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Abstract

We describe a general method to obtain weak subconvexity bounds for many
classes of L-functions. We give several examples of our bound, and our work has
applications to a conjecture of Rudnick and Sarnak for the mass equidistribution of
Hecke eigenforms

1. Introduction and statement of results

A fundamental problem in number theory is to estimate the values of L-
functions at the center of the critical strip. The Langlands program predicts that all
L-functions arise from automorphic representations of GL.N / over a number field,
and moreover that such L-functions can be decomposed as a product of primitive
L-functions arising from irreducible cuspidal representations of GL.n/ over Q.
The L-functions that we consider will either arise in this manner, or will be the
Rankin-Selberg L-function associated to two irreducible cuspidal representations.
Note that such Rankin-Selberg L-functions are themselves expected to arise from
automorphic representations, but this is not known in general.

Given an irreducible cuspidal automorphic representation � (normalized to
have unitary central character), we denote the associated standard L-function by
L.s; �/, and its analytic conductor (whose definition we shall recall shortly) by
C.�/. There holds generally a convexity bound of the form L.1

2
; �/�" C.�/

1
4
C"

(see Molteni [28]).1 The Riemann hypothesis for L.s; �/ implies the Lindelöf
hypothesis: L.1

2
; �/� C.�/". In several applications it has emerged that the con-

vexity bound barely fails to be of use, and that any improvement over the convexity
bound would have significant consequences. Obtaining such subconvexity bounds
has been an active area of research, and estimates of the type L.1

2
; �/� C.�/

1
4
�ı

The author is partially supported by the National Science Foundation (DMS-0500711) and the Amer-
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1Recently, Roger Heath-Brown [14] has pointed out an elegant application of Jensen’s formula
for strips that leads generally to the stronger convexity bound L.12 ; �/� C.�/

1
4 .
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for some ı > 0 have been obtained for several important classes of L-functions.
However in general the subconvexity problem remains largely open. For compre-
hensive accounts on L-functions and the subconvexity problem we refer to Iwaniec
and Sarnak [21], and Michel [27].

In this paper we describe a method that leads in many cases to an improve-
ment over the convexity bound for values of L-functions. The improvement is
not a saving of a power of the analytic conductor, as desired in formulations of
the subconvexity problem. Instead we obtain an estimate of the form L.1

2
; �/�

C.�/
1
4 =.logC.�//1�", which we term weak subconvexity. In some applications, it

appears that a suitable weak subconvexity bound would suffice in place of genuine
subconvexity. In particular, by combining sieve estimates for the shifted convo-
lution problem developed by Holowinsky together with the weak subconvexity
estimates developed here, Holowinsky and I [18] have been able to resolve a con-
jecture of Rudnick and Sarnak on the mass equidistribution of Hecke eigenforms.
We begin by giving three illustrative examples of our work before describing the
general result.

Example 1. Let f be a holomorphic Hecke eigenform of large weight k for
the full modular group SL2.Z/. Let t be a fixed real number (for example, t D 0),
and consider the symmetric square L-function L.1

2
C i t; sym2f /. The convexity

bound for this L-function gives jL.1
2
C i t; sym2f /j �t k

1
2
C", and this can be

refined to�t k
1
2 by Heath-Brown’s result mentioned in footnote 1. Our method

gives the weak subconvexity bound, for any " > 0,

(1.1) jL.1
2
C i t; sym2f /j �"

k
1
2 .1Cjt j/

3
4

.log k/1�"
:

Obtaining subconvexity bounds in this situation (with a power saving in k) remains
an important open problem. In the case when k is fixed, and t gets large such a
subconvexity bound has been achieved recently by Li [22]. We have assumed that
the level is 1 for simplicity, and the result holds for higher level also. However,
the assumption that f is holomorphic is essential, since our method makes use
of the Ramanujan conjectures known here due to Deligne. Similar results would
hold for Maass forms if we assume the Ramanujan conjectures, but unfortunately
the partial results known towards the Ramanujan bounds are insufficient for our
purpose.

Example 2. Let f be a holomorphic Hecke eigenform of large weight k for
the full modular group. Let � be a fixed Hecke-Maass eigencuspform for SL2.Z/.
Consider the triple product L-function L.1

2
; f � f � �/. The convexity bound

gives L.1
2
; f � f � �/�� k

1C". Our weak subconvexity bound gives for any
" > 0

(1.2) L.1
2
; f �f ��/��;"

k

.log k/1�"
:
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Again we could consider higher level, but the assumption that f is holomorphic is
necessary for our method.

Example 3. Let �0 be an irreducible cuspidal automorphic representation on
GL.m0/ over Q with unitary central character. We treat �0 as fixed, and consider
L.1

2
C i t; �0/ in the t-aspect. The convexity bound here is L.1

2
C i t; �0/��0

.1Cjt j/
m0
4
C" and we obtain

(1.3) jL.1
2
C i t; �0/j ��0;"

.1Cjt j/
m0
4

.log.1Cjt j//1�"
:

Similarly, if � .mod q/ is a primitive Dirichlet character with q large, then

(1.4) L.1
2
; �0 ��/��0;"

q
m0
4

.log q/1�"
:

The most general example along these lines is the following: Let �0 be as above,
and let � be an irreducible cuspidal automorphic representation on GL.m/ with
unitary central character and such that � satisfies the Ramanujan conjectures. Then
we would obtain a weak subconvexity bound for L.1

2
; �0 ��/.

We now describe an axiomatic framework (akin to the Selberg class) for the
class of L-functions that we consider. The properties of L-functions that we as-
sume are mostly standard, and we have adopted this framework in order to clarify
the crucial properties needed for our method. In addition to the usual assumptions
of a Dirichlet series with a Euler product and a functional equation, we will need
an assumption on the size of the Dirichlet series coefficients. We call this a weak
Ramanujan hypothesis, as the condition is implied by the Ramanujan conjectures.
The reader may prefer to ignore our conditions below and restrict his attention to
automorphic L-functions satisfying the Ramanujan conjectures, but our framework
allows us to deduce results even in cases where the Ramanujan conjectures are not
known.

Let m� 1 be a fixed natural number. Let2 L.s; �/ be given by the Dirichlet
series and Euler product

(1.5a) L.s; �/D

1X
nD1

a�.n/

ns
D

Y
p

mY
jD1

�
1�

j̨;�.p/

ps

��1
;

and we suppose that both the series and product are absolutely convergent in
Re.s/ > 1.We write

(1.5b) L.s; �1/DN
s
2

mY
jD1

�R.sC�j /;

2Here the notation is meant to suggest that � corresponds to an automorphic representation, but
this is not assumed.
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where �R.s/D �
�s=2�.s=2/, N denotes the conductor, and the �j are complex

numbers. The completed L-function L.s; �/L.s; �1/ has an analytic continua-
tion3 to the entire complex plane, and has finite order. Moreover, it satisfies a
functional equation

(1.5c) L.s; �1/L.s; �/D �L.1� s; z�1/L.1� s; z�/;

where � is the root number (a complex number of magnitude 1), and

(1.5d) L.s; Q�/D

1X
nD1

a�.n/

ns
; and L.s; Q�1/DN

s
2

mY
jD1

�R.sC�j /:

We define the analytic conductor C D C.�/ (see [21]) by

(1.5e) C.�/DN

mY
jD1

.1Cj�j j/:

Our goal is to obtain an estimate for L.1
2
; �/ in terms of the analytic conductor

C.�/.
Properties (1.5a)–(1.5d) are standard features of all interesting L-functions.

We now need an assumption on the size of the numbers j̨;�.p/. The Ramanujan
conjectures, which are expected to hold for allL-functions, predict that j j̨;�.p/j�1
for all p. Further, it is expected that the numbers �j appearing in (1.5b) all satisfy
Re.�j /� 0. Towards the Ramanujan conjectures it is known (see [25]) that if � is
an irreducible cuspidal representation of GL.m/ then j j̨;�.p/j � p

1
2
�ım for all p,

and that Re.�j /��12 C ım where ım D 1=.m2C 1/. We will make the following
weak Ramanujan hypothesis.

