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applications to isoperimetric problems

for eigenvalues
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Abstract

Let Ω be a bounded C2 domain in Rn, where n is any positive inte-

ger, and let Ω∗ be the Euclidean ball centered at 0 and having the same

Lebesgue measure as Ω. Consider the operator L = −div(A∇) + v · ∇+ V

on Ω with Dirichlet boundary condition, where the symmetric matrix field

A is in W 1,∞(Ω), the vector field v is in L∞(Ω,Rn) and V is a continu-

ous function in Ω. We prove that minimizing the principal eigenvalue of

L when the Lebesgue measure of Ω is fixed and when A, v and V vary

under some constraints is the same as minimizing the principal eigenvalue

of some operators L∗ in the ball Ω∗ with smooth and radially symmetric

coefficients. The constraints which are satisfied by the original coefficients

in Ω and the new ones in Ω∗ are expressed in terms of some distribution

functions or some integral, pointwise or geometric quantities. Some strict

comparisons are also established when Ω is not a ball. To these purposes,

we associate to the principal eigenfunction ϕ of L a new symmetric re-

arrangement defined on Ω∗, which is different from the classical Schwarz

symmetrization and which preserves the integral of div(A∇ϕ) on suitable

equi-measurable sets. A substantial part of the paper is devoted to the

proofs of pointwise and integral inequalities of independent interest which

are satisfied by this rearrangement. The comparisons for the eigenvalues

hold for general operators of the type L and they are new even for sym-

metric operators. Furthermore they generalize, in particular, and provide

an alternative proof of the well-known Rayleigh-Faber-Krahn isoperimetric

inequality about the principal eigenvalue of the Laplacian under Dirichlet

boundary condition on a domain with fixed Lebesgue measure.
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1. Introduction

Throughout all the paper, we fix an integer n ≥ 1 and denote by αn =

πn/2/Γ(n/2 + 1) the Lebesgue measure of the Euclidean unit ball in Rn. By

“domain”, we mean a nonempty open connected subset of Rn, and we denote

by C the set of all bounded domains of Rn which are of class C2. Throughout

all the paper, unless otherwise specified, Ω will always be in the class C. For

any measurable subset A ⊂ Rn, |A| stands for the Lebesgue measure of A. If

Ω ∈ C, then Ω∗ will denote the Euclidean ball centered at 0 such that

|Ω∗| = |Ω| .

Define also C(Ω) (resp. C(Ω,Rn)) the space of real-valued (resp. Rn-valued)

continuous functions on Ω. For all x ∈ Rn \ {0}, set

(1.1) er(x) =
x

|x|
,
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where |x| denotes the Euclidean norm of x. Finally, if Ω ∈ C, if v : Ω→ Rn is

measurable and if 1 ≤ p ≤ +∞, we say that v ∈ Lp(Ω,Rn) if |v| ∈ Lp(Ω), and

write (somewhat abusively) ‖v‖p or ‖v‖Lp(Ω,Rn) instead of ‖|v|‖Lp(Ω,R).

Various rearrangement techniques for functions defined on Ω were consid-

ered in the literature. The most famous one is the Schwarz symmetrization.

Let us briefly recall what the idea of this symmetrization is. For any function

u ∈ L1(Ω), denote by µu the distribution function of u, given by

µu(t) = |{x ∈ Ω; u(x) > t}|

for all t ∈ R. Note that µ is right-continuous, nonincreasing and µu(t) → 0

(resp. µu(t)→ |Ω|) as t→ +∞ (resp. t→ −∞). For all x ∈ Ω∗\{0}, define

u∗(x) = sup {t ∈ R; µu(t) ≥ αn |x|n} .

The function u∗ is clearly radially symmetric, nonincreasing in the variable |x|,
and it satisfies

|{x ∈ Ω, u(x) > ζ}| = |{x ∈ Ω∗, u∗(x) > ζ}|

for all ζ ∈ R. An essential property of the Schwarz symmetrization is the

following one: if u ∈ H1
0 (Ω), then |u|∗ ∈ H1

0 (Ω∗) and (see [41])

(1.2) ‖ |u|∗‖L2(Ω∗) = ‖u‖L2(Ω) and ‖∇|u|∗‖L2(Ω∗) ≤ ‖∇u‖L2(Ω) .

One of the main applications of this rearrangement technique is the resolu-

tion of optimization problems for the eigenvalues of some second-order elliptic

operators on Ω. Let us briefly recall some of these problems. If λ1(Ω) de-

notes the first eigenvalue of the Laplace operator in Ω with Dirichlet boundary

condition, then it is well known that λ1(Ω) ≥ λ1(Ω∗) and that the inequality

is strict unless Ω is a ball (remember that Ω is always assumed to be in the

class C). Since λ1(Ω∗) can be explicitly computed, this result provides the

classical Rayleigh-Faber-Krahn inequality, which states that

(1.3) λ1(Ω) ≥ λ1(Ω∗) =

Ç
1

|Ω|

å2/n

α2/n
n (jn/2−1,1)2,

where jm,1 the first positive zero of the Bessel function Jm. Moreover, equality

in (1.3) is attained if and only if Ω is a ball. This result was first conjectured

by Rayleigh for n = 2 ([42, pp. 339–340]), and proved independently by Faber

([21]) and Krahn ([30]) for n = 2, and by Krahn for all n in [31] (see [33] for

the English translation). The proof of the inequality λ1(Ω) ≥ λ1(Ω∗) is an

immediate consequence of the following variational formula for λ1(Ω):

(1.4) λ1(Ω) = min
v∈H1

0 (Ω)\{0}

∫
Ω
|∇v(x)|2 dx∫

Ω
|v(x)|2 dx

and of the properties (1.2) of the Schwarz symmetrization.
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Lots of optimization results involving other eigenvalues of the Laplacian

(or more general elliptic symmetric operators of the form −div(A∇)) on Ω

under Dirichlet boundary condition have also been established. For instance,

the minimum of λ2(Ω) (the second eigenvalue of the Laplace operator in Ω un-

der Dirichlet boundary condition) among bounded open sets of Rn with given

Lebesgue measure is achieved by the union of two identical balls (this result

is attributed to Szegö; see [39]). Very few things seem to be known about

optimization problems for the other eigenvalues; see [17], [25], [39], [40], and

[49]. Various optimization results are also known for functions of the eigenval-

ues. For instance, it is proved in [5] that λ2(Ω)/λ1(Ω) ≤ λ2(Ω∗)/λ1(Ω∗), and

the equality is attained if and only if Ω is a ball. The same result was also

extended in [5] to elliptic operators in divergence form with definite weight.

We also refer to [6], [7], [9], [12], [18], [28], [29], [32], [34], [37], [38], and [40]

for further bounds or other optimization results for some eigenvalues or some

functions of the eigenvalues in fixed or varying domains of Rn (or of manifolds).

Other boundary conditions may also be considered. For instance, if µ2(Ω)

is the first nontrivial eigenvalue of −∆ under the Neumann boundary condi-

tion, then µ2(Ω) ≤ µ2(Ω∗) and the equality is attained if, and only if, Ω is a ball

(see [44] in dimension n = 2, and [48] in any dimension). Bounds or optimiza-

tion results for other eigenvalues of the Laplacian under Neumann boundary

condition ([40], [44], [48]; see also [10] for inhomogeneous problems), for Robin

boundary condition ([15], [19], [20]) or for the Stekloff eigenvalue problem ([16])

have also been established. We also mention another Rayleigh conjecture for

the lowest eigenvalue of the clamped plate. If Ω ⊂ R2, then denote by Λ1(Ω)

the lowest eigenvalue of the operator ∆2, so that ∆2u1 = Λ1(Ω)u1 in Ω with

u1 = ν · ∇u1 = 0 on ∂Ω, where u1 denotes the principal eigenfunction and

ν denotes the outward unit normal on ∂Ω. The second author proved in [35]

that Λ1(Ω) ≥ Λ1(Ω∗) and that equality holds if and only if Ω is a ball, that is

a disk in dimension n = 2. The analogous result was also established in R3 in

[8], while the problem is still open in higher dimensions. Much more complete

surveys of all these topics can be found in [11], [25], and [26].

It is important to observe that the variational formula (1.4) relies heavily

on the fact that −∆ is symmetric on L2(Ω). More generally, all the opti-

mization problems considered hitherto concern symmetric operators, and their

resolution relies on a “Rayleigh” quotient (that is, a variational formula similar

to (1.4)) and the Schwarz symmetrization. Before going further, let us recall

that rearrangement techniques other than the Schwarz symmetrization can be

found in the literature. For instance, even if this kind of problem is quite

different from the ones we are interested in for the present paper, the Steiner

symmetrization is the key tool to show that, among all triangles with fixed
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area, the principal eigenvalue of the Laplacian with Dirichlet boundary condi-

tion is minimal for the equilateral triangle (see [41]). Steiner symmetrization

is indeed relevant to take into account the polygonal geometry of the domain.

A natural question then arises: can inequalities on eigenvalues of nonsym-

metric operators be obtained? In view of what we have just explained, such

problems require different rearrangement techniques.

Actually, even for symmetric operators, some optimization problems can-

not be solved by means of the Schwarz symmetrization, and other rearrange-

ments have to be used. For instance, consider an operator L = −div(A∇) on a

domain Ω under Dirichlet boundary condition. Assume that A(x) ≥ Λ(x) Id on

Ω in the sense of quadratic forms (see below for precise definitions; Id denotes

the n× n identity matrix) for some positive function Λ and that the L1 norm

of Λ−1 is given. Then, what can be said about the infimum of the principal

eigenvalue of L under this constraint? In particular, is this infimum greater

than the corresponding one on Ω∗, which is a natural conjecture in view of all

the previous results? Solving such a problem, which is one of our results in the

present paper, does not seem to be possible by means of a variational formula

for λ1 (although the operator L is symmetric in L2(Ω)) and the Schwarz or

Steiner symmetrizations.

More general constraints (given distribution functions; integral, pointwise

or geometric constraints) on the coefficients A, v and V of nonsymmetric op-

erators L of the type L = −div(A∇) + v · ∇ + V under Dirichlet boundary

condition will also be investigated. In general, the operator L is nonsymmet-

ric, and there is no simple variational formulation of its first eigenvalue such

as (1.4) — min-max formulations of the pointwise type (see [13]) or of the

integral type (see [27]) certainly hold, but they do not help in our context.

The purpose of the present paper is twofold. First, we present a new

rearrangement technique and we show some properties of the rearranged func-

tion. The inequalities we obtain between the function in Ω and its symmetriza-

tion in Ω∗ are of independent interest. Then we show how this technique can

be used to cope with new comparisons between the principal eigenvalues of

general nonsymmetric elliptic operators of the type −div(A∇) + v · ∇ + V

in Ω and of some symmetrized operators in Ω∗. Actually, the comparisons we

establish are new even when the operators are symmetric or one-dimensional.

2. Main results

Let us now give precise statements. We are interested in operators of the

form

L = −div(A∇) + v · ∇+ V

in Ω ∈ C under Dirichlet boundary condition.
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Throughout the paper, we denote by Sn(R) the set of n×n symmetric ma-

trices with real entries. We always assume that A : Ω→ Sn(R) is in W 1,∞(Ω).

This assumption will be denoted by A = (ai,j)1≤i,j≤n ∈ W 1,∞(Ω,Sn(R)): all

the components ai,j are in W 1,∞(Ω), and they can therefore be assumed to be

continuous in Ω up to a modification on a zero-measure set. We set

‖A‖W 1,∞(Ω,Sn(R)) = max
1≤i,j≤n

‖ai,j‖W 1,∞(Ω),

where

‖ai,j‖W 1,∞(Ω) = ‖ai,j‖L∞(Ω) +
∑

1≤k≤n

∥∥∥∥∂ai,j∂xk

∥∥∥∥
L∞(Ω)

.

We always assume that A is uniformly elliptic on Ω, which means that there

exists δ > 0 such that, for all x ∈ Ω and for all ξ ∈ Rn,

A(x)ξ · ξ ≥ δ |ξ|2 .

For B = (bi,j)1≤i,j≤n ∈ Sn(R), ξ = (ξ1, . . . , ξn) ∈ Rn and ξ′=(ξ′1, . . . , ξ
′
n)∈Rn,

we denote Bξ ·ξ′ = ∑
1≤i,j≤n bi,jξjξ

′
i. Actually, in some statements we compare

the matrix field A with a matrix field of the type x 7→ Λ(x)Id. We call

L∞+ (Ω) = {Λ ∈ L∞(Ω), ess inf
Ω

Λ > 0},

and, for A ∈ W 1,∞(Ω,Sn(R)) and Λ ∈ L∞+ (Ω), we say that A ≥ Λ Id almost

everywhere (a.e.) in Ω if, for almost every x ∈ Ω,

∀ ξ ∈ Rn, A(x)ξ · ξ ≥ Λ(x)|ξ|2.

For instance, if, for each x ∈ Ω, Λ[A](x) denotes the smallest eigenvalue of

the matrix A(x), then Λ[A] ∈ L∞+ (Ω) and there holds A(x) ≥ Λ[A](x)Id (this

inequality is actually satisfied for all x ∈ Ω).

We also always assume that the vector field v is in L∞(Ω,Rn) and that

the potential V is in L∞(Ω). In some statements, V will be in the space C(Ω)

of continuous functions on Ω.

Denote by λ1(Ω, A, v, V ) the principal eigenvalue of

L = −div(A∇) + v · ∇+ V

with Dirichlet boundary condition on Ω andϕΩ,A,v,V the corresponding (unique)

nonnegative eigenfunction with L∞-norm equal to 1. Recall that the following

properties hold for ϕΩ,A,v,V (see [13]):

(2.1)

−div (A∇ϕΩ,A,v,V ) + v · ∇ϕΩ,A,v,V + V ϕΩ,A,v,V = λ1(Ω, A, v, V )ϕΩ,A,v,V in Ω,

ϕΩ,A,v,V > 0 in Ω,

ϕΩ,A,v,V = 0 on ∂Ω,

‖ϕΩ,A,v,V ‖L∞(Ω) = 1,
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and ϕΩ,A,v,V ∈ W 2,p(Ω) for all 1 ≤ p < +∞ by standard elliptic estimates,

whence ϕΩ,A,v,V ∈C1,α(Ω) for all 0≤α<1. Recall also that λ1(Ω, A, v, V )>0

if and only if the operator L satisfies the maximum principle in Ω, and that

the inequality

λ1(Ω, A, v, V ) > ess inf
Ω

V

always holds (see [13] for details and further results).

We are interested in optimization problems for λ1(Ω, A, v, V ) when Ω, A, v

and V vary and satisfy some constraints. Our goal is to compare λ1(Ω, A, v, V )

with the principal eigenvalue λ1(Ω∗, A∗, v∗, V ∗) for some fields A∗, v∗ and V ∗

which are defined in the ball Ω∗ and satisfy the same constraints as A, v and

V . The constraints may be of different types: integral type, L∞ type, given

distribution function of V −, or bounds on the determinant of A and on another

symmetric function of the eigenvalues of A. Throughout the paper, we denote

s− = max(−s, 0) and s+ = max(s, 0) ∀ s ∈ R.

2.1. Constraints on the distribution function of V − and on some integrals

involving Λ and v. We fix here the L1 norms of Λ−1 and |v|2Λ−1, some L∞

bounds on Λ and v, as well as the distribution function of the negative part of

V , under the condition that λ1(Ω, A, v, V ) ≥ 0. Then we can associate some

fields A∗, v∗ and V ∗ satisfying the same constraints in Ω∗, and for which the

principal eigenvalue is not too much larger that λ1(Ω, A, v, V ), with the extra

property that A∗, |v∗| and V ∗ are smooth and radially symmetric.

Theorem 2.1. Let Ω ∈ C, A ∈ W 1,∞(Ω,Sn(R)), Λ ∈ L∞+ (Ω), v ∈
L∞(Ω,Rn) and V ∈ C(Ω). Assume that A ≥ Λ Id a.e. in Ω, and that

λ1(Ω, A, v, V ) ≥ 0. Then, for all ε > 0, there exist three radially symmet-

ric C∞(Ω∗) fields Λ∗ > 0, ω∗ ≥ 0 and V
∗ ≤ 0 such that, for v∗ = ω∗er in

Ω∗\{0},
(2.2)

ess inf
Ω

Λ ≤ min
Ω∗

Λ∗ ≤ max
Ω∗

Λ∗ ≤ ess sup
Ω

Λ, ‖(Λ∗)−1‖L1(Ω∗) =‖Λ−1‖L1(Ω),

‖v∗‖L∞(Ω∗,Rn) ≤ ‖v‖L∞(Ω,Rn), ‖ |v∗|2(Λ∗)−1‖L1(Ω∗) =‖ |v|2Λ−1‖L1(Ω),

µ|V ∗| = µ
(V
∗
)− ≤ µV − ,

and

(2.3) λ1(Ω∗,Λ∗Id, v∗, V
∗
) ≤ λ1(Ω, A, v, V ) + ε.

There also exists a nonpositive radially symmetric L∞(Ω∗) field V ∗ such that

µV ∗=µ−V − , V ∗≤V ∗ ≤ 0 in Ω∗ and λ1(Ω∗,Λ∗Id, v∗, V ∗)≤λ1(Ω∗,Λ∗Id, v∗, V
∗
)

≤ λ1(Ω, A, v, V ) + ε.

If one further assumes that Λ is equal to a constant γ > 0 in Ω, then there

exist two radially symmetric bounded functions ω∗0 ≥ 0 and V ∗0 ≤ 0 in Ω∗ such
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that, for v∗0 = ω∗0er,

(2.4) ‖v
∗
0‖L∞(Ω∗,Rn) ≤ ‖v‖L∞(Ω,Rn), ‖v∗0‖L2(Ω∗,Rn) ≤ ‖v‖L2(Ω,Rn),

‖V ∗0 ‖Lp(Ω∗) ≤ ‖V −‖Lp(Ω) ∀ 1 ≤ p ≤ +∞, ‖V ∗0 ‖L1(Ω∗) = ‖V −‖L1(Ω),

and

(2.5) λ1(Ω∗, γ Id, v∗0, V
∗

0 ) ≤ λ1(Ω, A, v, V ).

Remember (see [13]) that the inequality λ1(Ω, A, v, V ) ≥ λ1(Ω, A, v,−V −)

always holds. This is the reason why, in order to decrease λ1(Ω, A, v, V ), the

rearranged potentials had better be nonpositive in Ω∗, and only the negative

part of V plays a role. Notice that the quantities such as the integral of Λ−1,

which are preserved here after symmetrization, also appear in other contexts,

like in homogenization of elliptic or parabolic equations.

In the case when Λ is a constant, then the number ε can be dropped

in (2.3). The price to pay is that the new fields in Ω∗ may not be smooth

anymore, and the distribution function of the new potential V ∗0 in Ω∗ is no

longer equal to that of −V −.

However, in the general case, neither Λ is constant in Ω nor Λ∗ is constant

in Ω∗ (see Remark 5.5 for details). For instance, as already underlined, an

admissible Λ is the continuous positive function Λ[A], which is not constant in

general. Actually, even in the case of operators L which are written in a self-

adjoint form (that is, with v = 0), the comparison result stated in Theorem 2.1

is new.

An optimization result follows immediately from Theorem 2.1. To state

it, we need a few notations. Given

(2.6)

m > 0, MΛ ≥ mΛ > 0, α ∈
ñ
m

MΛ
,
m

mΛ

ô
, Mv ≥ 0, τ ∈

[
0, αM

2
v

]
, MV ≥ 0

and

µ ∈ F0,MV
(m) =

{
ρ : R→ [0,m], ρ is right-continuous, nonincreasing,

ρ = m on (−∞, 0), ρ = 0 on [MV ,+∞)
}
,

we set, for all open set Ω ∈ C such that |Ω| = m,

GMΛ,mΛ
,α,Mv,τ,MV ,µ

(Ω) =
{

(A, v, V ) ∈W 1,∞(Ω,Sn(R))× L∞(Ω,Rn)× C(Ω);

∃ Λ ∈ L∞+ (Ω), A ≥ Λ Id a.e. in Ω,

mΛ ≤ ess inf
Ω

Λ ≤ ess sup
Ω

Λ ≤MΛ,
∥∥Λ−1

∥∥
L1(Ω)

= α,

‖v‖L∞(Ω,Rn) ≤Mv,
∥∥|v|2Λ−1

∥∥
L1(Ω)

= τ and µV − ≤ µ
}
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and

(2.7) λMΛ,mΛ,α,Mv ,τ,MV ,µ
(Ω) = inf

(A,v,V )∈G
MΛ,mΛ,α,Mv,τ,MV ,µ

(Ω)
λ1(Ω, A, v, V ).

Notice that, given µ ∈ F0,MV
(m) and Ω ∈ C such that |Ω| = m, there exists

V ∈ C(Ω) such that µV − ≤ µ (for instance, V = 0 is admissible; furthermore,

there is V ∈ L∞(Ω) such that µV − = µ — see Appendix 7.2), and, necessarily,

V ≥ −MV in Ω. It is immediate to see that, under the conditions (2.6), each

set GMΛ,mΛ,α,Mv ,τ,MV ,µ
(Ω) is not empty.

Corollary 2.2. Let m, MΛ, mΛ, α, Mv , τ , MV be as in (2.6), µ ∈
F0,MV

(m) and Ω∗be the Euclidean ball centered at the origin such that |Ω∗|=m.

If λMΛ,mΛ,α,Mv ,τ,MV ,µ
(Ω) ≥ 0 for all Ω ∈ C such that |Ω| = m, then

(2.8) min
Ω∈C, |Ω|=m

λMΛ,mΛ,α,Mv ,τ,MV ,µ
(Ω) = λMΛ,mΛ,α,Mv ,τ,MV ,µ

(Ω∗).

Furthermore, in the definition of λMΛ,mΛ,α,Mv ,τ,MV ,µ
(Ω∗) in (2.7), the data A,

v and V can be assumed to be such that A = Λ Id, v = ωer = |v|er and V ≤ 0

in Ω∗, where Λ, ω and V are C∞(Ω∗) and radially symmetric.

Let us now discuss about the nonnegativity condition λ1(Ω, A, v, V ) ≥ 0

in Theorem 2.1, as well as that of Corollary 2.2. We recall (see [13]) that

λ1(Ω, A, v, V ) > min
Ω
V.

Therefore, the condition λ1(Ω, A, v, V ) ≥ 0 is satisfied in particular if V ≥ 0 in

Ω, and the condition λMΛ,mΛ,α,Mv ,τ,MV ,µ
(Ω) ≥ 0 in Corollary 2.2 is satisfied if

MV = 0. Another more complex condition which also involves A and v can be

derived. To do so, assume A ≥ Λ Id a.e. in Ω with mΛ := ess infΩ Λ > 0, and

call Mv = ‖v‖∞ and mV = minΩ V . Multiply by ϕ = ϕΩ,A,v,V equation (2.1)

and integrate by parts over Ω. It follows that, for all β ∈ (0, 1],

λ1(Ω, A, v, V )

∫
Ω
ϕ2 ≥

∫
Ω

Λ|∇ϕ|2 −
∫

Ω
|v| |∇ϕ| ϕ+mV

∫
Ω
ϕ2

≥ (1− β)

∫
Ω

Λ|∇ϕ|2 +mV

∫
Ω
ϕ2 − 1

4β

∫
Ω
|v|2Λ−1ϕ2

≥ [(1− β)mΛλ1(Ω) +mV − (4βmΛ)−1M2
v ]

∫
Ω
ϕ2,

where λ1(Ω) = λ1(Ω, Id, 0, 0) = minφ∈H1
0 (Ω), ‖φ‖2=1

∫
Ω |∇φ|2. If Mv > 0 and

mΛ

»
λ1(Ω) ≥Mv, then the value β = Mv/(2mΛ

»
λ1(Ω)) ∈ (0, 1] gives the best

inequality; that is, λ1(Ω, A, v, V ) ≥ mV +
»
λ1(Ω)(mΛ

»
λ1(Ω)−Mv). The same

inequality also holds from the previous calculations if Mv = 0. Therefore, the
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following inequality always holds:

λ1(Ω, A, v, V ) ≥ mV +
»
λ1(Ω)×max(0,mΛ

»
λ1(Ω)−Mv).

As a consequence, under the notation of Corollary 2.2, it follows from (1.3)

that

λMΛ,mΛ,α,Mv ,τ,MV ,µ
(Ω) ≥ −MV +m−1/nα1/n

n jn/2−1,1

×max(0,mΛm
−1/nα1/n

n jn/2−1,1 −Mv)

for all Ω ∈ C such that |Ω| = m. The conclusion of Corollary 2.2 is then true

if the right-hand side of the above inequality is nonnegative. In particular, for

given n ∈ N\{0}, mΛ > 0, Mv ≥ 0 and MV ≥ 0, this holds if m > 0 is small

enough.

To complete this section, we now give a more precise version of Theo-

rem 2.1 when Ω is not a ball.

Theorem 2.3. Under the notation of Theorem 2.1, assume that Ω ∈ C is

not a ball and let MA > 0, mΛ > 0, Mv ≥ 0 and MV ≥ 0 be such that

(2.9)

 ‖A‖W 1,∞(Ω,Sn(R)) ≤MA, ess inf
Ω

Λ ≥ mΛ,

‖v‖L∞(Ω,Rn) ≤Mv, ‖V ‖L∞(Ω,R) ≤MV .

Then there exists a positive constant θ = θ(Ω, n,MA,mΛ,Mv,MV ) > 0 de-

pending only on Ω, n, MA, mΛ, Mv and MV , such that if λ1(Ω, A, v, V ) > 0,

then there exist three radially symmetric C∞(Ω∗) fields Λ∗ > 0, ω∗ ≥ 0, V
∗ ≤ 0

and a nonpositive radially symmetric L∞(Ω∗) field V ∗, which satisfy (2.2),

µV ∗ = µ−V − , V ∗ ≤ V ∗ ≤ 0 and are such that

λ1(Ω∗,Λ∗Id, v∗, V ∗) ≤ λ1(Ω∗,Λ∗Id, v∗, V
∗
) ≤ λ1(Ω, A, v, V )

1 + θ
,

where v∗ = ω∗er in Ω∗\{0}.

Notice that the assumption A ≥ Λ Id a.e. in Ω and the bounds (2.9)

necessarily imply that MA ≥ mΛ.

2.2. Constraints on the determinant and another symmetric function of

the eigenvalues of A. For our second type of comparison result, we keep the

same constraints on v and V as in Theorem 2.1 but we modify the one on A:

we now prescribe some conditions on the determinant and another symmetric

function of the eigenvalues of A. We assume in this subsection that n ≥ 2.

If A ∈ Sn(R), if p ∈ {1, . . . , n − 1} and if λ1[A] ≤ · · · ≤ λn[A] denote the

eigenvalues of A, then we call

σp(A) =
∑

I⊂{1,...,n}, card(I)=p

(∏
i∈I

λi[A]

)
.
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Throughout the paper, the notation card(I) means the cardinal of a finite

set I. If A is nonnegative, it follows from the arithmetico-geometrical inequality

that Cp
n × (det(A))p/n ≤ σp(A), where Cp

n is the binomial coefficient Cp
n =

n!/(p!× (n− p)!).
Our third result is as follows:

Theorem 2.4. Assume n ≥ 2. Let Ω ∈ C, A ∈ W 1,∞(Ω,Sn(R)), v ∈
L∞(Ω,Rn), V ∈ C(Ω) and let p ∈ {1, . . . , n − 1}, ω > 0 and σ > 0 be given.

Assume that A ≥ γ Id in Ω for some constant γ > 0, that

(2.10) det(A(x)) ≥ ω, σp(A(x)) ≤ σ ∀ x ∈ Ω

and that λ1(Ω, A, v, V ) ≥ 0. Then, there are two positive numbers 0 < a1 ≤ a2

which only depend on n, p, ω and σ, such that, for all ε > 0, there exist a

matrix field A∗ ∈ C∞(Ω∗\{0},Sn(R)), two radially symmetric C∞(Ω∗) fields

ω∗ ≥ 0 and V
∗ ≤ 0, and a nonpositive radially symmetric L∞(Ω∗) field V ∗,

such that, for v∗ = ω∗er in Ω∗\{0},

(2.11)



A ≥ a1Id in Ω, A∗ ≥ a1Id in Ω∗,

det(A∗(x)) = ω, σp(A
∗(x)) = σ ∀ x ∈ Ω∗\{0},

‖v∗‖L∞(Ω∗,Rn) ≤ ‖v‖L∞(Ω,Rn), ‖v∗‖L2(Ω∗,Rn) = ‖v‖L2(Ω,Rn),

µ|V ∗| ≤ µV − , µV ∗ = µ−V − , V
∗ ≤ V ∗ ≤ 0 in Ω∗

and

λ1(Ω∗, A∗, v∗, V ∗) ≤ λ1(Ω∗, A∗, v∗, V
∗
) ≤ λ1(Ω, A, v, V ) + ε.

Furthermore, the matrix field A∗ is defined, for all x ∈ Ω∗\{0}, by

A∗(x)x · x = a1|x|2 and A∗(x)y · y = a2|y|2 ∀ y ⊥ x.

Lastly, there exist two radially symmetric bounded functions ω∗0 ≥ 0 and V ∗0 ≤ 0

in Ω∗ satisfying (2.4) and λ1(Ω∗, A∗, v∗0, V
∗

0 ) ≤ λ1(Ω, A, v, V ), where v∗0 = ω∗0er
in Ω∗.

Remark 2.5. Notice that the assumptions of Theorem 2.4 necessarily im-

ply that Cp
nω

p/n ≤ σ. Actually, the matrix field A∗ cannot be extended by con-

tinuity at 0, unless a1 = a2, namely Cp
nω

p/n = σ. As a consequence, A∗ is not

in W 1,∞(Ω∗,Sn(R)) if Cp
nω

p/n 6= σ, but we can still define λ1(Ω∗, A∗, v∗, V ∗).

Indeed, for ‹A∗ = a1Id in Ω∗, the principal eigenfunction ϕ∗ (resp. ϕ∗) of the

operator −div(‹A∗∇) + v∗ · ∇+ V
∗

(resp. −div(‹A∗∇) + v∗ · ∇+ V ∗) is radially

symmetric and belongs to all W 2,p(Ω∗) spaces for all 1 ≤ p < +∞. Hence,

A∗∇ϕ∗ = ‹A∗∇ϕ∗ = a1∇ϕ∗

(resp. A∗∇ϕ∗ = ‹A∗∇ϕ∗ = a1∇ϕ∗). With a slight abuse of notation, we say

that ϕ∗ (resp. ϕ∗) is the principal eigenfunction of −div(A∗∇) + v∗ · ∇ + V
∗



658 F. HAMEL, N. NADIRASHVILI, and E. RUSS

(resp. −div(A∗∇) + v∗ · ∇+ V ∗) and we call

λ1(Ω∗, A∗, v∗, V
∗
) = λ1(Ω∗, ‹A∗, v∗, V ∗)

(resp. λ1(Ω∗, A∗, v∗, V ∗) = λ1(Ω∗, ‹A∗, v∗, V ∗)).
An interpretation of the conditions (2.10) is that they provide some bounds

for the local deformations induced by the matrices A(x), uniformly with respect

to x ∈ Ω. Notice that these constraints are saturated for the matrix field A∗

in the ball Ω∗.

As for Theorem 2.1, an optimization result follows immediately from The-

orem 2.4.

Corollary 2.6. Assume n ≥ 2. Given m > 0, p ∈ {1, . . . , n−1}, ω > 0,

σ ≥ Cp
nω

p/n, Mv ≥ 0, τ ∈
î
0,
√
m×Mv

ó
, MV ≥ 0 and µ ∈ F0,MV

(m), we

set, for all Ω ∈ C such that |Ω| = m,

G′
p,ω,σ,Mv ,τ,MV ,µ

(Ω) =
{

(A, v, V ) ∈W 1,∞(Ω,Sn(R))× L∞(Ω,Rn)× C(Ω);

∃ γ > 0, A(x) ≥ γId ∀ x ∈ Ω,

det(A(x)) ≥ ω, σp(A(x)) ≤ σ ∀ x ∈ Ω,

‖v‖L∞(Ω,Rn) ≤Mv, ‖v‖L2(Ω,Rn) = τ and µV − ≤ µ
}

and

λ′
p,ω,σ,Mv ,τ,MV ,µ

(Ω) = inf
(A,v,V )∈G′

p,ω,σ,Mv,τ,MV ,µ
(Ω)

λ1(Ω, A, v, V ).

If λ′
p,ω,σ,Mv ,τ,MV ,µ

(Ω) ≥ 0 for all Ω ∈ C such that |Ω| = m, then

inf
Ω∈C, |Ω|=m

λ′
p,ω,σ,Mv ,τ,MV ,µ

(Ω) = inf
(v∗,V ∗)∈G∗

Mv,τ,MV ,µ

λ1(Ω∗, A∗, v∗, V ∗),

where Ω∗ is the ball centered at the origin such that |Ω∗| = m, A∗ is given as

in Theorem 2.4 and

G∗
Mv ,τ,MV ,µ

=
{

(v∗, V ∗) ∈ L∞(Ω∗,Rn)× C(Ω), v∗ = |v∗|er, V ∗ ≤ 0,

|v∗| and V ∗ are radially symmetric and C∞(Ω∗),

‖v∗‖L∞(Ω,Rn) ≤Mv, ‖v∗‖L2(Ω,Rn) = τ and µ(V ∗)− ≤ µ
}
.

Notice also that a sufficient condition for λ′
p,ω,σ,Mv ,τ,MV ,µ

(Ω) to be non-

negative for all Ω ∈ C such that |Ω| = m is

−MV +m−1/nα1/n
n jn/2−1,1 ×max(0, a1m

−1/nα1/n
n jn/2−1,1 −Mv) ≥ 0,

where a1 > 0 is the same as in Theorem 2.4 and only depends on n, p, ω and

σ (see Lemma 5.10 for its definition). When n, p, ω, σ, Mv and MV are given,

the above inequality is satisfied in particular if m > 0 is small enough.
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When Ω ∈ C is not a ball, we can make Theorem 2.4 more precise: under

the same notation as in Theorem 2.4, if MA > 0, Mv ≥ 0 and MV ≥ 0 are

such that ‖A‖W 1,∞(Ω,Sn(R)) ≤MA, ‖v‖L∞(Ω,Rn) ≤Mv and ‖V ‖L∞(Ω,R) ≤MV ,

then there exists a positive constant

θ′ = θ′(Ω, n, p, ω, σ,MA,Mv,MV ) > 0

depending only on Ω, n, p, ω, σ, MA, Mv and MV , such that if λ1(Ω, A, v, V )

> 0, then there exist a matrix field A∗ ∈ C∞(Ω∗\{0},Sn(R)) (the same as in

Theorem 2.4), two radially symmetric C∞(Ω∗) fields ω∗ ≥ 0, V
∗ ≤ 0 and a

nonpositive radially symmetric L∞(Ω∗) field V ∗, which satisfy (2.11), µV ∗ =

µ−V − , V ∗ ≤ V ∗ ≤ 0 and are such that

λ1(Ω∗, A∗, v∗, V ∗) ≤ λ1(Ω∗, A∗, v∗, V
∗
) ≤ λ1(Ω, A, v, V )

1 + θ′
,

where v∗ = ω∗er in Ω∗\{0}. It is immediate to see that this fact is a conse-

quence of Theorems 2.3 and 2.4 (notice in particular that the eigenvalues of

A(x) are between two positive constants which only depend on n, p, ω and σ).

2.3. Faber-Krahn inequalities for nonsymmetric operators. An immediate

corollary of Theorem 2.1 is an optimization result, slightly different from Corol-

lary 2.2, where the constraint over the potential V is stated in terms of Lp

norms. Namely, given m > 0, MΛ ≥ mΛ > 0, α ∈
[
m
MΛ

, m
mΛ

]
, Mv ≥ 0,

τ ∈
[
0, αM

2
v

]
, τV ≥ 0, 1 ≤ p ≤ +∞ and Ω ∈ C such that |Ω| = m, set

HMΛ,mΛ,α,Mv ,τ,τV ,p
(Ω)

=
{

(A, v, V ) ∈W 1,∞(Ω,Sn(R))× L∞(Ω,Rn)× C(Ω);

∃ Λ ∈ L∞+ (Ω), A ≥ Λ Id a.e. in Ω,

mΛ ≤ ess inf
Ω

Λ ≤ ess sup
Ω

Λ ≤MΛ,
∥∥∥Λ−1

∥∥∥
L1(Ω)

= α,

‖v‖L∞(Ω,Rn)≤Mv,
∥∥∥|v|2Λ−1

∥∥∥
L1(Ω)

=τ,
∥∥∥V −∥∥∥

Lp(Ω)
≤τV

}
and

λ
MΛ,mΛ,α,Mv ,τ,τV ,p

(Ω) = inf
(A,v,V )∈H

MΛ,mΛ,α,Mv,τ,τV ,p
(Ω)

λ1(Ω, A, v, V ).

Since, in Theorem 2.1, the Lp norm of V
∗

is smaller than the one of V −

(because the distribution functions of their absolute values are ordered this

way), it follows from Theorem 2.1 that

min
Ω∈C, |Ω|=m

λ
MΛ,mΛ,α,Mv ,τ,τV ,p

(Ω) = λ
MΛ,mΛ,α,Mv ,τ,τV ,p

(Ω∗),
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assuming that λ
MΛ,mΛ,α,Mv ,τ,τV ,p

(Ω) ≥ 0 for all Ω ∈ C such that |Ω| = m.

