Curves and symmetric spaces, II
By Shigeru Mukai


SECOND SERIES, VOL. 172 , NO. 3
November, 2010

ANMAAH

# Curves and symmetric spaces, II 

By Shigeru Mukai


#### Abstract

Let $\operatorname{Sym}_{3} \mathbf{C} \longrightarrow \mathbf{P}_{*}\left(k \oplus \operatorname{Sym}_{3} k \oplus \operatorname{Sym}_{3} k \oplus k\right)=\mathbf{P}^{13}, A \mapsto\left(1: A: A^{\prime}: \operatorname{det} A\right)$ be the Veronese embedding of the space of symmetric matrices of degree 3 , where $A^{\prime}$ is the cofactor matrix of $A$. The closure $\operatorname{SpG}(3,6)$ of this image is a 6-dimensional homogeneous variety of the symplectic group $\mathrm{Sp}(3)$. A canonical curve $C_{16} \subset \mathbf{P}^{8}$ of genus 9 over a perfect field $k$ is isomorphic to a complete linear section of this projective variety $\operatorname{SpG}(3,6) \subset \mathbf{P}^{13}$ unless $C \otimes_{k} \bar{k}, \bar{k}$ being the algebraic closure, is a covering of degree at most 5 of the projective line. We prove this by means of linear systems of higher rank.


## Introduction

Let $\operatorname{SpG}(n, 2 n)$ be the symplectic Grassmannian, that is, the Grassmannian of Lagrangian subspaces of a $2 n$-dimensional symplectic vector space, over a field $k$. In the case $n=3, \operatorname{SpG}(3,6)$ is of dimension 6 and embedded into the projective space $\mathbf{P}^{13}$ with homogeneous coordinate $(y: X: Y: x)$, where $x, y \in k$ are scalars and $X, Y \in \operatorname{Sym}_{3} k$ are symmetric matrices. Then $\operatorname{SpG}(3,6) \subset \mathbf{P}^{13}$ is the common zero locus of the following $21(=6+6+9)$ quadratic equations

$$
\begin{equation*}
X^{\prime}=y Y, \quad Y^{\prime}=x X \in \operatorname{Sym}_{3} k \quad \text { and } \quad X Y=x y I_{3} \in \operatorname{Mat}_{3} k \tag{0.1}
\end{equation*}
$$

which will be derived in Section 2 after Proposition 2.3.
In our study of Fano 3-folds, we observed that this (symmetric) projective variety has a canonical curve section of genus 9 , that is, a transversal intersection

$$
\left[C \subset \mathbf{P}^{8}\right]=\left[\operatorname{SpG}(3,6) \subset \mathbf{P}^{13}\right] \cap H_{1} \cap \cdots \cap H_{5}
$$

is a curve of genus 9 embedded in $\mathbf{P}^{8}$ by the ratio of the differentials of the first kind. We showed that every general curve of genus 9 is obtained in this way when $k=\mathbf{C}$ ([10, Cor. 6.3]). The purpose of this article is to show the following refinement, which was partly announced in [11].

[^0]THEOREM A. Let C be a curve of genus 9 over an algebraically closed field $k$. Then $C$ is isomorphic to a transversal linear section of the 6-dimensional symplectic Grassmannian $\operatorname{SpG}(3,6) \subset \mathbf{P}^{13}$ if and only if $C$ is not pentagonal, i.e., $C$ has no $g_{5}^{1}$.

By Bertini's theorem we have
Corollary. If C satisfies the condition given in Theorem A and if $k$ is of characteristic zero, then $C$ is contained in a smooth K 3 surface as an ample divisor.

This theorem, together with similar results [14] and [13] in genus 7 and 8, will be applied to our classification of Gorenstein-Fano 3-folds with only canonical singularities (cf. [15]).

We prove the theorem using a certain simple vector bundle of rank 3. By its uniqueness (see below) and by a standard descent argument (§7), we have the following also:

THEOREM B. Let $C$ be a curve of genus 9 defined over a perfect field $k$ and assume that $C$ has no $g_{5}^{1}$ over the algebraic closure $\bar{k}$. Then we have
(1) Chas an embedding into the 6-dimensional symplectic Grassmannian $\operatorname{SpG}(3,6)$ $\subset \mathbf{P}^{13}$ over $k$ whose image is a transversal intersection with a $k$-linear subspace $P \subset \mathbf{P}^{13}$ of dimension 8 , and
(2) such subspaces $P$ cutting out $C$ are unique up to the action of $\operatorname{PGSp}(3)$. More precisely, for every isomorphism $g: C=\operatorname{SpG}(3,6) \cap P \rightarrow C^{\prime}=\operatorname{SpG}(3,6) \cap P^{\prime}$ there exists $\gamma \in \operatorname{PGSp}(3, k)$ such that $\gamma(P)=P^{\prime}$.

Here PGSp(3) is the subgroup of PGL(6) stabilizing the 1 -dimensional space generated by a symplectic form. Let $G\left(8, \mathbf{P}^{13}\right)$ be the Grassmannian of 8-dimensional linear subspaces $P$ of $\mathbf{P}^{13}$ and $\mathrm{G}\left(8, \mathbf{P}^{13}\right)^{t}$ the open subset consisting of $P$ 's such that the intersection $P \cap \operatorname{SpG}(3,6)$ is transversal.

COROLLARY. The weighted cardinality, or mass, of the nonpentagonal curves $C$ of genus 9 over the finite field $\mathbf{F}_{q}$ is equal to $\# \mathrm{G}\left(8, \mathbf{P}^{13}\right)^{t} / \# \operatorname{PGSp}\left(3, \mathbf{F}_{q}\right)$ :

$$
\sum_{\text {nonpentagonal }} \frac{1}{\# \operatorname{Aut}_{\mathbf{F}} C}=\frac{\# \mathrm{G}\left(8, \mathbf{P}^{13}\right)^{t}\left(\mathbf{F}_{q}\right)}{q^{9}\left(q^{6}-1\right)\left(q^{4}-1\right)\left(q^{2}-1\right)}
$$

The key to the proof is linear systems of higher rank (§3), especially their semiirreducibility (Definition 3.3). Let $C$ be as in Theorem A and $\alpha$ a $g_{8}^{2}$ of $C$, which exists by Brill-Noether theory (cf. [1, Chap. 7]). Let $\beta$ be the Serre adjoint $K_{C} \alpha^{-1}$ and $Q_{\beta}$ the dual of the kernel of the evaluation homomorphism $\mathbb{O}_{C}^{\oplus} \longrightarrow \beta$. Then there exists a unique nontrivial extension of $\alpha$ by $Q_{\beta}$ with $h^{0}(E)=6$ (Lemma 5.2 and 5.4). Moreover, such an extension $E$, often denoted by $E_{\text {max }}$, does not depend
on the choice of $\alpha$ and is characterized by the following property (Proposition 5.6):

$$
\begin{cases}\text { i) } & \bigwedge^{3} E \simeq K_{C}  \tag{0.2}\\ \text { ii) } & h^{0}(E)=6, \text { and } \\ \text { iii) } & |E| \text { is free and semi-irreducible. }\end{cases}
$$

Such a bundle $E$ gives rise to a morphism $\Phi_{E}: C \longrightarrow \mathrm{G}\left(H^{0}\left(E_{\max }\right), 3\right)$ to the Grassmannian of 3-dimensional quotient spaces of $H^{0}\left(E_{\max }\right)$ (§3). The following is the essence of Theorems A and B:

THEOREM C. Let C be a nonhyperelliptic curve of genus 9 over an algebraically closed field and assume that a rank 3 vector bundle $E=E_{\max }$ on it satisfies the condition (0.2). Then the natural linear maps
$\lambda_{2}: \bigwedge^{2} H^{0}(E) \longrightarrow H^{0}\left(\bigwedge^{2} E\right)$ and $\lambda_{3}: \bigwedge^{3} H^{0}(E) \longrightarrow H^{0}\left(\bigwedge^{3} E\right) \simeq H^{0}\left(K_{C}\right)$ are surjective and $\operatorname{Ker} \lambda_{2}$ is generated by a nondegenerate bivector $\sigma$. The image of $\Phi_{E}$ is contained in the symplectic Grassmannian $\mathrm{G}\left(H^{0}(E), \sigma\right)$ (see $\left.\S 2\right)$ and the commutative diagram

is cartesian, where $\bar{\lambda}_{3}$ is the linear map

$$
\begin{equation*}
\bigwedge^{3}\left(H^{0}(E), \sigma\right):=\bigwedge^{3} H^{0}(E) /\left(\sigma \wedge H^{0}(E)\right) \longrightarrow H^{0}\left(\bigwedge^{3} E\right) \simeq H^{0}\left(K_{C}\right) \tag{0.4}
\end{equation*}
$$

induced by $\lambda_{3}$.
Notation and conventions. For a vector space $V$, the second exterior product $\bigwedge^{2} V$ is the quotient of $V \otimes V$ by the subspace generated by $v \otimes v, v \in V$. Similarly $S^{2} V$ is the quotient generated by $u \otimes v-v \otimes u, u, v \in V$. An element of $\bigwedge^{2} V$ is called a bivector of $V$. We denote by $\mathrm{G}(r, V)$ and $\mathrm{G}(V, r)$ the Grassmannians of $r$-dimensional subspaces and quotient spaces of $V$, respectively. Two projective spaces $\mathrm{G}(1, V)$ and $\mathrm{G}(V, 1)$ associated to $V$ are denoted by $\mathbf{P}_{*}(V)$ and $\mathbf{P}^{*}(V)$, respectively. $\mathbf{P}_{*}$ is a covariant functor and $\mathbf{P}^{*}$ is contravariant. For a vector space or vector bundle $V$, its dual is denoted by $V^{\vee}$. The tensor product symbol $\otimes$ between a vector bundle and a line bundle is often omitted when there seems no fear of confusion.

All (algebraic) varieties are considered over a fixed base field $k$. A smooth complete geometrically irreducible curve is simply called a curve. By a $g_{d}^{r}$, we mean a line bundle $L$ on a curve with $\operatorname{deg} L=d$ and $\operatorname{dim} H^{0}(L) \geq r+1$. A saturation of a subsheaf $F \subset E$ is the largest subsheaf $\widetilde{F}$ between $F$ and $E$ such that $\widetilde{F} / F$ is torsion.

## 1. Preliminaries

We prove two lemmas on the number of global sections. Let $\xi$ be a line bundle on a curve $C$ and $\eta$ the Serre adjoint $K_{C} \xi^{-1}$. We denote the evaluation homomorphism $H^{0}(\eta) \otimes_{k}{ }^{0} C \longrightarrow \eta$ by ev ${ }_{\eta}$ and the dual of its kernel by $Q_{\eta}$. We have an exact sequence

$$
\begin{equation*}
0 \longrightarrow Q_{\eta}^{\vee} \longrightarrow H^{0}(\eta) \otimes_{k} 0_{C} \longrightarrow \eta \tag{1.1}
\end{equation*}
$$

Its dual

$$
\begin{equation*}
0 \longrightarrow \eta^{-1} \longrightarrow H^{0}(\eta)^{\vee} \otimes_{k} 0_{C} \longrightarrow Q_{\eta} \longrightarrow 0 \tag{1.2}
\end{equation*}
$$

is also exact if $\eta$ is free. The rank of $Q_{\eta}$ is equal to $\operatorname{dim}|\eta|=r-1$, where we put $r=h^{0}(\eta)$. The following is a variant of the so-called base point free pencil trick.

