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The Boltzmann-Grad limit of
the periodic Lorentz gas

By JENS MARKLOF and ANDREAS STROMBERGSSON

Abstract

We study the dynamics of a point particle in a periodic array of spherical
scatterers and construct a stochastic process that governs the time evolu-
tion for random initial data in the limit of low scatterer density (Boltzmann-
Grad limit). A generic path of the limiting process is a piecewise linear
curve whose consecutive segments are generated by a Markov process with
memory two.
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1. Introduction

The Lorentz gas describes an ensemble of noninteracting point particles in
an infinite array of spherical scatterers. It was originally developed by Lorentz
[17] in 1905 to model, in the limit of low scatterer density (Boltzmann-Grad
limit), the stochastic properties of the motion of electrons in a metal. In
the present paper we consider the case of a periodic array of scatterers and
construct a stochastic process that indeed governs the macroscopic dynamics
of a particle cloud in the Boltzmann-Grad limit. The corresponding result has
been known for some time in the case of a Poisson-distributed (rather than
periodic) configuration of scatterers. Here the limiting process corresponds to
a solution of the linear Boltzmann equation; see Gallavotti [12], Spohn [25], and
Boldrighini, Bunimovich and Sinai [4]. It already follows from the estimates
in [5], [15] that the linear Boltzmann equation does not hold in the periodic
set-up; this was pointed out recently by Golse [13], [14].

Our results complement classical studies in ergodic theory that character-
ize the stochastic properties of the periodic Lorentz gas in the limit of long
times; see [6], [2], [9], [21], [22], [1], [26], [11] for details.

To state our main results, consider an ensemble of noninteracting point
particles moving in an array of spherical scatterers which are placed at the
vertices of a euclidean lattice £ C R? of covolume one (Figure 1). The dynamics
of each particle is governed by the billiard flow

(L.1) e THK,) = THE,), (4o vo) = (a(t), v(t),

where K, C R? is the complement of the set Bg + £ (the “billiard domain”)
and TY(K,) = K, x S{7! is its unit tangent bundle (the “phase space”). Bg
denotes the open ball of radius p, centered at the origin. A point in Tl(le) is
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Figure 1. Left: The periodic Lorentz gas in “microscopic” co-
ordinates — the lattice £ remains fixed as the radius p of the
scatterer tends to zero. Right: The periodic Lorentz gas in
“macroscopic” coordinates — both the lattice constant and the
radius of each scatter tend to zero, in such a way that the mean

free path length remains finite. The vectors si,sg,... (resp.
S1,S2,...) represent the segments of the billiard path between
collisions.

parametrized by (g, v), with g € K, denoting the position and v € S‘li_l the
velocity of the particle. The Liouville measure on T!(KC,) is

(1.2) dv(q,v) = dvolga(q) dvolstli—l (v),

where volgpas and VOIS¢11—1 refer to the Lebesgue measures on R? and S‘f_l, re-
spectively. For the purpose of this introduction we will restrict our attention to
Lorentz’ classical set-up, where the scatterers are assumed to be hard spheres.
Our results in fact also hold for scattering processes described by smooth po-
tentials; see Section 2.2 for details.

If the initial condition (g, vp) is random, then the billiard flow gives rise
to the stochastic process

(1.3) {(q(t),v(t)) : t € Roo}

which we will refer to as the Lorentz process. The central result of this paper
is the existence of a limiting stochastic process {Z(t) : t € R} of the Lorentz
process in the Boltzmann-Grad limit p — 0. We begin with a study of the
distribution of path segments of the billiard flow between collisions.
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1.1. The joint distribution of path segments. The billiard flow ¢; induces
a billiard map on the boundary 9 T!(KC,),

(1'4) (qn—hvn—l) — (qnavn)v

where q,,, v, denote position and velocity at the nth collision in the outgoing
configuration; i.e.,

(1.5) (@5, vn) = 10 r, (g, warip)+e(@n-1: Un-1).
Here 71 denotes the free path length, defined by
(1.6) T1(q,v;p) =inf{t >0 : g+tv ¢ C,}.

We will later also use the parametrization 9T'(K,) = (Sg_1 +£) x 8¢t s0
that q,, = m,, + pw,,, where w,, € Scll_l and m,, € L are the position on the
ball and ball label at the nth collision.

The time elapsed between the (n — 1)th and nth hit is defined as the nth
collision time

(1.7) (40, 005 p) = T1(Qp—1, Vn—1; p)-
We express the nth path segment by the vector

(1.8) sn(dg, v0; p) = Tn(dg, v0; P)Vn—1(dg, Vo3 p).

The central result of [19] is the proof of a limiting distribution for the first
collision time 7 and further refined versions that also take into account the
particle’s direction after the reflection. Here we will extend these results to
find a joint limiting distribution for the first n segments of the billiard path
with initial coordinates (g, vo), where the position g is fixed and the velocity
vg random. The precise statement is the following.

Here and in the remainder of this paper we will use the standard repre-
sentation £ = Z<My, where My € SL(d,R). We will also use the notation
S :=||S|~1S. We set

(1.9) By:={(S1,....8) € ®N\{0})": 81 #8; (j=1,....n—1)}.

THEOREM 1.1. Fiz a lattice £L = Z¢My and a point q, € R\ L, and write
o= —qOM(;l. Then for each n € Z~q there exists a function Pén) : B, — Rxo
such that, for any Borel probability measure A on Scllf1 which is absolutely
continuous with respect to VolS({zq, and for any set A C R™ with boundary of

Lebesgue measure zero,
(1.10)  lim A({vo € $Y7": (51(g0.v0:p). . 80 (q0,v0:p)) € p~ OV A})

- / PU(S1,..., 8) N(S1) dvolga(S1) - - - dvolga(S,.),
A
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where X' € Ll(Sffl) is the Radon-Nikodym derivative of A with respect to
volga-1. Furthermore, there is a function ¥ : B3 — Rx>q such that
d >

(1.11) P{(Sy,...,8,) = PO (S1,82) [[ ¥(Sj-2,5;-1.8;)
7j=3

for allm >3 and all (S4,...,8,) € B,.
The above condition q, € R?\ £ ensures that 71 is defined for p sufficiently
small. In Section 4.4 we also consider variants of Theorem 1.1 where the initial

position is near L, e.g., gy € 0K,,.
We define the probability measure corresponding to (1.10) by

(112) @A) ::/ P81, ..., 8,) N(S1) dvolga(S1) - - - dvolga(Sh).

Note in particular that u "+1 (A x RY) = ))\(.A)

Remark 1.1. In probabilistic terms, Theorem 1.1 states that the discrete-
time stochastic process {p?'s,(qy,vo;p) : n € Zso} converges in the limit
p—0to

(1.13) {Sn:n € Zsot,

(

a Markov process with memory two. As we shall see, U(S1, S, S3) is in fact
independent of ||S1]|.

Remark 1.2. If d > 3, then Pc(xn) is continuous on all of B,,. If d = 2, then
,&n) is continuous except possibly at points (S1,...,S,) € B, with Sg -S 1
or Sj12 = 8;Rg, , forsome 1 < j < n—2, where Rg € O(2) denotes reflection

in the line RS; cf. Remark 4.7 below.

Remark 1.3. Note that ¥ is independent of £ and g, and Pc(,n) depends
(n)

only on the choice of a. This means, in particular, that U and Py" are

rotation-invariant; i.e., for any K € O(d) we have

(1.14) U(S1K, Sy K, S3K) = U(8S, So, S3)
and
(1.15) PM(SIK,...,8,K) =P (S,,...,8,).

For o € R?\ Q¢, P((,Ln) =: P™ is also, in fact, independent of o cf. Re-
mark 4.6 below. Explicit formulas and asymptotic properties of the limiting
distributions will be presented in [18] and [20], respectively.

Remark 1.4. The case n = 1 of course leads to the distribution of the free
path length discussed in [19]; cf. also [10], [5], [15], [7], [3] for earlier results.
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1.2. A limiting stochastic process for the billiard flow. In Theorem 1.1 we
have identified a Markov process with memory two that describes the limiting
distribution of billiard paths with random initial data (g, vo). Let us denote
by
(1.16) {E(t) : t € Ryo}
the continuous-time stochastic process that is obtained by moving with unit

speed along the random paths of the Markov process (1.13). The process is
fully specified by the probability

(1.17) Pax(E(t) € Dy,....Z(ty) € Du)

that Z(t) visits the sets Dy,..., Dy € TH(RY) at times t = tq,..., ¢y, with
M arbitrarily large. To give a precise definition of (1.17) set Ty := 0, T}, :=
> 7=1[1S;ll, and define the probability that Z(¢) is in the set Dy at time ?; after
exactly nq hits, in the set Dy at time to after exactly no hits, etc., by

(1.18) P\ (2(t1) € Dr,...,=(tar) € Day and
Tpy <t1 < Toyits ooy Tugg < tar < Tgyi1)
= 10T ({(S1, ., Sup) - B, (ty) € Dy,
Tp, <tj <Tojur (j=1,...,M)})

with n := (n1,...,ny), n := max(ny,...,ny), and
(1.19) Za(t) == (Z S+ (t —Tn)Sns1, §n+1>.
j=1

Note that the choice T;, <t < T},+1 of semi-open intervals is determined by the
use of the outgoing configuration; recall (1.5). The formal definition of (1.17)
is thus

(1.20) Po(E(t1) € D1,...,E(ta) € D)
]P’E:i <E(t1) € Di,...,=(tm) € Dy and
nezgo

Ty <t1 < Togtse ooy Tngy < tar < Trgrs1)-

The following theorem shows that the Lorentz process (1.3), suitably
rescaled, converges to the stochastic process (1.16) as p — 0. Given any
set D C TH(R?) we say that t > 0 is D-admissible if

(1.21) VOIS?_1({§1 S S(li_l : (t§1,§1) S 82)}) =0.

We write adm(D) for the set of all D-admissible numbers ¢ > 0.
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THEOREM 1.2. Fiz a lattice £L = Z* My and a point q, € R\ L, set a =
—qOMo_l, and let X be a Borel probability measure on S‘li_1 which is absolutely
continuous with respect to volga—1. Then, for any subsets Dy, ..., Dy C Tl(Rd)

1

with boundary of Lebesgue measure zero, and any numbers t; € adm(D;) (j =
1,..., M),
(1.22)

. d=1 . ¢ d=1,¢ —(d—1), —(d—1), . s

;%)\Hvo e S (ptq(p V), v(p~ V) e Dy, j = 1,...,M})

=Par(2(t1) € D1,....=(tn) € Dur).

The convergence is uniform for (ti,...,tar) in compact subsets of adm(Dy) x
-« x adm(Dyy).

Remark 1.5. The condition t; € adm(D;) cannot be disposed with. For
example, (1.22) is in general false in the case M =1, Dy = B x Sd=1. We
prove this in Section 5.3. Note, however, that no admissibility condition is
required in the macroscopic analogue of Theorem 1.2; see Theorem 1.4 below.

1.3. Macroscopic initial conditions. In view of the rescaling applied in the
previous section, it is natural to consider the “macroscopic” billiard flow

(1.23) Fr T (o 1K,) — T 'K,)
(Qo; Vo) = (Q(), V(1)) = (p*a(p™ V1), w(p~ V1))

and take random initial conditions (Q,, V) with respect to some fixed proba-
bility measure A. We will establish the analogous limit laws as in the previous
sections. Although the macroscopic versions are less general (they are obtained
by averaging over q;), they appear more natural from a physical viewpoint,
where one is interested in the time evolution of a macroscopic particle cloud;
cf. the discussion at the end of this section.

The nth path segment in these macroscopic coordinates is

(1.24) $.(Qo; Vo p) i= p? s, (p~@VQy, Vio; p).

THEOREM 1.3. Fix a lattice L and let A be a Borel probability measure on
TY(RY) which is absolutely continuous with respect to Lebesgue measure. Then,
for each n € Zwo and for any set A C R? x R™ with boundary of Lebesque
measure zero,

(1.25)
lim A({(Qo, Vo) € THp" 'K,
(Q07 SI(Q07 VO; p): R Sn(Q07 VO; p)) € A})
= / P™(Sy,...,8,) N (Qy, 81) dvolga(Qy) dvolga(S1) - - dvolga(Sy),
A
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with P™ as in Remark 1.3 and where ' is the Radon-Nikodym derivative of
A with respect to volga X volga-1.
1

The probability measure corresponding to the above limiting distribution
is defined by

(1.26) p{”(A) = /A P™(S1,...,8,) N (Qy, S1) dvolga(Qy) dvolga(S1)
-+~ dvolpa(Sh).
We redefine the stochastic process (1.16) by specifying the probability
(1.27) Px(E(t1) € D1,...,E(tu) € Dur)
(n)

via the measure p, ’ by the same construction as in Section 1.2. The only
essential difference is that we need to replace (1.19) by

n
(1.28) En(t) = (QO + Z Sj +(t— Tn)Sn+1, Sn+1>.

j=1
Note that formally Py = Py if A(Q,V) =6(Q)N(V) and o € R\ Q.

THEOREM 1.4. Fix a lattice L and let A be a Borel probability measure

on THR?) which is absolutely continuous with respect to Lebesque measure.
Then, for any t1,...,ty € Rso and any subsets Dy, ..., Dy C THRY) with
boundary of Lebesgue measure zero,

(1.29) lim A({(Qo, Vo) € TH(p"7'K,)

(Q(t1), V(t1)) € D1, (Q(tr), V(tmr)) € D)
=Px(E(t1) € D1, ..., E(tm) € Dur).
The convergence is uniform for ty,...,tyr in compact subsets of R>q.

The time evolution of an initial particle cloud f € L'(T!(p9"1K,)) in the
periodic Lorentz gas is described by the operator L; , defined by

(1.30) [Leof)(Q.V) = f(FHQ, V).

To allow a p-independent choice of the initial density f, it is convenient to
extend the action of F; from T'(p? 1KC,) to TH(RY) by setting F; = id on
THRY) \ T!(p?1K,). We fix the Liouville measure on T*(R%) to be the stan-
dard Lebesgue measure

(1.31) dv(Q, V) = dvolga(Q) dVOlScll—l(V).

Theorem 1.4 now implies the existence of a limiting operator L; that describes
the evolution of the particle cloud in the Boltzmann-Grad limit. More precisely,
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for every set D with boundary of Lebesgue measure zero, we have

(132 lm [ L,AQV) @@ V) = [ (L@ V)aQ.V)
p=0Jp D

uniformly for ¢ on compacta in R>g, and L is defined by the relation

(1.3 L@, V) an(@Q. V) = BA(E(1) € D),

for any absolutely continuous A, any Borel subset D ¢ TY(R9), and f = A’.
We note that L; commutes with the translation operators {Tg : R € R¢},

and, in view of Remark 1.3, with the rotation operators {Rx : K € O(d)},
(1.35) (R fl(Q,V) == f(QK,VK).

It was already pointed out by Golse [14] that the weak-x limit of any
converging subsequence Ly ,, f (p; — 0) does not satisfy the linear Boltzmann
equation. His arguments use the a priori estimates in [5], [15] and do not
require knowledge of the existence of the limit (1.32). The fundamental rea-
son behind the failure of the linear Boltzmann equation is that, perhaps sur-
prisingly, {L; : ¢ > 0} is not a semigroup. We will show in Section 6 how
to overcome this problem by considering an extended stochastic process that
keeps track not only of position @ and current velocity V', but also the free
path length 7 until the next collision and the velocity V ; thereafter. We will
establish that the extended process is Markovian and derive the corresponding
Fokker-Planck-Kolmogorov equation describing the evolution of the particle
density in the extended phase space. A similar approach has recently been
explored by Caglioti and Golse in the two-dimensional case [8]. Their result
is, however, conditional on an independence hypothesis, which is equivalent to
the Markov property established by our Theorem 1.3 above.

1.4. Outline of the paper. The key ingredient in the present work is The-
orem 4.8 of [19] (restated as Theorem 2.2 below for general scattering maps),
which yields the joint limiting distribution for the free path length and velocity
after the next collision, given that the initial position and velocity are taken
at random with respect to a fixed probability measure. The proofs of Theo-
rems 1.1 and 1.3 are based on a uniform version of Theorem 2.2, where the fixed
probability measures are replaced by certain equismooth families; see Section 2
for details. Section 3 provides technical information on the nth iterate of the
scattering maps, which in conjunction with the uniform version of Theorem 2.2
yields the proof of Theorems 1.1 and 1.3 (§4). In Section 5 we prove that the
dynamics in the periodic Lorentz gas converges in the Boltzmann-Grad limit to
a stochastic process =(t) and thus establish Theorems 1.2 and 1.4. We finally
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derive the substitute for the linear Boltzmann equation in Section 6, by extend-
ing E(t) to a Markov process and calculating its Fokker-Planck-Kolmogorov
equation.

2. First collision
We begin by reviewing the central result of [19)].

2.1. Location of the first collision. We fix a lattice £ = Z*My with My €
SL(d,R), once and for all. Recall that IC, C R? is the complement of the set
Bg + £ and that the free path length for the initial condition (g,v) € T'(K,)
is defined as

(2.1) Ti(q,v;p) =inf{t >0 : g+tv ¢ K,}.

Note that 71(g, v; p) = oo can only happen for a set of v’s of measure zero with
respect to volga-1. In fact we have 71(q, v; p) < oo whenever the d coordinates
1

of vMy "' € R? are linearly independent over Q (note that this condition is
independent of q), since then each orbit of the linear flow @ — x + tv is dense
on R4/L.

The position of the particle when hitting the first scatterer is

(2.2) 4:(q,v;p) := q + 11(q, v; p)v.
As in Section 1.1, we write q;(q,v;p) = mi + pw; with m; € £ and wy =
wi(g,v;p) € S{7"

Let us fix amap K : S¢71 — SO(d) such that vK (v) = e, for all v € S{1;
we assume that K is smooth when restricted to S¢~ minus one point. For
example, we may choose K as K(e;) =1, K(—e;) = —1 and

2arcsin( ||v — eq]|/2
23) K(w) — E(- (H|L - nv)vl)

for v € 8971\ {e1, —e;}, where

(2.4) v = (vg,...,v9) € RTL E(w) = exp (—Qw 1(1);) € SO(d).

Then K is smooth when restricted to S{1\{—e;}.

It is evident that —w: K (v) € ${%"*, with the hemisphere
(2.5) SH = {v = (vy,...,09) €STT vy >0}

Let B be a continuous function Silil — R If ¢ € £, we assume that
(B(v) + Rogv) N BY = 0 for all v € S¢71. We will consider initial conditions
of the form (g, g(v),v) € TY(K,), where q,3(v) = g + pB(v) and where v

is picked at random in S‘f_l. Note that for fixed ¢ and 3 we indeed have
q,3(v) € K, for all v € S471 5o long as p is sufficiently small.



THE BOLTZMANN-GRAD LIMIT OF THE PERIODIC LORENTZ GAS 235

For the statement of the theorem below, we recall the definition of the
manifolds X,(y) and X (y) from [19, §7]: If ¢ € Z~o and @ € ¢~ 'Z4, then we
set X, = ['(q)\ SL(d,R) and define, for each y € R?\ {0},

(2.6) Xo(y) = {M e X, : ye (2 +a)M}.
We also set X = ASL(d,Z)\ ASL(d,R), where ASL(d,R) = SL(d,R) x R? is
the semidirect product group with multiplication law

(M, &)(M', &) = (MM, EM' +€);
we let ASL(d,R) act on RY through y +— y(M, &) := yM + &. Now for each
y € R¢ we define

(2.7) X(y):={geX : yeZiy}.

The spaces X4(y) and X (y) carry natural probability measures v, whose prop-
erties are discussed in [19, §7].
We will also use the notation

(2.8) x| =x— (x-e)el, for = € R%.
The following is a restatement of [19, Thm. 4.4].

THEOREM 2.1. Fiz a lattice £L = Z¢My. Let ¢ € RY and o = —qMo_l.
There exists a function ®q : Rsgx ({0} x BI1) x ({0} xR*1) = R such that
for any Borel probability measure A\ on Silil absolutely continuous with respect
to VO].S;l—l, any subset 4 C Slld_l with VOle‘l(au) =0, and 0 < & < &, we
have

(2.9) ;ig% A({” eS{™ i p" (g, 5(v), v5p) € [€1,&),
—wi(q,5(v), v; p) K (v) € U})
&2
:/1 /ML /s‘l“ Do (&, w, (B(0)K (v)) 1 ) dA(v)dw d,

where dw denotes the (d — 1)-dimensional Lebesgue volume measure on {0} X
RI~1. The function ®4 is explicitly given by

(2.10)
Dn (&, w, 2)
(M e Xyy) (2 + )M (3(0,6,1) +2) =0}) if a€q'z
vy({g€ X(w) : 299N (3(0,6,1) + z) = 0}) if a¢ QY
where y = ey +w + z, and

(2.11) 3(c1,c9,0) = {(xl,...,a:d) eRY: ¢y <11 < 9, |(za,...,zq)| < 0}.
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Remark 2.1. For a € Q% the function ®4 (£, w, z) is Borel measurable
and in fact only depends on a and the four real numbers &, [|[w|, ||z|], z - w.
Also for a € Q4, if we restrict to ||z]| < 1 (and if d = 2: z + w # 0), then
do (€, w, 2) is jointly continuous in the three variables &, w,z. If a ¢ QY
then ®, (&, w, z) is everywhere continuous in the three variables, and it is
independent of both a and z; in fact it only depends on £ and ||w]]. We will
therefore set (&, w) := (&, w, z) for a ¢ Q.