In other words, the infimum of λ1(Ω, A, v, V ) over all the previous constraints

when Ω varies but still satisfies |Ω| = m is the same as the infimum in the

ball Ω∗. Observe that we do not know in general if this infimum is actually

a minimum. However, specializing to the case of L∞ constraints for v and

V , we can solve a slightly different optimization problem and establish, as an

application of Theorems 2.4 and 6.8 (see §6 below), a generalization of the

classical Rayleigh-Faber-Krahn inequality for the principal eigenvalue of the

Laplace operator.

Theorem 2.7. Let Ω ∈ C, MA > 0, mΛ > 0, τ1 ≥ 0 and τ2 ≥ 0 be given.

Assume that Ω is not a ball. Consider A ∈ W 1,∞(Ω,Sn(R)), Λ ∈ L∞+ (Ω),

v ∈ L∞(Ω,Rn) and V ∈ L∞(Ω) satisfying{
A ≥ Λ Id a.e. in Ω, ‖A‖W 1,∞(Ω,Sn(R)) ≤MA, ess inf

Ω
Λ ≥ mΛ,

‖v‖L∞(Ω,Rn) ≤ τ1 and ‖V ‖L∞(Ω) ≤ τ2.

Then there exists a positive constant η = η(Ω, n,MA,mΛ, τ1) > 0 depending

only on Ω, n, MA, mΛ and τ1, and there exists a radially symmetric C∞(Ω∗)

field Λ∗ > 0 such that

(2.12)

ess inf
Ω

Λ ≤ min
Ω∗

Λ∗ ≤ max
Ω∗

Λ∗ ≤ ess sup
Ω

Λ, ‖(Λ∗)−1‖L1(Ω∗) = ‖Λ−1‖L1(Ω),

and

(2.13) λ1(Ω∗,Λ∗Id, τ1er,−τ2) ≤ λ1(Ω, A, v, V )− η.

Notice that, as in Theorem 2.3, the assumptions of Theorem 2.7 necessarily

imply that MA ≥ mΛ. Notice also that, in Theorem 2.7, contrary to our other

results, we do not assume that λ1(Ω, A, v, V ) ≥ 0. In the previous results, we

imposed a constraint on the distribution function of the negative part of the

potential and we needed the nonnegativity of λ1(Ω, A, v, V ). Here, we first

write

λ1(Ω, A, v, V ) ≥ λ1(Ω, A, v,−τ2) = −τ2 + λ1(Ω, A, v, 0),

and we apply Theorem 2.3 to λ1(Ω, A, v, 0), which is positive. We complete

the proof with further results which are established in Section 6.

Observe also that, in inequality (2.13), the constraints τ1 and τ2 on the

L∞ norms of the drift and the potential are saturated in the ball Ω∗.

Actually, in Theorem 2.7, if we replace the assumption ‖V ‖L∞(Ω) ≤ τ2

with ess infΩ V ≥ τ3 (where τ3 ∈ R), then inequality (2.13) is changed into

λ1(Ω∗,Λ∗Id, τ1er, τ3) ≤ λ1(Ω, A, v, V )− η.
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Since λ1(Ω∗,Λ∗Id, τ1er, τ) = λ1(Ω∗,Λ∗Id, τ1er, 0) + τ for all τ ∈ R, the previ-

ous inequality is better than (2.13). In the following corollary, we choose to

compare directly V with ess infΩ V .

Corollary 2.8. Let Ω ∈ C, A ∈ W 1,∞(Ω,Sn(R)), v ∈ L∞(Ω,Rn) and

V ∈ L∞(Ω). Call Λ[A](x) the smallest eigenvalue of the matrix A(x) at each

point x ∈ Ω and assume that γA = minΩ Λ[A] > 0. Then

(2.14) λ1(Ω, A, v, V ) ≥ Fn(|Ω|,min
Ω

Λ[A], ‖v‖L∞(Ω,Rn), ess inf
Ω

V ),

where Fn : (0,+∞)× (0,+∞)× [0,+∞)× R→ R is defined by

Fn(m, γ, α, β) = λ1(Bn
(m/αn)1/n , γId, α er, β)

for all (m, γ, α, β) ∈ (0,+∞)× (0,+∞)× [0,+∞)×R, and Bn
(m/αn)1/n denotes

the Euclidean ball of Rn with center 0 and radius (m/αn)1/n. Furthermore,

inequality (2.14) is strict if Ω is not a ball.

In Corollary 2.8, formula (2.14) reduces to (1.3) when A = Id and v = 0,

V = 0. Theorem 2.7 can then be viewed as a natural extension of the first

Rayleigh conjecture to more general elliptic operators with potential, drift

and general diffusion. We refer to Remark 6.9 for further comments on these

results.

2.4. Some comparisons with results in the literature. If, in Theorem 2.1,

the function Λ is identically equal to a constant γ > 0 in Ω, and if V ≥ 0, then

inequality (2.5) could also be derived implicitly from Theorem 1 by Talenti

[45]. In [45], Talenti’s argument relies on the Schwarz symmetrization and one

of the key inequalities which is used in [45] is∫
Ω
−div(A∇ϕ)× ϕ =

∫
Ω
A∇ϕ · ∇ϕ ≥ γ

∫
Ω
|∇ϕ|2.

This kind of inequality cannot be used directly for our purpose since it does

not take into account the fact that A ≥ Λ Id a.e. in Ω, where the function

Λ may not be constant. The proofs of the present paper use a completely

different rearrangement technique which has its own interest and which allows

us to take into account any nonconstant function Λ ∈ L∞+ (Ω). Actually, paper

[45] was not concerned with eigenvalue problems, but with various comparison

results for solutions of elliptic problems (see also [2], [3], [4], [46]). Even in

the case when Λ is constant and V ≥ 0, proving inequality (2.5) between

the principal eigenvalues of the initial and rearranged operators by means of

Talenti’s results requires several extra arguments, some of them using results

contained in Section 6 of the present paper. We also refer to Section 6.2 for

additional comments in the case when Λ is constant.
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But, once again, besides the own interest and the novelty of the tools we

use in the present paper, one of the main features in Theorem 2.1 (and in

Theorems 2.3 and 2.7) is that the ellipticity function Λ and its symmetrization

Λ∗ are not constant in general (see Remark 5.5). Optimizing with noncon-

stant coefficients in the second-order terms creates additional and substantial

difficulties. In particular, the conclusion of Theorem 2.1 does not follow from

previous works, even implicitely and even if the lower-order terms are zero.

More generally speaking, all the comparison results of the present paper are

new even when v = 0, namely when the operator L is symmetric. Moreover,

all the results are also new when the operators are one-dimensional (except

Theorem 2.4 the statement of which does make sense only when n ≥ 2).

The improved version of Theorem 2.1 when Ω is not a ball, namely The-

orem 2.3, is also new and does not follow from earlier results.

As far as Theorem 2.4 is concerned, optimization problems for eigenvalues

when the constraint on A is expressed in terms of the determinant and the

trace, or more general symmetric functions of the eigenvalues of A, have not

been considered hitherto.

Let us now focus on Theorem 2.7 and Corollary 2.8. In a previous work

([24], [23]), we proved a somewhat more complete version of this Faber-Krahn

inequality in the case of the Laplace operator with a drift term. Namely, let

Ω be a C2,α nonempty bounded domain of Rn for some 0 < α < 1. For any

vector field v ∈ L∞(Ω,Rn), denote by

(2.15) λ1(Ω, v) = λ1(Ω, Id, v, 0)

the principal eigenvalue of −∆+v ·∇ in Ω under Dirichlet boundary condition.

Then, the following Faber-Krahn type inequality holds:

Theorem 2.9 ([24], [23]). Let Ω be a C2,α nonempty bounded connected

open subset of Rn for some 0 < α < 1, let τ ≥ 0 and v ∈ L∞(Ω,Rn) be such

that ‖v‖L∞(Ω,Rn) ≤ τ . Then

(2.16) λ1(Ω, v) ≥ λ1(Ω∗, τer),

and the equality holds if and only if, up to translation, Ω = Ω∗ and v = τer.

Remark 2.10. Here we quote exactly the statement of [24], [23], but actu-

ally it is enough to assume that Ω is of class C2.

Notice that we can recover Theorem 2.9 from the results of the present

paper. Indeed, when Ω is not ball, the strict inequality in (2.16) follows at

once from Theorem 2.7, and when Ω is a ball (say, with center 0) and v 6= τer,

this strict inequality will follow from Theorem 6.8 (see §6 below). Strictly

speaking, inequality (2.16) could also be derived from Theorem 2 in [45] (see

also [2], [3]) and from extra arguments similar to the ones used in Section 6.1.
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But the case of equality is new, while Theorem 2.7 is entirely new. Indeed, an

important feature in Theorem 2.7 is the fact that the diffusion A is assumed

to be bounded from below by Λ Id where Λ is a possibly nonconstant function

and that λ1(Ω, A, v, V ) is compared with λ1(Ω∗,Λ∗Id, ‖v‖∞er,−‖V ‖∞), where

Λ∗ is also possibly nonconstant (in other words, the operator div(Λ∗∇) is not

necessarily equal to a constant times the Laplace operator). Furthermore,

another novelty in Theorem 2.7 is that, when Ω is not a ball, the difference

λ1(Ω, A, v, V ) − λ1(Ω∗,Λ∗Id, ‖v‖∞er,−‖V ‖∞) is estimated from below by a

positive quantity depending only on Ω, n and on some structural constants of

the operator. All these observations imply that Theorem 2.7 is definitely more

general than Theorem 2.9 and is not implicit in [45], or even in more recent

works in the same spirit (like [4], for instance).

When the vector field v is divergence free (in the sense of distributions),

then λ1(Ω, v) ≥ λ1(Ω) (multiply −∆ϕΩ,Id,v,0 +v ·∇ϕΩ,Id,v,0 = λ1(Ω, v)ϕΩ,Id,v,0
by ϕΩ,Id,v,0 and integrate by parts over Ω).1 Thus, minimizing λ1(Ω, v) when

|Ω| = m and v is divergence free and satisfies ‖v‖L∞(Ω,Rn) ≤ τ (with given

m > 0 and τ ≥ 0) is the same as minimizing λ1(Ω) in the Rayleigh conjecture.

We also refer to [24] and [23] for further optimization results for λ1(Ω, v) with

L∞ constraints on the drifts.

Remark 2.11. For nonempty connected and possibly unbounded open sets

Ω with finite measure, the principal eigenvalue λ1(Ω, A, v, V ) of the operator

L = −div(A∇) + v · ∇+ V can be defined as

λ1(Ω, A, v, V ) = sup {λ ∈ R, ∃ φ ∈ C2(Ω), φ > 0 in Ω, (−L+ λ)φ ≤ 0 in Ω}.

When Ω is bounded, this definition is taken from [13] (see also [1], [36]), and

it coincides with the characterization (2.1) when Ω ∈ C. It follows from the

arguments of Chapter 2 of [13] that

(2.17) λ1(Ω, A, v, V ) = inf
Ω′⊂⊂Ω, Ω′∈C

λ1(Ω′, A|Ω′ , v|Ω′ , V |Ω′),

where A|Ω′ , v|Ω′ , V |Ω′ denote the restrictions of the fields A, v and V to Ω′.

When Ω is a general nonempty open set with finite measure, we then define

(2.18) λ1(Ω, A, v, V ) = inf
j∈J

λ1(Ωj , A|Ωj , v|Ωj , V |Ωj ),

where the Ωj ’s are the connected components of Ω. Some of the comparison

results which are stated in the previous subsections can then be extended to

the class of general open sets Ω with finite measure (see Remarks 5.9, 5.11

and 6.10).

1We refer to [14] for a detailed analysis of the behavior of λ1(Ω, A,Bv, V ) when B → +∞
and v is a fixed divergence free vector field in L∞(Ω).
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2.5. Main tools : a new type of symmetrization. As already underlined,

the proofs of Theorems 2.1, 2.3, 2.4 and 2.7 do not use the usual Schwarz

symmetrization. The key tool in the proofs is a new (up to our knowledge)

rearrangement technique for some functions on Ω, which can take into account

nonconstant ellipticity functions Λ. Roughly speaking, given Ω, A, v and V

such that A ≥ Λ Id, if ϕ = ϕΩ,A,v,V denotes the principal eigenfunction of

the operator −div(A∇) + v · ∇ + V in Ω under Dirichlet boundary condition

(that is, ϕ solves (2.1)), then we associate to ϕ, Λ, v and V some rearranged

functions or vector fields, which are called ϕ̃, Λ̂, v̂ and “V . They are defined on

Ω∗ and are built so that some quantities are preserved. The precise definitions

will be given in Section 3, but let us quickly explain how the function ϕ̃ is

defined. Denote by R the radius of Ω∗. For all 0 ≤ a < 1, define

Ωa = {x ∈ Ω, a < ϕ(x) ≤ 1}

and define ρ(a) ∈ (0, R] such that |Ωa| =
∣∣∣Bρ(a)

∣∣∣, where Bs denotes the open

Euclidean ball of radius s > 0 and centre 0. Define also ρ(1) = 0. The function

ρ : [0, 1] → [0, R] is decreasing, continuous, one-to-one and onto. Then, the

rearrangement of ϕ is the radially symmetric decreasing function ϕ̃ : Ω∗ → R
vanishing on ∂Ω∗ such that, for all 0 ≤ a < 1,∫

Ωa

div(A∇ϕ)(x)dx =

∫
Bρ(a)

div(Λ̂∇ϕ̃)(x)dx

(we do not wish to give the explicit expression of the function Λ̂ right now).

The fundamental inequality satisfied by ϕ̃ is the fact that, for all x ∈ Ω∗,

(2.19) ϕ̃(x) ≥ ρ−1(|x|)

(see Corollary 3.6 below, and Lemma 4.3 for strict inequalities when Ω is not

a ball).

This symmetrization is definitely different from the Schwarz symmetriza-

tion since the distribution functions of ϕ and ϕ̃ are not the same in general.

Moreover, the L1 norm of the gradient of ϕ̃ on Ω∗ is larger than or equal to that

of ϕ on Ω, and, when A = γ Id (for a positive constant γ), the L2 norm of the

gradient of ϕ̃ on Ω∗ is larger than or equal to that of ϕ on Ω (see Remark 3.13

below).

Actually, the function ϕ is not regular enough for this construction to be

correct, and we have to deal with suitable approximations of ϕ. We refer to

Section 3 and the following ones for exact and complete statements and proofs.

Let us just mention that the proof of (2.19) relies, apart from the definition of

ϕ̃, on the usual isoperimetric inequality on Rn.

Notice that the tools which are developed in this paper not only give new

comparison results for symmetric and nonsymmetric second-order operators

with nonconstant coefficients, but they also provide an alternative proof of the
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Rayleigh-Faber-Krahn isoperimetric inequality (1.3) for the Dirichlet Lapla-

cian.

Finally, the new rearrangement we introduce in this paper is likely to be

used in other problems involving elliptic partial differential equations.

Let us give a few open problems related to our results. In all our results,

several minimization problems for the principal eigenvalue of a second-order

elliptic operator in a domain Ω under some constraints have been reduced to

the same problems on the ball Ω∗ centered at 0 with the same Lebesgue mea-

sure and for operators with radially symmetric coefficients. However, even in

the case of the ball and for operators with radially symmetric coefficients, some

of these optimization problems remain open. For instance, in Corollary 2.2,

is it possible to compute explicitly the right-hand side of (2.8)? An analo-

gous question may be asked for the other theorems, corresponding to different

constraints (even for Theorem 2.7).

When we combine Theorems 2.1 and 2.3, it follows that inequality (2.5) is

strict when Ω is not a ball and λ1(Ω, A, v, V ) > 0. But in Theorem 2.1, when

Ω is a ball, for which A, v and V does the case of equality occur in (2.5)? Does

this require that the initial data should be all radially symmetric? The same

question can be asked in Theorem 2.4 as well. An answer to these questions

would provide a complete analogue of Theorem 2.9 for general second-order

elliptic operators in divergence form. Furthermore, in Theorem 2.1, in the

general case when Λ is not constant and even if Ω is a ball, can one state a

result without ε but with still keeping the constraints (2.2)? In Section 5.2.2,

we prove some inequalities of the type λ1(Ω∗,Λ∗0 Id, v∗0, V
∗

0 ) ≤ λ1(Ω, A, v, V )

(without the ε term), where the radially symmetric bounded function V ∗0 ≤ 0

only satisfies (2.4) and the radially symmetric function Λ∗0 satisfies (2.2) but is

a priori only in L∞+ (Ω∗): the quantity λ1(Ω∗,Λ∗0 Id, v∗0, V
∗

0 ) is then understood

in a weaker sense (see §5.2.2 for more details).

When Ω = Ω∗, Λ∗ is fixed and v and V vary with some constraints on their

L∞ norms, we prove in Section 6 that there exist a unique v and a unique V

minimizing λ1(Ω∗,Λ∗Id, v, V ). In particular, if Λ∗ is radially symmetric, then

we show that v and V are given by inequality (2.13) of Theorem 2.7. Many

other optimization results in the ball can be asked if some of the fields Λ∗, v∗

and V ∗ are fixed while the others vary under some constraints. We intend to

come back to all these issues in a forthcoming paper.

Here are some other open problems. In Theorem 2.4, can one replace the

determinant of A with more general functions of the eigenvalues of A, namely

σq(A) with p < q ≤ n− 1? It would also be very interesting to obtain results

similar to ours for general second-order elliptic operators of the form

−
∑
i,j

ai,j∂i,j +
∑
i

bi∂i + c,
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where the ai,j ’s are continuous in Ω (but do not necessarily belong toW 1,∞(Ω)),

and the bi’s and c are bounded in Ω (recall that such operators still have a

real principal eigenvalue, see [13]), and to consider other boundary conditions

(Neumann, Robin, Stekloff problems... .)

Outline of the paper. The paper is organized as follows. Section 3 is de-

voted to the precise definitions of the rearranged function and the proof of

the inequalities satisfied by this rearrangement, whereas improved inequalities

are obtained in Section 4 when Ω is not a ball. The proofs of Theorems 2.1,

2.3 and 2.4 are given in Section 5, while the Faber-Krahn inequalities (The-

orem 2.7 and Corollary 2.8) are established in Section 6. Some optimization

results in a fixed domain, which are interesting in their own right and are also

required for the proof of Theorem 2.7, are also proved in Section 6. Finally,

the appendix contains the proof of a technical approximation result (which is

used in the proofs of §5), a short remark about distribution functions and some

useful asymptotics of λ1(Ω∗, τer) = λ1(Ω∗, Id, τer, 0) when τ → +∞.

Acknowledgements. The authors thank C. Bandle for pointing out to us

reference [45] and L. Roques for valuable discussions.

3. Inequalities for the rearranged functions

In this section, we present a new spherical rearrangement of functions and

we prove some pointwise and integral inequalities for the rearranged data. The

results are of independent interest and this is the reason why we present them

in a separate section.

3.1. General framework, definitions of the rearrangements and basic prop-

erties. In this subsection, we give some assumptions which will remain valid

throughout all Section 3. Fix Ω ∈ C, AΩ ∈ C1(Ω,Sn(R)), ΛΩ ∈ C1(Ω),

ω ∈ C(Ω) and V ∈ C(Ω). Assume that

(3.1) AΩ(x) ≥ ΛΩ(x) Id ∀ x ∈ Ω,

and that there exists γ > 0 such that

ΛΩ(x) ≥ γ ∀ x ∈ Ω.

Let ψ be a C1(Ω) function, analytic and positive in Ω, such that ψ = 0

on ∂Ω and

∇ψ(x) 6= 0 ∀ x ∈ ∂Ω,

so that ν · ∇ψ < 0 on ∂Ω, where ν denotes the outward unit normal to ∂Ω.

We always assume throughout this section that

f := −div(AΩ∇ψ) in Ω
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is a nonzero polynomial, so that ψ ∈ W 2,p(Ω) for all 1 ≤ p < +∞ and ψ ∈
C1,α(Ω) for all 0 ≤ α < 1.

Set

M = max
x∈Ω

ψ(x).

For all a ∈ [0,M), define

Ωa = {x ∈ Ω, ψ(x) > a}

and, for all a ∈ [0,M ],

Σa =
¶
x ∈ Ω, ψ(x) = a

©
.

The set {x ∈ Ω, ∇ψ(x) = 0} is included in some compact set K ⊂ Ω, which

implies that the set

Z = {a ∈ [0,M ], ∃ x ∈ Σa, ∇ψ(x) = 0}

of the critical values of ψ is finite ([43]) and can then be written as

Z = {a1, . . . , am}

for some m ∈ N∗ = N\{0}. Observe also that M ∈ Z and that 0 6∈ Z. One

can then assume without loss of generality that

0 < a1 < · · · < am = M.

The set Y = [0,M ]\Z of the noncritical values of ψ is open relatively to [0,M ]

and can be written as

Y = [0,M ]\Z = [0, a1) ∪ (a1, a2) ∪ · · · ∪ (am−1,M).

For all a ∈ Y , the hypersurface Σa is of class C2 (notice also that Σ0 = ∂Ω is

of class C2 by assumption) and |∇ψ| does not vanish on Σa. Therefore, the

functions defined on Y by

(3.2)



g : Y 3 a 7→
∫

Σa

|∇ψ(y)|−1dσa(y)

h : Y 3 a 7→
∫

Σa

f(y)|∇ψ(y)|−1dσa(y)

i : Y 3 a 7→
∫

Σa

dσa(y)

are (at least) continuous in Y and C1 in Y \{0}, where dσa denotes the surface

measure on Σa for a ∈ Y .

Denote by R the radius of Ω∗ (the open Euclidean ball centered at the

origin and such that |Ω∗| = |Ω|, that is Ω∗ = BR). For all a ∈ [0,M), let

ρ(a) ∈ (0, R] be defined so that

|Ωa| = |Bρ(a)| = αnρ(a)n.
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a

(a) Domain Ω

*

R

(b) Ball Ω∗

Recall that αn is the volume of the unit ball B1. The function ρ is extended

at M by

ρ(M) = 0.

Lemma 3.1. The function ρ is a continuous decreasing map from [0,M ]

onto [0, R].

Proof. The function ρ : [0,M ]→ [0, R] is clearly decreasing since

|{x ∈ Ω, a < ψ(x) ≤ b}| > 0

for all 0 ≤ a < b ≤ M . Fix now any a ∈ (0,M ]. Since ψ ∈ W 2,p(Ω) (actually,

for all 1 ≤ p < +∞), one has

∂2ψ

∂xi∂xj
× 1{ψ=a} =

∂ψ

∂xi
× 1{ψ=a} = 0 almost everywhere in Ω

for all 1 ≤ i, j ≤ n, where 1E denotes the characteristic function of a set E.

Therefore, f × 1{ψ=a} = 0 almost everywhere in Ω. Since f is a nonzero

polynomial, one gets that

|Σa| = 0 ∀ a ∈ (0,M ].

Notice that |Σ0| = |∂Ω| = 0 as well. Lastly, ρ(0) = R and ρ(M) = 0. As a

conclusion, the function ρ is continuous on [0,M ] and is a one-to-one and onto

map from [0,M ] to [0, R]. �

Lemma 3.2. The function ρ is of class C1 in Y , and for all a ∈ Y ,

ρ′(a) = −(nαnρ(a)n−1)−1g(a) = −(nαnρ(a)n−1)−1
∫

Σa

|∇ψ(y)|−1dσa(y).

Proof. Fix a ∈ Y . Let η > 0 be such that [a, a+ η] ⊂ Y . For t ∈ (0, η),

αn[ρ(a+ t)n − ρ(a)n] = |Ωa+t| − |Ωa| = −
∫
{a<ψ(x)≤a+t}

dx

= −
∫ a+t

a

Ç∫
Σb

|∇ψ(y)|−1dσb(y)

å
db
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from the coarea formula. Hence,

αn[ρ(a+ t)n − ρ(a)n]

t
→ −g(a) as t→ 0+

for all a ∈ Y , due to the continuity of g on Y . Similarly, one has that

αn[ρ(a+ t)n − ρ(a)n]

t
→ −g(a) as t→ 0−

for all a ∈ Y \{0}. The conclusion of the lemma follows since Y ⊂ [0,M),

whence ρ(a) 6= 0 for all a ∈ Y . �

We now define the function ψ̃ in Ω∗, which is a spherical rearrangement

of ψ by means of a new type of symmetrization. The definition of ψ̃ involves

the rearrangement of the datum ΛΩ.

First, call

E = {x ∈ Ω∗, |x| ∈ ρ(Y )}.

The set E is a finite union of spherical shells and, from Lemma 3.1, it is open

relatively to Ω∗ and can be written as

E = {x ∈ Rn, |x| ∈ (0, ρ(am−1)) ∪ · · · ∪ (ρ(a2), ρ(a1)) ∪ (ρ(a1), R]},

with

0 = ρ(am) = ρ(M) < ρ(am−1) < · · · < ρ(a1) < R.

Notice that 0 6∈ E.

Next, for all r ∈ ρ(Y ), set

(3.3) G(r) =

∫
Σρ−1(r)

|∇ψ(y)|−1 dσρ−1(r)∫
Σρ−1(r)

ΛΩ(y)−1 |∇ψ(y)|−1 dσρ−1(r)

> 0,

where ρ−1 : [0, R] → [0,M ] denotes the reciprocal of the function ρ. For all

x ∈ E, define

(3.4) Λ̂(x) = G(|x|).

The function Λ̂ is then defined almost everywhere in Ω∗. By the observations

above and since ΛΩ is positive and C1(Ω), the function Λ̂ is continuous on E

and C1 on E ∩ Ω∗. Furthermore, Λ̂ ∈ L∞(Ω∗) and

(3.5) 0 < min
Ω

ΛΩ ≤ ess inf
Ω∗

Λ̂ ≤ ess sup
Ω∗

Λ̂ ≤ max
Ω

ΛΩ.
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For any two real numbers a < b such that [a, b] ⊂ Y , the coarea formula gives∫
Ωa\Ωb

ΛΩ(y)−1dy =

∫ b

a

Ç∫
Σs

ΛΩ(y)−1|∇ψ(y)|−1dσs(y)

å
ds

=

∫ ρ(a)

ρ(b)

á∫
Σρ−1(t)

ΛΩ(y)−1|∇ψ(y)|−1dσρ−1(t)(y)∫
Σρ−1(t)

|∇ψ(y)|−1dσρ−1(t)(y)

ë
nαnt

n−1dt.

The last equality is obtained from Lemma 3.2 after the change of variables

s = ρ−1(t). Since Λ̂ is radially symmetric, it follows by (3.3)–(3.4) that∫
Ωa\Ωb

ΛΩ(y)−1dy =

∫
Sρ(b),ρ(a)

Λ̂(x)−1dx,

where, for any 0 ≤ s < s′, Ss,s′ denotes

Ss,s′ = {x ∈ Rn, s < |x| < s′}.

Lebesgue’s dominated convergence theorem then implies that

(3.6)

∫
Ω

ΛΩ(y)−1dy =

∫
Ω∗

Λ̂(x)−1dx.

Lastly, set F (0) = 0 and, for all r ∈ ρ(Y ), set

(3.7) F (r) =
1

nαnrn−1G(r)

∫
Ωρ−1(r)

div(AΩ∇ψ)(x)dx.

The function F is then defined almost everywhere in [0, R].

Lemma 3.3. The function F belongs to L∞([0, R]) and is continuous on

ρ(Y ) ∪ {0}. Moreover, F < 0 on ρ(Y ).

Proof. The continuity of F on ρ(Y ) is a consequence of Lemma 3.1, of

the continuity of Λ̂ on E and of the fact that div(AΩ∇ψ) = f in Ω, with f

continuous and thus bounded in Ω.

Observe that, since ΛΩ(x) ≥ γ > 0 for all x ∈ Ω, one has Λ̂(x) ≥ γ for all

x ∈ E. For 0 < r ≤ R with r ∈ ρ(Y ) (⊃ (0, ρ(am−1))), one has

|F (r)| ≤ (nαnr
n−1γ)−1‖f‖L∞(Ω) αnr

n = (nγ)−1‖f‖L∞(Ω) r;

thus F is continuous at 0 as well and belongs to L∞ ([0, R]). Finally, for all

r ∈ ρ(Y ), since ψ(y) = ρ−1(r) for all y ∈ Σρ−1(r) and since ψ > ρ−1(r) in

Ωρ−1(r) and |∇ψ(y)| 6= 0 for all y ∈ Σρ−1(r), one has

νρ−1(r) · ∇ψ < 0 on Σρ−1(r),

where, for any a ∈ Y , νa denotes the outward unit normal on ∂Ωa. Therefore,

∇ψ(y) = − |∇ψ(y)| νρ−1(r)(y) ∀ r ∈ ρ(Y ) and y ∈ Σρ−1(r).
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As a consequence, the Green-Riemann formula yields that, for all r ∈ ρ(Y ),∫
Ωρ−1(r)

div(AΩ∇ψ)(y)dy =

∫
Σρ−1(r)

AΩ(y)∇ψ(y) · νρ−1(r)(y)dσρ−1(r)(y)

= −
∫

Σρ−1(r)

AΩ(y)νρ−1(r)(y) · νρ−1(r)(y) |∇ψ(y)| dσρ−1(r)(y)

< 0,

which ends the proof. �

For all x ∈ Ω∗, set

(3.8) ψ̃(x) = −
∫ R

|x|
F (r)dr.

The function ψ̃ is then radially symmetric and it vanishes on ∂Ω∗ = ∂BR.

From Lemma 3.3,

ψ̃ > 0 in Ω∗,

the function ψ̃ is continuous on Ω∗, decreasing with respect to |x| in Ω∗, and

C1 on E ∪ {0} (remember that F (0) = 0). Note that

ψ̃ ∈ H1
0 (Ω∗) ∩W 1,∞(Ω∗).

Moreover, the following statement holds true:

Lemma 3.4. The function ψ̃ is of class C2 in E ∩ Ω∗.

Proof. By definition of ψ̃ and since Λ̂ is C1 in E∩Ω∗, it is enough to prove

that the function

z : r 7→
∫

Ωρ−1(r)

div(AΩ∇ψ)(x)dx = −
∫

Ωρ−1(r)

f(x)dx

is of class C1 on ρ(Y ). It would actually be enough to prove that z is C1 on

ρ(Y )\{R}.
Let r be fixed in ρ(Y ) = (0, ρ(am−1))∪ · · · ∪ (ρ(a2), ρ(a1))∪ (ρ(a1), R] and

let η > 0 be such that [r − η, r] ⊂ ρ(Y ). For t ∈ (0, η), one has

z(r − t)− z(r) =

∫
{ρ−1(r)<ψ(x)≤ρ−1(r−t)}

f(x)dx

=

∫ ρ−1(r−t)

ρ−1(r)

Ç∫
Σa

f(y)|∇ψ(y)|−1dσa(y)

å
da=

∫ ρ−1(r−t)

ρ−1(r)
h(a)da,

where h is defined in (3.2). Since ρ−1 is of class C1 on ρ(Y ) from Lemma 3.2

and since h is continuous on Y , it follows that

z(r − t)− z(r)
−t

→ h(ρ−1(r))(ρ−1)′(r) = −nαnr
n−1h(ρ−1(r))

g(ρ−1(r))
as t→ 0+.
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The same limit holds as t→ 0− for all r ∈ ρ(Y )\{R}. Therefore, the function

z is differentiable on ρ(Y ) and

z′(r) = −nαnr
n−1h(ρ−1(r))

g(ρ−1(r))
∀ r ∈ ρ(Y ).

Since ρ−1 is continuous on [0, R], and g and h are continuous on Y , the function

z is of class C1 on ρ(Y ). That completes the proof of Lemma 3.4. �

We now define a rearranged drift v̂ and a rearranged potential “V . For all

x ∈ E, define

(3.9) v̂(x) =

á∫
Σρ−1(|x|)

ω(y)2ΛΩ(y)−1|∇ψ(y)|−1dσρ−1(|x|)(y)∫
Σρ−1(|x|)

ΛΩ(y)−1 |∇ψ(y)|−1 dσρ−1(|x|)(y)

ë1/2

er(x)

(remember that er is defined by (1.1)). The vector field v̂ is then defined almost

everywhere in Ω∗. Notice also that |v̂| is radially symmetric, that v̂(x) points

in the direction er(x) at each point x ∈ E, that v̂ belongs to L∞(Ω∗,Rn) and

that

(3.10) ess inf
Ω
|ω| ≤ ess inf

Ω∗
|v̂| ≤ ess sup

Ω∗
|v̂| ≤ ess sup

Ω
|ω| = ‖ω‖L∞(Ω).

Furthermore, since Λ−1
Ω and ω are continuous in Ω, the vector field v̂ is con-

tinuous in E, and, as it was done for (3.6), it is easy to check that

(3.11)

∫
Ω
ω(y)2ΛΩ(y)−1dy =

∫
Ω∗
|v̂(x)|2Λ̂(x)−1dx.

Lastly, for all x ∈ E, define

(3.12) “V (x) =

−
∫

Σρ−1(|x|)

V −(y) |∇ψ(y)|−1 dσρ−1(|x|)(y)∫
Σρ−1(|x|)

|∇ψ(y)|−1 dσρ−1(|x|)(y)
,

where V −(y) denotes the negative part of V (y), that is V −(y)=max(0,−V (y)).

The function “V is then defined almost everywhere in Ω∗. Observe that “V is

radially symmetric, nonpositive, belongs to L∞(Ω∗), is continuous in E, and

that

(3.13) − ‖V ‖L∞(Ω) ≤ min
Ω

(−V −) ≤ ess inf
Ω∗

“V ≤ ess sup
Ω∗

“V ≤ 0.
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3.2. Pointwise comparison between ψ and ψ̃. The first interest of the

spherical rearrangement which was defined in the previous subsection is that

the functions ψ and ψ̃ can be compared on the sets Σa and ∂Bρ(a). Namely,

the function ψ̃ satisfies the following key inequalities, which are summarized

in Proposition 3.5 and Corollary 3.6:

Proposition 3.5. For any unit vector e of Rn, the function‹Ψ : [0,M ] → R+

a 7→ ψ̃(ρ(a)e)

is continuous on [0,M ], differentiable on Y , and

(3.14) ∀ a ∈ Y, ‹Ψ′(a) ≥ 1.

Before giving the proof of Proposition 3.5, let us first establish the follow-

ing important corollary.

Corollary 3.6. For all x ∈ Ω∗,

ψ̃(x) ≥ ρ−1(|x|).

Proof. Since ‹Ψ is continuous on [0,M ] and differentiable on [0,M ] except

on a finite set of points and since ‹Ψ(0) = 0, the mean-value theorem and (3.14)

show that ‹Ψ(a) ≥ a for all a ∈ [0,M ], which means that ψ̃(ρ(a)e) ≥ a for all

a ∈ [0,M ] and all unit vector e. Since ψ̃ is radially symmetric, Corollary 3.6

follows from Lemma 3.1. �

Proof of Proposition 3.5. Let us first observe that the function ‹Ψ is dif-

ferentiable on Y , from Lemma 3.2 and the fact that ψ̃ is C1 in E (and even

in E ∪ {0}). Furthermore, since ψ̃ is radially symmetric, and decreasing with

respect to the variable |x| and since ρ is itself decreasing, it is enough to prove

that

(3.15) ∀ x ∈ E, |ρ′(ρ−1(|x|))| × |∇ψ̃(x)| ≥ 1.

We will make use of the following inequality: for all x ∈ E,

(3.16)∫
Σρ−1(|x|)

AΩ(y)νρ−1(|x|)(y) · νρ−1(|x|)(y) |∇ψ(y)| dσρ−1(|x|)(y)∫
Σρ−1(|x|)

|∇ψ(y)|−1 dσρ−1(|x|)(y)
≤ Λ̂(x) |∇ψ̃(x)|2,

where one recalls that νρ−1(|x|) denotes the outward unit normal on ∂Ωρ−1(|x|).

We postpone the proof of (3.16) to the end of this subsection and go on in the

proof of Proposition 3.5.
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Fix x ∈ E and set r = |x|. Since ρ−1(r) ∈ Y , there exists η > 0 such that

ρ−1(r − t) ∈ Y for all t ∈ [0, η]. For t ∈ (0, η], the Cauchy-Schwarz inequality

gives

(3.17)á∫
Ωρ−1(r)\Ωρ−1(r−t)

|∇ψ(y)| dy∣∣∣Ωρ−1(r)\Ωρ−1(r−t)

∣∣∣
ë2

≤

∫
Ωρ−1(r)\Ωρ−1(r−t)

ΛΩ(y)−1dy∣∣∣Ωρ−1(r)\Ωρ−1(r−t)

∣∣∣
×

∫
Ωρ−1(r)\Ωρ−1(r−t)

ΛΩ(y) |∇ψ(y)|2 dy∣∣∣Ωρ−1(r)\Ωρ−1(r−t)

∣∣∣ .

The left-hand side of (3.17) is equal toá∫
Ωρ−1(r)\Ωρ−1(r−t)

|∇ψ(y)| dy∣∣Ωρ−1(r)\Ωρ−1(r−t)
∣∣
ë2

=

á∫
Ωρ−1(r)\Ωρ−1(r−t)

|∇ψ(y)| dy

ρ−1(r − t)− ρ−1(r)
× ρ
−1(r − t)− ρ−1(r)∣∣Ωρ−1(r)\Ωρ−1(r−t)

∣∣
ë2

.

