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Rational points near manifolds and
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By Victor Beresnevich
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Abstract

This work is motivated by problems on simultaneous Diophantine ap-

proximation on manifolds, namely, establishing Khintchine and Jarńık type

theorems for submanifolds of Rn. These problems have attracted a lot

of interest since Kleinbock and Margulis proved a related conjecture of

Alan Baker and V. G. Sprindžuk. They have been settled for planar curves

but remain open in higher dimensions. In this paper, Khintchine and Jarńık

type divergence theorems are established for arbitrary analytic nondegen-

erate manifolds regardless of their dimension. The key to establishing these

results is the study of the distribution of rational points near manifolds —

a very attractive topic in its own right. Here, for the first time, we obtain

sharp lower bounds for the number of rational points near nondegenerate

manifolds in dimensions n > 2 and show that they are ubiquitous (that is

uniformly distributed).
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1. Introduction

LetM be a bounded smooth manifold in Rn. Given Q > 1 and ε > 0, let

N(Q, ε) = #
{
p/q ∈ Qn : 1 ≤ q ≤ Q, dist(p/q,M) ≤ ε

}
,

where #S is the cardinality of a set S, p∈Zn, q∈Z, dist(r,M)=infy∈M |r−y|
and | · | is the Euclidean norm on Rn. Thus, N(Q, ε) counts rational points

with bounded denominator lying ‘ε-near’ M. The following intricate problem

will be our main concern.

Problem 1.1. Estimate N(Q, ε) for a ‘generic’ smooth manifold M.

Our study of Problem 1.1 is motivated by open problems on simultaneous

Diophantine approximation on manifolds; see Section 2. However, the interest

to the distribution of rational points near manifolds is not limited to these

problems; see, e.g., [28], [46]. In this paper a sharp lower bound on N(Q, ε) is

established when ε is bounded below by some naturally occurring function of

Q. To begin with, we briefly review the state of the art.

Planar curves. The first general estimates for N(Q, ε) are due to Huxley

[33], [32]. In particular, he proved that for any curve M in R2 with curvature

bounded between positive constants, N(Q, ε) � εQ3+θ for ε � Q−2, where

θ > 0 is arbitrary and “�” is the Vinogradov symbol. Huxley’s estimate was

the only general result until Vaughan and Velani remarkably removed the θ-

term from Huxley’s estimate [54]. On the other hand, Dickinson, Velani and

the author [8] obtained the complementary boundN(Q, ε)� εQ3 for ε� Q−2.

Consequently, the theory for planar curves is reasonably complete.

Higher dimensions. Very little is known. Effectively, there are only rather

crude bounds on N(Q, ε) obtained via Khintchine’s transference principle [17]

and estimates for topological products of planar curves [18, §§4.4.2, 5.4.4]. In

this paper we investigate the distribution of rational points near arbitrary an-

alytic nondegenerate submanifold of Rn for all n > 1. Analytic nondegenerate

manifolds are natural to consider as they run through Diophantine approxi-

mation and beyond. Recall that a connected analytic submanifoldM of Rn is

nondegenerate if M is not contained in a proper affine subspace of Rn. If M
is immersed by an analytic map ξ = (ξ1, . . . , ξn) : U → Rn defined on a ball

U ⊂ Rd, then M is nondegenerate if and only if the functions 1, ξ1, . . . , ξn are

linearly independent over R.

Throughout m = codimM ≥ 1. Then we have the following obvious

‘volume based’

(1.1) Heuristic estimate: N(Q, ε) � εmQn+1,
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where � means both � and �. In order to gain some insight into when the

heuristic estimate (1.1) could potentially be true we now consider the following

two counterexamples.

Example 1.2. Let M = {(x1, . . . , xn) ∈ Rn : x2
1 + x2

2 = 3}. Obviously,

M is nondegenerate. It is readily verified that M ∩ Qn = ∅. Further, if

ε = o(Q−2) and Q is large enough, then the rational points contributing to

N(Q, ε) must lie onM, resulting in N(Q, ε) = 0 for ε = o(Q−2). This example

can be extended to submanifolds of any codimension by using Pyartli’s slicing

technique [48]. The next example is of a different nature.

Example 1.3. Let

M = {(x1, . . . , xd−1, xd, x
2
d, . . . , x

m+1
d ) ∈ Rn : max

1≤i≤d
|xi| < 1},

where d ≥ 2. Clearly M is nondegenerate and bounded. Given a positive

integer q ≤ Q, the rational points p/q with p = (p1, . . . , pd−1, 0, . . . , 0) ∈
Zn obviously lie on M. The number of such points is � Qd, thus implying

N(Q, ε)� Qd regardless of the size of ε. The latter is significantly larger than

the heuristic estimate (1.1) unless ε� Q−(m+1)/m.

In this paper we shall show that the condition ε � Q−(m+1)/m is suf-

ficient to prove the heuristic lower bound for N(Q, ε). Also we shall see in

Section 7 that this condition can be significantly relaxed when M is a curve.

The results will be presented in a form convenient for the applications in metric

Diophantine approximation that we have in mind; see Section 2. Furthermore,

the form of their presentation reveals the distribution of rational points in

question, which is far more delicate than simply counting.

We will naturally and nonrestrictively work with manifolds M locally.

Then, in view of the Implicit Function Theorem, this allows us to represent

M by Monge parameterisations. Therefore without loss of generality, we can

assume that

(1.2) M :=
¶

(x1, . . . , xd, f1(x), . . . , fm(x)) ∈ Rn : x = (x1, . . . , xd) ∈ U
©
,

where U is an open subset of Rd and f = (f1, . . . , fm) : U → Rm is a map. Here

and elsewhere d = dimM and m = codimM. The distribution of rational

points near the manifold (1.2) is then conveniently described in terms of the

set

Rδ(Q,ψ,B) :=

(q,a,b) ∈ N× Zd × Zm :

a/q ∈ B, δQ < q ≤ Q
|qf(a/q)− b|∞ ≤ ψ
gcd(q,a,b) = 1

 ,



190 VICTOR BERESNEVICH

where Q > 1, ψ ≥ 0, δ ≥ 0, B ⊂ U and | · |∞ denotes the supremum norm.

Also define

∆δ(Q,ψ,B, ρ) :=
⋃

(q,a,b)∈Rδ(Q,ψ,B)

B
Ä
a/q, ρ

ä
,

where B(x, ρ) denotes a ball centred at x of radius ρ. Roughly speaking, the

set ∆δ(Q,ψ,B, ρ) indicates which part of the manifold can be covered by balls

of radius � ρ centered at the rational points of interest. The following key

result of this paper shows that this part is substantial for a suitable choice of

parameters. In what follows µd denotes d-dimensional Lebesgue measure.

Theorem 1.4. Let the manifold (1.2) be analytic and nondegenerate and

let B0 ⊂ U be a compact ball. Then there are absolute positive constants k0, ρ0

and δ0 depending on B0 only with the following property. For any ball B ⊂ B0

there are positive constants C0 = C0(B) and Q0 = Q0(B) such that for all

Q ≥ Q0 and all ψ satisfying

(1.3) C0Q
−1/m < ψ < C−1

0 ,

we have

(1.4) µd
Ä
∆δ0(Q,ψ,B, ρ) ∩B

ä
≥ k0 µd(B) ,

where ρ := ρ0 × (ψmQd+1)−1/d.

Corollary 1.5. Let M and B0 be as in Theorem 1.4. Then, there are

constants δ0 and k1 > 0 such that for any ball B ⊂ B0, there exist Q0 > 0 and

C0 > 0 such that for all Q ≥ Q0 and all ψ satisfying (1.3), we have that

(1.5) N δ0(Q,ψ,B) := #Rδ0(Q,ψ,B) ≥ k1ψ
mQd+1µd(B).

Proof of Corollary 1.5. For any r ∈ Rd we obviously have that µd(B(r, ρ)∩
B) ≤ Vdρd, where Vd is the volume of a d-dimensional ball of radius 1. There-

fore, the r.h.s.1 of (1.4) is bounded above by N δ0(Q,ψ,B)Vdρ
d. By (1.4), we

get that N δ0(Q,ψ,B) ≥ V −1
d ρ−dk0µd(B). Substituting the value of ρ from

Theorem 1.4 into the last inequity completes the proof. �

Remark 1.6. It is clear that every rational point (a/q,b/q) arising from

Rδ0(Q,ψ,B) lies within the distance ε = ψ(δ0Q)−1 fromM. Thus, N(Q, ε) ≥
N δ0(Q, εδ0Q,B0). By Corollary 1.5, we get the lower boundN(Q, δ)� εmQn+1

valid for ε� Q−(m+1)/m consistent with (1.1).

Remark 1.7. In the case of hypersurfaces m = 1. Therefore, the condition

ε � Q−(m+1)/m transforms into ε � Q−2. This is the same as for planar

curves [8]. It tells us that rational points with denominator q ≤ Q can get

1Throughout the paper ‘r.h.s.’ means ‘right-hand side’ and ‘l.h.s.’ means ‘left-hand side.’
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const×Q−2 close to an arbitrary analytic nondegenerate hypersurface. In

fact, in view of Example 1.2 this is generically best possible!

Remark 1.8. In the case of planar curves the lower bound (1.5) has already

been established in [8, Th. 6]. However, in that paper the constant k1 happens

to dependent on B, while in this paper k1 is uniform.

2. Diophantine approximation on manifolds

In this section we apply Theorem 1.4 to simultaneous Diophantine ap-

proximation on manifolds. Traditionally, problems on the proximity of rational

points to points in Rn assume finding optimal relations between the accuracy

of approximation and the ‘height’ of approximating rational points p/q. In

our case, the latter is measured by q while the former is measured by ψ/q.

Therefore, throughout this section ψ : N→ R+ will be regarded as a decreas-

ing function referred to as an approximation function, where R+ = (0,+∞).

Given τ > 0, the approximation function q 7→ q−τ will be denoted by ψτ (q).

The point y ∈ Rn is called ψ-approximable if there are infinitely many

q ∈ N satisfying

(2.1) ‖qy‖ < ψ(q) ,

where ‖qy‖ denotes the distance of qy from Zn with respect to the sup-norm

| · |∞. Throughout, Sn(ψ) denotes the set of ψ-approximable points in Rn.

By Dirichlet’s theorem (see, e.g., [50]), Sn
Ä
ψ1/n

ä
= Rn. The point y ∈ Rn

such that y ∈ Sn(ψτ ) for some τ > 1/n is called very well approximable. If

y 6∈ Sn(ψτ ) for any τ > 1/n, then y is called not very well approximable or

extremal.2 A relatively easy consequence of the Borel-Cantelli lemma is that

almost all points in Rn are extremal; see, e.g., [18]. The property of extremality

is fundamental in Diophantine approximation. For example, Roth’s celebrated

theorem establishes nothing but the extremality of irrational algebraic num-

bers. Within this paper we will be dealing with problems that go back to

the profound conjecture of Mahler [44] that almost all points on the Veronese

curves (x, . . . , xn) are extremal. The problem was studied in depth for over 30

years and eventually settled in full by Sprindžuk in 1964 (see [51]) who also

stated the following general conjecture [53].

Conjecture (Sprindžuk). Any analytic nondegenerate submanifold of

Rn is extremal.

2The terminology of (not) very well-approximable points was first used by Schmidt [50].

The terminology of extremal points was first used by Koksma [43] and later reinvigorated by

Sprindžuk [52] with the notion of extremal manifolds. In some literature extremal points are

referred to be Diophantine or to be of a certain Diophantine type.
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Formally a differentiable manifold M ⊂ Rn is called extremal if almost

all points of M (with respect to the induced Lebesgue measure on M) are

extremal. For n = 2, the conjecture is a consequence of Schmidt’s theorem

[49] and for n = 3, it has been proved by Bernik and the author [4]. The full

conjecture (with the analyticity assumption dropped) has been established by

Kleinbock and Margulis in the tour de force [41] and later re-established in [3]

using different techniques. The work of Kleinbock and Margulis has also dealt

with the far more delicate multiplicative case known as the Baker-Sprindžuk

conjecture and led to a surge of activity that led to establishing the extremality

of various classes of manifolds and sets; see, for example, [38], [39], [40], [42].

The following two major problems now arise (see, e.g., [8, §1] or [6, §6]):

Problem 2.1. To develop a Khintchine type theory for Sn(ψ) ∩M.

Problem 2.2. To develop a Hausdorff measure theory for Sn(ψ) ∩M.

The goal of Problem 2.1 is a metric theory of Sn(ψ) ∩M with ψ being

a general approximation function, not just ψτ (q) = q−τ associated with ex-

tremality. The goal of Problem 2.2 is to determine the ‘size’ of Sn(ψ)∩M via

Hausdorff measure and dimension.

Before we proceed with the more detailed discussion of the above prob-

lems, it is worth mentioning that there are dual versions of Problems 2.1

and 2.2. In the dual case the approximating objects are rational hyperplanes

rather than rational points. The problems in the dual case are much more

tractable and progress has been significantly better. In particular, the dual

version of Problem 2.1 has been fully settled [3], [6], [19] and very deep an-

swers regarding the dual version of Problem 2.2 found [5], [7], [16], [22], [24].

However, as we shall see, Problems 2.1 and 2.2 (nondual) have more or less

been understood only in R2.

2.1. Khintchine type theory. Let M ⊂ Rn be a manifold. If for any ap-

proximation function ψ : N→ R+ such that

(2.2)
∑
q∈Z

ψ(q)n

converges almost no point onM is ψ-approximable, thenM is called of Khint-

chine type for convergence. In turn, M is called of Khintchine type for diver-

gence if for any approximation function ψ such that the sum (2.2) diverges,

almost all points on M are ψ-approximable. This terminology represents a

zero-one law and has been introduced in [18] to acknowledge the fundamen-

tal contribution of Khintchine who discovered this beautiful law in the case

M = Rn [35], [37]. We now discuss the state of the art for proper submani-

folds of Rn.
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Planar curves (n = 2). The story has begun with the pioneering work

[15] of Bernik who showed that the parabola (x, x2) is of Khintchine type

for convergence. Subsequently, working towards a conjecture of Alan Baker,

Mashanov has established a multiplicative analogue of Bernik’s result [45].

There has been no progress with planar curves since then, until Dickinson,

Velani and the author have shown that any C(3) nondegenerate planar curve

is of Khintchine type for divergence [8] and subsequently Vaughan and Velani

have established that any C(2) nondegenerate planar curve is of Khintchine

type for convergence [54]. See also [1], [9], [10] for further progress.

Higher dimensions (n > 2). In this case the Khintchine type theory also

exists but is rather bizarre. Bernik [13], [14] has shown that the manifolds

in Rmk given as the cartesian product of m nondegenerate curves in Rk are

of Khintchine type for convergence if m ≥ k and for divergence if k = 2 and

m ≥ 4. Dodson, Rynne and Vickers [25], [26] have found Khintchine type

manifolds satisfying certain curvature conditions. However, these conditions

significantly constrain the dimension of the manifolds and completely rule out

curves. For example, the Khintchine type manifolds of [25], [26] assume that

d = dimM≥ max{2,
√

2n− 3
2} for convergence and d ≥ 3

4(n+ 5) and n ≥ 19

for divergence. Thus, the simplest example of a Khintchine type manifold

for divergence could only be an 18-dimensional manifolds in R19. It should be

noted that Dodson, Rynne and Vickers established their divergence Khintchine

type theorem in the quantitative form. Assuming a condition on ψ which

implies that Sn(ψ) = Rn, Harman [31] has obtained a quantitative result for

Veronese curves and manifolds that are known to be of Khintchine type for

convergence. Recently Gorodnik and Shah [30] have obtained a Khintchine

type theorem for approximation by integer points (p1, . . . , pn, q) ∈ Zn+1 lying

on a quadratic variety of the form x2
1 ± · · · ± x2

d − y2 = 1 to their limit points

(with respect to the projective distance) lying on the unit sphere Sn ⊂ Rn.

For general manifolds admitting group actions, Ghosh, Gorodnik and Nevo

[29] also consider related Diophantine problems involving approximation by

rational points. The Khintchine type theory for curves in dimensions n > 2

is simply nonexistent. However, in view of Pyartli’s slicing technique [48],

curves underpin the whole theory. The following result of this paper covers

arbitrary nondegenerate analytic curves as well as arbitrary nondegenerate

analytic submanifolds of Rn.