Lemma 1.1. For a vector bundle $E$ of rank $r$ on $C$,

$$
\operatorname{dim} \operatorname{Hom}(E, \xi)+\operatorname{dim} \operatorname{Hom}\left(Q_{\eta}, E\right) \geq r\left(h^{0}(E)-\operatorname{deg} \eta\right)-\chi(E)
$$

Proof. Take the global section of the exact sequence (1.1) tensored with $E$. Then we have

$$
\operatorname{dim} \operatorname{Hom}\left(Q_{\eta}, E\right)+h^{0}(E \eta) \geq r h^{0}(E)
$$

By the Riemann-Roch theorem and Serre duality,

$$
h^{0}(E \eta)-h^{0}\left(E^{\vee} \xi\right)=\chi(E \eta)=\chi(E)+r \operatorname{deg} \eta
$$

Our assertion follows immediately from these.
If $E$ is of canonical determinant, i.e., $\bigwedge^{r} E \simeq K_{C}$, then

$$
\begin{equation*}
\operatorname{dim} \operatorname{Hom}(E, \xi)+\operatorname{dim} \operatorname{Hom}\left(Q_{\eta}, E\right) \geq r\left(h^{0}(E)-r-s\right)-2 \rho+2 \tag{1.3}
\end{equation*}
$$

since $\chi(E)=(r-2)(1-g)$, where $s=h^{0}(\xi)=h^{1}(\eta)$ and $\rho:=g-r s$ is the Brill-Noether number of $\eta$, or equivalently, of $\xi$.

The number of global sections behaves specially if a vector bundle has a nondegenerate quadratic form with values in $K_{C}$. The following is one of such phenomena clarified in Mumford [16].

Proposition 1.2. Let $E$ and $F$ be rank two vector bundles on a curve $C$ such that $(\operatorname{det} E) \otimes(\operatorname{det} F) \simeq K_{C}$. Then $h^{0}(E \otimes F)$ is congruent to $\operatorname{deg} E$ modulo 2.

Proof. Choose a line subbundle and express $F$ as an extension

$$
\begin{equation*}
0 \longrightarrow L \longrightarrow F \longrightarrow M \longrightarrow 0 \tag{1.4}
\end{equation*}
$$

of line bundles. The alternating bihomomorphism $E \times E \rightarrow \operatorname{det} E,(s, t) \mapsto s \wedge t$, induces a bilinear map

$$
\varphi: H^{0}(E \otimes M) \times H^{1}(E \otimes L) \longrightarrow H^{0}((\operatorname{det} E) \otimes(\operatorname{det} F))=H^{0}\left(K_{C}\right) \simeq k
$$

which is nondegenerate by Serre duality. Let $e \in H^{1}\left(M^{-1} \otimes L\right)$ be the extension class of (1.4) and $\delta: H^{0}(E \otimes M) \longrightarrow H^{1}(E \otimes L)$ be the coboundary map coming
from $E \otimes(1.4)$. Then $\varphi(s, \delta(s))=s \cup(s \cup e)=(s \wedge s) \cup e=0$ for $s \in H^{0}(E \otimes M)$. Therefore, the linear map $\delta$ is alternating with respect to the Serre pairing $\varphi$. Hence $h^{0}(E \otimes F)$ is congruent to

$$
h^{0}(E \otimes L)+h^{0}(E \otimes M)=h^{0}(E \otimes L)+h^{1}(E \otimes L)
$$

modulo 2. Since $h^{0}(E \otimes L)-h^{1}(E \otimes L)$ is congruent to $\operatorname{deg}(E \otimes L)$, we have our assertion.

## 2. Symplectic Grassmannian

Let $A$ be a $k$-vector space. For a subspace $B \subset A$ the linear map $\bigwedge^{2} B \rightarrow$ $\bigwedge^{2} A$ is injective.

Definition 2.1. A bivector $\sigma \in \bigwedge^{2} A$ is degenerate if $\sigma$ is contained in $\bigwedge^{2} B$ for a proper subspace $B \subset A$.

A bivector $\sigma$ is always degenerate if $\operatorname{dim} A$ is odd. In the case $\operatorname{dim} A$ is even, $\sigma$ is degenerate if and only if the value of the Pfaffian is zero. There exists a minimal subspace $B \subset A$ such that $\sigma \in \bigwedge^{2} B$. This subspace $B$ is called the co-radical of $\sigma$.

Definition 2.2. A symplectic vector space is a pair $(V, \sigma)$ of a vector space $V$ and a nondegenerate bivector $\sigma \in \bigwedge^{2} V^{\vee}$ of the dual vector space.

Note that $\bigwedge^{2} V^{\vee}$ is the quotient of $V^{\vee} \otimes V^{\vee}$ by the subspace $\mathrm{SB}(V)$ of symmetric bilinear forms on $V$. When the characteristic of $k$ is not 2 , the equivalence class $\sigma+\mathrm{SB}(V)$ has the unique anti-symmetric representative, say $\sigma^{\mathrm{AS}}$, in $V^{\vee} \otimes V^{\vee}$. A subspace $U \subset V$ is Lagrangian if $2 \operatorname{dim} U=\operatorname{dim} V$ and the restriction $\left.\sigma\right|_{U}: U \times U \longrightarrow k$ of $\sigma$ to $U$ is symmetric. If $\operatorname{char}(k) \neq 2$, then the second condition is equivalent to the usual one; that is, $\left.\sigma^{\mathrm{AS}}\right|_{U}=0$. We denote the set of Lagrangian subspaces of $(V, \sigma)$ by $\mathrm{G}(\sigma, V)$.

Two vectors $u$ and $v \in V$ are perpendicular with respect to $\sigma$ if the restriction of $\sigma$ to the subspace spanned by $u$ and $v$ is symmetric. For a nonzero vector $v \in V$, the set of vectors $u \in V$ perpendicular to $v$ is a subspace of codimension one. We denote this subspace by $v^{\perp} . \sigma$ induces a bilinear form $\bar{\sigma}$ on the quotient space $\bar{V}:=v^{\perp} / k v$ and $(\bar{V}, \bar{\sigma})$ becomes a symplectic vector space of dimension two less. If a Lagrangian subspace $U$ of $(V, \sigma)$ contains $v$, then the quotient $U / k v$ is a Lagrangian of $(\bar{V}, \bar{\sigma})$. Conversely, if $\bar{U}$ is a Lagrangian of $(\bar{V}, \bar{\sigma})$, then its inverse image by $v^{\perp} \rightarrow \bar{V}$ is a Lagrangian of $(V, \sigma)$ which contains $v$. By this correspondence we identify $\mathrm{G}(\bar{\sigma}, \bar{V})$ with the subset of $\mathrm{G}(\sigma, V)$ consisting of $[U]$ with $v \in U$.

For our purpose, the Grassmannian of quotient spaces is more convenient than that of subspaces. A quotient space $A \xrightarrow{f} Q$ of $A$ is Lagrangian with respect to a nondegenerate bivector $\sigma$ if $2 \operatorname{dim} W=\operatorname{dim} A$ and if $\left(\bigwedge^{2} f\right)(\sigma)=0$. We denote the set of Lagrangian quotient spaces of the pair $(A, \sigma)$ by $\mathrm{G}(A, \sigma)$, which coincides
with $\mathrm{G}\left(\sigma, A^{\vee}\right)$. Let $\because$ be the universal quotient bundle on $\mathrm{G}(A, n)$, $\operatorname{dim} A=2 n$. Then $\sigma \in \bigwedge^{2} A$ determines a global section of $\bigwedge^{2} \cup$, which we denote by $s$. Then $\mathrm{G}(A, \sigma)$ coincides with the zero set of $s \in H^{0}\left(\mathrm{G}(A, n), \bigwedge^{2} \vartheta\right)$. We endow $\mathrm{G}(A, \sigma)$ with a scheme structure by considering it as the zero locus of $s$. An element of this isomorphism class is denoted by $\operatorname{SpG}(n, 2 n)$.

Proposition 2.3. The symplectic Grassmannian $\mathrm{G}(A, \sigma)$ is a smooth variety of dimension $n(n+1) / 2$ and the anti-canonical class is $n+1$ times the the hyperplane section $H$ of the Plücker embedding.

Proof. Since $\bigwedge^{2} A$ generates $\bigwedge^{2} \vartheta, \mathrm{G}(A, \tilde{\sigma})$ is locally a smooth complete intersection for general $\tilde{\sigma}$ by the Bertini theorem for vector bundles ([12, Th. 1.10]). Since the $\mathrm{GL}(2 n)$-orbit of nondegenerate bivectors is dense in $\bigwedge^{2} A, \mathrm{G}(A, \sigma)$ is isomorphic to $\mathrm{G}(A, \tilde{\sigma})$. It is of dimension $n^{2}-\operatorname{rank} \bigwedge^{2} \cup=n(n+1) / 2$. It is irreducible since the symplectic group $\operatorname{Sp}(n)$ acts transitively. The conormal bundle $\mathscr{I} / \mathscr{I}^{2}$ of $\mathrm{G}(A, \sigma)$ is the restriction of $\left(\bigwedge^{2} \cup\right)^{\vee}$, where $\mathscr{I}$ is the ideal sheaf. ( $\mathscr{I}$ is the image of $\left(\bigwedge^{2} U\right)^{\vee} \rightarrow \mathscr{O}_{\mathrm{G}(A, n)}$ and $\left[\left(\bigwedge^{2} U\right)^{\vee} \rightarrow \mathscr{I}\right] \otimes \mathscr{O}_{\mathrm{G}(A, \sigma)}$ is an isomorphism.) Since $c_{1}(\mathrm{G}(A, n))=2 n H$ and $c_{1}\left(\bigwedge^{2} \ddots\right)=(n-1) H$, the anti-canonical class of $\mathrm{G}(A, \sigma)$ is equal to the restriction of $c_{1}(\mathrm{G}(A, n))-c_{1}\left(\bigwedge^{2} \ddots\right)=(n+1) H$.

Choose a pair of Lagrangian subspaces $U_{0}$ and $U_{\infty}$ of a symplectic vector space $(V, \sigma)$ with $U_{0} \cap U_{\infty}=0$. For a linear map $f: U_{0} \rightarrow U_{\infty}$ the graph $\Gamma_{f} \subset U_{0} \times U_{\infty}=V$ is Lagrangian if and only if $f \in \operatorname{Hom}\left(U_{0}, U_{\infty}\right) \simeq U_{\infty} \otimes U_{\infty}$ is a symmetric tensor. The Plücker coordinate of $\Gamma_{f}$ is equal to

$$
1+f+(f \wedge f)+(f \wedge f \wedge f)+\cdots
$$

(cf. [14, §1]). Hence, for example, the 9 -dimensional Grassmannian $G(3,6)$ is the closure of the Veronese embedding of the space of square matrices of degree 3,

$$
\operatorname{Mat}_{3} \mathbf{C} \longrightarrow \mathbf{P}_{*}\left(k \oplus \operatorname{Mat}_{3} k \oplus \operatorname{Mat}_{3} k \oplus k\right), A \mapsto\left(1: A: A^{\prime}: \operatorname{det} A\right),
$$

where $A^{\prime}$ is the cofactor matrix of $A$. It is the common zero locus of the Plücker equations

$$
X^{\prime}=y Y, \quad Y^{\prime}=x X \in \operatorname{Mat}_{3} k \quad \text { and } \quad X Y=Y X=x y I_{3} \in \operatorname{Mat}_{3} k,
$$

in the projective space $\mathbf{P}^{19}$ with homogeneous coordinate ( $y: X: Y: x$ ), where $x, y \in k$ are scalars and $X, Y \in \mathrm{Mat}_{3} k$ are square matrices. Restricting ourselves to symmetric matrices, we have the equations $(0.1)$ of $\operatorname{SpG}(3,6) \subset \mathbf{P}^{13}$.

