Hermitian metric on p∗2(E) whose curvature is given by

FY×M (H(y)) = ∂Y×M{(∂Y×MH(y))H(y)−1} .(3.7)

For the proof of the following proposition, see [24, Prop. 1.4, p. 213].

Proposition 3.2. Let Φ be homogeneous of degree n+ 1 and H0 a fixed

metric on E. Then for all smooth compactly supported forms η of type (m− 1,

m− 1), we have the identity

√
−1

2π

∫
Y
DE(Φ ; H0, H(y))∂Y ∂Y η =

∫
Y×M

Φ

Ç
FY×X

Ç√
−1

2π
H(y)

åå
∧ p∗1(η) .

(3.8)

4. The main lemma

Let X → PN be a smooth, linearly normal, n-dimensional, and dually non-

degenerate complex projective variety. Let G(n,PN ) denote the Grassmannian

of n-dimensional linear subspaces of PN , and let ρ : X −→ G(n,PN ) denote

the Gauss map of X

ρ(p) := Tp(X) ∈ G(n,PN ) ,(4.1)

where Tp(X) denotes the embedded tangent space to X at p. Let U denote the

rank n+ 1 universal (tautological) bundle over G(n,PN ). Of basic importance

throughout the paper is the pull back of this bundle under the Gauss map

ρ∗(U) which we shall denote by J1(OX(1))∨. This is (dual to) the bundle of

one-jets of O(1)|X . We apply the construction of the previous section to the

bundle J1(OX(1)).
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Since J1(OX(1))∨ is a subbundle of the trivial bundle X×CN+1 it inherits

the standard euclidean (Hermitian) metric hCN+1 from CN+1

hCN+1(V,W ) := v0w̄0 + ww̄1 + · · ·+ vN w̄N .

In this way, as in the previous section, we have a natural map H : G −→
MJ1(OX(1)), where G plays the role of Y and Φ = cn+1 is the top Chern class.

Main Lemma. Let X ↪→ PN be a smooth, linearly normal n-dimensional

subvariety. Let X∨ be the dual of X . Assume that X∨ is a hypersurface with

defining polynomial ∆X . Then there is a continuous norm || || on the vector

space of degree d∨ := deg(X∨) polynomials on (CN+1)∨ such that for all σ ∈ G,

we have

(−1)n+1DJ1(OX(1))∨(cn+1 ; H(σ), H(e)) = log
||σ ·∆X ||2

||∆X ||2
,(4.2)

where e denotes the identity in G.

Remark 5. The Main Lemma exhibits the “height” of the defining equa-

tion of Z = X∨ (a global, purely algebro geometric object) as an integral over

X of a local curvature quantity derived from the metric ωσ.

Before we proceed to the proof of the main lemma, let us explain what is

meant by a continuous metric (or norm) on OB(−1), where

B := P(H0(PN∨,O(d∨)))

and d∨ denotes the degree of X∨. Up to scaling we have that

∆X ∈ H0(PN∨,O(d∨)).

In general we write linear form f on PN (i.e., a point in the dual PN ) as

f = a0z0 + a1z1 + · · · + aNzN . Therefore we take [a0 : a1 : · · · : aN ] as the

homogeneous coordinates of f on PN∨. Therefore we may write

∆X(f) =
∑
|α|=d∨

cα0,···αNa0
α0a1

α1 . . . aN
αN .

The finite dimensional complex vector space H0(PN∨,O(d∨)) comes equipped

with its standard Hermitian inner product 〈, 〉 in which the monomials

a0
α0a1

α1 · · · aNαN

form an orthogonal basis. Under a suitable normalization we have that

||∆X ||2FS := 〈∆X ,∆X〉 =
∑
|α|=d∨

|cα0,···αN |2

α0!α1! · · ·αN !
.
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Finally, to say that the metric || || on OB(−1) is continuous means that there

is a continuous function θ on B such that

(4.3) exp(θ)|| ||FS = || || .
Since B is compact, the conformal factor exp(θ) is bounded. This is the key

point.

We first construct the norm appearing on the right-hand side of (4.2).

Recall that the universal hypersurface associated to B is given by

Σ := {([F ], [a0 : a1 : · · · : aN ]) ∈ B × PN∨ | F (a0, a1, . . . , aN ) = 0} .(4.4)

Then Σ is the base locus of the natural section

ϕ ∈ H0(B × PN∨, p∗1OB(1)⊗ p∗2OPN (d∨)) , Σ = {ϕ = 0} .(4.5)

Let ω denote the Kähler form on the dual PN . We consider the (1, 1) current

u on B defined by the fiber integral p1∗p
∗
2(ωN ):

Σ
p2 - PN∨

B .

p1

?

That is, for all C∞ (b− 1, b− 1) forms ψ on B, we have∫
B
u ∧ ψ =

∫
Σ
p∗2(ωN ) ∧ p∗1(ψ) .(4.6)

For the following, see [23, Lemma 8.7, p. 32].

Proposition 4.1. The cohomology class of the current u coincides with

the class of ωB (the Fubini-Study form). Moreover, there is a continuous

function θ on B such that, in the sense of currents, we have

u = ωB +

√
−1

2π
∂∂θ .(4.7)

Let D(σ) := DJ1(OX(1))∨(cn+1 ; H(σ), H(e)). The main point is to estab-

lish the following proposition.