We have, for all & € R? and all z € {0} x R4,

(2.12) / / Dn (& w, z)dwdé = 1.
0 J{oyxB{t

The convergence in this integral is uniform; i.e.,

(2.13) / / On (&, w,z)dwdé — 0
T J{o}xB{t

uniformly with respect to e and z as T' — oo. Cf. [19, Rem. 4.5, (8.37) and
Lemma 8.15].

Remark 2.2. We may extend the function ®(§, w) to the larger set R>g x
({0} x B{™1) by letting ®(0,w) := 1 for all w. This definition is natural,
since it makes ®(£,w) continuous (jointly in both variables) at each point
with £ = 0. The proof of this is an immediate extension of the discussion in
[19, §8.2]. In the case o € Q, it is natural to extend the domain of ® by
setting @ (0, w, 2) := k, for any w, z € {0} x B!, where #, is the density of
lattice points visible from «, as defined in [19, §2.4]. This makes ®,(§, w, 2)
continuous at any point (£, w,z) € {0} x ({0} x B{™1) x ({0} x B4™1). The
proof of this fact follows from the volume computations in [19, §7.1] and the
argument used in [19, §8.1].

2.2. Scattering maps. As indicated above, the results of this paper extend
to the case of a Lorentz gas, where the scattering process at a hard sphere is
replaced by a smooth radial potential. To obtain the correct scaling in the
Boltzmann-Grad limit, we assume that the scattering potential is of the form
V(q/p), where V(q) has compact support in the unit ball B¢. We will refer to
the rescaled ball Bg = pB¢ as the interaction region.

It is most convenient to phrase the required assumptions in terms of a
scattering map that describes the dynamics at each scatterer. Let

(2.14) S ={(v,w) €S x8¥ 1 v-w<0}
be the set of incoming data (v_,w_), i.e., the velocity and relative position

with which the particle enters the interaction region. The corresponding out-
going data is parametrized by the set

(2.15) Sy = {(v,w) €S x8¢ 1 w-w >0}
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We define the scattering map by
(2.16) 0:5. =8, (v, w_) = (vy,wq).

In the case of the original Lorentz gas the scattering map is given by specular
reflection,

(2.17) O(v,w) = (v —2(v-w)w,w);

scattering maps corresponding to smooth potentials can be readily obtained
from classical results (see e.g. [23, Chap. 5)).
In the following we will treat the scattering process as instantaneous. In
the case of potentials the particle will of course spend a nonzero amount of time
in the interaction region, but — under standard assumptions on the potential
— this time will tend to zero when p — 0.
Let ©(v,w) € ¢! and ©y(v, w) € S9! be the projection of O (v, w) €
S‘f_l onto the first and second component, respectively. We assume throughout
this paper that
(i) the scattering map © is spherically symmetric; i.e., if (vy,wy) =
O(v,w) then (v K,wiK) = O(vK,wK) for all K € O(d);

(ii) v+ and w4 are contained in the subspace spanned by v and w;

(iii) if w = —v, then vy = —wv;

(iv) ©: 8. — S, is C! and for each fixed v € S¢~! the map w — O (v, w)
is a C! diffeomorphism from {w € S9! : v - w < 0} onto some open
subset of S§1.

The above conditions are, for example, satisfied for the scattering map of a
“muffin-tin” Coulomb potential, V(q) =a max(||q||~*—1,0) with a ¢ {—2F, 0},
where E' denotes the total energy. Conditions (iii) and (iv) help to simplify
the presentation of the proofs, but are not essential. It is, for instance, not
necessary that in (iv) the map w — O;(v,w) is invertible as long as it has
finitely many pre-images, which allows a larger class of scattering potentials;
condition (iii) can be dropped entirely.

We will write p(v,u) € [0, 7] for the angle between any two vectors v, u €
R9\ {0}. Using the spherical symmetry and ©1(v, —v) = —wv, one sees that
there exists a constant 0 < Bg < 7 such that for each v € S{~!, the image of
the diffeomorphism w — 01 (v, w) is

(2.18) Vo :i={uec St : p(v,u) > Be}.

Let us write 85 : Vy — {w € ST : v-w < 0} for the inverse map. Then

B, is spherically symmetric in the sense that B, (uK) = B, (u)K for all

ve ST ueV,, Ke0(d), and in particular 3 (u) is jointly C! in v, u.
We also define

(2.19) B (u) = 03(v, B (u)) (ve St uely).
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The map B is also spherically symmetric and jointly C' in v,u. In terms
of the original scattering situation, the point of our notation is the following:
Given any v_, v € Scll_l, there exist w_, w4 € S‘f_l such that O(v_,w_) =
(vy,wy) if and only if p(v_,v4) > Be, and in this case w_ and w4 are
uniquely determined, as w+ = 8 (v,).

For example, in the case of specular reflection (2.17) we have Bg = 0 and
(2.20) wy =w_ = =
vy — o]

Remark 2.3. In the case of specular reflection, the flow F; preserves the
Liouville measure v, but this does not hold in the case of a general scattering
map satisfying (i)—(iv). Indeed, a necessary and sufficient condition for F}; to
preserve v is that the scattering map O is a diffeomorphism from S_ onto
S+ which carries the volume measure |v - w)| dVOlsii—l(/U) dvols(lzq(w) on S_ to
(v-w) dvolsizq (v) dvolsizq (w) on S;. Maps with this property can be classified
explicitly: Define the functions 91,792 : (=3, §) — R through
(2.21)  ©j(e1, —(cosp)er + (sinp)es) = —(cosV;(p))er + (sind;(p))es.

In view of (iii) we may then assume that ¥;(0) = 0 and take 91, Y2 to be contin-

uous. (Then 1,92 are both odd and Cl, and 97 is a C! diffeomorphism from

(=%, %) onto (Be — 7, m — Be).) In this notation, one checks by a computation

that © carries |v-w| dvolga-1(v) dvolga-1(w) to (v-w) dvolgi-1(v) dvolgi-1 (w)
1 1 1 1

if and only if, for all p€(—7, 5)\ {0},

sin(V2(p) — v1()) ‘d‘z '
sin

COS

() — Vi ()| = 1.

This is seen to hold if and only if J2(¢) = J1(p) — ¢ for all ¢ € (=7, 5) or
V2(p) = V1(p) + ¢ for all ¢ € (=7, 5). (In physical terms, this reflects the
preservation of the angular momentum w A v, or its reversal, respectively.)
Translating this condition in terms of 8%, we conclude that F, preserves the

Liouville measure if and only if
(2.23) ﬁ:,rl (v2) = B4, (—v1) or B;fl(vg) = By, (’Ul)R{v2}J_,

where Ry,,31 € O(d) denotes orthogonal reflection in the hyperplane {vo}+
C R4
2.3. Velocity after the first impact.

THEOREM 2.2. Let A be a Borel probability measure on Scll_1 absolutely
continuous with respect to volga—1. For any bounded continuous function f :
1
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S471 xRy x S = R,
(2.24) }}_% o (o, p71(a, 5(v0), vo: p), v1(a, 5(v0), vo; p) ) dA(v0)

:/Sd_l/R /Sd_lf(vo,é“,vl)paﬁ(vo,g,vl)d/\(vo)dﬁdvolscli_1(v1),

where the probability density pn, g 1s defined by

(2.25)

Pa,(v0, €, v1) dvolga—i (v1) = {g’a(é,w, (B(vo)K (v9)) 1) dw Z:Zi Z zvo
with

(2.26) w = —f, (v1K(vy))  €{0} x B .

Remark 2.4. The density pa g(vo, &, v1) is independent of the choice of
the function K (vg), since (&, w, z) only depends on the four real numbers
& [lwll, ||z, w- z; cf. Remark 2.1. It also follows from Remarks 2.1 and 2.2
that if a ¢ Q?, then Pa,s(v0,&,v1) =: p(vo, &, v1) is independent of o, 3 and
is continuous at each point (vg,&,v1) € Sil’l xR>p X Silil with v1 € Vy,.
The same continuity statement also holds for py g(vo,&,v1) if a € Q% and
sup|[B|| < 1, except possibly when d = 2, £ > 0 and B, (le(vo))L =
(B(vo) K (v0))1.

Remark 2.5. The relationship between pq g(vo, &, v1) and @a(f,w,z)
when v; € V,, can be expressed more explicitly as

(2:27) pa,p(vo,§,v1) = J(vo,v1) Pa (& —Be, (v1K (v0)) |, (ﬁ(UO)K(UO))L)7

where the factor J(vg,v1) > 0 is a function of ¢ = (v, —v1) given by

sinw(g

sin ¢ W/(SO)‘ COSW(SD) if w > 0
o' (0)]% if =0,

)’d—Z

(228)  J(vo,v1) = {

with w = 97! : (Be — m,m — Beg) — (=%, %) being the inverse of the map ¥,
defined in Remark 2.3. In particular, in the case of specular reflection (2.17)
we have 97! (¢) = ¢/2, and we recover the formula [19, (4.24)].

Proof of Theorem 2.2. The proof follows exactly the same steps as the
proof of Theorem 4.8 in [19, §9.3]: The left-hand side of (2.24) equals

(229) lim Q(anpd_lﬁ(qp,ﬁ(vo)aUOSP)awl(qp,,B(UO)>UO§P)) d)\(’l](])7

p—0 Jg¢=1
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where g(vo,§,w1) = f(vo,&, O1(vo, w1)). Using [19, Cor. 4.7] (which in fact
is a corollary of Theorem 2.1 in the present paper), we obtain

(2.30) = /sgd—l /R>O /sf—l f(v0,€,01(vo, —wK (v9) "))
X q)a(f, w, (,B(Uo)K(’Uo))J_) W1 d)\(’v()) df dVOlS?_1 (w)

Now change the order of integration by moving the integral over w € S’ld_l
to the innermost position, and then apply the variable substitution v; =
O1(e1, —w)K(vo) ™' = O1(vo, —wK(vo)~!) in the innermost integral; note
that this gives a diffeomorphism w + v; from S’ld_l onto V,,, with the inverse
map given by w = —8; (v1K(vo)) = —B8,,(v1)K(vo). Recalling (2.26) we
then see that (2.30) equals the right-hand side of (2.24), and we are done. [J

2.4. A uniform version of Theorem 2.2. In order to prove Theorem 4.1
we need a version of Theorem 2.2 which is uniform over certain families of 3’s,
f’s and N’s.

Given any subset W C S§7! we let 9.V € S¢! denote the e-neighborhood
of its boundary; i.e.,

(2.31) W :={ves{! : IweW: pv,w)<e}.

Definition 2.1. A family F' of Borel subsets of S‘ffl is called equismooth if
for every 6 > 0 there is some £ > 0 such that VOIST—I (0-W) < 6 for al W € F.

Definition 2.2. A family F' of measures on S‘f_l is called equismooth if
there exist an equicontinuous and uniformly bounded family F” of functions
from S¢~! to R and an equismooth family F” of Borel subsets of ¢!, such
that each p € F can be expressed as 1 = (g - VOIS?—1)|W for some g € F’,

W e F".

THEOREM 2.3. Fiz a lattice £ = Z¢My and a point ¢ € R?, and write
a = —qMo_l. Let F1 be an equismooth family of probability measures on
Sil_l, let Fy be a uniformly bounded and equicontinuous family of functions f :
S(lll_1 xXRsg X Sfli_1 — R, and let F3 be a uniformly bounded and equicontinuous
family of functions 3 : Silil — R? such that if q € L, then (B(v) + Rsqv) N B
=0 forall B € F3, v € Scll_l. Then the limit relation

(2.32) lim £ (vo, 07 71(g,, 5(v0), v0; ), v1(q, 5(v0), vo; p) ) dA(v0)

p—0 Silfl
-/ . L ) / I (00,8010, 1) dA(w) decvolgges (o)

holds uniformly with respect to all X\ € I, f € Fy, B € F3.
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This uniform version of Theorem 2.2 will actually be derived as a corollary
of Theorem 2.2. We first need a lemma. Let {,, denote a small neighborhood

of the boundary in ;%"

(2.33) iy = {w € S’ld_l D o(w,er) > 5 — n} 0<n<1).
LEMMA 2.4. Given B > 0 there exists some number po(B, L,q) > 0 such

that for every 0 < p < po(B,L,q), v € 8¢ K € SO(d), 8,8 € R? and
0<n< 11—0 such that

(2.34) vK = ey, 18l < B, 186l <n,  Bv>2  fv>2,
one of the following holds:
(i) Ti(g+pB,v,p) = T1(q + pB' v, p) = 0,
(i) —wi(g+ pB,v, (1 +n)p)K € LU 7,
(ifi) |71(q +pB',vip) — T1(a + pB,vi p)| < 3py/7
and le(q +pB',v; p) — wil(q + pB,v; p)H <V2n.

Remark 2.6. The conditions 3 -v > 2, B’ - v > 2 are only needed in the
case q € L, so as to guarantee that the rays g+ pB+Rsov and g+ pB' +Rs v

. . d . d
lie outside the ball g + BB, and also outside the ball g + B(1+77)p'

Proof of Lemma 2.4. We choose pg = po(B, L,q) > 0 so small that all the
balls m + B‘zipo (m € £\ {q}) have disjoint closures and are each disjoint from
q+ B?B+1)p0. Now fix any p,v, K, 3,3,n as in the statement of the lemma.

After an auxiliary rotation we may assume that v = e; and K = 14.
Write 7 = 71(q + pB,e1;p) and w = wi(q + pB,e1;p), let 7 and w’ be
the corresponding data for @', and write p = (1 +n)p, 7 = 71(q + pB3, e1, p)
and w = wi(q + pB,e1,p). By our assumption on py we see that 7,7, 7 are
well-defined numbers in Rsg U {oo}.

For any ray v C R? and any point m € R? let §(y,m) = infpe, |p — m||
denote the distance between v and m. If 7 = oo, then §(q+pB+R=pe1,m) > p
for all m € £, and thus also 6(q + pB' + Rsge1,m) > p — pHﬂ — B'H > p for
all m € L, so that 7 = 7/ = oo. Hence from now on we may assume 7 < co.

By the definition of 7, w, there is a unique m € L\ {g} such that

(2.35) g+ pB+Te =m+ pw,
and the ray g + p3 + R-pe; does not intersect any previous ball; i.e.,
(2.36) Vm e L: m-e; <m-e; = 6(q+ pB+Rope;,m)>p.

Now assume —w ¢ 3 5. We will prove that (iii) holds. From (2.35) we
get

(237)  5(q+pB+Rver,1it) = pldbL | < (1+ 1) cos(3ym)p < (L —1)p
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and thus also
(2.38) 6(q + pB' +Rsper,m) < p.

Hence both the rays g+ pB+Rxpe; and g+ pB +Rse; intersect the ball 1+
Bg. Note also that §(q+pB8+Rxge1, m) > p and thus 6(g+pB'+Rsper,m) > p
for all m € £ with m-e; < m-ey, by (2.36). Hence neither 7 nor 7’ can arise
from any previous intersection; i.e., we must have q + p3+ 7e; = m + pw and
q+ pB + 7'e; = m + pw’. This implies

(2.39) | —w)i|| =118 =B)sl <7

and thus, using —w’, —w € S’ld_l, we conclude H'w’—wH < +/2n. Finally from

(1 —1"er = p(w —w') — p(B — B') we conclude

(2.40) |7 = 7| < p(v/2n +n) < 3p/0.

Hence (iii) holds. U
Proof of Theorem 2.3. Step 1: Proof in the case that Fy| and F» are sin-

gleton sets, F1 = {\} and Fy = {f}, and furthermore f is uniformly con-
tinuous. Let ¢ > 0 be given. Let R = 1 + supg, yg_,xs, |f[- Set B =

3+ subgc, supge1 8] and
(2.41) Fi = {'v — B(v)+Bv : B € Fg}.

Then B;(v) - v >3 and ||3;(v)| < 2B hold for all 8; € F} and v € S¢1.
Because of Remark 2.1 and 0 < ®,(§,w,z) < 1, the following limit
relation holds uniformly with respect to all z € {0} x R4~1:

é )
(2.42) }5%(/0 +/§1) /{O}XB?_1 By (€, w, 2) dw dé = 0.

Furthermore, by [19, Lemma 8.8], for any given § > 0 there is some 0 < 1 < %0
so small that

(2.43) /
{0}xB¢—1

holds for all ¢ € [T, T] and all z1,29 € {0} x Big! with ||z1 — 22| < 7.
As a consequence of (2.42) and (2.43), we can now fix n > 0 so small that,
for any two (measurable) functions 21,22 : ST — {0} x Big' satisfying
|z1(v) — zo(v)|| <71 (Vo € S971), we have

(2.44)

A sy e

de
(ba(fvwazl) - ®a(§7waz2)‘ dw < E

@a(f,w,zl(v)) - @a(g,w,zg(v))' dA\(v) dw d¢ < 2—};
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Again using (2.42) (and lim, VOle—l((ﬂg\/ﬁ)L) = 0), we see that by
possibly further shrinking n, we may also assume that

[e'e) 2e
(2.45) /O /wgﬁ,u /S . Do (&0, (B)K(v))1) dA(v) duw dg < —

holds for all (measurable) functions 3 : S~ — R%.

Since f is uniformly continuous there is some § > 0 such that ‘ f(vo, & v1)—
f('vg,g’,'v’l)‘ < £ holds whenever |£ — ¢'| < 6 and ||v; — v)|| < ¢. Furthermore,
our assumptions on the scattering function © imply that ©1 (e, w) is uniformly

continuous in w € —S’ld_l; hence by possibly further shrinking n we may
assume that

(2.46)
d—
vw,w € S, lw—w'|| < 27 = ||©1(e1, w) — O1(e1, w')|| < 6.
Since the family Fj is uniformly bounded and equicontinuous, there is

a finite set FY of continuous functions By : S9~1 — B¢, such that for each
B € F3 there is some B, € Fi with SUPgd-—1 181 — Ball <n.

Given B, € FY, let us write B, for the function 3,(v) := (1 + 1)1 8y(v).
Now since FY is finite, by Theorems 2.2 and 2.1 combined with (2.45) there is
some po > 0 such that the following two inequalities hold for all p € (0,2p)
and all 3, € Fy:

(2.47

)
‘Adl f(lv()v Pd_17'1 (Qp,ﬁQ (,UO)a Vo; p)7 Ul(Qp,ﬁZ (,UO)a Vo; p)) d)\(,UO)

[ [ [ F(00,6.91) P, (00, € 01) d(wo) dedvolgis (v1)]| < &
sd-1 JRog /S8 1

JEE
7
By possibly further shrinking pg we may assume that (3,/7 + B)pd < 6 and
po < po(2B, L, q) (the constant from Lemma 2.4), and that every ball m+l’>’g0
with m € £\ {q} lies outside g + Bngo.
We now claim that for all p € (0, pp) and all 3 € F3, we have

(2.49

)
[ #0067 720 5(00), 00 ), 01(a,,(00), 003 ) A (w0)

(2.48) A({vo c st —’w1(qpﬁ2 (vo),vo; p) K (vo) € ﬂ3ﬁ}>

—/dfl/ /OHf(vo,f,vl)l)aﬁ(vo,ﬁ,vl)d)\(’vo)deOlsdfl(vl) < 10e.
ST R>o /ST 1

This will complete the proof of Step 1, since € > 0 was arbitrary.



244 JENS MARKLOF and ANDREAS STROMBERGSSON

To prove (2.49), let pe (0, pg) and B € F3 be given. Set 3 (v) :=B(v)+Bw;
then 3, € F3, and hence there is some 3, € F3 such that supga-1 |81 —8s| < 7.
1

Now for each vg € S‘lj_l, Lemma 2.4 applies to p, vg, K(vg), B2(vo), B1(vo),
7, Hence, either

(1) Tl(qp7ﬁ2 (’UO), vpr) = Tl(qp7ﬁ1 (’UO), Vo, p) = 0o, or
(ii) —wl(qﬁ”@ (vo), 0, p) K (vo) € Us, 7 with p = p(1 +n), or

(iii) ‘Tl(qu7ﬁl (v0),v0;p) — T1(4, 8, (vo),vo;l))‘ < 3py1
and w1 (q,p, (v0), vo; p) — wi(g,,, (v0), vo; p)|| < V2.