The divisor class group of the Grassmannian $\mathrm{G}(n, 2 n)$ is generated by the hyperplane section class $H$. Its Chow group of codimension 2 cycles is generated by two Schubert subvarieties:

$$
\begin{equation*}
Y=\{[U] \mid U \cap W \neq 0\} \quad \text { and } \quad Y^{\prime}=\left\{[U] \mid U+W^{\prime} \neq V\right\} \tag{2.1}
\end{equation*}
$$

for a subspace $W$ of dimension $n-1$ and $W^{\prime}$ of codimension $n-1$. It is well known that the self intersection $H \cdot H$ is (rationally) equivalent to their sum. On
the symplectic Grassmannian, obviously $Y$ and $Y^{\prime}$ are equivalent and hence we have

$$
\begin{equation*}
H \cdot H \sim Y+Y^{\prime} \sim 2 Y \tag{2.2}
\end{equation*}
$$

Let $a$ be a nonzero vector of $A$. The image $\bar{\sigma}$ of $\sigma$ in $\bigwedge^{2}(A / k a)$ is degenerate since $\operatorname{dim}(A / k a)$ is odd. In fact, the co-radical $\bar{A}$ of $\bar{\sigma}$ is of codimension one. Similar to the inclusion $\mathrm{G}(\bar{\sigma}, \bar{V}) \hookrightarrow \mathrm{G}(\sigma, V)$, we have a natural inclusion $\mathrm{G}(\bar{A}, \bar{\sigma}) \hookrightarrow \mathrm{G}(A, \sigma)$. Moreover, $\mathrm{G}(\bar{A}, \bar{\sigma})$ is the scheme of zeros of the global section of $\mathscr{E}=\left.U\right|_{\mathrm{G}(A, \sigma)}$ corresponding to $a \in A$.

Let $\mathrm{G}(A, n) \subset \mathbf{P}^{*}\left(\bigwedge^{n} A\right)$ be the Plücker embedding of the Grassmannian $\mathrm{G}(A, n)$. The tautological line bundle $\mathbb{O}_{\mathrm{G}}(1)$ is isomorphic to $\bigwedge^{n} U$. Since $\sigma$ vanishes on $\mathrm{G}(A, \sigma)$, so do all the linear forms $\sigma \wedge\left(\bigwedge^{n-2} A\right) \subset \bigwedge^{n} A$. Let $\bigwedge^{n}(A, \sigma)$ be the quotient space of $\bigwedge^{n} A$ by the subspace $\sigma \wedge\left(\bigwedge^{n-2} A\right)$. Then $\mathrm{G}(A, \sigma)$ is contained in the subspace $\mathbf{P}^{*}\left(\bigwedge^{n}(A, \sigma)\right)$ and we have a commutative diagram

| $\mathrm{G}(A, \sigma)$ | $\longrightarrow$ | $\mathbf{P}^{*}\left(\bigwedge^{n}(A, \sigma)\right)$ |
| :---: | :---: | :---: |
| $\cap$ |  | $\cap^{n}$ |
| $\mathrm{G}(A, n)$ | $\longrightarrow$ | $\mathbf{P}^{*}\left(\bigwedge^{n} A\right)$. |
|  |  |  |

$\mathrm{G}(A, \sigma)$ coincides with $\mathrm{G}(A, 1)=\mathbf{P}^{1}$ for $n=1$ and is a smooth hyperplane section of the smooth 4-dimensional quadric $\mathrm{G}(A, 2) \subset \mathbf{P}^{5}$ for $n=2$.

Now we set $n=3$ and investigate the conormal space of $\mathrm{G}(A, \sigma) \subset \mathbf{P}^{*} \bigwedge^{3}(A, \sigma)$ and an important cubic cone in it. Let $A \rightarrow Q$ be a 3-dimensional quotient space and put $W=\operatorname{Ker}[A \rightarrow Q]$. Then we have a filtration of subspaces

$$
\begin{equation*}
F_{0}=\bigwedge^{3} W \subset F_{1}=\left(\bigwedge^{2} W\right) \wedge A \subset F_{2}=W \wedge \bigwedge^{2} A \subset F_{3}=\bigwedge^{3} A \tag{2.4}
\end{equation*}
$$

Then $\bigwedge^{3} A \rightarrow F_{3} / F_{2} \simeq \bigwedge^{3} Q$ is the Plücker coordinate of $Q . F_{2} / F_{1}$ is isomorphic to $W \otimes\left(\bigwedge^{2} Q\right) .\left(F_{2} / F_{1}\right) \otimes \operatorname{det} Q^{-1} \simeq \operatorname{Hom}(Q, W)$ is canonically isomorphic to the cotangent space of $\mathrm{G}(A, 3)$ at $[Q] . F_{1} \otimes \operatorname{det} Q^{-1}$ is canonically isomorphic to the conormal space of $\mathrm{G}(A, 3) \subset \mathbf{P}^{*} \bigwedge^{3} A$. Hence we have an exact sequence

$$
\begin{gathered}
0 \longrightarrow k \longrightarrow F_{1} \otimes \operatorname{det} W^{-1} \longrightarrow \operatorname{Hom}(W, Q) \longrightarrow 0 . \\
N_{\mathrm{G}(A, 3) / \mathbf{p}}^{\vee} \otimes \operatorname{det} Q \otimes \operatorname{det} W^{-1}
\end{gathered}
$$

Assume that $[A \rightarrow Q] \in \mathrm{G}(A, \sigma)$ is Lagrangian. Then $\sigma$ belongs to $W \wedge A \subset$ $\bigwedge^{2} A$. Let

$$
\bar{F}_{0} \subset \bar{F}_{1} \subset \bar{F}_{2} \subset \bar{F}_{3}, \quad \bar{F}_{i}=F_{i} /\left(F_{i} \cap \sigma \wedge A\right)
$$

be the quotient filtration of (2.4) by $\sigma \wedge A \subset F_{2}$. Then $\bar{F}_{3} / \bar{F}_{2} \simeq \bigwedge^{3} Q$ is the Plücker coordinate of $Q$. The cotangent space of $\mathrm{G}(3, \sigma)$ at $[Q]$ is $\bar{F}_{2} / \bar{F}_{1} \otimes \operatorname{det} Q^{-1} \simeq$ $S^{2} W$. The conormal space is isomorphic to $\bar{F}_{1} \otimes \operatorname{det} Q$ and we have an exact
sequence

$$
\begin{gather*}
0 \longrightarrow k \longrightarrow \bar{F}_{1} \otimes \operatorname{det} Q \longrightarrow S^{2} Q \longrightarrow 0 . \\
\|  \tag{2.5}\\
N_{\mathrm{G}(A, \sigma) / \mathbf{P}}^{\vee} \otimes(\operatorname{det} Q)^{2}
\end{gather*}
$$

Let

$$
\begin{equation*}
\alpha: \mathbf{P}_{*}\left(\bigwedge^{3} A\right) \cdots \longrightarrow \mathbf{P}_{*}\left(\bigwedge^{3}(A, \sigma)\right) \tag{2.6}
\end{equation*}
$$

be the projection with center $\mathbf{P}_{*}(\sigma \wedge A)$. Since $\sigma$ is nondegenerate, $\mathrm{G}(3, A)$ is disjoint from the center. We consider the image of the Schubert subvariety

$$
S_{Q}=\{[U] \mid \operatorname{rk}[U \rightarrow A \rightarrow Q] \leq 1\} \subset \mathrm{G}(3, A)
$$

by $\alpha$ for a Lagrangian quotient space $A \rightarrow Q$ (cf. (3.3) and (4.1)). $S_{Q}$ is a 5-dimensional subvariety of

$$
\mathbf{P}_{*}\left(\left(\bigwedge^{2} W\right) \wedge A\right)=\mathbf{P}_{*}\left(N_{\mathrm{G}(A, 3) / \mathbf{P}, Q}^{\vee}\right)
$$

and $\alpha\left(S_{Q}\right)$ is a subvariety of

$$
\mathbf{P}_{*}\left(\bar{F}_{1}\right)=\mathbf{P}_{*}\left(N_{\mathrm{G}(A, \sigma) / \mathbf{P}, Q}^{\vee}\right)=\mathbf{P}^{6} .
$$

By the exact sequence (2.5), $\mathbf{P}^{*}\left(N_{\mathrm{G}(A, \sigma) / \mathbf{P},[Q]}\right)$ has the distinguished point corresponding to $\operatorname{Ker}[A \rightarrow Q]$, which we denote by $\kappa_{Q}$, and the special projection onto $\mathbf{P}_{*}\left(S^{2} Q\right) . \alpha\left(S_{Q}\right)$ contains the point $\kappa_{Q}$.

Proposition 2.4. The image $\alpha\left(S_{Q}\right)$ is a cubic hypersurface of

$$
\mathbf{P}^{*}\left(N_{\mathrm{G}(A, \sigma) / \mathbf{P},[Q]}\right)
$$

More precisely, it is the cone over the discriminant hypersurface of $\mathbf{P}_{*}\left(S^{2} Q\right)$ with vertex $\kappa_{Q}$.

Proof. Choose a basis $\left\{v_{1}, v_{2}, v_{3}, v_{-1}, v_{-2}, v_{-3}\right\}$ of $A$ such that $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a basis of $\operatorname{Ker}[A \rightarrow Q]$ and $\sigma=v_{1} \wedge v_{-1}+v_{2} \wedge v_{-2}+v_{3} \wedge v_{-3}$. Let $\left\{u_{1}, u_{2}, u_{3}\right\}$ be a basis of $U \in S_{Q}$ such that $u_{1}, u_{2} \in \operatorname{Ker}[U \rightarrow Q]$. The exterior product $u_{1} \wedge u_{2}$ is equal to

$$
a_{1} v_{2} \wedge v_{3}+a_{2} v_{3} \wedge v_{1}+a_{3} v_{1} \wedge v_{2} \in \bigwedge^{2} \operatorname{Ker}[A \rightarrow Q]
$$

for $a_{1}, a_{2}$ and $a_{3} \in k$. Put $u_{3}=a_{4} v_{1}+a_{5} v_{2}+a_{6} v_{3}+b_{1} v_{-1}+b_{2} v_{-2}+b_{3} v_{-3}$. Then the Plücker coordinate $u_{1} \wedge u_{2} \wedge u_{3}$ of $U$ is

$$
\begin{array}{r}
a_{0} v_{1} \wedge v_{2} \wedge v_{3}+\left(a_{1} v_{2} \wedge v_{3}+a_{2} v_{3} \wedge v_{1}+a_{3} v_{1} \wedge v_{2}\right) \wedge\left(b_{1} v_{-1}+b_{2} v_{-2}+b_{3} v_{-3}\right) \\
=a_{0} v_{1} \wedge v_{2} \wedge v_{3}+\left(a_{2} b_{1} v_{12}-a_{1} b_{2} v_{21}\right)+\left(a_{1} b_{3} v_{31}-a_{3} b_{1} v_{13}\right) \\
+\left(a_{3} b_{2} v_{23}-a_{2} b_{3} v_{32}\right)+\sum_{i=1}^{3} a_{i} b_{i} v_{i i}
\end{array}
$$