Proposition 4.2. Let || · || := exp(θ)|| · ||FS . Then the difference

(−1)n+1D(σ)− log
||σ ·∆X ||2

||∆X ||2
(4.8)

is a pluriharmonic function on G.

We require the flag variety

I∆ := {(L, f) ∈ G(n,PN )× PN∨ | L ⊂ ker(f)} .(4.9)
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Proof of Proposition 4.2. We begin the proof with the following lemma.

Lemma 4.1. Let pi denote the projection onto the ith factor of the flag

variety I∆:

I∆
p2 - PN∨

G(n,N) .

p1

?

Let ωPN∨ be the Fubini Study Kähler form on PN∨. Then we have the following

identity of forms on G(n,N):

p1∗(p
∗
2(ωNPN∨)) = cn+1(U∨) .(4.10)

To see this, observe that the left-hand side of (4.10) is of type (n+1, n+1)

and invariant under the action of the unitary group. The latter implies that

it must be a polynomial in the forms c1(U∨), c2(U∨), . . . , cn+1(U∨). Let Ω be

any invariant form on G(n,N) of type complimentary to p1∗p
∗
2ω

N
PN∨ . Then∫

G(n,N)
p1∗(p

∗
2(ωNPN∨)) ∧ Ω =

∫
I∆

p∗2(ωNPN∨) ∧ p1
∗(Ω)(4.11)

=

∫
G(n,N)×PN∨

[I∆] ∧ p∗2(ωNPN∨) ∧ p∗1(Ω) .

Observe that I∆ = {s = 0}, where s is the section of p∗1U∨⊗p∗2OPN∨(+1) given

by evaluation. Therefore,

[I∆] = cn+1(p∗1U∨ ⊗ p∗2OPN∨(+1))

=
n+1∑
i=0

c1(p∗2OPN∨(+1))n+1−i ∧ ci(p∗1U∨)

= cn+1(p∗1U∨) +
n∑
i=0

c1(p∗2OPN∨(+1))n+1−i ∧ ci(p∗1U∨) .

Thus, for all invariant forms Ω (of complimentary type), we have∫
G(n,N)

p1∗(p
∗
2(ωNPN∨)) ∧ Ω =

∫
G(n,N)

cn+1(U∨) ∧ Ω .

Therefore,

p1∗(p
∗
2(ωNPN∨)) = cn+1(U∨, hFS) . �

Next let GX be given by

GX := {(σ, y) ∈ G× PN | y ∈ σX } .(4.12)
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There is a natural map ρG : GX −→ G(n,PN )

ρG(σ, y) = Ty(σX) .(4.13)

Now we consider the diagram

ρG
∗(I∆)

π2 - I∆
p2 - PN∨

GX

π1

? ρG- G(n,N)

p1

?

G .

π

?

Let η be a smooth compactly supported form on G of type (N2+2N,N2+2N).

An application of Proposition 3.2 and Lemma 4.1 gives∫
G

√
−1

2π
∂∂D ∧ η =

∫
GX

cn+1

Ç
F
J∨1
GX

Ç√
−1

2π
H(σ)

åå
∧ π∗(η)(4.14)

=

∫
GX

ρ∗G(cn+1(U , hFS)) ∧ π∗(η)

= (−1)n+1
∫
GX

ρ∗G(p1∗(p
∗
2(ωNPN∨))) ∧ π∗(η)

= (−1)n+1
∫
ρ∗G(I∆)

π2
∗(p∗2(ωNPN∨)) ∧ π∗1(π∗(η)) .

Below, T denotes the evaluation map T (σ) := [σ · ∆X ] and Σ denotes the

universal hypersurface for the family B := P(H0(PN∨,O(d∨))):

GX∨ = T ∗(Σ)
π2 - Σ

p2 - PN∨

G

π1

? T - B .

p1

?

Let u denote the positive current defined in (4.6). Using the notation and

commutativity in the diagram above gives∫
G
T ∗(u) ∧ η =

∫
T ∗(Σ)

π∗2(p∗2(ωNPN∨)) ∧ π∗1(η)(4.15)

=

∫
ρ∗G(I∆)

π∗2(p∗2(ωNPN∨)) ∧ π∗1π∗(η) .
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We have used that T ∗(Σ) ∼= ρ∗G(I∆) (birational equivalence). We remark that

this holds only because of our assumption that X is dually nondegenerate. By

definition, we have that

T ∗(u) =

√
−1

2π
∂∂ log

Ç
eθ◦T−θ◦T (e) ||σ ·∆X ||2FS

||∆X ||2FS

å
.(4.16)

Therefore,∫
G
∂∂

Ç
(−1)n+1D(σ)− log

Ç
eθ◦T−θ◦T (e) ||σ ·∆X ||2FS

||∆X ||2FS

åå
∧ η = 0(4.17)

for all compactly supported forms η. Hence the difference is pluriharmonic.

This establishes Proposition 4.2.