But

(2.50) 71(q,,, (v0), vo; p) = T1(4,,8(v0), vo; p) — Bp
and

(251) wl(qp,ﬁl (U0)7 Vo; p) = wl(qp,B(UO)a Vo; p)v

since every ball m + Bﬁ (m € L\ {q}) lies outside q + Bng and (B(vg) +
R-ovg) N B = 0 if ¢ € L£. Hence if (iii) holds, then we have (using our
assumptions on pg)

(2.52)
10" 171(a,.5,(v0), v0; p) — p* ' 71(a, (v0), w03 )| < By + B)p? <5,

and also, via (2.46),

(2.53) |01(a,,5,(v0), v0: p) = v1(a,,5(v0), v0; p)| < 6.

Therefore, by our choice of 4,

(2.54) ‘f(vo,Pd_lTl(qpﬁQ(Uo),Uo;P)7U1(qp,,32(vo),vo;P)>
- f<170710d_171(qp,,@(v0)7v0§ P%m(%,,a(“o)ﬂo;ﬂ))‘ <e.
Regarding the other possibilities (i) and (ii), the set

{vo € S‘ffl : Tl(qp’gl(’vo),’UO»P) = oo}

has measure zero with respect to volga-—1 (see §2.1) and hence also with respect
1

to A. Furthermore, we have

3¢

(2.55) AM{vo € 8471 ~wi(g; 5, (vo), vo, p)K (vo) € s }) < &
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using (2.48) and p < 2pg. Hence, since the difference in (2.54) is always < 2R,
we conclude that

(2.56)
’/sd—l F(wo, p ' 71(q, 5(v0), vo: ), v1(g, 5 (v0), v0; p) ) dA(v0)

< Te.

a /s,d_l f(”o, p"'11(q, 6, (v0), vo; ), v1(q, s, (V0), Vo; P))d)\(vo)

1

Using (2.44) and the definition of po g in Theorem 2.2 we also get
(2.57)

/s‘f—l /R>0 /s,;l—l

Combining (2.47), (2.56) and (2.57), we conclude that (2.49) holds, thus com-
pleting the proof of Step 1.

2e
d)\(’vo) d€ dVOlstli_1 (’Ul) < E

pa:ﬁz (’1)()7 é’ 'Ul) - pa,ﬁ(v()? 57 'Ul)

Step 2: Proof of Theorem 2.3 in the case that Fy is a singleton set, I} =
{A}, and Fy has the property that Uscp, supp(f) is compact. In this case, since
the family Fy is also uniformly bounded and equicontinuous, for any given
g > 0 there exists a finite subfamily Fj C F, such that for every f € F, there
is some fo € Fy with supg, xg_,xs, |/ — fo| < €. Hence the desired result
follows from Step 1 by a standard approximation argument.

Step 3: Proof of Theorem 2.3 in the case that Fy is a singleton set, F} =
{A}. We first prove that the following limit relation holds uniformly with
respect to all 3 € Fj3:

. d—1 . d-1 , —1) _
(2.58) (p75%1_r>réo70))\({vo e s pri(q, 5(v0) voip) £ 6,071]}) = 0.

To prove this, for each 0 < § < % we fix ¢s : Rsg — [0,1] to be some con-

tinuous function with X[g5,26)-1] < ¢5 < X[s,6-1], and view cs as a function on
S‘li_l xRsg % S‘f_l via projection onto the second component. Applying Step 1
for the families Fy, FY = {cs}, F3, one proves that for any ,6 > 0 there exists
some po > 0 such that

(2.59)
A({vo e S{" : p"7i(q, (o), vos p) ¢ 6,67 ']})
26 o)

for all p € (0, po) and all B € F3. Thus (2.58) follows using (2.42) and mono-
tonicity in 0.
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Now note that for each fixed §, the family FY := {¢cs - f : [ € Fy} is
uniformly bounded and equicontinuous, and all functions in F have support
contained in the compact set Scll_1 x[6,671] x Scll_l. Hence Step 2 applies to
the families Fy, Fy, F5. Now the desired claim follows upon letting § — 0 and
using (2.42) and (2.58) to control the error caused by replacing f by ¢s5 - f in
both sides of (2.32).

Step 4: Proof of Theorem 2.3 in the general case. Since Fi is equismooth
there exist an equicontinuous and uniformly bounded family F” of functions
from S9! to R>q and an equismooth family F”’ of Borel subsets of S{~! such
that each A € F} can be expressed as \ = (g'VOlsil—l)lw withg e F/, W e F”.
Set R =1+ supyep, SUPs, xRooxs; |f| and S =1+ sup ¢ p SUPgd-1 g-

Let € > 0 be given. Fix n > 0 so small that
(2.60)

_ €
Vg € F': Yog,v) € ST 1 p(vo, vp) < 0= |lg(vo) — g(vp)ll <

Rvol(S¢™1)
and

g
(2.61) YW e F”: volsilfl(an)/v) < zg

Choose a partition S¢71 = LJj=1 Dj of S9=1 into Borel subsets Dy, ..., Dy
which are pathwise connected, of positive volume, and each has diameter < 7
(with respect the metric ¢ on S‘f_l). Let A\; be the probability measure \; =
VOISffl(Dj)il (VO]S¢11—1>|Dj for j = 1,...,n. By Step 3 applied n times, there
exists some pg > 0 such that for all p € (0,p0), j € {1,...,n}, f € F, and
B € F3, we have

(2.62)

/sd1 f(voypd_lﬁ(qp,g(vo),Uo;P)»m(qp,g(vo),vo;ﬂ))dAj(Uo)

3

— ,&, o ,&, d\; d€dvolqa-1 <
/S;"l/R>o /sf—lf(vo §,1)Pa,8(v0, &, v1) dA;(v0) dgdvolga-1 (v1) SvolSTT)

We now claim that for all p € (0, p9), A € Fy, f € F; and 3 € F3,
(263) ‘/Sllil f(v(]a Pd_lTl (qp,ﬂ(’UO)v Vo; p)a ,vl(qp,ﬁ(,v())v Vo; p)>d)\(v0)

< be.

L [ 7 (00601 pas w0, v1) dA(w0) dé dvolgy s (o1)

This will complete the proof of Theorem 2.3, since € > 0 was arbitrary.
To prove (2.63), let p € (0,p0), A € Fi1, f € F» and B € F3 be given. Take
g € F' and W € F” such that A = (g - volga—1)y. Set
1

(2.64) M:={j : D; Cc W}, M':={j: D ¢ Wand D; ¢ ST \W}.
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Since Dj is pathwise connected, for each j € M’ there is some point p €
D; N OW. Therefore, and because D; has diameter < 1, we have D; C 9,WV.
Hence ;e VOIS(IZ—l(Dj) < vols(lz_l((‘)nW) < &g

For each j € {1,...,n} we fix a point p; € D; and set g; := g(p;); then
note that |g(vo) — g;| < W for all vg € Dj, by our choice of 7 in (2.60).
Hence '

(2.65) Vsdlf(vo,/)d1T1(qp,g(vo),vo;ﬂ)aUl(qp,ﬁ(vo)avo;P))d)\(vo)

- Z 9j VOls‘ffl(DJ)

JjeEM

X /sdl f(vo,Pdflﬁ(qp,g(Uo),vo;P)wl(qp,ﬁ(vo)wo;ﬂ)) dj(vo)

1

g
< Z/ Rty ol () + 3 / RS dvolge-1 (vp) < 22.

JjeEM JeEM'

Combining this with (2.62), applied for each j € M, we get

(2.66) ‘/sdl f<v07pd717-1<qp75(/vo>7UO;p)?”l(qp,,@<v0)7’uo;p)>d)\(v0)

-9 VOls‘fl(Dj)/SiH /R>o /s‘flf(vo’g’m)

JEM

XPa,p(v0, €, 1) dA;(v) d€ dvolga—i (v1)

g
<2+ E S vol —— < 3e.
b, s+ (D )Svol(Sd D)

On the other hand, using [qu-1 [p_ Pa,g(v0, &, v1)dE dVOlS(li—l(’Ul) =1 (true
1

for all vy € 471, cf. (2.25) and (2.12)) and the same bounds as in (2.65), we

get

@61 | [y [ [ 700601 )pa (o0, € v1) dAwo) dt dvolgy s (v)

=9 VOls;ll(Dj)/Sf_l /R>o /Sf_lf(’voaf,’l’l)

JEM

XPa,3 (v0,&,v1) dXj(vo) d dvolsd,l (v1)

a Z/ Rvol(S )dVOISd 1(vo) + Z / RSdVOlsd 1(vp) < 2e.

JEM jeEM’

Combining (2.66) and (2.67) we obtain (2.63), and we are done. O
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3. Iterated scattering maps

To prepare for the proof of the main result of this paper, Theorem 4.1, this
section provides a detailed study of the map obtained by iterated scattering in
a given sequence of balls m; + Bg, when p is small. The central result of this
section is Proposition 3.3 below.

3.1. Two lemmas. Given v € Scffl, the tangent space T,,(Scllfl) is nat-
urally identified with {v}+ C R% For h € To(S{™!), we write Dy, for the
corresponding derivative. We use the standard Riemannian metric for Scll_1
and denote by T5(S{™!) the set of unit vectors in Ty, (S¢™1). For any open
subset V € 8471 we write T*(V) = | Jpey T (S¢7!) for the unit tangent bundle
of V.

For w € R?\ {0} and n > 0 we define V,, := V5 (cf. (2.18)) and

(3.1) VI = {u e 841 . p(u,w) > Be + 77} C Vu;

thus, in particular, VO, = V,,. Set

(3.2) Cy:=1+ max( sup ||DpBy ’, sup DhﬁEH)
heT(V]) heT! (V)

Then C,, is independent of v, depends continuously on 7 € (0,7 — Bg), and
may approach infinity as n — 0.

For any s € R?\ {0} we let A be the probability measure on S§~! which
gives the direction of a ray after it has been scattered in the ball B, given that
the incoming ray has direction s and is part of the line x + Rs with x picked
at random in the (d — 1)-dimensional unit ball {s}*+ N B¢, with respect to the
(d — 1)-dimensional Lebesgue measure. In particular, for s = e; we have

(3.3) Ae; = vol(BI )™+ (Vo) (volga-—1),

where Vg : BS! — S9! is the map

(3.4) Vo(z) = O1(e1, (—/1 - |z|2,2)).

Thus Vj is a diffeomorphism from B’f‘l onto Ve,. For general s # 0 we have
As = Ki(Xe;), where K € SO(d) is any rotation such that § = e; K. The
following lemma shows that for any subset M C VI, the renormalized S¢~1-
volume measure on M and the renormalized \s-measure on M are comparable
with a controllable distortion factor.

LEMMA 3.1. Giwen n,e > 0, there exist constants K, > 1 and c,. > 0
such that for every Borel subset M C Vi with volga—1(M) > 0, we have
1

(3.5) )\s(M)_l)\s‘M =g- (Volszlifl (M))_l . VOlslliA M
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for some continuous function g : M — Rsg with g(u) € [K;l,Kn] for all
ueM.

If furthermore M has diameter < ¢y, i.e. if o(uy,uz) < ¢, for all
ui,ug € M, then g(u) € [1 —e,1+¢] for allu € M.

Proof. Without loss of generality we may assume s = e;. Set v =
(VOlsﬁ—l(M))_l . VOISlli—l‘M and A = Ae, (M)~ 'Ag;ar- By (3.3) we have A =
C- finm v, where f: Ve, — R is the Jacobian determinant of the inverse map
Vit from Ve, to B{™!, and C > 0 is a constant determined by Cflyfdv=1
(in particular, if the ratio of sup,, f and infys f is close to 1, then the function
C - fim is uniformly close to 1). Now the lemma follows from the fact that
both f and f~! are bounded and uniformly continuous on V¢,, since V¢, has
compact closure in Ve, . O

We define \J to be the probability measure which is obtained by restricting
\s to V¢, and normalizing appropriately.

Given r, s € R?\ {0}, a number p > 0 and a continuous function 3 : V;/ —
R?, we set

(3.6) Q={veV! : (pB(v)+Rogv) N (s+BL) 0},
For v € Q) we set
(3.7) T(v) =Ty p(v) :=inf{t >0 : pB(v) + tv € s+ BI}.

Let W (v) = W, s () be the impact location on S{~*, i.e., the point for which
pB(v) + 7(v)v = s + pW(v), and let

(3.8) V(v) =V,s5(v) :=0(v,W(v)) € S§1,

the outgoing direction after the ray pB(v) + Rsgv is scattered in the sphere
s+ Sg_l.

LEMMA 3.2. Given any 0 < n < %, C > 10 and € > 0, there exists a
constant po = po(n, C,e) > 0 such that all the following statements hold for any
p € (0,p0), any r,s € R4\ {0} with ||s|| > C~1 and (7, s) > Be +2n, and for
any Cl-function B : Vy — RY with supyr [|B| <C and supperiyny [[DnB|| < C:

(i) Let V.=V, be the restriction of V.=V, s to V"1 (V]); then V is

a C1 diffeomorphism onto V4.
(ii) If M C V4 is any Borel subset with As(M) > 0 and if u denotes the
measure volga—1 restricted to V_I(M) and rescaled to be a probability
1

measure, then Vi = g - )\S(M)_l)\3|M for some continuous function
g:M—[1—e1+¢]
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(iii) Define the C' maps BT = B;Sﬁ : VI — 84 through BF(u) =
,6;_1( )(u) Then HBi(u) — ﬂ%(u)” <e¢ for all w € V¢ and ||DpB¥||
< C, for all h € TY(VI).

Proof. Since Q, W, s g and V, ¢ g are invariant under (p, s) — (cp, cs) for
any ¢ > 0, it suffices to treat the case |s|| = 1. After an auxiliary rotation
we may then assume s = e;. From now on we will always keep p < 5.
Then pB(v) certainly lies outside the ball e; + Bg for all v € V). Let us write
a = a(v) = p~te; — B(v) and note that ||al > 2%) > 103 for all v. Now for
each v € Q the ray Rugv hits a + Bf, and thus p(v,a) < arcsin(HaH_l) <
ﬁ < mp. Also p(a,er) < arcsin(p”,@(v)”) < 5Cp. Hence by the triangle
inequality for ¢, using p < 5= we obtain

(3.9) o(v,ep) < (7r + gC’)p <2Cp < 1%, Yo € Q.
We now compute
(3.10) Q={ves{™ : 1-|al*+(a-v)*>0},

which is automatically a subset of V), because of the assumption ¢(r,e;) >
Beo + 27, and furthermore, for all v € Q, h € T,(S¢1),

(3.11) W(v)=-a+ ((@a-v)— /1-[al2+(a v)2)v
and
(3.12)

DpW = Dp3 + (a-h—'v-Dh,B—

a-Dh,@—l—(a-v)(a-h—v-Dhﬁ))v
V1-lal?+ (a-v)?
+ (a-'v— \/1— HaHz—i-(a‘v)Q)h,

using the standard embedding h € TU(S‘li_l) C R%.
Since © C S¢7! is contained in a small neighborhood of e; (see (3.9)), the
map v+ B(e1) L +p !

(3.13) Qr:=B(e1)L +p Q. C {0} x RS,

v, gives a diffeomorphism from 2 onto

which transforms the S¢~! volume measure into the standard R%~! Lebesgue
volume measure scaled by p?~! times a distortion factor which is uniformly
close to 1 when p is small. The inverse map is (using the identification {0} x
Rd_l — Rd_l)

(3.14) I:Q—=Q,  x—Qp(x—Ble1)L)),
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where @ is the map

(3.15) Q:B ' =St ye (VI-ylty).

Now, for (i) and (ii), it suffices to prove that (i) and (ii) hold with the
map V replaced throughout by Vi :=V ol : Q — Sffl, Volszli—l replaced by
volga—1, and € replaced by /2.

Recall the definition (3.4) of the diffeomorphism Vj from B‘lifl onto Ve, .
Using the spherical invariance of @ it follows that Vj *( 21/ 2) = B4~ for some
r=r(0,n) <1

From (3.9) we get Q7 C {0} x Biz'. Now for all x € Bi,' we compute,
with v = Q(p(x — B(e1) 1)) and a = p~te; — B(v) as before,

(3.16) a-v=p"'=Bi(v) +35(IB(er) L]* — zlI*)p + O(p?),

(3.17) lall® = p~ = 261(v)p™" + [1B(e)|* + O(p),

where 1 (v) := B(v)-e;. Here and in the rest of the proof, the implied constant
in any big O depends only on ©,C,n,e. It follows that

(3.18) 1—lal* + (a-v)* =1~ [lz|* + O(p),
and hence by (3.10), if p is sufficiently small,
(3.19) Vo lva?) = BE Q.

Let Wy == Wol : Q — Scffl. By a computation using (3.11) and
(3.16)—(3.18) we find that for each = € B¢~

(3.20)

Wi(z) = W(v) = Wo(x) + O(p),  with Wo(@) = (—/1— =], 2).
By a similar computation using (3.12) we also obtain, for p sufficiently small,
(3.21) (DRW). = p~'h+ O(||R])
for all v € I(B& ') and h € T,(S¢™1). Therefore, for all x € B4 and
u € Tp(Q) = {0} x R
(3.22) (DuWr) | = p~' Dul + O(|| Dul|]) = u + O(p]ul)),

since Dyl = pu + O(p?||lu||). We also have, trivially, (D, Wy)1 = u. But we
know
(3.23)

DuWi € Ty @) (ST71) = {Wi(z)}- CRY, D Wy € {Wo(z)} c RL

For p sufficiently small, (3.20) implies that W;(z) and Wy () are close on S¢~*
and both have ej-component < —3v/1 —r2. Hence (3.22), (D, Wy) | = u and
(3.23) imply

(3.24) DuWr = DyWo + O(pllul]).
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It follows from (3.20) and (3.24) that the function (WI)|B¢1 converges to
(WO)|B;‘!—1 in Cl-norm as p — 0.

To continue, note that V;(x) = ©1(I(x), Wr(x)). The function I : Qf — Q
tends to the constant function = — e; in C'-norm, as p — 0. Using that O :
S_ — 8471 is C! and that I(B4') x Wi (B%~1) is a subset with compact closure

in S_ for p sufficiently small, we conclude that the map (V1)| g1t Bt —

S9=1 tends to (‘/E))|Bd—1 in Cl-norm as p — 0. Since the latter map is a C!

diffeomorphism from B2~! onto VZ{ ? which is a restriction of a diffeomorphism

from all of B‘li_l, it follows by a standard argument in differential geometry (cf.,
e.g., [16, §2.1]) that, for p small enough, (‘/])le—l must be a diffeomorphism

as well, mapping B¢~! onto some open subset of Scll_1 which contains Ve, , and
that (ii) holds with V replaced by (VI)‘ pi-t (and Volszli—l replaced by volga-1,
and ¢ replaced by €/2).

Hence to conclude the proof of (i) and (ii), it only remains to prove that
the map V is injective, or equivalently that V;(x) ¢ Vi, for all € Q; \ B~
A computation shows that if p is small and & € Q7 \ B4, then W;(x) - e >

—V1—7r2—-0(p), and thus

(3.25) U (x),Wi(x)) < ¢(er, Wi(x)) + O(p) < 5 + arccos(r) + O(p).

_l’_
It follows from our assumptions on ©; that ¢(I(x),Vi(x)) is an increasing
C! function of p(I(x), Wi(z)) € (5,], and p(I(x), Vi(z)) = Be + % when
oI (x), Wi(x)) = 5 4+ arccos(r). Hence

(3.26)
pler, Vi(@)) < p(I(x),Vi(z)) + O(p) < Bo+ 3 +0(p), Ve eQr\BI,

and, in particular, if p is sufficiently small, then V;(x) ¢ Vi, for all x €
Q7 \ B471) as desired.