where we put $a_{0}=a_{1} a_{4}+a_{2} a_{5}+a_{3} a_{6}$,

$$
v_{11}=v_{-1} \wedge v_{2} \wedge v_{3}, \quad v_{22}=v_{1} \wedge v_{-2} \wedge v_{3}, \quad v_{33}=v_{1} \wedge v_{2} \wedge v_{-3}
$$

and $v_{j k}=v_{i} \wedge v_{j} \wedge v_{-j}$ for every $\{i, j, k\}=\{1,2,3\}$. Since $v_{j k}+v_{k j} \in A \wedge \sigma$ for every $j \neq k, u_{1} \wedge u_{2} \wedge u_{3}$ is congruent to
$a_{0} v_{1} \wedge v_{2} \wedge v_{3}-\left(a_{1} b_{2}+a_{2} b_{1}\right) v_{12}$

$$
-\left(a_{1} b_{3}+a_{3} b_{1}\right) v_{13}+\left(a_{2} b_{3}+a_{3} b_{2}\right) v_{23}+\sum_{i=1}^{3} a_{i} b_{i} v_{i i}
$$

modulo $A \wedge \sigma$. Hence $\alpha\left(S_{Q}\right)$ consists of those $\gamma_{0} v_{1} \wedge v_{2} \wedge v_{3}+\sum_{1 \leq i \leq j \leq 3} \gamma_{i j} v_{i j}$ such that the quadratic form $\sum_{1 \leq i \leq j \leq 3} \gamma_{i j} X_{i} X_{j}$ is of rank $\leq 2$ (or equivalently, $\left.4 \gamma_{11} \gamma_{22} \gamma_{33}-\gamma_{11} \gamma_{23}^{2}-\gamma_{22} \gamma_{13}^{2}-\gamma_{33} \gamma_{12}^{2}+\gamma_{12} \gamma_{13} \gamma_{23}=0\right)$.

## 3. Linear systems of higher rank

A linear system of rank $r$ is a pair $(E, A)$ of a vector bundle $E$ of rank $r$ and a space of global sections $A \subset H^{0}(E)$. The special one with $A=H^{0}(E)$ is called a complete linear system and denoted by $|E|$. A linear system $(E, A)$ on an algebraic variety $C$ is free if the evaluation homomorphism ev $E, A: A \otimes_{k} O_{C} \longrightarrow E$ is surjective. If this holds, we obtain a morphism $\Phi_{E, A}$ of $C$ to the Grassmannian $\mathrm{G}(A, r)$ of $r$-dimensional quotient spaces. It is characterized by the property that $\Phi_{E, A}^{*}(\vartheta, A)=(E, A)$, where $U$ is the universal quotient bundle on $\mathrm{G}(A, r)$ and $\Phi_{|E|}$ is abbreviated to $\Phi_{E}$.

Let

$$
\bigwedge^{m} \operatorname{ev}_{E, A}: \bigwedge^{m} A \otimes_{k} O_{C} \longrightarrow \bigwedge^{m} E
$$

be the exterior product of the evaluation homomorphism ev $E, A$. It induces the linear map

$$
\bigwedge^{m} A \longrightarrow H^{0}\left(\bigwedge^{m} E\right)
$$

which we denote by $\lambda_{m}$. The image $\lambda_{m}\left(s_{1} \wedge \cdots \wedge s_{m}\right)$ of a simple $m$-vector $s_{1} \wedge$ $\cdots \wedge s_{m}$ is zero if and only if $m$ global sections $s_{1}, \ldots, s_{m} \in A \subset H^{0}(E)$ are linearly dependent at the generic point of $C$, that is, they generate a subsheaf of rank less than $m$. This linear map is most important when $m=r$. Assume that $\lambda_{r}: \bigwedge^{r} A \longrightarrow H^{0}(\operatorname{det} E)$ is surjective. Then the map

$$
\begin{equation*}
\Psi: \mathbf{P}^{*}\left(H^{0}(\operatorname{det} E)\right) \rightarrow \mathbf{P}^{*}\left(\bigwedge^{r} A\right) \tag{3.1}
\end{equation*}
$$

induced by $\lambda_{r}$ is a linear embedding and the following diagram is commutative:

$$
\begin{array}{cccc}
C & \xrightarrow{\Phi_{E}} & \mathrm{G}(A, r)  \tag{3.2}\\
\cap & & \\
\mathbf{P}^{*}\left(H^{0}(\operatorname{det} E)\right) & \xrightarrow{\Psi} & \text { Plücker } \\
\mathbf{P}^{*}\left(\bigwedge^{r} A\right)
\end{array}
$$

Even when $\lambda_{r}$ is not surjective, the above is still commutative though $\Psi=\mathbf{P}^{*} \lambda_{r}$ is only a rational map. The linear map $\lambda_{r}$ is important in analyzing $E$ itself also.

Now we assume that the base field $k$ is algebraically closed (until the end of §6). The dual Grassmannian $\mathrm{G}(r, A) \subset \mathbf{P}_{*}\left(\bigwedge^{r} A\right)$ is also important for understanding ( $E, A$ ).

Definition 3.1. A linear system ( $E, A$ ) of rank $r$ is irreducible if it satisfies the following equivalent conditions:
i) For every $r$-dimensional linear subspace $U$ of $A$ the image of $U \otimes_{k}{ }^{0} C \longrightarrow E$ is of rank $r$, and
ii) The kernel of the natural linear map $\lambda_{r}: \bigwedge^{r} A \longrightarrow H^{0}(C, \operatorname{det} E)$ contains no nonzero simple $r$-vectors; that is, $\mathrm{G}(r, A) \cap \mathbf{P}_{*}\left(\operatorname{Ker} \lambda_{r}\right)=\varnothing$.
The following is known as Castelnuovo's trick (cf. [2, Chap. 10]):
Proposition 3.2. If $r(\operatorname{dim} A-r) \geq h^{0}(\operatorname{det} E)$, then $(E, A)$ is reducible,
Proof. The left-hand side of the inequality is the dimension of $\mathrm{G}(r, A)$. The codimension of $\mathbf{P}_{*}\left(\operatorname{Ker} \lambda_{r}\right) \subset \mathbf{P}_{*}\left(\bigwedge^{r} H^{0}(E)\right)$ is at most $h^{0}(\operatorname{det} E)$. Hence, if the inequality holds, then the intersection $\mathrm{G}(r, A) \cap \mathbf{P}_{*} \operatorname{Ker} \lambda_{r}$ is not empty.

A line bundle is irreducible. But irreducibility seems a strong condition in general. Irreducible bundles of rank $\geq 2$ will not appear in the sequel. Instead the following concept plays a crucial role in our proof.

Definition 3.3. A linear system ( $E, A$ ) of rank $r$ on a (smooth complete) curve $C$ is semi-irreducible if the evaluation homomorphism $\operatorname{ev}_{U}: U \otimes_{k}{ }^{0} C \longrightarrow E$ is either injective or everywhere of rank $r-1$ for every $r$-dimensional subspace $U$ of $A$.

For an $r$-dimensional quotient space $A \rightarrow Q$, we denote by $S_{Q}$ the Schubert subvariety

$$
\begin{equation*}
\{[U] \mid \operatorname{rk}[U \rightarrow A \rightarrow Q] \leq r-2\} \subset \mathrm{G}(r, A) \tag{3.3}
\end{equation*}
$$

associated to $Q$. Also, $S_{Q}$ is contained in the projective space $\mathbf{P}_{*}\left(\left(\bigwedge^{2} W\right) \wedge\right.$ $\left.\left(\bigwedge^{r-2} A\right)\right)$, which is the projectivisation $\mathbf{P}_{*}\left(N_{\mathrm{G}(A, r) / \mathbf{P},[Q]}^{\vee}\right)$ of the conormal space of $\mathrm{G}(A, r) \subset \mathbf{P}_{*}\left(\bigwedge^{r} A\right)$ at $[Q]$. The following is obvious:

Lemma 3.4. $(E, A)$ is semi-irreducible if and only if $S_{E_{p}} \cap \mathbf{P}_{*} \operatorname{Ker} \lambda_{r}=\varnothing$ for every fiber $E_{p}$ of $E, p \in C$.

Now we restrict ourselves to complete linear systems for simplicity.
Proposition 3.5. Assume that a complete linear system $|E|$ of rank $r$ is free and semi-irreducible.
(1) If $F$ is a proper nonzero subbundle, then $h^{0}(F) \leq r(F)+1$, where $r(F)$ is the rank of $F$.
(2) If $h^{0}(E) \geq r+2$ and if $F$ is a subbundle of rank $\leq r-2$, then $h^{0}(F) \leq r(F)$.
(3) If $h^{0}(E) \geq r+3$, then $E$ is simple, i.e., End $E=k$.

Proof. (1) Assume that $F$ is of rank $r-1$ and $h^{0}(F) \geq r$. Then the evaluation homomorphism $B \otimes_{k} O_{C} \rightarrow F$ is surjective for every $r$-dimensional subspace $B \subset H^{0}(F)$ by semi-irreducibility. Hence we have $h^{0}(F) \leq r$. The general case follows from this since, for every proper subbundle $F$, there exists a subsheaf $F^{\prime} \subset E$ of rank $r-1$ which contains $F$ and $h^{0}\left(F^{\prime}\right) \geq h^{0}(F)+r\left(F^{\prime}\right)-r(F)$.
(2) By the same reason as above, we may assume that $F$ is of rank $r-2$. We prove $h^{0}(F) \neq r(F)+1$ by contradiction. Assume that $h^{0}(F)=r(F)+1$ and put $G=E / F$. We regard the quotient space $H^{0}(E) / H^{0}(F)$ as a subspace of $H^{0}(G)$. Since $\operatorname{dim} H^{0}(E) / H^{0}(F) \geq h^{0}(E)-(r-1) \geq 3$ and since $G$ is of rank 2, there exists a global section $s \in H^{0}(E) \backslash H^{0}(F)$ such that $\bar{s} \in H^{0}(G)$ vanishes at a point on $C$. Then $H^{0}(F)$ and $s$ do not generate a subsheaf of rank $r$ or a subbundle of rank $r-1$, which contradicts the semi-irreducibility of $|E|$. Therefore, we have $h^{0}(F) \leq r(F)$ by (1).
(3) It suffices to show that every endomorphism $\phi: E \longrightarrow E$ is either zero or an isomorphism. Assume that $\phi$ is neither. Then both the kernel and the image are proper subsheaves and we have

$$
h^{0}(E) \leq h^{0}(\operatorname{Ker} \phi)+h^{0}(\operatorname{Im} \phi) \leq r(\operatorname{Ker} \phi)+1+r(\operatorname{Im} \phi)+1=r+2
$$

by (1), which is a contradiction.
The following is proved similarly.
Lemma 3.6. Assume that two complete linear systems $|E|$ and $\left|E^{\prime}\right|$ are free, semi-irreducible and of the same rank $r$ and assume further that $h^{0}(E) \geq r+3$. Then every nonzero homomorphism $E \rightarrow E^{\prime}$ is injective.

## 4. Linear sections of the symplectic Grassmannian

Throughout this section $C \subset \mathbf{P}^{8}$ is a transversal linear section $\operatorname{SpG}(3,6) \cap$ $H_{1} \cap \cdots \cap H_{5}$ of the 6-dimensional symplectic Grassmannian.

LEMmA 4.1. $C$ is of genus 9 and the restriction of tautological line bundle $\mathcal{O}(1)$ is isomorphic to the canonical bundle $K_{C}$ of $C$.

