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Abstract

Let Sym3 C�!P�.k˚Sym3 k˚Sym3 k˚k/DP13; A 7! .1 WA WA0 WdetA/ be
the Veronese embedding of the space of symmetric matrices of degree 3, where A0

is the cofactor matrix of A. The closure SpG.3; 6/ of this image is a 6-dimensional
homogeneous variety of the symplectic group Sp.3/. A canonical curve C16 � P8

of genus 9 over a perfect field k is isomorphic to a complete linear section of this
projective variety SpG.3; 6/ � P13 unless C ˝k Nk, Nk being the algebraic closure,
is a covering of degree at most 5 of the projective line. We prove this by means of
linear systems of higher rank.

Introduction

Let SpG.n; 2n/ be the symplectic Grassmannian, that is, the Grassmannian
of Lagrangian subspaces of a 2n-dimensional symplectic vector space, over a field
k. In the case nD 3, SpG.3; 6/ is of dimension 6 and embedded into the projective
space P13 with homogeneous coordinate .y WX W Y W x/, where x; y 2 k are scalars
and X; Y 2 Sym3 k are symmetric matrices. Then SpG.3; 6/� P13 is the common
zero locus of the following 21 (=6+6+9) quadratic equations

(0.1) X 0 D yY; Y 0 D xX 2 Sym3 k and XY D xyI3 2Mat3 k;

which will be derived in Section 2 after Proposition 2.3.
In our study of Fano 3-folds, we observed that this (symmetric) projective

variety has a canonical curve section of genus 9, that is, a transversal intersection

ŒC � P8�D ŒSpG.3; 6/� P13�\H1\ � � � \H5

is a curve of genus 9 embedded in P8 by the ratio of the differentials of the first kind.
We showed that every general curve of genus 9 is obtained in this way when k DC
([10, Cor. 6.3]). The purpose of this article is to show the following refinement,
which was partly announced in [11].

Supported in part by the JSPS Grant-in-Aid for Exploratory Research 12874002, 20654004 and for
Scientific Research (S)19104001.
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THEOREM A. Let C be a curve of genus 9 over an algebraically closed field k.
Then C is isomorphic to a transversal linear section of the 6-dimensional symplec-
tic Grassmannian SpG.3; 6/� P13 if and only if C is not pentagonal, i.e., C has
no g15 .

By Bertini’s theorem we have

COROLLARY. If C satisfies the condition given in Theorem A and if k is
of characteristic zero, then C is contained in a smooth K3 surface as an ample
divisor.

This theorem, together with similar results [14] and [13] in genus 7 and 8,
will be applied to our classification of Gorenstein-Fano 3-folds with only canonical
singularities (cf. [15]).

We prove the theorem using a certain simple vector bundle of rank 3. By
its uniqueness (see below) and by a standard descent argument (�7), we have the
following also:

THEOREM B. Let C be a curve of genus 9 defined over a perfect field k and
assume that C has no g15 over the algebraic closure Nk. Then we have

.1/ Chas an embedding into the 6-dimensional symplectic Grassmannian SpG.3;6/
� P13 over k whose image is a transversal intersection with a k-linear sub-
space P�P13 of dimension 8, and

.2/ such subspaces P cutting out C are unique up to the action of PGSp.3/. More
precisely, for every isomorphism g WC DSpG.3; 6/\P!C 0DSpG.3; 6/\P 0

there exists  2 PGSp.3; k/ such that .P /D P 0.

Here PGSp.3/ is the subgroup of PGL.6/ stabilizing the 1-dimensional space
generated by a symplectic form. Let G.8;P13/ be the Grassmannian of 8-dimen-
sional linear subspaces P of P13 and G.8;P13/t the open subset consisting of P ’s
such that the intersection P \SpG.3; 6/ is transversal.

COROLLARY. The weighted cardinality, or mass, of the nonpentagonal curves
C of genus 9 over the finite field Fq is equal to #G.8;P13/t=#PGSp.3;Fq/:X

nonpentagonal

1

#AutFC
D

#G.8;P13/t .Fq/
q9.q6� 1/.q4� 1/.q2� 1/

:

The key to the proof is linear systems of higher rank (�3), especially their semi-
irreducibility (Definition 3.3). Let C be as in Theorem A and ˛ a g28 of C , which
exists by Brill-Noether theory (cf. [1, Chap. 7]). Let ˇ be the Serre adjoint KC˛�1

and Qˇ the dual of the kernel of the evaluation homomorphism O˚3C �! ˇ. Then
there exists a unique nontrivial extension of ˛ by Qˇ with h0.E/D 6 (Lemma 5.2
and 5.4). Moreover, such an extension E, often denoted by Emax, does not depend
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on the choice of ˛ and is characterized by the following property (Proposition 5.6):

(0.2)

8̂<̂
:

i/
V3

E 'KC ;

ii/ h0.E/D 6; and

iii/ jEj is free and semi-irreducible.

Such a bundle E gives rise to a morphism ˆE W C �! G.H 0.Emax/; 3/ to the
Grassmannian of 3-dimensional quotient spaces of H 0.Emax/ (�3). The following
is the essence of Theorems A and B:

THEOREM C. Let C be a nonhyperelliptic curve of genus 9 over an alge-
braically closed field and assume that a rank 3 vector bundle E D Emax on it
satisfies the condition .0:2/. Then the natural linear maps

�2 W

2̂

H 0.E/�!H 0
� 2̂

E
�

and �3 W

3̂

H 0.E/�!H 0
� 3̂

E
�
'H 0.KC /

are surjective and Ker�2 is generated by a nondegenerate bivector � . The image
of ˆE is contained in the symplectic Grassmannian G.H 0.E/; �/ (see §2) and the
commutative diagram

(0.3)

C �! G.H 0.E/; �/

canonical # # Plücker
P8 �! P�

V3
.H 0.E/; �/

P�x�3

is cartesian, where x�3 is the linear map

(0.4)
3̂

.H 0.E/; �/ WD

3̂

H 0.E/=.� ^H 0.E// �!H 0
� 3̂

E
�
'H 0.KC /

induced by �3.

Notation and conventions. For a vector space V , the second exterior productV2
V is the quotient of V ˝V by the subspace generated by v˝v, v 2V . Similarly

S2V is the quotient generated by u˝ v� v˝ u, u; v 2 V . An element of
V2

V

is called a bivector of V . We denote by G.r; V / and G.V; r/ the Grassmannians
of r-dimensional subspaces and quotient spaces of V , respectively. Two projective
spaces G.1; V / and G.V; 1/ associated to V are denoted by P�.V / and P�.V /,
respectively. P� is a covariant functor and P� is contravariant. For a vector space
or vector bundle V , its dual is denoted by V _. The tensor product symbol ˝
between a vector bundle and a line bundle is often omitted when there seems no
fear of confusion.