Write

(1.6a) �
L0

L
.s; �/D

1X
nD1

��.n/ƒ.n/

ns
;

where ��.n/D 0 unless nD pk is a prime power when it equals
Pm
jD1 j̨;�.p/

k .
We assume that for some constants A0; A� 1, and all x � 1 there holds

(1.6b)
X

x<n�ex

j��.n/j
2

n
ƒ.n/� A2C

A0

log ex
:

Note that the Ramanujan conjecture would give (1.6b) with ADm, and A0�m2.
Analogously for the parameters �j we assume that4

(1.6c) Re.�j /� �1C ım; for some ım > 0; and all 1� j �m:

3Thus we are not allowing L.s; �/ to have any poles. It would not be difficult to modify our
results to allow the completed L-function to have poles at 0 and 1.

4This assumption is very weak: from [25] we know that it holds for all automorphic L-functions,
and also for the Rankin-Selberg L-function associated to two automorphic representations.
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THEOREM 1. Let L.s; �/ be an L-function satisfying the properties (1.5a)–
(1.5e) and (1.6a)–(1.6c). Then for any " > 0 we have

L.1
2
; �/�

C.�/
1
4

.logC.�//1�"
:

Here the implied constant depends on m, A, A0, ım, and ".

We now show how the examples given above fit into the framework of Theo-
rem 1.

Example 1 (proof). Write the Euler product for L.s; sym2f / as

L.s; sym2f /D
Y
p

�
1�

˛2p

ps

��1�
1�

p̨ p̌

ps

��1�
1�

ˇ2p

ps

��1
;

where p̨ D p̌ are complex numbers of magnitude 1 (by Deligne), and p̨C p̌

equals the p-th Hecke eigenvalue of f . From the work of Shimura we know that
the completed L-function

ƒ.s; sym2f /D �R.sC 1/�R.sC k� 1/�R.sC k/L.s; sym2f /

is entire and satisfies the functional equation ƒ.s; sym2f / D ƒ.1 � s; sym2f /.
Thus criteria (1.5a)–(1.5d) hold, and the analytic conductor of (1.5e) is � k2. If we
write �L0=L.s; sym2f / in the notation of (1.6a), then the analogous �sym2f .p

k/

equals ˛2kp C1C p̌
2k which is � 3 in magnitude. Thus criterion (1.6b) holds with

AD 3, and A0 being some absolute constant. Visibly, criterion (1.6c) also holds.
Therefore Theorem 1 applies and yields L.1

2
; sym2f /� k

1
2 =.log k/1�".

We have shown (1.1) when t D 0. To obtain the general case, we apply the
framework of Theorem 1 to the shifted functionLt .s; sym2f / WDL.sCi t; sym2f /.
The criteria we require hold. The only difference is that we must make correspond-
ing shifts to the �-functions appearing in the functional equation. These shifts
imply that the analytic conductor is now � .1C jt j/.k C jt j/2 � k2.1C jt j/3.
Applying Theorem 1, we complete the proof of (1.1).

Example 2 (proof). Write the p-th Hecke eigenvalue of f as f̨ .p/C f̌ .p/,
where f̨ .p/ f̌ .p/D 1 and j f̨ .p/j D j f̌ .p/j D 1. Write the p-th Hecke eigen-
value of � as ˛�.p/C ˇ�.p/ where ˛�.p/ˇ�.p/D 1, but we do not know here
the Ramanujan conjecture that these are both of size 1. Write also the Laplace
eigenvalue of � as �� D 1

4
C t2� , where5 t� 2 R.

5This is true since we are working on the full modular group. For a congruence subgroup, we
could use Selberg’s bound that the least eigenvalue is � 3

16 which gives that jIm.t�/j � 1
4 ; see [25].
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The triple product L-function L.s; f � f � �/ is then defined by means of
the Euler product of degree 8 (absolutely convergent in Re.s/ > 1)Y

p

�
1�

f̨ .p/
2˛�.p/

ps

��1�
1�

˛�.p/

ps

��2�
1�

f̌ .p/
2˛�.p/

ps

��1
�

�
1�

f̨ .p/
2ˇ�.p/

ps

��1�
1�

ˇ�.p/

ps

��2�
1�

f̌ .p/
2ˇ�.p/

ps

��1
:

This L-function is not primitive and factors as L.s; �/L.s; sym2f ��/. Consider
the product of eight �-factors

L1.s; f �f ��/

WD

Y
˙

�R.sC k� 1˙ i t�/�R.sC k˙ i t�/�R.s˙ i t�/�R.sC 1˙ i t�/:

From the work of Garrett [6], it is known thatL.s; f �f ��/L1.s; f �f ��/ is an
entire function in C, and its value at s equals its value at 1� s. Thus criteria (1.5a)–
(1.5d) are met, and the analytic conductor in (1.5e) is of size� k4.1Cjt� j/

8.
If we write

�
L0

L
.s; f /D

X
n

�f .n/ƒ.n/n
�s and �

L0

L
.s; �/D

X
n

��.n/ƒ.n/n
�s;

then

�
L0

L
.s; f �f ��/D

X
n

�f �f ��.n/ƒ.n/

ns
D

X
n

�f .n/
2��.n/ƒ.n/

ns
:

If n D pk then j�f .n/j D j f̨ .p/k C f̌ .p/
kj � 2, and so to check (1.6b) for

f �f ��, we need only show thatX
x<n�ex

j��.n/j
2ƒ.n/

n
� A2C

A0

log.ex/
;

for all x � 1, where A and A0 are constants which are allowed to depend on �.
This condition follows from an appeal to the Rankin-Selberg theory for L.s; ���/
which is known to extend analytically to C except for a simple pole at s D 1. Since
�
L0

L
.s; � ��/D

P
n j��.n/j

2ƒ.n/n�s , and L.s; � ��/ has a classical zero-free
region Re.s/ > 1� c�= log.1C jt j/ (see Theorem 5.44 of [20]), we may deduce,
arguing as in the proof of the prime number theorem, thatX

x<n�ex

j��.n/j
2ƒ.n/

n
D 1CO�

� 1

log.ex/

�
;

from which our desired weak Ramanujan estimate follows. Criterion (1.6c) is
immediate from our formula for the � factors above.

Thus Theorem 1 applies and we obtain the desired estimate (1.2). We could
also obtain weak subconvexity bounds for triple products � � f1 � f2, fixing �
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(a holomorphic or Maass eigencuspform) and allowing f1 and f2 to vary over
holomorphic eigencuspforms. Or we could consider f1 � f2 � f3 with all three
varying over holomorphic eigencuspforms. Subconvexity bounds (with a power
saving) have been obtained for triple products �1 ��2 ��3 where �1 and �2 are
considered fixed, and �3 varies over holomorphic or Maass forms, see [1] and [32].

Example 3 (proof). This example follows upon using the ideas in the proof
of Examples 1 and 2. The weak Ramanujan hypothesis (1.6b) is verified by an
appeal to the Rankin-Selberg theory for L.s; �0 � z�0/ as in Example 2. The gen-
eral Rankin-Selberg theory is the culmination of work by many authors, notably
Jacquet, Piatetskii-Shapiro, and Shalika, Shahidi, and Moeglin and Waldspurger;
a convenient synopsis of the analytic features of this theory may be found in [30].
A narrow zero-free region (which is sufficient to check (1.6b)) for general Rankin-
Selberg L-functions has been established by Brumley [3].

The value L.1
2
C i t; �0/ is bounded by shifting L-functions as in Example 1.

We omit further details.

Application to the mass equidistribution of Hecke eigenforms. Perhaps the
most interesting application of our results pertains to a conjecture of Rudnick and
Sarnak on the mass equidistribution of Hecke eigenforms. For simplicity, consider
a holomorphic Hecke eigencuspform f of weight k for the full modular group
� D SL2.Z/. Consider the measure

�f D y
k
jf .z/j2

dx dy

y2
;

where we suppose that f has been normalized to satisfyZ
�nH

ykjf .z/j2
dx dy

y2
D 1:

Rudnick and Sarnak ([29]; see also [26], [30]) have conjectured that as k!1,
the measure �f approaches the uniform distribution measure 3

�
dxdy

y2
on the funda-

mental domain X D �nH. This is the holomorphic analog of their quantum unique
ergodicity conjecture for Maass forms. Quantum unique ergodicity for Hecke-
Maass forms is now known thanks to the breakthrough work of Lindenstrauss [23]
together with a final ingredient (ruling out escape of mass) supplied by Soundarara-
jan [31]. However, the ergodic theoretic methods introduced by Lindenstrauss do
not seem to apply to the holomorphic case.