Proof. By Proposition 2.3 and by adjunction, we have $K_{C} \simeq{ }^{0} C\left(K_{\text {SpG }}+\right.$ $\left.H_{1}+\cdots+H_{5}\right) \simeq 0_{C}(1)$. The Chern class of the universal quotient bundle $U$ on $\mathrm{G}(3,6)$ is the sum $1+\sigma_{1}+\sigma_{2}+\sigma_{3}$ of the special Schubert cycles ([8, Chap. 1]). By Pieri's formula, we have

$$
\begin{aligned}
2 g(C)-2=\operatorname{deg}\left[\operatorname{SpG}(3,6) \subset \mathbf{P}^{13}\right] & =\left(c_{3}\left(\bigwedge^{2} \cup\right) \cdot c_{1}(\vartheta)^{6}\right) \\
& =\left(\sigma_{1} \sigma_{2}-\sigma_{3} \cdot \sigma_{1}^{6}\right)=21-5=16
\end{aligned}
$$

since $\operatorname{SpG}(3,6)$ is the zero locus of a global section of $\bigwedge^{2} थ$. Hence $C$ is of genus 9.

Let $\mathrm{G}(A, \sigma), \operatorname{dim} A=6$, be a representative of $\operatorname{SpG}(3,6)$.

LEMmA 4.2. The linear map $\bigwedge^{3}(A, \sigma) \rightarrow H^{0}\left(K_{C}\right)$ is surjective and its kernel is generated by the linear forms $f_{1}, \ldots, f_{5} \in \bigwedge^{3}(A, \sigma)$ defining the five hyperplanes $H_{1}, \ldots, H_{5}$.

Proof. Let $X_{i}$ be the common zero locus of the first $i$ linear forms $f_{1}, \ldots, f_{i}$ for $1 \leq i \leq 5$. Then we obtain a ladder

$$
C=X_{5} \subset X_{4} \subset X_{3} \subset X_{2} \subset X_{1} \subset X_{0}:=\mathrm{G}(A, \sigma)
$$

Since $C$ is irreducible, so is each $X_{i}$. Hence the kernel of the restriction map $H^{0}\left(X_{i}, \bigcirc_{X}(1)\right) \longrightarrow H^{0}\left(X_{i+1}, \widehat{O}_{X}(1)\right)$ is generated by $f_{i+1}$, for every $1 \leq i \leq 4$. Hence $\bigwedge^{3}(A, \sigma) /\left\langle f_{1}, \ldots, f_{5}\right\rangle \longrightarrow H^{0}\left(K_{C}\right)$ is injective. This map is also surjective because the source and the target have the same dimension.

Let $\mathscr{E}$ be the restriction of $थ$ to $\mathrm{G}(A, \sigma)$ and $E$ the restriction to $C$.
Lemma 4.3. The restriction map $A \rightarrow H^{0}(E)$ is injective.
Proof. Assume the contrary. Then for each of the Lagrangian quotient spaces $A \rightarrow Q$ parametrized by $C, \operatorname{Ker}[A \rightarrow Q]$ contains a nonzero common vector $a$. Hence $C$ is contained in the symplectic Grassmannian $\mathrm{G}(\bar{A}, \bar{\sigma})$, where $\bar{A}$ is the co-radical of $A / k a$. This contradicts the preceding lemma since $\mathrm{G}(\bar{A}, \bar{\sigma})$ lies in a 4-dimensional linear subspace.

By this lemma we identify $A$ with its image in $H^{0}(E)$.
Lemma 4.4. (1) A nonzero global section $s \in A$ of $E$ has at most two zeros (counted with multiplicity); that is, $A \cap H^{0}(E(-D))=0$ for every effective divisor $D$ of degree 3 on $C$.
(2) If $A^{\prime} \subset A$ is a subspace of codimension one, then the cokernel of the evaluation homomorphism $A^{\prime} \otimes_{k}{ }^{0} C \longrightarrow E$ is of length $\leq 2$.

Proof. Assume that $s$ has at least three zeros. Then we have an exact sequence $E^{\vee} \longrightarrow 0_{C} \longrightarrow{{ }^{0}}_{D} \longrightarrow 0$ for an effective divisor $D$ of degree $\geq 3$. Let $\mathrm{G}(\bar{A}, \bar{\sigma}) \subset$ $\mathrm{G}(A, \sigma)$ be the 3-dimensional symplectic Grassmannian determined by $s \in A$. Then the intersection $\mathrm{G}(\bar{A}, \bar{\sigma}) \cap C$ contains $D$. Since $\mathrm{G}(\bar{A}, \bar{\sigma})$ is a quadric, its intersection with the linear span $\langle D\rangle$ is of positive dimension, which is a contradiction. This shows (1). The proof of (2) is similar.

Let $U \subset A$ be a 3-dimensional subspace and $H_{U} \subset \mathbf{P}^{*} \bigwedge^{3} A$ the hyperplane corresponding to it. Then the intersection $H_{U} \cap \mathrm{G}(A, r)$ consists of the $r$-dimensional quotient spaces $A \rightarrow Q$ such that the composite $U \hookrightarrow A \rightarrow Q$ is not an isomorphism. It is singular along the Schubert subvariety

$$
\begin{equation*}
\{[A \rightarrow Q] \mid \operatorname{rank}[U \hookrightarrow A \rightarrow Q] \leq 1\} \tag{4.1}
\end{equation*}
$$

If $H_{U} \not \supset C$, then the evaluation homomorphism ev ${ }_{U}: U \otimes{ }^{0} C \longrightarrow E$ is of rank 3 at the generic point. Hence it is injective. If $H_{U} \supset C$, then $H_{U}$ belongs to $\left\langle\left[H_{1}\right], \ldots,\left[H_{5}\right]\right\rangle$. Since the intersection $C=H_{1} \cap \cdots \cap H_{5} \cap \mathrm{G}(A, \sigma)$ is transversal, $H_{U} \cap \mathrm{G}(A, \sigma)$ must be smooth along $C$. Hence $\mathrm{ev}_{U}$ is of rank 2 everywhere. So
we have proved the following, which indicates that the semi-irreducibility is a key concept for canonical curves of genus 9.

Proposition 4.5. The induced rank three linear system $(A, E)$ on $C=$ $\mathrm{G}(A, \sigma) \cap H_{1} \cap \cdots \cap H_{5}$ is semi-irreducible.

By Proposition 3.2, there exists a 3-dimensional subspace $U$ of $A$ such that $H_{U} \supset C$. Let $F$ and $\alpha$ be the image and the cokernel of $\mathrm{ev}_{U}$. Then $\alpha$ is a line bundle, $\operatorname{det} F$ is isomorphic to $\beta:=K_{C} \alpha^{-1}$ and we have exact sequences

$$
\begin{equation*}
0 \longrightarrow \beta^{-1} \longrightarrow \stackrel{\odot}{C}_{C}^{\oplus 3} \longrightarrow F \longrightarrow 0 \quad \text { and } \quad 0 \longrightarrow F \longrightarrow E \longrightarrow \alpha \longrightarrow 0 \tag{4.2}
\end{equation*}
$$

By (2.2), the line bundles $\alpha$ and $\beta$ are both of degree 8.

## Proposition 4.6. $C$ is nonpentagonal.

Proof. It is obvious that $C$ is nonhyperelliptic. Since $\operatorname{SpG}(3,6) \subset \mathbf{P}^{13}$ is an intersection of quadrics (see (0.1)), so is $C \subset \mathbf{P}^{8}$. In particular, $C \subset \mathbf{P}^{8}$ has no tri-secant lines. By the geometric version of the Riemann-Roch theorem ([1, Chap I, §2]), $C$ has no $g_{3}^{1}$. Also $C$ has no $g_{5}^{2}$ either, since the (geometric) genus of a plane quintic is at most 6 . Let $\xi$ be a $g_{5}^{1}$ on $C$. Then we have $h^{0}(\xi)=2$. Let $U$ and $F$ be as above. Taking the global section of the exact sequence

$$
\left[0 \longrightarrow F^{\vee} \longrightarrow \mathbb{O}_{\boldsymbol{C}}^{\oplus} \longrightarrow \beta \longrightarrow 0\right] \otimes \xi
$$

we have

$$
6 \leq 3 h^{0}(\xi) \leq \operatorname{dim} \operatorname{Hom}(F, \xi)+h^{0}(\xi \beta)=\operatorname{dim} \operatorname{Hom}(F, \xi)+5+h^{1}(\xi \beta)
$$

Hence we have

$$
\begin{equation*}
\operatorname{dim} \operatorname{Hom}(F, \xi)+\operatorname{dim} \operatorname{Hom}(\xi, \alpha) \geq 1 \tag{4.3}
\end{equation*}
$$

Assume that there exists a nonzero homomorphism $F \rightarrow \xi$ and let $s$ be a nonzero global section in the kernel of $U \hookrightarrow H^{0}(F) \rightarrow H^{0}(\xi)$. Then $s$ has at least three zeros since $\operatorname{deg} F-\operatorname{deg} \xi=3$. If $\operatorname{Hom}(F, \xi)$ is zero, then $\operatorname{Hom}(\xi, \alpha)$ is not by (4.3). Hence $\alpha$ contains a subsheaf isomorphic to $\xi$. Let $A^{\prime}$ be the inverse image of $H^{0}(\xi)$ by $A \rightarrow H^{0}(\alpha)$. Then the cokernel of the evaluation homomorphism $A^{\prime} \otimes_{k}{ }^{0} C \rightarrow E$ is of length 3. Both contradict Lemma 4.4.

Remark 4.7. (1) For a curve of genus 9 , the nonexistence of $g_{5}^{1}$ is equivalent to its Clifford index which equals 4 (Martens [9, Beispiel 9]).
(2) Green's property $\left(N_{p}\right)([6])$ gives another proof of the proposition: First a general curve of genus 9 satisfies $\left(N_{3}\right)$ by Ein [3]. Hence $\operatorname{SpG}(3,6) \subset \mathbf{P}^{13}$ and its complete linear section do so. By the converse of Green's conjecture (GreenLazarsfeld [7]), $C$ is nonpentagonal.

By the proposition and (1) of the remark, $C$ has no $g_{8}^{3}$. Hence we have $h^{0}(\alpha)=h^{0}(\beta)=3$. By Lemma 5.1 below, we have $h^{0}(E) \leq h^{0}(\alpha)+H^{0}\left(Q_{\beta}\right) \leq 6$. Combining this with Lemma 4.3, we have

Proposition 4.8. The restriction map $A \rightarrow H^{0}(E)$ is an isomorphism.
In the following sections we aim at a kind of converse of Proposition 4.5.

## 5. Rank 3 linear systems on a nonpentagonal curve

Throughout this section we assume that $C$ is a nonpentagonal curve of genus 9 . In particular, $C$ has no $g_{7}^{2}$. Let $\alpha$ be a $g_{8}^{2}, \beta$ its Serre adjoint and $Q_{\beta}$ the cokernel of $\operatorname{ev}_{\beta}$ as in the introduction and in (1.1). The image of $\Phi_{\beta}: C \longrightarrow \mathbf{P}^{2}$ is a singular plane curve of degree 8 . Hence there exists a pair $(p, q)$ of points (not necessarily distinct) such that $h^{0}(\beta(-p-q))=2$. By assumption $\xi:=\beta(-p-q)$ is a free $g_{6}^{1}$. Hence we have a commutative diagram

and an exact sequence

$$
\begin{equation*}
0 \longrightarrow{0^{C}}_{C}(p+q) \longrightarrow Q_{\beta} \longrightarrow \xi \longrightarrow 0 \tag{5.2}
\end{equation*}
$$

Lemma 5.1. (1) $h^{0}\left(Q_{\beta}\right)=3$;
(2) $H^{0}\left(\alpha^{-1} Q_{\beta}\right)=0$.