Since G is simply connected, there is an entire function F on G such that

(−1)n+1D(σ)− log

Ç
eθ◦T−θ◦T (e) ||σ ·∆X ||2FS

||∆X ||2FS

å
= log |F (σ)|2 .(4.18)

The argument from [23] (see Lemma 8.8, p. 34) shows that F ≡ κ ∈ C, a

constant. Setting σ = e (the identity in G) shows that, in fact, |κ| = 1. This

completes the proof of the main lemma. �

As we mentioned in the introduction, in higher dimensions (n ≥ 2) two

problems with (4.2) arise which reveal that the X-discriminant (the right-hand

side of (4.2)) must be modified in order to make contact with the Mabuchi en-

ergy. The first problem we encounter is that when n ≥ 3, the projective dual to

X may fail to have codimension one, e.g., take P1×P2 in its Segre embedding.

In a situation like this ∆X is taken to be a conveniently chosen constant. The

second problem in higher dimensions (n ≥ 2) is that the global Donaldson (en-

ergy) functional we attach to ∆X on the left of (4.2) contains too much curva-

ture. The Mabuchi energy involves at most the Ricci curvature. In dimension

n ≤ 2 the only dually degenerate varieties are linearly embedded projective

spaces (see [21]). In particular, the dual of a (nonlinear) projective curve is

always a hypersurface; moreover, the only curvature available is the Ricci cur-

vature. Therefore the Main Lemma applies, without modification, to space

curves. In dimension two the second problem arises but not the first. Mirac-

ulously, Cayley’s X-hyperdiscriminant (properly formatted) eliminates both

difficulties simultaneously ; moreover, the hyperdiscriminant coincides with the

usual discriminant in dimension one. Theorem A follows from working out the

left-hand side of (4.2) in the case where X has been replaced by X ×Pn−1. We

always consider X × Pn−1 as a subvariety of P(M∨n×(N+1)(C)) via the Segre

embedding. Observe that G = SL(N + 1,C) acts on M∨n×(N+1)(C) by the

standard action on CN+1 and the trivial action on Cn.
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5. Completion of the proof of Theorem A

Theorem A follows at once from (4.2) and the following proposition.

Proposition 5.1. Let Xn ↪→ PN be a smooth, linearly normal algebraic

variety of degree d ≥ 2. Let RX denote the X-resultant. Let ∆X×Pn−1 denote

the X-hyperdiscriminant. Then the Donaldson functional associated to the

vector bundle J1(O(1)|X×Pn−1)∨ is given by

deg(RX)DJ1(O(1)|X×Pn−1 )∨(c2n ; H(σ), H(e))(5.1)

= νω(ϕσ) + deg(∆X×Pn−1) log
||σ ·RX ||2

||RX ||2
.

This entire section is devoted to the proof of this proposition. To begin

let

w := (w1, w2, . . . , wn) ∈ Cn −→ (1, T1(w), T2(w), . . . , TN (w)) ∈ CN+1

be a local parametrization of X̃, where X̃ ⊂ CN+1 \ {0} is the affine cone

over X. Then (w1, w2, . . . , wn) are local coordinates on X. Observe that

T (w) := (1, T1(w), T2(w), . . . , TN (w))

fi(w) :=

Å
0,

∂

∂wi
T1, . . . ,

∂

∂wi
TN

ã
locally trivialize the bundle J1(O(1)|X)∨. As we have remarked, the dual to

the bundle of one-jets is naturally a subbundle of the trivial bundle X×CN+1.

Let IX = (Fα) denote a (finite) generating set for the homogeneous ideal of

X. Then the dual of the jet bundle may be exhibited concretely as follows:

J1(O(1)|X)∨ = {(p, w) ∈ X × CN+1| ∇Fα(p) · w = 0 for all α} ι
↪→ X × CN+1 .

(5.2)

The (dual of) the jet bundle therefore inherits the standard Hermitian metric

hCN+1 from its embedding in X×CN+1. We make extensive use of the following

well-known fact.

Proposition 5.2. There is an exact sequence of vector bundles on X :

(5.3) 0→ OX(−1)
ι→ J1(O(1)|X)∨

π→ T 1,0(X)⊗OX(−1)→ 0 .

Since we will need an explicit description of the maps in what follows we

recall the proof. Below we abuse notation as follows. On the one hand π

denotes the map

J1(OX(1))∨
π→ T 1,0(X)⊗OX(−1)→ 0 .

On the other hand we also denote by π the projection onto PN :

π : CN+1 \ {0} → PN .
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Finally we can define π in (5.3) by the formula (where π(v) = p)

J1(OX(1))∨ 3 (p, w)→ π(p, w) := π∗|v(w)⊗ v ∈ T 1,0(X)⊗OX(−1) .

The rationale for this follows from the fact that for all w ∈ CN+1 and α ∈ C∗,
we have

π∗|αv(w) =
1

α
π∗|v(w) .

Let z ∈ CN+1 \ {0}. We define

gij̄(z) :=
1

|z|4
(δij |z|2 − z̄izj) .(5.4)

We define a Hermitian form Hij̄(z) as follows:

Hij̄(z) := |z|2gij̄(z) .

Then H is a positive definite Hermitian form on OX(−1)⊥. Moreover,

hCN+1 |OX(−1)⊥ = H .

Thus the standard Hermitian metric hCN+1 descends to ω⊗hFS on T 1,0(X)(−1).

Observe that |T (w)|2 represents the Fubini Study local metric potential. There-

fore the Kähler form on X is given by

ω = ωFS |X =

√
−1

2π
∂w∂w log |e(w)|2 .

Let f⊥i denote the orthogonal projection of fi onto O(−1)⊥:

f⊥i := fi −
(fi, T )

|T |2
T .

