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Abstract

For d � 3, we construct a non-randomized, fair, and translation-equivariant
allocation of Lebesgue measure to the points of a standard Poisson point process in
Rd , defined by allocating to each of the Poisson points its basin of attraction with
respect to the flow induced by a gravitational force field exerted by the points of
the Poisson process. We prove that this allocation rule is economical in the sense
that the allocation diameter, defined as the diameter X of the basin of attraction
containing the origin, is a random variable with a rapidly decaying tail. Specifically,
we have the tail bound

P.X > R/� C exp
�
� cR.logR/˛d

�
for all R > 2, where: ˛d D d�2

d
for d � 4; ˛3 can be taken as any number less

than �4=3; and C and c are positive constants that depend on d and ˛d . This is
the first construction of an allocation rule of Lebesgue measure to a Poisson point
process with subpolynomial decay of the tail P.X > R/.
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1. Introduction

Let d 2 N. Let „ be a discrete subset of Rd . We call the elements of „
centers. An allocation (of Lebesgue measure to „) is a measurable function  W
Rd !„[f1g that satisfies

Vol. �1.1//D 0;

Vol. �1.z//D 1; z 2„;

where Vol. � / is Lebesgue measure in Rd . For z 2 „, we call  �1.z/ the cell
allocated to z. In other words, an allocation is a way of partitioning Rd into
cells of Lebesgue measure 1 that together cover Rd up to a set of measure 0, and
assigning them to the points of „.

Let Z be a translation-invariant simple point process in Rd with unit intensity
defined on some probability space .�;F;P/. That is, Z is a random discrete subset
of Rd such that for any open set A� Rd , the random variable jA\Zj (where jEj
denotes the cardinality of a set E) has mean Vol.A/, and for any x 2 Rd and open
sets A1; A2; : : : ; Ak � Rd , the random vector

.j.A1C x/\Zj; j.A2C x/\Zj; : : : ; j.AkC x/\Zj/

has distribution that does not depend on x. An allocation rule (of Lebesgue mea-
sure to Z) is a mapping Z!  Z that is defined P-a.s., measurable (with respect
to the relevant � -algebras), and such that: (i) almost surely  Z is an allocation of
Lebesgue measure to Z, and (ii) the mapping Z!  Z is translation-equivariant,
in the sense that P-a.s., for any x; y 2 Rd we have

 ZCx.yC x/D  Z.y/C x:
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Figure 1. The Nazarov-Sodin-Tsirelson-Volberg gradient flow al-
location, equivalent to 2-dimensional gravitational allocation. It
can be defined for a finite point set or for the process of zeros
of the Gaussian Entire Function. For the Poisson point process
we construct the analogous allocation in dimensions 3 and higher.
(Picture due to Manjunath Krishnapur).

Figure 1 shows a particularly important example of an allocation rule that
gave much of the inspiration for the current paper; see below.

An allocation rule Z! Z may satisfy several additional desirable properties:
each cell  �1Z .z/ may be open, may contain its “owner” z; each cell  �1Z .z/ may
be connected; each cell may be bounded. In the event that a.s. all the cells are
bounded, one may consider the allocation diameter, which is the random variable

X D diam. �1Z . Z.0///;

where diam. � / denotes the diameter of a set. The rate of decay of the tail P.X >R/

of the distribution of X as R!1 can be used as a quantitative measure for how
economical the allocation rule is; roughly, a fast rate of decay means that it is
rarer for points to be allocated to a far-away location. Note that by translation-
equivariance one may take the diameter of the cell  �1Z . Z.x// containing any
given point x 2 Rd and get a random variable equal in distribution to X .

Holroyd and Peres [10] showed that if d D 1; 2 and Z is a standard Poisson
point process of unit intensity in Rd , then for every allocation rule the allocation
diameter X satisfies EXd=2D1. In particular, in this case the decay of P.X >R/

to 0 cannot be faster than polynomial in R. Hoffman, Holroyd, and Peres [7]
constructed an allocation rule for every translation-invariant point process in Rd

with unit intensity, the stable marriage allocation, in every dimension d � 1. In
the stable marriage allocation, almost surely all the cells are open, bounded, and
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contain their owners, but not all are connected, and when Z is a Poisson point pro-
cess the allocation diameter X satisfies EXd D1. The stable marriage allocation
rule is the unique one which has the “stability” property that almost surely, for any
z; z02Z and x; y2Rd , if Z.x/Dz and Z.y/Dz0 then jx�z0j� jx�zj^jy�z0j;
see [8].

Nazarov, Sodin, and Volberg [14] recently constructed an allocation rule based
on an idea suggested by Tsirelson in [15]. Their allocation rule is defined for the
two-dimensional point process X of zeros of the Gaussian Entire Function (GEF),
which is the random analytic function

f .z/D

1X
nD0

�n
zn
p
nŠ
; z 2 C;

where .�n/1nD0 are i.i.d. standard complex gaussian random variables. In their
construction, the cell of each z 2 X is defined as the basin of attraction of z with
respect to the flow induced by the random planar vector field z!

�
r log jf j

�
.z/�z.

The cells are connected by definition, and in [14] it was proved that they are a.s.
bounded, each have area � (which is the reciprocal of the mean density of points
in the process of zeros of the GEF), and that there exist absolute constants C; c > 0
such that the allocation diameter X satisfies

ce�CR.logR/3=2
� P.X �R/� Ce�cR.logR/3=2 ; R > 1:

Figure 1 shows a simulation of the Nazarov-Sodin-Tsirelson-Volberg gradient
flow allocation. Figure 2 shows the graph of the potential function log jf j associ-
ated with the allocation (where f is an approximation to the GEF). Figure 3 shows
a simulation of the stable marriage allocation in two dimensions.

In this paper, we construct a new allocation rule of Lebesgue measure to the
points of the standard Poisson point process in Rd , for any d � 3. Our construction
was inspired by the gradient flow allocation, and we call it gravitational allocation.
To define it, denote by Z the standard Poisson process in Rd . Consider the random
vector field F W Rd ! Rd defined by

(1) F.x/D
X

z2Z; jz�xj"

z� x

jz� xjd
;

where the summands are arranged in order of increasing distance from x. The term
.z�x/=jz�xjd represents a gravitational force felt by a unit mass at a point x due
to the influence of a unit mass placed at point z. When d D 3, this is the ordinary
Newtonian gravitational force. An elementary observation that can be traced back
to Chandrasekhar [3] (see also [6]), based on the Kolmogorov three-series theorem,
is that for any fixed x 2 Rd , the infinite series for F.x/ converges almost surely
(this is true for d � 3). The random vector F.x/ has a symmetric stable distribution
of index d

d�1
. This can be seen using a simple scaling argument (see Remark (iv)

below), or by an exact computation; see [6].
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Figure 2. The potential function associated with planar gravita-
tional allocation (picture due to Manjunath Krishnapur).

Figure 3. The two-dimensional stable marriage allocation for a
Poisson process (picture due to Alexander E. Holroyd).
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We prove the following result concerning the process of gravitational forces
acting simultaneously on all points of Rd :

PROPOSITION 1 (Simultaneous convergence and differentiability). Assume
d � 3. Almost surely, the series in (1) converges simultaneously for all x for
which it is defined (namely, all x 2 Rd n Z) and defines a translation-invariant
(in distribution) vector-valued random function. The random function F is almost
surely continuously differentiable where it is defined.

Note that since the sum in (1) does not converge absolutely, the choice of the
order of summation is essential for Proposition 1 and the results below to hold.

Consider now the integral curves Y.t/ of the vector field F , that is, solutions
of the equation

PY .t/D F.Y.t//:

We call these curves the gravitational flow curves (in a simplified inertia-less New-
tonian gravitational world). For x 2 Rd nZ, denote by Yx the integral curve with
initial condition Yx.0/ D x. By Proposition 1 and standard ODE existence and
uniqueness theorems, Yx is defined up to some maximal positive time �x (where
possibly �x D 1). For each center z 2 Z, say that the curve Yx ends at z if
limt"�x Yx.t/D z, and define the basin of attraction of z by

B.z/D fx 2 Rd nZ j Yx.t/ ends at zg[ fzg:

Define

 Z.x/D

�
z x 2 B.z/ for z 2 Z;

1 x …
S
z2ZB.z/:

Our main result is the following theorem.

THEOREM 2 (Fairness and efficiency of the allocation). The mapping Z! Z

is an allocation rule of Lebesgue measure to the Poisson point process Z. Al-
most surely all the cells  �1Z .z/ are bounded. The allocation diameter X D
diam. �1Z . Z.0/// satisfies the following tail bounds: In dimensions 4 and higher,
we have

(2) P.X > R/� C1 exp
h
� c2R.logR/

d�2
d

i
for some constants C1 D C1.d/; c2 D c2.d/ > 0 and all R > 2. In dimension 3,
for any ˛ > 0 there exist constants C1 D C1.˛/; c2 D c2.˛/ > 0 (depending on ˛)
such that for all R > 2 we have

(3) P.X > R/� C1 exp
�
� c2

R

.logR/
4
3
C˛

�
:

Note that the cells in gravitational allocation are open, connected, and contain
their owners. They are also contractible; see Remark (v) below. Figure 4 shows a
simulation of a cell in 3-dimensional gravitational allocation.
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Figure 4. Simulation of a cell in 3-dimensional gravitational allocation

For L > 0 and x 2 Rd denote by Q.x;L/ the box x C Œ�L;L�d . A main
ingredient in the proof of Theorem 2 is the following result.