All (algebraic) varieties are considered over a fixed base field k. A smooth
complete geometrically irreducible curve is simply called a curve. By a gr

d
, we

mean a line bundle L on a curve with degLD d and dimH 0.L/� r C 1. A satu-
ration of a subsheaf F �E is the largest subsheaf zF between F and E such that
zF=F is torsion.
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1. Preliminaries

We prove two lemmas on the number of global sections. Let � be a line
bundle on a curve C and � the Serre adjoint KC ��1. We denote the evaluation
homomorphism H 0.�/˝k OC �! � by ev� and the dual of its kernel by Q� . We
have an exact sequence

(1.1) 0 �!Q_� �!H 0.�/˝k OC �! �:

Its dual

(1.2) 0 �! ��1 �!H 0.�/_˝k OC �!Q� �! 0

is also exact if � is free. The rank of Q� is equal to dim j�j D r � 1, where we put
r D h0.�/. The following is a variant of the so-called base point free pencil trick.

LEMMA 1.1. For a vector bundle E of rank r on C ,

dim Hom .E; �/C dim Hom .Q�; E/� r.h
0.E/� deg �/��.E/:

Proof. Take the global section of the exact sequence (1.1) tensored with E.
Then we have

dim Hom .Q�; E/C h
0.E�/� rh0.E/:

By the Riemann-Roch theorem and Serre duality,

h0.E�/� h0.E_�/D �.E�/D �.E/C r deg �:

Our assertion follows immediately from these. �

If E is of canonical determinant, i.e.,
Vr

E 'KC , then

(1.3) dim Hom .E; �/C dim Hom .Q�; E/� r.h
0.E/� r � s/� 2�C 2;

since �.E/ D .r � 2/.1� g/, where s D h0.�/ D h1.�/ and � WD g � rs is the
Brill-Noether number of �, or equivalently, of �.

The number of global sections behaves specially if a vector bundle has a
nondegenerate quadratic form with values in KC . The following is one of such
phenomena clarified in Mumford [16].

PROPOSITION 1.2. Let E and F be rank two vector bundles on a curve C
such that .detE/˝.detF /'KC . Then h0.E˝F / is congruent to degE modulo 2.

Proof. Choose a line subbundle and express F as an extension

(1.4) 0 �! L �! F �!M �! 0

of line bundles. The alternating bihomomorphism E �E! detE; .s; t/ 7! s ^ t;

induces a bilinear map

' WH 0.E˝M/�H 1.E˝L/ �!H 0..detE/˝ .detF //DH 0.KC /' k;

which is nondegenerate by Serre duality. Let e 2H 1.M�1˝L/ be the extension
class of (1.4) and ı WH 0.E˝M/�!H 1.E˝L/ be the coboundary map coming
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from E˝ (1.4). Then '.s; ı.s//D s[.s[e/D .s^s/[eD 0 for s 2H 0.E˝M/.
Therefore, the linear map ı is alternating with respect to the Serre pairing '. Hence
h0.E˝F / is congruent to

h0.E˝L/C h0.E˝M/D h0.E˝L/C h1.E˝L/

modulo 2. Since h0.E ˝L/� h1.E ˝L/ is congruent to deg.E ˝L/, we have
our assertion. �

2. Symplectic Grassmannian

Let A be a k-vector space. For a subspace B � A the linear map
V2

B !V2
A is injective.

Definition 2.1. A bivector � 2
V2

A is degenerate if � is contained in
V2

B

for a proper subspace B � A.

A bivector � is always degenerate if dimA is odd. In the case dimA is even, �
is degenerate if and only if the value of the Pfaffian is zero. There exists a minimal
subspace B � A such that � 2

V2
B . This subspace B is called the co-radical

of � .

Definition 2.2. A symplectic vector space is a pair .V; �/ of a vector space V
and a nondegenerate bivector � 2

V2
V _ of the dual vector space.

Note that
V2

V _ is the quotient of V _ ˝ V _ by the subspace SB.V / of
symmetric bilinear forms on V . When the characteristic of k is not 2, the equiva-
lence class � C SB.V / has the unique anti-symmetric representative, say �AS, in
V _˝V _. A subspace U �V is Lagrangian if 2 dimU D dimV and the restriction
� jU WU �U �!k of � to U is symmetric. If char.k/¤2, then the second condition
is equivalent to the usual one; that is, �ASjU D 0. We denote the set of Lagrangian
subspaces of .V; �/ by G.�; V /.

Two vectors u and v 2 V are perpendicular with respect to � if the restriction
of � to the subspace spanned by u and v is symmetric. For a nonzero vector v 2 V ,
the set of vectors u 2 V perpendicular to v is a subspace of codimension one. We
denote this subspace by v?. � induces a bilinear form x� on the quotient space
xV WD v?=kv and . xV ; x�/ becomes a symplectic vector space of dimension two
less. If a Lagrangian subspace U of .V; �/ contains v, then the quotient U=kv
is a Lagrangian of . xV ; x�/. Conversely, if xU is a Lagrangian of . xV ; x�/, then its
inverse image by v? ! xV is a Lagrangian of .V; �/ which contains v. By this
correspondence we identify G.x�; xV / with the subset of G.�; V / consisting of ŒU �
with v 2 U .

For our purpose, the Grassmannian of quotient spaces is more convenient than

that of subspaces. A quotient space A
f
�!Q of A is Lagrangian with respect to a

nondegenerate bivector � if 2 dimW D dimA and if .
V2

f /.�/D 0. We denote the
set of Lagrangian quotient spaces of the pair .A; �/ by G.A; �/, which coincides
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with G.�; A_/. Let U be the universal quotient bundle on G.A; n/, dimA D 2n.
Then � 2

V2
A determines a global section of

V2 U, which we denote by s. Then
G.A; �/ coincides with the zero set of s 2H 0.G.A; n/;

V2 U/. We endow G.A; �/
with a scheme structure by considering it as the zero locus of s. An element of this
isomorphism class is denoted by SpG.n; 2n/.

PROPOSITION 2.3. The symplectic Grassmannian G.A; �/ is a smooth vari-
ety of dimension n.nC 1/=2 and the anti-canonical class is nC 1 times the the
hyperplane section H of the Plücker embedding.

Proof. Since
V2

A generates
V2 U, G.A; Q�/ is locally a smooth complete

intersection for general Q� by the Bertini theorem for vector bundles ([12, Th. 1.10]).
Since the GL.2n/-orbit of nondegenerate bivectors is dense in

V2
A, G.A; �/ is

isomorphic to G.A; Q�/. It is of dimension n2 � rank
V2 U D n.nC 1/=2. It is

irreducible since the symplectic group Sp.n/ acts transitively. The conormal bundle
I=I2 of G.A; �/ is the restriction of .

V2 U/_, where I is the ideal sheaf. (I is the
image of .

V2 U/_! OG.A;n/ and Œ.
V2 U/_! I�˝OG.A;�/ is an isomorphism.)

