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Framed bordism and Lagrangian
embeddings of exotic spheres

By Mohammed Abouzaid

Abstract

In dimensions congruent to 1 modulo 4, we prove that the cotangent

bundle of an exotic sphere which does not bound a parallelisable manifold

is not symplectomorphic to the cotangent bundle of the standard sphere.

More precisely, we prove that such an exotic sphere cannot embed as a

Lagrangian in the cotangent bundle of the standard sphere. The main

ingredients of the construction are (1) the fact that the graph of the Hopf

fibration embeds the standard sphere, and hence any Lagrangian which

embeds in its cotangent bundle, as a displaceable Lagrangian in the product

a symplectic vector space of the appropriate dimension with its complex

projective space, and (2) a moduli space of solutions to a perturbed Cauchy-

Riemann equation introduced by Gromov.
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1. Introduction

Let L be a compact exact Lagrangian submanifold of T ∗Sm whose Maslov

class vanishes. By [24], L is a rational homology sphere which represents

This research was conducted during the period the author served as a Clay Research
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a generator of Hm(T ∗Sm,Z). The classical nearby Lagrangian conjecture of

Arnol’d would imply that L is diffeomorphic to the standard sphere.

One approach to proving the diffeomorphism statement which is implied

by Arnol’d’s conjecture would be to first prove that L is a homotopy sphere by

establishing the vanishing of its fundamental group, then to use Kervaire and

Milnor’s classification of exotic spheres to exclude the remaining possibilities;

see [15]. In this paper, we begin the second part of the program and prove

Theorem 1.1. Every homotopy sphere which embeds as a Lagrangian in

T ∗S4k+1 must bound a compact parallelisable manifold.

Unfortunately, this result says nothing about the 28 exotic 7-spheres orig-

inally constructed by Milnor. In dimension 9 (the first dimension for which

exotic spheres exist and the theorem applies), Kervaire and Milnor proved that

there are eight different smooth structures on the sphere, with only two arising

as boundaries of parallelisable manifolds. In particular, all but one of the ex-

otic smooth spheres in dimension 9 fail to embed as Lagrangian submanifolds

of the cotangent bundle of the standard sphere.

By the Whitney trick, there are no obstructions to smooth embeddings

of exotic spheres in the cotangent bundle of the standard sphere in dimen-

sions greater than 4. In fact, the h-cobordism theorem implies the stronger

statement that the unit disc bundles in the cotangent bundles of all homotopy

spheres of the same dimension are diffeomorphic as manifolds with bound-

ary. Theorem 1.1 implies that the symplectic structure on a cotangent bundle

remembers some information about the smooth structure of the base that is

forgotten by the mere diffeomorphism type of the unit disc bundle.

Corollary 1.2. If Σ4k+1 is an exotic sphere which does not bound a

parallelisable manifold, then the cotangent bundles T ∗Σ4k+1 and T ∗S4k+1 are

not symplectomorphic.

The starting point in the proof of Theorem 1.1 is the fact that the graph of

the Hopf fibration embeds S2n−1 as a Lagrangian in Cn×CPn−1; this fact was

observed by Audin, Lalonde and Polterovich in [3] and used by Buhovsky in [6]

to constrain the homology groups of Lagrangians embedding in the cotangent

bundle of the sphere. By Weinstein’s neighbourhood theorem, L embeds in

Cn×CPn−1 as well. Because of the Cn factor, there is a compactly supported

Hamiltonian isotopy which displaces L from itself. Following a strategy which

goes back to Gromov’s introduction of pseudo-holomorphic curves to symplec-

tic topology in [13], and whose applications to Lagrangian embeddings have

been developed among others by Polterovich, Oh, Biran-Cieliebak, and Fukaya

[22], [21], [5], [11], the choice of such a displacing isotopy determines a one pa-

rameter family deformation of the Cauchy-Riemann equation. Under generic
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conditions, the corresponding moduli space of solutions in the constant homo-

topy class becomes a manifold of dimension 2n with boundary diffeomorphic

to L.

This moduli space is not compact, but admits a compactification which

corresponds geometrically to considering exceptional solutions to the para-

metrized deformation of the Cauchy-Riemann equation, along with a holo-

morphic disc or sphere bubble. The strata corresponding to disc bubbles can

be “capped off” by a different moduli space of holomorphic discs to obtain a

compact manifold one of whose boundary components is diffeomorphic to L.

The remaining boundary components correspond to sphere bubbles and have

explicit descriptions as bundles over S2, which allows us to prove that they

bound parallelisable manifolds.

To prove the parallelisability of the result of gluing these manifolds along

their common boundaries, we rely on the fact that the K-theory class of the

tangent space of the moduli space of J-holomorphic curves agrees with the

restriction of a class coming from the space of all smooth maps. An analysis of

the homotopy type of this space (together with the fact that CPn−1 has even

first Chern class precisely when n is even) yields the desired parallelisability

of the bounding manifold we construct. It is only in this very last step that

the mod 4 value of the dimension, rather than simply its parity, enters the

argument.

Acknowledgments. I would like to thank Paul Seidel both for the initial

discussion that started my work on this project, as well as for many subse-

quent ones concerning the compatibility of Gromov-Floer compactifications

with smooth structures. I am also grateful to Katrin Wehrheim for answer-

ing my many questions about technical aspects of gluing pseudo-holomorphic

curves, to Shmuel Weinberger for suggesting the argument of Lemma 2.22, and

to Yasha Eliashberg for conversations which led to the explicit computations

summarized in Addendum 2.13.

2. Construction of the bounding manifold

2.1. Deformation of the Cauchy-Riemann equation. In [21], Oh studied

displaceable Lagrangians by means of a family of inhomogeneous Cauchy-

Riemann equations associated to a Hamiltonian function. Instead of counting

solutions passing through a generic point, we shall study the full moduli space.

As remarked in the introduction, the starting point is a Lagrangian em-

bedding

(2.1) L ↪→ Cn × CPn−1,

where CPn−1 is equipped with the symplectic form coming from Hamiltonian

reduction with respect to the diagonal circle action on Cn with weight 1 and Cn
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with the negative of the standard symplectic form. We shall moreover assume

that the embedding of L is real analytic (see Lemma 3.1). Choose a ball in Cn
containing the projection of L to Cn whose diameter is thrice the diameter of

this projection, and let M denote the product of this ball with CPn−1. Given

a compactly supported function

(2.2) H : M × [−1, 1]→ R,

we will write Ht for the restriction of this function to M × {t}, XH for the

corresponding time-dependent Hamiltonian vector field on M and φ for the

resulting Hamiltonian diffeomorphism obtained by integrating XH over the

interval [−1, 1]. We shall assume that H satisfies the following condition.

(2.3)
The symplectomorphism φ displaces L from itself. Moreover, we as-

sume that Ht vanishes in a neighbourhood of t = ±1.

The existence of such a function Ht follows trivially from our assumption

that one factor of M is a ball of sufficiently large radius and the fact that any

translation in Cn is generated by a Hamiltonian flow; an appropriate cutoff of

this Hamiltonian flow is supported on M and satisfies the desired conditions.

Remark 2.1. The requirement that φ displace L is essential, whereas the

vanishing assumption on Ht is only needed in order to simplify the proof of

the transversality results in Section 3 and the gluing theorems in Section 5.

We shall write I+∞−∞ = R × [−1, 1] for the bi-infinite strip equipped with

coordinates (s, t), and we fix the identification

(2.4) ξ : I+∞−∞ → D2 − {±1}

which takes the origin to itself. Consider a smooth family γR of compactly sup-

ported 1-forms on D2 parametrized by R ∈ [0,∞) and satisfying the following

properties:

• If 0 ≤ R ≤ 1, then γR = Rγ1.

• If 1 ≤ R, then ξ∗γR is a multiple of dt which depends only on s, and is

constrained as follows:

(2.5) ξ∗γR(s, t) =

dt if |s| ≤ R
0 if |s| ≥ R+ 1.

• The norm |ξ∗γR(s, t)| is monotonically decreasing in the variable s

whenever s ≥ 0 and monotonically increasing if s ≤ 0.

Let J denote the space of almost complex structures on M which are com-

patible with the standard symplectic form and which agree with the complex

structure Jalg on Cn×CPn−1 to infinite order on the boundary of M . Here, Jalg

is the direct sum of the complex conjugate of the standard complex structure

on Cn with the standard complex structure on CPn−1; we have to conjugate
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the complex structure on the first factor in order to maintain positivity with

respect to the symplectic form.

Further, consider a family J = {JR}R∈[0,+∞) = {Jz,R}(z,R)∈D2×[0,+∞) of

almost complex structures parametrized by (z,R) ∈ D2 × [0,+∞) such that

Jz,R = Jalg whenever R = 0 or z ∈ D2 is sufficiently close to the boundary.

Having made the above choices, we define, for each R ≥ 0, a moduli space

which we denote N (L; 0,JR, H, γR), of finite energy maps

u : (D2, S1)→ (M,L)

in the homotopy class of the constant map, satisfying the equation

(2.6) (du− γR ⊗XH(z))0,1 = 0.

The (0, 1) part of the above TM -valued 1-form is taken with respect to the

family J of almost complex structures. Moreover, if z 6= ±1, then the vector

field XH in the previous equation is the Hamiltonian vector field on M of the

function Ht, where t ∈ [−1, 1] is determined by the property that there is a

value of s such that ξ(s, t) = z. Note that γR vanishes at z = ±1, so there is

no ambiguity in equation (2.6).

Away from ±1, the above equation can be explicitly written in (s, t) co-

ordinates as

(2.7) ∂su+ Jξ(s,t),R∂tu = ξ∗(γR)(∂t) · Jξ(s,t),RXH (u ◦ ξ(s, t), t)

for each s ∈ R and t ∈ [−1, 1] with the boundary conditions

u(s,−1), u(s, 1) ∈ L

for all s ∈ R. The removal of singularities theorem proven in [19] implies that

any finite energy solution of (2.7) extends smoothly to D2. In particular, there

is a bijection between the solutions of (2.6) and (2.7).

Unless we explicitly need to discuss them, we will omit the complex struc-

ture J and the Hamiltonian H from the notation and write P(L; 0) for the

space

(2.8) P(L; 0,J, H) =
∐

R∈[0,+∞)

N (L; 0,JR, H, γR).

To understand the topology of P(L; 0), we consider the product of [0,+∞)

with F(L), the space of smooth maps from (D2, S1) to (M,L):

(2.9) FP(L) ≡ [0,+∞)×F(L) ≡ [0,+∞)× C∞
Ä
(D2, S1), (M,L)

ä
.

We shall write FP(L;β0) for the component of FP(L) consisting of maps in a

homotopy class β0. For the moment, we are interested in the homotopy class

of the constant map. Let EP be the bundle over FP(L) with fibres

C∞
Ä
u∗(TM)⊗C Ω0,1D2

ä
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at a point (R, u), where Ω0,1 is the bundle of complex anti-linear 1-forms on

D2, and the tensor product is taken with respect to the z and R dependent

almost complex structure J on TM . Note that the map

(2.10) ∂̄P : (R, u) 7→ (du− γR ⊗XH)0,1

defines a section of EP whose intersection with the inclusion of FP(L; 0) as the

zero section is equal to P(L; 0). Our next assumption concerns the regularity

of this moduli space.

(2.11)
Choose the family J such that the moduli space P(L; 0) is regular,

i.e., the graph of ∂̄P is transverse to the zero section.

The existence of such a family is a standard transversality result appear-

ing in various forms in [22] and [21], and regularity holds generically in an

appropriate sense. We will briefly discuss the proof in Section 3, culminating

in Corollary 3.7, which specializes to the following result if we consider only

the constant homotopy class.

Corollary 2.2. P(L; 0) is a smooth manifold with boundary

∂P(L; 0) = N (L; 0,J0, H, γ0) ∼= L,

consisting of constant holomorphic discs for the constant family J0 ≡ Jalg.

To recover tangential information, recall that, upon choosing a complex

linear connection, the linearisation of ∂̄P at its zeroes extends to an operator

(2.12) DP : TFP(L)→ EP ,

which is Fredholm in appropriate Sobolev space completions; this essentially

follows from the fact that equation (2.6) is a compact perturbation of the usual

Cauchy-Riemann operator (see §3). To compute the class of this operator in

K-theory, we shall use the fact that the homotopy type of FP(L; 0) is extremely

simple.

Lemma 2.3. The evaluation map at 1 ∈ S1 and the relative homotopy

class define a weak homotopy equivalence

(2.13) F(L)→ L× Z.

Proof. Since L and S2n−1 are homeomorphic and their inclusions in M are

homotopic, it suffices to prove the result whenever L is the standard sphere

embedded as the graph of the Hopf fibration.
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Consider the projection to the second component of M and the induced

fibration

(2.14) F(S2n−1)

��

Maps
Ä
(D2, S1), (CPn−1,CPn−1)

ä
.

The base of this fibration is clearly homotopy equivalent to CPn−1 which is

the set of constant maps. To study the fiber, we fix a point p on CPn−1 and

consider the space of maps (D2, S1)→ (Cn, Sp), where Sp is the circle in S2n−1

which lies over p. The degree of the restriction S1 → Sp and the image of 1 in

Sp defines a fibration

(2.15) Maps
Ä
(D2, S1), (Cn, Sp)

ä
→ S1 × Z

which is easily seen to be a homotopy equivalence. Note that we can identify

the degree of the evaluation map to the circle Sp with the relative homotopy

class in π2

Ä
Cn × CPn−1, S2n−1

ä
. Fixing such a class β0, the evaluation at the

basepoint 1 ∈ S1 defines a map of fibrations

Maps
(
(D2, S1), (Cn, Sp);β0

)
��

// S1

��
F(S2n−1;β0) //

��

S2n−1

��
Maps

Ä
(D2, S1), (CPn−1,CPn−1)

ä
// CPn−1.

Since the top and bottom horizontal maps are homotopy equivalences, so is

the middle one. �

In particular, the inclusion of L into F(L; 0) as constant discs is a weak

homotopy equivalence. We use this to conclude

Lemma 2.4. The tangent bundle of P(L; 0) is stably trivial, and its re-

striction to the component containing constant discs is trivial.

Proof. It is well known (see for example [18] for the case with no Hamilton-

ian perturbation) that the operator (2.12) extends to a Fredholm map between

Banach bundles over FP(L). Moreover, regularity implies that the class of the

tangent bundle of P(L; 0) in KO(P(L; 0)) agrees with the restriction of the

class of the Cauchy-Riemann operator on FP(L). By the previous lemma, the

inclusion of L in FP(L) as the boundary of P(L; 0) is a homotopy equiva-

lence. In particular, the stable triviality of the tangent bundles of homotopy
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spheres (see [15]) implies that the class of the Cauchy-Riemann operator in

KO(FP(L)) is trivial.

Since the component of P(L; 0) containing L is a manifold with boundary,

it has the homotopy type of a 2n−1 complex. In particular, its tangent bundle

is trivial if and only if it is trivial in reduced K-theory (we are in the stable

range; see Lemma 3.5 of [15]). �

If P(L; 0) were compact, then we would immediately be able to conclude

that existence of exotic spheres which cannot embed as a Lagrangian in the

cotangent bundle of the standard sphere. Indeed, we would know that L

bounds a compact parallelisable manifold, and Kervaire and Milnor’s results in

[15] imply the existence of exotic spheres which cannot bound such a manifold.

However, P(L; 0) admits an evaluation map to L extending the identity on the

boundary of P(L; 0), so that the compactness of P(L; 0) would imply that the

fundamental class of L vanishes in homology.

We must therefore study the Gromov-Floer compactification P(L; 0) with

the hope of being able to construct a compact parallelisable bounding manifold

for L.

2.2. Compactification of the moduli spaces. The standard Gromov-Floer

compactification of P(L; 0) is obtained by including cusp curves; see [13]. These

consist of a solution u to equation (2.6) in some (relative) homotopy class β0,

together with a collection of holomorphic discs or spheres vi (considered modulo

their automorphisms) in homotopy classes βi such that

ν∑
i=0

βi = 0,

which are arranged along a tree and satisfy a stability condition. In order to

conclude that P(L; 0) is compact we shall require

Lemma 2.5 ([21, Lemma 2.2]). There is no solution to equation (2.6) for

R sufficiently large.

We will presently see that there are in fact only three possible configura-

tions to consider.

The simple connectivity of L implies that we have an isomorphism

(2.16) π2(M) ∼= π2(M,L).

We will write α for the generator of the left-hand side corresponding to the

copy of CP1 ⊂ CPn−1 and β for its image in the right-hand side.

Since the first Chern class of CPn−1 evaluates to n on α, the moduli space

of holomorphic maps from CPn−1 to M in class kα has virtual real dimension

2(2n− 1) + 2kn
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by a standard application of the Riemann-Roch formula. There is an analogous

formula for the virtual dimension of the space of holomorphic discs in class kβ

before taking the quotient by the group of automorphisms, which is

(2.17) 2n− 1 + 2kn.

The dimension of the moduli space of solutions to equation (2.6) in FP(L; kβ)

is one higher because of the extra choice of the parameter R. Writing P(L; kβ)

for this moduli space, we conclude

Lemma 2.6. The expected dimension of P(L; kβ) is 2n(1 + k).

In order to find the desired bounding manifold, we shall choose equa-

tion (2.6) so that requirement (2.11) extends to homotopy classes of maps

which have nonpositive energy.

(2.18) All moduli spaces P(L; kβ) for k ≤ 0 are regular.

This implies in particular that all such moduli spaces for k < −1 are empty, so

that, a priori, the cusp curves in the compactification of P(L; 0) have, as one

of their components, a curve u in P(L; kβ) where k ≥ −1. The proof that this

requirement holds for a generic path of almost complex structures J is done in

Section 3, with a precise statement given in Corollary 3.7.

Since we are considering the Gromov-Floer compactification of a moduli

space of curves in the constant homotopy class, the sum of the homotopy

classes of all irreducible components in our tree must vanish. Positivity of

energy implies that all (nonconstant) holomorphic discs (and spheres) occur

in classes kβ (respectively kα) where k is strictly positive. The moduli spaces

P(L; kβ) for k 6= −1 do not therefore contribute to the compactification of

P(L; 0).

Note that P(L;−β), the only remaining moduli space that could appear in

the compactification of P(L; 0), has dimension 0. In particular, N (L;−β,JR,
H, γR) is empty for generic values ofR, so we shall call the elements of P(L;−β)

exceptional solutions. Having excluded all other possibilities, we obtain the

following description of the corner strata of P(L; 0).

Lemma 2.7. The strata of P(L; 0) − P(L; 0) consist of an exceptional

solution u solving equation (2.10) for some R together with either

(i) a Jz,R-holomorphic sphere in class α intersecting the image of u at u(z)

with z an interior point, or

(ii) a Jalg-holomorphic disc in class β with boundary on L passing through

a point on the boundary of u, or

(iii) a Jalg-holomorphic sphere in class α passing through a point of the

boundary of u.
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Observe that a holomorphic disc in class β can degenerate to a holomor-

phic sphere in class α passing through a point of L. The Fredholm theory of

such a problem is well understood, and is modeled by considering a constant

(ghost) holomorphic disc mapping to the intersection of the sphere with L.

This, together with a standard gluing argument, implies that case (iii) in the

above lemma has expected codimension 2 within the Gromov-Floer compact-

ification of case (ii). Case (iii) has expected codimension 1 in the closure of

the stratum corresponding to case (i), as a sphere bubble passing through the

interior of the disc can escape to the boundary.

To describe the topology of these strata, we introduce the notation

(2.19) Si,j(L; kβ, J)

for the moduli space of J-holomorphic discs in class kβ with i labeled inte-

rior marked points, and j ordered boundary marked points, modulo automor-

phisms. We also have the spaces

(2.20) Ni,j(L; kβ,JR, H, γR) and Pi,j(L; kβ)

whose meaning should be evident to the reader. Slightly more generally, if J

is a family of almost complex structures parametrized by D2 × [0,+∞) as in

the definition (2.8) of the moduli spaces P(L; 0), then we shall write

(2.21) Mi(M ; kα,J) =
∐

(R,z)∈D2×[0,+∞)

Mi(M ; kα, Jz,R)

for the moduli space, modulo automorphism, of spheres in homotopy class kα

with i marked points, which are holomorphic with respect to one of the almost

complex structures Jz,R. This disjoint union is topologised, in the same way

as P(L; 0), by exhibiting it as the zero set of a Fredholm section of a Banach

bundle. In particular, whenever this defining section is transverse to the zero

section, the natural map from Mi(M ; kα,J) to D2 × [0,+∞) is smooth.

In this language, the strata of P(L; 0)−P(L; 0) can be described as fibre

products

∂1P (L; 0) = S0,1(L;β, Jalg)×L P0,1(L;−β),(2.22)

∂2P (L; 0) =M1(M ;α,J)×M×[0,+∞)×D2 P1,0(L;−β),(2.23)

∂3P (L; 0) =M1(M ;α, Jalg)×M S1,1(L; 0, Jalg)×L P0,1(L;−β).(2.24)

Here, the superscript on ∂iP (L; 0) is the expected codimension of the

stratum; i.e., the difference between the dimension of P(L; 0) and the virtual

dimension of the stratum. We will now ensure that all boundary strata are

smooth manifolds of the expected dimension, which is the first step toward con-

structing a manifold with corners. Oh proved in [20] that the next requirement
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holds after a small perturbation of L.

(2.25)
The moduli space S(L;β, Jalg) of Jalg holomorphic discs

in class β with boundary on L is regular.

In particular, the moduli space of holomorphic discs with one boundary

marked point is a smooth manifold equipped with an evaluation map

(2.26) S0,1(L;β)→ L.

We shall impose the following condition on the moduli space of exceptional

solutions

(2.27)
The evaluation map P0,1(L;−β)→ L is transverse to the

evaluation map from S0,1(L;β).

In Lemma 3.8, we prove that this property holds for a generic family J. From

equation (2.17), we know that the moduli space S0,1(L;β) has real dimension

4n − 3, since the group of automorphisms of D2 fixing a boundary point has

real dimension 2. Subtracting 2n − 2 for the codimension of the evaluation

map (2.27), we conclude

Corollary 2.8. The stratum ∂1P (L; 0) is a smooth manifold of dimen-

sion 2n− 1.

Note that the moduli space of holomorphic spheres in class α with re-

spect to the standard complex structure Jalg is regular and that the evaluation

map from M1(M ;α, Jalg) to M is a submersion. Since the family J has been

assumed to agree with Jalg when z lies on the boundary, we conclude

Lemma 2.9. The stratum ∂3P (L; 0) is a smooth compact manifold of

dimension 2n−3 with components labeled by elements of P(L;−β). Each such

component is diffeomorphic to

(2.28) CPn−2 × S1.

In Section 3, see in particular Lemma 3.10, we shall explain how to use the

stability of submersions under perturbations to extend this explicit description

to the moduli space of spheres passing through the interior of an exceptional

solution.

(2.29)
The stratum ∂2P (L; 0) is a smooth manifold of dimension 2n−2 with

components labeled by elements of P(L;−β). The closure of every

component is diffeomorphic to CPn−2 ×D2.

We have now ensured that all strata of P(L; 0) are smooth manifolds.

Instead of proving that P(L; 0) is a manifold with boundary, we shall con-

struct a manifold with corners “P(L; 0) one of whose boundary components is

diffeomorphic to L, and whose remaining corner strata are in bijective corre-

spondence to the strata of P(L; 0) − P(L; 0). To give a precise relationship
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between “P(L; 0) and P(L; 0), consider the trivial bundle over the parametrized

moduli space of holomorphic spheres whose fibre is the tangent space of CP1

at ∞ which we identify with the marked point. Taking the quotient by

Aut(CP1,∞) ∼= C∗ o C, we obtain a possibly nontrivial complex line bun-

dle which we denote LM1(M ;α). This is the bundle over the moduli space of

unparametrized spheres with one marked point M1(M ;α) whose fibre is the

tangent line of CP1 at the marked point.

Over P1,0(L;−β), we also have a complex line bundle LP1,0(L;−β) whose

fiber at an element (u, z) is the tangent space TzD
2. Let L∂2P (L; 0) denote

the tensor product of the pullback of these two line bundles to ∂2P (L; 0):

(2.30) L∂2P (L; 0) = LM1(M ;α) �C LP1,0(L;−β).

We will consider the unit circle bundle associated to L∂2P (L; 0) which we

denote by

(2.31) ∂̃2P (L; 0) .

Remark 2.10. Were we to prove that P(L; 0) is a manifold with boundary,

LP1,0(L;−β) would have been the normal bundle to ∂2P (L; 0). From the point

of view of algebraic geometry, this follows from the well-known fact that the

infinitesimal smoothings of a nodal singularity are parametrized by the tensor

product of the tangent spaces of the two branches. From the point of view of

gluing theory and hence closer to the discussion at-hand, a gluing construction

from ∂2P (L; 0) to P(L; 0) requires choosing a gluing parameter in [0,+∞) as

well as cylindrical ends on each branch, i.e., maps from S1 × [0,+∞) to each

punctured surface. The choice of such ends is equivalent up to homotopy to

the choice of a unit tangent vector at each branch. Moreover, up to a decaying

error term, the gluing construction is invariant under the simultaneous rotation

of both cylindrical ends.

The same construction performed on M1(M ;α,J) yields a circle bundle

∂̃3P (L; 0) over ∂3P (L; 0). We can now state the following result which will

be proved in Section 8.2.

Lemma 2.11. The union

(2.32) P(L; 0) ∪ ∂̃2P (L; 0)

admits the structure of a smooth manifold with boundary. Moreover, there ex-

ists a compact manifold with corners “P(L; 0) embedded in P(L; 0)∪ ∂̃2P (L; 0)

as a codimension 0 submanifold, one of whose boundary components is dif-

feomorphic to L, and whose remaining corner strata are diffeomorphic to the

components of ∂1P (L; 0), ∂̃2P (L; 0), and ∂̃3P (L; 0).
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By pushing the boundary strata of this manifold toward the interior, we

obtain an embedding of “P(L; 0) into P(L; 0). This slightly different point of

view shall be of use in Section 2.5.

Remark 2.12. We shall consistently use the notation ∂̃iR when we consider

circle bundles over codimension i = 2 or i = 3 corner strata of a moduli space

R corresponding to breakings of holomorphic spheres. In all cases, the Gromov

compactification which is denotedR can be replaced by a manifold with corners

symbolised by “R admitting ∂̃iR as a corner stratum of codimension i− 1.

Our goal in the next sections will be to “cap off” the boundary components

of “P(L; 0) (other than L itself) in a controlled manner to ensure that the

component containing constant discs is still parallelisable. We will only succeed

if the dimension is congruent to 1 modulo 4.

Addendum 2.13. In the case of the standard inclusion of S2n−1 in Cn ×
CPn−1 as the graph of the Hopf fibration, we claim that the complement of a

small neighbourhood of

(2.33) ∂1P
Ä
Hopf

Ä
S2n−1

ä
; 0
ä
∪ ∂2P

Ä
Hopf

Ä
S2n−1

ä
; 0
ä

in P
(
Hopf

(
S2n−1

)
; 0
)

has boundary which is diffeomorphic to a disjoint union

of copies of S2n−1. In particular, we can smooth the corner strata of the

boundary of “P (Hopf
(
S2n−1

)
; 0
)

to obtain a cobordism between S2n−1 and

other copies of S2n−1 indexed by the finite set P
(
Hopf

(
S2n−1

)
;−β

)
. We

give the geometric arguments behind these statements, ignoring all analytic

problems which can be resolved without great difficulty in this case.

Fixing an element u ∈ P(Hopf
(
S2n−1

)
;−β), our goal is to give an explicit

description of the component of ∂1P (L; 0) which consists of holomorphic discs

passing through the boundary of u. We shall write ∂1
uP
(
Hopf

(
S2n−1

)
; 0
)

for

this manifold. The invariance of the Hopf map and the complex structure Jalg

under the appropriate action of U(n) implies that the projection map

(2.34) ∂1
uP
Ä
Hopf

Ä
S2n−1

ä
; 0
ä
→ S1

is a fibration. It suffices therefore to describe the moduli space of holomorphic

discs passing though a point (pt, πHopf(pt)) on the graph of the Hopf fibra-

tion. We claim that this moduli space is diffeomorphic to a ball and that its

compactification is diffeomorphic to CPn−1. The precise statement is

(2.35)

The moduli space S0,1
(
Hopf

(
S2n−1

)
,pt;β

)
of holomorphic discs in

Cn×CPn−1, with boundary on the graph of the Hopf fibration, with 1

mapping to (pt, πHopf(pt)), is naturally diffeomorphic to the space of

complex lines in Cn which are not tangent to S2n−1 at pt. Moreover,

its Gromov-Floer compactification is diffeomorphic to the space of all

complex lines in Cn.
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To describe the map in one direction, we observe that any complex line passing

through pt and which is transverse to S2n−1 can be parametrized so that the

unit circle maps to S2n−1. The image of the unit disc under this map gives the

first factor of an element of S0,1(Hopf
(
S2n−1

)
,pt;β). To obtain the second

factor, we map D2 − {0} to C by inverting about the unit circle, apply the

previously fixed parametrization of our line in Cn, then project to CPn−1 by

the C? action on Cn. The resulting map extends continuously to the origin.

Since the complex structure on Cn is conjugate to the usual one, while the one

on CPn−1 is standard, the resulting map is holomorphic, and it is trivial to

check that the product map

D2 → Cn × CPn−1

has boundary lying on the graph of the Hopf map. Note that applying essen-

tially the same construction to the case where the plane is tangent to S2n−1

at pt yields a “ghost bubble” on S2n−1, together with a holomorphic sphere

in CPn−1 passing through πHopf(pt), as we expect to find in the Gromov-Floer

compactification of the moduli space of holomorphic discs. We shall not prove

that the smooth structure at this boundary stratum is compatible with the

one induced from gluing pseudo-holomorphic curves, though this can be done

along the lines of the arguments used in Section 7.

We give the barest sketch of the proof that the map we just described is

surjective. We start by using the two factors of a holomorphic disc with bound-

ary on Hopf(S2n−1) to construct a holomorphic sphere in CPn−1, which on the

lower hemisphere agrees with the second factor and on the upper hemisphere

with the composition of conjugating the domain. We apply the first factor,

and then project along the C? action. This first implies that the image of such

a disc is contained in the product of a complex plane in Cn with the corre-

sponding line in CPn−1, which reduces the problem to the case n = 2. In this

case, we can interpret this doubled map as a bi-holomorphism of CP1, and the

image of the boundary of the disc under such a map must agree with the unit

circle in C under stereographic projection after composition with an appropri-

ate translation and dilation. Geometrically, fixing the image of the boundary

to agree with such a circle implies that the boundary of the holomorphic disc in

the product C2×CP1 projects to a totally real torus T 2 → C2 which is isotopic,

through complex linear maps, to the product of a circle in each factor of C
(this torus is usually called the Clifford torus). Up to re-parametrization, there

is exactly one holomorphic disc (in the appropriate homotopy class) passing

through a given point of the Clifford torus, which proves surjectivity.

We conclude that we have a diffeomorphism

(2.36) ∂1
uP (L; 0) ∼= S1 ×D2n−2.
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Moreover, while the codimension 2 stratum is diffeomorphic to CPn−2×D2 as

in equation (2.29), a neighbourhood thereof is diffeomorphic to

(2.37) S2n−3 ×D2

as we shall see in equation (2.53). This implies that the boundary of a small

neighbourhood of the union of these two strata is obtained by gluing

(2.38) S1 ×D2n−2 ∪ S2n−3 ×D2

along their common boundary. The description we have given is sufficiently

explicit that the reader is invited to show that this is the standard decompo-

sition of S2n−1 into neighbourhoods of an equatorial circle and the orthogonal

S2n−3.

2.3. Capping moduli spaces. The moduli spaces defined in this section will

be constructed starting with moduli spaces of holomorphic discs with boundary

on L. Since the family of almost complex structures J is constantly equal to

Jalg near the boundary of D2, we shall drop the almost complex structure from

the notation.

Given that L is simply connected, we may choose, for each exceptional

solution u, a smooth map

(2.39) cu : D2 → L

such that cu|S1 = u|S1. Requirement (2.27) is equivalent to the statement that

for each such map, u|S1 is transverse to the evaluation map from S0,1(L;β);

thus we may ensure that the same is true for cu. In particular, we can define a

smooth manifold whose boundary is diffeomorphic to ∂1P (L; 0) by considering

the fibre product

(2.40) C(L) = S0,1(L;β)×L
Ä
P(L;−β)×D2

ä
,

where the evaluation map on the second factor is

(2.41) (u, z) 7→ cu(z).

The space C(L) is again not compact, but it admits a Gromov-Floer com-

pactification C(L). The analysis performed in the previous section implies that

the only stratum that needs to be added to C(L) is the fibre product

(2.42) ∂2C (L) =M1(M ;α)×L (P(L;−β)×D2).

As a slight variation on the construction performed in the previous section,

we introduce a line bundle

(2.43) L∂2C (L)
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which is the pullback of LM1(M ;α) to ∂2C (L). This allows us to define a

circle bundle

(2.44) ∂̃2C (L)

whose fibre at a given equivalence class of maps is the unit tangent space to

CP1 at the marked point. We shall presently introduce, in Lemma 2.15, a

manifold with corners in which this appears as a codimension 1 stratum. Note

that the boundary of ∂̃2C (L) is ∂̃3P (L; 0).

Remark 2.14. The only difference between (2.43) and (2.30) is that the

former does not involve the tangent space of the disc. The reason for this is the

fact that the Fredholm description of a gluing theorem on ∂2C (L) corresponds

to gluing of a sphere to a ghost disc bubble with one interior marked point

and one boundary marked point. In analogy with (2.30), we should strictly

speaking define (2.43) to be the tensor product of LM1(M ;α) with the tangent

space to this ghost bubble at its interior marked point. But this second line

bundle is canonically trivial.

In Section 7.4, we shall sketch the proof of

Lemma 2.15. There exists a compact manifold with corners Ĉ(L) con-

taining C(L) as a complement of a union of strata contained in the boundary,

and whose corner strata are respectively diffeomorphic to the components of

∂1P (L; 0), ∂̃2C (L), and ∂̃3P (L; 0).