THEOREM 3 (Bounds for the probability of an R-crossing). Let ER denote the
event that there exists an integral curve Y.t/ connecting @Q.0;R/ and @Q.0; 2R/
(in either order). Then, if d � 4 then we have

P.ER/� C1 exp
h
� c2R.logR/

d�2
d

i
for some constants C1 D C1.d/; c2 D c2.d/ > 0, and all R > 2. In dimension 3,
for any ˛ > 0 there exist constants C1 D C1.˛/; c2 D c2.˛/ > 0 (depending on ˛)
such that for all R > 2 we have

P.ER/� C1 exp
�
� c2

R

.logR/
4
3
C˛

�
:

In a forthcoming paper [4], we will prove lower bounds for the tail of the
distribution of the allocation diameter X , and additional bounds on the distance
j Z.0/j of the origin from its star.

Further remarks. (i) Allocation rules have an equivalent description as non-
randomized extra head rules. If Z is a translation-invariant simple point process
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of unit intensity in Rd , an extra head rule for Z is a random variable T coupled
with Z so that a.s. T 2Z and the random set Z�T has the same distribution as Z
conditioned to have a point at 0. The extra head rule is said to be non-randomized if
T is measurable with respect to Z. In [10] it was shown that if  Z is an allocation
rule then T D TZ D  Z.0/ is a non-randomized extra head rule, and conversely,
given a non-randomized extra head rule TZ , the mapping  Z.x/ D TZ�x is an
allocation rule.

(ii) For any u 2 Rd one may replace the vector field F.x/ by F.x/Cu and
obtain a modified allocation rule. Thus, there is more than one possible construc-
tion of an allocation rule involving the gravitational field, and one might speculate
that a suitable modification of the construction might lead to better tail bounds for
the allocation diameter.

(iii) For some results on the related topic of translation-invariant perfect match-
ings for point processes, see [9]. For related results on matchings between random
point configurations in a finite setting, see the papers [1], [12], [16].

(iv) Here is a simple argument proving that for fixed x the force vector F.x/
has a stable distribution with scaling exponent d=.d �1/ (we believe this argument
is known but could not locate a reference; the proof of this fact in [6] uses explicit
computations and is more complicated). If F1; F2; : : : ; Fn are i.i.d. copies of F.x/,
then their sum is the force exerted on x by the union of n independent copies of
the Poisson process, which is a Poisson process with intensity n (or equivalently
a Poisson process of unit intensity scaled by n�1=d ). Thus, because the individual
force terms scale as the .d �1/th power of the distance, by rescaling it follows that
F1CF2C � � �CFn has the same law as n.d�1/=dF.x/, which proves our claim.

(v) Another interesting property of gravitational allocation is that the cells
are contractible. This is immediate from their definition as the basins of attraction
with respect to the flow of the vector field F . Formally, denote by .ˆt /t�0 the
flow semigroup of the vector field F , and for each x 2 Rd denote by �x the time
for x to flow to its star  Z.x/ (that is, the maximal time for which the curve Yx
is defined, or 0 for the star). Then if z 2 Z and B.z/ is its basin of attraction, the
mapping ' W B.z/ � Œ0; 1�! B.z/ defined by '.x; t/ D ˆ�xt .x/ is a homotopy
between the identity map idB.z/ and the constant mapping B.z/! z. (Note that
almost surely, for all x 2 B.z/ n fzg we have �x <1, since by definition we have
that limt"�x Yx.t/D z, and F.u/D .z�u/=jz�ujd CO.1/ when u! z, so that
once the flow curve Yx.t/ approaches z, it must reach z in a finite time.)

A reading guide. Here is a guide to reading the rest of the paper. Section 2
introduces some notation and recalls some standard estimates for Poisson random
variables. In Section 3 we give outlines of the proofs of the main claims, which
we hope will give the reader a higher-level picture of the ideas in the paper and
will simplify reading the more technical later sections. In Section 4 we show how
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the main result, Theorem 2, can be deduced fairly easily from Theorem 3 (bounds
for the probability of an R-crossing). These sections are easy to read and we
recommend starting with them.

The remaining sections constitute the main technical parts of the paper. Sec-
tions 5, 6, 7, and 8 are the “preparation” part: in Section 5 we prove Proposition 1
(simultaneous convergence and differentiability of the force) and Proposition 5 (a
useful alternative formula for the force; see Section 3 below). Section 7 contains a
similar but slightly more difficult analysis for the gravitational potential function,
an auxiliary function that is defined only in dimensions 5 and higher. In Section 6
we prove an important auxiliary theorem bounding the joint density of a vector of
forces. In Section 8 we prove large deviations results that will be used repeatedly
as the main “engine” in the proof of Theorem 3.

Finally, Sections 9 and 10 contain the proof of Theorem 3. The proof is split
into two parts. The first and slightly simpler case is the proof in dimensions 5 and
higher. The last section, Section 10, treats the more delicate case of dimensions 3
and 4. We recommend to the reader who is mainly interested in our main result to
only skim through the results in Sections 5, 6, 7, and 8 and to proceed to Section 9.
However, we believe the results in these auxiliary sections to be of significant
independent interest.

2. Preliminaries

Here is some notation that we will use throughout the paper: d 2 Z denotes
the dimension, and will always be at least 3 (in some theorems it will be assumed
explicitly that d � 5 or that d D 4 or that d D 3). We denote by jxj the Eu-
clidean norm of a vector. We denote Lebesgue measure in Rd by Vol. � / . If
V D .V1; : : : ; Vk/ is a random vector, we denote by Var.V / the sum of the variances
of its coordinates. Let �d D �d=2=�.d=2C1/ be the volume of the unit ball in Rd .
Denote by Z the Poisson process of unit intensity on Rd , and by P the probability
measure on the probability space on which it is defined. For concreteness we denote
Z D .zi /

1
iD1 for the specific ordering of the points of Z by increasing distance

from 0. For obvious reasons we refer to the zi as stars. The letters C; c (possibly
with subscripts) will be used to denote various positive constants that may depend
on the dimension d , where C will typically be a large positive constant and c will
typically be a small positive constant, and the same symbols (such as c1, etc.) may
be used in different places with different numerical values. Big-O notation will be
used, and it is understood that all constants implicit therein may depend on d (and
occasionally on other parameters that are kept constant throughout the discussion).
We denote by B.x;L/ the ball of radius L around x 2 Rd , and by Q.x;L/ the
box xC Œ�L;L�d . This notation and other notations that are used frequently in
the paper are summarized in Table 1, which may be used for reference.

Lastly, the following lemma gathers some standard deviations estimates on
Poisson random variables; see [11] for more details.
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LEMMA 4. Let X be a Poisson random variable with mean �. Then:

(i) If t � 2� then P.X � t /� e�
1
4
t log. t�/.

(ii) There exists a ı > 0 such that for all t 2 Œ0; ı� we have

P.jX ��j � t�/� 2e��t
2=3:

Proof. For t � � set s D t=� in the inequality stP.X � t /� E.sX /D e�.s�1/,
to get

(4) P.X � t /� e�t log. t�/Ct�� D e��.
t
�

log. t�/�
t
�
C1/:

Since if u WD t
�
� 2, the inequality 3

4
u logu > u� 1 can be seen to hold, we get in

that case that P.X � t /� e�
1
4
t log. t�/, proving (i).

To prove (ii), note that by the same method, if 0 < t � � one can set s D t=�
in the inequality P.X � t /� s�tE.sX / to obtain

(5) P.X � t /� e��.
t
�

log. t�/�
t
�
C1/:

Now, from (4) we get using a second order Taylor approximation that

P.X ��� t�/� e��..1Ct/ log.1Ct/�t/
� e��t

2=3

for t 2 Œ0; ı�. A similar bound for P.X ��� t�/ follows similarly from (5). �

3. Proof outlines

We give a sketch of the proofs of the main results in the paper. This section is
only included as an outline in order to give the reader a general feeling for the ideas
used and to facilitate understanding of the detailed proofs in the later sections.

Equal volume of the basins of attraction. Of all the results mentioned above,
one of the most interesting and surprising is that a.s. all the basins of attraction have
volume 1. This claim is relatively easy to prove, given the fact that the basins of
attraction are a.s. bounded, and if we also assume that they have piecewise smooth
boundaries (in Section 4 we give a detailed proof of the equal volumes property
which does not use any information on the smoothness of the boundaries). Here
is the proof, which is an adaptation of an argument due to Boris Tsirelson [15].
First, we need an alternative expression for the force F.x/ that does not involve a
different order of summation at every point x. In Section 5 we prove the following
formula.

PROPOSITION 5. Almost surely, for any x 2 Rd nZ we have

(6) F.x/D

1X
z2Z; jzj"

z� x

jz� xjd
C �dx;

where �d D �d=2=�.d=2C 1/ is the volume of the unit ball in Rd and the summa-
tion is in order of increasing distance from 0.
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Symbol Sections Meaning
d all The dimension, an integer � 3. In Section 5, d � 5.
B.x; t/ all Ball of radius t around x 2 Rd .
Q.x; t/ all The cube xC Œ�t; t �d .
�d all �d=2

�.d=2C1/
Dvolume of the unit ball in Rd .

