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Abstract

We give asymptotic upper and lower bounds for the number of squarefree d
(0 < d �X ) such that the equation x2� dy2 D�1 is solvable. These estimates, as
usual, can equivalently be interpreted in terms of real quadratic fields with a funda-
mental unit with norm �1 and give strong evidence in the direction of a conjecture
due to P. Stevenhagen.

1. Statement of the results

Let D be a fundamental discriminant, i.e., the discriminant of a quadratic
extension of Q, and let d be the unique squarefree number such that Q.

p
D/D

Q.
p
d/: In other words, d is defined by

(1) d D

(
D if D is odd;

D=4 if D is even.

A well-known equation is the so-called Pell equation

x2� dy2 D 1 with x; y 2 Z:

The problem of finding nontrivial solutions of this equation has a long history; see
e.g. [42]. Nowadays it is known that there are nontrivial solutions for all squarefree
d > 1. In this work we are interested in the so-called negative Pell equation

(2) x2� dy2 D�1 with x; y 2 Z:

It is easy to see that this equation has no solution for negative d . For the rest of
this work we assume that we are dealing with real quadratic fields, i.e., d , D > 1.

A solution of (2) gives a fundamental unit with norm �1 of the order ZŒ
p
d�

and vice versa. The index of ZŒ
p
d� in its maximal order OD (ring of integers of

the field Q.
p
D/) is 1 or 2. Furthermore, the index of the group of units ZŒ

p
d�� in

O�D is 1 or 3. Thus the solvability of the negative Pell equation (2) is equivalent to
the fact that the fundamental unit "D of Q.

p
D/ satisfies N."D/D�1, where N is

the norm of elements of this field. By convention, we have chosen the fundamental
unit "D such that "D > 1.
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Let X be a large positive real number. We are interested in the number of
squarefree integers d < X such that the negative Pell equation (2) is solvable. By
(1), such a question is equivalent to count the number of fundamental D such that
N."D/D�1. We easily get further restrictions on these d (or D). Let p be a prime
dividing d . By reducing (2) modulo that p, we get

x2 ��1 mod p:

The latter equation is only solvable for pD 2 or p� 1 mod 4 which means that the
negative Pell equation is not solvable for d or D with a prime divisor congruent
to 3 mod 4. Therefore it makes sense to introduce the set of special discriminants

DD
˚
D > 0 fundamental discriminant W p jD) p � 1 or 2 mod 4

	
;

which is the disjoint union of the two subsets

Dodd D
˚
D 2 D W D � 1 mod 4

	
;

and
Deven D

˚
D 2 D W D � 0 mod 8

	
:

For X > 1, we denote by D.X/ the counting function of the set D, that means
the cardinality of D\ Œ0; X�. The same applies to Dodd.X/ and Deven.X/. The
asymptotic behavior of these functions is known (for instance see [37, Satz 3] or
[41, p. 122]):

D.X/� c1 �
Xp

logX
;

Dodd.X/�
8

9
� c1 �

Xp
logX

;

and

Deven.X/�
1

9
� c1 �

Xp
logX

;

where

c1 D
9

8�

Y
p�1 mod 4

�
1�p�2

� 1
2 :

These formulas are variations of a classical theorem of Landau on the integers
which are sums of two squares (see [2, Satz 1.8.2] for instance) and are conse-
quences of the analytic properties of the function ��

1
2 .s/

Q
p 6�3 mod 4.1�p

�s/: In
an equivalent manner, by applying (1), we get

(3) ]
˚
d W 1� d �X; d squarefree; p j d ) p D 2 or p � 1 mod 4

	
� X;

where

(4) XD
4

3
� c1 �

Xp
logX

:
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It is now a canonical question to ask if it is often, for a special discriminant D, to
satisfy N."D/D�1. In other words we introduce the counting function

D�.X/D ]
˚
D 2 D W 0 < D <X; N."D/D�1

	
;

in order to compare it with D.X/. An analogous question concerns the functions
D�odd.X/ and D�even.X/. In the statement of our results, we shall frequently meet
the constant

(5) ˛ WD
Y
j odd

.1� 2�j /D

1Y
jD1

.1C 2�j /�1 D :4194224417951 � � � :

After the construction of an interesting and solid probabilistic model, P. Steven-
hagen was led to the following conjectures:

CONJECTURE 1 ([41, Conjs. 1.4 and 3.4]). As X !1, we have

D�.X/� .1�˛/D.X/;

D�odd.X/� .1�˛/Dodd.X/;

and

D�even.X/� .1�˛/Deven.X/:

Note that the extension of this conjecture to the sets Dodd and Deven implicitly
appears in [41, p. 123, 2nd col.]. Stevenhagen [41, p. 122] comments this conjec-
ture as follows “As it stands, this is a basic but very hard problem. . . ”. Appealing
to (1), (3) and (4) Stevenhagen also proposed:

CONJECTURE 2 ([41, Conj. 1.2]). The number of positive squarefree d �X
for which the negative Pell equation (2) is solvable is asymptotic to

.1�˛/X:

We recall a well-known criterion to detect whether the fundamental unit of
Q.
p
d/ has norm 1 or�1. This norm is�1 if and only if the period of the expansion

of
p
d in continued fractions is odd, e.g., see [32, Th. 3.11]. However, we have the

feeling that this criterion is useless to prove asymptotic results. Our main result is

THEOREM 1. For X !1, we have the inequalities

.˛� o.1//D.X/� D�.X/�
�
2

3
C o.1/

�
D.X/:

Similar inequalities hold for D�odd.X/ and D�even.X/.

We can summarize our result in familiar words as follows: Stevenhagen con-
jectures that about 58% of the special D satisfy N."D/D �1. We prove that this
percentage is between 41% and 67%. By (1), (3) and (4) we easily deduce

COROLLARY 1. For X !1 we have the inequalities

.˛�o.1// �X� ]
˚
1�d �X W d squarefree and .2/ is solvable

	
�

�
2

3
Co.1/

�
�X:



2038 ÉTIENNE FOUVRY and JÜRGEN KLÜNERS

As in Theorem 1 the inequalities of Corollary 1 remain true, if we restrict the
counting functions to odd squarefree d or even squarefree d , respectively. Since
the set fd W d squarefree; p j d ) p � 1 mod 4g has a positive density in the set
fd Wp jd)p�1 mod 4g, we easily get that the equation x2�dy2D�1 is solvable
for a positive proportion of d composed entirely of prime factors congruent to 1
modulo 4. This is exactly the content of a conjecture of Hooley (see [24, Conj. 5,
p. 118]).

As far as we know, for the lower bound, the best results were of the type
D�.X/�k X.log logX/k= logX for any positive integer k, (see [41, Cor. 4.2])
and quite recently D�.X/� X=.logX/:62, due to V. Blomer [1]. For the upper
bound, nothing nontrivial was known on lim sup D�.X/=D.X/ before our result
(see the comment [41, p. 122, 2nd col.]).

Theorem 1 is ineffective in both aspects: lower and upper bounds. This lacuna
means that, being given real numbers �1 and �2 satisfying 0 < �1 < ˛ and 2=3 <
�2 < 1, our proof does not give an explicit value of X1 and X2, such that, for
X �X1, we have D�.X/� �1 D.X/ and for X >X2, we have D�.X/� �2 D.X/.
The origin of this inefficiency is the Siegel-Walfisz Theorem (see Lemma 30 and
Proposition 7).

1.1. How to attack Theorem 1. For its proof, we neglect the approach via the
Pell equation itself, we prefer the interpretation of this question via the comparison
of the ordinary class group ClD and the narrow class group CD . Let us collect
here some well-known results. For more details we refer the reader to Section 3.1.
We have the following exact sequence of groups

(6) f1g ! F1! CD! ClD! f1g;

where F1 � Z=2Z. Furthermore, jF1j D 2 if and only if D > 0 and N."D/D 1

(see e.g. [32, Cor. 2, p. 112]).
Hence the equality N."D/D�1 is equivalent to the isomorphism of the groups

(7) CD Š ClD:

We recall:

LEMMA 1. Let D > 0 be a discriminant with jF1j D 2. Then the following
two statements are equivalent:
� CD Š Z=2Z�ClD ,
� there exists a prime p jD such that p � 3 mod 4:

In this case we have: C2D Š Cl2D :

The statement of Lemma 1 can be found in the literature at several places:
[17, p. 518] (with Hasse’s notation we have gC D 2rk2.CD/ and g D 2rk2ClD ), [4,
Table 14.1, p. 142], [30, Th. 8], and [28, Th. 6.9] (with a proof based on K-theory).
However, in some other places this statement appears in an uncorrect form or with
a nonconvincing proof. Using this lemma it is clear that D > 0 belongs to D

if and only if rk2.CD/ D rk2.ClD/. Here the p-rank of a finite multiplicative
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abelian group A is denoted by rkp.A/.D dimFp A=A
p/. The 4-rank is denoted by

rk4.A/ D rk2.A2/, by definition, and more generally, we define the 2k-rank by
rk2k .A/ WD rk2.A2

k�1

/: Using this terminology and equation (6) we get for all
fundamental discriminants:

(8) rk2k .CD/� 1� rk2k .ClD/� rk2k .CD/ for all k � 1:

Using Lemma 1 and (7) we get for special discriminants D 2 D:

(9) N."D/D�1 , rk2k .CD/D rk2k .ClD/ 8k � 2:

However, this last equality is too difficult for a general approach by analytic
methods. Hence we shall only play with the 4-rank (k D 2). Actually, the good
numerical quality of the constants appearing in Theorem 1 is due to the fact that
the main contribution comes from what happens with the 4-rank. Approaching to
Stevenhagen’s constant .1�˛/ in Theorem 1 would require to play with the 8-rank,
the 16-rank, and so on. To prove the lower bound announced in Theorem 1, we
use the fact that the function k 7! rk2k .CD/ is positive and decreasing to deduce

LEMMA 2. Let D 2 D such that rk4.CD/D 0. Then we have N."D/D�1.

For the upper bound, we use the following lemma.

LEMMA 3. Let D 2 D such that N."D/D�1. Then we have the equality

rk4.ClD/D rk4.CD/:

Hence, our way of attacking Theorem 1 is reduced to the distribution of the
functions rk4.CD/ and rk4.ClD/.

1.2. Results concerning the 4-ranks of class groups. Let a and b be two non-
negative integers. We denote by ı.a; b/, if it exists, the real number

ı.a; b/ WD lim
X!1

] fD 2 D W D <X; rk4.CD/D a and rk4.ClD/D bg
D.X/

:

Similarly, we define ıodd.a; b/ and ıeven.a; b/. As in [41] we introduce the function

(10) ˛1.r/ WD
˛Qr

jD1.2
j � 1/

;

defined for any integer r � 0. We shall prove

THEOREM 2. The real number ı.a; b/ exists for all nonnegative integers a
and b, and satisfies

(11) ı.a; b/D

8̂̂̂̂
<̂
ˆ̂̂:
0 if 0� a < b;

0 if 0� b < a� 1;

2�a �˛1.a/ if aD b;

.1� 2�a/ �˛1.a/ if aD bC 1:

Similar statements are true for ıodd.a; b/ and ıeven.a; b/.
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The first two cases of (11) are direct consequences of (8). From Theorem 2
we easily deduce

COROLLARY 2. For any integer r � 0 and for X !1 we have

]
˚
D 2 D W D <X; rk4.CD/D r

	
� ˛1.r/ �D.X/;

and
]
˚
D 2 D W D <X; rk4.ClD/D r

	
� 3 � 2�r�1˛1.r/ �D.X/:

The same relations are true when we replace D by Dodd or Deven.

Proof. Compute ı.r; r/C ı.r; r � 1/ and ı.r; r/C ı.r C 1; r/. �
Now we deduce Theorem 1 from Theorem 2.

Proof of Theorem 1. Combining Lemma 2 with the first part of Corollary 2
corresponding to the case r D 0, we obtain the lower bound of D�.X/ announced
in Theorem 1.

For the upper bound of D�.X/ we proceed as follows. Lemma 3 and (8)
imply that, for every integer R � 1, we have the lower bound

D.X/�D�.X/�

RX
rD1

]
˚
D 2D W 0<D<X; rk4.CD/D r and rk4.ClD/D r�1

	
:

From (11) we deduce for every positive � and X �X0.R; �/ the inequality

D.X/�D�.X/�
�
��C

RX
rD1

ı.r; r � 1/
�

D.X/:

Since
P
r.ı.r; r/C ı.r; r � 1//D 1, the above inequality is equivalent to

D�.X/�
�
1C ��

RX
rD1

ı.r; r � 1/
�

D.X/

�

�
�C

RX
rD0

ı.r; r/C

1X
rDRC1

.ı.r; r/C ı.r; r � 1//
�

D.X/:

By letting �! 0 and R!1 we obtain the upper bound announced in Theorem 1
after writing the list of equalities

1X
rD0

ı.r; r/D ˛
X
r�0

2�r
rY

jD1

.2j � 1/�1

D ˛

1X
rD0

.1=2/r .1=2/
r.rC1/
2

.1� .1=2//.1� .1=2/2/ � � � .1� .1=2/r/

D ˛

1Y
jD1

�
1C .1=2/jC1/

D
2

3
�

�
˛ �
�
1C

1

2

��
1C

1

4

��
1C

1

8

�
� � �

�
D
2

3
:
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The third equality is a consequence of Lemma 4 (with t D uD 1=2) and the last
one is a consequence of the definition (5) of ˛. �

Finally, it is time to further push the comment after (9) and to explain the
rather good quality of the inequalities contained in Theorem 1 compared with the
weakness of the criteria contained in Lemmata 2 and 3. The origin is due to the
fact that as r!1, the density ˛1.r/ goes to 0 very quickly. In other words, we
easily get that .log˛1.r//= log 2��.r2=2/, as r!1. Hence most of the cases
D with N."D/D�1 correspond to D with a very small value of rk4.CD/.

Our technique is optimal to give the asymptotic cardinalities of the sets of
special D such that rk4.CD/D 0 or such that rk4.CD/D rk4.ClD/. Using this we
are able to exhibit the bounds written in Theorem 1. On the other hand, our method
is inoperative to attack the cases, where a study of the 8-rank, (or 16-rank,. . . ) is
required. In order to illustrate this matter of further investigations, we think that, to
improve the constant ˛ appearing in Theorem 1, the first natural step will certainly
be to incorporate the density, if it exists, of the set of the special D satisfying

rk4.CD/D rk4.ClD/D 1 and rk8.CD/D 0:

We expect1 that this set has density ˛=4, which would improve the coefficient of
the lower bound from ˛ to 5˛=4 D 0:524278 : : : . In the opposite direction, to
improve the constant 2=3 in the upper bound of the same theorem, the first step
would be to subtract the density of the subset of the special D such that

rk4.CD/D rk4.ClD/ and rk8.CD/D rk8.ClD/C 1:

1.3. Remarks concerning Corollary 2. The first part of this corollary proves
that the probability for a special discriminant to have its 4-rank equal to r is ˛1.r/.
This value exactly fits to the value predicted by Stevenhagen [41, Conj. 3.4(ii)], but
it is quite different from the probability for a positive fundamental discriminant to
have its 4-rank equal to r , since by [11, Th. 3] and [10, Cor. 1], we know that this
probability is equal to

(12) 2�r.rC1/

Q1
jD1.1� 2

�j /Qr
jD1.1� 2

�j /
QrC1
jD1.1� 2

�j /
:

This distortion between special and fundamental discriminants can be easily ex-
plained by the fact that if D belongs to D, then every odd and coprime divisors D0
and D3 of D are congruent to 1 mod 4, hence, by the quadratic reciprocity law for
Jacobi symbols, the product

(13) .�1=D3/.D0=D3/.D3=D0/;

in Lemmata 10 and 11, is equal to 1 and provides no oscillation. In other words the
function rk4.CD/ has on average a tendency to be larger when D is special than
when it is fundamental and positive (see the comment after Theorem 3).

1This is proved in [12, Ths. 1 and 2].
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We remark that Theorem 2 is a first step in the direction of proving [41,
Conj. 3.4(i)].

COROLLARY 3. For every integer e � 0, we have the inequality

lim sup
X!1

]fD �X;D 2 D�; rk4.CD/D eg
]fD �X;D 2 D; rk4.CD/D eg

�
1

2e
:

Proof. Using Theorem 2 we get that in 1=2e of the cases, the 4-ranks of the
ordinary and the narrow class groups coincide. By Lemma 3 the set of these cases
contains the cases, where the negative Pell equation is solvable. �

We remark that the bound is sharp in the case e D 0. For e � 1 we get an
upper bound of the conjectured density 1

2eC1�1
.

The result (12) (and more generally [11]) can be seen as the first significa-
tive evidence sustaining the truth of the so called Cohen-Lenstra heuristics [3]
(extended by Gerth [14] to the 4-rank) which predict the average behavior of the
group CD , when D goes all over the set of positive fundamental discriminants and
of negative fundamental discriminants. Since C2D and Cl2D may be different only
when D belongs to D, and since D is a negligible subset of the set of fundamental
discriminants (in terms of cardinalities), the average behavior of the 2-part of Cl2D
is not covered by the heuristics of Cohen-Lenstra-Gerth as written in [3] and [14].

1.4. Results on moments. The usual way to attack the distribution law of an
arithmetic function is to compute the integral moments of this function and then
hope to deduce this law from the values of these moments. For the case of the
function D 2 D 7! rk4.CD/, we rather work with the function D 2 D 7! 2rk4.CD/

which has a more natural algebraic interpretation (see Proposition 2 below). In
Section 7 and 9 (Propositions 11 and 13), we shall prove

THEOREM 3. For every integer k � 0 and for every positive " we have

X
D2D;D�X

2k rk4.CD/ D

k�1Y
jD0

�
2j C 1/ � D.X/COk;"

�
X.logX/�

1
2
� 1

2kC1
C"�

uniformly for X � 3. The same relations are true when we replace D by Dodd or
Deven.

There exists a corresponding expansion for the sum 2k rk4.CD/ over all funda-
mental discriminants 0 < D < X (see [11, Ths. 7, 9 and 11]). In that case, the
coefficient of the main term is equal to

(14)
1

2k

�
N.kC 1; 2/�N.k; 2/

�
;

where N.k; 2/ is the total number of vector subspaces of Fk2 . In order to measure
the size of this coefficient we write it in the form 2�k . Then we easily see that
�k �

k2

4
as k tends to infinity. However, by Theorem 3 the corresponding �k in
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the case of special discriminants is � k2

2
. This shows, that on average, rk4.CD/ is

significantly larger when D is special than when D is fundamental and positive.
Because Theorem 2 concerns the joint distribution of the functions D 2 D

7! .rk4.CD/; rk4.ClD//, we would be obliged to compute the mixed moments
2k rk4.CD/ � 2` rk4.ClD/ for all k and ` � 0. However, the inequalities (8) (for the
4-rank) imply that in addition to the moments computed in Theorem 3, we only
require to compute one mixed moment. This remark avoids a huge amount of work
(see formula (100)). In Sections 8 and 10 we will prove

THEOREM 4. For every integer k � 0 and for every positive " we haveX
D2D;D<X

2k rk4.CD/ � 2rk4.ClD/ D.2k�1C 1/ �

k�1Y
jD0

.2j C 1/ �D.X/

COk;"
�
X.logX/�

1
2
� 1

2kC2
C"�

uniformly for X � 3. The same relations are true when we replace D by Dodd or
Deven.