Proof. (1) $h^{0}\left(Q_{\beta}\right) \geq 3$ is obvious from the defining exact sequence of $Q_{\beta}$. The opposite inequality $h^{0}\left(Q_{\beta}\right) \leq 3$ follows from (5.2).
(2) $Q_{\beta}$ is isomorphic to $\beta Q_{\beta}^{\vee}$ since it is of rank 2. Hence $Q_{\beta}$ is a subbundle of $\beta^{\oplus 3}$. If $\alpha \nsucceq \beta$, then $H^{0}\left(\alpha^{-1} \beta\right)=0$ and hence $H^{0}\left(\alpha^{-1} Q_{\beta}\right)=0$. If $\alpha \simeq \beta$, then $H^{0}\left(\alpha^{-1} Q_{\beta}\right) \simeq H^{0}\left(Q_{\beta}^{\vee}\right)=0$ by the exact sequence (1.1).

We consider extensions

$$
\begin{equation*}
0 \longrightarrow Q_{\beta} \longrightarrow E \longrightarrow \alpha \longrightarrow 0 \tag{5.3}
\end{equation*}
$$

which are $\Gamma$-split; that is, $H^{0}(E) \rightarrow H^{0}(\alpha)$ is surjective.
Lemma 5.2. There exists a nontrivial extension $E$ of $\alpha$ by $Q_{\beta}$ with $h^{0}(E)=6$.
Proof. The extensions with $h^{0}(E)=6$ are parametrized by the kernel of the natural linear map $\varphi: \operatorname{Ext}^{1}\left(\alpha, Q_{\beta}\right) \longrightarrow H^{0}(\alpha)^{\vee} \otimes H^{1}\left(Q_{\beta}\right)$, which is equal to the first cohomology $H^{1}$ of the homomorphism

$$
\left[\alpha^{-1} \xrightarrow{\mathrm{ev}^{\vee}} H^{0}(\alpha)^{\vee} \otimes \mathbb{O}_{C}\right] \otimes Q_{\beta}
$$

Since its cokernel is $Q_{\alpha} \otimes Q_{\beta}$, we have an exact sequence
$H^{0}(\alpha)^{\vee} \otimes H^{0}\left(Q_{\beta}\right) \xrightarrow{\psi} H^{0}\left(Q_{\alpha} \otimes Q_{\beta}\right) \longrightarrow H^{1}\left(\alpha^{-1} Q_{\beta}\right) \xrightarrow{\varphi} H^{0}(\alpha)^{\vee} \otimes H^{1}\left(Q_{\beta}\right)$
The first map $\psi$ is injective by (2) of Lemma 5.1 and $h^{0}\left(Q_{\alpha} \otimes Q_{\beta}\right)$ is even by Proposition 1.2. Since $h^{0}(\alpha) h^{0}\left(Q_{\beta}\right)=9, \varphi$ is not injective.

Proposition 5.3. Let $E$ be as in the preceding lemma. Then the complete linear system $|E|$ is free and semi-irreducible.

Proof. $|E|$ is free since both $\left|Q_{\beta}\right|$ and $|\alpha|$ are. Let $U \subset H^{0}(E)$ be a 3-dimensional subspace and $F \subset E$ the saturation of the subsheaf $F^{\prime}$ generated by $U$. Obviously $h^{0}(F) \geq 3$. If $F$ is of rank one, then $\operatorname{deg} F \geq 8$ by our assumption. Since $F \not \subset Q_{\beta}$, the extension (5.3) splits, which is a contradiction. Hence $F$ is of rank two. Let $\xi$ be the quotient line bundle $E / F$. Since $|E|$ is free, so is $\xi$. Since $\operatorname{Hom}\left(E, O_{C}\right)=0$, we have $h^{0}(\xi) \geq 2$. By duality and (1) of Remark 4.7, $h^{0}(\operatorname{det} F)=h^{1}(\xi) \leq g+1-4-h^{0}(\xi) \leq 4$.

Assume that $h^{0}(F) \geq 4$. Then $F$ contains a line subbundle $\zeta$ with $h^{0}(\zeta) \geq 2$ by Proposition 3.2. Since $\zeta \not \subset Q_{\beta}, \zeta$ is isomorphic to a proper subsheaf of $\alpha$. Hence we have $h^{0}(\zeta)=2$. Let $\eta$ be the quotient line bundle $F / \zeta$. Then we have $h^{0}(\eta) \geq h^{0}(F)-h^{0}(\zeta)=2$. Since $\operatorname{deg} \zeta+\operatorname{deg} \eta+\operatorname{deg} \xi=16$, one of the three line bundles is of degree $\leq 5$, which is a contradiction. Hence we have $h^{0}(F)=3$ and $h^{0}(\xi) \geq h^{0}(E)-h^{0}(F)=3$. Since $h^{1}(\xi)=h^{0}(\operatorname{det} F) \geq 3, \xi$ is a $g_{8}^{2}$ and $F^{\prime}$ is isomorphic to $Q_{\xi}$. In particular, $F^{\prime}=F$ and $F^{\prime}$ is a subbundle.

Now conversely we study a uniqueness.
Lemma 5.4. Nontrivial extensions $E$ of $\alpha$ by $Q_{\beta}$ with $h^{0}(E)=6$ are unique.
Proof. The assertion is equivalent to $h^{0}\left(Q_{\alpha} \otimes Q_{\beta}\right) \leq 10$ by the exact sequence (5.4). Take the global section of the exact sequence

$$
(5.2) \otimes Q_{\alpha}: 0 \longrightarrow Q_{\alpha}(p+q) \longrightarrow Q_{\alpha} \otimes Q_{\beta} \longrightarrow Q_{\alpha} \xi \longrightarrow 0
$$

Now

$$
\begin{aligned}
h^{0}\left(Q_{\alpha} \otimes Q_{\beta}\right) & \leq h^{0}\left(Q_{\alpha}(p+q)\right)+h^{0}\left(Q_{\alpha} \xi\right) \\
& =h^{0}\left(Q_{\alpha}(p+q)\right)+h^{1}\left(Q_{\alpha}(p+q)\right) \\
& =2 h^{0}\left(Q_{\alpha}(p+q)\right)-\chi\left(Q_{\alpha}(p+q)\right)
\end{aligned}
$$

Since $\chi\left(Q_{\alpha}(p+q)\right)=-4$, it suffices to show $h^{0}\left(Q_{\alpha}(p+q)\right) \leq 3$. Assume the contrary:

The case where $h^{0}\left(Q_{\alpha}(p+q)\right)=4$. Let $\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\}$ be a basis of the vector space $H^{0}\left(Q_{\alpha}(p+q)\right)$ such that $s_{1}, s_{2}, s_{3} \in H^{0}\left(Q_{\alpha}\right)$ and $F$ is the image of the evaluation homomorphism $H^{0}\left(Q_{\alpha}(p+q)\right) \otimes_{k}{ }^{0} C \longrightarrow Q_{\alpha}(p+q)$. Then the quotient $F / Q_{\alpha}$ is generated by the image of $s_{4}$. Hence, $\operatorname{deg} F \leq \operatorname{deg} Q_{\alpha}+2$ $=10$. We have $h^{0}(\operatorname{det} F) \leq 4$ by the nonexistence of $g_{6}^{2}$. Since $h^{0}(F) \geq 4$, there exists a 2-dimensional subspace of $H^{0}(F)$ which generates a rank one subsheaf by Proposition 3.2. This contradicts the nonexistence of $g_{5}^{1}$.

The case where $h^{0}\left(Q_{\alpha}(p+q)\right) \geq 5$. Since $\operatorname{deg} Q_{\alpha}(p+q)=12$ and since $C$ has no $g_{4}^{1}$, we have $h^{0}\left(\operatorname{det}\left(Q_{\alpha}(p+q)\right)\right) \leq 5$. By Proposition 3.2, there exists an
exact sequence

$$
0 \longrightarrow \zeta \longrightarrow Q_{\alpha}(p+q) \longrightarrow \eta \longrightarrow 0
$$

such that $h^{0}(\zeta) \geq 2$. Since $\eta(-p-q)$ is a quotient of $Q_{\alpha}$, we have $h^{0}(\eta(-p-q))$ $\geq 2$ and $\operatorname{deg} \eta(-p-q) \geq 6$, which implies $\operatorname{deg} \zeta \leq 4$. This is a contradiction.

We strengthen this lemma.
Lemma 5.5. A rank 3 vector bundle $E$ on $C$ which satisfies
i) $\bigwedge^{3} E \simeq K_{C}$,
ii) $h^{0}(E) \geq 6$, and
iii) $|E|$ is semi-irreducible
is an extension of $\alpha$ by $Q_{\beta}$.
Proof. By Lemma 1.1, or by (1.3), we have

$$
\operatorname{dim} \operatorname{Hom}\left(Q_{\beta}, E\right)+\operatorname{dim} \operatorname{Hom}(E, \alpha) \geq 2
$$

$\left(h^{0}(E)=r+s\right.$ and the Brill-Noether number $\rho$ is equal to 0 .) Hence there exists a nonzero homomorphism either $f: Q_{\beta} \longrightarrow E$ or $g: E \longrightarrow \alpha$.

If the image of $f$ is a line bundle $L$, then $h^{0}(L) \geq 2$ since $\operatorname{Hom}\left(Q_{\beta}, \mathcal{O}_{C}\right)=0$. This contradicts (1) of Proposition 3.5. Hence $f$ is injective. By semi-irreducibility, the cokernel is a line bundle and is isomorphic to $\alpha$.

If $g: E \longrightarrow \alpha$ is not surjective, then the kernel of $H^{0}(E) \longrightarrow H^{0}(\alpha)$ is of dimension $\geq 4$, which contradicts semi-irreducibility. Hence $g$ is surjective and its kernel is isomorphic to $Q_{\beta}$.

By the two lemmas above, we have the following:
Proposition 5.6. Vector bundles $E$ on $C$ which satisfy the condition of the lemma are unique up to isomorphism.

This vector bundle is denoted by $E_{\max }$.
Corollary. If $E$ is a rank 3 vector bundle of canonical determinant on $C$ and if $|E|$ is semi-irreducible, then $h^{0}(E) \leq 6$.

Remark 5.7. (1) By the proposition and its proof, we obtain an explicit bijection between two sets: $W_{8}^{2}(C)$, the set of $g_{8}^{2}$ 's of $C$, and the intersection

$$
\mathrm{G}\left(3, H^{0}\left(E_{\max }\right)\right) \cap \mathbf{P}^{10}
$$

It is known that the cardinality of $W_{d}^{r-1}(C)$ of a general curve $C$ of genus $g$ is equal to the degree of a $g$-dimensional Grassmannian when the Brill-Noether number $\rho$ is zero (cf. [1, Chap. VII, Th. (4.4)] and [4, Ex. 14.4.5]).
(2) By (1) of Proposition 3.5, it is easy to show that $E_{\max }$ is stable. It is also easy to show a converse: if $E$ is stable, $\bigwedge^{3} E \simeq K_{C}$ and $h^{0}(E) \geq 6$, then $|E|$ is semi-irreducible.