By the coarea formula,

lim
t→0+

∫
Ωρ−1(r)\Ωρ−1(r−t)

|∇ψ(y)| dy

ρ−1(r − t)− ρ−1(r)
=

∫
Σρ−1(r)

dσρ−1(r)(y) = i(ρ−1(r)),

and

lim
t→0+

ρ−1(r − t)− ρ−1(r)∣∣∣Ωρ−1(r)\Ωρ−1(r−t)

∣∣∣ =
1∫

Σρ−1(r)

|∇ψ(y)|−1dσρ−1(r)(y)
=

1

nαnrn−1 |ρ′(ρ−1(r))|

from Lemma 3.2. By the isoperimetric inequality applied to Σρ−1(r) = ∂Ωρ−1(r)

and ∂Br, one has

(3.18) 0 < nαnr
n−1 ≤ i(ρ−1(r)) =

∫
Σρ−1(r)

dσρ−1(r)(y),

Therefore, one obtains

(3.19)

lim
t→0+

á∫
Ωρ−1(r)\Ωρ−1(r−t)

|∇ψ(y)| dy∣∣∣Ωρ−1(r)\Ωρ−1(r−t)

∣∣∣
ë2

≥
Ç
i(ρ−1(r))

nαnrn−1

å2

× 1

|ρ′(ρ−1(r))|2

≥ 1

|ρ′(ρ−1(r))|2
.
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The first factor of the right-hand side of (3.17) is equal to∫
Ωρ−1(r)\Ωρ−1(r−t)

ΛΩ(y)−1dy∣∣∣Ωρ−1(r)\Ωρ−1(r−t)

∣∣∣ =

∫
Ωρ−1(r)\Ωρ−1(r−t)

ΛΩ(y)−1dy

ρ−1(r − t)− ρ−1(r)
× ρ−1(r − t)− ρ−1(r)∣∣∣Ωρ−1(r)\Ωρ−1(r−t)

∣∣∣ ,
and the coarea formula therefore shows that

(3.20) lim
t→0+

∫
Ωρ−1(r)\Ωρ−1(r−t)

ΛΩ(y)−1dy∣∣∣Ωρ−1(r)\Ωρ−1(r−t)

∣∣∣ = Λ̂(x)−1

from (3.3) and (3.4). Finally, the coarea formula again implies that

(3.21)

lim
t→0+

∫
Ωρ−1(r)\Ωρ−1(r−t)

ΛΩ(y) |∇ψ(y)|2 dy∣∣∣Ωρ−1(r)\Ωρ−1(r−t)

∣∣∣ =

∫
Σρ−1(r)

ΛΩ(y)|∇ψ(y)|dσρ−1(r)(y)∫
Σρ−1(r)

|∇ψ(y)|−1dσρ−1(r)(y)

≤

∫
Σρ−1(r)

AΩ(y)νρ−1(r)(y) · νρ−1(r)(y)|∇ψ(y)|dσρ−1(r)(y)∫
Σρ−1(r)

|∇ψ(y)|−1dσρ−1(r)(y)

≤ Λ̂(x)|∇ψ̃(x)|2

by (3.16).

Finally, (3.17), (3.19), (3.20) and (3.21) imply that

(3.22)
1

|ρ′(ρ−1(r))|2
≤
Ç
i(ρ−1(r))

nαnrn−1

å2

× 1

|ρ′(ρ−1(r))|2
≤ |∇ψ̃(x)|2.

Therefore, inequality (3.15) holds and so does inequality (3.14). �

Remark 3.7. Observe that (3.17), (3.20) and (3.21) together with the

coarea formula yield

(3.23)∫
Σρ−1(|x|)

dσρ−1(|x|)(y)∫
Σρ−1(|x|)

|∇ψ(y)|−1dσρ−1(|x|)(y)
= lim

t→0+

∫
Ωρ−1(|x|)\Ωρ−1(|x|−t)

|∇ψ(y)| dy∣∣∣Ωρ−1(|x|)\Ωρ−1(|x|−t)

∣∣∣ ≤ |∇ψ̃(x)|

for all x ∈ E.

We now give the

Proof of (3.16). Fix x ∈ E and call r = |x|. Notice first that, as was

already observed, for all y ∈ ∂Ωρ−1(r),

∇ψ(y) = − |∇ψ(y)| νρ−1(r)(y).
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The Green-Riemann formula and the choice of ψ̃ therefore yield∫
Σρ−1(r)

AΩ(y)νρ−1(r)(y) · νρ−1(r)(y)|∇ψ(y)|dσρ−1(r)(y)(3.24)

= −
∫

Ωρ−1(r)

div(AΩ∇ψ)(y)dy

= −nαnrn−1Λ̂(x)F (r)

= nαnr
n−1Λ̂(x)|∇ψ̃(x)|.

By Cauchy-Schwarz,

i(ρ−1(r))2 =

(∫
Σρ−1(r)

dσρ−1(r)(y)

)2

≤
∫

Σρ−1(r)

AΩ(y)νρ−1(r)(y) · νρ−1(r)(y) |∇ψ(y)| dσρ−1(r)(y)

×
∫

Σρ−1(r)

(AΩ(y)νρ−1(r)(y) · νρ−1(r)(y))−1 |∇ψ(y)|−1 dσρ−1(r)(y)

≤
∫

Σρ−1(r)

AΩ(y)νρ−1(r)(y) · νρ−1(r)(y) |∇ψ(y)| dσρ−1(r)(y)

×
∫

Σρ−1(r)

ΛΩ(y)−1 |∇ψ(y)|−1 dσρ−1(r)(y)

= Λ̂(x)−1 ×
∫

Σρ−1(r)

AΩ(y)νρ−1(r)(y) · νρ−1(r)(y) |∇ψ(y)| dσρ−1(r)(y)

×
∫

Σρ−1(r)

|∇ψ(y)|−1 dσρ−1(r)(y).

In other words,∫
Σρ−1(r)

AΩ(y)νρ−1(r)(y) · νρ−1(r)(y) |∇ψ(y)| dσρ−1(r)(y)∫
Σρ−1(r)

|∇ψ(y)|−1 dσρ−1(r)(y)

≤ Λ̂(x)−1 ×

á∫
Σρ−1(r)

AΩ(y)νρ−1(r)(y) · νρ−1(r)(y) |∇ψ(y)| dσρ−1(r)(y)

i(ρ−1(r))

ë2

=

Ç
nαnr

n−1

i(ρ−1(r))

å2

Λ̂(x)|∇ψ̃(x)|2

by (3.24). The isoperimetric inequality (3.18) ends the proof of (3.16). �



REARRANGEMENT INEQUALITIES 677

3.3. A pointwise differential inequality for the rearranged data. In the pre-

vious subsection, we could compare the values of ψ and of its symmetrized

function ψ̃. Here, we prove a partial differential inequality involving ψ and ψ̃,

as well as the rearranged data Λ̂, v̂ and “V .

Proposition 3.8. Let ω0 ∈ R+ and x ∈ E∩Ω∗. Then, there exists y ∈ Ω

such that ψ(y) = ρ−1(|x|), that is y ∈ Σρ−1(|x|), and

− div(Λ̂∇ψ̃)(x) + v̂(x) · ∇ψ̃(x)− ω0|∇ψ̃(x)|+ “V (x)ψ̃(x)

≤− div(AΩ∇ψ)(y)− |ω(y)| × |∇ψ(y)| − ω0|∇ψ(y)|+ V (y)ψ(y).

Notice that v̂(x) · ∇ψ̃(x) = −|v̂(x)| × |∇ψ̃(x)|.

Proof. Let x ∈ E ∩ Ω∗, r = |x| and η > 0 such that Sr−η,r ⊂ E ∩ Ω∗. As

done in the proof of Proposition 3.5, the coarea formula and Cauchy-Schwarz

inequality yieldá
lim
t→0+

∫
Ωρ−1(r)\Ωρ−1(r−t)

|ω(y)| × |∇ψ(y)| dy∣∣∣Ωρ−1(r)\Ωρ−1(r−t)

∣∣∣
ë2

(3.25)

=

á ∫
Σρ−1(r)

|ω(y)|dσρ−1(r)(y)∫
Σρ−1(r)

|∇ψ(y)|−1dσρ−1(r)(y)

ë2

≤

∫
Σρ−1(r)

ΛΩ(y)−1ω(y)2|∇ψ(y)|−1dσρ−1(r)(y)∫
Σρ−1(r)

|∇ψ(y)|−1dσρ−1(r)(y)
×

∫
Σρ−1(r)

ΛΩ(y)|∇ψ(y)|dσρ−1(r)(y)∫
Σρ−1(r)

|∇ψ(y)|−1dσρ−1(r)(y)
.

Using (3.16), one obtains∫
Σρ−1(r)

ΛΩ(y)|∇ψ(y)|dσρ−1(r)(y)∫
Σρ−1(r)

|∇ψ(y)|−1dσρ−1(r)(y)
(3.26)

≤

∫
Σρ−1(r)

AΩ(y)νρ−1(r)(y) · νρ−1(r)(y)|∇ψ(y)|dσρ−1(r)(y)∫
Σρ−1(r)

|∇ψ(y)|−1dσρ−1(r)(y)

≤ Λ̂(x)|∇ψ̃(x)|2.
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Finally, (3.25) and (3.26), together with definitions (3.3)–(3.4) and (3.9), give

that

(3.27)

lim
t→0+

∫
Ωρ−1(r)\Ωρ−1(r−t)

|ω(y)| × |∇ψ(y)| dy∣∣∣Ωρ−1(r)\Ωρ−1(r−t)

∣∣∣ ≤ |v̂(x)| × |∇ψ̃(x)| = −v̂(x) · ∇ψ̃(x).

The last equality follows also from (3.8) and Lemma 3.3.

Remember also from (3.23) that

(3.28) lim
t→0+

∫
Ωρ−1(r)\Ωρ−1(r−t)

|∇ψ(y)| dy∣∣∣Ωρ−1(r)\Ωρ−1(r−t)

∣∣∣ ≤ |∇ψ̃(x)| = −er(x) · ∇ψ̃(x).

As far as V is concerned, for any fixed unit vector e in Rn and for any

t ∈ (0, η), it follows from (3.12) and Lemma 3.2 that∫
Ωρ−1(r)\Ωρ−1(r−t)

V (y)ψ(y)dy

≥
∫ ρ−1(r−t)

ρ−1(r)

Ç∫
Σa

(−V −(y))ψ(y) |∇ψ(y)|−1 dσa(y)

å
da

= −
∫ ρ−1(r−t)

ρ−1(r)
a

Ç∫
Σa

V −(y) |∇ψ(y)|−1 dσa(y)

å
da

= −
∫ r

r−t

(∫
Σρ−1(s)

V −(y) |∇ψ(y)|−1 dσρ−1(s)(y)

)
ρ−1(s)ds

|ρ′(ρ−1(s))|

= −nαn
∫ r

r−t
sn−1ρ−1(s)

á∫
Σρ−1(s)

V −(y) |∇ψ(y)|−1 dσρ−1(s)(y)∫
Σρ−1(s)

|∇ψ(y)|−1 dσρ−1(s)(y)

ë
ds

= nαn

∫ r

r−t
sn−1ρ−1(s)“V (se)ds.

Moreover, the radial symmetry of “V and ψ̃ yields∫
Sr−t,r

“V (y)ψ̃(y)dy = nαn

∫ r

r−t
sn−1“V (se)ψ̃(se)ds.

Corollary 3.6 and the facts that
∣∣∣Ωρ−1(r)\Ωρ−1(r−t)

∣∣∣ = |Sr−t,r| and that “V ≤ 0

therefore show that∫
Ωρ−1(r)\Ωρ−1(r−t)

V (y)ψ(y)dy∣∣∣Ωρ−1(r)\Ωρ−1(r−t)

∣∣∣ ≥

∫
Sr−t,r

“V (y)ψ̃(y)dy

|Sr−t,r|
.
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Since “V and ψ̃ are continuous in E and radially symmetric, one therefore

obtains, together with the coarea formula,

(3.29)∫
Σρ−1(r)

V (y)ψ(y)|∇ψ(y)|−1dσρ−1(r)(y)∫
Σρ−1(r)

|∇ψ(y)|−1dσρ−1(r)(y)
= lim

t→0+

∫
Ωρ−1(r)\Ωρ−1(r−t)

V (y)ψ(y)dy∣∣∣Ωρ−1(r)\Ωρ−1(r−t)

∣∣∣
≥ “V (x)ψ̃(x).

Let now t be any real number in (0, η). Since ψ̃ (resp. Λ̂) is radially

symmetric and C2 (resp. C1) on Sr−t,r ⊂ E ∩Ω∗, the Green Riemann formula

gives

(3.30)∫
Sr−t,r

div(Λ̂∇ψ̃)(y)dy =

∫
∂Sr−t,r

Λ̂(y)∇ψ̃(y) · ν(y)dσ(y)

= nαn [rn−1G(r)F (r)− (r − t)n−1G(r − t)F (r − t)],

where dσ and ν here denote the superficial measure on ∂Sr−t,r and the out-

ward unit normal to Sr−t,r, and G and F were defined in (3.3) and (3.7). By

definition of F , one gets that∫
Sr−t,r

div(Λ̂∇ψ̃)(y)dy =

∫
Ωρ−1(r)\Ωρ−1(r−t)

div(AΩ∇ψ)(y)dy,

whence

(3.31)∫
Σρ−1(r)

div(AΩ∇ψ)(y)|∇ψ(y)|−1dσρ−1(r)(y)∫
Σρ−1(r)

|∇ψ(y)|−1dσρ−1(r)(y)

= lim
t→0+

∫
Ωρ−1(r)\Ωρ−1(r−t)

div(AΩ∇ψ)(y)dy∣∣∣Ωρ−1(r)\Ωρ−1(r−t)

∣∣∣ = div(Λ̂∇ψ̃)(x)

since |Sr−t,r| =
∣∣∣Ωρ−1(r)\Ωρ−1(r−t)

∣∣∣.
It follows from (3.27), (3.28), (3.29) and (3.31) that

lim
t→0+

∫
Ωρ−1(r)\Ωρ−1(r−t)

[div(AΩ∇ψ)(y) + |ω(y)| × |∇ψ(y)|+ ω0|∇ψ(y)| − V (y)ψ(y)] dy∣∣Ωρ−1(r)\Ωρ−1(r−t)
∣∣

≤ div(Λ̂∇ψ̃)(x)− v̂(x) · ∇ψ̃(x) + ω0|∇ψ̃(x)| − “V (x)ψ̃(x).

To finish the proof, pick any sequence of positive numbers (εl)l∈N such that

εl → 0 as l→ +∞. Since ψ is C2 in Ω, since AΩ is C1 in Ω (and even in Ω) and
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ω and V are continuous in Ω (and even in Ω), the previous inequality provides

the existence of a sequence of positive real numbers (tl)l∈N ∈ (0, η) such that

tl → 0 as l→ +∞, and a sequence of points

yl ∈ Ωρ−1(r)\Ωρ−1(r−tl) ⊂ Ωρ−1(r) ⊂ Ω

such that

div(AΩ∇ψ)(yl) + |ω(yl)| × |∇ψ(yl)|+ ω0|∇ψ(yl)| − V (yl)ψ(yl)

≤ div(Λ̂∇ψ̃)(x)− v̂(x) · ∇ψ̃(x) + ω0|∇ψ̃(x)| − “V (x)ψ̃(x) + εl.

Since ρ−1(r) ≤ ψ(yl) ≤ ρ−1(r−tl) and ρ−1 is continuous, the points yl converge,

up to the extraction of some subsequence, to a point y ∈ Σρ−1(r) such that

div(AΩ∇ψ)(y) + |ω(y)| × |∇ψ(y)|+ ω0|∇ψ(y)| − V (y)ψ(y)

≤ div(Λ̂∇ψ̃)(x)− v̂(x) · ∇ψ̃(x) + ω0|∇ψ̃(x)| − “V (x)ψ̃(x),

which is the conclusion of Proposition 3.8. �

Corollary 3.9. If there are ω0 ≥ 0 and µ ≥ 0 such that

−div(AΩ∇ψ)(y)− |ω(y)|×|∇ψ(y)| − ω0|∇ψ(y)|+ V (y)ψ(y) ≤ µψ(y) ∀ y ∈ Ω,

then

−div(Λ̂∇ψ̃)(x) + v̂(x)·∇ψ̃(x)− ω0|∇ψ̃(x)|+ “V (x)ψ̃(x) ≤ µψ̃(x) ∀ x ∈ E ∩Ω∗.

Proof. It follows immediately from Corollary 3.6 and Proposition 3.8. �

3.4. An integral inequality for the rearranged data. A consequence of the

pointwise comparisons which were established in the previous subsections is

the following integral comparison result:

Proposition 3.10. With the previous notation, assume that, for some

(ω0, µ) ∈ R2,

(3.32)

− div(Λ̂∇ψ̃)(x)+v̂(x)·∇ψ̃(x)−ω0|∇ψ̃(x)|+“V (x)ψ̃(x) ≤ µψ̃(x) ∀ x ∈ E ∩Ω∗.

Fix a unit vector e ∈ Rn. For all r ∈ [0, R], define

(3.33) H(r) =

∫ r

0
|v̂(se)| Λ̂(se)−1ds

and, for all x ∈ Ω∗, let

(3.34) U(x) = H(|x|).

Then, the following integral inequality is valid :∫
Ω∗

î
Λ̂(x)|∇ψ̃(x)|2−ω0|∇ψ̃(x)|ψ̃(x)+“V (x)ψ̃(x)2

ó
e−U(x)dx(3.35)

≤ µ
∫

Ω∗
ψ̃(x)2e−U(x)dx.
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Proof. Note first that, since |v̂| and Λ̂ are radially symmetric and since

|v̂| ∈ L∞(Ω∗) and Λ̂ satisfies (3.5), the function H is well defined and contin-

uous in [0, R]. Furthermore, its definition is independent from the choice of

e. The radially symmetric function U is then continuous in Ω∗ and, since the

radially symmetric functions v̂ = |v̂|er and 1/Λ̂ are (at least) continuous in E,

the function U is of class C1 in E and

(3.36) ∇U(x) = Λ̂(x)−1v̂(x) ∀ x ∈ E.

Observe also that the integrals in (3.35) are all well defined since ψ̃ ∈ H1
0 (Ω∗)

and Λ̂, “V , U ∈ L∞(Ω∗) (even, U ∈ C(Ω∗)).

Now, recall that the set of critical values of ψ is Z = {a1, . . . , am} with

0 < a1 < · · · < am = M

and remember that the function ρ defined in Section 3.1 is continuous and

decreasing from [0,M ] onto [0, R], from Lemma 3.1. Fix j ∈ {1, . . . ,m− 1}
and r, r′ such that

0 ≤ ρ(aj+1) < r < r′ < ρ(aj) < R.

Multiplying (3.32) by the nonnegative function ψ̃e−U and integrating over Sr,r′

yields

(3.37)∫
Sr,r′

î
−div(Λ̂∇ψ̃)(x) + v̂(x)·∇ψ̃(x)− ω0|∇ψ̃(x)|+ “V (x)ψ̃(x)

ó
ψ̃(x) e−U(x) dx

≤ µ

∫
Sr,r′

ψ̃(x)2e−U(x)dx.

Notice that all integrals above are well defined since ψ̃ in C2 in E∩Ω∗, Λ̂ is C1

in E ∩Ω∗, v̂, “V are continuous in E, U is continuous in Ω∗ and Sr,r′ ⊂ E ∩Ω∗.

Furthermore, as in (3.30), the Green-Riemann formula yields∫
Sr,r′
−div(Λ̂∇ψ̃)(x) ψ̃(x) e−U(x) dx

=

∫
Sr,r′

Λ̂(x) |∇ψ̃(x)|2 e−U(x) dx−
∫
Sr,r′

Λ̂(x) ψ̃(x)∇ψ̃(x) · ∇U(x) e−U(x) dx

− nαn(r′)n−1G(r′)F (r′)ψ̃(r′e) e−H(r′) + nαnr
n−1G(r)F (r)ψ̃(re) e−H(r).

By (3.36), it follows then that

(3.38)∫
Sr,r′

î
−div(Λ̂∇ψ̃)(x) + v̂(x)·∇ψ̃(x)− ω0|∇ψ̃(x)|+ “V (x)ψ̃(x)

ó
ψ̃(x) e−U(x) dx

=

∫
Sr,r′

î
Λ̂(x)|∇ψ̃(x)|2 − ω0|∇ψ̃(x)|ψ̃(x) + “V (x)ψ̃(x)2

ó
e−U(x) dx

− nαn(r′)n−1G(r′)F (r′)ψ̃(r′e) e−H(r′) + nαnr
n−1G(r)F (r)ψ̃(re) e−H(r).
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On the other hand, for all s ∈ ρ(Y ),

nαns
n−1F (s)G(s) =

∫
Ωρ−1(s)

div(AΩ∇ψ)(x)dx,

by (3.7). The function

s 7→ I(s) = nαns
n−1F (s)G(s),

which was a priori defined only in ρ(Y ), can then be extended continuously in

[0, R] from the results in Lemma 3.1 and since div(AΩ∇ψ) = −f is bounded

in Ω. The continuous extension of I in [0, R] is still called I. Passing to the

limit as r → ρ(aj+1)+ and r′ → ρ(aj)
− in (3.37) and (3.38) yields, for each

j ∈ {1, . . . ,m− 1},∫
Sρ(aj+1),ρ(aj)

î
Λ̂(x)|∇ψ̃(x)|2 − ω0|∇ψ̃(x)|ψ̃(x) + “V (x)ψ̃(x)2

ó
e−U(x) dx(3.39)

− I(ρ(aj)) ψ̃(ρ(aj)e) e
−H(ρ(aj)) + I(ρ(aj+1)) ψ̃(ρ(aj+1)e) e−H(ρ(aj+1))

≤ µ
∫
Sρ(aj+1),ρ(aj)

ψ̃(x)2e−U(x) dx.

Once again, all integrals above are well defined. Arguing similarly in the

spherical shell Sρ(a1),R and since ψ(Re) = 0, one obtains∫
Sρ(a1),R

î
Λ̂(x)|∇ψ̃(x)|2 − ω0|∇ψ̃(x)|ψ̃(x) + “V (x)ψ̃(x)2

ó
e−U(x) dx(3.40)

+ I(ρ(a1)) ψ̃(ρ(a1)e) e−H(ρ(a1)) ≤ µ
∫
Sρ(a1),R

ψ̃(x)2e−U(x)dx.

Summing up (3.39) for all 1 ≤ j ≤ m − 1 and (3.40) and using the fact that

I(ρ(am)) = I(0) = 0 yield (3.35). �

Corollary 3.11. If there are ω0 ≥ 0 and µ ≥ 0 such that

−div(AΩ∇ψ)(y)−|ω(y)|×|∇ψ(y)|−ω0|∇ψ(y)|+V (y)ψ(y) ≤ µψ(y) ∀ y ∈ Ω,

then, under the notation of Proposition 3.10,∫
Ω∗

î
Λ̂(x)|∇ψ̃(x)|2 − ω0|∇ψ̃(x)|ψ̃(x) + “V (x)ψ̃(x)2

ó
e−U(x) dx

≤ µ
∫

Ω∗
ψ̃(x)2 e−U(x) dx.

Proof. It follows immediately from Corollary 3.9 and Proposition 3.10. �

We complete this section by two remarks which proceed from the previous

results and provide comparisons between some norms of the function ψ and its

symmetrization ψ̃.
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Remark 3.12. The calculations of the previous subsections (see in par-

ticular the proof of Proposition 3.8) and Corollary 3.6 imply that, for any

nondecreasing function Θ : [0,+∞)→ [0,+∞),∫
Ωρ−1(s)\Ωρ−1(r)

Θ(ψ(y))dy =

∫
Sr,s

Θ(ρ−1(|x|))dx ≤
∫
Sr,s

Θ(ψ̃(x))dx

for all 0 < r < s ≤ R such that [r, s] ⊂ ρ(Y ), and then for all 0 ≤ r < s ≤ R

from Lebesgue’s dominated convergence theorem. In particular,∫
Ω

(ψ(y))pdy ≤
∫

Ω∗
(ψ̃(x))pdx

for all 0 ≤ p < +∞. Remember also (as an immediate consequence of Corol-

lary 3.6) that

max
Ω∗

ψ̃ = ψ̃(0) ≥ ρ−1(0) = max
Ω

ψ.

Remark 3.13. For any 0 < r < s ≤ R such that [r, s] ⊂ ρ(Y ), it follows

from the coarea formula and a change of variables that∫
Ωρ−1(s)\Ωρ−1(r)

AΩ(y)∇ψ(y) · ∇ψ(y)dy

= nαn

∫ s

r
tn−1 ×

á∫
Σρ−1(t)

AΩ(y)νρ−1(t)(y) · νρ−1(t)(y)|∇ψ(y)|dσρ−1(t)(y)∫
Σρ−1(t)

|∇ψ(y)|−1dσρ−1(t)(y)

ë
dt

≤
∫
Sr,s

Λ̂(x)|∇ψ̃(x)|2dx,

where the last inequality is due to (3.16). As usual, Lebesgue’s dominated

convergence theorem then yields∫
Ωρ−1(s)\Ωρ−1(r)

AΩ(y)∇ψ(y) · ∇ψ(y)dy ≤
∫
Sr,s

Λ̂(x)|∇ψ̃(x)|2dx

for all 0 ≤ r < s ≤ R, whence∫
Ω
AΩ(y)∇ψ(y) · ∇ψ(y)dy ≤

∫
Ω∗

Λ̂(x)|∇ψ̃(x)|2dx.

As a consequence,

‖∇ψ‖L2(Ω,Rn) ≤
 
MΛ

mΛ
× ‖∇ψ̃‖L2(Ω∗,Rn)

from (3.1) and (3.5), where MΛ = maxΩ ΛΩ and mΛ = minΩ ΛΩ. In particular,

‖∇ψ‖L2(Ω,Rn) ≤ ‖∇ψ̃‖L2(Ω∗,Rn) if Λ is constant in Ω.
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With the same notation as above, it follows from (3.23) that

∫
Ωρ−1(s)\Ωρ−1(r)

|∇ψ(y)|dy = nαn

∫ s

r
tn−1×

á ∫
Σρ−1(t)

dσρ−1(t)(y)∫
Σρ−1(t)

|∇ψ(y)|−1dσρ−1(t)(y)

ë
dt

≤
∫
Sr,s

|∇ψ̃(x)|dx.

The inequality then holds for all 0 ≤ r < s ≤ R, whence

‖∇ψ‖L1(Ω,Rn) ≤ ‖∇ψ̃‖L1(Ω∗,Rn).

4. Improved inequalities when Ω is not a ball

Throughout this section, we assume that Ω ∈ C is not a ball. Fix real

numbers α ∈ (0, 1), N > 0 and δ > 0. Denote by Eα,N,δ(Ω) the set of all

functions ψ ∈ C1,α(Ω), positive in Ω, vanishing on ∂Ω, such that

(4.1) ‖ψ‖C1,α(Ω) ≤ N and ψ(x) ≥ δ × d(x, ∂Ω) ∀ x ∈ Ω,

where d(x, ∂Ω) = miny∈∂Ω |x− y| denotes the distance between x and ∂Ω, and

we set

‖ψ‖C1,α(Ω) = ‖ψ‖L∞(Ω) + ‖∇ψ‖L∞(Ω,Rn) + sup
z 6=z′∈Ω

|∇ψ(z)−∇ψ(z′)|
|z − z′|α

.

Notice that, for each ψ ∈ Eα,N,δ(Ω), one has

∇ψ(y) · ν(y) = −|∇ψ(y)| ≤ −δ ∀ y ∈ ∂Ω,

where ν denotes the outward unit normal on ∂Ω.

Our goal here is to prove stronger versions of Corollary 3.6 and Corol-

lary 3.11, using the fact that Ω is not a ball. In the sequel, unless explicitly

mentioned, all the constants only depend on some of the data Ω, n, α, N and δ.

Denote again by R the radius of Ω∗, so that Ω∗ = BR. First, the isoperi-

metric inequality yields the existence of β = β(Ω, n) > 0 such that

(4.2) area(∂Ω) =

∫
∂Ω
dσ∂Ω(y) ≥ (1 + β)nαnR

n−1,

where the left-hand side is the (n− 1)-dimensional measure of ∂Ω.

For all γ > 0, define

Uγ = {x ∈ Ω, d(x, ∂Ω) ≤ γ}.

Since ∂Ω is of class C2, there exists γ1 = γ1(Ω) > 0 such that Ω\Uγ1 6= ∅
and the segments [y, y − γ1ν(y)] are included in Ω and pairwise disjoint when

y describes ∂Ω. Thus, for all γ ∈ (0, γ1], the segments [y, y − γν(y)] (resp.

(y, y−γν(y)]) describe the set Uγ (resp. {x ∈ Ω, d(x, ∂Ω) ≤ γ}) as y describes

∂Ω.
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Lemma 4.1. There exists a constant

γ2 = γ2(Ω, α,N, δ) ∈ (0, γ1]

such that, for all ψ ∈ Eα,N,δ(Ω), one has :

|∇ψ| ≥ δ

2
in Uγ2 ,

∇ψ(y − rν(y)) · ν(y) ≤ −δ
2
∀ y ∈ ∂Ω and r ∈ [0, γ2],

and

ψ ≥ γδ

2
in Ω\Uγ ∀ γ ∈ [0, γ2].

Proof. Assume that the conclusion of the lemma does not hold. Then

there exists a sequence of positive numbers (γl)l∈N → 0 and a sequence of

functions (ψl)l∈N ∈ Eα,N,δ(Ω) such that one of the three following cases occur:

1) either for each l ∈ N, there is a point xl ∈ Uγl such that |∇ψl(xl)| <
δ/2;

2) or for each l ∈ N, there are a point yl ∈ ∂Ω and a number rl ∈ [0, γl]

such that ∇ψl(yl − rlν(yl)) · ν(yl) > −δ/2;

3) or for each l ∈ N, there is a point xl ∈ Ω\Uγl such that ψl(xl) < γlδ/2.

Observe first that, by Ascoli theorem, up to the extraction of a subse-

quence, there exists a function ψ ∈ Eα,N,δ(Ω) such that

ψl → ψ in C1(Ω) as l→ +∞.

If case 1) occurs, then, up to some subsequence, one can assume without loss

of generality that xl → x ∈ ∂Ω as l → +∞, and one obtains |∇ψ(x)| ≤ δ/2,

which is impossible since ψ ∈ Eα,N,δ(Ω) and δ > 0. Similarly, if case 2) occurs,

yl → y ∈ ∂Ω as l → +∞ up to a subsequence, and one has −|∇ψ(y)| =

∇ψ(y) · ν(y) ≥ −δ/2, which is also impossible.

Therefore, only case 3) can occur. For each l ∈ N, let yl ∈ ∂Ω be such

that

dl := |xl − yl| = d(xl, ∂Ω) ≥ γl > 0.

Up to extraction of some subsequence, one has

xl → x ∈ Ω as l→ +∞ and ψ(x) ≤ 0

by passing to the limit as l→ +∞ in the inequality ψl(xl) < γlδ/2. Since

ψ(x) ≥ δ d(x, ∂Ω) > 0 ∀ x ∈ Ω,

it follows that x ∈ ∂Ω, whence |xl − yl| → 0 and yl → x as l → +∞. On the

one hand, the mean value theorem implies that

ψl(xl)− ψl(yl)
|xl − yl|

= ∇ψl(zl) · x
l − yl

|xl − yl|
→ −∇ψ(x) · ν(x) = |∇ψ(x)| as l→ +∞,
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where zl is a point lying on the segment between xl and yl (whence, zl → x as

l→ +∞). On the other hand, since ψl = 0 on ∂Ω,

ψl(xl)− ψl(yl)
|xl − yl|

=
ψl(xl)

dl
<
γlδ

2γl
=
δ

2
.

Hence, |∇ψ(x)| ≤ δ/2 at the limit as l→ +∞, which contradicts the positivity

of δ and the fact that ψ ∈ Eα,N,δ(Ω).

Therefore, case 3) is ruled out too and the proof of Lemma 4.1 is complete.

�

In the sequel, we assume that ψ ∈ Eα,N,δ(Ω) and is analytic in Ω. The

data AΩ, ΛΩ, ω and V are as in Section 3. We assume that

div(AΩ∇ψ) = −f in Ω,

where f is a nonzero polynomial, and we use the same sets Z, Y , E, Ωa, Σa

and the same functions ρ, ψ̃, Λ̂, v̂, “V and U as in Section 3.

Lemma 4.2. Assume that Ω ∈ C is not a ball. Then there exists a constant

a0 = a0(Ω, n, α,N, δ) > 0 only depending on Ω, n, α, N and δ such that

[0, a0] ⊂ Y and

i(a) =

∫
Σa

dσa(y) = area(Σa) ≥
Å

1 +
β

2

ã
nαnR

n−1

for all a ∈ [0, a0], where β = β(Ω, n) > 0 was given in (4.2).

Proof. Let γ2 = γ2(Ω, α,N, δ) > 0 be as in Lemma 4.1. Since 0 < γ2 ≤ γ1,

it follows that Ω\Uγ2 6= ∅, and

ψ ≥ γ2δ

2
> 0 in Ω\Uγ2

from Lemma 4.1. Therefore,

M = max
Ω

ψ ≥ γ2δ

2

and

(4.3) Σa = {x ∈ Ω, ψ(x) = a} ⊂ Uγ2 ∀ a ∈
ï
0,
γ2δ

4

ò
.

Call

a′0 = a′0(Ω, α,N, δ) =
γ2δ

4
> 0.

From Lemma 4.1 and the assumptions made on ψ and ∂Ω, one has that |∇ψ|
6= 0 everywhere on the C2 hypersurface Σa for all a ∈ [0, a′0]. Thus,

(4.4) [0, a′0] ⊂ Y.
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On the other hand, for all y ∈ ∂Ω, the segment [y, y − γ2ν(y)] is included

in Ω and there exists θ ∈ [0, 1] such that

ψ(y − γ2ν(y)) = ψ(y)︸ ︷︷ ︸
=0

−γ2ν(y) · ∇ψ(y − θγ2ν(y)) ≥ γ2δ

2
,

again from Lemma 4.1. Actually, more precisely, for each y ∈ ∂Ω, the function

κ : [0, γ2]→ R, s 7→ ψ(y − sν(y))

is differentiable and κ′(s) ≥ δ/2 for all s ∈ [0, γ2]. It follows that, for all

a ∈ [0, a′0] and y ∈ ∂Ω, there exists a unique point

φa(y) ∈ [y, y − γ2ν(y)] ∩ Σa.

Moreover, for such a choice of a, the map φa is one-to-one since the segments

[y, y − γ2ν(y)] are pairwise disjoint (and describe Uγ2) when y describes ∂Ω

(because 0 < γ2 ≤ γ1). Lastly,

(4.5) Σa = {φa(y), y ∈ ∂Ω}

from (4.3).

Let us now prove that the area of Σa is close to that of ∂Ω for a ≥ 0 small

enough. To do so, call

B = {x′ = (x1, . . . , xn−1), |x′| < 1}

and represent ∂Ω by a finite number of C2 maps y1, . . . , yp (for some p =

p(Ω) ∈ N∗) defined in B, depending only on Ω, and for which

∂1y
j(x′)× · · · × ∂n−1y

j(x′) 6= 0 ∀ 1 ≤ j ≤ p and x′ ∈ B.

Here,

∂iy
j(x′) = (∂xiy

j
1(x′), . . . , ∂xiy

j
n(x′)) ∈ Rn

for each 1 ≤ i ≤ n−1, 1 ≤ j ≤ p and x′ ∈ B, where yj(x′) = (yj1(x′), . . . , yjn(x′)).

The maps yj are chosen so that

∂Ω = {yj(x′), 1 ≤ j ≤ p, x′ ∈ B}.

For each a ∈ [0, a′0] and for each 1 ≤ j ≤ p, there exists then a map

tja : B → [0, γ2] such that

(4.6) ψ(yj(x′)− tja(x′)ν(yj(x′))) = a ∀ x′ ∈ B,

and

Σa = {yj(x′)− tja(x′)ν(yj(x′)), 1 ≤ j ≤ p, x′ ∈ B}.
Namely,

yj(x′)− tja(x′)ν(yj(x′)) = φa(y
j(x′)) ∀ 1 ≤ j ≤ p and x′ ∈ B.

From the arguments above, each real number tja(x
′) is then uniquely deter-

mined, and tj0(x′) = 0. Since the functions ψ, yj and ν ◦ yj (for all 1 ≤ j ≤ p)
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are (at least) of class C1 (respectively in Ω, B and B), it follows from the im-

plicit function theorem and Lemma 4.1 that the functions tja (for all a ∈ [0, a′0]

and 1 ≤ j ≤ p) are of class C1(B) and that the functions

hjx′ : [0, a1]→ [0, γ2], a 7→ tja(x
′)

(for all 1 ≤ j ≤ p and x′ ∈ B) are of class C1([0, a′0]). From the chain rule

applied to (4.6), it is straightforward to check that, for all a ∈ [0, a′0], 1 ≤ j ≤ p
and x′ ∈ B,

(hjx′)
′(a) =

−1

ν(yj(x′)) · ∇ψ(yj(x′)−tja(x′)ν(yj(x′)))
∈ (0, 2δ−1]

(from Lemma 4.1), whence

(4.7) 0 ≤ tja(x′) = hjx′(a) ≤ 2δ−1a

because hjx′(0) = tj0(x′) = 0. Similarly,

(4.8)

∂xit
j
a(x
′) =

[∂iy
j(x′)− tja(x′)∂i(ν ◦ yj)(x′)] · ∇ψ(yj(x′)− tja(x′)ν(yj(x′)))

ν(yj(x′)) · ∇ψ(yj(x′)− tja(x′)ν(yj(x′)))

for all a ∈ [0, a′0], 1 ≤ i ≤ n − 1, 1 ≤ j ≤ p and x′ ∈ B. For all 1 ≤ j ≤ p

and x′ ∈ B, one has ψ(yj(x′)) = 0, whence ∂iy
j(x′) · ∇ψ(yj(x′)) = 0 (for all

1 ≤ i ≤ n− 1). As a consequence,

|∂iyj(x′) · ∇ψ(yj(x′)− tja(x′)ν(yj(x′)))| ≤ C1 × (tja(x
′))α

for all a ∈ [0, a′0], 1 ≤ i ≤ n− 1, 1 ≤ j ≤ p, x′ ∈ B, and for some constant C1

defined by

C1 = max
1≤i′≤n−1, 1≤j′≤p, ξ∈B

|∂i′yj
′
(ξ)| × sup

z 6=z′∈Ω

|∇ψ(z)−∇ψ(z′)|
|z − z′|α

< +∞.