We denote the closure of ∂1P (L; 0) in Ĉ(L) by

(2.45) ∂̄1Ĉ (L) = ∂1P (L; 0) ∪ ∂̃3P (L; 0) ,

which is a manifold with boundary equipped with a smooth structure by virtue

of its inclusion in Ĉ(L). This space is also the closure ∂̄1“P (L; 0) of ∂1P (L; 0)

in “P(L; 0). In Lemma 7.18, we prove that the two induced smooth structures

are diffeomorphic via a diffeomorphism which is the identity on the bound-

ary ∂̃3P (L; 0). We write Ŵ (L) for the union of Ĉ(L) and “P(L; 0) along this

common codimension 1 boundary stratum.

As an immediate consequence of Lemmas 2.11 and 2.15, we conclude

Lemma 2.16. Ŵ (L) is a compact smooth manifold whose boundary is the

disjoint union of L with the smooth manifold

(2.46) ∂̃2C (L) ∪∂̃3P(L;0) ∂̃
2P (L; 0) .

We shall now focus on explicitly describing the boundary components of

Ŵ (L). As in the previous section, the fact that the evaluation map from

M1(M ;α) to M is a submersion with fibres CPn−2 implies that ∂2C (L) is a
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disjoint union of copies of

(2.47) D2 × CPn−2

indexed by exceptional solutions to (2.6), i.e., by elements of P(L;−β). In

particular, the components of ∂Ŵ (L)− L are S1 bundles over CPn−2 bundles

over S2. As we shall see in Proposition 2.19, the parallelisability of the com-

ponent of Ŵ (L) containing constant discs is equivalent to the parallelisability

of the total spaces of these bundles.

2.4. The neighbourhood of the space of sphere bubbles. In this section, we

prove

Proposition 2.17. The manifold

(2.48) ∂̃2C (L) ∪∂̃3P(L;0) ∂̃
2P (L; 0)

is a disjoint union of S2n−3 bundles over S2. If n is odd, its components are

diffeomorphic to S2×S2n−3, and they are otherwise diffeomorphic to the non-

trivial S2n−3 bundle over S2. In particular, if n is odd, then the diffeomorphism

type of the boundary of Ŵ (L) is given by

(2.49) ∂Ŵ (L) ∼= Lq (S2 × S2n−3 × P(L;−β)).

This result will follow once we explicitly identify L∂2P (L; 0), L∂2C (L),

and the isomorphism which is used to glue them along L∂3P (L; 0). For sim-

plicity, fix an exceptional curve u, and write L∂2
uP (L; 0) and L∂2

uC (L) respec-

tively for the components labeled by u. The complement of the zero-section in

L∂2
uC (L) can be naturally identified as a bundle over D2 with the complement

of the zero section of the pullback of the tangent space of CPn−1 under the

map cu

(2.50) L∂2
uC (L)− ∂2

uC (L) ∼= c∗uTCPn−1 −D2.

Indeed, it is easiest to construct a map from the right-hand side to the left-

hand side, taking a nonzero vector in c∗uTCPn−1 at cu(z) to the pair consisting

of the unique complex line passing through z that it spans, together with the

corresponding tangent vector to this complex line at z. In particular, we have

an identification between the unit circle bundle on one side and the unit sphere

bundle on the other:

(2.51) ∂̃2
uC (L) ∼= c∗uSTCPn−1.

Similarly, we have an identification between the complements of the zero

sections

(2.52) L∂2
uP (L; 0)− ∂2

uP (L; 0) ∼=
Ä
u∗TCPn−1 ⊗C TD

2
ä
−D2,
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Figure 1.

inducing a diffeomorphism of sphere bundles

(2.53) ∂̄2
u
“P (L; 0) ∼= S

Ä
u∗TCPn−1 ⊗C TD

2
ä ∼= S2n−3 ×D2.

In particular, using the fact that u and cu agree on the boundary circle, the

geometric identification of ∂̃3P (L; 0) as the common boundary of ∂̄2
u
“P (L; 0)

and ∂̄2
uĈ (L) gives a diffeomorphism of sphere bundles over the circle

(2.54) c∗uSTCPn−1|S1
∼= S

Ä
u∗TCPn−1 ⊗C TD

2
ä
|S1 .

Lemma 2.18. The diffeomorphism (2.54) is induced by an isomorphism

of vector bundles over S1:

(2.55) c∗uTCPn−1|S1 → u∗TCPn−1|S1 ⊗C TD
2|S1

which, for a vector x lying over a point θ ∈ S1, is given by

x 7→ x⊗ ∂θ,

where ∂θ is the tangent vector to the circle.

Proof. As discussed in Remark 2.14, we should really think of the fibres of

L∂2C (L) as the tensor product of the tangent space of the holomorphic sphere

bubble at the marked point, with the tangent space of a ghost disc bubble at

the origin; this second factor is canonically trivial. The operation of gluing

the ghost disc bubble to the exceptional solution u gives a trivialization of the

tangent space of D2 near its boundary. It is evident that this is precisely the

trivialization described above (see Figure 1, which shows the trivialization of

the tangent space of a ghost bubble attached at various points). �

Introducing the notation

(2.56) cu ∪ u : S2 →M
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for the map on S2 which is respectively equal to cu and u on the top and

bottom hemisphere, we can now prove the main result of this section.

Proof of Proposition 2.17. By Lemma 2.18, the component of (2.48) la-

beled by u is diffeomorphic to the unit sphere bundle in

(2.57) (cu ∪ u)∗ TCPn−1 ⊗C O(1),

where O(1) is the tautological bundle on CP1, thought of as a complex lin-

ear vector bundle (the holomorphic structure is irrelevant). By construction,

cu ∪ u represents the class −α ∈ π2(M), so that (cu ∪ u)∗ TCPn−1 is the non-

trivial bundle precisely if n is odd. In particular, the unit sphere bundle of

(cu ∪ u)∗ TCPn−1 ⊗ O(1) is the trivial S2n−3 bundle over S2 if n is odd, and

the nontrivial bundle if n is even. �

2.5. Parallelisability of the cobordism. In the previous section, we estab-

lished that all the boundary components of Ŵ (L) are stably parallelisable

whenever n is odd. We now prove that this is the only obstruction to the

stable parallelisability of Ŵ (L).

Following the proof of Lemma 2.4 it is easy to show the triviality of the

tangent space of any component of C(L) whose boundary is not empty. Indeed,

let FC(L) denote the fibred product

(2.58) FC(L) = F(L;β)×L (P(L;−β)×D2),

where the first factor maps to L by evaluation at 1 and the second map is given

by

(u, z) 7→ cu(z).

Since C(L) consists of holomorphic discs modulo parametrizations, it does

not naturally embed in FC(L). Nonetheless, the natural Aut(D2,−1) bundle

over C(L) embeds in FC(L) as the vanishing set of the ∂̄ operator

(2.59) ∂̄C : FC(L)→ EC ,

where EC is the pullback of E from F(L;β). Since Aut(D2,−1) is contractible,

we can lift C(L) to this space. As with Lemma 2.4, there exists an elliptic

operator on FC(L)

(2.60) DC : TFC(L)→ EC ,

whose index in reduced K-theory agrees with the class of tangent space of

C(L). Note that the description of FC(L) as a fibre product implies that its

tangent space consists of all vector fields along a disc with boundary on L

which, when evaluated at 1, point in a direction tangent to the capping disc.

Note that Lemma 2.3 implies that the evaluation map

(2.61) F(L;β)→ L



90 M. ABOUZAID

is a fibration with contractible fibres. Since D2 is contractible, we conclude

that FC(L) is homotopy equivalent to P(L;−β), i.e., to a finite union of points.

It follows that the tangent space of C(L) must vanish in reduced K-theory, and

hence that any component of Ĉ(L) which is not closed is in fact parallelisable.

The main result of this section is the following proposition, whose proof

we will explain after setting up the notation and stating some preliminary

lemmas.

Proposition 2.19. If n is odd, then Ŵ (L) has stably trivial tangent bun-

dle. In particular, the component whose boundary contains L is parallelisable.

Remark 2.20. The idea behind the proof is that FC(L) is an infinite-

dimensional manifold with boundary

(2.62) ∂FC(L) = F(L;β)×L (P(L;−β)× ∂D2),

and that the map ∂1P (L; 0)→ “P(L; 0) given by the inclusion of the boundary

can be extended to a map

(2.63) ∂FC(L)→ FP(L; 0),

allowing us to form a union

(2.64) FC(L) ∪∂FC(L) FP(L; 0)

in which we can embed int Ŵ (L). Elementary algebraic topology implies that

this space has the homotopy type of the wedge of L with a finite collection

of 2-spheres labeled by the exceptional solutions. If there were a Fredholm

complex over this space whose restriction to int Ŵ (L) agreed with the class of

the tangent space, then stable triviality of the tangent space would follow from

the stable triviality of the tangent space of L, together with the triviality of the

restriction of the index class of this Fredholm complex to the 2-spheres. On

the other hand, a choice of section of the S2 bundles described in Lemma 2.17

represents these generating 2-spheres, so the triviality of their normal bundle

whenever n is odd implies the desired result.

The problem with this naive approach is that the natural Banach bundles

over FC(L) studied for the purpose of the gluing theorem are “much larger”

than their analogues over FP(L; 0), and hence it seems unlikely that a Banach

bundle could be defined on the union (2.64) which would restrict to the original

object on both sides. This problem is already familiar from Morse theory,

where the Banach bundles over boundary strata of the moduli space of gradient

trajectories are modeled after two copies of maps from R to Rn, whereas the

interior strata are modeled after only one such copy. It is reasonable to expect

that the theory of polyfolds (see [14]), specifically the notion of a filler which

is concretely given by anti-gluing in this situation, would provide a resolution

to this problem that would turn the hypothetical discussion of the previous
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remark into an honest proof. We prefer to give an alternative proof, less general

though more elementary, by adding a (trivial) finite dimensional vector bundle.

Such an idea has a long history, going back at least to Atiyah and Singer’s

proof of the family index theorem (see [2, Prop. 2.2]), and can be thought of

as an infinitesimal version of the obstruction bundle used in the construction

of Kuranishi spaces.

We introduce a triple of (compact finite-dimensional) CW-complexes X (L),

∂X (L), and Y(L) which fit in a diagram

(2.65) Ĉ(L)

��

∂̄1Ĉ (L) ∼= ∂̄1“P (L; 0)

��

//oo “P(L; 0)

�� %%
X (L)

��

∂X (L)oo

��

// Y(L)

��

P(L; 0)

yy
FC(L) ∂FC(L)oo // FP(L; 0).

Note that we are working with the conventions of the paragraph following

Lemma 2.11, so that the inclusion of “P(L; 0) into FP(L; 0) factors through

the inclusion of P(L; 0) into the space of maps defining it. Similarly, by

Lemma 2.15, we may fix an embedding Ĉ(L) → C(L) which is the identity

away from a collar of ∂̃2C (L); this uses the fact that a manifold with corners

can be embedded in the complement of some of its corner strata such that the

embedding is the identity away from the removed strata (this mildly gener-

alises the well-known fact that a manifold with boundary can be embedded in

its interior).

In Sections 9.2 and 9.4, we shall prove that our construction satisfies the

following property (see, in particular, Lemma 9.12).

(2.66)
We can choose the triple of CW-complexes above such that Z(L) ≡
X (L) ∪∂X (L) Y(L) is homotopy equivalent to ∨uS2 ∨ L.

For each exceptional disc u, the linearisation of ∂̄P gives an isomorphism

(2.67) DP |u : TFP(L;−β)|u→ EP |u.

Over the corresponding component of ∂FC(L), we consider the direct sum

(2.68) TFP(L;−β)⊕ TFC(L)|u

which we call the extended tangent space and denote

(2.69) T extFC(L).

With this in mind, we define the extended ∂̄ complex of FC(L)

(2.70) DC : T extFC(L)→ Eext
C
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to be the direct sum of the above complex with (2.60), where Eext
C , on the

component labelled by u, is the direct sum

(2.71) EC ⊕ EP |u.

If we restrict this complex to the tangent space of ∂FC(L), then we obtain

the extended ∂̄ complex of ∂FC(L):

(2.72) D∂C : T ext∂FC(L)→ Eext
C |∂FC(L).

The index of this operator gives a class in reduced K-theory that restricts

to the tangent space of ∂C(L). More precisely, since the inclusion

(2.73) ∂̄1Ĉ (L)→ ∂FC(L)

is defined by composing a section of an Aut(D2,−1) bundle with the inclusion

of the zero locus of ∂̄P , the restriction of the kernel of the operator D∂C to

∂̄1Ĉ (L) is isomorphic to a direct sum

(2.74) aut(D2,−1)⊕ T ∂̄1Ĉ (L) →̃ kerD∂C |∂̄1Ĉ (L) ,

where aut(D2,−1) is the rank 2 vector space of holomorphic vector fields on D2

which vanish at −1. The above map takes such a vector field to its image under

the differential of the holomorphic map. We will consider the decomposition

(2.75) aut(D2,−1) ∼= 〈∂s〉 ⊕ 〈∂p〉,

where the first factor is the R-summand in aut(D2,−1) coming from translation

of the strip I+∞−∞ after identification with D2−±1 by the map ξ, and the second

is generated by the unique vector field with a zero at −1, whose value is ∂θ
at 1.

On the other side, FP(L; 0) is also equipped with a linearisation of its ∂̄

operator, which we shall extend in equation (9.45) to an operator

(2.76) D
〈∂θ〉
P : 〈∂θ〉 ⊕ TFP(L; 0)→ EP ,

where 〈∂θ〉 is a rank 1 vector space. This vector space is to be thought of as

generated by infinitesimal rotations of the disc. The appearance of 〈∂θ〉 is an

indication of a difficulty we shall face proving the gluing theorem for ∂1P (L; 0).

Our proof relies on applying the implicit function theorem in FP0,1(L; 0) (see

Corollary 5.6), rather than working directly with FP(L; 0) as one might expect.

The vector space 〈∂θ〉 is a small remnant of this fact. We state a key property

which shall be obvious from the construction and which is needed for the

statements below to make sense (see Lemma 9.8).

(2.77)
The restriction of D

〈∂θ〉
P to P(L; 0) vanishes on the factor 〈∂θ〉. In

particular, we have an isomorphism kerD
〈∂θ〉
P
∼= 〈∂θ〉 ⊕ TP(L; 0).
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Since the tangent bundles of “P(L; 0) and Ĉ(L) are both stably trivial, the

isomorphism

(2.78) T ∂̄1Ĉ (L)→ T ∂̄1“P (L; 0) ,

together with the identification of the normal bundles of these boundaries,

determines whether the union of “P(L; 0) and Ĉ(L) along ∂̄1Ĉ (L) ∼= ∂̄1“P (L; 0)

has stably trivial tangent bundle.

Lemma 2.21. There exists a finite-dimensional vector space VZ and an

extension of the operators D∂C of equation (2.72) and D
〈∂θ〉
P of equation (2.76)

to surjections

DX : VZ ⊕ T extFC(L)|X (L)→ Eext
C |X (L),(2.79)

D∂X : VZ ⊕ T ext∂FC(L)|∂X (L)→ Eext
C |∂X (L),(2.80)

DY : VZ ⊕ 〈∂θ〉 ⊕ TFP(L; 0)|Y(L)→ EP |Y(L).(2.81)

Moreover, there exists an isomorphism

(2.82) ker(D∂X )|∂X (L)→ ker(DY)|∂X (L)

between the kernels of the Cauchy-Riemann operators over ∂X (L). If we re-

strict this isomorphism further to ∂̄1Ĉ (L), then (2.82) decomposes as a direct

sum of the identity on VZ with a map

(2.83) aut(D2,−1)⊕ T ∂̄1Ĉ (L)→ 〈∂θ〉 ⊕ TP(L; 0)

which is isotopic through isomorphisms to a map satisfying the following three

properties :

(2.84)
The image of T ∂̄1Ĉ (L) lies in TP(L; 0), and agrees with the map

induced by the inclusions ∂̄1Ĉ (L)→ “P(L; 0)→ P(L; 0).

(2.85) The vector field ∂p maps to ∂θ.

(2.86)
The image of the vector field ∂s lies in TP(L; 0) and is an outwards

pointing vector on the boundary of “P(L; 0).

The proof is postponed until Section 9, but we can now proceed with the

proof of the main result of this section.

Proof of Proposition 2.19. The kernel of (2.79) is a vector bundle over

X (L) whose restriction to ∂X (L) is isomorphic to the direct sum of ker(D∂X )

with the normal bundle of the inclusion S1 → D2, which is a trivial bundle.

Fixing such a trivialization, the isomorphism of equation (2.82) extends to an

isomorphism

(2.87) ker(DX )|∂X (L) ∼= ker(DY)|∂X (L)⊕ R.
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Extending R trivially to Y(L), this isomorphism defines a vector bundle EZ
on Z(L) which restricts on X (L) and Y(L) to the two vector bundles in the

above equation.

We claim that the restriction of this vector bundle to Ŵ (L) is isomorphic

to the direct sum of the tangent space of Ŵ (L) with a trivial vector bundle.

To see this, decompose ker(DX )|∂̄1Ĉ (L) as

(2.88) VZ ⊕ 〈∂s〉 ⊕ 〈∂p〉 ⊕ T ∂̄1Ĉ (L)⊕NĈ(L)
∂̄1Ĉ (L)

and consider the isomorphism which acts trivially on all the factors except

the rank 2 vector bundle 〈∂s〉 ⊕ NĈ(L)
∂̄1Ĉ (L) on which it acts by rotation.

Note that this isomorphism is isotopic to the identity, so the result of glu-

ing ker(DX )|∂̄1Ĉ (L) and ker(DY) ⊕ R|∂̄1Ĉ (L) by composing (2.87) with this

rotation is a vector bundle E“W (L)
which is isomorphic to the restriction of EZ .

The bundle E“W (L)
contains a sub-bundle of rank 2 + rkVZ which, upon

restriction to Ĉ(L), decomposes as a direct sum

(2.89) VZ ⊕ aut(D2,−1)

and on “P(L; 0) as a direct sum

(2.90) VZ ⊕ 〈∂θ〉 ⊕ R.

By equations (2.85), (2.86) and (2.87), this bundle is trivial. Moreover, the

quotient is isomorphic to the tangent space of Ŵ (L) by equation (2.84).

Since Z(L) is homotopy equivalent to
∨
uS

2 ∨ L by property (2.66), the

stable triviality of TŴ (L) therefore follows from the triviality of its restriction

to the spheres representing S2. This was already proved in Proposition 2.17.

�

2.6. Constructing a compact parallelisable manifold. In this section, we

prove that if n is odd, then there exists a compact parallelisable manifold

W (L) with boundary L. By considering the component of Ŵ (L) containing

the constant discs, we obtain from the previous section a parallelisable cobor-

dism from L to a disjoint union of copies of S2 × S2n−3. In this section, we

prove that up to a connect sum with a framed standard sphere, every stable

framing on S2 × S2n−3 arises as the induced framing on the boundary of a

parallelisable 2n-dimensional manifold. By choosing such a filling, we shall

prove the existence of a manifold W (L) satisfying the desired conditions.

The first step is a computation in homotopy theory.

Lemma 2.22. The space of trivializations of the direct sum of the tangent

bundle of S2 × S2n−3 with a trivial bundle of rank 1 can be identified as a set

with the product

(2.91) π2n−3(O(2n))× π2n−1(O(2n)).
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Proof. Recall that the inclusion of O(m) into O(m+1) is m+1-connected,

so there is an identification between the sets of homotopy classes of maps

(2.92) [S2 × S2n−3, O(2n)] ∼= [S2 × S2n−3, O],

where O is the direct limit of the orthogonal groups O(m). Using the fact that

O is an infinite loop space, a classical computation (see [27, Ch. X , Th. 4.4])

shows that [S2 × S2n−3, O] admits a natural group structure with respect to

which it is isomorphic to an extension of the direct sum π2(O)⊕ π2n−3(O) by

π2n−1(O). Since π2(O) vanishes, we obtain the desired result. �

If we fix the stable framing of S2×S2n−3 coming from the product inclu-

sion in R3×R2n+2 as a basepoint, then we may write every trivialization of the

tangent bundle of S2 × S2n−3 as (a, b), with a ∈ π2n−3(O) and b ∈ π2n−1(O).

Since the group of stable framings of a sphere is nontrivial, taking the connect

sum with a framed sphere acts on the set of framings on any stably parallelis-

able manifold. In general, this action is far from transitive, and the next result

describes the cosets of the action when the manifold is S2 × S2n−3.

Lemma 2.23. The set of trivializations of the stable tangent bundle of

S2n−1 acts on the set of trivializations of the stable tangent bundle of S2×S2n−3

by the connect sum operation. Choosing the standard trivializations coming

from the inclusion in R2n as a basepoint on the first set, this action is given

by

π2n−1(O)× π2n−3(O)× π2n−1(O)→ π2n−3(O)× π2n−1(O)(2.93)

(c, (a, b)) 7→ (a, b+ c)

in the notation of equation (2.91).

Among the framings of S2×S2n−3, those of the form (a, 0) are pulled back

from S2n−3.

Lemma 2.24. Every trivialization of the form (a, 0) arises as the restric-

tion to the boundary of a framing of the tangent space of D3 × S2n−3.

This suggests that we consider the manifold

(2.94) D3 × S2n−3 × P(L;−β)

whose boundary is S2×S2n−3×P(L;−β). Let us write W (L) for the compo-

nent of

(2.95) Ŵ (L) ∪S2×S2n−3×P(L;−β)

Ä
D3 × S2n−3 × P(L;−β)

ä
containing constant loops and prove the main theorem of this paper.
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Theorem 2.25. If n is odd, then there exists a choice of trivialization

of the tangent space of the component of Ŵ (L) containing L which extends to

W (L).

Proof. By Lemma 2.24, it suffices to produce a trivialization of the tan-

gent space of the desired component of Ŵ (L) which, upon restriction to each

boundary component diffeomorphic S2×S2n−3, corresponds to a trivialization

of the form (a, 0). In order to achieve this, we pick an arbitrary trivialization,

and a collection of paths γ in Ŵ (L) starting at L and ending on each different

boundary component. The connect sum of Ŵ (L) and copies of [0, 1] × S2n−1

along the paths γ and (t, 1) is again diffeomorphic to Ŵ (L).

By assumption, all boundary components other than L are diffeomorphic

to S2 × S2n−3. If the induced trivialization on a boundary component S2 ×
S2n−3 is given by a homotopy class (a, b), then we equip the corresponding copy

of [0, 1] × S2n−1 with a trivialization of its stable tangent bundle induced by

−b ∈ π2n−1(O). After changing the trivalisation by a connect sum operation

as in Lemma 2.23, we may assume that the relevant boundary component

S2 × S2n−3 will have a trivialization of the form (a, 0), which can be extended

to D3 × S2n−3 by Lemma 2.24. �

3. Transversality

In this section, we discuss the proof of some of the transversality results

used in the construction of the moduli space P(L; 0). Following the usual tech-

nical approach, this entails replacing all spaces of smooth maps or sections with

appropriate Banach spaces, which will be Sobolev space completions except for

the spaces of perturbations of the almost complex structure for which we shall

use the Banach spaces of smooth functions introduced by Floer in Section 5 of

[8]. We begin by checking that our requirements on the Lagrangian L can be

realized after appropriate perturbations.

3.1. Detail of setup. We fix the embedding of L as follows.

Lemma 3.1. After an arbitrarily small perturbation of the Lagrangian

embedding L ⊂M , the following properties can be assumed to hold :

(1) All the moduli spaces of Jalg-holomorphic discs with boundary on L in

class kβ are regular if k ≤ 1.

(2) L is a real analytic submanifold.

In fact, the moduli space of Jalg holomorphic discs in class kβ is auto-

matically empty if k < 0 since ω integrates to a negative number on curves of

this class; the existence of holomorphic curves in such classes would contradict

positivity of energy. The same argument shows that Jalg holomorphic discs in
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the trivial homotopy class are constant, and constant discs are automatically

regular.

Since β is not divisible, all holomorphic discs in class β are necessarily

simple (see [16], [17]). In [20], Oh proved that the moduli space of simple

holomorphic discs is regular for a generic choice of L. Since the space of

real analytic embeddings of a Lagrangian submanifold is dense in the space of

smooth embeddings, the second property can be simultaneously achieved.

We have assumed real analyticity only in order to conclude the following

result, which can likely be proved under the weaker conditions (see [18, Lemma

4.3.3]).

Corollary 3.2. There exists a metric g on M satisfying the following

conditions :

(1) L is totally geodesic with respect to g.

(2) g is a Hermitian metric for the standard complex structure Jalg.

(3) There exists a neighbourhood of L which admits an isometric anti-

holomorphic involution preserving L.

Proof. First, note that M has holomorphic charts near every point of L

which map real points to L (See, for example, [26, Lemma 2.2]), so that M

admits a holomorphic anti-involution defined near L. Consider a real analytic

embedding of L in RN for some sufficiently large N , which automatically ex-

tends uniquely to a holomorphic embedding of a neighbourhood of L. The

uniqueness of the extension implies that the embedding of this neighbourhood

is equivariant with respect to the Z/2Z action which acts anti-holomorphically

on the source and the target. The pull-back of the standard metric gives a

metric g in a neighbourhood of L satisfying the desired conditions. Indeed,

local geodesics must be invariant under the holomorphic anti-involution, so

they must lie on L, which implies that L is totally geodesic. One can then

extend g arbitrarily to a Hermitian metric on the rest of M . �

Remark 3.3. Let us briefly explain the reasons behind this choice of met-

ric. Consider a map u : D2 → M which takes the boundary to L, and X a

TM -valued vector field along u with boundary conditions on TL. The first

property satisfied by g implies that the exponential map applied to X gives a

new map with boundary on L. This will be used to construct charts for a Ba-

nach manifold F1,p(L) of maps from D2 to M with L as boundary conditions,

replacing F(L).

To study holomorphic discs, we will also have to construct Ep(L), a Banach

bundle over F1,p(L) with fibres Lp sections of u∗(TM)⊗CΩ0,1D2 and eventually

a linearisation of the ∂̄ operator

(3.1) D : TF1,p(L)→ Ep(L).
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This entails choosing a connection which preserves the almost complex struc-

ture. Since the Levi-Civita connection of an almost Hermitian connection

preserves the almost complex structure, the choice of metric above determines

a choice of linearization D which can be expressed in a relatively simple form

in term of the Levi-Civita connection.

Finally, the fact that a neighbourhood of L admits an anti-holomorphic

involution implies that we may double maps with boundary on L, whose im-

age is contained in this neighbourhood, in order to obtain closed holomorphic

curves. In particular, decay estimates for the C1-norm of holomorphic cylin-

ders of small energy will easily imply the analogous result for holomorphic

strips with Lagrangian boundary conditions.

3.2. Varying almost complex structures. Recall that J is the space of al-

most complex structures compatible with the symplectic form ω and which

agree to infinite order with Jalg on the boundary of M . Let ε = {εk}∞k=0 be a

sequence of positive numbers, and define Jε(D2) to be the space of maps from

D2 to J which can be written as

(3.2) J(z) = Jalg exp(−JalgK(z)),

where Jalg is the standard complex structure on M and K is a map from D2

to the space of smooth endomorphisms of the tangent bundle of M

(3.3) K : D2 → End(TM)

satisfying the following conditions:

K(z) vanishes if |z| ≥ 1/2.(3.4)

K(z) vanishes to infinite order on the boundary of M .(3.5)

K(z) anti-commutes with Jalg and ω(K(z)v, w) = ω(v,K(z)w).(3.6)

K is bounded in Floer’s ‖ ‖ε-norm.(3.7)

ω is positive on every J(z) complex plane.(3.8)

For the penultimate condition, we now think of K as a section of a bundle over

D2 ×M and require the convergence of the sum

(3.9)
∞∑
k=0

εk
∣∣∣DkK

∣∣∣ ,
where

∣∣∣DkK
∣∣∣ is the supremum of the norm of the higher co-variant derivatives

of K thought of as sections of bundles over D2 ×M . These derivatives can be

taken, for example, with respect to the Levi Civita connection of the metric g

on M introduced in the previous section.
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Remark 3.4. The requirement that K(z) vanish for points whose norm

is larger than 1/2 is completely arbitrary; vanishing outside any open pre-

compact subset of the open disc would have served us just as well for our later

purposes.

The space of sections K satisfying conditions (3.4)–(3.7) is a vector space

on which ‖ ‖ε defines a complete norm. Since ‖ ‖ε is stronger than the point-

wise C0-norm, the remaining condition (3.8) is an open condition, proving the

fact that Jε(D2) is a Banach manifold.

A slight generalization of Floer’s Lemma 5.1 in [8] implies

Lemma 3.5. If ε decays sufficiently fast, then Jε(D2) is a Banach man-

ifold (in fact, an open subset of a Banach space) which is dense in an L2

neighbourhood of the constant almost complex structure Jalg ∈ J(D2). �

For any class kβ ∈ π2(M,L), we replace F(L; kβ) with F1,p(L; kβ), the

space of W 1,p maps in homotopy class kβ from D2 to M with boundary values

on L for an integer p which is sufficiently large. The Sobolev embedding

theorem implies that this class of maps is continuous, so that the requirement

that the boundary lie on L makes sense. The tangent space is naturally a

Banach bundle whose fibre at a map u are W 1,p sections of the pullback of

TM whose values are restricted to TL on the boundary, i.e.,

(3.10) TuF1,p(L; kβ) = W 1,p
Ä
(D2, S1), (u∗TM, u∗TL)

ä
.

As in equation (2.9), we write F1,p
P (L; kβ) for the product of F1,p(L; kβ) with

[0,+∞).

We consider the Banach bundle

(3.11) Ep
Jε(D2)×P

��

Jε(D2)×F1,p
P (L; kβ)

whose fibre at a map (J, R, u) are Lp sections of the space of complex anti-

linear 1-forms on D2 valued in TM equipped with varying almost complex

structure J(z):

(3.12) Lp
Ä
u∗(TM)⊗C,J Ω0,1D2

ä
.

To describe Ep
Jε(D2)×P as a Banach bundle, we must identify the vector spaces

(3.12) for nearby maps and nearby points of Jε(D2). In the simplest case,

starting with a deformation J(z) of Jalg as in equation (3.2) and a vector field
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X along a map u ∈ F1,p(L; kβ), we define

Lp
Ä
u∗(TM)⊗C,Jalg Ω0,1D2

ä
→̃ Lp

Ä
u∗X(TM)⊗C,J Ω0,1D2

ä
(3.13)

Y 7→ (‹ΠuX
u Y ) exp(JalgK(z)).

Here, ‹Π denotes parallel transport, from u to uX , with respect to the Jalg-

complex linear connection determined by g. We multiply by exp(JalgK(z))

because the complex tensor product in the right-hand side is performed with

respect to J(z), rather than Jalg.

The ∂̄P operator of equation (2.10) extends to a section ∂̄Jε(D2)×P of

(3.11), where the (0, 1) part of du − γR ⊗ XH is taken with respect to the

varying almost complex structure J(z). By using the connection ∇ induced by

the metric g, we may write the linearisation of this operator at a zero of the

form (Jalg, R, u) as an operator DJε(D2)×P given by

TJε(D2)× TF1,p
P (L)→ Ep

Jε(D2)×P

(3.14)

(K, 0, 0) 7→ K ◦ (du− γR ⊗XH) ◦ j

(0, ∂R, 0) 7→
Å
dγR
dR
⊗XH

ã0,1

(0, 0, X) 7→ (∇X − γR ⊗∇XXH)0,1 − 1

2
Jalg∇XJalg∂P(R, u),

where the operator ∂P is

(3.15) ∂P(R, u) = (du− γR ⊗XH)1,0 .

Given a point z ∈ D2 such that |z| < 1/2 and a positive number ρ ≤ 1/2−
|z|, we introduce the subspace Jε(Bρ(z)) ⊂ Jε(D2) consisting of deformations

supported in a disc of radius ρ about z.

Lemma 3.6. The restriction of DJε(D2)×P to

(3.16) TJε(Bρ(z))× TF1,p
P (L)

is surjective at every zero of ∂̄Jε(D2)×P . In particular, the universal moduli

space

(3.17) Pkβ(L, Jε(D2))

is a smooth Banach manifold.

Corollary 3.7. If S(L; kβ, Jalg) is regular, then a generic family J =

{JR ∈ Jε(D2)}R∈[0,+∞) starting at J0 ≡ Jalg defines a parametrized moduli

space

(3.18) P(L; kβ,J)
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which is a smooth manifold of the expected dimension with boundary, and which

we denote S(L; kβ, Jalg).

Proof. Thinking of J as a smooth map [0,+∞) → Jε(D2), we see that

P(L; kβ,J) is a fibre product

(3.19) [0,+∞)×Jε(D2)×[0,+∞) P(L; kβ, Jε(D2)).

The regularity assumption on S(L; kβ, Jalg) is equivalent to the fact that Jalg

is a regular point of the projection P(L; kβ, Jε(D2)) → Jε(D2) × [0,+∞), so

the result is a standard application of Sard-Smale. �

In preparation for the proof that “P(L; 0,J) is a smooth manifold with

corners, we must know that the other strata of P(L; 0,J) are also smooth

manifolds for a generic choice of J. Again, the results we need are standard,

and some form thereof already appears in the literature (see, e.g., [10] or [23,

Lemma 2.5]).

Lemma 3.8. For a generic path J starting at the constant almost complex

structure Jalg, the evaluation map

(3.20) P0,1(L;−β,J)→ L

is transverse to S0,1(L;β, Jalg)→ L and the maps

P(L;−β,J)→ [0,+∞),(3.21)

P(L;−β,J)→ F1,p(L;−β)(3.22)

are injective.

Note that this result says that an exceptional solution is uniquely deter-

mined by the underlying map, or by the parameter R at which it occurs.

The last transversality result concerns sphere bubbles for which we will

need more control in later arguments. We begin with the elementary result

Lemma 3.9. The moduli space of Jalg holomorphic spheres in classes kα

is regular if k ≤ 1. Moreover, the evaluation map

(3.23) M1(M ;β, Jalg)→M

is a submersion with fibres diffeomorphic to CPn−2.

By varying the almost complex structure, we obtain a Banach manifold

which we denote M1
(
M ;β,D2 × Jε(D2)

)
, equipped with an evaluation map

(3.24) M1

Ä
M ;β,D2 × Jε(D2)

ä
→ D2 × Jε(D2)×M.