Set Fk.z/ D yk=2f .z/, and recall the Petersson inner product of two nice
functions g1 and g2 on X

hg1; g2i D

Z
X

g1.z/g2.z/
dx dy

y2
:

A smooth bounded function on X has a spectral expansion in terms of the constant
function, the space of Maass cusp forms which are eigenfunctions of the Laplacian
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and all Hecke operators, and the Eisenstein series E.z; 1
2
C i t/ with t 2 R; see

Iwaniec [19].
Thus by an analog of Weyl’s equidistribution criterion, the Rudnick-Sarnak

conjecture amounts to showing that

h�Fk; Fki; hE.�; 1
2
C i t/Fk; Fki ! 0

as k!1, where � is a fixed Maass cusp form which is an eigenfunction of the
Laplacian and all Hecke operators, and E.z; 1

2
C i t/ denotes the Eisenstein series

(with t fixed).
Using the unfolding method, it is easy to show that

jhE.�; 1
2
C i t/Fk; Fkij D

ˇ̌̌
�
3
2
�.1
2
C i t/L.1

2
C i t; sym2f /

�.1C 2it/L.1; sym2f /
�.k� 1

2
C i t/

�.k/

ˇ̌̌
:

Since j�.k � 1
2
C i t/j � �.k � 1

2
/, j�.1

2
C i t/j � .1C jt j/

1
4 , and j�.1C 2it/j �

1= log.1Cjt j/, using Stirling’s formula and our bound (1.1) it follows that

jhE.�; 1
2
C i t/Fk; Fkij �"

.1Cjt j/2

.log k/1�"L.1; sym2f /
:

For the case of a Maass cusp form, a beautiful formula of Watson (see Theo-
rem 3 of [33]) shows that (here � has been normalized so that h�; �i D 1)

jh�Fk; Fkij
2
D
1

8

L1.
1
2
; f �f ��/L.1

2
; f �f ��/

ƒ.1; sym2f /2ƒ.1; sym2�/
;

where L.s; f � f � �/ is the triple product L-function of Example 2, and L1
denotes its Gamma factors (see Example 2 (proof)), and

ƒ.s; sym2f /D �R.sC 1/�R.sC k� 1/�R.sC k/L.s; sym2f /;

and
ƒ.s; sym2�/D �R.s/�R.sC 2it�/�R.s� 2it�/L.s; sym2�/:

Using Stirling’s formula and the bound (1.2) of Example 2, we conclude that

jh�Fk; Fkij ��
1

.log k/
1
2
�"L.1; sym2f /

:

COROLLARY 1. With notation as above, we have

jh�Fk; Fkij ��;"
1

.log k/
1
2
�"L.1; sym2f /

:

Moreover,

jhE.�; 1
2
C i t/Fk; Fkij �"

.1Cjt j/2

.log k/1�"L.1; sym2f /
:

Given ı > 0, Corollary 1 shows that if f ranges over those Hecke eigencusp-
forms with L.1; sym2f /� .log k/�

1
2
Cı then as k!1, the measure �f converges
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to 3
�
dx dy

y2
. This criterion on L.1; sym2f / is expected to hold for all eigenforms f ;

for example, it is implied by the Riemann hypothesis for L.s; sym2f /. Using large
sieve estimates6 one can show that the number of exceptional eigenforms f with
weight k � K for which the criterion fails is� K". Our criterion complements
the work of Holowinsky [17], who attacks the mass equidistribution conjecture by
an entirely different method. Combining his results with ours gives a complete res-
olution of the Rudnick-Sarnak conjecture on mass equidistribution for eigenforms.
A detailed account of this result will appear in a joint work with Holowinsky [18].

As noted earlier, the barrier to using our methods for Maass forms is the
Ramanujan conjecture which remains open here. The weak Ramanujan hypothesis
that we need could be verified (using the large sieve) for all but T " Maass forms
with Laplace eigenvalue below T . Thus with at most T " exceptions, one could
establish the equidistribution of Maass forms on SL2.Z/nH.

For simplicity we have confined ourselves to � D SL2.Z/ above. Similar
results apply to congruence subgroups of level N . One could also consider the
cocompact case of quaternion division algebras. If the quaternion algebra is un-
ramified at infinity, Lindenstrauss’s work shows the equidistribution of Maass cusp
forms of large eigenvalue. Our results would show the corresponding equidistribu-
tion for holomorphic eigenforms, allowing for a small number of exceptional cases
(at most K" exceptions with weight below K). In the case of a ramified quaternion
algebra (acting on the unit sphere S2), the problem concerns the equidistribution
of eigenfunctions on the sphere (see [2]) , and again our results establish such
equidistribution except for a small number of cases (omitting at most N " spherical
harmonics of degree below N that are also Hecke eigenforms). In these compact
cases, there is no analog of Holowinsky’s work, and so we are unable to obtain a
definitive result as in SL2.Z/nH.

We now return to the setting of Theorem 1, and describe an auxiliary result
which will be used to prove Theorem 1. For an L-function satisfying (1.5a)–(1.5e)
and (1.6a)–(1.6c), we may use the convexity bound to establish that (see Lemma
4.2 below)7

(1.7)
X
n�x

a�.n/�
x

log x
;

provided x � C
1
2 .logC/B for some positive constant B . Our main idea is to show

that similar cancellation holds even when x D C
1
2 .logC/�B for any constant B .

6Precisely, with very few exceptions one can approximate L.1; sym2f / by a short Euler product.
Such results in the context of Dirichlet L-functions are classical, and a detailed account may be found
in [7]. In the context of symmetric square L-functions, see Luo [24], and Cogdell and Michel [4].

7We recall here that L.s; �/ was assumed not to have any poles. If we alter our framework to
allow a pole at s D 1, say, then (1.7) would be modified to an asymptotic formula with a main term
of size x. Then Theorem 2 would extrapolate that asymptotic formula to a wider region.
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THEOREM 2. Let L.s; �/ be as in Theorem 1. For any " > 0, any positive
constant B , and all x � C

1
2 .logC/�B we haveX
n�x

a�.n/�
x

.log x/1�"
:

The implied constant may depend on A, A0, m, ım, B and ".

Once Theorem 2 is established, Theorem 1 will follow from a standard partial
summation argument using an approximate functional equation. In Theorems 1
and 2, by keeping track of the various parameters involved, it would be possible to
quantify ". However, the limit of our method would be to obtain a bound C

1
4 = logC

in Theorem 1, and x= log x in Theorem 2.
We have termed the saving of .logC/1�" as weak subconvexity, and as noted

above this is close to the limit of our method. One may legitimately call a saving of
any fixed power of logC as weak subconvexity. For example, in the application to
the Rudnick-Sarnak conjecture any log power saving together with Holowinsky’s
work would suffice to show that jh�Fk; Fkij ! 0, for � a fixed Maass cusp form.
However to deal with the Eisenstein series contributions in that application, a sav-
ing of a substantial power of logC is needed8, and a small saving would not suffice.
Finally, it would be very desirable to establish a version of weak subconvexity
saving a large power of logC . For example, if one could save .logC/2Cı for
any fixed ı > 0, one would obtain immediately the mass equidistribution conse-
quences mentioned above. Similarly it would be desirable to improve upon the
weak Ramanujan criterion that we have imposed.

2. Slow oscillation of mean values of multiplicative functions

We now discuss the ideas underlying Theorem 2, and state our main technical
result from which the results stated in Section 1 follow. At the heart of Theorem 2
is the fact that mean values of multiplicative functions vary slowly. Knowing (1.7)
in the range x � C

1
2 .logC/B , this fact will enable us to extrapolate (1.7) to the

range x � C
1
2 .logC/�B .

The possibility of obtaining such extrapolations was first considered by Hilde-
brand [15], [16]. If f is a multiplicative function, we shall denote by S.x/ D
S.xIf / the partial sum

P
n�x f .n/. Hildebrand [16] showed that if �1�f .n/� 1

is a real valued multiplicative function then for 1� w �
p
x

(2.1)
1

x

X
n�x

f .n/D
w

x

X
n�x=w

f .n/CO
��

log
log x

log 2w

�� 1
2
�
:

In other words, the mean value of f at x does not change very much from the
mean-value at x=w. Hildebrand [15] used this idea to show that from knowing

8A saving of .logC/0:7 would probably be sufficient.
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Burgess’s character sum estimates9 for x � q
1
4
C" one may obtain some nontrivial

cancellation even in the range x � q
1
4
�".