Observe that C1 = C1(Ω, N) only depends on Ω and N (remember that

‖ψ‖C1,α(Ω) ≤ N). Call now

C2 = C2(Ω, N) = max
1≤i′≤n−1, 1≤j′≤p, ξ∈B

|∂i′(ν ◦ yj
′
)(ξ))| × sup

z∈Ω

|∇ψ(z)| < +∞,

which also depends on Ω and N only. Together with (4.8) and Lemma 4.1, the

above arguments imply that

|∂xitja(x′)| ≤ 2δ−1[C1 × (tja(x
′))α + C2 × tja(x′)]

≤ 2δ−1[C1 × (2δ−1a)α + 2C2 × δ−1a] from (4.7)

for all a ∈ [0, a′0], 1 ≤ i ≤ n− 1, 1 ≤ j ≤ p and x′ ∈ B.

It follows that, for all η > 0, there exists a′′0 = a′′0(Ω, α,N, δ, η) ∈ (0, a′0]

such that, for all a ∈ [0, a′′0],

(4.9) sup
1≤i≤n−1, 1≤j≤p, x′∈B

|∂xi(tja ν ◦ yj)(x′)| ≤ η.
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Finally, there are some open sets U1, . . . , Up ⊂ B such that

area(∂Ω) =
p∑
j=1

∫
Uj
|∂1y

j(x′)× · · · × ∂n−1y
j(x′)| dx′,

where the sets {yj(x′), x′ ∈ U j} for j = 1, . . . , p are pairwise disjoint and, for

any ε > 0, there are some measurable sets V 1, . . . , V p ⊂ B such that

∂Ω = {yj(x′), 1 ≤ j ≤ p, x′ ∈ V j},

and V j ⊃ U j ,

∫
B
1V j\Uj (x

′)dx′ ≤ ε for all 1 ≤ j ≤ p. Since all functions yj

and tja ν ◦ yj (for all a ∈ [0, a′0] and 1 ≤ j ≤ p) are of class C1(B), since each

function φa is one-to-one and since (4.5) holds, it follows that

area(Σa) =
p∑
j=1

∫
Uj
|∂1(yj − tjaν ◦ yj)(x′)× · · · × ∂n−1(yj − tjaν ◦ yj)(x′)| dx′

for all a ∈ [0, a′0].

One concludes from (4.9) that, since β = β(Ω, n) in (4.2) is positive, there

exists a positive constant a0 = a0(Ω, n, α,N, δ) ∈ (0, a′0] which only depends

on Ω, n, α, N and δ, and which is such that

|area(Σa)− area(∂Ω)| ≤ β

2
nαnR

n−1 ∀ a ∈ [0, a0].

As a consequence, one has

i(a) = area(Σa) ≥
Å

1 +
β

2

ã
nαnR

n−1

for all a ∈ [0, a0]. The area of Σa is well defined for all a ∈ [0, a0] since

[0, a0] ⊂ [0, a′0] ⊂ Y because of (4.4).

That completes the proof of Lemma 4.2. �

Lemma 4.3. Assume that Ω ∈ C is not a ball. Then, with the notation of

Section 3 and Lemma 4.2, one has

ψ̃(x) ≥
Å

1 +
β

2

ã
ρ−1(|x|)

for all x ∈ Ω∗ such that ρ(a0) ≤ |x| ≤ R.

Proof. From Lemma 4.2, one knows that

Sρ(a0),R ⊂ E.

Notice that 0 < ρ(a0) < R. Fix any x ∈ Ω∗ such that r = |x| ∈ [ρ(a0), R] (that

is ρ−1(r) ∈ [0, a0] ⊂ Y ). Formula (3.22) of Section 3 implies that

i(ρ−1(r))

nαnrn−1
≤ |ρ′(ρ−1(r))| × |∇ψ̃(x)|.
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But

i(ρ−1(r)) =

∫
Σρ−1(r)

dσρ−1(r)(y) = area(Σρ−1(r)) ≥
Å

1 +
β

2

ã
nαnR

n−1

≥
Å

1 +
β

2

ã
nαnr

n−1

from Lemma 4.2. Thus,

1 +
β

2
≤ |ρ′(ρ−1(r))| × |∇ψ̃(x)|.

The conclusion of Lemma 4.3 follows from the above inequality, as in the proof

of Corollary 3.6. �

The improved version of Corollary 3.6 is the following:

Corollary 4.4. Assume that Ω ∈ C is not a ball. Then there exists a

positive constant η = η(Ω, n, α,N, δ) > 0 depending only on Ω, n, α, N and δ,

such that

ψ̃(x) ≥ (1 + η) ρ−1(|x|)
for all x ∈ Ω∗.

Proof. Let e be any unit vector in Rn. Let ‹Φ be the function defined in

[0, R] by ‹Φ(r) = ψ̃(re) ∀ r ∈ [0, R].

This function is continuous in [0, R], differentiable (except at a finite set of

points) and decreasing in [0, R]. Furthermore, Proposition 3.5 and the fact

that ρ−1 is decreasing in [0, R] imply that

−‹Φ′(r) ≥ − d

dr
(ρ−1(r)) ≥ 0

for all r ∈ ρ(Y ) = (0, ρ(am−1)) ∪ · · · ∪ (ρ(a2), ρ(a1)) ∪ (ρ(a1), R]. As in the

proof of Corollary 3.6, the mean value theorem yields

ψ̃(re)− ψ̃(ρ(a0)e) ≥ ρ−1(r)− a0

for all r ∈ [0, ρ(a0)]. For each such a r in [0, ρ(a0)], one has ρ−1(r) ∈ [a0,M ] ⊂
(0,M ], whence

ψ̃(re)

ρ−1(r)
≥ 1 +

ψ̃(ρ(a0)e)− a0

ρ−1(r)
≥ 1 +

βa0

2ρ−1(r)

from Lemma 4.3. Remind that M denotes the maximum of ψ, so that ρ−1(r) ≤
M ≤ N . Hence, one obtains

ψ̃(re) ≥
Å

1 +
βa0

2N

ã
ρ−1(r) ∀ r ∈ [0, ρ(a0)].
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As in the proof of Corollary 3.6, the conclusion of Corollary 4.4 follows

from the above inequality and from Lemma 4.3, with the choice

η = η(Ω, n, α,N, δ) = min

Å
β

2
,
βa0

2N

ã
=
βa0

2N
> 0

for instance (notice that a0 ≤M ≤ N). �

Lastly, the following corollary is an improved version of Corollary 3.11.

Corollary 4.5. Assume that Ω ∈ C is not a ball. If there are ω0 ≥ 0

and µ ≥ 0 such that

−div(AΩ∇ψ)(y)−|ω(y)|×|∇ψ(y)|−ω0|∇ψ(y)|+V (y)ψ(y) ≤ µψ(y) ∀ y ∈ Ω,

then, under the notation of Section 3,∫
Ω∗

î
Λ̂(x)|∇ψ̃(x)|2−ω0|∇ψ̃(x)|ψ̃(x)+“V (x)ψ̃(x)2

ó
e−U(x)dx

≤ µ

1 + η

∫
Ω∗
ψ̃(x)2e−U(x)dx,

where the positive constant η = η(Ω, n, α,N, δ) > 0 is given in Corollary 4.4

and depends only on Ω, n, α, N and δ.

Proof. Under the assumptions of Corollary 4.5, it follows from Proposi-

tion 3.8 and Corollary 4.4 that, for all x ∈ E ∩ Ω∗,

−div(Λ̂∇ψ̃)(x)+v̂(x)·∇ψ̃(x)−ω0|∇ψ̃(x)|+“V (x)ψ̃(x) ≤ µρ−1(|x|) ≤ µ

1 + η
ψ̃(x).

The conclusion of Corollary 4.5 then follows from Proposition 3.10. �

5. Application to eigenvalue problems

The present section is devoted to the proofs of some of the main theorems

which were stated in Section 2. We apply the rearrangement inequalities of

the previous two sections to get some comparison results for the principal

eigenvalues of operators which are defined in Ω and in Ω∗. Here, the data

have given averages or given distribution functions, or satisfy other types of

pointwise constraints.

We shall use a triple approximation process. First, we approximate the

diffusion and the drift coefficients in Ω by smooth functions. Second, we ap-

proximate the principal eigenfunctions in Ω by analytic functions. Lastly, we

approximate the symmetrized data in Ω∗ by coefficients having the same dis-

tribution functions or satisfying the same constraints as the original data in Ω.

Section 5.1 is concerned with the latter approximation process. In Section 5.2,

we deal with the case of general nonsymmetric operators for which the inverse

of the lower bound Λ of the diffusion matrix field A has a given L1 norm, the

drift v has a given L2 norm with weight Λ−1 and the negative part of the po-

tential V has a given distribution function. Lastly, in Section 5.3, we consider



692 F. HAMEL, N. NADIRASHVILI, and E. RUSS

diffusion matrix fields A whose trace and determinant satisfy some pointwise

constraints.

5.1. Approximation of symmetrized fields by fields having given distri-

bution functions. In this subsection, Ω denotes an open connected bounded

nonempty C1 subset of Rn and Ω∗ is the open Euclidean ball which is centered

at the origin and such that |Ω∗| = |Ω|. In this subsection we do not require

Ω to be of class C2. Call R > 0 the radius of Ω∗, that is Ω∗ = BR. For

0 ≤ s < s′ ≤ R, one recalls that Ss,s′ = {z ∈ Rn, s < |z| < s′}.
Let ψ : Ω→ R be a continuous function. Call

m = min
Ω
ψ and M = max

Ω
ψ.

For all a < b ∈ R, denote

Ωa={x ∈ Ω, a<ψ(x)}, Ωa,b={x ∈ Ω, a<ψ(x)≤b}, Σa={x ∈ Ω, ψ(x)=a}.

One assumes that

(5.1) |Σa| = 0 ∀ a ∈ R.

It follows then that m < M . For each a ∈ [m,M ], set

ρ(a) =

Ç
|Ωa|
αn

å1/n

.

The function ρ : [m,M ] → R is then continuous, decreasing and it ranges

onto [0, R].

Lemma 5.1. Under assumption (5.1), let g be in L∞(Ω,R) and h in

L∞(Ω∗,R) and radially symmetric, and assume that

(5.2) ∀ m ≤ a < b ≤M,

∫
Ωa,b

g =

∫
Sρ(b),ρ(a)

h.

Then there exist a sequence of radially symmetric functions (gk)k∈N in

L∞(Ω∗,R) and two sequences of radially symmetric C∞(Ω∗,R) functions (g
k
)k∈N

and (gk)k∈N such that

gk ⇀ h, g
k
⇀ h and gk ⇀ h as k → +∞

in σ(Lp(Ω∗), Lp
′
(Ω∗)) for all 1≤p≤+∞ (weak convergence, with 1/p+1/p′=1

for 1 ≤ p < +∞, and weak-* convergence for p = +∞ and p′ = 1),2 and
|{x ∈ Ω, g(x) > t}| = |{x ∈ Ω∗, gk(x) > t}| ∀ t ∈ R and k ∈ N,

|{x ∈ Ω, g(x) ≥ t}| = |{x ∈ Ω∗, gk(x) ≥ t}| ∀ t ∈ R and k ∈ N,

ess inf
Ω

g ≤ g
k
≤ gk ≤ gk ≤ ess sup

Ω
g a.e. in Ω∗ ∀ k ∈ N.

2This convention is used throughout the paper.
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Remark 5.2. The functions gk and g
k

are actually constructed so that

gk − gk → 0 and gk − gk → 0 as k → +∞ in Lq(Ω∗)

for all q ∈ [1,+∞) (see the proof of Lemma 5.1).

Remark 5.3. The functions gk then have the same distribution function as

g and the functions g
k

(resp. gk) then have distribution functions which are less

than (resp. larger than) or equal to that of g. Moreover, if one further assumes

that g and h are nonnegative almost everywhere in Ω and Ω∗ respectively, then

the functions gk (resp. g
k
, gk) are nonnegative almost everywhere in Ω∗ (resp.

everywhere in Ω∗). The same property holds good with nonpositivity instead

of nonnegativity.

In order not to lengthen the reading of the paper, the proof of this lemma

is postponed in the Appendix. To finish this subsection, we just point out an

immediate corollary of Lemma 5.1.

Corollary 5.4. In addition to (5.1), assume that ψ is in C1(Ω), ψ = m

on ∂Ω, ψ > m in Ω, and ψ has a finite number p of critical values ai with

m < a1 < · · · < ap = M . Let g ∈ L∞(Ω,R) and ĝ ∈ L∞(Ω∗,R) be defined by

(5.3) ĝ(x) =

∫
Σρ−1(|x|)

g(y)|∇ψ(y)|−1dσρ−1(|x|)(y)∫
Σρ−1(|x|)

|∇ψ(y)|−1dσρ−1(|x|)(y)

for almost every x ∈ Ω∗ such that |x| 6= ρ(ap), . . . , ρ(a1), where dσa denotes

the surface measure on Σa for a ∈ [m,M ] which is not a critical value of ψ.

Then the conclusion of Lemma 5.1 holds for h = ĝ.

Proof. It is enough to prove that the function ĝ defined by (5.3) is indeed

well defined, bounded and radially symmetric and that property (5.2) is satis-

fied with h = ĝ. To do so, choose first any two real numbers a < b in [m,M ]

such that ai 6∈ [a, b] for all i = 1, . . . , p. From the coarea formula and Fubini’s

theorem, one has

(5.4)

∫
Ωa,b

|g(y)|dy =

∫ b

a

Ç∫
Σs

|g(y)| × |∇ψ(y)|−1dσs(y)

å
ds < +∞

and the quantity ∫
Σs

|g(y)| × |∇ψ(y)|−1dσs(y)

is therefore finite for almost every s ∈ [a, b]. The quantity∫
Σρ−1(r)

g(y)|∇ψ(y)|−1dσρ−1(r)(y)∫
Σρ−1(r)

|∇ψ(y)|−1dσρ−1(r)(y)



694 F. HAMEL, N. NADIRASHVILI, and E. RUSS

is then finite for almost every r in [ρ−1(b), ρ−1(a)] and for all m ≤ a < b ≤M
such that {a1, . . . , ap} ∩ [a, b] = ∅. In other words, ĝ is well defined for almost

every x ∈ Ω∗ such that |x| 6= ρ(a1), . . . , ρ(ap). Moreover, the function ĝ is in

L∞(Ω∗,R),

ess inf
Ω∗

g ≤ ess inf
Ω∗

ĝ ≤ ess sup
Ω∗

ĝ ≤ ess sup
Ω∗

g,

and ĝ is clearly radially symmetric.

On the other hand, the same calculations as the ones which were done in

Lemma 3.2 in Section 3 imply that the function ρ is actually differentiable at

each value a 6∈ {a1, . . . , ap}, with

ρ′(a) = −(nαnρ(a)n−1)−1
∫

Σa

|∇ψ(y)|−1dσa(y).

Coming back to (5.4), the change of variables s = ρ−1(r) then yields∫
Ωa,b

g(y)dy

=

∫ ρ(a)

ρ(b)

(∫
Σρ−1(r)

g(y)|∇ψ(y)|−1dσρ−1(r)(y)

)
nαnr

n−1∫
Σρ−1(r)

|∇ψ(y)|−1dσρ−1(r)(y)
dr;

that is, ∫
Ωa,b

g(y)dy =

∫
Sρ(b),ρ(a)

ĝ(x)dx

for all a < b in [m,M ] such that {a1, . . . , ap} ∩ [a, b] = ∅. Since |Σc| = 0 for

all c ∈ [m,M ] (and then ρ is continuous), one gets from Lebesgue’s dominated

convergence theorem that ∫
Ωa,b

g =

∫
Sρ(b),ρ(a)

ĝ

for all a < b in [m,M ], and then the conclusion of Corollary 5.4 follows from

Lemma 5.1. �

5.2. Operators whose coefficients have given averages or given distribution

functions. In this subsection, we consider operators for which A ≥ Λ Id, and Λ

and v satisfy some integral constraints while the negative part of the potential

V will be fixed. We first do in Section 5.2.1 the proof of one of the main results,

that is the inequality

λ1(Ω∗,Λ∗Id, v∗, V ∗) ≤ λ1(Ω, A, v, V ) + ε

of Theorem 2.1. Then, in Section 5.2.2, we prove the same type of inequal-

ity without the ε term, where the coefficients in Ω∗ are less smooth and the

quantity λ1(Ω∗,Λ∗Id, v∗, V ∗) is understood in a weaker sense. Lastly, in Sec-

tion 5.2.3, we establish some quantified strict inequalities, when Ω is not a ball,

which correspond to Theorem 2.3.



REARRANGEMENT INEQUALITIES 695

5.2.1. Proof of Theorem 2.1. It will be divided into several steps. Through-

out the proof, we fix

Ω ∈ C, A ∈W 1,∞(Ω,Sn(R)), Λ ∈ L∞+ (Ω), v ∈ L∞(Ω,Rn) and V ∈ C(Ω).

Call

(5.5) 0 < mΛ = ess inf
Ω

Λ ≤ ess sup
Ω

Λ = MΛ < +∞,

and assume that

(5.6) A ≥ Λ Id a.e. in Ω

and that

λ1(Ω, A, v, V ) ≥ 0.

Step 1: Approximation of Λ in Ω. Write first

A(x) = (ai,j(x))1≤i,j≤n.

Each function ai,j is in W 1,∞(Ω) and is therefore continuous in Ω (up to a

modification on a zero-measure set). For each x ∈ Ω, call Λ[A](x) the lowest

eigenvalue of A(x); that is,

∀ x ∈ Ω, Λ[A](x) = min
ξ∈Rn, |ξ|=1

A(x)ξ · ξ.

The function Λ[A] is then continuous in Ω and

Λ[A](x) ≥ Λ(x) a.e. in Ω

because of (5.6). In particular, Λ[A](x) ≥ mΛ for all x ∈ Ω, where mΛ > 0 has

been defined in (5.5). There exists then a continuous function Λ in Rn such

that

Λ(x) = Λ[A](x) ∀ x ∈ Ω, and mΛ ≤ Λ(x) ≤ ‖Λ[A]‖L∞(Ω) ∀ x ∈ Rn.

We first consider the case when mΛ < MΛ . Thus,∫
Ω

Λ(y)−1(y)dy > M−1
Λ |Ω|,

whence

ε := MΛ − ‖Λ−1‖−1
L1(Ω)|Ω| ∈ (0,MΛ −mΛ].

Pick any ε in (0, ε). Let Jε be the function defined in [0,MΛ−mΛ− ε] by

∀ τ ∈ [0,MΛ −mΛ − ε], Jε(τ) =

∫
Ω

max (min(Λ(y),MΛ − ε),mΛ + τ)−1 dy.

This means that the function Λ is truncated between mΛ + τ and Mλ − ε.

The function Jε is Lipschitz-continuous and nonincreasing in [0,MΛ−mΛ−ε].
Furthermore,

Jε(0) =

∫
Ω

min(Λ(y),MΛ − ε)−1dy >

∫
Ω

Λ(y)−1dy
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since MΛ − ε < MΛ = ess supΩ Λ, while

Jε(MΛ −mΛ − ε) = (MΛ − ε)−1|Ω| < (MΛ − ε)−1|Ω| =
∫

Ω
Λ(y)−1dy

owing to the definition of ε. Therefore,

τ(ε) := min

ß
τ ∈ [0,MΛ −mΛ − ε], Jε(τ) =

∫
Ω

Λ(y)−1dy

™
is well defined and 0 < τ(ε) < MΛ −mλ − ε.

Moreover, we claim that

(5.7) τ(ε)→ 0+ as ε→ 0+.

If not, there exist τ∞ ∈ (0,MΛ−mΛ] and a sequence (εp)p∈N ∈ (0, ε) such that

εp → 0 and τ(εp)→ τ∞ as p→ +∞. Then,∫
Ω

Λ(y)−1dy = Jεp(τ(εp)) =

∫
Ω

max (min(Λ(y),MΛ − εp),mΛ + τ(εp))
−1 dy

→
p→+∞

∫
Ω

max (min(Λ(y),MΛ),mΛ + τ∞)−1 dy,

whence ∫
Ω

Λ(y)−1dy =

∫
Ω

max(Λ(y),mΛ + τ∞)−1dy

and Λ ≥ mΛ + τ∞ > mΛ a.e. in Ω, which is impossible.

Choose a sequence (εk)k∈N of real numbers such that

0 < εk < ε ∀ k ∈ N, and εk → 0 as k → +∞.

For each k ∈ N, call

τk = τ(εk) ∈ (0,MΛ −mΛ − εk).

It then follows from (5.7) that

τk → 0 as k → +∞.

Then, for each k ∈ N, denote

(5.8) ΛΩ,k = max (min(Λ,MΛ − εk),mΛ + τk) a.e. in Ω

and define the function Λk in Rn (almost everywhere) by

Λk(y) =

{
ΛΩ,k(y) if y ∈ Ω,

mΛ + τk if y ∈ Rn\Ω,

and the continuous function Λk by

Λk(y) = max(Λ(y),mΛ + τk) ∀ y ∈ Rn.

Notice that

(5.9)

∫
Ω

Λk(y)−1dy =

∫
Ω

ΛΩ,k(y)−1dy = Jεk(τk) =

∫
Ω

Λ(y)−1dy
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for each k ∈ N. Observe also that

0 < mΛ < mΛ + τk ≤ Λk ≤MΛ − εk < MΛ, Λk ≤ Λk a.e. in Rn,

and that

Λk ≤ max(‖Λ[A]‖L∞(Ω),mΛ + τk) = ‖Λ[A]‖L∞(Ω) in Rn,

because ‖Λ[A]‖L∞(Ω) ≥ ess supΩ Λ = MΛ ≥ mΛ + τk.

Let (ρk′)k′∈N be a sequence of mollifiers in Rn. For each (k, k′) ∈ N2, call

Λk,k′ =
(
ρk′ ∗ Λ

−1
k

)−1
and Λk,k′ =

Ä
ρk′ ∗ Λ−1

k

ä−1
;

that is,

Λk,k′(y)−1 =

∫
Rn
ρk′(z)Λk(y−z)−1dz and Λk,k′(y)−1 =

∫
Rn
ρk′(z)Λk(y−y)−1dz

for all y ∈ Rn. The functions Λk,k′ and Λk,k′ are of class C∞(Rn) and they

satisfy

0 < mΛ < mΛ + τk ≤ Λk,k′(y) ≤MΛ − εk < MΛ

and

Λk,k′(y) ≤ Λk,k′(y) ≤ ‖Λ[A]‖L∞(Ω) ∀ y ∈ Rn.

Furthermore, for each k ∈ N,

(5.10) Λ−1
k,k′ → Λ−1

k in Lploc(R
n) ∀ 1 ≤ p < +∞ as k′ → +∞

and

Λk,k′ → Λk = max(Λ[A],mΛ + τk) uniformly in Ω as k′ → +∞.

Actually, since Λ
−1
k → Λ

−1
uniformly in Rn as k → +∞ (because τk → 0 as

k → +∞ and Λ ≥ mΛ > 0 in Rn), one even has that

(5.11) Λk,k′ − Λk → 0 uniformly in Ω as (k, k′)→ (+∞,+∞).

Call, for each (k, k′) ∈ N2,

αk,k′ =
‖Λ−1

k,k′‖L1(Ω)

‖Λ−1‖L1(Ω)
> 0.

Define the function Λ almost everywhere in Rn by:

Λ =

{
Λ in Ω,

mΛ in Rn\Ω.

Since 0 < mΛ ≤ Λ ≤MΛ a.e. in Rn and εk, τk → 0 as k → +∞, it follows that

‖Λk − Λ‖L∞(Rn) → 0 and ‖Λ−1
k − Λ−1‖L∞(Rn) → 0 as k → +∞.
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Thus,

‖Λ−1
k,k′ − Λ−1‖L1(Ω) ≤ ‖ρk′ ∗ (Λ−1

k − Λ−1)‖L1(Ω)

+ ‖ρk′ ∗ Λ−1 − Λ−1‖L1(Ω) → 0 as (k, k′)→ (+∞,+∞),

whence

(5.12) αk,k′ − 1 =
‖Λ−1

k,k′‖L1(Ω) − ‖Λ−1‖L1(Ω)

‖Λ−1‖L1(Ω)
→ 0 as (k, k′)→ (+∞,+∞).

Furthermore, because of (5.9) and (5.10), there holds

(5.13)

αk,k′ − 1 =
‖Λ−1

k,k′‖L1(Ω) − ‖Λ−1
k ‖L1(Ω)

‖Λ−1‖L1(Ω)
→ 0 as k′ → +∞, for each k ∈ N.

Define now

Λk,k′(y) = αk,k′Λk,k′(y) ∀ y ∈ Ω and (k, k′) ∈ N2.

The functions Λk,k′ are of class C∞(Ω) and they satisfy

(5.14)

∫
Ω

Λk,k′(y)−1dy =

∫
Ω

Λ(y)−1dy ∀ (k, k′) ∈ N2,

and

(5.15)
0 < αk,k′×(mΛ+τk) ≤ Λk,k′ ≤ αk,k′×(MΛ−εk) in Ω ∀ (k, k′) ∈ N2,

αk,k′ × (mΛ + τk) →
k′→+∞

mΛ + τk ∀ k ∈ N,

αk,k′ × (MΛ − εk) →
k′→+∞

MΛ − εk ∀ k ∈ N,

together with

(5.16) ‖Λ−1
k,k′ − Λ−1‖L1(Ω) → 0 as (k, k′)→ (+∞,+∞).

Lastly,

(5.17) Λk,k′ = αk,k′Λk,k′ ≤ αk,k′Λk,k′ in Ω ∀ (k, k′) ∈ N2

and

(5.18) αk,k′Λk,k′ − Λk → 0 uniformly in Ω as (k, k′)→ (+∞,+∞)

from (5.11) and (5.12).

In the case when mΛ = MΛ, namely when Λ is equal to a constant (up

to modification on a zero-measure set), then one sets Λk,k′ = Λk,k′ = Λk =

ΛΩ,k = Λ, αk,k′ = 1, Λk = Λ, εk = τk = 0 and properties (5.14), (5.15), (5.16),

(5.17) and (5.18) hold immediately.
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Step 2: Approximation of A in Ω. Let us now approximate the W 1,∞(Ω)

matrix field A = (ai,j)1≤i,j≤n. First, each function ai,j can be extended to a

W 1,∞(Rn) function ai,j such that

‖ai,j‖L∞(Rn) = ‖ai,j‖L∞(Ω) and ‖∇ai,j‖L∞(Rn) = ‖∇ai,j‖L∞(Ω),

whence

‖ai,j‖W 1,∞(Rn) = ‖ai,j‖W 1,∞(Ω) ≤ ‖A‖W 1,∞(Ω),

where we recall that ‖A‖W 1,∞(Ω) = max1≤i,j≤n ‖ai,j‖W 1,∞(Ω). Since the ma-

trix field A = (ai,j)1≤i,j≤n is symmetric, the matrix field (ai,j)1≤i,j≤n can be

assumed to be symmetric. For each 1 ≤ i, j ≤ n, the functions ρk′ ∗ ai,j are of

class C∞(Rn) and converge uniformly to ai,j in Ω as k′ → +∞. Furthermore,

‖∇(ρk′ ∗ ai,j)‖L∞(Rn) ≤ ‖∇ai,j‖L∞(Rn)

= ‖∇ai,j‖L∞(Ω) ≤ ‖ai,j‖W 1,∞(Ω)≤‖A‖W 1,∞(Ω)

for all k′ ∈ N and 1 ≤ i, j ≤ n.

For each k′ ∈ N, the matrix field (ρk′ ∗ ai,j)1≤i,j≤n can be approximated

in C1(Ω) norm by symmetric matrix fields with polynomial entries in Ω.

Therefore, there exists a sequence of symmetric matrix fields (A′k′)k′∈N =

((a′k′,i,j)1≤i,j≤n)k′∈N in Ω with polynomial entries a′k′,i,j such that, for all 1 ≤
i, j ≤ n,

(5.19) a′k′,i,j → ai,j uniformly in Ω as k′ → +∞

and

lim sup
k′→+∞

‖∇a′k′,i,j‖L∞(Ω) ≤ ‖∇ai,j‖L∞(Ω) ≤ ‖A‖W 1,∞(Ω).

Call

ηk,k′ = n2 × max
1≤i,j≤n

‖a′k′,i,j − ai,j‖L∞(Ω) + ‖Λk − αk,k′Λk,k′‖L∞(Ω) + τk.

Because of (5.18), (5.19), and since τk → 0 as k → +∞, there holds

ηk,k′ → 0 as (k, k′)→ (+∞,+∞).

The symmetric matrix fields

Ak,k′ = A′k′ + ηk,k′Id = (ak,k′,i,j)1≤i,j≤n

with polynomial entries ak,k′,i,j are such that

(5.20) ak,k′,i,j → ai,j uniformly in Ω as (k, k′)→ (+∞,+∞)

and

(5.21) sup
k∈N

lim sup
k′→+∞

‖∇ak,k′,i,j‖L∞(Ω) ≤ ‖∇ai,j‖L∞(Ω) ≤ ‖A‖W 1,∞(Ω).
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Furthermore, for each (k, k′) ∈ N2, x ∈ Ω and ξ = (ξ1, . . . , ξn) ∈ Rn with

|ξ| = 1, there holds

Ak,k′(x)ξ · ξ − Λk,k′(x)

=
∑

1≤i,j≤n
(a′k′,i,j(x)− ai,j(x))ξiξj + n2 × max

1≤i,j≤n
‖a′k′,i,j − ai,j‖L∞(Ω)

+A(x)ξ · ξ − Λk,k′(x) + ‖Λk − αk,k′Λk,k′‖L∞(Ω) + τk

≥ Λ[A](x)+τk − αk,k′Λk,k′(x)+‖Λk−αk,k′Λk,k′‖L∞(Ω) (because of (5.17))

≥ 0

because Λ[A] + τk ≥ max(Λ[A],mΛ + τk) = Λk in Ω. In other words,

(5.22) Ak,k′(x) ≥ Λk,k′(x)Id ∀ (k, k′) ∈ N2 and x ∈ Ω,

in the sense of symmetric matrices.

Step 3: Approximation of v in Ω. Call

0 ≤ mv = ess inf
Ω
|v| ≤ ess sup

Ω
|v| = ‖v‖L∞(Ω,Rn) = ‖v‖∞ = Mv < +∞.

We first consider the case when mv < Mv and mΛ < MΛ. In particular,

it follows that Mv = ‖v‖∞ > 0 and that there exists

(5.23)

ε′ ∈ (0,Mv −mv) such that (Mv − ε′)2×
∫

Ω
Λ(y)−1dy >

∫
Ω
|v(y)|2Λ(y)−1dy.

Call K the function defined for all ε′ ∈ [0, ε′] by

K(ε′) =

∫
Ω

î
|v(y)|2 −min

Ä
|v(y)|2, (Mv − ε′)2

äó
× Λ(y)−1dy.

The function K is continuous and nondecreasing in [0, ε′], vanishes at 0 and

is positive in (0, ε′] due to the definition of Mv. Let the sequences of positive

numbers (εk)k∈N and (τk)k∈N be as in Step 1. Since max(εk, τk) → 0 as k →
+∞, one can assume without loss of generality that

|Ω|M2
v

m2
Λ

×max(εk, τk) < K(ε′) ∀ k ∈ N.

For each k ∈ N, call

ε′k = min

®
ε′ ∈ [0, ε′],

|Ω|M2
v

m2
Λ

×max(εk, τk) = K(ε′)

´
.

From the above remarks, ε′k is well defined and 0 < ε′k < ε′. Furthermore,

K(ε′k) = max(εk, τk)× |Ω|M2
vm
−2
Λ → 0 as k → +∞, whence

ε′k → 0+ as k → +∞.
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Fix now any unit vector e ∈ Rn. For each k ∈ N, let Lk be the function

defined for all τ ′ ∈ [0,Mv −mv − ε′k] by

(5.24) Lk(τ
′) =

∫
Ω
|vΩ,k,τ ′(y)|2ΛΩ,k(y)−1dy,

where

(5.25)

vΩ,k,τ ′(y) =



(Mv − ε′k)|v(y)|−1v(y) if |v(y)| > Mv − ε′k,

v(y) if mv + τ ′ ≤ |v(y)| ≤Mv − ε′k,

(mv + τ ′)|v(y)|−1v(y) if mv < |v(y)| < mv + τ ′,

(mv + τ ′)|v(y)|−1v(y) if |v(y)| = mv and mv > 0,

(mv + τ ′)e if |v(y)| = 0 and mv = 0.

Each function Lk is Lipschitz-continuous in [0,Mv −mv − ε′k] and

Lk(0) =

∫
Ω

min
Ä
|v(y)|2, (Mv − ε′k)2

ä
ΛΩ,k(y)−1dy,

whence

Lk(0)−
∫

Ω
|v(y)|2Λ(y)−1dy =

∫
Ω

min
Ä
|v(y)|2, (Mv − ε′k)2

ä
× (ΛΩ,k(y)−1 − Λ(y)−1) dy −K(ε′k)

≤ |Ω|M
2
v

m2
Λ

×max(εk, τk) − K(ε′k)

= 0

due to the definitions of ΛΩ,k (see (5.8)) and mΛ, MΛ, Mv and ε′k. Furthermore,

Lk(Mv −mv − ε′k) = (Mv − ε′k)2

∫
Ω

ΛΩ,k(y)−1dy = (Mv − ε′k)2

∫
Ω

Λ(y)−1dy

>

∫
Ω
|v(y)|2Λ(y)−1dy

from (5.9) and (5.23) (remember that 0 < ε′k < ε′ < Mv −mv ≤ Mv). There-

fore, by continuity of Lk, the real number

(5.26) τ ′k = min

ß
τ ′ ∈ [0,Mv −mv − ε′k), Lk(τ ′) =

∫
Ω
|v(y)|2Λ(y)−1dy

™
is well defined and 0 ≤ τ ′k < Mv −mv − ε′k. Moreover, τ ′k → 0 as k → +∞.

Otherwise, up to extraction, there exists τ > 0 such that τ ′k → τ as k → +∞,

and

Lk(τ
′
k) →

k→+∞

∫
Ω

max
Ä
|v(y)|2, (mv + τ)2

ä
Λ(y)−1dy >

∫
Ω
|v(y)|2Λ(y)−1dy

by definition of mv. This is impossible by definition of τ ′k.
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Call now

vΩ,k = vΩ,k,τ ′
k
.

Notice that, for each k ∈ N, the vector field vΩ,k is in L∞(Ω,Rn) and it satisfies

mv + τ ′k ≤ ess inf
Ω
|vΩ,k| ≤ ess sup

Ω
|vΩ,k| ≤Mv − ε′k

and

(5.27)

∫
Ω
|vΩ,k(y)|2ΛΩ,k(y)−1dy = Lk(τ

′
k) =

∫
Ω
|v(y)|2Λ(y)−1dy.

Write now the vector fields v and vΩ,k as v = (v1, . . . , vn) and vΩ,k =

(vk,1, . . . , vk,n), extend all functions vi and vk,i by 0 in Rn\Ω, call vi and vk,i
these extensions. Set

v = (v1, . . . , vn) and vk = (vk,1, . . . , vk,n).

One then has that

(5.28) ‖vk − v‖L∞(Rn,Rn) → 0 as k → +∞

since (ε′k, τ
′
k)→ (0, 0) as k → +∞. For each (k, k′) ∈ N2, denote

vk,k′ = (ρk′ ∗ vk,1, . . . , ρk′ ∗ vk,n),

where (ρk′)k′∈N is the same sequence of mollifiers as in Step 1. The vector

fields vk,k′ are then of class C∞(Rn,Rn), and they satisfy

‖vk,k′‖L∞(Rn,Rn) ≤ ‖vk‖L∞(Rn,Rn) ≤Mv − ε′k < Mv = ‖v‖∞ ∀ (k, k′) ∈ N2.

For each fixed k ∈ N, the fields vk,k′ converge to vk |Ω = vΩ,k as k′ → +∞ in

all spaces Lp(Ω) for 1 ≤ p < +∞. Actually, one also has that

‖vk,k′ − vΩ,k‖Lp(Ω,Rn) + ‖vk,k′ − v‖Lp(Ω,Rn) → 0 as (k, k′)→ (+∞,+∞)

because of (5.28). Together with (5.12), (5.15) and (5.16), it follows that∫
Ω
|vk,k′(y)|2Λk,k′(y)−1dy →

∫
Ω
|v(y)|2Λ(y)−1dy as (k, k′)→ (+∞,+∞).