The fibre at a pair (z,JR) is the moduli space of holomorphic spheres with one

marked point for the almost complex structure Jz,R

(3.25) M1(M ;β, Jz,R).
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Lemma 3.10. The evaluation map (3.24) is a proper submersion in a

neighbourhood of D2×{Jalg}×M . In particular, if we choose J to be sufficiently

close to the constant family Jalg, then for any R ∈ [0,+∞) and any map

u : D2 →M , we have a diffeomorphism

(3.26) M1(M ;β, Jalg)×M D2 ∼=
∐
z∈D2

M1(M ;β, Jz,R)×M×D2 D2

which is canonical up to diffeotopy.

Proof. Consider a sequence vi of Ji-holomorphic curves in class β where Ji
converges to Jalg in Jε, hence in the C∞-topology. By the Gromov compactness

theorem, a subsequence must converge to a configuration of Jalg-holomorphic

spheres the sum of whose homology classes is β. Since the moduli spaces of

holomorphic spheres are empty for homology classes kβ with k < 0, the only

possible limit is an honest Jalg-holomorphic sphere in class β, which proves

properness. The fact that the map is a submersion in a neighbourhood of

{Jalg} ×M is now a simple consequence of the implicit function theorem and

Lemma 3.9. �

4. Preliminaries for gluing

In the remainder of this paper, we construct manifolds with corners from

the Gromov-Floer compactifications of various moduli spaces. The analytic

ingredients are gluing theorems, and our approach follows as closely as possible

the one used in Fukaya, Oh, Ohta, and Ono’s book [12]; the only significant

difference is that they use obstruction bundles to reduce their gluing theorem to

one where all marked points are fixed. Having to allow a varying marked point

is the main reason why we have not sought to prove that the Gromov-Floer

compactification itself is a smooth manifold with corners.

In order not to overwhelm the reader with long proofs, we have opted for

one of three different approaches in justifying results. Whenever we believe

that our point of view differs from the one usually taken in the literature, or

that the proof is helpful to understand the overall structure of our argument,

we present a proof in the text proper. If we believe that a “standard technique”

can be adapted to our setting, then the proof is relegated to Section 10.2, and

usually is focused on showing that these techniques are not affected by the

differences between our setup and the one used, for example in [12]. Finally,

when a result follows from previously explained ideas, we leave the proof to

the reader.

4.1. Sobolev spaces with exponential weights. Fix a Riemann surface Σ

with k interior marked point pi and l boundary marked points qj . We choose
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positive strip-like or cylindrical ends at the marked points, i.e., embeddings

ξpi : [0,+∞)× [−1,+1]→ Σ− {pi},(4.1)

ξqj : [0,+∞)× S1 → Σ− {qj},(4.2)

which at infinity converge to the labeling marked points. When discussing

gluing, it is useful to allow negative ends, but since the analytic treatment

is the same, we restrict to positive ends for now. We begin by introducing

Sobolev spaces of functions with exponential decay along these ends.

Definition 4.1 ([12, Def. 7.1.3]). Given a constant δ > 0, let

F1,p,δ
(Σ,{pi},{qj})(L)

denote the space of continuous maps u from Σ to M mapping ∂Σ to L which

are locally in W 1,p and such that the integral

(4.3)

∫
(|d(u ◦ ξr)|p + dist (u(1), u(ξr(s, t)))

p) eδp|s|dsdt

is finite for each end ξr converging to an interior or boundary marked point r.

Remark 4.2. Note that the class of maps satisfying (4.3) is independent

of the chosen metric on the target. This follows from the fact that the image

of any such map lies in a compact subset of M and that the distortion between

two metrics in a compact domain is bounded.

Our first goal is to prove that this is a Banach manifold. If Σ is a strip

or a cylinder (or more generally a half-strip or half-cylinder), then we consider

the norm

(4.4) |X|p1,p,δ =

∫
|X|peδp|s|dsdt+

∫
|∇X|peδp|s|dsdt

on vector fields which vanish sufficiently fast at infinity.

More generally, we pick a metric on the complement of the marked points

(4.5) Σ−
∐
{pi} −

∐
{qi}

which on the image of each end ξ agrees with the push-forward of the standard

metric on the half-strip or the half-cylinder.

Definition 4.3 (see [12, Lemma 7.1.5]). If u ∈ F1,p,δ
(Σ,{pi},{qj})(L), then we

define

(4.6) W 1,p,δ
(Σ,{pi},{qj})(u

∗TM, u∗TL)
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to be the space of locally W 1,p sections of u∗TM whose values on ∂Σ lie in

u∗TL and which are bounded with respect to the norm

(4.7)

|X|p1,p,δ =
∣∣∣X|Σ−∪rIm(ξr)

∣∣∣p
1,p

+
∑

r∈{pi}∪{qj}
|X(r)|p +

∣∣∣X ◦ ξr −Πu◦ξr
u(r)X(r)

∣∣∣p
1,p,δ

,

where Πu◦ξr
u(r) is the parallel transport map with respect to the Levi-Civita con-

nection of the metric on M from the constant map with value u(r) to u(ξr(s, t))

along the image of horizontal lines on the strip or the cylinder.

In upcoming discussions, it will be useful to have a shorthand notation

IS′S for the domains [S, S′)× [−1,+1]. The proof of the next result is given in

Section 10.2.

Lemma 4.4. Vector fields in W 1,p,δ
(Σ,{pi},{qj}) (u∗TM, u∗TL) satisfy a uni-

form decay condition toward their value at the marked points ; e.g., if r is a

boundary marked point with a positive strip-like end, then there exists a con-

stant C independent of X and S such that

(4.8) sup
I+∞S

∣∣∣X ◦ ξr −Πu◦ξr
u(r)X(r)

∣∣∣ ≤ Ce−δS |X|1,p,δ.
The closed finite codimension subspace of W 1,p,δ

(Σ,{pi},{qj})(u
∗TM, u∗TL),

consisting of vector fields which vanish at all marked points, is likely to be

more familiar to the reader, and is what most people would refer to as the

“Sobolev space with exponential weights.” Such spaces are used to model mod-

uli spaces of holomorphic maps which take the marked points {pi} and {qj} to

fixed points in M and L respectively.

It is easy to use the finite codimensionality of this inclusion to study

the vector space W 1,p,δ
(Σ,{pi},{qj})(u

∗TM, u∗TL). In particular, as with the usual

Sobolev spaces with exponential weights, W 1,p,δ
(Σ,{pi},{qj})(u

∗TM, u∗TL), as a

topological vector space, is independent of the choice of metric. More pre-

cisely, the norms coming from two different metrics are equivalent. This is

particularly useful for the next result, in which we assume that we have chosen

a metric for which L is a totally geodesic submanifold. A sketch of the proof

is given in Section 10.2.

Lemma 4.5. F1,p,δ
(Σ,{pi},{qj})(L) is a Banach manifold locally modeled after

the Banach space W 1,p,δ
(Σ,{pi},{qj})(u

∗TM, u∗TL).

Given a family of almost complex structures J = {Jq}q∈Σ on M para-

metrized by point in Σ, together with a map u ∈ F1,p,δ
(Σ,{pi},{qj})(L), we let

(4.9) Lp,δ(Σ,{pi},{qj})(u
∗TM ⊗C Ω0,1D2)
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denote the spaces of section of u∗TM ⊗C Ω0,1D2 which are bounded in an

Lp,δ-norm which we will define presently. It is convenient to first introduce the

function

(4.10) κΣ,δ : Σ−
∐
{pi} −

∐
{qi} → [1,+∞)

which is identically equal to 1 on the complement of the ends and which is

given on each end by

(4.11) κΣ,δ ◦ ξr(s, t) = eδp|s|.

With this bit of notation, we set

(4.12) |Y |pp,δ =

∫
Σ
|Y |pκΣ,δ =

∣∣∣Y |Σ−∪rIm(ξr)

∣∣∣p
p

+
∑
r

|Y ◦ ξr|pp,δ,

where the integral is performed with respect to the previously chosen metric

on Σ that is cylindrical on the ends, and the pointwise norm of Y is induced

from the metric on M and (again) the metric on Σ.

Choose a family of metrics gq on M parametrized by q ∈ Σ which are

almost Hermitian for the almost complex structures Jq and for which L, when-

ever q ∈ ∂Σ, is totally geodesic. Given X ∈ W 1,p,δ
(Σ,{pi},{qj}) (u∗TM, u∗TL), we

obtain an identification

Lp,δ(Σ,{pi},{qj})(u
∗(TM)⊗C Ω0,1D2)→ Lp,δ(u∗X(TM)⊗C Ω0,1D2)(4.13)

Y 7→ ‹ΠuX
u Y,

where ‹ΠuX
u is, at each point q ∈ Σ, given by parallel transport along the image

of the exponential map u(q) to uX(q), with respect to the complex linear

connection

(4.14) ‹∇ = ∇− 1

2
Jq∇Jq,

where ∇ is the Levi-Civita connection associated to gq. We omit the proof that‹ΠuX
u respects the exponential decay condition, as well as that of the following

result.

Lemma 4.6. The isomorphisms (4.13) define a Banach bundle

(4.15) Ep,δ(Σ,{pi},{qj})(M)→ F1,p,δ
(Σ,{pi},{qj})(L)

whose fibre at u is

(4.16) Lp,δ(Σ,{pi},{qj})(u
∗TM ⊗C Ω0,1Σ).

Given any holomorphic map

(4.17) u : (Σ, ∂Σ)→ (M,L),
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there exists some δ such that u ∈ F1,p,δ
(Σ,{pi},{qj})(L). In fact, since u is smooth

on the boundary (see [17, Th. B.1]), any δ smaller than 1 will do. The ∂̄

operator defines a section of (4.15) which is always Fredholm and whose zero

set is the moduli space of parametrized maps. Moreover, if δ < 1, then we

have an identification between the kernels and cokernels of the linearisation of

∂̄ as an operator on the weighted Sobolev spaces (4.15) and on the standard

unweighted Sobolev spaces. For the kernel, this follows from the inclusion

(4.18) W 1,p,δ
(Σ,{pi},{qj})(u

∗TM, u∗TL) ⊂W 1,p
Σ (u∗TM, u∗TL)

and the fact that the kernel of D∂̄ on W 1,p
Σ (u∗TM, u∗TL) consists only of

smooth functions, i.e., functions which decay in any Ck-norm at least as fast

as e−s along the strip-like end. The same argument, applied to the formal

adjoint, proves the result for the cokernel. We conclude

Lemma 4.7. If D∂̄ is surjective on the unweighted Sobolev spaces, then it

is surjective as an operator on (4.15) for every δ < 1. �

From now on, we shall assume that we are working with a fixed δ which

is extremely small, say smaller than 1/4.

4.2. Pre-gluing near the codimension 1 stratum. Recall that the codimen-

sion 1 strata of P(L; 0) are the components of

(4.19) P0,1(L;−β)×L S0,1(L;β).

We will respectively write πP , πS , and πL for the projections to P0,1(L;−β),

S0,1(L;β), and L.

We first show that there are embeddings

S0,1(L;β) ⊂ F1,p,δ
(D2,−1)(L),(4.20)

P0,1(L;−β) ⊂ F1,p,δ
P0,1

(L) ≡ [0,+∞)× S1 ×F1,p,δ
(D2,1)(L).(4.21)

In order to do this, we must pick strip-like ends. For concreteness, we fix

(4.22) ξ−1 : I0−∞ → D2

such that ξ−1(0, 0) = −1/2, which determines the map uniquely if we require

it to extend to an isomorphism

(4.23) I+∞−∞ → D2 − {±1}.

We also fix a positive strip-like end at 1

(4.24) ξ1 : I+∞0 → D2,

which we will require to map the origin to 1/2, and again to extend as in (4.23).
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The first embedding can be constructed as follows: the ∂̄ operator for Jalg

defines a section of

(4.25) Ep,δ(D2,−1)(M)→ F1,p,δ
(D2,−1)(L).

By Lemma 4.7, the zero locus of ∂̄ is the set of (parametrized) holomorphic

maps from the disc; those in homotopy class β form an Aut(D2,−1) bundle

over S0,1(L;β). Since Aut(D2,−1) is contractible, this principal bundle ad-

mits a section. In Section 8.1, we shall specify the behaviour of this section

away from a compact subset of S0,1(L;β). The composition gives the desired

embedding claimed in (4.20).

Concerning (4.21), we have a Banach bundle

(4.26) Ep,δP0,1
(M)→ F1,p,δ

P0,1
(L),

by pullback from F1,p,δ
(D2,1)(L), whose fibre at (R, θ, u) consists of TM -valued

1-forms on D2 which are anti-holomorphic with respect to the family of almost

complex structures

(4.27) Jθ,R ≡ {Jrθz,R}z∈D2 ,

where rθ denotes the map which rotates D2 by angle θ.

We construct a section of (4.26) by composing ∂̄P with rotation by θ:

(4.28) ∂̄P0,1 : (R, θ, u) 7→ (du− γθ,R ⊗XH)0,1,

where the (0, 1) part is taken with respect to Jθ,R and γθ,R is the pullback of

γR by rθ.

We have a bijection

P0,1(L;−β) ∼= P(L;−β)× S1(4.29)

(R, θ, u) 7→ (R, u ◦ r−θ, θ),

where P0,1(L;−β) is the zero set of ∂̄P0,1 . Embedding the source and the target

within the space of all smooth maps by elliptic regularity, we conclude that

this map must be a diffeomorphism whenever both spaces are regular. Since

the bundle (4.26) is defined by pullback from the factor F1,p,δ
(D2,−1)(L), and the

section ∂̄P0,1 differs from the pullback of ∂̄P only by reparametrization, we

conclude

Lemma 4.8. If P(L;−β) is regular, then ∂̄P0,1 is a transverse Fredholm

section of (4.26) and (4.29) is a diffeomorphism.
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Combining the linearisations of the two Cauchy-Riemann operators with

the evaluation map to L, we define a Fredholm map of Banach bundles

(4.30) π∗STF
1,p,δ
(D2,−1)(L)⊕ π∗PTF

1,p,δ
P0,1

(L)Ö
D∂̄ 0

−d ev− d ev+

0 DP0,1

è
��

π∗SE
p
(D2,−1)(M)⊕ π∗LTL⊕ π∗PE

p
P0,1

(M).

Here, D∂̄ and DP0,1 stand respectively for the linearisations of ∂̄ and ∂̄P0,1 , and

the evaluation maps ev± take place at the marked points ±1 ∈ D2.

Lemma 4.9. The requirements imposed in equations (2.18), (2.25), and

(2.27) imply that the map (4.30) is surjective.

Proof. Conditions (2.18) and (2.25) imply that D∂̄ and DP0,1 are surjec-

tive, while condition (2.27) implies that the images of d ev±, restricted to the

kernels of D∂̄ and DP0,1 , span TL. �

Restricting (4.30) to the kernel of the map to TL, i.e., to those pairs of

vector fields whose values agree at the marked points, we have a surjective

Fredholm operator

(4.31) π∗STF
1,p,δ
(D2,−1)(L)⊕TL π∗PTF

1,p,δ
P0,1

(L)

D
∂1P(L;0)

=

Ç
D∂̄ 0

0 DP0,1

å
��

π∗SE
p
(D2,−1)(M)⊕ π∗PE

p
P0,1

(M).

To simplify the notation, we write TF1,p,δ

∂1P(L;0)
(L) for the source of (4.31)

as well as Ep,δ
∂1P(L;0)

(M) for the target.

For the purpose of proving the gluing theorem, we shall consider a bounded

right inverse

(4.32) Q∂1P(L;0) : Ep,δ
∂1P(L;0)

(M)→ TF1,p,δ

∂1P(L;0)
(L)

to (4.31). Such a right inverse exists because (4.31) is a Fredholm map.

Remark 4.10. In equations (8.6) and (8.1) we constrain our choice of right

inverse Q∂1P(L;0) on certain subsets of ∂1P (L; 0), but for now, our choice of a

right inverse is only required to be smooth.
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ξ1

−2S−4S 0

4S0 2S

0 2S−2S

ξS,n

(D2, 1)

(D2,−1)

ΣS

ξ−1

Figure 2.

4.3. Pre-gluing maps. Given S ∈ [0,∞), we consider the surface (see Fig-

ure 2)

(4.33) ΣS = (D2, 1)#S(D2,−1)

obtained by removing ξ1(I+∞4S ) and ξ−1(I−4S
−∞ ) from two different copies of the

disc. We identify the remaining parts of the strip-like ends using the map

(4.34) (s, t) 7→ (s− 4S, t).

For each S0 ≤ 4S, we shall write

(4.35) ιP,SS0
: D2 − ξ1(I+∞S0

)→ ΣS and ιS,SS0
: D2 − ξ−1(IS0

−∞)→ ΣS

for the two inclusions into ΣS . The images of ιP,S4S and ιS,S4S cover ΣS .

Note that ιP,S4S extends to a unique biholomorphism from D2 to ΣS , whose

inverse we denote by

(4.36) φS : ΣS → D2.

Assuming that S0 ≤ 4S, we restrict ξ1 to IS0
0 , and compose with ιP,S4S , to obtain

an inclusion

(4.37) ξS0
1 : IS0

0 → ΣS .

Symmetrically, we shall also consider the composition of ιS,SS0
with the restric-

tion of ξ−1 to I0−S0
which we denote by

(4.38) ξS0
−1 : I0−S0

→ ΣS .
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The most important case occurs when S0 = 4S, and it will be convenient to

shift the domain of ιP,S4S ◦ ξ4S
1 by the translation

(4.39) τ2S(s, t) = (s+ 2S, t)

to obtain a map

(4.40) ξS,n ≡ ξ4S
1 ◦ τ2S : I2S−2S → ΣS

whose image we shall refer to as the neck of ΣS .

Having glued the domains, we now define a “pre-gluing” of maps. First,

we fix a smooth cutoff function

(4.41) χ : R→ [0, 1]

which vanishes for s > 1 and equals 1 for s < −1. Given real numbers S+ and

S− and S0 ∈ [S−, S+], we shall slightly abuse notation and write χS0 for the

function

χS0 : IS+

S−
→ [0, 1](4.42)

χS0(s, t) = χ(s− S0)(4.43)

without keeping track of the domain.

For a compact subset

(4.44) K ⊂ ∂1P (L; 0) ,

there exists a positive real number SK sufficiently large so that for any pair

(u, θ, v) ∈ K, the images of u ◦ ξ1(I+∞SK ) and v ◦ ξ−1(ISK−∞) are both contained

in a geodesically convex neighbourhood of u(1) = v(−1). Moreover, writing

Ru for the image of u under the projection of P0,1(L;−β) to [0,+∞), we may

also assume that SK is so large that the image of ξ1(I+∞SK ) does not intersect

the union of the disc of radius 1/2 about the origin with the support of γθ,Ru
for any θ ∈ S1. In particular, the almost complex structure and the metric on

M are independent of the point on the neck and agree respectively with Jalg

and g.

Lemma 4.11. The ∂̄P0,1 equation on the image of ξ1(I+∞SK ) reduces to the

usual ∂̄ equation with respect to the complex structure Jalg. �

If S > SK , then we define a map

(4.45) u#Sv : ΣS →M

as follows:

• The compositions u#Sv ◦ ιP,S2S−1 and u#Sv ◦ ιS,S2S−1 respectively agree

with the restrictions of u and v.
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• On the image of ξ2S
1 , we define u#Sv by considering its composition

with ξ2S
1 :

(4.46) u#Sv ◦ ξ2S
1 ≡ expu(1)

(
χ2S−1 · exp−1

u(1)(u ◦ ξ1)
)
,

where expu(1) is the exponential map from the tangent space of L at

u(1). Note, in particular, that the image of {2S} × [−1, 1] under this

map is constant and agrees with u(1). In other words, we restrict

u◦ ξ1 to I2S0 , use the exponential map to pull back to the tangent space

of u(1), then rescale the corresponding image by the cutoff function

χ(s− 2S + 1), and finally push back using the exponential map.

• On the image of ξ2S
−1, we analogously define u#Sv as follows:

(4.47) u#Sv ◦ ξS−1 ≡ expv(−1)

(
(1− χ−2S+1) · exp−1

v(−1)(v ◦ ξ−1)
)
,

remembering, of course that v(−1) = u(1).

Defining

(4.48) F1,p
P0,1

(L) ≡ S1 ×F1,p
P (L) ≡ [0,+∞)× S1 ×F1,p(L),

we consider a pre-gluing map which records the angle θ ∈ S1:

preG̊ : K × [SK ,+∞)→ F1,p
P0,1

(L)(4.49)

preG̊S(u, θ, v) =
Ä
Ru, θ, (u#Sv) ◦ φ−1

S

ä
.

By composing this map with rotation by θ and projecting to F1,p(L) in

the product decomposition of equation (4.48), we obtain a map

preG: K × [SK ,+∞)→ F1,p(L)(4.50)

preGS(u, θ, v) =
Ä
Ru, (u#Sv) ◦ φ−1

S ◦ r−θ
ä
.

Lemma 4.12. The pre-gluing map preG is a smooth embedding.

Proof. Our construction using smooth cutoff functions, and the fact that

a holomorphic vector field cannot vanish on any open set, readily imply that

preG is an immersion. Given an element (u, θ, v) ∈ K, the unique continuation

theorem for holomorphic maps implies that, in the complement of the disc of

radius 1
2 , preGS(u, θ, v) has isolated critical points away from a unique semi-

circle with endpoints on the boundary, which is the image of the arc {2S} ×
[−1, 1] under the composition of the strip ξS,n with the bi-holomorphism φS
and rotation by angle r−θ. The position of this semi-circle uniquely determines

S and θ.

Consider another element (u′, θ, v′) ∈ K such that preGS(u′, θ, v′) =

preGS(u, θ, v). In particular, the pairs {u, u′} agree on an open set which

includes the support of the perturbation K of Jalg and of the forms γθ,R and
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γθ,R′ , so by the unique continuation theorem applied to the complement of this

support, u and u′ agree.

Note that the images of the pairs {v, v′} also agree on an open set, so

by the unique continuation theorem, the two holomorphic maps must agree

up to parametrization. Moreover, the previous result implies that v(−1) =

u(1) = v′(−1). Having chosen unique representatives under the equivalence

class induced by the action of Aut(D2,−1), v and v′ must in fact agree on the

nose. �

The fact that u and v are smooth on D2 implies that the distances to

v(−1) = u(1), as well as the norms of du and dv, decay exponentially along

the strip-like ends of u and v. The definition of u#Sv using cutoff functions

therefore implies

Lemma 4.13. The C1-norm of the restriction of u#Sv to the neck decays

exponentially :

(4.51)
∣∣∣u#Sv ◦ ξS,n|IS+1

−S−1

∣∣∣
C1

= O
Ä
e−S
ä
.

5. Construction of an extended gluing map

Let K denote a compact subset of ∂1P (L; 0) as in equation (4.44). In this

section, we prove the existence of a gluing map from K× [S,+∞) to P0,1(L; 0)

for S sufficiently large, which will be shown in later sections to satisfy the

required surjectivity and injectivity properties. More precisely, we shall embed

K × [S,+∞) as the zero section of the pullback of the kernel of DP0,1 under

the pre-gluing map preG̊. After restricting to vectors of norm bounded by a

constant ε, we shall construct a map

(5.1) G̊ε : preG̊
∗

kerεDP0,1 → P0,1(L; 0)

by applying an implicit function theorem to the operator DP0,1 on F1,p
P0,1

(L; 0)

equipped with appropriate norms. The usual procedure of constructing a glu-

ing map is performed chart by chart; this is essentially equivalent to restricting

to one of the fibres of preG̊
∗

kerεDP0,1 . The new problems to consider concern

the study of the behaviour of this map with respect to the base variable. Since

this is usually not addressed in the literature, we shall give an essentially com-

plete proof of the gluing theorem. It turns out that G̊ε is evidently smooth

with respect to directions along the manifold K. However, we have only proved

that the map is continuous in the S direction.

Remark 5.1. It is unlikely that smoothness in the S direction is an essential

problem; we expect that C1-differentiability would follow if one were willing

to bound one more derivative. However, our failure to define a gluing map

by applying an implicit function theorem in a Banach space completion of
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FP(L; 0) rather than a completion of the product of this space with S1 seems to

point to a more fundamental problem in gluing holomorphic curves at varying

marked points. This might be an artifact of a poor choice of metric, but we

suspect that there is a deeper problem caused by the well-known fact that

quotients of Sobolev spaces by diffeomorphisms in the source are not naturally

equipped with the structure of a smooth Banach manifold. We hope that the

polyfold theory of [14], applied to this relatively simple setting, would give a

clean way of circumventing this problem.

Equation (4.28) defines a Fredholm section

(5.2) ∂̄P0,1 : F1,p
P0,1

(L)→ EpP0,1
(M).

For the purposes of the gluing theorem, we need to explicitly write down an

operator

(5.3) DP0,1 : TF1,p
P0,1

(L)→ EpP0,1
(M)

which extends the linearisation of ∂̄P0,1 away from the zero section. Recall

that the fibres of EpP0,1
(M) at (R, θ, u) are Jθ,R-anti-holomorphic TM valued

1-forms, where Jθ,R is the family of almost complex structures Jrθz,R depending

on the point z ∈ D2. We shall write x\ = (R, θ, x) for an element of

(5.4) M \ ≡ [0,+∞)× S1 ×M

to simplify matters. For each pair (z,R) ∈ D2× [0,+∞), choose a metric gz,R
which is (almost) Hermitian for the almost complex structure Jz,R and agrees

with the metric g of Corollary 3.2 whenever z is close to the boundary. We

equip D2×M \ with a metric which is given pointwise by the direct sum of the

flat metric in theD2×S1×[0,+∞) direction and the metric gθ,R ≡ {grθz,R}z∈D2

along M . Note that the tangent space of M is preserved by parallel transport

with respect the Levi-Civita connection of this metric on D2 ×M \. We shall

write ∇ for the restriction of this connection to TM as a bundle over D2×M \,

and ‹∇ for the corresponding complex linear connection given by the formula

that already appeared in equation (4.14). The key property of this connection

is that the family of almost complex structures Jrθz,R is flat with respect to it.

In the product decomposition (4.21) of TF1,p
P0,1

(L) at (R, θ, u), an elemen-

tary computation shows that the linearisation DP0,1 of ∂̄P0,1 with respect to the

connection ‹∇ can be written in terms the Levi-Civita connection ∇ as follows
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(compare with equation (3.14)):

∂R 7→
Å

1

2
JR,θ (∇∂RJR,θ) (du− γθ,R ⊗XH)

ã0,1

(5.5)

+

Å
∇∂Rdu−

dγR,θ
dR

⊗XH − γθ,R ⊗∇∂RXH

ã0,1

,

∂θ 7→
Å

1

2
Jrθz,R (∇∂θJR,θ) (du− γθ,R ⊗XH)

ã0,1

+

Å
∇∂θdu−

dγR,θ
dθ
⊗XH − γθ,R ⊗∇∂θXH

ã0,1

,

X 7→ (∇X − γθ,R ⊗∇XXH)0,1 − 1

2
JR,θ (∇XJR,θ) ∂P0,1(R, θ, u).

In the last equation,

(5.6) ∂P0,1(R, θ, u) = (du− γθ,R ⊗XH)1,0 .

Given an element w\ = (R, θ, w) of F1,p
P0,1

(L) and a tangent vector X\ =

(r, λ,X), we write

(5.7) w\
X\ = (R+ r, θ + λ, expw(X)),

keeping in mind that the exponential map in the third component is performed

with respect to a metric which depends on (R, θ) as well as the point z ∈ D2.

Having introduced this additional notation, we define a nonlinear map F

from TF1,p
P0,1

(L) to EpP0,1
(M):

(5.8) Fw\(X
\) = ‹Πw\

w\
X\

Ä
∂̄P0,1w

\
X\

ä
,

where ‹Πw\

w\
X\

is the parallel transport map with respect to the connection ‹∇
along the image of the exponential map.

Lemma 5.2. The right inverse Q∂1P(L;0) to the operator (4.32) determines

a right inverse

(5.9) QpreG̊ : preG̊
∗EpP0,1

(M)→ preG̊
∗
TF1,p
P0,1

(L)

to the restriction of DP0,1 to the image of preG̊. Moreover, there are Sobolev

norms | |1,p,S and | |p,S on the Banach bundles preG̊
∗
(TF1,p) and preG̊

∗
(Ep),

as well a positive real number C which is independent of S such that the fol-

lowing properties hold.

(5.10)

The norm of ∂̄P0,1preG̊S(u, θ, v) decays exponentially with S∣∣∣∂̄P0,1preG̊S(u, θ, v)
∣∣∣
p,S

= O
Ä
e−2(1−δ)S

ä
.

(5.11) If
∣∣∣X\

i

∣∣∣ < 1/C for i = 1, 2, then we have a uniform bound



EXOTIC SPHERES 115∣∣∣FpreG̊S(u,θ,v)(X
\
1)− FpreG̊S(u,θ,v)(X

\
2)−DP0,1(X\

1 −X
\
2)
∣∣∣

≤ C
∣∣∣X\

1 +X\
2

∣∣∣ ∣∣∣X\
1 −X

\
2

∣∣∣ .
(5.12) The norm of QpreG̊ is uniformly bounded :

∥∥∥QpreG̊

∥∥∥ ≤ C.
(5.13)

QpreG̊ is a strongly continuous map of Banach bundles.

Moreover, the restriction of QpreG̊ to a slice K × {S} is

a smooth uniformly continuous map of Banach bundles.

Remark 5.3. Recall that the topology of pointwise convergences on the

space of bounded linear operators is called the strong topology. In particular,

a map between trivial Banach bundles over a parameter space X

(5.14) F : X ×B1 → X ×B2

is called strongly continuous if the family of operators Fx : B1 → B2 satisfy

the property that Fxi(b) converges to Fx(b) whenever xi converges to x and

b ∈ B1. Such a map is uniformly continuous if the rate of convergence depends

linearly in the norm of b.

Proof of Lemma 5.2. The existence of QpreG̊, the bound (5.12), and the

continuity properties (5.13) are stated in Corollary 5.14, and the quadratic in-

equality (5.11) is proved in Section 10.6. To prove the bound (5.10), we observe

that the support of ∂̄P0,1preG̊S(u, θ, v) is contained in the image of ξS,n(I2−2),

where Lemma 4.13 implies that the C1-norm of ∂̄P0,1preG̊S(u, θ, v) is bounded

by a constant multiple of e−2S . Since the weight for the | |p,S-norm (which we

will define in equation (5.36)) is bounded by e2Spδ, the result follows. �

Estimate (5.11) is a version of the quadratic inequality. It is sufficient

for the proof of the implicit function theorem, but we shall need the following

stronger version in later arguments.

Proposition 5.4 (cf. [18, Prop. 3.5.3]). There exists a constant c > 0 in-

dependent of S the following property : The difference between the linearisation

of ∂̄P0,1 at the origin and at a tangent vector

(5.15) Z\ = (r, λ, Z) ∈ TFP0,1(L)

is bounded by a constant multiple of |Z\|1,p,S

(5.16)
∥∥∥dFpreG̊S(u,θ,v)(Z

\)−DP0,1

∥∥∥ ≤ c|Z\|1,p,S = c (|λ|+ |r|+ |Z|1,p,S)

whenever |Z\|1,p,S is bounded by c in the C0-norm,

(5.17) |Z\|∞ = |Z|∞ + |λ|+ |r| < c.

The proof of this result is postponed until Section 10.6.
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As a consequence of these estimates, we can apply a quantitative version

of the implicit function theorem. In the statement of the next corollary,

(5.18) preG̊
∗

kerεDP0,1

refers to the open subset of preG̊
∗

kerDP0,1 ⊂ preG̊
∗
TF1,p
P0,1

(L) consisting of

vectors whose norm is smaller than a constant ε, which is assumed to be

smaller than 1
4C2 . We continue writing X\ for such a tangent vector.

Proposition 5.5. If SK is sufficiently large, then there exists a map

(5.19) sol : preG̊
∗

kerεDP0,1 → preG̊
∗
TF1,p
P0,1

(L)

which is uniquely determined by the following two conditions :

(5.20) sol factors through the right inverse QpreG̊.

(5.21)
If X\ is an element of kerεDP0,1 , then

∂̄P0,1

(
exppreG̊S(u,θ,v)

Ä
X\ + sol(u,θ,v,S)X

\
ä)

= 0.

Moreover, the following properties are satisfied :

(5.22)
The map id + sol : preG̊

∗
kerεDP0,1 → TF1,p

P0,1
(L) is a sur-

jection onto the set of tangent vectors of norm bounded by

ε whose image under the exponential map is a zero of ∂̄P0,1 .

(5.23)

The C1-norm of the restriction of sol to the fibres over

a point (u, θ, v, S) decays exponentially :
∣∣∣sol |(u,θ,v,S)

∣∣∣
C1

=

O
Ä
e−2(1−δ)S

ä
.

(5.24)
The map sol is continuous, and its restriction solS to

preG̊∗ kerεDP0,1 |K × {S} is smooth for any S.

Proof. The existence and uniqueness of sol, the bound (5.23), as well as

the surjectivity of (5.22) follow from a quantitative version of the implicit

function theorem. The standard reference in symplectic geometry is Floer’s

version of the Picard lemma which is proved in Proposition 24 in [9]. The

reader is invited to check that the boundedness of Q stated in (5.12) and the

quadratic inequality (5.11) together imply estimate (156) of Floer’s paper.

Smoothness in the K × {S} direction follows from the fact that QpreG̊ is

smooth in that direction. To prove continuity in the gluing parameter direction,

we fix maps u and v. Given a gluing parameter S and a tangent vector X\ to

preG̊S(u, θ, v), we consider sequences converging to these data:

(5.25) lim
i→+∞

Si = S and lim
i→+∞

ΠiX
\
i = X\,



EXOTIC SPHERES 117

where we are writing Πi for the parallel transport map from preG̊Si(u, θ, v) to

preG̊S(u, θ, v). Our goal is to prove that

(5.26) lim
i→+∞

Πi solSi X
\
i = solS X

\,

where we have dropped most of the subscripts from sol since the meaning

should be clear. From property (5.21), we know that

(5.27) lim
i→+∞

F
Ä
Πi

Ä
X\
i + solSi X

\
i

ää
= 0.