Elliott [5] generalized Hildebrand’s work to cover complex valued multiplica-
tive functions with jf .n/j � 1, and also strengthened the error term in (2.1). Notice
that a direct extension of (2.1) for complex valued functions is false. Consider
f .n/D ni� for some real number � ¤ 0. Then S.xIf /D x1Ci�=.1C i�/CO.1/,
and S.x=wIf /D .x=w/1Ci�=.1Ci�/CO.1/. Therefore (2.1) is false, and instead
we have that S.x/=x is close to wi�S.x=w/=.x=w/. Building on the pioneer-
ing work of Halasz [11], [12] on mean-values of multiplicative functions, Elliott
showed that for a multiplicative function f with jf .n/j � 1, there exists a real
number � D �.x/ with j� j � log x such that for 1� w �

p
x

(2.2) S.x/D w1Ci�S.x=w/CO
�
x
� log 2w

log x

� 1
19
�
:

In [8], Granville and Soundararajan give variants and stronger versions of (2.2),
with 1

19
replaced by 1� 2=� � ".

In order to establish Theorem 2, we require similar results when the mul-
tiplicative function is no longer constrained to the unit disc. The situation here
is considerably more complicated, and instead of showing that a suitable linear
combination of S.x/=x and S.x=w/=.x=w/ is small, we will need to consider lin-
ear combinations involving several terms S.x=wj /=.x=wj / with j D 0; : : : ; J . In
order to motivate our main result, it is helpful to consider two illustrative examples.

Example 2.1. Let k be a natural number, and take f .n/ D dk.n/, the k-th
divisor function. Then, it is easy to show that S.x/D xPk.log x/CO.x1�1=kC"/
where Pk is a polynomial of degree k � 1. If k � 2, it follows that S.x/=x �
S.x=w/=.x=w/ is of size .logw/.log x/k�2, which is not o.1/. However, if 1 �
w � x1=2k , the linear combination
kX

jD0

.�1/j

 
k

j

!
S.x=wj /

x=wj
D

kX
jD0

.�1/j

 
k

j

!
Pk.log x=wj /CO.x�

1
2k /DO.x�

1
2k /

is very small.

Example 2.2. Let �1; : : : ; �R be distinct real numbers, and let k1; : : : ; kR
be natural numbers. Let f be the multiplicative function defined by F.s/ DP1
nD1 f .n/n

�s D
QR
jD1 �.s� i�j /

kj . Consider here the linear combination (for
1� w � x1=.2.k1C���CkR//)

1

x

k1X
j1D0

� � �

kRX
jRD0

.�1/j1C���CjR

 
k1

j1

!

� � �

 
kR

jR

!
wj1.1Ci�1/C���CjR.1Ci�R/S

� x

wj1C���CjR

�
:

9For simplicity, suppose that q is cube-free.



1480 KANNAN SOUNDARARAJAN

By Perron’s formula we may express this as, for c > 1,

1

2�i

Z cCi1

c�i1

RY
jD1

�.s� i�j /
kj .1�w1Ci�j�s/kj xs�1

ds

s
:

Notice that the poles of the zeta-functions at 1C i�j have been canceled by the
factors .1 � w1Ci�j�s/kj . Thus the integrand has a pole only at s D 0, and a
standard contour shift argument shows that this integral is� x�ı for some ı > 0.

Fortunately, it turns out that Example 2.2 captures the behavior of mean-values
of the multiplicative functions of interest to us. In order to state our result, we
require some notation. Let f denote a multiplicative function and recall that

(2.3) S.x/D S.xIf /D
X
n�x

f .n/:

We shall write

(2.4) F.s/D

1X
nD1

f .n/

ns
;

and we shall assume that this series converges absolutely in Re.s/ > 1. Moreover,
we write

(2.5) �
F 0

F
.s/D

1X
nD1

�f .n/ƒ.n/

ns
D

1X
nD1

ƒf .n/

ns
;

where �f .n/Dƒf .n/D 0 unless n is the power of a prime p. We next assume the
analog of the weak Ramanujan hypothesis (1.6b). Namely, we suppose that there
exist constants A, A0 � 1 such that for all x � 1 we have

(2.6)
X

x<n�ex

j�f .n/j
2ƒ.n/

n
� A2C

A0

log.ex/
:

Let R be a natural number, and let �1; : : : ; �R denote R real numbers. Let
` D .`1; : : : ; `R/ and j D .j1; : : : ; jR/ denote vectors of nonnegative integers,
with the notation j � ` indicating that 0� j1 � `1; : : : ; 0� jR � `R. Define

(2.7)

 
`

j

!
D

 
`1

j1

!
� � �

 
`R

jR

!
:

Finally, we define a measure of the oscillation of the mean-values of f by setting

O`.x; w/D O`.x; wI �1; : : : ; �R/

(2.8)

D

X
j�`

.�1/j1C���CjR

 
`

j

!
wj1.1Ci�1/C���CjR.1Ci�R/S

� x

wj1C���CjR

�
:



WEAK SUBCONVEXITY FOR CENTRAL VALUES OF L-FUNCTIONS 1481

THEOREM 2.1. Keep in mind the conditions and notation (2.3) through (2.8).
Let X � 10 and 1� " > 0 be given. Let RD Œ10A2="2�C 1 and put LD Œ10AR�,
and LD .L; : : : ; L/. Let w be such that 0 � logw � .logX/

1
3R . There exist real

numbers �1; : : : ; �R with j�j j � exp..log logX/2/ such that for all 2 � x � X we
have

jOL.x; wI �1; : : : ; �R/j �
x

log x
.logX/":

The implied constant above depends on A, A0 and ".

For a general multiplicative function, we cannot hope for any better bound
for the oscillation than x= log x. To see this, suppose w � 2, and consider the
multiplicative function f with f .n/ D 0 for n � x=2 and f .p/ D 1 for primes
x=2 < p � x. Then S.x/� x= log x whereas S.x=wj / D 1 for all j � 1, and
therefore for any choice of the numbers �1; : : : ; �R we would have OL.x; w/�

x= log x.
Our proof of Theorem 2.1 builds both on the techniques of Halasz (as de-

veloped in [5] and [8]), and also the idea of pretentious multiplicative functions
developed by Granville and Soundararajan (see [10] and [9]). In Section 5 we
will describe the choice of the numbers �1; : : : ; �R appearing in Theorem 2.1,
and develop relevant estimates for the Dirichlet series F.s/. Then the proof of
Theorem 2.1 will be completed in Section 6.

3. Some preliminary lemmas

We collect together here some lemmas that will be useful below. We begin
with a combinatorial lemma.

LEMMA 3.1. Let b.1/, b.2/; : : : be a sequence of complex numbers. Define
the sequence a.0/D 1, a.1/, a.2/; : : : by means of the formal identity

(3.1) exp
� 1X
kD1

b.k/

k
xk
�
D

1X
nD0

a.n/xn:

For j D 1 or 2, define the sequences Aj .0/D 1, Aj .1/, Aj .2/; : : : by means of the
formal identity

exp
� 1X
kD1

jb.k/jj

k
xk
�
D

1X
nD0

Aj .n/x
n:

Then Aj .n/� ja.n/jj for all n.