Remember that the limit in the right-hand side is positive because Mv > 0

here. Then the positive real numbers

βk,k′ =

Ü ∫
Ω
|v(y)|2Λ(y)−1dy∫

Ω
|vk,k′(y)|2Λk,k′(y)−1dy

ê1/2

are well defined for k and k′ large enough (one can then assume for all (k, k′) ∈
N2 without loss of generality) and βk,k′ → 1 as (k, k′)→ (+∞,+∞). Moreover,
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for each k ∈ N,

β−2
k,k′ =

∫
Ω
|vk,k′(y)|2Λk,k′(y)−1dy∫

Ω
|v(y)|2Λ(y)−1dy

→
k′→+∞

∫
Ω
|vk(y)|2Λk(y)−1dy∫
Ω
|v(y)|2Λ(y)−1dy

=

∫
Ω
|vΩ,k(y)|2ΛΩ,k(y)−1dy∫

Ω
|v(y)|2Λ(y)−1dy

= 1

because of (5.10), (5.13) and (5.27).

Set

vk,k′(y) = βk,k′vk,k′(y) ∀ y ∈ Ω and (k, k′) ∈ N2.

The vector fields vk,k′ are in C∞(Ω,Rn) and they satisfy

(5.29)

∫
Ω
|vk,k′(y)|2Λk,k′(y)−1dy =

∫
Ω
|v(y)|2Λ(y)−1dy ∀ (k, k′) ∈ N2

and

(5.30)
‖vk,k′‖L∞(Ω,Rn)≤βk,k′‖vk,k′‖L∞(Rn,Rn)≤βk,k′×(‖v‖∞−ε′k) ∀ (k, k′) ∈ N2,

βk,k′ × (‖v‖∞ − ε′k)→ ‖v‖∞ − ε′k as k′ → +∞ ∀ k ∈ N,
‖vk,k′ − v‖Lp(Ω,Rn) → 0 as (k, k′)→ (+∞,+∞) ∀ 1 ≤ p < +∞.

Consider now the case when mv < Mv and mΛ = MΛ. Namely, up to

modification on a zero-measure set, Λ is constant. Choose ε′ ∈ (0,Mv −mv)

such that (5.23) holds; namely,

(5.31) (Mv − ε′)2|Ω| >
∫

Ω
|v(y)|2dy.

Take any sequence (ε′k)k∈N in (0, ε′) such that ε′k → 0 as k → +∞. For each

k ∈ N and τ ′ ∈ [0,Mv −mv − ε′k], define Lk(τ
′) as in (5.24) with ΛΩ,k = Λ.

Each function Lk is Lipschitz-continuous. Moreover,

Lk(0) = Λ−1
∫

Ω
min

Ä
|v(y)|2, (Mv − ε′k)2

ä
dy < Λ−1

∫
Ω
|v(y)|2dy

=

∫
Ω
|v(y)|2Λ(y)−1dy

since 0 ≤Mv − ε′k < Mv, and

Lk(Mv −mv − ε′k)=(Mv − ε′k)2Λ−1|Ω| > (Mv − ε′)2Λ−1|Ω|

> Λ−1
∫

Ω
|v(y)|2dy=

∫
Ω
|v(y)|2Λ(y)−1dy

from (5.31). Therefore, the real numbers τ ′k given in (5.26) are well defined and

are such that 0 < τ ′k < Mv −mv − ε′k for each k ∈ N. We then keep the same
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definitions of vΩ,k, v, vk, vk,k′ , βk,k′ and vk,k′ as above and properties (5.29)

and (5.30) hold.

Lastly, in the case when mv = Mv = ‖v‖∞, namely when |v| is equal

to the constant ‖v‖∞ almost everywhere, then v is kept unchanged. We set

vk,k′ = vk,k′ = v, βk,k′ = 1, ε′k = 0, and properties (5.29) and (5.30) hold.

Step 4: Approximation of the eigenvalue λ1(Ω, A, v, V ). Consider first the

case when mv < Mv = ‖v‖∞. For each k ∈ N, it follows from (5.14), (5.15),

(5.22), (5.29) and (5.30) that there exists an integer k′(k) ≥ k such that the

C∞ fields

Ak = (ak,i,j)1≤i,j≤n = Ak,k′(k), Λk = Λk,k′(k) and vk = vk,k′(k)

satisfy, for all k ∈ N,

(5.32)



∫
Ω

Λk(y)−1dy =

∫
Ω

Λ(y)−1dy,

0 < mΛ ≤ mΛ +
τk
2
≤ Λk ≤MΛ −

εk
2
≤MΛ in Ω,

Ak(y) ≥ Λk(y)Id ∀ y ∈ Ω,∫
Ω
|vk(y)|2Λk(y)−1dy =

∫
Ω
|v(y)|2Λ(y)−1dy,

‖vk‖L∞(Ω,Rn) ≤ ‖v‖L∞(Ω,Rn) −
ε′k
2
≤ ‖v‖L∞(Ω,Rn).

Notice that this is possible in both cases mΛ < MΛ (then, εk and τk are all

positive) or mΛ = MΛ (then, εk = τk = 0 for all k ∈ N). Notice also that

ε′k > 0 for all k ∈ N in this case when mv < Mv. Furthermore, the matrix

field Ak is symmetric with polynomial entries ak,i,j in Ω, and, by (5.20), (5.21)

and (5.30),

(5.33)
ak,i,j → ai,j uniformly in Ω as k → +∞,
lim sup
k→+∞

‖∇ak,i,j‖L∞(Ω) ≤ ‖∇ai,j‖L∞(Ω) ≤ ‖A‖W 1,∞(Ω) ∀ 1 ≤ i, j ≤ n,

‖vk − v‖Lp(Ω,Rn) → 0 as k → +∞ ∀ 1 ≤ p < +∞.

In the case when mv = Mv = ‖v‖∞, then one sets vk = v for all k ∈ N, and

properties (5.32) and (5.33) still hold (with ε′k = 0 in that case).

Let us now prove that

(5.34) λ1(Ω, Ak, vk, V )→ λ1(Ω, A, v, V ) as k → +∞.

Notice first that each operator −div(Ak∇) + vk · ∇ + V is elliptic because of

(5.32). Fix an open nonempty ball B such that B ⊂ Ω. It follows from [13]

that

(5.35) min
Ω
V < λ1(Ω, Ak, vk, V ) ≤ λ1(B,Ak, vk, V ) ∀ k ∈ N.



REARRANGEMENT INEQUALITIES 705

Furthermore, properties (5.32) and (5.33) imply that the sequences of matrix

fields (Ak)k∈N and (A−1
k )k∈N are bounded in W 1,∞(Ω) (and then in W 1,∞(B)),

and that the sequence of vector fields (vk)k∈N is bounded in L∞(Ω), and then

in L∞(B). From Lemma 1.1 in [13], there exists then a constant C independent

from k such that

λ1(B,Ak, vk, V ) ≤ C ∀ k ∈ N.
Together with (5.35), it resorts that the sequence (λ1(Ω, Ak, vk, V ))k∈N is

bounded. Thus, for a sequence of integers n(k) → +∞ as k → +∞, one

has that

λ1(Ω, An(k), vn(k), V )→ λ ∈ R as k → +∞.
For each k ∈ N, call ϕk the principal eigenfunction of the operator−div(Ak∇)+

vk · ∇ + V in Ω with Dirichlet boundary condition, such that maxΩ ϕk = 1.

Namely, each function ϕk satisfies

(5.36)



−div(Ak∇ϕk) + vk · ∇ϕk + V ϕk = λ1(Ω, Ak, vk, V )ϕk in Ω,

ϕk > 0 in Ω,

‖ϕk‖L∞(Ω) = 1,

ϕk = 0 on ∂Ω.

From standard elliptic estimates, each function ϕk is in W 2,p(Ω) for all 1 ≤
p < +∞ and in C1,α(Ω) for all 0 ≤ α < 1. Furthermore, since the eigenvalues

λ1(Ω, Ak, vk, V ) are bounded and ‖ϕk‖L∞(Ω) = 1, it follows from (5.32) and

(5.33) that the sequence (ϕk)k∈N is bounded in all W 2,p(Ω) and C1,α(Ω), for

all 1 ≤ p < +∞ and 0 ≤ α < 1. Up to extraction of another subsequence, one

can assume that there exists ϕ∞ ∈
⋂

1≤p<+∞W
2,p(Ω) such that

ϕn(k) → ϕ∞ as k → +∞, weakly in W 2,p(Ω) and strongly in C1,α(Ω)

for all 1 ≤ p < +∞ and 0 ≤ α < 1. Notice that (5.33) implies that ∂xi′ak,i,j ⇀

∂xi′ai,j in σ(L∞(Ω), L1(Ω)) as k → +∞, for all 1 ≤ i′, i, j ≤ n. Multiplying

(5.36) for n(k) by any test function in D(Ω), integrating over Ω and passing

to the limit as k → +∞ leads to, because of (5.32) and (5.33),

−div(A∇ϕ∞) + v · ∇ϕ∞ + V ϕ∞ = λϕ∞ in Ω,

together with

ϕ∞ = 0 on ∂Ω, ϕ∞ ≥ 0 in Ω and max
Ω

ϕ∞ = 1.

The strong maximum principle and the characterization of the princi-

pal eigenvalue and eigenfunction thanks to Krein-Rutman theory imply that

λ = λ1(Ω, A, v, V ) and ϕ∞ is the principal eigenfunction of the operator

−div(A∇)+v·∇+V in Ω with Dirichlet boundary condition. The limiting func-

tion ϕ∞ is uniquely determined because of the normalization maxΩ ϕ∞ = 1.
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Since the limits λ = λ1(Ω, A, v, V ) and ϕ∞ do not depend on any subsequence,

one concludes that (5.34) holds and that the whole sequence (ϕk)k∈N con-

verges to ϕ∞ as k → +∞, weakly in W 2,p(Ω) and strongly in C1,α(Ω) for all

1 ≤ p < +∞ and 0 ≤ α < 1.

Step 5: Approximation of the principal eigenfunction of ϕK for a large K .

Choose any arbitrary ε > 0. Let ε′ ∈ (0, 1) be such that

(5.37)
λ1(Ω, A, v, V ) + 3ε′ + ε′m−1

Λ + ε′‖V −‖∞
1− ε′

≤ λ1(Ω, A, v, V ) + ε.

Thanks to (5.34), there exists then K ∈ N such that

(5.38) λ1(Ω, AK , vK , V ) ≤ λ1(Ω, A, v, V ) + ε′.

Remember that (5.32) holds with k = K. Let ϕK be the (unique) solution

(5.36) with k = K. Notice that

ν · ∇ϕK = −|∇ϕK | < 0 on ∂Ω

from Hopf lemma.

Call F , F , F , f and f the functions defined in Ω by

F = −V ϕK + λ1(Ω, AK , vK , V )ϕK ,

F = −vK · ∇ϕK , F = |vK | × |∇ϕK |,

f = F + F = −vK · ∇ϕK − V ϕK + λ1(Ω, AK , vK , V )ϕK ,

f = F + F = |vK | × |∇ϕK | − V ϕK + λ1(Ω, AK , vK , V )ϕK .

The function F is continuous in Ω. There exists then a sequence (Fl)l∈N of

polynomials such that

Fl → F uniformly in Ω as l→ +∞.

Observe also that the function F is in L∞(Ω), and that the function F is

nonnegative and continuous in Ω: this is true if mv < Mv because vK is

then actually of class C∞(Ω) and ϕK ∈ C1(Ω); this is also true if mv = Mv

because vK is then equal to v and |vK | = Mv in Ω up to a modification on a

zero-measure set. Let R0 > 0 be such that

Ω ⊂ BR0 ,

where BR0 is the open Euclidean ball of radius R0 and center 0. Denote by F
(with a slight abuse of notation) a continuous extension of F in Rn such that

F ≥ 0 in Rn and F = 0 in Rn\BR0 . Extend by 0 the function F in Rn\Ω and

still call F this extension. Notice that

(5.39) F ≤ F in Rn.
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For each l ∈ N, call ζl the function defined in B2R0 by

ζl(z) =

[
(2R0)2 − |z|2

]l∫
B2R0

î
(2R0)2 − |z′|2

ól
dz′

.

Extend the functions ζl by 0 outside B2R0 and still call ζl these extensions. In

Ω, define the functions

F l = ζl ∗ F and F l = ζl ∗ F ∀ l ∈ N.

Owing to the choices of R0 and ζl, the functions F l and F l are polynomials in

Ω. Furthermore, since F ∈ L∞(Rn) and F ∈ C(Rn), there holds

‖F l −F‖Lp(Ω) →
l→+∞

0 ∀ 1 ≤ p < +∞ and F l →
l→+∞

F uniformly in Ω.

Furthermore,

F l = ζl ∗ F ≤ ζl ∗ F = F l in Ω ∀ l ∈ N
because of (5.39). It follows that

(5.40)


f
l

= F l + Fl →
l→+∞

f in Lp(Ω) ∀ 1 ≤ p < +∞,

f l = F l + Fl →
l→+∞

f uniformly in Ω

together with

(5.41) f
l
≤ f l in Ω ∀ l ∈ N.

Remember that the function ϕK satisfies

−div(AK∇ϕK) = f in Ω,

with ϕK = 0 on ∂Ω. For each l ∈ N, call ψl the solution of

(5.42)

 −div(AK∇ψl) = f
l

in Ω,

ψl = 0 on ∂Ω.

Each function ψl is then analytic in Ω (remember that AK is a field of sym-

metric positive definite matrices with polynomial entries, and that each f
l

is a

polynomial in Ω). From standard elliptic estimates, the functions ψl converge

to the function ϕK as l → +∞ in W 2,p(Ω) and C1,α(Ω) for all 1 ≤ p < +∞
and 0 ≤ α < 1. Since ϕK > 0 in Ω and |∇ϕK | > 0 = ϕK on ∂Ω, one then has

(5.43) ψl > 0 in Ω and |∇ψl| > 0 on ∂Ω for l large enough.

Furthermore, from (5.41), there holds

−div(AK∇ψl)− |vK |×|∇ψl| − ε′|∇ψl|+ [V − λ1(Ω, A, v, V )− 2ε′] ψl

≤ f l − |vK |×|∇ψl| − ε′|∇ψl|+ [V − λ1(Ω, A, v, V )− 2ε′] ψl in Ω.
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From (5.40) and the definition of f , it follows that

f l − |vK | × |∇ψl| − ε′|∇ψl|+ [V − λ1(Ω, A, v, V )− 2ε′] ψl

→ [λ1(Ω, AK , vK , V )− λ1(Ω, A, v, V )− ε′] ϕK − ε′(|∇ϕK |+ ϕK)

as l → +∞, uniformly in Ω. Using (5.38) and the properties of ϕK , it follows

that the continuous function

[λ1(Ω, AK , vK , V )− λ1(Ω, A, v, V )− ε′] ϕK − ε′(|∇ϕK |+ ϕK)

is negative in Ω. Therefore, there is L ∈ N large enough so that (5.43) holds

with l = L and

(5.44)

−div(AK∇ψL)−|vK |×|∇ψL|−ε′|∇ψL|+[V −λ1(Ω, A, v, V )−2ε′] ψL < 0 in Ω.

Step 6: An inequality for the rearranged fields in the ball Ω∗. Apply then

the results of Section 3 to the function

ψ = ψL

and to the data
(AΩ,ΛΩ, ω, V ) = (AK ,ΛK , |vK |, V ).

From the previous steps, these fields satisfy all assumptions of Section 3. Given

ψ, one can then define the sets Z, Y , E and the function ρ as in Section 3.1.

Given ψ and the data AΩ = AK , ΛΩ = ΛK , ω = |vK | and V , one can also

define the corresponding rearranged fields ψ̃, Λ̂, v̂, “V and U given by (3.3),

(3.4), (3.7), (3.8), (3.9), (3.12), (3.33) and (3.34).

One recalls that λ1(Ω, A, v, V ) ≥ 0 by assumption. From (5.44) and Corol-

lary 3.11 applied with ω0 = ε′ ≥ 0 and

µ = λ1(Ω, A, v, V ) + 2ε′ ≥ 0,

it follows that∫
Ω∗

î
Λ̂(x)|∇ψ̃(x)|2−ε′|∇ψ̃(x)|ψ̃(x)+“V (x)ψ̃(x)2

ó
e−U(x)dx(5.45)

≤ µ
∫

Ω∗
ψ̃(x)2e−U(x)dx.

Remember that the function ψ̃ is radially symmetric, continuous and decreas-

ing with respect to |x| in Ω∗, and that ψ̃ ∈ H1
0 (Ω∗). The field Λ̂ is radially

symmetric and belongs in L∞(Ω∗). Furthermore,

(5.46)

∫
Ω∗

Λ̂(x)−1dx =

∫
Ω

ΛK(y)−1dy =

∫
Ω

Λ(y)−1dy

from (3.6) and (5.32). On the other hand,
(5.47)

0<mΛ≤mΛ+
τK
2
≤min

Ω
ΛK≤ess inf

Ω∗
Λ̂≤ess sup

Ω∗
Λ̂≤max

Ω
ΛK≤MΛ−

εK
2
≤MΛ

from (3.5) and (5.32).
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From (5.45) and (5.47), it follows that

(1− ε′)
∫

Ω∗
Λ̂|∇ψ̃|2e−U +

∫
Ω∗
“V ψ̃2e−U ≤ µ

∫
Ω∗
ψ̃2e−U +

ε′

4

∫
Ω∗

Λ̂−1ψ̃2e−U

≤ (µ+ ε′m−1
Λ )

∫
Ω∗
ψ̃2e−U .

On the other hand, the field “V is radially symmetric, it belongs to L∞(Ω∗),

and

−‖V ‖∞ ≤ min
Ω

(−V −) ≤ ess inf
Ω∗

“V ≤ ess sup
Ω∗

“V ≤ 0

(see (3.13)). Therefore,

(1− ε′)
∫

Ω∗

Ä
Λ̂|∇ψ̃|2 + “V ψ̃2

ä
e−U ≤ (µ+ ε′m−1

Λ + ε′‖V −‖∞)

∫
Ω∗
ψ̃2e−U ;

that is,

(5.48)∫
Ω∗

Ä
Λ̂|∇ψ̃|2+“V ψ̃2

ä
e−U ≤ λ1(Ω, A, v, V )+2ε′+ε′m−1

Λ +ε′‖V −‖∞
1− ε′

×
∫

Ω∗
ψ̃2e−U .

Step 7: Approximation of the rearranged fields in Ω∗. First, define the

function Λ̂ almost everywhere in Rn by

Λ̂(x) =

 Λ̂(x) if x ∈ Ω∗,

min
Ω

ΛK if x ∈ Rn\Ω∗,

and then, for each m ∈ N,

Λ∗m =
(
ρm ∗ Λ̂

−1
)−1

in Rn,

where the mollifiers ρm can be assumed to be radially symmetric for all m ∈ N.

Next, for every m ∈ N, call

γm =
‖(Λ∗m)−1‖L1(Ω∗)

‖Λ−1‖L1(Ω)
> 0

and

Λ∗m(x) = γmΛ∗m(x) ∀ x ∈ Ω∗.

As in Step 1, it follows from the above definitions and from (5.46) and

(5.47) that each function Λ∗m is radially symmetric and of class C∞(Ω∗), that

limm→+∞ γm = 1, that

(5.49)

∫
Ω∗

Λ∗m(x)−1dx =

∫
Ω

Λ(y)−1dy ∀ m ∈ N
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and that

(5.50)



0 < γm ×
Å
mΛ +

τK
2

ã
≤ min

Ω∗
Λ∗m ≤ max

Ω∗
Λ∗m ≤ γm ×

Å
MΛ −

εK
2

ã
∀ m ∈ N,

γm ×
Å
mΛ +

τK
2

ã
→

m→+∞
mΛ +

τK
2
,

γm ×
Å
MΛ −

εK
2

ã
→

m→+∞
MΛ −

εK
2
.

From reciprocal of Lebesgue’s theorem, one can also assume without loss of

generality (even if it means extracting a subsequence) that

Λ∗m(x)→ Λ̂(x) = Λ̂(x) as m→ +∞ for a.e. x ∈ Ω∗.

Remember also that if mΛ < MΛ then εK > 0, τK > 0 and notice that if

mΛ = MΛ then εK = τK = 0, γm = 1, Λ∗m = mΛ in Ω∗ for all m ∈ N and

properties (5.49) and (5.50) hold immediately.

Next, owing to the definition (3.9), the vector field v̂ can be written as

v̂(x) = |v̂(x)| er(x) in Ω∗,

where |v̂| is radially symmetric. Furthermore, as in Step 3 and since ω = |vK |,
it follows from (3.10), (3.11) and (5.32) that

(5.51)

∫
Ω∗
|v̂(x)|2Λ̂(x)−1dx =

∫
Ω
|vK(y)|2ΛK(y)−1dy =

∫
Ω
|v(y)|2Λ(y)−1dy

and

(5.52)

‖v̂‖L∞(Ω∗,Rn) ≤ ‖ω‖L∞(Ω) =‖vK‖L∞(Ω,Rn) ≤ ‖v‖L∞(Ω,Rn)−
ε′K
2
≤ ‖v‖L∞(Ω,Rn).

Call

ω(x) =

{
|v̂(x)| if x ∈ Ω∗,

0 if x ∈ Rn\Ω∗

and, for each m ∈ N,

v∗m(x) = (ρm ∗ ω)(x) er(x) ∀ x ∈ Rn\{0}.

One has ‖v∗m‖L∞(Rn,Rn) ≤ ‖ω‖L∞(Rn,Rn) ≤ ‖v‖L∞(Ω,Rn) and one can assume

without loss of generality that

v∗m(x)→ v̂(x) as m→ +∞ for a.e. x ∈ Ω∗.

Consider first the case when ‖v‖L∞(Ω,Rn) > 0. Therefore, for m large enough

(one can then assume that this holds for all m without loss of generality), the
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real numbers

(5.53)

δm =

Ü ∫
Ω
|v(y)|2Λ(y)−1dy∫

Ω∗
|v∗m(x)|2Λ∗m(x)−1dx

ê1/2

=

Ü ∫
Ω∗
|v̂(x)|2Λ̂(x)−1dx∫

Ω∗
|v∗m(x)|2Λ∗m(x)−1dx

ê1/2

are well defined, positive, and they are such that δm → 1 as m → +∞.

Therefore, the vector fields defined by

v∗m(x) = δmv
∗
m(x) ∀ x ∈ Ω∗\{0}

are of class C∞(Ω∗\{0}) and converge to v̂(x) as m → +∞ for almost every

x ∈ Ω∗. These fields can be written as

v∗m(x) = |v∗m(x)|er(x) ∀ x ∈ Ω∗\{0}

and |v∗m| is radially symmetric, of class C∞(Ω∗\{0}) and can actually be ex-

tended at 0 to a C∞(Ω∗) function. Furthermore, it follows from (5.52) and

(5.53) that

(5.54)

∫
Ω∗
|v∗m(x)|2Λ∗m(x)−1dx =

∫
Ω
|v(y)|2Λ(y)−1dy

and

(5.55)
‖v∗m‖L∞(Ω∗,Rn) ≤ δm × ‖v̂‖L∞(Ω∗,Rn)

≤ δm ×
Ç
‖v‖L∞(Ω,Rn) −

ε′K
2

å
→

m→+∞
‖v‖L∞(Ω,Rn) −

ε′K
2
.

Lastly, remember that if mv < Mv, then ε′K > 0, and notice that if mv = Mv

(this is the case if ‖v‖L∞(Ω,Rn) = 0), then ε′K = 0, ω = mv in Ω, v̂ = v∗m = mver
in Ω∗ and properties (5.54) and (5.55) hold immediately with δm = 1.

Fix now an arbitrary unit vector e in Rn and define, for each m ∈ N,

∀ x ∈ Ω∗, U∗m(x) =

∫ |x|
0
|v∗m(re)|Λ∗m(re)−1dr.

As in Proposition 3.10, the definition of U∗m does not depend on the choice

of e. Furthermore, each function U∗m is continuous in Ω∗, radially symmetric,

of class C∞(Ω∗\{0}) and it satisfies

(5.56) ∇U∗m(x) = Λ∗m(x)−1|v∗m(x)|er(x) = Λ∗m(x)−1v∗m(x) ∀ x ∈ Ω∗\{0}.
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On the other hand, each function U∗m is nonnegative in Ω∗ and it follows from

(5.50) and (5.55) that

‖U∗m‖L∞(Ω∗) ≤ δmm−1
Λ R×

Ç
‖v‖L∞(Ω,Rn) −

ε′K
2

å
(5.57)

→
m→+∞

m−1
Λ R×

Ç
‖v‖L∞(Ω,Rn) −

ε′K
2

å
.

Moreover, since all fields |v∗m|, |v̂|, Λ∗m and Λ̂ are radially symmetric, it follows

from the above estimates and Lebesgue’s dominated convergence theorem that

U∗m(x) →
m→+∞

U(x) ∀ x ∈ Ω∗,

where U is given in (3.34).

Lastly, Corollary 5.4 applied with g = −V − and ĝ = “V provides the

existence of two sequences of radially symmetric fields (V ∗m)m∈N and (V
∗
m)m∈N

in Ω∗ such that, for each m ∈ N, V ∗m ∈ L∞(Ω∗), V
∗
m ∈ C∞(Ω∗),

(5.58) − ‖V ‖L∞(Ω) ≤ min
Ω

(−V −) ≤ V ∗m ≤ V
∗
m ≤ 0 in Ω∗

and the distribution functions of V ∗m and V
∗
m satisfy

µV ∗m = µ−V − and µ|V ∗m|
≤ µV − ≤ µ|V |.

Furthermore, the fields V ∗m and V
∗
m are constructed so that

V ∗m, V
∗
m ⇀
m→+∞

“V in σ(Lp(Ω∗), Lp
′
(Ω∗))

for all 1 < p ≤ +∞, with 1/p+ 1/(p′) = 1.

Step 8: An inequality for the eigenvalue λ1(Ω∗,Λ∗mId, v∗m, V
∗
m) for large m.

Remember first that the function ψ̃ is continuous nonnegative in Ω∗ and that

ψ̃(0) ≥ maxΩ ψL > 0 because of Corollary 3.6 and (5.43). It also follows from

Lebesgue’s dominated convergence theorem and all estimates of Step 7 that
∫

Ω

Ä
Λ∗m|∇ψ̃|2 + V

∗
mψ̃

2
ä
e−U

∗
m →

∫
Ω

Ä
Λ̂|∇ψ̃|2 + “V ψ̃2

ä
e−U ,∫

Ω
ψ̃2 e−U

∗
m →

∫
Ω
ψ̃2 e−U > 0,

as m→ +∞. Therefore, from (5.48), there exists M ∈ N such that

∫
Ω

Ä
Λ∗M |∇ψ̃|2 + V

∗
M ψ̃

2
ä
e−U

∗
M ≤ λ1(Ω, A, v, V ) + 3ε′ + ε′m−1

Λ + ε′‖V −‖∞
1− ε′

(5.59)

×
∫

Ω∗
ψ̃2 e−U

∗
M .
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Remember that (5.49) and (5.54) hold with m = M . Furthermore, because of

(5.50) and (5.55), one can choose M large enough so that

mΛ ≤ Λ∗M ≤MΛ in Ω∗ and ‖v∗M‖L∞(Ω∗,Rn) ≤ ‖v‖L∞(Ω,Rn).

Notice that this holds also when mΛ = MΛ (in this case, Λ∗M = mΛ in Ω∗) or

when mv = Mv (in this case, v∗M = mver in Ω∗\{0}).
Call now

I = inf
φ∈H1

0 (Ω∗)\{0}

∫
Ω∗

Ä
Λ∗M |∇φ|2 + V

∗
Mφ

2
ä
e−U

∗
M∫

Ω∗
φ2 e−U

∗
M

.

It follows from (5.59) that

(5.60) I ≤ λ1(Ω, A, v, V ) + 3ε′ + ε′m−1
Λ + ε′‖V −‖∞

1− ε′
.

Furthermore, I is clearly finite and I ≥ minΩ∗ V
∗
M ≥ −‖V −‖∞. It is classical

to check that I is actually a minimum, which is reached at a function ϕ∗M ∈
H1

0 (Ω∗)\{0} such that ϕ∗M ≥ 0 a.e. in Ω∗ and∫
Ω∗

Ä
Λ∗M∇ϕ∗M · ∇φ+ V

∗
Mϕ
∗
Mφ
ä
e−U

∗
M = I

∫
Ω∗
ϕ∗M φ e−U

∗
M

for all φ ∈ H1
0 (Ω∗). Because of (5.56) with m = M , the change of functions

φ = Φ eU
∗
M leads to∫

Ω∗
Λ∗M∇ϕ∗M · ∇Φ + v∗M · ∇ϕ∗M Φ + V

∗
Mϕ
∗
MΦ = I

∫
Ω∗
ϕ∗MΦ

for all Φ ∈ H1
0 (Ω∗). From H2 regularity and W 2,p estimates, it then follows

that ϕ∗M is actually in all W 2,p(Ω∗) and C1,α(Ω∗) for all 1 ≤ p < +∞ and

0 ≤ α < 1 and that
−div(Λ∗M∇ϕ∗M ) + v∗M · ∇ϕ∗M + V

∗
Mϕ
∗
M = Iϕ∗M in Ω∗,

ϕ∗M = 0 on ∂Ω∗,

ϕ∗M ≥ 0 in Ω∗.

Since ϕ∗M 6= 0, one concludes from Krein-Rutman theory that ϕ∗M is — up

to multiplication by a positive constant — the principal eigenfunction of the

operator −div(Λ∗M∇) + v∗M · ∇+ V
∗
M with Dirichlet boundary condition, and

that I is the principal eigenvalue I = λ1(Ω∗,Λ∗M Id, v∗M , V
∗
M ). Together with

(5.37) and (5.60), it resorts that

λ1(Ω∗,Λ∗M Id, v∗M , V
∗
M ) ≤ λ1(Ω, A, v, V ) + 3ε′ + ε′m−1

Λ + ε′‖V −‖∞
1− ε′

≤ λ1(Ω, A, v, V ) + ε.
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Lastly, since V ∗M ≤ V
∗
M in Ω (see (5.58) with m = M), if follows from [13]

that

λ1(Ω∗,Λ∗M Id, v∗M , V
∗
M ) ≤ λ1(Ω∗,Λ∗M Id, v∗M , V

∗
M ) ≤ λ1(Ω, A, v, V ) + ε.

Step 9: Conclusion. Since ε ∈ (0, 1) was arbitrary, the proof of the first

part of Theorem 2.1 is complete with the choice

(Λ∗, ω∗, v∗, V ∗, V
∗
) = (Λ∗M , |v∗M |, v∗M , V ∗M , V

∗
M ).

Step 10: The case when Λ is equal to a constant γ > 0 in Ω. It follows from

the previous steps that Λ∗ is equal to the same constant γ in Ω∗. Furthermore,

there exists a family (v∗ε , V
∗
ε )ε>0 of bounded fields in Ω∗ such that{

‖v∗ε‖L∞(Ω∗,Rn) ≤ ‖v‖L∞(Ω,Rn), ‖v∗ε‖L2(Ω∗,Rn) = ‖v‖L2(Ω,Rn),

µV ∗ε = µ−V − ,

together with

λ1(Ω∗, γ Id, v∗ε , V
∗
ε ) ≤ λ1(Ω, A, v, V ) + ε

for all ε > 0. Furthermore, v∗ε = |v∗ε |er a.e. in Ω∗, and ω∗ε = |v∗ε | ≥ 0 and

V ∗ε ≤ 0 are radially symmetric.

Take any sequence (εk)k∈N of positive numbers such that εk → 0 as k →
+∞. Up to extraction of a subsequence, there exist two radially symmetric

functions ω∗0 ≥ 0 and V ∗0 ≤ 0 such that

ω∗εk ⇀ ω∗0 and V ∗εk ⇀ V ∗0 as k → +∞,

weak-* in L∞(Ω∗), whence weakly in Lp(Ω∗) for all 1 ≤ p < +∞. Furthermore,

the fields v∗0 = ω∗0er and V ∗0 satisfy the bounds (2.4). Since

−max
Ω

V − < λ1(Ω∗, γ Id, v∗εk , V
∗
εk

) ≤ λ1(Ω, A, v, V ) + εk

for all k ∈ N, the sequence (λ1(Ω∗, γ Id, v∗εk , V
∗
εk

))k∈N converges, up to extrac-

tion of a subsequence, to a real number

λ∗0 ∈
î
−max

Ω
V −, λ1(Ω, A, v, V )

ó
.

From standard elliptic estimates, the principal eigenfunctions ϕk=ϕΩ∗,γId,v∗εk
,V ∗εk

are bounded independently of k in W 2,r(Ω∗) for all 1 ≤ r <∞. Up to extrac-

tion of a subsequence, they converge weakly in W 2,r(Ω∗) for all 1 ≤ r < ∞
and strongly in C1,α(Ω∗) for all 0 ≤ α < 1 to a solution ϕ∗0 of

−γ∆ϕ∗0 + v∗0 · ∇ϕ∗0 + V ∗0 ϕ
∗
0 = λ∗0ϕ

∗
0 in Ω∗

such that ϕ∗0 ≥ 0 in Ω∗, ϕ∗0 = 0 on ∂Ω∗ and ‖ϕ∗0‖L∞(Ω∗) = 1. By uniqueness,

it resorts that λ∗0 = λ1(Ω∗, γ Id, v∗0, V
∗

0 ) and ϕ∗0 = ϕΩ∗,γId,v∗0 ,V
∗
0
. Thus,

λ1(Ω∗, γ Id, v∗0, V
∗

0 ) ≤ λ1(Ω, A, v, V ).
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Notice that the radially symmetric fields |v∗0| and V ∗0 satisfy the bounds (2.4),

but may not be smooth anymore. �

Remark 5.5. Assume now that 0 < mΛ < MΛ and that Λ = mΛ in a

neighbourhood of ∂Ω, that is Λ = mΛ in the set {x ∈ Ω, d(x, ∂Ω) < γ}
for some γ > 0. Then, under the notation of the previous proof, besides the

aforementioned conditions of Steps 1 to 5, one can choose K ∈ N large enough

so that ‖Λ−1‖L1(Ω) < |Ω| × (mΛ + 4τK)−1 and

ΛK = min
Ω

ΛK ∈
ï
mΛ +

τK
2
,mΛ + 2τK

ò
in a (smaller) neighbourhood of ∂Ω. Then, owing to the definition of Λ̂ in Step 6

(from §3), it follows that Λ̂ = minΩ ΛK = ess infΩ∗Λ̂ in a neighbourhood of

∂Ω∗. Finally, besides the conditions of Steps 7 and 8, one can choose M ∈ N
large enough so that

Λ∗M = min
Ω∗

Λ∗M ∈
ï
mΛ +

τK
4
,mΛ + 4τK

ò
in a neighbourhood of ∂Ω∗.

Since ‖Λ−1‖L1(Ω) < |Ω| × (mΛ + 4τK)−1 and ‖(Λ∗M )−1‖L1(Ω∗) = ‖Λ−1‖L1(Ω),

one concludes that Λ∗M (= Λ∗) is not constant in Ω∗. It then follows that, in

Theorem 2.1, the functions Λ and Λ∗ are not constant in general. Actually, for

the same reason, the same observation is true for Theorems 2.3 and 2.7.

Remark 5.6. Under the same assumptions as in Theorem 2.1, it follows

from (5.32) that, if τ ∈ R is such that

‖v‖L∞(Ω,Rn) ≤ τ,

then inequality (5.44) still holds when |vK | is replaced with the constant τ .

Steps 6–9 of the proof of Theorem 2.1 then yield, for each ε > 0, the existence

of two radially symmetric C∞(Ω∗) functions Λ∗ > 0, V
∗ ≤ 0 satisfying (2.2),

and the existence of a radially symmetric function V ∗ ∈ L∞(Ω∗) satisfying

V ∗ ≤ V ∗ ≤ 0 a.e. in Ω∗ and µV ∗ = µ−V − , such that

λ1(Ω∗,Λ∗ Id, τer, V
∗) ≤ λ1(Ω∗,Λ∗ Id, τer, V

∗
) ≤ λ1(Ω, A, v, V ) + ε.

Furthermore, when Λ is equal to a constant γ > 0 in Ω, it follows from the

above observations and Step 10 of the proof of Theorem 2.1 that there exists

a radially symmetric bounded function V ∗0 ≤ 0 in Ω∗ satisfying (2.4) and such

that

λ1(Ω∗, γ Id, τer, V
∗

0 ) ≤ λ1(Ω, A, v, V ).

5.2.2. Inequalities without the ε term. In this section, we prove that the

positive ε term in inequality (2.3) of Theorem 2.1 can be dropped. But the

counterpart is that the field Λ∗ may not be smooth anymore and may even not
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be in W 1,∞(Ω∗) in general. It will be only in L∞+ (Ω∗) a priori and the eigen-

value λ1(Ω∗,Λ∗ Id, v∗, V ∗) will be defined in a weaker sense. Furthermore, the

function |v∗| will only be in L∞(Ω∗) and the function V ∗ will only fulfill (2.4).