ZD .zi /
1
iD1 all The “stars”: a standard Poisson point process in Rd .

F.x/ all The random gravitational force field induced by Z.
ER 1, 3, 9 The event of a gravitational flow curve crossing be-

tween @Q.0;R/ and @Q.0; 2R/.
g.x/ 5, 6, 8 g.x/D x

jxjd
.

Dk Œ � � 5, 6, 7, 8, 9 The k-th derivative tensor of a function.
R all The main parameter.
B 9, 10 R8=9 (In Section 10.4: R

.logR/ˇ
).

� 9, 10 A large constant.
r 9, 10 � � .logR/2=d (In Section 10.4: .logR/1=3 log logR).
� 9, 10 R�1=10 (In Section 10.4: 1

.logR/ ).

s 9, 10 R
� 1

10.d2C1/ (In Section 10.4: 1

.logR/ı
).

" 9, 10 �

sd
logR (In Section 10.4: �

s3
).

� 9, 10 2
�
d
�d

�1=d
.logR/1=d (In Section 10.4:

p
log logR).

U.x/ 7, 8, 9 The stationary centered gravitational potential.
U.x j A/ 7, 8, 9, 10 Centered contribution to the potential from stars in the

set A.
F.x j A/ 8, 9, 10 Contribution to the force from stars in A.
S 9, 10 The grid S D rZ\ .Q.0; 2R/ nQ.0;R//.
Sw 9, 10 For w 2 S , the subgrid sZ\ .Q.w; 2r/ nQ.w; r//.
Tw 9, 10 For w 2 S , the subgrid �Z\ .Q.w; 2r/ nQ.w; r//.
�1; �2; �3 9, 10 Global atypical events with negligible probability.
�4;w 9 Local atypical event.
�5;W 9 The event �4;w will hold for more than half of W .
�6;W 9 The event that more than half of W is percolating.
�7;W 9 The event that for all w 2W there are many black and

not 4-crowded points in Tw and �c3\�
c
4;w occurred.

U diff.x; y/ 10 The centered potential difference function.
U diff.x; yjA/ 10 Contribution to potential difference from stars in A.

Table 1. Summary of the main notation used in the paper

Now, for a given basin of attraction B.z0/, consider the oriented surface inte-
gral Z

@B.z0/

F.x/ �n dS;

where n is the outward-pointing normal vector. We evaluate this integral in two
ways. First, it is equal to 0, since by the definition of the basin of attraction, on
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@B.z0/we actually have F.x/�nD0; this is because if F.x/ had a component in the
direction of n, there would be a flow curve crossing from one side of @B.z0/ to the
other. Second, the integral may be evaluated using the divergence theorem. Note
that the function g W Rd ! Rd defined by g.x/D x=jxjd satisfies div.g/D d�d ı0
in the distribution sense, where ıy denotes a Dirac delta function at y. Therefore,
using (6), we have

div.F /D�d�d
X
z2Z

ızC d�d

in the distribution sense, and therefore, since B.z0/ contains only the star z0,

0D

Z
@B.z0/

F.x/ �n dS D
Z
B.z0/

div.F /dx D d�d .�1CVol.B.z0///;

whence Vol.B.z0//D 1.

The proof of Theorem 3. Our proof of Theorem 3 was inspired by — and
follows the rough outline of — the proof of the main result of [14, version 1],
though several new conceptual and technical features are added. The basic idea is
as follows. The event ER is defined in terms of the continuous-space force field
F.x/ and is therefore hard to control. We bound it in terms of discrete events,
by dividing space into a grid of cubes of side length r � .logR/2=d . Introduce a
gravitational potential energy function U.x/ whose differences U.x/�U.y/ are the
line integral of the gravitational force. Let B DR8=9. If there is a gravitational flow
curve � crossing between @Q.0;R/ and @Q.0; 2R/, then either U.x/>B for some
x 2Q.0; 2R/ (an event which can be shown to be of negligible probability), or if
not, then “many” (a positive fraction) of the r-grid cubes intersected by the curve
� have the property that either U.x/��B for x in that part of � that intersects the
cube or the change in potential energy along that part of the curve that intersects
the cube is smaller than a constant times Br=R. Call such an r-cube “bad”.

Now, if we could prove that the probability for each cube to be bad is bounded
from above by R�ı for some small ı > 0, and that the events of different cubes
being bad are approximately independent on an appropriate scale, then Theorem 3
would follow using standard subcritical percolation techniques. To bound the prob-
ability of a cube to be bad, we divide each cube into a grid of smaller cubes of size
� D R�1=10, and show that if the r-cube is bad, it contains many “black” �-sub-
cubes, where, roughly, a subcube is called black if it contains a point x where the
norm of the force F.x/ is smaller than a constant times B=R. The probability of a
cube to have many black subcubes is bounded using a first moment bound, which
in this scale seems like the best one can do because of the extreme dependence of
these events (since �� 1).

As for the approximate independence of the events of different cubes being
bad, this is not strictly true in the scales under consideration. It is shown that the
independence requirement can be replaced by a theorem bounding the joint density
of the force field F.x/ evaluated at some set of points.
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To make this skeleton of a proof work, several novel features are required.
Detailed large deviations estimates are obtained for the gravitational potential, the
force, and its derivative. The joint distribution of the vector of values of forces at
a given set of points is analyzed in detail. In the analysis of the bad cubes, it is
necessary to bound the contributions to the potential energy from two asymptotic
regimes: first, from the effects of nearby stars causing the potential function to
be close to �1; this is dealt with using a separate percolation argument. Second,
from the “intermediate” range consisting of the scales between r and R1=d ; these
contributions are dealt with by diluting the set of potentially bad cubes by at most
a factor 1=2 and using a geometric covering lemma. Third, from the far range
of stars at distance >R1=d ; this is dealt with using the large-deviation estimates.
In dimensions 3 and 4, a more delicate argument is required involving a poten-
tial energy function that is not translation-invariant and has worse large-deviation
behavior than in high dimensions.

4. Derivation of Theorem 2

We now show how Theorem 2 follows from Theorem 3 and Proposition 5.
First, the fact that P.ER/! 0 as R ! 1 clearly implies that a.s. all the

basins of attraction are bounded.
Next, let z0 D  Z.0/ be the star whose basin of attraction contains 0, and

let B0 D  �1Z . Z.0// be the basin of attraction of z0. Let X be the allocation
diameter X D diam.B0/. If X �R then there exists an x 2 B0 with jxj � R

2
, and

therefore jjxjj1 � 1

2
p
d
R. Now, if jjz0jj1 � 1

4
p
d
R then, since 0 is in the basin

of attraction of z0, the event E
R=8
p
d

happened. Otherwise, since x is in the basin

of attraction of z0 and we have jjz0jj1 < 1

4
p
d
R < 1

2
p
d
R � jjxjj1, the event

E
R=4
p
d

happened. So we have shown that

P.X �R/� P.E
R=8
p
d
/CP.E

R=4
p
d
/:

This implies that the estimates (2) and (3) follow from the corresponding estimates
in Theorem 3.

Next, we show that a.s. all basins of attraction have volume 1. We use a variant
of the argument sketched in Section 3 which does not require any knowledge about
the smoothness of the boundary of Bi . A similar argument in a slightly different
context was briefly mentioned in [14, �12.2].

Let Bi be the basin of attraction of the star zi . As in the introduction, for
x 2 Bi denote by �x the time that it takes x to flow into zi , or equivalently the
maximum time up to which the integral curve Yx.�/ is defined; for continuity we
set �zi D 0. For 0� a � b �1 denote

Ea;b D fx 2 Bi W a � �x � bg;

Va;b D Vol.Ea;b/:
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Note that on Bi n fzig the force field F satisfies div.F / � �d�d , by taking the
divergence of each term in (6) (see Lemma 7 below, which justifies interchanging
the divergence and summation operations). Therefore, by a version of Liouville’s
theorem [2, Lemma 1, p. 69], it follows that d

dt
Vt;1 D�d�dVt;1, so

Vt;1 D V0;1e
�d�d t :

In particular, for t & 0 we get that

(7) V0;t D V0;1�Vt;1 D V0;1
�
1� e�d�d t

�
D d�dV0;1t CO.t

2/:

Estimate V0;t for small t in a different way, as follows. In a neighborhood of zi
the field F satisfies F.x/D zi�x

jzi�xjd
CO.1/. Without the error term it would be

easy to solve the differential equation explicitly, so this implies by approximation
that

B
�
zi ; .dt/

1=d
� o.t1=d /

�
�E0;t � B

�
zi ; .dt/

1=d
C o.t1=d /

�
:

(This relies on the following easily-verified claim regarding a one-dimensional
differential inequality: if g is a real-valued function on Œ0;1/ that satisfies g.0/D0,
jg0.t/�g.t/1�d j � C , then g.t/D .dt/1=d C o.t1=d / when t & 0.) Therefore

(8) V0;t D d�d t C o.t/:

Equating (7) and (8) gives that Vol.Bi /D V0;1 D 1, as claimed.
We have shown that the basins of attraction are a.s. all bounded, have volume 1,

and they are clearly disjoint. The last claim that needs to be proven is that a.s. they
cover all of Rd except a set of measure 0. We use the following mass transport
lemma.