Finally we turn to (iii). Set V; = (V1)|V;1(v;’1)' Then, since <VI)|B,?’1

tends to (‘/())‘Bd—l in Cl-norm, we have Du(Vfl) = O(||ul]) for all x € V¢, and
u € Tx(Ve,), so long as p is sufficiently small. But

(3.27) Vi=IoV, Vr

df
el — Sl 17
and I tends to the constant function £ — e; in Cl-norm. Hence also Vfl
tends to the constant function & — e; in Cl'-norm as p — 0. Therefore, by

continuity and the definition of Cj;, (3.2), claim (iii) is established. O

3.2. The main proposition. Let us consider a particle trajectory that fol-
lows the ray emerging at mg + pB3(vo) in direction vy, is scattered at the ball
mi + Bg, exits with velocity v; and moves with constant speed until scattered
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at mo + Bg, and so on; after the final scattering at m,, + Bg the particle ex-
ists with velocity v,,. We call m = (mgy, mq,...,m,,) the scattering sequence
associated with this trajectory. We denote by 8 (v,) and BJF('UTL) € S9! the
position of impact and exit on the last scatterer; thus 8 (vn) = B, , (vn)
and B+(Un) = B4 (vn). We call vy and vy, the initial and final velocity,

respectively. Set, furthermore,
(3.28) Sk ‘= MMy — M.

Note that sy differs from the path segment 7,v;_; defined in (1.8) by < p.
Given positive constants 1, C, we say a sequence m = (mg, mq,...,my,)
of scatterer positions is (1, C)-admissible if

(3.29) sl >C~ (k=1,...,n)
and
(3.30) ¢(sk+1.88) >Beo+2n,  (k=1,....,n—1).

PROPOSITION 3.3. Given any N € Zsq, 0 <1< 522, C'>10 and € >0,
there ezists a constant pg = po(N,n, C,e) > 0 such that for any p € (0, po), any
(n, C)-admissible sequence m = (mg,m1,...,my) with n < N, and any C
function B : S — R? with SUPgd-1 18Il < C and SUPp i (gd-1) | DrB|| < C,
the following holds:

(i) There ezists a C! diffeomorphism ® = ®,m.8 from an open subset A =
A,mp C Scllfl onto V¢ such that, for every v € Scllfl, u € Vi, the
following statements are equivalent:

(a) There is a particle trajectory with scattering sequence M, initial ve-
locity vog = v and final velocity v, = u.
(b) v € A and ®(v) = u.

(i) The position of impact and exit on the last scatterer, B3 :B;,m,,@ and
B+ :B:;mﬂ, are C! maps from Vi to Scllfl, satisfying Hﬁi (u) _ﬂi (u)H
<€ for alluw € V4, and SUDpeT1 (V1 ) ||Dhﬁi|| < (.

(iii) If p is the S1 volume measure restricted to A and rescaled to be a
probability measure, then ®,u = g - N2 for some continuous function
g:Vd —[1—e1+¢].

Proof. We assume that C > C,. Fix 1 € (0,€) to be so small that
(14+e) V"1 <1+eand (1 —¢1)?Y"1 >1—¢. Then fix

(3.31) po = po(N,n,C,e) := min(fo(n, C,e1), 52, 5952 ),

where pg(n,C,e1) is as in Lemma 3.2 and ¢, is as in Lemma 3.1.
Now take arbitrary p € (0, p9) and my, ..., m, and B satisfying the as-
sumptions of the proposition. Using the notation introduced in the context of
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Lemma 3.2 (setting » = —sy, say, and considering the restriction of 3 to V),
we set
(3.32) o =v-! ),
(3.33) VO =V, 500 - gl
d—
(3.34) pY =Bl 5Vl —»s{,
and recursively for k =1,2,....,.n—1 (s = 811 = mpy1 —my and r = s, =

my — my_1, in the the context of Lemma 3.2),

k+1) _ k)\—1 -1
(3'35) QD — (V( )) (VP,Sk+lvﬁ(k)(ng+1)>v
(3.36) V(k—H) - Vﬂ,Sk-ﬁ—lu@(k) © V(k) : Q(k—H) - Scli_17
k+1 . d-1
(3.37) BT =B iV, S

Then Q™ c Q=D ¢ ... c QM) by definition.

Lemma 3.2 implies, by induction over k, that V%) is a C! diffeomorphism
from Q) onto Vi, and that B *) is a C' map from Ve, to Sd U satisfying
SuPhETl(V;’k)HDhB H <Cp,<C,foreachk=1,...,n

Now set A = Q™ and ® = V(™. Then & is a C! diffeomorphism from A
onto V¢ .

Proof of (i). The implication “(b)=-(a)” in Proposition 3.3 follows directly
by construction. Indeed, suppose v € A and w = ®(v). Then since v =
vo € QW the ray mg + pB(v) + Ruov hits the ball m + Bg at the point
mi+pW, s, g(v), and after scattering we obtain the ray m, +pBY (VO (v))+
R0V (v). Similarly, it follows from our definitions that for each k € {1,. ..,
n — 1}, the ray my + p,B(k)(V(k) (v)) + RsoV®#) (v) hits the ball my; + Bg
and after scattering gives the ray my 1 + p@%+D (V(k+1)(v)> + R oVEFD (v).
Using this for ¥ = 1,...,n — 1, we see that (a) holds for the given vectors
V= Vg, U = Uy

Conversely, we now prove “(a)=-(b)”. Suppose that v = vy € S‘li_1 and
u = v, € Vg, satisfy the assumptions in (a). Thus: The ray mg + pB(vo) +
Rsovg hits my + Bg; after scattering in this ball we get a ray which hits
mo + Bg, and so on for mg + Bg, e, My, + Bg, and after the final scattering in
my, JrBff we get a ray with direction v, = u. Let v} € Scll*1 be the direction of
the ray leaving the ball my + Bz in this scenario. For each k € {1,...,n — 1},
by assumption there exists some ray with direction v; and starting point on
my + Sd ! which hits the ball my 1 + B this 1mp11es ©(Vk, Sky1) < 74 by the
same argument that led to (3.9), using p < 2002 Since we are also assumlng
©(8k, Sk+1) > Be + 21, we conclude vy € Vs,C This is also true for k = n,
since v,, = u and uw € V{, by assumption.
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Now since the ray mg + pB(vo) + Rsovg hits m; + Bg and gives a ray
with direction vy € V{, after scattering, we must have, by our definitions,
vy € ijsllﬁ(vgl) = QW and V) (vy) = vy; in fact the ray obtained after the
first scattering equals

(3.38) my + pBY (v1) + Rogvy,  v1 =V (o).
Similarly, one now proves by induction that for each k € {1,...,n} we have
vy € Q(k), and the ray obtained after the kth scattering in our scenario equals
(3.39) my + pBE) (vp) + Roguy, v = VP (v).

In particular, for k£ = n we obtain v = vg € A and v,, = ®(v); i.e., (b) holds for
the given vectors v = vy, u = v,. This completes the proof of the implication
“(a)=(b)".

Proof of (ii). It follows from the above discussion that the functions Bi
defined in Proposition 3.3 are the same as

(3.40) B =B VI ST
and
(3.41) B\ gy Ve, = ST

respectively, where if n = 1, we understand [3(0) = 3. Hence the claims about
B~ are direct consequences of Lemma 3.2(iii) (since &1 < €).

Proof of (iii). When n =1 the statement follows directly from Lemma 3.2(ii);
thus from now on we assume n > 2. Let us write u®) = V*(k),u for k£ =
1,...,n, so that u(® = ®,u. We know that for each v € V(U(A) the ray
my + pBY (v) + Rugw hits my + Bg. Hence ¢(v,s2) < mCp by the same
argument that led to (3.9). It follows that
(3.42) o(v,v") <27Cp < ¢y ¢,

for all v,v' € VI(A), by our choice of p. Hence Lemma 3.2(ii), using p <
po(n,C,e1), together with Lemma 3.1 imply that

(3‘43) :u(l) = (Vp,shﬁ)*(ﬂ) =0g1-V

where v is the Sil_l volume measure restricted to V1) (A) and rescaled to be
a probability measure, and g; is some continuous function from V1 (A) to
(1= e1)?, (1 +21)?)

Repeating the same argument, using

(3.44) :u(k—H) = (Vp,SkJrl,ﬁ(k))*(/‘(k))a

we obtain u(k) =g -V for each k =2,...,n — 1, where vy, is the Scll_1 volume
measure restricted to V¥)(A) and rescaled to be a probability measure, and
gk is some continuous function from V*)(A) to [(1 —&1)?*, (1 + £1)?*]. Using
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this fact for k = n — 1, together with one more application of Lemma 3.2(ii),
we finally obtain ®,pu = p(™ = ¢- A4, , where g is some continuous function
from V) (A) = VI to [(1 —e1)?* 1, (1 4+ £1)?""!], thus proving the desired
claim. (]

4. Loss of memory
4.1. Statement of the main theorem. For vg € S‘li_l, we define the proba-
bility density pg g+ (v1,£,v2) on Sffl xRsq X Sffl by
9, ’UO -
(4.1) Po.g;, (v1,&,v2) dVOlszlifl (vg)

_ Do (& w, (B, (01)K (v1)) 1) dw if v1 € Vy,, v € Wy,
0 otherwise,
with w = -8, (v2K(v1))1 € {0} x Bt

Remark 4.1. As in Remark 2.4, the density pg g+ (v1,&,v2) is indepen-
K UO

dent of the choice of the function K(v1); also pg g+ (v1,§,v2) is continuous
i 'UO

at each point (v1,§,v2) € Silil xR>p X Silil with v1 € Vy,, v2 € Vy,, ex-
cept possibly when d = 2, £ > 0 and 3, <’02) = — B (V1)Ry, (& vy =
©1(v1, =By, (v1)Ry,)). Here Ry, denotes reflection in the line Rv;.

Remark 4.2. Due to the spherical symmetry of the scattering map ©
(cf. §2.2) we have

4.2 K K) =
( ) vaB:fDK(Ul ,é—,’UQ ) po,ﬂ;ro ('1)1,5,’02)

for any K € O(d).

Remark 4.3. The explicit formula in Remark 2.5 carries over directly to
the present case.

Remark 4.4. By (2.12) we have, whenever vy € Vy,,,

(4.3) /S e Vo, (0156 02) dE ol (02) = 1

For the definition of pq g,, recall (2.25). The analogue of relation (4.3) of
course also holds for pa g,, again by (2.12).

THEOREM 4.1. Fiz a lattice £L = Z%My and a point g € R, set o =
—qMo_l, and let By : S‘f_l — R? be a C! function. If q € L, we assume that
(Bo(v) + Ragv) N BE = 0 for all v € Silil. Then for any Borel probability
measure Ag on S‘li_1 which is absolutely continuous with respect to volga—1 and

1
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for any bounded continuous function fy : Silil X (Rsq X Sfffl)” — R, we have
(4.4)

. d—
lim [~ fo (vo, p* ' (@,.8,(v0):vo: p), v1(g, g, (v0), vo; p); - - -

p—0 /s~

ey vn(qpﬁo(vo),vo; p)) d/\()(’v())

/Sill s Roox§e-yn fo(v0,€1,01,- - &ny V0 ) Pa s, (V0, &1, v1)Po g, (V1 €2, v2)

n

Popy | (Vn—1,&n, Vn) dAo(v0) H dé dVOlSzli—l('Uk-).
k=1

Note that the case n = 1 specializes to the statement of Theorem 2.2.
Hence from now on we will assume n > 2.

The proof of Theorem 4.1 is given in Section 4.3 and is based on an
iterative application of Theorem 2.2. The idea is that at the nth step, for a
given, small p > 0, we apply Theorem 2.2 once for each possible sequence of
balls mq + Bg, mo + Bg, e, My 1 + Bg (my € L) causing the first n — 1
collisions in the orbit of the flow ¢;. For each such sequence {my}}_; we
apply Theorem 2.2 with A as the probability measure on Silil describing the
random variable v,—1(q,, g, (vo), vo; p) conditioned on v leading to {my. )]

and with 3 as the function “v,_1(q, g, (v0), vo; p) = Wn-1(q, g,(v0), vo; ).

1.
17

(see

2

Proposition 3.3), and the resulting limiting density is p, Fers (Vn—1,&n, Vn).
Hop—2

9

(This makes sense once we restrict to vy leading to the fixed sequence {m;,}~
see Proposition 3.3.) Since p is small, 8 is well approximated by Bjﬂ_

Note that in Theorem 2.2, p, g does not depend on the choice of A; hence our
limiting density pg_ 8, (Vp—1,&n, vy ) is independent of the measure dA(v,—1),
and thus independent of &1, ...,&,—1 and v, ..., vy_3.

To make the above argument rigorous, we need to use the uniform version
Theorem 2.3 in place of Theorem 2.2, since both A and 3 depend on the hit
sequence {mk}z;ll, as well as on p. For the application of Theorem 2.3 we
need to prove that all our \’s are contained in some equismooth family, and
furthermore, that 3 is indeed sufficiently well approximated by ,B,Jjn_ , as stated
above.

4.2. Sets of good initial velocities. In this section we will define sets of
initial velocities vy with good properties and prove two lemmas which will
later allow us to see that the complement of these sets have small A\g-measure.

Let n > 2 and B, be given as in Theorem 4.1 and set
(4.5)

C=10max(1,5up |Boll,  swp [DaBoll, sup fyl~',  swply] 7).
sd-1 heT (541 yeL\{o} ye(L—q)\{0}
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Let i and p be arbitrary numbers subject to the conditions

(4.6) 0<n< “IOBE)Q and 0<p< min(c%cn,po(n,n,an)),

where po(n,n,C,n) is as in Proposition 3.3 and C;, as in (3.2). These two
numbers n and p will be kept fixed throughout the present section. Recall
(2.33) and define w(n) € (0, 5) to be the angle such that

(4.7) i) = tays U =Bz, (Ve \ V"),
We also fix a partition S{~! = |_|§-V:1 Dj of the sphere S{™! into Borel subsets
D1, ..., Dy, each of positive volume and boundary of measure zero and with

diameter < n/C,, with respect to the metric .
For v € S¢™! and k > 1 we let
(4.8)
wi,(v) = wi(g,p,(v),v:p) €511, my(v) = my(g,p,(v),vip) € L

be the impact position and the ball label at the kth collision for initial condition
(q+pBo(v),v) € THK,). Let vi(v) = vi(g, 8, (v),vip) € S9=1 be the velocity
directly after this collision, and let 7,(v) = 71(q, g, (v), v; p) € R be the time
elapsed between the (k —1)th and kth collision. (Cf. (1.4) and (1.7).) We also
set my = q € R? and

(4.9) sk(v) = 81(q,,,(v), v p) = My (V) — M1 (V)

for £k > 1. Note that ||si(v)|| > 10/C always holds, by our choice of C.
Given any a € S{™! we let [a] be the unique set D; for which a € D;.
Set U = 8971 and define the subsets U > UMD > U > ... recursively as
follows: For each k > 1, we let U®) be the set of all v € UF~Y satisfying the
following three conditions:
() 7 (v) < oo,
(I1) [v(v)] € Va7, and
(IIT) for each u € [vg(v)] there is some v € UKD satisfying

{mg(v’) =my(v), (=1,...,k;

4.10
(4.10) v (V') = u.

If v € U® and u € [vg(v)], then every v/ € UFD satisfying (4.10) will
actually lie in 4®).

Given a vector v € UF) (1 <k < mn), we let Mff be the set of those
indices i for which (4.10) holds for some w € D; and v' € U¥). Then note
that U;eppDi C vslfj” and for each u € U;c gk D; there is some v’ € U such
that (4.10) holds. Write m~ := (my,...,my), where mo = ¢ and my =
my(q, 8, (v),v;p) (£ =1,...,k) as before. For each £ € {1,...,k —1} we have
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ve € Vall since v € UY | and also, since the ray my + pBY,  (ve) +Ruovy hits
My + Bg we have

< arcsin@ <icp<m;

[se41ll 5 72

hence ¢(sy, 8¢+1) > Be + 9. Also recall p < pg(n,n,C,n). Hence the data
ﬁiﬁ, p and B satisfy all the assumptions of Proposition 3.3. Now taking
¢ = q)p,ﬁtﬁﬁo : A=V, to be the diffeomorphism in that proposition, it

follows that for every u € U;cpD; there is a unique v’ € U™®) for which (4.10)

(4.11) (v, sp41) < arcsin

holds, namely v’ = ®~!(u). Proposition 3.3 also implies that for any such pair
u,v’, we have regarding the starting point of the u-ray leaving the my-ball:

B"‘ (v')v'3p) (u) = E*( ) with ,3 = ﬁp kg, Vsk Scll_l.

Vi—1 qpﬁ
LEMMA 4.2. Assume that 1 <k <n—1, v e U® andﬁ —ﬁ
Ifv ¢L{ (k+1) " then one of the following statements holds:

(1) Th1(v) =
(11 V(U Eacp< zeM,{fDi)v

)
) )
(iii) wl( ), Vk; p)K(vk) € Uy
) —wi ( (7+(’Uk) + 3vg), vk (1 + W)P)K(Uk) € ()

ﬂm Bo”

1V

Proof. Fix any vector v € U® \ Y*+D) | assume 7,1 (v) < oo so that
Wit = Wit1(v) and vy = vi4(v) exist, and write D; = [vg41]. Now by
the definition of U(*+1) we have either D; ¢ V;SZI, or else there is some u € D
such that there does not exist any v’ € U®*) with

{mg(v’) =my(v), £=1,...,k+1;

4.12
(4-12) Vi1 (V) = u.

107] 10n

First assume that D; ¢ Vg, ; i.e., there is some u € D; with w ¢ Vs, )|
Then ¢(u,sx+1) < Be + 10n; also p(vg41,u) < 7 since D; has diameter
less than 7, and ¢(sp11,vg) < 5Cp < 1 as in (4.11). Hence p(vji1,vE) <
Bg + 127, and using wy41 = B, (vk+1) and the spherical invariance of 3~

this implies —wj4 1K (vy) € Uy (cf. (4.7)). But

(4.13) Wit = wi(myg + pB " (vr),vk; p) = wi1(pB " (vr), vi; p),

since £ —my, = L. Hence (iii) in Lemma 4.2 holds.

It remains to consider the case when D; C Vsk but there is some u € D,
(which we now consider as fixed) such that (4.12) does not hold for any v’ €
U®) . As in the discussion preceding the lemma we have ¢(sy, s¢y1) > Bo + 9
forall £=1,...,k, so that the data m k“, p and B satisfy all the assumptions
of Proposition 3.3. Now u € D; C VS,CJrl lies in the range of (I)p,mﬁ“ﬁo; we
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set v/ = q);iﬁkﬂ ﬂo(u) € S¢71. Then by “(b)=(a)” in Proposition 3.3, the

ray g, g,(v') + Rsov’ hits my + B/f,l; after scattering in this ball we get a ray
which hits mso + B;l, and so on for mg + B;‘f, e M1+ Bg, and after the final
scattering we get a ray with direction u. (So far we make no claim for any j
on whether or not the ray leaving m; + Bff passes through any other ball in
L+ Bz before hitting m ;1 + Bg.)

Let v}, be the direction of the ¢th ray in the above sequence (¢ € {0, ...,
k4 1}, thus vy = v, v}, = u), so that my, + p,@j}l 1('02) + R gv}, is the ray
which leaves my, + Bg and hits myg 1 + Bg. We have ¢(sp11,v}) < %C’p <n
(cf. (4.11)) and thus

(4.14) (81, V) > ©(Sk, Skt1) — @(Skt1,v),) > Be + 9 —1

so that v}, € VJ,. Hence by “(a)=(b)” in Proposition 3.3, v’ also belongs to
the domain of @, -« 5 , and v), = (I)p,ﬁzf;,ﬂo(”,) and

(4.15) Bl (0}) =B (v}) = B,k g, (vh).

From ¢(sk41,v;) < $Cp and @(s41,v};) < 3Cp we get o(vy, v}) < Cp. Note
that vy, € Uje g D; since v € U*), Now if v}, lies outside Usenri Di, then there
is some point on the geodesic between vy, and v} which lies in 9(U;c mxDi)s
and hence vy, € 9cp(Ujepgr Di); iee., (ii) in Lemma 4.2 holds.

It remains to consider the case v € U;c amiDi. As in the discussion pre-

ceding the lemma, v}, € Uienrs Di and v =0 11?1’“ 8, (v},) imply that v’ € Uk

v

and that (4.10) holds with v} in place of u; thus vy = ve(q, g, (v'),v'; p) for
all ¢ =1,...,k. We know from above that the ray my + pB3], (v}) + Rsv),
k—1

hits my.q + Bf)l; let us choose 7/ > 0 and wj_, € S‘f_l so that the point of
impact is

(4.16) my, + pﬁ;r;cfl (v},) + 7'V}, = Myi1 + pwh 4.

After scattering in the ball my41 + Bg we get a ray with direction w. It follows

that the ray

(4.17) mi 4 pBY, (o)) + Roov)

must intersect some other ball in E—i—Bg before it hits my4q +BZ, for otherwise

we would conclude my11(q,, g, (v'), v'; p) =mp41 and vi41(g, g, (v'), v'; p) =u
e., (4.12) would hold for our v’ € U¥) | which is contrary to our assumption.