Let Ω ∈ C, A ∈ W 1,∞(Ω, Sn(R)), Λ ∈ L∞+ (Ω), v ∈ L∞(Ω,Rn) and V ∈
C(Ω) be given such that A ≥ Λ Id a.e. in Ω and λ1(Ω, A, v, V ) ≥ 0. Let us

argue as in the beginning of Step 10 of the proof of Theorem 2.1. There exists

a family (Λ∗ε, ω
∗
ε , V

∗
ε )ε>0 of bounded radially symmetric functions in Ω∗ such

that, for each ε > 0 and for v∗ε = ω∗εer in Ω∗\{0}, the functions Λ∗ε and ω∗ε ≥ 0

are in C∞(Ω∗),

(5.61)



0 < ess inf
Ω

Λ ≤ min
Ω∗

Λ∗ε ≤ max
Ω∗

Λ∗ε ≤ ess sup
Ω

Λ,

‖(Λ∗ε)−1‖L1(Ω∗) = ‖Λ−1‖L1(Ω),

‖ω∗ε‖L∞(Ω∗) = ‖v∗ε‖L∞(Ω∗,Rn) ≤ ‖v‖L∞(Ω,Rn),

‖ |v∗ε |2(Λ∗ε)
−1‖L1(Ω∗) = ‖ |v|2Λ−1‖L1(Ω),

−max
Ω

V − ≤ V ∗ε ≤ 0 a.e. in Ω∗, µV ∗ε = µ−V −

and

−max
Ω

V − < λ1(Ω∗,Λ∗εId, v
∗
ε , V

∗
ε ) ≤ λ1(Ω, A, v, V ) + ε.

Take any sequence (εk)k∈N of positive real numbers such that εk → 0 as

k → +∞. Up to extraction of a subsequence, one can assume that

(5.62)

λ1(Ω∗,Λ∗εkId, v∗εk , V
∗
εk

) → λ∗0 ∈
î
−max

Ω
V −, λ1(Ω, A, v, V )

ó
as k → +∞.

Let (ϕεk)k∈N be the sequence of principal eigenfunctions of the elliptic opera-

tors −div(Λ∗εk∇) + v∗εk · ∇ + V ∗εk in Ω∗ with Dirichlet boundary conditions on

∂Ω∗, now normalized so that

(5.63) ‖ϕεk‖L2(Ω∗) = 1 ∀ k ∈ N.

Each function ϕεk is positive in Ω∗ and obeys

(5.64)

− div(Λ∗εk∇ϕεk) + v∗εk · ∇ϕεk + V ∗εkϕεk = λ1(Ω∗,Λ∗εkId, v∗εk , V
∗
εk

)ϕεk in Ω∗.

By the uniqueness (up to multiplication by positive constants) of the prin-

cipal eigenfunctions and the radial symmetry of the fields Λ∗εk , ω∗εk and V ∗εk ,

the functions ϕεk are radially symmetric. Furthermore, each function ϕεk is in

W 2,p(Ω)∩W 1,p
0 (Ω∗) for all 1 ≤ p < +∞ and then in C1,α(Ω∗) for all 0 ≤ α < 1.

However, contrarily to Step 10 of the proof of Theorem 2.1, the sequence

(Λ∗εk)k∈N is not constant anymore and may not be bounded in W 1,∞(Ω∗) a pri-

ori, whence the sequence (ϕεk)k∈N may not be bounded in the spaces W 2,p(Ω∗)
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a priori. Nevertheless, this sequence will be bounded in H1
0 (Ω∗) and this prop-

erty, combined with the radial symmetry property, will be enough to pass to

the limit in a weak sense.

To prove the boundedness of (ϕεk)k∈N in H1
0 (Ω∗), multiply equation (5.64)

by ϕεk and integrate by parts over Ω∗. One gets that

(5.65)∫
Ω∗

Λ∗εk |∇ϕεk |
2+

∫
Ω∗

(v∗εk ·∇ϕεk)ϕεk+

∫
Ω∗
V ∗εk ϕ

2
εk

= λ1(Ω∗,Λ∗εkId, v∗εk , V
∗
εk

)

∫
Ω∗
ϕ2
εk
.

From (5.61), (5.62), (5.63) and Cauchy-Schwarz inequality used in (5.65), it fol-

lows that the sequence (∇ϕεk)k∈N is bounded in L2(Ω∗,Rn). Finally, (ϕεk)k∈N
is bounded in H1

0 (Ω∗).

Due to the Rellich’s theorem and the converse to the dominated con-

vergence theorem, up to extraction of a subsequence, there exist a radially

symmetric function ϕ0 ∈ H1
0 (Ω∗) and a function ϕ ∈ L2(Ω∗) such that

(5.66){
ϕεk→ϕ0 as k → +∞ a.e. in Ω∗, strongly in L2(Ω∗), weakly in H1

0 (Ω∗),

|ϕεk | ≤ |ϕ| a.e. in Ω∗ ∀ k ∈ N.

On the other hand, for each k ∈ N, the function ϕεk can be written as

ϕεk(x) = φεk(|x|) ∀ x ∈ Ω∗,

where, for all 0 < r < R, the function φεk is in W 2,p(r,R) for all 1 ≤ p < +∞
and in C1,α([0, R]) for all 0 ≤ α < 1. Furthermore, since (ϕεk)k∈N is bounded in

H1
0 (Ω∗), the sequence (φεk)k∈N is then bounded in H1(r,R) for all 0 < r < R.

Up to extraction of a subsequence, there exists a function φ0 ∈ H1
loc((0, R])

such that, as k → +∞,

(5.67) φεk → φ0 strongly in L2(r,R) and weakly in H1(r,R) ∀ 0 < r < R.

There also holds ϕ0(x) = φ0(|x|) a.e. in Ω∗.

Let us now pass to the limit, up to extraction of a subsequence, in the

fields Λ∗εk , v∗εk and V ∗εk . First, for eack k ∈ N, there are some C∞([0, R])

functions Gεk > 0 and ωεk ≥ 0, and an L∞(0, R) function Wεk ≤ 0 such that{
Λ∗εk(x) = Gεk(|x|) and ω∗εk(x) = ωεk(|x|) ∀ x ∈ Ω∗,

V ∗εk(x) = Wεk(|x|) for a.e. x ∈ Ω∗.

From the bounds (5.61), there exist some radially symmetric functions Λ∗0 ∈
L∞+ (Ω∗), ω∗0 ≥ 0 and V ∗0 ≤ 0 in L∞(Ω∗), and some functions G0 ∈ L∞+ (0, R),

ω0 ≥ 0 and W0 ≤ 0 in L∞(0, R) such that, up to extraction of a subsequence,

(Λ∗εk)−1 ⇀ (Λ∗0)−1

ω∗εk (Λ∗εk)−1 ⇀ ω∗0 (Λ∗0)−1

V ∗εk ⇀ V ∗0


weak-* in L∞(Ω∗)

and then weakly in Lp(Ω∗) ∀ 1 ≤ p < +∞
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and

(5.68)
G−1
εk

⇀ G−1
0

ωεkG
−1
εk

⇀ ω0G
−1
0

Wεk ⇀ W0


weak-* in L∞(0, R)

and then weakly in Lp(0, R) ∀ 1 ≤ p < +∞,

as k → +∞. Furthermore, Λ∗0(x) = G0(|x|), ω∗0(x) = ω0(|x|) and V ∗0 (x) =

W0(|x|) a.e. in Ω∗, and

(5.69)
ess inf

Ω
Λ ≤ ess inf

Ω∗
Λ∗0 ≤ ess sup

Ω∗
Λ∗0 ≤ ess sup

Ω
Λ,

‖(Λ∗0)−1‖L1(Ω∗) = ‖Λ−1‖L1(Ω),

‖V ∗0 ‖Lp(Ω∗) ≤ ‖V −‖Lp(Ω) ∀ 1 ≤ p ≤ +∞, ‖V ∗0 ‖L1(Ω∗) = ‖V −‖L1(Ω).

Denote v∗0(x) = ω∗0(x)er for a.e. x ∈ Ω∗. Since

0 ≤ ω∗εk (Λ∗εk)−1 ≤ ‖v‖L∞(Ω,Rn) (Λ∗εk)−1 in Ω∗

and these two fields converge weakly (say, for instance, weak-* in L∞(Ω∗))

to ω∗0 (Λ∗0)−1 and ‖v‖L∞(Ω,Rn) (Λ∗0)−1 respectively, it follows that ω∗0 (Λ∗0)−1 ≤
‖v‖L∞(Ω,Rn) (Λ∗0)−1 a.e. in Ω∗, whence 0 ≤ ω∗0 ≤ ‖v‖L∞(Ω,Rn) a.e. in Ω∗ and

(5.70) ‖v∗0‖L∞(Ω∗,Rn) = ‖ω∗0‖L∞(Ω∗) ≤ ‖v‖L∞(Ω,Rn).

Lastly, for each k ∈ N, denote

Hεk(r) =

∫ r

0
ωεk(s)Gεk(s)−1 ds ∀ r ∈ [0, R] and U∗εk(x) = Hεk(|x|) ∀ x ∈ Ω∗.

Each function Hεk is of class C∞([0, R]) and, from (5.61) and the above limits,

it follows that

(5.71)
‖U∗εk‖L∞(Ω∗) =‖Hεk‖L∞(0,R)≤R ‖v‖L∞(Ω,Rn)

Ä
ess infΩ Λ

ä−1 ∀ k∈N,

Hεk(r)→ H0(r) :=

∫ r

0
ω0(s)G0(s)−1 ds ∀ r ∈ [0, R] as k → +∞,

U∗εk(x)→ U∗0 (x) := H0(|x|) ∀ x ∈ Ω∗ as k → +∞.

In order to pass to the limit in the second order term −div(Λ∗εk∇ϕεk)

of (5.64), even in a weak sense, one needs additional bounds, since (Λ∗εk)−1

and ∇ϕεk a priori only converge weakly. Call

Zεk(r) = Gεk(r)φ′εk(r)

for all k ∈ R and r ∈ [0, R]. Each function Zεk is of class C0,α([0, R]) for all

0 ≤ α < 1 and of class W 1,p(r,R) for all 1 ≤ p < +∞ and 0 < r < R, and

the sequence (Zεk)k∈N is bounded in L2(r,R) for all 0 < r < R. Furthermore,
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from (5.64) and from the radial symmetry of all functions ϕεk , Λ∗εk , |v∗εk | = ω∗εk
and V ∗εk , there holds, for all k ∈ N,

−Z ′εk(r)− n−1

r
Zεk(r) + ωεk(r)φ′εk(r) +Wεk(r)φεk(r)

= λ1(Ω∗,Λ∗εkId, v
∗
εk
, V ∗εk)φεk(r)

for a.e. r ∈ (0, R). Since the sequences (φεk)k∈N, (φ′εk)k∈N and (Zεk)k∈N are

bounded in L2(r,R) for all 0 < r < R, it follows from the bounds (5.61)

and (5.62) that the sequence (Zεk)k∈N is actually bounded in H1(r,R) for all

0 < r < R. Up to extraction of a subsequence, there exist then a function

Z0 ∈ H1
loc((0, R]) and a function Z ∈ L2

loc((0, R]) such that

(5.72) Zεk →
k→+∞

Z0 a.e. in (0, R) and strongly in L2(r,R) ∀ 0 < r < R,

|Zεk | ≤ |Z| a.e. in (0, R) ∀ k ∈ N.

Since φ′εk = Zεk G
−1
εk

in [0, R] for all k ∈ N, it follows then from (5.67), (5.68)

and the uniqueness of the weak limit that

(5.73) φ′0 = Z0G
−1
0 a.e. in (0, R).

Multiply now equation (5.64) by ϕεk e
−U∗εk (which belongs to W 1,p

0 (Ω∗)

for all 1 ≤ p < +∞) and integrate by parts over Ω∗. Owing to the definition

of U∗εk , one gets that∫
Ω∗

Λ∗εk |∇ϕεk |
2 e−U

∗
εk +

∫
Ω∗
V ∗εk ϕ

2
εk
e−U

∗
εk = λ1(Ω∗,Λ∗εkId, v

∗
εk
, V ∗εk)

∫
Ω∗
ϕ2
εk
e−U

∗
εk ;

that is,

nαn

∫ R

0
Gεk(r)φ′εk(r)2e−Hεk (r)rn−1dr +

∫
Ω∗
V ∗εkϕ

2
εk
e−U

∗
εk(5.74)

= λ1(Ω∗,Λ∗εkId, v
∗
εk
, V ∗εk)

∫
Ω∗
ϕ2
εk
e−U

∗
εk

by using the radial symmetry property in the first integral. But ϕ2
εk
e−U

∗
εk →

ϕ2
0 e
−U∗0 as k → +∞ strongly in L1(Ω∗) from (5.66), (5.71) and Lebesgue’s

dominated convergence theorem. Therefore,

λ1(Ω∗,Λ∗εkId, v
∗
εk
, V ∗εk)

∫
Ω∗
ϕ2
εk
e−U

∗
εk → λ∗0

∫
Ω∗
ϕ2

0 e
−U∗0 as k → +∞

by (5.62), and ∫
Ω∗
V ∗εk ϕ

2
εk
e−U

∗
εk →

∫
Ω∗
V ∗0 ϕ

2
0 e
−U∗0 as k → +∞
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since V ∗εk ⇀ V ∗0 as k → +∞ weak-* in L∞(Ω∗). As far as the first integral

in (5.74) is concerned, one can say that, for all η ∈ (0, R),

nαn

∫ R

0
Gεk(r)φ′εk(r)2 e−Hεk (r) rn−1 dr ≥ nαn

∫ R

η
Zεk(r)φ′εk(r) e−Hεk (r) rn−1 dr.

But the limits (5.67), (5.71), (5.72) and (5.73) imply that Zεk e
−Hεk → Z0 e

−H0

strongly in L2(η,R) and

nαn

∫ R

η
Zεk(r)φ′εk(r) e−Hεk (r) rn−1 dr

−→
k→+∞

nαn

∫
η

R

Z0(r)φ′0(r) e−H0(r)rn−1dr = nαn

∫ R

η
G0(r)φ′0(r)2e−H0(r)rn−1dr

=

∫
Sη,R

Λ∗0 |∇ϕ0|2e−U
∗
0 ,

where we recall that Sη,R = {x ∈ Rn, η < |x| < R}. To sum up, we have

proved that, for all η ∈ (0, R),∫
Sη,R

Λ∗0 |∇ϕ0|2 e−U
∗
0 +

∫
Ω∗
V ∗0 ϕ

2
0 e
−U∗0 ≤ λ∗0

∫
Ω∗
ϕ2

0 e
−U∗0 .

By taking the limit as η → 0+ and using that Λ∗0, U∗0 ∈ L∞(Ω∗) and ϕ0 ∈
H1

0 (Ω∗), it follows from Lebesgue’s dominated convergence theorem that

(5.75)

∫
Ω∗

Λ∗0 |∇ϕ0|2 e−U
∗
0 +

∫
Ω∗
V ∗0 ϕ

2
0 e
−U∗0 ≤ λ∗0

∫
Ω∗
ϕ2

0 e
−U∗0 .

On the other hand, we say that λ ∈ C is a weak eigenvalue, associated to

a weak eigenfunction ϕ ∈ H1
0 (Ω∗,C)\{0}, of the operator

L∗0 = −div(Λ∗0∇) + v∗0 · ∇+ V ∗0

in Ω∗ with Dirichlet boundary condition on ∂Ω∗ if the equation L∗0ϕ = λϕ is

satisfied in the H1
0 (Ω∗,C) weak sense, that is

(5.76)

∫
Ω∗

Λ∗0∇ϕ·∇ψ+

∫
Ω∗
(v∗0 ·∇ϕ)ψ+

∫
Ω∗
V ∗0 ϕψ = λ

∫
Ω∗
ϕψ ∀ ψ ∈ H1

0 (Ω∗,C),

where ψ denotes the complex conjugated of the function ψ. Writing ψ=h e−U
∗
0 ,

the functions h describe H1
0 (Ω∗,C) as the functions ψ describe H1

0 (Ω∗,C), since

U∗0 ∈W 1,∞(Ω∗) (notice that ∇U∗0 = (Λ∗0)−1v∗0 a.e. in Ω∗). Thus, (5.76) means

that∫
Ω∗

Λ∗0∇ϕ · ∇h e−U
∗
0 +

∫
Ω∗
V ∗0 ϕh e

−U∗0 = λ

∫
Ω∗
ϕh e−U

∗
0 ∀ h ∈ H1

0 (Ω∗,C).

But, by Lax-Milgram’s and Rellich’s theorems, the set of such λ’s is a discrete

subset of R which is bounded from below (and the eigenfunctions ϕ are real-

valued up to multiplication by complex numbers) and has a minimum λ0 which

is therefore the lowest weak eigenvalue of L∗0 in Ω∗ with Dirichlet boundary
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condition on ∂Ω∗. We denote this real number λ1(Ω∗,Λ∗0 Id, v∗0, V
∗

0 ) by analogy

with the previous notation. Furthermore, it is classical to see that

λ1(Ω∗,Λ∗0 Id, v∗0, V
∗

0 ) = λ0 = min
ϕ∈H1

0 (Ω∗)\{0}

∫
Ω∗

Λ∗0 |∇ϕ|2e−U
∗
0 +

∫
Ω∗
V ∗0 ϕ

2e−U
∗
0∫

Ω∗
ϕ2e−U

∗
0

.

Since ϕ0 ∈ H1
0 (Ω∗)\{0} (notice that ‖ϕ0‖L2(Ω∗) = 1 by(5.63)), one con-

cludes from (5.62), (5.75) and the previous observations that

λ1(Ω∗,Λ∗0 Id, v∗0, V
∗

0 ) ≤ λ∗0 ≤ λ1(Ω, A, v, V ).

This conclusion leads to the following statement:

Theorem 5.7. Under the same assumptions as in Theorem 2.1, there

exist three radially symmetric fields Λ∗0 ∈ L∞+ (Ω∗), ω∗0 ≥ 0 and V ∗0 ≤ 0 in

L∞(Ω∗) such that, for v∗0 = ω∗0er, the bounds (5.69) and (5.70) are fulfilled

and

(5.77) λ1(Ω∗,Λ∗0 Id, v∗0, V
∗

0 ) ≤ λ1(Ω, A, v, V ),

where λ1(Ω∗,Λ∗0 Id, v∗0, V
∗

0 ) is understood as the lowest weak eigenvalue λ of the

operator −div(Λ∗0∇) + v∗0 · ∇+V ∗0 associated with H1
0 (Ω∗)\{0} eigenfunctions,

in the sense of (5.76).

Remark 5.8. Under the same assumptions as in Theorem 2.1, it follows

from Remark 5.6 that, if τ ∈ R is such that

‖v‖L∞(Ω,Rn) ≤ τ,

then there is a family (Λ∗ε, V
∗
ε )ε>0 of radially symmetric functions such that,

for each ε > 0, Λ∗ε is in C∞(Ω∗)∩L∞+ (Ω∗) and satisfies (2.2), V ∗ε is in L∞(Ω∗)

and satisfies µV ∗ε = µ−V − , and

λ1(Ω∗,Λ∗ε Id, τer, V
∗
ε ) ≤ λ1(Ω, A, v, V ) + ε.

One can then argue as in the above proof of Theorem 5.7, with v∗εk = v∗0 = τer
and ω∗εk = ω∗0 = τ in Ω∗ for all k ∈ N. Therefore, there exists two bounded

radially symmetric functions Λ∗0 ∈ L∞+ (Ω∗) and V ∗0 ≤ 0 satisfying (5.69) and

λ1(Ω∗,Λ∗0 Id, τer, V
∗

0 ) ≤ λ1(Ω, A, v, V ),

where λ1(Ω∗,Λ∗0 Id, τer, V
∗

0 ) is understood in the weak sense, as in Theorem 5.7,

with v∗0 = τer.

Remark 5.9. Consider now the case when Ω is a general nonempty open

subset of Rn with finite measure, and let A ∈W 1,∞(Ω,Sn(R)), v ∈ L∞(Ω,Rn),

V ∈ L∞(Ω) ∩ C(Ω) be such that A ≥ Λ Id a.e. in Ω, where Λ ∈ L∞+ (Ω).

Assume that λ1(Ω, A, v, V ) ≥ 0, where λ1(Ω, A, v, V ) has been characterized

in Remark 2.11.
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We first claim that we get a similar conclusion as in Theorem 2.1 in the

case when Λ is equal to a constant γ > 0 in Ω. Indeed, it follows from (2.17)

and (2.18) that there exists a family of domains (Ωε)ε>0 in C such that Ωε ⊂⊂ Ω

and

0 ≤ λ1(Ω, A, v, V ) ≤ λ1(Ωε, A, v, V ) ≤ λ1(Ω, A, v, V ) + ε

for each ε > 0. To make notation simpler, we use the same symbols for the

fields in Ω and their restrictions in Ωε. Apply Theorem 2.1 to Ωε and to the

fields A, v, V with Λ = γ, and call Ω∗ε the ball centered at the origin with the

same measure as Ωε. There exist two radially symmetric bounded functions

ω∗ε ≥ 0 and V ∗ε ≤ 0 in Ω∗ε such that, for v∗ε = ω∗εer in Ω∗ε,

(5.78) λ1(Ω∗ε, γ Id, v∗ε , V
∗
ε ) ≤ λ1(Ωε, A, v, V ) ≤ λ1(Ω, A, v, V ) + ε

and

(5.79)



‖v∗ε‖L∞(Ω∗ε ,Rn) ≤ ‖v‖L∞(Ωε,Rn) ≤ ‖v‖L∞(Ω,Rn),

‖v∗ε‖L2(Ω∗ε ,Rn) ≤ ‖v‖L2(Ωε,Rn) ≤ ‖v‖L2(Ω,Rn),

−ess sup
Ω

V − ≤ −max
Ωε

V − ≤ V ∗ε ≤ 0 a.e. in Ω∗ε,

‖V ∗ε ‖L1(Ω∗ε) = ‖V −‖L1(Ωε) ≤ ‖V −‖L1(Ω),

‖V ∗ε ‖Lp(Ω∗ε) ≤ ‖V −‖Lp(Ωε) ≤ ‖V −‖Lp(Ω) ∀ 1 ≤ p ≤ +∞.

Extend v∗ε by the vector 0 in Ω∗\Ω∗ε and extend V ∗ε by the constant

−‖V −‖L1(Ω\Ωε) |Ω\Ωε|−1 in Ω∗\Ω∗ε, and still call v∗ε and V ∗ε these extensions

(remember that Ω∗ denotes the ball centered at the origin and having the same

Lebesgue measure as Ω). These extended fields are now defined in Ω∗ (⊃ Ω∗ε)

and they satisfy the same bounds as above in Ω∗. Actually, one still has
(5.80)

‖V ∗ε ‖L1(Ω∗) = ‖V −‖L1(Ω) and ‖V ∗ε ‖Lp(Ω∗) ≤ ‖V −‖Lp(Ω) ∀ 1 ≤ p ≤ +∞

from (5.79) and Hölder’s inequality. Furthermore,

−ess sup
Ω

V − < λ1(Ω∗, γ Id, v∗ε , V
∗
ε ) ≤ λ1(Ω∗ε, γ Id, v∗ε , V

∗
ε ) ≤ λ1(Ω, A, v, V ) + ε

because Ω∗ε ⊂ Ω∗ and because of (5.78). One can then argue as in Step 10 of

the proof of Theorem 2.1 and one can then pass to the limit for a sequence

(εk)k∈N → 0+ as k → +∞. There exist then two radially symmetric bounded

functions ω∗0 ≥ 0 and V ∗0 ≤ 0 in Ω∗ such that, for v∗0 = ω∗0er in Ω∗,

λ1(Ω∗, γ Id, v∗0, V
∗

0 ) ≤ λ1(Ω, A, v, V )

and the bounds (2.4) are satisfied.

In the general case when Λ ∈ L∞+ (Ω) is not assumed to be constant, there

exists a family (Λ∗ε, ω
∗
ε , V

∗
ε )ε>0 of bounded radially symmetric functions in Ω∗ε

such that, for each ε > 0, the functions Λ∗ε and ω∗ε ≥ 0 are in C∞(Ω∗ε) and,
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for v∗ε = ω∗εer in Ω∗ε\{0},
(5.81)

0 < ess inf
Ω

Λ ≤ ess inf
Ωε

Λ ≤ min
Ω∗ε

Λ∗ε ≤ max
Ω∗ε

Λ∗ε ≤ ess sup
Ωε

Λ ≤ ess sup
Ω

Λ,

‖(Λ∗ε)−1‖L1(Ω∗ε) = ‖Λ−1‖L1(Ωε) ≤ ‖Λ−1‖L1(Ω),

‖ω∗ε‖L∞(Ω∗ε) = ‖v∗ε‖L∞(Ω∗ε ,Rn) ≤ ‖v‖L∞(Ωε,Rn) ≤ ‖v‖L∞(Ω,Rn),

‖ |v∗ε |2(Λ∗ε)
−1‖L1(Ω∗ε) = ‖ |v|2Λ−1‖L1(Ωε) ≤ ‖ |v|2Λ−1‖L1(Ω),

−ess sup
Ω

V − ≤ −max
Ωε

V − ≤ V ∗ε ≤ 0 a.e. in Ω∗ε, µV ∗ε = µ−V −|Ωε

and

(5.82)
−ess sup

Ω
V −≤ −max

Ωε

V −< λ1(Ω∗ε,Λ
∗
εId, v

∗
ε , V

∗
ε ) ≤ λ1(Ωε, A, v, V ) + ε

≤ λ1(Ω, A, v, V ) + 2 ε.

Let(ϕε)ε>0 be the family of principal eigenfunctions of the operators−div(Λ∗ε∇)

+ v∗ε · ∇+ V ∗ε in Ω∗ε with Dirichlet boundary conditions on ∂Ω∗ε, normalized so

that ‖ϕε‖L2(Ω∗ε) = 1 for every ε > 0. Extend the fields v∗ε and ϕε by 0 in Ω∗\Ω∗ε,
extend V ∗ε by the constant −‖V −‖L1(Ω\Ωε) |Ω\Ωε|−1 in Ω∗\Ω∗ε and extend Λ∗ε
by the constant ‖Λ−1‖−1

L1(Ω\Ωε) |Ω\Ωε| in Ω∗\Ω∗ε. Thus, (5.80) holds, together

with  0 < ess inf
Ω

Λ ≤ ess inf
Ω∗

Λ∗ε ≤ ess sup
Ω∗

Λ∗ε ≤ ess sup
Ω

Λ,

‖(Λ∗ε)−1‖L1(Ω∗) = ‖Λ−1‖L1(Ω).

Let Rε ∈ (0, R) be the radius of Ω∗ε, that is αnR
n
ε = |Ω∗ε| = |Ωε| for all ε > 0.

Choose any sequence (εk)k∈N → 0+ as k → +∞. From the bounds (5.81)

and (5.82) and from [13], the positive radii Rεk are bounded from below by

a positive constant and then converge, up to extraction of a subsequence, to

a radius R0 ∈ (0, R]. Similar arguments as in the proof of Theorem 5.7 can

then be used, the only difference being that the functions Zεk are defined by

Gεk φ
′
εk

only in [0, R]\{Rεk}. But the passages to the limit hold similarly. In

particular, one has

sup
k∈N
‖Zεk‖H1(r,Rεk ) < +∞ ∀ 0 < r < R0,

while Zεk = 0 on (Rεk , R); hence, up to extraction of a subsequence, the

property (5.72) still holds for some functions Z0 and Z ∈ L2
loc((0, R]). Finally,

there exist three radially symmetric fields Λ∗0 ∈ L∞+ (Ω∗), ω∗0 ≥ 0 and V ∗0 ≤ 0

in L∞(Ω∗) such that, for v∗0 = ω∗0er, the bounds (5.69) and (5.70) are fulfilled

and the conclusion (5.77) holds in the sense of Theorem 5.7.
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5.2.3. Quantified strict inequalities when Ω is not a ball. Let us now turn

to the proof of Theorem 2.3. It shall use the results of Section 4 and it follows

the same scheme as the one of Theorem 2.1.

Proof of Theorem 2.3. Assume here that Ω ∈ C is not a ball. Let A ∈
W 1,∞(Ω,Sn(R)), Λ ∈ L∞+ (Ω), v ∈ L∞(Ω,Rn), V ∈ C(Ω), MA > 0, mΛ > 0,

Mv ≥ 0 and MV ≥ 0 be such that A ≥ Λ Id a.e. in Ω and

‖A‖W 1,∞(Ω,Sn(R)) ≤MA, ess inf
Ω

Λ ≥ mΛ,

‖v‖L∞(Ω,Rn) ≤Mv, ‖V ‖L∞(Ω) ≤MV .

Throughout the proof, the notation ρ = ρ(Ω, n,MA,mΛ,Mv,MV ) denotes a

constant ρ which only depends on Ω, n, MA, mΛ, Mv and MV .

Assume that λ1(Ω, A, v, V ) > 0 and call ϕ the unique principal eigen-

function of the operator −div(A∇) + v · ∇+ V in Ω with Dirichlet boundary

condition, such that maxΩ ϕ = 1. Namely, the function ϕ satisfies

(5.83)


−div(A∇ϕ) + v · ∇ϕ+ V ϕ = λ1(Ω, A, v, V )ϕ in Ω,

ϕ > 0 in Ω,

‖ϕ‖L∞(Ω) = 1,

ϕ = 0 on ∂Ω,

and it is in W 2,p(Ω) and in C1,α(Ω) for all 1 ≤ p < +∞ and 0 ≤ α < 1.

First, remember that

−MV ≤ min
Ω
V < λ1(Ω, A, v, V ).

Then, let B be an open ball included in Ω. As observed in Step 4 of the proof

of Theorem 2.1, it follows from Lemma 1.1 in [13] that there exists a constant

C > 0 only depending on B, n, MA, mΛ, Mv and MV , such that

λ1(Ω, A, v, V ) ≤ λ1(B,A, v, V ) ≤ C.

From standard elliptic estimates, there exists then a constant

N ′ = N ′(Ω, n,MA,mΛ,Mv,MV ) > 0

such that

‖ϕ‖C1,1/2(Ω) ≤ N
′.

We now claim the existence of a positive constant

δ′ = δ′(Ω, n,MA,mΛ,Mv,MV ) > 0

such that

ϕ(x) ≥ δ′ × d(x, ∂Ω) ∀ x ∈ Ω.

Assume not. Then there is a sequence of fields (Ap,Λp, vp, Vp)p∈N in

W 1,∞(Ω,Sn(R))× L∞+ (Ω)× L∞(Ω,Rn)× C(Ω)
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such that Ap ≥ Λp Id a.e. in Ω, ‖Ap‖W 1,∞(Ω,Sn(R)) ≤MA, ess inf
Ω

Λp ≥ mΛ,

‖vp‖L∞(Ω,Rn) ≤Mv, ‖Vp‖L∞(Ω) ≤MV

for all p ∈ N and a sequence of points (xp)p∈N in Ω such that

(5.84) 0 ≤ ϕp(xp) <
d(xp, ∂Ω)

p+ 1
∀ p ∈ N,

where one calls (λ1(Ω, Ap, vp, Vp), ϕp) the unique solution of
−div(Ap∇ϕp) + vp · ∇ϕp + Vpϕp = λ1(Ω, Ap, vp, Vp)ϕp in Ω,

ϕp > 0 in Ω,

‖ϕp‖L∞(Ω) = 1,

ϕp = 0 on ∂Ω

for each p∈N. We have already noticed that the sequence (λ1(Ω,Ap,vp,Vp))p∈N
is bounded. From standard elliptic estimates, the sequence (ϕp)p∈N is also

bounded in W 2,q(Ω) and C1,α(Ω) for each 1 ≤ q < +∞ and 0 ≤ α < 1. Up

to a subsequence, one can assume without loss of generality that Ap → A∞
(componentwise) uniformly in Ω, ∇Ap ⇀ ∇A∞ (componentwise) in σ(L∞, L1),

vp ⇀ v∞ (componentwise) in σ(L∞, L1), Vp ⇀ V∞ in σ(L∞, L1), ϕp → ϕ∞
weakly in W 2,q(Ω) for all 1≤q<+∞ and strongly in C1,α(Ω) for all 0 ≤ α<1,

λ1(Ω, Ap, vp, Vp)→ λ and xp → x∞ ∈ Ω as p→ +∞. It follows that
−div(A∞∇ϕ∞) + v∞ · ∇ϕ∞ + V∞ϕ∞ = λϕ∞ in Ω,

ϕ∞ ≥ 0 in Ω,

‖ϕ∞‖L∞(Ω) = 1,

ϕ∞ = 0 on ∂Ω

and ϕ∞(x∞) = 0. Since A∞ ≥ mΛId in Ω, the strong maximum principle

yields that ϕ∞ > 0 in Ω, whence x∞ ∈ ∂Ω. On the other hand, (5.84) implies

that |∇ϕ∞(x∞)| = 0, which is impossible from Hopf lemma. One has then

reached a contradiction.

Therefore, coming back to the fields (A,Λ, v, V ) and to the function ϕ

solving (5.83), we get the existence of δ′ = δ′(Ω, n,MA,mΛ,Mv,MV ) > 0

such that

ϕ(x) ≥ δ′ × d(x, ∂Ω) ∀ x ∈ Ω.

In other words, the function ϕ is in the set E1/2,N ′,δ′(Ω).

Call

N = 3N ′(Ω, n,MA,mΛ,Mv,MV ) > 0

and

δ =
δ′(Ω, n,MA,mΛ,Mv,MV )

3
> 0.
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Then, call η > 0 the positive constant which is given in Corollary 4.5, with the

choice α = 1/2. It only depends on Ω, N and δ, and therefore,

η = η(Ω, n,MA,mΛ,Mv,MV ).

Call now

θ = θ(Ω, n,MA,mΛ,Mv,MV ) =
η(Ω, n,MA,mΛ,Mv,MV )

2
> 0.

Then, choose any ε′ ∈ (0, 1) such that

(5.85)

λ1(Ω, A, v, V ) + 2ε′

1 + η
+ ε′ + ε′m−1

Λ + ε′‖V −‖∞

1− ε′
≤ λ1(Ω, A, v, V )

1 + θ
.

It is indeed possible to choose such a ε′ since λ1(Ω, A, v, V ) > 0 and 0 < θ < η.

Under the notation of Step 4 of the proof of Theorem 2.1, there exists

a sequence of C∞ fields (Ak,Λk, vk)k∈N satisfying (5.32) and (5.33), and such

that the solutions ϕk of (5.36) converge to ϕ as k → +∞ weakly in W 2,p(Ω)

and strongly in C1,α(Ω) for all 1 ≤ p < +∞ and 0 ≤ α < 1. Furthermore,

it has been proved that λ1(Ω, Ak, vk, V ) → λ1(Ω, A, v, V ) as k → +∞. Then

there exists K ∈ N such that (5.38) holds and

ϕK ∈ E1/2,2N ′,δ′/2(Ω).

Under the same notation as in Step 5 of the proof of Theorem 2.1, the functions

ψl converge to ϕK as l → +∞ in W 2,p(Ω) and C1,α(Ω) for all 1 ≤ p < +∞
and 0 ≤ α < 1. Therefore, as in Step 5, there exists L ∈ N such that (5.44)

holds and

ψL ∈ E1/2,3N ′,δ′/3(Ω) = E1/2,N,δ(Ω).

Therefore, all assumptions of Corollary 4.5 are satisfied with

(AΩ,ΛΩ, ω, V, ψ, ω0, µ) = (AK ,ΛK , |vK |, V, ψL, ε′, λ1(Ω, A, v, V ) + 2ε′).

Notice especially that ω0 and µ are nonnegative. With the same notation as

in Sections 3 and 4, it then follows from Corollary 4.5 that∫
Ω∗

î
Λ̂(x)|∇ψ̃(x)|2−ε′|∇ψ̃(x)|ψ̃(x)+“V (x)ψ̃(x)2

ó
e−U(x)dx

≤ µ

1+η

∫
Ω∗
ψ̃(x)2e−U(x)dx.

The same calculations as in Steps 6, 7 and 8 of the proof of Theorem 2.1

can be carried out, where in (5.45), µ = λ1(Ω, A, v, V ) + 2ε′ is replaced with

(λ1(Ω, A, v, V ) + 2ε′)/(1 + η). One then gets the existence of three radially

symmetric C∞(Ω∗) fields Λ∗ > 0, ω∗ ≥ 0, V
∗ ≤ 0 and a nonpositive radially
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symmetric L∞(Ω∗) field V ∗, which satisfy (2.2) and are such that µV ∗=µ−V − ,

V ∗≤V ∗ and

λ1(Ω∗,Λ∗Id, v∗, V ∗) ≤ λ1(Ω∗,Λ∗Id, v∗, V
∗
)

≤

λ1(Ω, A, v, V ) + 2ε′

1 + η
+ ε′ + ε′m−1

Λ + ε′‖V −‖∞

1− ε′
,

where v∗ = ω∗er in Ω∗. As a consequence, there holds

λ1(Ω∗,Λ∗Id, v∗, V ∗) ≤ λ1(Ω∗,Λ∗Id, v∗, V
∗
) ≤ λ1(Ω, A, v, V )

1 + θ

from the choice of ε′ in (5.85). The proof of Theorem 2.3 is now complete. �

5.3. Constraints on the eigenvalues of the matrix field A. We now give

the proof of Theorem 2.4. The following elementary lemma will be needed:

Lemma 5.10. Let n ≥ 2, p ∈ {1, . . . , n− 1}, ω > 0, σ > 0 and A ∈ Sn(R)

be positive definite such that det(A) ≥ ω and σp(A) ≤ σ. Then, there exist

two positive numbers a1, a2 which only depend on n, p, ω and σ such that

det(D) = ω, σp(D) = σ, A ≥ a1Id and D ≥ a1Id, where D is the diagonal

matrix D = diag(a1, a2, . . . , a2) ∈ Sn(R).

Proof. Notice first that, as already underlined in the introduction, the

assumptions of the lemma imply that Cp
nω

p/n ≤ σ. Let f(s) be defined for all

s > 0 as

f(s) = ωCp−1
n−1s

p−n + Cp
n−1s

p.