Comparing this result with the asymptotic expansion written in Theorem 3
(with the parameter k C 1), once again, we see that rk4.ClD/ is oftenly strictly
smaller than rk4.CD/.

1.5. Organization of the paper. In the introduction we presented the results
and reduced the proofs of everything to the proof of Theorems 2, 3 and 4. In
Section 2 we will show how to prove Theorem 2, when we assume Theorems 3
and 4. In the rest of the paper we will prove those theorems. The proof of Theorem
3 is much easier than the proof of Theorem 4. In case we are only interested in the
proof of Theorem 3, we can skip the study of Sections 3–6. In those sections we
recall some results already given in [11] and generalize them in a way that they can
be used for proving Theorem 4. For the study of Theorem 3 we only use Lemmata
10 and 11 from Section 3. From 5 and 6 we use Lemma 30 (Siegel-Walfisz) and
Lemma 33 (double oscillation). Using these tools Theorem 3 is then proved in
Section 7 (odd discriminants) and Section 9 (even discriminants).

The main difference in the proofs of Theorems 3 and 4 comes from the fact
that the algebraic criterion for the 4-rank of the ordinary class group is much more
complicated than the criterion of the narrow class group. The latter one can be de-
scribed by a suitable product of Jacobi symbols (see Lemmata 10 and 11), where the
first one additionally needs the square of quartic characters over ZŒi � (see Theorem
6). The goal of Section 3 is to prove Theorem 5. In Section 4 we collect properties
of quartic residue symbols. Using those we can reformulate Theorem 5 in a way
which can be used for counting purposes and the result is Theorem 6.

In the analytic part we make heavy use of oscillation of characters. Here we
use two important tools, namely Siegel-Walfisz theorems and double oscillation. In
Section 5 we recall in Lemma 30 the Siegel-Walfisz theorem for primitive Dirichlet
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characters. The main result of this section is the proof of the corresponding result
for squares of quartic characters (see Proposition 7).

The same story applies for the double oscillation of characters in Section 6.
In Lemma 33 we recall the corresponding result for Jacobi symbols. Again, we
prove a corresponding version for the square of quartic characters in Proposition 9.

In Section 7 (odd discriminants) and Section 9 (even discriminants) we prove
Theorem 3. Finally we prove Theorem 4 in Sections 8 and 10.

The structure of those four paragraphs is very similar. Therefore we only give
an overview of what happens in Section 7.

In Section 7.1 we introduce the functions �1 and �k which allow us to express
the k-th moment 2k rk4.CD/ in a clever way. The function �k appears as an exponent
of any possible Jacobi symbol. It takes the values 0 or 1 and so detects which
Jacobi symbols appear and which do not. The result is given in Lemma 36. In the
following subsections we want to compute the asymptotic behavior of this function.

In Section 7.2 we start with the first preparations of the summation. In a
first step we can restrict to those discriminants which do not have too many prime
factors; see the discussion before formula (61) for the precise formulation. By
introducing the dissection parameter � WD 1C .logX/�2

k

we are allowed to split
our sum in many small pieces (see (62), (63), and (64)), which we can analyze
separately. These pieces are parametrized by AD .Ar/. In formulas (66) and (67)
we show that we can get rid of the constraint

Q
Dr � X and make the variables

independent this way. In [11, p. 47, (33)] this was the first family. In Lemma 38
we prove that we can ignore the contribution of all A such that at most 2k � 1
of the Ar are bigger than some constant X� defined in (70). In the proof of this
lemma we use a result of Shiu (Lemma 37) in order to get a sufficiently good error
bound. In [11, p. 475] this was the second family. We remark that this is the only
place for the error term, where we have to use the fact that we deal with special
discriminants. Certainly, we have to use properties of special discriminants, when
we compute the main term.

In Section 7.3 we introduce the notion of linked indices (this notion was in-
troduced by Heath-Brown in [18] and already exploited in [11]). The goal is that
we want to find other families which disappear in the error term. In Sections 5 and
6 we prepared Siegel-Walfisz and double oscillation techniques which we want
to apply here. When two indices r0 and s0 are linked, we can use the oscillation
of the symbol

�
Dr0
Ds0

�
in order to prove that some families disappear in the error

term. In Section 7.4 we apply Lemma 33 (double oscillation) to suitable linked
indices. This was the third family in [11, p. 476]. In Section 7.5 we apply Lemma
30 (Siegel-Walfisz) to suitable linked indices. We remark that during the proof
of this step we use the fact that we bounded the number of prime factors of our
discriminants. In [11, p.476] this was our fourth family. After having done all this
work we arrive at Lemma 39. In condition (83) of this lemma the remaining cases
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are listed which we have to consider in the following paragraphs. This condition
has to be compared with [11, (48)].

The goal of the final two subparagraphs is to compute the main term. We
have to interpret condition (83) in more geometric terms in order to compute it
efficiently. As in [18] we are confronted with questions of geometry in character-
istic 2. In Section 7.6 we introduce in (84) a quadratic form Pk defined over F2k2 .
It turns out that it is of great interest to us to find maximal subspaces of F2k2 which
consist only of vectors which are pairwise unlinked. These spaces correspond (see
Lemmata 40 and 41) to subspaces of F2k2 on which the quadratic form Pk � 0

vanishes identically. As a result we get that our main term heavily depends on the
number of maximal unlinked vector subspaces of F2k2 in Lemma 42. Finally, by
using the theory of quadratic forms in characteristic 2, we compute this number in
Section 7.7.

1.6. Differences to the case of fundamental discriminants. We already men-
tioned that many of the analytic tools already appear in [11], where we determined
the asymptotic behavior of the 4-rank of the narrow class group of quadratic number
fields. The proof of Theorem 3 is very similar, because it only deals with the narrow
class group. The main difference is that we only look at special discriminants,
which has the following two effects:

(i) The number of special discriminants smaller than X behaves like c1 Xp
logX

.

(ii) Many Jacobi symbols become trivial for special discriminants.

When we look at all real quadratic number fields, the contribution of special dis-
criminants disappear in the error term. The second difference is that for special
discriminants many Jacobi symbols become trivial and the formula for the 4-rank
of the narrow class group simplifies (see Lemmata 10 and 11), e.g., the formula
for odd D > 0

2rk4.CD/ D
1

2 � 2!.D/

X
DDD0D1D2D3

�
�1

D3

��
D2

D0

��
D1

D3

��
D0

D3

��
D3

D0

�
simplifies for D 2 Dodd to the equality

2rk4.CD/ D
1

2 � 2!.D/

X
DDD0D1D2D3

�
D0

D2

��
D1

D3

�
:

As usual !.D/ is the number of distinct prime factors of D. In order to deal
with the k-th moment of those functions this expression has to be raised to the
k-th power. In order to avoid a combinatorial nightmare, we use an idea of Heath-
Brown to describe the right possibilities by quadratic forms in characteristic 2.
Because of the different nature of the above mentioned formulas for the 4-rank,
the description is different. In [11, p. 471] we can describe the exponent function
ˆ1 by a polynomial. Here we have to use an abstract function �1 defined in (54).
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When we come to the definition of linked indices, amazingly in both cases we can
use the same quadratic form over Fk2 ; see (84) and compare it with the quadratic
form P defined in [11, p. 473]. Nevertheless, we get different constants due to the
fact that the above mentioned formulas for the 4-rank of the narrow class group
are different. In both cases we have to count maximal unlinked vector spaces of
F2k2 on which Pk � 0, but in the case of [11] these subspaces must satisfy the
extra condition that some bilinear form over F2k2 is identically equal to 0. This
explains why the coefficient (14) of the main term of [11, Th. 7] is smaller than
the corresponding one in Theorem 3 and quantitatively shows the effect of the
oscillations due to the extra factor (13).

The biggest differences occur when we prove Theorem 4. Since the criterion
for the ordinary class group is much more complicated and involves quartic sym-
bols, we have to develop the corresponding theory to deal with those. We remark
that in the ordinary class group case both types of symbols occur. However, since
the function 2rk4.ClD/ appears with exponent 1, we can connect the combinatorics
associated to the mixed moments treated in Theorem 4 to the combinatorics treated
in Theorem 3. This is an important gain of work to deal with the main term. In
order to summarize we can say that the case of the function rk4.ClD/ appears to
be more involved than the case of rk4.CD/, not only by the required tools coming
from algebraic number theory, but also by the fact that analytic number theory is
made over the Gaussian integers instead over Z.

2. From Theorems 3 and 4 to Theorem 2

2.1. A first approach. This paragraph uses analytic and combinatorial meth-
ods. The strategy is similar to [10, �4] (see also [18, �8]). Our first step is to work
with Theorem 3 only, to deduce, roughly speaking, the value of ı.a; a/Cı.a; a�1/,
without proving the existence of the terms of this sum (for more precisions, see (21)
below). In other words, we directly prove the first part of Corollary 2. For r � 0
and X � 5, let

d.r; X/ WD
]
˚
D 2 D W D <X; rk4.CD/D r

	
D.X/

:

This is the proportion of special discriminants �X with 4-rank of the narrow class
group equal to r . Let

Ck WD

k�1Y
jD0

.2j C 1/:

Then we write Theorem 3 in the form

(15)
1X
rD0

d.r; X/ � 2kr D CkC ok.1/ .X !1; k D 0; 1; 2; : : : /:
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Applying (15) with k replaced by kC 1 and using positivity, we obtain

d.r; X/ � 2.kC1/r DOk.1/;

which leads to

(16) 0� d.r; X/DOk
�
2�.kC1/r

�
;

uniformly forX �5 and r�0. Since for all r�0 andX �5we have d.r; X/2 Œ0; 1�,
by an infinite diagonal process, we construct a sequence .di /i�0 2 Œ0; 1�; and an
infinite sequence M of integers m with the property

d.r;m/! dr .m 2M; m!1/:

The relation (16) allows us to apply Lebesgue’s dominated convergence theorem
to (15). This gives the equality

1X
rD0

dr 2
kr
D Ck .k D 0; 1; 2; : : : /:

Therefore we consider the infinite system of linear equations

(17)
1X
rD0

xr 2
kr
D Ck .k D 0; 1; 2; : : : /:

Before we can give a solution to the system (17), we need the following combinato-
rial tool coming from the theory of partitions (see, e.g., [5, formula Œ5k�, p. 105]).

LEMMA 4. We have the formal equalityY
i�1

�
1Cut i

�
D 1C

X
m�1

umt
m.mC1/

2

.1� t /.1� t2/ � � � .1� tm/
:

Now we can give a solution, where ˛1.r/ is defined in (10).

LEMMA 5. The sequence xr D ˛1.r/ .r � 0/ satisfies the system (17).

Proof. By replacing xr by ˛1.r/ in the left of (17) we get
1X
rD0

xr2
kr
D ˛

1X
rD0

2krQr
jD1.2

j � 1/
D ˛

1X
rD0

2kr � 2�
r.rC1/
2Qr

jD1.1� 2
�j /

:

We apply Lemma 4 with the choice uD 2k and t D 1=2 and get

1X
rD0

xr2
kr
D ˛

Y
i�1

.1C 2k�i /D

k�1Y
jD0

.2j C 1/D Ck;

by the definition of ˛ given in (5). �

In order to ensure the unicity of solutions of (17), we appeal to the following
lemma, which is proved by Jensen’s inequality. We have
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LEMMA 6 ([10, Lemma 6]). Let ` � 0 be an integer and a 2 C such that
jaj> 1. Furthermore let g.z/ be an entire function which has a zero of order ` at
zD 0 and satisfies g.ak/D 0 for any k � 0. Then for every k � 0 the function g.z/
satisfies the inequality

sup
jzjDjajk

jg.z/j �
jg.`/.0/j

`Š
� jaj

k.kC1/
2
Ck`:

Now suppose that we have two nonnegative solutions .xr/ and .x0r/ of (17).
By positivity we have the inequalities

(18) 0� xr ; x
0
r � 2

�krCk;

for any k and r � 0: By the definition of Ck we easily obtain the inequality Ck �
c0 2

k.k�1/
2 for an absolute c0. By choosing k D r in (18) we obtain

(19) 0� xr ; x
0
r � c0 2

� r
2

2 :

Now consider the function

(20) g.z/D

1X
rD0

.xr � x
0
r/z

r

of the complex variable z. The radius of convergence of this series is C1 by (19).
It is an entire function, which by assumption is zero at each 2k (k � 0). It also
satisfies the inequality

jg.z/j � 2c0

1X
rD0

2�
r2

2 jzjr :

In particular, in the case jzj D 2k we get for some absolute c00:

jg.z/j � 2c0

1X
rD0

2�
r2

2 2kr � c00 2
k2

2 :

Suppose that g has a zero of finite order ` at z D 0. By Lemma 6 we would have
the inequality

c00 2
k2

2 �
jg.`/.0/j

`Š
� 2
k.kC1/
2
Ck`;

which is false for k large. This contradiction means that g � 0, in other words, we
have xr D x0r for every r � 0: So we proved

LEMMA 7. The system (17) has at most one nonnegative solution .xr/r�0.

By Lemma 5, we know that the system (17) has a positive solution and now
we know that it is unique. This unique positive solution is given by xr D ˛1.r/;
from which we deduce that we have dr D ˛1.r/: This equality also implies that,
as X tends to infinity, d.r; X/ has only one limit point which is the density of the
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set of special discriminants with 4-rank equal to r and its value is equal to ˛1.r/.
This is exactly the first part of Corollary 2.

2.2. Proof of Theorem 2. We always assume that Theorems 3 and 4 are proved.
For r � 0 and X � 5 define

ı.r; r; X/ WD
]
˚
D 2 D W D �X; rk4.CD/D rk4.ClD/D r

	
D.X/

;

and

ı.r; r � 1;X/ WD
]
˚
D 2 D W D �X; rk4.CD/D rk4.ClD/C 1D r

	
D.X/

:

We trivially have the equality

ı.r; r; X/C ı.r; r � 1;X/D d.r; X/;

and in Section 2.1 we proved

(21) ı.r; r; X/C ı.r; r � 1;X/! ˛1.r/; .X !1; r D 1; 2; : : : /

and
lim
X!1

ı.0; 0;X/D ˛1.0/:

For k � 0 we define

C 0k WD .2
k�1
C 1/Ck D .2

k�1
C 1/

k�1Y
jD0

.2j C 1/;

and we write Theorems 3 and 4 in the following equivalent forms:
1X
rD0

.ı.r; r; X/C ı.r; r � 1;X// 2.kC1/r D CkC1C o.1/;

1X
rD0

�
ı.r; r; X/C

ı.r; r � 1;X/

2

�
2.kC1/r D C 0kC o.1/:

By linear combination and by the equality 2C 0
k
�CkC1DCk we deduce the equality

1X
rD0

�
2rı.r; r; X/

�
2kr D CkC o.1/ for X !1 and k D 0; 1; 2; : : : :

Then we recognize equation (15) with d.r; X/ replaced by 2rı.r; r; X/. Therefore
we deduce that

ı.r; r; X/! 2�r˛1.r/ for X !1 and r D 0; 1; 2; : : : :

Using equation (21) we get that

ı.r; r � 1;X/! .1� 2�r/˛1.r/ for X !1 and r D 0; 1; 2; : : : :

This is exactly the content of (11) in Theorem 2.
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3. From 4-ranks to symbols

The goal of this section is to give criterions for the 4-rank of the class group
and the narrow class group. For the narrow class group we give in Proposition 2 a
criterion which we already used in [11]. Using this criterion we are able to produce
formulas given in Lemmata 10 and 11. Dealing with the ordinary class group is
more difficult. As a general rule we need to decide how many of the unramified
degree 4 extensions of our given quadratic field are real. Later on we only need
Theorem 5. More or less all the results in this section can be already found in
old papers by Redei, Reichardt, and Scholz. The proofs are distributed over many
papers and sometimes they are a little bit sketchy. For this reason we decided to
give proofs for those results.

In Section 4 we show how to transform this criterion to the ordinary class
group and give a new formula in Theorem 6. This result is analogous with Lemmata
10 and 11.

3.1. Hilbert class fields and some class field theory. In this section we collect
some necessary tools from class field theory. In the introduction we introduced the
notion of ordinary and narrow class groups of a (quadratic) number field. In the
following let D be a fundamental discriminant and K WDQ.

p
D/ be a quadratic

number field. Denote by IK the (multiplicative) group of fractional ideals of K
and by PK the (multiplicative) group of fractional principal ideals. Furthermore
we introduce PCK which is the group of fractional principal ideals which have a
generator which is totally positive. For D < 0 all elements are totally positive and
therefore PK DPCK . For D > 0 every element of K has two real conjugates and an
element is totally positive if both conjugates (as real numbers) are positive. Now
the ordinary class group is ClD WD IK=PK and the narrow class group is defined
via CD WD IK=PCK . Since PCK � PK and everything is abelian we easily see that
ClD is a quotient of CD and we have the following exact sequence (see (6)):

(22) f1g ! F1! CD! ClD! f1g;

where F1 is a group of order at most two. We can assume that elements in F1
are represented by principal ideals generated by units of the ring of integers of OK .
In order to distinguish those elements in F1 only the signs of the two conjugates
are important. Therefore we have at most four possibilities. Since .˛/D .�˛/ the
number of possibilities is reduced to two, i.e., we have to distinguish the case that
both conjugates have the same sign or not. We are able to show the classical result,
already mentioned in the introduction:

LEMMA 8. Let D > 0 be a fundamental discriminant. Then CD D ClD if
and only if OK has a unit of norm �1. This situation is equivalent to say that the
negative Pell equation for d defined in (1) has a solution.

Proof. This is very classical and the proof can be found in various places in
the literature, e.g., [32, Cor. 1, p. 112] or [27, p. 243]. �
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We will make heavy use of the main theorem of class field theory which states
that for every class group there is an abelian extension of our given field which has
the class group as Galois group. We only need the Hilbert class field and the
extended Hilbert class field. We formulate the following proposition for general
number fields.

PROPOSITION 1. Let K be a number field with class group ClK and narrow
class group CK . Denote by HK the maximal abelian at all places unramified
extension and by HCK the maximal abelian at all finite places unramified extension.
Clearly, HK �HCK and we get that Gal.HK=K/D ClK and Gal.HCK =K/D CK .

A proof for this proposition can be found in every textbook about class field
theory, e.g., in [27, pp. 228 and 242]. We remark that a field extension of a totally
real field is unramified (at all places) in infinity, if and only if it is totally real. Our
question concerning the equality CD D ClD can be reformulated as the question
whether the extended Hilbert class field is totally real or not. It is clear that only the
even parts of CD are interesting for that question. In this section we are interested
in the 4-part. We want to consider the maximal abelian extension N of K which
is unramified at all finite places and which is of exponent dividing 4. By the main
theorem of Galois theory this extension N=K has Galois group A WD CK =C4K Š
C.4/r �C.2/s , where C.m/ denotes the cyclic group of order m.

We are interested in the following question: How many extensions of K do
exist with Galois group C.4/, which are unramified at all finite places? This count-
ing will be performed by using the following lemma from abelian group theory
and by applying the main theorem in Galois theory.

LEMMA 9. Let AŠC.4/r �C.2/s with r � 1 be an abelian group. Denote by
H � A a subgroup such that A=H Š C.4/ and denote by H � U � A the unique
intermediate subgroup U of index 2 in A. Then:

(i) The number of C.4/-quotients of A is exactly .2r � 1/ � 2rCs�1.

(ii) The number of subgroups zH � U such that A= zH Š C.4/ is equal to 2rCs�1.

