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Stratifying modular representations
of finite groups

By David J. Benson, Srikanth B. Iyengar, and Henning Krause

Abstract

We classify localising subcategories of the stable module category of a

finite group that are closed under tensor product with simple (or, equiva-

lently all) modules. One application is a proof of the telescope conjecture

in this context. Others include new proofs of the tensor product theo-

rem and of the classification of thick subcategories of the finitely generated

modules which avoid the use of cyclic shifted subgroups. Along the way we

establish similar classifications for differential graded modules over graded

polynomial rings, and over graded exterior algebras.
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1. Introduction

Let G be a finite group and k a field of characteristic p, where p divides

the order of G. Let Mod(kG) be the category of possibly infinite dimensional

modules over the group algebra kG. In this article, a full subcategory C of

Mod(kG) is said to be thick if it satisfies the following conditions:

• Any direct summand of a module in C is also in C.
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• If 0 → M1 → M2 → M3 → 0 is an exact sequence of kG-modules and

two of M1, M2, M3 are in C, then so is the third.

A thick subcategory C is localising when, in addition, the following property

holds:

• If {Mα} is a set of modules in C, then
⊕

αMα is in C.

By a version of the Eilenberg swindle the first condition follows from the others.

There is a notion of support in this context, introduced by Benson, Carlson

and Rickard [4]. It associates to each kG-module M a subset VG(M) of the set

ProjH∗(G, k) of homogeneous prime ideals in the cohomology ring H∗(G, k)

other than the maximal ideal of positive degree elements.

Our main result is that ProjH∗(G, k) stratifies Mod(kG), in the following

sense.

Theorem 1.1. There is a natural one-to-one correspondence between non-

zero localising subcategories of Mod(kG) that are closed under tensoring with

simple kG-modules and subsets of ProjH∗(G, k).

The localising subcategory corresponding to a subset V ⊆ ProjH∗(G, k) is

the full subcategory of modules M satisfying VG(M) ⊆ V .

A more precise version of this result is given in Theorem 10.4. It is mod-

elled on Neeman’s classification [25] of the localising subcategories of the un-

bounded derived category D(ModR) of complexes of modules over a noetherian

commutative ring R. Neeman’s work in turn was inspired by Hopkins’ classifi-

cation [20] of the thick subcategories of the perfect complexes over R in terms

of specialisation closed subsets of SpecR. The corresponding classification

problem for the stable category stmod(kG) of finitely generated kG-modules

was solved by Benson, Carlson and Rickard [5], at least in the case where k

is algebraically closed. There is also a discussion in that paper as to why one

demands that the subcategories are closed under tensor products with simple

modules. For a p-group this condition is automatically satisfied, but for an

arbitrary finite group there is a subvariety of ProjH∗(G, k) called the nucleus

that encapsulates the obstruction to a classification of all localising subcate-

gories, at least for the principal block.

Applications of Theorem 1.1 include a classification of smashing locali-

sations of the stable category StMod(kG) of all kG-modules, a proof of the

telescope conjecture in this setting, a classification of localising subcategories

that are closed under products and duality, and a description of the left per-

pendicular category of a localising subcategory.

We also provide new proofs of the subgroup theorem, the tensor product

theorem and the classification of thick subcategories of stmod(kG). The proofs

of these results given in [4], [5] rely heavily on the use of cyclic shifted subgroups
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and an infinite dimensional version of Dade’s lemma, which play no role in our

work.

As intermediate steps in the proof of the classification theorems for mod-

ules over kG, we establish analogous results on differential graded modules

over polynomial rings, and over exterior algebras. These are of independent

interest.

This paper is the third in a sequence devoted to supports and localising

subcategories of triangulated categories. We have tried to make this paper

as easy as possible to read without having to go through the first two papers

[6], [7] in the series. In particular, some of the arguments in them have been

repeated in this more restricted context for convenience.
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by NSF grant DMS-0602498. The first and second authors are grateful to
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extended research visits to Paderborn to work with the third author. All three
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2. Strategy

The proof of Theorem 1.1 consists of a long chain of transitions from one

category to another. In this section, we give an outline of the strategy.

The first step is to reduce to the stable module category StMod(kG).

This category has the same objects as the module category Mod(kG), but the

morphisms in StMod(kG) are given by quotienting out those morphisms in

Mod(kG) that factor through a projective module. The category StMod(kG)

is a triangulated category, in which the triangles come from the short exact

sequences of kG-modules. See for example Theorem I.2.6 of Happel [19] or

Section 5 of Carlson [11] for further details.

A thick subcategory of a triangulated category is a full triangulated sub-

category that is closed under direct summands. A localising subcategory of a

triangulated category is a full triangulated subcategory that is closed under

direct sums. By an Eilenberg swindle, localising subcategories are also closed

under direct summands, and hence thick.

Recall that, given kG-modules M and N , one considers M ⊗kN as a kG-

module with the diagonal G-action. The kG-modules M ⊗k N and N ⊗k M
are isomorphic, and P ⊗k N is projective for any projective kG-module P .

Thus the tensor product on Mod(kG) passes down to a tensor product on

StMod(kG). In either context, we say that a thick, or localising, subcategory

C is tensor ideal if it satisfies the following condition:
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• If M is in C and S is a simple kG-module, then M ⊗k S is in C.

This condition is vacuous if G is a finite p-group since the only simple module

is k with trivial G-action. Furthermore, every kG-module has a finite filtration

whose subquotients are direct sums of simple modules (induced by the radical

filtration of kG), so the condition above is equivalent to:

• If M is in C and N is any kG-module, then M ⊗k N is in C.

Proposition 2.1. Every nonzero tensor ideal localising subcategory of

Mod(kG) contains the localising subcategory of projective modules.

The canonical functor from Mod(kG) to StMod(kG) induces a one-to-

one correspondence between nonzero tensor ideal localising subcategories of

Mod(kG) and tensor ideal localising subcategories of StMod(kG).

Proof. The tensor product of any module with kG is a direct sum of copies

of kG. So if C is a nonzero tensor ideal localising subcategory of Mod(kG),

it contains kG, and hence every projective kG-module. This proves the first

statement of the proposition. The rest is now clear. �

There are some technical disadvantages to working in StMod(kG) that

are solved by moving to a slightly larger triangulated category: K(Inj kG), the

category whose objects are the complexes of injective kG-modules and whose

morphisms are the homotopy classes of degree preserving maps of complexes.

The tensor product of modules extends to complexes and defines a tensor

product on K(Inj kG). This category was investigated in detail by Benson

and Krause [8]. Taking the Tate resolution tM = M ⊗k tk of a kG-module M

gives an equivalence of triangulated categories from the stable module category

StMod(kG) to the full subcategory Kac(Inj kG) of K(Inj kG) consisting of acyclic

complexes. This equivalence preserves the tensor product. It suffices to check

that tk⊗k tk ∼= tk, and an explicit isomorphism can be found in Section XII.4

of Cartan and Eilenberg [12].

The Verdier quotient of K(Inj kG) by Kac(Inj kG) is the unbounded derived

category D(Mod kG). There are left and right adjoints, forming a recollement

StMod(kG)
∼−→ Kac(Inj kG)

Homk(tk,−)
←−−−−−−−−−−−−−−→←−−−−−−−
−⊗ktk

K(Inj kG)

Homk(pk,−)
←−−−−−−−−−−−−−−→←−−−−−−−
−⊗kpk

D(Mod kG),

where pk denotes a projective resolution of k.

It is shown in [8] that the theory of supports for StMod(kG) developed

in [4] extends in a natural way to K(Inj kG). Exactly one more prime ideal

appears in the theory, namely the maximal ideal m of positive degree elements

in H∗(G, k). We write SpecH∗(G, k) for the set ProjH∗(G, k) ∪ {m} of all

homogeneous prime ideals in H∗(G, k). If X is an object in K(Inj kG), then
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there is associated to it a support VG(X), which is a subset of SpecH∗(G, k);

see Section 3.

Proposition 2.2. For every tensor ideal localising subcategory C of

StMod(kG) there are two tensor ideal localising subcategories of K(Inj kG). One

is the image of C, and the other is generated by this together with pk. This sets

up a two-to-one correspondence between tensor ideal localising subcategories of

K(Inj kG) and those of StMod(kG).

Proof. First we claim that for any nonzero object X in D(Mod kG), the

tensor ideal localising subcategory generated by X is the whole of D(Mod kG).

Indeed, for any nonzero kG-module M the kG-module M ⊗k kG is free

and nonzero. Therefore, H∗(X⊗k kG) is a nonzero direct sum of copies of kG,

since it is isomorphic to H∗(X) ⊗k kG. This implies that in D(Mod kG) the

complex X ⊗k kG is isomorphic to a nonzero direct sum of copies of shifts of

kG. Hence kG is in the tensor ideal localising subcategory generated by X. It

remains to note that every object in D(Mod kG) is in the localising subcategory

generated by kG.

Next observe that the full subcategory Kac(Inj kG) of K(Inj kG) consisting

of acyclic complexes is a tensor ideal localising subcategory. Thus the image in

K(Inj kG) of every tensor ideal localising subcategory of StMod(kG) is a tensor

ideal localising subcategory.

Now let D be a tensor ideal localising subcategory of K(Inj kG) that is

not in the image of StMod(kG). Then D contains some object X which is

not acyclic. The image of X in D(Mod kG) is nonzero and hence generates

D(Mod kG). Thus the tensor ideal containing X also contains pk. It follows

that D is generated by pk and its intersection with the image of StMod(kG). �

A version of the main theorem for K(Inj kG) is as follows; see also Theo-

rem 10.1.

Theorem 2.3. There is a natural one-to-one correspondence between ten-

sor ideal localising subcategories C of K(Inj kG) and subsets of SpecH∗(G, k).

The localising subcategory corresponding to a subset V of SpecH∗(G, k) is

the full subcategory of complexes X satisfying VG(X) ⊆ V .

The proof of Theorems 1.1 and 2.3 occupies Sections 5–10. An outline of

the proof is as follows. Using an appropriate version of the Quillen stratification

theorem, it suffices to work with an elementary abelian p-group

E = 〈g1, . . . , gr〉.
Since k is of characteristic p the group algebra kE is isomorphic to the algebra

k[z1, . . . , zr]/(z
p
1 , . . . , z

p
r ),

where the (image of the element) zi corresponds to gi − 1.
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We write A for the Koszul complex on kE with respect to z1, . . . , zr, and

view it as a differential graded (dg) algebra. Thus, as a graded algebra A is the

exterior algebra over kE on indeterminates y1, . . . , yr, with each yi of degree

−1, and the differential on A is determined by setting

d(zi) = 0 and d(yi) = zi.

Observe that the elements zp−1
1 y1, . . . , z

p−1
r yr are cycles in A of degree −1. Let

Λ be an exterior algebra over k on r generators ξi in degree −1, and view it as

a dg algebra with zero differential. The map Λ→ A given by

ξi 7→ zp−1
i yi

is a morphism of dg algebras and a quasi-isomorphism; see Section 7.

Let S be a graded polynomial ring k[x1, . . . , xr] where each variable xi
is of degree 2, and view it as a dg algebra with zero differential. One has an

isomorphism of graded k-algebras S ∼= Ext∗Λ(k, k); see Section 6.

Let K(InjA) and K(InjΛ) denote the homotopy categories of graded-in-

jective dg modules over A and Λ respectively; see Section 4. Our strategy is

to establish first a classification of the localising subcategories of D(S), the

derived category of dg S-modules, and then successively for K(InjΛ), K(InjA),

K(Inj kE), K(Inj kG), and finally for StMod(kG) and Mod(kG). The following

diagram provides an overview of the proof of Theorem 1.1.

§5
D(S)

§6
 K(InjΛ)

§7
 K(InjA)

§8
 K(Inj kE)

§9
 K(Inj kG)

§10
 Mod(kG).