Thus there is some point

(418) m' = mk+1(qp,ﬁ0 (’U,), ’Ul; P) €L, m/ 7 Mp+1

and some t' € (0,7') such that my + pﬁ;r;f_l(vz) + t'vj, € m/ + BY. Note that

|lm — my. 1] > 10/C > 103p, and hence t' < 7/ — 100p.
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Using ¢(vg, v,) < Cp < n and vy, € Vil we see that the (S971-)geodesic
from vy, to v}, is contained inside V{,; hence from SUPpeTL (V7 ) HDhBJrH < Oy
Sk

(see Proposition 3.3) we deduce
(4.19) 18" (vr) = B (wi)l| < CyCp <.

Similarly, writing 8y, := 8, zi+1 g and using w4y = Brop1(Vk+1), Wiy =

Bry1(u) and vj1,u € Dj C V;,?Zl (thus p(vgi1,u) < Cln), we obtain

(4.20) lwg1 — Wi |l <.

Thus the line segment my + pB+(v§€) + (0, 7")v}, has both its endpoints at
distance < pn from the corresponding endpoints of the line segment my +
pBJr(vk) + (0, Tk41)vg. Hence |7/ — 741| < 2pn, and there exists some t > 0
with [t — /| < 2pn such that

(421) s+ B (vr) + tor) — (mi+ B (v) + 'v})

‘<p17.

It follows from this that my + pBJr('vk) +tv, €em + Bg, with 5 = (1 +n)p,
and therefore 77 := 7 (my, +p(ﬁ+(vk) +3vy), v, p) satisfies 7' < t —3p. Take

m/” € £ and set w} = wi(my, + p(BJr(Uk) + 3vy,), g, p) € S¢71, so that
(4.22) my + p(BJr(vk) + 3vy) + v = m” + pwl.

Note that if the ray my, +pﬁ+ (vi)+R<ovy would also intersect the slightly
smaller ball m” + B4, then 1 (my, + p(B " (vi) +3vs), vi, p) < 7'+ 3p, and we
would get a contradiction:

+
(4.23) The1 = Ti(my + p(B " (Vi) + 3vg), vk, p) + 3p
< +6p<t+3p<t +4p<7 —96p < 1141 — 95p.

Thus the ray m; + pﬁ+(vk) + Ry gv;, intersects m” + Bg but not m” + Bg.
This implies —w{ K (vy) € U 5 C L. Hence (iv) in Lemma 4.2 holds. [

~ We next give the analogue of Lemma 4.2 in the case k = 0. Let us define
By € C(S{") by
(4.24) Bo(v) = (1 + 77)71<:30(U) +(C + 3)”)-
LEMMA 4.3. Set p = (1 4+ n)p. For each v € S{™\UM | one of the
following statements holds:
(i) 71 (v) = oo,
(11) —wq (q + ;0160('”>v v; p>K(’U) S il0.1(17)7
(i) —wi (g + By (v), v;5) K (v) € Ly
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Proof. This is very similar to the proof of Lemma 4.2, but easier in certain
respects. [l

4.3. Proof of Theorem 4.1. Let n > 2, Mg, By, fo be given as in the state-
ment of the theorem.

4.3.1. Some reductions. Set X = S x(Rsg x S¢™H)" and let v be the
Borel measure on X which appears in the right-hand side of (4.4) in Theo-
rem 4.1; i.e., set

(425) V(M) = [ pap,(v0.é01)

n—1
. (H p07ﬂ3j71 (’Uj, fj+1, Uj+1)) d)\()(v(]) d& s dVOlslli71 (’Un)
j=1

for every Borel subset M C X. Note that repeated application of (4.3), and
the analogous relation for py g, (vo,1,v1), yields v(X) = 1. Set

(4.26) Xo = {(’Uo,fl, R ,’l)n) eX : QD(Ujfl,Uj) > Bg, Vj € {1,2, e ,n}}

This is an open subset of X with v(X \ Xo) = 0, i.e. v(Xo) = 1. Hence we
may now assume, without loss of generality, that fo has compact support con-
tained inside Xg. The general case of Theorem 4.1 then follows by a standard
approximation argument.

We define functions f, : Scll_1 X (R % Scll_l)"*m —Rform=1,...,n—1
by the following recursive formula:
(4.27)
fm<U07 517 U17 s 7571—7717 vn—m) = \/dfl / fm—l('UOa glv ’Ul, MR vn—mv 67 ’U)
ST R>o

XPogs (Vn—m, & v) € dvolga-1(v).

The point of this is that now the right-hand side of (4.4) in Theorem 4.1 can
be expressed as

(4.28) /XdeV_/SfI/R>0 o fn—1(v0, &1, v1)

X P8, (v0, €1, 1) dho(wvo) déy dvolga— (v1).

Since fy has compact support contained in Xy, there exists a constant
d > 0 such that fy(vo,&1,...,v,) = 0 unless p(vj_1,v;) > Bg + 9 for all j =
1,2,...,n. Hence, by induction, each f,, has compact support, and we have
fm(vo, &1, ..., Vp—m) = 0 unless p(v;_1,v;) > Bg+d forall j =1,2,...,n—m.
Using this fact together with Remark 2.1 (rewriting (4.27) via (4.1)) one shows
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that each fp, is continuous. Furthermore, by repeated use of (4.3) we see that
sup | fm| < sup|fo| for all m =0,1,...,n — 1.

Finally, by a standard approximation argument we may assume without
loss of generality that Ag has a continuous density, i.e. that

(429) XM=g- Volsiliq for some continuous function g : 8¢~ — Rx.

Indeed, note that for A\g = ¢ - Volsil—l, g € L, the right-hand side of (4.4)
depends linearly on ¢g and is bounded in absolute value by (sup|fol|) - ||lglly1;
the same is true for the left-hand side of (4.4), for each fixed p. We can thus
mimic the first paragraph in the proof of Theorem 1.2 in [19, §9.2].

4.3.2. Choosing n, po and Fy, F5, F5. Let € > 0 be given. On the next few
pages we will describe how to choose auxiliary positive numbers n and pg, as
well as families Fy, Fb, F3 of measures and functions to use in applications of
Theorem 2.3. The goal is to set up things so that we will be able to prove
that the two sides in (4.4) in Theorem 4.1 differ by at most O(e) for every
p € (0, po); see (4.40) below.

Recall the definition of w(n), (4.7), and note that lim, ,ow(n) = 0. As
in the discussion leading to (2.44) and (2.45) we see that we may fix 0 < 7 <

min(”iﬁ@ , 5) so small that 2w(n) < § and so that the following two inequal-

ities hold for all absolutely continuous probability measures A on Sfffl, all

continuous functions 3 : S‘li_1 — R? any o’ € {0, a}, and any two measurable

functions z1, 2o : supp(A) — {0} x B¢ satisfying | z1(v) — zo(v)|| < 7 for all
v € supp(A):

(4.30)
I oy o (£, (B(0) K (v)) 1) dA(w)dwde <
0 (Mo (m)) 1 /ST
(4.31)

/0 /{0} X 8‘1171 /supp(/\)

As in Section 4.2, we fix a partition Scll_1 = |_|§-V:1 Dj of the sphere Scll_1 into
Borel subsets D1, ..., Dy, each of positive volume and boundary of measure
zero and with diameter < 7/C,, with respect to the metric . Given s € R%\{0}
and any subset M C {1,...,N} with Ag(UjenD;) > 0, we let Ay s be the
restriction of the measure As (cf. §3) to Ujens Dy, rescaled to be a probability
measure:

®O(§,w,z1(v)> - Qg(f,w,zg('v))’ dA\(v) dw d§ < e.

-1
(4.32) Mrs = As(UnD5) "+ Asjuyp,)-
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Let Fi be the following family of probability measures:
(4.33)
Fro={o}J{ s : 0# M C{1,...,N}, s €S, (UnD;) C VIO
Note that limj_,g+ volga—1(9pD;j) = 0 for each j, since D; has boundary of
1

measure zero. Also note that Va*7 has compact closure in Vy and recall (3.3).
From these facts together with (4.29), it follows that Fy is equismooth.

Let us fix a continuous function H : S¢71 xR-ox S~ — [0, 1] of the form
H(vg,&,v1)=Ho(¢(vo,v1)) such that H(vg, &, v1) =1 whenever ¢(vg,v1) < Bg
or p(v0, =By, (v1)) = 5 —w(n) and H(vo, §,v1) = 0 whenever p(vo, —3,,(v1))

< 5 — 2w(n). This is possible since it follows from our assumptions on O

in Section 2.2 that ¢(vo, —8,,(v1)) only depends on ¢(vo,v1), as a strictly
decreasing C! function. Now let Fy be the following family of functions on
S xRy x S471:
(4.34)
F2 - {H} U {(Uaéav/) — fm(’UO7517 ... 7§’n—m—1)’v7§5 vl) :

0<m<n- 17 (’UOa{lv s 7£n—m—1) S (Slli_l ><IR>0)n_7n_1}'

Using the fact that each f,, has compact support, we see that F5 is equicon-
tinuous and uniformly bounded.
Let C be fixed as in (4.5), and let, for any q’ € R%:

(4.35)
Féq/) = {,3 : S‘li_l — R?

Bis C', sup Bl <3C, sup ||DpB| <20+ 140y,
heT(s{™h)

if g € L: (B(v)+Rsov)NBL =0, Yo e Scllfl}.
Let po(n,n,C,n) be as in Proposition 3.3. Now fix

0< po < min(%ap()(na 7, Ca 77))
n

so small that for ¢’ € {0,q} and all p € (0,2p9), A € F}, f € Fy and B € Fg(ql)v
we have (here and below we write @' =0if ¢ =0; o' =aif ¢ =q)

(4.36)

/Sdl f(’Ua Pd_lTl(ql + pB(v),v; p),v1(q" + pB(v),v; p)) d\(v)

_/Sd1~/R Adl f(v,ﬁ,vl)pa/ﬂ(v,f,'vl)d)\(v) dé.dVOIS‘lifl(vl) <e.
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This is possible by Theorem 2.3. Let us shrink pg further if necessary, so that
(with K, as in Lemma 3.1)

(4.37) VOIS¢1171 (8ch (DJ)) < Kn_lé VO]S(1171(D]'), Vj e {1, ceey N};

(4.38) Yo, v’ € 841 o(v,v") < 2C%p) = |g(v) — g(v")| < &;

and also, for all m € {0,...,n — 1} and all points (vo,&1,...,vn—m) and
(vh, &, ..., v, ) in 8971 x(Rsg x SE1)n—m

(4.39)

p(0},v)) <C%p0 (j=0,...,n—m), [ —§&[<2Cp5 (j=1,...,n—m)

- fm(vgvfiv"'av%—m) _fm(v07§1a"'7vnm)' <e.

Here (4.39) can be achieved since each f,, is continuous with compact support.
Having thus fixed a choice of py, we now claim that for all p € (0, pg) we
have

(440) ‘/;d—l f()(’UO, PdilTl(qp,ﬁO (UO)v Vo; p)) s

-, 0n(g,,, (v0), v0; p) ) dAo(vo) —/XfodV <e.

Here and in any < bound in the remainder of the proof, the implied constant
depends only on fy, Ao, d, n, C and O (the scattering map). Since € > 0 was
arbitrary, the bound (4.40) will complete the proof of Theorem 4.1.

4.3.3. Bounding \o(S¢~1\U™). Take an arbitrary p € (0,po) and keep
p fixed for the rest of this proof. Note that (4.6) holds. We now define the
subsets S‘li_1 =UO >UD > U 5 ... 5 U™ as in Section 4.2. We will
prove that Ao(ST1\U™) is small.

Let us first make explicit the conclusion from (4.36) in the case f = H.
In this case, by changing variables (via (2.25), (2.26)) in the triple integral
in (4.36), and using the definition of H, we see that the triple integral is less
than the expression in (4.30), and hence < €. Note also that if v € Scll_1 is
such that wy = wi(q' + pB(v),v;p) satisfies —w1 K (v) € Uy, ), then v =
vi(q + pB(v),v; p) = O1(v,w) satisfies H(v,&, v1) = 1 for all £ > 0. Hence
(4.36) implies that for all ¢’ € {0,q}, p € (0,2pp), A € F; and B € Fg(ql), we
have

(4.41) A({v € S‘ll_1 : —wi(q + pB(v),v;p)K(v) € ﬂw(n)}) < 2e.

We now apply Lemma 4.3 to prove that /\O(S(l’i_1 \UWM) is small. The set
{v € S‘ffl : 71 = oo} has measure zero with respect to volga-1 (see §2.1),
1

and hence also with respect to Ag. Note § < 2pg and By, 3, € F?Eq); cf. (4.24)
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and (4.35). Hence we may apply (4.41) with ¢’ = g, A = A\ and B, p resp.
Bo, p- This implies that the set of v’s which satisfy (ii) or (iii) in Lemma 4.3
has Ag-measure < 4¢. Thus

(4.42) Ao (SE\UW) < 4e.

Next take k € {1,...,n — 1}; we will apply Lemma 4.2 to prove that

MoUW N\ UFHD) is small. We call any two vectors v, v’ € UR) equivalent if
and only if mY = m%,. Let U/ ¢ U™ be any fixed equivalence class for this
relation. Then the subset ) # MY c {1,..., N} and the functions P ik B

and B:mf, 3, are independent of v € U'. We will write simply M, ® and B+
for these. Note, in particular, that U’ = ® =1 (U;eps D).

We need to modify B+ to get a function in Fg(o). Let us fix C! functions
c1,c2 : Ryg — [0, 1] with the properties

(4.43) c1(¢) =0, Vo < Be + 5n; ci(¢) =1, Vo > Bg + 61);
()] <2071, Vo > 0;

c2(¢) =1, Vo < Be + 61; c2(¢) =0, Vo > Bg + Tn;
[ch(p)] <2071, Vo > 0.

Now define 3 = Bpm 8, € CH(s41) by
(4.44)

Bw) =8 5 (0) = {Cl(@(’va s1)) 'BJF(’U) +ca(p(v,8)) v if v eV,
pmk By

v otherwise.

We then have

7t

(4.45) ,6p7m5ﬂ0 (v) = Bp,mﬁ,ﬁo(v)’ Yv € Vslgn.

Furthermore, for v € Scll_l with Bg + 4n < ¢(v, s;) < Be + 81 we have, for
any h € T}(S{™),

(446) | DaB()| = |[(Drer(o(v, 51))) - B (v) + e1 - DuB' (v)

4
+ (Dnea(p(v,51))) v + ez - b < PRACER

by Proposition 3.3 and (4.43). From this one easily deduces 3 paik B, € F:,EO).
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Using Lemma 4.2, UjeprD; C Va2 and (4.45) we have
(4.47) (U \URY) € 9, (Vien D;)
U {'v/ € UiemD; - Tl(pB(’U/),’U/,p) = oo}
U {v’ € UienD; - —wl(pB(v'),v',p>K(v’) € ﬂw(n)}
U {’Ul € UiemD; - —wl(ﬁB(UI),UI,ﬁ>K(U/) S uw(n)}:

where 5 = (1 +n)p and B(v) = (14 1) *(B(v) + 3v). Here note that, by
Lemma 3.1 and (4.37),
(4.48)

-1

)‘M7Sk (8Cp(ui€MDi)) < KTY Volszliq (UieMDi> Volsdﬂ <8Cp<UiGMDi)>

<K, VOlsngl (UiGMD ) Z VOlsd ! (aCP( >) s¢

The second set in the right-hand side of (4.47) has Ajs s, -measure zero. Next

recall that (4.46) led to Be F:,S ), by a similar argument we also verlfy Be F! 3 o),
Hence from (4.41) applied with ¢’ = 0, A = A\ys 5, and B, p, resp. 3, p, we see
that each of the last two sets in (4.47) have Aj/ g, -measure < 2¢. Hence

(4.49) s (@A UTD)) < 5e.

Set p1 = volga—1 (U") "+ (volga—1);y. By Proposition 3.3 and our assumption p <
1 1

po(n,n,C,n), @y is a diffeomorphism from U’ onto Uy, D;, which transforms

the measure p into cg - Ayr.s,, Wwhere ¢ > 0 is a constant and g is a continuous

function from UpD; to [L —n,1+n]. Using ¢ [, p. §(v) dAn,s, (v) = 1 we find

(14+n)"t<e<(1—-n)"1 and thus cg(v) € [1 — 3,1+ 3n] for all v € Uy D;.

Hence

(4.50) p(UN\NUFD) < (14 3n)be < 10e.

In other words, volga-1 (Z/l' \Z/l(k+1)) < 10e VOlsd71<Z/{/). Adding this over all
1 1
equivalence classes U’ CU®), we obtain volga—1 (Z/I(k) \Z/{(k*l)) <10e VOISd—l(u(k)>
1 1
< ¢e. Hence since \g = g - volga-1 with g bounded (cf. (4.29)), we have
1

(4.51) Ao(UPN\UFD) < e,
Adding this over k = 1,...,n— 1 and combining with (4.42), we finally obtain

(4.52) Ao(ST\UM) < e.
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4.3.4. Conclusion: Proof of (4.40). We intend to show that for each m €
{0,...,n — 2} we have

(4.53)

_/Sd—l fm (’Uo, pd_lTl(qp,,@O (’UO)’ Vo; p)v cee 7vn*m(Qp,,60 (UO)7 Vo; p)) dAO(vO)
1
B /sd—1 fmt1 (Uo, pdilﬁ(qp,go(vo)v v0; ), -
1
o Vnem-1(, 8, (V0), V03 p) ) dAo(vo)| < €.

This will imply (4.40) (and thus complete our proof of Theorem 4.1), for note
that (4.36) applied with ¢" = g, A = Ao, f = fo—1 and B = B gives, in view
of (4.28):

(4.54) ‘/sdl fn—l(vo,pd_lﬁ(qp,go(vo),Uo;P)avl(qp,go(vo),vosp)) dAo(vo)
1

—/XfodV

Combining (4.53) for m = 0,1,...,n — 2 and (4.54) we indeed obtain (4.40),
as desired.

Now to prove (4.53) we fix m € {0,...,n —2} andset k=n—m—1¢€
{1,...,n — 1}. In the following we will use the shorthand notation v, =
ve(q,, 8, (v0), vo; p), 7o = Te(q, 8, (V0), Vo3 p), M = My(q, g (v0),v0;p), St =
my —my_1, and 3y = ||sg||"1sy. As before we call two vectors v, v’ € Uk
equivalent if and only if frﬁﬁ = T?Lf,,. Let U’ c U™ be any fixed equivalence
class for this relation; thus by construction mg, mq,...,my are constant as
vg varies through U’. We write M C {1,...,N} and @, BJr, B for the index
set and functions corresponding to our fixed class U’, as in the discussion just

< e.

above (4.47). For each vy € U’ we have ‘Tg— Hs@H’ < 2pand p(vy_1,8¢) < %Cp
for all ¢ = 2,...,k (cf. (4.11)), and similarly using sup ||3y]| < C we get
’7’1 - ||31H‘ < (C+1)p and ¢(vg, s1) < 3C(C + 1)p. Hence by (4.39) we have
the following approximation result for the U’-contribution to the left integral
in (4.53):

(455) ‘/M’ fm <’UO7 pdilTh Viy..., Uk, pdilTlﬁ»lu 'Uk+1) dAO(UO)

_/u' fm(§17Pd71H~51H7~-,§k7pdleSkHyvmpd*lTkH?Uk+1> dXo(vo)| <elo(U').
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Recall \g = g - volga—1 and set p = volga—1 (U') " - (volga-1) . From above we
1 1 1

have o(vg, s1) < C?p for all vg € U’; by our assumption (4.38) this implies

(4.56)

g9(vo) = Mo(U') VOlstlifl(U')_l <e, Vvoel.

— |otwo) = [ gw)du(o)

Hence replacing “dM\g(vo)” with “Ao(U’) dp(vp)” in the last integral in (4.55)
causes an error < g(sup |fy|) volga-1(U’). Furthermore, by Proposition 3.3,
1

vy > Vg = 'uk(qpﬁo(vg),vg;p) = ®(vy) is a diffeomorphism from U’ onto
UprD; which, as we saw in the discussion preceding (4.50), transforms the
measure g into ¢g - Ayss,, where cg(v) € [1 —3n,14 3n] for all v € Uy D;. We
also have Tp41 = 71(my + pB(vy), vi;p) = T1(pB(v1), vy p) for all vy € U,
and similarly vi11 = vl(pB(vk),vk;p). Hence, using also n < ¢,

(4.57) ‘ /u Fn (810" M sl B o skl vk 0T k1, vk ) dNo(w0)
IRl N R P R}
UmD;

v1(pB(v), ;) ) dAns (v)

< <(sup | ful) volga+ ') + 3n(sup | fim o)) < ¢(volgg 1 (U') + Mo(01)).