Proof. (i) By dualizing it is equivalent to count subgroups of A isomorphic to
C.4/. Each of those subgroups has two generators of order 4, so we need to count
half of the elements of order 4:

1

2
.4r2s � 2rCs/D

1

2
.2r � 1/.2rCs/:

(ii) There are 2r � 1 subgroups U of index 2 which contain a subgroup H
such that A=H Š C.4/. Therefore for our given U we have 2rCs�1 possibilities
using the first part of this lemma. �

3.2. Case of narrow class group. In a first step we quote rather old results
concerning the 4-rank. There are two similar criterions to determine the 4-rank of
the narrow class group of a quadratic number field. The first criterion is the one we
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used to determine the asymptotics of 4-ranks of narrow class groups of quadratic
number fields ([11] and [10]). Here .a j b/ denotes the norm symbol which was
introduced in [11, Def. 2] and which is defined by:

Definition 1. Let a and b be two nonzero rational numbers. Then we have
.a j b/D 0 or 1, and .a j b/D 1 if and only if the quadratic equation x2� ay2�
bz2 D 0 has a nontrivial solution in Q3.

Now we recall

PROPOSITION 2 (First criterion). For every fundamental discriminant D, pos-
itive or negative, we have the equality

2rk4.CD/ D
1

2
]
˚
a jD W a > 0; a squarefree ; .a j �D=a/D 1

	
:

This result is given in [11, Th. 5], but it was already known to Redei ([33] and
[34]). We want to make Proposition 2 more practicable. We appeal to Legendre’s
Theorem on ternary quadratic forms (see Lemma 12 below), which implies that, if
a and b are squarefree and coprime with b > 0, then .a j b/D 1 if and only if a is
a square modulo b and b is a square modulo jaj (see [11, Lemma 6]), and to the
classical detecting identity

1

2!.n/

Y
pjn

�
1C

�
m

p

��
D

(
1; if m is a square mod n;

0; otherwise

(which is true for m and n coprime integers, with n odd and positive). We arrive
at two of the key formulas of [11]:

LEMMA 10 ([11, Lemma 27 and formula (77)]). For any positive odd funda-
mental discriminant D we have the equality

2rk4.CD/ D
1

2 � 2!.D/

X
DDD0D1D2D3

�
�1

D3

��
D2

D0

��
D1

D3

��
D0

D3

��
D3

D0

�
:

In particular, for D 2 Dodd we have the equality

2rk4.CD/ D
1

2 � 2!.D/

X
DDD0D1D2D3

�
D0

D2

��
D1

D3

�
:

For even discriminants we have:

LEMMA 11 ([11, Lemma 38 and formula (111)]). For any positive fundamen-
tal discriminant D � 0 mod 8 we have the equality

2rk4.CD/ D
1

2 � 2!.D=8/

X
DD8D0D1D2D3

�
2

D3

��
D2

D0

��
D1

D3

��
D3

D0

��
D0

D3

�

�

��
�1

D0

�
C

�
�1

D3

��
:
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In particular, for D 2 Deven we have the equality

2rk4.CD/ D
1

2!.D=8/

X
DD8D0D1D2D3

�
2

D3

��
D0

D2

��
D1

D3

�
:

Redei also found another characterization of the 4-rank, based on the number
of decompositions of second type.

Definition 2. Let D be a fundamental discriminant. We say that fD1;D2g is
a decomposition of D if D DD1D2 and the integers D1 and D2 are fundamental
or 1. A decomposition fD1;D2g of D is called decomposition of second type, if
the following conditions hold:

(i) for all p jD1 W
�
D2
p

�
D 1,

(ii) for all p jD2 W
�
D1
p

�
D 1,

where
�
�
�

�
denotes the Kronecker symbol.

Since D1 and D2 are fundamental discriminants, at most one of them can be
divisible by 2. In the following we assume 2 −D2 by changing the order of D1
and D2 if necessary. We always meet the trivial decompositions fD; 1g and f1;Dg.
As usual we want to express this condition with our symbol defined in Definition 1.
For this the following result of Legendre is useful.

LEMMA 12 (see [8, p.428]). Let a, b, and c be three integers, not all of the
same sign, such that abc is squarefree. Then the quadratic form

ax2C by2C cz2

has a nontrivial zero .x; y; z/ 2 Z3 if and only if �bc, �ac, and �ab are squares
modulo jaj, jbj and jcj, respectively.

We want to apply this to our symbol .D1 jD2/ and the above lemma states
in the case D odd that this symbol is 1 if and only if the following three conditions
hold:

(i) D1 > 0 or D2 > 0,
(ii) D1 is a square modulo jD2j,

(iii) D2 is a square modulo jD1j.

When D is even, we necessarily have D1 � 8; 12 mod 16. Using the equality
.D1 j D2/ D .D1=4 j D2/ we recover the conditions (i), (ii), and (iii) with D1
replaced by D1=4. Now we are able to prove

LEMMA 13. Let D be a fundamental discriminant and fD1;D2g be a decom-
position of D, where we assume that 2 −D2. Then fD1;D2g is a decomposition
of second type if and only if the following two conditions hold:

(i) .D1 jD2/D 1,

(ii) if 2 jD1, then we have D2 � 1 mod 8.
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Proof. Let fD1;D2g be a decomposition of second type. If 2 jD then 2 jD1
and therefore from the Kronecker symbol we get

�
D2
2

�
D 1 which implies that

D2 � 1 mod 8.
For odd primes the Kronecker symbol behaves like the Jacobi symbol. So by

the hypothesis, we have
�
D1
p

�
D 1 for all primes dividing D2 and

�
D2
p

�
D 1 for

all odd primes dividing D1. This implies that D1 is a square modulo jD2j and D2
is a square modulo jD1j (if D1 is odd) or modulo jD1j=4 (if D1 is even). Recall
in the last case that every odd number is a square modulo 2. It remains to check
that D1 and D2 cannot be both negative. This is trivial for D < 0 and for special
discriminants. Since we do not need the other cases in this paper, we leave these
cases as an exercise to the reader.

Now assume that the conditions (i) and (ii) of Lemma 13 are satisfied. The
second one gives the right value for the Kronecker symbol at p D 2. When D is
odd, the condition .D1 j D2/ D 1 implies D1 is a square modulo jD2j and vice
versa, which gives the right values for the Kronecker (resp. Jacobi) symbols at odd
primes p. When D is even, .D1 jD2/D 1 implies that .D1=4 jD2/D 1. Again,
we can deduce that D1=4 (and D1) is a square modulo jD2j and D2 is a square
modulo jD1j=4. This gives the right values for the symbols at odd primes, too. �

For special discriminants we can improve this result.

LEMMA 14. Let D be a special discriminant and fD1;D2g be a decomposi-
tion of D, where we assume that 2 − D2. Then fD1;D2g is a decomposition of
second type if and only if .D1 jD2/D 1.

Proof. Using the preceding lemma, we only need to check that .D1 jD2/D 1
and 8 jD imply D2 � 1 mod 8.

We define D01 WDD1=4 which is exactly divisible by 2 and look at the non-
trivial solution of

x2�D01y
2
�D2z

2
D 0;

where we can assume that xzD2 is odd. Certainly we have that x2� z2� 1 mod 8
and we get

1�D01y
2
�D2 � 0 mod 8;

and this equation has only a solution if 2 j y and D2 � 1 mod 8 since we know
that D2 � 1 mod 4. �

For nonspecial discriminants the second condition of Lemma 13 is important
since for D D�20 we get �20D�4 � 5, which is not a decomposition of second
type, but .�4 j 5/D 1. Certainly 5 6� 1 mod 8 in this case.

The following proposition is proved in [33]. As a side effect we will reprove
it later in this section in the case of special discriminants.
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PROPOSITION 3 (Second criterion). Let D be a fundamental discriminant.
Then we have

2rk4.CD/ D
1

2
]
˚
fD1;D2g W fD1;D2g is a decomposition of second type of D

	
:

These two criterions are different since they are counting different objects as
the following example shows.

Example 1. Consider D D 21. Then using Proposition 2, we compute the
symbols

.1 j �21/D 1; .3 j �7/D 0; .7 j �3/D 1; and .21 j �1/D 0:

This gives rk4.C21/D 0:
If we apply Proposition 3, we compute the symbols

.1 j 21/D 1; .�3 j �7/D 0; .�7 j �3/D 0; and .21 j 1/D 1;

and of course we recover the equality rk4.C21/D 0:

Note also that for D 2 D, the two criterions coincide, i.e., we can give a
canonical bijection between symbols used in the first and second criterion. Let
fD1;D2g be a decomposition of second type of a special D. We note that .D1 j
�1/D 1 and define a to be the squarefree part of D1, i.e. a DD1 or a DD1=4.
Then

.D1 jD2/D .D1 j �D2/D .a j �D=D1/D .a j �D=a/:

This means that for special discriminants Propositions 2 and 3 are equivalent.
In [11] we used the first criterion because from an analytic point of view, it was

more natural to consider ordinary factorizations of D compared to decompositions
in fundamental discriminants. The decompositions of the second type have the big
advantage that algebraically speaking they have more structure which we want to
use for a criterion for the 4-rank of the ordinary class group. For us it is nice that
for special discriminants these two approaches coincide.

Now we are able to give an algebraic interpretation which was already known
to Redei and Reichardt [36]. It is a well-known fact that unramified cyclic exten-
sions of quadratic number fields are normal over Q with dihedral Galois group. We
have not found a good citation for that, so we provide an elementary proof for our
situation.

LEMMA 15. Let D be a fundamental discriminant and K WD Q.
p
D/. Fur-

thermore assume that K4=K is a C.4/-extension which is unramified at all finite
places. Then K4=Q is Galois with dihedral Galois group D4 of order 8.

Proof. Let � be the automorphism of K defined via �.
p
D/D�

p
D. Further-

more denote by N=K the maximal abelian at finite places unramified extension of
K of exponent 4. Then N=Q is normal since conjugated extensions stay unramified
and the normal closure is the union of those. We remark that Gal.N=K/D A WD
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CD =C4D . Since N=K is unramified, we get that a ramified prime ideal in ON has
ramification index 2. Using Theorem 16.30 (or Corollary 16.31) in [4, p.206], we
get that the Galois group G of N=Q is generated by elements of order 2.

We get the following exact sequence:

1! A!G! h�i ! 1:

Now � acts by conjugation on A, i.e., for a 2 A we define a� WD �a��1. We
would like to prove that a� D a�1 for all a 2A. For elements of order 2 this is true
by genus theory, since we know that unramified quadratic extensions of K lead
to V4-extensions which implies the trivial action of � , i.e., a� D a�1 D a. Here
V4 D C.2/�C.2/ is the Klein 4-group. Let a 2 A be an element of order 4. We
have three different possibilities for the action of � : a� D a; a� D a�1; or a� D b
with b … hai. Let us consider the first case, i.e., a� D a and a 2 A is of order 4.
This means that a central C.4/-extension of C.2/ is a quotient of G. Such a group
is either C.4/�C.2/ or C.8/ and both groups need a generator of order at least 4
which is impossible since G is generated by elements of order 2 and therefore all
quotients, too.

Now we consider the last case and define c WD ab. Then c� D a�b� D baD
ab D c and we get an element c of order 4 with trivial action. We have seen in the
first case that this situation is impossible.

Therefore we have proved that a� D a�1 for all a 2A which means that an un-
ramified C.4/-extension K4=K leads to a normal non-abelian degree 8-extension.
Now D4 is the only group of order 8 which satisfies these restrictions, since the
quaternion group cannot be generated by elements of order 2. �

Remark. The same type of proof works for other abelian groups of expo-
nent m. We want to stress the fact that it is important that the base field is Q,
otherwise we cannot apply Theorem 16.30 in [4, p.206] and we can produce coun-
terexamples. For example there exist unramified degree 8 extensions of quadratic
fields which are normal with quaternion group Q8.

Now we prove

LEMMA 16. Let D be a fundamental discriminant, K WDQ.
p
D/, and K4=K

be an at finite places unramified C.4/-extension. Then K4=Q contains three qua-
dratic extensions of Q with discriminantsD;D1;D2 and the relationDDD1D2 is
true. There are exactly 2t�2 fields K4 which correspond to the same decomposition
fD1;D2g, where t D !.jDj/.

Proof. The existence of K4 implies rk4.CD/� 1 which certainly is only possi-
ble when t � 2 (see Proposition 2). Using Lemma 15 we know thatK4=Q is normal
with Galois group D4. In this case the maximal abelian quotient of D4 is V4 D
C.2/�C.2/ which implies that K4 contains three quadratic subfields, one of which
must be of discriminantD. The discriminant of the V4-field isD2 since it is unrami-
fied over Q.

p
D/. An easy application of the “Führerdiskriminantenproduktformel”
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(e.g. see [39, p. 104]) yields that the discriminant of a V4-field is just the product
of the discriminants of the three subfields. This gives D2 DD1D2D and therefore
D D D1D2, where D1 and D2 are the discriminants of the other two quadratic
subfields.

Denote by N=K the maximal abelian at finite places unramified extension of
exponent 4. The Galois group of this extension is A WDCD =C4D and our given field
K4 is a subfield of N . We are interested to count the number of fields zK4 �N such
that Œ zK4 W K� D 4 and zK4 contains Q.

p
D1;
p
D2/. The latter field corresponds

by the main theorem of Galois theory to a subgroup U of index 2 in A. Our given
field K4 corresponds to a subgroup H � A of index 4 such that A=H Š C.4/

and H � U . We need to count all subgroups zH � U such that A= zH Š C.4/.
Since jA=A2j D jCD =C2D j D 2

t�1 we get that we have 2t�2 such zH by applying
Definition 1. �

Now we can show that unramified C.4/-extensions will lead to decomposi-
tions of second type.

N

K4

K2

Q.
p
D1/ K DQ.

p
D/ Q.

p
D2/

Q

2

2

�
�
��

2 @
@
@@

2

@
@
@@

2
2

�
�
��

2

LEMMA 17. Let K4=K be an unramified C.4/-extension corresponding to
the decomposition fD1;D2g of D (as in Lemma 16). Then fD1;D2g is a decom-
position of second type of D.

Proof. Let p jD1 be a prime and choose a prime ideal p of OK4 lying over .p/.
Then the ramification index is 2 and therefore the inertia field L of p has degree 4.
Since all prime ideals above .p/ in K2 WDQ.

p
D1;
p
D2/ are ramified, we get that

L¤K2 and therefore L=Q is not normal. Therefore p must be ramified in L and
we get that there must be at least two prime ideals in OK4 lying above p. This means
that the decomposition field of p must contain Q.

p
D2/ which implies that p is split
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in this field. Therefore the Kronecker symbol
�
D2
p

�
is 1. By switching the roles

of D1 and D2 we get the other direction. Therefore fD1;D2g is a decomposition
of second type by Definition 2. �

Remark. For a nontrivial decomposition fD1;D2g of second type of a funda-
mental discriminant D we can construct an unramified C.4/-extension K4=K such
that K4=K contains Q.

p
D1;
p
D2/. We say that K4 corresponds to fD1;D2g.

However, we only need this result for special discriminants and the corresponding
proof is given in Lemma 20.

Field theoretically there is a nice description of all fields K4 which corre-
spond to a given decomposition fD1;D2g. Define K WD Q.

p
D/ and K2 WD

Q.
p
D1;
p
D2/ and let K4 be one field corresponding to fD1;D2g, i.e., K2 �K4.

Now let zD j D be a fundamental discriminant not contained in f1;D1;D2;Dg.
Now K4Q.

p
zD/=K2 is an unramified (at finite places) V4-extension and therefore

contains three subfields K4; K2.
p
zD/; and zK4. zK4=K is an unramified C.4/-

extension which contains K2. We remark that we get the same zK4 if two different
zD only differ by a square in K2. D has 2!.D/ different squarefree divisors which

means that modulo squares in K2 we have 2!.D/�2 possibilities to twist. This
coincides with the number given in Lemma 16.

The following result is only interesting when D 2D, since otherwise we know
that the 2-ranks of our class groups differ and therefore the 4-ranks are the same.

LEMMA 18. Let D be a special discriminant and D DD1D2. Assume that
K4 and zK4 are two different unramified C.4/-extensions corresponding to the non-
trivial decomposition fD1;D2g of D. Then K4 is totally real if and only if zK4 is
totally real.

Proof. Since D 2 D all fundamental divisors are positive. By the above con-
struction this means that zK4 is contained in K4.

p
zD/ for some zD jD. Therefore

zK4 is totally real if K4 is totally real and vice versa. �

We remark that the corresponding statement is wrong if we want to consider
8-ranks. In this case it may happen that only some of the corresponding unramified
C.4/-extensions are embeddable into an unramified C.8/-extension.

Our goal is to find a criterion to detect when the extensions corresponding to
fD1;D2g are totally real. This will give a criterion to compute rk4.ClD/. In order
to decide reality it is useful to explicitly compute a corresponding extension to a
decomposition of second type.

The following results are very classical; e.g., see [36], [35]. However, we
think that these references are too sketchy. We prefer to give a proof which is
based on a unpublished preprint of Franz Lemmermeyer [29] (see Lemma 21 and
Proposition 6). Later on we will use the following proposition of Hecke which we
will use to show that some quadratic extension is unramified at all finite places.
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The only critical places are the ones above 2. The corresponding local result can
be found in [32, Thm 5.6, p. 221].

PROPOSITION 4. Let L be a number field and ˛ 2 L nL2 which is chosen
relatively prime to 2. Then L.

p
˛/=L is unramified at all finite places if and only

if the (fractional) principal ideal .˛/ (in L) is a square and the congruence

X2 � ˛ mod 4

is solvable for some number X 2 L.

Proof. This is the special case `D 2 of [22, Th. 120]. �
We will apply this proposition in the following way. An odd prime ideal

p � OL is unramified in L.
p
˛/=L if p − .˛/. For even prime ideals this is only

necessary, but not sufficient. We have to check a further congruence.
In order to simplify the following proofs we restrict to special discriminants.

LEMMA 19. Let D be a special discriminant and fD1;D2g be a decompo-
sition of second type of D, where we assume that D2 is odd. Then there exists a
nontrivial solution .x; y; z/ 2 Z3 of

(23) x2�D1y
2
�D2z

2
D 0

such that the following holds:

(i) x2;D1y2;D2z2 are pairwise coprime, y � 0, z � 0,

(ii) x odd, D1y even, and D2z odd (by changing the roles of D1 and D2, if
necessary),

(iii) xC y � 1 mod 4 if 2 −D, x � 1 mod 4 if 2 jD and y even, x � 3 mod 4, if
2 jD and y odd.

Proof. Note that D1 and D2 are always coprime even if 2 j D because D1
and D2 are fundamental discriminants. Using Lemma 14 and Definition 1 we
get a nontrivial solution in Q3 which can be assumed to be in Z3 by clearing
denominators. Let p be an odd prime which divides more than one of the terms
of (23). Then it must divide all the terms and furthermore p2 − D1D2 which
implies that p divides x; y; and z and therefore we can simplify the solution. For
p D 2 we can apply the same argument when 2 − D1D2. Now assume that 2
divides all terms which means that 2 j x, 2 j D1, and 2 j z. We can assume that
2 − y, otherwise we can easily simplify our solution. Since D is special we have
that 8 exactly divides D1. By considering the equation modulo 16, we get that

x2 � 0; 4 mod 16; D1y2 � 8 mod 16; D2z2 � 0; 4 mod 16:

A solution of this type cannot exist. By choosing y; z � 0 we have proved the first
claim.