Since c1.G.A; n//D 2nH and c1.
V2 U/D .n� 1/H , the anti-canonical class of

G.A; �/ is equal to the restriction of c1.G.A; n//� c1.
V2 U/D .nC 1/H . �

Choose a pair of Lagrangian subspaces U0 and U1 of a symplectic vector
space .V; �/ with U0 \ U1 D 0. For a linear map f W U0 ! U1 the graph
�f �U0�U1 D V is Lagrangian if and only if f 2Hom .U0; U1/'U1˝U1
is a symmetric tensor. The Plücker coordinate of �f is equal to

1Cf C .f ^f /C .f ^f ^f /C � � �

(cf. [14, �1]). Hence, for example, the 9-dimensional Grassmannian G.3; 6/ is the
closure of the Veronese embedding of the space of square matrices of degree 3,

Mat3 C �! P�.k˚Mat3 k˚Mat3 k˚ k/; A 7! .1 W A W A0 W detA/;

where A0 is the cofactor matrix of A. It is the common zero locus of the Plücker
equations

X 0 D yY; Y 0 D xX 2Mat3 k and XY D YX D xyI3 2Mat3 k;

in the projective space P19 with homogeneous coordinate .y W X W Y W x/, where
x; y 2 k are scalars and X; Y 2Mat3 k are square matrices. Restricting ourselves
to symmetric matrices, we have the equations (0.1) of SpG.3; 6/� P13.

The divisor class group of the Grassmannian G.n; 2n/ is generated by the
hyperplane section class H . Its Chow group of codimension 2 cycles is generated
by two Schubert subvarieties:

(2.1) Y D fŒU � jU \W ¤ 0g and Y 0 D fŒU � jU CW 0 ¤ V g

for a subspace W of dimension n� 1 and W 0 of codimension n� 1. It is well
known that the self intersection H �H is (rationally) equivalent to their sum. On
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the symplectic Grassmannian, obviously Y and Y 0 are equivalent and hence we
have

(2.2) H �H � Y CY 0 � 2Y:

Let a be a nonzero vector of A. The image x� of � in
V2

.A=ka/ is degen-
erate since dim.A=ka/ is odd. In fact, the co-radical xA of x� is of codimension
one. Similar to the inclusion G.x�; xV / ,! G.�; V /, we have a natural inclusion
G. xA; x�/ ,! G.A; �/. Moreover, G. xA; x�/ is the scheme of zeros of the global
section of EDUjG.A;�/ corresponding to a 2 A.

Let G.A; n/ � P�.
Vn

A/ be the Plücker embedding of the Grassmannian
G.A; n/. The tautological line bundle OG.1/ is isomorphic to

Vn U. Since � van-
ishes on G.A; �/, so do all the linear forms � ^ .

Vn�2
A/�

Vn
A. Let

Vn
.A; �/

be the quotient space of
Vn

A by the subspace � ^ .
Vn�2

A/. Then G.A; �/ is
contained in the subspace P�.

Vn
.A; �// and we have a commutative diagram

(2.3)

G.A; �/ �! P�.
Vn

.A; �//

\ \

G.A; n/ �! P�.
Vn

A/:

PlRucker

G.A; �/ coincides with G.A; 1/D P1 for nD 1 and is a smooth hyperplane section
of the smooth 4-dimensional quadric G.A; 2/� P5 for nD 2.

Now we set nD3 and investigate the conormal space of G.A; �/�P�
V3

.A; �/

and an important cubic cone in it. Let A!Q be a 3-dimensional quotient space
and put W D Ker ŒA!Q�. Then we have a filtration of subspaces

(2.4) F0 D

3̂

W � F1 D
� 2̂

W
�
^A� F2 DW ^

2̂

A� F3 D

3̂

A:

Then
V3

A ! F3=F2 '
V3

Q is the Plücker coordinate of Q. F2=F1 is iso-
morphic to W ˝ .

V2
Q/. .F2=F1/ ˝ detQ�1 ' Hom .Q;W / is canonically

isomorphic to the cotangent space of G.A; 3/ at ŒQ�. F1˝ detQ�1 is canonically
isomorphic to the conormal space of G.A; 3/� P�

V3
A. Hence we have an exact

sequence
0 �! k �! F1˝ detW �1 �! Hom .W;Q/ �! 0:

jj

N_G.A;3/=P˝ detQ˝ detW �1

Assume that ŒA!Q� 2 G.A; �/ is Lagrangian. Then � belongs to W ^A�V2
A. Let

xF0 � xF1 � xF2 � xF3; xFi D Fi=.Fi \ � ^A/;

be the quotient filtration of (2.4) by �^A�F2. Then xF3= xF2'
V3

Q is the Plücker
coordinate of Q. The cotangent space of G.3; �/ at ŒQ� is xF2= xF1˝ detQ�1 '
S2W . The conormal space is isomorphic to xF1 ˝ detQ and we have an exact
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sequence

(2.5)
0 �! k �! xF1˝ detQ �! S2Q �! 0:

jj

N_G.A;�/=P˝ .detQ/2

Let

(2.6) ˛ W P�
� 3̂

A
�
� � � �! P�

� 3̂

.A; �/
�

be the projection with center P�.� ^ A/. Since � is nondegenerate, G.3; A/ is
disjoint from the center. We consider the image of the Schubert subvariety

SQ D fŒU � j rk ŒU ! A!Q�� 1g � G.3; A/

by ˛ for a Lagrangian quotient space A!Q (cf. (3.3) and (4.1)). SQ is a 5-di-
mensional subvariety of

P�
�� 2̂

W
�
^A

�
D P�.N_G.A;3/=P;Q/

and ˛.SQ/ is a subvariety of

P�. xF1/D P�.N_G.A;�/=P;Q/D P6:

By the exact sequence (2.5), P�.NG.A;�/=P;ŒQ�/ has the distinguished point corre-
sponding to Ker ŒA!Q�, which we denote by �Q, and the special projection onto
P�.S2Q/. ˛.SQ/ contains the point �Q.

PROPOSITION 2.4. The image ˛.SQ/ is a cubic hypersurface of

P�.NG.A;�/=P;ŒQ�/:

More precisely, it is the cone over the discriminant hypersurface of P�.S2Q/ with
vertex �Q.