LEMMA 6. Let f W Zd �Zd ! Œ0;1/ satisfy f .m; n/D f .mCu; nCu/ for
any m; n; u 2 Zd . Then for all n 2 Zd we have thatX

m2Zd

f .m; n/D
X
m2Zd

f .n;m/:

Proof. f .m; n/ D f .m � n; 0/ DW g.m � n/, and both sums become justP
n g.n/. �

Define f W Zd �Zd ! R by

f .m; n/D E

�
Vol
�
Q.m; 1=2/\

[
i W zi2Q.n;1=2/

Bi

��
;

or in words the expected volume of the part of Q.m; 1=2/ that gets allocated to
some zi 2Q.n; 1=2/. Note that

P
m2Zd f .m; n/ represents the expected volume

of points in Rd being allocated to some zi 2 Q.n; 1=2/. Since we showed that
Vol.Bi / D 1 for all i , this is equal to the expected number of zi 2 Q.n; 1=2/,
which is Vol.Q.n; 1=2//D 1. So, if we denote D D[1iD1Bi , the union of all the
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basins of attraction, then by Lemma 6 we get that for all n 2 Zd we have

1D
X
m2Zd

f .n;m/D E

h
Vol.D\Q.n; 1=2//

i
:

The random variable Vol.D \Q.n; 1=2// is bounded from above by 1. If its ex-
pected value is 1 then it is 1 almost surely. Therefore almost surely

Vol.Rd nD/D
X
n2Zd

Vol.Q.n; 1=2/ nD/D
X
n2Zd

0D 0;

as claimed. �

5. Existence and differentiability of F

In this section we prove Propositions 1 and 5.

5.1. Proof of a.s. convergence of F.x/. First, let us prove that F.x/ is well-
defined, that is, that the sum in (1) converges a.s. for fixed x 2 Rd . Since the sum
is defined in a translation-invariant manner, it is clearly enough to prove that the
sum for F.0/ converges a.s. Let �0 D 0, and for i � 1 let �i D jzi j be the distance
of zi from the origin. Since Z D .zi /i is a Poisson process, we then have that
the random variables

�
�d .�

d
i � �

d
i�1/

�1
iD1

are i.i.d. with Exp.1/ distribution (recall
�d D Vol.B.0; 1//), and therefore by the law of large numbers, almost surely

.LLN/
�i

i1=d
D

�Pi
jD1.�

d
j � �

d
j�1/

i

�1=d
����!
i!1

�
�1=d

d
:

Now, if we condition on the values of .�i /i , thinking of them as a determin-
istic sequence such that �i=i1=d ! �

�1=d

d
as i !1, then each zi is distributed

uniformly on the sphere of radius �i around the origin. For any i � 1, each term
.zi /=jzi j

d in the sum in (1) (where x is taken as 0) has (conditional) mean 0 and
variance bounded by O

�
�
�2.d�1/
i

�
D O

�
i�2.d�1/=d

�
. Since in the event (LLN)

the sum of the variances converges (note that this fails in dimension 2), by the
Kolmogorov three-series theorem the sum in (1) converges a.s. This is true a.s.
conditionally on .�i /i , therefore it is true a.s. and F.0/ is defined.

5.2. Simultaneous convergence with a fixed order of summands. Denote as
before �i D jzi j. Let i0 D minfi W �i � 2g. Let g W Rd ! Rd be defined by
g.x/D x=jxjd . Define

(9) H.x/D

1X
iDi0

zi � x

jzi � xjd
D

1X
iDi0

g.zi � x/;

a function that, as we will see shortly, is closely related to F.x/.

LEMMA 7. Almost surely, the sum defining H.x/ converges simultaneously
and uniformly for all x 2 B.0; 1/ and defines a continuously differentiable function.
The series can be differentiated termwise.
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Proof. For a function f W Ri ! Rj , denote by Dkf the tensor of k-th deriva-
tives of f (which can be thought of as a .j � ik/-dimensional vector). Note that for
jxj> 1 we have that

jD1g.x/j DO
�
jxj�d

�
;(10)

jD2g.x/j DO
�
jxj�d�1

�
;(11)

and in general for any k � 0 we have

(12) jDkg.x/j DO
�
jxj�d�kC1

�
;

where the constant implicit in the big-O depends on d and on k. The best way
to see (10) is to represent D1g.x/, the matrix of the first differential of g at x,
in an orthonormal coordinate system containing the radial direction x=jxj; this
gives a diagonal matrix whose entries are d � 1 copies of jxj�d and one copy
of �.d � 1/jxj�d D d

dr

ˇ̌
rDjxj

r�.d�1/, so in fact jD1g.x/j D C1jxj
�d , where

C1 D
�
d.d � 1/

�1=2. Equations (11) and (12) can be proved similarly.
Now, similarly to (9), define for x 2 B.0; 1/

H1.x/D

1X
iDi0

D1Œg.zi � x/�;(13)

H2.x/D

1X
iDi0

D2Œg.zi � x/�:(14)

Condition on the �i , and condition on the event (LLN). In the previous subsection
we showed that the sum defining H.0/ converges a.s., so assume that this holds. A
similar argument shows that the sum defining H1.0/ converges a.s., so condition
on that as well. We shall show that under these conditions the sum in (9) converges
uniformly on B.0; 1/ to a C 1 function.

First, (11) together with the assumption that (LLN) holds immediately imply
that the sum (14) converges absolutely uniformly on B.0; 1/, and similarly from
(12) the same is true for the sums of differentials of all orders k � 2. In particular
it follows that (under the above conditioning) H2.x/ is a C1 function on B.0; 1/.

Next, H1.x/�H1.0/ can be represented as a sum of line integrals from 0

to x of the terms in the sum for H2.x/. Therefore the sum for H1.x/�H1.0/
converges uniformly on B.0; 1/ to a function whose differential is H2.x/, and
since we assumed that the sum for H1.0/ converges, it follows that the sum (13)
converges uniformly on B.0; 1/ to a differentiable function. SimilarlyH.x/�H.0/
can be represented as a sum of line integrals of the terms in (13), so repeating the
above argument, using the fact that we assumed that the sum for H.0/ converges,
gives that the sum in (9) converges uniformly on B.0; 1/ to a C 1 (in fact, C1)
function. This was true under the conditioning on an almost sure event, so the
lemma is proved. �
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5.3. The rearrangement identity. If u; x 2 Rd we denote

Gfug.x/D
X
jzi�uj"

zi � x

jzi � xjd

(the terms are summed in order of increasing distance from u, and this sum is
defined a.s. as with F.x/).

LEMMA 8. For any x; u; v 2 Rd we have that a.s.

(15) Gfug.x/�Gfvg.x/D �d .u� v/:

Proof. First, compute expectations. Let Nu;x be the (random) number of stars
in the ball B.u; ju�xj/. Recall the well-known physics principle that says that the
total gravitational pull on a point x from a uniformly distributed spherical shell of
mass with center u, radius r , and total mass M is equal to 0 if r > ju� xj and to
M.u� x/=ju� xjd if r < ju� xj (this last fact follows from the harmonicity of
the function x! .u� x/=ju� xjd ). Therefore, by conditioning on the distances
of the stars from u (as was done in Section 5.1 above with uD 0), we get that

E

h
Gfug.x/

ˇ̌
Nu;x

i
DNu;x �

u� x

ju� xjd
:

Therefore

E

h
Gfug.x/

i
D EŒNu;x�

u� x

ju� xjd
D �d ju� xj

d u� x

ju� xjd
D �d .u� x/;

so
E

h
Gfug.x/

i
� E

h
Gfvg.x/

i
D �d .u� v/:

Now, let R > 0 be large, and consider the truncated series

G
fug
R .x/D

X
jzi�uj<R

zi � x

jzi � xjd
:

Then
G
fug
R .x/�G

fvg
R .x/D

X
zi2AR

zi � x

jzi � xjd
�

X
zi2BR

zi � x

jzi � xjd
;

where ARDB.u;R/nB.v;R/ and BRDB.v;R/nB.u;R/:We show that the vari-
ance of this expression tends to 0 whenR!1: partition the set B.u;R/4B.v;R/
into O.Rd�1/ disjoint sets .Ej /j of Lebesgue measure O.1/ such that each Ej is
contained in either AR or BR (see Figure 5; the constant in the big-O depends on
u and v), and for each j let

Yj D
X
zi2Ej

zi � x

jzi � xjd

be the contribution to the force from stars in Ej . Then we can write

G
fug
R .x/�G

fvg
R .x/D

X
j

˙Yj :
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Distance > R/2

x

v

u

Ej

Figure 5. The balls B.u;R/ and B.v;R/ and the sets Ej .

The Yj ’s are independent, and each has variance bounded from above by

EjYj j
2
D E

h
E
�
jYj j

2
ˇ̌
card.Ej \fzigi /

�i
�

C

R2d�2
E

h
card.Ej \fzigi /

i
DO

�
1

R2d�2

�
:

(Note that this is true since B.u;R/4B.v;R/ � Rd nB.x;R=2/ for sufficiently
large R, see Figure 5.) Therefore

Var
�
G
fug
R .x/�G

fvg
R .x/

�
DO.R�dC1/ ����!