For (ii) we first note that exactly one of the summands x2;D1y2; and D2z2

is even. Then consider the equation modulo 4 which implies that x2 must be odd.
By choosing the sign of x we can easily reach the last condition. �
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Let D be a special discriminant and fD1;D2g be a nontrivial decomposition
of second type of D. Choose the solution .x; y; z/ from the previous lemma and
note that y; z are positive. Let us define ˛ WD xC y

p
D1 and let us look at the

following fields:

K WDQ.
p
D/;K2 WDQ.

p
D1;

p
D2/DQ.

p
D/.

p
D1/;K4 WDK2.

p
˛/:

LEMMA 20. K4=K is a cyclic extension of degree 4 which is unramified at all
finite places. Furthermore the extension K4=Q is normal with Galois group D4 of
order 8. The quadratic subfields contained in K4 are K;Q.

p
D1/, and Q.

p
D2/.

Proof. By the above we only need to prove that K4=K is unramified and
normal with Galois group C.4/.

Define ˇ WD x�y
p
D1 and

� WK4!K4;
p
˛ 7!

p
ˇ;
p
D1 7! �

p
D1;

p
D2 7! �

p
D2:

Using
p
˛
p
ˇ D

p
x2�D1y2 D z

p
D2 we get: �2.

p
˛/ D �.

p
ˇ/ D �

p
˛,

which implies �2 ¤ 1 and �4 D 1. Therefore K4=K is cyclic of order 4. The
extension K2=K is unramified at all finite places which means that we need to
prove the same for K4=K2. For this we want to apply Proposition 4 with LDK2.

First we want to prove that the ideal .˛/ is the square of an ideal in the ring
of integers of K2. This is equivalent to prove that no prime ideal p divides .˛/ to
an odd power. First consider a prime ideal p of odd norm dividing .˛/ to an odd
power. Since K2.

p
˛/DK2.

p
ˇ/ we deduce that p j .ˇ/ from which we deduce

that p j .˛Cˇ/ and therefore p j .x/ since p is odd. Similarly, we have p j .y
p
D1/

which leads to a contradiction because we assumed that gcd.x; yD1/D 1. Secondly,
the norm ˛ over Q is .˛ˇ/2 D .x2�y2D1/2 D .D2z2/2 which is odd. Therefore
no even prime ideal divides ˛. In conclusion, we checked the first condition of
Proposition 4.

We have to check the second condition: X2 � ˛ mod 4OK2 . Note that 
 �
ı mod 4OK2 for two elements 
; ı 2 OK2 simply means that 
 � ı is divisible by 4
in OK2 . We remark that the sign of x in equation (23) (iii) is chosen in a way such
that X2 � ˛ mod 4OK2 is solvable. We consider the different cases corresponding
to the value of y.

(i) If 4 j y then ˛ � x mod 4OK2 and by choosing X D 1, we have X2 � x mod
4OK2 and x � 1 mod 4 by Lemma 19 (iii).

The same applies when y is even and D1 is even, since in this case y
p
D1

is divisible by 4 in OK2 .
(ii) In the case y � 2 mod 4 and D1 odd we have x � 3 mod 4. Then .x� 1/C

y
p
D1 is divisible by 4 since x � 1 and y are congruent to 2 modulo 4 and

elements of the form aC b
p
D1 are divisible by 2 for ab odd. Therefore

˛ � 1 mod 4OK2 and by choosing X D 1 our equation is solvable.
(iii) The final case is y odd which implies that D1 � 0 mod 8. Here we choose

X D 1C
p
D1
2
2 OK2 and get that
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X2 D 1C
p
D1CD1=4� 1C

p
D1C 2� 3C

p
D1 mod 4OK2 :

In this case we have x � 3 mod 4 by Lemma 19 (iii) and we see that our
equation X2 � ˛ mod 4OK2 is solved. �

Now we are able to give a proof of Proposition 3 in the case of special dis-
criminants. However, this restriction suffices for the proof of Theorems 1–6.

Proof of Proposition 3. Let A WD CD =C4D Š C.4/
r �C.2/s . From Lemmata

16 and 17 we know that an at finite places unramified C.4/-extension K4=K with
K�K2DQ.

p
D1;
p
D2/�K4 gives rise to a nontrivial decomposition fD1;D2g

of second type. On the other hand we have shown in Lemma 20 that a nontrivial
decomposition fD1;D2g leads to an at finite places unramified extension K4=K.
Applying Definition 1 we see that there are exactly 2r � 1 groups U of index 2
which contain subgroups H such that A=H Š C.4/. We have to add the trivial
group (corresponding to f1;Dg). Since fD1;D2g and fD2;D1g correspond to the
same extension, we count everything twice which explains the factor 1=2. �

3.3. Case of the ordinary class group. We are searching for similar formu-
las contained in Propositions 2 and 3 when we replace CD by the ordinary class
group ClD .

For any integer a and any odd prime p we define

Œa; p�4 D

8̂̂<̂
:̂
1 if

�
a
p

�
D 1 and if a is a fourth power mod p;

�1 if
�
a
p

�
D 1 and if a is not a fourth power mod p;

0 otherwise:

Let also

Œa; 2�4 D

8̂<̂
:
1 if a� 1 mod 16;

�1 if a� 9 mod 16;

0 otherwise:

Finally, for b and c positive, we impose multiplicativity with the formula

Œa; bc�4 WD Œa; b�4 Œa; c�4:

We remark that this symbol is not multiplicative in the first component.
As before, we restrict our attention to special discriminants D. In this case,

D is positive, D is either odd and squarefree or D is divisible by 8 and D=8 is odd
and squarefree. Now, we refer to the following result in [38, Formula (7), p. 109]:

PROPOSITION 5. Let D 2 D and fD1;D2g be a nontrivial decomposition of
second type of D. Then the corresponding unramified C.4/-extensions are totally
real if and only if

ŒD1;D2�4 D ŒD2;D1�4:
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Let us postpone the proof of this proposition for a moment. In case rk4.CD/D
rk4.ClD/ all unramifiedC.4/-extensions are real and therefore we have ŒD1;D2�4D
ŒD2;D1�4 for all decompositions of second type. When the 4-ranks are different,
then they differ by 1 (see inequality (8)), i.e., half of the unramified C.4/-extensions
are real and half of them are complex (here we count the trivial extension as a real
extension). Therefore we proved the following theorem using Proposition 5 and by
the remark that all squarefree positive divisors of D are fundamental discriminants
(except for 2, but multiplying by 4 does not affect the value of the symbol).

THEOREM 5. For any special discriminant D we have the equality

2rk4.ClD/ D
1

2
� ]
˚
.a; b/ 2 N2 W D D ab; Œa; b�4 D Œb; a�4 D 1

or Œa; b�4 D Œb; a�4 D�1
	
:

We remark that ifD is even, no .a; b/ with a and b even contribute to the right
part of the above equality. This is a consequence of the definition of the symbol
Œa; b�4. Therefore we are allowed to replace the D1D2 by divisors ab.

In order to simplify the proof of Proposition 6 we compute some symbols in
the following lemma.

LEMMA 21. Let D 2 D and fD1;D2g be a decomposition of second type. Let

(24) x2�D1y
2
�D2z

2
D 0

be the corresponding solution computed in Lemma 19. Write D1 D wD01 and
y D 2ju, where w 2 f1; 8g, D01, and u are odd. Then,

(i)
�
z
D01

�
D

�
D01
z

�
D
�
w
z

�
,

(ii)
�
u
D2

�
D

�
D2
u

�
D 1,

(iii)
�
jxj
D2

�
D ŒD1;D2�4

�
y
D2

�
,

(iv)
�
jxj
D01

�
D ŒD2;D

0
1�4

�
z
D01

�
,

(v)
�
D1D2
jxj

�
D

�
�1
jxj

�
.

Proof. We remark that all numbers, except possibly D1, w and y, are odd. In
particular, we have

(25) D01 �D2 � 1 mod 4:

(i) By reducing (24) modulo z we see: x2 � D1y2 mod z which implies 1 D�
D1
z

�
D

�
D01
z

��
w
z

�
and

�
D01
z

�
D

�
z
D01

�
by (25).

(ii) By reducing (24) modulo u we get: x2 �D2z2 mod u which implies
�
D2
u

�
D 1.
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(iii) We reduce (24) modulo each p jD2 and get: x2�D1y2 mod p and therefore
we have

�
x
p

�
D ŒD1; p�4

�
y
p

�
. Then we use the multiplicativity of the symbols

and the equality
�
�1
D2

�
D 1 which is a consequence of (25).

(iv) Reduce (24) modulo each p jD01 and proceed as in (iii).

(v) Reducing (24) modulo each p dividing jxj and using multiplicativity we get:
1D

�
�D1D2
jxj

�
D

�
�1
jxj

��
D1D2
jxj

�
. �

Now Proposition 5 is an immediate consequence of the following proposition
since all corresponding fields to the decomposition fD1;D2g are real or not, by
Lemma 18.

PROPOSITION 6. The extension K4 DK2.
p
˛/ defined above is totally real

if and only if ŒD1;D2�4 D ŒD2;D1�4.

Proof. Since K4=Q is Galois we have that K4 is totally real or totally complex.
Furthermore K4 DK2.

p
˛/DK2.

p
ˇ/ which means that K4 is totally real if and

only if ˛ > 0 and ˇ > 0 which is equivalent to x > 0.
We assume the notations of Lemma 21. Using the cases (iii) and (iv) of

Lemma 21 we get

ŒD1;D2�4ŒD2;D
0
1�4 D

�
jxj

D2

��
jxj

D01

��
y

D2

��
z

D01

�
D

�
D01D2

jxj

��
2

D2

�j� u

D2

��
z

D01

�
:

We simplify the last two symbols using Lemma 21 and by multiplying with ŒD2; w�4
we get the equality:

ŒD1;D2�4ŒD2;D1�4 D

�
D1D2

jxj

��
w

jxj

��w
z

�� 2

D2

�j
ŒD2; w�4:

A further simplification with Lemma 21 yields

(26) ŒD1;D2�4ŒD2;D1�4 D

�
�1

jxj

��
w

jxj

��w
z

�� 2

D2

�j
ŒD2; w�4:

The first case is D1 odd which implies w D 1 and j � 1. By considering (24)
modulo 8 we see that j D1 impliesD2�5 mod 8, and j �2 impliesD2�1 mod 8

which trivializes the symbol
�
2
D2

�j
to .�1/y=2. Therefore the right-hand side of

(26) simplifies to
�
�1
jxj

�
.�1/y=2 D .�1/.jxjCy�1/=2. Using xC y � 1 mod 4 we

get that the right-hand side equals C1 if and only if x > 0.
The case D1 even splits into two cases, namely y odd or even. We remark

that D2 � 1 mod 8 since D DD1D2 is a decomposition of second type. Let us
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start with y even. We consider (24) modulo 16 and get

x2 �D2z
2 mod 16:

Since an odd square is congruent to 1; 9 mod 16 we get that an even number of
x2; z2;D2 are congruent to 9 mod 16. Furthermore we have that x2 � 1 mod 16
if and only if x �˙1 mod 8 which is equivalent to

�
2
jxj

�
D 1. Therefore an even

number of the symbols
�
2
jxj

�
;
�
2
z

�
; and ŒD2; 2�4 are equal to �1, which means that

the right-hand side of (26) simplifies to
�
�1
jxj

��
2
D2

�j
D

�
�1
jxj

�
D .�1/.jxj�1/=2 since

D2 � 1 mod 8. Therefore the right-hand side is +1 if and only if jxj � 1 mod 4,
which is equivalent to x > 0 since we assumed that x � 1 mod 4 (see Lemma 19
(iii)).

The last case is D1 even and y odd, i.e. j D 0. Again we consider (24)
modulo 16 and get

x2� 8�D2z
2 mod 16:

With the same argumentation as in the last case we now get that an odd number
of the symbols

�
2
jxj

�
;
�
2
z

�
; and ŒD2; 2�4 are equal to �1. Therefore the right-hand

side of (26) simplifies to �
�
�1
jxj

��
2
D2

�j
D�

�
�1
jxj

�
D .�1/.jxjC1/=2. Therefore the

right-hand side is C1 if and only if jxj � 3 mod 4, which is equivalent to x > 0
since we assumed that x � 1 mod 4 (see Lemma 19 (iii)). �

As we already said, the proof of Lemma 21 and Proposition 6 is taken from
the unpublished preprint of Franz Lemmermeyer [29].

4. Gaussian integers and the quartic residue symbol

This paragraph is useless for the proof of Theorem 3, but it will be used for
the proof of Theorem 4. Theorem 5 is based on conditions for some integer to be
or not to be a fourth power modulo another integer. This detection will be done
with the help of the quartic (or biquadratic) residue symbol. The paragraphs below
gather several classical facts and fix some conventions. All this material can be,
for instance, found in [25, pp. 119–127], in [26, pp. 53–56] and is the algebraic
framework of [13]. The goal of this section is to prove Theorem 6.

Let ZŒi � be the ring of Gaussian integers and denote by N the complex conju-
gation. This ring is principal and it has the four units ˙1 and ˙i . Up to units, the
irreducible elements are .1C i/, the rational primes q � 3 mod 4 and the elements
� of ZŒi �, such that � x� is a rational prime p � 1 mod 4: An element of ZŒi � or an
ideal of ZŒi � are said to be odd when its norm is odd. Furthermore we denote by N

the norm function of ZŒi �. The associates of the Gaussian integer z are ˙z;˙iz.
To choose one element in the set of its associates, we introduce the notion of

primary. A nonunit element v D aC ib 2 ZŒi � is called primary if and only if it
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satisfies v � 1 mod 2.1C i/, or, in other words,8̂<̂
:
a� 1 mod 4 and b � 0 mod 4 if jvj2 � 1 mod 8

or

a� 3 mod 4 and b � 2 mod 4 if jvj2 � 5 mod 8:

A primary element is odd and every odd element has exactly one primary associate.
The product of two primary elements is also primary. Every primary element can
be written as the product of primary irreducible elements in a unique way up to the
order. If v is primary, then v is also primary.

Let � be an odd irreducible element of ZŒi �, primary or not, and let v 2 ZŒi �.
We define the quartic (or biquadratic) symbol

�
v
�

�
4

by the formulas� v
�

�
4
D ij ; .� − v/;

where j is the unique integer 0� j � 3 such that

v.N.�/�1/=4 � ij mod �;

and � v
�

�
4
D 0; if .� j v/:

If � and � 0 are associated, then we have
�
�
�

�
4
D
�
�
� 0

�
4

and the function v 7!
�
v
�

�
4

is a multiplicative character of the group .ZŒi �=�ZŒi �/�. If q is a rational prime
� 3 mod 4, the restriction to Z of the corresponding quartic character

�
�
q

�
4

is
simply the principal character modulo q. We extend the definition of the quartic
character to any odd element w 2 ZŒi �, by the formula� v

w

�
4
D

Y
j

�
v

wj

�
4

;

where w is factorized into irreducible elements w D
Q
j wj . Note the identity

(27)
�
v3

w

�
4

D

� v
w3

�
4
D

�
v

w

�
4

D

� v
w

�
4
;

for any v and odd w 2 ZŒi �. Now we recall the reciprocity law for quartic symbols.

LEMMA 22 ([25, Th. 2, p 123]). Let v and w be two primary elements, rela-
tively prime or not. Then we have the equality� v

w

�
4
D

�w
v

�
4
.�1/

N.v/�1
4
�

N.w/�1
4 ;

and in particular � v
w

�2
4
D

�w
v

�2
4
:

The link between quartic characters and Legendre symbols is given by
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LEMMA 23. Let p � 1 mod 4 be a prime number, decomposed as p D �� ,
where � is primary and irreducible. Then we have for every integer v:� v

�

�2
4
D

�
v

p

�
:

Finally, the quartic residue symbol is useful to detect fourth powers.

LEMMA 24. Let a 2 Z be coprime to a given prime p � 1 mod 4. Suppose
that p is decomposed into p D �� , where � is a primary and irreducible element
of ZŒi �. Then we have

a is a fourth power mod p()
� a
�

�
4
D 1;

and
a is a square but not a fourth power mod p()

� a
�

�
4
D�1:

To treat the case of Deven, we shall require the value of the quartic symbol
at 2.

LEMMA 25. Let v D aC ib be a primary element. Then we have�
2

v

�
4

D i�
b
2 :

We obtain this formula from [26, Th. 3.6] (which corresponds to the case v
primary irreducible) by using multiplicativity and decomposing v in a product of
primary irreducible elements. Now we give a key formula for the symbol Œa; p�4,
which can be easily deduced from Lemma 24.

LEMMA 26. Let p � 1 mod 4 be a prime, decomposed as p D �� . Then for
every integer a (divisible by p or not) we have the equality

Œa; p�4 D
1

2

�
1C

�
a

p

��
�

� a
�

�
4
:

Of course, the formula in Lemma 26 is invariant by interchanging � and x� .
This ambiguity in the notation between � and x� leads us to make the following
convention. We explain in the remark at the end of Section 8.3 why we need this
definition.

Definition 3. An irreducible element � D aC ib 2 ZŒi � is privileged if it is
primary and satisfies the conditions

N.�/� 1 mod 4 and b > 0:

We denote by P, the set of privileged irreducible elements. An element of ZŒi � is
privileged if it is the (eventually empty) product of elements of P.

The set P has the property that it is included in the upper half-plane of com-
plex numbers, and the characteristic function of this subset of C can be approached
by Hecke characters (see �5). We shall frequently use the fact that
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LEMMA 27. Every special odd discriminant D can be written in a unique
way as

D D dd;

where d is a privileged element of ZŒi �. Such a factorization of D is called privi-
leged.

We continue our transformation of the symbol Œa; b�4 defined in Section 3.3
and we are obliged to separate the case D odd from the case D even.

LEMMA 28. Let b 2Dodd with its privileged factorization b D bxb. Then for
every integer a, odd or even, coprime or not with b, we have the equality

(28) Œa; b�4 D
1

2!.b/

Y
pjb

�
1C

�
a

p

��
�

�a
b

�
4
:

In particular, if a is coprime with b, we have

(29) �
1

2 � 2!.b/

��a
b

�
4
C �

�Y
pjb

�
1C

�
a

p

��
D

(
1 if Œa; b�4 D �;

0 otherwise,

for any choice of � 2 f˙1g.
We also have, for every b 2 Dodd, and for every integer a, coprime or not with

2b, the equality

(30) Œa; 8b�4 D Œa; 2b�4 D
Œa; 2�4

2!.b/

Y
pjb

�
1C

�
a

p

��
�

�a
b

�
4
:

In particular, if a is coprime with 2b, we have
(31)

�
1

2 � 2!.b/

��a
b

�
4
Œa; 2�4C �

�Y
pjb

�
1C

�
a

p

��
Œa; 2�4

2
D

(
1 if Œa; 2b�4 D �;

0 otherwise,

for any choice of � 2 f˙1g.

Proof. We apply multiplicativity to Lemma 26, to prove (28) and (30). For
(29) and (31), we first check these formulas when a is not a square modulo b or
when Œa; 2�4 D 0, and then treat the remaining cases. �

We deduce from Lemma 28 a more practical expression of Theorem 5.