Proof. Choose a basis fv1; v2; v3; v�1; v�2; v�3g of A such that fv1; v2; v3g
is a basis of Ker ŒA!Q� and � D v1^v�1Cv2^v�2Cv3^v�3. Let fu1; u2; u3g
be a basis of U 2SQ such that u1; u2 2Ker ŒU !Q�. The exterior product u1^u2
is equal to

a1v2 ^ v3C a2v3 ^ v1C a3v1 ^ v2 2

2̂

Ker ŒA!Q�

for a1; a2 and a3 2 k. Put u3 D a4v1C a5v2C a6v3C b1v�1C b2v�2C b3v�3.
Then the Plücker coordinate u1 ^u2 ^u3 of U is

a0v1^v2^v3C .a1v2^v3Ca2v3^v1Ca3v1^v2/^ .b1v�1Cb2v�2Cb3v�3/

D a0v1 ^ v2 ^ v3C .a2b1v12� a1b2v21/C .a1b3v31� a3b1v13/

C .a3b2v23� a2b3v32/C

3X
iD1

aibivi i ;

where we put a0 D a1a4C a2a5C a3a6,

v11 D v�1 ^ v2 ^ v3; v22 D v1 ^ v�2 ^ v3; v33 D v1 ^ v2 ^ v�3
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and vjk D vi ^ vj ^ v�j for every fi; j; kg D f1; 2; 3g. Since vjk C vkj 2 A^ �
for every j ¤ k, u1 ^u2 ^u3 is congruent to

a0v1 ^ v2 ^ v3� .a1b2C a2b1/v12

�.a1b3C a3b1/v13C .a2b3C a3b2/v23C

3X
iD1

aibivi i

modulo A^� . Hence ˛.SQ/ consists of those 0v1^v2^v3C
P
1�i�j�3 ij vij

such that the quadratic form
P
1�i�j�3 ijXiXj is of rank � 2 (or equivalently,

4112233� 11
2
23� 22

2
13� 33

2
12C 121323 D 0). �

3. Linear systems of higher rank

A linear system of rank r is a pair .E;A/ of a vector bundle E of rank r
and a space of global sections A�H 0.E/. The special one with ADH 0.E/ is
called a complete linear system and denoted by jEj. A linear system .E;A/ on an
algebraic variety C is free if the evaluation homomorphism evE;A WA˝k OC �!E

is surjective. If this holds, we obtain a morphism ˆE;A of C to the Grassmannian
G.A; r/ of r-dimensional quotient spaces. It is characterized by the property that
ˆ�E;A.U; A/D .E;A/, where U is the universal quotient bundle on G.A; r/ and
ˆjE j is abbreviated to ˆE .

Let
m̂

evE;A W
m̂

A˝k OC �!

m̂

E

be the exterior product of the evaluation homomorphism evE;A. It induces the
linear map

m̂

A �!H 0
� m̂

E
�
;

which we denote by �m. The image �m.s1 ^ � � � ^ sm/ of a simple m-vector s1 ^
� � � ^ sm is zero if and only if m global sections s1; : : : ; sm 2 A � H 0.E/ are
linearly dependent at the generic point of C , that is, they generate a subsheaf of
rank less than m. This linear map is most important when m D r . Assume that

�r W
rV
A �!H 0.detE/ is surjective. Then the map

(3.1) ‰ W P�.H 0.detE//! P�
� r̂

A
�

induced by �r is a linear embedding and the following diagram is commutative:

(3.2)
C

ˆE
�! G.A; r/

\ \ Plücker

P�.H 0.detE//
‰
�! P�.

Vr
A/:

Even when �r is not surjective, the above is still commutative though ‰ D P��r
is only a rational map. The linear map �r is important in analyzing E itself also.
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Now we assume that the base field k is algebraically closed (until the end of
�6). The dual Grassmannian G.r; A/� P�.

Vr
A/ is also important for understand-

ing .E;A/.

Definition 3.1. A linear system .E;A/ of rank r is irreducible if it satisfies
the following equivalent conditions:

i) For every r-dimensional linear subspace U of A the image of U ˝k OC �!E

is of rank r , and

ii) The kernel of the natural linear map �r W
Vr

A �!H 0.C; detE/ contains no
nonzero simple r-vectors; that is, G.r; A/\P�.Ker�r/D∅.

The following is known as Castelnuovo’s trick (cf. [2, Chap. 10]):

PROPOSITION 3.2. If r.dimA� r/� h0.detE/, then .E;A/ is reducible,

Proof. The left-hand side of the inequality is the dimension of G.r; A/. The
codimension of P�.Ker�r/� P�.

Vr
H 0.E// is at most h0.detE/. Hence, if the

inequality holds, then the intersection G.r; A/\P�Ker�r is not empty. �

A line bundle is irreducible. But irreducibility seems a strong condition in
general. Irreducible bundles of rank � 2 will not appear in the sequel. Instead the
following concept plays a crucial role in our proof.

Definition 3.3. A linear system .E;A/ of rank r on a (smooth complete) curve
C is semi-irreducible if the evaluation homomorphism evU W U ˝k OC �! E is
either injective or everywhere of rank r � 1 for every r-dimensional subspace U
of A.

For an r-dimensional quotient space A!Q, we denote by SQ the Schubert
subvariety

(3.3) fŒU � j rk ŒU ! A!Q�� r � 2g � G.r; A/

associated to Q. Also, SQ is contained in the projective space P�..
V2

W / ^

.
Vr�2

A//, which is the projectivisation P�.N_G.A;r/=P;ŒQ�/ of the conormal space
of G.A; r/� P�.

Vr
A/ at ŒQ�. The following is obvious:

LEMMA 3.4. .E;A/ is semi-irreducible if and only if SEp
\ P�Ker�r D ∅

for every fiber Ep of E, p 2 C .

Now we restrict ourselves to complete linear systems for simplicity.

PROPOSITION 3.5. Assume that a complete linear system jEj of rank r is free
and semi-irreducible.

.1/ If F is a proper nonzero subbundle, then h0.F / � r.F /C 1, where r.F / is
the rank of F .

.2/ If h0.E/� r C 2 and if F is a subbundle of rank � r � 2, then h0.F /� r.F /.

.3/ If h0.E/� r C 3, then E is simple, i.e., EndE D k.
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Proof. (1) Assume that F is of rank r �1 and h0.F /� r . Then the evaluation
homomorphism B ˝k OC ! F is surjective for every r-dimensional subspace
B �H 0.F / by semi-irreducibility. Hence we have h0.F /� r . The general case
follows from this since, for every proper subbundle F , there exists a subsheaf
F 0 �E of rank r � 1 which contains F and h0.F 0/� h0.F /C r.F 0/� r.F /.

(2) By the same reason as above, we may assume that F is of rank r � 2. We
prove h0.F /¤ r.F /C1 by contradiction. Assume that h0.F /D r.F /C1 and put
G DE=F . We regard the quotient space H 0.E/=H 0.F / as a subspace of H 0.G/.
Since dimH 0.E/=H 0.F / � h0.E/� .r � 1/ � 3 and since G is of rank 2, there
exists a global section s 2H 0.E/nH 0.F / such that Ns 2H 0.G/ vanishes at a point
on C . Then H 0.F / and s do not generate a subsheaf of rank r or a subbundle of
rank r � 1, which contradicts the semi-irreducibility of jEj. Therefore, we have
h0.F /� r.F / by (1).