Leitfaden

The passage from S to kE is modelled on the work of Avramov, Buch-

weitz, Iyengar, and Miller [1], where it is used to establish results on numerical

invariants of complexes over commutative local rings by tracking them along

a chain of categories as above. The focus here is on tracking structural infor-

mation. A crucial idea in executing this passage from S to kG is that of a

stratification of a tensor triangulated category, which allows one to focus on

minimal localising subcategories. In Section 3 we describe the general theory of

stratifications, and show that when a tensor triangulated category is stratified,

one can classify its tensor ideal localising subcategories. This development is

partly inspired by the work of Hovey, Palmieri, and Strickland [21].

In Section 11 we describe various applications, including a classification of

smashing localisations of StMod(kG), and new proofs of the subgroup theorem,

the tensor product theorem, and the classification of thick subcategories of

stmod(kG).
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3. Stratifications

In this section, we recall from [6], [7] those parts of the general theory of

support varieties and stratifications that we wish to use in this paper.

Let T be a triangulated category admitting arbitrary coproducts. Usu-

ally, we denote Σ the shift on T. Given a subcategory C of T we write Loc(C)

for the localising subcategory generated by C; this is the smallest localising

subcategory of T containing C. The thick subcategory generated by C is de-

noted Thick(C). An object C of T is a generator if Loc(C) = T. The standing

assumption in this article is that T is generated by a single compact object.

Recall that an object C is compact if the functor HomT(C,−) commutes with

coproducts.

For objects X,Y , in T we write Hom∗T(X,Y ) for the graded abelian group

with degree n component HomT(X,ΣnY ), and End∗T(X) for the graded ring

Hom∗T(X,X).

Let R be a graded commutative noetherian ring; thus R is a Z-graded

noetherian ring such that rs = (−1)|r||s|sr for all homogeneous elements r, s in

R. We say that the triangulated category T is R-linear, or that R acts on T,

if we are given a homomorphism of graded rings φ : R → Z∗T, to the graded

centre of T. This means that for each object X there is a homomorphism of

graded rings

φX : R→ End∗T(X)

such that for each pair of objects X,Y , the induced left and right actions of R

on Hom∗T(X,Y ) agree up to the usual sign; see [6, §4].

Let T be an R-linear triangulated category.

We write SpecR for the set of homogeneous prime ideals in R. For any

ideal a in R the subset {p ∈ SpecR | p ⊇ a} is denoted V(a). A subset

V ⊆ SpecR is specialisation closed if p ∈ V and q ⊇ p imply q ∈ V. Given such

a subset V, pick a compact generator C of T, and let TV be the full subcategory

TV = {X ∈ T | Hom∗T(C,X)p = 0 ∀ p ∈ SpecR \ V}.

This is a localising subcategory of T. The following result is proved in [6, §4].

Proposition 3.1. The localising subcategory TV depends only on V and

not on the choice of compact generator C . Furthermore, there is a localisation

functor LV : T→ T such that LVX = 0 if and only if X ∈ TV . �

This result and the theory of Bousfield localisation imply that there is

an exact functor ΓV : T → T and for each object X in T an exact localisation

triangle

(3.2) ΓVX → X → LVX → .

Proposition 3.1 has the following useful consequence.
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Corollary 3.3. Let φ, φ′ : R → Z∗T be actions of R on T. If there

exists a compact generator C for T for which the maps φC , φ
′
C : R→ End∗T(C)

agree, then for any specialisation closed set V ⊆ SpecR the functors ΓV and

LV defined through φ agree with those defined through φ′.

Proof. The definitions of ΓV and LV only depend on the action of R on

Hom∗T(C,X), since C is a compact generator. The action factors through the

map R→ End∗T(C), which justifies the claim. �

In this work the principal source of an R-action on T is a tensor structure

on it.

Tensor triangulated categories. Let (T,⊗,1) be a tensor triangulated cat-

egory. By this we mean the following structure; see [6, §8] for details:

• T is a compactly generated triangulated category with coproducts.

• T is symmetric monoidal, with tensor product ⊗ : T×T→ T and unit 1.

• The tensor product is exact in each variable and preserves coproducts.

• The unit 1 is compact.

• Compact objects are strongly dualisable.

In this article we make also the following assumption, for simplicity of exposi-

tion.

• T has a single compact generator.

We write Loc⊗(C) for the tensor ideal localising subcategory generated

by a subcategory C of T. Observe that Loc(C) ⊆ Loc⊗(C) and that the two

categories coincide when the unit 1 is a generator for T; this is the case in

many of our contexts.

The stable category StMod(kG) of a finite group G is tensor triangulated,

where the tensor product is M ⊗k N with diagonal G-action and the unit is

k. The homotopy category K(Inj kG) is also tensor triangulated with the same

tensor product, but here the unit is ik, the injective resolution of k. In either

case, the unit generates the category when G is a p-group; see [8] for details.

The ring End∗T(1) is graded commutative and acts on T via homomor-

phisms

End∗T(1)
X⊗−−−−→ End∗T(X)

for each X in T. Thus any homomorphism of graded rings R → End∗T(1)

induces an R-action on T, and we call such an R-action canonical.

In the remainder of this section T denotes a tensor triangulated category

and R a graded commutative noetherian ring that acts canonically on T.

For each specialisation closed subset V of SpecR there are natural isomor-

phisms

ΓVX ∼= ΓV1⊗X and LVX ∼= LV1⊗X.
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Thus, the localisation triangle (3.2) is obtained by applying − ⊗ X to the

triangle

ΓV1→ 1→ LV1→ .

These are analogues of Rickard’s triangles [32] in StMod(kG); see [6, §§4, 10].

Next we recall the construction of Koszul objects from [6, Def. 5.10]. Given

a homogeneous element r of R and an object X in T, we write X//r for any

object that appears in an exact triangle

X
r−→ Σ|r|X → X//r → .

Iterating this construction on a sequence of elements r = r1, . . . , rn one gets

an object in T that is denoted X//r. Given an ideal a in R, we write X//a for

any Koszul object on a finite sequence of elements generating a.

While a Koszul object X//a depends on a choice of a generating sequence

for a, the thick subcategory it generates does not. This follows from the second

part of the following statement, where
√
a denotes the radical of a in R.

Lemma 3.4. Let a be an ideal in R and X an object in T.

(1) X//a is in Thick(ΓV(a)X).

(2) X//a is in Thick(X//b) for any ideal b with
√
b ⊆
√
a.

Proof. By construction it is clear that X//a is in Thick(X). Since the

functor ΓV(a) is exact, this implies that ΓV(a)(X//a) is in Thick(ΓV(a)X). It

remains to note that ΓV(a)(X//a) ∼= X//a for X//a is in TV(a) by [6, Cor. 5.11].

This proves (1).

The claim in (2) can be proved along the same lines as [21, Lemma 6.0.9].

�

The second part of the next result improves upon [6, Th. 6.4].

Proposition 3.5. Let V be a specialisation closed subset of SpecR.

(1) If W ⊇ V is specialisation closed, then ΓVX is in Loc⊗(ΓWX).

(2) Let C be a compact generator of T. For any decomposition V=
⋃
i∈I V(ai),

where each ai is an ideal in R, there are equalities

TV = Loc({C//ai | i ∈ I}) = Loc({ΓV(ai)C | i ∈ I}).

Proof. (1) From [6, Prop. 6.1] one gets the first isomorphism below:

ΓVX ∼= ΓV(ΓWX) ∼= ΓV1⊗ ΓWX.

Thus ΓVX is in Loc⊗(ΓWX).

(2) For each p ∈ V there exists an i in I such that p ∈ V(ai) holds, so that

C//p is in Thick(C//ai), by Lemma 3.4(2). This fact and [6, Th. 6.4] imply the

last of the following inclusions:

Loc({C//ai | i ∈ I}) ⊆ Loc({ΓV(ai)C | i ∈ I}) ⊆ TV ⊆ Loc({C//ai | i ∈ I}).
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The first inclusion holds by Lemma 3.4(1). The second one holds as ΓV(ai)C

is in TV for each i, since TV(ai) ⊆ TV . The inclusions above yield the desired

result. �

Support. Fix a point p ∈ SpecR, and let V andW be specialisation closed

sets of primes such that V\W = {p}. It is shown in [6, Th. 6.2] that the functor

Γp = ΓVLW is independent of choice of V and W with these properties, and

coincides with LWΓV . There are natural isomorphisms

ΓpX ∼= Γp1⊗X.

Following [6, §5], we define the support of an object X in T to be

suppRX = {p ∈ SpecR | ΓpX 6= 0}.

If the R-module Hom∗T(C,X) is finitely generated for some compact generator

C for T and a is its annihilator ideal, then suppRX equals the Zariski-closed

subset V(a); see [6, Th. 5.5(1)].

The notion of support defined above is an analogue of the one for modular

representations of a finite group G given in Benson, Carlson and Rickard [4].

Indeed, if T = StMod(kG) and p is a nonmaximal prime in H∗(G, k), then Γp1

is the kappa module for p defined in [4]; see [6, §10].

The following theorem is the “local-global principle” studied in [7] for

general triangulated categories.

Theorem 3.6. Let X be an object in T. Then

X ∈ Loc⊗({ΓpX | p ∈ suppRX}).

Proof. It suffices to prove that 1 is in the subcategory

C = Loc⊗{Γp1 | p ∈ SpecR}.

Indeed, one then gets the desired result by tensoring with X, keeping in mind

that if p 6∈ suppRX, then Γp1⊗X = ΓpX = 0.

Proposition 3.5(1) implies that the set

V = {p ∈ SpecR | ΓV(p)1 ∈ C}

is specialisation closed. We claim that V = SpecR. If not, then since the

ring R is noetherian there exists a prime q maximal in SpecR \ V. Setting

Z = V(q) \ {q} one gets an exact triangle

ΓZ1→ ΓV(q)1→ Γq1→ .

Since Z ⊆ V, it follows from Proposition 3.5(2) that

ΓZ1 ∈ TZ ⊆ TV = Loc{ΓV(p)C | p ∈ V} ⊆ Loc⊗{ΓV(p)1 | p ∈ V} ⊆ C,
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where C denotes any compact generator of T. By definition, Γq1 is in C so it

follows from the triangle above that ΓV(q)1 is also in it. This contradicts the

choice of q. Therefore V = SpecR holds. It remains to note that

1 = ΓSpecR1 ∈ C,

where the equality holds because ΓSpecR is the identity on T, since TSpecR=T.

�

Stratification. Let T be an R-linear tensor triangulated category. For each

p in SpecR, the full subcategory ΓpT is tensor ideal and localising. It consists

of objects X in T with the property that the R-module Hom∗T(C,X) is p-local

and p-torsion, where C is some compact generator for T; see [6, Cor. 4.10].

We say that T is stratified by R if ΓpT is either zero or minimal among

tensor ideal localising subcategories for each p in SpecR.

Given a localising subcategory C of T and a subset V of SpecR, we write

σ(C) = suppR C = {p ∈ SpecR | ΓpC 6= 0}
τ(V) = {X ∈ T | suppRX ⊆ V}.

It follows from [6, §8] that the subcategory τ(V) is tensor ideal and localising,

so these are maps

(3.7) {tensor ideal localising subcategories of T}
σ
// {subsets of suppR T}.

τ
oo

The theorem below is the reason stratifications are relevant to this work.

Theorem 3.8. If T is stratified by R, then σ and τ are mutually inverse

bijections between the tensor ideal localising subcategories of T and subsets of

suppR T.

Proof. It is clear that στ(V) = V for any subset V of suppR T and that

C ⊆ τσ(C) for any tensor ideal localising subcategory C. It remains to check

that τσ(C) ⊆ C.

For each p ∈ suppR C, minimality of ΓpT implies the equality below

ΓpT = ΓpC ⊆ C

while the inclusion holds because ΓpX ∼= Γp1⊗X. For any X in τσ(C) one has

suppRX ⊆ σ(C), so Theorem 3.6 and the inclusions above imply X ∈ C. �

The following characterisation of minimality is often useful.