COROLLARY 4. For any D 2 Dodd we have the equalities
(32)

2rk4.ClD/ D
2rk4.CD/

2
C

1

4 � 2!.D/

X
DDab

�a

b

�2
4

Y
pja

�
1C

�
b

p

��Y
pjb

�
1C

�
a

p

��
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and

(33) 2rk4.Cl8D/ D
1

2 � 2!.D/

X
DDab
b�1 mod 8

Y
pja

�
1C

�
b

p

��Y
pjb

�
1C

�
2a

p

��

C
1

2 � 2!.D/

X
DDab

Œb; 2�4

�
2

b

�
4

�a

b

�2
4

Y
pja

�
1C

�
b

p

��Y
pjb

�
1C

�
2a

p

��
;

where aD axa and b D bxb are the privileged factorizations of a and b.

Proof. From Theorem 5 and from (29) (applied to the symbols Œa; b�4 and
Œb; a�4 with the choices �D˙1), we deduce (for D 2 Dodd) the equality

(34) 2rk4.ClD/ D
1

8 � 2!.D/

X
DDab

Y
pja

�
1C

�
b

p

��Y
pjb

�
1C

�
a

p

��

�

���a
b

�
4
C 1

���b
a

�
4

C 1

�
C

��a
b

�
4
� 1

���b
a

�
4

� 1

��
:

In the previous line, the quantity inside Œ� � � � is equal to

(35) 2

��a
b

�
4

�
b

a

�
4

C 1

�
:

By the multiplicativity of the quartic character, by a double application of the reci-
procity formula (see Lemma 22) and by (27) we have

(36)
�a

b

�
4

�
b

a

�
4

D

�a

b

�
4

�
a

b

�
4

�
b

a

�
4

 
b

a

!
4

D

�a

b

�2
4
:

By (34), (35), and (36) we finally have the equality

2rk4.ClD/ D
1

4 � 2!.D/

X
DDab

�
1C

�a

b

�2
4

�Y
pja

�
1C

�
b

p

��Y
pjb

�
1C

�
a

p

��
:

It remains to insert the following equality

(37) 2rk4.CD/ D
1

2 � 2!.D/

X
DDab

Y
pja

�
1C

�
b

p

��Y
pjb

�
1C

�
a

p

��
;

which is true for any D 2 Dodd, to complete the proof of the formula (32). Note
that (37) is an easy consequence of Propositions 2 or 3 and of the properties of the
symbol .a j b/. This formula is also an easy consequence of [11, Lemma 27] and
implies the second part of Lemma 10.

The proof of (33) has a lot of similarities with the above proof. So we only
give two hints. By Theorem 5 and by the definition of the symbol Œa; b�4, we must
only consider the factorizations of 8D in two coprime integers. By symmetry,
it is sufficient to consider factorizations of 8D of the form 8D D .8a/ � b and
finally multiply the result by 2. Secondly, in the formula (31) of Lemma 28 we
can suppress the factor Œa; 2�42 if we suppose that a� 1 mod 8. �
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Actually, similarily to (32), the first term on the right part of (33) is equal to
2rk4.C8D/=2. This fact will be flagrant in the next theorem, where we transform
Corollary 4 in terms of characters.

THEOREM 6. For any D 2 Dodd we have the equalities

2rk4.ClD/ D
2rk4.CD/

2
C

1

4 � 2!.D/

X
DDabcd

 
axb

c d

!2
4

and

2rk4.Cl8D/ D
2rk4.C8D/

2
C

1

2 � 2!.D/

X
DDabcd

Œab; 2�4

�
2

axb

�
4

 
axb

c d

!2
4

;

where aD axa, b D bxb, c D cc, and d D dd are the privileged factorizations of a, b,
c, and d .

Proof. It is a game with (32), Lemma 23, the second part of Lemma 22, the
reciprocity law for Jacobi symbols, and the multiplicativity of the symbols. At first,
we haveX
DDab

�a

b

�2
4

Y
pja

�
1C

�
b

p

��Y
pjb

�
1C

�
a

p

��

D

X
DDab

�a

b

�2
4

�X
t ja

�
b

t

���X
vjb

�a
v

��
:

Writing aD tu and b D vw and introducing the privileged factorizations of t , u,
v, and w, the previous expression is equal to

X
DDtuvw

�
t u

v w

�2
4

�vw
t

�� tu
v

�
D

X
DDtuvw

�
t u

v w

�2
4

�w
t

��u
v

�
(38)

D

X
DDtuvw

�
t u

v w

�2
4

�
ww

t

�2
4

�
uu

v

�2
4

;

D

X
DDtuvw

�
t

v

�2
4

� u

w

�2
4

�
w

t

�2
4

�
u

v

�2
4

:

We continue the transformations by appealing to the following equalities�
t

v

�2
4

D

�v

t

�2
4
;
� u

w

�2
4
D

�
u

w

�2
4

; and
�

u

vw

�2
4

D

�
vw

u

�2
4

;

which, inserted in (38) gives the first equality of Theorem 6.
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By similar techniques, we transform the expression of 2rk4.Cl8D/ given in (33)
into

(39) 2rk4.Cl8D/ D†0C
1

2 � 2!.D/

X
DDabcd

Œab; 2�4

�
2

axb

�
4

 
axb

c d

!2
4

;

where

(40) †0 WD
1

2 � 2!.D/

X
DDabcd
ab�1 mod 8

�
2

a

��a
c

�� b
d

�
:

Using that a and b are congruent to 1 modulo 4, we can replace the condition
ab � 1 mod 8 by inserting the factor

1

2

�
1C

�
2

ab

��
in the summation of (40). Using the multiplicate properties of the Jacobi symbols,
the equality

�
2
a

�2
D 1, and the symmetry between the variables a and b, we arrive

at the equality

†0 D
1

2 � 2!.D/

X
DDabcd

�
2

a

��a
c

�� b
d

�
:

Finally, Lemma 11 gives the equality †0 D 2rk4.C8D/=2. Combining with (39) we
get the desired formula for 2rk4.Cl8D/. �

5. Privileged primes in arithmetic progressions and applications.

First recall the celebrated Siegel-Walfisz theorem which gives the behavior
of the quantity �.xI q; a/. Here �.xI q; a/ counts the number of positive rational
primes p � x which are congruent to a modulo q, where a and q are given positive
and coprime integers. One of the numerous versions of this theorem is

LEMMA 29. For every positive A there exists a constant c1.A/ > 0 such that
for all coprime integers a and q with q � 1 we have the equality

�.xI q; a/D
1

�.q/

Z x

2

dt
log t

CO
�
x exp

�
�c1.A/

p
log.2x/

��
;

for any real number x � 2 such that 1� q � logA.2x/. The constant implied in the
O-symbol is absolute.

(See [9, Th. 55] and [6, p. 133] for instance.) Actually, in this work we apply
the Siegel-Walfisz theorem in the following form:

LEMMA 30 ([26, Cor. 5.29]). For every q � 2, for every primitive Dirichlet
character � mod q, for every positive A, and for every x � 1 we have the inequalityX

p�x

�.p/�A
p
q x log�A.2x/:
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We wish to have generalizations of Lemmas 29 and 30 to the case of the
Gaussian integers ZŒi �. First, we fix some notations. For any z 2 C� we define the
argument arg z of z as satisfying 0� arg z < 2� .

For any a and 0¤ w 2 ZŒi �, any real � satisfying 0 � � � 1, and x � 0 we
define

�ZŒi�.xIw; aI �/

as the number of irreducible elements � 2 ZŒi � satisfying the conditions

j�j � x; � � a mod w and 0� arg z < 2� � �:

For 0¤w 2 ZŒi � we define �.w/ as the generalized Euler function, that means the
number of invertible elements of ZŒi �=.wZŒi �/. With these conventions we have

LEMMA 31. Let a, w, � , and x as above. Then for every A > 0 there exists a
positive constant c2.A/ such that the equality

�ZŒi�.xIw; aI �/D
4 �

�.w/

Z x2

2

dt
log t

CO
�
x2 exp

�
�c2.A/

p
log.2x/

��
holds uniformly for x � 2, 0� � � 1, .a; w/D 1, and 1� N.w/� logA.2x/. The
constant implied in the O-symbol is absolute.

This lemma is a particular case of [31, Main Theorem p. 35], where the author
deals with a similar question in a very wide generality: counting (in a number field
K of degree nD r1C 2r2) the number of prime ideal numbers (for this notion, see
[21]), in arithmetic progressions, such that the associated angles and the norms of
the conjugates (considered as complex numbers) satisfy prescribed inequalities. In
our application, we haveKDQŒi �, r1D 0, and r2D 1. Note that j�j is the absolute
value of some conjugate of � and that we have the relation j�j2 D N.�/. Since
ZŒi � is principal, the notion of prime ideal numbers is equivalent to the notion of
irreducible elements, and the factor 4 in the above formula is the number of roots
of unity in ZŒi � (or the number of elements associated to an irreducible one).

5.1. Consequences of Lemma 31. Now we want to deduce information on the
distribution of privileged primes in arithmetic progressions through the function

�priv.xIw; a/ WD ]
˚
� 2P W N.�/� x; � � a mod w

	
:

We remark that we now use N instead of the complex norm in the above definition.
We have

LEMMA 32. Let a and w ¤ 0 be two elements of ZŒi � with .a; w/D 1. If the
congruences z � a mod w and z � 1 mod 2.1C i/ are not compatible, then we
have

�priv.xIw; a/D 0:

Otherwise, these two congruences are equivalent to a unique congruence z �
a0 mod w0, where w0 D lcm.w; 2.1C i//. Furthermore for every A > 0 there
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exists a positive constant c3.A/ such that the following equality holds

�priv.xIw; a/D
2

�.w0/

Z x

2

dt
log t

CO
�
x exp

�
�c3.A/

p
log.2x/

��
;

for every x � 2, uniformly for a and w as above and satisfying the inequality
1� N.w/� logA.2x/. The constant implied in the O-symbol is absolute.

Proof. Since an irreducible element � is primary if and only if it satisfies the
congruence � � 1 mod 2.1C i/, we apply Lemma 31 with w replaced by w0, x
by x

1
2 and with the choice � D 1

2
. Note that if w is odd, we have w0 D 2.1C i/w,

hence �.w0/D 4�.w/: �

Actually, in Section 6 we shall use the following version of the Siegel-Walfisz
theorem for ZŒi � for the square of the quartic symbol on the set of privileged primes.
This version mimics Lemma 30.

PROPOSITION 7. For every A> 0 there exists a constant c4.A/ such that the
following inequality holdsˇ̌̌ X

�2P
N.�/�x

��
w

�2
4

ˇ̌̌
� c4.A/ x

p
N.w/ log�A.2x/;

for every x � 1, for every w 6D 1, which is the product of distinct elements of P[P.
Similarly, we haveˇ̌̌ X

�2P
N.�/�x

��
w

�2
4

�
2

�

�
4

�
a� x�; 2

�
4

ˇ̌̌
� c4.A/ x

p
N.w/ log�A.2x/;

for every x � 1, for every integer a, and for every w (eventually equal to 1) which
is the product of distinct elements of P[P.

Proof. We may suppose that N.w/� log2A.2x/, otherwise the result is trivial.
By the assumptions concerning w, the character

�
�
w

�2
4

is nonprincipal. In order to
apply Lemma 32 we write

(41)
X
�2P

N.�/�x

��
w

�2
4
D

X
� modw
.�;w/D1

�
�

w

�2
4

�priv.xIw; �/

D

�
1

2�.w/

Z x

2

dt
log t

�� X
� modw
.�;w/D1

�
�

w

�2
4

�
CO

�
�.w/x exp

�
�c3.2A/

p
log.2x/

��
:

Using that the sum over all � is 0, we deduce the inequalityˇ̌̌ X
�2P

N.�/�x

��
w

�2
4

ˇ̌̌
� c4.A/ x

p
N.w/ log�A.2x/;
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where we bound exp.�c3.2A/
p

log.2x// byO.log�2A.2x// and use the inequality
�.w/� N.w/�

p
N.w/ logA.2x/. This gives the first part of Proposition 7.

For the second one, we note that we can restrict to the case where a� 1 mod 4,
otherwise the sum is zero. We appeal to Lemma 25, which asserts that the value
of the symbol

�
2
�

�
4

depends only on the class (modulo 8) of the imaginary part of
� . Similarly, the value of the symbol

�
a� x�; 2

�
4

depends only on the class of �
modulo 8ZŒi �. Let 
 be a variable running over the set

� WD f1; 5; 3C 6i; 7C 6i; 1C 4i; 5C 4i; 3C 2i; 7C 2ig:

This set � represents all the primary classes modulo 8ZŒi �. Then the symbol
�
2



�
4

respectively takes the values

(42) 1; 1; i; i; �1; �1;�i;�i:

Modulo 16, 
 x
 takes the values

(43) 1; 9; 13; 5; 1; 9; 13; 5:

We apply Lemma 32 with w replaced by 8w (then we have w0 D 8w) and make a
computation analogous to (41). We also use the fact thatX


2�

�
2




�
4

�
a

; 2

�
4

X
� modw
.�;w/D1

�
�

w

�2
4

D 0;

which is trivial when w 6D 1. When w D 1, it can be checked easily, by using
the formulas (42) and (43) and by discussing according to the congruence class of
a mod 16. �

Remark. Actually, in order to prove Proposition 7 it is not necessary to ap-
peal to the deep result of Mitsui [31] (now generalized by Goldstein [15]). It is
possible to prove this proposition, ab initio by the theory of Hecke L-functions
L.s; �/, where �.z/D

�
z
w

�2
4
.z=jzj/k and k is an integer. In the case of ZŒi � these

L-functions are simpler and all the necessary analytic tools (zero-free regions, up-
per bounds, . . . ) are for instance gathered in [13, �16] and [26, Chap. 5].

6. Double oscillations of characters.

6.1. The case of Jacobi symbols. We recall the following

LEMMA 33 ([11, Lemma 15]). Let ˛m and ˇn be complex numbers of modu-
lus less than one. Then for every M , N � 1 and for every positive ", we haveX

m�M

X
n�N

˛mˇn�
2.2m/�2.2n/

� n
m

�
�"MN

�
M�

1
2
C"
CN�

1
2
C"
�
:

Such an upper bound for Jacobi symbols appears at several places in the lit-
erature, maybe for the first time in [23]. The proof followed in [11, Lemma 15]
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mixes an important result of Heath-Brown [19] and the large sieve inequality for
multiplicative characters. However, the method which will be developed in Section
6.2 applies here also, leading to an upper bound of lower quality when M and N
are of comparable sizes (see Proposition 9). This is harmless since we only want
to improve the trivial bound by a power of logarithm (see (75)).

6.2. The case of the square of quartic characters. The purpose of this para-
graph is to give nontrivial upper bounds for the sum

(44) „.M;N;˛;ˇ/D
X

�

N.m/�M

X
�

N.n/�N

˛mˇn�
2.m/�2.n/

�m
n

�2
4
;

where

� the sum is over the Gaussian integers m and n;
� � means that we are summing over odd primary elements of ZŒi �;
� � denotes the natural generalization of the Möbius function to ZŒi �;
� ˛ D .˛m/ and ˇ D .ˇn/ are complex numbers of modulus less than 1 (this

restriction on these coefficients will be sufficient for our application in ��8
and 10).

The trivial bound for „ is

„.M;N;˛;ˇ/�MN;

and we want to beat this bound as soon as M is not extremely small compared
with N . The way that we are following is quite classical and is based on three prop-
erties: any type of reciprocity relation leading to the equality j„.M;N;˛;ˇ/j D
j„.N;M;ˇ;˛/j and the multiplicative properties for the numerator and the de-
nominator. Before we can give a first nontrivial upper bound we need two helping
lemmata. The first one is an easy result from euclidean geometry.

LEMMA 34. Let R > 0 and �0 be a point in the euclidean plane R2. Let
B.�0; R/ be the closed disk of center �0 and radius R. Then the number of
.a; b/ 2 Z2 such that the square Œa; aC 1Œ�Œb; bC 1Œ is included in B.�0; R/ is
equal to

�R2CO.R/

and the number of those squares which intersect the edge of B.�0; R/ is equal to
O.RC 1/.

We apply a homothety and the definition of residue classes in ZŒi �:

LEMMA 35. Let a 6D 0 and � be elements of ZŒi �. Then the number ofm 2 ZŒi �

satisfying N.m/�M and m� � mod a is equal to

�
M

N.a/
CO

�r
M

N.a/
C 1

�
;

uniformly for M > 0, a and � as above.
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Now we give a nontrivial upper bound of (44). We remark that the missing �
in the first sum and the missing �2.m/ can be reached by changing ˛m accordingly.

PROPOSITION 8. Let ˛m and ˇn be any complex numbers of modulus less
than 1. Then we get uniformly for M � 1 and N � 1 the boundX

N.m/�M

X
�

N.n/�N

˛m ˇn �
2.n/

�m
n

�2
4
�MN

�
N�

1
2 CM�

1
4N

1
2

�
:

Proof. Let E.M;N/ be the sum studied in Proposition 8. We can suppose

(45) N �
p
M;

otherwise Proposition 8 is trivial. By applying Cauchy-Schwarz inequality and by
expanding the square, we easily get the inequality

jE.M;N/j2�M �
nX

�

n1

X
�

n2

�2.n1/�
2.n2/

ˇ̌̌X
m

�
m

n1n2

�2
4

ˇ̌̌o
:

Now we apply Lemma 35 by summing over m, with N.m/�M , according to its
congruence class � mod n1n2, leading to

jE.M;N/j2�M �

�X
�

n1

X
�

n2

�2.n1/�
2.n2/

ˇ̌̌̌ X
� mod n1n2

�
�

n1n2

�2
4

�
�M

N.n1n2/
CO

�r
M

N.n1n2/
C 1

��ˇ̌̌̌�
:

Since n1 and n2 are odd, squarefree and primary, the character
�
�

n1n2

�2
4

is
principal if and only if n1 D n2. Hence, by (45) we deduce

jE.M;N/j2�M �
n
MN CM

1
2N 3
CN 4

o
�M �

n
MN CM

1
2N 3

o
: �

Now we want to loosen the restriction (45). In order to enlarge the summation
over m, we apply Hölder’s inequality in another way. For the sum E studied in
Proposition 8, we have the inequality

(46) E.M;N/�N 1� 1
2k

� X
�

N.n/�N

�2.n/
ˇ̌̌ X
N.m/<M

˛m

�m
n

�2
4

ˇ̌̌2k� 1
2k
;

for every even integer 2k � 2. Expanding the 2k-power we write (46) in the form

(47) E.M;N/�N 1� 1
2k zE.M 2k; N /

1
2k ;

where zE.M 2k; N / has a similar definition as E.M;N/ but with ˛m replaced by
the coefficient

z̨m D

X
mDm1���m2k

˛m1 � � �˛mk x̨mkC1 � � � x̨m2k ;
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which satisfies z̨m�"M
", for every positive " and where ˇn is replaced by some

ž
n with modulus less than 1. Inserting in (47) the upper bound contained in Propo-

sition 8, we obtain

E.M;N/�" N
1� 1

2k �M "
˚
M 2kN.N�

1
2 CM�

k
2N

1
2 /
	 1
2k(48)

�"M
"
�
MN 1� 1

4k CM
3
4N 1C 1

4k

�
:

Note that (48) is nontrivial in regions which were not covered by Proposition 8 (for
instance M DN , with k D 2). Hence we have for every " > 0 the inequality

E.M;N/�"MN min
˚
N�

1
2 CM�

1
4N

1
2 ;M ".N�

1
8 CM�

1
4N

1
8 /
	
:

By Lemma 22, the variables m and n play a symmetric role in the symbol
�
m
n

�2
4
,

hence we have the equality „.M;N;˛;ˇ/D„.N;M;ˇ;˛/, which leads to

PROPOSITION 9. For every " > 0, we have

(49) „.M;N;˛;ˇ/�MN min
n
N�

1
2 CM�

1
4N

1
2 ;M�

1
2 CM

1
2N�

1
4 ;

M ".N�
1
8 CM�

1
4N

1
8 /; N ".M�

1
8 CM

1
8N�

1
4 /
o
:

6.3. Comments. The proof of Proposition 9 is quite standard and works for
a lot of characters: Jacobi symbols (see Lemma 33 above), cubic characters [20],
quartic characters. In [13, pp. 1025–1027], such a proof was already given to
characters that some authors will later call Jacobi-Dirichlet symbols to refer to the
seminal work of these two pioneers. We recall the definition as it appears in [26,
pp. 55–56] (see also [13, pp. 1018–1021]): Let q be a squarefree positive integer,
with all prime factors congruent to 1 mod 4. Let t be its number of prime factors.
It is well known that q has exactly 2t decompositions in the form

(50) q D u2C v2 with uC iv primary.