Proof. If we expand out the left-hand side of (3.1) and equate coefficients we
obtain that

(3.2) a.n/D
X
�

�1C���C�rDn
�1��2������r�1

b.�1/ � � � b.�r/W.�/;
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where the sum is over all partitions � of n, and W.�/ > 0 is a weight attached to
each partition which is independent of the sequence b.k/. Although we can write
down explicitly what the weight W.�/ is, we do not require this. All we need is
that X

�

W.�/D 1;

which follows from (3.2) by taking b.k/D 1 for all k so that exp.
P1
kD1 b.k/x

k=k/

D 1=.1� x/ D
P1
nD0 x

n whence a.n/ D 1. When j D 1 the lemma follows by
the triangle inequality. In the case j D 2, Cauchy-Schwarz gives

ja.n/j2 �
�X

�

jb.�1/ � � � b.�r/j
2W.�/

��X
�

W.�/
�

D

�X
�

jb.�1/ � � � b.�r/j
2W.�/

�
D A2.n/: �

The significance of Lemma 3.1 for us is the following. Let f be a multiplica-
tive function with the Euler factor at p being (compare (1.6a) and (2.5))

1X
nD0

f .pn/

pns
D exp

� 1X
kD1

�f .p
k/

kpks

�
I

then the lemma guarantees that if we write

exp
� 1X
kD1

j�f .p
k/j2

kpks

�
D

1X
nD0

f .2/.pn/

pns
;

and use this to define a multiplicative function f .2/.n/, then jf .n/j2 � f .2/.n/.
In the case that f .n/D a�.n/ corresponds to the coefficients of an automorphic
L-function � , this means that the coefficient10 a��Q�.n/ of the Rankin-Selberg
L-function exceeds ja�.n/j2. The reader may compare this lemma with a similar
result of Molteni, [28, Prop. 6]. Although we are only interested in Lemma 3.1 in
the cases j D 1 and 2, an application of Hölder’s inequality shows that a similar
result holds for all j � 1.

LEMMA 3.2. Let f be a multiplicative function, and keep the notation (2.4)
and (2.5), and suppose that the criterion (2.6) holds. For all x � 2 we haveX

n�x

jf .n/j

n
� .log x/A; and

X
n�x

jf .n/j2

n
� .log x/A

2

:

Moreover, for all 2� � > 1 we have

jF.� C i t/j �
� 1

� � 1

�A
and jF 0.� C i t/j �

� 1

� � 1

�AC1
:

The implied constants may depend on A and A0.

10We assume that n is the power of an unramified prime.



WEAK SUBCONVEXITY FOR CENTRAL VALUES OF L-FUNCTIONS 1483

Proof. These are simple consequences of our weak Ramanujan assumption
(2.6). By splitting the sum into intervals ek < n � ekC1 and using (2.6), we see
that for any 2� � > 1

(3.3)
1X
nD2

j�f .n/j
2ƒ.n/

n� logn
� A2 log

� 1

� � 1

�
CO.1/;

where the error term above depends on A and A0. By Cauchy-Schwarz it follows
also that

(3.4)
1X
nD2

j�f .n/jƒ.n/

n� logn
� A log

� 1

� � 1

�
CO.1/:

Using Lemma 3.1 and (3.4) we see thatX
n�x

jf .n/j

n
�

1X
nD1

jf .n/j

n1C1= log.ex/
� exp

�X
n�2

j�f .n/jƒ.n/

n1C1= log.ex/ logn

�
� .log x/A:

This proves our first inequality. The second inequality follows in the same way,
using (3.3) instead of (3.4). The third inequality follows easily from (3.4). Finally,
for 2� � > 1, ˇ̌̌F 0

F
.� C i t/

ˇ̌̌
�

X
n�2

j�f .n/jƒ.n/

n�
�

1

� � 1

using Cauchy-Schwarz and (2.6) as in the proof of (3.4). The lemma follows. �

LEMMA 3.3. Let f be a multiplicative function as in Lemma 3.2. Then for
all x � 2 X

n�x

jf .n/j � x.log x/A:

Moreover, for 1� y � x we haveX
x<n�xCy

jf .n/j � .yx/
1
2 .log x/A

2=2:

Proof. Since
P
n�x jf .n/j � x

P
n�x jf .n/j=n, the first assertion follows

from Lemma 3.2. Cauchy-Schwarz givesˇ̌̌ X
x<n�xCy

jf .n/j
ˇ̌̌2
� y

X
x<n�xCy

jf .n/j2� yx
X
n�2x

jf .n/j2

n
;

and our second assertion also follows from Lemma 3.2. �

4. Deduction of the main results from Theorem 2.1

In this section we shall show how Theorems 1 and 2 follow from Theorem 2.1.
We begin with Theorem 2, whose proof will require the following simple convexity
bound for our L-functions.
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LEMMA 4.1. Let L.s; �/ be an L-function satisfying the properties (1.5a)–
(1.5e) and (1.6a)–(1.6c). Then for all t 2 R we have

jL.1
2
C i t; �/j � C.�/

1
4 .1Cjt j/

m
4
C1.logC.�//A:

Proof. Define ƒ.s/ D L.s; �/L.s; �1/e
.s� 1

2
�it/2 . Using the Phragmen-

Lindelöf principle we may bound jƒ.1
2
C i t/j by the maximum value taken by

jƒ.s/j on the lines Re.s/D 1C 1= logC , and Re.s/D�1= logC . The functional
equation shows that the maximum on the line Re.s/D �1= logC is the same as
the maximum on the line Re.s/D 1C 1= logC . Therefore, using Lemma 3.2,

jL.1
2
C i t; �/j �max

y2R

jƒ.1C 1= logC C i t C iy/j

jL.1
2
C i t; �1/j

� .logC/A max
y2R

e�y
2 jL.1C 1= logC C i t C iy; �1/j

jL.1
2
C i t; �1/j

:

Using Stirling’s formula, we may show thatˇ̌̌�R.1C 1= logC C i t C iyC�j /

�R.
1
2
C i t C�j /

ˇ̌̌
� e2jyj.1Cjt jC j�j j/

1
4
C 1
2 logC ;

where we used that Re.�j / � �1C ım to ensure that the numerator stays away
from poles of the �-function. The lemma follows immediately. �

Our next lemma establishes the result (1.7) stated in the introduction.

LEMMA 4.2. Let L.s; �/ be as above. In the range

x � x0 WD C.�/
1
2 .logC.�//50mA

2

we have X
n�x

a�.n/�
x

log x
:

Proof. Observe that for any c > 0, y >0, any �>0, and any natural numberK,

1

2�i

Z cCi1

c�i1

ys

s

�e�s � 1
�s

�K
ds

D
1

�K

Z �

0

: : :

Z �

0

1

2�i

Z cCi1

c�i1

.yex1C���CxK /s
ds

s
dx1 : : : dxK

D

8̂<̂
:
1 if y � 1

2 Œ0; 1� if 1 > y � e��K

0 if y < e��K :

Therefore, for any c > 1,
(4.1)
1

2�i

Z cCi1

c�i1

L.s; �/
xs

s

�e�s � 1
�s

�K
ds D

X
n�x

a�.n/CO
� X
x<n�eK�x

ja�.n/j
�
:
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We shall take here K D Œm=4�C 3 and � D .log x/�2�A
2

. Then for large x we
have eK� � 2, and so applying Lemma 3.3 to the multiplicative function a�.n/ we
see that the error term above is

(4.2) � .eK�� 1/
1
2x.log x/A

2=2
�

x

log x
:

Now we move the line of integration in the left-hand side of (4.1) to the line
c D 1=2. Using Lemma 4.1 we see that the integral on the 1=2 line is

� C.�/
1
4x

1
2��K.logC/A

Z 1
�1

.1Cjt j/m=4C1
dt

.1Cjt j/KC1

� C.�/
1
4x

1
2 .log.Cx//12mA

2

:

Combining this with (4.1) and (4.2) we conclude that for

x � x0 WD C.�/
1
2 .logC.�//50mA

2

we have X
n�x

a�.n/�
x

log x
;

proving our lemma. �

Proof of Theorem 2. To prove Theorem 2, we invoke Theorem 2.1. Let RD
Œ10A2="2�C 1 and L D Œ10AR� be as in Theorem 2.1. Let x0 be as in Lemma
4.2, and let x0 � x � C

1
2 =.logC/B . Take w D x0=x and X D xwLR. Applying

Theorem 2.1 to the multiplicative function a� (note that (1.6b) gives the assumption
(2.6)) we find that for an appropriate choice of �1; : : : ; �R that

(4.3) jOL.X;w/j �
X

.logX/1�"
:

But, by definition, the left-hand side above is

(4.4) wLR
ˇ̌̌ X
n�X=wLR

a�.n/
ˇ̌̌
CO

�LR�1X
jD0

wj
ˇ̌̌ X
n�X=wj

a�.n/
ˇ̌̌�
:

Now X=wLR D x, and for 0� j �LR�1 we have X=wj � xwD x0 so that the
bound of Lemma 4.2 applies. Therefore (4.4) equals

wLR
ˇ̌̌ X
n�x

a�.n/
ˇ̌̌
CO

� X

logX

�
;