Lemma 3.9. Let T be a tensor triangulated category and C a nonzero ten-

sor ideal localising subcategory of T. The following statements are equivalent :

(a) The tensor ideal localising subcategory C is minimal.

(b) For all nonzero objects X and Y in C there exists an object Z in T such

that Hom∗T(X ⊗ Z, Y ) 6= 0 holds.
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(c) If C is a compact generator for T, then all nonzero objects X and Y in

C satisfy Hom∗T(X ⊗ C, Y ) 6= 0.

Proof. (a)⇒ (b): Let X be a nonzero object in C. Minimality of C implies

that Loc⊗(X) = C. Therefore, if there exists Y in C such that for all Z in T

we have Hom∗T(X ⊗ Z, Y ) = 0; then in particular Hom∗T(Y, Y ) = 0 and hence

Y = 0.

(b) ⇔ (c): This is clear, since Loc(C) = T for any generator C.

(c) ⇒ (a): Suppose that C is not minimal, so that it contains a nonzero

proper tensor ideal localising subcategory, say C′. Let X be a nonzero object

in C′. It follows from [27, Cor. 4.4.3] that there is a localisation functor with

kernel Loc(X ⊗ C), so that for each object W in T there is a triangle W ′ →
W →W ′′ → with W ′ ∈ C′ and Hom∗T(X⊗C,W ′′) = 0. Pick an object W in C

but not in C′ and set Y = W ′′. Since W ′ and W are in C, so is Y and W is not in

C′ one gets Y 6= 0. Finally, we have Hom∗T(X⊗C, Y ) = 0, a contradiction. �

We wish to transfer stratifications from one tensor triangulated category

to another. In particular, we need to change the tensor product on a fixed

triangulated category. It turns out to be inconvenient to have to keep track

of the map from R into the graded centre of T. So we formulate the following

principle.

Lemma 3.10. Let T be a triangulated category admitting two tensor tri-

angulated structures with the same unit object, 1, and let φ, φ′ : R → Z∗T be

two actions. If 1 generates T and the maps φ1, φ
′
1 : R→ End∗T(1) agree, then

T is stratified by R through φ if it is stratified by R through φ′.

Proof. It follows from Corollary 3.3 that ΓpX defined through φ and φ′

agree. This justifies the claim, since localising subcategories are tensor ideal.

�

We require also a change of rings result for stratifications.

Lemma 3.11. Let T be an R-linear tensor triangulated category and φ : Q

→ R a homomorphism of rings. If T is stratified by the induced action of Q,

then it is stratified by R.

Proof. Fix a prime p in SpecR and set q = φ−1(p). It is straightforward

to verify that if an object X in T is p-torsion and p-local for the R-action, then

it is q-torsion and q-local for the Q-action. The claim is now obvious. �

4. Graded-injective dg modules

This section concerns a certain homotopy category of dg modules over a

dg algebra. The development is based on the work of Avramov, Foxby, and
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Halperin [2], which is also our general reference for this material. The main

results we prove here, Theorems 4.4 and 4.11, play a critical role in Sections 6–

8 and are tailored for ready use in them; they are not the best one can do in

that direction.

Hypothesis 4.1. Let A be a dg algebra over a field k with the following

properties:

(1) Ai = 0 for i > 0 and A is finite dimensional over k.

(2) A0 is a local ring with residue field k.

(3) A has a structure of a cocommutative dg Hopf k-algebra.

For the definition of a dg Hopf algebra see [16, §21]. The main consequence

of the Hopf structure used in our work is that there is an isomorphism of dg A-

modules

Homk(A, k) ∼= ΣdA for some integer d.

This isomorphism can be verified as in [3, §3.1]. Note that A0 is also a cocom-

mutative Hopf algebra and the inclusion A0 ⊆ A is compatible with the Hopf

structure. In particular, A is free as a graded module over A0; see [3, §3.3].

We write A\ for the graded algebra underlying A. When M is a dg A-

module, M \ is the underlying graded A\-module. Following [2], we say that

a dg A-module I is graded-injective if I\ is an injective object in the category

of graded A\-modules. Under Hypothesis 4.1 this condition is equivalent to

saying that I\ is a graded free A\-module. We write K(InjA) for the homotopy

category of graded-injective dg A-modules. The objects of this category are

graded-injective dg A-modules and morphisms between such dg modules are

identified if they are homotopic. The category K(InjA) is given the usual

structure of a triangulated category, where the exact triangles correspond to

exact sequences of graded-injective dg modules. This is analogous to the case

of the homotopy category of complexes over a ring, as described for instance

in Verdier’s article in SGA4 1
2

[14]; see also [34].

K(InjA) is compactly generated. A dg A-module I is said to be semi-

injective if it is graded-injective and the functor HomK(−, I), where K is the ho-

motopy category of dg A-modules, takes quasi-isomorphisms to isomorphisms.

Every dg module X admits a semi-injective resolution: a quasi-isomorphism

X → I of dg A-modules with I semi-injective.

Lemma 4.2. Let A be a dg algebra satisfying Hypothesis 4.1. Each graded-

injective dg A-module I has a family {I(n)}n∈Z of dg submodules with the

properties below :

(1) For each integer n, one has I(n− 1) ⊆ I(n).

(2) For each integer i, there exists an ni with I(ni)
>i = I>i.
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(3) For each integer n, the dg module I(n) is semi-injective.

When Ii = 0 for i� 0 the dg A-module I is semi-injective.

Proof. Hypothesis 4.1 implies that the A\-module I\ is free, so I\ =⊕
j∈ZA

\U j , where U j is the set of basis elements in degree j. Set

I(n) =
⊕
j≥−n

AU j .

Since Ai = 0 for i > 0, by Hypothesis 4.1, it follows that d(U j) ⊆ I(j − 1)

holds for each j, and hence each I(n) is a dg A-submodule of I. Conditions

(1) and (2) are immediate by construction, and it is evident that each I(n) is

graded-injective with I(n)i = 0 for i � 0. It thus remains to verify the last

claim of the lemma, for that would also imply that the I(n) are semi-injective.

Assume Ii = 0 for i � 0, and let I(n) be as above. There are canonical

surjections I → I/I(n) for each n and I ∼= limn I/I(n) as dg modules over

A. It thus suffices to prove that each I/I(n) is semi-injective. So we may

assume that I\ =
⊕

j∈ZA
\U j with U j = ∅ for |j| � 0. By induction on the

number of nonempty U j , it suffices to consider the case when I is a free dg A-

module. Thus I has the form A ⊗k V with V a graded k-vector space with

zero differential. The self-duality of A then implies that I is isomorphic to a

shift of Homk(A, V ) and hence semi-injective. �

The statement below is a special case of a result from [2]. We thank the

authors for allowing us to reproduce the proof here.

Lemma 4.3. Let A be a dg algebra satisfying Hypothesis 4.1, and let m be

the dg ideal Ker(A→ k). Each graded-injective dg A-module I is isomorphic in

K(InjA) to a graded-injective dg A-module J whose differential satisfies d(J) ⊆
mJ .

Proof. We repeatedly use the fact that graded-injective dg A-modules are

graded-free. For any dg module F we write cone(F ) for the mapping cone of

the identity map F
=−→ F . When F is graded-free, cone(F ) has the following

lifting property: If α : M → N is a surjective morphism of dg A-modules, then

for any morphism β : cone(F )→ N there is a morphism γ : cone(F )→M such

that αγ = β. This is readily verified by a diagram chase. This observation is

used below.

Since A/mA is the field k, the complex of k-vector spaces I/mI is isomor-

phic to H∗(I/mI) ⊕ cone(V ), where V is a graded k-vector space with zero

differential. Pick a surjective morphism F → V of dg A-modules with F a

free dg A-module and F/mF ∼= V ; here V is viewed as a dg A-module via the

morphism A → k. One thus gets a surjective morphism cone(F ) → cone(V )

of dg A-modules. The composed morphism cone(F ) → cone(V ) → I/mI
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then lifts to a morphism γ : cone(F ) → I of dg A-modules. It follows by

construction that the map γ ⊗A k is injective, which implies that γ itself is

split-injective. Hence its cokernel, say, J , is graded-free. It is also not hard to

verify that d(J) ⊆ mJ holds. Finally, cone(F ) ∼= 0 in K(InjA) and hence I is

homotopy equivalent to J . �

The result below is an analogue of [24, Prop. 2.3] for dg algebras. In it

Kc(InjA) denotes the full subcategory of compact objects in K(InjA). As usual,

D(A) stands for the derived category of dg modules over A. We write Df(A)

for the full subcategory whose objects are dg modules M such that the H∗(A)-

module H∗(M) is finitely generated; equivalently, H∗(M) is finite dimensional

over k.

Theorem 4.4. Let A be a dg algebra satisfying Hypothesis 4.1 and ik

a semi-injective resolution of the dg A-module k. The triangulated category

K(InjA) is compactly generated by ik and the canonical functor K(InjA) →
D(A) restricts to an equivalence

Kc(InjA)
∼−→ Df(A).

In particular, Thick(ik) = Kc(InjA) and Loc(ik) = K(InjA).

Proof. The dg A-module k has a semi-injective resolution I with Ij = 0

for j < 0. One way to construct it is to start with a semi-free resolution

F → k with F i = 0 for i > 0 and apply Homk(−, k); note that Homk(F, k) is

semi-injective, by adjunction. Semi-injective resolutions of ik are isomorphic

in K(InjA) so we may assume that ik is concentrated in nonnegative degrees.

We have to prove that ik is compact in K(InjA) and that it generates

K(InjA). Let K denote the homotopy category of dg A-modules with the usual

triangulated structure. Identifying K(InjA) with a full subcategory of K one

gets an identification of HomK(InjA)(−,−) with HomK(−,−).

We claim that for any graded-injective module I, the natural map k → ik

induces an isomorphism HomK(ik, I) ∼= HomK(k, I). Indeed, the mapping cone

of the canonical inclusion k → ik gives rise to an exact triangle k → ik → C →
in K with Cj = 0 for j < 0. The desired result is that

HomK(C, I) = 0 = HomK(Σ−1C, I).

By Lemma 4.2, there exists a semi-injective dg module J ⊆ I with J>−2 =

I>−2. One then has isomorphisms

0 ∼= HomK(ΣnC, J) ∼= HomK(ΣnC, I) for each n ≤ 0,

where the second one holds for degree reasons, and the first one because

H∗(C) = 0 and J is semi-injective. This proves the claim.
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If {Iα} is a set of graded-injective dg modules over A, then the claim yields

the first and third isomorphisms below:

HomK

Ä
ik,
⊕
α

Iα
ä ∼= HomK

Ä
k,
⊕
α

Iα
ä

∼=
⊕
α

HomK(k, Iα)

∼=
⊕
α

HomK(ik, Iα).

The second isomorphism holds because the A\-module k is finitely generated.

Therefore the dg module ik is compact in K(InjA).

Suppose I is a graded-injective dg module with Hom∗K(ik, I) = 0. We wish

to verify that I is homotopy equivalent to 0. We may assume that d(I) ⊆ mI,

by Lemma 4.3, and hence that the differential on the dg module HomA(k, I)

is zero. This explains the first isomorphism below:

HomA(k, I) ∼= H∗(HomA(k, I)) ∼= Hom∗K(k, I) ∼= Hom∗K(ik, I) = 0.

The second isomorphism is standard and the third one holds by the claim

established above. The equality is by hypothesis, and it follows that I = 0. �

The following test for equivalence of triangulated categories is implicit

in [22, §4.2]. The proof uses a standard dévissage argument. Recall that Tc

denotes the subcategory of compact objects in T.

Lemma 4.5. Let F : S → T be an exact functor between compactly gen-

erated triangulated categories with coproducts. If F preserves coproducts and

restricts to an equivalence Sc
∼−→ Tc, then F is an equivalence of categories.

In particular, if there exists a compact generator C of S such that F (C) is

a compact generator of T and the induced map End∗S(C) → End∗T(FC) is an

isomorphism, then F is an equivalence.