Then with respect to the smooth basis

{T ; f⊥1 , f
⊥
2 , . . . , f

⊥
n } ,

the matrix presentation of the metric H has the shape

H∞ =

â|T |2 0 · · · 0

0 |T |2g11̄ · · · |T |2g1n̄

0 |T |2g21̄ · · · |T |2g2n̄

. . . . . . . . . · · ·
0 |T |2gn1̄ · · · |T |2gnn̄

ì
.

Let HO be the matrix presentation of H with respect to {T ; f1, f2, . . . , fn}.
Then it is easy to see that HO and H∞ are related by

HO = QTH∞Q̄ .(5.5)
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The matrix Q is given by

Q =



1 q1 q2 · · · qn

0 1 0 · · · 0

0 0 · · · 1 0

0 0 · · · 0 1


,(5.6)

qi :=
(fi, T )

|T |2
.

Therefore

det(H∞) = det(HO) = |e|2(n+1) det(gij̄(z)) .(5.7)

This gives the following pointwise identity of forms:

c1(J1(O(1)|X)∨, hCN+1) = −(n+ 1)ωFS |X + Ric(ωFS) .(5.8)

Equation (5.8) is a special case of a much more general “metric splitting” of

the Chern forms of the exact sequence

0→ OX(−1)
ι→J1(OX(1))∨

π→ T 1,0(X)⊗OX(−1)→ 0 .(5.9)

Since this is of such importance for the main result of this article and has

played a significant role in the field in general, we take time to discuss it.

Let X be a complex manifold, and consider a short exact sequence of

analytic vector bundles over X

0 −→ S j−→ E π−→ Q −→ 0 .

It is well known that the following identities are valid in H•(X,C):

cτ (E) = cτ (S)cτ (Q) ,(5.10)

Ch(E) = Ch(S) + Ch(Q) .

When the terms of the sequence are equipped with Hermitian metrics induced

from a fixed metric hE on E and corresponding curvatures Θ(S, h|S) etc., we

may ask if the pointwise identities hold:

det
Ä
τIe + Θ(E , hE)

ä
= det

Ä
τIs + Θ(S, h|S)

ä
det
Ä
τIq + Θ(Q, h|Q)

ä
,(5.11)

Tr
Ä

exp(Θ(E , hE))
ä

= Tr
Ä

exp(Θ(S, h|S))
ä

+ Tr
Ä

exp(Θ(Q, h|Q))
ä
.

In general they do not. An important example, that has in some sense shaped

the field of K-stability, is the following. Let XF be a smooth hypersurface of

degree d ≥ 2 inside Pn+1. Then we have the standard adjunction sequence

0 −→ T 1,0
XF
−→ T 1,0

Pn+1 |XF −→ OPn+1(d)|XF −→ 0 .(5.12)
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Equip each term in the sequence with the induced Fubini-Study metric. In

[22], Tian has shown that

Ric(ωFS |XF ) = (n+ 2− d)ωFS |XF −
√
−1

2π
∂∂ log

Ñ∑
0≤j≤n+2 | ∂F∂zj |

2

||z||2d−2

é
.

(5.13)

This shows that the pointwise identity already fails for c1. Building on the

famous work of Simon Donaldson (see [7, Prop. 7]), this phenomena has been

thoroughly analyzed by Bismut, Gillet, and Soulé in their 1988 paper [3]. The

obstructions to splitting are called Bott-Chern secondary classes. Precisely,

Bismut, Gillet, and Soulé construct forms ›Ch(E• ; h•) which are unique modulo

∂ and ∂ terms satisfying the following:

2∑
j=0

(−1)jTr
Ä

exp(Θ(Ej , hj))
ä

= −
√
−1

2π
∂∂›Ch(E• ; h•) .(5.14)

They construct similar classes for the total Chern class cτ . These secondary

forms all have the property that, whenever the sequence splits as a holomor-

phic Hermitian sequence, the forms vanish identically. Since the jet complex

does not split metrically (where each term has its natural induced metric), a

somewhat surprising fact about this complex is the following.

Proposition 5.3. The Bott-Chern secondary classes of the jet complex

with respect to the natural metrics vanish identically. Precisely, there is a

pointwise identity of forms on X :

det
Ä
τIn+1 + Θ(J1(OX(1))∨, hCN+1)

ä
(5.15)

=
Ä
τ − ωFS |X

ä
det
Ä
(τ − ωFS |X)In + FωFS |X

ä
,

Tr
Ä

exp(Θ(J1(OX(1))∨, hCN+1)
ä

= exp(−ωFS |X) + Tr
Ä

exp(−ωFS |XIn + FωFS |X )
ä
.

FωFS |X denotes the full Riemann curvature tensor of (X,ωFS).

A proof of (5.15) will be provided in the paragraph below for the top

Chern class cn. This is all that is required for our purpose.