Theorem 2.3. For any n ≥ 2, any nondegenerate analytic submanifold

of Rn is of Khintchine type for divergence.
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Classical case. In order to illustrate the statement of Theorem 2.3, let us

consider the following classical problem on rational approximations to consec-

utive powers of a real number. That is, we consider the inequality

(2.3) max
¶
‖qx‖, ‖qx2‖, . . . , ‖qxn‖

©
< ψ(q).

Since the consecutive powers of x are real analytic functions of x which, to-

gether with 1, are linearly independent over R, Theorem 2.3 implies the fol-

lowing

Corollary 2.4. Given any monotonic ψ : N → R+ such that the sum

(2.2) diverges, for almost all x ∈ R inequality (2.3) has infinitely many solu-

tions q ∈ N.

In 1925 Khintchine [36] established such a statement in the special case

when ψ(q) = cq−1/n with arbitrary but fixed c > 0. The latter has been

generalised by R. C. Baker [2] to smooth manifolds but the same class of

approximation functions. Corollary 2.4 is thus the first improvement on that

result of Khintchine in the period of over 80 years. It obviously contains

Khintchine’s result and is believed to be best possible. In fact, a folk conjecture

suggests that for almost all x ∈ R there are only finitely many q ∈ N satisfying

(2.3) provided that the sum (2.2) converges.

2.2. Hausdorff dimension and measure theory. Problem 2.2 throws up a

few surprises. For example, unlike the dual case the dimension of Sn(ψ) ∩M
happens to depend on the arithmetic properties of M. To grasp the ideas

consider the following popular example. Let Cr be the circle x2 + y2 = r. It

is easily verified that if r ∈ N, τ > 1 and ψ(q) = ψτ (q) = q−τ , then all the

rational points implicit in (2.1) must lie on Cr for sufficiently large q. For the

unit circle C1, these points are parameterised by Pythagorean triples and well

understood. As a result

(2.4) dimS2(ψτ ) ∩ C1 =
1

τ + 1
for τ > 1,

where dim stands for Hausdorff dimension. The fact (2.4) has been established

in two complementary papers by Melnichuk [47] and Dickinson-Dodson [23].

On the other hand, it is easily seen that C3 ∩Q2 = ∅. Consequently,

(2.5) dimS2(ψτ ) ∩ C3 = 0 for τ > 1.

Thus, scaling C1 by
√

3 completely changes the character of the set of ψτ -

approximable points lying on it. Luckily, this cannot happen if τ < 1. In fact,

as shown in [8],

(2.6) dimS2(ψτ ) ∩ C =
2− τ
τ + 1

when 1/2 ≤ τ < 1
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for all C(3) curves C in R2 nondegenerate everywhere except possibly on a set

of Hausdorff dimension ≤ 2−τ
τ+1 . The Hausdorff dimension of S2(ψ) ∩ C has

also been found in [8] for general approximation functions ψ. Furthermore, an

analogue of Jarńık’s theorem [34] has been established in [8] and [54] which

provides a complete picture of the s-dimensional Hausdorff measure of S2(ψ)

∩ C; see [8], [54] for details.

Higher dimensions. Khintchine’s transference principle [50] can be used

to deduce bounds on dimSn(ψτ ) ∩M from the much better understood dual

case. Although the bounds obtained this way are rather crude, until recently

nothing else was known. In [27] Drutu established a comprehensive theory for

nondegenerate rational quadrics in Rn when the approximating rational points

lie on quadrics. In particular, her results include (2.4) and (2.5) as two special

cases. More recently Budarina and Dickinson [21] have investigated Sn(ψτ )∩M
for hypersurfacesM in Rn parameterised by the forms xd1 +· · ·+xdn−1 of degree

d < log n, the exponent τ being large and the approximating rational points

being lying on M. However, except for planar curves, the approximating

rational points always lie on the manifold. In view of this, Theorem 2.5 below

appears to be the first general result concerning Problem 2.2 in dimensions

n > 2.

Let Hs denote s-dimensional Hausdorff measure. In order to state the

result we now introduce the exponent of ψ also known as the lower order of

1/ψ at infinity:

τ(ψ) := lim inf
q→∞

− logψ(q)

log q
.

Theorem 2.5. Let M be a nondegenerate analytic submanifold of Rn,

d = dimM and m = codimM. Thus, d + m = n. Let ψ : N → R+ be a

monotonic function such that qψ(q)m → ∞ as q → ∞. Then for any s ∈Ä
m
m+1d, d

ä
,

(2.7) Hs(Sn(ψ) ∩M) =∞ if
∞∑
q=1

qn
(ψ(q)

q

)s+m
=∞.

Consequently, if τ = τ(ψ) satisfies 1/n < τ < 1/m, then

(2.8) dimSn(ψ) ∩M ≥ s0 :=
n+ 1

τ + 1
−m.

We shall see in Section 7 that for nondegenerate analytic curves (d = 1)

Theorem 2.5 holds for s ∈ (d/2; d). It is also possible to obtain the version of

Theorem 2.5 that would incorporate generalised Hausdorff measures. We opt

to omit further details which can be easily recovered using the ideas of [8, §8.1]

where the case n = 2 is considered.
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2.3. Proof of Theorems 2.3 and 2.5. The proof below generalises the ar-

guments given in Sections 3, 6, and 7 of [8] to higher dimensions.

Note 1. Within Theorem 2.5 it suffices to establish (2.7), for (2.8) follows

from (2.7).

Proof. By the definition of τ(ψ), for any ε > 0 there are infinitely many q

such that ψ(q) ≥ q−τ−ε. Since ψ is monotonic, ψ(2t) ≥ 2−(t+1)(τ+ε) for t ∈ Z
satisfying 2t ≤ q ≤ 2t+1. Therefore, there are infinitely many t ∈ N such that

ψ(2t) ≥ 2−(t+1)(τ+ε). Hence, on taking s = n+1
τ+1+ε −m with ε > 0, one verifies

that 2t(n+1)(ψ(2t)2−t)s+m ≥ 2−(n+1). The latter holds for infinitely many t

and implies that
∑∞
t=1 2t(n+1)(ψ(2t)2−t)s+m = ∞. Due to the monotonicity

of ψ this further implies that the sum in (2.7) diverges and therefore, by (2.7),

Hs(Sn(ψ) ∩M) = ∞. By the definition of Hausdorff dimension, we deduce

that dimSn(ψ) ∩M ≥ s = n+1
τ+1+ε −m, whence (2.8) readily follows. �

Note 2. The condition

(2.9) lim
q→∞

qψ(q)m =∞,

which is a part of Theorem 2.5, can be assumed in the proof of Theorem 2.3.

Proof. To verify (2.9) consider the monotonic function

ψ1(q) = max{q−2/(2n−1), ψ(q)}.

Then the divergence of (2.2) implies
∑∞
q=1 ψ1(q)n = ∞. Obviously Sn(ψ1 ) =

Sn(ψ) ∪ Sn(2/(2n − 1)). Since 2/(2n − 1) > 1/n and every nondegenerate

submanifold of Rn is extremal we obviously have that the setM∩Sn(2/(2n−1))

has zero measure on M. Hence M∩ Sn(ψ1 ) and M∩ Sn(ψ) are of the same

measure and ψ can be replaced with ψ1, which satisfies (2.9). �

Note 3. In view of the metric nature of Theorems 2.3 and 2.5, it is enough

to consider a sufficiently small neighborhood of an arbitrary point on M.

Therefore, by the Implicit Function Theorem, without loss of generality we can

assume that M is of the Monge form (1.2) and that the functions f1, . . . , fm
are Lipschitz; that is, for some c1 ≥ 1,

(2.10) max
1≤l≤m

|fl(x)− fl(x′)| ≤ c1|x− x′|∞ for all x,x′ ∈ U.

Note 4. Let Sf (ψ) be the set of x ∈ U such that (x, f(x)) ∈ Sn(ψ).

Obviously, Sf (ψ) is the orthogonal projection of Sn(ψ) ∩ M onto Rd. By

(2.10), Sf (ψ) and Sn(ψ) ∩M are related by a bi-Lipschitz map and therefore

Sf (ψ) is of full Lebesgue measure in U if and only if Sn(ψ)∩M is of full induced

Lebesgue measure on M; see [18, §1.5.1]. Further, recall that d-dimensional

Lebesgue measure is comparable to Hd. Therefore, to prove Theorem 2.3 it
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suffices to show that for every compact ball B0 in U ,

(2.11) Hd(Sf (ψ) ∩B0) = Hd(B0) if
∞∑
q=1

ψ(q)n =∞.

Similarly one can show that Theorem 2.5 follows on showing that

(2.12) Hs(Sf (ψ) ∩B0) = Hs(B0) if
∞∑
q=1

qn
Ç
ψ(q)

q

ås+m
=∞

holds for every compact ball B0 in U and s ∈ (md/(m+ 1), d). Note that for

s < d, Hs(B0) =∞. Also note that in the case s = d, (2.12) is simply (2.11).

Upshot. On establishing (2.12) for s ∈
Ä

m
m+1d, d

ó
and ψ satisfying (2.9)

we prove Theorems 2.3 and 2.5.

Ubiquitous systems. In what follows we will use the ubiquitous systems

technique. The notion of ubiquity introduced below is equivalent to that of

[7] in the setting that is now to be described. Let B0 be a ball in Rd and

R := (Rα)α∈J be a family of points Rα in B0 (usually called resonant points)

indexed by a countable set J . Let β : J → R+ : α 7→ βα be a function on J ,

which attaches a ‘weight’ βα to points Rα. For t ∈ N, define J(t) := {α ∈ J :

βα ≤ 2t} and assume that J(t) is always finite.

Definition 2.6. Let ρ : R+ → R+ be a function such that limt→∞ ρ(t) = 0.

The system (R;β) is called locally ubiquitous in B0 relative to ρ if there is an

absolute constant k0 > 0 such that for any ball B ⊂ B0,

(2.13) lim inf
t→∞

µd
( ⋃
α∈J(t)

B
Ä
Rα, ρ(2t)

ä
∩B

)
≥ k0 µd(B) .

Here as before µd denotes Lebesgue measure in Rd and B(x, r) denotes

the ball in Rd centred at x of radius r. The function ρ is referred to as ubiquity

function.

Given a function Ψ : R+ → R+, let

ΛR(Ψ) := {x ∈ B0 : |x−Rα|∞ < Ψ(βα) holds for infinitely many α ∈ J} .

The following lemma follows from Corollaries 2, 4 and 5 from [7]. In the case

d = 1 a simplified proof of Lemma 2.7 is given in [8, Ths. 9 and 10]; see

also [11].

Lemma 2.7. Let Ψ : R+ → R+ be a monotonic function such that for

some λ < 1, Ψ(2t+1) ≤ λΨ(2t) holds for t sufficiently large. Let (R, β) be a

locally ubiquitous system in B0 relative to ρ. Then for any s ∈ (0, d ],

(2.14) Hs
Ä
ΛR(Ψ)

ä
= Hs(B0) if

∞∑
t=1

Ψ(2t)s

ρ(2t)d
= ∞ .
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Proof of Theorems 2.3 and 2.5 modulo Theorem 1.4. Recall that our goal

is to establish (2.12) for s ∈ (md/(m + 1), d] and approximation functions

ψ satisfying (2.9), where B0 is an arbitrary nonempty compact ball in U .

Therefore, for the rest of this section we fix such a B0. Also recall that the

map f which arises from (1.2) satisfies the Lipschitz condition (2.10). We

can also assume that limq→∞ ψ(q) = 0 as otherwise Sn(ψ) = Rn and there is

nothing to prove.

We first construct a ubiquitous system relevant to our main goal. Let ρ0

and δ0 be the same as in Theorem 1.4. Define the ubiquity function ρ(q) =

ρ0 × (ψ(q)mqd+1)−1/d and the sequence R := {a/q}(q,a)∈J of resonant points

in B0, where

J :=
¶

(q,a) ∈ N× Zd : a/q ∈ B0, max
1≤l≤m

‖qfl(a/q)‖ ≤ 1
2ψ(q)

©
.

For α = (q,a) ∈ J define βα := q. We prove the following

Lemma 2.8. Assume that Theorem 1.4 holds. Then, with B0, R, β and

ρ as above, the system (R, β) is locally ubiquitous in B0 relative to ρ.

Proof. First of all, by (2.9), ρ(q) → 0 as q → ∞. We now verify (2.13)

for the specific choice of R, β and ρ we have made. Obviously J(t) consists of

(q,a) ∈ J such that q ≤ Q := 2t. Fix an arbitrary ball B ⊂ B0 and consider

the union in (2.13). This union contains

(2.15)⋃
δ0Q≤q≤Q

⋃
a∈Zd : (q,a)∈J

B
Ä
a/q, ρ(Q)

ä
∩B ⊃ ∆δ0

Ä
Q, 1

2ψ(Q), B, ρ(Q)
ä
∩B ,

where ∆δ0( · ) is the set defined in Section 1 and appearing in Theorem 1.4.

By (2.9) and the assumption limq→∞ ψ(q) = 0, conditions (1.3) are met for

sufficiently large Q and therefore, by Theorem 1.4, the µd-measure of the sets

in (2.15) is at least k0µd(B). Therefore (2.13) is fulfilled and the proof is

complete. �

In the next two statements we establish a relation between ΛR(Ψ) and

Sf (ψ) and an analogue of (2.12) in terms of ΛR(Ψ).

Lemma 2.9. Let Ψ(q) = ψ(q)/(2c1q), where c1 arises from (2.10) and let

B0, R, β and ρ be as in Lemma 2.8. Then ΛR(Ψ) ⊂ Sf (ψ).

Proof. Assume that x = (x1, . . . , xd) ∈ ΛR(Ψ). Then

(2.16) |x− a/q|∞ < Ψ(q) = ψ(q)/(2c1q)

for infinitely many (q,a) ∈ N× Zd such that

(2.17) max
1≤l≤m

|qfl(a/q)− bl| ≤ 1
2ψ(q)
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for some b = (b1, . . . , bm) ∈ Zm. By the triangular inequality,

|fl(x)− bl/q| ≤ |fl(x)− fl(a/q)|+ |fl(a/q)− bl/q|(2.18)

(2.10)

≤ c1|x− a/q|∞ + |fl(a/q)− bl/q|

(2.16)&(2.17)
< c1 · ψ(q)/(2c1q) +

1

2
ψ(q)/q = ψ(q)/q.

Since (2.16) and (2.18) hold for infinitely many q, we have that (x, f(x)) ∈
Sn(ψ); that is x belongs to Sf (ψ). Therefore, ΛR(Ψ) ⊂ Sf (ψ). �

Lemma 2.10. Assume that Theorem 1.4 holds. Let Ψ(q) = ψ(q)/(2c1q),

where c1 arises from (2.10) and let B0, R, β and ρ be as in Lemma 2.8. Then

(2.19) Hs
Ä
ΛR(Ψ)

ä
= Hs(B0) if

∞∑
q=1

qn
Ç
ψ(q)

q

ås+m
=∞.

Proof. Since ψ is decreasing, Ψ(2t+1) ≤ λΨ(2t) with λ = 1/2. Further,

using the explicit form for Ψ and ρ verify that

∞∑
t=1

Ψ(2t)s

ρ(2t)d
�
∞∑
t=1

ψ(2t)s2−st

ψ(2t)−m2−(d+1)t
�
∞∑
t=1

Ç
ψ(2t)

2t

ås+m
2(n+1)t .

In view of the monotonicity of ψ, the latter sum diverges if and only if
∞∑
q=1

qn
(
ψ(q)
q

)s+m
diverges. Hence, by Lemmas 2.7 and 2.8, we get (2.19). �

We are now able to complete the proof of Theorems 2.3 and 2.5. Recall

that we have to establish (2.12). Let Ψ, B0, R, β and ρ be as in Lemma 2.10.