From (4.3) we conclude thatˇ̌̌ X
n�x

a�.n/
ˇ̌̌
� w�LR

X

.logX/1�"
�

x

.log x/1�"
;

which proves Theorem 2. �
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Deduction of Theorem 1 from Theorem 2. Theorem 1 follows from Theorem 2
by a standard argument using an “approximate functional equation” for L.1

2
; �/

(see for example Harcos [13, Th. 2.1]) and partial summation. For the sake of
completeness we provide a brief argument. We start with, for c > 1

2
,

1

2�i

Z cCi1

c�i1

L.sC 1
2
; �/

L.sC 1
2
; �1/

L.1
2
; �1/

es
2 ds

s
;

and move the line of integration to Re.s/D�c. We encounter a pole at s D 0, and
so the above equals

L.1
2
; �/C

1

2�i

Z �cCi1
�c�i1

L.sC 1
2
; �/

L.sC 1
2
; �1/

L.1
2
; �1/

es
2 ds

s
:

Now we use the functional equation above, and make a change of variables s!�s.
In this way we obtain that

L.1
2
; �/D

1

2�i

Z cCi1

c�i1

L.sC 1
2
; �/

L.sC 1
2
; �1/

L.1
2
; �1/

es
2 ds

s

C
�

2�i

Z cCi1

c�i1

L.sC 1
2
; z�/

L.sC 1
2
; z�1/

L.1
2
; �1/

es
2 ds

s
:

Consider the first integral above; the second is estimated similarly. Using

L.sC 1
2
; �/D .sC 1

2
/

Z 1
1

X
n�x

a�.n/
dx

xsC
3
2

;

we see that the first integral above equals

(4.5)
Z 1
1

X
n�x

a�.n/
� 1

2�i

Z cCi1

c�i1

.sC 1
2
/
L.sC 1

2
; �1/

L.1
2
; �1/

es
2

x�s
ds

s

� dx
x
3
2

:

To estimate the inner integral over s, we move the line of integration either to
Re.s/D 1

2
�
ım
2

, or to Re.s/D 2. Using Stirling’s formula, we see that this inner

integral is�min..
p
C=x/

1
2
�
ım
2 ; .
p
C=x/2/. Thus (4.5) is

� C
1
4
�
ım
4

Z pC
1

ˇ̌̌ X
n�x

a�.n/
ˇ̌̌ dx

x2�
ım
2

CC

Z 1
p
C

ˇ̌̌ X
n�x

a�.n/
ˇ̌̌dx
x
7
2

:

We now split into the ranges x �
p
C=.logC/4A=ım and x >

p
C=.logC/4A=ım .

In the first range we use Lemma 3.3 to bound j
P
n�x a�.n/j by� x.log x/A, and

in the second range we use
P
n�x a�.n/� x=.log x/1�" by Theorem 2. Inserting

these bounds above, we conclude that the quantity in (4.5) is� C
1
4 =.logC/1�",

and Theorem 1 follows.
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5. Successive maxima

Recall the conditions and notation (2.3) through (2.8). As in Theorem 2.1,
X � 10 and 1 � " > 0 are given, and R D Œ10A2="2�C 1. In this section we
define the points �1; : : : ; �R appearing in Theorem 2.1, and collect together some
estimates for the Dirichlet series F.s/.

From now on, we shall write T D exp..log logX/2/. We define �1 as that point
t in the compact set C1 D Œ�T; T � where the maximum of jF.1C 1= logX C i t/j
is attained. Now remove the interval .�1 � .logX/�

1
R ; �1 C .logX/�

1
R / from

C1D Œ�T; T �, and let C2 denote the remaining compact set. We define �2 to be that
point t in C2 where the maximum of jF.1C1= logXCi t/j is attained. Next remove
the interval .�2�.logX/�

1
R ; �2C.logX/�

1
R / from C2 leaving behind the compact

set C3. Define �3 to be the point where the maximum of jF.1C 1= logX C i t/j
for t 2 C3 is attained. We proceed in this manner, defining the successive maxima
�1; : : : ; �R, and the nested compact sets C1 � C2 � � � � � CR. Notice that all
the points �1; : : : ; �R lie in Œ�T; T �, and moreover are well-spaced: j�j � �kj �
.logX/�

1
R for j ¤ k.

Lemma 3.2 bounds jF.1C 1= logX C i t/j by� .logX/A. For t 2 Œ�T; T �
we will show that a much better bound holds, unless t happens to be near one of
the points �1; : : : ; �R. The next lemma is inspired by the ideas in [10] and [9].

LEMMA 5.1. Let 1� j �R and let t be a point in Cj . Then

jF.1C 1= logX C i t/j � .logX/A
p
1=jC.j�1/=.jR/:

In particular, if t 2 CR we have jF.1C 1= logX C i t/j � .logX/"=2.

Proof. If t 2 Cj , then for all 1� r � j

jF.1C 1= logX C i t/j � jF.1C 1= logX C i�j /j � jF.1C 1= logX C i�r/j:

Therefore,

jF.1C1= logX C i�j /j �
� jY
rD1

jF.1C 1= logX C i�r/j
� 1
j

� exp
�
Re
1

j

X
n�2

�f .n/ƒ.n/

n1C1= logX .logn/
.n�i�1C � � �Cn�i�j /

�
:

By Cauchy-Schwarz

X
n�2

j�f .n/jƒ.n/

n1C1= logX logn

ˇ̌̌ jX
rD1

n�i�r
ˇ̌̌

�

�X
n�2

j�f .n/j
2ƒ.n/

n1C1= logX logn

� 1
2
�X
n�2

ƒ.n/

n1C1= logX logn

ˇ̌̌ jX
rD1

n�i�r
ˇ̌̌2� 1

2
:
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By (2.6) the first factor above is � .A2 log logX CO.1//
1
2 . To handle the second

factor, we expand out the square and obtain

X
n�2

ƒ.n/

n1C1= logX logn

ˇ̌̌ jX
rD1

n�i�r
ˇ̌̌2

D j
X
n�2

ƒ.n/

n1C1= logX logn
C 2Re

X
�r<s�j

X
n�2

ƒ.n/

n1C1= logXCi.�r��s/ logn

D j.log logX CO.1//C 2
X

1�r<s�j

log j�.1C 1= logX C i.�r � �s//j:

Now note that .logX/�
1
R �j�r��sj�2T and hence j�.1C1= logXCi.�r��s//j�

.logX/
1
R CO.1/. Using this above, the lemma follows. �

Let `D .`1; : : : ; `R/ be a vector of nonnegative integers. In our proof of The-
orem 2.1 we will encounter (recall Example 2.2 from �2 where a similar quantity
arises)

F`.s/D F.s/

RY
jD1

.1�w1Ci�j�s/ j̀ :

We will need good bounds for this quantity, and we record such estimates in the
next two lemmas.

LEMMA 5.2. Let � � 1C 1= logX . Then

max
jt j�T=2

jF`.� C i t/j � max
jt j�T

jF`.1C 1= logX C i t/jCO..logX/�1/:

Proof. This follows from the argument of Lemma 2.2 in Granville and Sound-
ararajan [8].

For completeness we give a proof. Put � D 1C 1= logX C ˛, and assume
that ˛ > 0. The Fourier transform of k.z/D e�˛jzj is Ok.�/D

R1
�1

e�˛jzj�i�zdz D
2˛

˛2C�2
. By Fourier inversion, we have for any z � 1

z�˛ D k.log z/D k.� log z/D
1

2�

Z 1
�1

Ok.�/z�i�d�

D
1

�

Z T=2

�T=2

˛

˛2C �2
z�i�d�CO

� ˛
T

�
:

Using this relation appropriately we obtain that

F`.� C i t/l D
1

�

Z T=2

�T=2

˛

˛2C �2
F`.1C 1= logX C i t C i�/d�

CO
� ˛
T

1X
nD1

jf .n/j

n1C1= logX

�
:
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Using Lemma 3.2 and partial summation, the error term above isO..logX/A=T /D
O..logX/�1/. If jt j � T=2 then jt C �j � T , and so

max
jt j�T=2

jF`.� C i t/j

� max
jyj�T

jF`.1C 1= logX C iy/j
1

�

Z T=2

�T=2

˛

˛2C �2
d�CO..logX/�1/;

and the lemma follows. �

LEMMA 5.3. Suppose j̀ � L � 1 for all 1 � j � R where we recall that
LD Œ10AR�. Then provided 0� logw � .logX/1=.3R/ we have

max
jt j�T

jF`.1C 1= logX C i t/j � .logX/"=2:

Proof. Suppose first that jt j � T but jt � �j j > .logX/�1=R for all 1 �
j � R. Then Lemma 5.1 gives that jF.1C 1= logX C i t/j � .logX/"=2 and so
jF`.1C 1= logX C i t/j � .logX/"=2 as well.