Let us assume by contradiction that (5.26) does not converge. Since X\
i +

solSi X
\
i is bounded and DP0,1 is Fredholm, the projection of this sequence to

the kernel DP0,1 along the right inverse QpreG̊

(5.28)
Ä
id−QpreG̊ ◦DP0,1

ä Ä
X\
i + solSi X

\
i

ä
admits a convergent subsequence. Upon passing to this convergent subse-

quence, the fact that F is C1-close to DP0,1 implies that its tangent space is

transverse at every point to the kernel of DP0,1 , so that

(5.29) lim
i→+∞

Πi

Ä
X\
i + solSi X

\
i

ä
= X\ +X ′ for some X ′.

We shall show that X ′ = solS X
\. Since F(X\ + X ′) vanishes, this follows

immediately from the uniqueness statement of the first part of the lemma once

we know that X ′ is in the image of QpreG̊.

By property (5.20), we may write solSi X
\
i = QpreG̊Yi for a unique sequence

Yi. Let ‹Πi denote the map

(5.30) Lp
Ä
u#Siv

∗(TM)⊗ Ω0,1D2
ä
→ Lp

Ä
u#Sv

∗(TM)⊗ Ω0,1D2
ä

coming from a trivialization of the bundle Ep,δP0,1
(M) using parallel transport

with respect to the connection ‹∇, and observe that the uniform continuity of

DP0,1 implies that

lim
i→+∞

‹ΠiYi = lim
i→+∞

‹ΠiDP0,1 solSi X
\
i

= lim
i→+∞

DP0,1Πi solSi X
\
i

= DP0,1X
′ ≡ Y.

Using the fact that the operators ΠiQpreG̊Π−1
i are uniformly bounded to see

that

(5.31)
∣∣∣ΠiQpreG̊Π−1

i Yi −ΠiQpreG̊Π−1
i Y

∣∣∣ = O(|Yi − Y |)
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and applying the pointwise convergence at Y of ΠiQpreG̊Π−1
i to Q, we conclude

that

(5.32) lim
i→+∞

ΠiQpreG̊Yi = QpreG̊Y,

which implies that the limit of Πi solSi X
\
i lies in the image of QpreG̊. �

In particular, we obtain the gluing map

(5.33) G̊ε : preG̊
∗

kerεDP0,1 → P0,1(L; 0)

promised at the beginning of this section by exponentiating id + sol. The proof

of the following corollary is given in Section 10.5.

Corollary 5.6. For any ε ≥ 0, the composition of G̊ε with the projection

to P(L; 0) is a surjection onto a neighbourhood of K .

5.1. A family of Sobolev norms. We begin by fixing metrics on D2 − {1}
and D2 − {−1} which agree with the pullback of the standard metrics on the

strip-like ends. Since the identification of equation (4.34) used to define ΣS

is an isometry of the metric on the strip-like ends, ΣS carries a metric with

respect to whose volume form the integrals below will be taken.

Next, we consider the function

(5.34) κδ,S : ΣS → [1,+∞)

defined piecewise as follows:

(1) κ ≡ 1 on the complement of the neck of ΣS .

(2) On Im(ξS,n), we have

(5.35) κδ,S ◦ ξS,n = e(2S−|s|)pδ.

We define a norm | |p,S on Lp
(
(u#Sv)∗TM ⊗ Ω∗D2

)
by weighting the

usual Lp-norm using κδ,S :

(5.36) |Y |pp,S =

∫
ΣS

|Y |pκδ,S .

The same formula defines norms on Lp
(
(u#Sv)∗TM ⊗C Ω0,1D2

)
as well as on

Lp
(
(u#Sv)∗TM ⊗C Ω1,0D2

)
.

Following Definition 4.3, we next define a norm | |1,p,S,δ on vector fields

along on the strip I2S−2S :

(5.37) |XI|p1,p,S,δ =

∫
I2S−2S

(|XI|p + |∇XI|p) e(2S−|s|)pδdsdt.
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With this notation, we define a norm on W 1,p ((u#Sv)∗(TM), (u#Sv)∗(TL)):

|X|p1,p,S =
∣∣∣X|ΣS−Im(ξS,n)

∣∣∣p
1,p

+ |X(ξS,n(0, 0))|p(5.38)

+ |X ◦ ξS,n −Πu#Sv
u(1) (X(ξS,n(0, 0))|p1,p,S,δ,

where Πu#Sv
u(1) is the parallel transport with respect to the Levi-Civita connec-

tion ∇ from u#Sv ◦ ξS,n(s, t) to u(1) = u#Sv ◦ ξS,n(0, t) along the image of

the horizontal segment on the strip (we shall later prune the subcript and

superscript from Π to simplify the notation).

Remark 5.7. We write | |1,p,θ,S for the norm obtained on D2 by identifying

it with ΣS using the bi-holomorphism rθ ◦ φS . This is the metric one would

use were one to study a gluing problem occurring at the boundary point eiθ.

We shall abuse notation and write | |1,p,S for | |1,p,0,S .

The proof of the next result is discussed in Section 10.3.

Lemma 5.8. The norm | |1,p,S defines a complete norm on the Sobolev

space of vector fields W 1,p ((u#Sv)∗TM, (u#Sv)∗TL).

Remark 5.9. In Section 6.3 we shall have occasion to use an Lp-norm on

tangent vector fields. For a vector field on a finite strip, it is defined by

(5.39) |XI|pp,S,δ =

∫
I2S−2S

|XI|p e(2S−|s|)pδdsdt

which we extend to a norm | |p,S on vector fields on ΣS valued in TM in

exactly the same way as in equation (5.38). In particular, the appearance of

the parallel transport of the value at the origin distinguishes this norm from the

weighted Lp-norm of equation (5.36) (of course, the two norms are on different

Sobolev spaces, but it is easy to forget this since the tangent bundle of D2 is

trivial).

5.2. Construction of the right inverse. Recall that the Banach bundle

TF1,p,δ

∂1P(L;0)
(L), which controls the tangent space of the codimension 1 boundary

strata of P(L, 0), was defined following equation (4.31). We begin by defining

maps

(5.40) predG̊S : TF1,p,δ

∂1P(L;0)
(L)|K → preG̊

∗
STF

1,p
P0,1

(L),

which we think of as pre-gluings of tangent vector fields. We write predG̊ for

the union of these maps over all S, formally yielding a map of Banach bundles

over K × [0,+∞).

Explicitly, the fibre of TF1,p,δ

∂1P(L;0)
(L) at (u, θ, v) consists of deformation of

R and θ, as well as vector fields Xu and Xv along u and v which agree at the
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evaluation point

(5.41) Xu(1)−Xv(−1) = 0.

The first step is to define a vector field Xu#SXv along u#Sv. As usual,

this will be defined using the decomposition

(5.42) ΣS = Im(ιP,S0 ) ∪ Im(ξS,n) ∪ Im(ιS,S0 ).

On the two components of the complement of the neck, Xu#SXv agrees re-

spectively with Xv and Xu:

Xu#SXv ◦ ιP,S0 = Xu on Im(ιP,S0 ),(5.43)

Xu#SXv ◦ ιS,S0 = Xv on Im(ιS,S0 ).(5.44)

Along the neck, Xu#SXv interpolates between these two vector fields:

Xu#SXv ◦ ξS,n = Π
u#Sv◦ξS,n
u(1) Xu(1)(5.45)

+ χS
(
Π
u#Sv◦ξS,n
u◦ξ1◦τ2S Xu ◦ ξ1 ◦ τ2S −Π

u#Sv◦ξS,n
u(1) Xu(1)

)
+ (1−χ−S)

(
Π
u#Sv◦ξS,n
v◦ξ−1◦τ−2S

Xv ◦ ξ−1 ◦ τ−2S−Π
u#Sv◦ξS,n
u(1) Xu(1)

)
.

Here, Π stands either for parallel transport from u(1) = v(−1) along the

images of horizontal lines under u#Sv, or for parallel transport along minimal

geodesics from the image of u (or v) to the image of u#Sv. We are following

the conventions of [12] (see in particular equation (7.1.23)), so that the cutoff

for the vector fields Xu and Xv takes place in a region where u#Sv agrees with

one of the maps u and v. In particular, if s < −S−1, then χS(s, t) = χ(s−S)

is equal to 1, whereas 1−χ−S vanishes; in this region, we recover Xu. Similarly,

the vector field we constructed agrees with Xv when s > S + 1.

We now state our first estimate concerning the behaviour of predG̊S as S

grows. The proof is given in Section 10.3.

Lemma 5.10. The pre-gluing map (5.40), given for fixed S by

(5.46) predG̊S(Xv, r∂R, λ∂θ, Xu) =
Ä
r∂R, λ∂θ, Xu#SXv ◦ φ−1

S

ä
,

is a strongly continuous map of Banach bundles over K × [SK ,+∞), whose

restriction to any fibre is uniformly bounded and whose restriction to a slice

K × {S} is uniformly continuous and smooth. Moreover if Xu and Xv extend

to smooth vector fields on D2, then

(5.47) lim
S→+∞

∣∣∣predG̊S(Xv, r∂R, λ∂θ, Xu)
∣∣∣
1,p,S

= |(Xv, r∂R, λ∂θ, Xu)|1,p,δ .

We now define an approximate inverse

(5.48) ‹Q : preG̊
∗EpP0,1

(M)→ preG̊
∗
TF1,p
P0,1

(L).
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Given a TM -valued anti-holomorphic 1-form along the image of u#Sv,

Y ∈ Lp
Ä
(u#Sv)∗TM ⊗ Ω0,1D2

ä
,

we use parallel transport to construct such a 1-form along the image of v:

Yv ∈ Lp
Ä
v∗(TM)⊗ Ω0,1D2

ä
,(5.49)

Yv(p) =


‹Πv
u#Sv◦ιS,S2S

(Y (p)) on D2 − ξ−1(I−2S
−∞ )

0 otherwise.
(5.50)

Here, the parallel transport goes from u#Sv◦ιS,S2S (p) to v(p) along the minimal

geodesic between them (recall that S has been chosen large enough for this to

make sense). Similarly, we define

Yu ∈ Lp(v∗(TM)⊗ Ω0,1),(5.51)

Yu(p) =


‹Πv
u#Sv◦ιP,S2S

(Y (p)) on D2 − ξ−1(I+∞2S )

0 otherwise.
(5.52)

Composing with φS , these two maps define a map of bundles over K×[S,+∞):

(5.53) B: preG̊
∗EpP0,1

(M)→ Ep,δ
∂1P(L;0)

(M),

which we call the breaking map. Recall that outside of ξS,n(I1−1), the map u#Sv

agrees with u or v, so the parallel transport maps appearing in the definition

of B are the identity away from this region. Since we have assumed S to be

sufficiently large and the metric g to be Hermitian, ‹Π preserves the norm of

vector fields whenever z lies in the image of ξS,n|I1−1.

Lemma 5.11. The breaking map is a strongly continuous map of Banach

bundles over K×[SK ,+∞) whose restriction to a slice is uniformly continuous

and smooth. Moreover, the restriction of the breaking map B to any fibre is

an isometric embedding, i.e.,

(5.54) |Yu|p,δ + |Yv|p,δ = |Y |p,S . �

Together with Lemma 5.10, this immediately implies

Lemma 5.12. The map ‹Q of (5.48) which is defined by

(5.55) ‹Q = predG̊ ◦Q∂1P(L;0) ◦B

is a strongly continuous map of Banach bundles over K × [SK ,+∞), whose

restriction to any fibre is uniformly bounded and whose restriction to a slice

K × {S} is uniformly continuous and smooth.

To justify our designation of ‹Q as an approximate inverse, we shall prove

the next result in Section 10.3.
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Lemma 5.13 (Compare [12, Lemma 7.1.32]). The norm of the operator

(5.56) DP0,1 ◦ ‹Q− id : preG̊
∗EpP0,1

(M)→ preG̊
∗EpP0,1

is bounded by a constant multiple of e−2δS .

Corollary 5.14. The composition DP0,1 ◦ ‹Q defines an isomorphism of

Banach bundles

(5.57) preG̊
∗EpP0,1

(M)→ preG̊
∗EpP0,1

(M)

with respect to the strong topology. Its restriction to a slice K × {S} is a

diffeomorphism of Banach bundles such that the composite

(5.58) QpreG̊ = ‹Q ◦ (DP0,1 ◦ ‹Q)−1

is a uniformly bounded right inverse to DP0,1 .

6. Local injectivity of the gluing map

In equation (5.33), we defined G̊ε to be the gluing map resulting from

applying the version of the implicit function theorem stated in Proposition 5.5.

Let G̊ denote the restriction of G̊ε to the zero-section, and define the gluing

map

(6.1) G: K × [S,+∞)→ P(L; 0)

to be the composition of G̊ with the fibre bundle

P0,1(L; 0)→ P(L; 0),(6.2)

(R, θ, w) 7→ (R,w ◦ r−θ)

with fibres S1.

The main result of this section is

Proposition 6.1. For S sufficiently large, the restriction GS of (6.1) to

a slice K×{S} is a smooth immersion. Moreover, each point of ∂1P (L; 0) has

a neighbourhood independent of S on which the restriction of GS is injective.

We shall find a vector in kerD∂1P(L;0), but not in the tangent space to K

whose image under predG̊S becomes arbitrarily close to the tangent space of

the fibres of (6.2). Moreover, we shall prove that the difference between the

restriction of predG̊S to TK and the differential of G̊S decays with S. Using

equation (5.47), we conclude that the differential of G̊S is injective for large S.

This will imply that the image of a tangent vector to K under the differential

of G̊S cannot lie in the tangent space to the fibres of (6.2) and hence that dGS

is also injective.
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In order to be more precise, let us introduce the notation u] = (u, θ, v) for

an element of ∂1P (L; 0) and write

w\S ≡ preG̊S(u]),(6.3)

w[S ≡ G̊S(u]).(6.4)

At w[S , the tangent space to the fibres of (6.1) is spanned by the vector

(6.5) dw[S (∂θ) = (0, ∂θ, dwS (∂θ)) ,

where we use ∂θ to denote the infinitesimal generator of rotation on both S1

and D2. Recall that ∂p stands for the unique holomorphic vector field on D2

which vanishes at −1 and agrees with ∂θ at 1, and that the kernel of D∂1P(L;0)

at any point (R, u, θ, v) as a direct sum decomposition as in equation (2.74)

(6.6) aut(D2,−1)⊕ T∂1P (L; 0) →̃ kerD∂1P(L;0),

where aut(D2,−1) is spanned by the vector fields ∂p and ∂s, whose image in

the right-hand side is obtained by applying the differential of v. The next

result, proved in Section 6.3, identifies the vector field in the image of predG̊S

which is close to the kernel of the projection map to P(L; 0).

Lemma 6.2. There is an exponential decay bound

(6.7)

∣∣∣∣e−4Sdw[S (∂θ)−Π
w[S
w\S

predG̊S (dv (∂p))

∣∣∣∣
p,S

= O(e−S).

In order to prove the injectivity of the derivative of the gluing map, we

shall also have to control its behaviour in the other directions of the tangent

space of the source. This can be done by comparing it with the map predG̊S ,

although we have to apply the appropriate parallel transport maps (and pro-

jections) in order to do this. Note that the quadratic inequality implies that

the composition

(6.8) Π
w[S
w\S
◦QpreG̊S

◦Π
w\S
w[S

is arbitrarily close to a right inverse to DP0,1 along the image of G̊S . In

particular, there is a unique right inverse QG̊S
whose image agrees with the

image of this map and which is moreover uniformly bounded. We write

(6.9) κG̊S
≡ id−QG̊S

◦DP0,1

for the projection to kerDP0,1 along QG̊S
. By composing with Π

w[S
w\S
◦ predG̊S ,

we obtain a map

(6.10) κG̊S
◦Π

w[S
w\S
◦ predG̊S : kerD∂1P(L;0)|K → G̊

∗
STP0,1(L; 0).
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Our main bound on the derivative of G̊S follows from this result whose proof

also appears in Section 6.3.

Lemma 6.3. The restriction of (6.10) to TK ⊕ 〈dv (∂s)〉 is transverse

to the subspace spanned by dw[S (∂θ). Moreover, its restriction to the tangent

space of K satisfies

(6.11)

∥∥∥∥dG̊S − κG̊S
◦Π

w[S
w\S
◦ predG̊S

∥∥∥∥ = O
Ä
e−2δS

ä
.

None of the proofs in this section require the use of an implicit func-

tion theorem except in quoting results from the previous section. Moreover,

all the important operators we need to bound have sources which are finite-

dimensional vector spaces of smooth vector fields. As we shall see, this implies

that we can often work with the Lp-norm in the target, and a stronger norm

on the source, which simplifies computations.

6.1. The derivative pre-gluing of tangent vectors. Our first observation

concerns the restriction of pre-gluing to the kernel of the operator (4.31).

Lemma 6.4. The restriction of predG̊S to

(6.12) kerD∂1P(L;0) ⊂ TF
1,p,δ

∂1P(L;0)
(L)

is bi-lipschitz (uniformly in S) with respect to both (i) the W 1,p-norms | |1,p,δ
on the source and | |1,p,S on the target and (ii) the Lp-norms | |p,δ and | |p,S .

Moreover, the bi-lipschitz constant converges to 1.

Proof. This follows immediately from elliptic regularity, equation (5.47),

and the fact that kerD∂1P(L;0) is finite-dimensional. �

Given such a vector field X] ∈ kerD∂1P(L;0), we see that DP0,1predG̊S(X])

is supported on the image of ξS,n
Ä
IS+1
−S−1

ä
. Expressing predG̊S(X]) as the sum

of the two vector fields coming from the two sides of the gluing, it is easy to

check that whenever one of the vector fields is not holomorphic, its C1-norm

is bounded by O
Ä
e−2S

ä
. Since the weight is bounded by e−2δS , we conclude

an analogue of equation (5.10) for the pre-gluing of tangent vectors.

Lemma 6.5. The composition of DP0,1 with predG̊S is an operator

(6.13) kerD∂1P(L;0) → preG̊
∗
SE

p
P0,1

(M)

whose operator norm with respect to | |1,p,S is bounded by a constant multiple

of e−2(1−δ)S .

Note that we have an inclusion

(6.14) TK ⊂ kerD∂1P(L;0)|K
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which we extend to

(6.15) TK × [S,+∞) ↪→ kerD∂1P(L;0)|K

by identifying the tangent space to the gluing parameter S with the vector

field in the kernel of D∂1P(L;0) spanned by translation along the strip. The

next lemma compares the derivative of pre-gluing curves with the result of

pre-gluing vector fields.

Lemma 6.6. The difference

(6.16) dpreG̊S − predG̊S : TK ⊕ 〈∂s〉 → preG̊
∗
STF

1,p
P0,1

(L)

is bounded by a constant multiple of e−2(1−δ)S in the | |1,p,S-norm.

Proof. In view of such a tangent vector field X, the difference between

dpreG̊S(X) and predG̊S(X) is supported in ξS,n(IS+1
−S−1). However, since X

is smooth, the pointwise C1-norm of this difference is bounded above by a

constant multiple of e−2S . Since the integral of the weight is bounded by e2δS ,

the result follows. �

This lemma, together with Lemma 6.5, immediately implies

Corollary 6.7. The restriction of DP0,1 to Im(dpreG̊S) is uniformly

bounded in | |1,p,S by a constant multiple of e−2(1−δ)S .

6.2. The derivative of the gluing map. Consider the composition of predG̊

with Π
w[S
w\S

, the parallel transport map from the image of preG̊ to the image of

the gluing map. The goal of this section is to prove

Lemma 6.8. The operator

(6.17) dG̊S −Π
w[S
w\S
◦ predG̊S |TK

is bounded in the | |p,S-norm by a constant multiple of e−2(1−δ)S .

Since G̊ is defined as the composition of preG̊ with sol, using Lemma 6.6,

we shall see that it suffices to prove that the derivative of sol is bounded. A

straightforward application of Floer’s version of the Picard lemma as stated in

Proposition 5.5 yields C0-bounds on sol and on its derivatives in the direction

of vectors in the kernel of DP0,1 , but we are missing a bound on derivatives in

directions tangent to K.

In particular, let u] = (u, θ, v) and u]X denote of elements of K, and

assume that

(6.18) u]X = expu] X
]
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for an element of X] ∈ TF1,p,δ

∂1P(L;0)
(L). We write w\S and w\S,X for the images

of u] and u]X under preG̊ for some gluing parameter S, while w[S and w[S,X
stand for the images under G̊S . If S is sufficiently large, then we have a vector

field X\ along w\S such that w\S,X = exp
w\S
X\.

Combining Lemmas 6.4 and equation (6.6) we find that we may choose

|X]|1,p,δ small enough so that |X\|1,p,S is uniformly bounded by a constant

multiple of |X]|1,p,δ. In particular, we may assume that it is smaller than the

constant ε of Proposition 5.5, so that we can work in a chart about w\S where

the quadratic inequality holds. In such a chart, Lemma 6.8 is equivalent to the

bound

(6.19)

∣∣∣∣Πw\S
w[S

exp−1
w[S

Ä
w[S,X

ä
− predG̊SX

]
∣∣∣∣
p,S

= O(e−2(1−δ)S)|X]|+ O(1)|X]|2.

By applying Lemma 10.7 twice, we find that the first term can be approx-

imated by a sum of vector fields

(6.20)

∣∣∣∣Πw\S
w[S

exp−1
w[S

Ä
w[S,X

ä
− exp−1

w\S

Ä
w[S,X

ä
− sol

w\S
(0)

∣∣∣∣
p,S

= O(1)|X]|2.

According to Lemma 6.6, we have

(6.21)
∣∣∣predG̊SX

] −X\
∣∣∣
p,S

= O
Ä
e−2(1−δ)S

ä
|X]|+ O(1)|X]|2.

These two bounds imply that we have to prove

(6.22)∣∣∣∣exp−1

w\S

Ä
w[S,X

ä
−
(
X\ + sol

w\S
(0)
)∣∣∣∣
p,S

= O
Ä
e−2(1−δ)S

ä
|X]|+ O(1)|X]|2.

Because the vector field sol is constructed implicitly, we shall obtain (6.22)

in a round about way. Recall that we have a direct sum decomposition

(6.23) w\S
∗
TF1,p
P0,1

(L) ∼= ImQpreG̊ ⊕ kerDP0,1 ,

which induces a uniformly bounded projection map

(6.24) κ
w\S

: preG̊
∗
STF

1,p
P0,1

(L)→ preG̊
∗
S kerDP0,1 .

By the defining properties of sol, equations (5.20) and (6.28), the restriction of

κ
w\S

to the inverse image of P0,1(L; 0) under the exponential map is the inverse

diffeomorphism to sol + id. This will allow us to prove

Lemma 6.9. The restriction of sol
w\S
◦κ

w\S
to exp−1

w\S
(Im(preG̊S)) satisfies

a uniform bound

(6.25)∣∣∣∣X\+sol
w\S

(0)−
(
κ
w\S
X\ + sol

w\S
(κ
w\S
X\)

)∣∣∣∣
p,S

= O(e−2(1−δ)S)|X\|+O(1)|X\|2.
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In particular, the restriction of (id + sol
w\S

) ◦ κ
w\S

to exp−1

w\S
(Im(preG̊S)) is a

diffeomorphism near the origin, and the derivative has uniformly bounded in-

verse.

Proof. Note that the distance between Im(dpreG̊
w\S

) and exp−1

w\S
(Im(preG̊S))

is bounded by a constant multiple of |X\|2. The proof that this constant can

be chosen independently of S follows from the exponential decay estimates of

Lemma 4.13 and the fact that the tangent space of K consists of smooth vector

fields whose pointwise norm decays exponentially along the neck.

It suffices therefore to prove that

(6.26)

∣∣∣∣X\ −
(
κ
w\S
X\ + sol

w\S
(κ
w\S
X\)− sol

w\S
(0)
)∣∣∣∣ = O(e−2(1−δ)S)|X\|

whenever X\ ∈ Im(dpreG̊
w\S

). To prove this, we observe that Corollary 6.7

implies that

(6.27) |X\ − κ
w\S
X\| =

∣∣∣QpreG̊ ◦DP0,1X
\
∣∣∣ = O

Ä
e−2(1−δ)S

ä
|X\|.

Also, by equation (5.23), the C1-norm of sol is bounded by O(e−2(1−δ)S).

Composing this inequality with id + sol, we obtain the desired result. �

Returning to equation (6.22), we find that the missing estimate is∣∣∣∣κw\SX\ + sol
w\S

(κ
w\S
X\)−Π

w\S
w[S

exp−1
w[S

Ä
w[S,X

ä∣∣∣∣
p,S

(6.28)

= O
Ä
e−2(1−δ)S

ä
|X]|+ O(1)|X]|2.

We shall obtain such a bound by bounding the derivatives of the right

inverse QpreG̊. First, since K is compact, all reasonable norms on TK are

comparable. In particular, we have a universal bound

(6.29) |X]|C1 ≤ c|X]|1,p,δ,

where we shall use the C1-norm coming from the standard metric on D2.

Moreover, since ∂̄∂1P(L;0)u
]
X] = 0, there is a constant c0 independent of X]

such that

(6.30) |D∂1P(L;0)X
]|p,δ ≤ c0|X]|21,p,δ.

Also, since Q∂1P(L;0) is a smooth family of right inverses on a compact region,

we have a uniform bound

(6.31)

∥∥∥∥Q∂1P(L;0) −Πu]

u]X
◦Q∂1P(L;0) ◦ ‹Πu]X

u]

∥∥∥∥ ≤ c1|X]|,

where ‹Π is parallel transport with respect to the connection preserving the

complex structure. This operator is acting on the fibre of Ep,δ
∂1P(L;0)

(M) at u]

with target TF1,p,δ

∂1P(L;0)
(L).
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Our goal is to obtain a bound similar to (6.31) for the right inverse QpreG̊

evaluated at w\S and w\S,X .

Lemma 6.10. If both the source and the target are equipped with the Lp-

norms | |p,S , then there is a uniform constant C such that

(6.32)

∥∥∥∥∥QpreG̊,w\S
−Π

w\S
w\S,X

Q
preG̊,w\X

‹Πw\S,X

w\S

∥∥∥∥∥ ≤ C|X]|.

Proof. Lemma 5.13 implies that the difference between QpreG̊ and the

approximate inverse ‹Q is uniformly bounded by a constant multiple of e−2δS .

In particular, it shall suffice to prove analogue of (6.31) for the approximate

inverses.

Now ‹Q is defined as the composition predG̊ ◦Q∂1P(L;0) ◦B, so the desired

result follows from estimates∥∥∥∥∥‹Πu]X
u]
◦B −B ◦ ‹Πw\S,X

w\S

∥∥∥∥∥ = O
Ä
e−2(1−δ)S

ä
|X]|,(6.33) ∥∥∥∥predG̊ ◦Πu]

u]X
−Π

w\S
w\S,X

◦ predG̊

∥∥∥∥ = O
Ä
e−2(1−δ)S

ä
|X]|.(6.34)

To prove the first estimate, consider Y ∈ Lp(w∗TM ⊗ Ω0,1D2) and write

(Yu, Yv) for B(Y ). The main point is that

Ç‹Πw\S,X

w\S
Y

å
u

differs from ‹ΠuX
u Yu

only in ξ1(I2S2S−2). In this region, the parallel transport between u and w takes

place along paths of length bounded by e−2S . The first estimate therefore

follows by applying equation (10.10) and using the fact that the weight, is

bounded by e−2δpS .

The second estimate is of a similar nature. The terms whose difference we

are bounding differ only on ξS,n
Ä
IS+1
−S−1

ä
, where the distance between w and

u or v, as well as the norm of the differential of these functions is bounded

by O
Ä
e−S
ä
. Moreover, the C0-norm of ∇X] and ∇X\ are also bounded by

O
Ä
e−S
ä
|X]|. Applying equation (10.10) yields the desired inequality. �

In particular, there is a unique right inverse QX
w\S

whose image agrees with

the image of Π
w\S
w\S,X

Q
preG̊,w\S,X

‹Πw\S,X

w\S
. Moreover, we have a uniform bound

(6.35)

∥∥∥∥QpreG̊,w\S
−QX

w\S

∥∥∥∥ ≤ c3|X]|.

To deduce the desired C1 bound on sol, let κX
w\S

denote the projection to

kerDP0,1 along the image of QX
preG̊,w\S

and let

(6.36) solX
w\S

: preG̊∗ kerεDP0,1 → T
w\S
F1,p
P0,1

(L)
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denote the map given by Proposition 5.5 if we use the right inverse QX
w\S

rather

than Q
preG̊,w\S

.

Lemma 6.11. There is a uniform bound

(6.37)∣∣∣∣κw\SX\ + sol
w\S

(κ
w\S
X\)−

Å
κX
w\S
X\ + solX

w\S
(κX
w\S
X\)

ã∣∣∣∣
p,S

= O (1)
∣∣∣X\

∣∣∣2 .
Proof. Note that the restrictions of κ

w\S
and κX

w\S
to exp−1

w\S
are respectively

the inverses of id + sol
w\S

and id + solX
w\S

. Since the previous lemma implies that

(6.38)

∣∣∣∣κw\S − κXw\S
∣∣∣∣ = O (1)

∣∣∣X\
∣∣∣ ,

the desired result follows easily from the fact that the C1-norms of solS and

solXS are both bounded by O
Ä
e−2(1−δ)S

ä
. �

We have established the lemmas necessary to prove the main result of this

subsection.

Proof of Lemma 6.8. Note that we have already reduced the proof of the

lemma to the proof of equation (6.22). The previous lemma shows that this is

equivalent to∣∣∣∣Πw\S
w[S

exp−1
w[S

Ä
w[S,X

ä
− κ′

w\S
X\ + sol′

w\S
(κ′
w\S
X\)

∣∣∣∣ = O
Ä
e−2(1−δ)S

ä
|X\|.(6.39)

Applying κ′
w\S

, this is equivalent to proving∣∣∣∣κ′w\S exp−1

w\S

Ä
w[S,X

ä
− κ′

w\S
X\
∣∣∣∣ = O

Ä
e−2(1−δ)S

ä ∣∣∣X\
∣∣∣ ,(6.40)

which we shall do presently.

Since w[S,X is obtained by exponentiating sol
w\S,X

(0) at w\S,X , Lemma 10.7

implies the existence of an Lp-bound

(6.41)

∣∣∣∣X\ + Π
w\S
w\S,X

sol
w\S,X

(0)− exp−1

w\S

Ä
w[S,X

ä∣∣∣∣ = O
Ä
e−2(1−δ)S

ä
|X\|.

In particular, equation (6.35) implies

(6.42)

∣∣∣∣∣κ′w\S
Ç
X\ + Π

w\S
w\S,X

sol
w\S,X

(0)− exp−1

w\S

Ä
w[S,X

äå∣∣∣∣∣ = O
Ä
e−2(1−δ)S

ä
|X\|.

From the definition of κ′
w\S

, we also have a uniform bound

(6.43)

∥∥∥∥κ′w\SΠ
w\S
w\S,X

−Π
w\S
w\S,X

κ
w\S,X

∥∥∥∥ = O(1)|X\|.
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Using that κ
w\S,X

sol
w\S,X

(0) vanishes and that | sol
w\S,X

(0)| = O(e−2(1−δ)S), we

see that equations (6.42) and (6.43) imply (6.40), which proves the lemma. �

6.3. Injectivity of the derivative of the gluing map. Lemma 6.8 implies

that the derivative of G̊S is injective. Our goal in this subsection is to show

that the derivative of GS is also injective. As explained at the beginning of

this section, it suffices to prove that the image of dG cannot be tangent to the

fibres of (6.1).

Lemma 6.12. Given µ < 1, the | |p,S-norm of the pullback of e−4SdwS (∂θ)

by ιP,S3S is bounded by a constant multiple of e−S .

Proof. The norm of ∂θ on a strip-like end is bounded above by a constant

multiple of es, which is why we are rescaling by e−4S to obtain a vector field

whose pointwise norm under pullback by ξS,n is bounded by O(e−4S−s). Since

solS is bounded by O
Ä
e−2(1−δ)S

ä
in the W 1,p-norm | |1,p,S , the norm of dwS

is uniformly bounded in the Lp-norm | |p,S . We conclude that the Lp-norm of

the restriction of e−4SdwS (∂θ) to ιP,S3S decays like O(e−S).

It remains to bound the contribution of the parallel transport of the value

of this vector field at ξS,n(0, 0). Observe that, for S0 large enough, the energy

of the restriction of wS to ξS,n
Ä
I2S+S0
−2S+S0

ä
is arbitrarily small, so the exponential

decay estimate on long strips of small energy implies that

(6.44) |dwS |ξS,n(0, 0)| = O
Ä
e−2µS

ä
.

As the norm of e−4S∂θ at this point is bounded by O
Ä
e−2S

ä
, the result easily

follows. �

In order to proceed, we need an additional estimate on predG̊.

Lemma 6.13. The norm of the composition of DP0,1 with Π
w[S
w\S
◦ predG̊S

is bounded by a constant multiple of e−2(1−δ)S .

Proof. This is a consequence of Lemma 6.5 and the quadratic inequal-

ity (5.16), applied to Z[ = Q◦ solS(u, θ, v), whose norm by a constant multiple

of e−2(1−δ)S as in equation (5.23), which is smaller than e−2δS for S large

enough. �

We are ready to give the proof of the two lemmas stated at the beginning

of the section.

Proof of Lemma 6.2. Note that ∂p extends to a vector field on S2 = C ∪
{∞} with a unique zero at −1, so that the vector field ∂p vanishes to first

order at −1. In particular, its pointwise norm along the strip-like end ξ−1 is

bounded by O(e−s).
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Moreover, given a sequence of points in D2 converging to −1, the corre-

sponding sequence of 1-periodic holomorphic vector fields which vanish at these

points converges in the complement of any compact subset of D2−{−1}, after

rescaling and reparametrization, to the vector field ∂p. The relevant estimate

is

(6.45)
∣∣∣e−4S(ιS,SS )∗∂θ − ∂p|D2 − ξ−1I−S−∞

∣∣∣
∞

= O(e−S),

where ιS,SS is the inclusion map of D2 − ξ−1I−S−∞ into ΣS . The proof is an

elementary computation left to the reader.