By the monotonicity of Hs, Hs(Sf (ψ)∩B0) ≤ Hs(B0). Therefore, to establish

(2.12) it suffices to show that Hs(Sf (ψ)∩B0) ≥ Hs(B0) provided that the sum

in (2.12) diverges. In view of Lemma 2.9, this follows from (2.19), and the

proof of Theorems 2.3 and 2.5 modulo Theorem 1.4 is thus complete. �

3. Some auxiliary geometry

The distance of a rational point from a manifold is conveniently studied

using the notion of projective distance (due to H. and J. Weyl [55]) which

involves exterior and interior products. These classical and well-established

topics are now briefly recalled. The overview below is mostly taken from [50]

and [56]. We will use the standard embedding of Rn into the real projective

space Pn. Given x = (x1, . . . , xn) ∈ Rn, the point x = (λ, λx1, . . . , λxn) ∈
Rn+1 with λ 6= 0 will be referred to as the homogeneous coordinates of x.
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3.1. Exterior product and projective distance. Throughout, ∧p(Rn+1) de-

notes the p-th exterior power of Rn+1 and “∧” denotes the exterior product.

If p ≤ n+ 1 and e0, . . . , en is a basis of Rn+1, then the multivectors

(3.1) eI := ∧i∈I ei, I ∈ C(n+ 1, p)

form a basis of ∧p(Rn+1), where C(n + 1, p) denotes the set of all subsets of

{0, . . . , n} of cardinality p. The following well-known formula (see [56, p. 38])

expresses the exterior product of vectors xi =
∑n
j=0 xi,j ej ∈ Rn+1 (1 ≤ i ≤ p)

in terms of the basis (3.1):

(3.2) ∧pi=1 xi =
∑

I={i1<···<ip}∈C(n+1,p)

det
(
xj,ik

)
1≤j,k≤p

eI .

Recall that the exterior product is alternating, that is u ∧ v = −v ∧u so that

v∧v = 0. Further, let u ·v denote the standard inner product of u,v ∈ Rn+1.

Then, there is a uniquely defined inner product on ∧p(Rn+1) such that

(3.3) (v1 ∧ · · · ∧ vp) · (u1 ∧ · · · ∧ up) = det
Ä
vi · uj

ä
1≤i,j≤p

for any v1, . . . ,vp,u1, . . . ,up ∈ Rn+1. Furthermore, if e0, . . . , en is an or-

thonormal basis, then so is (3.1). Often (3.3) is referred to as the Laplace

identity [50, p. 105]. The Euclidean norm on ∧p(Rn+1) induced by (3.3) will

be denoted by | · |. By (13) in [56, p. 49],

(3.4) |u ∧ v| ≤ |u| |v| if u or v is decomposable.

Recall that a multivector u is decomposable if u = u1 ∧ · · · ∧ up for some

u1, . . . ,up ∈ Rn+1. Finally, given x,y ∈ Rn,

dp(x,y) =
|x ∧ y|
|x| |y|

is called the projective distance between x and y. Obviously dp(x,y) is well

defined. It is known that dp(x,y) = sinϕ(x,y), where ϕ(x,y) denotes the

acute angle between x and y; see (3.13) below. In particular, this angular

property of dp implies that dp(x,y) is a metric. Furthermore, dp is locally

comparable to the euclidean norm since

(3.5) dp(x,y) ≤ |x− y| ≤
»

1 + |x|2
»

1 + |y|2 dp(x,y)

for all x,y ∈ Rn. To see that (3.5) is true take x = (1, x1, . . . , xn) and y =

(1, y1, . . . , yn). Then the l.h.s. of (3.5) is proved as follows:

dp(x,y)=
|x ∧ y|
|x| |y|

=
|(x− y) ∧ y|
|x| |y|

(3.4)

≤ |x− y| |y|
|x| |y|

=
|x− y|
|x|

≤ |x− y|= |x− y|.

On the other hand, |x−y| ≤ |x∧y| =
»

1 + |x|2
»

1 + |y|2 dp(x,y), where the

first inequality is a consequence of (3.2).
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3.2. Interior product and Hodge duality. In what follows “ · ” will denote

the interior product of multivectors. For u ∈ ∧p(Rn+1) and v ∈ ∧q(Rn+1) the

latter is defined as follows. Assume that p ≥ q and consider the two linear

functions on ∧p−q(Rn+1) given by

x 7→ u · (v ∧ x) and x 7→ (x ∧ v) · u.

Since ∧p−q(Rn+1) is euclidean, there are unique (p− q)-vectors, which will be

denoted by u ·v and v ·u, such that (u ·v) ·x = u · (v∧x) and x · (v ·u) =

(x ∧ v) · u for all x ∈ ∧p−q(Rn+1). The multivectors u · v and v · u are called

the interior products of u and v, and v and u respectively. It is easily seen

that v · u = (−1)q(p−q)u · v and that in the case p = q the interior product

is simply the inner product (3.3). The definition of interior product readily

implies that

(3.6) a · (b ∧ c) = (a · b) · c and (c ∧ b) · a = c · (b · a)

if a ∈ ∧p(Rn+1), b ∈ ∧q(Rn+1), c ∈ ∧r(Rn+1) with p ≥ q + r; see (5) and (6)

in [56, p. 43].

Let e0, . . . , en be the standard basis of Rn+1 and i = e0 ∧ e1 ∧ · · · ∧ en ∈
∧n+1(Rn+1). By “ ⊥ ” we will denote the Hodge star operator which is defined

by

(3.7) u⊥ := i · u .

Note that the multivector u ∈ ∧p(Rn+1) is decomposable if and only if u⊥ ∈
∧n+1−p(Rn+1) is decomposable; see Lemma 11A in [56, p. 48]. The map (3.7)

is obviously linear. Also

(3.8) (v⊥)⊥ = (−1)(n+1−p)pv for any v ∈ ∧p(Rn+1).

The latter, known as the Hodge duality, follows from (2) in [56, p. 49] but

can also be easily verified for basis vectors and then extended by linearity.

Obviously v 7→ v⊥ is a one-to-one correspondence between ∧p(Rn+1) and

∧n+1−p(Rn+1). Also, an easy consequence of (3.6) and (3.8) is that the Hodge

operator is an isometry, that is |v⊥| = |v| for any v ∈ ∧p(Rn+1). Also the

Hodge operator conveniently relates the interior and exterior products. Indeed,

let u ∈ ∧p(Rn+1) and v ∈ ∧q(Rn+1). Then using (3.6) readily gives

(3.9) v⊥ · u = (v ∧ u)⊥ if p+ q ≤ n+ 1.

Since the Hodge operator is an isometry, this relation implies that

(3.10) |v⊥ · u| = |v ∧ u| if p+ q ≤ n+ 1.
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3.3. Relations between multivectors and subspaces of Rn+1. Throughout,

V(v1, . . . ,vr) denotes the vector space spanned by vectors v1, . . . ,vr. Also,

given a multivector w ∈ ∧(Rn+1), let V(w) be the linear subspace of Rn+1

given by

V(w) := {x ∈ Rn+1 : w ∧ x = 0}.

Lemma 3.1. If u1, . . . ,up ∈ Rn+1 are linearly independent, then V(u1 ∧
· · · ∧ up) = V(u1, . . . ,up). Furthermore if u,v ∈ ∧p(Rn+1) are nonzero de-

composable multivectors, then V(u) = V(v) ⇐⇒ u = θv for some θ 6= 0.

For details see Lemma 6B and Lemma 6C in [50, pp. 104–105]. Lemma 3.1

gives a one-to-one correspondence between nonzero decomposable p-vectors

taken up to a constant multiple and linear subspaces in Rn+1 of dimension

p. The latter is known as a Grassmann manifold and will be denoted by

Grp(Rn+1). Thus Grp(Rn+1) is embedded into P(∧p(Rn+1)) and so is equipped

with a natural topology induced from P(∧p(Rn+1)) with respect to which it is

obviously compact. Naturally, through the above correspondence the elements

of Grp(Rn+1) can be thought of as unit decomposable p-vectors taken up to

sign.

The following lemma gives a convenient way of expressing orthogonal sub-

spaces via the Hodge operator and justifies the notation for the operator that

we use within this paper. In what follows W⊥ denotes the linear subspace of

Rn+1 orthogonal to W ⊂ Rn+1.

Lemma 3.2. Let u ∈ ∧p(Rn+1) be a nonzero decomposable multivector.

Then

(3.11) V(u⊥) = V(u)⊥ = {v ∈ Rn+1 : u · v = 0}.

Proof. Take any orthogonal basis e1, . . . , ep of V(u) such that u = e1 ∧
· · · ∧ ep. This is possible in view of Lemma 3.1. If v ∈ Rn+1 is orthogonal to

V(u) then, using (3.3) it is easy to see that u·(v∧x) = 0 for any decomposable

x ∈ ∧p−1(Rn+1). On the other hand, if v ∈ Rn+1 is not orthogonal to V(u),

say e1 · v 6= 0, then, by (3.3), u · (v ∧ e2 ∧ · · · ∧ ep) = e1 · v 6= 0. The upshot

is that u · (v ∧ x) vanishes identically for all x ∈ ∧p−1(Rn+1) if and only if

v ∈ V(u)⊥. By the definition of interior product, this precisely means that

u · v = 0 if and only if v ∈ V(u)⊥. The latter establishes the r.h.s. of (3.11).

Finally, by (3.10), u · v = 0 if and only if u⊥ ∧ v = 0. The latter implies the

l.h.s. of (3.11). �

Lemma 3.3. Let u ∈ ∧p(Rn+1) and v ∈ ∧q(Rn+1) be decomposable. Then

V(u) ∩ V(v) = ∅ if and only if u ∧ v 6= 0. Consequently, if u ∧ v 6= 0, then

V(u) ⊕ V(v) = V(u ∧ v). Also if p ≥ q and u · v 6= 0, then V(u · v) =

V(u) ∩ V(v⊥).
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Proof. The condition V(u)∩V(v) = ∅ means that the sum V(u)+V(v) is

direct, which is equivalent to u∧ v 6= 0. The equality V(u)⊕V(v) = V(u∧ v)

is then a consequence of Lemma 3.1. Finally, by (3.9), u · v = ±(u⊥ ∧ v)⊥.

Then, by Lemmas 3.2 and 3.3, V(u · v) = V(u⊥ ∧ v)⊥ = (V(u⊥) ⊕ V(v))⊥ =

V(u⊥)⊥ ∩ V(v)⊥ = V(u) ∩ V(v⊥). �

The following lemma is easily established using the Laplace identity (3.3).

Lemma 3.4. Let u ∈ ∧p(Rn+1) and v ∈ ∧q(Rn+1) be decomposable and

p+ q ≤ n+ 1. If V(u) ⊥ V(v), then |u ∧ v| = |u| |v|.

3.4. Multivectors and projections. There are various relations between ex-

terior/interior product and projections of vectors in Rn+1 onto subspaces. The

properties we are particularly interested in are summarized as

Lemma 3.5. Let u ∈ Rn+1, v ∈ ∧p(Rn+1) with 1 ≤ p ≤ n be decomposable

and let π denote the orthogonal projection from Rn+1 onto V(v). Then

(3.12) |v ∧ u| = |v| · |u− πu| and |v · u| = |v| · |πu|.
Furthermore, |v|2πu = ±v · (v · u), where the sign is either + or −.

Proof. Fix an orthogonal basis v1, . . . ,vp of V(v) such that v = v1 ∧ · · ·
∧vp. Let u′ = u−πu. Obviously v1, . . . ,vp,u

′ is an orthogonal system. Also,

since πu ∈ V(v), by Lemma 3.1, v ∧ πu = 0. Therefore, v ∧ u = v ∧ u′. Now

applying (3.3) gives

|v ∧ u|2 = |v1 ∧ · · · ∧ vp ∧ u′|2
(3.3)
= |v1|2 . . . |vp|2 |u′|2

(3.3)
= |v|2 |u− πu|2.

This establishes the l.h.s. of (3.12). Further, notice that u−πu is the orthogo-

nal projection of u onto V(v⊥) = V(v)⊥. Therefore, the r.h.s. of (3.12) follows

on applying (3.10) to the l.h.s. of (3.12), when v is replaced by v⊥. The final

identity of the lemma is very well known and easy when p = 1. We consider

p ≥ 2. First, notice that u∧ πu = u∧ (u−u′) = −u∧u′ and that v ·u′ = 0;

see Lemma 3.2. Therefore, (v · u) · πu (3.6)
= v · (u ∧ πu) = −v · (u ∧ u′) =

v·(u′∧u)
(3.6)
= (v·u′)·u = 0. Hence, by Lemma 3.2, πu ⊥ V(v·u). Also, since

π is the projection onto V(v), we have that πu ⊥ V(v)⊥ = V(v⊥). Therefore,

πu ⊥ V(v ·u)+V(v⊥). By Lemma 3.3, the space V(v ·u) is a subspace of V(v)

and so is orthogonal to V(v⊥). Then, the sum V(v · u) + V(v⊥) is direct and,

by Lemma 3.3, it is equal to V(v⊥∧ (v ·u)). The latter space is readily seen to

have codimension 1. Theretofore, the relation πu ⊥ V(v · u) + V(v⊥) implies

that πu‖
Ä
v⊥ ∧ (v · u)

ä⊥ (3.9)
= ±v · (v · u). Finally, since the Hodge operator is

an isometry,

|v|2 ·|πu| = |v⊥|·|v|·|πu| (3.12)
= |v⊥|·|v ·u| Lemma 3.4

= |v⊥∧(v ·u)| (3.10)
= |v ·(v ·u)|

and the identity |v|2πu = ±v · (v · u) now readily follows. �
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Given two lines `1 and `2 in Rn+1 through the origin, let ϕ(`1, `2) denote

the acute angle between `1 and `2. Further, given a linear subspace L of Rn+1

of dimension p and a line ` through the origin, the angle ϕ(`, L) between L and

` is defined to be inf`′∈L ϕ(`, `′) , where the infimum is taken over over lines `′

in L through the origin. It is well known that ϕ(`, L) is the angle between ` and

the orthogonal projection of ` onto L. Thus, if u is a directional vector of ` and

π denotes the orthogonal projection onto L, then sinϕ(`, L) = |u|−1|u− πu|.
Further, if v ∈ ∧p(Rn+1) is a Grassmann representative of L, that is L = V(v),

then, by Lemma 3.5,

(3.13) sinϕ(`, L) =
|v ∧ u|
|v| |u|

(3.10)
=
|v⊥ · u|
|v| |u|

.

The following lemma is a consequence of the fact that the angle between

a line ` and a plane L1 is not bigger than the angle between this line ` and any

other plane L2 ⊂ L1.

Lemma 3.6. Let v ∈ ∧p(Rn+1) be a nonzero decomposable multivector

and u ∈ Rn+1. Then for any nonzero w ∈ V(v),

|w · u|
|w|

≤ |v · u|
|v|

.

Proof. In view of (3.10),

(3.14)
|w · u|
|w|

≤ |v · u|
|v|

⇐⇒ |v⊥ ∧ u|
|v| |u|

≥ |w
⊥ ∧ u|
|w| |u|

.

Obviously L2 := V(v⊥) ⊂ L1 := V(w⊥). Let ` := V(u). Therefore, by (3.13),

the l.h.s. of (3.14) is equivalent to sinϕ(`, L2) ≥ sinϕ(`, L1). The latter is

obvious in view of the fact that L2 ⊂ L1. The proof is thus complete. �

4. Detecting rational points near a manifold

In this section we describe the mechanism for investigating the distribution

of rational points near manifolds.

4.1. Local geometry near a manifold. Let M be a C(2) manifold of the

Monge form (1.2). For x = (x1, . . . , xd) ∈ U , let y = y(x) be the point

(x, f(x)) ∈M. We will use the lifting of M into Rn+1 given by

(4.1) y(x) = (1,y(x)) = (1,x, f(x))

which represents the projective embedding of y(x). Further, consider the fol-

lowing maps:

(4.2) g : U → ∧m(Rn+1) : x 7→
Ä
y(x) ∧ ∂1y(x) ∧ · · · ∧ ∂dy(x)

ä⊥
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and

(4.3) u : U → ∧d(Rn+1) : x 7→
Ä
y(x) ∧ g(x)

ä⊥
,

where ∂i := ∂/∂xi. The vectors y(x), ∂1y(x), . . . , ∂dy(x) are linearly indepen-

dent because y(x) has the Monge form. Hence g(x) 6= 0. Also, by Lemma 3.2,

y(x) ⊥ V(g(x)). Therefore, y(x) ∧ g(x) 6= 0 further implying u(x) 6= 0.