## 6. Linear section theorems

We prove Theorem C in several steps. Assume that $E=E_{\max }$ satisfies the condition (0.2). Since $E$ is a rank 3 vector bundle of canonical determinant, $K_{C} E^{\vee}$ is isomorphic to $\bigwedge^{2} E$. Hence, by the Riemann-Roch theorem, we have

$$
h^{0}(E)-h^{0}\left(\bigwedge^{2} E\right)=\operatorname{deg} E+3(1-9)=-8
$$

and $h^{0}\left(\bigwedge^{2} E\right)=14$. Since $\operatorname{dim} \bigwedge^{2} H^{0}(E)=15$, the linear map

$$
\lambda_{2}: \bigwedge^{2} H^{0}(E) \longrightarrow H^{0}\left(\bigwedge^{2} E\right)
$$

is not injective.
Step 1. Every nonzero bivector $\sigma$ in $\operatorname{Ker} \lambda_{2}$ is nondegenerate.
Proof. The rank of $\sigma$ is either 2, 4 or 6 . If $\sigma$ is of rank 2, then $\sigma$ is equal to $s_{1} \wedge s_{2}$ for a pair of global sections $s_{1}$ and $s_{2}$ which are linearly independent in $H^{0}(E)$ and generate a rank-one subsheaf in $E$. This contradicts (2) of Proposition 3.5. Assume that $\sigma$ is of rank 4. Then $\sigma$ is equal to $s_{1} \wedge s_{2}-s_{3} \wedge s_{4}$ for $s_{1}, s_{2}, s_{3}$ and $s_{4} \in H^{0}(E)$. By semi-irreducibility, $s_{1}$ and $s_{2}$ generate a rank two subsheaf in $E$. Let $F$ be its saturation. Since $\lambda_{2}\left(s_{1} \wedge s_{2}\right)=\lambda_{2}\left(s_{3} \wedge s_{4}\right)$, we have $\lambda_{3}\left(s_{1} \wedge s_{2} \wedge s_{i}\right)=$ $\lambda_{3}\left(s_{3} \wedge s_{4} \wedge s_{i}\right)=0$ for $i=3,4$. Hence $s_{3}$ and $s_{4}$ are contained in $H^{0}(F)$ and we have $h^{0}(F) \geq 4$. This contradicts the semi-irreducibility of $|E|$ by Proposition 3.5.

The nondegeneracy of $\sigma$ is equivalent to the nonvanishing of the Pfaffian. Hence $\operatorname{Ker} \lambda_{2}$ is of dimension one and $\lambda_{2}$ is surjective. Since $|E|$ is free, we obtain a morphism $\Phi_{E}: C \longrightarrow \mathrm{G}(A, 3)$ to the Grassmannian of 3-dimensional quotient spaces of $A:=H^{0}(E)$. Its image is contained in the symplectic Grassmannian $\mathrm{G}(A, \sigma)$ and we obtain the commutative diagram (0.3), where $\sigma$ is a generator of Ker $\lambda_{2}$. Since $\bigwedge^{3}(A, \sigma)$ is of dimension 14 , the kernel of $\bar{\lambda}_{3}: \bigwedge^{3}(A, \sigma) \longrightarrow$ $H^{0}\left(K_{C}\right)$ is of dimension $\geq 14-9=5$. Let $f_{1}, \ldots, f_{k}, k \geq 5$, be its basis and $H_{1}, \ldots, H_{k}$ the hyperplanes corresponding to them. Since $|E|$ is semi-irreducible, the intersection $S_{E_{p}} \cap \mathbf{P}_{*} \operatorname{Ker} \lambda_{3}$ is empty for every $p \in C$ by Lemma 3.4. Hence so is $\alpha\left(S_{E_{p}}\right) \cap \mathbf{P}_{*} \operatorname{Ker} \bar{\lambda}_{3}$ for the projection $\alpha$ in (2.6).

Step 2. There exists a point $p \in C$ such that the intersection $\mathrm{G}(A, \sigma) \cap H_{1} \cap$ $\cdots \cap H_{k}$ is transversal at $\Phi_{E}(p)$.

Proof. Assume the contrary. Then, for every $p \in C$, there exists a member $H_{p}$ of $\left\langle\left[H_{1}\right], \ldots,\left[H_{k}\right]\right\rangle=\mathbf{P}_{*} \operatorname{Ker} \bar{\lambda}_{3}$ such that the intersection $\mathrm{G}(A, \sigma) \cap H_{p}$ is singular at $\Phi_{E}(p)$. The intersection $\mathbf{P}_{*}\left(N_{\mathrm{G}(A, \sigma) / \mathbf{P},\left[E_{p}\right]}^{\vee}\right) \cap \mathbf{P}_{*} \operatorname{Ker} \bar{\lambda}_{3}$ is a point for every $p$ by Proposition 2.4. Therefore, we obtain a section of the $\mathbf{P}^{6}$-bundle $\mathbf{P}^{*}\left(\Phi_{E}^{*} N_{\mathrm{G}(A, \sigma) / \mathbf{P}}\right)$ over $C$ which is disjoint from $\coprod_{p \in C} \alpha\left(S_{E_{p}}\right)$. By projecting from $\bigsqcup_{p \in C} \kappa_{p}$, we obtain a section of $\mathbf{P}_{*}\left(S^{2} E\right)$ over which the discriminant form
$\delta \in H^{0}\left(S^{3}\left(S^{2} E\right)^{\vee} \otimes(\operatorname{det} E)^{\otimes 2}\right)$ has no zeros. Let $\xi \subset S^{2} E$ be the line subbundle corresponding to the section. Then $\delta$ induces a nowhere-vanishing global section of $\xi^{-3} \otimes(\operatorname{det} E)^{\otimes 2}$. This implies $3 \operatorname{deg} \xi=2 \operatorname{deg} E=32$, which is absurd.

In particular, we have $k=5$ and hence the linear map $\bar{\lambda}_{3}$ is surjective. Therefore, $\mathbf{P}^{*} \bar{\lambda}_{3}$ is a linear embedding. Since the canonical morphism $\Phi_{K}$ is an embedding, so is $\Phi_{E}$ by the commutative diagram (0.3). We identify $C$ with its image $\Phi_{E}(C)$.

By Step 2, the intersection $\mathrm{G}(A, \sigma) \cap H_{1} \cap \cdots \cap H_{5}$ is complete on a nonempty open subset $C_{0}$ of $C$. Hence the twisted normal bundle $N_{C / G(A, \sigma)}(-1)$ is generated by the five global sections induced from $f_{1}, \ldots, f_{5}$ over $C_{0}$. It is generated over $C$, since $N_{C / \mathrm{G}(A, \sigma)}(-1)$ is of trivial determinant. Therefore, the intersection is complete along $C$ and contains it as a connected component. By the connectedness of linear sections (Fulton-Lazarsfeld [5, Th. 2.1]), the intersection coincides with $C$, which completes the proof of Theorem C. (If we use the refined Bézout theorem (Fulton[4, Th. 12.3]), the proof finishes at the last paragraph.)

Theorem A is an immediate consequence of Theorem C, Proposition 5.3 and Proposition 4.6.

## 7. Proof of Theorem B

We do not assume that $k$ is algebraically closed anymore. Let $C \simeq \mathrm{G}\left(A^{\prime}, \sigma^{\prime}\right)$ $\cap P^{\prime}$ be another expression of $C=\mathrm{G}(A, \sigma) \cap P$ as a complete linear section of a 6-dimensional symplectic Grassmannian and $\left.\mathscr{E}^{\prime}\right|_{C}$ the restriction of the universal quotient bundle. Both $|\mathscr{E}|_{\boldsymbol{C}} \mid$ and $\left|\mathscr{E}^{\prime}\right|_{\boldsymbol{C}} \mid$ are semi-irreducible (over $\bar{k}$ ) by Proposition 4.5. Hence they are isomorphic to each other over $\bar{k}$ by Proposition 5.6 and there exists a nonzero homomorphism $f:\left.\left.\mathscr{E}\right|_{C} \longrightarrow \mathscr{E}^{\prime}\right|_{C}$ over $k$. This is an isomorphism by Lemma 3.6. Since the diagram

$$
\begin{array}{ccc}
\substack{2 \\
\Lambda^{2} \\
\Lambda^{2} H^{0}\left(\left.\mathscr{E}\right|_{C}\right)} & \bigwedge^{2} H^{0}(f) \\
H^{0}\left(\left.\bigwedge^{2} \mathscr{E}\right|_{C}\right) & \longrightarrow & \bigwedge^{2} H^{0}\left(\left.\mathscr{E}^{\prime}\right|_{C}\right)=\Lambda^{2} A^{\prime} \\
& & \begin{array}{c}
\downarrow \\
H^{0}\left(\bigwedge^{2} f\right)
\end{array} \\
H^{0}\left(\left.\bigwedge^{2} \mathscr{E}^{\prime}\right|_{C}\right)
\end{array}
$$

is commutative, the isomorphism $H^{0}(f)$ maps $k \sigma$ onto $k \sigma^{\prime}$. Thus we have proved (2) of Theorem B.

Assume that $k$ is perfect and let $\bar{E}$ be a vector bundle on $\bar{C}=C \otimes_{k} \bar{k}$. We consider a descent problem of $\bar{E}$ under the following condition:
(*) $\bar{E}$ is simple and $\sigma^{*} \bar{E} \simeq \bar{E}$ for every element $\sigma$ of the Galois group $\operatorname{Gal} k$ of $\bar{k} / k$.

As is well known, the obstruction $\operatorname{ob}(\bar{E})$ for $\bar{E}$ to descend to $C$ is an element of the second Galois cohomology group $H^{2}(\operatorname{Gal} k$, Aut $\bar{E})$. Choose an isomorphism
$f_{\sigma}: \bar{E} \xrightarrow{\sim} \sigma^{*} \bar{E}$ for each $\sigma \in \operatorname{Gal} k$. Then $\operatorname{ob}(\bar{E})$ is the cohomology class of the cocycle $\left\{c_{\sigma, \tau}\right\}_{\sigma, \tau \in \mathrm{Gal} k}$ defined by $c_{\sigma, \tau}=f_{\sigma \tau}^{-1} \circ \tau^{*}\left(f_{\sigma}\right) \circ f_{\tau} \in \operatorname{Aut}_{\bar{k}} \bar{E}$. In other words, $\operatorname{ob}(\bar{E})$ is the factor set of the extension

$$
1 \longrightarrow \operatorname{Aut}_{\bar{k}} \bar{E} \longrightarrow \operatorname{Aut}_{k} \bar{E} \longrightarrow \mathrm{Gal} k \longrightarrow 1
$$

Lemma 7.1. If $\operatorname{dim} H^{i}(\bar{C}, \bar{E})=n>0$, then the obstruction $\operatorname{ob}(\bar{E})$ is $n$ torsion.

Proof. Let $\left\{s_{1}, \ldots, s_{n}\right\}$ be a basis of $H^{i}(\bar{C}, \bar{E})$ and $A_{\sigma} \in M_{n}(\bar{k})$ the matrix representing

$$
H^{i}\left(f_{\sigma}\right): H^{i}(\bar{C}, \bar{E}) \longrightarrow H^{i}\left(\bar{C}, \sigma^{*} \bar{E}\right)
$$

with respect to the bases $\left\{s_{1}, \ldots, s_{n}\right\}$ and $\left\{\sigma^{*} s_{1}, \ldots, \sigma^{*} s_{n}\right\}$. Then

$$
\operatorname{det} H^{i}\left(c_{\sigma, \tau}\right)=\left(\operatorname{det} A_{\sigma \tau}\right)^{-1} \tau\left(\operatorname{det} A_{\sigma}\right) \operatorname{det} A_{\tau}
$$

in $\bar{k}^{\times}$. Therefore, $\left\{\operatorname{det} H^{i}\left(c_{\sigma, \tau}\right)\right\}_{\sigma, \tau \in \mathrm{Gal} k}$ is cohomologous to zero. Since $c_{\sigma, \tau}$ are all constant multiplications, $\operatorname{det} H^{i}\left(c_{\sigma, \tau}\right)$ are equal to $c_{\sigma, \tau}^{n}$. Hence $\operatorname{ob}(\bar{E})$ is $n$-torsion.