The function s is continuous and strictly convex in (0,+∞). Furthermore,

f(0+) = f(+∞) = +∞ and elementary calculations give

min
s∈(0,+∞)

f(s) = f(ω1/n) = Cp
nω

p/n ≤ σ.

Call

a2 = max {s > 0, f(s) ≤ σ}, a1 =
ω

(a2)n−1
, D = diag(a1, a2, . . . , a2) ∈ Sn(R).

The real numbers a1 and a2 are well defined and positive. They only depend

on n, p, ω and σ. Furthermore, a1 ≤ ω1/n ≤ a2, D ∈ Sn(R) and

det(D) = ω, σp(D) = Cp−1
n−1a1(a2)p−1 + Cp

n−1(a2)p = f(a2) = σ.

Denote 0 < λ1 ≤ · · · ≤ λn the eigenvalues of A. Call

0 < ã2 =

Ñ ∏
2≤i≤n

λi

é1/(n−1)
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and

(5.86) 0 < ã1 =
ω

(ã2)n−1
≤ det(A)∏

2≤i≤n
λi

= λ1.

Since ω = ã1(ã2)n−1 ≤ λ1(ã2)n−1, one has

f(ã2) = ωCp−1
n−1(ã2)p−n + Cp

n−1(ã2)p

≤ Cp−1
n−1λ1 ×

Ñ ∏
2≤i≤n

λi

é p−1
n−1

+ Cp
n−1 ×

Ñ ∏
2≤i≤n

λi

é p
n−1

.

For q = p− 1 or q = p, call

Jq = {J ⊂ {2, . . . , n}, card(J) = q}

and, for all I ⊂ {1, . . . , n},
πI =

∏
i∈I

λi.

Observe that card(Jq) = Cq
n−1 and that

∏
2≤i≤n

λi =

Ñ ∏
J∈Jp−1

πJ

é1/Cp−2
n−2

=

Ñ ∏
J∈Jp

πJ

é1/Cp−1
n−2

.

Thus,

f(ã2) ≤ Cp−1
n−1λ1×

Ñ ∏
J∈Jp−1

πJ

é p−1

(n−1)Cp−2
n−2

+ Cp
n−1×

Ñ ∏
J∈Jp

πJ

é p

(n−1)Cp−1
n−2

= Cp−1
n−1λ1 ×

Ñ ∏
J∈Jp−1

πJ

é1/Cp−1
n−1

+ Cp
n−1 ×

Ñ ∏
J∈Jp

πJ

é1/Cp
n−1

≤ λ1 ×
∑

J∈Jp−1

πJ +
∑
J∈Jp

πJ

=
∑

I⊂{1,...,n}, card(I)=p

πI

= σp(A)

≤ σ.

Hence, ã2 ≤ a2 and

ã1 =
ω

(ã2)n−1
≥ ω

(a2)n−1
= a1.

Together with (5.86), it follows that λ1 ≥ a1, whence A ≥ a1Id. �
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Proof of Theorem 2.4. Let Ω, A, v, V , p, ω, σ be as in Theorem 2.4, and

let a1 > 0 and a2 > 0 be given by Lemma 5.10. Therefore,

A(x) ≥ a1Id ∀ x ∈ Ω.

For all x ∈ Ω∗\{0}, define now A∗(x) as in Theorem 2.4. Thus, A∗(x) ≥ a1Id

and there is an invertible matrix P (x) of size n× n such that

A∗(x) = P (x)DP (x)−1,

where D = diag(a1, a2, . . . , a2) ∈ Sn(R). Hence,

det(A∗(x)) = det(D) = ω and σp(A
∗(x)) = σp(D) = σ ∀ x ∈ Ω∗\{0}.

Let ε > 0 be given. From Theorem 2.1 applied with Λ equal to the positive

constant a1, it follows that there exist two radially symmetric C∞(Ω∗) fields

ω∗ ≥ 0 and V
∗ ≤ 0, and a nonpositive radially symmetric L∞(Ω∗) field V ∗,

such that, for v∗ = ω∗er in Ω∗\{0}, ‖v
∗‖L∞(Ω∗,Rn) ≤ ‖v‖L∞(Ω,Rn), ‖v∗‖L2(Ω∗) = ‖v‖L2(Ω),

µ|V ∗| ≤ µV − , µV ∗ = µ−V − , V
∗ ≤ V ∗

and

λ1(Ω∗, a1Id, v∗, V ∗) ≤ λ1(Ω∗, a1Id, v∗, V
∗
) ≤ λ1(Ω, A, v, V ) + ε.

From Remark 2.5, one concludes that

λ1(Ω∗, A∗, v∗, V ∗) ≤ λ1(Ω∗, A∗, v∗, V
∗
) ≤ λ1(Ω, A, v, V ) + ε.

Lastly, since A ≥ a1Id in Ω and A∗∇φ = a1∇φ for any radially symmetric

function φ in Ω∗, the existence of two radially symmetric bounded functions

ω∗0 ≥ 0 and V ∗0 ≤ 0 in Ω∗ satisfying (2.4) and

λ1(Ω∗, A∗, v∗0, V
∗

0 ) ≤ λ1(Ω, A, v, V ),

where v∗0 = ω∗0er in Ω∗, can be done as in Step 10 of the proof of Theorem 2.1.

This completes the proof of Theorem 2.4. �

Remark 5.11. Consider now the case when Ω is a general open subset of

Rn with finite measure, and let (A, v, V ) be as in Theorem 2.4, with the extra

assumption V ∈ L∞(Ω). Since A ≥ a1Id in Ω, it follows, as in Remark 5.9,

that there exist two radially symmetric bounded functions ω∗0 ≥ 0 and V ∗0 ≤ 0

in Ω∗ satisfying (2.4) and λ1(Ω∗, A∗, v∗0, V
∗

0 ) ≤ λ1(Ω, A, v, V ), where v∗0 = ω∗0er
in Ω∗ and A∗ is the same as in Theorem 2.4.
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6. The cases of Lp constraints

In this section, we focus on optimization and comparison results for

λ1(Ω, A, v, V ) when Ω has fixed Lebesgue measure, A satisfies the same con-

straints as in Theorem 2.1 and v and V satisfy Lp constraints. We first give

in Section 6.1 some optimization results when Ω is fixed. Then, relying on

Theorem 2.1, we derive in Section 6.2 some Faber-Krahn type inequalities.

6.1. Optimization in fixed domains. In Theorem 2.1, we were able to com-

pare the eigenvalue λ1(Ω, A, v, V ) to λ1(Ω∗,Λ∗Id, v∗, V ∗) in Ω∗, where the L1

norms of Λ−1 (with A ≥ Λ Id) and |v|2Λ−1 and the distribution function of

V − were the same as for the new fields in Ω∗ (in particular, all Lp norms of

V − were preserved). In this section, we fix the domain Ω and we minimize and

maximize λ1(Ω, A, v, V ) when A ≥ Λ Id and v and V satisfy some Lp ∩ L∞
constraints with some given weights. Furthermore, we prove the uniqueness of

the optimal fields when A is fixed and v and V satisfy given L∞ constraints.

6.1.1. The case of Lp constraints, 1 < p ≤ +∞. Given Ω ∈ C, M ≥ 0,

Λ ∈ L∞+ (Ω), 1 < p, q ≤ +∞, w1,p, w1,∞, w2,q, w2,∞ ∈ L∞+ (Ω), τ1,p, τ1,∞, τ2,q,

τ2,∞ ≥ 0 such that M ≥ ess supΩ Λ, define

AΩ,M,Λ,p,q,w1,p,w1,∞,w2,q ,w2,∞,τ1,p,τ1,∞,τ2,q ,τ2,∞

=
{

(A, v, V ) ∈W 1,∞(Ω,Sn(R))× L∞(Ω,Rn)× L∞(Ω);

‖A‖W 1,∞(Ω,Sn(R)) ≤M, A ≥ Λ Id a.e. in Ω,

‖w1,pv‖p ≤ τ1,p, ‖w1,∞v‖∞ ≤ τ1,∞,

‖w2,qV ‖q ≤ τ2,q, ‖w2,∞V ‖∞ ≤ τ2,∞
}

and

(6.1)

λ(Ω,M,Λ, p, q, w1,p, w1,∞, w2,q, w2,∞, τ1,p, τ1,∞, τ2,q, τ2,∞)

= inf
(A,v,V )∈AΩ,M,Λ,p,q,w1,p,w1,∞,w2,q,w2,∞,τ1,p,τ1,∞,τ2,q,τ2,∞

λ1(Ω, A, v, V ),

λ(Ω,M,Λ, p, q, w1,p, w1,∞, w2,q, w2,∞, τ1,p, τ1,∞, τ2,q, τ2,∞)

= sup
(A,v,V )∈AΩ,M,Λ,p,q,w1,p,w1,∞,w2,q,w2,∞,τ1,p,τ1,∞,τ2,q,τ2,∞

λ1(Ω, A, v, V ).

Observe that AΩ,M,Λ,p,q,w1,p,w1,∞,w2,q ,w2,∞,τ1,p,τ1,∞,τ2,q ,τ2,∞ 6= ∅, that

λ(Ω,M,Λ, p, q, w1,p, w1,∞, w2,q, w2,∞, τ1,p, τ1,∞, τ2,q, τ2,∞) ≥ − τ2,∞
ess infΩw2,∞

and that

λ(Ω,M,Λ, p, q, w1,p, w1,∞, w2,q, w2,∞, τ1,p, τ1,∞, τ2,q, τ2,∞) < +∞

by [13].
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Our first result deals with the optimization problem for (6.1):

Theorem 6.1. Let Ω ∈ C, M ≥ 0, Λ ∈ L∞+ (Ω), 1 < p, q ≤ +∞, w1,p,

w1,∞, w2,q , w2,∞ ∈ L∞+ (Ω) and τ1,p, τ1,∞, τ2,q , τ2,∞ ≥ 0 be given such that

M ≥ ess supΩ Λ. Then,
(1) There exists (A, v, V ) ∈ AΩ,M,Λ,p,q,w1,p,w1,∞,w2,q ,w2,∞,τ1,p,τ1,∞,τ2,q ,τ2,∞ such

that, if ϕ = ϕΩ,A,v,V :

(a) λ(Ω,M,Λ, p, q, w1,p, w1,∞, w2,q, w2,∞, τ1,p, τ1,∞, τ2,q, τ2,∞)

= λ1(Ω, A, v, V ),

(b) v · ∇ϕ = −|v| × |∇ϕ|a.e. in Ω,

(c) V (x) ≤ 0 a.e. in Ω,

(d) ‖w1,pv‖p = τ1,p or ‖w1,∞v‖∞ = τ1,∞, ‖w2,qV ‖q = τ2,q or

‖w2,∞V ‖∞ = τ2,∞.

Moreover, if (A, v, V ) ∈ AΩ,M,Λ,p,q,w1,p,w1,∞,w2,q ,w2,∞,τ1,p,τ1,∞,τ2,q ,τ2,∞ is such

that

λ(Ω,M,Λ, p, q, w1,p, w1,∞, w2,q, w2,∞, τ1,p, τ1,∞, τ2,q, τ2,∞) = λ1(Ω, A, v, V )

and if ϕ = ϕΩ,A,v,V , then properties (b), (c) and (d) hold with ϕ, v, V

instead of ϕ, v and V ,

(2) There exists (A, v, V ) ∈ AΩ,M,Λ,p,q,w1,p,w1,∞,w2,q ,w2,∞,τ1,p,τ1,∞,τ2,q ,τ2,∞ such

that, if ϕ = ϕΩ,A,v,V :

(a) λ(Ω,M,Λ, p, q, w1,p, w1,∞, w2,q, w2,∞, τ1,p, τ1,∞, τ2,q, τ2,∞)

= λ1(Ω, A, v, V ),

(b) v · ∇ϕ = |v| × |∇ϕ| a.e. in Ω,

(c) V (x) ≥ 0 a.e. in Ω,

(d) ‖w1,pv‖p = τ1,p or ‖w1,∞v‖∞ = τ1,∞, ‖w2,qV ‖q = τ2,q or

‖w2,∞V ‖∞ = τ2,∞.

Moreover, if (A, v, V ) ∈ AΩ,M,Λ,p,q,w1,p,w1,∞,w2,q ,w2,∞,τ1,p,τ1,∞,τ2,q ,τ2,∞ is such

that

λ(Ω,M,Λ, p, q, w1,p, w1,∞, w2,q, w2,∞, τ1,p, τ1,∞, τ2,q, τ2,∞) = λ1(Ω, A, v, V )

and if ϕ = ϕΩ,A,v,V , then properties (b), (c) and (d) hold with ϕ, v, V

instead of ϕ, v and V .

We will use several times in the proof the following comparison result:

Lemma 6.2. Let Ω ∈ C, µ ∈ R, A ∈ W 1,∞(Ω,Sn(R)) with A ≥ γ Id a.e.

in Ω for some γ > 0, v ∈ L∞(Ω,Rn) and V ∈ L∞(Ω). Assume that ϕ and ψ

are functions in W 2,r(Ω) for all 1 ≤ r < +∞, satisfying ‖ϕ‖∞ = ‖ψ‖∞ and

ϕ = ψ = 0 on ∂Ω. Assume also that ϕ ≥ 0 in Ω, ψ > 0 in Ω and{
−div(A∇ψ) + v.∇ψ + V ψ ≥ µψ a.e. in Ω,

−div(A∇ϕ) + v.∇ϕ+ V ϕ ≤ µϕ a.e. in Ω.

Then ϕ = ψ in Ω.
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Proof. The proof uses a classical comparison method. (This method was

used for instance in [13].) We give it here for the sake of completeness. Since

ψ > 0 in Ω and ψ = 0 on ∂Ω, the Hopf lemma yields ν(x) · ∇ψ(x) < 0 on ∂Ω,

where, for all x ∈ ∂Ω, ν(x) denotes the outward normal unit vector at x. Since

ϕ ∈ C1,β(Ω) for all 0 ≤ β < 1, ϕ ≥ 0 in Ω and ϕ = 0 on ∂Ω, it follows that

there exists γ > 0 such that γψ > ϕ in Ω. Define

γ∗ = inf {γ > 0, γψ > ϕ in Ω} .

One clearly has γ∗ψ ≥ ϕ in Ω, so that γ∗ > 0. Define w = γ∗ψ − ϕ ≥ 0 and

assume that w > 0 everywhere in Ω. Since

(6.2) − div(A∇w) + v · ∇w + V w − µw ≥ 0 a.e. in Ω

and w = 0 on ∂Ω, the Hopf maximum principle implies that ν ·∇w < 0 on ∂Ω.

As above, this yields the existence of κ > 0 such that w > κϕ in Ω, whence

γ∗ψ/(1+κ) > ϕ in Ω. This is a contradiction with the minimality of γ∗. Thus,

there exists x0 ∈ Ω such that w(x0) = 0 (i.e. γ∗ψ(x0) = ϕ(x0)). Since w ≥ 0

in Ω, it follows from (6.2) and from the strong maximum principle, that w = 0

in Ω, which means that ϕ and ψ are proportional. Since they are nonnegative

in Ω and have the same L∞ norm in Ω, one has ϕ = ψ, which ends the proof

of Lemma 6.2. �

For the proof of Theorem 6.1, we will treat the minimization problem only,

the maximization problem being clearly analogous. It is plain to see that the

result is a consequence of the two following lemmata:

Lemma 6.3. Let Ω ∈ C, M ≥ 0, Λ ∈ L∞+ (Ω), 1 < p, q ≤ +∞, w1,p,

w1,∞, w2,q , w2,∞ ∈ L∞+ (Ω) and τ1,p, τ1,∞, τ2,q , τ2,∞ ≥ 0 be given such that

M ≥ ess supΩ Λ. Assume that

(A, v, V ) ∈ AΩ,M,Λ,p,q,w1,p,w1,∞,w2,q ,w2,∞,τ1,p,τ1,∞,τ2,q ,τ2,∞

is such that

(6.3)

λ(Ω,M,Λ, p, q, w1,p, w1,∞, w2,q, w2,∞, τ1,p, τ1,∞, τ2,q, τ2,∞) = λ1(Ω, A, v, V ),

and let ϕ = ϕΩ,A,v,V . Then, properties (b), (c) and (d) in Theorem 6.1 hold.

Lemma 6.4. Let Ω ∈ C, M ≥ 0, Λ ∈ L∞+ (Ω), 1 < p, q ≤ +∞, w1,p,

w1,∞, w2,q , w2,∞ ∈ L∞+ (Ω) and τ1,p, τ1,∞, τ2,q , τ2,∞ ≥ 0 be given such that

M ≥ ess supΩ Λ. Then, there exists

(A, v, V ) ∈ AΩ,M,Λ,p,q,w1,p,w1,∞,w2,q ,w2,∞,τ1,p,τ1,∞,τ2,q ,τ2,∞

such that (6.3) holds.
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Proof of Lemma 6.3. Let A, v, V and ϕ as in Lemma 6.3. Remember that

ϕ ∈ C1(Ω). Define, for a.e. x ∈ Ω,

w(x) =


− |v(x)|

∇ϕ(x)∣∣∣∇ϕ(x)
∣∣∣ if ∇ϕ(x) 6= 0,

0 if ∇ϕ(x) = 0

so that w · ∇ϕ = − |v| ×
∣∣∣∇ϕ∣∣∣ ≤ v · ∇ϕ a.e. in Ω, and set

µ = λ1(Ω, A, w, V ) and ψ = ϕΩ,A,w,V .

Notice that |w| ≤ |v| a.e. in Ω, whence

(A,w, V ) ∈ AΩ,M,Λ,p,q,w1,p,w1,∞,w2,q ,w2,∞,τ1,p,τ1,∞,τ2,q ,τ2,∞

and

λ := λ(Ω,M,Λ, p, q, w1,p, w1,∞, w2,q, w2,∞, τ1,p, τ1,∞, τ2,q, τ2,∞) ≤ µ.

Thus, one has{
−div(A∇ϕ) + w·∇ϕ+ V ϕ ≤ −div(A∇ϕ) + v ·∇ϕ+ V ϕ = λϕ ≤ µϕ

−div(A∇ψ) + w·∇ψ + V ψ = µψ

a.e. in Ω, and Lemma 6.2 yields ψ = ϕ and therefore µ = λ and v · ∇ϕ =

w · ∇ϕ = − |v| ×
∣∣∣∇ϕ∣∣∣ a.e. in Ω.

As far as assertion (c) is concerned, define, for a.e. x ∈ Ω,

W (x) =

{
V (x) if V (x) ≤ 0,

0 if V (x) > 0.

Observe that |W | ≤ |V | a.e. in Ω, whence

(A, v,W ) ∈ AΩ,M,Λ,p,q,w1,p,w1,∞,w2,q ,w2,∞,τ1,p,τ1,∞,τ2,q ,τ2,∞ .

If µ = λ1(Ω, A, v,W ) and ψ = ϕΩ,A,v,W , one therefore has λ ≤ µ and

−div(A∇ψ) + v · ∇ψ +Wψ = µψ a.e. in Ω,

while, since Wϕ ≤ V ϕ a.e. in Ω,

−div(A∇ϕ) + v · ∇ϕ+Wϕ ≤ µϕ a.e. in Ω.

Lemma 6.2 therefore shows that ψ = ϕ, and it follows that Wϕ = V ϕ a.e. in

Ω, which implies W = V a.e. in Ω since ϕ > 0 in Ω, and this is assertion (c).

Assume now that ‖w1,pv‖p < τ1,p and ‖w1,∞v‖∞ < τ1,∞, and define, for

a.e. x ∈ Ω,

w(x) =


− (|v(x)|+ ε)

∇ϕ(x)∣∣∣∇ϕ(x)
∣∣∣ if ∇ϕ(x) 6= 0,

0 if ∇ϕ(x) = 0,
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where ε > 0 is choosen in such a way that ‖w1,pw‖p ≤ τ1,p and ‖w1,∞w‖∞ ≤
τ1,∞, so that, if µ = λ1(Ω, A, w, V ), one has λ ≤ µ. Let ψ = ϕΩ,A,w,V . Observe

that

−div(A∇ϕ) + w · ∇ϕ+ V ϕ ≤ λϕ ≤ µϕ a.e. in Ω,

since w · ∇ϕ = − (|v|+ ε)
∣∣∣∇ϕ∣∣∣ ≤ −|v| × |∇ϕ| ≤ v · ∇ϕ a.e. in Ω, while

−div(A∇ψ) + w · ∇ψ + V ψ = µψ a.e. in Ω.

Another application of Lemma 6.2 yields that ψ = ϕ and therefore w · ∇ϕ =

v ·∇ϕ, so that −ε
∣∣∣∇ϕ∣∣∣ = 0 a.e. in Ω, which is impossible. One argues similarly

for V , using the fact that V ≤ 0 a.e. in Ω. �

Proof of Lemma 6.4. Write

λ = λ(Ω,M,Λ, p, q, w1,p, w1,∞, w2,q, w2,∞, τ1,p, τ1,∞, τ2,q, τ2,∞).

There exist a sequence (Ak)k∈N ∈ W 1,∞(Ω,Sn(R)) with ‖Ak‖W 1,∞(Ω,Sn(R))

≤M and Ak ≥ Λ Id a.e. in Ω, a sequence (vk)k∈N ∈ L∞(Ω,Rn) with ‖w1,pvk‖p
≤ τ1,p and ‖w1,∞vk‖∞ ≤ τ1,∞, and a sequence (Vk)k∈N ∈ L∞(Ω) with ‖w2,qVk‖q
≤ τ2,q and ‖w2,∞Vk‖∞ ≤ τ2,∞, such that

λk := λ1(Ω, Ak, vk, Vk)→ λ as k → +∞.

For each k ∈ N, call ϕk = ϕΩ,Ak,vk,Vk , so that

−div(Ak∇ϕk) + vk · ∇ϕk + Vkϕk = λkϕk in Ω and ϕk = 0 on ∂Ω.

By the usual elliptic estimates, the functions ϕk’s are uniformly bounded in the

spaces W 2,r(Ω) for all 1 ≤ r < +∞, and therefore in C1,α(Ω) for all 0 ≤ α < 1.

Therefore, up to a subsequence, one may assume that, for some nonnegative

function ϕ ∈ W 2,r(Ω) for all 1 ≤ r < +∞, ϕk ⇀ ϕ weakly in W 2,r(Ω)

for all 1 ≤ r < +∞ and ϕk → ϕ strongly in C1,α(Ω) for all 0 ≤ α < 1,

as k → +∞. Similarly, there exists A ∈ W 1,∞(Ω,Sn(R)) such that (up to

extraction), Ak → A uniformly in Ω and, for each 1 ≤ j ≤ n, ∂jAk ⇀ ∂jA

in σ(L∞(Ω), L1(Ω)) componentwise. In particular, ‖A‖W 1,∞(Ω,Sn(R)) ≤M and

A ≥ Λ Id a.e. in Ω. Finally, up to extraction again, there exists ω ∈ L∞(Ω)

such that |vk| ⇀ ω ≥ 0 in L∞(Ω) weak-* and then weakly in Lr(Ω) for all

1 ≤ r < +∞, and there exists V ∈ L∞(Ω) such that Vk ⇀ V in L∞(Ω)

weak-* and then weakly in Lr(Ω) for all 1 ≤ r < +∞. Since, for all k ≥ 1, by

Cauchy-Schwarz,

−div(Ak∇ϕk)− |vk| |∇ϕk|+ Vkϕk ≤ λkϕk a.e. in Ω,

one has

−div(A∇ϕ)− ω
∣∣∣∇ϕ∣∣∣+ V ϕ ≤ λϕ a.e. in Ω.
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Define now, for a.e. x ∈ Ω,

v(x) =


−ω(x)

∇ϕ(x)∣∣∣∇ϕ(x)
∣∣∣ if ∇ϕ(x) 6= 0,

0 if ∇ϕ(x) = 0,

so that v · ∇ϕ = −ω
∣∣∣∇ϕ∣∣∣ a.e. in Ω. One therefore has

(6.4) − div(A∇ϕ) + v · ∇ϕ+ V ϕ ≤ λϕ a.e. in Ω and ϕ = 0 on ∂Ω.

Observe that (A, v, V ) ∈ AΩ,M,Λ,p,q,w1,p,w1,∞,w2,q ,w2,∞,τ1,p,τ1,∞,τ2,q ,τ2,∞ . Define

now µ = λ1(Ω, A, v, V ) and ψ = ϕΩ,A,v,V , so that λ ≤ µ. It follows from (6.4)

that {
−div(A∇ψ) + v · ∇ψ + V ψ = µψ a.e. in Ω,

−div(A∇ϕ) + v · ∇ϕ+ V ϕ ≤ µϕ in Ω.

Moreover, ϕ ≥ 0 in Ω, ψ > 0 in Ω, ϕ = ψ = 0 on ∂Ω and
∥∥∥ϕ∥∥∥

∞
= ‖ψ‖∞ = 1.

Lemma 6.2 therefore yields ϕ = ψ, hence λ = µ. This ends the proof of

Lemma 6.4. �

Remark 6.5. What happens in Theorem 6.1 if one drops the L∞ bounds

for v or V ? Even if one still assumes that v and V are qualitatively in L∞ (so

that the principal eigenvalue of −div(A∇) + v · ∇+ V is well defined by [13]),

it turns out that the infimum or the supremum considered there may not be

achieved. For instance, fix 1 < p < n, Ω ∈ C, τ > 0, A = Id and V = 0 in Ω,

and define

λ(Ω, τ) = inf
v∈L∞(Ω,Rn), ‖v‖p≤τ

λ1(Ω, Id, v, 0).

Since the operator −∆+v ·∇ satisfies the maximum principle in Ω, its principal

eigenvalue is positive, for each v ∈ L∞(Ω,Rn), and therefore λ(Ω, τ) ≥ 0. We

claim that λ(Ω, τ) = 0. Indeed, fix ρ0 > 0 such that there exists a ball B0

with radius ρ0 included in Ω. Call x0 its center. For all A > 0 large enough,

define ρA ∈ (0, ρ0) such that A(αnρ
n
A)1/p = τ (recall that αn is the Lebesgue

measure of the Euclidean unit ball in Rn), let BA = B(x0, ρA) be the ball with

the same center x0 as B0 and with radius ρA, and set v = A×1BAer(·−x0) in

Ω, so that ‖v‖Lp(Ω,Rn) = τ . One has λ1(Ω, Id, v, 0) ≤ λ1(BA, Id, Aer(· − x0), 0)

since BA ⊂ Ω. But

λ1(BA, Id, Aer(· − x0), 0) =
µA
ρ2
A

,

where µA = λ1(‹B, Id, AρAer(· − x0), 0) is the principal eigenvalue of −∆ +

AρAer(· − x0) · ∇ on the ball ‹B with center x0 and with radius 1, under

Dirichlet boundary condition. Notice that AρA → +∞ as A → +∞ since

1 < p < n. Furthermore, µA = λ1(Bn
1 , AρAer) under the notation (2.15),

where Bn
1 is the Euclidean ball of Rn with center 0 and radius 1. It then
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follows immediately from Appendix 7.3 that logµA ∼ −AρA when A → +∞
(see also [22] for related results under stronger regularity assumptions). As a

consequence, there exists A0 > 0 such that, for all A > A0,

λ1(BA, Id, Aer(· − x0), 0) ≤ e−AρA/2

ρ2
A

= α2/n
n τ−2p/nA2p/ne−(α

−1/n
n τp/nA1−p/n)/2,

and this expression goes to 0 when A→ +∞, which proves the claim.

Similarly, one can show that, if Ω ∈ C, τ > 0 and 1 < q < n/2 are fixed,

(6.5) inf
V ∈L∞(Ω); ‖V ‖q≤τ

λ1(Ω, Id, 0, V ) = −∞.

Indeed, fix ρ0 as before, and, for all A large enough, let ρA ∈ (0, ρ0) such that

Aqαnρ
n
A = τ q, and set V = −A × 1BA where BA = B(x0, ρA) is defined as

previously, so that ‖V ‖Lq(Ω) = τ . One has

λ1(Ω, Id, 0, V ) ≤ λ1(BA, Id, 0,−A) = λ1(BA, Id, 0, 0)−A

(6.6)

=
C

ρ2
A

−A = Cα2/n
n τ−2q/nA2q/n −A,

where C = λ1(‹B, Id, 0, 0) > 0. The right-hand side of (6.6) goes to −∞ when

A→ +∞, due to the choice of q. This ends the proof of the claim (6.5).

6.1.2. The case of L∞ constraints. When solving optimization problems

for λ1(Ω, A, v, V ) if A is fixed and v, V vary and satisfy L∞ bounds, we can

precise the conclusions of Theorem 6.1. Fix Ω ∈ C and A ∈ W 1,∞(Ω,Sn(R))

such that A ≥ γ Id in Ω for some positive real number γ > 0. Given τ1, τ2 ≥ 0

and w1 ∈ L∞+ (Ω), define

AΩ,A,w1,τ1,τ2 = {(v, V ) ∈ L∞(Ω,Rn)× L∞(Ω); ‖w1v‖∞ ≤ τ1, ‖V ‖∞ ≤ τ2, } ,

and 
λ(Ω, A,w1, τ1, τ2) = inf

(v,V )∈AΩ,A,w1,τ1,τ2

λ1(Ω, A, v, V ),

λ(Ω, A,w1, τ1, τ2) = sup
(v,V )∈AΩ,A,w1,τ1,τ2

λ1(Ω, A, v, V ).

The optimization results under these constraints are the following ones:

Theorem 6.6. Let Ω ∈ C, A ∈ W 1,∞(Ω,Sn(R)) such that A ≥ γId in Ω

for some γ > 0, τ1, τ2 ≥ 0 and w1 ∈ L∞+ (Ω) be given.Then :

(1) There exist a unique vector field v ∈ L∞(Ω,Rn) with ‖w1v‖∞ ≤ τ1 and a

unique function V ∈ L∞(Ω) with ‖V ‖∞ ≤ τ2, such that

λ(Ω, A,w1, τ1, τ2) = λ1(Ω, A, v, V ).

Moreover, if ϕ = ϕΩ,A,v,V , one has
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(a) v · ∇ϕ = −τ1w
−1
1

∣∣∣∇ϕ∣∣∣ a.e. in Ω,

(b) |v(x)|w1(x) = τ1 a.e. in Ω,

(c) V (x) = −τ2 a.e. in Ω.

Furthermore, ∇ϕ(x) 6= 0 a.e. in Ω and v(x) = −τ1w1(x)−1∇ϕ(x)/|∇ϕ(x)|
a.e. in Ω.

(2) There exist a unique vector field v ∈ L∞(Ω,Rn) with ‖w1v‖∞ ≤ τ1 and a

unique function V ∈ L∞(Ω) with ‖V ‖∞ ≤ τ2, such that

λ(Ω, A,w1, τ1, τ2) = λ1(Ω, A, v, V ).

Moreover, if ϕ = ϕΩ,A,v,V , one has

(a) v · ∇ϕ = τ1w
−1
1 |∇ϕ| a.e. in Ω,

(b) |v(x)|w1(x) = τ1 a.e. in Ω,

(c) V (x) = τ2 a.e. in Ω.

Furthermore, ∇ϕ(x) 6= 0 a.e. in Ω and v(x) = +τ1w1(x)−1∇ϕ(x)/|∇ϕ(x)|
a.e. in Ω.

Proof. As in the proof of Theorem 6.1, let us focus on the minimization

problem. The existence of v and V such that λ1(Ω, A, v, V ) = λ(Ω, A,w1, τ1, τ2)

is obtained in the same way as in Lemma 6.4, except that one has to define,

for almost every x ∈ Ω,

v(x) =


−τ1w1(x)−1 ∇ϕ(x)∣∣∣∇ϕ(x)

∣∣∣ if ∇ϕ(x) 6= 0,

0 if ∇ϕ(x) = 0,

and V (x) = −τ2 for all x ∈ Ω, and that we do not need to introduce the vector

field w. To prove the uniqueness of V , proceed as in the proof of assertion (c)

in Lemma 6.3. We are now left with the task of proving the uniqueness of v

and the fact that w1(x) |v(x)| = τ1 for almost every x ∈ Ω.

First, arguing as in the proof of Lemma 6.3, one shows that, if v and

V are such that λ1(Ω, A, v, V ) = λ(Ω, A,w1, τ1, τ2) and if ϕ = ϕΩ,A,v,V , then

v · ∇ϕ = −τ1w
−1
1 |∇ϕ| a.e. in Ω.

To conclude, we need the following lemma:

Lemma 6.7. Let λ ∈ R and ψ ∈ W 2,r(Ω) for all 1 ≤ r < +∞, be such

that ψ = 0 on ∂Ω, ψ > 0 in Ω, ‖ψ‖∞ = 1 and

−div(A∇ψ)− τ1w
−1
1 |∇ψ| − τ2ψ = λψ in Ω.

Let v ∈ L∞(Ω,Rn) be such that ‖w1v‖∞ ≤ τ1 and

λ1(Ω, A, v,−τ2) = λ(Ω, A,w1, τ1, τ2).

Then λ = λ(Ω, A,w1, τ1, τ2) and ψ = ϕΩ,A,v,−τ2 .
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Proof of Lemma 6.7. Let v be as above and set ϕ = ϕΩ,A,v,−τ2 , so that

−div(A∇ϕ)− τ1w
−1
1 |∇ϕ| − τ2ϕ = −div(A∇ϕ) + v · ∇ϕ− τ2ϕ

= λ(Ω, A,w1, τ1, τ2)ϕ in Ω

by what we have just seen. Define also

w(x) =


−τ1w1(x)−1 ∇ψ(x)

|∇ψ(x)|
if ∇ψ(x) 6= 0,

0 if ∇ψ(x) = 0.

One has ‖w1w‖∞ = τ1 and

−div(A∇ψ) + w·∇ψ − τ2ψ = −div(A∇ψ)− τ1w
−1
1 |∇ψ| − τ2ψ = λψ in Ω,

so that, since ψ > 0 in Ω and ψ = 0 on ∂Ω, by the characterization of the prin-

cipal eigenfunction and the normalization ‖ψ‖∞ = 1, one has ψ = ϕΩ,A,w,−τ2
and

λ = λ1(Ω, A,w,−τ2) ≥ λ(Ω, A,w1, τ1, τ2).

As a consequence,

−div(A∇ψ) + v · ∇ψ − τ2ψ ≥ −div(A∇ψ)− τ1w
−1
1 |∇ψ| − τ2ψ

= λψ ≥ λ(Ω, A,w1, τ1, τ2)ψ in Ω,

while

−div(A∇ϕ) + v · ∇ϕ− τ2ϕ = λ1(Ω, A, v,−τ2)ϕ = λ(Ω, A,w1, τ1, τ2)ϕ in Ω

by assumption. Since ψ > 0 in Ω, another application of Lemma 6.2 shows

that ψ = ϕ = ϕΩ,A,v,−τ2 , and that λ = λ(Ω, A,w1, τ1, τ2). �

With the help of Lemma 6.7, we conclude the proof of Theorem 6.6. Let

v1 ∈ L∞(Ω,Rn) and v2 ∈ L∞(Ω,Rn) with ‖w1v1‖∞ ≤ τ1 and ‖w1v2‖∞ ≤ τ1

be such that

λ(Ω, A,w1, τ1, τ2) = λ1(Ω, A, v1,−τ2) = λ1(Ω, A, v2,−τ2),

and set

ϕ1 = ϕΩ,A,v1,−τ2 and ϕ2 = ϕΩ,A,v2−τ2 .

Since v1 · ∇ϕ1 = −τ1w
−1
1 |∇ϕ1| and v2 · ∇ϕ2 = −τ1w

−1
1 |∇ϕ2| a.e. in Ω, one

has {
−div(A∇ϕ1)− τ1w

−1
1 |∇ϕ1| − τ2ϕ1 = λ(Ω, A,w1, τ1, τ2)ϕ1 in Ω,

−div(A∇ϕ2)− τ1w
−1
1 |∇ϕ2| − τ2ϕ2 = λ(Ω, A,w1, τ1, τ2)ϕ2 in Ω,

with ϕ1, ϕ2 ∈
⋂

1≤r<+∞W
2,r(Ω), ϕ1, ϕ2 > 0 in Ω, ‖ϕ1‖∞ = ‖ϕ2‖∞ = 1, and

ϕ1 = ϕ2 = 0 on ∂Ω. Lemma 6.7 shows that ϕ1 =ϕΩ,A,v2,−τ2 =ϕ2 :=ϕ, so that

v1 ·∇ϕ=v2 ·∇ϕ=−τ1w
−1
1 |∇ϕ|. It follows that v1 = v2 and |v1| = |v2| = τ1w

−1
1

a.e. on the set {x ∈ Ω; ∇ϕ(x) 6= 0}. It remains to be observed that ∇ϕ(x) 6= 0
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a.e. in Ω. Indeed, if E = {x ∈ Ω; ∇ϕ(x) = 0}, one has div(A∇ϕ) = 0 a.e. in

E, so that −τ2ϕ = λ1(Ω, A, v1,−τ2)ϕ in E, and since λ1(Ω, A, v1,−τ2) > −τ2,

one has |E| = 0. �

If, in Theorem 6.6, we specialize to the case when Ω is a ball and the

diffusion matrix A is equal to Λ Id with Λ radially symmetric, we obtain

a more complete description of the unique minimizer and maximizer. More

precisely, we have:

Theorem 6.8. Assume that Ω is a Euclidean ball centered at 0 with radius

R > 0, let Λ ∈ L∞+ (Ω) ∩W 1,∞(Ω) be radially symmetric, set A = ΛId and use

the same notation as in Theorem 6.6, under the extra assumption that w1 is

radially symmetric Then, v = τ1w
−1
1 er, v = −τ1w

−1
1 er a.e. in Ω, and ϕ and ϕ

are radially symmetric and decreasing.