There is a bijection between the set f.u; v/g of representations of q in the form (50)
and the set f!g of solutions to the congruence

(51) !2C 1� 0 mod q:

This bijection is given by .u; v/ 7! �uv mod q, where u is the multiplicative
inverse of u mod q. To each root ! of (51) we associate the following Jacobi-
Dirichlet character  ! defined in terms of the usual Jacobi symbol

(52)
 ! W ZŒi � ! f0;˙1g

z D r C is 7!
�
rC!s
q

�
:

It is easy to see that  ! satisfies  !.z/D !.zCq/D !.zC iq/ for any z 2ZŒi �.
Hence it is a multiplicative real character over .ZŒi �=qZŒi �/�.

Apparently, in [13] and [26] the following equality between Jacobi-Dirichlet
characters and squares of quartic symbols was not noticed:
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PROPOSITION 10. Let q be a positive squarefree integer with all its prime
factors congruent to 1 mod 4. Let  ! as in (52). Then we have the equality

 !.�/D
�
�

u� iv

�2
4
:

Proof. By multiplicativity, it is sufficient to prove this proposition for q prime.
Since ZŒi �=.u� iv/ZŒi � is a field with q elements, it has only one character of order
2. The character

�
�

u�iv

�2
4

has this property. The order of  ! is also 2. Hence it is
sufficient to prove that  ! is a character modulo u� iv. In order to prove this we
must check for every z the equalities

 !.z/D  !.zC .u� iv//D  !.zC i.u� iv//:

Coming back to the definition (52), the proof of these equalities is equivalent to
the divisibility properties q j u�!v and q j vC!u. This is a trivial consequence
of the definition ! ��uv mod q. �

In conclusion, thanks to Proposition 10 we may say that our Proposition 9 is
only a variant of [13, Prop. 21.3 and p. 1027].

7. Proof of Theorem 3. Odd discriminants

Now we have finished the description of the algebraic and analytic scenery of
our proof. It is time to enter in this proof itself. Let

(53) Sodd.X; k/ WD
X

D2Dodd
D<X

2k rk4.CD/:

This is the k-th moment of the function 2rk4.CD/ on the set Dodd. The aim of this
paragraph will be to prove

PROPOSITION 11. For every integer k � 0 and for every positive " we have
uniformly for X � 3 the equality

Sodd.X; k/D

k�1Y
jD0

.2j C 1/ �Dodd.X/COk;"
�
X.logX/�

1
2
� 1

2kC1
C"�

:

The case k D 0 is trivial. In Section 9, we shall prove a similar statement for
the set Deven (see Proposition 13). Then, by additivity, we will have completely
proved Theorem 3.

7.1. First transformation of the sum. For r and s elements of the set

Q WD f0; 1; 2; 3g;

let �1.r; s/ be the function defined on Q2 by

(54) �1.r; s/D

(
1 if s� r D 2;

0 otherwise.
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We appeal to the second part of Lemma 10, to write the equality

(55) 2rk4.CD/ D
1

2 � 2!.D/

X
DDD0D1D2D3

Y
r; s2Q

�
Dr

Ds

��1.r;s/
;

for D 2 Dodd, with the convention that 00 D 1. In order to raise this formula to the
kth-power, we use the same technique as in [11, �5.1], which was already applied
in [18]. To solve the k-fold equation

(56) D
.1/
0 D

.1/
1 D

.1/
2 D

.1/
3 D � � � DD

.k/
0 D

.k/
1 D

.k/
2 D

.k/
3 DD;

we introduce, for rD .r1; : : : ; rk/ 2 Qk , the 4k g.c.d. (greatest common divisor)

Dr D g:c:d:.D.1/r1 ; : : : ;D
.k/
rk
/:

This parametrizes the solutions of (56) as

D.j /r D
Y
r2Qk

rjDr

Dr .r 2 Q; 1� j � k/;

with the constraint
Q

rDr DD. With these changes of variables and by the multi-
plicativity of Jacobi symbols, we arrive at the equality

(57) 2k rk4.CD/ D
1

2k � 2k !.D/

X
.Dr/

Y
r

Y
s

�
Dr

Ds

��k.r;s/
;

where rD .r1; : : : ; rk/, sD .s1; : : : ; sk/ 2 Qk , and

�k.r; s/D
kX

jD1

�1.rj ; sj /:

In (57) the sum is made over all the 4k-tuples .Dr/ such that
Q

r2Qk Dr DD: The
equality (57) is the analogue of [11, formula (25)].

Summing (57) over all D 2 Dodd, less than X , we get the following lemma,
which can be seen as the analogue of [11, Lemmata 17 and 28].

LEMMA 36. For every k � 1 and every X � 1, we have the equality

(58) Sodd.X; k/D
1

2k

X
.Dr/r2Qk

�Y
r
2�k !.Dr/

�Y
r

Y
s

�
Dr

Ds

��k.r;s/
;

where the sum is over all the 4k-tuples .Dr/r2Qk of coprime integers Dr such that

(59) Dr 2 Dodd[f1g and
Y

r2Qk

Dr �X:
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7.2. Preparation of the variables. Let ` � 1 be an integer and �`.n/ be the
number of ways of writing n as the product of ` positive integers. Note the equality
�`.n/D `

!.n/ for squarefree integers n. From (58) and (59) we directly deduce the
inequality

jSodd.X; k/j �
1

2k

X
D2Dodd
D�X

2�k !.D/�4k .D/D
1

2k

X
D2Dodd
D�X

2k !.D/;

which finally gives uniformly for X � 3:

(60) Sodd.X; k/�k X.logX/2
k�1�1:

This is a consequence of a now classical result of Shiu [40, Th. 1], which we will
use in the following version:

LEMMA 37. Let 
 be a positive real number. Then we have the inequalityX
n2D

X�Y<n�X


!.n/�
 Y.logX/


2
�1;

uniformly for 2�X exp
�
�
p

logX
�
� Y < X .

If in (60), the summation is over all fundamental discriminants, the crude
upper bound would be�k X.logX/2

k�1: The aim of Proposition 11 is to show
that the order of magnitude of Sodd.X; k/ is �X=

p
logX , that means much less

than the crude estimate (60) by some powers of logarithm. The oscillations of the
Jacobi symbols in (58) will be the reason for this gain of powers of logX .

We closely follow the method exposed in [11, ��5.3 and 5.4] (see also [18])
which has many similarities with our problem. This allows us to quote the corre-
sponding inequalities in [11] without proving them again in great details. Our first
task is to restrict the summation in (58) to the .Dr/ such that every Dr has not too
many prime divisors. By a classical result of Hardy and Ramanujan [16], we know
that there exists an absolute B0, such that for every X � 3 and for every `� 1 we
have the inequality

]
˚
n�X W !.n/D `; �2.n/D 1

	
� B0 �

X

logX
�
.log logX CB0/`�1

.`� 1/ Š
:

Introducing the parameter

�D e4k.log logX CB0/;

and denoting by †1 the contribution to the right part of the equality (58) of the
.Dr/r2Qk , which does not satisfy the equality

!.Dr/��; for all r 2 Qk;
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we have the inequalities (see [11, formula (30)]):

†1 �
X
n�X

!.n/��C1

�2.n/�4k .n/2
�k !.n/

D

X
n�X

!.n/��C1

�2.n/2k !.n/

� 2kB0 �
X

logX

X
`��

2k `
.log logX CB0/`

` Š
;

which finally give

(61) †1�
X

logX
;

by Stirling’s formula. This error term is acceptable in view of the error term an-
nounced in Proposition 11.

Our next task is to control the order of magnitude of each of the variables
Dr appearing in the summation (58) and make these variables independent by
transforming the condition

Q
Dr �X . We introduce the dissection parameter

� WD 1C .logX/�2
k

;

and for each r 2 Qk , Ar denotes any number in the set f1; �; �2; �3; : : : g. For
AD .Ar/r2Qk , we define the restricted sum Sodd.X; k;A/ by the formula
(62)

Sodd.X; k;A/D
1

2k

X
.Dr/r2Qk

�2
�Y

r
Dr

� �Y
r
2�k !.Dr/

�Y
r

Y
s

�
Dr

Ds

��k.r;s/
;

where the sum is over all the 4k-tuples .Dr/r2Qk of integers Dr such that

(63) Ar �Dr <�Ar; Dr 2 Dodd[f1g; !.Dr/��;
Y

r2Qk

Dr �X:

From Lemma 36, and from formulas (61), (62), and (63), we easily get the equality

(64) Sodd.X; k/D
X

A

Sodd.X; k;A/CO.X.logX/�1/:

Actually, in (64), the summation is restricted to the A such that
Q

rAr �X (other-
wise the corresponding Sodd.X; k;A/D 0), and by the definition of �, the number
of terms of A in consideration in that sum is

(65) � .logX/4
k.1C2k/:

We can even restrict to the A such that

(66)
Y

r2Qk

Ar <�
�4k X;
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since the error introduced by this restriction in the right part of (64) is (see also
[11, formula (34)]):

(67) �
X
n2Dodd

��4
k
X�n�X

�2.n/2k !.n/� .1���4
k

/X.logX/2
k�1�1

�X.logX/�1;

by Lemma 37 and by the definition of �. The restriction (66) implies that, in the
condition of summations (63), the inequality

Q
r2Qk Dr � X is now superfluous.

In other words, the conditions of summation in the definition (62) of Sodd.X; kIA/
are reduced to

(68) Ar �Dr <�Ar; Dr 2 Dodd[f1g; !.Dr/��:

Our next purpose is to prove that in the summation relative to (64), we can
also restrict to the case where at least 2k of the Ar are large. To be more precise
we introduce two numbers X� and X� defined by

(69) X� D .logX/3Œ1C4
k.1C2k/�

and

(70) X� is the least �` � exp.log�.k/X/;

where �.k/ is chosen as a small positive constant �.k/D 2�k". We introduce the
condition

(71) At most 2k � 1 of the Ar are larger than X�:

We shall prove

LEMMA 38. For every positive ", for every k � 1, we haveX
A satisfies .71/

ˇ̌
Sodd.X; k;A/

ˇ̌
�k;" X.logX/�

1
2
� 1

2kC1
C"
;

uniformly for X � 3.

Proof. We follow the proof of [11, (39)], but we must incorporate the fact that
Dodd is thin. We start from the trivial equality

(72)
X

A satisfies .71/

ˇ̌
Sodd.X; k;A/

ˇ̌
�

X
.Dr/Q
Dr�X

Y
r
2�k !.Dr/;

where the sum is over the 4k- tuples .Dr/, where the Dr are coprime elements of
Dodd[f1g, such that at most 2k�1 of them are larger thanX�. Let t (0� t � 2k�1)
be the number of these components Dr which are larger than X�. Let n be the
product of these Dr and m be the product of the remaining ones. Note that n
is also a special odd discriminant. With these conventions and with the help of
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Lemma 37 and Mertens formula, we transform (72) intoX
A satisfies .71/

ˇ̌
Sodd.X; k;A/

ˇ̌

�

2k�1X
tD0

X
m�.X�/4

k�t

�2.m/�4k�t .m/2
�k !.m/

X
n�X=m
n2Dodd

�t .n/2
�k !.n/

�

2k�1X
tD0

X
m�.X�/4

k�t

�2.m/�4k�t .m/2
�k !.m/.X=m/.logX/t 2

�k�1�1

�X
�2k�1X
tD0

.logX/t 2
�k�1�1

�� X
m�.X�/4

k

�2.m/
2k !.m/

m

�
�X � .logX/�

1
2
� 1

2kC1 � .4k logX�/2
k

;

which gives Lemma 38 with the choice (70). �

7.3. Linked indices. In order to push the analysis of the term Sodd.X; k;A/
we must enter into the oscillations of the Jacobi symbols. First, we have to de-
termine which symbols .Dr=Ds/ really appear in the expression (see [11, �5.2],
highly inspired by [18]).

Definition 4. Two indices r and s 2 Qk are linked if they satisfy the equality

�k.r; s/C �k.s; r/� 1 mod 2:

They are unlinked when

�k.r; s/C �k.s; r/� 0 mod 2:

The same definitions extend to the variables Dr and Ds, and similarly to Ar and As.

The idea behind this notion of linked indices is quite simple: if r0 and s0
are linked indices, then, after reduction and simplification of the exponents, in the

product
Q

r
Q

s

�
Dr
Ds

��k.r;s/
appearing in (62), exactly one of the symbols

�
Dr0
Ds0

�
or
�
Ds0
Dr0

�
is really present. If the intervals of variations of Dr0 and Ds0 are large

enough, there will be cancellations when summing these characters. And the con-
tribution of these terms goes into the error term.

7.4. First case of oscillation. We consider the contribution to the right part
of (64) of the A such that

(73)

8<:
the condition (66) is satisfied
and
there exist two linked indices r and s such that Ar and As �X

�.
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The following proof mimics [11, (42)]. In that case, we see that S.X; k;A/ defined
in (62) with the condition of summation (68) satisfies the inequality
(74)
jSodd.X; k;A/j�.

Y
u6Dr;s

Au/�sup
ˇ̌̌ X
Ar�m<�Ar

X
As�n<�As

˛mˇn�
2.2m/�2.2n/

� n
m

�ˇ̌̌
;

where the supremum is taken over all the sequences .˛m/ and .ˇn/ with modulus
less than 1.

We apply Lemma 33 to the double sum and transform (74) into

(75) jSodd.X; k;A/j �
� Y

u6Dr; s

Au

�
�ArAs

�
A
� 1
3

r CA
� 1
3

s
�
�X.X�/�

1
3 :

By (65), (69), and (75) we arrive at

(76)
X

A satisfies .73/

jSodd.X; k;A/j �X.logX/�1:

7.5. Second case of oscillation. Now we consider the contribution of the A
such that
(77)8<:

the condition (66) is satisfied,
there exists no pair fr; sg of linked indices such that Ar and As �X

�, and
there exist two linked indices r and s such that 1 < Ar �X

� and As �X
�.

Now we prove

(78)
X

A satisfies .77/

jSodd.X; k;A/j �X.logX/�1:

The proof is exactly the same as [11, (43)]. By the assumption (77), we know that
there exists an index s such that As�X

� and such that the set R of indices r, which
are linked to s, contains no index r0 such that Ar0 �X

� and contains at least one
index r such that Ar > 1. Note that the integer d defined by d D

Q
r2RDr is odd,

squarefree, and satisfies the inequality 1 < d � .X�/4
k

. With these conventions,
we have the inequality

(79) jSodd.X; k;A/j �
�Y

u 6Ds

Au

�
�max
a; d

ˇ̌̌ X
As�Ds<�As
.Ds;a/D1

2�k !.Ds/

�
Ds

d

�ˇ̌̌
;

where

� the maximum is taken over the integers a satisfying 1� a �X and over the
odd squarefree integers d satisfying 1 < d � .X�/4

k

,
� Ds 2 Dodd satisfies !.Ds/��:

We sum over the value ` of !.Ds/ and denote by PC.n/ the greatest prime
divisor of the integer n > 1. Therefore we write Ds D np in the following formula,
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where p is the largest prime divisor of Ds and the interior sum of (79) satisfies
(80)ˇ̌̌X
Ds

2�k !.Ds/

�
Ds

d

�ˇ̌̌
�

X
1�`��

2�k`
X

n;!.n/D`�1

ˇ̌̌ X
max.PC.n/;As=n/<p<�As=n

p�1 mod 4; .p;a/D1

�p
d

�ˇ̌̌
:

We apply Lemma 30 with q D 4d , giving the inequality

(81)
X
p

�p
d

�
�A

p
d �
As

n
�

�
log.

As

n
/
��A
C logX;

for every constant A. We remark that the final log-term is coming from the condi-

tion .a; p/D 1. From the conditions of summation over p, we deduce that p�A
1
�
s ,

then n < �A
1� 1

�
s , and finally

(82) log
�As

n

�
� logA

1
�
s � log

�.k/
2 X;

by (70), (77), and the definition of �. Inserting (82) into (81), then into (80),
summing over n and ` and inserting the result into (79), we finally prove (78), by
appealing to (65) and choosing AD A.k; "/ sufficiently large.

Gathering Lemma 38, (64), (76), and (78) we arrive at

LEMMA 39. For every k � 1 we have

Sodd.X; k/D
X

A satisfies .83/

Sodd.X; k;A/COk;"
�
X.logX/�

1
2
� 1

2kC1
C"�

;

where

(83)

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

The condition .66/ is satisfied:

At least 2k indices r satisfy Ar >X
�:

Two indices r and s such that Ar; As >X
� are always unlinked.

If r and s are linked with Ar � As; then

either Ar D 1 or .2� Ar <X
� and Ar � As <X

�/:

7.6. Reinterpretation of unlinked indices. Now we want a deeper knowledge
of unlinked indices, to further push the study of the main term in Lemma 39. This
will be accomplished by appealing to the geometry over the field F2, as it was
done in [11], inspired by [18]. Let �1 be the bijection between Q and F22 defined
by �1.0/D .0; 0/, �1.1/D .0; 1/, �1.2/D .1; 0/, �1.3/D .1; 1/. This function �1
can be interpreted as the binary expansion. By concatenation, we obtain a bijection
�k between Qk and F2k2 . We shall interpret the property of being unlinked in terms
of the quadratic form over F2k2 :

(84) Pk.w/ WD
kX

jD1

w2j�1.w2j�1Cw2j /;

where wD .w1; : : : ; w2k/ with wi 2 F2. We have
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LEMMA 40. Two indices r and s 2 F2k2 are unlinked if and only if

Pk
�
�k.r/C�k.s/

�
D 0:

Proof. By Definition 4, two indices r and s 2 Qk are unlinked if and only if
the equation jri � si j D 2 has an even number of solutions in i 2 f1; : : : ; kg. To
finish the proof of Lemma 40, it suffices to incorporate the property for elements
r and s 2 Q:

jr � sj D 2() P1.�1.r/C�1.s//D 1:

This property can be checked case by case. �

For simplicity, we systematically replace the indices r and s by their images
u D �k.r/ and v D �k.s/ in our computations. Hence u D .u1; : : : ; u2k/ and
vD .v1; : : : ; v2k/ are unlinked if and only if Pk.uC v/D 0. We remark that this
definition coincides with the notion introduced in [11, �5.2]. For A satisfying (83),
let UDU.A/ be the set of indices u such that Au >X

�. The set U satisfies

(85) ]U.A/� 2k;

and if u and v belong to U, we have Pk.uC v/D 0, by Lemma 40. The set U is
a set of unlinked indices. We recall some properties of these sets, obtained by the
theory of quadratic forms in characteristic 2.