Proof. Fix a compact object D of S, and let SD be the full subcate-

gory with objects X in S for which the induced map FD,X : HomS(D,X) →
HomT(FD,FX) is a bijection. This is a localising subcategory and contains

Sc by the assumption on F . Therefore SD = S. Given this, a similar argument

shows that for any object Y in S the subcategory {X ∈ S | FX,Y is bijective}
equals S. Thus F is fully faithful. The essential image of F is a localising

subcategory of T and contains a set of compact generators. We conclude that

F is an equivalence. �

This is used in the proof of the following result.

Proposition 4.6. Let ϕ : A→ B be a morphism of dg k-algebras where A

and B satisfy Hypothesis 4.1. One has an exact functor HomA(B,−) : K(InjA)

→ K(InjB) of triangulated categories. If ϕ is a quasi-isomorphism, then this
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functor is an equivalence and sends a semi-injective resolution of k over A to

a semi-injective resolution of k over B.

Proof. When I is a graded-injective dg module over A, the adjunction

isomorphism

HomB(−,HomA(B, I)) ∼= HomA(−, I)

implies that HomA(B, I) is a graded-injective over B. Since HomA(B,−) is

additive it defines an exact functor at the level of homotopy categories. The

isomorphism above also implies that when I preserves quasi-isomorphisms so

does HomA(−, I). Hence, when I is semi-injective so is HomA(B, I).

Suppose ϕ is a quasi-isomorphism, and let ik be a semi-injective resolution

of k over A. The dg B-module HomA(B, ik) is then semi-injective and has

cohomology k. It is hence a semi-injective resolution of k over B. In view of

Theorem 4.4 one thus gets the following commutative diagram.

Kc(InjA)
HomA(B,−)

//

∼
��

Kc(InjB)

∼
��

Df(A)
RHomA(B,−)

// Df(B).

The functor RHomA(B,−) is an equivalence because ϕ is a quasi-isomorphism.

Finally, since B\ is finite dimensional over k, it is finite when viewed as a

module over A\ via ϕ, so the functor HomA(B,−) preserves coproducts. It

remains to apply Lemma 4.5 to deduce that HomA(B,−) is an equivalence. �

In the remainder of this section we discuss stratification for homotopy

categories of graded-injective dg modules.

K(InjA) is tensor triangulated. Given a dg Hopf algebra A and dg A-

modules M and N , there is a dg A-module structure on M ⊗k N , obtained by

restricting the natural action of A⊗kA along the comultiplication A→ A⊗kA.

This is the diagonal action of A on M ⊗k N .

Proposition 4.7. Let A be a dg k-algebra satisfying Hypothesis 4.1 and

ik a semi-injective resolution of k over A. The tensor product ⊗k with diagonal

A-action endows K(InjA) with a structure of a tensor triangulated category with

unit ik.

Proof. Standard arguments show that for any dg A-module M the graded

A\-modules underlying M ⊗k A and A ⊗k M are free; see [3, §3.1]. Graded-

injective dg A-modules are graded-free as A\-modules and direct sums of

graded-injectives are graded-injectives, since A\ is noetherian. Therefore if

I and J are graded-injective dg A-modules, then so is the dg A-module I⊗k J .

Hence one does get a tensor product on K(InjA).
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We claim that the morphism k → ik induces an isomorphism

I ∼= k ⊗k I
∼−→ ik ⊗k I

in K(InjA), so that ik is the unit of the tensor product on K(InjA). Indeed,

it is an isomorphism when I = ik because the morphism ik → ik ⊗k ik is a

quasi-isomorphism and both ik and ik⊗k ik are semi-injective dg modules, the

first by construction and the second by Lemma 4.2. Therefore the map above

is an isomorphism for any I in Loc(ik), which is all of K(InjA), by Theorem 4.4.

For an alternative argument, see [8, Prop. 5.3].

The other requirements of a tensor triangulated structure are readily ver-

ified. �

Remark 4.8. Let A be a dg k-algebra satisfying Hypothesis 4.1.

The k-algebra Ext∗A(k, k) is graded commutative, as A is a Hopf k-algebra.

Identifying Ext∗A(k, k) with End∗K(ik) there is a canonical action on K(InjA)

given by

Ext∗A(k, k)
X⊗k−−−−−→ Hom∗K(InjA)(X,X)

for X in K(InjA). If the k-algebra Ext∗A(k, k) is finitely generated, and hence

noetherian, then the theory of localisation and support described in Section 3

applies to K(InjA). Finite generation holds, for instance, when the differential

on A is zero, by a result of Friedlander and Suslin [17].

Given a dg k-algebra A satisfying Hypothesis 4.1, the structure of K(InjA)

which is most relevant for us does not depend on the choice of a comultiplication

on A. This is made precise in the following proposition which is an immediate

consequence of Corollary 3.3 and Lemma 3.10.

Proposition 4.9. Let A be a dg k-algebra satisfying Hypothesis 4.1. The

following structures of K(InjA) do not depend on the choice of a comultiplica-

tion on A:

(1) the functors ΓV , LV , and Γp;

(2) the maps σ and τ defined in (3.7);

(3) stratification of K(InjA) via the canonical action of Ext∗A(k, k). �

Transfer of stratification. The next results deal with transfer of stratifi-

cation between homotopy categories of graded injective dg modules of dg al-

gebras.

Proposition 4.10. Let ϕ : A → B be a quasi-isomorphism of dg k-

algebras where A,B satisfy Hypothesis 4.1. Then K(InjA) is stratified by the

canonical action of Ext∗A(k, k) if and only if K(InjB) is stratified by the canon-

ical action of Ext∗B(k, k).
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Observe: ϕ is not required to commute with the comultiplications on A

and B.

Proof. Proposition 4.6 yields that HomA(B,−) : K(InjA) → K(InjB) is

an equivalence sending a semi-injective resolution of k over A to a semi-

injective resolution of k over B. Thus HomA(B,−) induces an isomorphism

µ : Ext∗A(k, k)
∼−→ Ext∗B(k, k). Observe that K(InjB) admits two actions of

Ext∗A(k, k). The first is the canonical action of Ext∗B(k, k) composed with µ

and the other is the canonical action on K(InjA) composed with the equivalence

HomA(B,−).

Suppose K(InjA) is stratified by the canonical action of Ext∗A(k, k). Then

K(InjB) is stratified by Ext∗A(k, k) via the second action because HomA(B,−)

is an equivalence. It follows from Lemma 3.10 that K(InjB) is stratified via

the first action, and hence the canonical action of Ext∗B(k, k) stratifies K(InjB)

since µ is an isomorphism. This argument can be reversed by using a quasi-

inverse of HomA(B,−). �

Theorem 4.11. Let A be a dg k-algebra satisfying Hypothesis 4.1. If

K(InjA) is stratified by the canonical action of Ext∗A(k, k), then K(InjA0) is

stratified by the canonical action of Ext∗A0(k, k).

Proof. We write K(A0) and K(A) for K(InjA0) and K(InjA), respectively.

Hypothesis 4.1 implies that A\, the graded module underlying A, is free of

finite rank over A0. Therefore when I is a graded-injective (respectively, semi-

injective) dg A-module the adjunction isomorphism

HomA0(−, I) ∼= HomA(A⊗A0 −, I)

yields that I is also graded-injective (respectively, semi-injective) as a dg A0-

module. In particular, the inclusion A0 → A gives rise to a restriction functor

(−)↓ : K(A)→ K(A0).

Let ik be a semi-injective resolution of k over A. The dg A0-module ik↓ is then

a semi-injective resolution of k over A0, so restriction induces a homomorphism

of graded k-algebras Ext∗A(k, k)→ Ext∗A0(k, k). In view of Lemma 3.11 it thus

suffices to prove that K(A0) is stratified by the action of Ext∗A(k, k).

The restriction functor has a right adjoint

HomA0(A,−) : K(A0)→ K(A).

Fix a prime p in Spec Ext∗A(k, k), and let X and Y be objects in ΓpK(A0)

with Hom∗K(A0)(X,Y ) = 0. It suffices to prove that X or Y is zero; see

Lemma 3.9.
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As an A0-module A\ is free of finite rank therefore the dg A0-module A↓ is

in Thick(A0), the thick subcategory of K(A0) generated by A0. Thus the dg A0-

module HomA0(A,X)↓ is in Thick(X). This justifies the second isomorphism

below:

Hom∗K(A)(HomA0(A,X),HomA0(A, Y )) ∼= Hom∗K(A0)(HomA0(A,X)↓, Y ) = 0.

The first one is adjunction. Observe that the adjunction isomorphism

Hom∗K(A0)(ik↓, X) ∼= Hom∗K(A)(ik,HomA0(A,X))

is compatible with the action of Ext∗A(k, k). Therefore, it follows that both

HomA0(A,X) and HomA0(A, Y ) are in ΓpK(A), and hence that one of them is

zero, since K(A) is stratified by Ext∗A(k, k). Assume, without loss of generality,

that HomA0(A,X) = 0. The isomorphism above then yields Hom∗K(A0)(ik↓, X)

= 0. By Theorem 4.4 the dg A0-module ik↓ generates K(A0), hence one gets

that X = 0. �

5. Graded polynomial algebras

Let k be a field and S a graded polynomial k-algebra on finitely many

indeterminates. We assume that each variable is of even degree if the char-

acteristic of k is not 2, so that S is strictly commutative. The algebra S is

viewed as a dg algebra with zero differential and we write D(S) for the derived

category of dg S-modules. The objects of this category are dg S-modules

and the morphisms are obtained by inverting the quasi-isomorphisms; see for

example [22].

The main result of this section is a classification of the localising subcate-

gories of D(S). This is a graded analogue of the theorem of Neeman [25]. In [7],

we establish this result for general graded commutative noetherian rings. The

argument presented here for S is simpler because we make use of the fact that

the Koszul complex of a regular local ring is quasi-isomorphic to its residue

field.

The category D(S) is tensor triangulated where the tensor product is ⊗L
S ,

the derived tensor product, and the unit is S. Observe that S is compact and

that it generates D(S). In particular, localising subcategories of D(S) are also

tensor ideal. There is a canonical action of the ring S on D(S), where the

homomorphism S → End∗D(S)(X) is given by multiplication. The theory of

localisation and support described in Section 3 thus applies.

In this context, one has also the following useful identification.

Lemma 5.1. Let p be a point in SpecS and set Z = {q ∈ SpecS | q 6⊆ p}.
For each M in D(S) there is a natural isomorphism LZM ∼= Mp.
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Proof. The functor on D(S) defined by M 7→Mp is a localisation functor

and has the same acyclic objects as LZ , since H∗(LZM) ∼= H∗(M)p, by [6,

Th. 4.7]. This implies the desired result. �

Theorem 5.2. The category D(S) is stratified by the canonical S-action.

In particular, the maps

{localising subcategories of D(S)}
σ
// {subsets of SpecS}

τ
oo

described in (3.7) are mutually inverse bijections.

Proof. By Theorem 3.8, the second part of the statement follows from the

first since localising subcategories of D(S) are tensor ideal.

Fix a point p ∈ SpecS. Since Hom∗D(S)(S,X) equals H∗(X), the subcate-

gory ΓpD(S) consists of dg modules whose cohomology is p-local and p-torsion.

Let k(p) be the homogeneous localisation of S/p at p; it is a graded field. Evi-

dently k(p) is in ΓpD(S), so for the desired result it suffices to prove that there

is an equality

Loc(M) = Loc(k(p))

for any nonzero dg module M in ΓpD(S). We verify this first for M = ΓpS.

Let s = s1, . . . , sd be a sequence of elements in S whose images in Sp are

a minimal set of generators for the ideal pSp in the ring Sp. Let V denote the

set of primes in SpecS containing s, and let Z = {q ∈ SpecS | q 6⊆ p}; these

are specialisation closed subsets. Observe that V \ Z = {p}, so one gets the

first equality below:

Loc(ΓpS) = Loc(LZΓVS) = Loc(LZ(S//s)) = Loc((S//s)p) = Loc(k(p)).