Convention. In order to simplify notation, we will write gx, ux and yx
for g(x), u(x) and y(x) respectively and drop the subscript x whenever there

is no risk of confusion. It is useful to keep in mind the following geometric

nature of g and u. The homogeneous equations g · z = 0 and u · z = 0 with

respect to z = (z0, z1, . . . , zn) define the tangent and transversal planes to

M respectively. Furthermore, |g · r| |g|−1|r|−1 (resp. |u · r| |u|−1|r|−1) is the

projective distance of r from the tangent (resp. transversal) plane; see (3.13).

Lemma 4.1. For every x ∈ U we have that Rn+1 = V(g) ⊕ V(u) ⊕ V(y)

is a decomposition of Rn+1 into pairwise orthogonal subspaces.

Proof. Recall the convention that g = gx, u = ux and y = yx. Fix an

x ∈ U . Let t := ∂1y(x)∧· · ·∧∂dy(x). Then, by (4.2), g = (y∧t)⊥. Then, using

Lemmas 3.1 and 3.2, we get that V(g) = V((y ∧ t)⊥) = V(y ∧ t)⊥ ⊂ V(y)⊥.

It follows that V(g) ⊥ V(y). It is similarly established that V(u) ⊥ V(y)

and V(g) ⊥ V(u). Thus, the subspaces V(g), V(u) and V(y) are pairwise

orthogonal and so their sum is direct. Moreover, using Lemma 3.1 one readily

finds the dimension of each of the subspaces, resulting in dimV(g) ⊕ V(u) ⊕
V(y) = n+ 1. Therefore, Rn+1 = V(g)⊕ V(u)⊕ V(y). �

Lemma 4.1 provides a natural choice for local coordinates akin to the

Frenet frame. The following Lemma 4.2 estimates the projective distance of

a point r ∈ Rn from y ∈ M in terms of the projective distance of r from the

tangent and transversal planes.

Lemma 4.2. For any r ∈ Rn+1 and any x ∈ U ,

(4.4)
|y ∧ r|
|y|

≤ |g · r|
|g|

+
|u · r|
|u|

.

Proof. Let rg, ru and ry be the orthogonal projections of r onto V(g),

V(u) and V(y) respectively. Then, by Lemma 4.1, r = rg + ru + ry and

therefore r − ry = rg + ru. By Lemma 3.5,

(4.5) |y ∧ r| · |y|−1 = |r − ry| ≤ |rg|+ |ru|.

Again, by Lemma 3.5, |g · r| = |g| · |rg| and |u · r| = |u| · |ru|. Substituting

|rg| and |ru| from the latter equalities into (4.5) gives (4.4). �
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Lemma 4.2 is in general sharp as (4.4) can be reversed with some positive

constant. Nevertheless, the distance of r fromM rather than from a particular

point y onM can be estimated in a more efficient way. This relies on the fact

that the tangent plane deviates from a C(2) manifold with a quadratic error. A

similar idea is explored by Elkies [28] in his algorithm for computing rational

points near manifolds. Before we state the next result, recall that given a ball

B = B(x, r) and λ > 0, λB := B(x, λr) and B is the closure of B.

Lemma 4.3. Let M be a C(2) manifold of the form (1.2) and B0 be a

ball of radius rB0 < ∞ such that 2B0 ⊂ U . Then there is a constant C > 1

depending on B0 only satisfying the following property. For any r ∈ Rn+1 and

x ∈ B0 such that

(4.6)
|gx · r|
|gx| |r|

< δ and
|ux · r|
|ux| |r|

< ε

for some positive δ and ε satisfying

(4.7) ε2 ≤ δ ≤ ε ≤ ε0 :=
min{1, rB0}

2d(n+ 1)(C + 1)2
,

there is a point x′ ∈ 2B0 such that

(4.8)
|yx′ ∧ r|
|yx′ | |r|

≤ K δ , where K = 14(n+ 1)3(C + 1)5d2.

Proof of Lemma 4.3. Without loss of generality we will assume that |r|=1.

Since 2B0 ⊂ U , there is a constant C > 1 such that

(4.9) 2B0 ⊂ [−C,C]d

and

(4.10) sup
x∈2B0

max
{
|fl(x)|, max

1≤i≤d
|∂ifl(x)|, max

1≤i,j≤d
|∂i∂jfl(x)|

}
≤ C

for 1 ≤ l ≤ m, where ∂i means differentiating by xi and the functions fl arise

from (1.2).

Step 1. At this step we express r as a linear combination of y, ∂1y,. . . ,∂dy

plus an error term. Let rg, ru and ry be the orthogonal projections of r onto

V(g), V(u) and V(y) respectively. By Lemma 3.5 and the assumption |r| = 1,

inequalities (4.6) imply that

(4.11) |rg| < δ and |ru| < ε.

Also, by Lemma 4.2, inequalities (4.6) imply that |y|−1|y ∧ r| < δ + ε. By

(3.3), we have the identity |y∧r|2 = |y|2|r|2−|y ·r|2. Since |r| = 1, the latter

implies

0 ≤ 1− |y · r|
|y|

≤ 1−
Ç
|y · r|
|y|

å2

=

Ç
|y ∧ r|
|y|

å2

≤ (δ + ε)2
(4.7)

≤ 4δ.
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The latter inequality together with the fact that |y|−1|y · r| = |ry| implied by

Lemma 3.5, shows that for some η ∈ {−1, 1},

(4.12) ry = η|y|−1y +w0 with |w0| ≤ 4δ.

By (4.2) and Lemma 3.1, we see that the vectors y = y(x), ∂1y(x), . . . , ∂dy(x)

form a basis of V(g⊥). By Lemmas 3.1 and 4.1, we have that V(u) ⊂ V(g⊥).

Therefore, since ru ∈ V(u), there are real numbers λ0, . . . , λd such that

(4.13) ru = λ0y(x) +
d∑
i=1

λi∂iy(x).

Since y is of the Monge form,

(4.14) ru = (λ0, λ1 + x1λ0, . . . , λd + xdλ0, ∗, . . . , ∗),

where ∗ stands for a real number. By (4.9), (4.14) and the r.h.s. of (4.11),

(4.15) |λ0| < ε and |λi| < (C + 1)ε (1 ≤ i ≤ d).

On plugging the expressions for ry and ru given by (4.12) and (4.13) into the

identity r = rg + ru + ry and applying the l.h.s. of (4.11), we get

(4.16) r = λ∗0y(x) +
d∑
i=1

λi∂iy(x) +w1 with |w1| ≤ 5δ,

where λ∗0 = η|y(x)|−1 + λ0.

Step 2. At this step we define the point x′. By (4.9) and (4.10), |y(x)|−1 ≥
(n+ 1)−1C−1. On the other hand, by (4.7) and (4.15), |λ0| ≤ 1

2 (n+ 1)−1C−1.

Therefore, |λ∗0| ≥ 1
2 (n+ 1)−1C−1 or equivalently

(4.17) |λ∗0|−1 ≤ 2 (n+ 1)C.

Further, define λ∗i = λi/λ
∗
0 for i = 1, . . . , d. Inequalities (4.15) and (4.17) imply

that

(4.18) |λ∗i | ≤ 2ε(n+ 1)(C + 1)2 (1 ≤ i ≤ d).

Dividing (4.16) by λ∗0 and applying (4.17) to estimate the remainder term gives

(4.19) λ∗0
−1r = y(x) +

d∑
i=1

λ∗i ∂iy(x) +w2 with |w2| ≤ 10δ(n+ 1)C.

Now define x′ = x + λ∗, where λ∗ = (λ∗1, . . . , λ
∗
d). Conditions (4.7) and (4.18)

ensure that |λ∗| ≤ rB0 . Therefore, since x ∈ B0, x′ ∈ 2B0.
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Step 3. At this step we verify (4.8). By (4.9), (4.10), (4.18) and Taylor’s

formula, we get

(4.20)
∣∣∣y(x′)− y(x)−

d∑
i=1

λ∗i ∂iy(x)
∣∣∣ ≤ 4ε2(n+ 1)3(C + 1)5d2.

Further, using (4.7), (4.19) and (4.20) we get

(4.21) |yx′ − λ∗0−1r| ≤ δ
(
10(n+ 1)C + 4(n+ 1)3(C + 1)5d2

)
≤ Kδ.

From (4.1), |yx′ | ≥ 1. Therefore, using |r| = 1, we obtain

|yx′ ∧ r|
|yx′ | |r|

≤ |yx′ ∧ r| = |(yx′ − λ∗0−1r) ∧ r|
(3.4)

≤ |(yx′ − λ∗0−1r)| · |r|
(4.21)

≤ Kδ.

This establishes (4.8) and thus completes the proof of Lemma 4.3. �

4.2. Good “cells” near a manifold. Let ψ∗, Q∗ and κ be positive param-

eters. In practice, Q∗ and ψ∗ will be proportional to Q and ψ respectively.

Further, for every x ∈ U , consider the system

(4.22)
|gx · r|
|gx|

< ψ∗ ,
|ux · r|
|ux|

< (ψm∗ Q∗)
− 1
d ,

|yx · r|
|yx|

≤ κQ∗,

where r ∈ Rn+1. Obviously the set of r ∈ Rn+1 satisfying (4.22) is a convex

body symmetric about the origin. Then as a consequence of Minkowski’s

theorem for convex bodies one has

Lemma 4.4. Let vd denote the volume of a ball of diameter 1 in Rd and

κ0 := (vdvm)−1. Then, for any κ ≥ κ0, all ψ∗, Q∗ > 0 and every x ∈ U , there

is an integer point r ∈ Zn+1 r {0} satisfying (4.22).

The convex body (4.22) in Rn+1 is essentially a set of homogeneous co-

ordinates of points that lies in a certain “cell ” near y(x) ∈ M. Clearly, the

bigger the |r|, the smaller the projective distance of r from the tangent and

transversal planes to M. (Note however that |r| � Q in any case.) Then, us-

ing Lemma 4.3 one can efficiently estimate the distance of r fromM. In order

to give a formal statement we introduce the following sets. Let Bf (Q∗, ψ∗, κ)

be the set of x ∈ U such that there is an r ∈ Zn+1r{0} satisfying (4.22). Fur-

ther, let Gf (Q∗, ψ∗, κ) = U \ Bf (Q∗, ψ∗, κ). We will restrict y to Gf (Q∗, ψ∗, κ)

for some suitably chosen κ. This has the benefit of minimizing the distance of

r from M.

Theorem 4.5. Let M be a C(2) submanifold given by (1.2) and let B be

a ball of radius rB <∞ such that 2B ⊂ U . Then there is an explicit constant

c0 > 2 such that for any choice of positive numbers ψ∗, Q∗, κ such that κ < 1,

(4.23) Q∗ ≥ max
{ c0

κ2
,

c2
0

κ4rB

}
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and

(4.24) κ
− d

2n−d Q
− d+2

2n−d
∗ ≤ ψ∗ ≤ 1,

we have the inclusion

B ∩ Gf (Q∗, ψ∗, κ) ⊂ ∆δ0(Q,ψ, 2B, ρ) ,

where ρ := c0κ
−2
Ä
ψm∗ Q

d+1
∗
ä− 1

d , ψ = c3
0κ
−2ψ∗, Q = c0Q∗ and δ0 = κc−2

0 .

Before establishing Theorem 4.5 we shall give a formal proof of Lemma 4.4.

Proof of Lemma 4.4. Fix an arbitrary x ∈ U . Obviously our goal is to

show that there is an r ∈ Zn+1 r {0} satisfying (4.22). Recall that B = {r ∈
Rn+1 : (4.22) holds} is a convex body in Rn+1 symmetric about the origin.

By Lemmas 3.5 and 4.1, B is the direct sum of Bg, Bu and By, where the

latter are the orthogonal projections of B onto the subspaces V(g), V(u) and

V(y) respectively. Furthermore, Bg is a ball in V(g) of radius ψ∗, Bu is a ball

in V(u) of radius (ψm∗ Q∗)
− 1
d , and By is a ball in V(y) of radius κQ∗. Since

dimV(g) = m, dimV(u) = d and dimV(y) = 1 (Lemma 3.1),

Vol(Bg) = 2mψm∗ vm,(4.25)

Vol(Bu) = 2d
(
(ψm∗ Q∗)

− 1
d

)d
vd,

Vol(By) = 2κQ∗.

Since the subspaces V(g), V(u) and V(y) are orthogonal, Vol(B) = Vol(Bg)×
Vol(Bu) × Vol(By). The latter together with (4.25) implies that Vol(B) =

2n+1κvmvd. If κ > (vmvd)
−1, then Vol(B) > 2n+1 and, by Minkowski’s theorem

for convex bodies [50, §4.1], B contains a nonzero integer point r = rκ. This

proves the lemma when κ > (vmvd)
−1. Finally notice that the integer points

rκ with κ0 < κ < κ0 + 1 are contained in a bounded set. Therefore there are

only finitely many of these points. It follows that there is a sequence (κi) with

κi > κ0 and κi → κ0 as i→∞ such that the points rκi are the same and equal

to, say, r′. This point is easily seen to satisfy (4.22) with κ = κ0. �

Proof of Theorem 4.5. Since 2B ⊂ U , there is a constant C > 1 such that

(4.9) and (4.10) are fulfilled. We will assume that κ < κ0 as otherwise, by

Lemma 4.4, there is nothing to prove. Let ψ∗, Q∗ and κ satisfy the conditions

of Theorem 4.5. Take any x ∈ B ∩ Gf (Q∗, ψ∗, κ). Our goal is to show that

(4.26) x ∈ B(a/q, ρ) for some (q,a,b) ∈ Rδ0(Q,ψ, 2B).

The constant c0 is defined to absorb various other constants appearing in the

proof. More precisely, we set

(4.27) c0 := max
{
ε−2

0 ; κ0 + 1; 16C2(n+ 1)4; 6K(κ0 + 1)(n+ 1)2C2
}
,
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where ε0 = min{1, rB}(4d(n + 1)C)−1 and K = 14(n + 1)3(C + 1)5d2 are the

constants appearing in Lemma 4.3 and κ0 is as in Lemma 4.4. By Lemma 4.4,

(4.22)κ=κ0 has a solution r = (r0, r1, . . . , rn) ∈ Zn+1 r {0}. Without loss of

generality we can assume that gcd(r0, r1, . . . , rn) = 1 and that r0 ≥ 0. We set

q = r0, a = (r1, . . . , rd) and b = (rd+1, . . . , rn). Obviously gcd(q,a,b) = 1.

For the rest of the proof we show that (q,a,b) is the required point, that is

(4.26) is satisfied for this choice of (q,a,b).

Step 1: bounds on |r|. Let rg, ru and ry be the orthogonal projections of

r onto V(g), V(u) and V(y). By (4.22)κ=κ0 and Lemma 3.5,

(4.28) |rg| < ψ∗, |ru| < (ψm∗ Q∗)
−1/d and |ry| ≤ κ0Q∗.

By Lemma 4.1, rg, ru and ry are pairwise orthogonal. Therefore, |r|2 =

|rg|2 + |ru|2 + |ry|2. The latter together with (4.28) gives

(4.29) |r|2 < ψ2
∗ + (ψm∗ Q∗)

−2/d + κ2
0Q

2
∗.

Using the l.h.s. of (4.24) and the fact that κ < 1, one readily verifies that

(4.30) (ψm∗ Q∗)
−1/d < Q

1/2
∗ .

By the r.h.s. of (4.24), ψ∗ < 1. Then (4.29) implies that |r|2 < 1+Q∗+κ
2
0Q

2
∗ ≤

(κ2
0 + 1)Q2

∗. The latter inequality is due to (4.23). Hence |r| < (κ0 + 1)Q∗.

Further, notice that the fact that x ∈ Gf (Q∗, ψ∗, κ) ensures that (4.22) does

not have a solution in Zn+1 r {0}. This is only possible if |y|−1|y · r| ≥ κQ∗.

Therefore, |r| ≥ κQ∗, whence

(4.31) κQ∗ ≤ |r| ≤ (κ0 + 1)Q∗.

Step 2: bounds on |r0|. We now show the first inequality of the following

relations:

(4.32) |r0| ≥
κQ∗

2(n+ 1)C

(4.27)

≥ κQ∗
c0

.