Now Ars, € Fi, fu(31,., 07 I8kl -) € Fy and ,B € Fgfo), so that by
(4.36), we have

(4.58)

@) [ (510 el v, (0B ), 03 ),
Unm D
v1(pB(v), v; p) ) dAr 5, (v)
2@ [ (B s B S sl v, )
UMDZ' R>0 Sl

X Dy (0, 6,0') dvolga 1 () d€ dAns e (v)] < EXoU).

(We have Ay, (A) =0 for any A C Scllfl disjoint from UysD;, so that we can
indeed take the domain of integration for v in the triple integral to be Uy D;
instead of Scllfl.) Next we wish to replace B with ng in the triple integral
in (4.58), so that it can be rewritten in terms of f,41 using (4.27). Using
(2.25) and (4.1), we see that the error caused by this replacement is bounded
above by Ao(U) sup | fmm| times the integral in (4.31), with A = Ay s, 21(v) =
(B(v)K (v)), and za(v) = (B (v)K (v)).. Note that for all v € Uy D; C Vel
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we have, by (4.45) and Proposition 3.3 and our assumption p < po(n,n,C,n):
-~ =+

(459)  z1(v) = z2(v)| < [IB(v) = B ()| = B (v) = B ()] <.

Hence the inequality in (4.31) is valid for our choices of A, z1, z2, and we obtain:

(4.60)

@) [ [ (50 sl B Sk sl 0,6
UnD; /R0 /ST
xpoﬁ(v, &) dVOle—l (V") d€ dApr s, (V)

_AO(UI)/ D fm—‘,—l <§17Pd71||81H7§27 cee ):S\kupdilnsknvv) d)\M,Sk(v)
Unm D

<K E/\o(ul).

Next, by imitating the argument which led to (4.57), and then the argument
which led to (4.55), we obtain

(4.61)

MMU°DmH@mH%m@ww%Mﬂmm@wmﬂm
Un Dy

/u/ Jm+1 (’007pd_lTl(Qp,,Bo(vO)?vO;p)’"'7vk(qp,ﬁo(v0)7v0;p)) dAo(vo)
< €<Volsiz_1 U') + xoU")).
Combining (4.55), (4.57), (4.58), (4.60) and (4.61), and adding over all the
equivalence classes U’ € UF)| using VOlSil_1(Z/{(k)) < vol(s§™!) <« 1 and
MU < 1, we get
(4.62)

| F (0001105, (00), 003 ). 01115, (00). 003 ) do(w0)

- k) fm—i—l(UOa Pd_lTl((Ip,,BO (’U0>7 Vo; p)v SR Uk(qp,ﬁo (Uo), Vo; p)>d)\0(v0) <e.

This implies (4.53), since A\o(S¢™ 1 \U®) < ¢ (from (4.52)).
Since (4.40) follows from (4.53) and (4.54), the proof of Theorem 4.1 is
now complete. ([l

4.4. Proof of Theorem 1.1. The generalization of Theorem 1.1 to the case
of a general scattering map and a more general initial condition (gy+pB3(vo),vo)
is as follows. We set
(4.63)

By = {(S1,...,8,) € R\ {0})" : ©(S;,S;11) >Be (j=1,....,n—1)}.
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THEOREM 4.4. Fiz a lattice £L = Z*My and a point qp € R?, set o =
—qOMo_l, and let B : Sil_l — R? be a C! function. If qy € L, we assume
that (B(v) + Ruov) N BY = 0 for all v € SY™1. Then for each n € Zsq there
exists a (Borel measurable) function Pc(!n[)a : By, = R>q such that, for any Borel

probability measure A on Sil_l which is absolutely continuous with respect to
volga-1, and for any set A C R™ with boundary of Lebesgue measure zero,
1

(4.64) ;i_ff(l) A({vo € 8{7": (s1(go + PB(v0), vo; ), - - -

sn(qo + pB(vo),vo; p)) € P_(d_l)A}>

= PU(S1,. .., 80) X(81) dvolga(S1) - - dvolga(Sy),
B.NA

where N € Ll(S‘f_l) is the Radon-Nikodym derivative of X\ with respect to
volga-1. Furthermore, there is a function ¥ : By — R>o which only depends
d >

on the scattering map, such that

n

(465) Pc(xyjﬁ)-'}(slvas ) SlasQ H J 2,8 Jj— 17‘Sj)
7j=3
for allm >3 and all (S4,...,8,) € B,.
Explicit formulas for P 23 and W are given in the proof below. Asin (1.12)

we define the probability measure corresponding to (4.64) by
(4.66)

H A (A) = /B y P81 Su)N (81) dvolga(S1) - - - dvolga(Sy).

Proof of Theorem 4.4. By a standard approximation argument, using the
absolute continuity of the limit measure and the assumption that .4 has bound-
ary of Lebesgue measure zero, one finds that it suffices to prove the corre-
sponding statement for bounded continuous functions; i.e., to prove that for
each bounded continuous function g : R" — Rxq, we have

(4.67)

limy it 9(p" " s1(qo+pB(w0), v0; p), - -, P sn(ay + pB(w0), vo; p) ) dA(vo)
1

_ / 9(S1s-. s Su)PUY(S1, -, S0) N (S1) dvolga(Sy) - - - dvolga(S,).
B b
This, however, is a direct consequence of Theorem 4.1, applied with

Jo(vo,&1,v1, ..., 60, v0) = g(§1v0, &v1, ..., §nUn—1).
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Indeed, substituting £;v;_1 = S in the right-hand side of (4.4) in Theorem 4.1
gives exactly the right-hand side of (4.67), with
(4.68) PUL(S1,....80)

n—2

(H 1531 ~)pap(S1, 15111, S2) ) I roa: 8 (8541, 1854111, 85+2)

x /s;l—l Pos: (8. 11821 8) dvolga-+ (8)

n—1

if n > 2, and

(4.69) PUL(S1) = |18 / o Paa(S1, 11811, 8) dvolgs (S)
1

ifn=1.

Next we claim that (4.65) holds (for d > 3) if we set

(4.70) 1(S1, 85) = /S s (82,115, 8) dvolga-1(5)

and then define
_ 5 < 1 1(82,S3)

- d )
(4.71) U(S1, 82, 83) == [|Sa]|' Po,ﬁgl(sb "S2||753)m

if I(S1,S2) # 0, while setting ¥(S1,S2,S3) = 0 whenever I(S1,S2) = 0. To
prove this claim it suffices to check

(4.72) PUL(S1, ... 8n) = PV (81, Sno1) U (S, Sno1, Sn)
for all n > 3 and all (Sy,...,S,) € B,.

If I(Sp—2,8,-1) # 0, then (4.72) is clear from (4.68) and (4.71). Now

assume I(S,,_ Q,Sn 1) = 0. The function f : S — Po g+ ( n—1, || Sn-1ll, S)
’ /S\n72

is nonnegative on all Silil and vanishes outside the open subset Vs - If

d > 3, then f is continuous on Vs » (see Remark 4.1). Thus I(S,—2,Sn-1)
= 0 implies that f (g) = 0 holds for all S € Vs % in particular we have

Pg%(Sl, ..., 85) =0 as well as ngl)(Sl, ..., 8n-1) = 0, and hence (4.72)
holds.

To treat the remaining case, d = 2, it is simplest to first modify the func-
tion Pén[); given by (4. 68) by setting it to be zero at any point (S1,...,S,) € B,
such that §]+2 ©.(S 41, BA,( ]+1)R _ ) for some 1 < j < n — 2, where

Ry € O(2) denotes reflection in the line ]RS (This alteration only concerns a
subset of B,, of Lebesgue measure zero, and hence it does not affect the validity
of (4.64).) Now the proof can be completed as before, using the fact that when

d = 2, the function f considered in the last paragraph is continuous on Vg »
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except possibly at the single point S = @1(/5\11—1, —,6§ (gn_l)Rs ) ), again
n—2 n-
by Remark 4.1. O

Remark 4.5. Note that ,uglgl/\) (AxRY) = ,u(o?)ﬂ 1 (A) for every measurable
subset A C R™. This follows from (4.66), (4.68) and (4.69), using (4.3).

Remark 4.6. Recall that for o € R?\ Q7 the function pa g(vo, &1, v1) is
independent of both a and 3; cf. Remark 2.4. Hence by (4.68) and (4.69), the

same is true for the function Pg% —: p(n),

Remark 4.7. If d > 3, then P is continuous on all of B,,, and if also
sup || 3] < 1, then Pg% is continuous on B, for every a € R%. Next suppose
d = 2, and let B], be the following dense open subset of B,,:

(4.73) By, = {(S1,...,8n) € By : B, (S2K(S1)), # (B(S1)K(S1))L,
Sje2 # 01(8j01,—BL (Sjv1)Rs, ) (=1, ,n =2}

Then P is continuous on all of B/, and if sup||3|| < 1, then Po(:% is con-

tinuous on B!, for every a € RY. These statements follow from (4.68), (4.69),
Remark 2.4 and Remark 4.1.

4.5. Proof of Theorem 1.3. We now prove the “macroscopic” version of
Theorem 1.1, i.e. Theorem 1.3, in the case of a general scattering map. The
precise statement is as follows. Let B,, be as in (4.63).

THEOREM 4.5. Let A be a Borel probability measure on T'(R?) which
1s absolutely continuous with respect to Lebesque measure. Then, for each
n € Zso and for any set A C R x R™ with boundary of Lebesque measure
zero,

(4.74)
lim A({(Qu, Vo) € T'(6"7'KC,) + (Qu, 1(Q0, Vi), 81(Qo, Vi ) € A})

= / PM(Sy,...,8,) A (Qo, ./S\'l) dvolga(Qg) dvolga(Sy) - - - dvolga(Sy),
ANRE X By,)

with P™ as in Remark 4.6 and where A’ is the Radon-Nikodym derivative of
A with respect to volga X volga-1.
1

The probability measure corresponding to the above limiting distribution
is defined by

475)  pA) = / PM(Sy,...,8,)
AN(RE x By,)

x N'(Qq, S1)dvolga(Qy) dvolga(S1) - - - dvolga(Sy).
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Proof of Theorem 4.5. We will use the same basic technique as in [19,

§9.2]. Note that by a standard approximation argument, using the fact that
(n)

) is absolutely continuous with respect to Lebesgue measure, it suffices to
prove the corresponding statement for continuous functions of compact sup-
port; i.e., to prove that for any continuous function g : R? x (R)" — R of
compact support we have

(476) g(Qo,Sl(Q();V();P),---,Sn(Q();V();P))

/(Q07V0)6T1(ﬂd‘1’Cp)

x A'(Q, Vo) dvolga(Qp) dvolga1 (V) — gdu(”
1 Rd xRnd

as p — 0. By a further approximation argument, we may also assume A’ to be
continuous and of compact support, keeping A’ > 0 and

/ —
/I‘l(]Rd) A dVOle dVOlS(izfl = 1.
Recalling S,(Qq, Vo;p) = p? 's,(p~ 4 DQy, Vo; p) where s, is L-peri-
odic in its first variable, the left-hand side of (4.76) may be expressed as

(4.77)

/ /7 {p D37 (" a, 0" 51(d0, 003 ), -, P78 (d0, v03 )
FNK, Js¢—1
p VP geqy+L

x A'(p?igq, ’U(])} dvolslliq (vo) dvolga(qy),

where ' C RY is a fundamental parallelogram for R%/L£. Because of our
assumptions on g and A’ we have

pd(d*l) Z g(pdilq, ai,..., an)A/(Pdfl% vo)
qeqo+L

— /Rd g(q,aq,...,a,)N(q,vo) dvolga(q)

as p — 0, uniformly over all aq,...,a, € R?, vy € Sil_l and qq in compact
subsets of R?. Hence, using also Fubini’s theorem, (4.77) equals

(4.78) // /Hg(q,pd‘lsl(qo,vo;p),---,pd‘lsn(qo,'vo;p))
FJRe Jg?
x (g, v0) dVOlsil_1(’U0) dvolga(q) dvolga(qgy) + o(1),

where the innermost integral should be interpreted as zero whenever q, ¢ KC,.
Now by Theorem 4.4 reformulated in the context of continuous test functions
(cf. (4.67)), for almost all (qy,q) € F x R? the innermost integral in (4.78)
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tends to
(4.79)

/ 9(q,81,...,8,)P™(Sy,...,8,) N(q,S1)dvolga(S) - - - dvolga(Sy).
Bn,

Hence (4.76) follows by applying Lebesgue’s Bounded Convergence Theorem
o (4.78) (with (qg,q) = (sup|g|) Jga-1 A'(g,v0) dvg as a majorant function)
1

and using vol(F) = 1. O

5. Convergence to the stochastic process Z(t)

In this section we will prove Theorem 1.2, generalized to the situation of
a general scattering map and with (q(t),v(t)) being the orbit of the flow ¢,
for initial data of the form (g, + pB(vo), vo).

The probability Pg%)\ (E(tl) €Dy,....E(ty) € DM> is defined in a sim-
ilar way as before: We again write Ty := 0, T;, := Y 74 [|S;]], and given any
n=(ny,...,ny) € ZY% we set

(5.1) BU\(E(t) € Dy,...,E(tar) € Do
and T, <t1 < Tyi1s .-, Ty < tar < Tps1)

n+1 —_ .
:/,L(a’g’)?<{(51,...,sn+l) : :nj(tj)EDj, Tnj < tj < Tn.+1 (j:1,... ,M)})

with n = max(ny,...,ny) and Z,(t) := (Z?:l S;+(t—"T,) n+1, n+1) and
with the measure ug‘n%, , now being given by Theorem 4.4 and (4.66). (Thus
(n) )

P8 depends on the given scattering map and the given function 3.
then set

(5.2) IP’aﬁ’)\(E(tl)EDl,...,E( M) € D)

=Y IP’ (Etl )€ Di,...,E(ty) € Dy
nEZ]f[

and Tp, <t1 < Toyi1s -y Ty < tar < Tgs1)-

Recall that given any set D C TY(R?), we say that t > 0 is D-admissible if
(tS1,81) ¢ 9D holds for (VOIS?—l-)almOSt all S € $4-1 and we write adm(D)
for the set of all D-admissible numbers ¢ > 0.

The generalization of Theorem 1.2 now reads as follows.

THEOREM 5.1. Fiz a lattice £ = ZMy and a point qp € R?, let \ be a
Borel probability measure on Sil_l which is absolutely continuous with respect
to Lebesque measure, and let 3 : S‘f_l — R4 be a C function. If qy € L,
we assume that (B(v) + Rsov) N B = O for all v € S, Then, for any
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subsets D1,..., Dy € TYR?) with boundary of Lebesgue measure zero and
any numbers t; € adm(D;) (j =1,...,M),

(5.3)
}%A({vo es{: (pT qlp V) v ) €Dy, =1, M})
= Pa,ﬁ,/\(z(h) €Dy,...,Z(ty) € DM).

The convergence is uniform for (ti,...,tar) in compact subsets of adm(Dy) x
- x adm(Dyy).

5.1. Four lemmas. As a preparation for the proof of Theorem 5.1 we will
require the following four lemmas.

LEMMA 5.2. Given anyt > 0 and € > 0 there exist pg > 0 and N € Z~g
such that, for all p < po,

(5.4) A({vo € ST1 + [lsa] + lIsall + -+ + [[swl| < p 718} <,
where s, = si(qq + pB(vo), vo; p).

Proof. For t > 0 and N € Z~( we have by Theorem 4.1 (coupled with a
simple approximation argument)

(5.5)
| a-1 < p(d-1)
Ly M{vo € ST ¢ st + llsall + -+ + llswll < p~ @ Vt})

= V({(UO,&,M,---,{N,UN) e ST x(Rog x STHY + 2V ¢ < t}),

where v is the measure defined in (4.25). Transforming the integral in (4.25)
via (4.1) and (2.25), and then using the fact that ®,(§, w, z) and ®o(§, w, 2)
are uniformly bounded by 1, we see that (5.5) is bounded from above by

N
d— d—
(5.6) vol(BI-1YN L%% a1 - = vol( BV
517“‘7£N>0
The lemma follows from the fact that this expression tends to zero as N — oo,
for any fixed ¢t > 0. O

Given any D C TY(R?) = R? x Scll*1 and § > 0, we write 95D and N3D
for the d-neighborhoods of D and D, respectively, viz.:

(5.7)

0sD = {(P,'v) eRYx 8{™" : 3(py,v1) €9D: |py — pll + ¢(v1,v) < 5}'
(5.8)

J\f(;D =DUgsD

={(p,v) eR*x S${"" : (p;,v1) €D: [Ip; — pl| + p(v1,v) < 6}.
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LEMMA 5.3. Let D € TYRY) and t € adm(D). Then
(5.9) lim volgs-1 ({S1est! : (t51,51) € 9;D}) =0.

Proof. By assumption the set M = {§1 € S‘ll_1 : (t§1,§1) € 81?} has
volume zero; hence for any given € > 0 there is an open set U C S‘{lil with
M C U and VOIS?—l(U) < e. Then C = {(t81,81) : 8 € S4=I\UY is a
compact subset of T!(R?), disjoint from dD. Since 9D is closed, there is some
do > 0 such that [|p; —pyl| + ¢ (v1,v2) > do for all (py, v1) € C, (py,v2) € OD.
Hence for each § < &, the set My = {S; € gd-1 . (t81,81) € 05D} is contained
in U, and VOlS(il—l(Mé) < vols,f_l(U) <e. O

LEMMA 5.4. Given any n > 1, t > 0 and € > 0, there exists some § > 0
such that, for every measurable subset D C R% x S4=1 with [Vole X VOISdfl] (D)
1
<4,

(5.10)
[(volga)™ x volgs-1] ({(S1,- 8, 8nin) € R x ST71 ST IS < 1,

(Z Sk + ( Z HSkH) n+17§n+1) € D}) <e

Proof. We may assume ¢ > 0 since otherwise the left-hand side of (5.10)
is zero. Let us first treat the case n = 1. Set
(5.11) U, = {(Sl,gg) € Bg X Scll_l : Sy Qé Rzo/gg}
and let ©; be the map
(5.12)  ©,:U; = R x S{Y  (81,82) — (S1+ (t— [|S1])S2, S2).
Then since B¢ x S¢71\U; has measure zero, the left-hand side of (5.10) equals
vol(@t_ 1(D)>, where we write vol := volga X volga-1. But one verifies that ©;

1

is a diffeomorphism from U; onto B{ x 8471, Hence volo©; ! is a bounded
measure on R? x S¢~1 which is absolutely continuous with respect to vol. This
implies the desired claim (cf. [24, Thm. 6.11]).

In the remaining case n > 2, the left-hand side of (5.10) can be expressed

as
(5.13)
n—1
% S0 s RO vol(077, (D= 8;)) dvolga(S1) -+ dvolga(Sn1),
Th_1<t j:l

where D — q := {(p — q,v) : (p,v) € D} (also recall T,,_; := Z?z_ll I1S;1)-
Hence it suffices to prove that for any given £; > 0 we can choose § > 0 so
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small that for every measurable subset D C R% x Silil with vol(D) < ¢ and for
every t' € (0,t], we have vol(@t_,l(D)) < £1. To prove this, for ¢’ so small that
vol(Uy) < €1 we use the a priori bound VOI(@{,I(D)) < vol(Uy); the remaining
t’-interval can then be treated using the above discussion of vol o ©; ! together
with the relation @;1 = Ly 0 @;1 o Ly where Ly : R? x S‘f_l — R? x Scll_l
is the map (p,v) — (zp,v). O

Given any n € ZY and subsets Df,..., D), C T'(RY), we set n =
max(ny,...,ny) and

(5.14) An(Dj,.... D))
= {(S1,.-,8ns1)  En, () €D}, Tnyy <t; <Tpppr (j=1,..., M)},
a subset of R(*+1)d

LEMMA 5.5. Let Dy,..., Dy and t1,...,tyr be as in Theorem 5.1 and
assume furthermore that each set D; is bounded. Then for each n € Z% and
e > 0, there exists a choice of subsets D}, D} C TH(RY) with D; C D C D}
(j=1,...,M), such that the following holds:

(i) There is some 6 > 0 such that NsD}; C D; and NsD; C Dj.
. 1 1
(ii) 10 5R (An(DY,... DY)~ < uE?EQ(A (D1....,Dar)
< M;glgmn(pg, . Dhy)) +e.
(iii) Both An(Dj,...,DYy) and An (DY, ..., DY) have boundaries of Lebesgue
measure zero.