Proof. Let ϕ = ϕ = ϕΩ,ΛId,v,−τ2 where v is given in Theorem 6.6. One

has

(6.7) − div(Λ∇ϕ)− τ1w
−1
1 |∇ϕ| − τ2ϕ = λ(Ω, A,w1, τ1, τ2)ϕ

in Ω. If S is any orthogonal transformation in Rn and ψ = ϕ ◦ S, then

ψ ∈ W 2,r(Ω) for all 1 ≤ r < +∞, satisfies (6.7), vanishes on ∂Ω and is

positive in Ω. Lemma 6.7 therefore yields ϕ = ψ, which means that ϕ is

radially symmetric, so that there exists a function u : [0, R] → R such that

ϕ(x) = u (|x|) for all x ∈ Ω, and u is C1,α([0, R]) for all 0 ≤ α < 1. Let

0 ≤ r1 < r2 < R. Remind that λ(Ω, A,w1, τ1, τ2) = λ1(Ω, A, v,−τ2) > −τ2.

Since

(6.8) − div(Λ∇ϕ) + v · ∇ϕ = (λ(Ω, A,w1, τ1, τ2) + τ2)ϕ > 0

in Ω, the maximum principle applied to ϕ in Br2 yields that ϕ ≥ u(r2) in

Br2 , which means that u(r1) ≥ u(r2). Moreover, if u(r1) = u(r2), the strong

maximum principle implies that ϕ is constant in Br2 , which is impossible be-

cause of (6.8). Therefore, u(r1) > u(r2). Finally, if 0 ≤ r1 < r2 = R, one has

immediately u(r1) > u(r2) = 0. Thus, u is decreasing in [0, R], and this yields

at once v = τ1w
−1
1 er from Theorem 6.6.

The arguments for ϕ and v are entirely analogous and this completes the

proof of Theorem 6.8. �

6.2. Faber-Krahn inequalities.

Proof of Theorem 2.7. First, since ‖V ‖∞ ≤ τ2, it follows from [13] that

λ1(Ω, A, v, V ) ≥ λ1(Ω, A, v,−τ2) = −τ2 + λ1(Ω, A, v, 0).

But λ1(Ω, A, v, 0) > 0. Theorem 2.3 then yields the existence of a positive

constant θ = θ(Ω, n,MA,mΛ, τ1) > 0 depending only on (Ω, n,MA,mΛ, τ1),



740 F. HAMEL, N. NADIRASHVILI, and E. RUSS

and the existence of two radially symmetric C∞(Ω∗) fields Λ∗ > 0, ω∗ ≥ 0

such that, for v∗ = ω∗er in Ω∗,
ess inf

Ω
Λ ≤ min

Ω∗
Λ∗ ≤ max

Ω∗
Λ∗ ≤ ess sup

Ω
Λ, ‖(Λ∗)−1‖L1(Ω∗) = ‖Λ−1‖L1(Ω),

‖v∗‖L∞(Ω∗,Rn)≤‖v‖L∞(Ω,Rn), ‖ |v∗|2(Λ∗)−1‖L1(Ω∗) =‖ |v|2Λ−1‖L1(Ω),

and

λ1(Ω, A, v, 0) ≥ λ1(Ω∗,Λ∗Id, v∗, 0)× (1 + θ).

Observe that ‖v∗‖∞ ≤ τ1. It follows from Theorem 6.8 (with w1 = 1) that

−τ2 + λ1(Ω∗,Λ∗Id, v∗, 0) = λ1(Ω∗,Λ∗Id, v∗,−τ2) ≥ λ1(Ω∗,Λ∗Id, τ1er,−τ2)

and λ1(Ω∗,Λ∗Id, v∗, 0) ≥ λ1(Ω∗,Λ∗Id, τ1er, 0). Therefore,

λ1(Ω, A, v, V ) ≥ λ1(Ω∗,Λ∗Id, τ1er,−τ2) + θ × λ1(Ω∗,Λ∗Id, τ1er, 0)

since θ and λ1(Ω∗,Λ∗Id, τ1er, 0) are positive.

We now estimate λ1(Ω∗,Λ∗Id, τ1er, 0) from below. Let ϕ = ϕΩ∗,Λ∗Id,τ1er,0,

λ = λ1(Ω∗,Λ∗Id, τ1er, 0) > 0 and

U(x) = τ1

∫ |x|
0

Λ∗(re)−1dr ∀ x ∈ Ω∗,

where e is an arbitrary unit vector. Multiply the equation

−div(Λ∗∇ϕ) + τ1er · ∇ϕ = λϕ in Ω∗

by ϕe−U ∈ H1
0 (Ω∗)∩W 1,∞(Ω∗) and integrate by parts over Ω∗. It follows from

the definition of U that∫
Ω∗

Λ∗|∇ϕ|2e−U = λ

∫
Ω∗
ϕ2e−U ≤ λ

∫
Ω∗
ϕ2.

The last inequality holds since λ > 0, and U ≥ 0 in Ω∗. But Λ∗ ≥ ess infΩ Λ ≥
mΛ > 0, whence U ≤ τ1m

−1
Λ R in Ω∗, where R = α

−1/n
n |Ω|1/n > 0 is the radius

of Ω∗. Finally,

λ

∫
Ω∗
ϕ2 ≥ mΛe

−τ1m−1
Λ α

−1/n
n |Ω|1/n

∫
Ω
|∇ϕ|2,

whence

λ ≥ mΛe
−τ1m−1

Λ α
−1/n
n |Ω|1/n × |Ω|−2/nα2/n

n (jn/2−1,1)2 =: κ > 0

from (1.3) and (1.4). The conclusion of Theorem 2.7 follows with the choice

η = η(Ω, n,MA,mΛ, τ1) = θ × κ > 0.

Proof of Corollary 2.8. Assume first that Ω is not a ball. Write

λ1(Ω, A, v, V ) ≥ λ1(Ω, A, v, 0) + ess inf
Ω

V.



REARRANGEMENT INEQUALITIES 741

Under the notation of Corollary 2.8, then Theorem 2.7 applied to λ1(Ω, A, v, 0)

with Λ = γA clearly gives Λ∗ = γA in Ω∗, so that

λ1(Ω, A, v, 0) > λ1(Ω∗, γAId, ‖v‖∞er, 0),

whence

λ1(Ω, A, v, V ) > λ1(Ω∗, γAId, ‖v‖∞er, 0) + ess inf
Ω

V

= λ1(Ω∗, γAId, ‖v‖∞er, ess infΩ V ).

Assume now that Ω is a ball. From Theorem 2.1 applied to λ1(Ω, A, v, 0) with

Λ = γA, there exists v∗ ∈ L∞(Ω∗,Rn) such that ‖v∗‖L∞(Ω∗,Rn) ≤ ‖v‖L∞(Ω,Rn)

and

λ1(Ω∗, γAId, v∗, 0) ≤ λ1(Ω, A, v, 0).

But λ1(Ω∗, γAId, ‖v‖L∞(Ω,Rn)er, 0) ≤ λ1(Ω∗, γAId, v∗, 0) from Theorem 6.8 with

w1 = 1. Therefore,

λ1(Ω, A, v, V ) ≥ λ1(Ω∗, γAId, ‖v‖L∞(Ω,Rn)er, ess inf
Ω

V ).

The conclusion of Corollary 2.8 follows immediately. �

Remark 6.9. If, in Theorem 2.7, we specialize to the case when A = γ Id

and Λ = γ > 0 is a given constant, then we have immediately

λ1(Ω, γ Id, v, V ) > λ1(Ω∗, γ Id, ‖v‖∞er,−‖V ‖∞)

provided that Ω ∈ C is not a ball. Furthermore, if Ω is a ball, say with center

x0, the uniqueness statement in Theorem 6.8 shows that

λ1(Ω, γ Id, v, V ) ≥ λ1(Ω, γ Id, ‖v‖∞er(· − x0),−‖V ‖∞),

where the inequality is strict if v 6= ‖v‖∞er(· − x0) or V 6= −‖V ‖∞. Finally,

we obtain that, if Ω ∈ C, then

(6.9) λ1(Ω, γ Id, v, V ) ≥ λ1(Ω∗, γ Id, ‖v‖∞er,−‖V ‖∞)

and the equality holds if and only if, up to translation, Ω = Ω∗, v = ‖v‖∞er
and V = −‖V ‖∞.

A rough parabolic interpretation of inequality (6.9) can be as follows:

consider the evolution equation ut = γ∆u − v · ∇u − V u in Ω, for t > 0,

with Dirichlet boundary condition on ∂Ω, and with an initial datum at t = 0.

Roughly speaking, minimizing λ1(Ω, γ Id, v, V ) with given measure |Ω| and

with given L∞ constraints ‖v‖∞ ≤ τ1 and ‖V ‖∞ ≤ τ2 can be interpreted as

looking for the slowest exponential time-decay of the solution u. The best way

to do that is: 1) to try to minimize the boundary effects, namely to have the

domain as round as possible, 2) to have −V as large as possible, that is V as

small as possible, and 3) it is not unreasonable to say that the vector field −v
should as much as possible point inwards the domain to avoid the drift towards

the boundary. Of course diffusion, boundary losses, transport and reaction
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phenomena take place simultaneously, but these heuristic arguments tend to

lead to the optimal triple (Ω,−v,−V ) = (Ω∗,−τ1er, τ2) (up to translation).

In Theorem 2.7, it follows from the above proofs that the inequality

λ1(Ω∗,Λ∗Id, τ1er, τ3) ≤ λ1(Ω, A, v, V )− η

holds if the assumption ‖V ‖∞=‖V ‖L∞(Ω) ≤ τ2 is replaced with: ess infΩV ≥τ3.

Furthermore, since λ1(Ω, A, v, V ) ≥ λ1(Ω, A, v, ess infΩV ) = λ1(Ω, A, v, 0) +

ess infΩV with a strict inequality if V is not constant (see [13]), it is then

immediate to check that formula (6.9) still holds when −‖V ‖∞ is replaced

with ess infΩV , and that the case of equality can be extended similarly. The

parabolic interpretation is the same as above if the condition ‖V ‖∞ ≤ τ2 is

replaced with: ess infΩV ≥ τ3.

Remark 6.10. If Ω is a general open subset of Rn with finite measure, and

if A ∈W 1,∞(Ω,Sn(R)), v ∈ L∞(Ω,Rn), V ∈ L∞(Ω) are such that A ≥ γ Id in

Ω for some constant γ > 0, then we claim that

λ1(Ω, A, v, V ) ≥ λ1(Ω∗, γ Id, ‖v‖L∞(Ω,Rn)er, ess inf
Ω

V )(6.10)

≥ λ1(Ω∗, γ Id, ‖v‖L∞(Ω,Rn)er,−‖V ‖L∞(Ω)).

Indeed, given ε > 0, as in Remark 5.9, there exists a nonempty set Ω′ =

Ω′ε ∈ C such that Ω′ ⊂⊂ Ω and λ1(Ω′, A, v, V ) ≤ λ1(Ω, A, v, V ) + ε. Then the

arguments used in the proof of Corollary 2.8 (with γ instead of γA) imply that

λ1(Ω′, A, v, V ) ≥ λ1(Ω∗ε, γ Id, ‖v‖L∞(Ω,Rn)er, ess inf
Ω

V ),

where Ω∗ε is the ball centered at the origin with the same measure as Ω′.

Therefore,

λ1(Ω, A, v, V ) + ε ≥ λ1(Ω∗ε, γ Id, ‖v‖L∞(Ω,Rn)er, ess inf
Ω

V )

≥ λ1(Ω∗, γ Id, ‖v‖L∞(Ω,Rn)er, ess inf
Ω

V )

since Ω∗ε ⊂ Ω∗, and (6.10) follows immediately. Notice that (6.10) holds in

particular with γ = ess infΩ Λ[A].

7. Appendix

7.1. Proof of the approximation Lemma 5.1. Fix k ∈ N. Call

ri,k =
iR

k + 1
for i = 0, . . . , k + 1

and

ri+1/2,k =

Ç
rni,k + rni+1,k

2

å1/n

∈ (ri,k, ri+1,k) for i = 0, . . . , k.
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Remember that

|Ωρ−1(ri+1,k),ρ−1(ri,k)| = αn(rni+1,k − rni,k) = |Sri,k,ri+1,k
| ∀ i ∈ {0, . . . , k}.

Let us first define the function gk almost everywhere in Ω∗: for i ∈ {0, . . . , k}
and x ∈ Sri,k,ri+1,k

such that |x| 6= ri+1/2,k, set

gk(x) = Gk(|x|),

where

Gk(r)=sup

ß
a∈R;

1

2

∣∣∣¶x∈Ωρ−1(ri+1,k),ρ−1(ri,k), g(x)>a
©∣∣∣≥αn ∣∣∣rni+1/2,k−r

n
∣∣∣™

for all r ∈ (ri,k, ri+1/2,k) ∪ (ri+1/2,k, ri+1,k).
3 It then follows by definition that

gk is radially symmetric, nondecreasing with respect to |x| in Sri,k,ri+1/2,k
and

nonincreasing with respect to |x| in Sri+1/2,k,ri+1,k
, and that

∣∣∣¶x ∈ Ωρ−1(ri+1,k),ρ−1(ri,k), g(x) > t
©∣∣∣ =

∣∣∣¶x ∈ Sri,k,ri+1,k
, gk(x) > t

©∣∣∣∣∣∣¶x ∈ Ωρ−1(ri+1,k),ρ−1(ri,k), g(x) ≥ t
©∣∣∣ =

∣∣∣¶x ∈ Sri,k,ri+1,k
, gk(x) ≥ t

©∣∣∣
for all i ∈ {0, . . . , k} and t ∈ R. As a consequence, the restriction of gk to

Sri,k,ri+1,k
is in L∞(Sri,k,ri+1,k

),

ess inf
Ω

g ≤ ess inf
Ωρ−1(ri+1,k),ρ−1(ri,k)

g = ess inf
Sri,k,ri+1,k

gk ≤ ess sup
Sri,k,ri+1,k

gk

= ess sup
Ωρ−1(ri+1,k),ρ−1(ri,k)

g ≤ ess sup
Ω

g

and

(7.1)

∫
Sri,k,ri+1,k

gk =

∫
Ωρ−1(ri+1,k),ρ−1(ri,k)

g =

∫
Sri,k,ri+1,k

h

for all i = 0, . . . , k, by assumption (5.2). Therefore, gk ∈ L∞(Ω∗) with

ess inf
Ω

g = ess inf
Ω∗

gk ≤ ess sup
Ω∗

gk = ess sup
Ω

g

and  |{x ∈ Ω, g(x) > t}| = |{x ∈ Ω∗, gk(x) > t}|

|{x ∈ Ω, g(x) ≥ t}| = |{x ∈ Ω∗, gk(x) ≥ t}|

for all t ∈ R.

3In each shell Sri,k,ri+1,k , the function gk is then a kind of Schwarz decreasing rearrange-

ment of the function g in Ωρ−1(ri+1,k),ρ−1(ri,k), with respect to the inner radius ri+1/2,k.
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Let us now define the sequence of functions (g
k
)k∈N. Fix k ∈ N. For each

i ∈ {0, . . . , k}, the function Gk is by construction nondecreasing in the interval

(ri,k, ri+1/2,k) and nonincreasing in the interval (ri+1/2,k, ri+1,k). Furthermore,

ess inf
(ri,k,ri+1/2,k)

Gk = ess inf
(ri+1/2,k,ri+1/2,k)

Gk = ess inf
Ωρ−1(ri+1,k),ρ−1(ri,k)

g ≥ ess inf
Ω

g.

Therefore, in each of the intervals (ri,k, ri+1/2,k) and (ri+1/2,k, ri+1,k), the func-

tion Gk can be approximated uniformly and from below by piecewise constant

functions which are larger than or equal to ess infΩ g. As a consequence, there

exists a piecewise constant function ‹Gk defined in [0, R] such that

(7.2)

ess inf
Ω

g ≤ ‹Gk(r) ≤ Gk(r) (≤ ess sup
Ω

g) ∀ r ∈ (0, r1/2,k)∪ · · ·∪ (rk+1/2,k, R)

and

(7.3) ‖Gk − ‹Gk‖L∞(0,R) ≤
1

k + 1
.

Let 0 = ρ0,k < ρ1,k < · · · < ρNk+1,k = R be a subdivision adapted to ‹Gk (with

Nk ∈ N), namely ‹Gk is equal to a constant mj,k ∈ [ess infΩ g, ess supΩ g] in

each interval (ρj,k, ρj+1,k) for j = 0, . . . , Nk. Choose a real number ρ
k

such

that

0 < ρ
k
< min

Ç
min

0≤j≤Nk

ρj+1,k − ρj,k
2

,
1

(Nk + 1)(k + 1)

å
.

Let ζ be a fixed C∞(R,R) function such that 0 ≤ ζ ≤ 1 in R, ζ = 0 in

(−∞, 1/3] and ζ = 1 in [2/3,+∞). Denote Gk the function in [0, R] by:
Gk(r)=m0,k for r∈ [0, ρ1,k − ρk],

Gk(r)=mj,k for r∈ [ρj,k + ρ
k
, ρj+1,k − ρk] and 1≤j≤Nk − 1 (if Nk≥1),

Gk(r)=mNk,k for r∈ [ρNk,k + ρ
k
, R],

∀ 0 ≤ j ≤ Nk − 1,

∀ r∈ [ρj+1,k−ρk, ρj+1,k],
Gk(r)=



mj,k if mj,k ≤ mj+1,k,

mj,k+(mj+1,k−mj,k)×ζ
Ç
r−ρj+1,k+ρ

k

ρ
k

å
if mj+1,k < mj,k,

and

∀ 1 ≤ j ≤ Nk,

∀ r∈ [ρj,k, ρj,k+ρ
k
],
Gk(r)=



mj,k if mj−1,k ≥ mj,k

mj,k+(mj−1,k−mj,k)×ζ
Ç
ρj,k+ρ

k
−r

ρ
k

å
if mj−1,k < mj,k.
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The function Gk is well defined and C∞ in [0, R] and

ess inf
(0,R)

‹Gk = min
0≤j≤Nk

mj,k ≤ Gk(r) ≤ ‹Gk(r) ∀ r ∈ (0, ρ1,k) ∪ · · · ∪ (ρNk,k, R),

whence

ess inf
Ω

g ≤ Gk ≤ ‹Gk ≤ Gk ≤ ess sup
Ω

g almost everywhere in [0, R]

by (7.2). The function defined by

g
k
(x) = Gk(|x|) ∀ x ∈ Ω∗

is radially symmetric and of class C∞(Ω∗) and it satisfies

ess inf
Ω

g ≤ g
k
≤ gk ≤ ess sup

Ω
g almost everywhere in Ω∗.

Fix now q ∈ [1,+∞) and let us check that gk − g
k
→ 0 in Lq(Ω∗) as

k → +∞. One has

‖gk − gk‖Lq(Ω∗) ≤ ‖Gk(| · |)−
‹Gk(| · |)‖Lq(Ω∗) + ‖‹Gk(| · |)−Gk(| · |)‖Lq(Ω∗)

≤ (αnR
n)1/q

k + 1
+ ‖‹Gk(| · |)−Gk(| · |)‖Lq(Ω∗)

by (7.3). On the other hand, the definition of Gk and formula (7.2) imply that

‖‹Gk −Gk‖L∞(0,R) = max
0≤j≤Nk

|mj,k −mj+1,k| ≤ 2‖‹Gk‖L∞(0,R) ≤ 2‖g‖L∞(Ω).

Using once again the definition of Gk, it follows that

‖‹Gk(| · |)−Gk(| · |)‖Lq(Ω∗) =

nαn Nk∑
j=0

Ç∫ ρj,k+ρ
k

ρj,k

(‹Gk(r)−Gk(r))qrn−1dr

+

∫ ρj+1,k

ρj+1,k−ρk
(‹Gk(r)−Gk(r))qrn−1dr

)]1/q

≤
î
2nαn(Nk + 1)ρ

k
Rn−1(2‖g‖L∞(Ω))

q
ó1/q

≤ 2‖g‖L∞(Ω) ×
Ç

2nαnR
n−1

k + 1

å1/q

from the choice of ρ
k
. Thus,

‖gk − gk‖Lq(Ω∗) ≤
(αnR

n)1/q

k + 1
+ 2‖g‖L∞(Ω)×

Ç
2nαnR

n−1

k + 1

å1/q

→ 0 as k → +∞.

Finally, let us check that the sequences (gk)k∈N and (g
k
)k∈N converge to

h as k → +∞ in Lp(Ω∗) weak for all 1 < p < +∞ and in L∞(Ω∗) weak-*.

Let φ be in C(Ω∗,R) and fix ε > 0. Since the unit sphere Sn−1 is compact

and φ is uniformly continuous in Ω∗, there exists k0 ∈ N and a finite family
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of measurable pairwise disjoint subsets U1, . . . , Uq of Sn−1 with positive area,

such that Sn−1 = U1 ∪ · · · ∪ Uq, and

(7.4)

|φ(x)−φ(y)| ≤ ε ∀ x, y ∈ Ω∗\{0} such that


∣∣∣ |x| − |y| ∣∣∣ ≤ 1

k0 + 1
,

∃ j such that
x

|x|
,
y

|y|
∈ Uj .

Fix any k such that k ≥ k0. Use the notation x = rθ with r = |x| and θ = x/|x|
for the points of Ω∗\{0}. Denote by dσ the surface measure on Sn−1. For all

i ∈ {0, . . . , k} and j ∈ {1, . . . , q}, call

φi,j =

∫ ri+1,k

ri,k

∫
Uj

φ(rθ) dσ(θ) dr∫ ri+1,k

ri,k

∫
Uj

dσ(θ) dr
.

Since gk and h are radially symmetric and satisfy (7.1) for all i = 0, . . . , k, it

follows that ∫ ri+1,k

ri,k

∫
Uj

(gk(rθ)− h(rθ))φi,j dσ(θ) dr = 0

for all i ∈ {0, . . . , k} and j ∈ {1, . . . , q}. Thus,∫
Ω∗
gkφ−

∫
Ω∗
hφ =

k∑
i=0

q∑
j=1

∫ ri+1,k

ri,k

∫
Uj

(gk(rθ)− h(rθ))(φ(rθ)− φi,j)σ(θ) dr

and then∣∣∣∣∫
Ω∗
gkφ−

∫
Ω∗
hφ

∣∣∣∣ ≤ k∑
i=0

q∑
j=1

∫ ri+1,k

ri,k

∫
Uj

(‖g‖L∞(Ω) + ‖h‖L∞(Ω∗)) ε dσ(θ) dr

= αnR
n(‖g‖L∞(Ω) + ‖h‖L∞(Ω∗)) ε

for all k ≥ k0 (remember that ‖gk‖L∞(Ω∗) = ‖g‖L∞(Ω)). Since ε > 0 was

arbitrary, one concludes that∫
Ω∗
gkφ→

∫
Ω∗
hφ as k → +∞.

Since this is true for every φ ∈ C(Ω∗,R), standard density arguments imply

then that

(7.5)

∫
Ω∗
gkφ→

∫
Ω∗
hφ as k → +∞, ∀ φ ∈ Lp′(Ω∗) and for all p′ ∈ [1,+∞),

namely gk ⇀ h as k → +∞ in Lp(Ω∗) weak for all p ∈ (1,+∞) and in L∞(Ω∗)

weak-*. Lastly, since gk − gk → 0 as k → +∞ in Lp(Ω∗) for all p ∈ [1,+∞)
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and since the functions g
k

are uniformly bounded in L∞(Ω∗), it follows from

(7.5) and standard density arguments that

(7.6)

∫
Ω∗
g
k
φ→

∫
Ω∗
hφ as k → +∞, ∀ φ ∈ Lp′(Ω∗) and ∀ p′ ∈ [1,+∞).

Thus, g
k
⇀ h as k → +∞ in σ(Lp(Ω∗), Lp

′
(Ω∗)) for all 1 < p ≤ +∞. Further-

more, since Ω∗ is bounded, the limits (7.5) and (7.6) also hold with φ ∈ L∞(Ω∗),

that is gk ⇀ h and g
k
⇀ h as k → +∞ in σ(L1(Ω∗), L∞(Ω∗)).

The construction of the functions gk is similar to that of the functions g
k
,

but they approximate the functions gk from above. �

7.2. A remark on distribution functions. Let α ≤ β ∈ R and m > 0 be

fixed. We extend a definition which we used just before Corollary 2.2: Fα,β(m)

stands for the set of right-continuous nonincreasing functions µ : R → [0,m]

such that

µ(t) = m ∀ t < α and µ(t) = 0 ∀ t ≥ β.
In this appendix, we prove the following fact:

Proposition 7.1. Let α ≤ β ∈ R, m > 0, µ ∈ Fα,β(m) and Ω ∈ C such

that |Ω| = m. Then, there exists V ∈ L∞(Ω) such that µ = µV .

Proof. This fact is rather classical, but we give here a quick proof for the

sake of completeness. Let ϕ be the solution of−∆ϕ = 1 in Ω,

ϕ = 0 on ∂Ω.

Observe that the function ϕ belongs to W 2,p(Ω) for all 1 ≤ p < +∞, to C1,γ(Ω)

for all 0 ≤ γ < 1 and is analytic and positive in Ω. Let M = maxΩ ϕ and, for

all 0 ≤ a < M , define (as in §3)

Ωa = {x ∈ Ω; ϕ(x) > a} .
Set also ΩM = ∅. Remember that, for all 0 ≤ a ≤M , |∂Ωa| = 0.

Define now, for all x ∈ Ω,

V (x) = sup
{
s ∈ R; µ(s) >

∣∣∣Ωϕ(x)

∣∣∣} .
Notice first that this supremum is well defined for all x ∈ Ω. Indeed, if x ∈ Ω,

one has ϕ(x) > 0, therefore 0 ≤
∣∣∣Ωϕ(x)

∣∣∣ < |Ω|.
We now claim that V is measurable and bounded in Ω and that µV = µ.

Indeed, let t ∈ R. By definition of V , for all x ∈ Ω,

V (x) > t⇔
(
∃s > t such that µ(s) >

∣∣∣Ωϕ(x)

∣∣∣)⇔ ∣∣∣Ωϕ(x)

∣∣∣ < µ(t),

where the last equivalence follows from the right-continuity of µ and the fact

that this function is nonincreasing. Define now, for all 0 ≤ a ≤M , F (a) = |Ωa|.
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The previous equivalence yields

µV (t) = |{x ∈ Ω; F (ϕ(x)) < µ(t)}| .

Since the function F : [0,M ]→ [0, |Ω|] is decreasing, one-to-one and onto, one

obtains that {x ∈ Ω; V (x) > t} is measurable for all t ∈ R, and that

µV (t) =
∣∣∣¶x ∈ Ω; ϕ(x) > F−1(µ(t))

©∣∣∣ =
∣∣∣ΩF−1(µ(t))

∣∣∣ = µ(t),

where the last equality uses the definition of F . Finally, |{x ∈ Ω; V (x) > β}| =
µ(β) = 0 and, for all s < α,

|{x ∈ Ω; V (x) ≤ s}| = |Ω| − µ(s) = 0,

which shows that V ∈ L∞(Ω). �

7.3. Estimates of λ1(Bn
R, τer) as τ → +∞. We recall that λ1(Ω, v) is

defined as λ1(Ω, Id, v, 0) for v ∈ L∞(Ω,Rn). We call Bn
R the open Euclidean

ball of Rn with center 0 and radius R > 0, and we set

Gn(m, τ) = λ1(Bn
(m/αn)1/n , τer)

for all n ∈ N\{0}, m > 0 and τ ≥ 0. Notice that Gn(m, τ) is always positive.

Our goal here is to discuss the behavior of Gn(m, τ) for large τ . Indeed,

if, in Theorem 2.7, Λ is a constant γ > 0, then, with the same notation as in

Theorem 2.7,

λ1(Ω, A, v, V ) ≥ λ1(Ω∗, γ Id, τ1er,−τ2) = γλ1(Ω∗, Id, τ1γ
−1, 0)− τ2

= γGn(|Ω|, τ1γ
−1)− τ2.

The constants γ and τ2 appear as multiplicative and additive constants in the

previous formula. The function [0,+∞) 3 τ 7→ Gn(m, τ) > 0 is obviously

continuous, and decreasing (as a consequence of Theorem 6.8). However, the

behaviour when τ → +∞ is not immediate. It is the purpose of the following

lemma, which was used in Remark 6.5. When Λ is not constant in Theorem 2.7

but still satisfies some given lower and upper bounds, the following lemma

provides some bounds of λ1(Ω∗,Λ∗Id, τ1er,−τ2) when τ1 → +∞.

Lemma 7.2. For all m > 0, τ−2eτm/2G1(m, τ) → 1 as τ +∞, and one

even has

(7.7)

∃C(m) ≥ 0, ∃ τ0 ≥ 0, ∀ τ ≥ τ0, |τ−2eτm/2G1(m, τ)− 1| ≤ C(m)τe−τm/2.

Moreover, for all n ≥ 2 and m > 0, Gn(m, τ) > G1(2(m/αn)1/n, τ) for all

τ ≥ 0, and

(7.8) − τ−1 logGn(m, τ)→ m1/nα−1/n
n as τ → +∞.
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In [22], with probabilistic arguments, Friedman proved some lower and

upper logarithmic estimates, as ε → 0+, for the first eigenvalue of general

elliptic operators −aijε2∂ij + bi∂i with C1 drifts −b = −(b1, . . . , bn) pointing

inwards on the boundary (see also [47]). Apart from the fact that the vector

field er is not C1 at the origin, the general result of Friedman would imply

the asymptotics (7.8) for logGn(m, τ) = log λ1(Bn
(m/αn)1/n , τer). For the sake

of completeness, we give here a proof of (7.8) with elementary analytic argu-

ments. Lemma 7.2 also provides the precise equivalent of G1(m, τ) for large τ .

However, giving an equivalent for Gn(m, τ) when τ is large and n ≥ 2 is an

open question.

Proof of Lemma 7.2. First, to prove (7.7), fix m > 0 and τ ≥ 0, set

Ω = (−R,R) with 2R = m, and denote

λ = λ1(Ω, τer)

and ϕ = ϕΩ,Id,τer,0. Theorem 6.8 ensures that ϕ is an even function, decreasing

in [0, R] and that

−ϕ′′(r) + τϕ′(r) = λϕ(r) ∀ 0 ≤ r ≤ R,

with ϕ(R) = 0, ϕ > 0 in (−R,R) and ϕ′(0) = 0 (in particular, the above

equality holds in the classical sense in [0, R]). For all s ∈ [0, τR], define ψ(s) =

ϕ(s/τ), so that ψ satisfies the equation

−ψ′′(s) + ψ′(s) =
λ

τ2
ψ(s) ∀ 0 ≤ s ≤ τR,

with ψ(τR) = 0 and ψ′(0) = 0. Notice that λ depends on τ , but since, for all

τ ≥ 0, 0 < λ ≤ λ1((−R,R), 0), there exists τ0 > 0 such that τ2 ≥ 4λ for all

τ ≥ τ0, and we will assume that τ ≥ τ0 in the sequel. The function ψ can be

computed explicitly: there exist A,B ∈ R such that, for all 0 ≤ s ≤ τR,

ψ(s) = Aeµ+r +Beµ−r,

where µ± = (1±
»

1− 4λ/τ2)/2. Using the boundary values of ψ and ψ′, one

obtains after straightforward computations:

λ =
τ2

4

(
1 +

 
1− 4λ

τ2

)2

e
−
»

1− 4λ
τ2 τR.

Since λ remains bounded when τ → +∞, it is then straightforward to check

that λ ∼ τ2e−τR when τ → +∞, and that (7.7) follows.

We now turn to the proof of assertion (7.8). Let n ≥ 2, m > 0, τ ≥ 0

and Ω = Bn
R be such that |Ω| = m, so that one has R = (m/αn)1/n and

Gn(m, τ) = λ1(Ω, τer). We first claim that

Gn(m, τ) > G1(2R, τ).
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Indeed, write

λ = λ1(Ω, τer) and ϕn = ϕΩ,Id,τer,0.

Similarly, G1(2R, τ) = λ1((−R,R), τer), and we denote µ = λ1((−R,R), τer)

and ϕ1 = ϕ(−R,R),Id,τer,0 (where Id is then understood as the 1 × 1 identity

matrix). As before, define ψn(y) = ϕn(y/τ) for all y ∈ τΩ = Bn
τR and ψ1(r) =

ϕ1(r/τ) for all r ∈ [−τR, τR]. Finally, since ψn is radially symmetric, let

un : [0, τR]→ R such that ψn(y) = un(|y|) for all y ∈ τΩ = Bn
τR. One has

(7.9)


−u′′n(r)− n− 1

r
u′n(r) + u′n(r) =

λ

τ2
un(r) in (0, τR],

−ψ′′1(r) + ψ′1(r) =
µ

τ2
ψ1(r) in [0, τR],

with u′n(0) = un(τR) = 0, ψ′1(0) = ψ1(τR) = 0.

Assume that λ ≤ µ. Since u′n < 0 in (0, τR] and un ≥ 0, one obtains

(7.10)


−u′′n(r) + u′n(r) ≤ µ

τ2
un(r) in [0, τR],

−ψ′′1(r) + ψ′1(r) =
µ

τ2
ψ1(r) in [0, τR].

Since ψ′1(τR) < 0 by Hopf lemma, while ψ1(r) > 0 in [0, τR), un(r) > 0 in

[0, τR) and the functions un and ψ1 belong (at least) to C1([0, τR]), there

exists then γ > 0 such that γψ1(r) > un(r) for all 0 ≤ r < τR. Define γ∗

as the infimum of all the γ > 0 such that γψ1 > un in [0, τR), observe that

γ∗ > 0 and define z = γ∗ψ1 − un which is nonnegative in [0, τR] and satisfies

(7.11) − z′′(r) + z′(r)− µ

τ2
z(r) ≥ 0

for all 0 ≤ r ≤ τR and z(τR) = 0.

Assume that there exists 0 < r < τR such that z(r) = 0. The strong

maximum principle shows that z is identically zero in [0, τR], which means

that γ∗ψ1 = un in [0, τR], and even that ψ1 = un because ψ1(0) = un(0) = 1.

But this is impossible according to (7.9) and (7.10).

Thus, z > 0 in (0, τR). Furthermore, z′(0) = 0, hence z(0) > 0 from Hopf

lemma. Another application of Hopf lemma shows that z′(τR) < 0. Therefore,

there exists κ > 0 such that z > κun in [0, τR), whence

γ∗

1 + κ
ψ1 > un in [0, τR),

which is a contradiction with the definition of γ∗.

Finally, we have obtained that µ < λ, which means that Gn(m, τ) >

G1(2R, τ).

We now look for a reverse inequality. To that purpose, let ε ∈ (0, 1) and

R0 > 0 such that (n − 1)/R0 < ε. In the following computations, we always
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assume that τR > R0. Define un and λ as before. Let

µ′ = λ1

ÅÅ
−
Å
R− R0

τ

ã
,

Å
R− R0

τ

ãã
, τ(1− ε)er

ã
and w the normalized corresponding eigenfunction, so that

−w′′(r) + τ(1− ε)w′(r) = µ′w(r) in

ï
0, R− R0

τ

ò
,

w′(0) = 0, w > 0 in

ï
0, R− R0

τ

ã
, w

Å
R− R0

τ

ã
= 0.

For all R0 ≤ x ≤ τR, define v(x) = w

Å
x−R0

τ

ã
, which satisfies

 −v
′′(r) + (1− ε)v′(r) =

µ′

τ2
v(r) in [R0, τR] ,

v′(R0) = 0, v > 0 in [R0, τR), v(τR) = 0.

Assume that λ ≥ µ′. Since (n − 1)/R0 < ε and u′n(r) < 0 in (0, τR], one

therefore has
−u′′n(r) + (1− ε)u′n(r) ≥ µ′

τ2
un(r) in [R0, τR],

−v′′(r) + (1− ε)v′(r) =
µ′

τ2
v(r) in [R0, τR].

Arguing as before, we see that there exists γ > 0 such that γun > v in [R0, τR).

Define γ∗ (> 0) as the infimum of all such γ’s and define z = γ∗un−v, which is

nonnegative in [R0, τR] and satisfies −z′′+(1−ε)z′− (µ′/τ2)z ≥ 0 in [R0, τR].

Assume that z(r) = 0 for some r ∈ (R0, τR). The strong maximum

principle ensures that z is 0 in [R0, τR], which means that un = v in [R0, τR],

which is impossible because u′n(R0) < 0 = v′(R0).

Therefore, z > 0 everywhere in (R0, τR). Furthermore, z′(R0) < 0, thus

z(R0) > 0. On the other hand, by Hopf lemma, z′(τR) < 0. Thus, there exists

κ > 0 such that z > κv in [R0, τR), whence (γ∗/(1 + κ))un > v in [R0, τR).

This contradicts the definition of γ∗.

Thus, we have established that λ < µ′. Straightforward computations

(similar to those of the proof of (7.7)) show that

λ < µ′ =
τ2

4

(
1− ε+

 
(1− ε)2 − 4µ′

τ2

)2

e
−
»

(1−ε)2− 4µ′
τ2 (τR−R0)

,

and, since λ > G1(2R, τ), formula (7.7) and the equality m = αnR
n end the

proof of (7.8). �
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