Now suppose that jt � �j j � .logX/�1=R for some 1 � j � R. By Lemma
3.2 we have that jF.1C 1= logX C i t/j � .logX/A. Moreover,

j1�w�1= logX�itCi�j j j̀ �

� logw

.logX/
1
R

�
j̀

� .logX/�
2.L�1/
3R � .logX/�A;

and hence jF`.1C 1= logX C i t/j � 1. The lemma follows. �

Using our work so far, we can record a preliminary estimate for the oscillation
which we shall refine in the next section to obtain Theorem 2.1.

PROPOSITION 5.4. Suppose j̀ �L�1 for all 1� j �R, and that 0� logw�
.logX/

1
3R . For x �X we have

O`.x; w/� x.logX/2"=3:

Proof. Since S.x/� x.log x/A by Lemma 3.3, we may assume that log x �
.logX/"=.2A/, and in particular x � w2RL is large. By Perron’s formula we have
that for c > 1

1

2�i

Z cCi1

c�i1

F.s/zs
�es=pT � 1

s=
p
T

�ds
s
D

X
n�z

f .n/CO
� X
z<n�ze1=

p
T

jf .n/j
�
:

By Lemma 3.3, the error term above is easily seen to be O.z= log z/ in the range
T � z �X . Using the above formula in the definition of the oscillation, we obtain
that for w2RL � x �X

O`.x; w/D
1

2�i

Z cCi1

c�i1

F.s/

RY
jD1

.1�w1Ci�j�s/ j̀
�es=pT � 1

s=
p
T

�ds
s
CO

� x

log x

�
:
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We choose cD 1C1= logX and split the integral into two parts: when jIm.s/j � T
and when jIm.s/j> T . For the first range we use Lemma 5.3, and so this portion
of the integral contributes

� x.logX/"=2
Z
jIm.s/j�T

jdsj

jsj
� x.logX/2"=3:

For the second region we use that jF.s/j � .logX/A and deduce that this integral
contributes

� x.logX/A
Z
jIm.s/j>T

p
T

jsj

jdsj

jsj
� x:

The proposition follows. �

6. Proof of Theorem 2.1

In this section we shall prove Theorem 2.1, with the points �1; : : : ; �R being
the successive maxima defined in Section 5. Recall the conditions and notation
(2.3) through (2.8), and the notation introduced in Section 5. Recall that R D
Œ10A2="2�C 1, that L D Œ10AR� and L D .L; : : : ; L/. Throughout we assume
that logw � .logX/

1
3R , that x �X , and all implicit constants will be allowed to

depend on A, A0 and ".

LEMMA 6.1. With the above notation, we have

.log x/OL.x; w/D
X
d�x

ƒf .d/OL.x=d;w/CO.x.logX/"/:

Proof. Write log x D log.x=wj1C���CjR/C .j1C � � �C jR/ logw. Hence, we
may express .log x/OL.x; w/ as

X
�L

.�1/j1C���CjR

 
L

j

!
log.x=wj1C���CjR /S.x=wj1C���CjR /wj1.1Ci�1/C���CjR.1Ci�R/

Clogw
X
j�L

.�1/j1C���CjR .j1C � � �C jR/

 
L

j

!
S.x=wj1C���CjR /wj1.1Ci�1/C���CjR.1Ci�R/:

The second term above is readily seen to be

(6.1) �

RX
kD1

Lw1Ci�k logw OL�ek .x=w;w/;

where we let ek denote the vector with 1 in the k-th place and 0 elsewhere. Note
that the coordinates of L� ek are all at least L� 1, and so by Proposition 5.4, the
quantity in (6.1) is� x.logX/".
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To analyze the first term, we write

.log x/S.x/D
X
n�x

f .n/ lognC
X
n�x

f .n/ log.x=n/

D

X
n�x

X
d jn

ƒf .d/f .n=d/C

Z x

1

S.t/
dt

t

D

X
d�x

ƒf .d/S.x=d/C

Z x

1

S.t/
dt

t
:

Therefore the first term equalsX
d�x

ƒf .d/OL.x=d;w/C

Z x

1

OL.t; w/
dt

t
;

where we used that
R x=wj
1 S.t/dt=t D

R x
1 S.t=w

j /dt=t . By Proposition 5.4, the
integral above is� x.logX/". The lemma follows. �

LEMMA 6.2. For 1� z � y with yC z �X we haveˇ̌̌
jOL.y; w/j

2
� jOL.yC z; w/j

2
ˇ̌̌
� y.logX/"

LRX
jD0

wj
X

y=wj<n�.yCz/=wj

jf .n/j:

Proof. The quantity we wish to estimate is

�

�
jOL.y; w/jC jOL.yC z; w/j

�ˇ̌̌
OL.yC z; w/�OL.y; w/

ˇ̌̌
:

By Proposition 5.4, the first factor is� y.logX/". The second factor above is

�

LRX
jD0

wj
ˇ̌̌
S..yC z/=wj /�S.y=wj /

ˇ̌̌
�

LRX
jD0

wj
X

y=wj<n�.yCz/=wj

jf .n/j: �

PROPOSITION 6.3. We have

log x jOL.x; w/j � x.log log x/
1
2

� Z x

1

log.ey/jOL.y; w/j2
dy

y3

� 1
2
C x.logX/":

Proof. We start with Lemma 6.1, and are faced with estimatingX
d�x

jƒf .d/jjOL.x=d;w/j:

We split this sum into the terms d �D WD Œexp..log logX/6/� and d >D. For the
first category of terms we use Proposition 5.4 and obtain that this contribution isX

d�D

jƒf .d/j
x

d
.logX/2"=3� x.logX/";

upon using (2.6).
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It remains to estimate the contribution of the terms d >D. Define temporarily
the function g.t/D t log.ex=t/ for 1� t � x. By Cauchy-Schwarz we have

(6.2)
X

D<d�x

jƒf .d/jjOL.x=d;w/j

�

� X
D<d�x

j�f .d/j
2ƒ.d/

g.d/

� 1
2
� X
D<d�x

g.d/ƒ.d/jOL.x=d;w/j
2
� 1
2

� .log log x/
1
2

� X
D<d�x

g.d/ƒ.d/jOL.x=d;w/j
2
� 1
2
;

where the last estimate follows from (2.6) and partial summation.
Put 0.x/D

P
n�x.ƒ.n/�1/D .x/�x so that 0.x/DO.x exp.�c

p
log x//

by the prime number theorem. Then

(6.3)
X

D<d�x

g.d/ƒ.d/jOL.x=d;w/j
2

D

X
D<d�x

g.d/jOL.x=d;w/j
2
C

X
D<d�x

. 0.d/� 0.d�1//g.d/jOL.x=d;w/j
2:

We may rewrite the second term in the right-hand side of (6.3) as

(6.4)
X

D<d�x

 0.d/
�
g.d/jOL.x=d;w/j

2
�g.d C 1/jOL.x=.d C 1/; w/j

2
�

� 0.D/g.DC 1/jOL.x=.DC 1/; w/j
2:

Now we use that for d >D, 0.d/DO.d exp.�.log log x/2/DO.d=.logX/AC2/.
Hence the second term in (6.4) is�D2.logX/�1jOL.x=.DC1/; w/j2� x2 upon
using Proposition 5.4. The first term in (6.4) is

�

X
D<d�x

d

.logX/AC2

�
g.d/

ˇ̌̌
jOL.x=d;w/j

2
� jOL.x=.d C 1/; w/j

2
ˇ̌̌

Cjg.d C 1/�g.d/jjOL.x=.d C 1/; w/j
2
�
:

By Proposition 5.4 the second term above contributes� x2, while by Lemma 6.2
we have that the first term above is