Now we prove (1) of Theorem B. Let $C$ be a nonpentagonal curve of genus 9 defined over $k$. It suffices to show the following:

Proposition 7.2. Assume that $C$ has no $g_{5}^{1}$ over $\bar{k}$. Then there exists a vector bundle $E$ on $C$ such that $E \otimes_{k} \bar{k}$ is isomorphic to the vector bundle $E_{\max }$ on $C \otimes_{k} \bar{k}$.

Proof. By (3)of Proposition 3.5 and Proposition 5.6, $E_{\max }$ satisfies ( $*$ ). Hence the obstruction $\mathrm{ob}\left(E_{\max }\right)$ belongs to $H^{2}\left(\operatorname{Gal} k\right.$, $\left.\mathrm{Aut}_{\bar{k}} E_{\max }\right)=H^{2}\left(\operatorname{Gal} k, \bar{k}^{\times}\right)$. Let

$$
\text { Det }: H^{2}\left(\operatorname{Gal} k, \operatorname{Aut}_{\bar{k}} E_{\max }\right) \longrightarrow H^{2}\left(\operatorname{Gal}^{2}, \operatorname{Aut}_{\bar{k}} \operatorname{det} E_{\max }\right)
$$

be the determinant homomorphism. Since $\operatorname{det} E_{\max }$ is the canonical bundle, it descends to $C$. Hence $\operatorname{ob}\left(E_{\max }\right)$ belongs to the kernel and is 3-torsion. On the other hand, $\mathrm{ob}\left(E_{\max }\right)$ is 14-torsion by the preceding lemma since $\operatorname{dim} H^{1}\left(E_{\max }\right)=14$. Therefore, $\mathrm{ob}\left(E_{\max }\right)$ vanishes and $E_{\max }$ descends to $C$. (This is a Galois group variant of an argument of Mumford-Newstead [17].)

Acknowledgments. The author stayed at the Japan-U.S. Mathematics Institute (JAMI) at the Johns Hopkins University in the spring of 1991 and 1996 during the preparation of this article. He gave series lectures on this topic at Kyushu University in June of 1996. He is very grateful to these institutions for their hospitality. The stay in 1996 at JAMI was supported by the Japan Society for the Promotion of Science. This article is a refined version of an unpublished preprint written at Nagoya University in the autumn of 1996.

## References

[1] E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of Algebraic curves, I, Grundl. Math. Wissen. 267, Springer-Verlag, New York, 1985. MR 86h:14019 Zbl 0559.14017
[2] A. Beauville, Complex Algebraic Surfaces, London Math. Soc. Lect. Note Series 68, Cambridge Univ. Press, Cambridge, 1983. MR 85a:14024 Zbl 0512.14020
[3] L. Ein, A remark on the syzygies of the generic canonical curves, J. Differential Geom. 26 (1987), 361-365. MR 89a:14031 Zbl 0632.14024
[4] W. Fulton, Intersection Theory, Ergeb. Math. Grenzgeb. 2, Springer-Verlag, New York, 1984. MR 85k:14004 Zbl 0541.14005
[5] W. Fulton and R. LaZARSFELD, Connectivity and its applications in algebraic geometry, in Algebraic Geometry (Chicago, Ill., 1980), Lecture Notes in Math. 862, Springer-Verlag, New York, 1981, pp. 26-92. MR 83i:14002 Zbl 0484.14005
[6] M. L. Green, Koszul cohomology and the geometry of projective varieties, J. Differential Geom. 19 (1984), 125-171. MR 85e:14022 Zbl 0559.14008
[7] M. L. Green and R. Lazarsfeld, The non vanishing of certain Koszul cohomology groups, appendix to [6].
[8] P. Griffiths and J. Harris, Principles of Algebraic Geometry, Pure and Applied Mathematics, Wiley-Interscience [John Wiley \& Sons], New York, 1978. MR 80b:14001 Zbl 0408.14001
[9] G. Martens, Funktionen von vorgegebener Ordnung auf komplexen Kurven, J. Reine Angew. Math. 320 (1980), 68-85. MR 82e: 14034 Zbl 0441.14010
[10] S. Mukai, Curves, K3 surfaces and Fano 3-folds of genus $\leq 10$, in Algebraic Geometry and Commutative Algebra, Vol. I, Kinokuniya, Tokyo, 1988, pp. 357-377. MR 90b:14039 Zbl 0701.14044
[11] , Curves and symmetric spaces, Proc. Japan Acad. Ser. A Math. Sci. 68 (1992), 7-10. MR 93d:14042 Zbl 0768.14014
[12] , Polarized K3 surfaces of genus 18 and 20, in Complex Projective Geometry (Trieste, 1989/Bergen, 1989), London Math. Soc. Lecture Note Ser. 179, Cambridge Univ. Press, Cambridge, 1992, pp. 264-276. MR 94a:14039 Zbl 0774.14035
[13] , Curves and Grassmannians, in Algebraic Geometry and Related Topics (Inchon, 1992), Conf. Proc. Lecture Notes Algebraic Geom. I, Int. Press, Cambridge, MA, 1993, pp. 19-40. MR 95i:14032 Zbl 0846.14030
[14] , Curves and symmetric spaces. I, Amer. J. Math. 117 (1995), 1627-1644. MR 96m: 14040 Zbl 0871.14025
[15] _ New developments in Fano manifold theory related to the vector bundle method and moduli problems, Sūgaku 47 (1995), 125-144. MR 96m:14059 Zbl 0889.14010
[16] D. MumFord, Theta characteristics of an algebraic curve, Ann. Sci. École Norm. Sup. 4 (1971), 181-192. MR 45 \#1918 Zbl 0216.05904
[17] D. Mumford and P. Newstead, Periods of a moduli space of bundles on curves, Amer. J. Math. 90 (1968), 1200-1208. MR 38 \#3272 Zbl 0174.52902
(Received February 24, 2003)

> (Revised January 15, 2010)

E-mail address: mukai@kurims.kyoto-u.ac.jp
Research Institute for Mathematical Sciences, Kyoto University, Kitashirakawa Oiwake-chō, Sakyō-Ku, Kyoto 606-8502, Japan

## ISSN 0003-486X <br> Annals of Mathematics

This periodical is published bimonthly by the Department of Mathematics at Princeton University with the cooperation of the Institute for Advanced Study. Annals is typeset in $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ by Sarah R. Warren and produced by Mathematical Sciences Publishers. The six numbers each year are divided into two volumes of three numbers each.

## Editorial correspondence

Papers submitted for publication and editorial correspondence should be addressed to Maureen Schupsky, Annals of Mathematics, Fine Hall-Washington Road, Princeton University, Princeton, NJ, 08544-1000 U.S.A. The e-mail address is annals @ math.princeton.edu.

## Preparing and submitting papers

The Annals requests that all papers include an abstract of about 150 words which explains to the nonspecialist mathematician what the paper is about. It should not make any reference to the bibliography. Authors are encouraged to initially submit their papers electronically and in PDF format. Please send the file to: annals@math.princeton.edu or to the Mathematics e-print arXiv: front.math.ucdavis.edu/submissions. If a paper is submitted through the arXiv, then please e-mail us with the arXiv number of the paper.

## Proofs

A PDF file of the galley proof will be sent to the corresponding author for correction. If requested, a paper copy will also be sent to the author.

## Offprints

Authors of single-authored papers will receive 30 offprints. (Authors of papers with one co-author will receive 15 offprints, and authors of papers with two or more co-authors will receive 10 offprints.) Extra offprints may be purchased through the editorial office.

## Subscriptions

The price for a print and online subscription, or an online-only subscription, is $\$ 390$ per year for institutions. In addition, there is a postage surcharge of $\$ 40$ for print subscriptions that are mailed to countries outside of the United States. Individuals interested in subscriptions for their own personal use should contact the publisher at the address below. Subscriptions and changes of address should be sent to Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94720-3840 (e-mail: contact@mathscipub.org; phone: 1-510-643-8638; fax: 1-510-295-2608). (Checks should be made payable to "Mathematical Sciences Publishers".)

## Back issues and reprints

Orders for missing issues and back issues should be sent to Mathematical Sciences Publishers at the above address. Claims for missing issues must be made within 12 months of the publication date. Online versions of papers published five or more years ago are available through JSTOR (www.jstor.org).

## Microfilm

Beginning with Volume 1, microfilm may be purchased from NA Publishing, Inc., 4750 Venture Drive, Suite 400, PO Box 998, Ann Arbor, MI 48106-0998; phone: 1-800-420-6272 or 734-3026500; email: info@napubco.com, website: www.napubco.com/contact.html.

## All rights reserved under the Berne Convention and the Universal Copyright Convention

Copyright © 2010 by Princeton University (Mathematics Department)<br>Printed in U.S.A. by Sheridan Printing Company, Inc., Alpha, NJ

## TABLE OF CONTENTS

Shigeru Mukai. Curves and symmetric spaces, II ..... 1539-1558
Manjul Bhargava. The density of discriminants of quintic rings and fields ..... 1559-1591
Shuji Saito and Kanetomo Sato. A finiteness theorem for zero-cycles over $p$-adic fields ..... 1593-1639
Sylvain Crovisier. Birth of homoclinic intersections: a model for the central dynamics of partially hyperbolic systems ..... 1641-1677
Joseph Bernstein and Andre Reznikov. Subconvexity bounds for triple $L$-functions and representation theory ..... 1679-1718
SÁndor J Kovács and Max Lieblich. Boundedness of families of canonically polarized manifolds: A higher dimensional analogue of Shafarevich's conjecture ..... 1719-1748
Andrei Teleman. Instantons and curves on class VII surfaces ..... 1749-1804
Danijela Damjanović and Anatole Katok. Local rigidity of partially hyperbolic actions I. KAM method and $\mathbb{Z}^{k}$ actions on the torus ..... 1805-1858
Jorge Lauret. Einstein solvmanifolds are standard ..... 1859-1877
Pascal Collin and Harold Rosenberg. Construction of harmonic diffeomorphisms and minimal graphs ..... 1879-1906
John Lewis and Kaj Nyström. Boundary behavior and the Martin boundary problem for $p$ harmonic functions in Lipschitz domains ..... 1907-1948
Jens Marklof and Andreas Strömbergsson. The distribution of free path lengths in the periodic Lorentz gas and related lattice point problems ..... 1949-2033
Étienne Fouvry and Jürgen Klüners. On the negative Pell equation ..... 2035-2104
Lex G. Oversteegen and Edward D. Tymchatyn. Extending isotopies of planar continua ..... 2105-2133
Jan Bruinier and Ken Ono. Heegner divisors, $L$-functions and harmonic weak Maass forms ..... 2135-2181
Florian Pop. Henselian implies large ..... 2183-2195
Mikhail Belolipetsky, Tsachik Gelander, Alexander Lubotzky and Aner Shalev. Counting arithmetic lattices and surfaces ..... 2197-2221
Sasha Sodin. The spectral edge of some random band matrices ..... 2223-2251


[^0]:    Supported in part by the JSPS Grant-in-Aid for Exploratory Research 12874002, 20654004 and for Scientific Research (S)19104001.