Let

0 −→ S j−→ E π−→ Q −→ 0

be a short exact sequence of holomorphic vector bundles on some complex

manifold X. Assume that E is equipped with a Hermitian metric h. Then S
acquires a metric by restriction and Q by the (smooth) isomorphism

S⊥
π∼= Q .
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The purpose of this paragraph is to analyze the curvature F E in terms of FS

and FQ. This is due to Griffiths (see [13, §6.3], [14, §2 (d)]). This will then be

applied to the jet sequence (5.3). D always denotes the unique holomorphic

Hermitian connection:

DE = DE ◦ j∗ +DE ◦ π∗ ◦ π(5.16)

= DS ◦ j∗ + π∗ ◦DQ ◦ π + α ◦ j∗ + β ◦ π∗ ◦ π ,

where we have defined

α := DE ◦ j∗ −DS ◦ j∗,(5.17)

β := DE ◦ π∗ ◦ π − π∗ ◦DQ ◦ π .

α is the second fundamental form of the inclusion 0 −→ S j−→ E .

Proposition 5.4.

α ∈ C∞(Ω1,0
X ⊗Hom(S,S⊥)) ,

β = −α∗ ∈ C∞(Ω0,1
X ⊗Hom(S⊥,S)) .

In particular, we have that

π ◦ α ∈ C∞(Ω1,0
X ⊗Hom(S,Q)) ,(5.18)

β ◦ π∗ ∈ C∞(Ω0,1
X ⊗Hom(Q,S)) ,

(π ◦ α) ∧ (β ◦ π∗) ∈ C∞(Ω1,1
X ⊗Hom(Q,Q)) ,

(β ◦ π∗) ∧ (π ◦ α) ∈ C∞(Ω1,1
X ⊗Hom(S,S)) .

Then we have the basic curvature formula.

Proposition 5.5.

F E = FS ◦ j∗ + π∗ ◦ FQ ◦ π + π∗∂Hom(S,Q)(π ◦ α) ◦ j∗(5.19)

+D1,0
Hom(Q,S)(β ◦ π

∗) ◦ π + (β ∧ α) ◦ j ◦ j∗ + (α ∧ β) ◦ π∗ ◦ π .

Now we return to our situation, S = OX(−1), E = J1(O(1)|X)∨, and

Q = T 1,0
X (−1). In this case we have the identifications

(5.20) Hom(S,Q) ∼= T 1,0
X , Hom(Q,S) ∼= Ω1,0

X .

The next proposition is crucial. It identifies the second fundamental form α;

in particular it shows that α is metric independent.

Proposition 5.6.

π ◦ α = dw1 ⊗
∂

∂w1
+ dw2 ⊗

∂

∂w2
+ · · ·+ dwn ⊗

∂

∂wn
.(5.21)
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Consequently,

β ◦ π∗ = −
∑

1≤i,j≤n
gij̄(w) dw̄j ⊗ dwi .(5.22)

Therefore α is holomorphic, β is parallel, and the curvature operator reduces

to

F E = FS ◦ j∗ + π∗ ◦ FQ ◦ π + (β ∧ α) ◦ j ◦ j∗ + (α ∧ β) ◦ π∗ ◦ π .(5.23)

Proof. The proof is a straightforward computation. To begin,

DJ1(O(1)|X)∨(T ) = ω11 ⊗ T +
∑

2≤j≤n+1

ωj1 ⊗ fj−1 .(5.24)

The matrix of connection forms is given by the usual rule

ωij =
∑

1≤k≤n+1

hki∂hjk .(5.25)

Therefore, we have

ωj1 = hkj
∂h1k

∂wi
dwi = hkjhi+1kdwi = δi+1jdwi = dwj−1 (j ≥ 2) ,(5.26)

ω11 = 0 .

By the same token,

∂ log |e|2 =
(f1, T )

|T |2
dw1 +

(f2, T )

|T |2
dw2 + · · ·+ (fn, T )

|T |2
dwn .(5.27)

Therefore

α(e) =

Ç
f1 −

(f1, T )

|T |2
T

å
⊗ dw1 +

Ç
f2 −

(f2, T )

|T |2
T

å
(5.28)

⊗ dw2 + · · ·+
Ç
fn −

(fn, T )

|T |2
T

å
⊗ dwn

= f⊥1 ⊗ dw1 + f⊥2 ⊗ dw2 + · · ·+ f⊥n ⊗ dwn .

Since π(fj) = T ⊗ ∂
∂wj

, we are done. �

From the above, we have that

(β ∧ α) ◦ j ◦ j∗ =
∑

1≤i,j≤n
gij̄(w) dwi ∧ dw̄j = ωFS |X ⊗ IO(−1) ,(5.29)

(π ◦ α) ∧ (β ◦ π∗)

=

á
−g1l̄(w)dw1 ∧ dw̄l −g2l̄(w)dw1 ∧ dw̄l · · · −gnl̄(w)dw1 ∧ dw̄l
−g1l̄(w)dw2 ∧ dw̄l −g2l̄(w)dw2 ∧ dw̄l · · · −gnl̄(w)dw2 ∧ dw̄l

· · · · · · · · ·
−g1l̄(w)dwn ∧ dw̄l −g2l̄(w)dwn ∧ dw̄l · · · −gnl̄(w)dwn ∧ dw̄l

ë
,
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where we sum over repeated indices. Therefore,

(5.30) F J1(O(1)|X)∨ = π∗ ◦
Å
−ωFS |X ⊗ IT 1,0 + F

T 1,0
X

ω

ã
◦ π + (α ∧ β) ◦ π∗ ◦ π .

Since α takes values in S⊥, we have

(5.31) π∗ ◦ (π ◦ α) ∧ (β ◦ π∗) ◦ π = (α ∧ β) ◦ π∗ ◦ π .