(3) It suffices to show that every endomorphism � WE �!E is either zero or
an isomorphism. Assume that � is neither. Then both the kernel and the image are
proper subsheaves and we have

h0.E/� h0.Ker�/C h0.Im�/� r.Ker�/C 1C r.Im�/C 1D r C 2

by (1), which is a contradiction. �

The following is proved similarly.

LEMMA 3.6. Assume that two complete linear systems jEj and jE 0j are free,
semi-irreducible and of the same rank r and assume further that h0.E/ � r C 3.
Then every nonzero homomorphism E!E 0 is injective.

4. Linear sections of the symplectic Grassmannian

Throughout this section C � P8 is a transversal linear section SpG.3; 6/\
H1\ � � � \H5 of the 6-dimensional symplectic Grassmannian.

LEMMA 4.1. C is of genus 9 and the restriction of tautological line bundle
O.1/ is isomorphic to the canonical bundle KC of C .

Proof. By Proposition 2.3 and by adjunction, we have KC ' OC .KSpG C

H1C � � �CH5/' OC .1/: The Chern class of the universal quotient bundle U on
G.3; 6/ is the sum 1C �1C �2C �3 of the special Schubert cycles ([8, Chap. 1]).
By Pieri’s formula, we have

2g.C /� 2D degŒSpG.3; 6/� P13�D
�
c3

� 2̂

U
�
:c1.U/

6
�

D .�1�2� �3:�
6
1 /D 21� 5D 16;

since SpG.3; 6/ is the zero locus of a global section of
V2 U. Hence C is of

genus 9. �

Let G.A; �/, dimAD 6, be a representative of SpG.3; 6/.



1550 SHIGERU MUKAI

LEMMA 4.2. The linear map
V3

.A; �/ ! H 0.KC / is surjective and its
kernel is generated by the linear forms f1; : : : ; f5 2

V3
.A; �/ defining the five

hyperplanes H1; : : : ;H5.

Proof. Let Xi be the common zero locus of the first i linear forms f1; : : : ; fi
for 1� i � 5. Then we obtain a ladder

C DX5 �X4 �X3 �X2 �X1 �X0 WD G.A; �/:

Since C is irreducible, so is each Xi . Hence the kernel of the restriction map
H 0.Xi ;OX .1//�!H 0.XiC1;OX .1// is generated by fiC1, for every 1� i � 4.
Hence

V3
.A; �/=hf1; : : : ; f5i �!H 0.KC / is injective. This map is also surjec-

tive because the source and the target have the same dimension. �
Let E be the restriction of U to G.A; �/ and E the restriction to C .

LEMMA 4.3. The restriction map A!H 0.E/ is injective.

Proof. Assume the contrary. Then for each of the Lagrangian quotient spaces
A!Q parametrized by C , Ker ŒA!Q� contains a nonzero common vector a.
Hence C is contained in the symplectic Grassmannian G. xA; x�/, where xA is the
co-radical of A=ka. This contradicts the preceding lemma since G. xA; x�/ lies in a
4-dimensional linear subspace. �

By this lemma we identify A with its image in H 0.E/.

LEMMA 4.4. .1/ A nonzero global section s 2 A of E has at most two zeros
(counted with multiplicity); that is, A\H 0.E.�D//D 0 for every effective divisor
D of degree 3 on C .

.2/ If A0 � A is a subspace of codimension one, then the cokernel of the
evaluation homomorphism A0˝k OC �!E is of length � 2.

Proof. Assume that s has at least three zeros. Then we have an exact sequence
E_ �! OC �! OD �! 0 for an effective divisor D of degree � 3. Let G. xA; x�/�
G.A; �/ be the 3-dimensional symplectic Grassmannian determined by s 2A. Then
the intersection G. xA; x�/\C containsD. Since G. xA; x�/ is a quadric, its intersection
with the linear span hDi is of positive dimension, which is a contradiction. This
shows (1). The proof of (2) is similar. �

Let U � A be a 3-dimensional subspace and HU � P�
V3

A the hyper-
plane corresponding to it. Then the intersection HU \ G.A; r/ consists of the
r-dimensional quotient spaces A!Q such that the composite U ,! A!Q is
not an isomorphism. It is singular along the Schubert subvariety

(4.1) fŒA!Q� j rank ŒU ,! A!Q�� 1g:

If HU 6� C , then the evaluation homomorphism evU W U ˝ OC �! E is of
rank 3 at the generic point. Hence it is injective. If HU � C , then HU belongs to
hŒH1�; : : : ; ŒH5�i. Since the intersection C DH1\� � �\H5\G.A; �/ is transversal,
HU \G.A; �/ must be smooth along C . Hence evU is of rank 2 everywhere. So
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we have proved the following, which indicates that the semi-irreducibility is a key
concept for canonical curves of genus 9.

PROPOSITION 4.5. The induced rank three linear system .A;E/ on C D
G.A; �/\H1\ � � � \H5 is semi-irreducible.

By Proposition 3.2, there exists a 3-dimensional subspace U of A such that
HU � C . Let F and ˛ be the image and the cokernel of evU . Then ˛ is a line
bundle, detF is isomorphic to ˇ WDKC˛�1 and we have exact sequences

(4.2) 0 �! ˇ�1 �! O˚3C �! F �! 0 and 0 �! F �!E �! ˛ �! 0:

By (2.2), the line bundles ˛ and ˇ are both of degree 8.

PROPOSITION 4.6. C is nonpentagonal.

Proof. It is obvious that C is nonhyperelliptic. Since SpG.3; 6/� P13 is an
intersection of quadrics (see (0.1)), so is C � P8. In particular, C � P8 has no
tri-secant lines. By the geometric version of the Riemann-Roch theorem ([1, Chap
I, �2]), C has no g13 . Also C has no g25 either, since the (geometric) genus of a
plane quintic is at most 6. Let � be a g15 on C . Then we have h0.�/D 2. Let U
and F be as above. Taking the global section of the exact sequence

Œ0 �! F _ �! O˚3C �! ˇ �! 0�˝ �;

we have

6� 3h0.�/� dim Hom .F; �/C h0.�ˇ/D dim Hom .F; �/C 5C h1.�ˇ/:

Hence we have

(4.3) dim Hom .F; �/C dim Hom .�; ˛/� 1:

Assume that there exists a nonzero homomorphism F ! � and let s be a
nonzero global section in the kernel of U ,!H 0.F /!H 0.�/. Then s has at least
three zeros since degF �deg �D 3. If Hom .F; �/ is zero, then Hom .�; ˛/ is not by
(4.3). Hence ˛ contains a subsheaf isomorphic to �. Let A0 be the inverse image
of H 0.�/ by A! H 0.˛/. Then the cokernel of the evaluation homomorphism
A0˝k OC !E is of length 3. Both contradict Lemma 4.4. �

Remark 4.7. (1) For a curve of genus 9, the nonexistence of g15 is equivalent
to its Clifford index which equals 4 (Martens [9, Beispiel 9]).