From the proof of Lemma (6.12), we know that the contribution to the

| |p,S-norm of the parallel transport of the value of dw[S (∂θ) at the image of

the origin under ξS,n is bounded by O(e−2(1+µ−δ)S). Moreover, in ξS,nI0−S
both vector fields are respectively bounded pointwise by e−(1+µ)(|s|−2S), so the

contribution of ξS,nI0−S to (6.7) is bounded by O(e−(1+µ−δ)S).

It remains to bound the difference between these two vector fields on the

image of ιS,SS . Since w[S ◦ ι
S,S
S and v|D2 − ξ−1I−S−∞ differ by a vector field

whose | |1,p,S-norm is bounded by a constant multiple of e−2(1−δ)S , the point-

wise bound (6.45) implies that difference between Π
w[S
w\S

predG̊S (dv (∂p)) and

e−4Sdw[S (∂θ) is bounded, in this subset of ΣS , by O(e−S) in the | |p,S-norm. �

Proof of Lemma 6.3. Assuming that there is an element X] of TK ⊕
〈dv (∂s)〉 whose image under (6.10) is e−4Sdw[S (∂θ), Lemmas 6.2 and 6.13 imply

that

(6.46)

∣∣∣∣Πw[S
w\S

predG̊S

Ä
X] − dv (∂p)

ä∣∣∣∣ = O(e−(1−δ)S).

For S large enough, this contradicts Lemma 6.4 since the norm of X]−dv (∂p) is

bounded above by some multiple of dv (∂p) whenever X] lies in TK⊕〈dv (∂s)〉.
Closeness to dG̊S is implied by Lemmas 6.8 and 6.13. �

We also need a bound on the distance between the parallel transports of

the images of the tangent spaces at various points under dGS . First, we bound

the distance between the values of predG̊S at nearby points. The proof of the

following lemma runs along the same arguments as Lemma 6.10, especially

equation (6.34), and is omitted.

Lemma 6.14. There is a uniform bound

(6.47)

∥∥∥∥Πw[S
w\S
◦ predG̊S |u] −Π

w[S
w\S,X

◦ predG̊S |u
]
X ◦Π

u]X
u]

∥∥∥∥ = O(1)|X|].

From this lemma and Lemma 6.8, we conclude that

(6.48)

∥∥∥∥dG̊S |u] −Π
w[S
w[S,X

◦ dG̊S |u]X ◦Π
u]X
u]

∥∥∥∥ = O
Ä
e−2(1−δ)S

ä
+ O(1)|X|].
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Proof of Proposition 6.1. The fact that GS is an immersion is immediate

from the proof of Lemma 6.3 and Lemma 6.8, since they imply that dG̊S is

injective and does not intersect the kernel of the projection map to P(L; 0).

The second statement is simply a quantitative version implied by the following

argument: Given (u, θ, v) ∈ K, we can fix a neighbourhood about (u, θ, v)

whose image under G̊S is contained in ball of radius ε/2 of w[S = G̊S(u, θ, v) ∈
P0,1(L; 0) with respect to our chosen norm on TF1,p

P0,1
(L; 0), i.e., can be obtained

by exponentiating vector fields X[ of | |1,p,S-norm bounded by ε/2.

Let us write

(6.49) w[S = (R(w[S), θ(w[S), wS),

with R(w[S) − Ru and θ(w[S) − θ decaying exponentially with S. By elliptic

regularity, we may choose S sufficiently large so that the restriction of wS to

the images of ιS,SS and ιS,PS are arbitrarily close in C1-norm to u and v in the

respective domains, while the restriction to ξS,nIS−S is bounded pointwise in

C1-norm by O(e−µS). We conclude that for S large enough, if |λ| ≤ ε/2, then

every point of the form

(6.50)
Ä
R(w[S), θ + λ,wS ◦ rλ

ä
lies in the ball of radius ε in the | |1,p,S-norm about w[S . In other words, a ball

of radius ε about w[S contains a segment of the fibre of the projection map to

P(L; 0) which passes through w[S , whose size is uniform.

Note that the norm of e−4Sw[S (∂θ) is uniformly bounded above and below

by constants independent of S. In particular, we can choose ε small enough so

that

(6.51) e−4S
Å

Π
w[S,X

w[S
dw[S (∂θ)− dw[S,X (∂θ)

ã
is arbitrarily small in the Lp-norm whenever |X[|1,p,S ≤ ε.

Since exp−1
w[S

ImG̊S is C1-close in the | |p,S-norm to a linear subspace by

equation (6.48), we conclude that no element of exp−1
w[S

G̊S(u′, θ′, v′) can lie on

a path of the form (6.50), whenever (u′, θ′, v′) is in some fixed neighbourhood

of (u, θ, v). This proves injectivity is a small neighbourhood of uniform size

about every point. �

7. Gluing near higher codimension strata

Having proved the existence of a gluing map from a compact subset of the

codimension 1 stratum of P(L; 0) to the interior of P(L; 0), we shall proceed

to describe the analogous results for the other boundary strata, which requires

gluing sphere bubbles. It turns out that we are working in a special situa-

tion where the moduli space of sphere bubbles passing through a fixed point
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is regular. This implies that gluing can be done without “moving the attach-

ing point,” thereby reducing the analytic results to standard ones. We shall

therefore concentrate on describing the geometric parts of the construction,

including the choice of right inverse, leaving all estimates to the reader.

Remark 7.1. In the discussion that follows, we shall often use the expres-

sion “a neighbourhood of X in Y ,” even though X is not a subset of Y . In

all such situations, the Gromov-Floer compactification Y will contain X as a

stratum, so such a neighbourhood is defined to be the subset of Y obtained by

removing all strata of virtual codimension greater than 0 from a neighbourhood

of X in the Gromov-Floer compactification of Y .

For the codimension 3 stratum, our main result, discussed in Section 7.1 is

Lemma 7.2. There exists a gluing map

(7.1) G3→0 : ∂̃3P (L; 0)× [S,+∞)2 → P(L; 0)

which is a diffeomorphism onto a neighbourhood of ∂̃3P (L; 0).

In Section 7.2, we explicitly define a gluing map

(7.2) G3→2 : ∂̃3P (L; 0)× [S,+∞)→ ∂̃2P (L; 0) .

The main result for the codimension 2 stratum, discussed in Section 7.3 is

Lemma 7.3. There exists a gluing map

(7.3) G2→0 : ∂̃2P (L; 0)× [S,+∞)→ P(L; 0)

which is a diffeomorphism onto a neighbourhood of ∂̃2P (L; 0) in P(L; 0) and

such that the diagram

(7.4) ∂̃3P (L; 0)× [S,+∞)2

**

// ∂̃2P (L; 0)× [S,+∞)

��
P(L; 0)

commutes for S large enough.

7.1. Gluing the codimension 3 stratum into the top stratum. Recall that

∂3P (L; 0) consists of complex lines passing through the boundary of an excep-

tional disc. For each u ∈ P(L;−β) and θ ∈ S1, choose a complex hyperplane

N(u,θ) in CPn−1 which does not intersect the projection of u(θ) to CPn−1 and

take the product with Cn to obtain a hypersurface

(7.5) NCn
(u,θ) ≡ Cn ×N(u,θ)

∼= Cn × CPn−2.
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We shall assume that these hyperplanes satisfy the following property.

(7.6)
The hyperplanes N(u,θ) vary smoothly and are independent of the

angular parameter θ if it is sufficiently close to 0.

Such a family of hyperplanes may be easily obtained by first choosing

the complex hyperplane in CPn−1 to be the unique one orthogonal to the

projection of u(θ) to this factor, then modifying this choice near θ = 0 using

cutoff functions.

Note that every Jalg holomorphic sphere passing through u(θ) intersects

NCn
(u,θ) at a unique point and is moreover determined by the projection of this

point to N(u,θ). The data of this intersection point gives a diffeomorphism from

the moduli space of holomorphic spheres passing through u(θ) to N(u,θ), which

yields a diffeomorphism

(7.7) ∂3P (L; 0)→ N(P0,1(L;−β)),

where N(P0,1(L;−β)) is the bundle over P0,1(L;−β) whose fibre at (u, θ) is

N(u,θ). Note that this is a sub-bundle of the product P0,1(L;−β))×CPn−1. If‹N(u,θ) is the unit normal bundle of N(u,θ) and ‹N(P0,1(L;−β)) is the correspond-

ing bundle over P0,1(L;−β), then we can extend this map to a diffeomorphism

∂̃3P (L; 0)→ ‹N(P0,1(L;−β))(7.8)

(u, θ, [ṽ]) 7→ (u, θ, ñ(u, θ, [ṽ]),

whose construction we explain presently. It is convenient to first give an alter-

native description of LM1(M ;α). Consider the subgroup AutR+(CP1,∞) of

Aut(CP1,∞) consisting of automorphisms of CP1 which fix ∞ and act on the

tangent space of CP1 at ∞ by multiplication with a positive real number. In

terms of Möbius transformations, this is simply the group of automorphism

(7.9) z 7→ az + b a ∈ R+, b ∈ C.

The quotient of the moduli space of parametrized holomorphic spheres by

AutR+(CP1,∞) is naturally diffeomorphic to LM1(M ;α). In particular, given

an element [v] of M1(M ;α), the choice of a parametrization determines a lift

[ṽ] to LM1(M ;α).

With this in mind, we write down the inverse diffeomorphism to (7.8)

as follows. The normal bundle of N(u,θ) is O(1) so there is a unique section

of the normal bundle, passing through every element ñ of ‹N(u,θ) lying over

n ∈ N(u,θ), which vanishes exactly on the orthogonal complement of n. Using

the exponential map to identify a neighbourhood of the zero section in the

normal bundle of N(u,θ) with a neighbourhood in CPn−1, and rescaling the

section determined by ñ by a uniform constant so that it is contained in such a

neighbourhood, we obtain a hyperplane in CPn−1 which we denote by N(u,θ,ñ).

Given an element (u, θ, ñ) in the right-hand side of (7.8), its image under the
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inverse diffeomorphism is the triple (u, θ, [ṽ]) ∈ ∂̃3P (L; 0), where [ṽ] is the lift

determined by the parametrization

(7.10) v(∞) = u(θ), v(0) ∈ Cn × {n} and v(1) ∈ NCn
(u,θ,ñ).

From the data of the diffeomorphism of (7.8), we associate to each element

(u, θ, [ṽ]) ∈ ∂̃3P (L; 0) hyperplanes

(7.11) N(u,θ,[ṽ]) ≡ N(u,θ,ñ(u,θ,[ṽ]) ⊂ CPn−1 and NCn
(u,θ,[ṽ]) ≡ Cn ×N(u,θ,[ṽ]).

Remark 7.4. When we were proving the existence of a gluing map with

source ∂1P (L; 0), we considered the family of equations obtained by rotation

by the parameter θ, so that our matching condition was on u(1) (in other

words, u here corresponds to u ◦ r−θ in the previous section). The reason

for introducing a family of equations parametrized by the circle was that the

moduli space of discs passing through a fixed point in L may not be regular.

As regularity holds for the moduli space of spheres passing through a point in

L, we shall use the simpler setup here.

Setting aside issues of notation, the conceptual part of the proof is simpler

than the gluing result introduced in Section 5 because we shall be able to

construct an explicit inverse to the gluing map after introducing an additional

parameter corresponding to the tangent space of P0,1(L;−β).

The first step to proving Lemma 7.2 is setting up a Banach complex

controlling the tangent space of ∂̃3P (L; 0) at each point. Because of the way

we are treating the variable θ, this will not be a complex of Banach bundles (in

the uniform topology) over ∂̃3P (L; 0), but our arguments will be insensitive to

this problem since we will prove smoothness by constructing an inverse which

will be proved to be a diffeomorphism.

Equip (D2, eiθ) with the strip-like end ξθ at eiθ obtained by composing

the strip-like end ξ1 of (4.24) with rotation by angle θ. The linearisation of the

operator ∂̄P on the Sobolev space of W 1,p maps with an exponential weight δ

along the strip ξθ is a Fredholm map

(7.12)

DP : T [0,+∞)⊕W 1,p,δ
(D2,eiθ)

(u∗TM, u∗TL) →̃Lp,δ
(D2,eiθ)

Ä
u∗TM ⊗ Ω0,1D2

ä
which is an isomorphism since P(L;−β) is regular and zero-dimensional. More-

over, the factor W 1,p,δ
(D2,eiθ)

(u∗TM, u∗TL) is also equipped with an evaluation

map to TL which is the value of the vector field at eiθ.

Next, we equip CP1 with a cylindrical end near∞ coming from the unique

isomorphism

(7.13) S1 × (−∞,+∞)→ CP1 − {0,∞}
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taking (1, 0) to 1, which we use to define a Banach manifold F1,p,δ
M1

(M) modeled

after

(7.14) W 1,p,δ
(CP1,∞)(v

∗TM),

where CP1 equipped with a cylindrical metric near ∞. The direct sum of

the linearisation of the ∂̄ operator and the evaluation map to TM at ∞ is a

Fredholm map

(7.15) W 1,p,δ
(CP1,∞)(v

∗TM)→̃Lp,δ(CP1,∞)(v
∗TM)⊕ TM.

The above discussion implies that for each (u, θ, [ṽ]) ∈ ∂̃3P (L; 0), the restric-

tion of (7.15) to those W 1,p section of v∗(TM) whose projection to CPn−1

vanishes at 0 and takes value in TN(u,θ,[ṽ]) at 1 is an isomorphism

(7.16)

W 1,p,δ
(CP1,∞)

Ä
(CP1, 0, 1),

Ä
v∗TM, TCn × {n}, TNCn

(u,θ,[ṽ])

ää
→̃Lp,δ(v∗TM)⊕ TM.

Finally, the moduli space of holomorphic discs in the trivial homotopy

class mapping −1 to u(1) and 0 to v(0) is rigid and consists of a unique “ghost

bubble” gh(u, v). Consider the cylindrical end at 0

ξ0,θ : S1 × (−∞, 0]→ D2 − {0}(7.17)

(φ, S) 7→ eS+i(φ−θ),

which varies according to the parameter θ, and fix the strip-like end ξ−1 at

−1. The fact that the moduli space of constant discs is regular implies that

the direct sum of the linearisation of the ∂̄ operator with the evaluation map

at the boundary marked point defines an isomorphism

(7.18) W 1,p,δ
(D2,0,−1) (gh(u, v)∗TM, gh(u, v)∗TL) →̃Lp,δ (gh(u, v)∗TM)⊕ TL.

The tangent space of ∂̃3P (L; 0) is controlled by the operators (7.12),

(7.15), and (7.18). Taking a fibre product over the evaluation maps to TL

and TM at the marked points, we obtain an isomorphism

(7.19)

T [0,+∞)⊕W 1,p,δ
(D2,eiθ))

(u∗TM, u∗TL)

⊕TLW 1,p,δ
(D2,0,−1) (gh(u, v)∗TM, gh(u, v)∗TL)

⊕TMW 1,p,δ
(CP1,∞)

Ä
(CP1, 0, 1), (v∗TM, TCn × {n}, v∗TNCn

(u,θ,[ṽ]))
ä

↓
Lp,δ

(D2,eiθ))

(
u∗TM ⊗ Ω0,1D2

)
⊕ Lp,δ(D2,0,1)

(
gh(u, v)∗TM ⊗ Ω0,1D2

)
⊕Lp,δ(CP1,∞)

(
v∗TM ⊗ Ω0,1CP1

)
.

As in equation (4.33), a choice of parameters (S1, S2) determines a surface

ΣS1,θ,S2 defined by gluing CP1 to ΣS1,θ (itself obtained by gluing (D2, eiθ) to

(D2,−1)) along the chosen cylindrical ends, which moreover carries a distin-

guished bi-holomorphism to D2 coming from the marked disc (D2, θ). If we



EXOTIC SPHERES 137

choose S2 large enough, then the points 0 and 1 on CP1 lie away from the

gluing region and survive as distinguished points on ΣS1,θ,S2 whose images in

D2 are denoted by

(7.20) z0(S1, θ) and z1(S1, S2, θ).

Lemma 7.5. Under the unique automorphism τS1(θ) of D2 fixing eiθ and

mapping z0(S1, θ) to the origin, the image of z1(S1, S2, θ) lies on the positive

real axis.

Pre-gluing the maps u and v together with the ghost bubble gives a map

(7.21) preG̊S1,S2
(u, θ, [ṽ]) : D2 →M

which is an approximate solution to equation (2.10) in the trivial homotopy

class. To prove that there is a solution near preG̊S1,S2
(u, θ, [ṽ]), we shall con-

sider Sobolev spaces on D2 equipped with the metric gS1,θ,S2 coming from

ΣS1,θ,S2 .

Using breaking of TM -valued 1-forms and pre-gluing of vector fields,

the inverse to equation (7.19) defines an approximate right inverse to D∂̄P

at preG̊S1,S2
(u, θ, [ṽ]). As in Corollary 5.14, we conclude the existence of a

right inverse whose image consists of vector fields which are obtained by par-

allel transporting (and cutting off) vector fields in the left-hand side to equa-

tion (7.19). For S1 and S2 large enough, our two marked points z0(S1, θ) and

z1(S1, S2, θ) lie in the region where the cutoff functions vanish, and the parallel

transport is the identity. In this case, the image of the right inverse consists

of vector fields along the disc whose component in the CPn−1-direction van-

ishes at z0(S1, θ) and which take value in the tangent space to NCn
(u,θ,[ṽ]) at

z1(S1, S2, θ). Abusing notation a little bit by dropping the pullbacks from the

notation, we conclude

Lemma 7.6. The operator

(7.22)

T [0,+∞)⊕W 1,p
Ä
(D2, S1, z0(S1, θ), z1(S1, S2, θ)), (TM, TL, TCn × {n}, TNCn

(u,θ,[ṽ]))
ä

↓
Lp(TM ⊗ Ω0,1D2)

is an isomorphism with uniformly bounded inverse.

After checking the quadratic inequality with respect to the metrics on

ΣS1,θ,S2 and proving an estimate on the norm of ∂̄PpreG̊S1,S2
(u, θ, [ṽ]), we

may apply the implicit function theorem at the origin of a chart centered on

preG̊S1,S2
(u, θ, [ṽ]) to conclude

Lemma 7.7. There exists a constant ε such that if S1 and S2 are suffi-

ciently large, then there exists a unique element solS1,S2 of the source of (7.22)
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at preG̊S1,S2
(u, θ, [ṽ]) whose norm is bounded by ε and whose image under the

exponential map is a solution to (2.10).

We define the codimension 3 gluing map G3→0 to be the composition of

pre-gluing with the exponentiation of the vector field solS1,S2 .

It remains to prove that (7.1) is a diffeomorphism onto a neighbourhood

of ∂3P (L; 0) in P(L; 0). Our arguments rely on extending the gluing map to

a map

G̊
≤η

: ∂̃3P (L; 0)× [0,+∞)2 × [−2η, 2η]→ P(L; 0)× S1(7.23)

(u, θ, [ṽ], S1, S2, λ) 7→
Ä
Gλ
S1,S2

(u, θ, [ṽ]), θ + λ
ä
.

Here η is a sufficiently small real number, and Gλ
S1,S2

(u, θ, [ṽ]) is the gluing

map constructed with respect to the right inverse induced by the hyperplanes

N(u,θ+λ) and N(u,θ+λ,[ṽ]) rather than N(u,θ) and N(u,θ,[ṽ]). In particular, the

image of this right inverse consists of vector fields which are tangent to the Cn
factor at z0(S1, θ) and take value in TNCn

(u,θ+λ,[ṽ]) at z1(S1, θ, S2).

For λ small enough, the hyperplane NCn
(u,θ+λ) still intersects all spheres

passing through u(θ) transversely, and this is the only property we used. We

shall write G̊
λ

for the restriction of (7.23) to a fixed λ. Note that the composi-

tion of G̊
λ

for λ = 0 with the projection to P(L; 0) is the previously constructed

gluing map G3→0.

We shall now define an a priori left inverse

(7.24) U3(P(L; 0)× S1)→ ∂̃3P (L; 0)× [0,+∞)2 × (−η, η)

from a neighbourhood U3(P(L; 0)× S1) of the image of G̊
≤η

in P(L; 0).

The neighbourhood U3(P(L; 0)× S1) consists of pairs (w, φ) such that w

is C1-close to a unique solution u to (2.10) in homotopy class −β, away from a

small disc centered on the boundary, and a re-parametrization of w is C1-close

(again, away from a small disc) to a holomorphic sphere v′ passing through

some point u(θ′). In addition, the angular parameter is required so satisfy

|φ−θ′| ≤ 2η. Choosing η to be sufficiently small, these properties are sufficient

to ensure that w−1
Ä
NCn

(u,φ)

ä
contains a unique point lying in a neighbourhood of

φ. This point can be uniquely written as z0(S1, θ), determining the parameters

S1 and θ, and hence defining a map

U3(P(L; 0)× S1)→ N(P0,1(L;−β))× [0,+∞)× (−η, η)(7.25)

(w, φ) 7→ (w(z0(S1, θ)), u, θ, S1, φ− θ) .

The point w(z0(S1, θ)) already determines a holomorphic sphere v passing

through u(θ) up to parametrization. We shall now explain how to recover the

lift [ṽ] and the second gluing parameter.
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Since the composition of w with τS1(θ) is C1-close, away from a neigh-

bourhood of the boundary of D2, to a re-parametrization of some holomorphic

sphere v, the image of the positive real axis under this map intersects a unique

hyperplane of the form NCn
(u,φ,[ṽ]). The image of this intersection point under the

automorphism τS1(θ)−1 can be uniquely written as z1(S1, θ, S2), so we obtain

a map

(7.26) U3(P(L; 0)× S1)→ ‹N(P0,1(L;−β))× [0,+∞)2 × (−η, η),

which completes the construction of (7.24).

The fact that the map described in equation (7.24) is a left inverse to the

gluing map follows straightforwardly from the fact that, for a given λ, our cho-

sen right inverse along a pre-glued curve consists of vector fields whose projec-

tion to TCPn−1 vanishes at z0(S1, θ) and which take value along TNCn
(u,θ+λ,[ṽ])

at z1(S1, θ, S2). Since hyperplanes are geodesically convex for the standard

metric on CPn−1, applying the implicit function theorem yields a glued curve

that has exactly the same intersection properties with NCn
(u,θ) and NCn

(u,θ+λ,[ṽ]);

i.e, the pair of points of D2 mapping to Cn×{n} and NCn
(u,θ+λ,[ṽ]) do not change.

Note that the construction of a left inverse automatically implies that

the extended gluing map (7.23) is injective. As to surjectivity onto the open

set U3(P(L; 0) × S1), observe that it suffices to prove surjectivity onto the

fibers of (7.24), so long that the gluing parameter in [0,+∞)2 is sufficiently

large. The idea, as implemented in Lemma 10.12 for the gluing result near

the codimension 1 stratum, is that as the gluing parameters go to infinity,

the distance (in an appropriate Sobolev norm) between any two solutions in

the same fiber of (7.24) must go to zero (this uses the definition of Gromov

compactness and an exponential estimate for the C1-norm of small energy

annuli and strips). However, the implicit function theorem implies that there

is a unique such solution in a uniformly sized neighbourhood of the image of

the gluing map. We conclude

Lemma 7.8. The composition of the extended gluing map (7.23) with the

projection to P(L; 0) is a proper surjection onto a neighbourhood of ∂3P (L; 0).

Next, we show that the extended gluing map (7.24) is a diffeomorphism

onto its image for S1 and S2 sufficiently large. First, we prove that the map

(7.27) U3(P(L; 0)× S1)→ N(P0,1(L;−β))

is smooth with no critical point. To see this, consider the restriction of DP
at Gλ

S1,S2
(u, θ, [ṽ]) to those vector fields whose projection to CPn−1 vanishes

at z0(S1, θ). This operator is surjective by parallel transport of the analogous
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result from preG̊S1,S2
(u, θ, [ṽ]). In particular, the evaluation map

U3(P(L; 0)× S1)×D2 →M × P0,1(L; 0)(7.28)

(w, φ, z) 7→ (w(z), u, φ)

is a submersion at

(7.29)
Ä
Gλ
S1,S2

(u, θ, [ṽ]), θ + λ, z0(S1, θ)
ä
,

so that the component of the inverse image of

(7.30) NCn(P0,1(L;−β)) ≡ Cn ×N(P0,1(L;−β))

passing through this point is a smooth submanifold. Using Gromov compact-

ness, we know that for S1 and S2 sufficiently large, Gλ
S1,S2

(u, θ, [ṽ]) is C1-close

to v, which implies that the tangent space of the image of Gλ
S1,S2

(u, θ, [ṽ]) at

z0(S1, θ) is transverse to TNCn
(u,θ+λ). In particular, this component of the in-

verse image of NCn
(u,θ+λ) in U3(P(L; 0)×S1)×D2 is transverse to the D2 fibres

and is therefore defined by a smooth section. The reader may easily check that

the map defined in equation (7.27) is the composition of this section with the

evaluation map to M , which establishes its smoothness.

By composing this smooth section with the projection to the D2 direction,

we conclude the smoothness of the map

(7.31) U3(P(L; 0)× S1)→ N(P0,1(L;−β))× [0,+∞)× S1,

where the last two coordinates are the pair (θ, S1) determined by the intersec-

tion point z0(S1, θ). An argument along the same lines shows that the inverse

to the gluing map described in equation (7.24) is a bijective smooth map with

no critical points. This implies that the extended gluing map G̊
≤η

also satisfies

these properties, i.e., that it is a diffeomorphism.

We shall need to know only one quantitative property of the differential

of (7.24). Consider a pair of sequences wi converging to a point (u′, θ′, v′) in

∂3P (L; 0) and φi converging to θ′.

Lemma 7.9. The φ-derivative at (wi, φi) of the third component of the

inverse (7.24) of the extended gluing map G̊
≤η

converges to 1.

Proof. The third component is a difference θ − φi, where the angle θ de-

pends on φ as the angular parameter of the point of intersection between wi
and NCn

(u,φi)
. Assuming i to be large enough, we may choose a gluing param-

eter Si very large such that wi ◦ τSi(φ) is C2-close to a parametrization vi of

a holomorphic sphere mapping 0 to NCn
(u,φi)

and 1 to a hyperplane NCn
(u,φi,ñ).

In particular, the C2-norm of the restriction of wi ◦ τSi(φ) to this region is

uniformly bounded for i large enough, so the inverse image of a nearby hyper-

plane NCn
(u,φ) under wi ◦ τSi(φ) is a point whose norm is bounded by a constant
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multiple of |φ− φi|. Reparametrizing the disc by the inverse to τSi(θi), whose

derivative near the origin decays exponentially with Si, we reach the desired

conclusion. �

We shall now prove surjectivity of the gluing map by proving that the

gluing map has degree 1 at infinity. Let G≤η denote the composition of G̊
≤η

with the projection to P(L; 0). We pick an open neighbourhood End3(P(L; 0))

of ∂3P (L; 0) in P(L; 0) lying in the image of G≤η, and with the additional

property that it does not intersect the image of the set

(7.32)

∂̃3P (L; 0)×{S}× [S,+∞)× [−2η, 2η]∪ ∂̃3P (L; 0)× [S,+∞)×{S}× [−2η, 2η].

Note that this choice is possible because the definition of Gromov’s topology

implies that the images of the above sets, as S1 or S2 in [S,+∞) go to infinity,

do not converge to ∂3P (L; 0). To prove that this map has a well-defined degree,

consider any two points of End3(P(L; 0)) which lie in the same component.

Choosing a generic path between them, we find that the inverse image under

G≤η is a smooth 2-dimensional submanifold of ∂̃3P (L; 0)×[S,+∞)2×[−2η, 2η]

with boundary on the “horizontal boundary”

(7.33) ∂̃3P (L; 0)× (S,+∞)2 × {−2η} ∪ ∂̃3P (L; 0)× (S,+∞)2 × {2η}.

In particular, the intersection of this surface with

(7.34) ∂̃3P (L; 0)× (S,+∞)2 × {0}

is a compact 1-manifold with boundary for generic paths. Interpreting this

manifold as a cobordism between the inverse images of the two points under

the gluing map, we conclude

Lemma 7.10. The number of inverse images of a point in End3(P(L; 0))

under G3→0, counted with signs, depends only on the connected component in

End3(P(L; 0)).

We denote this integer count of inverse images the degree at infinity of the

gluing map.

We shall now use condition (7.6) to prove that this degree is 1, thereby

proving surjectivity of the gluing map. Let us choose a constant ρ such that

the hyperplane N(u,θ) agrees with N(u,0) whenever |θ| ≤ 2ρ, and assume that

η ≤ ρ. Using Gromov compactness, we note that if the gluing parameters are

large enough, then

(7.35) Gλ
S1,S2

(u, 1, [v]) = Gλ′

S′1,S
′
2
(u′, θ′, [v′]) =⇒ u = u′ and |θ′| ≤ ρ.

Lemma 7.11. The gluing map has degree 1 at infinity.
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Proof. By equation (7.35), it suffices to prove the gluing map is injective

when restricted to a neighbourhood of θ = 0. In such a neighbourhood, the

extended gluing map is essentially independent of λ:

(7.36) G̊
≤η

(u, θ, [ṽ], λ) =
Ä
G0→3(u, θ, [ṽ]), θ − λ

ä
.

The proof that G̊
≤η

is a diffeomorphism by constructing a left inverse implies

that the gluing map G0→3 is also a diffeomorphism and hence is injective. �

Lemma 7.12. The gluing map (7.1) is a diffeomorphism onto a neigh-

bourhood of ∂3P (L; 0) in P(L; 0).

Proof. Since a degree 1 map with no critical point is a local diffeomor-

phism, it remains to show that G is an immersion. Since the extended gluing

map is a diffeomorphism, it suffices to show that its restriction to λ = 0 is trans-

verse to the fibers of the projection map to P(L; 0), which is itself equivalent to

the statement that the image of ∂φ (the tangent direction to the circle fibre in

P(L; 0)×S1) under the differential of the inverse gluing map does not lie in the

tangent space of ∂̃3P (L; 0)× [S,+∞)2. Lemma 7.9 implies precisely this. �

7.2. The corner structure at the codimension 3 stratum. Next, we consider

the moduli space ∂2P (L; 0), with its universal circle bundle ∂̃2P (L; 0) which

can be compactified to a manifold with boundary ∂̃2P (L; 0). In particular, we

may define a gluing map

(7.37) G3→2 : ∂̃3P (L; 0)× [S,+∞)→ ∂̃2P (L; 0)

which is a diffeomorphism onto a neighbourhood of ∂̃3P (L; 0). We can define

such a map using the implicit function theorem as before, but it is also possible

to do so explicitly. Consider S large enough so that holomorphic spheres

passing through u(z0(S1, θ)) for S ≤ S1 are transverse to the hyperplanes

NCn
(u,θ) and NCn

(u,θ,ñ) introduced in the previous section. We have a smooth map‹N(P0,1(L;−β))× [S,+∞)→ ∂̃2P (L; 0)(7.38)

(u, θ, ñ, S1) 7→ (u, z0(S1, θ), [ṽ]) ,

where the parametrization on [ṽ] is fixed by the properties

(7.39) v(∞) = u(z0(S1, θ)), v(0) ∈ Cn × {n} and v(1) ∈ NCn
(u,θ,ñ).

It is not hard to check that this is a diffeomorphism onto a neighbourhood

of ∂̃3P (L; 0) in ∂̃2P (L; 0). After composition with the diffeomorphism of

equation (7.8), we obtain the desired gluing map.

We denote by US
′

S (∂̃2P (L; 0)) the image of the restriction of G3→2 to

∂̃3P (L; 0) × [S, S′). By inverting G3→2 in this domain, and composing with
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G3→0, we obtain a map

(7.40) US
′

S (∂̃2P (L; 0))× [S,+∞)→ ∂̃3P (L; 0)× [S,+∞)2 → P(L; 0).

As a prelude to defining a gluing map on ∂̃2P (L; 0), we shall realize this

composition by applying the implicit function theorem to an appropriate right

inverse along pre-glued curves. More precisely, consider a pair (u, z, [ṽ]), where

z = z0(S1, θ). We have a cylindrical end at z0(S1, θ) induced by pre-gluing from

the cylindrical end ξ0,θ of equation (7.17) on the ghost bubble. Explicitly, the

cylindrical end at z0(S1, θ) is

S1 × (−∞, 0]→ D2 − {0}(7.41)

(φ, S) 7→ (τS1(θ))−1
Ä
eS+iφ

ä
.

Next, we consider the parametrization of [ṽ] which maps 0 to NCn
(u,θ) and 1 to

NCn
(u,θ,ñ). A choice of parameter S2 gives an approximate solution to ∂̄P in the

trivial homotopy class obtained by pre-gluing [ṽ] and u along their chosen cylin-

drical ends. Note that z0(S1, θ) survives as a distinguished point on the domain

of the pre-gluing, which is also equipped with a marked point z1(S1, θ, S2) com-

ing from 1 ∈ CP1. If S1 and S2 are sufficiently large, then the operator DP at

this pre-glued curve becomes an isomorphism, with an inverse that is uniformly

bounded with respect to the gluing parameters, when restricted to those vector

fields whose projection to CPn−1 vanishes at z0(S1, θ) and which take value in

the tangent space of the appropriate hyperplane TNCn
(u,θ,ñ) at z1(S1, θ, S2).

Using this right inverse, we can define a gluing map

(7.42) US
′

S (∂̃2P (L; 0))× [S,+∞)→ P(L; 0)

for S large enough. The image of ((u, z0(S1, θ), [ṽ]), S2) is a solution to (2.10)

such that z0(S1, θ) projects to n ∈ N(u,θ), and z1(S1, θ, S2) maps to the hy-

perplane NCn
(u,θ,ñ). Lemma 7.12 implies that there is a unique such curve in

the neighbourhood of ∂3P (L; 0) in P(L; 0), which is moreover the image of

((u, z0(S1, θ), [ṽ]), S2) under the composition of gluing maps (7.40). We con-

clude

Lemma 7.13. The gluing map (7.42) agrees with the restriction of the

composition (7.40) to US
′

S (∂̃2P (L; 0))× [S,+∞).