R!1
0;

which finishes the proof, since a.s. GfugR .x/! Gfug.x/ and GfvgR .x/! Gfvg.x/

as R!1 �

5.4. Proof of Propositions 1 and 5. Both Propositions 1 and 5 follow imme-
diately from the following theorem.

THEOREM 9. With probability 1, the following four statements hold:

(i) The sum defining Gfug.x/ converges simultaneously for all u 2 Rd and x 2
Rd nZ.

(ii) The convergence is uniform on compact sets in Rd � .Rd nZ/.

(iii) The rearrangement identity (15) holds for all u; v, and x.

(iv) For all u the function Gfug.x/ is continuously differentiable in x.

Proof. By Lemma 7 we know that, off of a null event �1, for all rational
u 2Rd the sum defining Gfug.x/ converges simultaneously for all x 2Rd nZ, and
the convergence is uniform for x ranging in a compact set.

By Lemma 8, off of a null event �2, the identity (15) holds provided u, v,
and x are rational. (By the continuity in x, the assumption that x is rational can
be dropped outside �1[�2.)



GRAVITATIONAL ALLOCATION TO POISSON POINTS 635

Let N.u;R; "/ be the number of stars in the "-neighborhood of the sphere of
radius R around u. The mean of N.u;R; "/ is at most CdRd�1". Let A.u;R; "/
be the event that N.u;R; "/ is less than twice its mean. Then by Lemma 4,

(16) P.A.u;R; "/c/� exp.�aRd�1"/

for some a > 0. It follows by Borel-Cantelli that off of a null event �3, for each
rational q and " > 0, there is a (random) R� DR�.q; "/ such that A.q;R; "/ holds
for all R >R�.q; "/ that are multiples of ".

Now fix a configuration of stars ! …�1[�2[�3, and choose ">0. For each
u 2 Rd find a rational q D q.u; "/ within distance " of u. Then for R >R�.q; "/
and x 2 B.u;R=3/, we haveˇ̌̌

G
fug
R .x/�G

fqg
R .x/

ˇ̌̌
< 2N.u;R; "/.2=R/d�1 < 2dC1Cd"

where GfugR .x/ is defined as in the proof of Lemma 8 above. Thus

lim sup
R

ˇ̌̌
G
fug
R .x/�G

fqg
R .x/

ˇ̌̌
� 2dC1Cd"

for all " > 0. This verifies (i) for !, and (ii), (iii), and (iv) follow similarly by
approximation. �

6. The joint density of a vector of forces

In this section we prove an estimate that will be required in the proof of
Theorem 3. Suppose we have N points x1; : : : ; xN 2 Rd with jxi � xj j > S for
every i ¤ j . Fix a positive �, and define the event

E D
˚
There is at least one star in B.xi ; �/ for every 1� i �N

	
:

Denote by M the �-algebra generated by the locations of the stars in
�
[NiD1

B.xi ; �/
�c . Denote by X the random vector of forces .F.xi //1�i�N . Then we

have the following bound on the joint density of X .

THEOREM 10. There exist constants c0; C1 > 0 (depending on the dimen-
sion d ) such that if

(17) � < c0
S

.logN/
1
d

;

then conditioned on the event E and on the �-algebra M, almost surely the joint
density of X exists and is bounded from above by .C1�d

2�d /N .

We will use the following two simple lemmas.

LEMMA 11. There exists a constant C7 > 0 (depending on d ) such that if
x1; x2; : : : ; xN 2 Rd satisfy jxi � xj j> S for all i ¤ j , then for all 1� i �N we
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have that
NX
jD2

1

jxj � x1jd
�
C7 logN
Sd

:

Proof. For k D 1; 2; : : : , let Vk D fxigNiD2 \
�
B.x1; 2

kS/ nB.x1; 2
k�1S/

�
.

Clearly jVkj �
Vol.B.x1;.2kC1/S//

Vol.B.0;S=2// � 4d �2kd , and also trivially jVkj �N . Therefore
we have

NX
jD2

1

jxj � x1jd
D

1X
kD1

X
x2Vk

1

jx� x1jd
�

1X
kD1

min.N; 4d2kd /
2kdSd=2d

D 8d
b

logN
d log2 c�1X
kD1

1

Sd
C 2dN

1X
kDb

logN
d log2 c

1

2kdSd

DO

�
logN
Sd

�
CO

�
1

Sd

�
DO

�
logN
Sd

�
: �

LEMMA 12. If AD .ai;j /ki;jD1 is a matrix such that jai;i j � 2
P
j¤i jai;j j for

all 1� i � k, then

j detAj �
1

2k

kY
iD1

jai;i j:

Proof. This is a variant of Hadamard’s theorem in linear algebra. First, by
multiplying each row of A by a�1i;i , we may assume without loss of generality that
ai;i D 1 for all 1 � i � k, so A D I C B , where I is the identity matrix and
B D .bi;j / is a matrix such that

P
j jbi;j j � 1=2 for all 1� i � k. For all x 2 Rk ,

jjBxjj1 � jjxjj1max
i

X
j

jbi;j j �
1

2
jjxjj1:

Therefore

jjAxjj1 D jjIxCBxjj1 � jjxjj1� jjBxjj1 �
1

2
jjxjj1:

We have shown that all the eigenvalues of A are greater in absolute value than 1=2,
therefore j detAj � 2�k , as claimed. �

Proof of Theorem 10. Let us condition everything on the event E and more-
over on the number of stars �i in B.xi ; �/ for each 1 � i � N . With this condi-
tioning, the set of stars in B.xi ; �/ is simply a vector .Yi;1; Yi;2; : : : ; Yi;�i / of �i
i.i.d. points chosen uniformly in B.xi ; �/. Now condition further on the � -algebra
M and on the � -algebra L generated by the locations of the stars˚

Yi;j j 1� i �N; 2� j � �i
	
:

This leaves only the stars .Yi;1/1�i�N as a source of randomness. The vector X
of forces can therefore be written as

X DG.Y1;1; Y2;1; : : : ; YN;1/CZ;
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where Z represents the contribution that is measurable with respect to M_L, and
where G W B.x1; �/�B.x2; �/� � � � �B.xN ; �/! RNd is the function defined by

G.y1; : : : ; yN /D

� NX
jD1

yj � x1

jyj � x1jd
;

NX
jD1

yj � x2

jyj � x2jd
; : : : ;

NX
jD1

yj � xN

jyj � xN jd

�
:

Denote B D B.x1; �/�B.x2; �/� � � � �B.xN ; �/. The volume of B is �N
d
�Nd .

Therefore, to prove that the joint density of G.Y1;1; Y2;1; : : : ; YN;1/ (and therefore
also the joint density of X conditioned on the event E and on the � -algebra M_L)
is bounded from above by .C1�d

2�d /N , it will be enough to prove two things:
first, that the function G W B!RNd is one-to-one; and second, that the Jacobian of
the function G WB!RNd is bounded from below by .C2�d

2

/�N , where C2 >0 is
some large constant. Interestingly, both of these claims require that the assumption
(17) hold for some constant c0 > 0.

We prove the first claim. Assume (17), where c0 > 0 is some small con-
stant whose value will be specified soon. Denote as before g.x/ D x=jxjd . Fix
a1; : : : ; aN 2 Rd . Our goal is to prove that if the system of equations

(18)
NX
jD1

g.yj � xi /D ai ; 1� i �N

has a solution .y1; : : : ; yN / 2 B, then this solution is unique. The following proof
of this fact was suggested by the referee, and simplified an earlier proof. Assume
the contrary: y D .y1; : : : ; yN / 2 B, y0 D .y01; : : : ; y

0
N / 2 B, and

(19)
NX
jD1

g.yj � xi /D

NX
jD1

g.y0j � xi / for i D 1; : : : ; N;

and the number " D maxj jyj � y0j j does not vanish. Without loss of generality
assume that jy1 � y01j D ". Introducing u D g.y1 � x1/; u

0 D g.y01 � x1/; v DPN
jD2 g.yj � x1/, and v0 D

PN
jD2 g.y

0
j � x1/, we have uC v D u0C v0 (by (19)

for i D 1; other i will not be used), therefore

(20) ju�u0j D jv� v0j:

We note that jyj � x1j � jxj � x1j � jyj � xj j � jxj � x1j � � for j > 1. Taking
into account that jxj � x1j � S � 2� by (17), we get jyj � x1j � 1

2
jxj � x1j. By

(10), for j > 1,

jg.yj � x1/�g.y
0
j � x1/j � C

jyj �y
0
j j

min.jyj � x1jd ; jy0j � x1j
d /

� C
jyj �y

0
j j

jxj � x1jd
� C

"

jxj � x1jd
:
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By Lemma 11,

jv� v0j �

NX
jD2

jg.yj � x1/�g.y
0
j � x1/j � C"

NX
jD2

1

jxj � x1jd
�
C99" logN

Sd
:

Here C99 does not depend on c0 in (17) as long as c0
.logN/1=d

� 0:5:

Using (20) and (17), we get that ju�u0jD jv�v0j� C99" logN
Sd

�C99".c0=�/
d ;

that is,

(21)
jg.y1� x1/�g.y

0
1� x1/j

jy1�y
0
1j

� C99

�c0
�

�d
:

The function g WRd nf0g!Rd nf0g is invertible; g�1.z/D z=jzj
d
d�1 . Similarly to

(10), jD1g�1.z/j DO.jzj�
d
d�1 /. Thus if we restrict g to B.0; �/ and accordingly

g�1 to Rd nB.0; 1
�d�1

/, then g�1 satisfies the Lipschitz condition with the constant
C98�

d (even though Rd nB.0; 1
�d�1

/ is not convex). We consider z D g.y1�x1/,
z0 D g.y01� x1/ and get by (21) and the Lipschitz condition

jz� z0j

jg�1.z/�g�1.z0/j
� C99

�c0
�

�d
;

jg�1.z/�g�1.z0/j

jz� z0j
� C98�

d ;

which is a contradiction if c0 is small enough, namely if C98C99cd0 < 1. This
finishes the proof that G is one-to-one.