The second equality is a consequence of Proposition 3.5(2), since the functor

LZ preserves arbitrary coproducts, while the third one follows from Lemma 5.1.

The last equality holds because the dg module (S//s)p is quasi-isomorphic to

k(p) by the choice of s, since it is a regular sequence in Sp; see [10, Cor. 1.6.14].

We now know that Loc(ΓpS) = Loc(k(p)) holds. Applying the functor

−⊗L
S M to it yields the second equality below:

Loc(M) = Loc(ΓpM) = Loc(k(p)⊗L
S M).

The first one holds because M is in ΓpD(S). The action of S on k(p) ⊗L
S M

factors through the graded field k(p), as S is commutative. The equality above

implies that H∗(k(p)⊗L
SM) is nonzero, so one deduces that k(p)⊗L

SM is quasi-

isomorphic to a direct sum of shifts of k(p). Hence Loc(k(p)⊗L
SM) = Loc(k(p)).

Combining this equality with the one above yields the desired result. �



1664 D. J. BENSON, S. B. IYENGAR, and H. KRAUSE

6. Exterior algebras

Let k be a field, and let Λ be the graded exterior algebra over k on indeter-

minates ξ1, . . . , ξc of negative odd degree. We view Λ as a dg algebra with zero

differential. The main result of this section is a classification of the localising

subcategories of the homotopy category of graded-injective dg Λ-modules. It

will be deduced from Theorem 5.2, via a dg Bernstein-Gelfand-Gelfand corre-

spondence from [1, §7].

Definition 6.1. Let S be a graded polynomial algebra over k on indetermi-

nates x1, . . . , xc with |xi| = −|ξi|+1 for each i. The k-algebra Λ⊗kS is graded

commutative; view it as a dg algebra with zero differential. In it consider the

element

δ =
c∑
i=1

ξi ⊗k xi

of degree 1. It is easy to verify that δ2 = 0 holds. In what follows J denotes

the dg module over Λ ⊗k S with underlying graded module and differential

given by
J \ = Homk(Λ, k)⊗k S and d(e) = δe.

Observe that since J is a dg module over Λ⊗k S, for each dg module M over

Λ there is an induced structure of a dg S-module on HomΛ(J,M).

The result below builds on [1, Th. 7.4]; see Remark 6.3 below. Recall that

K(InjΛ) is the homotopy category of graded-injective dg modules over Λ and

D(S) is the derived category of dg modules over S.

Theorem 6.2. The dg (Λ ⊗k S)-module J in Definition 6.1 has these

properties :

(1) There is a quasi-isomorphism k → J of dg Λ-modules and J is semi-

injective.

(2) The map S → HomΛ(J, J) induced by right multiplication is a morphism

of dg k-algebras and a quasi-isomorphism.

For any dg (Λ⊗k S)-module J satisfying these conditions the functor

HomΛ(J,−) : K(InjΛ)→ D(S)

is an equivalence of triangulated categories.

Proof. The surjection Λ→ k is a morphism of dg Λ-modules and hence so

is its dual k → Homk(Λ, k). Combined with the map of k-vector spaces k → S

one gets a morphism k → Homk(Λ, k)⊗k S = J of dg Λ-modules. The module

J is precisely the dg module X from [1, §7.3]. It thus follows from [1, §§7.6.2,

7.6.5] that k → J is a quasi-isomorphism and that J is semi-injective as a

dg Λ-module. Moreover, the map S → HomΛ(J, J) is a quasi-isomorphism by

[1, Th. 7.4]. The module J thus has the stated properties.
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Let J be any dg (Λ⊗k S)-module satisfying conditions (1) and (2) in the

statement of the theorem. It is easy to verify that the functor HomΛ(J,−)

from K(InjΛ) to D(S) is exact. We claim that J is compact and generates

the triangulated category K(InjΛ). One way to prove this is to note that Λ

satisfies Hypothesis 4.1, with comultiplication defined by ξi 7→ ξi ⊗ 1 + 1⊗ ξi,
so that Theorem 4.4 applies. Compactness yields that the functor HomΛ(J,−)

preserves coproducts, since a quasi-isomorphism between dg S-modules is an

isomorphism in D(S). Furthermore, as S is a compact generator for D(S),

condition (2) provides the hypotheses required to apply Lemma 4.5, which

yields that HomΛ(J,−) is an equivalence. �

Remark 6.3. Let F : D(S)→ K(S) be a left adjoint to the canonical local-

isation functor K(S)→ D(S), and −⊗L
S J the composite functor

D(S)
F−→ K(S)

−⊗SJ−−−−→ K(InjΛ).

The proof of Theorem 6.2 shows that − ⊗L
S J is left adjoint to HomΛ(J,−),

so restricting the equivalence in Theorem 6.2 to compact objects yields the

equivalence Df(Λ)
∼−→ Df(S) contained in [1, Th. 7.4].

As in the proof of Theorem 6.2 consider Λ as dg Hopf k-algebra with

∆(ξi) = ξi ⊗ 1 + 1⊗ ξi.

Observe that Λ satisfies Hypothesis 4.1, so the triangulated category K(InjΛ)

has a canonical tensor triangulated structure, by Proposition 4.7 and hence

a canonical action of Ext∗Λ(k, k); see Remark 4.8. Moreover, the k-algebra

Ext∗Λ(k, k) is noetherian, by Theorem 6.2(2).

Theorem 6.4. The tensor triangulated category K(InjΛ) is stratified by

the canonical action of Ext∗Λ(k, k). Therefore the maps

{localising subcategories of K(InjΛ)}
σ
//

τ
oo {subsets of Spec Ext∗Λ(k, k)}

described in (3.7) are mutually inverse bijections.

Proof. Let S and J be as in Definition 6.1. In view of Theorem 6.2(1) we

identify Ext∗Λ(k, k) and HomK(InjΛ)(J, J). Theorem 5.2 applies to S and yields

that D(S) is stratified by the canonical S-action on it, and hence also by an

action of Ext∗Λ(k, k) obtained from the isomorphism S ∼= Ext∗Λ(k, k) in The-

orem 6.2(2). Theorem 6.2 provides an equivalence of triangulated categories

K(InjΛ) → D(S) that sends J , the compact generator of K(InjΛ), to S, the

compact generator of D(S). Hence K(InjΛ) is stratified by the canonical action

of Ext∗Λ(k, k), by Lemma 3.10.

By Theorem 3.8 the stated bijection is a consequence of the stratification.

�
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7. A Koszul dg algebra

In this section we classify the localising subcategories of the homotopy

category of graded-injective dg modules over the Koszul dg algebra of the group

algebra of an elementary abelian group. To this end we establish an equivalence

with the corresponding homotopy category over an exterior algebra, covered

by Theorem 6.4.

Let E be an elementary abelian p-group of rank r, and let k be a field of

characteristic p. The group algebra kE is thus of the form

kE = k[z1, . . . , zr]/(z
p
1 , . . . , z

p
r ).

Let A be the dg algebra with A\ an exterior algebra over kE on generators

y1, . . . , yr each of degree −1, and differential defined by d(yi) = zi, so that

d(zi) = 0. This is the Koszul complex of A, viewed as a dg algebra; see [10,

§1.6].

The group algebra kE is an example of a complete intersection, and the

Koszul dg algebra of such a ring is formal, with cohomology an exterior algebra;

see [10, §2.3]. This computation is straightforward for the case of kE and is

given below.

Lemma 7.1. Let Λ be an exterior algebra over k on degree −1 indetermi-

nates ξ1, . . . , ξr, viewed as a dg algebra with zero differential. The morphism

ϕ : Λ → A of dg k-algebras defined by ϕ(ξi) = zp−1
i yi is a quasi-isomorphism.

In particular, the k-algebra Ext∗A(k, k) is a polynomial ring in r indeterminates

of degree 2.

Proof. A routine calculation shows that ϕ is a morphism of dg k-algebras.

What needs to be verified is that it is a quasi-isomorphism, and this is deter-

mined only by the structure of Λ and A as complexes of k-vector spaces.

Let Λ(i) be the exterior algebra on the variable ξi and A(i) the Koszul

dg algebra over k[zi]/(z
p
i ), with exterior generator yi. Observe that ϕ = ϕ(1)⊗k

· · · ⊗k ϕ(r) where ϕ(i) : Λ(i)→ A(i) is the morphism of complexes mapping ξi
to zp−1

i yi. Each ϕ(i) is a quasi-isomorphism, by inspection and hence so is ϕ.

Since ϕ is a quasi-isomorphism the k-algebras Ext∗Λ(k, k) and Ext∗A(k, k)

are isomorphic. Theorem 6.2(2) implies Ext∗A(k, k) has the stated structure.

�

We endow the dg algebra A with a comultiplication

∆(zi) = zi ⊗ 1 + 1⊗ zi and ∆(yi) = yi ⊗ 1 + 1⊗ yi.

With this structure A satisfies Hypothesis 4.1. The homotopy category of

graded-injective dg A-modules K(InjA) has thus a tensor triangulated structure

and a canonical action of Ext∗A(k, k); see Proposition 4.7 and Remark 4.8.
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Theorem 7.2. The tensor triangulated category K(InjA) is stratified by

the canonical action of Ext∗A(k, k). Therefore the maps

{localising subcategories of K(InjA)}
σ
//

τ
oo {subsets of Spec Ext∗A(k, k)}

described in (3.7) are mutually inverse bijections.

Proof. Let Λ be the exterior algebra from Lemma 7.1. With comultipli-

cation defined by ξi 7→ ξi ⊗ 1 + 1⊗ ξi this dg algebra satisfies Hypothesis 4.1.

The desired result thus follows from Lemma 7.1, Theorem 6.4 and Proposi-

tion 4.10. �

8. Elementary abelian groups

We classify the localising subcategories of the homotopy category of in-

jective modules over the group algebra of an elementary abelian group, by

deducing it from the corresponding statement for its Koszul dg algebra in

Theorem 7.2.

Let E be an elementary abelian p-group of rank r and k a field of charac-

teristic p. In this section we view its group algebra kE, which is isomorphic to

k[z1, . . . , zr]/(z
p
1 , . . . , z

p
r )

as a dg algebra over k with zero differential. The diagonal map of E endows

kE with a structure of a dg Hopf k-algebra with comultiplication

∆(zi) = zi ⊗ 1 + zi ⊗ zi + 1⊗ zi.

We call this the group Hopf structure on kE; it is evidently cocommutative.

This Hopf structure is needed in Section 9 for the passage from E to a general

finite group.

We also have to consider a different cocommutative dg Hopf algebra struc-

ture on kE, where the comultiplication is defined by

∆(zi) = zi ⊗ 1 + 1⊗ zi.

We call this the Lie Hopf structure on kE. It comes from regarding kE as the

restricted universal enveloping algebra of an abelian p-restricted Lie algebra

with zero p-power map. The Lie Hopf structure has the advantage that the

inclusion of kE into its Koszul dg algebra is a map of dg Hopf algebras; this

is exploited in the proof of Theorem 8.1 below.

The group Hopf structure and the Lie Hopf structure on kE both satisfy

Hypothesis 4.1, and thus give rise to two tensor triangulated structures on

K(Inj kE). Thus there are two actions of Ext∗kE(k, k) on K(Inj kE), which we

call the group action and the Lie action, respectively; see Proposition 4.7

and Remark 4.8. The k-algebra Ext∗kE(k, k) is finitely generated and hence
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noetherian. Thus the theory of localisation and support described in Section 3

applies.

Theorem 8.1. The triangulated category K(Inj kE) is stratified by both the

group action and the Lie action of Ext∗kE(k, k). The maps σ and τ described in

(3.7) do not depend on the action used, and give mutually inverse bijections :

{localising subcategories of K(Inj kE)}
σ
// {subsets of Spec Ext∗kE(k, k)}.

τ
oo

Proof. Proposition 4.9 justifies the statement about independence of ac-

tions. Hence it suffices to consider the Lie Hopf structure on kE.