Assume the contrary. Then, by (4.31), there is an i0 ∈ {1, . . . , n} such that

|ri0 | ≥ κ(n + 1)−1Q∗. Let y = (1, y1, . . . , yn). Observe that the expression

ri0 − r0yi0 is one of the coordinates of y ∧ r in the standard basis. Therefore,

(4.33)

|y ∧ r| ≥ |ri0 − r0yi0 | ≥ |ri0 | − |r0yi0 | ≥
κQ∗
n+ 1

− κQ∗
2(n+ 1)C

× C =
κQ∗

2(n+ 1)
.

Here we used the fact that |yi0 | ≤ C implied by (4.9) and (4.10). In order to

derive a contradiction we now obtain an upper bound for |y∧r|. By Lemma 4.2

and (4.22), 1
|y| |y ∧ r| ≤ ψ∗ + (ψm∗ Q∗)

−1/d. Further, by (4.24) and (4.30), we

get 1
|y| |y ∧ r| < 1 + Q

1/2
∗ < 2Q

1/2
∗ . The latter together with (4.9) and (4.10)

gives |y ∧ r| < 2C(n + 1)Q
1/2
∗ . Combining the latter with (4.33) implies that
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Q
1/2
∗ < 4C(n + 1)2/κ. In view of (4.23) and (4.27), the latter inequality is

contradictory, thus establishing (4.32).

Step 3: completion of the proof. We will first use Lemmas 4.3 with

(4.34) δ =
ψ∗
κQ∗

and ε =
(ψm∗ Q∗)

− 1
d

κQ∗
.

Therefore, we assume that δ ≤ ε, and we begin by verifying (4.6) and (4.7).

Obviously, (4.22) and (4.31) imply (4.6). Further, the l.h.s. of (4.24)

implies that ε2 ≤ δ; this is the first inequality of (4.7). The second inequality

of (4.7), that is δ ≤ ε, is simply assumed. Finally, by (4.30), ε ≤ (κQ
1/2
∗ )−1.

By (4.23) and (4.27), (κQ
1/2
∗ )−1 ≤ ε0 and hence ε ≤ ε0; this shows the last

inequality of (4.7). Thus, Lemma 4.3 is applicable and therefore, by (4.8), there

is a point x′ ∈ 2B such that dp(yx′ , r) ≤ Kδ, where r = (r1/r0, . . . , rn/r0).

Also, by Lemma 4.2 together with (4.6), we get dp(yx, r) ≤ 2 ε. Thus, using

(4.34) we obtain that

(4.35) dp(yx′ , r) ≤ K ψ∗
κQ∗

and dp(yx, r) ≤ 2
(ψm∗ Q∗)

− 1
d

κQ∗
.

We have shown the validity of (4.35) under the assumption that δ ≤ ε. How-

ever, note that (4.35) also holds when δ > ε. Indeed, we simply set x′ = x.

Then (4.35) is an easy consequence of (4.6), Lemma 4.2 and the fact that

K > 2.

By (4.9) and (4.10),

(4.36) |yx′ | ≤ nC and |yx| ≤ nC.

Also, by (4.31) and (4.32),

(4.37) |r| ≤ |r|
|r0|
≤ (κ0 + 1)Q∗

κQ∗
2(n+1)C

=
2(n+ 1)(κ0 + 1)C

κ
.

Recall that the euclidean and projective distances are locally comparable; see

(3.5). Then, by (4.36), (4.37) and (3.5), the l.h.s. of (4.35) implies that

|r− yx′ | ≤
(2(κ0 + 1)(n+ 1)C

κ
+ 1

)
(nC + 1) K

ψ∗
κQ∗

(4.38)

≤ 3K(κ0 + 1)(n+ 1)2C2

κ2

ψ∗
Q∗
≤ c0

2κ2

ψ∗
Q∗

<
c0

κ2

ψ∗
Q∗

,

and similarly the r.h.s. of (4.35) implies that

(4.39) |r− yx| <
c0

κ2
(ψm∗ Q

d+1
∗ )−

1
d = ρ.

Trivially, (4.39) implies that |a/q − x| < ρ, that is x ∈ B(a/q, ρ) whence the

l.h.s. of (4.26) holds. Also, by (4.23), ρ ≤ rB and therefore a/q ∈ 2B . Further,
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using the triangle inequality, the Mean Value Theorem and (4.10), we get

|fl(a/q)− bl/q| ≤ |fl(a/q)− fl(x′)|+ |fl(x′)− bl/q|

≤ C|a/q − x′|+ |fl(x′)− bl/q| ≤ C|r− yx′ |
(4.38)

≤ C
c0

κ2

ψ∗
Q∗

.

This implies that |qfl(a/q) − bl|
(4.31)
< (κ0 + 1)C c0κ

−2ψ∗ < c3
0κ
−2ψ∗ = ψ.

Trivially, (4.31) and (4.32) give δ0Q ≤ q ≤ Q. Thus, (q,a,b) ∈ Rδ0(Q,ψ, 2B)

and the r.h.s. of (4.26) is established. This completes the proof of Theorem 4.5.

�

4.3. Uniform version of Theorem 4.5. Within Theorem 4.5 the constant

c0 depends on B. Now restricting B to lie in a compact ball B0 ⊂ U gives the

following version of Theorem 4.5 in which c0 is independent of B.

Theorem 4.6. Let M be a C(2) submanifold given by (1.2) and let B0 be

a compact subset of U . Then there is a constant c0 = c0(B0) > 1 such that for

any choice of positive numbers ψ∗, Q∗, κ satisfying κ < 1, (4.24) and

(4.40) Q∗ ≥ 4c2
0κ
−4

for any ball B ⊂ B0, we have that

(4.41) 1
2B ∩ Gf (Q∗, ψ∗, κ) ⊂ ∆δ0(Q,ψ,B, ρ) ,

where ρ := c0κ
−2
Ä
ψm∗ Q

d+1
∗
ä− 1

d , ψ = c0κ
−2ψ∗, Q = c0Q∗ and δ0 = κc−1

0 .

Proof. Since B0 ⊂ U and U is open, for every x ∈ B0 there is a ball

Bx centred at x such that 2Bx ⊂ U . The collection of balls {Bx : x ∈ B0}
is obviously a cover of B0. Since B0 is compact, there is a finite subcover

C = {B1, . . . , Bt}. Any Bi ∈ C satisfies the conditions of Theorem 4.5. Let c0,i

be the constant c0 arising from Theorem 4.5 when B = Bi. Set

c0 =
max1≤i≤t c

3
0,i

min
¶

1,min1≤i≤t rBi
© ,

where rBi is the radius of Bi. Let ψ∗, Q∗ and κ satisfy the conditions of

Theorem 4.6. Then, by the choice of c0 and by Theorem 4.5, it is readily seen

that

(4.42) B0 ∩ Gf (Q∗, ψ∗, κ) ⊂ ∆δ0(Q,ψ,U, ρ) ,

with ρ := c0κ
−2
Ä
ψm∗ Q

d+1
∗
ä− 1

d , ψ = c0κ
−2ψ∗, Q = c0Q∗ and δ0 = κc−1

0 . Now,

let B ⊂ B0 be a ball. Trivially, if a/q 6∈ B, then (1− ρ)B ∩B(a/q, ρ) = ∅. By

(4.40), ρ < 1/2. Therefore, 1
2B ⊂ (1−ρ)B and 1

2B∩B(a/q, ρ) = ∅ if a/q 6∈ B.

Therefore, (4.41) is implied by (4.42) and the proof is complete. �
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5. Integer points in ‘random’ parallelepipeds

5.1. Main problem and result. By Minkowski’s theorem on linear forms,

any parallelepiped Π in Rk symmetric about the origin contains a nonzero

integer point provided that the volume of Π is bigger than 2k. The latter

condition is in general best possible, though Π might contain a nonzero integer

point otherwise. Suppose Π(x) is a smooth family of parallelepipeds of small

volume, where x ∈ B, a ball in Rd. In this section we consider the following

Problem 5.1. What is the probability that Π(x) contains a nonzero integer

point?

As we shall see in Section 6, answering the question of Problem 5.1 is

absolutely crucial to achieving our main goal — establishing Theorem 1.4.

To avoid ambiguity, the parallelepipeds Π(x) will be given by the system of

inequalities

(5.1)

∣∣∣∣ k∑
j=1

gi,j(x) aj

∣∣∣∣ ≤ θi (1 ≤ i ≤ k) ,

where gi,j : U → R are some functions of x defined on an open subset U of Rd,
a1, . . . , ak are real variables and θ = (θ1, . . . , θk) is a fixed k-tuple of positive

numbers. We will naturally assume that the matrix G(x) := (gi,j(x))1≤i,j≤k
is nonsingular for every x ∈ U . Thus G : U → GLk(R). The above family

of parallelepipeds Π is therefore determined by the map G and the vector of

parameters θ. Further, define the set

A(G, θ)
def
= {x ∈ U : ∃ a = (a1, . . . , ak) ∈ Zk r {0} satisfying (5.1)}.

Problem 5.1 restated in terms of G and θ can now be formalized as follows:

given a ball B ⊂ U , what is the probability that a random x ∈ B belongs to

B ∩ A(G, θ)?

In this section we introduce a characteristic of G which enables us to

produce an effective bound on the measure of A(G, θ) for arbitrary analytic

maps G. The characteristic is computable for various natural classes of G and

is indeed computable for the maps G arising from the applications we have in

mind.

As before let θ = (θ1, . . . , θk) be the k-tuple of positive numbers and let θ

be given by

(5.2) θk = θ1 · · · θk.
Thus, θ is the geometric mean value of θ1, . . . , θk. Given x ∈ U and a linear

subspace V of Rk with codimV = r, 1 ≤ r < k, we define the number

(5.3) Θθ(x, V ) := min

{
θ−r

r∏
i=1

θji :
(j1, . . . , jr) ∈ C(k, r) such that

V ⊕ V
Ä
gj1(x), . . . ,gjr(x)

ä
= Rk

}
,
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where V
Ä
gj1 , . . . ,gjr

ä
is a vector subspace of Rk spanned by gj1 , . . . ,gjr and

C(k, r) denotes the set of all subsets of {1, . . . , k} of cardinality r. Obviously,

since G(x) ∈ GLk(R), the set in the r.h.s. of (5.3) is not empty and thus

Θθ(x, V ) is well defined and positive. We will be interested in the local behavior

of Θθ(x, V ) in a neighborhood a point x0 by looking at

(5.4) “Θθ(x0, V ) := lim inf
x→x0

Θθ(x, V ) and “Θθ(x0) := sup
V

“Θθ(x0, V ),

where the latter supremum is taken over all linear subspaces V of Rk with

1 ≤ codimV < k. The number “Θθ(x0) will be referred to as the θ-weight of G

at x0. The following statement represents the main result of this section.

Theorem 5.2 (Random parallelepipeds theorem). Let U be an open sub-

set of Rd, G : U → GLk(R) be an analytic map and x0 ∈ U . Then there

is a ball B0 ⊂ U centred at x0 and constants K0, α > 0 such that for any

ball B ⊂ B0, there is a constant δ = δ(B) > 0 such that for any k-tuple

θ = (θ1, . . . , θk) of positive numbers,

(5.5) µd
(
B ∩ A(G, θ)

)
≤ K0

(
1 + sup

x∈B
“Θθ(x)α/δα

)
θα µd(B) .

5.2. Auxiliary statements. We will derive Theorem 5.2 from a general re-

sult due to Kleinbock and Margulis. This will require translating the problem

into the language of lattices. We proceed with further notation. Given a lattice

Λ ⊂ Rk, let δ(Λ) := minv∈Λr{0} |v|∞. Thus, δ is a map on the space of lattices.

Then the set A(G, θ) can be straightforwardly rewritten using this δ-map as

follows:

A(G, θ) :=
¶
x ∈ U : δ(diag(θ)−1G(x)Zk) ≤ 1

©
,

where diag(θ) denotes the diagonal k × k matrix with θ on the diagonal. In

order to see this simply multiply the i-th inequality of (5.1) by θ−1
i . Then

it is readily seen that the fact x ∈ A(G, θ) is equivalent to the existence of

a ∈ Zk r {0} such that |diag(θ)−1G(x)a|∞ ≤ 1. The latter is obviously the

same as saying that the lattice diag(θ)−1GZk has a nonzero vector of norm

≤ 1, that is δ(diag(θ)−1G(x)Zk) ≤ 1.

The map δ obviously satisfies the property that δ(xΛ) = xδ(Λ) for any lat-

tice Λ and any positive scalar x. Therefore, multiplying δ(diag(θ)−1G(x)Zk) ≤
1 through by θ (see (5.2) for the definition of θ), we get the equivalent inequality

δ(gtG(x)Zk) ≤ θ, where gt = diag{t1, . . . , tk} and

(5.6) ti := θ/θi (1 ≤ i ≤ k) .

Note that det gt = 1. To sum up,

(5.7) A(G, θ) = {x ∈ U : δ
Ä
h(x)Zk

ä
≤ θ} , where h(x) = gtG(x).
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As we have mentioned above the proof of Theorem 5.2 will be based on

a result due to Kleinbock and Margulis. In order to state this result we recall

various definitions from [41]. Let U be an open subset of Rd, f : U → R be a

continuous function and let C,α > 0. The function f is called (C,α)-good on

U if for any open ball B ⊂ U the following is satisfied:

(5.8) ∀ ε > 0 µd
{
x ∈ B : |f(x)| < ε sup

x∈B
|f(x)|

}
≤ C εα µd(B).

Given a λ > 0 and a ball B = B(x0, r) ⊂ Rd centred at x0 of radius r, λB will

denote the ball B(x0, λr). Further, C(Zk) will denote the set of all nonzero

complete sublattices of Zk. An integer lattice Λ ⊂ Zk is called complete if it

contains all integer points lying in the linear space generated by Λ. Given a

lattice Λ ⊂ Rk and a basis w1, . . . ,wr of Λ, the multivector w1 ∧ · · · ∧wr is

uniquely defined up to sign since any two basis of Λ are related by a unimodular

transformation. Therefore, the following height function on the set of nonzero

lattices is well defined:

(5.9) ‖Λ‖ def
= |w1 ∧ · · · ∧wr|∞ ,

where | · |∞ denotes the supremum norm on ∧(Rk). The following result due

to Kleinbock and Margulis appears as Theorem 5.2 in [41].

Theorem KM . Let d, k ∈ N, C,α > 0 and 0 < ρ ≤ 1/k be given. Let

B be a ball in Rd and h : 3kB → GLk(R) be given. Assume that for any

Λ ∈ C(Zk),
(i) the function x 7→ ‖h(x)Λ‖ is (C,α)-good on 3kB, and

(ii) supx∈B ‖h(x)Λ‖ ≥ ρ.

Then there is a constant Nd depending on d only such that for any ε > 0 one

has

µd
{
x ∈ B : δ

Ä
h(x)Zk

ä
≤ ε

}
≤ kC(3dNd)

k
Å
ε

ρ

ãα
µd(B).

Before we proceed with the proof of Theorem 5.2, let us recall some aux-

iliary statements about (C,α)-good functions.

Lemma 5.3 ([41, Lemma 3.1]). Let U ⊂ Rd be open and C,α > 0. If

f1, . . . , fm are (C,α)-good functions on U and λ1, . . . , λm ∈ R, then maxi |λifi|
is a (C,α)-good function on U .

Lemma 5.4 ([38, Cor. 3.3]). Let f = (f1, . . . , fm) be a real analytic map

from a connected open subset U of Rd to Rm. Then for any point x0 ∈ U ,

there is a ball B(x0) ⊂ U centred at x0 and constants C,α > 0 such that any

function α0 +
∑m
i=1 αifi with α0, . . . , αm ∈ R is (C,α)-good on B(x0).

Also, for the purpose of establishing Theorem 5.2, we now prove the fol-

lowing technical statement that translates the definition of “Θθ(x0) into the
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language of exterior algebra. Within this section we refer to Section 3 assum-

ing that n+ 1 = k.

Lemma 5.5. Let r ∈ {1, . . . , k−1} and x0 ∈ U . Then for any ball B ⊂ U
centred at x0, for any nonzero decomposable multivector v ∈ ∧r(Rk) there is a

J ∈ C(k, r) and x ∈ B such that

(5.10) θ−r
∏
j∈J

θj ≤ “Θθ(x0)

and

(5.11)
∧
j∈J

gj(x) · v 6= 0.

Proof. Let v ∈ ∧r(Rk) be a decomposable multivector with 1 ≤ r < k.