At the center of a normal coordinate system, the second fundamental form

operator S := (π ◦ α) ∧ (β ◦ π∗) takes the shape

S =

á
−dw1 ∧ dw̄1 −dw1 ∧ dw̄2 · · · −dw1 ∧ dw̄n
−dw2 ∧ dw̄1 −dw2 ∧ dw̄2 · · · −dw2 ∧ dw̄n
· · · · · · · · · · · ·

−dwn ∧ dw̄1 −dwn ∧ dw̄2 · · · −dwn ∧ dw̄n

ë
.(5.32)

Observe that

Tr((π ◦ α) ∧ (β ◦ π∗)) = −ωFS |X .(5.33)

Therefore

(5.34) Tr(F J1(O(1)|X)∨) = −(n+ 1)ωFS |X + Ric(ωFS |X) .

Equation (5.34) is consistent with (5.8).

Lemma 5.1. Let F denote the full curvature tensor of ωFS |X . Then, for

all k ≥ 1, we have that

Trace(F kS) ≡ 0 .(5.35)

The proof follows from the usual symmetries of the curvature tensor and

is left to the reader.

The definition of S implies at once that

S2 = ωS .(5.36)

Since Trace(S) = −ω, we have

(5.37) Trace(F + S)k = Trace(F k)− ωk .

Lemma 5.2. For any A ∈ Mn(C), let σk(A) denote the kth elementary

symmetric function of A. Then

σk(F + S) =
k∑
j=0

(−1)jσk−j(F )ωj .(5.38)

Proof. The identity obviously holds when k = 1. We proceed by induction.

Assume the identity for 1 ≤ j ≤ k − 1. Newton’s formula relating σk(A) and
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pk(A) := Trace(Ak) together with (5.37) imply that

(5.39) σk(F + S) =
1

k

{ k∑
j=1

(−1)j+1σk−j(F + S)(pj(F )− ωj)
}
,

1

k

{ k∑
j=1

k−j∑
i=0

(−1)i+j+1σk−j−i(F )pj(F )ωi
}

+
1

k

{ k∑
j=1

k−j∑
i=0

(−1)i+jσk−j−i(F )ωi+j
}
.

Rearrangement shows that

k∑
j=1

k−j∑
i=0

(−1)i+j+1σk−j−i(F )pj(F )ωi =
k−1∑
i=0

(−1)i(k − i)σk−i(F )ωi ,(5.40)

k∑
j=1

k−j∑
i=0

(−1)i+jσk−j−i(F )ωi+j =
k−1∑
i=1

(−1)iiσk−i(F )ωi .

Adding these two completes the proof of the proposition. �

Corollary 5.1. There is a pointwise identity of differential forms

cn(J(OX(1))∨, ω) = cn(T 1,0
X (−1), ω)− cn−1(T 1,0

X (−1), ω)ω .(5.41)

Proof. To begin, we have that

cn(T 1,0
X (−1), ω)− cn−1(T 1,0

X (−1), ω)ω(5.42)

=
n∑
j=0

(−1)jcn−j(F )ωj +
n−1∑
j=0

(−1)j+1(j + 1)cn−j−1(F )ωj+1

=
n∑
j=0

(−1)j(j + 1)cn−j(F )ωj .

By definition,

cn((J(OX(1))∨, ω) = σn(π∗ ◦ {−ωFS |XIT 1,0 + F
T 1,0
X

ω + S} ◦ π)(5.43)

= det
Ä
− ωFS |XIT 1,0 + F

T 1,0
X

ω + S
ä
.

By Lemma 5.2, we have

n∑
j=0

(−1)jωjσn−j(F + S) =
n∑
k=0

k∑
j=0

(−1)n−(k−j)ωn−(k−j)ck−j(F ) .(5.44)

Now the corollary amounts to the following

Claim 5.1.

n∑
k=0

k∑
j=0

(−1)n−(k−j)ωn−(k−j)ck−j(F ) =
n∑
i=0

(−1)i(i+ 1)cn−i(F )ωi .(5.45)
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The proof of the claim is similar to the proof of Lemma 5.2 and is left to

the reader. This completes the proof of Corollary 5.1. �

Let ξ ∈ sl(N + 1,C), and let σ = exp(ξ) ∈ SL(N + 1,C). We introduce a

one parameter family of metrics Ht = (. , .)t on J1(OX(1))∨ joining hCN+1 =

H0 to Hσ = H1 by the rule

(V,W )t := (exp(tξ)W, exp(tξ)V ), V,W ∈ CN+1 .(5.46)

Then

(5.47) Ht|O(−1) = exp(ϕt)| · |2 , Ht|O(−1)⊥ = exp(ϕt)| · |2 ⊗ ωt ,

where ϕt and ωt are given by

(5.48) ϕt := log
| exp(tξ)T |2

|T |2
, ωt := ωFS |X +

√
−1

2π
∂∂ϕt .