Let A be the Koszul dg algebra of kE with structure of dg Hopf k-algebra

introduced in Section 7. Observe that kE = A0 and that the inclusion kE → A

is compatible with the Lie Hopf structure; this is the reason for working with

this Hopf structure on kE. It now remains to apply Theorems 7.2 and 4.11. �

9. Finite groups

In this section we prove that the tensor ideal localising subcategories of the

homotopy category of complexes of injective modules over the group algebra of

a finite group are stratified by the cohomology of the group. This is achieved by

descending to the case of an elementary abelian group, covered by Theorem 8.1.

The crucial new input required here is Quillen’s stratification theorem [28], [29].

Let G be a finite group and k a field of characteristic dividing the order

of G. The group algebra kG is a Hopf algebra where the comultiplication is

defined by ∆(g) = g ⊗ g for each g ∈ G. We consider the homotopy category

of complexes of injective kG-modules K(Inj kG). The diagonal action of G

induces a tensor triangulated structure with unit the injective resolution ik of

k; see [8, §5] and also Proposition 4.7. As is customary, H∗(G, k) denotes the

cohomology of G, which is the k-algebra Ext∗kG(k, k). This algebra is finitely

generated, and hence noetherian, by a result of Evens and Venkov [15], [33]; see

also Golod [18]. It acts on K(Inj kG) via the canonical action, and the theory

described in Section 3 applies. We write VG for SpecH∗(G, k) and VG(X) for

the support of any complex X in K(Inj kG).

For each subgroup H of G restriction yields a homomorphism of graded

rings resG,H : H∗(G, k)→ H∗(H, k), and hence a map on Spec:

res∗G,H : VH → VG.

Part of Quillen’s theorem1 is that for each p in VG there exists an elemen-

tary abelian subgroup E of G such that p is in the image of res∗G,E . We say

1See the discussion following Proposition 11.2 of [29].
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that p originates in such an E if there does not exist a proper subgroup E′ of

E such that p is in the image of res∗G,E′ . In this language, [29, Th. 10.2] reads:

Theorem 9.1. For each p ∈ VG, the pairs (E, q) where p = res∗G,E(q)

and such that p originates in E are all G-conjugate. This sets up a one-to-one

correspondence between primes p in VG and G-conjugacy classes of such pairs

(E, q). �

To make use of this we need a subgroup theorem for elementary abelian

groups. As usual given a subgroup H ≤ G there are exact functors

(−)↓H : K(Inj kG)→ K(Inj kH) and (−)↑G : K(Inj kH)→ K(Inj kG)

defined by restriction and induction, − ⊗kH kG, respectively. The functor

(−)↑G is faithful and left adjoint to (−)↓H . For each object X in K(Inj kG)

and object Y in K(Inj kH) there is a natural isomorphism

(9.2) (X↓H ⊗k Y )↑G ∼= X ⊗k Y ↑G

in K(Inj kG), where an element (x⊗ y)⊗ g is mapped to xg ⊗ (y ⊗ g).

Lemma 9.3. Let H be a subgroup of G. Fix p ∈ VG and set U =

(res∗G,H)−1{p}.
(1) For any X ∈K(Inj kG) there is an isomorphism (ΓpX)↓H ∼=

⊕
q∈U Γq(X↓H).

(2) For any Y ∈K(Inj kH) there is an isomorphism Γp(Y ↑G)∼=
⊕

q∈U (ΓqY )↑G.

Proof. (1) For X = ik, this follows as in [4, Lemma 8.2 and Prop. 8.4

(iv)]. The general case is deduced as follows:

(ΓpX)↓H ∼= (Γpik ⊗k X)↓H ∼= (Γpik)↓H ⊗k X↓H
∼=
⊕
q∈U

Γqik ⊗k X↓H ∼=
⊕
q∈U

Γq(X↓H).

(2) Using part (1) and (9.2), one gets isomorphisms

Γp(Y ↑G) ∼= Γpik ⊗k Y ↑G ∼= ((Γpik)↓H ⊗k Y )↑G

∼=
⊕
q∈U

(Γqik ⊗k Y )↑G ∼=
⊕
q∈U

(ΓqY )↑G. �

Proposition 9.4. Let H be a subgroup of G. For any object X in

K(Inj kG) and object Y in K(Inj kH) one has

VG(X↓H↑G) ⊆ VG(X) and VG(Y ↑G) = res∗G,H VH(Y ).

Proof. Let k(G/H) be the permutation module on the cosets of H in G,

and let W be an injective resolution of k(G/H). We claim that the natural map

k(G/H)→W of complexes of kG-modules induces an isomorphism X↓H↑G ∼=
X ⊗k W in K(Inj kG).
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Indeed, this is easy to check when X = iM , the injective resolution of a

finite dimensional kG-module M , for then both iM↓H↑G and iM ⊗k W are

injective resolutions of M ⊗k k(G/H). It then remains to note that complexes

of the form iM are a set of compactly generators for K(Inj kG); see [24, Lemmas

2.1 and 2.2].

When p ∈ VG(X ⊗k W ) holds, since Γp(X ⊗k W ) ∼= ΓpX ⊗k W one gets

ΓpX 6= 0, that is to say, p ∈ VG(X), as desired.

By Lemma 9.3(2) the condition p ∈ VG(Y ↑G) is equivalent to: there

exists q ∈ VH such that res∗G,H(q) = p and ΓqY 6= 0. Hence VG(Y ↑G) =

res∗G,H VH(Y ). �

The result below is an analogue of the subgroup theorem for an elementary

abelian group E. Its proof is based on the classification of localising subcate-

gories of K(Inj kE). The full version of the subgroup theorem, Theorem 11.2,

will be a consequence of the classification theorem for K(Inj kG).

Theorem 9.5. Let E′ ≤ E be elementary abelian p-groups. For any

object X in K(Inj kE) there is an equality

VE′(X↓E′) = (res∗E,E′)
−1VE(X).

Proof. Fix a prime q in VE′ and set p = res∗E,E′(q). Proposition 9.4 yields

an equality VE(Γqik↑E) = {p} = VE(Γpik). It thus follows from the clas-

sification of localising subcategories for kE in Theorem 8.1 that there is an

equality

Loc(Γqik↑E) = Loc(Γpik).

This implies that Γqik↑E ⊗k X 6= 0 holds if and only if Γpik ⊗k X 6= 0. The

desired result follows from the chain of implications:

Γq(X↓E′) 6= 0 ⇐⇒ Γqik ⊗k X↓E′ 6= 0

⇐⇒ Γqik↑E ⊗k X 6= 0 ⇐⇒ Γpik ⊗k X 6= 0 ⇐⇒ ΓpX 6= 0.

The second implication follows from (9.2) and the fact that (−)↑E is faithful.

�

Next we formulate a version of Chouinard’s theorem for K(Inj kG). Recall

that for any ring A, a complex P of projective A-modules is semi-projective if

the functor HomK(P,−), where K is the homotopy category of complexes of

A-modules, takes quasi-isomorphisms to isomorphisms.

Proposition 9.6. Let G be a finite group and m the ideal of positive

degree elements of H∗(G, k). The following statements hold for each X in

K(Inj kG).

(1) VG(X) ⊆ SpecH∗(G, k) \ {m} if and only if X is acyclic.

(2) VG(X) ⊆ {m} if and only if X is semi-projective.
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(3) X = 0 if and only if X↓E = 0 for every elementary abelian subgroup

E ≤ G.

Proof. We write pk for a projective resolution and tk for a Tate resolution

of the kG-module k. These fit into an exact triangle pk → ik → tk → which

is the localisation triangle (3.2) in K(Inj kG) for ik with respect to the closed

subset {m}. In particular Γmik = pk, so that ΓmX ∼= pk ⊗k X.

Claim. The induced map pk ⊗k X → X is a semi-projective resolution

of X.

Indeed, since pk is a complex of projectives, so is pk⊗kX; semi-projectivity

follows from the isomorphism HomK(pk ⊗k X,−) ∼= HomK(pk,Homk(X,−)).

Statements (1) and (2) are immediate from the preceding claim.

(3) Suppose X is nonzero in K(Inj kG). In view of the localisation triangle

pk⊗kX → X → tk⊗kX → we may assume that pk⊗kX 6= 0 or tk⊗kX 6= 0.

Assume that pk⊗kX is nonzero; equivalently, that it is not acyclic, by the

preceding claim. Observe that for each subgroup H ≤ G the restriction functor

(−)↓H sends semi-projectives to semi-projectives. Therefore (pk⊗kX)↓H , and

hence X↓H , is nonzero.

Now assume that tk ⊗k X is nonzero. Chouinard’s theorem [13] applies,

because one can identify the subcategory of acyclic complexes in K(Inj kG) with

StMod(kG), and this identification is compatible with restrictions. This yields

an elementary abelian subgroup E ≤ G with (tk⊗kX)↓E and hence also X↓E ,

nonzero. �

The following result is a culmination of the development in Sections 4–9.

Its applications are deferred to ensuing sections.

Theorem 9.7. Let G be a finite group. The triangulated category K(Inj kG)

is stratified by the canonical action of the cohomology algebra H∗(G, k).

Proof. For any subgroup H ≤ G we abbreviate K(Inj kH) to K(kH). We

have to prove that for each p ∈ VG, the subcategory ΓpK(kG) is minimal among

tensor ideal localising subcategories of K(kG).

Let X be a nonzero object in ΓpK(kG). Proposition 9.6 provides an ele-

mentary abelian subgroup E0 of G such that X↓E0
is nonzero. Choose a prime

q0 in VE0(X↓E0
). Using Proposition 9.4 one thus obtains

res∗G,E0
(q0) ∈ VG(X↓E0

↑G) ⊆ VG(X) = {p}.

Hence res∗G,E0
(q0) = p, so that E0 ≥ E and q0 = res∗E0,E

(q) for some pair (E, q)

corresponding to p as in Theorem 9.1. Thus q ∈ VE(X↓E), by Theorem 9.5.

By Theorem 9.1 all pairs (E, q) where p originates in E are conjugate,

hence if we choose one, then each nonzero X ∈ ΓpK(kG) has ΓqX↓E 6= 0.
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Now let Y be another nonzero object in ΓpK(kG) and set Z to be the

injective resolution of k(G/E), the permutation module. As noted in the

proof of Proposition 9.4, the complexes X↓E↑G and X ⊗k Z are isomorphic in

K(Inj kG). This gives the first isomorphism below:

Hom∗K(kG)(X ⊗k Z, Y ) ∼= Hom∗K(kG)(X↓E↑
G, Y ) ∼= Hom∗K(kE)(X↓E , Y ↓E).

The second isomorphism is by Frobenius reciprocity. Lemma 9.3 im-

plies that ΓqX↓E and ΓqY ↓E are nonzero direct summands of X↓E and Y ↓E ,

respectively. It follows from Theorem 8.1 and the isomorphism above that

Hom∗K(kG)(X ⊗k Z, Y ) is nonzero, so ΓpK(kG) is minimal, by Lemma 3.9. �

10. The main theorems

Let k be a field of characteristic p and G be a finite group, where p divides

the order of G. The following result implies Theorem 2.3.

Theorem 10.1. The tensor triangulated category K(Inj kG) is stratified

by the canonical action of H∗(G, k). The maps{
tensor ideal localising

subcategories of K(Inj kG)

}
σ
//

τ
oo {subsets of SpecH∗(G, k)}

described in (3.7) are mutually inverse bijections.

Proof. This follows from Theorems 3.8 and 9.7. Note that the support of

K(Inj kG) equals SpecH∗(G, k) since VG(k) = SpecH∗(G, k). �

Next we prove our main result, Theorem 10.3 below, about the stable

module category StMod(kG). We identify it with Kac(Inj kG), the full subcat-

egory of K(Inj kG) consisting of acyclic complexes. Observe that Kac(Inj kG) is

the tensor ideal localising subcategory of K(Inj kG) corresponding to the sub-

set ProjH∗(G, k) of nonmaximal primes; see Proposition 9.6. This provides

one way of classifying all tensor ideal localising subcategories of StMod(kG) in

terms of subsets of ProjH∗(G, k); see Proposition 2.2.