There is also a smooth embedding

(7.43) G3→1 : ∂̃3P (L; 0)× [S,+∞)→ ∂1P (L; 0)

for S large enough, defined by the choices of right inverses and strip-like ends

as in the previous section. Indeed, starting with a parametrized sphere bub-

ble [ṽ] passing through u(θ), a choice of a sufficiently large gluing parame-

ter S1 defines a pre-glued curve which is an approximately holomorphic disc



144 M. ABOUZAID

preG̊S ([ṽ], gh(u(θ))). The pre-glued disc is equipped with two distinguished

interior points z0(S1) and z1(S1) coming from {0, 1} ∈ CP1. As in the pre-

vious section, the restriction of the linearisation of the ∂̄ operator becomes

an isomorphism with uniformly bounded inverse once its domain is restricted

to vector fields which (i) vanish at −1 and z0(S1) and (ii) take value along

some hyperplane TN(u,θ) at z1(S1). Using this isomorphism to define the right

inverse to D∂̄ , we apply Floer’s Picard lemma to construct G3→1, and the

existence of a smooth inverse to G3→1 in order to conclude that G3→1 is a dif-

feomorphism onto a neighbourhood of ∂̃3P (L; 0) in ∂1P (L; 0). In particular,

the gluing map (7.43) is compatible with the projection map to the CPn−1 bun-

dle N(P0,1(L;−β)) over P0,1(L;−β) in the sense that we have a commutative

diagram

(7.44) ∂̃3P (L; 0)× [S,+∞) //

))

∂1P (L; 0)

��
N(P0,1(L;−β)).

Lemma 7.14. The gluing map G3→1 determines a smooth structure on

the manifold with boundary

(7.45) ∂̄1“P (L; 0) = ∂1P (L; 0) ∪ ∂̃3P (L; 0) .

7.3. The codimension 2 stratum. In this section, we discuss Lemma 7.3.

The proof is essentially the same as that of Lemma 7.2, so our discussion shall

be brief. The key step is a careful construction of the gluing map. First, we

consider a family of hyperplanes N(u,z) ⊂ CPn−1 smoothly parametrized by

z ∈ intD2 and u ∈ P(L;−β), which agrees with N(u,θ) near the boundary. In

addition, we require that

(7.46) u(z) /∈ N(u,z)

whenever z ∈ D2 and u ∈ P(L;−β). As in the discussion following (7.6),

one can easily construct such a family starting with the family of hyperplanes

“orthogonal” to each point, then modifying this family by a cutoff function

near the boundary to ensure that the surfaces are independent of the radial

direction. We obtain a bundle

(7.47) N(P1,0(L;−β)) //

**

CPn−1 × P1,0(L;−β)

��
P1,0(L;−β) ∼= P(L;−β)×D2

whose fibres are the hyperplanes N(u,z). We denote the normal bundle of

N(P1,0(L;−β)) in the product by ‹N(P1,0(L;−β)), and associate, as before,
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hyperplanes

(7.48) N(u,z,ñ) ⊂ CPn−1 and NCn
(u,z,ñ) ⊂ Cn × CPn−1

to every ñ ∈ ‹N(u,z). Moreover, we can associate to each such ñ a unique

holomorphic sphere [ṽ] satisfying the analogue of equation (7.10), yielding a

diffeomorphism

(7.49) ‹N(P1,0(L;−β))→ ∂̃2P (L; 0) .

We fix the choice of cylindrical end near ∞ ∈ CP1 as in (7.13), so the

next step is to choose a cylindrical end for each z ∈ D2 which we require

to be compatible with the choice of cylindrical end determined by pre-gluing

whenever z is sufficiently close to the boundary. Note that setting S1 = 0 in

(7.41) defines a cylindrical end which is independent of θ. In particular, the

previously chosen family of cylindrical ends extends from a neighbourhood of

D2 to the entire disc.

We have now made all the necessary choices to carry through the same

procedure as in Section 7.1 and define a gluing map G2→0.

Remark 7.15. Since ∂2P (L; 0) is not compact, there is no a priori rea-

son to believe that there is a uniform constant for which the gluing map is

defined. However, Lemma 7.13 implies that if we restrict to a neighbourhood

of ∂̃3P (L; 0) in ∂̃2P (L; 0), then we can define gluing using the composition

with the gluing map G3→0 with inverse of the gluing map G3→2, as in (7.40).

The existence of a global constant S for which the gluing map G2→0 is defined

follows immediately.

It remains to prove that the gluing map (7.3) is a diffeomorphism. Unlike

all our other arguments, the gluing procedure in this setting takes place in

the region where the 1-form γ does not vanish, which could a priori affect

the analytical parts of the argument. However, the reader may check that

the estimates in Appendix 10.1 and Section 5 relied on the fact that γ was

uniformly bounded in the Lp-norm, rather than its vanishing. It is not hard

to see that this is still true even with the weighted Lp-norms we would use

when gluing at interior nodes. With this in mind, the proof that G2→0 is a

diffeomorphism onto a neighbourhood of ∂̃2P (L; 0) is entirely analogous to the

strategy deployed in Section 7.1 and is left to the reader. We simply note that

the analogue of equation (7.23) is a map

(7.50) ∂̃2P (L; 0)× [S,+∞)×B2η → P(L; 0)× C,

where B2η is a disc of radius 2η, and the map to the second component is given

by the addition

(7.51) (u, z, [ṽ], S2, z0) 7→ z + z0.
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7.4. Compactifying the capping moduli spaces to manifolds with corners.

In this section, we prove Lemma 2.15.

Lemma 7.16. There exists a smooth embedding

(7.52) GC : ∂̃2C (L)× [S,+∞)→ C(L)

onto a neighbourhood of ∂2C (L) in C(L). Moreover, on the boundary ∂̃3P (L; 0)

of ∂̃2C (L), GC restricts to a gluing map with target ∂C(L) ∼= ∂1P (L; 0) which

satisfies the commutative diagram given in equation (7.44).

To define GC , we proceed in exactly the same way as before and consider

a smooth family N(cu,z) of hyperplanes in CPn−1 parametrized by z ∈ D2 and

cu a capping disc for u ∈ P(L;−β) as in equation (2.39). We require that

the projection of cu(z) to CPn−1 not lie in N(cu,z) and that N(cu,reiθ) ≡ N(u,θ)

whenever r is sufficiently close to 1. The union of these hyperplanes defines a

smooth submanifold

(7.53) N(∂̃2C(L)) ⊂ CPn−1 × P(L; 0)×D2.

Following the strategy used in the previous sections, we consider the unit

normal bundle ‹N(∂̃2C(L)) of N(∂̃2C(L)), which projects submersively onto

P(L; 0) ×D2 with fibre at (u, z) the unit normal bundle ‹N(cu,z). Again, each

point ñ ∈ ‹N(cu,z) determines a hyperplane NCn
(cu,z,ñ). As z and cu vary, we

conclude

Lemma 7.17. There exists a diffeomorphism‹N(∂̃2C(L))→ ∂̃2C (L)(7.54)

(u, z, ñ) 7→ (u, z, [ṽ]),

where the class of [ṽ] is determined by a parametrization mapping ∞ to cu(z),

0 to n, and 1 to the hyperplane NCn
(cu,z,ñ). �

Using this identification, we can construct the gluing map of Lemma 7.16.

Since the gluing map is defined by first pre-gluing the sphere bubble to a ghost

bubble, the only remaining choice is that of a cylindrical end at the origin of

the disc. Because the choice (7.17) of cylindrical ends on ghost bubbles passing

through the boundary of cu does not extend to the disc, we shall work with a

constant the cylindrical end ξ0 ≡ ξ0,0 which is independent of z. With this in

mind, the rest of the construction is left to the reader.

It is now possible to construct a manifold with corners Ĉ(L) as asserted

in Lemma 2.15

Proof of Lemma 2.15. We define Ĉ(L) to be the union of C(L) and ∂̃2C (L)

× (S,+∞] along ∂̃2C (L)× (S,+∞) mapping to C(L) by the gluing map (7.52).

Any choice of homeomorphism from (S,+∞] to (0, 1] which is differentiable in
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the interior determines a smooth corner structure on ∂̃2C (L) × (S,+∞] and

hence on Ĉ(L). �

Note that this construction induces the structure of a smooth manifold

with boundary on

(7.55) ∂̄1Ĉ (L) = ∂1P (L; 0) ∪ ∂̃3P (L; 0) .

We constructed a smooth structure on this very space in Lemma 7.14 and

denoted the resulting manifold with boundary ∂̄1“P (L; 0). Since the choice of

cylindrical ends on the ghost discs is constant on one side and depends on the

angular parameter in the other, the gluing maps are a priori different, so the

smooth structure may also be different. The defect is resolved by the following

result.

Lemma 7.18. There exists a diffeomorphism

(7.56) ∂̄1Ĉ (L)→ ∂̄1“P (L; 0)

which agrees with the identity on ∂3P (L; 0) and away from a neighbourhood of

∂3P (L; 0).

Proof. Let us write GCS for the gluing map

(7.57) ∂̃3P (L; 0)→ ∂1P (L; 0)

which is the restriction of equation (7.3) to the boundary of ∂̃2C (L) and to a

gluing parameter S. Since ∂̄1“P (L; 0) and ∂̄1Ĉ (L) are homeomorphic, and dif-

feomorphic away from the boundary, the image of GCS is a smoothly embedded

submanifold ∂̄1“P (L; 0) which is cobordant to the boundary. We write XS for

this cobordism.

Note that both components of the boundary of XS are equipped with

diffeomorphisms from ∂̃3P (L; 0) (one is GCS , and the other is essentially the

identity). Our construction would be complete if we were to know the existence

of a diffeomorphism

(7.58) ∂̃3P (L; 0)× [0, 1]→ XS ,

whose restriction to ∂̃3P (L; 0)×{1} is GCS and whose restriction to ∂̃3P (L; 0)

× {0} is the identity. Indeed, ∂̃3P (L; 0) × [0, 1] is also diffeomorphic (upon

choosing an identification of [0, 1] with [S,+∞] with the cobordism in ∂̄1Ĉ (L)

between the image of GCS and ∂̃3P (L; 0)). Thus(7.58) defines a diffeomorphism

from a neighbourhood of the boundary in ∂̄1“P (L; 0) to a similar neighbourhood

in ∂̄C(L), which is the identity on the boundary component ∂̃3P (L; 0)× {0}.
The condition that this map restricts to GCS on the slice ∂̃3P (L; 0)×{1} implies,

as desired, that this map extends to the identity outside this neighbourhood.

It remains therefore to prove (7.58). To do this, we consider the manifold

Y S obtained by gluing the two boundaries of XS together along the map GCS .
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Note that the diagram (7.44) is commutative for the gluing maps used to define

both ∂̄1“P (L; 0) and ∂̄C(L). This implies that we have a fibration

(7.59) Y S → N(P0,1(L;−β))

whose fibres are diffeomorphic to the 2-torus. We would like to check that this

bundle is trivial. Since Gromov compactness implies that we have a trivializa-

tion of XS as a topological cobordism, we know that Y S is a trivial fibration in

the topological category. A classical result (see [7]) asserts that the inclusion

of the group of diffeomorphisms into homeomorphisms of T 2 is a homotopy

equivalence, so we conclude the desired result. �

8. Construction of a smooth manifold with corners

In this section, we prove Lemma 2.11 by constructing the desired manifold

with corners “P(L; 0). The only missing technical point for that lemma is the

proof that the gluing map GS of equation (6.1) has degree 1; this shall be

facilitated by choosing the right inverse to D∂1P(L;0) in such a way that the

following property holds.

(8.1)

There exists an open subset U? of ∂1P (L; 0) intersecting each compo-

nent nontrivially, and a (possibly disconnected) complex hypersurface

N? such that v intersects N? orthogonally at 0 whenever (u, θ, v) lies

in U?, and the image of right inverse to D∂1P(L;0), restricted to curves

in U?, is contained in the subspace of vector fields whose value at the

origin 0 lies in TN?.

The notion of degree makes sense because of the properness asserted in

the next proposition.

Proposition 8.1. There exists a proper smooth map

(8.2) F : P(L; 0) ∪ ∂̃2P (L; 0)→ [0,+∞)

and a sequence Si →∞ such that each Si is a regular value of F with

(8.3) F−1(Si) = Im GSi .

Moreover, there exists a subset V? ⊂ U? of ∂1P (L; 0) intersecting each compo-

nent nontrivially such that the diagram

(8.4) V? × [S,+∞) //

��

P(L; 0) ∪ ∂̃2P (L; 0)

��
[S,+∞) // [0,+∞]

commutes.
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We can now define a manifold with corners “PSi(L; 0) for each sufficiently

large Si as the inverse image under F

(8.5) “PSi(L; 0) = F−1(−∞, Si].

The reader may easily verify that such a manifold satisfies all the desired

conditions stated in Lemma 2.11. For example, the inclusions of ∂1P (L; 0)

and ∂̃3P (L; 0) are given by the gluing maps GSi and GSi,+∞.

Remark 8.2. It seems more than plausible that the diffeomorphism type

of “PSi(L; 0) is independent of Si. Since we do not need this property, we have

not attempted to prove it.

8.1. The degree of the gluing map. Recall that the inclusion ∂1P (L; 0) into

F∂1P(L;0)(L) requires the choice of a section of an Aut(D2,−1) bundle. The

gluing theorem of Lemma 7.14 determines such a section away from a compact

subset in ∂1P (L; 0), which we extend globally (there are no obstructions since

Aut(D2,−1) is contractible). Moreover, we choose the compact subset K ⊂
∂1P (L; 0) to be sufficiently large so that its interior together with the image

of G3→1 form a cover of ∂1P (L; 0). Finally, we assume that the right inverse

chosen in (4.32) satisfies the following property.

(8.6)
On the image of G3→1, Q∂1P(L;0) agrees with the right inverse induced

by the gluing map.

Let us briefly explain the construction of this induced right inverse. For

each pair (u, θ, v) in this neighbourhood, v comes equipped with two marked

points obtained as the images of the two marked point which stabilize a sphere

bubble. The image of Q∂1P(L;0) is the set of tangent vectors whose projection

to CPn−1 vanishes at one of the two points and lies on a prescribed hyperplane

at the other.

Lemma 8.3. There exists a continuous gluing map

(8.7) G: ∂1P (L; 0)× [S,+∞)→ P(L; 0)

whose restriction to each slice ∂1P (L; 0) × {S1} is a smooth immersion and

such that the diagram

(8.8) ∂̃3P (L; 0)× [S,+∞)2

**

// ∂1P (L; 0)× [S,+∞)

��
P(L; 0)

commutes.

Note that there is a slight abuse of notation since we are writing G in

equation (8.7) for what should more consistently be written as G1→0. The proof
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of this result is essentially the same as that of Lemma 7.3. In a neighbourhood

of ∂̃3P (L; 0), we define G as the composition of the inverse to G3→1, with

the gluing map G3→0. On K × [S1,+∞), the gluing map G is defined as in

equation 6.1. The condition we imposed in equation (8.6) guarantees that these

two maps agree whenever both are defined, which implies the commutativity

of the diagram (8.8).

We shall now prove that this map has degree 1 onto a neighbourhood of

∂1P (L; 0). Our starting point is the construction of a function on pairs of

points in FP(L) which will play the role of a distance even though it does not

satisfy the triangle inequality. Given two maps w and w′ in F(L), we define

(8.9) d̃
(
(R,w), (R′, w′)

)
=
∣∣R−R′∣∣+ min

θ

(
|θ|+ max

z
d(w(zeiθ), w′(z))

)
,

where d on the right-hand side is the ordinary distance with respect to a fixed

metric which is smaller than all gz,R metrics.

Lemma 8.4. The map d̃ is continuous and vanishes only on the diagonal.

We shall compare this function to the product metric

(8.10)

d((R, u, θ, v, S), (R′, u′, θ′, v′, S′)) = |R−R′|+|S−S′|+d(θ, θ′)+d(u, u′)+d(v, v′)

of ∂1P (L; 0). The following lemma is a quantitative version of the injectivity

property of preG implied by Lemma 4.12.

Lemma 8.5. For each ρ ≥ 0, there exists a constant ε̃(ρ) ≥ 0 such that

d̃(preGS(u, θ, v),preGS′(u
′, θ′, v′)) ≤ ε̃(ρ)

=⇒ d((R, u, θ, v, S), (R′, u′, θ′, v′, S′)) ≤ ρ

whenever (R, u, θ, v, S) and (R′, u′, θ′, v′, S′) are elements of K with u(1) =

v(−1) and u′(1) = v′(−1).

Proof. Fix ρ ≥ 0, and assume, by contradiction, that there exists a se-

quence of pairs (Ri, ui, θi, vi, Si) and (Ri, u
′
i, θ
′
i, v
′
i, S
′
i) such that

d((Ri, ui, θi, vi, Si), (R
′
i, u
′
i, θ
′
i, v
′
i, S
′
i)) ≥ ρ,(8.11)

lim
i→∞

d̃(preGSi(ui, θi, vi), preGS′i
(u′i, θ

′
i, v
′
i)) = 0.(8.12)

We write (Ri, wi) and (R′i, w
′
i) for preGSi(ui, θi, vi) and preGS′i

(u′i, θ
′
i, v
′
i) re-

spectively. First, we observe that the finiteness of the moduli space P(L;−β)

and Lemma 3.8 imply that we may assume that for sufficiently large i, we have

an identity

(8.13) (Ri, u ◦ r−θi) = (R′i, u
′ ◦ r−θ′i) = (R, u)

for some fixed (R, u) that is independent of i.
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Using the compactness ofK, we may assume that the sequences (θi, vi) and

(θ′i, v
′
i) converge respectively to (θ, v) and (θ′, v′). In addition, if Si converges

to S and S′i to S′, then the fact, proved in Lemma 4.12, that preG is an

embedding, contradicts our assumptions.

One of Si and S′i must therefore converge to +∞. To see that the other

must satisfy the same property, we observe that the fact that v is not in the

trivial homotopy class implies that for each (u, θ, v) ∈ K there is a point z(u,θ,v)

in the interior of D2 such that

(8.14) d
Ä
v(z(u,θ,v)), L

ä
≥ 2ρ0

for a uniform constant ρ0; we assume that ρ ≤ ρ0. The point z(u,θ′i,v
′) deter-

mines a marked point zSi,wi in the domain of wi, which, for an unbounded

sequence Si, converges to the boundary. Assuming that Si converges to +∞
but S′i does not, we find that there is a neighbourhood of ∂D2 which is mapped

to the ρ0-sized neighbourhood of L by w′i, but whose image under wi lies away

from this set. We conclude that Si and S′i both converge to +∞.

A similar analysis shows that d̃(wi, w
′
i) is necessarily bounded above by

θ − θ′/2 as Si and S′i converge to infinity, so we must assume θ = θ′ in order

for (8.12) to be satisfied. The final step of showing that v = v′ is left to the

reader. �

Next, we consider a map Gε given as the composition of the gluing map

G̊ε with the projection to P(L; 0). Pick ρ much smaller than the injectivity

radius of ∂1P (L; 0), and let the constant ε in Proposition 5.5 be smaller than
ε̃(ρ)
8cp

, where ε̃(ρ) is given by the previous lemma and cp is a uniform Sobolev

constant (see Lemma 10.8).

Lemma 8.6. The inverse image of a point under Gε has radius smaller

than ρ.

Proof. Assume that Gε,S(u, θ, v, Y ) and Gε,S′(u
′, θ′, v′, Y ′) are equal, and

note that the projections of G̊ε,S(u, θ, v, Y ) and G̊ε,S′(u
′, θ′, v′, Y ′) to S1 are

respectively ε̃
8cp

-close to θ and θ′.

Expressing Gε,S(u, θ, v, Y ) and Gε,S′(u
′, θ′, v′, Y ′) as the composition of

this small rotation with the exponential of a vector field along the pre-gluing

map, we find that

d̃(expw(Y ◦ r−θ + sol(Y ) ◦ r−θ), expw′(Y
′ ◦ r−θ′ + sol(Y ′) ◦ r−θ′))(8.15)

≤ ε̃

4cp
≤ ε̃

4
,

where w = u#Sv◦φS◦r−θ and w′ = u′#S′v
′◦φS′◦r−θ′ . Since |Y +sol(Y )|C0 ≤ ε̃

4

(similarly for Y ′), we conclude that

(8.16) d̃(preGS(u, θ, v),preGS′(u
′, θ′, v′)) ≤ ε̃(ρ),

which implies the desired result by the previous lemma. �
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Consider the smooth manifolds with boundary

(8.17) P(L; 0) ∪ ∂̃2P (L; 0) and ∂̄1“P (L; 0) ≡ ∂1P (L; 0) ∪ ∂̃3P (L; 0)

obtained respectively by gluing ∂̃2P (L; 0) × (S,+∞] to P(L; 0) along G2→0,

and ∂̃3P (L; 0) × (S,+∞] to ∂1P (L; 0) along G3→1. Combining Lemmas 7.2,

7.3, and 8.3, we obtain a map

(8.18) ∂̄1“P (L; 0)× [S,+∞)→ P(L; 0) ∪ ∂̃2P (L; 0)

whose restriction to each slice ∂̄1“P (L; 0) × {S1} is an immersion which is an

embedding near the boundary of ∂̄1“P (L; 0) and is moreover transverse to the

boundary of P(L; 0) ∪ ∂̃2P (L; 0).

Lemma 8.7. There exists a proper continuous map

(8.19) F ρ : P(L; 0) ∪ ∂̃2P (L; 0)→ [0,+∞)

and a constant S sufficiently large such that the diagram

(8.20) preG̊
∗

kerεDP0,1 × [S,+∞) //

��

P(L; 0)

��
[S,+∞) // [0,+∞]

commutes up to the universal constant 2ρ for S sufficiently large.

Proof. By Lemmas 7.2 and 8.3, the restriction of G to the image of G3→1

is a diffeomorphism onto a neighbourhood of ∂3P (L; 0) in P(L; 0). We define

F ρ in this neighbourhood to agree with the gluing parameter, and we let it

vanish identically away from the image of Gε. Our main task is to extend this

map to the remainder of P(L; 0).

Given w ∈ Im(Gε), we consider a sequence of compact neighbourhoods

with nonempty interior whose intersection is w. The inverse images are com-

pact subsets of preG̊
∗

kerε×[S,+∞) whose intersection is G−1
ε (w). According

to Lemma 8.6, the diameter of G−1
ε (w) is bounded by ρ, so we may choose

a neighbourhood of w whose inverse image has diameter bounded by 2ρ. By

fixing a triangulation of P(L; 0) which is subordinate to this cover, it is easy to

construct the desired function (simply by averaging over simplices). We omit

the details but the reader may consult the proof of the next lemma and adapt

it here. �

In particular, the map G has a well-defined degree at infinity; a path

between points in F ρ−1([S1,+∞) does not intersect the image of the boundary

of ∂1P (L; 0)× [S,+∞) if S1 ≥ S + 2ρ.

Lemma 8.8. The gluing map G has degree 1 at infinity ; in particular, it

is a surjection onto a neighbourhood of ∂1P (L; 0) in P(L; 0).
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Proof. We shall construct a map from a neighbourhood of ∂1P (L; 0) in

P(L; 0) to the product ∂1P (L; 0)×[S,+∞) which will serve as a homotopy left

inverse to the gluing map G. Pick a triangulation of P(L; 0) as in the previous

lemma such that all simplices have inverse images under Gε whose diameter is

smaller than 2ρ.

Construct a map I from the image of G̊ε to ∂1P (L; 0) × [S1,+∞) as

follows. In a neighbourhood of ∂3P (L; 0), this map is the honest inverse to G.

Away from ∂3P (L; 0), pick an arbitrary inverse image in preG̊
∗

kerεDP0,1 for

each vertex of the chosen triangulation, and let the image of a vertex be the

projection of this pre-image to ∂1P (L; 0)× [S,+∞). We extend this map to a

cell of the triangulation by observing that the image of all vertices is contained

in a geodesically convex ball, and using geodesics to define an analogue of

linear interpolation.

To prove that I is indeed a homotopy left inverse to G, note that the

composition I ◦ G maps every point to a point which is at most 2ρ away.

In particular, every point and its image are connected by a unique shortest

geodesic. Following this geodesic defines the desired isotopy. �

8.2. Construction of “P(L; 0). Returning to the proof of Lemma 8.6 in the

case where Y vanishes, we find that since solS(0) is bounded above in norm by

a constant multiple of e−2(1−δ)S , the assumption that

(8.21) GS(u, θ, v) = GS′(u, θ
′, v′)

implies that the d̃-distance between preG̊(u, θ, v, S) and preG̊(u, θ′, v′, S′) is

also bounded by a constant multiple of e−2(1−δ)S + e−2(1−δ)S′ .

Applying Lemma 8.5, we conclude

Lemma 8.9. For any ρ, we may choose S large enough so that equa-

tion (8.21) implies that (u, θ, v, S) and (u, θ′, v′, S′) are within ρ of each other.

Since the distance in ∂1P (L; 0)× [S,+∞) is bounded below by the differ-

ence between the gluing parameters, we conclude

Corollary 8.10. If a sequence Si converges to infinity and

(8.22) Im GSi ∩GS′i
6= ∅,

then limi→+∞ |Si − S′i| = 0.

We can also specialize Lemma 8.9 to a fixed S. For S large enough, it

implies that no two points that are a bounded distance away from each other

can have the same image. On the other hand, Proposition 6.1 implies that GS

is injective in sufficiently small balls in ∂1P (L; 0). We conclude
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Lemma 8.11. If S is large enough, then the gluing map GS is a smooth

codimension 1 embedding. Moreover, for each ρ, we may choose S large enough

so that the inverse images of points under G |[S,+∞) are bounded in diameter

by ρ.

The image of GS bounds a compact submanifold with corners included as

a codimension 0 submanifold of P(L; 0) ∪ ∂̃2P (L; 0) and can therefore serve

as a model of “P(L; 0). However, since we have not shown the gluing map

to be smooth in the direction of the gluing parameter, we shall perform a

slightly more complicated construction in order to obtain appropriate control

of the normal bundle of the boundary of “P(L; 0). Using Assumption (8.1), we

can recover the gluing parameter from the intersection point with N?, as in

Section 7.1.

Lemma 8.12. There exists a smooth map

(8.23) P(L; 0)→ R

whose restriction to the image of U? × [S,+∞) is the inverse to the gluing

parameter.

In particular, the images of U? under the gluing map for different values

of the gluing parameter are disjoint. In addition

Lemma 8.13. There exists an open subset V? ⊂ U? which intersects each

component of ∂1P (L; 0) nontrivially such that

(8.24) G−1(GS(u, θ, v)) = (u, θ, v, S)

whenever S is large enough and (u, θ, v) ∈ V?.

Proof. Since each map GS is injective, it suffices to show that upon shrink-

ing U?, we can avoid the images of points in the complement of the region where

condition (8.1) holds. This is an immediate consequence of the second part of

Lemma 8.11. �

This allows us to refine the function F ρ and hence establish the main

result of this section.

Proof of Proposition 8.1. Corollary 8.10 implies that we may pick a se-

quence Si of positive real numbers such that

(8.25) lim
i→+∞

Si = +∞ and Im GS ∩ Im GSi = ∅ whenever S ≥ Si+1.

This implies that Im GSi+1 separates Im GSi from the end. In particular, a

neighbourhood of ∂̄1“P (L; 0) can be written as union of cobordisms between

Im GSi and Im GSi+1 . We set the function F to agree with Si on the image

of the map GSi and with the value of the gluing parameter on the image of
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G |V?×[S,+∞). Lemma 8.13 implies that these two conditions are compatible.

Trivializing a neighbourhood of Im GSi using a map to R which agrees with the

[S,+∞) coordinate near GSi (V?), we obtain collar neighbourhoods of Im GSi

in the two cobordism for which it appears as a boundary, so we can extend F

linearly with respect to the normal direction. Any extension of F to a function

on the interior of the cobordism which agrees with this linear function near the

boundary, agrees with the gluing parameter on G
(
V? × [Si, Si+1)

)
, and takes

values in the open interval (Si, Si+1) will satisfy the desired conclusion. �

9. Triviality of the tangent space of the cobordism

In this section, we prove Lemma 2.21. We first explain the construction

of a compact CW-pair (X (L), ∂X (L)) with an inclusion of (Ĉ(L), ∂̄1Ĉ (L)) and

an extension of the gluing map GC to ∂X (L). In the last part of this section,

we construct the CW-complex Y(L).

9.1. Constructing a finite-dimensional replacement for FC(L). We begin

by recalling that the projection map

(9.1) π : ∂FC(L)→ P0,1(L;−β)

is a weak homotopy equivalence. The choice of a section of

(9.2) ∂̃3P (L; 0)→ P0,1(L;−β) ∼= P(L;−β)× S1

together with the gluing map G3→1
S for a sufficiently large S gives an inclusion

(9.3) ι : P0,1(L;−β)→ ∂C(L)→ ∂FC(L)

such that the composite with the projection map (9.1) is the identity. More-

over, if we consider the closure of the codimension 1 stratum ∂̄1Ĉ (L) ⊂ Ĉ(L)

(see the paragraph following Lemma 2.15), then the choice of such a gluing

parameter also determines, up to a contractible choice, an inclusion

(9.4) ∂̄1Ĉ (L)→ ∂C(L)

which is the identity away from a collar of the boundary.

We now fix a triangulation of ∂̄1Ĉ (L). Given a vertex v ∈ ∂̄1Ĉ (L), pick a

path in

(9.5) π−1(π(v)) ⊂ ∂FC(L)

connecting v to ιπ(v). Note that this is possible because the fibres of π are

connected. (In fact, they have the weak homotopy type of a point.) Next, we

observe that every edge in our triangulation of ∂̄1Ĉ (L) gives rise to a loop in

∂FC(L) given as the concatenation of the given edge with the paths running

from its endpoints to ι (P0,1(L;−β)) and with the image of the edge under

the composition of the projection (9.1) with the section (9.3). The image of

this loop in P0,1(L;−β) is the composition of a path with its inverse, hence
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obviously contractible, so we can extend the loop in ∂FC(L) from S1 = ∂D2

to the interior of the disc. Note that we have now constructed a 2-dimensional

CW-complex which contains the 1-skeleton of ∂̄1Ĉ (L) and which retracts to

P0,1(L;−β).

Proceeding inductively, and using at every step the fact that π is a weak

homotopy equivalence, we obtain a CW-complex that we will denote ∂X (L;β)

which still retracts to P0,1(L;−β) and contains all of ∂̄1Ĉ (L). More precisely,

Lemma 9.1. ∂X (L;β) is homeomorphic to the cone on the projection map

(9.6) π : ∂̄1Ĉ (L)→ P0,1(L;−β)

and is equipped with a map

(9.7) ι∂X : ∂X (L;β)→ ∂FC(L)

which is a weak homotopy equivalence.

Using the fact that the projection map

(9.8) FC(L)→ P(L;−β)×D2

is also a weak homotopy equivalence, the same procedure constructs a CW-

complex X (L;β) containing ∂X (L;β) as a subcomplex, together with a dia-

gram

(9.9)(
P(L;−β)×D2,P(L;−β)×S1

)
� w

∼=

**

� � //
Ä
Ĉ(L), ∂̄1Ĉ (L)

ä
// (X (L), ∂X (L))

∼=

iX

vv
(FC(L), ∂FC(L)) ,

where the top row consists of inclusions of pairs of CW-complexes. Recall that

FC(L) carries a Banach bundles EC whose fibres are smooth anti-holomorphic

1-forms on the disc with values in TM .

Lemma 9.2. There exists a finite-dimensional trivial vector bundle VX
over X (L) and a map of vector bundles

(9.10) VX → i∗XEC

whose image consists of 1-forms supported away from −1, and whose direct

sums with DC and D∂C give surjective maps of bundles

DXC : VX ⊕ i∗XTFC(L)→ i∗XEC ,(9.11)

DX∂C : VX ⊕ i∗∂XT∂FC(L)→ i∗XEC .(9.12)

Moreover, we may assume that the map (9.10) vanishes on Ĉ(L)×{0} ⊂ X (L).



EXOTIC SPHERES 157

Proof. By a standard patching argument, it suffices to prove the result in

a neighbourhood of a single point. Given a smooth map v : (D2, S1)→ (M,L),

the fact that the Cauchy-Riemann operator is elliptic implies that the cokernel

of

(9.13) D∂̄ : C∞((D2, S1), (v∗TM, v∗TL))→ C∞(v∗TM ⊗ Ω0,1D2)

is finite-dimensional. Starting with any finite-dimensional subspace V∞ of

C∞(v∗TM ⊗ Ω0,1D2) which is transverse to the image of D∂̄ , we pass to

our favourite Sobolev space completion and consider the surjective map with

bounded inverse

(9.14) V∞ ⊕W 1,p,δ((D2, S1), (v∗TM, v∗TL))→ Lp,δ(v∗TM ⊗ Ω0,1D2).

Since elements of V∞ are smooth on D2, they decay like e−s on the strip, so,

for sufficiently large S, the difference between an element of V0 and its product

with a cutoff function that vanishes when s ≥ S has arbitrarily small | |p,δ-
norm. In particular, starting with a right inverse to (9.14), we can construct

a right inverse to

(9.15) VS ⊕W 1,p,δ((D2, S1), (v∗TM, v∗TL))→ Lp,δ(v∗TM ⊗ Ω0,1D2),

where VS stands for those 1-forms obtained by cutting off V∞ at S. It follows

immediately that VS surjects onto the cokernel of D∂̄ in a neighbourhood of v

as well. �

9.2. Pre-gluing smooth maps. Recall that for each S sufficiently large, we

constructed a manifold with corners “PS(L; 0) in the previous section together

with an inclusion

(9.16) ∂̄1Ĉ (L) ∼= ∂̄1“P (L; 0)→ ∂“PS(L; 0)

as a union of the closure of some top boundary strata. Moreover, this map

factors through an inclusion

(9.17) ∂̄1Ĉ (L)→ FP0,1(L : 0) ∼= S1 ×FP(L; 0),

which we shall extend to ∂X (L;β).

We first define a map

(9.18) preG̊
∂X
S : ∂X (L)→ FP0,1(L; 0)

for each S sufficiently large by pre-gluing, as in Section 4.3, the chosen map

in ∂X (L) with the exceptional solution whose boundary it intersects. For

convenience, we require that the restriction of the map ιX defined in Lemma 9.1

to

(9.19) ∂̄1Ĉ (L)× [0, 1/4) ⊂ ∂X (L)
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factor through the projection to ∂̄1Ĉ (L). In particular, the same property

holds for preG̊
∂X
S .