LEMMA 41 ([11, Lemma 18]). Let k� 1 an integer and let U� F2k2 be a set of
unlinked indices. Then ]U� 2k and for any c 2 F2k2 , cCU is also a set of unlinked
indices. If ]UD 2k , then either U is a vector subspace of F2k2 of dimension k or a
coset of such a subspace of dimension k.

By (85) and by Lemma 41, we deduce the equality ]U.A/D 2k and that U.A/
is a vector subspace or a coset of a vector subspace of dimension k. Furthermore,
since there exists no unlinked subset of cardinality 2kC 1, we deduce that if v is
such Av <X

�, there exists an index u linked with v, and such that Au >X
�. The

last condition in (83) implies that Av D 1. In conclusion, for every u 2U.A/, we
have Au >X

�, and for every u…U.A/, we have AuD 1. If U� F2k2 is an unlinked
subset of indices u, with cardinality 2k , we say that U is maximal, and if we have
UDU.A/, we say that A is associated to U.

From the above discussion and from Lemma 39, we deduce the following
equality

Sodd.X; k/D
1

2k

X
U

X
A

X
.Du/u2U

�2
�Y

u
Du
� �Y

u
2�k !.Du/

�
(86)

CO
�
X.logX/�

1
2
� 1

2kC1
C"�

;

where the first sum is over all the maximal unlinked subsets U of F2k2 , the second
sum is over all A, associated to U and satisfying (66), and the last sum is over all
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.Du/ such that

Au �Du <�Au; Du 2 Dodd; !.Du/��:

Recall that the index r 2 Qk has been replaced by its image �k.r/D u 2 F2k2 .
In (86), we forget all the indices u which do not belong to U, since the cor-

responding Du is equal to 1. By the same techniques which gave (67) and which
led from (72) to Lemma 38, we glue back all the subsums corresponding to the
different A in (86) to obtain the equality

Sodd.X; k/D
1

2k

X
U

X
.Du/u2UQ
u2UDu�X

�2
�Y

u
Du
��Y

u
2�k !.Du/

�
(87)

CO
�
X.logX/�

1
2
� 1

2kC1
C"�

;

where now .Du/u2U satisfy the other conditions Du 2Dodd[f1g and !.Du/��:

For instance, the error term in (87) contains the contribution of the .Du/u2U, such
that, at least one of Du is less than X�: This contribution is

�

X
d2Dodd
d�X�

2�k !.d/
X
n2Dodd
n�X=d

�2k�1.n/2
�k !.n/

�

X
d2Dodd
d�X�

2�k !.d/ �
�X
d

�
� .logX/�

1
2
� 1

2kC1

�X.logX/�
1
2
� 1

2kC1
C"

by Lemma 37 and Mertens formula. By a computation made to obtain (61), in (87),
we can drop the condition of summation: !.Du/�� with an acceptable error. By
putting D D

Q
u2UDu we write (87) as

Sodd.X; k/D
1

2k

X
U

X
D2Dodd
D<X

1COk;"
�
X.logX/�

1
2
� 1

2kC1
C"�

:(88)

By Lemma 41, each U is a coset of some maximal unlinked vector subspace U0,
and since to each U0 correspond exactly 2k cosets U, we finally transform (88)
into

LEMMA 42. For every k � 1, and for every positive " we have uniformly for
X � 3:

(89) Sodd.X; k/D ]MS.k/ �Dodd.X/COk;"
�
X.logX/�

1
2
� 1

2kC1
C"�

;

where MS.k/ is the set of maximal unlinked vector subspaces U0 in F2k2 .

7.7. Quadratic forms in characteristic 2. For the purpose of computing the
coefficient ]MS.k/ of the main term in (89), we shall require the following results
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concerning quadratic forms in geometry in characteristic 2. All these facts can be
found in [7].

Let k � 1 and E be the vector space E D F2k2 . Each element of E is written
as Ex D .x1; : : : ; x2k/. We consider the quadratic form Q over E defined by

Q.Ex/D x1xkC1C � � �C xkx2k :

(Note that by a linear change of variable, we can transform the quadratic form Pk
defined in (84) into Q.)

The form Q is nondegenerate. Since F2 is perfect and since dimE is even,
Q is nondefective (see [7, p. 36]). We say that a vector subspace F is singular if
QjF � 0: Every singular vector space has dimension � k. All the maximal (for the
inclusion) singular spaces have the same dimension (see [7, pp. 23 and 36]). Let

F WD f.x1; : : : ; xk; 0; : : : ; 0/ W xi 2 F2; .1� i � k/g:

We see that F is trivially singular and it is maximal singular, since it has dimen-
sion k. Hence Q has index k (see [7, p. 34]). We want to know the cardinality of
the set MS.E;Q/ of maximal singular vector subspaces contained in .E;Q/.

The orthogonal group O.E;Q/ is the subgroup of GL.E/ containing all the
linear automorphisms u of E, satisfying Q.u.Ex// D Q.Ex/, for all Ex 2 E. The
orthogonal group naturally operates on MS.E;Q/. It operates in a transitive
way, since for every F1 and F2 maximal singular spaces, there is at least one
u 2 O.E;Q/, such that u.F1/D F2. This is an extension of Witt’s theorem due to
Arf in characteristic 2 (see [7, p. 36]). From these results we have

(90) ]MS.E;Q/D
]O.E;Q/
]Stab.F /

;

where Stab.F / denotes the set of u 2 O.E;Q/ such that u.F /D F .
The numerator of the right part of (90) is well known: This group O.E;Q/

contains a subgroup of index 2: the group of rotations OC.E;Q/. Its cardinality
is given by [7, p. 69]

]OC.E;Q/D ]OC
2k
.F2;Q/D .2

k
� 1/

k�1Y
jD1

�
22j .22j � 1/

�
;

from which we deduce

(91) ]O.E;Q/D 2.2k � 1/
k�1Y
jD1

�
22j .22j � 1/

�
:

To characterize an element u 2 O.E;Q/, such that u.F /D F , we study its matrix
U in the canonical basis of E. It has the shape

(92) U D

0B@ A B

O C

1CA ;
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where A D .ai;j /, B D .bi;j /, C D .ci;j / (with 1 � i; j � k) and O are square
matrices with size k, A and C belong to GL.k; F2/ and O is the zero matrix. With
these conventions, for Ex D .x1; : : : ; x2k/, for u.Ex/D .y1; : : : ; y2k/ and 1� j � k,
by (92), we have the equalities

yj D aj;1x1C � � �C aj;kxkC bj;1xkC1C � � �C bj;kx2k;

ykCj D cj;1xkC1C � � �C cj;kx2k :

The condition Q.u.Ex//DQ.Ex/ leads to the equality

kX
jD1

�
aj;1x1C � � �C aj;kxkC bj;1xkC1C � � �C bj;kx2k

�
�
�
cj;1xkC1C � � �C cj;kx2k

�
D

kX
`D1

x`xkC`:

By equalizing the coefficient of x`xkCm (for 1� `; m� k), we get the equality

(93)
kX

jD1

aj;`cj;m D

(
1 if `Dm

0 if ` 6Dm;

and by equalizing the coefficient of xkC`xkCm, we have for 1� `; m� k

(94)
kX

jD1

�
bj;`cj;mC bj;mcj;`

�
D 0 if ` 6Dm;

and

(95)
kX

jD1

bj;`cj;` D 0:

Equation (93) is equivalent to

(96) tCAD Idk;

and the equations (94) and (95) are equivalent to the property

(97) tCB is a symmetric matrix with a zero diagonal:

Since the characteristic is 2, the condition (97) is equivalent to say that the bilinear
form ‰ associated to tCB is alternate, i.e. ‰.Ex; Ex/ D 0 for all Ex 2 Fk2 . With
these characterizations, it is easy to count the cardinality of those U : there are
]GL.k; F2/ choices for the matrix A, then C is uniquely determined by (96) and
belongs also to GL.k; F2/. Since the set of symmetric matrices with dimension k
and with zero diagonal is a F2-vector space of dimension k.k�1/=2, the condition
(97) determines 2

k.k�1/
2 matrices B when C 2GL.k; F2/ is given. Hence we arrive
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at the equality

]Stab.F /D 2
k.k�1/
2

k�1Y
jD0

�
2k � 2j /D 2k.k�1/

kY
jD1

�
2j � 1

�
:

It remains to insert this last equation and (91) into (90), in order to prove

LEMMA 43. For every k � 1 the number of maximal singular vector sub-
spaces of E equipped with Q is equal to

]MS.k/D ]MS.E;Q/D

k�1Y
jD0

�
2j C 1

�
:

Together with Lemma 42 we complete the proof of Proposition 11.

8. Proof of Theorem 4. Odd discriminants

Let

Smix
odd .X; k/ WD

X
D2Dodd
D<X

2k rk4.CD/ � 2rk4.ClD/

be the mixed moment of order k. The aim of this paragraph is the following odd
part of Theorem 4 in the form of

PROPOSITION 12. For every integer k � 0 and for every positive " we have
uniformly for X � 3 the equality

Smix
odd .X; k/D .2

k�1
C 1/

k�1Y
jD0

.2j C 1/ �Dodd.X/COk;"
�
X.logX/�

1
2
� 1

2kC2
C"�

:

The proof of the even part of Theorem 4 will be given in Proposition 15.

8.1. First reduction. Replacing 2rk4.ClD/ by its expression given in Theorem 6,
we directly have

LEMMA 44. Let

S˘odd.X; k/D
X
D2Dodd
D<X

2k rk4.CD/

2!.D/

X
abcdDD

 
axb

c d

!2
4

:

Then we have for every k � 0:

Smix
odd .X; k/D

1

2
Sodd.X; kC 1/C

1

4
S˘odd.X; k/:
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By Proposition 11 and Lemma 44, the proof of Proposition 12 is reduced to
the study of the sum S˘odd. The equality (57) implies the equality

(98)
2k rk4.CD/

2!.D/

X
abcdDD

 
axb

c d

!2
4

D
1

2k � 2.kC1/!.D/

X
.Dr/

X
d

Y
r

Y
s

�
Dr

Ds

��k.r;s/�d0 d1

d2 d3

�2
4

;

where the sum is over .Dr/r2Qk and dD .d0; d1; d2; d3/ such that

(99) D D
Y

r
Dr D d0d1d2d3:

When k D 0, the set Qk contains only one element and we fix �0 � 0. We also
follow the convention that di D didi is the privileged factorization of di . For
i 2QDf0; 1; 2; 3g and r2Qk , letDr;i Dg:c:d:.Dr; di /: These numbers parametrize
the solutions of equation (99) by writing Dr D

Q
i Dr;i and di D

Q
rDr;i , if we

impose the conditions Y
r

Y
i

Dr;i DD:

This classical trick was already used to study (56). Summing (98) over the set of
odd special D �X , we have the equality

S˘odd.X; k/D
1

2k

X
.Dr;i /

�2
�Y

r;i

Dr;i
��Y

r;i

2�.kC1/!.Dr;i /
��Y

r;i

Y
s;j

�
Dr;i

Ds;j

��k.r;s/�(100)

�

�Y
r

Y
s

�
Dr;0

Ds;2

�2
4

��Y
r

Y
s

�
Dr;0
xDs;3

�2
4

��Y
r

Y
s

 
xDr;1

Ds;2

!2
4

��Y
r

Y
s

 
xDr;1
xDs;3

!2
4

�
;

where

� the indices r and s belong to Qk ,
� the indices i and j belong to Q,
� the 4kC1-tuples .Dr;i / satisfy

(101) Dr;i 2 Dodd[f1g and
Y

r2Qk

Y
i2Q

Dr;i �X;

� and Dr;i DDr;iDr;i is the privileged factorization of Dr;i .

At that point, we see that (100) is already highly intricate. It is really a chance
that the remark (8) avoids to have to treat the more general mixed moment sumP
D 2

k rk4.CD/2` rk4.ClD/ for any k � 0 and any `� 0.
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8.2. Analytic preparation of the variables. By many points of view, the mixed
sum S˘odd.X; k/ has similarities with the sum Sodd.X; kC 1/, in particular by the
number 4kC1 of independent variables Dr;i . The technical preparation is the same
as in Section 7.2. For .r; i/2QkC1, we introduce 4kC1-tuples AD .Ar;i /.r;i/2QkC1 ,
where Ar;i are any numbers of the form 1, �, �2,. . . and the dissection parameter
� has the value

�D 1C .logX/�2
kC1

:

Now, for bounding the number of prime divisors of the variables of summation, �
is replaced by

(102) �0 D e4kC1.log logX CB0/:

We also introduce the partial sum of S˘odd.X; k/:

(103) S˘odd.X; k;A/ WD
1

2k

X
.Dr;i /

�2
�Y

r;i

Dr;i
��Y

r;i

2�.kC1/!.Dr;i /

�

�

�Y
r;i

Y
s;j

�
Dr;i

Ds;j

��k.r;s/��Y
r

Y
s

�
Dr;0

Ds;2

�2
4

�

�

�Y
r

Y
s

�
Dr;0
xDs;3

�2
4

��Y
r

Y
s

 
xDr;1

Ds;2

!2
4

��Y
r

Y
s

 
xDr;1
xDs;3

!2
4

�
;

where the conditions of summation are the same as in (100), with the difference
that (101) is replaced by

(104) Ar;i �Dr;i <�Ar;i ; Dr;i 2 Dodd[f1g; !.Dr;i /��
0:

With these new conventions we have

LEMMA 45. For every integer k � 0 and for every positive " we have the
equality

(105) S˘odd.X; k/D
X

A

S˘odd.X; k;A/COk;"
�
X.logX/�

1
2
� 1

2kC2
C"�

;

where the sum is over all the 4kC1-tuples .Ar;i /.r;i/2QkC1 satisfying

(106)
Y
r;i

Ar;i ��
�4kC1X:

Proof. See the proofs of (61) and (67). �

Note that the number of A participating to the summation in (105) is

(107) � .logX/4
kC1.1C2kC1/:
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We can even suppose that

(108)
Y
r;i

Ar;i �X
1
2 ;

since the contribution to the right part of (105) of the terms AD .Ar;i / which do
not satisfy (108) is trivially negligible by Lemma 37.

8.3. Oscillations of the symbol
�
�
�

�2
4
. In this section, we shall concentrate on

the cancellations having their origins in the oscillations of the square of some quar-
tic symbol in (100). We shall prove

LEMMA 46. We have the equality

(109)
X

A

jS˘odd.X; k;A/j DO.X.logX/�1/;

when the sum is made over the A such that (106) is satisfied and the following
inequalities hold:�Y

r
Ar;0

�
�
�Y

r
Ar;1

�
> 1 and

�Y
r
Ar;2

�
�
�Y

r
Ar;3

�
> 1:

Proof. In (100), we clearly see which symbols
�
�
�

�2
4

do participate to the
expression. The idea of the proof of Lemma 46 is rather simple: find two (rather
large) variables which collaborate to one

�
�
�

�2
4

symbol, then use of its oscillation
by Proposition 7 or Proposition 9, having in mind that this oscillation cannot be
destroyed by some associated Jacobi symbol, if any.

By (108) the biggest Ar;i is rather large, that means �X
1

2�4kC1 . For simplicity,
we suppose that this happens for the index .r0; 0/ for some r0 2 Qk . The cases
.r0; i/ for i D 1, 2 or 3 are handled in the same way. We separate the discussion
in several cases.

� There exists an index s0 which satisfies

Ar0;0 � As0;2 > .logX/100�10
k

and fr0; s0g unlinked.

By Definition 4 there is no Jacobi symbol
�
Dr0;0
Ds0;2

�
in (103). Hence, in order to

benefit from oscillations of the character
�

Dr0;0
Ds0;2

�2
4
; we write S˘odd.X; k;A/ in the

form

(110) jS˘odd.X; k;A/j �
� Y
.r;i/6D.r0;0/; .s0;2/

Ar;i

�
�

ˇ̌̌
„
�
�Ar0;0; �As0;2;˛;ˇ

�ˇ̌̌
;

where „ is defined in (44) for some coefficients ˛m and ˇn of modulus less than 1.
A direct application of Proposition 9 leads to the inequality

(111) „
�
�Ar0;0; �As0;2;˛;ˇ

�
� Ar0;0As0;2 .logX/�50�10

k

:
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To be more precise, if As0;2 <X
1

5�4kC1 , we use the first term inside the min-symbol.

If we have X
1

5�4kC1 � As0;2 � Ar0;0, we use the third term with the choice " D
.200 � 10k/�1.

Inserting the bound (111) in (110) and summing over the corresponding A
and using (107), we see that the contribution of these A to the sum of (109) is in
O.X.logX/�1/.

� There exists an index s0 which satisfies

Ar0;0 � As0;2 > .logX/100�10
k

and fr0; s0g linked.

Since the indices r0 and s0 are linked, the Jacobi symbol
�
Dr0;0
Ds0;2

�
is really present

in (103). But Lemma 23 allows us to write�
Dr0;0

Ds0;2

��
Dr0;0

Ds0;2

�2
4

D

 
xDr0;0

Ds0;2

!2
4

;

and we are led to the former case by now considering oscillations of the symbol�
xDr0;0
Ds0;2

�2
4

.

� By working with conjugates, the same type of reasoning applies if there
exists an index s0 such that

Ar0;0 � As0;3 > .logX/100�10
k

(see formula (103)).

� From the previous cases and from the hypothesis of Lemma 46, we are
reduced to suppose that

(112) 1 <max
s2Qk

.As;2; As;3/� .logX/100�10
k

:

We are now discussing the sizes of the Ar;i , when the second index is 0 or 1.

� There exists an index s0 such that

Ar0;0 � As0;0 > .logX/100�10
k

and fr0; s0g linked.