It remains to be proved that the Jacobian of G is bounded from below by
.C2�

d2/�N , for some large constant C2 > 0, again assuming (17). The Jaco-
bian matrix J of G can be written as a block matrix .Ji;j /1�i;j�N , where each
Ji;j is the d � d Jacobian matrix of the function yj !

yj�xi
jyj�xi jd

. Again by the
computation of the matrix D1g.x/, each Ji;j is a diagonalizable matrix with one
eigenvalue equal to �.d�1/jyj �xi j�d and d�1 eigenvalues equal to jyj �xi j�d .
Furthermore, by choosing for each yi the appropriate radial coordinate system (as
a function of yi ), we may assume that the blocks Ji;i , 1� i �N , are in diagonal
form. Any other block Ji;j D .ai;j;k;l/1�k;l�d for i ¤ j is not necessarily in
diagonal form, but its entries satisfy

ai;j;k;l � C5jyj � xi j
�d
� C6jxj � xi j

�d :

Recall that our assumptions are that jyi � xi j < � and jyj � xi j > S � � > S=2
for i ¤ j . We wish to apply Lemma 12 to the matrix J . By Lemma 11, the
assumptions of Lemma 12 will hold if we have

��d > 2dC6C7
logN
Sd

:

This holds if � < C8 S
.logN/1=d

, where C8 D .2dC6C7/�1=d . The conclusion of
Lemma 12 is exactly our claim. �
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7. The gravitational potential function

We define a new function, the gravitational potential function. It will be
defined in dimensions 5 and higher only, and is designed to be a stationary centered
random function that has as minus its gradient the force function F . If d � 5, the
gravitational potential function U W Rd ! R is defined by

(22) U.x/D
1

d � 2
lim
T!1

h X
i W jzi�xj<T

�1

jzi � xjd�2
C
d�d

2
T 2
i
:

As with the case of the force, we need to check that the potential function is
a.s. defined and is well-behaved (in fact, in the case of the potential this is only
true in dimensions 5 and higher). For any p > q � 0, denote by Np;q the random
number of stars in B.0; p/ nB.0; q/, and denote

Up;q D
X

i W q<jzi j�p

1

jzi jd�2
:

Let Wp;q be a random vector distributed uniformly on B.0; p/ nB.0; q/. An easy
computation gives the following.

E
�
jWp;qj

˛
�
D

d

d C˛

pdC˛ � qdC˛

pd � qd
; .˛ ¤�d/;(23)

EŒNp;q�D VarŒNp;q�D �d .p
d
� qd /;

EŒUp;q j Np;q�DNp;qE

h
jWp;qj

2�d
i
DNp;q �

d

2
�
p2� q2

pd � qd
;

EŒUp;q�D
d�d

2
.p2� q2/;

VarŒUp;q j Np;q�DNp;q �Var
h
jWp;qj

2�d
i

(24)

DNp;q �

 
d

d � 4
�
q4�d �p4�d

pd � qd
�
d2

4
�

�
p2� q2

pd � qd

�2!
;

VarŒUp;q�D E

h
VarŒUp;q j Np;q�

i
CVar

h
EŒUp;q j Np;q�

i
D
d�d

d � 4

�
1

qd�4
�

1

pd�4

�
:

Now, from (23) and (24) it immediately follows that when d � 5, for any fixed
x 2 Rd the limit in (22) exists a.s. and defines a centered random variable.

For any u; x 2 Rd denote

H
fug
R .x/D

1

d � 2

h X
i W jzi�uj<R

�1

jzi � xjd�2
C
d�d

2
R2
i
:
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An easy computation (similar to the one in the proof of Lemma 8) gives that
E.H

fug
R .x// D �d

2
ju � xj2 if ju � xj � R. We have shown above that U.0/ D

limR!1H
f0g
R .0/ converges a.s. Next, by Theorem 9 it follows that for any x 2Rd

the limit limR!1H
f0g
R .x/ exists a.s., uniformly for x in compact sets, since the

difference H f0gR .x/ �H
f0g
R .0/ can be represented as minus the line integral of

G
f0g
R .�/ (defined in Section 5.3) from 0 to x. By translation, it follows that the

limit
H fug.x/ WD lim

R!1
H
fug
R .x/

converges a.s. for any fixed u 2 Rd uniformly as x ranges over compact sets. As
before, H fug.x/ satisfies a rearrangement identity similar to (15):

LEMMA 13. For any x; u; v 2 Rd we have that a.s.

H fug.x/�H fvg.x/D
�d

2

�
ju� xj2� jv� xj2

�
:

We omit the proof, which is similar to the proof of Lemma 8, and is also
superseded by the following stronger lemma.

LEMMA 14. Almost surely, we have that

max
u2B.0;1/

ˇ̌̌
H
fug
R .0/�

�d

2
juj2�H

f0g
R .0/

ˇ̌̌
����!
R!1

0:

Proof. For any m 2 N and " > 0, consider the event

J "m D
n

max
m�R<mC1

max
u2B.0;1/

ˇ̌̌
H
fug
R .0/�

�d

2
juj2�H f0gm .0/

ˇ̌̌
> "

o
:

We shall show that for any " > 0 we have
P1
mD1 P.J "m/ <1. By Borel-Cantelli,

that implies the claim of the lemma.
To that end, fix a large m 2 N. Let Em be a 1

m2
-net of numbers in Œm;mC 1�,

and letNm be a 1
m2

-net inB.0; 1/, choosing nets such that jEm�NmjDO.m2dC2/
and such that, for all v 2 Nm and r 2 Em, we have .r �m/ � m�2=2 and jvj �
m�2=2. For v 2Nm and r 2Em, denote �m;v;r DB.0;m/4B.v; r/ and �m;v;r D
card.Z \�m;v;r/ (the number of stars in �m;v;r ). For v 2 Nm; r 2 Em define
events

Km;v;r D

�ˇ̌̌
�m;v;r �Vol.�m;v;r/

ˇ̌̌
>m0:1

�
Vol.�m;v;r/

�1=2 �
;

Lm;v;r D

�
B
�
v; r C

2

m2

�
nB

�
v; r �

2

m2

�
contains

> 20�dm
d�3 stars

�
;

S"m;v;r D

�ˇ̌̌
H fvgr .0/�

�d

2
jvj2�H f0gm .0/

ˇ̌̌
>
"

2

�
:
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Because the number of stars in a region has the Poisson distribution, by Lemma 4
we get that for some constants C; c > 0, for all m we have

(25) P.Km;v;r/� Ce
�cm0:2 ; P.Lm;v;r/� Ce

�cmd�3

(note that our choice of the nets Em and Nm forces Vol.�m;v;r/ to go to infinity
when m grows large). Next, we derive a bound for P.S"m;v;r \K

c
m;v;r/. Denote

Wm;v;r DH
fvg
r .0/�

�d

2
jvj2�H f0gm .0/;

and observe thatWm;v;r is a centered random variable that, conditioned on the event
�m;v;r D k, can be written as a constant em;v;r WD 1

d�2

�
d�d
2
.r2 �m2/� �d

2
jvj2

�
plus a sum of k i.i.d. random variables with values in Œ�.m� 1/2�d ; .m� 1/2�d �.
Therefore we have that

E.Wm;v;r j�m;v;r D k/D em;v;r C k
E.Wm;v;r � em;v;r/

E.�m;v;r/

D em;v;r

�
1�

k

Vol.�m;v;r/

�
(since E.Wm;v;r/D 0). Now, take k such that

jk�Vol.�m;v;r/j �m0:1
�
Vol.�m;v;r/

�1=2
:

Noting that for some constant c2 > 0 we have that

Vol.�m;v;r/� c2md�1 max.r �m; jvj/;

it follows that

E.Wm;v;r j�m;v;r D k/Dm
0:1m�.d�1/=2O

�
m.r �m/Cjvj2

max.r �m; jvj/

�
DO

�
m�0:9

�
(since d � 5). In particular, for such k, for any " > 0 we have, for sufficiently
large m, that E.Wm;v;r j�m;v;r D k/ < "=4, and it follows by Hoeffding’s inequality
applied to the representation of Wm;v;r conditioned on the event f�m;v;r D kg

described above that for some constants c3; c4 > 0 we have that

P.S"m;v;r j �m;v;r D k/� e
�c3"

2 m2.d�2/

Vol.�m;v;r / � e�c4"
2md�3 :