Next, we interpret the vector field solS introduced in Proposition 5.5 as a

vector field valued in

(9.20) preG̊
∂X
S

∗
TFP0,1(L; 0)|∂̄1Ĉ (L)× {0}.

Note that this is possible since we have chosen an inclusion of ∂̄1Ĉ (L) as a com-

pact subset of ∂C(L), which we might as well assume is contained in the subset

K discussed in Proposition 5.5, since this subset was an arbitrary compact

subset. By linear interpolation, we extend this vector field to ∂̄1Ĉ (L)× [0, 1/4]

so that it vanishes on ∂̄1Ĉ (L)× {1/4}, which allows us to further extend solS
to a section

(9.21) sol∂XS : ∂X (L)→ preG̊
∂X
S TFP0,1(L; 0)

which vanishes away from the aforementioned neighbourhood of ∂̄1Ĉ (L). Ex-

ponentiating sol∂XS defines the desired map

(9.22) G̊
∂X
S ≡ exp

preG̊
∂X
S

Ä
sol∂XS

ä
: ∂X (L)→ FP0,1(L; 0).

Note that the pre-gluing map of vector fields defined in equation (5.46)

extends to this setting to give a map

(9.23) predG̊
∂X
S : ι∗∂XT

ext∂F1,p,δ
C (L;β)→ preG̊

∂X
S TF1,p

P0,1
(L; 0),

which is uniformly bounded by the argument given in Lemma 5.10.

As in Section 5.2, we can construct a right inverse to the ∂̄-operator.

Lemma 9.3. If the gluing parameter S is sufficiently large, then there

exists a map

(9.24) VX |∂X → G̊
∂X ∗Ep,δP0,1

,

whose restriction to ∂1P (L; 0) vanishes and such that its sum with DP0,1 is a

surjective operator

(9.25) D∂X
P0,1

: VX ⊕ G̊
∂X ∗

TF1,p,δ
P0,1

(L; 0)→ G̊
∂X ∗Ep,δP0,1

.

Moreover, as the gluing parameter S converges to +∞, we may choose a uni-

formly bounded right inverse Q
G̊
∂X to this operator.

Proof. For simplicity, we only explain the construction in ∂X (L)−(∂C(L)×
[0, 1/4)), where G̊

∂X
agrees with the pre-gluing map preG̊

∂X
. To extend the

construction to ∂̄1Ĉ (L) × [0, 1/4), we repeat all arguments, inserting parallel

transport from preG̊
∂X

to G̊
∂X

. Since parallel transport will take place only

in a neighbourhood of the compact set ∂̄1Ĉ (L), Proposition 5.4 can be applied

to bound all error terms that it produces.
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Let us fix a right inverse Q∂X to the extension of (9.11) to the Banach

spaces

(9.26) VX ⊕ ι∗∂XT ext∂F1,p,δ
C (L;β)→ i∗∂XE

ext,p,δ
C ,

where we are using the notation introduced in equations (2.70) and (2.72).

First, we define the map (9.24) as a composition

(9.27) VX → i∗∂XEC → G̊
∂X ∗Ep,δP0,1

,

where the second arrow is defined by pre-gluing of 1-forms. This is made par-

ticularly easy by the fact that the image of VX in i∗∂XEC consists of compactly

supported forms, so the pre-gluing map is simply an extension by 0 with no

cutoff needed.

Next, we define an approximate right inverse ‹Q
G̊
∂X again as a composition

(9.28) G̊
∂X ∗Ep,δ[0,+∞) → i∗∂XE

ext,p,δ
C

Q∂X−→ VX ⊕ i∗∂XT ext∂F1,p,δ
C (L;β)→ VX ⊕ G̊

∂X ∗
TF1,p,δ
P0,1

(L; 0),

where the first map is the breaking map of (5.53) and the last map is the direct

sum of the identity on VX with the pre-gluing map of vector fields predG̊
∂X
S .

Lemma 5.13 did not require holomorphicity of the curves (just smooth-

ness), so that the norm of the operator

(9.29) lim
S→+∞

∥∥∥∥id−D∂X
P0,1
◦ ‹Q

G̊
∂X
S

∥∥∥∥→ 0

converges to 0 as S grows. We have made things particularly simple by requir-

ing that the image of the map VX → i∗∂XEC consist of compactly supported

1-forms. In particular, choosing S large enough so that their support is disjoint

from ξ1(I+∞S ), we know that ‹Q
G̊
∂X is an honest inverse to D∂X

P0,1
on the image

of VX . We can then construct a right inverse as in Corollary 5.14. �

The next step in the proof of Lemma 2.21 is the construction of the map

between kernels of operators asserted in equation (2.82).

Corollary 9.4. If S is sufficiently large, then the composition of pre-

gluing of tangent vector fields, parallel transport from preG̊
∂X
S to G̊

∂X
S , and the

projection to the kernel of D∂X
P0,1

along the inverse Q
G̊
∂X

(9.30)
Ä
id−Q

G̊
∂X ◦D∂X

P0,1

ä
◦ΠG̊

∂X

preG̊
∂X ◦ predG̊

∂X

restricts to an isomorphism between the kernels

(9.31) Ψ̊∂X : kerD∂X
∂C → kerD∂X

P0,1

which is uniformly bi-lipschitz.
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Proof. It is not hard to check, using Lemma 6.4 and the estimates stated

in Appendix 10.1, that the restriction of Π
G̊
∂X
S

preG̊
∂X
S

◦ predG̊
∂X
S to kerD∂X

∂C is

an injection which distorts the norm by an arbitrarily small amount if S is

sufficiently large. The arguments given to justify Lemma 6.5 and the quadratic

inequality of Proposition 5.4 show that the norm of

(9.32) D∂X
P0,1
◦ΠG̊

∂X

preG̊
∂X ◦ predG̊

∂X

decays with S. Using in addition the fact that the norm of Q
G̊
∂X is uniformly

bounded, we conclude that (9.30) is arbitrarily close to ΠG̊
∂X

preG̊
∂X ◦ predG̊

∂X
as

S → +∞, and hence it is also an injection. Comparing ranks implies that it

is an isomorphism. �

Remark 9.5. From now on, we shall not have to change the gluing pa-

rameter S anymore in our construction of “PS(L; 0) and hence of the manifold

Ŵ (L).

The projection map (9.30) is the key step in the construction of the stabi-

lization of TŴ (L) which we shall use to prove triviality of the tangent space of

Ŵ (L). Upon restricting (9.30) to ∂̄1Ĉ (L), we need to control the image of the

subspace aut(D2,−1). Let (u, θ, v) denote an element of ∂C(L) in the image of

the previously fixed inclusion ∂̄1Ĉ (L) → ∂C(L), and let w[S denote its image

under G̊S .

Assume that (u, θ, v) lies in the open set U? of equation (8.1). Even though

we do not know that the path GS(u, θ, v) is smooth as S varies, Lemma 8.1

implies that the derivative of F with respect to S along the path GS(u, θ, v)

is equal to 1. In particular, this path is obviously outwards pointing; we

shall show that it has, in an appropriate sense, an approximate derivative in

directions normal to N?, and that Ψ̊∂X (dv (∂s)) is close to this derivative,

which will imply that it is also outwards pointing.

Fix a map π? from a neighbourhood of v(0) in Cn × CPn−1 to D2 whose

fibre at 0 is the intersection of this neighbourhood with N?. Since the tangent

space of F−1(S) = Im GS consists of vector fields whose value at z0(S) lies in

N?, the kernel of dF and dπ? agree.

Lemma 9.6. The differential of F factors through the composition of eval-

uation at z0(S) with the differential of π?.

We must now identify a tangent vector to D2 at the origin which yields

an outwards pointing vector upon gluing. The reader may easily check that

the map

(9.33) dπ? ◦ dG̊S(u, θ, v) (∂s) |z0(S),
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where ∂s is the vector field along D2 which is the infinitesimal translation on

D2−{±1} under the identification with strip I+∞−∞ coming from our choices of

strip-like ends, serves as an approximate derivative at s = 0 to

U? × [0,+∞)× (−1, 1)→ D2(9.34)

((u, θ, v), S, s) 7→ π?
Ä
G̊S+s(u, θ, v) (z0(S))

ä
if S is sufficiently large. The precise statement, which can be proved using

Gromov compactness, is that

(9.35)

lim
S→+∞

lim sup
s→0

∣∣∣π? ÄG̊S+s(u, θ, v) (z0(S))
ä
− dπ? ◦ dG̊S(u, θ, v) (∂s) |z0(S)

∣∣∣
s

= 0.

We conclude that (9.33) is arbitrarily close to an outwards pointing vector for

S sufficiently large.

Lemma 9.7. If S is sufficiently large, then the image of dv (∂s) under the

composition of Ψ̊∂X with the projection

(9.36) TP0,1(L; 0)→ TP(L; 0)

is a vector which points outwards along the boundary of “PS(L; 0). The image

of dv (∂p) under Ψ̊∂X is bounded below in norm by a uniform constant inde-

pendent of S and is arbitrarily close in the Lp-norm to a positive multiple of

the generator dw[S (∂θ) of the kernel of (9.36).

Proof. The statement about the image of dv (∂p) follows from the results

proved in Section 6.3, in particular, Lemmas 6.4 and 6.2, so it suffices to prove

the first statement. We also know from Section 6.3, in particular Lemmas 6.4

and 6.3, that the projection of the image of dv (∂s) under the compositions

of (9.30) and (9.36) is transverse to the boundary of “PS(L; 0) at every point.

Therefore, it suffices to prove that on each component of ∂̄1Ĉ (L), there is some

point for which it is outwards pointing; we choose this point to lie in U?. By

equation (9.35) and Lemma 9.6, we simply have to prove that the image of

the vector field Ψ̊∂X (dv (∂s)) evaluated at z0(S) under the differential of π? is

sufficiently close to dπ? ◦ dG̊S(u, θ, v) (∂s) |z0(S).

Gromov compactness implies that the norm of (9.35) is uniformly bounded

from below. More precisely,

(9.37) lim
S→+∞

∣∣∣∣dπ? ◦ dG̊S(u, θ, v) (∂s) |z0(S)− dπ? ◦ Ψ̊∂X (dv (∂s)) |z0(S)

∣∣∣∣ = 0,

and the norm of dπ? ◦ΠG̊
preG̊
◦ predG̊S (dv (∂s)) is independent of S. (A priori,

there might be an error term coming from parallel transport in the θ and R

directions, but our choice of metric is independent of these two variables in
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this region.) It suffices therefore to prove that

(9.38) dπ? ◦ Ψ̊∂X (dv (∂s)) |z0(S)

is close to dπ? ◦ΠG̊
preG̊
◦predG̊S (dv (∂s)) |z0(S), which is the same as bounding

the norm of

(9.39) dπ? ◦QG̊
∂X ◦D∂X

P0,1
◦ΠG̊

∂X

preG̊
∂X ◦ predG̊

∂X

applied to dv (∂s) and evaluated at z0(S). However, the composition

(9.40) dπ? ◦QG̊
∂X

vanishes since Q
G̊
∂X takes values in vector fields which, at z0(S), lie in the

tangent space of N?. �

9.3. Construction of the isomorphism of kernels. The isomorphism as-

serted in equation (2.82) is constructed starting with the isomorphism defined

in equation (9.30). Since (2.82) only refers to FP(L; 0), we start with the

projection

FP0,1(L; 0)→ FP(L; 0)(9.41)

(R, θ, w) 7→ (R,w ◦ r−θ),

which gives a short exact sequence on tangent spaces

(9.42) 0→ TS1 → TFP0,1(L; 0)→ TFP(L; 0)→ 0.

Note that this decomposition differs, by θ-rotation, from the decomposition of

TFP0,1(L; 0) induced by the definition of the space FP0,1(L; 0) as a product

S1 ×FP(L; 0).

Our goal is to describe the operator DP0,1 , and hence also D∂X
P0,1

, using only

the space FP(L; 0). To do this, we first consider a rank 1 vector space spanned

by a vector ∂θ which we think of as the infinitesimal generator of rotations on

the disc. By compositing the inclusion of FP(L; 0) into FP0,1(L; 0) at angle φ

with rotation by φ, we consider the composition of maps

(9.43)

〈∂θ〉
(∂θ,dw(∂θ))

// TφS
1 ⊕ T(R,w)FP(L; 0)

(id,rφ)
// TφS

1 ⊕ T(R,w◦rφ)FP(L; 0)

∼=
��

EP,(R,w) EP,(R,w◦rφ)r−φ
oo T(R,φ,w◦rφ)FP0,1(L; 0).

DP0,1

oo

By inspecting our construction of DP0,1 , we find that it is S1-equivariant since

all our choices (of almost complex structures Jθ,R, metrics gθ,R, and 1-form

γθ,R) are pulled back from a fixed choice at θ = 0 by the rotation rθ. We

conclude
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Lemma 9.8. The map

(9.44) ∂θ → EP,(R,w),

obtained by composing all the arrows in equation (9.43), is independent of φ

and vanishes if w lies in P(L; 0).

We denote the direct sum of equation (9.43) with DP by

(9.45) D
〈∂θ〉
P : 〈∂θ〉 ⊕ TFP(L; 0)→ EP .

Lemma 9.9. Given (R, θ, w) ∈ FP0,1(L; 0), and θ ∈ S1, rotation by θ

defines a commutative diagram

(9.46) 〈∂θ〉 ⊕ T(R,w)FP(L; 0)

��

// T(R,θ,w◦rθ)FP0,1(L; 0)

��
EP,(R,w)

// EP0,1,(R,θ,w◦rθ)

whose horizontal arrows are isomorphisms and whose top arrow, upon iden-

tifying ∂θ with the generator of TS1, gives a splitting of the short exact se-

quence (9.42).

We define the map

(9.47) G∂X
S : ∂X → FP(L; 0)

to be composition G̊
∂X
S with the projection (9.41). Returning to equation (9.25)

and using the previous lemma, we find that we have a surjective operator

(9.48) D
〈∂θ〉,X
P : VX ⊕ 〈∂θ〉 ⊕G∂X

S
∗
TFP(L; 0)→ G∂X

S
∗EP ,

where we can pass to spaces of smooth maps using the fact that all curves in

the image of G∂X are smooth, as well as elliptic regularity. Moreover, we have

an isomorphism of bundles

(9.49) kerD
〈∂θ〉,X
P

∼= kerDXP0,1
,

which, when composed with the isomorphism Ψ̊∂X of equation (9.31), gives an

isomorphism

(9.50) Ψ∂X : kerDX∂C → kerD
〈∂θ〉,X
P .

Finally, using Lemma 9.7, we conclude

Lemma 9.10. The restriction of (9.50) to ∂̄1Ĉ (L) decomposes as a direct

sum of the identity on VX with a map

(9.51) aut(D2,−1)⊕ T ∂̄1Ĉ (L)→ TP(L; 0)

satisfying the conditions listed in Lemma 2.21.
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Proof. That we get VX as a summand follows from the fact that D
〈∂θ〉,X
P

vanishes on VX when restricted to ∂̄1Ĉ (L). The only isotopy we need to per-

form is constant on 〈∂s〉⊕T ∂̄1Ĉ (L) and deforms the image of ∂p to be a positive

multiple of ∂θ. Lemma 9.7 and the fact that Ψ̊∂X is uniformly bi-lipschitz im-

plies one can perform this deformation through a family of isomorphism. �

9.4. Completion of the proof of Lemma 2.21. We now construct the CW-

complex Y(L) by choosing a triangulation of “PS(L; 0) extending the triangu-

lation of ∂̄1Ĉ (L). We start with the union

(9.52) “PS(L; 0) ∪
∂̄1Ĉ(L)

∂X (L)

as a CW-complex equipped with a map to FP(L). Consider the weak homotopy

equivalences

(9.53) L → FP(L)→ L,

where the first map is the inclusion of constant maps and the second is the eval-

uation map to L. The argument presented in the previous section to construct

X and prove Lemma 9.1 implies

Lemma 9.11.There exists a CW-complex Y(L) including ∂X(L), “PS(L; 0),

and L as subcomplexes, with a map

(9.54) ιY : Y(L)→ FP(L),

which is a homotopy equivalence.

We extend VX to a trivial vector bundle over Y(L), equipped with a map

(9.55) VX → ι∗YE
p,δ
P

extending (9.24). The surjectivity property of equation (9.25) may not hold

globally, but it holds in some neighbourhood of ∂X (L) in Y(L). Moreover,

using the same local construction as in the proof of Lemma 9.10, we can also

produce a trivial vector bundle VY over Y(L) equipped with a map

(9.56) VY → ι∗YE
p,δ
P

which vanishes near ∂X (L), and such that the direct sum

(9.57) VY ⊕ VX ⊕ 〈∂θ〉 ⊕ ι∗YTFP(L; 0)→ ι∗YEP
is surjective. Extending VY trivially to X (L) and defining the map

(9.58) VY → ι∗XEC
to vanish, we let VZ = VX ⊕ VY , and conclude

Lemma 9.12. There exists a trivial vector bundle VZ over Z(L) satisfy-

ing equations (2.79) and (2.81) and equipped with an isomorphism map as in

(2.82).
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10. Analytic estimates for gluing

In this final section, we collect the proof of some results which are needed

for the gluing theorem.

10.1. Pointwise estimates. We start by collecting a series of pointwise

estimates which are used for gluing. All the results are elementary in nature.

The only reason for including them is that our chosen metric | |1,p,S treats the

norm of a vector field and of its covariant derivative differently as S varies.

In order to obtain uniform estimates that are independent of S, it does not

therefore seem to be sufficient, at least if we work only with our family of

metrics gS , to bound an expression in terms of the C1-norm of a vector field

X. Rather, one needs to know its separate behaviour with respect to |X| and

|∇X|, and ensure that the terms multiplying |X| can themselves be bounded

in the Lp-norm.

Let Σ be a Riemann surface (in our example, either a strip or a disc), w

a map from Σ to M , and Z a vector field along w. Let wZ = expw Z, and

let ΠwZ
w denote the parallel transport map along the image of the exponential

map from w to wZ . Our first estimate is

Lemma 10.1. There exists a constant C depending only the metric on M

such that

(10.1) |dwZ | ≤ (|dw|+ |∇Z|)eC|Z|.

In particular, if |Z| is sufficiently small, then

(10.2) |dwZ | ≤ (|dw|+ |∇Z|)(1 + C|Z|).

Moreover,

(10.3)
∣∣∣∇Π

wZ
w ZdwZ

∣∣∣ ≤ C|Z|(|dw|+ |∇Z|).
Proof. Fix a point z ∈ D2 and a tangent vector ∂s. By definition, Y (y) =

dwyZ(∂s) is a Jacobi vector field with initial conditions Y (0) = dw(∂s) and

(10.4) Y ′(0) ≡ ∇Zdw(∂s) = ∇dw(∂s)Z.

The equation for a Jacobi field is given by

(10.5) Y ′′(y) ≡ ∇2

Π
wyZ
w Z

dw(∂s) = R
Ä
Π
wyZ
w Z, Y (y)

ä
Π
wyZ
w Z

(see, e.g., [4, eq. 6.11]), so that

(10.6) |Y ′′(y)| ≤ C|Z|2|Y (y)|

which readily implies that

(10.7) |Y (y)| ≤ aeyb|Z|
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for (a, b) independent of y. Using the initial conditions, we obtain the desired

results. �

From now on, we shall assume that |Z| is bounded (say by 1). Next, let

wy : Σ→ M be a family of maps smoothly parametrized by y ∈ [0, 1]. Let X

be a vector field along the image of w, and write ΠyX for the image of X by

parallel transport along the path wy. We shall be interested in comparing the

norm of ∇X to that of ∇ΠyX.

Lemma 10.2. There exists a constant C depending only on the metric on

M such that

(10.8) |Πy∇X −∇ΠyX| ≤ C|X|max
y
|dwy|

∫
y
|∂ywy|.

In particular, if wy = expw yZ for some vector field Z , then

(10.9) |Πw1
w ∇X −∇Πw1

w X| ≤ C|X||Z|(|dw|+ |∇Z|).

Proof. Fixing a chart on Σ with coordinates s and t, we bound the y-deriv-

ative of the norm of the left-hand side of equation (10.8) as follows:

d

dy

∣∣∣Πy∇dwy(∂s)X −∇dwy(∂s)ΠyX
∣∣∣

≤
∣∣∣∇∂ywyΠy∇dwy(∂s)X

∣∣∣+ ∣∣∣∇∂ywy∇dwy(∂s)ΠyX
∣∣∣ ≤ C|∂ywy||dwy(∂s)||X|,

where C is the norm of the curvature of the metric. This yields equation (10.8)

by integration. Using Lemma 10.1, we conclude the bound (10.9). �

Given a two-parameter family of maps wx,y, with (x, y) ∈ [0, 1]2, we shall

consider the difference between parallel transport along the two sides of the

square.

Lemma 10.3. There exists a constant C depending only on the metric on

M such that ∣∣∣Πw1,1
w0,1Π

w0,1
w0,0X −Π

w1,1
w1,0Π

w1,0
w0,0X

∣∣∣ ≤ C ∫
x,y
|∂ywx,y||∂xwx,y||X|,(10.10)

∣∣∣∇ ÄΠw1,1
w0,1Π

w0,1
w0,0X −Π

w1,1
w1,0Π

w1,0
w0,0X

ä∣∣∣ ≤ C|∇X| ∫
x,y
|∂ywx,y||∂xwx,y|(10.11)

+ C|X|
Ä

max
x
|dwx,0|

∫
x
|∂xwx,0|+ max

x
|dwx,1|

∫
x
|∂ywx,1|

+ max
y
|dw0,y|

∫
y
|∂yw0,y|+ max

y
|dw1,y|

∫
y
|∂yw1,y|

ä
.

Idea of the proof. The first result follows from a straightforward computa-

tion along the lines of Lemma 10.2. To prove the second estimate, we commute

∇ past the parallel transport map twice in each term, introducing error terms
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bounded as in equation (10.8) which account for the first term of (10.11). The

bound then follows from the first estimate applied to ∇X. �

Next, we prove a pointwise analogue of the quadratic inequality. Let γ be

a 1-form on Σ, XH a Hamiltonian vector field on M , and Jz an almost complex

structure on M depending on z ∈ Σ. Given a map w : Σ → M and a vector

field X along w, we define

(10.12) Dγ(X) = (∇X − γ ⊗∇XXH)0,1 − 1

2
Jz (∇XJz) ∂γw,

where ∂γw = (dw − γ ⊗XH)1,0 and ∇ stands for the Levi-Civita connection

of a z-dependent metric gz on M which is almost Hermitian for Jz. Let Z be

another vector field along w. Consider the exponential of the vector fields yZ

for y ∈ [0, 1], and write wy for wyZ and Πy for Π
wy
w . The first estimate we shall

need concerns the failure of the complex linear connection ‹Π to be an isometry.

Lemma 10.4. There is a uniform constant C such that

(10.13)
∣∣∣‹ΠwZ

w Y −ΠwZ
w Y

∣∣∣ ≤ C|Y ||Z|.
Proof. We take the derivative with respect to y of the of the norm of the

above expression replacing wZ by wyZ :

d

dy

∣∣∣‹ΠyY −ΠyY
∣∣∣ ≤ ∣∣∣J Ä∇ΠyZJ

ä ‹ΠyY
∣∣∣

≤ C|Z|
∣∣∣‹ΠyY

∣∣∣ .
We then use the initial condition that ‹Πy and Πy agree when y = 0. �

Lemma 10.5. There exists a constant C depending only on M such that

(10.14)
∣∣∣‹ΠwZ

w DγX −Dγ(ΠwZ
w X)

∣∣∣ ≤ C|Z| (|∇X|+ |X| (|γ|+ |dw|+ |∇Z|)) .
Proof. Using the definition of the connection ‹Π, we obtain

d

dy

∣∣∣‹ΠyDγX −Dγ(ΠyX)
∣∣∣ ≤ ∣∣∣∇ΠyZDγ(ΠyX)

∣∣∣+ ∣∣∣∣12Jz Ä∇ΠyZJz
ä
DγX

∣∣∣∣ .
The lowest order terms of the right-hand side (where we take a derivative of

J with respect to the parallel transport of Z in either term) are bounded by a

constant multiple of

(10.15) |Z| (|∇ (ΠyX) |+ |X||γ|+ |X||∂γwy|+ |∇X|) .

Using the expression for ∂γwy and equation (10.9), we simplify this to a con-

stant multiple of

(10.16) |Z| (|∇X|+ |X|(|Z||∇Z|+ |γ|+ |dw|)) .
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To bound the remaining terms, we must bound∣∣∣∇ΠyZ∇ΠyX
∣∣∣+ |γ| ∣∣∣∇ΠyZ∇ΠyXXH

∣∣∣+ ∣∣∣Ä∇ΠyZ

Ä
∇ΠyXJz

ää
∂P0,1w

∣∣∣(10.17)

+
∣∣∣∇ΠyXJz

∣∣∣ ∣∣∣∇ΠyZ∂P0,1w
∣∣∣ .

We observe that the defining property of the Levi-Civita connection implies

that

(10.18) ∇ΠyZ∇dwy(∂s)ΠyX = R (ΠyZ, dwy(∂s)) ΠyX,

so that the first term is bounded by a constant multiple of

(10.19) |Z||X||dwy| ≤ |Z||X|(|dw|+ |∇Z|),

using equation (10.2) to bound |dwy|.
Since we can write ∇ΠyXJz = 〈ΠyX,∇Jz〉, and similarly for ∇ΠyXXH ,

we find that the second and third term are bounded by a constant multiple of

(10.20) |Z||X|(|γ|+ |dwy|) ≤ |Z||X|(|γ|+ |dw|+ |∇Z|).

Finally, since

(10.21)
∣∣∣∇ΠyZ∂γw

∣∣∣ ≤ C (|Z| (|dwy − γ ⊗XH |+ |γ| |∇XH |) +
∣∣∣∇ΠyZdwy

∣∣∣) ,
we can apply equation (10.3) to conclude that the last term is bounded by a

constant multiple of

(10.22) |Z||X|(|γ|+ |dw|+ |∇Z|).

The sum of equations (10.16), (10.19), (10.20), and (10.22) gives the desired

bound. �

Let κΣ denote any function on Σ, and consider the a norm | |p,Σ, weighted

by κΣ, on Lp functions.

Corollary 10.6. There exists a constant C depending only on the metric

on M and the Hamiltonian H such that

(10.23)
∣∣∣‹ΠwZ

w DγX −Dγ(ΠwZ
w X)

∣∣∣
p,Σ

≤ C|Z|C0 (|∇X|p,Σ + |X|C0 (|γ|p,Σ + |dw|p,Σ + |∇Z|p,Σ)) .

Next, we prove a lemma that shall be used in Section 6.2. Consider the

case Σ = D2, equipped with the Lp-metric | |p,S on vector fields introduced in

Remark 5.9, and let X and Z be a pair of vector fields along a map w : D2→M .

Lemma 10.7. There exists a constant C depending only the diameter of

w and the metric on M such that

(10.24)
∣∣∣exp−1

w

Ä
expwX ΠwX

w Z
ä
−X − Z

∣∣∣
p,S
≤ C|X|C0 |Z|p,S .
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Proof. Given a point q in M and its image qX under the exponential map

applied to a vector X, we have a bound

(10.25)
∣∣∣exp−1

q

Ä
expqX ΠqX

q Z
ä
−X − Z

∣∣∣ ≤ C|X||Z|,
since the left-hand side is a smooth function that vanishes whenever X or Z

vanish. More generally, given a path γ with end points q and r, the same

argument shows that there is a constant C`(γ) depending only on the length of

γ and the metric such that

∣∣∣exp−1
r

Ä
exprX ΠrX

r Z
ä
−X − Z −Πr

q

Ä
exp−1

q

Ä
expqX ΠqX

q Z
ä
−X − Z

ä∣∣∣(10.26)

≤ C`(γ)|X||Z|.

The result follows immediately by using the first inequality to bound the

Lp-norm of exp−1
w

Ä
expwX ΠwX

w Z
ä
− X − Z in the complement of the neck

and the second inequality to bound the Lp-norm, on the image of the neck, of

the difference between this vector field and the parallel transport of its value

at ξS,n(0, 0). �

10.2. Proof of results from Section 4.3.

Proof of Lemma 4.4. For specificity, we assume r is a boundary marked

point. A computation shows that there is a constant c0 depending only on u

such that for any vector field XZ in W 1,p

I+∞S
((u ◦ ξr)∗TM, (u ◦ ξr)∗TL)),

(10.27)
∣∣∣eδ|s|XZ

∣∣∣
1,p
≤ c0 |XZ |1,p,δ .

Note that all strips I+∞S are isometric, and moreover, the curvature of the

Levi-Civita connection ∇ on u ◦ ξr(I+∞S ) is uniformly bounded. In particular,

the Sobolev embeddings

(10.28)

W 1,p

I+∞S
((u ◦ ξr)∗TM, (u ◦ ξr)∗TL))→ C0

I+∞S
((u ◦ ξr)∗TM, (u ◦ ξr)∗TL))

admit a uniform Sobolev constant cp that is independent of S. Combining this

with (10.27), we conclude that

(10.29)
∣∣∣eδ|s|XZ

∣∣∣
∞
≤ ccp |XZ |1,p,δ

which proves the lemma upon setting

�(10.30) XZ = X ◦ ξr −Πu◦ξr
u(r)X(r).

Sketch of the proof of Lemma 4.5. We omit the elementary proof that

W 1,p,δ
(Σ,{pi},{qj})(u

∗TM, u∗TL) is a Banach space. To prove the lemma, we embed

(M,L) ⊂ (CN ,RN ) for a sufficiently large N such that M ∩ RN = L.
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Since condition (4.3) is independent on the target’s metric and since

W 1,p,δ
(Σ,{pi},{qj})(u

∗TM, u∗TL) embeds into C0 by the Sobolev lemma, it follows

that F1,p,δ
(Σ,{pi},{qj})(L) is the closed subset of the Banach space

W 1,p,δ
(Σ,{pi},{qj})(C

N ,RN )

consisting of maps whose image lies in M .

To build the chart associated to a map u ∈ F1,p,δ
(Σ,{pi},{qj})(L) we pick a

metric on CN , which is totally flat near the image of all marked points, and

such that M , and L are both totally geodesic. Consider the exponential map

W 1,p,δ
(Σ,{pi},{qj})(u

∗TM, u∗TL)→ F1,p,δ
(Σ,{pi},{qj})(L) ⊂W 1,p,δ

(Σ,{pi},{qj})(C
N ,RN )

(10.31)

X 7→ uX ≡ expu(X).

It is easy to check using the flatness of the metric near the image of all marked

points that condition (4.3) holds for uX if the norm of X is sufficiently small,

i.e., that the map is indeed well defined. To prove that the restriction of

the exponential map to vector fields of sufficiently small norm is a smooth

bijection onto a neighbourhood of u, one can easily combine the estimates that

go into proving the analogous results for compact manifolds with elementary

computations near u(pi) and u(qj) for interior and boundary marked points.

�

10.3. Sobolev bounds from Section 5. We begin by proving that the spaces

we work with are indeed Banach spaces.

Proof of Lemma 5.8. It suffices to compare | |1,p,S to a more familiar Sobo-

lev norm. The most convenient such norm comes from the induced metric gS
on ΣS ; we denote it | |1,p,gS .

One direction follows from the Sobolev embedding theorem. Indeed,

the first term of equation (5.38) is obviously bounded by the Sobolev norm

|X|1,p,gS . For the third term, we have

|X ◦ ξS,n −Π(X(ξS,n(0, 0))|1,p,S,δ ≤ |X ◦ ξS,n|1,p,S,δ + |Π(X(ξS,n(0, 0))|1,p,S,δ
≤ e2δS

Ä
|X ◦ ξS,n|1,p + |Π(X(ξS,n(0, 0))|p

+ |∇Π(X(ξS,n(0, 0))|p
ä

≤ e2δS |X ◦ ξS,n|1,p + e2δSCu#Sv|X(ξS,n(0, 0)|,

where Cu#Sv is some constant depending on S but not on X (see Lemma 10.9).

By the Sobolev embedding theorem, |X(ξS,n(0, 0))| is itself bounded by some

multiple of |X|1,p,gS , proving the existence of a constant C such that

(10.32) | |1,p,S ≤ C| |1,p,gS .
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In the other direction, we compute that the usual W 1,p-norm of a vector

field along the neck is bounded as follows:

|X ◦ ξS,n|1,p ≤ |X ◦ ξS,n −Π(X(ξS,n(0, 0))|1,p + |Π(X(ξS,n(0, 0))|1,p
≤ |X ◦ ξS,n −Π(X(ξS,n(0, 0))|1,p,δ + Cu#Sv |X(ξS,n(0, 0)| .

The result follows immediately. �

In order to proceed with the proof of the assumptions of Floer’s Picard

lemma, we must establish that our chosen Sobolev norms | |1,p,S and | |1,p
satisfy reasonable properties with respect to each other and the C0-norm.

Lemma 10.8. If the Sobolev space W 1,p is equipped with the norm | |1,p,S ,

then the inclusion

(10.33) W 1,p ((u#Sv)∗TM, (u#Sv)∗TL)→ C0 ((u#Sv)∗TM, (u#Sv)∗TL)

admits a Sobolev constant cp that is independent of S (and hence of u and v

since K is compact).

Proof. Note that surfaces obtained by removing the neck from ΣS are

independent of S. Moreover, the standard Sobolev norm on functions I2S−2S

has a Sobolev constant that is independent of S. (The strips satisfy a uniform

cone condition; see the discussion preceding Theorem 5.4 in [1].) Since the

curvature of the metric is uniformly bounded on the image of u#Sv ◦ ξS,n, the

same property holds for TM -valued vector fields along u#Sv ◦ ξS,n. Let C

denote a constant, larger than 1, and larger than the Sobolev constants for the

strip I2S−2S and for the complement of the neck in ΣS . We compute

|X|∞ ≤
∣∣∣X|ΣS−Im(ξS,n)

∣∣∣
∞

+ |X ◦ ξS,n|∞

≤ C
∣∣∣X|ΣS−Im(ξS,n)

∣∣∣
1,p

+|X ◦ ξS,n −Π(X(ξS,n(0, 0))|∞ + |Π(X(ξS,n(0, 0))|∞

≤ C
∣∣∣X|ΣS−Im(ξS,n)

∣∣∣
1,p

+C|X ◦ ξS,n −Π(X(ξS,n(0, 0))|1,p,gS + |X(ξS,n(0, 0)|

≤ 3C|X|1,p,S . �

We will use this estimate for u#Sv and exploit the fact that ∂su and ∂sv

decay exponentially along the end.