Now we define an action of the cohomology ring H∗(G, k) on StMod(kG).

The equivalence Kac(Inj kG)
∼−→ StMod(kG) sends a complex X to its cycles

Z0X in degree zero. Restriction to the category of acyclic complexes induces

therefore the following H∗(G, k)-action

H∗(G, k)→ Z∗K(Inj kG)
res−−→ Z∗Kac(Inj kG)

∼−→ Z∗ StMod(kG),

where the first map is given by the canonical action of H∗(G, k) on K(Inj kG).

For each kG-module M , this action induces the map

(10.2) H∗(G, k) ↪→‘Ext
∗
kG(k, k) = End∗StMod(kG)(k)

M⊗k−−−−−→ End∗StMod(kG)(M).
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Thus we are in the setting of Section 3. The support of any module M in

StMod(kG) is denoted VG(M); it is a subset of SpecH∗(G, k). By construc-

tion, this coincides with the support of a Tate resolution of M in K(Inj kG).

Moreover, VG(M) is the support defined in [4]. Indeed if p is a nonmaximal

prime p in H∗(G, k), then Γpk equals the kappa module for p defined in [4];

see [6, §10].

Theorem 10.3. The tensor triangulated category StMod(kG) is stratified

by the action of H∗(G, k) given by (10.2). The maps{
tensor ideal localising

subcategories of StMod(kG)

}
σ
//

τ
oo {subsets of ProjH∗(G, k)}

described in (3.7) are mutually inverse bijections.

Proof. Using the identification of StMod(kG) with Kac(Inj kG), the asser-

tion follows from Theorem 10.1 and Proposition 2.2. �

The result below implies Theorem 1.1 from the introduction.

Theorem 10.4. The maps{
nonzero tensor ideal localising

subcategories of Mod kG

}
σ
//

τ
oo {subsets of ProjH∗(G, k)}

given by the obvious analogue of (3.7) are mutually inverse bijections.

Proof. This follows from Theorem 10.3 and Proposition 2.1. �

In [8], it was proved that if G is a finite p-group, then there is an equiva-

lence of triangulated categories

K(Inj kG)
∼−→ D(C∗(BG; k)),

where C∗(BG; k) denotes the dg algebra of cochains on the classifying space

BG of G. This gives D(C∗(BG; k)) the structure of a tensor triangulated

category. Composing with the canonical map one gets an action

(10.5) H∗(G, k)→ Z∗K(Inj kG)
∼−→ Z∗D(C∗(BG; k)).

Theorem 10.6. If G is a finite p-group, then the tensor triangulated

category D(C∗(BG; k)) is stratified by the action of H∗(G, k) given by (10.5).

The maps

{localising subcategories of D(C∗(BG; k))}
σ
//

τ
oo {subsets of SpecH∗(G, k)}

described in (3.7) are mutually inverse bijections.

Proof. This follows from Theorem 10.1 and the observation that every

localising subcategory is tensor ideal. �
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11. Applications

In this section we deduce the principal theorems of Benson, Carlson, and

Rickard [4, 5] from Theorem 10.1 without using shifted subgroups, any form

of Dade’s lemma, or algebraic closure of the field. Then we make various

other deductions from the main theorem. We classify localising subcategories

closed under products, and show that these are the same as those closed under

Brown-Comenetz duality. We classify the smashing subcategories, and show

that the telescope conjecture holds for StMod(kG) and K(Inj kG). Finally, we

find the left perpendicular categories to localising subcategories. Note that

similar applications can be formulated for dg modules over graded polynomial

algebras and graded exterior algebras; this is left to the interested reader;

see [7].

In this section, we abbreviate HomK(Inj kG)(−,−) to HomK(kG)(−,−).

The tensor product theorem. Part (2) of the result below was proved by

Benson, Carlson, and Rickard [4] under the additional hypothesis that k is

algebraically closed.

Theorem 11.1. Let G be a finite group and k be a field of characteristic p.

(1) If X,Y, are objects in K(Inj kG), then VG(X ⊗k Y ) = VG(X) ∩ VG(Y ).

(2) If M,N, are objects in StMod(kG), then VG(M⊗kN) = VG(M)∩VG(N).

Proof. Part (2) follows from (1) via the identification of StMod kG with

Kac(Inj kG).

(1) One has an isomorphism Γp(X ⊗k Y ) ∼= ΓpX ⊗k ΓpY , which yields an

inclusion VG(X ⊗k Y ) ⊆ VG(X) ∩ VG(Y ). Conversely, if p ∈ VG(X) ∩ VG(Y ),

then ΓpX 6= 0 and ΓpY 6= 0. Theorem 10.1 implies that Γpik is in Loc⊗(ΓpX),

hence that ΓpY is in Loc⊗(Γp(X ⊗k Y )). Since ΓpY 6= 0 it follows that

Γp(X ⊗k Y ) 6= 0. �

The subgroup theorem. The theorem below strengthens Theorem 9.5 from

elementary abelian p-groups to all finite groups. For StMod(kG) and k alge-

braically closed it was proved in [4].

Theorem 11.2. Let H ≤ G be a subgroup. For any complex X in

K(Inj kG) there is an equality

VH(X↓H) = (res∗G,H)−1VG(X).

The analogous statement where K(Inj kG) is replaced by StMod(kG) also holds.

Proof. The argument for K(Inj kG) is the same as the proof of Theorem 9.5

except that one uses Theorem 10.1 instead of Theorem 8.1. The statement

about StMod(kG) is deduced by identifying it with the acyclic complexes in

K(Inj kG). �
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The thick subcategory theorem. Recall from [24, Prop. 2.3] that the com-

pact objects in K(Inj kG) are the semi-injective resolutions of bounded com-

plexes of finitely generated kG-modules, and that the canonical functor from

K(Inj kG) to D(Mod kG) induces an equivalence of triangulated categories

Kc(Inj kG)
∼−→ Db(mod kG); we view this as an identification.

Lemma 11.3. Let C be a direct sum of the simple kG-modules. For any

complex X in Db(mod kG) one has VG(X) = V(a) where a is the annihilator

of the H∗(G, k)-module H∗(G,C ⊗k X).

Proof. This is a restatement of [6, Th. 5.5 (1)] in this context. �

In view of the equivalence of tensor triangulated categories

Db(mod kG)/Db(proj kG)
∼−→ stmod(kG)

given by [31, Th. 2.1], the following theorem generalises, with a new proof, a

classification of the tensor ideal thick subcategories of stmod(kG) from [5].

Theorem 11.4. There is a one-to-one correspondence between tensor

ideal thick subcategories of Db(mod kG) and specialisation closed subsets V
of VG.

The thick subcategory corresponding to V is the full subcategory of objects

X in Db(mod kG) such that VG(X) ⊆ V .

Proof. Let C be a tensor ideal thick subcategory of Db(mod kG), and let

C′ be the tensor ideal localising subcategory of K(Inj kG) generated by C. It

follows using the arguments described in [32, §5] that C′ ∩ Db(mod kG) = C.

The supports of C and C′ coincide, so the map sending C to its support is

injective by Theorem 10.1.

It follows from Lemma 11.3 that the support of a tensor ideal thick sub-

category is specialisation closed. On the other hand, if V is a specialisation

closed subset of VG, then the support of the tensor ideal thick subcategory

generated by {ik//p | p ∈ V} equals V, by Proposition 3.5(2). So every spe-

cialisation closed subset of VG occurs as the support of some tensor ideal thick

subcategory C of Db(mod kG). �

Localising subcategories closed under products and duality. Let k be a field

and (T,⊗,1) a k-linear tensor triangulated category. There are two notions of

duality in T. The Spanier-Whitehead dual X∨ of an object X is defined as the

function object Hom(X,1) as in [6, §8] by the adjunction

HomT(−⊗X,1) ∼= HomT(−,Hom(X,1)).

The Brown-Comenetz dual X∗ of an object X is defined by the isomorphism

Homk(HomT(1,−⊗X), k) ∼= HomT(−, X∗).
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The language and notation is borrowed from stable homotopy theory. The

commutativity of the tensor product implies that both dualities are self adjoint.

Thus we have a natural isomorphism HomT(X,Y ∗) ∼= HomT(Y,X∗) which

gives rise to a natural biduality morphism X → X∗∗.

Lemma 11.5. The following statements hold for each X in T:

(1) There is a natural isomorphism X∗ ∼= Hom(X,1∗).

(2) For each compact object C , applying HomT(C,−) to the morphism X →
X∗∗ yields the biduality map

HomT(C,X)→ Homk(Homk(HomT(C,X), k), k).

(3) If X∗ = 0, then X = 0.

Proof. The first claim is a consequence of the isomorphisms

HomT(−, X∗) ∼= HomT(−⊗ 1, X∗)
∼= HomT(−,Hom(1, X∗))

∼= HomT(−,Hom(X,1∗)),

where the last one is immediate from the definition of the Brown-Comenetz

dual.

(2) Set (−)†=Homk(−,k). There is a natural isomorphism η : HomT(C,X)†
∼−→ HomT(C∨, X∗) which is compatible with the adjunction isomorphisms for

(−)∗ and (−)†. This follows from the defining isomorphism of the Brown-

Comenetz dual and the fact that C is a strongly dualising object. Thus the

following diagram commutes:

HomT(X∗, X∗)

∼

��

HomT(C∨,−)
// Homk(HomT(C∨, X∗),HomT(C∨, X∗))

∼ Homk(η,η−1)
��

Homk(HomT(C,X)†,HomT(C,X)†)

∼
��

HomT(X,X∗∗)
HomT(C,−)

// Homk(HomT(C,X),HomT(C,X)††).

This justifies the claim.

(3) When X∗ = 0 it follows from (2) that HomT(C,X) = 0 for any

compact object C, since k is a field. Thus X = 0 as claimed. �

In StMod kG the function object is Homk(M,N), with diagonal action.

The Spanier-Whitehead dual and the Brown-Comenetz dual of kG-modules

are closely related. As usual for a kG-module N we write ΩN and Ω−1N for

the kernel of a projective cover of N and the cokernel of an injective envelope

of N , respectively.
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Proposition 11.6. In StMod(kG) for each kG-module M there are iso-

morphisms

M∨ ∼= Homk(M,k) and M∗ ∼= Ω Homk(M,k).

Hence M∨ = 0 if and only if M∗ = 0 if and only if M is projective.

Proof. The expression for M∨ is by definition. Set T = StMod(kG). For

each kG-module N , Tate duality [12, Chapter XII, Theorem 6.4] gives the

third isomorphism below:

HomT(N,Ω Homk(M,k)) ∼= HomT(Ω−1N,Homk(M,k))

∼= HomT(Ω−1N ⊗kM,k)

∼= Homk(HomT(k,Ω((Ω−1N)⊗kM)), k)

∼= Homk(HomT(k,N ⊗kM), k).

The other isomorphisms are standard. Thus M∗ ∼= Ω Homk(M,k).

In StMod(kG) one has ΩN = 0 if and only if N = 0. Therefore the last

claim follows from Lemma 11.5(3). �

The situation in K(Inj kG) is more complicated. Observe that in this

category the function object of complexes X and Y is the complex Homk(X,Y )

of injective kG-modules with diagonal action: (gφ)(x) = g(φ(g−1x)).

Proposition 11.7. For each X in K(Inj kG) there are isomorphisms

X∨ = Homk(X, ik) and X∗ ∼= Homk(X, ik
∗) ∼= Homk(X, pk).

Hence X∨ is semi-injective, and X∨ = 0 if and only if X is acyclic. Further-

more X∗ = 0 if and only if X = 0.