Our aim is to compute, for a general X, the Donaldson functional

DJ1(OX(1))∨(cn+1 ; H(σ), H(e))(5.49)

with respect to the path Ht. Then we will replace X with X ×Pn−1. We have

(5.50) DJ1(OX(1))∨(cn+1 ; H•(σ), H•(e))

= (−1)

∫ 1

0

∫
X

∂

∂b
det
Ä
π∗ ◦ {Fωt|X − ωt|XIn + S(t)} ◦ π + bU(t)

ä
|b=0dt ,

where Fωt|X is the full Riemann curvature tensor of ωt and U(t) is the endo-

morphism

U(t) :=

Å
d

ds
Hs ·Hs

−1
ãT ∣∣∣∣

t
.(5.51)

Computation of the determinant in (5.50) at the point (o, t) with respect to

the local analytic frame {e = T, fi − (fi,e)t
|e|2t
|o e} shows at once that

∂

∂b
det
Ä
π∗ ◦ {Fωt|X − ωt|XIn + S(t)} ◦ π + bU(t)

ä
|b=0(5.52)

= ϕ̇t det
Ä
Fωt|X − ωt|XIn + S(t)

ä
= ϕ̇tcn(J1(O(1)|X)∨; ht) .

The next proposition seems to have been known to Cayley; a modern

proof has been provided by Weyman and Zelevinsky. We give a new proof of

the result of Weyman and Zelevinsky based on the theorem of Beltrametti,

Fania, and Sommese mentioned in Section 2. The ingredients of the proof are

required at a later stage in our argument.
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Proposition 5.7. Let X ↪→ PN be a smooth linearly normal subvariety

of degree d ≥ 2. Let µ denote the average of the scalar curvature. Then the

hyperdiscriminant of format (n− 1) is well formed with degree given by

deg(∆X×Pn−1) = n(n+ 1)d− dµ .(5.53)

In particular,

deg
(
∆Xn

d
×Pn−1

)
=n(n+1)(d− 1) (Xn

d is the dth Veronese image on Pn),

deg
(
∆X×Pn−1

)
=n

k∏
i=1

di
( k∑
i=1

di − k
)

(X ⊂ Pn+k+1 a complete intersection),

deg
(
∆X

)
=2d− 2 + 2g (X a smooth curve of genus g).

Proof. Recall the smooth isomorphism

Ω1,0
Pn−1 ⊕O ∼=

n︷ ︸︸ ︷⊕
O(−1) .(5.54)

The short exact sequence

0 −→ Ω1,0
X×Pn−1(1) −→ J1(O(1)|X×Pn−1) −→ O(1)|X×Pn−1 −→ 0(5.55)

implies the Chern class identity

c(J1(O(1)|X×Pn−1)) = c(Ω1,0
X×Pn−1(1))(1 + ωFS + ω) .(5.56)

Recall that the restriction of the hyperplane from the Segre embedding of

X × Pn−1 is the tensor product

OP(N+1)n−1(1)|X×Pn−1
∼= O(1)|X ⊗OPn−1(1) .(5.57)

Next we have the obvious holomorphic splitting

Ω1,0
X×Pn−1(1) ∼= Ω1,0

X (1)⊗OPn−1(1)⊕ Ω1,0
Pn−1(1)⊗O(1)|X .(5.58)

Therefore

c(Ω1,0
X×Pn−1(1)) = c(Ω1,0

X (1)⊗OPn−1(1))c(Ω1,0
Pn−1(1)⊗O(1)|X) .(5.59)

By (5.54), we have the smooth isomorphism over X × Pn−1

(5.60) Ω1,0
Pn−1(1)⊗O(1)|X ⊕OPn−1(1)⊗O(1)|X ∼=

n︷ ︸︸ ︷⊕
O(1)|X .

Taking the total Chern class then gives

c(Ω1,0
Pn−1(1)⊗O(1)|X)(1 + ωFS + ω) = (1 + ωFS)n .(5.61)

Therefore, we have that

c(J1(O(1)|X×Pn−1)) = c(Ω1,0
X (1)⊗OPn−1(1))(1 + ωFS)n .(5.62)
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Next we require the well-known identity. Let E be a rank r vector bundle and

L a line bundle and 0 ≤ p ≤ r an integer; then

cp(E ⊗ L) =
p∑
i=0

Ç
r − i
p− i

å
ci(E)c1(L)p−i .(5.63)

We see that

cn−1(Ω1,0
X (1)⊗OPn−1(1)) =

Ç
n

n− 1

å
ωn−1 +O(ωn−2),(5.64)

cn(Ω1,0
X (1)⊗OPn−1(1)) = c1(Ω1,0

X (1))ωn−1 +O(ωn−2)

= c1(Ω1,0
X )ωn−1 + nωFSω

n−1 +O(ωn−2) .

Thus we see that

c(J1(O(1)|X×Pn−1))(5.65)

=
Ä
c1(Ω1,0

X )ωn−1 + nωFSω
n−1 + nωn−1 +O(ωn−2)

ä
(1 + ωFS)n .

From this the component of top dimension is easily seen to be

c2n−1(J1(O(1)|X×Pn−1)) = nc1(Ω1,0
X )ωn−1

FS ωn−1 + n2ωnFSω
n−1 + nωnFSω

n−1

(5.66)

= nc1(Ω1,0
X )ωn−1

FS ωn−1 + n(n+ 1)ωnFSω
n−1 .