Lemma 10.9. There is a universal constant C , independent of S, such

that whenever X is a vector field along u#Sv,

(10.34) |∇X|p,S ≤ C · |X|1,p,S .

Proof. This would be an obvious result if we were using the usual Sobolev

norm. Comparing the definitions of the norms | |p,S and | |1,p,S , we see that
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the only interesting term to bound is

(10.35)
∣∣∣∇Πu#Sv

u(1) (X(ξS,n(0, 0))
∣∣∣
p,S,δ

.

Writing

(10.36) u#Sv ◦ ξS,n = expu(1)(Z(s, t)),

we consider

(10.37) wy(s, t) = expu(1) (Z(ys, t))

and note that the parallel transport along the images of horizontal lines we used

in equation (5.38) agrees with parallel transport along wy. The exponential

decay estimates of Lemma 4.13 imply that |∇∂ywy| is uniformly bounded and

that

(10.38)

∫ 1

0
|∂ywy(s, t)| =

∫ s

0
|∂s (u#Sv ◦ ξS,n) | ≤ cu,θ,ve−2S+|s|

for a constant cu,θ,v that is independent of S. Plugging these estimates into

equation (10.8) and using our assumption that δ < 1, we obtain the desired

result. �

Corollary 10.10. The operator

(10.39) DP0,1 : preG̊
∗
TF1,p
P0,1

(L)→ preG̊
∗EpP0,1

(M)

is uniformly bounded.

Proof. Note that applying DP0,1 to a deformation of the parameters θ and

R gives an element of EpP0,1
(M) which is supported away from the neck, and

it is elementary in this case to show that the bound is uniform in S. We may

therefore restrict to vectors X coming from TF1,p(L) for which the result fol-

lows from the previous lemma, the expression for DP0,1 given in equation (5.5),

and the fact that ∂P0,1

Ä
preG̊S(u, θ, v)

ä
is uniformly bounded in the | |p,S-norm

by the exponential decay estimate of Lemma 4.13. �

10.4. Approximate and right inverses. We begin by proving a result from

Section 5.2 about the approximate inverse.

Proof of Lemma 5.10. The continuity and smoothness properties of predG̊

may be easily checked by the reader; we shall focus on fiberwise boundedness.

By comparing the expressions for the two Sobolev norms (4.7) and (5.38), we

see that we need to show that the sum

(10.40) |Xu#SXv(ξS,n(0, 0))|

+
∣∣∣Xu#SXv ◦ ξS,n −Π

u#Sv◦ξS,n
u(1) (Xu#SXv(ξS,n(0, 0))

∣∣∣
1,p,S
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is bounded by

|Xu(1)|+
∣∣∣Xu ◦ ξ1 −Πu◦ξ1

u(1)Xu(1)
∣∣∣
1,p,δ

+
∣∣∣Xv ◦ ξ−1 −Π

v◦ξ−1

u(1) Xu(1)
∣∣∣
1,p,δ

.

For the purpose of proving equation (5.47), we shall in fact show that the

difference between these two expressions decays exponentially, except for an

error term which is bounded by a constant in the general case, but decays

whenever Xu and Xv are smooth.

We shall repeatedly use the fact that u(1) = v(−1) = (u#Sv)ξS,n(0, t).

To estimate the first term, we use Lemma 4.4 to obtain a bound

|Xu#SXv(ξS,n(0, 0))−Xu(1)| ≤
∣∣∣Xu(ξ1(2S, t))−Π

u(ξ1(2S,t))
u(1) Xu(1)

∣∣∣(10.41)

+
∣∣∣Xv(ξ−1(−2S, t))−Π

v(ξ−1(−2S,t))
u(1) Xu(1)

∣∣∣
= O

Ä
e−2δS

ä
|Xu(1)| .

It remains therefore to bound the second term of equation (10.40) indepen-

dently of S. Note that this term is an integral performed over I2S−2S ; by sym-

metry, we shall restrict our attention to the contribution of I2S0 . Using the fact

that (5.45) simplifies in this region, we find that it would be sufficient to bound

the following four terms:∣∣∣Πu#Sv◦ξS,n
v◦ξ−1◦τ−2S

Xv ◦ ξ−1 ◦ τ−2S −Π
u#Sv◦ξS,n
u(1) Xu(1)|I2S0

∣∣∣
1,p,δ

,(10.42) ∣∣∣Πu#Sv◦ξS,n
u(1) Xu(1)−Π

u#Sv◦ξS,n
u(1) Xu#SXv(ξS,n(0, 0))|I2S0

∣∣∣
1,p,δ

,(10.43) ∣∣∣Πu#Sv◦ξS,n
u◦ξ1◦τ2S Xu ◦ ξ1 ◦ τ2S −Π

u#Sv◦ξS,n
u(1) Xu(1)|IS+1

0

∣∣∣
1,p,δ

,(10.44)

|∇χ| ·
∣∣∣∣Πu#Sv◦ξS,n

u◦ξ1◦τ2S Xu ◦ ξ1 ◦ τ2S −Π
u#Sv◦ξS,n
u(1) Xu(1)|IS+1

S−1

∣∣∣∣
p,δ
.(10.45)

Note that the last two terms are integrals performed on the proper subsets of

I2S0 where χ and ∇χ respectively do not vanish.

To bound the expression (10.42), we use Lemma 10.52 to replace

Π
u#Sv◦ξS,n
u(1) Xu(1)

by the composition of two parallel transport maps

Π
u#Sv◦ξS,n
v◦ξ−1◦τ−2S

Π
v◦ξ−1◦τ−2S

u(1) Xu(1),

introducing an error term which is bounded by a constant multiple of

e−2(2−δ)S |Xu(1)|,

so that it suffices to bound∣∣∣Πu#Sv◦ξS,n
v◦ξ−1◦τ−2S

(
Xv ◦ ξ−1 ◦ τ−2S −Π

v◦ξ−1◦τ−2S

u(1) Xu(1)Xu(1)
)
|I2S0
∣∣∣
1,p,δ

.
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We apply the estimate (10.8) to Σ = I2S0 , w = v ◦ ξ−1 ◦ τ2S and w1 = u#Sv ◦
ξS,n, with the family wy defined by interpolating between these two maps

using geodesics of minimal length. Using the exponential decay results of

Lemma 4.13, we see that this term is bounded by

(10.46)
Ä
1 + O

Ä
e−S
ää ∣∣∣Xv ◦ ξ−1 −Π

v◦ξ−1

v(−1)Xv(−1)|I0−2S

∣∣∣
1,p,δ

.

Concerning the second term (equation (10.43)), we use equation (10.41),

together with the decay estimates of Lemma 4.13, and apply (10.8) setting w

to be the constant map at v(−1) and w1 to be u#Sv◦ξS,n, with wy again given

by minimal geodesics, and conclude that the pth power of (10.43) is bounded

by

(10.47) O(e−2pδS)|Xv(−1)|p
∫ 2S

0
2eδp(2S−s)ds = O(1)|Xv(−1)|p.

The third term is bounded in the same way as the first, applying (10.8)

to Σ = IS+1
0 , w = u ◦ ξ1 ◦ τ−2S and w1 = u#Sv ◦ ξS,n, so that (10.44) is smaller

than

(10.48)
Ä
1 + O

Ä
e−S
ää ∣∣∣Xu ◦ ξ1 −Πu◦ξ1

u(1)Xu(1)|I3S2S
∣∣∣
1,p,δ

.

Using the estimate (10.8) and exponential decay yet again, we see that

(10.45) is bounded by

(10.49) O
Ä
e−2δS

ä Ä
1 + O

Ä
e−S
ää ∣∣∣∣Xu ◦ ξ1 −Πu◦ξ1

v(−1)(Xv(−1))|I3S+1
3S−1

∣∣∣∣
p,δ
.

Note the appearance of the factor e−2δS in the above expression. This is due to

the fact that the weight in IS+1
S−1 is approximately eδS ; this is the weight used

to compute the norm in equation (5.37). We are trying to bound this with

respect to a norm computed on ξ1, and the corresponding domain is shifted by

2S and becomes I3S+1
3S−1 as indicated in the notation. In particular, the weight

is approximately given by e3δS , and the ratio between the two weight is, up a

multiplicative constant, equal to e−2δS

Finally, we briefly sketch of the proof of (5.47). First we note that the

right-hand side of the bound (10.47) can be replaced by O(e−2p(1−δ)S)|Xv(−1)|p
whenever the vector field Xu and Xv are smooth. With this in mind, we ob-

serve that for a fixed S, the estimates proved above show that the difference

between the norms before and after gluing are either given by an exponentially

decaying term, or by a constant multiple of the contribution to |Xu|1,p,δ and

|Xv|1,p,δ coming from ξ1I+∞S and ξ−1I−S−∞; these contribution decays exponen-

tially with S. �

Next, we turn to the right inverse. We must first be able to bound | |1,p,S-

norm of Xu#SXv. To do this, consider the two vector fields along the image
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of u#Sv obtained by taking the parallel transport of Xu(1) = Xv(−1) along

(10.50)

(i) the image of horizontal paths under u#Sv or (ii) the con-

catenation of the image of horizontal paths under v (or u) with

the minimal geodesic from v (or u) to u#Sv.

If we restrict attention to ξS,nI10, then Lemma 10.3 implies that the difference

between these two vector fields is bounded in C1-norm by

(10.51) O
Ä
e−4S

ä
|X|.

Since u#Sv ◦ ξS,n and v ◦ ξ−1 ◦ τ−2S agree on I2S1 , we use the symmetric nature

of our construction to conclude

Lemma 10.11. The | |1,p,S-norm of the difference between the vector fields

obtained by parallel transport of Xu(1) along the two paths described in equa-

tion (10.50) decays exponentially in S:

(10.52)
∣∣∣Πu#Sv◦ξS,n

u(1) Xu(1)−Π
u#Sv◦ξS,n
v◦ξ−1◦τ−2S

Π
v◦ξ−1◦τ−2S

u(1) Xu(1)
∣∣∣
1,p,S

= O(e−2(2−δ)S)|Xu(1)|.

Proof. Fix (u, θ, v) ∈ K and S ∈ [0,+∞). Given Y ∈ Lp(u#Sv
∗(TM) ⊗

Ω0,1), note that DP0,1 ◦ ‹Q(Y ) − Y is supported on ξS,n(IS+1
−S−1), and, by the

symmetry of our construction, it suffices to estimate

(10.53)

∫
I0−S−1

∣∣∣DP0,1 ◦ ‹Q(Y )(ξS,n(s, t))− Y (ξS,n(s, t))
∣∣∣p eδ(2S+s)dsdt.

Let us write

(10.54) Q∂1P(L;0) ◦B(Y ) = (λθ∂θ, λR∂R, Xu, Xv).

Since the cutoff function preceding the third term of (5.45) is identically equal

to 1 on I0−S−1, the formula for ‹Q simplifies to‹Q(Y )(ξS,n(s, t)) = Π
u#Sv◦ξS,n
u◦ξ1◦τ2S Xu ◦ ξ1(s+ 2S, t)

(10.55)

+ (1− χ−S)
(
Π
u#Sv◦ξS,n
v◦ξ−1◦τ−2S

Xv ◦ ξ−1(s− 2S, t)−Π
u#Sv◦ξS,n
u(1) Xu(1)

)
.

Turning our attention to the first term, the fact that Q∂1P(L;0) is a right inverse

to D∂1P(L;0) implies the vanishing of

(10.56) DP0,1Xu − Yu.

Since u ◦ ξ1 ◦ τ2S and u#Sv ◦ ξS,n agree on I−2
−S−1, the restriction to this strip

vanishes, so it suffices to bound the restriction of the first term in (10.55) to

I0−2. Lemma 4.13, implies that u ◦ ξ1 ◦ τ2S can be obtained by exponentiating

a vector field Z along u#Sv ◦ ξS,n whose C1-norm on I0−2 is bounded by a

constant multiple of e−2S . In particular, the | |1,p,S-norm of this vector field is
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bounded by O
Ä
e−2(1−δ)S

ä
. Applying the basic form of the quadratic inequality

stated in Corollary 10.6, we conclude that

(10.57)
∣∣∣DP0,1Π

u#Sv◦ξS,n
v◦ξ−1◦τ−2S

Xv ◦ ξ−1 ◦ τ−2S − Y ◦ ξS,n|I0−S−1

∣∣∣
p,S

= O
Ä
e−2(1−δ)S

ä
|Y |p,S .

It remains to show that the result of applying DP0,1 to the last term of

(10.55) has norm that decays exponentially with S. Inspecting the definition

of DP0,1 , we see that we can bound the contribution of this term by separately

bounding

(10.58) DP0,1

(
Π
u#Sv◦ξS,n
v◦ξ−1◦τ−2S

Xv ◦ ξ−1 ◦ τ−2S −Π
u#Sv◦ξS,n
u(1) Xu(1)

)
and the result of differentiating χ−S

(10.59) ∇χ−S ·
(
Π
u#Sv◦ξS,n
v◦ξ−1◦τ−2S

Xv ◦ ξ−1 ◦ τ−2S −Π
u#Sv◦ξS,n
u(1) Xu(1)

)
.

Since Xv is holomorphic on ξ−1(I−∞−2S), and the C1-distance between u#Sv ◦
ξS,n|I0−S−1 and v ◦ ξ−1|I−2S

−3S−1 is bounded by O
Ä
e−S
ä

by the decay estimate of

Lemma 4.13, applying Corollary 10.6 to the vector field along v ◦ ξ−1 ◦ τ−2S

whose image is u#Sv ◦ ξS,n yields

(10.60)
∣∣∣DP0,1Π

u#Sv◦ξS,n
v◦ξ−1◦τ−2S

Xv ◦ ξ−1 ◦ τ−2S |I0−S−1

∣∣∣ = O(e−(1−δ)S)|Y |p,S .

Essentially the same argument applied to the constant map with target u(1),

equipped with the constant vector field Xu(1), shows that

(10.61)
∣∣∣DP0,1Π

u#Sv◦ξS,n
u(1) Xu(1)|I0−S−1

∣∣∣ = O(e−(1−δ)S)|Y |p,S .

Finally, note that |∇χ−S | is bounded independently of S, and that it is

supported in the interval s ∈ [−S − 1,−S + 1], so it suffices to bound

(10.62)
∣∣∣Πu#Sv◦ξS,n

v◦ξ−1◦τ−2S
Xv ◦ ξ−1 ◦ τ−2S −Π

u#Sv◦ξS,n
u(1) Xu(1)|I−S+1

−S−1

∣∣∣
1,p,S

.

Recall that all our parallel transport maps take place along paths of length

less than e−S , so (10.8) implies that this expression is bounded by

(10.63) e−2δS(1 + O(e−S))|Xv|1,p,δ = O(e−2δS)|Y |p,S .

Once again, the weight e−2δS appears because we are using the gluing and

weight conventions of [12].

Considering all the error terms above, we see that all terms decay at least

as fast as e−2δS , since δ is assumed to be smaller than 1/4. �
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10.5. Proof of surjectivity (Corollary 5.6). Given a sequence wi ∈ P(L; 0)

converging (u, θ, v) ∈ K, we will prove that

(10.64) (wi, θ) ∈ P(L; 0)× S1 ∼= P0,1(L; 0) ⊂ F1,p
P0,1

(L)

lies in the image of preG̊ε, whenever i is sufficiently large. The statement of

Proposition 5.5 implies that preG̊ε is surjective onto a neighbourhood of pre-

glued curves which has uniform size with respect to the norms | |1,p,S , so it

suffices to prove that for sufficiently large i, (wi, θ) lies arbitrarily close (in the

| |1,p,S-norm) to some pre-glued curve.

From Gromov convergence, we extract the existence of a sequence Si →
+∞ such that we have uniform convergence of all derivatives on compact

subsets:

wi ◦ τ−4Si ◦ r−θ|D2 − {1} → v,(10.65)

wi ◦ r−θ|D2 − {−1} → u.(10.66)

We conclude that for each S ≥ 0, wi is C1-close to u#Siv◦φ
−1
Si

on the com-

plement of the image of ξSi,n
(
I2(Si−S)
−2(Si−S)

)
for Si sufficiently large. Section 10.3

ends with the proof of this result.

Lemma 10.12. There exists a sequence of positive real numbers Si and

vector fields Xi along u#Siv such that

(10.67) expu#Si
v(Xi) = wi ◦ r−θ

whenever i is sufficiently large. Moreover, the | |1,p,Si-norm of Xi converges

to 0.

Proof. The preceding discussion implies that for each S, Xi is well defined

away from the finite strips ξSi,n
(
I2(Si−S)
−2(Si−S)

)
as long as i is sufficiently large.

First, we make sure that Xi is defined on the entire domain. The key point is

that the energy of the strip satisfies

(10.68) lim
S→+∞

lim
i→+∞

E
(
wi ◦ ξSi,n|I

2(Si−S)
−2(Si−S)

)
= 0

since the complement of this region converges in C1 to u or v and hence carries

most of the energy. For each S, we assume that i is large enough that

(10.69) |Xi|C1 ≤ e−S

in this region, where the C1-norm is computed with respect to the metric gSi .

Fix a ball of some radius ε about v(−1) on which there exists an involution

which preserves the complex structure Jalg and fixes L pointwise. We will first

prove using the monotonicity lemma that for each S, wi ◦ ξSi,n|I
2(Si−S)
−2(Si−S) takes
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values in this ball for i sufficiently large. To see this, note that the restriction

of wi ◦ ξSi,n to the union of the two strips of length S

(10.70) I2Si−S−(2Si−S) − I2(Si−S)
−2(Si−S)

takes values inside the ball of radius ε about v(−1) = u(1) for i sufficiently

large by C1 convergence to u and v in the complement of I2(Si−S)
−2(Si−S). In par-

ticular, assuming by contradiction that there is a point in I2(Si−S)
−2(Si−S) whose

image under wi ◦ ξSi,n lands outside Bε(v(−1)), then there is a component of

w−1
i (M−Bε/2(v(−1))) which is contained in I2(Si−S)

−2(Si−S). Since we have assumed

this component to have diameter larger than a fixed ε/2, the monotonicity

lemma for holomorphic curves with Lagrangian boundary conditions (see [25,

Prop. 4.7.2 ]) gives a lower bound for the energy of wi restricted to the strip,

contradicting (10.68) if S and Si are sufficiently large.

We conclude that wi◦ξSi,n|I
(2Si−S)
−(2Si−S) can be doubled to a holomorphic map

from a cylinder

(10.71) S1 × [−2(Si − S), 2(Si − S)]→M.

A standard exponential decay estimate, as proved for example in equation

(4.7.13) of [18], implies that for any constant µ < 1, there is a constant Cµ
independent of wi, S and Si such that

(10.72) |∂swi(s, t)| ≤ Cµe−µ((2Si−S)−|s|)E
(
wi ◦ ξSi,n

(
I(2Si−S)
−(2Si−S)

))
whenever |s| ≤ 2Si − 2S.

Starting with the C0 analogue of the estimate (10.69) as a boundary value

when |s| = 2Si − S, we integrate the exponential decay estimate (10.72) to

conclude that wi ◦ ξSi,n|I
2Si−S
−(2Si−S) is C0-close to u(1) = v(−1), which means

that Xi is well defined and satisfies

|Xi ◦ ξSi,n(s, t)| = O
Ä
e−S + ((2Si − S)− |s|) e−µ((2Si−S)−|s|)

ä
,(10.73)

|∇Xi ◦ ξSi,n(s, t)| = O
Ä
e−µ((2Si−S)−|s|)

ä
.(10.74)

In particular, the path from wi ◦ ξSi,n(0, t) to wi ◦ ξSi,n(s, t) is bounded in

length by |s|O
Ä
e−µ((2Si−S)−|s|)

ä
. Applying the bound (10.8), we see that if

|s| ≤ 2Si − S, then

(10.75)

∣∣∣∣∇Π
wi◦ξSi,n(s,0)

wi◦ξSi,n(0,0)Xi ◦ ξSi,n(0, 0)

∣∣∣∣ = O
Ä
e−µ(4Si−2S)−|s|

ä
.

Choosing µ to be larger than δ, and letting S go to infinity, we conclude that

(10.76) lim
S→+∞

lim
i→+∞

∣∣∣Xi ◦ ξSi,n|I
Si−S
−(Si+S)

∣∣∣
1,p,Si,δ

= 0.

The discussion preceding the statement of the lemma implies a similar

estimate away from this finite strip. The only part that does not follow trivially
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from C1-convergence is the bound on the derivative of the parallel transport of

Xi ◦ ξSi,n(0, 0). However, we have just shown that the norm of Xi ◦ ξSi,n(0, 0)

decays µ-exponentially as Si grows. Using the bound (10.8) to control the

error term coming from parallel transporting this vector, we conclude that for

each S,

(10.77) lim
i→∞

∣∣∣Xi|D2 − ξSi,n
(
ISi−S−(Si−S)

)∣∣∣
1,p,Si

= 0,

thereby proving the lemma. �

10.6. Proof of the Quadratic inequality. In this section, we shall prove

Proposition 5.4. Let us return to the notation introduced in the discussion

preceding Lemma 5.2, and write w\S for preG̊S(u, θ, v). The proposition asserts

the existence of a constant c such that given a tangent vector X\ to F1,p
P0,1

(L)

at w\S , we have

(10.78)

∣∣∣∣∣‹Πw\
S,Z\

w\S
DP0,1X

\ −DP0,1

(
Π
w\
S,Z\

w\S
X\

)∣∣∣∣∣
p,Σ

≤ c
∣∣∣Z\∣∣∣

1,p,S

∣∣∣X\
∣∣∣
1,p,S

whenever the norm of Z\ is itself bounded as in (5.17).

The first ingredient we need before proving the quadratic inequality is a

uniform estimate on the Lp-norm of d(u#Sv). Of course, we need to use the

weighted norm

(10.79) |d(u#Sv)|pp,S =

∫
κS,δ|d(u#Sv)|p.

Applying the exponential decay estimates of Lemma 4.13, we conclude that

there is a constant c0, independent of S, such that

(10.80) |d(u#Sv)|p,S ≤ c0.

We shall assume that c0 is also larger than the uniform Sobolev constant of

Lemma 10.8.

The case of Proposition 5.4, where λ and r both vanish, is covered by

Corollary 10.6 as long as we restrict to the codimension 2 subspace TF(L)

of TFP0,1(L). Indeed, considering such a vector field X, Lemma 10.8 implies

that |Z|C0 is bounded by a multiple of |Z|1,p,S that is independent of S, while

Lemma 10.9 implies that |∇X|p,S and |∇Z|p,S are respectively bounded by

constant multiples of |X|1,p,S . Since γ vanishes in the neck, we obtain a uniform

bound on |γθ,R|p,S which, together with equation (10.80), gives the desired

bound on TF(L).

To extend this to the subspace T [0,+∞) of TFP0,1(L), we shall prove that

(10.81)

∣∣∣∣∣‹Πw\S,Z

w\S
DP0,1 |w\S∂R −DP0,1 |w\S,Z∂R

∣∣∣∣∣
p,S

≤ C|Z|1,p,S
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for some constant C that does not depend on Z. Following the strategy re-

peatedly adopted in Section 10.1, this follows from a bound on the derivative

with respect to parallel transport in the direction of Z. Dropping all subscripts

from J and writing ‹Πy for ‹Πw\S,yZ

w\S
, we have to bound two terms; the first is a

simple estimate∣∣∣∣J (∇Π̃yZ
J
)
DP0,1 |w\S∂R

∣∣∣∣ ≤ C|Z|Å|γθ,R|+ ∣∣∣∣dγθ,RdR

∣∣∣∣+ |dwS |ã ,
while the second relies on results from Section 10.1:

∣∣∣∇ΠyZDP0,1∂R
∣∣∣ ≤ ∣∣∣∣∣∇ΠyZ

Å
−1

2
J
∂J

∂R
(dwS,yZ − γθ,R ⊗XH)− dγθ,R

dR
⊗XH

ã0,1
∣∣∣∣∣

≤ C|Z|
Å
|γθ,R|+

∣∣∣∣dγθ,RdR

∣∣∣∣+ |dwS,yZ |ã
≤ C|Z|

Å
|γθ,R|+

∣∣∣∣dγθ,RdR

∣∣∣∣+ |dwS |+ |∇Z|ã .
In particular, the last inequality follows from equation (10.2). With this in

mind, it is easy to prove the bound (10.81). The proof for the additional

parameter θ is essentially indistinguishable and hence omitted. We conclude

Lemma 10.13. There exists a constant c independent of S such that

(10.82)

∣∣∣∣∣‹Πw\S,Z

w\S
DP0,1X

\ −DP0,1(Π
w\S,Z

w\S
X\)

∣∣∣∣∣
p,Σ

≤ c|Z|1,p,S |X\|1,p,S .

We shall now extend this result to the case where the additional param-

eters λ and r do not vanish. Our strategy is to replace the parallel transport

from w\S = (R, θ, wS) to w\S,(R+r,λ,Z) = (R + r, θ + λ,wS,Z) along the image

of the exponential map, with parallel transport along a broken geodesic which

passes through w\S,(0,0,Z).

Lemma 10.14. There is a constant C that is independent of S such that

we have an bound on the commutativity of parallel transport on the fibers of

Ep(M) equipped with the | |p,S-norm∥∥∥∥∥‹Πw\
S,(r,λ,Z)

w\S
− ‹Πw\

S,(r,λ,Z)

w\
S,(0,0,Z)

‹Πw\
S,(0,0,Z)

w\S

∥∥∥∥∥ ≤ C|Z|\C0 .(10.83)

In addition, the operator

(10.84) T
w\S
F1,p(L)→ Lp

(
w\
S,Z\

∗
(TM)⊗ Ω∗D2

)
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obtained by composing ∇ with this difference of parallel transport maps is also

uniformly bounded :∥∥∥∥∥∇
Ç

Π
w\
S,(r,λ,Z)

w\S
−Π

w\
S,(r,λ,Z)

w\
S,(0,0,Z)

Π
w\
S,(0,0,Z)

w\S

å∥∥∥∥∥ ≤ C|Z\|C0 .(10.85)

Proof. Note that the proof of Lemma 10.4 directly applies to our setting,

and shows that the difference between ‹Π and Π is an operator bounded by

a constant multiple of |Z\|. For the Levi-Civita connection, equation (10.10)

implies that

(10.86)

∥∥∥∥∥Πw\
S,(r,λ,Z)

w\S
−Π

w\
S,(r,λ,Z)

w\
S,(0,0,Z)

Π
w\
S,(0,0,Z)

w\S

∥∥∥∥∥ ≤ C|Z\|C0(|r|+ |λ|),

from which the desired estimate (10.83) follows for fibers of Ep(M).

To prove the second estimate we apply equation (10.11) to obtain a point-

wise bound

(10.87)

∣∣∣∣∣∇
Ç

Π
w\
S,(r,λ,Z)

w\S
X −Π

w\
S,(r,λ,Z)

w\
S,(0,0,Z)

Π
w\
S,(0,0,Z)

w\S
X

å∣∣∣∣∣
≤ C|Z\|

Ä
|X|
Ä
|dw\S |+ |∇Z|

ä
+ |∇X|

ä
.

Using the Sobolev embedding for |X|C0 and the boundedness of the | |p,S-norm

of dw\S , we obtain the desired result. �

This reduces the proof of Proposition 5.4 to proving the result in the

special case where Z vanishes. Simplifying the notation further by dropping

the parameters R and r, we write w\S,λ for the pair (θ+λ,w). We first observe

that the arguments given in the previous section give the following bounds,

which respectively come from equations (10.2), (10.3), and (10.9):∣∣∣dw\S,λ∣∣∣ ≤ |dw\S |(1 + C|λ|),(10.88) ∣∣∣∇∂θdw\S,λ∣∣∣ ≤ C|dw\S |,(10.89) ∣∣∣∣∣∇Π
w\
S,λ

w\S
X −Π

w\
S,λ

w\S
∇X

∣∣∣∣∣ ≤ C|X||λ||dw\S |.(10.90)

Using this, we conclude∣∣∣∂P0,1w
\
S,λ

∣∣∣ ≤ C (1 + |λ|)
Ä
|dw\S |+ |γθ,R|

ä
.(10.91)

We can use (10.81) to prove the desired pointwise result for a tangent

vector X\ = (ρ, η,X).
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Lemma 10.15. There exists a constant C independent of S such that

(10.92)

∣∣∣∣∣‹Πw\
S,(r,λ,0)

w\S
DP0,1X

\ −DP0,1Π
w\
S,(r,λ,0)

w\S
X\

∣∣∣∣∣
≤ C(|r|+ |λ|)(|∇X|+ |X|(|γθ,R|+ |∇γθ,R|+ |dw\S |)).

Proof. We prove this only in the special case where ρ = η = 0 and return

to ignoring the variable R (the case where only ρ and η are nonzero is left to

the reader). The first step is to control the derivative with respect to λ using

d

dλ

∣∣∣∣∣‹Πw\
S,λ

w\S
DP0,1X −DP0,1Π

w\
S,λ

w\S
X

∣∣∣∣∣ ≤
∣∣∣∣∣J (∇∂θJ)‹Πw\

S,λ

w\S
DP0,1X

∣∣∣∣∣
+

∣∣∣∣∣∇∂θDP0,1Π
w\
S,λ

w\S
X

∣∣∣∣∣ .
Using the expression for DP0,1X and Lemma 10.4, we find that the first term

is bounded by a constant multiple of

(10.93) |∇X|+ |X|(|γθ,R|+ |∇γθ,R|).

To bound the second term, we return to the expression (5.5), and first observe

that in analogy with (10.15), the terms where a derivative of J or γ is taken

are bounded by a constant multiple of

(10.94)

∣∣∣∣∣∇Π
w\
S,λ

w\S
X

∣∣∣∣∣+ |X|
Å
|γθ,R|+

∣∣∣∣dγθ,Rdθ

∣∣∣∣+ ∣∣∣∂P0,1w
\
S,λ

∣∣∣ã .
Using equations (10.90) and (10.91), we see that this is in turn bounded by a

constant multiple of

(10.95) |∇X|+ |X|
Ä
|γθ,R|+ |∇γθ,R|+ |dw\S |

ä
.

The higher order terms are bounded by

(10.96)

∣∣∣∣∣∇∂θ∇Π
w\
S,λ

w\S
X

∣∣∣∣∣+ |γθ,R|
∣∣∣∣∣∣∣∣∇∂θ∇Π

w
\
S,λ

w
\
S

X

XH

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∇∂θ∇Π
w
\
S,λ

w
\
S

X

Jθ,R

∣∣∣∣∣∣∣∣
∣∣∣∂P0,1w

\
S,λ

∣∣∣+ |X| ∣∣∣∇∂θ∂P0,1w
\
S,λ

∣∣∣ .
Note that this is essentially the same expression as (10.17). Using (10.88)–

(10.90), we adapt the argument we used to bound (10.17), and conclude that

the higher order terms are bounded by a constant multiple of

�(10.97) |X|
Ä
|dw\S |+ |γθ,R|+ |∇γθ,R|

ä
.

Finally, we can prove the main result of this section.
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Proof of Proposition 5.4. We compute that∣∣∣∣∣‹Πw\
S,Z\

w\S
DP0,1X

\ −DP0,1Π
w\
S,Z\

w\S
X\

∣∣∣∣∣
p,S

(10.98)

≤
∣∣∣∣∣
(‹Πw\

S,Z\

w\S
− ‹Πw\

S,Z\

w\
S,(0,0,Z)

‹Πw\
S,(0,0,Z)

w\S

)
DP0,1X

\

∣∣∣∣∣
+

∣∣∣∣∣DP0,1

(
Π
w\
S,Z\

w\
S,(0,0,Z)

Π
w\
S,(0,0,Z)

w\S
−Π

w\
S,Z\

w\S

)
X\

∣∣∣∣∣
+

∣∣∣∣∣‹Πw\
S,Z\

w\
S,(0,0,Z)

‹Πw\
S,(0,0,Z)

w\S
DP0,1X

\ −DP0,1(Π
w\
S,Z\

w\
S,(0,0,Z)

Π
w\
S,(0,0,Z)

w\S
X\)

∣∣∣∣∣ .
By equation (10.83), and using the fact that the norm of the operator DP0,1 is

bounded independently of S (see Corollary 10.10), we find that the first term

is bounded by a constant multiple of

(10.99) |Z\|1,p,S |X\|1,p,S .
Pointwise, the second term is bounded by a constant multiple of

(10.100)

∣∣∣∣∣∇
(

Π
w\
S,Z\

w\
S,(0,0,Z)

Π
w\
S,(0,0,Z)

w\S
−Π

w\
S,Z\

w\S

)
X\

∣∣∣∣∣
+
Ä
|∂P0,1w

\
S,Z |+ |γ|

ä ∣∣∣∣∣(Π
w\
S,Z\

w\
S,(0,0,Z)

Π
w\
S,(0,0,Z)

w\S
−Π

w\
S,Z\

w\S

)
X\

∣∣∣∣∣ .
Applying Lemma (10.14) to the first term, and equations (10.10) and (10.91)

to the second, we conclude that the Lp-norm of this error term is bounded by

a constant multiple of

(10.101) |Z\|1,p,S |X\|1,p,S + (|dwS |p + |γ|p)|Z\|C0 |X\|C0 ,

which by the Sobolev lemma implies that the second term of (10.98) is indeed

uniformly bounded by a constant multiple of

(10.102) |Z\|1,p,S |X\|1,p,S .
It remains to bound the third term of (10.98). We shall leave this step to

the reader and simply note that one should use Lemmas 10.13, 10.14, and 10.15.

�

We complete this appendix with the proof of a different version of the

quadratic inequality.

Proof of equation (5.11). Since the norm of a convex combination of X\
1

and X\
2 is bounded above by |X\

1 + X\
2|, it suffices to combine the estimate

(5.16) with the expression

FpreG̊S(u,θ,v)

Ä
X\

1

ä
− FpreG̊S(u,θ,v)

Ä
X\

2

ä
(10.103)

=

∫ 1

0
dFpreG̊S(u,θ,v)

Ä
xX\

1 + (1− x)X\
2

ä Ä
X\

1 −X
\
2

ä
dx. �
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