It follows that

(26) P.S"m;v;r \K
c
m;v;r/� e

�c4"
2md�3 ;

which was our desired estimate.
We now claim that for any fixed " > 0, for m sufficiently large, we have that

J "m �
[

v2Nm;r2Em

�
Km;v;r [Lm;v;r [S

"
m;v;r

�
:
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Together with estimates (25) and (26), this will prove that
P
mP.J "m/ <1 and

therefore the claim of the lemma. To prove this, let u 2B.0; 1/ and R 2 Œm;mC1/.
Let v 2Nm and r 2Em such that jv�uj �m�2 and jR� r j<m�2. In particular,
we have that the symmetric difference B.u;R/4B.v; r/ satisfies

B.u;R/4B.v; r/� B
�
v; r C

2

m2

�
nB

�
v; r �

2

m2

�
:

Thenˇ̌̌
H
fug
R .0/�

�d

2
juj2�H f0gm .0/

ˇ̌̌
�

ˇ̌̌
H fvgr .0/�

�d

2
jvj2�H f0gm .0/

ˇ̌̌
C

ˇ̌̌
H
fug
R .0/�

�d

2
juj2�H fvgr .0/C

�d

2
jvj2

ˇ̌̌
:

Assuming the event
S
v2Nm;r2Em

�
Km;v;r [Lm;v;r [ S

"
m;v;r

�
did not occur, the

first term in this bound is � "=2, and the second term is at most

�d

2

ˇ̌̌
juj2� jvj2

ˇ̌̌
C
20�dm

d�3

.m=2/d�2
C
d�d

d � 2

ˇ̌
R2� r2

ˇ̌
<
C

m
:

This is also � "=2 if m is large enough, which means that J "m did not occur. �

Combining the above results as in Section 5, we have proved:

PROPOSITION 15. If d � 5, the limit in (22) exists a.s. simultaneously for all
x 2 Rd n fzigi and defines a stationary centered process that is a.s. differentiable
everywhere, it is defined, and satisfies

U.x/D
1

d � 2
lim
T!1

h X
i W jzi j<T

�1

jzi � xjd�2
C
d�d

2
T 2
i
�
�d

2
jxj2;(27)

rU.x/D�F.x/:(28)

We will occasionally use truncated versions of the gravitational potential, the
force, and its first differential. For a bounded set A � Rd , define U.xjA/, the
partial potential from stars in A, by

U.xjA/D
1

d � 2

X
i W zi2A

�1

jzi � xjd�2
C

1

d � 2

Z
A

jz� xj�dC2dVol.z/:

Similarly, define F.xjA/, the partial force from stars in A, by

F.xjA/D
X

i W zi2A

zi � x

jzi � xjd
�

Z
A

z� x

jz� xjd
dVol.z/:

For a set A� Rd whose complement is bounded, define

U.xjA/D U.x/�U.xjAc/; F .xjA/D F.x/�F.xjAc/:

Note that U.xjA/ and F.xjA/ are centered to have mean 0.
While these definitions are rather general, throughout the paper we only use

sets A which are annuli of the form AD B.y; p/ nB.y; q/, where 0� q < p �1
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(this includes the degenerate cases of a ball, the complement of a ball, and the
entire space). Furthermore, in all the cases we will consider, we will have that
either [q > 0 and jx � yj � q] or [q D 0 and jx � yj � p]. In those cases, from
the computations in the proof above, it is easy to verify that we have the following
explicit expressions for U.xjA/ and F.xjA/: first, if q > 0 and jx�yj � q, then

U.xjB.y; p/ nB.y; q//D
1

d � 2

X
q<jzi�yj�p; jzi j"

�1

jzi � xjd�2
(29)

C
d�d

2.d � 2/
.p2� q2/;

F .xjB.y; p/ nB.y; q//D
X

q<jzi�yj�p; jzi j"

zi � x

jzi � xjd
:

Second, if q D 0 and jx�yj � p, then

U.xjB.y; p//D
1

d � 2

X
jzi�yj�p; jzi j"

�1

jzi � xjd�2
C

d�d

2.d � 2/
p2;

F .xjB.y; p//D
X

jzi�yj�p; jzi j"

zi � x

jzi � xjd
C �d .x�y/:

We will also use the function D1F.xjA/, the first differential of F.xjA/. By
Lemma 7 we have the following explicit expressions for D1F.xjA/ in the cases
described above: if q > 0 and jx�yj � q then

D1F.xjB.y; p/ nB.y; q//D
X

q<jzi�yj�p; jzi j"

D1

�
zi � x

jzi � xjd

�
;

and if q D 0 and jx�yj � p then

(30) D1F.xjB.y; p//D
X

jzi�yj�p; jzi j"

D1

�
zi � x

jzi � xjd

�
C �dId�d ;

where Id�d is the d � d identity operator.
In all the above sums, if the region of summation is infinite, then the terms

are summed in order of increasing distance from 0.

8. Large deviations estimates

In this section we derive detailed large deviations estimates for the force F.x/,
its derivative D1F , and (in dimensions 5 and higher) the gravitational potential
function.

8.1. Large deviations for the value at a point. Consistently with the previ-
ously defined notation, let DkF

�
x
ˇ̌
A
�

denote the k-th differential tensor of the
function x! F

�
x
ˇ̌
A
�
.
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THEOREM 16. There exist constants C1; c2; c3>0 such that, for all p >q > 0
and t > 0, we have

P

�ˇ̌̌
U
�
0
ˇ̌
B.0; p/ nB.0; q/

�ˇ̌̌
� t
�
� C1e

�c2q
d�2t log

�
c3t

q2

�
;(31)

P

�ˇ̌̌
F
�
0
ˇ̌
B.0; p/ nB.0; q/

�ˇ̌̌
� t
�
� C1e

�c2q
d�1t log

�
c3t

q

�
;(32)

P

�ˇ̌̌
D1F

�
0
ˇ̌
B.0; p/ nB.0; q/

�ˇ̌̌
� t
�
� C1e

�c2q
d t log.c3t/:(33)

Equation (31) holds in dimensions d � 5, and equations (32) and (33) hold for all
dimensions d � 3.

Proof. Assume d � 5. Denote Bp;q D B.0; p/ nB.0; q/. Let Wp;q; Np;q , and
Up;q be as in Section 7, so U

�
0
ˇ̌
B.0; p/ nB.0; q/

�
D

1
d�2

.Up;q � EŒUp;q�/. Let
V D jWp;qj

�.d�2/. Then for any u > 0 we have

P.jV j> u/D P

�
1

jWp;qjd�2
> u

�
D P

�
jWp;qj<

1

u1=.d�2/

�
�

�d

Vol.Bp;q/ud=.d�2/
:

Therefore, noting that 0� V � 1=qd�2, we have for any integer k � 2, that

E.jV jk/D

Z 1=qd�2

0

kuk�1P.jV j> u/du(34)

�
�d

Vol.Bp;q/

Z 1=qd�2

0

kuk�2�
2
d�2du

D
�d

Vol.Bp;q/
�

k

k� 1� 2
d�2

�
1

qd�2

�k�1� 2
d�2

�
6�d

Vol.Bp;q/q.d�2/k�d
:

For any � � 0 we have

E.e�V /D 1C �E.V /C

1X
kD2

�k

kŠ
EV k � 1C �E.V /C

6�dq
d

Vol.Bp;q/

1X
kD2

.�=qd�2/k

kŠ

� 1C �E.V /C
6�dq

d

Vol.Bp;q/
e�=q

d�2

:

Conditionally on Np;q , the stars in Bp;q are a vector of Np;q i.i.d. points distributed
uniformly in Bp;q . Hence by the last estimate we get that

E

h
e�Up;q

ˇ̌
Np;q

i
�

�
1C �E.V /C

6�dq
d

Vol.Bp;q/
e�=q

d�2

�Np;q
:
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Now, it is a simple exercise that if X � Poi.�/, then for any ˛, we have
E..1C˛/X /D e�˛ . SinceNp;q �Poi.Vol.Bp;q//, using this in the above inequality
we get

(35) E

�
e�Up;q

�
� exp

�
�Vol.Bp;q/E.V /C 6�dq

de�=q
d�2

�
:

Since also EŒUp;q�D Vol.Bp;q/E.V /, we get

E

�
e�.Up;q�E.Up;q//

�
� exp

�
6�dq

de�=q
d�2

�
:

Therefore for any t � 0 we have

P

�
Up;q � EŒUp;q�� t

�
� exp

�
�� t C 6�dq

de�=q
d�2

�
:

Set � D qd�2 log.t=.6�dq2// to get

P

�
Up;q � EŒUp;q�� t

�
� exp

�
� qd�2t log.t=.6�dq

2//C qd�2t
�

D exp
�
� qd�2t log

�
t

6e�dq
2

��
:

One gets a similar bound for the negative tail P.Up;q � E.Up;q/ < �t / in the
same way, noting that (35) also holds for negative values of � if, on the right-hand
side, e�=q

d�2

is replaced by ej� j=q
d�2

. Combining the negative and positive tail
bounds gives (31). The estimates (32) and (33) follow (with the weaker assumption
d � 3) by estimating in exactly the same way the moments and exponential mo-
ments of jWp;qj�.d�1/ and jWp;qj�d , respectively, in place of jWp;qj�.d�2/. Note
that the random variables U