(2) Green’s property .Np/ ([6]) gives another proof of the proposition: First
a general curve of genus 9 satisfies .N3/ by Ein [3]. Hence SpG.3; 6/ � P13 and
its complete linear section do so. By the converse of Green’s conjecture (Green-
Lazarsfeld [7]), C is nonpentagonal.

By the proposition and (1) of the remark, C has no g38 . Hence we have
h0.˛/D h0.ˇ/D 3. By Lemma 5.1 below, we have h0.E/� h0.˛/CH 0.Qˇ /� 6.
Combining this with Lemma 4.3, we have
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PROPOSITION 4.8. The restriction map A!H 0.E/ is an isomorphism.

In the following sections we aim at a kind of converse of Proposition 4.5.

5. Rank 3 linear systems on a nonpentagonal curve

Throughout this section we assume that C is a nonpentagonal curve of genus 9.
In particular, C has no g27 . Let ˛ be a g28 , ˇ its Serre adjoint and Qˇ the cokernel
of evˇ as in the introduction and in (1.1). The image of ˆˇ WC �! P2 is a singular
plane curve of degree 8. Hence there exists a pair .p; q/ of points (not necessarily
distinct) such that h0.ˇ.�p � q// D 2. By assumption � WD ˇ.�p � q/ is a free
g16 . Hence we have a commutative diagram

(5.1)
0 �! ˇ�1 �! O˚3C �! Qˇ �! 0

\ # #

0 �! ��1 �! O˚2C �! � �! 0

and an exact sequence

(5.2) 0 �! OC .pC q/ �!Qˇ �! � �! 0:

LEMMA 5.1. (1) h0.Qˇ /D 3;
(2) H 0.˛�1Qˇ /D 0.

Proof. (1) h0.Qˇ / � 3 is obvious from the defining exact sequence of Qˇ .
The opposite inequality h0.Qˇ /� 3 follows from (5.2).

(2) Qˇ is isomorphic to ˇQ_
ˇ

since it is of rank 2. Hence Qˇ is a subbundle
of ˇ˚3. If ˛ 6' ˇ, then H 0.˛�1ˇ/ D 0 and hence H 0.˛�1Qˇ / D 0. If ˛ ' ˇ,
then H 0.˛�1Qˇ /'H

0.Q_
ˇ
/D 0 by the exact sequence (1.1). �

We consider extensions

(5.3) 0 �!Qˇ �!E �! ˛ �! 0

which are �-split; that is, H 0.E/!H 0.˛/ is surjective.

LEMMA 5.2. There exists a nontrivial extension E of ˛ byQˇ with h0.E/D6.

Proof. The extensions with h0.E/D 6 are parametrized by the kernel of the
natural linear map ' W Ext 1.˛;Qˇ /�!H 0.˛/_˝H 1.Qˇ /, which is equal to the
first cohomology H 1 of the homomorphism

Œ˛�1
ev_

�!H 0.˛/_˝OC �˝Qˇ :

Since its cokernel is Q˛˝Qˇ , we have an exact sequence
(5.4)

H 0.˛/_˝H 0.Qˇ /
 
�!H 0.Q˛˝Qˇ /�!H 1.˛�1Qˇ /

'
�!H 0.˛/_˝H 1.Qˇ /

The first map  is injective by (2) of Lemma 5.1 and h0.Q˛ ˝Qˇ / is even by
Proposition 1.2. Since h0.˛/h0.Qˇ /D 9, ' is not injective. �
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PROPOSITION 5.3. Let E be as in the preceding lemma. Then the complete
linear system jEj is free and semi-irreducible.

Proof. jEj is free since both jQˇ j and j˛j are. Let U �H 0.E/ be a 3-dimen-
sional subspace and F � E the saturation of the subsheaf F 0 generated by U .
Obviously h0.F / � 3. If F is of rank one, then degF � 8 by our assumption.
Since F 6� Qˇ , the extension (5.3) splits, which is a contradiction. Hence F is
of rank two. Let � be the quotient line bundle E=F . Since jEj is free, so is �.
Since Hom.E;OC / D 0, we have h0.�/ � 2. By duality and (1) of Remark 4.7,
h0.detF /D h1.�/� gC 1� 4� h0.�/� 4.

Assume that h0.F /� 4. Then F contains a line subbundle � with h0.�/� 2
by Proposition 3.2. Since � 6� Qˇ , � is isomorphic to a proper subsheaf of ˛.
Hence we have h0.�/D 2. Let � be the quotient line bundle F=�. Then we have
h0.�/ � h0.F /� h0.�/ D 2. Since deg � C deg �C deg � D 16, one of the three
line bundles is of degree � 5, which is a contradiction. Hence we have h0.F /D 3
and h0.�/ � h0.E/� h0.F /D 3. Since h1.�/D h0.detF / � 3, � is a g28 and F 0

is isomorphic to Q� . In particular, F 0 D F and F 0 is a subbundle. �

Now conversely we study a uniqueness.

LEMMA 5.4. Nontrivial extensions E of ˛ by Qˇ with h0.E/D 6 are unique.

Proof. The assertion is equivalent to h0.Q˛˝Qˇ /� 10 by the exact sequence
(5.4). Take the global section of the exact sequence

.5:2/˝Q˛ W 0 �!Q˛.pC q/ �!Q˛˝Qˇ �!Q˛� �! 0:

Now

h0.Q˛˝Qˇ /� h
0.Q˛.pC q//C h

0.Q˛�/

D h0.Q˛.pC q//C h
1.Q˛.pC q//

D 2h0.Q˛.pC q//��.Q˛.pC q//:

Since �.Q˛.pC q//D �4, it suffices to show h0.Q˛.pC q// � 3. Assume the
contrary:

The case where h0.Q˛.p C q// D 4. Let fs1; s2; s3; s4g be a basis of the
vector space H 0.Q˛.pC q// such that s1; s2; s3 2H 0.Q˛/ and F is the image
of the evaluation homomorphism H 0.Q˛.pC q//˝k OC �!Q˛.pC q/. Then
the quotient F=Q˛ is generated by the image of s4. Hence, degF � degQ˛C 2
D 10. We have h0.detF /� 4 by the nonexistence of g26 . Since h0.F /� 4, there
exists a 2-dimensional subspace of H 0.F / which generates a rank one subsheaf
by Proposition 3.2. This contradicts the nonexistence of g15 .

The case where h0.Q˛.pCq//� 5. Since degQ˛.pCq/D 12 and since C
has no g14 , we have h0.det.Q˛.pC q///� 5. By Proposition 3.2, there exists an



1554 SHIGERU MUKAI

exact sequence
0 �! � �!Q˛.pC q/ �! � �! 0

such that h0.�/� 2. Since �.�p�q/ is a quotient of Q˛ , we have h0.�.�p�q//
� 2 and deg �.�p� q/� 6, which implies deg � � 4. This is a contradiction. �

We strengthen this lemma.