�

X
D<d�x

d2

.logX/A
x

d

LRX
jD0

wj
X

x=..dC1/wj /<n�x=.dwj /

jf .n/j

�
x

.logX/A

LRX
jD0

wj
X

n�x=wj

jf .n/j
x

nwj
� x2;

where the final estimate follows from Lemma 3.2. We conclude that the second
term in the right-hand side of (6.3) is� x2.
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We now turn to the first term in (6.3). For any D < d � x and d � 1� t � d
we have that g.d/D g.t/CO.log x/, and by Lemma 6.2 that

jOL.x=d;w/j
2
D jOL.x=t; w/j

2

CO
�x
d
.logX/"

LRX
jD0

wj
X

x=.dwj /<n�x=..d�1/wj /

jf .n/j
�
:

Therefore, using also Proposition 5.4,

g.d/jOL.x=d;w/j
2
D

Z d

d�1

g.t/jOL.x=t; w/j
2dt CO

�x2
d2
.logX/1C2"

�
CO

�
x.logX/1C"

LRX
jD0

wj
X

x=.dwj /<n�x=..d�1/wj /

jf .n/j
�
:

Summing this over all D<d � x we get from the main term above the contributionZ x

D

t log.ex=t/jOL.x=t; w/j2dt � x2
Z x

1

jOL.y; w/j
2 log.ey/

dy

y3
:

The error terms contribute

�
x2

D
.logX/1C2"C x.logX/1C"

LRX
jD0

wj
X

n�x=.Dwj /

jf .n/j

� x2C
x2

D
.logX/1C"

LRX
jD0

X
n�x=.Dwj /

jf .n/j

n
� x2:

The proof of the proposition is complete. �

We must now analyze the integral appearing in Proposition 6.3. To this end,
we write

zS.x/D
X
n�x

f .n/ logn;

and define

zO`.x; w/D
X
j�`

.�1/j1C���CjR

 
`

j

!
wj1.1Ci�1/C���CjR.1Ci�R/ zS.x=wj1C���CjR/:

LEMMA 6.4. We have� Z x

1

jOL.t; w/j
2 log.et/

dt

t3

� 1
2
�

� Z x

1

jzOL.t; w/j
2 dt

t3 log.et/

� 1
2
C .logX/7"=8:
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Proof. We start as in the proof of Lemma 6.1. Thus we may write

.log t /OL.t; w/D�
RX
kD1

Lw1Ci�k .logw/OL�ek .t=w;w/

C

X
j�L

.�1/j1C���CjR

 
L

j

!
log.t=wj1C���CjR /S.t=wj1C���CjR /wj1.1Ci�1/C���CjR.1Ci�R/:

Since

.log z/S.z/D zS.z/C
X
n�z

f .n/ log.z=n/D zS.z/C
Z z

1

S.y/

y
dy;

the second term above may be written as

zOL.t; w/C

Z t

1

OL.y; w/

y
dy:

Putting these remarks together, and using Proposition 5.4 we conclude that

.log t /OL.t; w/D zOL.t; w/CO.t.1C logw/.logX/2"=3/

D zOL.t; w/CO.t.logX/5"=6/:

The lemma follows. �

Putting together Proposition 6.3 and Lemma 6.4, we have that

jOL.x; w/j �
x

log x
.log log x/

1
2

� Z x

1

jzOL.t; w/j
2 dt

t3 log.et/

� 1
2
C

x

log x
.logX/":

Theorem 2.1 will now follow from the following proposition.

PROPOSITION 6.5. We haveZ x

1

jzOL.t; w/j
2 dt

t3 log.et/
� .logX/3"=2:

Proof. We make the substitution t D ey , obtaining

Z x

1

jzOL.t; w/j
2 dt

t3 log.et/
D

Z logx

0

jzOL.e
y ; w/j2e�2y

dy

1Cy

(6.5)

�

Z 1
1= logX

e�2˛
Z 1
0

jzOL.e
y ; w/j2e�2y.1C˛/dy d˛:

The idea now is to estimate the integral over y in (6.5) using Plancherel’s formula.
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Note that the Fourier transform of zOL.ey ; w/e�y.1C˛/ isZ 1
�1

zOL.e
y ; w/e�y.1C˛Cit/dy

D

X
j�L

.�1/j1C���CjR

 
L

j

!
wj1.1Ci�1/C���CjR.1Ci�R/

�

Z 1
�1

X
n�ey=wj1C���CjR

f .n/ logn e�y.1C˛Cit/dy

D

X
j�L

.�1/j1C���CjR

 
L

j

!
wj1.i�1�˛�it/C���CjR.i�R�˛�it/

�

1X
nD1

f .n/ logn
n1C˛Cit

Z 1
0

e�y.1C˛Cit/dy

D�
1

.1C˛C i t/

RY
kD1

.1�w�˛�itCi�k /LF 0.1C˛C i t/:

Therefore, by Plancherel’s formula we have that

(6.6)
Z 1
0

jzOL.e
y ; w/j2e�y.2C2˛/dy

�

Z 1
�1

jF 0.1C˛C i t/j2
RY
kD1

ˇ̌̌
1�w�˛�itCi�k

ˇ̌̌2L dt

j1C˛C i t j2
:

We split the integral in (6.6) into the regions when jt j � T=2 and when jt j>
T=2. For the latter region we use Lemma 3.2 which gives jF 0.1C ˛ C i t/j �
.logX/AC1 (note that ˛ � 1= logX in (6.5)), so that this integral contributes

� .logX/2AC2
Z
jt j>T=2

dt

j1C˛C i t j2
� 1:

For the first region we use Lemmas 5.2 and 5.3 to obtain that

jF 0.1C˛C i t/j

RY
kD1

j1�w�˛�itCi�k jL�
ˇ̌̌F 0
F
.1C˛C i t/

ˇ̌̌
jFL.1C˛C i t/j

�

ˇ̌̌F 0
F
.1C˛C i t/

ˇ̌̌
.logX/"=2:

Therefore the integral over the first region contributes

� .logX/"
Z
jt j�T=2

ˇ̌̌F 0
F
.1C˛C i t/

ˇ̌̌2 dt

j1C˛C i t j2
(6.7)

� .logX/"
Z 1
�1

ˇ̌̌F 0
F
.1C˛C i t/

ˇ̌̌2 dt

j1C˛C i t j2
:



1496 KANNAN SOUNDARARAJAN

Now the Fourier transform of the function e�y.1C˛/
P
n�ey ƒf .n/ isZ 1

�1

X
n�ey

ƒf .n/e
�y.1C˛Cit/dy D

X
n

ƒf .n/

n1C˛Cit
1

.1C˛C i t/

D�
F 0

F
.1C˛C i t/

1

.1C˛C i t/
;

and so using Plancherel once again we obtain that the quantity in (6.7) is

� .logX/"
Z 1
0

ˇ̌̌ X
n�ey

ƒf .n/
ˇ̌̌2
e�.2C2˛/ydy:

We conclude that
(6.8)Z 1
0

jzOL.e
y ; w/j2e�y.2C2˛/dy� 1C.logX/"

Z 1
0

ˇ̌̌ X
n�ey

ƒf .n/
ˇ̌̌2
e�.2C2˛/ydy:

Injecting the bound (6.8) in (6.5) we obtain thatZ x

1

jzOL.t; w/j
2 dt

t3 log.et/

� 1C .logX/"
Z 1
1= logX

e�2˛
Z 1
0

ˇ̌̌ X
n�ey

ƒf .n/
ˇ̌̌2
e�.2C2˛/ydy d˛:

Expanding, we obtain that the double integrals above are

�

X
2�n1�n2

jƒf .n1/ƒf .n2/j

Z 1
1= logX

Z 1
logn2

e�.2C2˛/y�2˛dy d˛

�

X
2�n1�n2

j�f .n1/�f .n2/j
ƒ.n1/ƒ.n2/

n
2C2= logX
2 logn2

�

X
2�n1�n2

.j�f .n1/j
2
Cj�f .n2/j

2/
ƒ.n1/ƒ.n2/

n
2C2= logX
2 logn2

�

X
2�n

j�f .n/j
2ƒ.n/

n1C2= logX logn
� .log logX/;

upon using the prime number theorem in the penultimate step, and (2.6) for the
last step. The proposition follows, and with it Theorem 2.1. �
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