Define V = V(v⊥), a vector subspace of Rk. By Lemma 3.1, codimV = r.

Observe that for a fixed θ, the function Θθ(x, V ) of x takes discrete val-

ues. Then, using (5.4) it is easy to see that for any ball B ⊂ U centred

at x0, there is an x ∈ B such that Θθ(x, V ) ≤ “Θθ(x0). By the defini-

tion of Θθ(x, V ), there is a J = {j1, . . . , jr} ∈ C(k, r) satisfying (5.10) such

that V ⊕ V
Ä
gj1(x), . . . ,gjr(x)

ä
= Rk, that is since V = V(v⊥), V(v⊥) ⊕

V
Ä
gj1(x), . . . ,gjr(x)

ä
= Rk, whence, by Lemma 3.3, v⊥ ∧

Ä
∧j∈Jgj(x)

ä
6= 0.

Finally,

0 6= |v⊥ ∧
Ä ∧
j∈J

gj(x)
ä
| (3.10)

= |(v⊥)⊥ ·
∧
j∈J

gj(x)| (3.8)
= |v ·

∧
j∈J

gj(x)| . �

5.3. Proof of Theorem 5.2. By (5.2) and (5.6), we obviously have that∏k
i=1 ti = 1. Therefore, det gt = 1 and

(5.12) detG(x) = deth(x) ,

where h is given by (5.7). Therefore, h(x) is a map from U to GLk(R).

Our next goal is to verify conditions (i) and (ii) of Theorem KM for the

specific choice of h made by (5.7). Fix a Γ ∈ C(Zk). Let r = dim Γ > 0. Fix

a basis of Γ, say w1, . . . ,wr ∈ Zk. Then h(x)w1, . . . , h(x)wr is a basis of the

lattice h(x)Γ. By definition (5.9),

‖h(x)Γ‖ = |h(x)w1 ∧ · · · ∧ h(x)wr|∞.

Given an l ∈ {1, . . . , r}, it is readily seen that the coordinates of h(x)wl are

equal to tigi(x)wl, i = 1, k. Therefore, by (3.2), for every I = {i1 < · · · <
ir} ⊂ {1, . . . , k}, the I-coordinate of

(5.13) h(x)w1 ∧ · · · ∧ h(x)wr ∈ ∧r(Rk)
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in the standard basis equals

det
(
tijgij (x)wl

)
1≤j,l≤r

=
( r∏
j=1

tij

)
det

(
gij (x)wl

)
1≤j,l≤r

(5.14)

(3.3)
=

( r∏
j=1

tij

)(
∧rj=1gij (x)

)
·
(
∧rl=1wl

)
.

Since G is analytic, the coordinate functions of ∧rj=1gij (x) are analytic. Let

f1, . . . , fM be the collection of these functions taken over all possible choices of

r and I. Note that this is a finite collection of analytic functions. Obviously,

(5.14) is a linear combination of f1, . . . , fM . By Lemma 5.4, there is a ball B0

centred at x0 and positive C and α such that (5.14) (regarded as a function

of x) is (C,α)-good on 3kB0 for any choice of r and I. If B0 is sufficiently

small then, by the continuity of G, we can also ensure the conditions

(5.15) | detG(x)| ≥ 1

2
|detG(x0)| for all x ∈ B0

and

(5.16) max
1≤j≤k

sup
x∈B0

∣∣∣gj(x)
∣∣∣ <∞.

Take any ball B ⊂ B0. Since every coordinate function of h(x)Γ is (C,α)-good

on 3kB, by Lemma 5.3, the map x 7→ ‖h(x)Γ‖ is (C,α)-good on 3kB. This

verifies condition (i) of Theorem KM. We proceed with establishing condition

(ii). This splits into two cases.

Case r < k. Let C ′(k, r) be the subset of C(k, r) consisting of I = {i1 <
· · · < ir} ⊂ {1, . . . , k} such that

(5.17) θ−r
r∏
j=1

θij ≤ “Θ := sup
x∈B
“Θθ(x).

It is readily seen that C ′(r, k) is nonempty. By (5.14) and (5.17), for any

I ∈ C ′(r, k) we get that

‖h(x)Γ‖ ≥
(∏
i∈I

ti
)∣∣∣∣(∧i∈Igi(x)

)
·
(
∧rl=1wl

)∣∣∣∣ (5.17)

≥ 1“Θ ∣∣∣∣(∧i∈Igi(x)
)
·
(
∧rl=1wl

)∣∣∣∣.
Taking the supremum over all x ∈ B and then taking the maximum over all

I ∈ C ′(r, k) gives

(5.18) sup
x∈B
‖h(x)Γ‖ ≥ 1“Θ max

I∈C′(r,k)
sup
x∈B

∣∣∣∣( ∧
i∈I

gi(x)
)
·
( r∧
l=1

wl

)∣∣∣∣.
Now, since wl are integer points, ∧rl=1wl has integer coordinates. Because

w1, . . . ,wr are linearly independent, ∧rl=1wl is nonzero and therefore |∧rl=1wl|
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≥ 1. Dividing the r.h.s. of (5.18) by |∧rl=1wl| gives

(5.19) sup
x∈B
‖h(x)Γ‖ ≥ 1“Θ max

I∈C′(r,k)
sup
x∈B

∣∣∣∣( ∧
i∈I

gi(x)
)
· w1 ∧ · · · ∧wr

|w1 ∧ · · · ∧wr|

∣∣∣∣.
The multivector u = |w1 ∧ · · · ∧wr|−1w1 ∧ · · · ∧wr is unit and decomposable.

Thus, taking the infimum in (5.19) over all u ∈ Grr(Rk), that is over all unit

decomposable r-vectors u taken up to sign, gives

(5.20) sup
x∈B
‖h(x)Γ‖ ≥ 1“Θ inf

u∈Grr(Rk)
max

I∈C′(r,k)
sup
x∈B

∣∣∣∣( ∧
i∈I

gi(x)
)
· u
∣∣∣∣.

Our next goal is to show that the constant in the r.h.s. of (5.20) is positive.

To this end, consider the following functions of x ∈ B and u ∈ ∧r(Rk) given

by

(5.21) Mr,I(u,x) =

∣∣∣∣( ∧
i∈I

gi(x)
)
· u
∣∣∣∣ and MB,r,I(u) = sup

x∈B
Mr,I(u,x).

For every fixed x, the function Mr,I(u,x) is the absolute value of a function

linear in u. Therefore, using (5.16) one readily gets that Mr,I(u,x) is uniformly

continuous in u. Henceforth, MB,r,I(u) is continuous. To prove this formally

fix any u0 ∈
∧r(Rk) and any ε > 0. Then there is an η > 0 such that for all

u ∈ ∧r(Rk) satisfying |u− u0| < η,

(5.22) |Mr,I(u,x)−Mr,I(u0,x)| < ε/2 for all x ∈ B.

By definition (5.21), there is x0 ∈ B such that MB,r,I(u0) < Mr,I(u0,x0)+ε/2.

Therefore,

MB,r,I(u0) < Mr,I(u0,x0) + ε/2
(5.22)

≤ Mr,I(u,x0) + ε
(5.21)

≤ MB,r,I(u) + ε.

Similarly we show the complementary inequality, namely that MB,r,I(u0) >

MB,r,I(u) − ε. Therefore, |MB,r,I(u) − MB,r,I(u0)| < ε for all u satisfying

|u− u0| < η. This proves the continuity of MB,r,I(u). Further, define

MB,r(u) := max
I∈C′(r,k)

MB,r,I(u).

This is also a continuous function of u as the maximum of a finite number of

continuous functions. By Lemma 5.5 and the definition of MB,r(u), MB,r(u)

> 0 for all decomposable multivectors u ∈ ∧r(Rk). Since the Grassmannian

Grr(Rk) is compact and MB,r(u) is continuous, there is a uB,r ∈ Grr(Rk) such

that

inf
u∈Grr(Rk)

MB,r(u) = MB,r(uB,r) > 0.

Thus, (5.20) implies that

sup
x∈B
‖h(x)Γ‖ ≥ 1“Θ MB,r(uB,r) ≥

1“Θ MB
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for any Γ ∈ C(Zk) with dim Γ < k, where MB = min
1≤r<k

MB,r(uB,r) > 0.

Case r = k. Now we assume that dim Γ = k. Since Γ is complete, Γ = Zk
and therefore the standard basis of Rk, say e1, . . . , ek, is also a basis of Γ.

Therefore, (5.13) is exactly ±deth(x). Further,

sup
x∈B
‖h(x)Γ‖ = sup

x∈B
| deth(x)| (5.12)

= sup
x∈B
|detG(x)|

(5.15)

≥ 1

2
|detG(x0)| > 0.

Final step. The upshot of the above discussion is that for any Γ ∈ C(Zk),

(5.23) sup
x∈B
‖h(x)Γ‖ ≥ min

{1

k
,

1

2
|detG(x0)|, MB“Θ }

= ρ > 0.

This verifies condition (ii) of Theorem KM. Further, using the trivial inequality

min{|x|, |y|, |z|}−1 ≤ |x|−1 + |y|−1 + |z|−1 we deduce from (5.23) that

ρ−α ≤ kα + 2α|detG(x0)|−α +
(

Θ̂
MB

)α
(5.24)

≤ (2k)α + (2k)α|detG(x0)|−α +
(

Θ̂
MB

)α
= (2k)α

(
1 + | detG(x0)|−α

)Å
1 +

(
Θ̂
δ

)αã
,

where δ = δ(B) is implied by (5.24). By (5.7) and Theorem KM (with ε = θ),

we now obtain (5.5) with K0 = (2k)αkC(3dNd)
k
(
1 + | detG(x0)|−α

)
. Obvi-

ously, K0 is independent of B. The proof of Theorem 5.2 is thus complete.

5.4. Hierarchic families of parallelepipeds. It is in general possible but

not straightforward to give bounds on the θ-weight of G. In this subsection

we introduce a condition on G that enables us to give a clear-cut estimate for“Θθ(x) and produce an interesting corollary of Theorem 5.2. Let B be a ball

in U . We will say that G is hierarchic on B if for any vector subspace V of Rk
of codimV = r, the set

(5.25)
{
x ∈ B : V ⊕ V

Ä
g1(x), . . . ,gr(x)

ä
= Rk

}
is dense in B.

Lemma 5.6. If G : U → GLk(R) is hierarchic on a ball B0 ⊂ U , then for

any k-tuple θ = (θ1, . . . , θk) of positive numbers and any x0 ∈ U ,

(5.26) “Θθ(x0) ≤ ‹Θ := max
1≤r≤k−1

θ1 · · · θr
θr

.

Proof. Fix any x0 ∈ U . In order to prove (5.26) it suffices to show that“Θθ(x0, V ) ≤ ‹Θ for every subspace V of Rk with codimV = r ∈ {1, . . . , k − 1}.
Since the set (5.25) is dense in U , θ−r

∏r
j=1 θj belongs to the set in the r.h.s.

of (5.3) for points x ∈ U arbitrarily close to x0. This means that Θ(x, V ) ≤
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θ−r
∏r
j=1 θj ≤ ‹Θ for points x arbitrarily close to x0. Therefore, by (5.4),“Θθ(x0, V ) ≤ ‹Θ and the proof is complete. �

The following example of hierarchic maps will be utilized to sharpen The-

orem 1.4 is Section 7.

Lemma 5.7. Let G =
Ä
g

(i−1)
j

ä
1≤i,j≤k : U → GLk(R) be the Wronski

matrix of analytic linearly independent over R functions g1, . . . , gk : U → R
defined on an interval U in R. Then G is hierarchic on U .

Proof. Recall the well-known fact that r analytic functions of a real vari-

able are linearly dependent if and only if their Wronskian is identically zero;

see, for example, [20]. Let g = (g1, . . . , gk). Take any nontrivial vector sub-

space V of Rk with codimV = r ≤ k − 1. We will verify that the set (5.25) is

dense in U by showing that its complement is countable. Let v1, . . . ,vr be a

basis of V ⊥. Define v := v1 ∧ · · · ∧ vr. Then, by Lemma 3.2, V = V(v⊥).

Let S(V ) denote the complement of the set (5.25). Obviously, the point x

belongs to S(V ) if and only if V ∩V(g(x)∧ · · · ∧g(r)(x)) 6= ∅. By Lemma 3.3,

this is equivalent to v⊥ ∧ (g(x)∧ · · · ∧ g(r)(x)) = 0 and, by (3.10) and the fact

that v = v1 ∧ · · · ∧ vr, this further gives

(5.27) (v1 ∧ · · · ∧ vr) · (g(x) ∧ · · · ∧ g(r)(x)) = 0.

By the Laplace identity (3.3), the latter is exactly the Wronskian of the func-

tions ηi(x) = g(x) · vi. Since v1, . . . ,vr are linearly independent vectors, the

functions η1, . . . , ηr (1 ≤ i ≤ r) are linearly independent over R. Therefore,

the Wronskian of η1, . . . , ηr is not identically zero and, as an analytic function,

it can vanish only on a countable subset of U . Therefore, the set S(V ) is at

most countable and the proof is complete. �

In view of Lemmas 5.6 and 5.7, specializing Theorem 5.2 to the Wronski

matrix gives

Theorem 5.8. Let g1, . . . , gk be a collection of real analytic linearly inde-

pendent over R functions defined on an interval U ⊂ R. Let x0 ∈ U be a point

such that the Wronskian W (g1, . . . , gk)(x0) 6= 0. Then there is an interval I0

centred at x0 and positive constants K0 and α satisfying the following property.

For any interval J ⊂ I0, there is a constant δ = δ(J) such that for any positive

θ1, . . . , θk, the set{
x ∈ J :

∃ (a1, . . . , ak) ∈ Zk r {0} satisfying

|a1g
(i)
1 (x) + · · ·+ akg

(i)
k (x)| < θi ∀ i = 1, . . . , k

}
has Lebesgue measure at most K0

Ä
1 + (δ−1‹Θ)α

ä
θα|J |, where |J | is the length

of J ,

θ = (θ1 · · · θk)1/k and ‹Θ := max
1≤r≤k−1

θ1 · · · θr
θr

.
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The following even more explicit estimate for ‹Θ is now given.

Lemma 5.9. Let θ1 ≤ θ2 ≤ · · · ≤ θk−1 ≤ θk. Then ‹Θ ≤ (θk−1/θk)
1/k ≤ 1.

Proof. By definition, there is an r < k such that ‹Θ = θ1 · · · θr/θr. Raise

the latter equation to the power k and substitute θ1 · · · θk for θk. This way we

obtain ‹Θk =
θk1 · · · θkr
θr1 · · · θrk

=

k︷ ︸︸ ︷
θ1 · · · θ1 · . . . ·

k︷ ︸︸ ︷
θr · · · θr

θ1 · · · θ1︸ ︷︷ ︸
r

· . . . · θk · · · θk︸ ︷︷ ︸
r

.

Obviously the numerator and the denominator of the above fraction have the

same number of factors. Also, by the conditions of the lemma, any factor in

the numerator is not bigger than the corresponding factor in the denominator

in the same place. This gives that ‹Θk ≤ θr/θk. Furthermore, since r < k,

θr ≤ θk−1 and so ‹Θk ≤ θk−1/θk, whence the lemma readily follows. �

6. The proof of main result: Theorem 1.4

6.1. Localisation and outline of the proof. Using standard covering argu-

ments we establish the following lemma, which allows us to impose a convenient

condition on B0 while establishing Theorem 1.4.

Lemma 6.1. Let C be a collection of nonempty compact balls contained in

U such that U =
⋃
B0∈C

1
2B
◦
0 , where B◦0 denotes the interior of B0. Then the

validity of the statement of Theorem 1.4 for all B0 ∈ C implies the validity of

the statement of Theorem 1.4 for arbitrary compact ball B0 in U .

Proof. Fix an arbitrary compact ball B0 ⊂ U . Since {1
2B
◦ : B ∈ C} is an

open cover of B0, there is a finite subcollection of C, say C0 = {B0,1, . . . , B0,N},
such that

(6.1) B0 ⊂
⋃N
i=1

1
2B0,i.