LEMMA 5.5. A rank 3 vector bundle E on C which satisfies

i)
V3

E 'KC ,

ii) h0.E/� 6, and

iii) jEj is semi-irreducible

is an extension of ˛ by Qˇ .

Proof. By Lemma 1.1, or by (1.3), we have

dim Hom .Qˇ ; E/C dim Hom .E; ˛/� 2:

(h0.E/D r C s and the Brill-Noether number � is equal to 0.) Hence there exists
a nonzero homomorphism either f WQˇ �!E or g WE �! ˛.

If the image of f is a line bundle L, then h0.L/� 2 since Hom .Qˇ ;OC /D 0.
This contradicts (1) of Proposition 3.5. Hence f is injective. By semi-irreducibility,
the cokernel is a line bundle and is isomorphic to ˛.

If g W E �! ˛ is not surjective, then the kernel of H 0.E/ �!H 0.˛/ is of
dimension � 4, which contradicts semi-irreducibility. Hence g is surjective and its
kernel is isomorphic to Qˇ . �

By the two lemmas above, we have the following:

PROPOSITION 5.6. Vector bundles E on C which satisfy the condition of the
lemma are unique up to isomorphism.

This vector bundle is denoted by Emax.

COROLLARY. If E is a rank 3 vector bundle of canonical determinant on C
and if jEj is semi-irreducible, then h0.E/� 6.

Remark 5.7. (1) By the proposition and its proof, we obtain an explicit bijec-
tion between two sets: W 2

8 .C /, the set of g28’s of C , and the intersection

G.3;H 0.Emax//\P10:

It is known that the cardinality of W r�1
d

.C / of a general curve C of genus g
is equal to the degree of a g-dimensional Grassmannian when the Brill-Noether
number � is zero (cf. [1, Chap. VII, Th. (4.4)] and [4, Ex. 14.4.5]).

(2) By (1) of Proposition 3.5, it is easy to show that Emax is stable. It is also
easy to show a converse: if E is stable,

V3
E ' KC and h0.E/ � 6, then jEj is

semi-irreducible.
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6. Linear section theorems

We prove Theorem C in several steps. Assume that E D Emax satisfies the
condition (0.2). Since E is a rank 3 vector bundle of canonical determinant, KCE_

is isomorphic to
V2

E. Hence, by the Riemann-Roch theorem, we have

h0.E/� h0
� 2̂

E
�
D degEC 3.1� 9/D�8:

and h0.
V2

E/D 14. Since dim
V2

H 0.E/D 15, the linear map

�2 W

2̂

H 0.E/ �!H 0
� 2̂

E
�

is not injective.

Step 1. Every nonzero bivector � in Ker�2 is nondegenerate.

Proof. The rank of � is either 2, 4 or 6. If � is of rank 2, then � is equal to
s1 ^ s2 for a pair of global sections s1 and s2 which are linearly independent in
H 0.E/ and generate a rank-one subsheaf in E. This contradicts (2) of Proposition
3.5. Assume that � is of rank 4. Then � is equal to s1^s2�s3^s4 for s1; s2; s3 and
s4 2H

0.E/. By semi-irreducibility, s1 and s2 generate a rank two subsheaf in E.
Let F be its saturation. Since �2.s1^s2/D�2.s3^s4/, we have �3.s1^s2^si /D
�3.s3 ^ s4 ^ si / D 0 for i D 3; 4. Hence s3 and s4 are contained in H 0.F / and
we have h0.F /� 4. This contradicts the semi-irreducibility of jEj by Proposition
3.5. �

The nondegeneracy of � is equivalent to the nonvanishing of the Pfaffian.
Hence Ker�2 is of dimension one and �2 is surjective. Since jEj is free, we obtain
a morphism ˆE W C �! G.A; 3/ to the Grassmannian of 3-dimensional quotient
spaces of A WD H 0.E/. Its image is contained in the symplectic Grassmannian
G.A; �/ and we obtain the commutative diagram (0.3), where � is a generator
of Ker�2. Since

V3
.A; �/ is of dimension 14, the kernel of x�3 W

V3
.A; �/ �!

H 0.KC / is of dimension � 14� 9 D 5. Let f1; : : : ; fk , k � 5, be its basis and
H1; : : : ;Hk the hyperplanes corresponding to them. Since jEj is semi-irreducible,
the intersection SEp

\P�Ker�3 is empty for every p 2 C by Lemma 3.4. Hence
so is ˛.SEp

/\P�Ker x�3 for the projection ˛ in (2.6).

Step 2. There exists a point p 2 C such that the intersection G.A; �/\H1\
� � � \Hk is transversal at ˆE .p/.

Proof. Assume the contrary. Then, for every p 2 C , there exists a member
Hp of hŒH1�; : : : ; ŒHk�i D P�Ker x�3 such that the intersection G.A; �/ \Hp is
singular at ˆE .p/. The intersection P�.N_G.A;�/=P;ŒEp�

/ \ P�Ker x�3 is a point

for every p by Proposition 2.4. Therefore, we obtain a section of the P6-bundle
P�.ˆ�ENG.A;�/=P/ over C which is disjoint from p̀2C ˛.SEp

/. By projecting
from p̀2C �p , we obtain a section of P�.S2E/ over which the discriminant form
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ı 2H 0.S3.S2E/_˝ .detE/˝2/ has no zeros. Let � � S2E be the line subbundle
corresponding to the section. Then ı induces a nowhere-vanishing global section
of ��3˝ .detE/˝2. This implies 3 deg � D 2 degE D 32, which is absurd. �

In particular, we have k D 5 and hence the linear map x�3 is surjective. There-
fore, P�x�3 is a linear embedding. Since the canonical morphism ˆK is an embed-
ding, so is ˆE by the commutative diagram (0.3). We identify C with its image
ˆE .C /.

By Step 2, the intersection G.A; �/\H1\� � �\H5 is complete on a nonempty
open subset C0 of C . Hence the twisted normal bundleNC=G.A;�/.�1/ is generated
by the five global sections induced from f1; : : : ; f5 over C0. It is generated over
C , since NC=G.A;�/.�1/ is of trivial determinant. Therefore, the intersection is
complete along C and contains it as a connected component. By the connectedness
of linear sections (Fulton-Lazarsfeld [5, Th. 2.1]), the intersection coincides with
C , which completes the proof of Theorem C. (If we use the refined Bézout theorem
(Fulton[4, Th. 12.3]), the proof finishes at the last paragraph.)

Theorem A is an immediate consequence of Theorem C, Proposition 5.3 and
Proposition 4.6.

7. Proof of Theorem B

We do not assume that k is algebraically closed anymore. Let C ' G.A0; � 0/
\ P 0 be another expression of C D G.A; �/ \ P as a complete linear section
of a 6-dimensional symplectic Grassmannian and E0jC the restriction of the uni-
versal quotient bundle. Both jEjC j and jE0jC j are semi-irreducible (over Nk) by
Proposition 4.5. Hence they are isomorphic to each other over Nk by Proposition 5.6
and there exists a nonzero homomorphism f W EjC �! E0jC over k. This is an
isomorphism by Lemma 3.6. Since the diagramV2

H 0.f /V2
AD

V2
H 0.EjC / �!