Proof. The expression for X∨ is by definition. For X∗ use Lemma 11.5(1)

and an isomorphism ik∗ ∼= pk, which is a variant of Tate duality:

HomK(kG)(−, ik∗) ∼= Homk(HomK(kG)(ik,−), k)

∼= Homk(HomK(kG)(k,−), k)

∼= HomK(kG)(−, k)

∼= HomK(kG)(−, pk).

The adjunction isomorphism HomT(−, X∨) ∼= HomT(X ⊗k −, ik) implies that

X∨ is semi-injective, since ik is semi-injective. Given this it is clear that

X∨ = 0 precisely when X is acyclic. The statement about X∗ is part of

Lemma 11.5. �
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Given a subcategory C of a triangulated category T we define full subcat-

egories

⊥C = {X ∈ T | Hom∗T(X,Y ) = 0 for all Y in C},

C⊥ = {X ∈ T | Hom∗T(Y,X) = 0 for all Y in C}.

Evidently, ⊥C is a localising subcategory, and C⊥ is a colocalising subcategory,

i.e., a thick subcategory closed under products.

Theorem 11.8. For any tensor ideal localising subcategory C of K(Inj kG)

the following are equivalent :

(a) The subcategory C is closed under products.

(b) The complement of the support of C in SpecH∗(G, k) is specialisation

closed.

(c) The subcategory C is equal to D⊥ with D a subcategory of compact objects.

(d) The Brown-Comenetz dual of any object in C is also in C.

The analogous statement where K(Inj kG) is replaced by StMod(kG) and the

set SpecH∗(G, k) is replaced by ProjH∗(G, k) also holds.

The proof of this result relies on a construction of objects T (I) in K(Inj kG)

which we recall from [8, §11]. Given an injective H∗(G, k)-module I, the object

T (I) is defined in terms of the following natural isomorphism

(11.9) HomH∗(G,k)(H
∗(G,−), I) ∼= HomK(kG)(−, T (I)).

For each prime ideal p of H∗(G, k) let I(p) be the injective envelope of the

H∗(G, k)-module H∗(G, k)/p.

Lemma 11.10. Let p and q be prime ideals in H∗(G, k) with q ⊆ p, and

let I be an injective H∗(G, k)-module.

(1) VG(T (I(p))) = {p}.
(2) T (I(q)) is a direct summand of a direct product of shifts of T (I(p)).

(3) The natural morphism T (I)→ T (I)∗∗ is a split monomorphism.

Proof. (1) Let C be a compact object of K(Inj kG). Then H∗(G,C) is

finitely generated as a module over H∗(G, k). It follows that as a H∗(G, k)-

module, Hom∗K(kG)(C, T (I(p))) is p-local and p-torsion, for it is isomorphic to

Hom∗H∗(G,k)(H
∗(G,C), I(p)).

Now apply [6, Cor. 5.9].

(2) The module I(q) is p-local and the shifted copies of I(p) form a set

of injective cogenerators for the category of p-local modules. Thus I(q) is a

direct summand of a product of shifted copies of I(p). Now apply the functor

T and observe that T preserves products.



STRATIFYING MODULAR REPRESENTATIONS 1679

(3) The induced map H∗(G,T (I))→ H∗(G,T (I)∗∗) is a monomorphism,

by Lemma 11.5(2). Applying HomH∗(G,k)(−, I) to this map and using (11.9),

one gets an epimorphism

HomK(kG)(T (I)∗∗, T (I))→ HomK(kG)(T (I), T (I))

which provides an inverse for T (I)→ T (I)∗∗. �

Proof of Theorem 11.8. First we prove the theorem for K(Inj kG).

(a) ⇒ (b): Let p be a prime ideal in the support of C. Theorem 10.1

implies that T (I(p)) is in C, since its support is {p}, by Lemma 11.10(1).

Therefore T (I(q)) is in C for every q ⊆ p by Lemma 11.10, since C is closed

under products. Thus the complement of the support of C is specialisation

closed.

(b) ⇒ (c): Let V denote the complement of the support of C. Since it is

specialisation closed the localising subcategory KV of K(Inj kG) corresponding

to V is generated by compact objects, by Proposition 3.5. Therefore K⊥V =

(Kc
V)⊥ where Kc

V denotes the full subcategory consisting of the compact objects

in KV . On the other hand, K⊥V is the localising subcategory consisting of all

objects with support contained in the complement of V, by [6, Corollary 5.7].

Thus Theorem 10.1 implies C = (Kc
V)⊥.

(c) ⇒ (a): This implication is clear.

(c)⇒ (d): Suppose that C = D⊥ with D a subcategory of compact objects.

Fix objects D in D and X in C. We need to show that HomK(kG)(D,X
∗) = 0.

For any compact object C there are isomorphisms

HomK(kG)(D ⊗k C,X) ∼= HomK(kG)(D,Homk(C,X))

∼= HomK(kG)(D,C
∨ ⊗k X) = 0,

where the last one holds because C is tensor ideal. Hence D ⊗k C is in ⊥C for

any compact object C. Thus D∨ ⊗k C is in ⊥C as well, since D∨ is a direct

summand of D∨ ⊗k D ⊗k D∨. A similar argument now yields

HomK(kG)(C,D ⊗k X) ∼= HomK(kG)(C ⊗k D∨, X) = 0

for any compact object C. Therefore D ⊗k X = 0, so that

HomK(kG)(D,X
∗) ∼= HomK(kG)(D,Homk(X, ik

∗))

∼= HomK(kG)(D ⊗k X, ik∗) = 0.

(d) ⇒ (b): Suppose that C is closed under Brown-Comenetz duality, and

let p be a prime in the support of C. We apply Lemma 11.10 several times.

First notice that T (I(p)) is in C, by Theorem 10.1. Given any set {Xα} where

each Xα is a shift of T (I(p)), it follows that the complex∏
α

X∗∗α =
(⊕
α

X∗α

)∗
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is in C. The natural map
∏
αXα →

∏
αX

∗∗
α is a split monomorphism, and

hence
∏
αXα is in C. If q ⊆ p, then T (I(q)) is a direct summand of a direct

product of shifts of T (I(p)). It follows that q is also in the support of C. Thus

the complement of this set is specialisation closed.

This completes the proof of the theorem for K(Inj kG). It remains to

consider the category StMod(kG). We use the same arguments as before for

the implications (b) ⇒ (c) ⇒ (d) and (c) ⇒ (a), because they are formal,

given Theorem 10.3. For the other implications, we identify StMod(kG) with

the category Kac(Inj kG) of acyclic complexes and view each tensor ideal lo-

calising subcategory of StMod(kG) as a tensor ideal localising subcategory of

K(Inj kG). Then we use the fact that the inclusion into K(Inj kG) preserves

products and Brown-Comenetz duals. Moreover, the support of Kac(Inj kG)

equals ProjH∗(G, k), by Proposition 9.6. �

The telescope conjecture for StMod(kG) and K(Inj kG). A localising sub-

category C of a triangulated category T is strictly localising if the inclusion has

a right adjoint. This is equivalent to the statement that there is a localisation

functor L : T → T such that an object X of T is in C if and only if LX = 0;

see for example [23, Lemma 3.5]. The obstruction to constructing the right

adjoint is that the collections of morphisms in the Verdier quotient may be too

large to be sets.

Lemma 11.11. Tensor ideal localising subcategories of K(Inj kG) and

StMod(kG) are strictly localising.

Proof. Let C be a tensor ideal localising subcategory of K(Inj kG), and let

V be its support, which is a subset of SpecH∗(G, k). Fix a compact generator C

of K(Inj kG) and consider the functor from K(Inj kG) to the category of graded

abelian groups sending an object X to
⊕

p6∈V Hom∗K(kG)(C, ΓpX). Theorem 10.1

implies that its kernel is C. The functor is cohomological and preserves co-

products. Thus there exists a localisation functor K(Inj kG)→ K(Inj kG) with

kernel C; see for example [6, Prop.3.6].

An analogous argument works for StMod(kG). �

A strictly localising subcategory C of a triangulated category T is smashing

if the localisation functor T → T with kernel C preserves coproducts. If T is

tensor triangulated and generated by its tensor unit 1, then a localisation

functor L : T → T preserves coproducts if and only if the natural morphism

L1⊗X → LX is an isomorphism for all X in T. This fact explains the term

“smashing”, because in algebraic topology the smash product plays the role of

the tensor product.

Next we discuss the telescope conjecture which is due to Bousfield and

Ravenel [9], [30]. In its general form, the conjecture asserts for a compactly
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generated triangulated category T that every smashing localising subcategory

is generated by objects that are compact in T; see [26]. The following result

confirms this conjecture for K(Inj kG) and StMod(kG), at least for all smashing

subcategories that are tensor ideal.

Theorem 11.12. Let C be a tensor ideal localising subcategory of K(Inj kG).

The following conditions are equivalent :

(a) The localising subcategory C is smashing.

(b) The localising subcategory C is generated by objects compact in K(Inj kG).

(c) The support of C is a specialisation closed subset of SpecH∗(G, k).

A similar result holds for StMod(kG), where SpecH∗(G, k) is replaced by

ProjH∗(G, k).

Proof. We prove the theorem for K(Inj kG); an analogous argument works

for the stable module category. Let L : K(Inj kG)→ K(Inj kG) be a localisation

functor with kernel C. For each objectX in K(Inj kG), there exists a localisation

triangle ΓX → X → LX → with ΓX in C and LX in C⊥. Using this

exact triangle one shows that C is smashing if and only if C⊥ is closed under

coproducts.

(a) ⇒ (b): If C is smashing, then C⊥ is a localising subcategory closed

under products. Thus C⊥ = D⊥ for some category D consisting of compact

objects by Theorem 11.8. It follows that C is generated by D.

(b) ⇒ (c): Let D be a subcategory of compact objects such that C =

Loc(D). Then C and D have same support. Now one uses that the support of

each compact object is specialisation closed by Lemma 11.3.

(c) ⇒ (a): Let V be the support of C. Then C consists of all objects

with support contained in V, by Theorem 10.1. This implies that C⊥ is the

localising subcategory consisting of all objects with support disjoint from V,

since V is specialisation closed; see [6, Cor. 5.7]. In particular, C⊥ is closed

under coproducts, and therefore C is smashing. �

Left perpendicular categories. If V is a subset of SpecH∗(G, k), we write

cl(V) for the specialisation closure of V, namely the smallest specialisation

closed subset containing it.

Theorem 11.13. For X and Y in K(Inj kG) the following are equivalent :

(a) Hom∗K(kG)(X,Y
′) = 0 for all Y ′ ∈ Loc⊗(Y ).

(b) cl(VG(X)) ∩ VG(Y ) = ∅

Proof. The implication (b) ⇒ (a) is part of [6, Cor. 5.8]. Assume (a)

holds. Choose primes q ∈ VG(Y ) and p ∈ VG(X), and a compact object C in

K(Inj kG) with Homk(C, ΓpX) 6= 0. Since VG(T (I(q))) = {q}, by Lemma 11.10,

Theorem 10.1 yields C ⊗k T (I(q)) ∈ Loc⊗(Y ). Since ΓpX = Γpik ⊗k X ∈
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Loc⊗(X) holds, one has

Hom∗H∗(G,k)(H
∗(G,Homk(C, ΓpX)), I(q))

∼= Hom∗K(kG)(Homk(C, ΓpX), T (I(q)))

∼= Hom∗K(kG)(ΓpX,C ⊗k T (I(q))) = 0.

The H∗(G, k)-module H∗(G,Homk(C, ΓpX)) is nonzero and p-local, so it fol-

lows that p 6⊆ q as required. �

If V is a subset of VG, we write ⊥V for the set of primes q ∈ VG such that

for all p ∈ V we have q 6⊇ p. In other words, ⊥V is the largest specialisation

closed subset of VG that has trivial intersection with V. The statement of the

result below was suggested by a question of Jeremy Rickard.

Corollary 11.14. Let C be a tensor ideal localising subcategory of

K(Inj kG). If V is the support of C, then ⊥V is the support of ⊥C.

Proof. This follows from Theorem 11.13. �
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