Next we show that the integral∫
X×Pn−1

c2n−1(J1(O(1)|X×Pn−1)) = n(n+ 1)d− dµ > 0(5.67)

if and only if d ≥ 2. The proof is a simple excercise in the adjunction formula,

shown to the author by Lev Borisov. To begin, let H1, H2, . . . ,Hn−1 be generic

hyperplanes in PN . Let Cg denote the intersection

Cg := ∩1≤j≤n−1Hj ∩X .(5.68)

Then Cg is a smooth curve of genus g. Let K denote the canonical bundle of

Cg; then

2g − 2 =

∫
Cg
c1(K) .(5.69)

There is an exact sequence

0 −→ T 1,0
Cg −→ T 1,0

X |Cg −→

n−1︷ ︸︸ ︷⊕
OPN (1)|Cg −→ 0(5.70)

from which we deduce the isomorphism

OPN (n− 1)⊗KX
∼= K .(5.71)
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Therefore,

2g − 2 =

∫
X

Ä
− Ric(ω|X) + (n− 1)ω

ä
ωn−1(5.72)

= −dµ
n

+ d(n− 1) .

Since g ≥ 0 and d ≥ 2, we have the inequalities

0 ≤ n(n− 1)d+ 2n− dµ ≤ n(n− 1)d+ dn− dµ < n(n+ 1)d− dµ .(5.73)

Therefore by the result of Beltrametti, Fania and Sommese it follows that X×
Pn−1 is codimension one and the degree of the hyperdiscriminant polynomial

is n(n+ 1)d− dµ. �

From our previous work on the pointwise splitting of the Chern forms5

and 5.66, we have the following

Claim 5.2. There is a pointwise identity of forms on X × Pn−1:

c2n−1(J1(O(1)|X×Pn−1) ; Ht) = −nRic(ωϕt)ω
n−1
ϕt ωn−1 + n(n+ 1)ωnϕtω

n−1 .

(5.74)

We sum up the result of our work in the following

Proposition 5.8. Let J1(O(1)|X×Pn−1) denote the bundle of one-jets of

O(1)|X×Pn−1 associated to X × Pn−1 in its Segre embedding. Then

(5.75) DJ1(O(1)|X×Pn−1 )∨(c2n ; H•(σ), H•(e))

=

∫ 1

0

∫
X×Pn−1

ϕ̇t
¶
− nRic(ωϕt)ω

n−1
ϕt ωn−1 + n(n+ 1)ωnϕtω

n−1
©
.

Next we require the following well-known result.

Theorem 5.1 (Tian [22], Zhang [28], Paul [19]). Let X be an n-dimen-

sional subvariety of PN , and let RX denote the X-resultant. Then there is a

norm || || on B such that

(5.76) − deg(X)(n+ 1)F 0
ω(ϕσ) = log

||σ ·RX ||2

||RX ||2
; B := PH0(G,O(d)) .

G := G(N−n−1,PN ) denotes the Grassmannian of N−n−1 linear subspaces

of PN , and the energy F 0
ω(ϕ) is defined as follows :

(5.77) F 0
ω(ϕ) := −

∫ 1

0

∫
X
ϕ̇t
ωnϕt
V

.

5We have made tacit use of the fact that the splitting holds for the Fubini-Study metric

on Pn. Precisely, c(T 1,0
Pn ; ω) = (1 + ω)n+1 pointwise.
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Finally substitute (5.77) into the right-hand side of (5.75). Then apply

Theorem 5.1 in order to complete the proof of Proposition 5.1.

The proof of Theorem A is now complete. Theorem B follows at once from

Theorem A and Proposition 2.30. Theorem C follows from Proposition 2.8.

Definition 14 (Tian, [23]). Let (X,ω) be a Kähler manifold. The Mabuchi

energy is proper provided there exists constants A > 0 and B > 0 such that

for all ϕ ∈ Hω, we have

νω(ϕ) ≥ AJω(ϕ)−B ,(5.78)

Jω(ϕ) :=
1

V

∫
X

n−1∑
i=0

√
−1

2π

i+ 1

n+ 1
∂ϕ ∧ ∂ϕ ∧ ωi ∧ ωϕn−i−1 .

It is known that the Mabuchi energy of any canonically polarized manifold

(or Calabi-Yau) is proper; this follows easily from Tian’s alpha invariant and

an application of Jensen’s inequality. For details, see [25]. In [23] Tian demon-

strates, among other things, that for Fano manifolds properness is equivalent

to the existence of a Kähler Einstein metric if the automorphsim group is finite.

We formulate an apparently stronger but equivalent form of Theorem D

as follows.

Theorem D (strong form). Let X −→ PN be a smooth, linearly normal

algebraic variety of degree d ≥ 2. Then X is K-stable if and only if, for all

maximal algebraic tori H and all m � 0, there is a constant B = B(H) > 0

such that

(5.79) νω(ϕτ ) ≥ deg(∆) deg(R)

m
Jω(ϕτ )−B, τ ∈ H .

The strong form of Theorem D follows at once from Theorem A, Propo-

sition 2.9, Theorem 5.1, and Sun’s lemma (Proposition 2.7). Theorem E also

follows from Proposition 2.7. Theorem F is a consequence of Corollary 2.1.

Corollary 1.1 part i) follows from Theorem C and the deep work in [5] (which

extends the results of [1]). Part iii) requires Tian’s properness theorem [23].

Corollary 1.2 parts i) and ii) follow from Proposition 2.9, Theorem A, and the

remark immediately following Definition 14. We leave further details to the

reader.
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