We may assume that every ball in this subcollection is of positive radius. For

i = 1, . . . , N , let k0,i, ρ0,i and δ0,i be the constants k0, ρ0 and δ0 arising from

Theorem 1.4 when B0 = B0,i. Also let r0 be the radius of the smallest ball in

C0. Clearly, r0 is positive. Define

ρ0 = max
1≤i≤N

ρ0,i, δ0 = min
1≤i≤N

δ0,i, k0 = min
1≤i≤N

k0,i,

and take any ball B ⊂ B0. Note that verifying (1.4) for some suitable choice

of C0 and Q0 would complete the proof of Lemma 6.1. This splits into two

cases.
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Case (i). Assume that r(B), the radius of B, satisfies r(B) ≤ 1
4r0. By

(6.1) and the inclusion B ⊂ B0, there is a B0,i ∈ C0 such that 1
2B0,i ∩ B 6= ∅.

Then, since r(B0,i) ≥ r0 and r(B) ≤ 1
4r0, B ⊂ B0,i and the validity of (1.4)

becomes obvious.

Case (ii). Assume that r(B) > 1
4r0. In this case the idea is to pack B

with sufficiently many disjoint balls of radius ≤ 1
4r0 and apply Case (i) to each

of these balls. The formal procedure is as follows.

Let C′ = {B1, . . . , BM} be a maximal collection of pairwise disjoint balls

centred in 1
2B of common radius r(Bi) = 1

8r0. The existence of C′ is readily

seen. Obviously C′ is nonempty and, by construction, any ball Bi ∈ C′ is

contained in B. Let x ∈ 1
2B. By the maximality of C′, the ball B(x, 1

8r0) may

not be pairwise disjoint with all the balls in C′. Therefore, x ∈ 2Bi for some

Bi ∈ C′. It follows that 1
2B ⊂

⋃M
i=1 2Bi. Hence,

(6.2) 2−dµd(B) = µd(
1
2B) ≤

M∑
i=1

µd(2Bi) = 2d
M∑
i=1

µd(Bi).

Since every Bi ∈ C′ is of radius < 1
4r0, we are within Case (i). This means that

there exist constants C0,i > 0 and Q0,i > 0 such that for all Q ≥ Q0,i and all

ψ satisfying the inequalities C0,iQ
−1/m < ψ < C−1

0,i ,

(6.3) µd
Ä
∆δ0(Q,ψ,Bi, ρ) ∩Bi

ä
≥ k0 µd(Bi) .

Now define C0 = max1≤i≤M C0,i, Q0 = max1≤i≤M Q0,i. Then (6.3) holds

whenever (1.3) is satisfied and Q > Q0. Using the disjointness of balls in C′
and the fact that

⋃M
i=1Bi ⊂ B we get from (6.3) that

µd
Ä
∆δ0(Q,ψ,B, ρ) ∩B

ä
≥ ∑M

i=1 µd
Ä
∆δ0(Q,ψ,Bi, ρ) ∩Bi

ä
(6.3)

≥ ∑M
i=1 k0 µd(Bi)

(6.2)

≥ 4−dk0 µd(B) .

This shows (1.4) with k0 replaced by 4−dk0 and thus completes the proof. �

Outline of the proof of Theorem 1.4. Recall that M is a nondegenerate

analytic submanifold of Rn given by (1.2) and let B0 be a compact ball in

U . By Lemma 6.1, B0 is assumed to be a sufficiently small ball. The proof

contains the following three steps.

(i) Firstly, to establish (1.4) take any ball B in B0. In view of Theorem 4.6,

namely inclusion (4.41), (1.4) follows on showing that for sufficiently

large Q∗,

(6.4) µd(
1
2B ∩ G(Q∗, ψ∗, κ))� µd(B).

(ii) In order to establish (6.4), for each x ∈ B0 we circumscribe a par-

allelepiped (5.1) around the body (4.22). This way the complement



RATIONAL POINTS NEAR MANIFOLDS 223

of Gf (Q∗, ψ∗, κ) becomes embedded into the set A(G, θ) appearing in

Theorem 5.2, thus giving

(6.5) 1
2B \ A(G, θ) ⊂ Gf (Q∗, ψ∗, κ) ∩ 1

2B.

(iii) On applying Theorem 5.2 we will obtain that µd(
1
2B ∩ A(G, θ)) ≤

1
2µd(

1
2B). In view of the embedding (6.5) it will further imply (6.4)

and complete the task.

We now proceed with the details of the proof.

6.2. G and θ. Let g,u,y be given by (4.1)–(4.3). Since M is analytic,

y is analytic. Further, the coordinate functions of g and u are obviously

polynomials of analytic functions and thus are analytic.

Lemma 6.2. Let g,u,y be as above. Then for every point x0 ∈ U there

is a ball B0 ⊂ U centred at x0 and an analytic map G : B0 → GLn+1(Rn+1)

with rows g1, . . . ,gn+1 such that for every x ∈ B0,

(6.6) |gi(x)| ≤ 1 for all i = 1, . . . , n+ 1

and

gi(x) ∈ V
Ä
g(x)

ä
for i = 1, . . . ,m,(6.7)

gi(x) ∈ V
Ä
u(x)

ä
for i = m+ 1, . . . , n,

gi(x) ∈ V
Ä
y(x)

ä
for i = n+ 1.

Proof. Fix any basis g1(x0), . . . ,gn+1(x0) of Rn+1 with |gi(x0)| ≤ 1/2 for

all i = 1, . . . , n+ 1 such that (6.7)x=x0 is satisfied. Define

gi(x) :=
1

|g(x)|2
g(x) ·

Ä
g(x) · gi(x0)

ä
for i = 1, . . . ,m ,(6.8)

gi(x) :=
1

|u(x)|2
u(x) ·

Ä
u(x) · gi(x0)

ä
for i = m+ 1, . . . , n ,

gi(x) :=
1

|y(x)|2
y(x) ·

Ä
y(x) · gi(x0)

ä
for i = n+ 1.

By Lemma 3.5, gi(x) is (up to sign) the orthogonal projection of gi(x0) onto

V(g(x)) for i ∈ {1, . . . ,m}, onto V(u(x)) for i ∈ {m + 1, . . . , n} and V(y(x))

for i = n + 1. Obviously, the maps gi given by (6.8) are well defined and

analytic. Also, by continuity,

(6.9)
n+1∧
i=1

gi(x)→ ±
n+1∧
i=1

gi(x0) as x→ x0.
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Since g1(x0), . . . ,gn+1(x0) are linearly independent, the r.h.s. of (6.9) is non-

zero. Therefore, there is a neighborhood B0 of x0 such that for all x ∈ B0,

the l.h.s. of (6.9) is nonzero. This proves that G is nonsingular. In view of the

continuity of gi and the condition |gi(x0)| ≤ 1/2, we have |gi(x)| ≤ 1 for all

i = 1, . . . , n+ 1 provided that B0 is small enough. �

Lemma 6.3. Let G and B0 arise from Lemma 6.2 and ψ∗, Q∗, κ be any

positive numbers. Let

θ1 = · · · = θm = ψ∗,(6.10)

θm+1 = · · · = θn = (ψm∗ Q∗)
−1/d,

θn+1 = κQ∗.

Then (6.5) is satisfied, where θ = (θ1, . . . , θn+1).

Proof. Observe that (6.5) is equivalent to 1
2B \ Gf (Q∗, ψ∗, κ) ⊂ 1

2B ∩
A(G, θ). By definition, for every point x ∈ 1

2B\Gf (Q∗, ψ∗, κ) there is a nonzero

integer solution r to the system (4.22). Using (6.6) and Lemmas 3.6 and 6.2 in

an obvious manner implies that (5.1) is satisfied when (a1, . . . , ak) is identified

with r. This exactly means that x ∈ A(G, θ) and completes the proof. �

We now estimate the θ-weight of G for the above G and θ. See Section 5.1

for its definition.

Lemma 6.4. Let M be a nondegenerate analytic manifold given by (1.2).

Let G and B0 arise from Lemma 6.2 and let θ be given by (6.10). Let κ, ψ∗
and Q∗ satisfy the conditions of Theorem 4.6 and let

(6.11) C∗Q
−1/m
∗ ≤ ψ∗ ≤ C−1

∗

for some C∗ > 1. Then for any x0 ∈ B0,

(6.12) “Θθ(x0) ≤ (κC∗)
−1/(n+1).

Proof. By the definitions of θ and θ, i.e., by (5.2) and (6.10),

(6.13) θ = κ1/(n+1).

Further, using inequalities (6.11) and the assumption C∗ > 1, it is readily seen

that

(6.14) θi ≤ 1 (1 ≤ i ≤ n).

Fix any point x0 ∈ B0 and any vector subspace V of Rn+1 with codimV = r ∈
{1, . . . , n}. SinceM is nondegenerate, for every ball B(x0) ⊂ B0 centred at x0

there is a point x ∈ B(x0) such that y = y(x) 6∈ V ⊥. That is V(y) 6⊂ V ⊥. The

latter is easily seen to be equivalent to V(y)⊥ 6⊃ V . By Lemma 4.1 and by (6.7),
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we see that the first n rows of G, which are simply the vectors g1(x), . . . ,gn(x),

form a basis of V(y)⊥. Thus, V 6⊂ V(g1(x), . . . ,gn(x)), and therefore

(6.15) dim
Ä
V + V(g1(x), . . . ,gn(x))

ä
> dimV

Ä
g1(x), . . . ,gn(x)

ä
= n.

The latter implies that the l.h.s. of (6.15) is equal to n+1. Hence there is a sub-

collection J = {j1 < · · · < jr} ⊆ {1, . . . , n} satisfying V ⊕V
Ä
gj1(x), . . . ,gjr(x)

ä
= Rn+1. By (5.3),

(6.16) Θθ(x, V ) ≤ θ−r
∏r
i=1 θji

(6.13)
= κ−r/(n+1)∏r

i=1 θji

(6.14)

≤ κ−r/(n+1) max1≤i≤r θji

(6.10)

≤ κ−r/(n+1) max{ψ∗, (ψm∗ Q∗)−1/d}

(6.11)

≤ κ−r/(n+1) max{C−1
∗ , C

−1/d
∗ }

C∗>1, κ<1
≤ κ−1/(n+1)C

−1/(n+1)
∗ = (κC∗)

−1/(n+1).

Recall that B(x0) can be made arbitrarily small so that x can be made ar-

bitrary close to x0. Therefore, in view of the definition (5.4) of “Θθ(x0, V ),

(6.16) implies that “Θθ(x0, V ) ≤ (κC∗)
−1/(n+1). Finally, since V is arbitrary

nontrivial subspace of Rn+1, we obtain (6.12). �

6.3. Completion of the proof of Theorem 1.4. We now proceed to the final

phase of the proof of Theorem 1.4. Let x0 ∈ U be an arbitrary point. Let B0

be a ball centred at x0 arising from Lemma 6.2. We may assume without loss

of generality that B0 is compact. Further, shrink B0 if necessary to ensure that

Theorem 5.2 is applicable. Next, let B be an arbitrary ball in B0 and let ψ

and Q satisfy the conditions of Theorem 1.4, where C0 and Q0 are sufficiently

large constants.

Let c0 = c0(B0) > 1 be the constant arising from Theorem 4.6 and let K0,

α and δ = δ(1
2B) be the constants arising from Theorem 5.2. Set

(6.17) κ = (4K0)−
n+1
α .

Obviously, 0 < κ < 1 and is independent of B. Define

(6.18) ψ∗ = κ2c−1
0 ψ, Q∗ = c−1

0 Q, δ0 = κc−1
0 , ρ = c0κ

−2
Ä
ψm∗ Q

d+1
∗
ä− 1

d .

It is easily verified that 1/m ≤ (d+ 2)/(2n− d). Therefore, (1.3) implies that

(6.19) C0Q
−(d+2)/(2n−d) < ψ < C−1

0 .

Then, using (6.18) and (6.19) one readily verifies (4.24) and (4.40) provided

that C0 and Q0 are sufficiently large. Therefore, Theorem 4.6 is applicable and



226 VICTOR BERESNEVICH

so (4.41) is satisfied. Further, let θ = (θ1, . . . , θn+1) be given by (6.10) and G

be as in Lemma 6.2. Then, by Lemma 6.3 and (4.41), we obtain

(6.20) 1
2B \ A(G, θ) ⊂ 1

2B ∩ Gf (Q∗, ψ∗, κ) ⊂ ∆δ0(Q,ψ,B, ρ) ∩B.

Since Theorem 5.2 is applicable, by (5.5), we get

(6.21) µd
(

1
2B ∩ A(G, θ)

)
≤ K0

(
1 + “Θθ(

1
2B)α/δα

)
θα µd(

1
2B) ,

where “Θθ(
1
2B) := supx∈ 1

2
B
“Θθ(x). By (1.3) and (6.18), (6.11) holds with

(6.22) C∗ = C0κ
2c
−1−1/m
0 .

Clearly C∗ > 1 if C0 is sufficiently large. Then, by Lemma 6.4, we get

(6.23) “Θθ(
1
2B) ≤ (κC∗)

−1/(n+1) ≤ δ

provided that C0 and respectively C∗ is sufficiently large. Recall by (6.13) that

θ = κ1/(n+1). Then, by (6.21) and (6.23), we get that

(6.24) µd
(

1
2B ∩ A(G, θ)

)
≤ 2K0κ

α/(n+1) µd(
1
2B)

(6.17)
= 1

2µd(
1
2B).

Combining (6.24) with (6.20) gives µd
Ä
∆δ0(Q,ψ,B, ρ) ∩ B

ä
≥ 1

2µd(
1
2B) =

2−d−1µd(B), thus establishing (1.4) with k0 = 2−d−1 and ρ0 = (cn+d+1
0 κ−2n)1/d.

The latter constant is easily deducted from (6.18) and is absolute. This com-

pletes the proof of Theorem 1.4.

7. Further theory for curves

In this section we relax condition (1.3) in the case of curves. Namely, the

exponent 1
m = 1

n−1 will be replaced by 3
2n−1 . The latter allows us to widen the

range of s for which Theorem 2.5 is applicable by the factor of n
2 .

7.1. Statement of results. Given an analytic map y = (y0, y1, . . . , yn) :

U → Rn+1, where U ⊂ R is an interval, let Wy(x) denote the Wronskian of

y0, y1, . . . , yn.

Theorem 7.1. Let d = 1 and the curve (1.2) satisfies Wy(x) 6= 0 for all

x ∈ U , where y as in (4.1). Then Theorem 1.4 and consequently Corollary 1.5

remain valid if (1.3) is replaced by

(7.1) C0Q
−3/(2n−1) < ψ < C−1

0 .

Recall that the analytic curveM is nondegenerate if and only if the func-

tions 1, y1, . . . , yn are linearly independent over R. Equivalently, Wy(x) is not

identically zero. As y = (1, y1, . . . , yn) is analytic, the Wronskian Wy(x) is an-

alytic too. The nondegeneracy of M then implies that Wy(x) 6= 0 everywhere

except possibly on a countable set consisting of isolated points. Therefore, the
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condition “Wy(x) 6= 0 for all x ∈ U” imposed in the statement of Theorem 7.1

is not particularly restrictive if compared to nondegeneracy.

Theorem 7.2. Let M be a nondegenerate analytic curve in Rn. Let

ψ : N→ R+ be a monotonic function such that qψ(q)(2n−1)/3 →∞ as q →∞.

Then for any s ∈ (1
2 , 1),

(7.2) Hs(Sn(ψ) ∩M) =∞ if
∞∑
q=1

qn
(ψ(q)

q

)s+n−1
=∞.

Consequently, if τ = τ(ψ) satisfies 1/n < τ < 3/(2n− 1), then

(7.3) dimSn(ψ) ∩M ≥ n+ 1

τ + 1
− (n− 1).

The proof of Theorem 7.2 can be obtained by making minor and indeed

obvious modifications to the proof of Theorem 2.5. Below we consider the

proof of Theorem 7.1 only.

7.2. Dual map. Let the analytic map y be given by (4.1). The map z :

U → Rn given by

(7.4) z(x) =
(
y(x) ∧ y′(x) ∧ · · · ∧ y(n−1)(x)

)⊥

will be called dual to y. Obviously, every coordinate function of z is a polyno-

mial expression of coordinate functions of y and their derivatives. Therefore,

z is analytic. The following statement describes z via a system of linear dif-

ferential equations.