Proof. Given any § > 0 we let F; be the family of all cubes of the form
C = ém+[0,6]¢ with m € Z? and fix F» to be a finite family of closed subsets
D c S¢7! with diameter < § (with respect to the metric o) and boundary
of measure zero, such that Upcr,D = S‘f_l. Let F be the family of all sets
B=CxDc TYRY) with C € F; and D € F. Now for each j € {1,..., M}
we define D} as the union of all B € F with N5B C Dj, and define D} as
the union of all B € F with B N AN;D; # 0. Note that both these unions
are finite, since D; is bounded, and (i) holds by construction. Also note that
D\ D} C 9(4+2)5D; and D} \ Dj C J(4+2)5D;-

We now prove that (ii) holds provided that ¢ is sufficiently small. Every
(81,--+,8nt1) € An(D1, ..., D)\ An(Dy, . .., D)) satisfies Z,, (t;) € D;\D;
for some j, and hence, using also Remark 4.5 repeatedly,

(5.15) uo 53 (An(Dr,..., Du) \ An(DS,. ., Dhy))

< Z nI ({81, Suyer) € RO B, (1)) € 9440)5Dj, Ty < 15}).
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For any j € {1,..., M}, if n; = 0, then (via (4.69)) the jth term in the above
sum equals

(5.16) )\({gl € Sllj_l : (tjgl,gl) € 8(d+2)5Dj}),

which tends to zero as 6 — 0 by Lemma 5.3. On the other hand if n; > 1, then

the jth term in (5.15) equals ,ug”;;) (w_l(/\/l)) where w is the projection

(5.17) w : R4 % (RY\ {0}) — R4 x S¢L;
(‘5'17 ey Sn+1) = (517 .. '7Sn7§n+1)a

and M is the same set as in the left-hand side of (5.10), with n;, t; and

9(d+2)5Dj in place of n, t, D. Now /,L(;gr/\l ) ow ! is a Borel probability measure
on R™%x S‘li_l, which is absolutely continuous with respect to (volga)" X volga-1.
1

Also

(5.18) [VOle X VO]S¢1171] (8(d+2)5Dj) —0 as 6 — 0,

since D; is bounded and has boundary of measure zero. Hence by Lemma 5.4,
(5.19) u(:g;)(w_l(/\/l)) —0 as d — 0.

In conclusion we see that for § sufficiently small, the sum in (5.15) must be < ¢,
so that the second inequality in (i) holds. Similarly, using D7 \D; C J(442)5D;,
one proves that also the first inequality in (ii) must hold for ¢ sufficiently small.

The property (iii) is proved in a similar way, making use the fact that
each set D and D7 is a finite union of sets B € F, and that, by construction,
each such set B satisfies VO].Scll—l <{§1 S S‘ll_1 : (t/.S'\l, §1) S 83}) = 0 and

[volga x volg-1| (9B) = 0. O
5.2. Proof of Theorem 5.1.

5.2.1. Convergence. Note that both sides of (5.3) remain unchanged if we
replace D; with {(g,v) € D; : ||g|| < t; + 1} for each j = 1,..., M. Hence
from now on we may assume without loss of generality that each set D; is
bounded. Writing vi = vi(gy + pB(v0), vo: p), 85 = sk(dy + pB(vo), vo; p) and
T, = Tn(qy + pB(vo), vo; p) := p? 1 320, ||sk|, the left-hand side of (5.3) may
be expressed as lim,_q YnezM, A(Sn,p), where

n;
(5.20) Sp,p= {vo esdt . (pd’lqo + p?B(vo) + Z piLsy,
k=1

+ (tj _Tnj)vnjavn]-) € Dja Tnj < tj < Tnj—H (] = 17--'7M)}'
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The right-hand side of (5.3) is, by definition,
(5.21)

Papn(E(t1) €D, . E(ta) €Dxr) = > ul BN (An(Dy,..., Dar)).
nGZ]g[O

By Lemma 5.2, for any given ¢ > 0 there is a finite subset S C Z% such that
Znez%\s A(Sn,p) < € holds for all sufficiently small p > 0. Hence to prove

(5.3), and also deduce that the sum in (5.21) is indeed convergent, it suffices
to prove that for every fized n € Z%, we have

(5.22) lim A(Sn.p) = pU N (A (D, ..., Dar)).

To prove (5.22), let € > 0 be given. Take D}, D} C TH(RY) and 6 > 0 so
that all the claims in Lemma 5.5 hold. By Lemma 5.5(i), if p > 0 is so small
that ||p? gy + pB(wvo)| < d for all vy € S¢!, then

(5.23) {vo € ST ' (s1,...,8n41) € p TV ALDY, ..., DY)}

C Snyp C {vo €88 (51, 8041) € p D ALDY, .., DI}
Hence by Theorem 4.4, using also Lemma 5.5(ii) and (iii), we have
(5.24)

lim sup A(Sn.) < He N (AR (DY, D)) < nEEN (A (D, D)) + 5
p—

(5.25)
. . ( +1 ) / / (TL+1)
lim inf A(Sn,p) Zuaﬁ (An (D1, Dir)) > b gr(An(D1, ..., Du)) — €.

p—0

Since this is true for each € > 0, we have now proved (5.22).

5.2.2. Uniformity. We now turn to the statement about uniformity in
(5.3). By similar arguments as above one proves that the right-hand side of
(5.3) is continuous as a function of (t1,...,%ty) at each point of adm(D;) x

- x adm(Djys). Hence the desired statement about uniform convergence for
(t1,...,ty) in compact subsets of adm(Dy) x -- - x adm(Dys) will follow if we
can prove that

(5.26)
lim A({oo € 817"+ (o"a(o™ " Vti(0),0(0” U Vt(p)) € Dy, G =1, M)

:Pag)\(E(tl) € Dl,...,E(tM) € DM)

holds for any functions ¢;(p) from Rsg to R>g satisfying ¢; = lim, 0 t;(p) €
adm(D;). By Lemma 5.2, we see that it suffices to prove that (5.22) holds for
any fixed n € Z% and with Sy, , redefined using (5.20) with each “t;” replaced

by Lttj (p)77 .
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To this end, let us define £, to be the set of those vg € S{! for which there
is some j such that exactly one of the two numbers ¢;(p), ¢; lies in [Tn i In j+1).
The point of this is that if we keep p > 0 so small that ||p?1q, + p?B(vo)| +
[tj(p) —t;| < d for all j and wg, then for our redefined Sy, , the inclusions in
(5.23) can only fail for vectors vo € &€,. Now lim,_o A(E,) = 0, as we see by
applying Theorem 4.4 to the sets

(5.27)
As = UM Urepny e joy {0815+, Snar) € ROV Ty e (5 — 6,15+ 6)}

for 6 = 1, %, é, .... (Indeed, note that limg_, MaﬁA(-ArS) = 0, since u( 23_1)3 is

bounded and absolutely continuous with respect to (volga)"*!.) Using these
observations, the proof of (5.22) carries over to the present situation. This
completes the proof of Theorem 5.1. O

5.3. A counterexample. We now give an example to show that the condi-
tion t; € adm(D;) in the statement of Theorem 5.1 (or Theorem 1.2) cannot
be disposed with. Suppose M =1, t; > 0 and D; = Bfl X Sffl. Then as in
the above proof we have

(5.28) > A Smyp) = S HEEN (A (D1)  as p— 0.

n>1 n>1

However, in general we have

(5.29) ( (0), p) Vs ,Ua,ﬁ A(A )(Dl)) as p— 0.

Indeed, there are many choices of q,, B and A such that p?~'q, + p?B(vo) +
tivg € Bfl holds for all sufficiently small p > 0 and all vy in the support of A,
and in this case we have

(5.30)

A(S(0),0) = A({UO e STt (p" gy + p?B(vo) + t1vo,v0) € Dy, |[s1]] > p~ TVt })

= )\({Uo esi™t ¢ p" (g + pB(vo), voi p) > tr1}) %/ Do () dE,
t1

where o = —qo My *; cf. [19, Cor. 4.2]. This limit is in general nonzero. On
the other hand we have Ay (D;) = () since (tl/S\l, /S\l) ¢ Dy for all /.5'\1 € S(li_l,
and this proves (5.29). Combining (5.28) and (5.29) we see that the limit
relation (5.3) fails for our M = 1, Dy, t; and many choices of g, 3, A.

Note that we may take 3 = 0 above; i.e., there are many choices of g,
and X such that p9~'q, + t1vg € Bfl holds for all sufficiently small p > 0 and
all vg in the support of A. Thus the above example applies in particular to the
situation in Theorem 1.2.
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5.4. Macroscopic initial conditions. Finally we discuss the proof of The-
orem 1.4, again in the setting of a general scattering map. (The statement
of the theorem remains the same. In the definition of the limiting stochastic
process we use ,ug\n) from (4.75).)

The basic strategy of the proof is to mimic the proof of Theorem 5.1 given
in Sections 5.1-5.2, using Theorem 4.5 in place of Theorem 4.4. Here we will
only point out the main differences.

In the present case, both Lemma 5.3 and Lemma 5.4 can be replaced by
the much simpler

LEMMA 5.6. Given anyn>0,t>0 and e >0, there exists some § >0 such
that, for every measurable subset D C R% x S4=1 with {VOle XVOISd—l] (D) <4,
1

(5.31)

[(volga)™ x volgs-1] ({(Qu:S1, 80, Bin) € R xR xS zn: 18]l < t,
k=1
(Qo+ 3 8u+(t =3 IS)8ni1,8ni1) €D}) <.
k=1 k=1

Proof. By Fubini’s Theorem the left side is equal to [VOle X VOISd—l] (D)
1
times a finite constant which only depends on n and t¢.

We replace the definition (5.14) by

(5.32) An(Di,....Dyy) = {(Qp, S1.-..,Sns1) : En,(t;) € D},
Ty <t < Ty (= 1,..., M)},

a subset of R? x R4 (Recall that Z,(t) is now given by (1.28).)

Now Lemma 5.5 and the discussion in Section 5.2 carries over with only
few and obvious changes. By a simple approximation argument we may assume
from the start that A has compact support; using this we may then also assume
without loss of generality that each set D; is bounded, as before. The proof of
the convergence (§5.2.1) takes a somewhat simpler shape in the present case,
since (5.20) is now replaced by the exact identity
(5.33)

Snp={(Q0: Vo) € T"(p'K,) + (Q, St -, Sns1) € An(Dr,..., Dar)},
with Si = Sk(Q,, Vo;p).

6. A continuous-time Markov process

As mentioned in Section 1.3, the operator L; describing the dynamics of
a particle cloud in the Boltzmann-Grad limit does not form a semigroup, and
thus the stochastic process Z(t) is not Markovian. To overcome this difficulty,



THE BOLTZMANN-GRAD LIMIT OF THE PERIODIC LORENTZ GAS 283

we set
6.1) X:={(Q,V,T,Vy) e T"RY) xRz x 8" : o(V,V,) > Be}
and extend phase space by the map

(6.2) R:THp?K,) — X, Q, V)= (Q,V,T,V,),
where
(6.3) T=TQ,V)=[51Q,V;p)

represents the free path length until the next scatterer, and V., =V _(Q,V)
is the velocity after the collision.

For random initial data (Q, V), distributed as before with respect to an
absolutely continuous probability measure A, the dynamics in this extended
phase space is again described, in the limit p — 0, by a stochastic process =
(cf. Theorem 6.1 below). This process is Markovian (Proposition 6.3).

6.1. Transcription of Theorem 1.4. Set
(6.4) X ={(Qp,v0,&1,... & vn) € THRY) x (Rxo x S{71)"
SO(’Ujfl,’Uj) > Be, j=1,... 7n}

(thus XM = X) and define the volume measure o,, on X" by
(6.5)
don(Qo, 00,1, -+ -y €ny Un) = dvolra(Qg) dvolstliq(vo) d&y - dén dvolstliA(vn).

Given a probability density f € L'(X,0;), we define for every n > 1 the
probability measure V}(cn) on X by

(6.6) V}n)(A) 3:/Af(Q03v0751,111)
n—1
X Hp07ﬂjj 1(,Ujﬂ§j+17’vj+1) dan(QOv’vO?gla"'vfnyvn)a
=1 "

for any Borel subset A C X, We will use the shorthand notation 7}, =
& + -+ &, Let us define

(6.7) Za(t) = (Qo +> &1+ (t— To)vn, vn, Toyr — t, 'vn+1>.
j=1

The stochastic process Z(t) is now characterized via the probability

(6.8) Py(E(t1) € Dy,...,E(tm) € D)
=Y PY(S(t) € D1,...,E(tn) € D
neZJEWO

and T, < t1 < Tyg1s- - Tnyy < tar < Trpett)
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where D; C X are Borel subsets, and

(6.9) PY(E(t1) € D1,...,E(tw) € Dy
and T, <t1 < Tnyi1, .-, Ty < tar < Tpys1)

= V](”n+1)({(QOav07£17vl--~a£n+1>vn+1) : én](tj) € DJ7
Tnj Stj (.7 = 17"'7M)})a

with n := max(ni,...,ny). Note that we have automatically tj < Tp,+11n the

right-hand side of (6.9), by the definition of X', and the subset corresponding
to t; = Tnj+1 of course has measure zero with respect to V](fnﬂ).

The following theorem is an extension of Theorem 1.4. Set I?t =RoF;:
TH(p?1K,) — X.

THEOREM 6.1. Fiz a lattice L and let A be a Borel probability measure on
Tl(Rd) which is absolutely continuous with respect to Lebesgue measure. Then,
for any ti,...,ty € R>q, and any subsets Dy, ..., Dy C X with 01(0D;) =
oo =01(0Dpy) =0,

(6.10)
lim A{(Qp, Vo) e TH(p'K,) : Fy,(Qo, Vo) € D, ..., Fyy, (Qo, Vo) €D })

= Pf(é(tl) eDy,... ,é(tM) S DM)

where
(611) f(QaV’gver) = A,(Q’V)p(vvéaVJr)
for p(V £, V1) as in Remark 2.4. The convergence is uniform for ti,...,tyr

in compact subsets of R>g.

Proof. This is analogous to the proof of Theorem 1.4, using in place of
Theorem 4.5 the fact that, for any subset A ¢ X with o,,(0.4) = 0,

(6:12)  1im A({(Qy, Vo) € T ("', ) -

(Q07 V07 pdilTl (plidQOJ VO; p)7 vl(plidQ()v V07 IO)7 cee
T (0 Q0, Vi ), v (01 9Q0, Vios p)) € A})

n—1

:/Ap('v()afla'vl) Hpo,ﬁ; 1(”j»§j+1v"’j+1)
i

j=1
X A,(QOa ’UO) dUn(Qo, Vo, 517 ce. 7£n7 'Un)'

The proof of this statement is almost identical to that of Theorem 4.5, with
Theorem 4.4 replaced by Theorem 4.1.
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The second main ingredient of the proof of Theorem 6.1 is a substitute of
Lemma 5.6, which we formulate as follows. Given any n > 0, ¢t > 0, € > 0,
there exists some § > 0 such that, for every measurable subset D C X with
01(D) <9,

(6.13)
an+1({(Q0,u0,51, e Ung1) € XD L 1) €D, T), < t}) <e.

To establish (6.13), note that the left-hand side equals

t?’L
(6.14) ﬁ VO]S?71 (Vel )nUl ('D) ([l
6.2. A semigroup of propagators. We write Li (X, o1) for the space of
measurable functions f : X — R satisfying fc‘ f ‘ do1 < oo for any compact
subset C' C X. In order to show that é(t) is a Markov process, for each ¢ > 0
we introduce the operator

(6.15) Ki: L (X, 01) = L (X, 01)

by the relation

(6.16) /D K fQ. V.6 V) don(Q,V,£,V,) = P, (E(t) € D)

for every f € L, .(X,01) and every bounded Borel subset D C X. The right-
hand side of (6.16) is defined by extending the definition of Py in (6.6), (6.8)
and (6.9) for f € Ll .(X,01): Note that for a given f € LL (X,01), (6.6)
defines I/f") as a signed Borel measure on any bounded open subset of X,
and then (6.8) and (6.9) define D — Pf(é(t) € D) as a signed Borel measure
on any bounded open subset of X. Since this signed measure is absolutely
continuous with respect to o, there exists a unique K;f € Llloc(X ,o01) such
that (6.16) holds for each bounded Borel subset D C X

If f € LYX,01), then D IP’f(é(t) € D) is, in fact, a signed Borel
measure on all of X, of total variation < | f||{1. Hence the restriction of
K; to L1(X,01) maps into L'(X,01) and gives a bounded linear operator on
LY(X,01) of norm < 1.

Note that K; commutes with the translation operators {Tg : R € R%},

(617) [TRf](Q7V7§7V+) = f(Q_R7V7§7 V+)?
and with the rotation operators {Rx : K € O(d)},

(618) [RKf](Q7V7£7V+) = f(QKa VKaé.vVJrK)a
cf. Remark 4.2.
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PROPOSITION 6.2. Suppose that the flow Fy preserves the Liouville mea-
sure v (cf. Remark 2.3). Then the function f(Q,V,{, Vi) = p(V,, V)
satisfies
(6.19) Kif=f
for allt > 0.

Proof. Equation (6.10) implies that for any bounded set D with boundary
of Lebesgue measure zero,

(6.20)  v({(Qy, Vo) € T (p*'K,) : F(Qy, Vo) € D}) — P4(E(t) € D)

as p — 0, with f as assumed above. The Fi-invariance of v implies that the
left-hand side of (6.20) equals
(6.21)

V({(QO’ VO) € Tl (pd_llcp) : (Q(b V07T(Q07 V0)7 V+(Q07 VO)) € D})
for all ¢ > 0, and hence

(6.22) Py(E(t) €D) = Pf(e(o) € D)

/(D / F@Q. V.6,V ) do(Q,V,6,V ).

Hence by (6.16), K;f = f € Li (X, 01). O
Using (6.16) we can write, more explicitly,
[ee]
(6.23) K=Y KM
n=0
where
(6.24)

~/D [Kt(n) f] (Qa Un, Ent1, 'Un+1) dvolga (Q) dVOlsf*1 (vn) d&nt1 dVOlslli*1 (vn+1)

= V}("n+1)<{(QOva7£1avl e a£n+17’0n+1) : éTL(t) S D7 Tn S t})
So in the case n =0,
(6.25) K £1(Q,v0, € v1) = F(Q — two, v, + £, 01),
and for n > 1,

(6.26)
[Ktn)f](Qa’vnafavn—i-l) = /T <tf(Q—(Jz:lﬁj’vj—1+(7f—Tn)’vn>,170751,’01>

n_=

H Pog (97,851,041 dvolga-1 (o) d€y - -~ dvolga-i (vy—1) dén
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with the shorthand &,11 := & +t — T,,. We remark that when restricting K
and Kt(n) to L1(X,01), the right-hand side of (6.26) can be estimated from
above as in the proof of Lemma 5.2, yielding

ol (BE

o S (n—1)! for n>1

(6.27) HK§”"

and hence the sum (6.23) is uniformly operator convergent on L(X, 07).
The following proposition implies that Z(¢) is Markovian.

PROPOSITION 6.3. The operator family {K; : t > 0} forms a semigroup
on LL.(X,01), and a contraction semigroup on LY(X,01).

Proof. Note that, for f € L} .(X,01),0<s<t,0<m<n,
(6.28)

[Kgﬁgm)Kgm)f](Qv Un, 57 UnJrl)

T, <t f<Q - (Zfﬂ’j—l + (¢t - Tn)’vn),vo,&,m)
=

Tm§5<Tm+l
n
X jl:Ilpo’ﬂijl (’Uj, fj_;,_l, Uj+1) dVOlScllfl (’U()) dfl cee dVOlS?71 ('Un—l) dfn,

and for m =n > 0,
(6.29)

[Kt(g)sKén),ﬂ(Qa Un, 57 UnJrl)
:/ f<Q_ (Zéjv‘j—l+(t_Tn)’Un>7'UO,§17’U1>
Th<s j=1

n
X H p07ﬂ$j71 (’Uj, fj_;,_l, Uj+1) dVOlScllfl (’U()) dfl cee dVO]S?71 ('Un—l) dfn
7=1

Therefore,
(6.30) S KK = K
m=0
and thus
o) o0 n
(6.31) KoK= Y KEME® =% K"K = K,
m,n=0 n=0m=0

This proves the semigroup property.