This means that in (103), there is the Jacobi symbol
�
Dr0;0
Ds0;0

�
, but no square of the

quartic symbols with arguments the primary variables associated to the privileged
factorization of Dr0;0 and Ds0;0. We benefit from oscillations of the character�
Dr0;0
Ds0;0

�
, exactly as we did in Section 7.4, by appealing to Lemma 33. The contri-

bution of these A to the sum in (109) is also is O.X.logX/�1/:

� By symmetry the same study applies if there exists an index s0, such that

Ar0;0 � As0;1 > .logX/100�10
k

and fr0; s0g linked.
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� By the condition (112) and by the two previous items, we see that we are
reduced to the case, where the variable Dr0;0 appears as a numerator of Jacobi
symbols or of squares of quartic symbols, where all the corresponding denomina-
tors are less than .logX/100�10

k

. Note that this event happens 4kC1 times at most.
To be more precise, by multiplicativity, we have to consider six types of symbols
where Dr0;0 appears:

(113)
�

Dr0;0

a

�2
4

;

�
Dr0;0

xb

�2
4

;

�
Dr0;0

c

�
;

�
Dr0;0

d

�
;

�
Dr0;0

e

�
;

�
Dr0;0

f

�
;

where axaD
Q

sDs;2 WDa , bxbD
Q

sDs;3 WDb, cD
Q
Ds;0, dD

Q
Ds;1, eD

Q
Ds;2,

f D
Q
Ds;3, where these last four products are made over the indices s2Qk linked

with r0. Note that the integers a, b, c, and d are pairwise coprime, that e is a divisor
of a and f a divisor of b, hence we write a D ee0 and b D ff 0. Note that the
condition (112) and the above discussion imply the inequalities

(114) ab > 1 and abcdef � .logX/400�40
k

:

Lemma 23 and multiplicativity properties of the symbols reduce the product of the
six symbols appearing in (113) to�

Dr0;0

cc d d e e0 f f0

�2
4

:

In the denominators of this symbol we recognize factors of the privileged factor-
izations of the variables c; d; e; e0; f; and f 0. Hence we have the inequality
(115)

jS˘odd.X; k;A/j �
X
.Dr;i /

.r;i/6D.r0;0/

ˇ̌̌X
Dr0;0

�2
�Y

r;i

Dr;i
�
2�k !.Dr0;0/

�
Dr0;0

cc d d e e0 f f0

�2
4

ˇ̌̌
;

where the variables of summation satisfy the conditions (104). The denominator
of this symbol appearing in (115) is squarefree. The condition ab > 1 implies
e e0 f f0 6D 1. This symbol is not trivial and its conductor has its norm less than a fixed
power of logX by (114). We can apply Proposition 7 (Siegel-Walfisz Theorem for
privileged primes) in an efficient manner to the (privileged) largest prime divisor of
Dr0;0, as we did in Section 7.5; see formulas (79)–(82). We choose the parameter
A of this Proposition very large, in terms of k, in order to give the bound

(116) S˘odd.X; k;A/�X.logX/�1�4
kC1.1C2kC1/:

It remains to sum over all A and to use (107) to complete the proof of Lemma 46.
�

Remark. It is time to explain our choice of the set P of privileged primes.
The formulas given in Lemmata 23 and 26 remain true if we replace � by � . Now
suppose that, to each p� 1 mod 4 we associate  .p/ WD� , where � is primary and
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irreducible, and � x� D p. For every p we have two possibilities and any choice of
the function  will equally produce the notion of privileged primes and privileged
factorization (relative to  ). All the algebraic transformations on the symbols

�
�
�

�
and

�
�
�

�2
4

will lead to a formula analogous to (115), but relative to  . However, the
set f .p/ W p � 1 mod 4g must have some geometric regularity in order to apply
Hecke’s theory used in the proof of Proposition 7. The choice of defining  by
imposing =. .p// > 0 satisfies this regularity condition and certainly is the most
natural one. This choice of  is crucial only in the proof of (116).

8.4. The final step. By Lemmata 22, 45, and 46 and by symmetry we have
for every k � 0 and for every positive " uniformly for X � 3 the equality

(117) S˘odd.X; k/D 2
X

A

S˘odd.X; k;A/COk;"
�
X.logX/�

1
2
� 1

2kC2
C"�

;

where the sum is over all the 4kC1-tuples .Ar;i /.r;i/2QkC1 , satisfying (106) and

(118)
Y

r2Qk

Ar;2
Y

r2Qk

Ar;3 D 1:

Actually, the condition (118) simply means that we have

Dr;2 DDr;3 D 1 for all r 2 Qk

in the corresponding summations (104). By (100), for the A satisfying (118), the
sum S˘odd.X; k;A/ can be written as

(119) S˘odd.X; k;A/D
1

2k

X
Dr;0

X
Dr;1

�2
�Y

r
Dr;0

Y
r
Dr;1

�

�

�Y
r
2�.kC1/!.Dr;0Dr;1/

��Y
r

Y
s

�
Dr;0Dr;1

Ds;0Ds;1

��k.r;s/�
;

where

Ar;i �Dr;i <�Ar;i ;Dr;i 2Dodd[f1g; and !.Dr;i /��
0 for all .r; i/2Qk�f0; 1g:

Putting back together all the sums S˘odd.X; k;A/ appearing in (117) and bounding
the error terms as it was done in Section 8.2, we arrive at the equality

S˘odd.X; k/D 2
�.k�1/

X
Dr;0

X
Dr;1

�2
�Y

r
Dr;0

Y
r
Dr;1

�
(120)

�

�Y
r
2�.kC1/!.Dr;0Dr;1/

��Y
r

Y
s

�
Dr;0Dr;1

Ds;0Ds;1

��k.r;s/�
COk;"

�
X.logX/�

1
2
� 1

2kC2
C"�

;

where the variables Dr;0 and Dr;1 belong to Dodd[f1g and satisfy the inequalityY
r
Dr;0

Y
r
Dr;1 �X:
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Setting Dr DDr;0Dr;1 (we have 2!.Dr/ possibilities) we modify (120) into

S˘odd.X; k/D 2
�.k�1/

X
Dr

�2
�Y

r
Dr

��Y
r
2�k !.Dr/

��Y
r

Y
s

�
Dr

Ds

��k.r;s/�
COk;"

�
X.logX/�

1
2
� 1

2kC2
C"�

;

with the constraintsDr 2Dodd[f1g and
Q

rDr�X: Lemma 36 implies the equality

S˘odd.X; k/D 2Sodd.X; k/COk;"
�
X.logX/�

1
2
� 1

2kC2
C"�

:

Now we apply Lemma 44 and the previous equality in order to write

Smix
odd .X; k/D

1

2
Sodd.X; kC 1/C

1

2
Sodd.X; k/COk;"

�
X.logX/�

1
2
� 1

2kC2
C"�

:

Now we incorporate Proposition 11 twice and easily check the equality

1

2

kY
jD0

.2j C 1/C
1

2

k�1Y
jD0

.2j C 1/D .2k�1C 1/

k�1Y
jD0

.2j C 1/;

and finish the proof of Proposition 12.

9. Proof of Theorem 3. Even discriminants

In this section we prove the last part of Theorem 3 which concerns properties
of Deven. Of course there are a lot of resemblance with the study of Dodd made in
Section 7. Similar to (53) we introduce

(121) Seven.X; k/ WD
X

D2Deven
D<X

2k rk4.CD/:

Our purpose is to prove

PROPOSITION 13. For every integer k � 0 and for every positive " we have
uniformly for X � 3:

Seven.X; k/D

k�1Y
jD0

�
2j C 1

�
�Deven.X/COk;"

�
X.logX/�

1
2
� 1

2kC1
C"�

:

This proposition is the last part of Theorem 3. Hence, by combination with
Proposition 11, the proof of Theorem 3 will be complete.

9.1. Transformation of Seven.X; k/. LetL1 WQ!f0; 1g defined viaL1.3/D1
and L1.0/D L1.1/D L1.2/D 0. Now we appeal to Lemma 11 in order to write
for every D 2 Deven the following equality which has to be compared with (55):
(122)

2rk4.CD/ D
1

2!.D=8/

X
DD8D0D1D2D3

�Y
r2Q

�
2

Dr

�L1.r/�� Y
r; s2Q

�
Dr

Ds

��1.r;s/�
:
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Now we raise (122) to the k-th power giving

(123) 2k rk4.CD/ D
1

2k !.D=8/

X
.Dr/

�Y
r2Qk

�
2

Dr

�Lk.r/�� Y
r; s2Qk

�
Dr

Ds

��k.r;s/�
;

with rD .r1; : : : ; rk/ and sD .s1; : : : ; sk/ 2 Qk and

Lk.r/D
kX

jD1

L1.rj /;

and the sum being made over all the 4k-tuples .Dr/ such that
Q

r2Qk Dr DD=8:

This equality is the even analogue of (57). We easily see that the even analogue of
Lemma 36 is

LEMMA 47. For every k � 1 and every X � 1 we have the equality

Seven.X; k/D
X

.Dr/r2Qk

�Y
r2Qk

�
2

Dr

�Lk.r/��Y
r
2�k !.Dr/

��Y
r

Y
s

�
Dr

Ds

��k.r;s/�
;

where the sum is over all the 4k-tuples .Dr/r2Qk of coprime integers Dr such that

(124) Dr 2 Dodd[f1g and
Y

r2Qk

Dr �X=8:

We follow the technique employed in Sections 7.2–7.6 to prepare the variables
and to use of the oscillations of the characters with however tiny differences to take
care of the character Dr 7!

�
2
Dr

�
. When we appeal to Lemma 30, we notice that

the character Dr 7!
�
2
Dr

��
Ds
Dr

�
has conductor 8Ds.

Recall that, by the bijection �k (see �7.6), we can work with indices taken in
F2k2 , hence, for uD .u1; : : : ; u2k/ 2 F2k2 we define the function �k by

�k.u/D Lk.��1k .u//D
kX

jD1

u2j�1u2j :

Then we arrive at the analogue of (86):

Seven.X; k/D
X

U

X
A

X
.Du/u2U

�2
�Y

u
Du
��Y

u

�
2

Du

��k.u/��Y
u
2�k !.Du/

�(125)

CO
�
X.logX/�

1
2
� 1

2kC1
C"�

;

where the first sum is over all the maximal unlinked subsets U of F2k2 , the second
sum is over all A, associated to U and satisfyingY

u
Au ��

�4kX=8;
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and the last sum is over all .Du/ with

Au �Du <�Au; Du 2 Dodd; !.Du/��;

for all u 2U. By definition, if A is associated to U, we have Au >X
� if and only

if u 2U. Otherwise we have Au D 1:

9.2. Oscillations of the symbol
�
2
�

�
. We can restrict the set of summation on

U in (125) by considering the oscillations of the symbol
�
2
Du

�
, as follows. Let U

be a maximal unlinked subset of F2k2 such that there exists an u0 2 U satisfying
�k.u0/D 1 and let A associated to U. By definition we have Au0 �X

�. Then for
every B > 0 we have

(126)
X

Au0�Du0<�Au0
Du02Dodd;!.Du0 /��

�2
�Y

u
Du
�
2�k !.Du0 /

�
2

Du0

��k.u0/

�B Au0 log�B X;

by applying Lemma 30 to the character
�
2
p

�
, where p is the largest prime divisor of

Du0 to express that p is uniformly distributed between the classes 1 and 5 mod 8.
The technique is the same as in Section 7.5. Then for such an A we trivially
sum over the corresponding Du (u 6D u0) and see that the corresponding sum is
� X.logX/�B . Choosing B very large, we see that (125) remains true if we
restrict the sum over the U (maximal unlinked subset of F2k2 ), such that �k.u/D 0
for each u 2U:

By the same technique which led from (87) to Lemma 42 and which glues
back the intervals of summation of the Du, we finally prove

PROPOSITION 14. For every integer k � 1 and for every positive " we have
uniformly for X � 3 that

(127) Seven.X; k/D ]MS�.k/ �Deven.X/COk;"
�
X.logX/�

1
2
� 1

2kC1
C"�

;

where MS�.k/ is the set of maximal unlinked subsets U in F2k2 with �k.U/D f0g.

9.3. Computation of ]MS�.k/. By Lemma 41 we know that every maximal
unlinked subset of F2k2 is of the form UDU0C c where c is any element of F2k2 ,
and U0 is a maximal unlinked vector subspace of F2k2 .

LEMMA 48. Let U0 be a given maximal vector subspace of F2k2 , and let

C.U0/ WD fc 2 F2k2 W �k.cCu/D 0 for all u 2U0g:

Then we have the equality

(128) C.U0/D �kCU0;

where �k D .0; 1; : : : ; 0; 1/:
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Proof. This is an exercise in linear algebra (see [11, Lemma 36]). First of all,
we trivially see that C.U0/ is stable by translation by any vector of U0, in other
words

(129) C.U0/CU0 D C.U0/:

Remember that Pk.u/ D u1 C u1u2 C � � � C u2k�1 C u2k�1u2k D 0 for every
u 2U0. This allows us to write

C.U0/D fc 2 F2k2 W �k.c/D 0 and .c2C 1/u1
Cc1u2C � � �C .c2kC 1/u2k�1C c2k�1u2k D 0 for all u 2U0g:

We see that �k belongs to C.U0/. Since the bilinear form

hu; vi D u1v2Cu2v1C � � �Cu2k�1v2kCu2kv2k�1

is nondegenerate and since U0 has dimension k, the equation

.c2C 1/u1C c1u2C � � �C .c2kC 1/u2k�1C c2k�1u2k D 0

implies that C.U0/ is included in an affine subspace of dimension k containing �k .
Combining this last property with (129), we obtain (128). �

From Lemma 48 we deduce the equality

]MS.k/D ]MS�.k/:

By Lemma 43 we know the cardinality ]MS.k/ of the set of U0 and by Proposition
14, we finish the proof of Proposition 13.

10. Proof of Theorem 4. Even discriminants

In order to prove the even part of Theorem 4, we introduce

Smix
even.X; k/ WD

X
D2Deven
D<X

2k rk4.CD/ 2rk4.ClD/;

and we shall prove

PROPOSITION 15. For every integer k � 0 and for every positive " we have
uniformly for X � 3:

Smix
even.X; k/D .2

k�1
C 1/

k�1Y
jD0

.2j C 1/ �Deven.X/COk;"
�
X.logX/�

1
2
� 1

2kC2
C"�

:

Of course, the proof has much to do with what was done in Section 8, but the
symbols containing 2 create extra difficulty. To express 2k rk4.C8D/ we shall use
(123) and for 2rk4.ClD/ we appeal to the second part of Theorem 6, which we write

(130) 2rk4.Cl8D/ D
2rk4.C8D/

2
Cg.D/;
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with obvious notations. The expression (130) splits Smix
even.X; k/ into

(131) Smix
even.X; k/D

1

2
�Seven.X; kC 1/CG.X; k/;

where Seven.X; k/ is defined in (121) and studied in Proposition 13, and

G.X; k/D
1

2

X
D2Dodd
D<X=8

1

2.kC1/!.D/

X
.Dr/; .Ei /

�Y
r2Qk

�
2

Dr

�Lk.r/�(132)

�

� Y
r; s2Qk

�
Dr

Ds

��k.r;s/� � 2

E2 E3

�
4

 
E0 E1

E2 E3

!2
4

ŒE2E3; 2�4;

where the sums are over D 2Dodd, D �X=8, and over .Dr/r2Qk and .Ei /i2Q such
that

D D
Y

r2Qk

Dr D
Y
i2Q

Ei ;

and Ei D EiEi is the privileged factorization of Ei .

10.1. Study of G.X; k/. Starting from (132), and by applying the same pro-
cess as in Sections 8.3 and 8.4 we introduce

Dr;i D g:c:d:.Dr; Ei /;

for r 2 Qk and i 2 Q, to finally write the even analogue of (100):

(133) G.X; k/D
1

2

X
.Dr;i /

�2
�Y

r;i

Dr;i
��Y

r;i

2�.kC1/!.Dr;i /

��Y
r;i

Y
s;j

�
Dr;i

Ds;j

��k.r;s/�

�

�Y
r

Y
s

�
Dr;0

Ds;2

�2
4

��Y
r

Y
s

�
Dr;0
xDs;3

�2
4

��Y
r

Y
s

 
xDr;1

Ds;2

!2
4

��Y
r

Y
s

 
xDr;1
xDs;3

!2
4

�
;

�

�Y
r; i

�
2

Dr;i

�Lk.r/ � �Y
r

�
2

Dr;2 xDr;3

�
4

�� Y
r

Dr;2Dr;3; 2

�
4

;

where

� the indices r and s belong to Qk ,
� the indices i and j belong to Q,
� the 4kC1-tuples .Dr;i / satisfy

(134) Dr;i 2 Dodd[f1g and
Y

r2Qk

Y
i2Q

Dr;i �X=8;

� Dr;i DDr;iDr;i is the privileged factorization of Dr;i .

Our next task is to detect the main terms in (133), by following the path of
Section 8.3. However, there is a big difference in the present situation since there
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is no more symmetry between the pairs of indices f0; 1g and f2; 3g. By the same
approach, leading to (120), we have

(135) G.X; k/D
1

2

�
G0;1.X; k/CG2;3.X; k/

�
CO

�
X.logX/�

1
2
� 1

2kC2
C"�

;

with

G0;1.X; k/D
X
Dr;0

X
Dr;1

�2
�Y

r
Dr;0Dr;1

� �Y
r
2�.kC1/!.Dr;0Dr;1/

�(136)

�

�Y
r

Y
s

�
Dr;0Dr;1

Ds;0Ds;1

��k.r;s/��Y
r

�
2

Dr;0Dr;1

�Lk.r/ �
;

and

G2;3.X; k/D
X
Dr;2

X
Dr;3

�2
�Y

r
Dr;2Dr;3

� �Y
r
2�.kC1/!.Dr;2Dr;3/

�
(137)

�

�Y
r

Y
s

�
Dr;2Dr;3

Ds;2Ds;3

��k.r;s/��Y
r

�
2

Dr;2Dr;3

�Lk.r/ �
�

�Y
r

�
2

Dr;2 xDr;3

�
4

��Y
r
Dr;2Dr;3; 2

�
4

;

where the variables of summations satisfy (134). In (136), we write DrDDr;0Dr;1
and we see at once the equality (see Lemma 47):

(138) G0;1.X; k/D Seven.X; k/COk;"
�
X.logX/�

1
2
� 1

2kC2
C"�

:

But G2;3.X; k/ is an error term because of the oscillations of the symbols
containing 2. To prove this, we argue as in Sections 8.2 and 8.3. First of all, we
split the summations in (137) in order to make the variables Dr;i (i D 2 or 3)
independent. This means that we split the summation into subsums corresponding
to the extra inequalities

Ar;i �Dr;i <�Ar;i ; !.Dr;i /��
0 .i D 2; 3/

with an admissible error (�0 is defined in (102)). We may also suppose that

(139) X
1
2 �

Y
r
Ar;2Ar;3 ��

�4kC1 X=8

with an admissible error.
For notational simplicity, we suppose that the largest Ar;i is of the form Ar0;2,

hence it is greater than X4
�.kC1/

. We consider two cases:

� There is an index .s0; 2/ satisfying

(140) Ar0;2 > As0;2 > .logX/100�10
k

and �k.r0; s0/C �k.s0; r0/� 1 mod 2:
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The last condition means that the indices r0 and s0 are linked. The symbol
�
Dr0;2
Ds0;2

�
is really present in (137) and the associated variables are large. Hence Lemma 33
is efficient. The same holds if the index .s0; 2/ is replaced by .s0; 3/.

� All the variables which are linked with Dr0;2 are small (which means that
their sizes do not satisfy the inequality in (140)). Let d be the product of these
variables. Note that d � 1 mod 4 is an integer. This integer d may be equal to 1
but it is less than some power of logX . The sum we are studying can be written
as

(141) S WD
X
d

X
`

˛d;`
X
Dr0;2

2�.kC1/!.Dr0;2/

�
Dr0;2

d

��
2

Dr0;2

�
4

�
d`Dr0;2; 2�4;

or as its conjugate, according to the value of Lk.r0/. In (141), ˛d;` is some complex
number with modulus less than one, the product d`Dr0;2 replaces

Q
rDr;2Dr;3.

We apply the last part of Proposition 7 to the largest prime privileged divisor of
Dr0;2 (as we did several times before) by using the equality�

Dr0;2

d

�
D

�
Dr0;2

d

�2
4

:

This leads to

S �
�Y

r
Ar;2Ar;3

�
.logX/�B �X.logX/�B ;

for any constant B . Summing over all the Ar;i satisfying (139), we get

(142) G2;3.X; k/DOk;"
�
X.logX/�

1
2
� 1

2kC2
C"�

:

Inserting (138) and (142) in (135), we get

G.X; k/D
1

2
�Seven.X; k/COk;"

�
X.logX/�

1
2
� 1

2kC2
C"�

D
1

2

k�1Y
jD0

.2j C 1/ �Deven.X/CO
�
X.logX/�

1
2
� 1

2kC2
C"�

by Proposition 13. It remains to insert this equality into (131), to apply Proposition
13 to Seven.X; kC 1/ and to sum the coefficients of the main terms to conclude the
proof of Proposition 15.
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