Lemma 7.3. Let y and z be as above. Then

(7.5)

{
z(j)(x) · y(i)(x) = 0, 0 ≤ i+ j ≤ n− 1

z(j)(x) · y(i)(x) = (−1)jWy(x), i+ j = n .

Proof. By (7.4) and Lemma 3.2, we immediately get that z(x)·y(j)(x) = 0

for all j ∈ {0, . . . , n− 1}. On differentiating the latter equations we obviously

obtain the first set of equation in (7.5). Now we compute z(x) · y(n)(x):
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z(x) · y(n)(x)
(7.4)
=
(
y(x) ∧ y′(x) ∧ · · · ∧ y(n−1)(x)

)⊥
· y(n)(x)

(3.7)
=
(
i · (y(x) ∧ y′(x) ∧ · · · ∧ y(n−1)(x))

)
· y(n)(x)

(3.6)
=
(
e0 ∧ e1 ∧ · · · ∧ en

)
·
(
y(x) ∧ · · · ∧ y(n−1)(x) ∧ y(n)(x)

)
(3.3)
= det

(
ei · y(j)(x)

)
0≤i,j≤n

= det
(
y

(j)
i (x)

)
0≤i,j≤n

= Wy(x) ,

where e0, . . . , en is the standard basis of Rn+1. This shows the j = 0 equation

of the second set of equations in (7.5). Then we proceed by induction. Assume

that the second set of inequalities of (7.5) holds for j = j0 ≤ n − 1. Then

differentiating z(j0)(x) · y(n−j0−1)(x) = 0, we get

0 = z(j0+1)(x) · y(n−j0−1)(x) + z(j0)(x) · y(n−j0)(x)

= z(j0+1)(x) · y(n−j0−1)(x) + (−1)j0Wy(x) .

This implies (7.5) for j = j0+1 and thus completes the proof of Lemma 7.3. �

Lemma 7.4. Let y and z be as above. Then for all x, |Wz(x)| ≥ |Wy(x)|n.

Proof. By (7.5) and (3.3), it is easy to see that the inner product in

∧n+1(Rn+1)

(7.6) (z(x) ∧ z′(x) ∧ · · · ∧ z(n)(x)) · (y(x) ∧ y′(x) ∧ · · · ∧ y(n)(x))

is the determinant of an (n+ 1)× (n+ 1) triangle matrix with ±Wy(x) on the

diagonal and is equal to (−1)[n/2]Wy(x)n+1. Further, recall that

|y(x) ∧ · · · ∧ y(n)(x)| = |Wy(x)| and |z(x) ∧ · · · ∧ z(n)(x)| = |Wz(x)|.

Then, applying the Cauchy-Schwarz inequality to the inner product (7.6) gives∣∣∣Wy(x)
∣∣∣n+1

≤ |z(x) ∧ · · · ∧ z(n)(x)| · |y(x) ∧ · · · ∧ y(n)(x)| = |Wz(x)| · |Wy(x)|,

further implying |Wz(x)| ≥ |Wy(x)|n. �

7.3. Proof of Theorem 7.1. Clearly, Lemma 6.1 can be used in the context

of Theorem 7.1. Then we can assume that B0 is a sufficiently small interval

centred at an arbitrary point x0 in U . We may assume without loss of generality

that B0 is compact. Further, shrink B0 if necessary to ensure that Theorem 5.2

is applicable. Next, let B be an arbitrary interval in B0 and let ψ and Q satisfy

the conditions of Theorem 7.1, where C0 and Q0 are sufficiently large constants.

Furthermore, in view of Theorem 1.4, without loss of generality we may assume

that

(7.7) C0Q
−3/(2n−1) < ψ < Q−1/n.
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Let z be dual to y (see §7.2). Since B0 is compact, there is a constant K1 > 1

such that

(7.8) |z(i)(x)| ≤ K1 for all x ∈ B0 and all i ∈ {0, . . . , n}.

Let c0 = c0(B0) > 1 be the constant arising from Theorem 4.6 and let K0,

α and δ = δ(1
2B) be the constants arising from Theorem 5.8. Set

(7.9) κ = (2K1(4K0)
1
α )−n−1.

Obviously, 0 < κ < 1 and is independent of B. Define ψ∗, Q∗, δ0 and ρ by

(6.18) assuming that d = 1 and m = n− 1.

Then, using (6.18) and (7.7) one readily verifies (4.24) and (4.40) provided

that C0 and Q0 are sufficiently large. Therefore, Theorem 4.6 is applicable and

so (4.41) is satisfied.

Take any point x ∈ 1
2B \ Gf (Q∗, ψ∗, κ). Then, by definition, there is a

nonzero integer solution r to system (4.22). Observe that g = (y∧y′)⊥. Then,

by (7.5) and Lemma 3.2, we get z(i) ∈ V(g) for i = 0, . . . , n− 2. Therefore, by

Lemma 3.6, (4.22) implies that

(7.10) |z(i)(x) · r| ≤ K1ψ∗ for i = 0, . . . , n− 2.

Again, by (7.5) and Lemma 3.2, z(n−1) ∈ V(y⊥). Therefore, we get

(7.11) |z(n−1)(x) · r|
Lemma 3.6
≤ |z(n−1)(x)| |y(x)⊥ · r| |y(x)⊥|−1

(7.8)

≤ K1 |y(x)⊥ · r| |y(x)⊥|−1

(3.10)

≤ K1 |y(x) ∧ r| |y(x)|−1
(4.1)

≤ K1 |y(x) ∧ r|.

Here we have also used the fact that the Hodge operator is an isometry. Us-

ing (6.18) and the r.h.s. of (7.7), we get that ψ∗ < (ψn−1
∗ Q∗)

−1. Therefore,

applying Lemma 4.2 and (4.22) to (7.11) further gives

(7.12) |z(n−1)(x) · r| ≤ K1 (ψ∗ + (ψn−1Q∗)
−1) ≤ 2K1(ψn−1Q∗)

−1.

Finally, arguing the same way as in Step 1 of the proof of Theorem 4.5 (see

§4.2), one easily verifies that |r|2 ≤ 1 + Q∗ + κ2Q2
∗, whence |r| ≤ 2κQ∗ when

Q∗ is sufficiently large. Now we trivially get

(7.13) |z(n)(x) · r| ≤ |z(n)(x)| |r| ≤ 2K1κQ∗.

Let G be the Wronski matrix of the dual map z. For Wy(x) 6= 0 for all

x ∈ U , by Lemma 7.4, Wz(x) 6= 0 for all x ∈ U , that is G : U → GLn+1(R).

Inequalities (7.10), (7.12) and (7.13) are equivalent to x ∈ A(G, θ) with

(7.14)

θ1 = · · · = θn−1 = K1ψ∗, θn = 2K1(ψn−1
∗ Q∗)

−1, θn+1 = 2K1κQ∗.
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Thus we have shown that 1
2B r Gf (Q∗, ψ∗, κ) ⊂ 1

2B ∩ A(G, θ). Hence, 1
2B \

A(G, θ) ⊂ 1
2B ∩ Gf (Q∗, ψ∗, κ). By (4.41),

(7.15) 1
2B \ A(G, θ) ⊂ ∆δ0(Q,ψ,B, ρ) ∩B.

By the r.h.s. of (7.7), θi ≤ θi+1 for all i = 1, . . . , n. Further, by the

l.h.s. of (7.7), θn � Q1/2. Further, θn+1 � Q. Then, by Lemma 5.9, ‹Θ �
Q−1/(2n+2) < δ for sufficiently large Q. Theorem 5.8, (7.9) and (7.14) imply

that µd(
1
2B ∩A(G, θ)) ≤ 2K0θ

α ≤ 1
2µd(

1
2B). Combining this with (7.15) gives

the required result.

8. Final comments

In view of the results of this paper, establishing upper bounds for N(Q, ε)

becomes a very topical problem. Unfortunately, nondegeneracy alone is not

enough to reverse (1.5). A counterexample can be constructed by considering

the manifolds

Mk =
¶

(x1, . . . , xd−1, xd, x
k+1
d , xk+2

d , . . . , xk+m
d ) : max

1≤i≤d
|xi| < 1

©
.

Nevertheless, requiring that for every x ∈ U there exists l ∈ {1, . . . ,m} such

that Hess fl(x) 6= 0 is possibly enough to reverse (1.4), where Hess f(x) de-

notes the Hessian matrix of f(x). Any progress with this would have obvious

implications for the theory of Diophantine approximation on manifolds, where

the following two conjectures are now of extremely high interest.

Conjecture 8.1. Any analytic nondegenerate submanifold of Rn is of

Khintchine type for convergence.

Conjecture 8.2. LetM be a nondegenerate analytic submanifold of Rn,

d = dimM and m = codimM. Let ψ : N → R+ be a monotonic function. If
m
m+1d < s < d, then

(8.1) Hs(Sn(ψ) ∩M) = 0 if
∞∑
q=1

qn
(ψ(q)

q

)s+m
<∞.

In the case of M = Rn, Conjecture 8.2 together with Theorem 2.5 coin-

cides with Jarńık’s theorem, or rather the modern version of Jarńık’s theorem;

see [7]. Therefore, Conjecture 8.2 can be regarded as a Jarńık-type theorem

for convergence for manifolds. In turn, Theorem 2.5 can be regarded as a

Jarńık-type theorem for divergence for manifolds. Conjecture 8.2 combined

with Theorem 2.5 would also imply that (2.8) is an equality.

If Theorem 4.5 was used to its ‘full potential,’ then one would be able to

prove (2.7) for s ∈ (d/2, d). This naturally suggests the following problem:

Describe analytic nondegenerate manifolds M for which (2.7) and/or (8.1)

hold for s ∈ (d/2, d).
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Note that within this paper there are two instances when (2.7) is estab-

lished for s ∈ (d/2, d): hypersurfaces and curves. It is quite possible that

for these types of manifolds (8.1) also holds for s ∈ (d/2, d). However, note

that for manifolds other than curves and hypersurfaces, establishing (8.1) for

s ∈ (d/2, d) is in general impossible unless extra constraints are added. This

can be shown by considering M as in Example 1.3.

The main results of this paper are established in the case of analytic

manifolds. However, within this paper the analyticity assumption is only used

in establishing Theorem 5.2. More precisely, the analyticity assumption is used

to verify condition (i) of Theorem KM. A natural challenging question is then

to what extent the analyticity assumption can be relaxed within Theorem 5.2

and consequently within all the main results of this paper.

Recall that the analyticity assumption is not present in the planar curves

results [8], [54]. Even though, there is a minor disagreement in the smooth-

ness conditions imposed in convergence and divergence results: the divergence

results deal with C(3) nondegenerate planar curve only. In general, the non-

degeneracy of planar curves requires C(2). This raises the following intriguing

question: Are C(2) nondegenerate planar curves of Khintchine type for diver-

gence?3
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[14] , An analogue of Hinčin’s theorem in the metric theory of Diophantine

approximations of dependent variables. I, Vesc̄ı Akad. Navuk BSSR Ser. F̄ız.-

Mat. Navuk (1977), 44–49, 141. MR 0480402. Zbl 0394.10017.

[15] , The exact order of approximation of almost all points of a parabola, Mat.

Zametki 26 (1979), 657–665, 813. MR 0555016. Zbl 0415.10047.

[16] , Application of the Hausdorff dimension in the theory of Diophantine

approximations, Acta Arith. 42 (1983), 219–253. MR 0729734. Zbl 0655.10051.

[17] , The Khinchin transference principle and lower bounds for the number

of rational points near smooth manifolds, Dokl. Nats. Akad. Nauk Belarusi 47

(2003), 26–28. MR 2163817. Zbl 1204.11116.

[18] V. I. Bernik and M. M. Dodson, Metric Diophantine Approximation on Mani-

folds, Cambridge Tracts in Math. 137, Cambridge Univ. Press, Cambridge, 1999.

MR 1727177. Zbl 0933.11040. http://dx.doi.org/10.1017/CBO9780511565991.

[19] V. I. Bernik, D. Kleinbock, and G. A. Margulis, Khintchine-type theo-

rems on manifolds: the convergence case for standard and multiplicative versions,

http://www.ams.org/mathscinet-getitem?mr=1944505
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1013.11039
http://www.ams.org/mathscinet-getitem?mr=2184760
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1129.11031
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1129.11031
http://www.ams.org/mathscinet-getitem?mr=2373145
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1137.11048
http://dx.doi.org/10.4007/annals.2007.166.367
http://dx.doi.org/10.4007/annals.2007.166.367
http://www.ams.org/mathscinet-getitem?mr=2777039
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1221.11158
http://dx.doi.org/10.1007/s00208-010-0548-9
http://www.ams.org/mathscinet-getitem?mr=2285737
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1204.11104
http://dx.doi.org/10.1007/s00208-006-0055-1
http://www.ams.org/bookstore-getitem/item=SECO-19
http://www.ams.org/mathscinet-getitem?mr=2729002
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1207.11076
http://dx.doi.org/10.1016/j.aim.2010.05.021
http://dx.doi.org/10.1016/j.aim.2010.05.021
http://www.ams.org/mathscinet-getitem?mr=0337863
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0269.10016
http://www.ams.org/mathscinet-getitem?mr=0480402
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0394.10017
http://www.ams.org/mathscinet-getitem?mr=0555016
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0415.10047
http://www.ams.org/mathscinet-getitem?mr=0729734
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0655.10051
http://www.ams.org/mathscinet-getitem?mr=2163817
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1204.11116
http://www.ams.org/mathscinet-getitem?mr=1727177
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0933.11040
http://dx.doi.org/10.1017/CBO9780511565991


RATIONAL POINTS NEAR MANIFOLDS 233

Internat. Math. Res. Notices (2001), 453–486. MR 1829381. Zbl 0986.11053.

http://dx.doi.org/10.1155/S1073792801000241.
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‘
u

Teorijoje, TEV, Vilnius, 2007, pp. 17–23. MR 2397137. Zbl 1157.11032.

[22] H. Dickinson and M. M. Dodson, Extremal manifolds and Hausdorff di-

mension, Duke Math. J. 101 (2000), 271–281. MR 1738177. Zbl 0973.11073.

http://dx.doi.org/10.1215/S0012-7094-00-10126-3.

[23] , Simultaneous Diophantine approximation on the circle and Hausdorff di-

mension, Math. Proc. Cambridge Philos. Soc. 130 (2001), 515–522. MR 1816807.

Zbl 0992.11046. http://dx.doi.org/10.1017/S0305004101004984.

[24] M. M. Dodson, B. P. Rynne, and J. A. G. Vickers, Metric Diophantine

approximation and Hausdorff dimension on manifolds, Math. Proc. Cambridge

Philos. Soc. 105 (1989), 547–558. MR 0985691. Zbl 0677.10040. http://dx.doi.

org/10.1017/S0305004100077926.

[25] , Khintchine-type theorems on manifolds, Acta Arith. 57 (1991), 115–130.

MR 1092764. Zbl 0736.11040.

[26] , Simultaneous Diophantine approximation and asymptotic formulae on

manifolds, J. Number Theory 58 (1996), 298–316. MR 1393618. Zbl 0858.11041.

http://dx.doi.org/10.1006/jnth.1996.0079.
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[39] , Baker-Sprindžuk conjectures for complex analytic manifolds, in Alge-

braic Groups and Arithmetic, Tata Inst. Fund. Res., Mumbai, 2004, pp. 539–553.

MR 2094125. Zbl 1103.11020.

[40] D. Kleinbock, E. Lindenstrauss, and B. Weiss, On fractal measures and

Diophantine approximation, Selecta Math. 10 (2004), 479–523. MR 2134453.

Zbl 1130.11039. http://dx.doi.org/10.1007/s00029-004-0378-2.

[41] D. Kleinbock and G. A. Margulis, Flows on homogeneous spaces and Dio-

phantine approximation on manifolds, Ann. of Math. 148 (1998), 339–360.

MR 1652916. Zbl 0922.11061. http://dx.doi.org/10.2307/120997.

[42] D. Kleinbock and G. Tomanov, Flows on S-arithmetic homogeneous spaces

and applications to metric Diophantine approximation, Comment. Math. Helv.

82 (2007), 519–581. MR 2314053. Zbl 1135.11037. http://dx.doi.org/10.4171/

CMH/102.

[43] J. F. Koksma, Diophantische Approximationen, Ergebn. Math. Grenzgeb. 4,

Julius Springer, Berlin, 1936. Zbl 0012.39602.
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