We now consider the action restricted to L!(X’,o1). Since we have already
noted that [[K|l;x < 1 for all ¢, it only remains to prove that for any given
f € LY(X,01) the map Rsg > t +— K;f € L}(X,01) is continuous. In view of
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(6.23) and (6.27) it suffices to prove that the map t — Kt(n)f is continuous,
for each n > 0. This is clear for n = 0, thus we now assume n > 1. Given any
s >0 and h > 0 we split the integral (6.26) for t = s + h as

(6.32) K™ f =1+ I,

where I corresponds to &1 < h and I corresponds to &1 > h. Repeated use of
Remark 4.4 gives

633)  hle< [ HQV.EV]dn@QV.EVL).
n{é<h}
Furthermore, (6.28) with m = 0 gives I = ™ [K }(L ) f], and hence
634)
|EG = K@ <inl+ [E@ 0 11 - n) < 10+ |z - £ = o0

as h — 07, uniformly with respect to s > 0. This proves the desired continuity.
O

6.3. The Fokker-Planck-Kolmogorov equation. We now derive the Fokker-
Planck-Kolmogorov equation of the Markov process é(t)

We introduce convenient spaces of continuous functions on X and R>g x X
as follows. Recall the definition of J(v1,v2) in Remark 2.5; we consider J as
a function X — Rsq by letting J(Q,V,£, V) := J(V, V). We also write
Q=(Q1,...,Qq) € R% Now set

(6.35)  [If[ls ::supXIfI/J (for f: X — R);
cJ( )= {f € C(X) : [Iflls < oo
(X) == {f € Cy( ) : 00, f,0quf, - 00,1, 0cf € Cy(X)};
C (R>0 x X) = {f € C(Rxo x &) : sup;cpopll.f (¢, )|l < o0, VI > 0}%
Ch(Rxo x X) := {f € Cs(Rx0 x X) : 0uf,0q, .00, -, 0.t Ocf
€ Cs(Rxp x X)}.

If d = 2, then we impose from now on the following extra assumption on
the scattering map:

(6.36) V1 (¢) # U5(p) for (Lebesgue-)almost every ¢ € (-3, %),

where 1,19, are defined via (2.21). This assumption is always fulfilled in the
case when the flow F}; preserves the Liouville measure (cf. Remark 2.3).

THEOREM 6.4. For any fo € CY(X), the function

f(t7 Qa Vv 53 V+) = thO(Q) Va 57 V+)
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belongs to CY(Rso x X) and is the unique solution in Ch(Rsq x X) of the
differential equation

(6.37) {at +V . Vg - 84 ftQ,V,§,Vy)

/d t Qv’UOvOaV)pO,ﬂ;fo (V7£7V+) dVOIS‘li*1 (,UO)

with f(O7Q7V7£7V+) (Q \4 € V-‘r)

Remark 6.1. Equation (6.37) can also be expressed as

(6.38) 0f(t,Q. V.6,V ) =[Zf(t,)(Q, V.6 V),
where the operator Z (acting on functions on X) is defined by
(6.39)
[Z9)(Q,V,&,V1) = [0 = V - Vq|g(Q, V£,V )
+ /S 1 9(Q100,0.V )0 3y (V6 V) dvolgges (v).

Thus on a formal level we have K; = eZ.

To prepare for the proof of Theorem 6.4 we first establish a series of lem-
mas. For any v € S{~! and § > 0 we write Ns(v) for the closed d-neighborhood
of v in 8971 ie.,

(6.40) Ns(v) = {w e ST+ p(w,v) < d}.
Given n > 1 and v,, € S‘li_1 we write

(6. 41)
_{’Uo, <oy Un— 1 (Silil)n : So(vj’ijrl)>B®’j:0""an_]-}'

The point of this is that the integrand in (6.26) vanishes for all (v, ..., v,_1)
outside Vq[ff}

LEMMA 6.5. Givenn >1,¢>0 and v9,v0 ;| € S4=1 with p(vd, 00, ) >
[n]

Beo, there exist some § > 0 and a compact subset D C ﬂvneNg(vn)an such
that for all v, € N5(vY), vuq1 € N5(v8,), the following holds:

i Unvvn—&-l) > B@7
(i) / H J( 'UJ,UJ+1>dVOISd 1(vo) - dVOlS;i—l(’Un_1> < ¢

Vei\D g
(iii) of d = 2, then Bg, (vj11K(vj))L ( jj_l(vj)K('vj))l for all j €

”;
{1,...,n} and all (vo,...,vn—1) € D.
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Proof of Lemma 6.5 if d > 3. Note [, J(v',v) dVOlSil—l('v/) = vol(B¢™)
(cf. (2.25)—(2.28)); thus the integral in (ii) with D = () is absolutely convergent.
Note also that if K € SO(d) is any rotation with v, K = v, the left-hand side
in (ii) can be rewritten as

n—2
11 J(v;, Uj+1))

Jj=0

(6'42) J(vm Un—i—l) / (
v DK

0
Yn

X J(vp_1,vY) dVOlS¢1i—1 (vg) - dvolSiH (Vp—1).

Now we may fix a compact subset D C VLTS] such that (ii) holds when v,, = v

and v,41 = v9 ., and then by continuity we may choose § > 0 so small that
(i) and (ii) hold for all v, € N5(v0), vpi1 € Ns(vh ;). ad

Proof of Lemma 6.5 if d = 2. First take 6 and D as in the previous proof;
it then suffices to show that we can make (iii) hold by removing an open subset
of arbitrarily small (volg, —)volume from D and possibly shrinking 4.

1

First consider j = n in (iii); to deal with this case it suffices to prove

(6.43) =0,

(%I_I}(l) VOIS% (U('Unﬂ)n+l)€-/\/6(v%) x N (”%+1)Svn’vn+l )

where

(6'44) Svn,vn-H = {’Un,1 € an : :@;1 (UnJrlK(vn))L = (Bin,l(vn)K(vn))L}'

Set Ky := ( cos 0 Sine); then (6.43) will follow if we can prove

—sinf cos6

(6.45) 3 VOls! (U|e|sa(Uvn+1eN25<v2+1>S o) K0) =0

Here the inner union equals (cf. Remark 4.1)

(6.46)  {vn_1 € Vyo : O1(er, =B, kwn)(€1)Rey) € Nas(vp 1 K ()],

where Re, = (%) is the reflection in the line Re;j. Since (6.46) is a closed

subset of Vo for every 6 > 0, it suffices to prove that the volume of (6.46)
tends to zero as § — 0; and since ©1(ey,-) is a C! diffeomorphism, this will
follow if we can show

. d—
(6.47) gg?)vols%({v €Ve, : Bl (e1) ENs(W)}) =0, VW es{ ",
But for V.= —(cosp)e; + (sin p)es with |p| < m — Bg we have, by a compu-
tation,

(6.48)
By (e1) = (cosv(p))er + (sinv(p))ea with v(p) =d2(97 ' () — ¢,
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where 97! and ¥ are as in Remarks 2.3 and 2.5 (thus the function v(y) is
C! for all |¢| < m — Bg). Now, by (6.36), the set {/(¢) = 0} has Lebesgue
measure zero. This implies (6.47) and hence also (6.43).

Next, to deal with the case j = n — 1 (thus n > 2) in (iii), it suffices to
prove

. 2 o
(6.49) %nn VOIS} (UvneNg(v%)S””> =0,

—0

where

(6.50)  Su, = {(Vn—2,vn-1) € VI : Bg (v, K (vn-1))1
= (B, (v 1)K (v,1)) L}

2]

However, (6.49) follows from the fact that Sy is a closed subset of VI[}O with
VOl%l (Vz[?o}) = 0, using rotational invariance in a similar way as in (6.45).
1 n
Finally, the case 7 < n — 2 is easy, since
(651) volg{({(vj_l,vj,vjﬂ) S (S%)g’ : ('Uj—b'vj) S S’Uj+l}) = 07
with Sy, defined in analogy with (6.50). O

LEMMA 6.6. If fo € C;(X), then the function

f(t’ Qa V7 ga V+) = thO(Q’ V: 5’ V-‘r)
belongs to Cj(R>p x X).

Proof. From (6.26) we obtain, using Remarks 2.5 and 4.3 and the fact
that 0 < &g < 1,

(652) |[K{™ fol(Qva, & o)

" -
S HfOHJE /V[”] ]‘—[0 J(’Uj, ’Uj_H) dVOlS¢1171(’U0) tee dVOlsgx71 ('Un—l)
Un J=

tn o
= ”fOHJE vol(Bf 1) J(Vp, V1), Vn > 1.

From (6.25) we see that the same bound is also true for n = 0. It follows that
the sum [K;fo)(Q, v, & vas1) = SaZolK(™ fo)(Q, v, € vps1) s uniformly
absolutely convergent for ¢ and (v, v,+1) in compacta (and Q, & unrestricted),
and we have || K fo|ls < etVOl(BTI)HfoHJ for each ¢ > 0. It now only remains
to prove that f is continuous on R>q x X', and for this it suffices to prove that
(n
t

each function K ) fo is continuous on R>g x X. The case n = 0 is trivial; thus

from now on we fix some n > 1.
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Let (19,Q",v9,¢% 0%, 1) € R>g x X and £ > 0 be given. Let § > 0 and
D cC V[ " be as in Lemma 6.5, with I foll5? toﬂ) ¢ in the place of . By (6.26)
and the bounds leading to (6.52), we then get that, for all (¢, Q, vy, &, vnt1) €
R>o x X with ¢ < t°+ 1, v, € N3(v)) and v,41 € Ns(v), ), the value of

[Kt(")fo](Q, U, &, V1) differs by at most € from

(6.53)
Kgl)fO(Q,Umf, 'Un-f—l)

_/ /fO( ngvj 1+ (t—Ty)v >,Uo,§1,vl)

X H p0751-)+j71 (’Uj, fjJrl, Uj+1) dVOlslli71(’Uo) s dVOlS¢1171(Un71) d§1 s dfn
j=1

By Remark 4.1 (using Lemma 6.5(iii) if d = 2), the integrand in (6.53)
depends jointly continuously on all the variables (£1,&2,...,&,) € (R>0)",
(vo,...,vp—1) € D and (¢,Q,vp,§,vny1) € R0 X X, so long as T, < t,
v, € Ns(v)) and v,q1 € N(v9,). Hence since the domain of integration in
(6.53) is compact we have for all (¢, Q,vp,§, vny1) € R>g x X sufficiently near

(tov QO’ Uns 50 n+1)

(6.54) K5 f0(Q,wn, € 0ni1) = KD fo(@°, 05, €%, 08,)| <
and thus
(655) ’[Kt(n)f()](Qv Un, 57 vn—i—l) - [Kt(gl)f()](QOv U27 507 U%—&-l) < 3e.

Hence [Kt(n) fol(Q, vy, &, vy41) is indeed continuous, since € > 0 was arbitrary.
(]

LEMMA 6.7. If fo € CH(X) and f(t,Q,V,&, V1) = K fo(Q, V.,V y),
then the partial derivatives Og, f (j =1,...,d) and O¢f all exist and belong to
CJ(RZO X X)

Proof. We start by considering 8§Kt(") fo. First assume n > 2. To differ-
entiate (6.26) with respect to &, we first move the integral over &; to the inner-
most position. This integral will then appear as [ t=Tom ---d&1 where Ty ), =
> j=2&;, and it may be differentiated with respect to £ by using the differentia-
bility assumption on fy and the fact that Pog; | (v, -, Up41) depends contin-

uously on its second argument (except when d = 2 and B, (vpr1K(vp))L =
(B (vn)K(vy)) ). Hence we obtain, at least formally:
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(6.56)

DK™ £6)(Q, vn, &, vng1)

n
= /[n] /2 enso 0 (Q =Y Guja - (- T2,n)’0m’0070,v1)
Von 7 <t i=2

X Hpo,ﬁjjfl(vjvgj-&-la”j-&-l)

X po”ﬁjn_l (vna E+1t— TQ,na vn+1) dgo ... d&, dVOlsd*1 (UO) T dVOle*1 (vnfl)

_/[]/2 5 >0f0( t_TQn Zgjvj 1,UO> T2,nav1)
V" 777777 -

X Hpo ,3‘*' vj7£]+17vj+1)

X poﬁin,l (vn, f, 'Un+1) dfg . dﬁn dVOlS?71 (’Uo) s dVOle—l (’Un_1>
+./v[“] /1).“75”20 [(Un_vo)'vaO‘i‘affO}(Q_(; §jvj—1+(t—Tn)vn>,vo,€17v1)

H Posy, (5r&j41,041) dé1 .. by dvolga—i (vo) - dvolgs—s (vn-1).

Here O fo and all components of V¢ fo lie in C;(X), since fy € C}(X); hence
as in Lemma 6.6 one shows that the right-hand side of (6.56) is a continuous
function of (t,Q,vn,&,vpt1) € R>g x X. Now to validate the formula (6.56)
it suffices to prove that (6.56) holds true after integration with respect to £
over an arbitrary finite interval [a,b] C R>o, and this is easily verified using
Fubini’s theorem. The case n = 1 is very similar, and the case n = 0 is trivial.

From (6.56) and its analogues for n = 1,0, one obtains a pointwise bound
on 85Kt(")f similar to (6.52), involving ||f||s, ||0¢f||; and HE)ijHJ for j =

.,d. This bound immediately implies that d¢ f = >"7° 85Kt(n) fo, with uni-
form absolute convergence on compact subsets of X, and OJ:f €
Cs(R>p x X), as desired.

The proof of dg, f € C;(R>o x &) follows the same steps but with simpler

formulas; in fact Jg; Kt(") fo= Kt(n)an fo holds for each n > 0. O
LEMMA 6.8. If fo € CL(X) and
f(ta Qv V7 57 V+) = thO(Qa v, 55 V+)7

then also Of exists and belongs to Cj(R>¢ x X), and equation (6.37) holds
throughout R>¢ x X.
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Proof. Fix any point (¢,Q,V,{, V1) € R>g x X. Using Ky1p = KpK;
and the bound (6.52) (with A in place of t) added over all n > 2, we get as
h—0F:

(6.57)

FE+mQ, V.6, V) =S KK fol(Q. V.6 V)

n=0

= f(t’Q—hV7V7£+haV+)
+ /h/ F(£:Q = (G0 + (h— &)V), 00,61, V)
0 V,UO ) ) bl b
x pogs. (V. &+ h— &, V) dvolgi-i(vg) déy + O(h?).

Using f(t,-) € CY(X) (cf. Lemma 6.7), and treating the integral term with a
continuity argument as in the proof of Lemma 6.6, we get (cf. (6.39))

(6.58) =f(t,Q, V., V1) +h[Zf(t,)|(Q, V., V) +o(h).

A similar argument shows that the function [Zf(t,-)](Q,V,&, V) lies in
Cy(R>o x X). Letting h — 07 in (6.58) we conclude that the right derivative
o f(t,Q,V,&, V) exists and equals [Zf(t,)](Q,V,£, V1), Since the latter

function is continuous, the relation now follows for the two-sided derivative;
i.e., (6.38) (< (6.37)) holds, and 0¢f € Cj(R>o x X). O

LEMMA 6.9. Let {fa}rs0 be a family of functions in Cj(X) satisfying
limsupy,_,o [|frll; < 00 and fr(Q,V,§, Vi) — 0 as h — 0, uniformly over
(Q,V,&, Vi) in compact subsets of X. Then for each (Q,V,&{, V) € X we
have [Kifp](Q,V,&, V) — 0 as h — 0, uniformly over t in compact subsets
0fR>0.

Proof. Take C,hg > 0 so that || f]|; < C for all h € (0, hy]. Given some
(Q,V,&,Vy) e Xand T > 0, n > 0, ¢ > 0, after possibly shrinking hyg,
we may assume that ’fh(Q’, v'¢, V;)‘ <eJ(V',V') for all h € (0, ho] and
all (Q',V',€', V') € X with |Q — Q| < T, €& <&+T and V' € VT+ (cf.
(3.1)). Then for each n > 1, t € [0,7] and h € (0, ho], by mimicking (6.52)
but splitting the integral over V‘“}] according to the two cases vg € Vy, and
vo ¢ Vi, we obtain (with C; := vol(B{™1))

(659) |IK” )@, V.6, V1)

ntn
< a1 {g—i— C/ J(vg, er) dVOlSd—1(’Uo)}J(V,V+).
C1 Jye, vz, 1

n!

This bound also holds for n = 0 (without the [, AV -term), so long as n <
e el
©(V,V4) — Bg. The expression within the brackets in (6.59) can be made
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arbitrarily small by taking € and n to be sufficiently small. Now the desired
conclusion follows by adding (6.59) over n > 0. O

LEMMA 6.10. We have K;Zfo = ZKyfo, for all fo € CL(X) and t > 0.

Proof. Let fo € C}(X) be given. Then by Lemma 6.8 (cf. (6.38)) we have
(O K fol(Q, V.6, V) = [ZK, fo](Q,V,£, V), and this function belongs to
Cj(R>p x X). Hence

h
(6.60) R '[Knfo— fol(Q.V,E,V4) = h! /0 (ZKfol(Q. V.6,V ) dt

for all h > 0 and all (Q,V,£, V) € X. As h — 0T, this expression tends
to [Zfo](Q,V,£, V) uniformly over (Q,V,£, V) in compact subsets of X.
Using (6.60) we also get supgp,<1 || [Kp fo— folll s <supgei<1 12K fol|.s <oo.
Hence by Lemma 6.9, we have

(6.61) hli%ﬂ WK (KR fo— fol](Q, V.6, V) = [KiZfo](Q,V,&,V ),

for every (t,Q,V,&, V) € Rsg x X. Using KK}, fo = Kt fo and (6.38) this
implies

(662) [KthO](Q7V7£7V+) = [a;_thO](Q7V7§7V+)
= [ZthO](Q7V7§7 V+) O

Proof of Theorem 6.4. By Lemma 6.7 and Lemma 6.8, it only remains to
prove the uniqueness. Thus assume that f € CY(Rso x &) satisfies (6.37);
we then need to prove that f(¢t,Q,V,&, V1) = [K.f(0,)](Q,V,§, V) for all
(t,Q,V,f, V+) € RZD x X.

Fix an arbitrary point (Q,V,£,V ;) € X and some a > 0, and set

F(s) = [Ka—Sf(sv )](Qa V.5 V) for s € [07a]'

Then F(s) is continuous, by Lemma 6.9. We will prove that the right deriv-
ative DT F(s) vanishes for each s € (0,a). This will conclude the proof, since
it implies F'(0) = F(a), which is the desired relation at (¢,Q,V,{, V) =
(CL, Q? V7 67 V-‘r)

Thus fix s € (0,a). By Lemma 6.8 applied with fy = f(s,-), we have

(6.63)

lim [Ka—s—n = Ka=s] [/(5.)](Q, V. £, V)

Bt N =—[ZKa sf(s,)](Q,V,E V).
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Next, using the identity

fs+hQ V' .E V) —f(5,Q, V', V)

(6.64) ;

1 sth / !/ / /
:E/ 8tf(t7QaV)£aV+)dt
S

and 9;f € Cj(R>p x X) we see that h=[f(s + h,-) — f(s,-)] has uniformly
bounded || - || ;-norm for h € (0,a — s|, and approaches 0sf(s, ) uniformly on
compact subsets of X as h — 07. Hence, using Lemma 6.9 and the fact that the
function R>g 3 b — [Kp0sf(s,)](Q,V, &, V1) is continuous (cf. Lemma 6.6),
we obtain, at our fixed point (Q,V,{, V) € &

(6 65) li Kafsfh |:f(3 + h, ) — f(57 )] (Q7 V7 57 V+)
. hgng h

= [Kaesdsf(s,)](Q, V., 6, V1),

But we are assuming that f satisfies (6.38); thus [0sf](s,-) = Zf(s,-). Hence,
when adding (6.63) and (6.65) and using Lemma 6.10, we obtain D" F(s) = 0,
as desired. g

Remark 6.2. Proposition 6.2 and Theorem 6.4 imply that if the flow F;
preserves the Liouville measure, then

(6:66)  —0p(V.E VL) = |

d—1
Sl

J(v07 V) povﬁio (Vu 57 V-‘r) dVOle_l (UO)7

since p(vo,0,V) = J(vg, V). Using (2.23) and (2.27) this equation can be
reformulated as

(6.67) -0 (6 w) = [

g T,
1

with ®(&,w) := ®u(€, w, 2) for a ¢ Q¢ as defined in Remark 2.1. For an
alternative proof of equation (6.67) working directly from the definition of @,
see [19, (8.32), (8.37)] and note ®g(§, w, z’') = Po(&, 2', w).

Remark 6.3. Given any f, € LY(TY(R?) we define fy € LY(X,01) by
fo(Q, V., V)= fu(Q,V)p(V,£, V). We then have the relation

668 LENQ V)= [ [ KA)@V.E V) dvolg (V) de

where L; is the propagator of the original stochastic process Z(t); cf. Sec-
tion 1.3. If we furthermore impose that f, is bounded continuous, with
bounded continuous derivatives 3@?0 for j =1,...,d, then f; satisfies the as-
sumption of Theorem 6.4, so that K fy satisfies the Fokker-Planck-Kolmogorov
equation, (6.37).
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