V2
H 0.E0jC /D

V2
A0

# #

H 0.
V2 EjC / �! H 0.

V2 E0jC /

H 0.
V2

f /

is commutative, the isomorphism H 0.f / maps k� onto k� 0. Thus we have proved
(2) of Theorem B.

Assume that k is perfect and let xE be a vector bundle on xC D C ˝k Nk. We
consider a descent problem of xE under the following condition:

.�/ xE is simple and �� xE ' xE for every element � of the Galois group
Gal k of Nk=k.

As is well known, the obstruction ob. xE/ for xE to descend to C is an element of
the second Galois cohomology group H 2.Gal k;Aut xE/. Choose an isomorphism
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f� W xE
�
�! �� xE for each � 2 Gal k. Then ob. xE/ is the cohomology class of the

cocycle fc�;�g�;�2Galk defined by c�;� D f �1�� ı �
�.f� / ı f� 2 Aut Nk xE. In other

words, ob. xE/ is the factor set of the extension

1 �! Aut Nk xE �! Autk xE �! Gal k �! 1:

LEMMA 7.1. If dimH i . xC ; xE/ D n > 0, then the obstruction ob. xE/ is n-
torsion.

Proof. Let fs1; : : : ; sng be a basis of H i . xC ; xE/ and A� 2Mn. Nk/ the matrix
representing

H i .f� / WH
i . xC ; xE/ �!H i . xC ; �� xE/

with respect to the bases fs1; : : : ; sng and f��s1; : : : ; ��sng. Then

detH i .c�;� /D .detA�� /�1�.detA� / detA�

in Nk�. Therefore, fdetH i .c�;� /g�;�2Galk is cohomologous to zero. Since c�;�
are all constant multiplications, detH i .c�;� / are equal to cn�;� . Hence ob. xE/ is
n-torsion. �

Now we prove (1) of Theorem B. Let C be a nonpentagonal curve of genus
9 defined over k. It suffices to show the following:

PROPOSITION 7.2. Assume that C has no g15 over Nk. Then there exists a
vector bundle E on C such that E˝k Nk is isomorphic to the vector bundle Emax

on C ˝k Nk.

Proof. By (3)of Proposition 3.5 and Proposition 5.6, Emax satisfies .�/. Hence
the obstruction ob.Emax/ belongs to H 2.Gal k;Aut NkEmax/DH

2.Gal k; Nk�/. Let

Det WH 2.Gal k;Aut NkEmax/ �!H 2.Gal k;Aut Nk detEmax/

be the determinant homomorphism. Since detEmax is the canonical bundle, it
descends to C . Hence ob.Emax/ belongs to the kernel and is 3-torsion. On the other
hand, ob.Emax/ is 14-torsion by the preceding lemma since dimH 1.Emax/D 14.
Therefore, ob.Emax/ vanishes and Emax descends to C . (This is a Galois group
variant of an argument of Mumford-Newstead [17].) �

Acknowledgments. The author stayed at the Japan-U.S. Mathematics Institute
(JAMI) at the Johns Hopkins University in the spring of 1991 and 1996 during the
preparation of this article. He gave series lectures on this topic at Kyushu Univer-
sity in June of 1996. He is very grateful to these institutions for their hospitality.
The stay in 1996 at JAMI was supported by the Japan Society for the Promotion
of Science. This article is a refined version of an unpublished preprint written at
Nagoya University in the autumn of 1996.



1558 SHIGERU MUKAI

References

[1] E. ARBARELLO, M. CORNALBA, P. A. GRIFFITHS, and J. HARRIS, Geometry of Algebraic
curves, I, Grundl. Math. Wissen. 267, Springer-Verlag, New York, 1985. MR 86h:14019
Zbl 0559.14017

[2] A. BEAUVILLE, Complex Algebraic Surfaces, London Math. Soc. Lect. Note Series 68, Cam-
bridge Univ. Press, Cambridge, 1983. MR 85a:14024 Zbl 0512.14020

[3] L. EIN, A remark on the syzygies of the generic canonical curves, J. Differential Geom. 26
(1987), 361–365. MR 89a:14031 Zbl 0632.14024

[4] W. FULTON, Intersection Theory, Ergeb. Math. Grenzgeb. 2, Springer-Verlag, New York, 1984.
MR 85k:14004 Zbl 0541.14005

[5] W. FULTON and R. LAZARSFELD, Connectivity and its applications in algebraic geometry, in
Algebraic Geometry (Chicago, Ill., 1980), Lecture Notes in Math. 862, Springer-Verlag, New
York, 1981, pp. 26–92. MR 83i:14002 Zbl 0484.14005

[6] M. L. GREEN, Koszul cohomology and the geometry of projective varieties, J. Differential
Geom. 19 (1984), 125–171. MR 85e:14022 Zbl 0559.14008

[7] M. L. GREEN and R. LAZARSFELD, The non vanishing of certain Koszul cohomology groups,
appendix to [6].

[8] P. GRIFFITHS and J. HARRIS, Principles of Algebraic Geometry, Pure and Applied Mathemat-
ics, Wiley-Interscience [John Wiley & Sons], New York, 1978. MR 80b:14001 Zbl 0408.14001

[9] G. MARTENS, Funktionen von vorgegebener Ordnung auf komplexen Kurven, J. Reine Angew.
Math. 320 (1980), 68–85. MR 82e:14034 Zbl 0441.14010

[10] S. MUKAI, Curves, K3 surfaces and Fano 3-folds of genus � 10, in Algebraic Geometry
and Commutative Algebra, Vol. I, Kinokuniya, Tokyo, 1988, pp. 357–377. MR 90b:14039
Zbl 0701.14044

[11] , Curves and symmetric spaces, Proc. Japan Acad. Ser. A Math. Sci. 68 (1992), 7–10.
MR 93d:14042 Zbl 0768.14014

[12] , Polarized K3 surfaces of genus 18 and 20, in Complex Projective Geometry (Trieste,
1989/Bergen, 1989), London Math. Soc. Lecture Note Ser. 179, Cambridge Univ. Press, Cam-
bridge, 1992, pp. 264–276. MR 94a:14039 Zbl 0774.14035

[13] , Curves and Grassmannians, in Algebraic Geometry and Related Topics (Inchon, 1992),
Conf. Proc. Lecture Notes Algebraic Geom. I, Int. Press, Cambridge, MA, 1993, pp. 19–40.
MR 95i:14032 Zbl 0846.14030

[14] , Curves and symmetric spaces. I, Amer. J. Math. 117 (1995), 1627–1644. MR 96m:
14040 Zbl 0871.14025

[15] , New developments in Fano manifold theory related to the vector bundle method and
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