�
0
ˇ̌
B.0; p/ nB.0; q/

�
, F
�
0
ˇ̌
B.0; p/ nB.0; q/

�
, and

D1F
�
0
ˇ̌
B.0; p/ nB.0; q/

�
are all centered. We omit the full proofs. �

8.2. Uniform bounds in a ball.

THEOREM 17. There exist constants C1; c2; c3>0 such that, for all p >q > 0
and t > 0, we have

P

�
max

x2B.0;1^q
2
/

ˇ̌̌
U
�
x
ˇ̌
B.0; p/ nB.0; q/

�ˇ̌̌
� t
�
� C1e

�c2q
d�2t log

�
c3t

q2

�
;(36)

P

�
max

x2B.0;1^q
2
/

ˇ̌̌
F
�
x
ˇ̌
B.0; p/ nB.0; q/

�ˇ̌̌
� t
�
� C1e

�c2q
d�1t log

�
c3t

q

�
;(37)

P

�
max

x2B.0;1^q
2
/

ˇ̌̌
D1F

�
x
ˇ̌
B.0; p/ nB.0; q/

�ˇ̌̌
� t
�
� C1e

�c2q
d t log.c3t/;(38)

where equation (36) holds in dimensions d � 5, and equations (37) and (38) hold
for all dimensions d � 3.
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Proof. Start with (38). Set r D t=q. We have

P

�
max

x2B.0;1^q
2
/

ˇ̌̌
D1F

�
x
ˇ̌
B.0; p/ nB.0; q/

�ˇ̌̌
� t
�

(39)

� P

�ˇ̌̌
D1F

�
0
ˇ̌
B.0; p/ nB.0; q/

�ˇ̌̌
�
t

2

�
CP

�
max

x2B.0;1^q
2
/

ˇ̌̌
D2F

�
x
ˇ̌
B.0; p/ nB.0; q/

�ˇ̌̌
� r

�
:

The first of these two terms is bounded by C1e�c2q
d t log.c3t/ by (33). For the

second term, observe that by (11) we have that

P

�
max

x2B.0;1^q
2
/

ˇ̌̌
D2F

�
x
ˇ̌
B.0; p/ nB.0; q/

�ˇ̌̌
� r

�
�

1X
mD0

P

�
max

x2B.0;1^q2 /

ˇ̌̌
D2F

�
x
ˇ̌
B.0; p/\.B.0; 2mC1q/nB.0; 2mq//

�ˇ̌̌
�

r

2mC1

�

�

1X
mD0

P

�
C�m

2m.dC1/qdC1
�

r

2mC1

�
;

where �m is the number of stars in B.0; p/\ .B.0; 2mC1q/nB.0; 2mq//, which is
a Poisson random variable with mean � C2dmqd . Using Lemma 4 it follows that
the above sum is less than

1X
mD0

C exp
�
�cr2mdqdC1 log.cqr/

�
:

Now, if in the above inequality crqdC1 log.cqr/ > 2 then the whole sum is less
than a constant times its first term, so

P

�
max

x2B.0;1^q2 /

ˇ̌̌
D2F

�
x
ˇ̌
B.0; p/nB.0; q/

�ˇ̌̌
� r

�
�C exp

�
�crqdC1 log.cqr/

�
:

On the other hand, if crqdC1 log.cqr/� 2 then the above inequality holds trivially
if we take C slightly larger, since then the right-hand side is larger than 1. Hence
this inequality holds for all values of r and q. Plugging this into equation (39),
together with the fact mentioned after (39), gives (38).

Next, to prove (37), write

P

�
max

x2B.0;1^q
2
/

ˇ̌̌
F
�
x
ˇ̌
B.0; p/nB.0; q/

�ˇ̌̌
� t
�
�P

�ˇ̌̌
F
�
0
ˇ̌
B.0; p/nB.0; q/

�ˇ̌̌
�
t

2

�
CP

�
max

x2B.0;1^q
2
/

ˇ̌̌
D1F

�
x
ˇ̌
B.0; p/ nB.0; q/

�ˇ̌̌
� r

�
;

where again r D t=q. Both of the terms are bounded by C1e�c2q
d�1t log.c3t=q/ by

(32) and (38).
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Finally, to prove (36), write similarly

P

�
max

x2B.0;1^q
2
/

ˇ̌̌
U
�
x
ˇ̌
B.0; p/nB.0; q/

�ˇ̌̌
� t
�
�P

�ˇ̌̌
U
�
0
ˇ̌
B.0; p/nB.0; q/

�ˇ̌̌
�
t

2

�
CP

�
max

x2B.0;1^q
2
/

ˇ̌̌
F
�
x
ˇ̌
B.0; p/ nB.0; q/

�ˇ̌̌
� r

�
� C1e

�c2q
d�2t log.c3t=q2/

by (31) and (37). �

By letting p!1 we get the following limiting case of Theorem 17.

COROLLARY 18. There exist constants C1; c2; c3 > 0 such that, for all q > 0
and t > 0, we have

P

�
max

x2B.0;1^q
2
/

ˇ̌̌
U
�
x
ˇ̌

Rd nB.0; q/
�ˇ̌̌
� t
�
� C1e

�c2q
d�2t log

�
c3t

q2

�
;(40)

P

�
max

x2B.0;1^q
2
/

ˇ̌̌
F
�
x
ˇ̌

Rd nB.0; q/
�ˇ̌̌
� t
�
� C1e

�c2q
d�1t log

�
c3t

q

�
;(41)

P

�
max

x2B.0;1^q
2
/

ˇ̌̌
D1F

�
x
ˇ̌

Rd nB.0; q/
�ˇ̌̌
� t
�
� C1e

�c2q
d t log.c3t/;(42)

where equation (40) holds in dimensions d � 5, and equations (41) and (42) hold
for all dimensions d � 3.

8.3. Uniform bounds in a ball with a moving domain.

THEOREM 19. There exist constants C1, c2, c3, and C4 > 0 such that, for all
p > q > 0 and t > 0, we have that if t > C4p2 or p D1 then

P

�
max

x2B.0;1^q
2
/

ˇ̌̌
U
�
x
ˇ̌
B.x; p/ nB.x; q/

�ˇ̌̌
� t
�
� C1e

�c2q
d�2t log

�
c3t

q2

�
;(43)

P

�
max

x2B.0;1^q
2
/

ˇ̌̌
F
�
x
ˇ̌
B.x; p/ nB.x; q/

�ˇ̌̌
� t
�
� C1e

�c2q
d�1t log

�
c3t

q

�
;(44)

P

�
max

x2B.0;1^q
2
/

ˇ̌̌
D1F

�
x
ˇ̌
B.x; p/ nB.x; q/

�ˇ̌̌
� t
�
� C1e

�c2q
d t log.c3t/;(45)

where equation (43) holds in dimensions d � 5, and equations (44) and (45) hold
for all dimensions d � 3.

Proof. Denote B D B
�
0; 1^ q

2

�
. First, we prove (43) in the limiting case

when p D1. Fix x 2 B , thenˇ̌̌
U
�
x
ˇ̌

Rd nB.x; q/
�
�U

�
x
ˇ̌

Rd nB.0; q/
�ˇ̌̌

D

ˇ̌̌
U
�
x
ˇ̌
B.0; q/

�
�U

�
x
ˇ̌
B.x; q/

�ˇ̌̌
D��d jxj

2=2�
1

d � 2

X
zi2E1

1

jzi � xjd�2
C

1

d � 2

X
zi2E2

1

jzi � xjd�2
;
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where E1 D B.0; q/ nB.x; q/ and E2 D B.x; q/ nB.0; q/. Now, denoting by �q
the number of stars in B

�
0; qC 1^ q

2

�
�B

�
0; q� 1^ q

2

�
, it follows thatˇ̌̌

U
�
x
ˇ̌

Rd nB.x; q/
�ˇ̌̌
�

ˇ̌̌
U
�
x
ˇ̌

Rd nB.0; q/
�ˇ̌̌
CC5q

2
C

�q

.d � 2/.q=2/d�2
:

Since �q is a Poisson random variable with mean � Cqd , by Lemma 4 we obtain
that for t > 3C5q2 we have

(46) P

�
max
x2B

ˇ̌̌
U
�
x
ˇ̌

Rd nB.x; q/
�ˇ̌̌
� t

�
�P

�
max
x2B

ˇ̌̌
U
�
x
ˇ̌

Rd nB.0; q/
�ˇ̌̌
� t=3

�
CP

�
�q

.d � 2/.q=2/d�2
� t=3

�
� C exp

�
�ctqd�2 log

�
ct

q2

��
:

This also holds trivially for t � 3C5q2 (since the right-hand side is larger than 1)
provided c is chosen small enough, hence it gives (43) in the case p D1.

Finally, to prove (43) in the general case, note, using (46) twice and using the
assumption t > C4p2, that

P

�
max

x2B.0;1^q
2
/

ˇ̌̌
U
�
x
ˇ̌
B.x; p/ nB.x; q/

�ˇ̌̌
� t
�

� P

�
max

x2B.0;1^q
2
/

ˇ̌̌
U
�
x
ˇ̌

Rd nB.x; q/
�ˇ̌̌
�
t

2

�
C P

�
max

x2B.0;1^q
2
/

ˇ̌̌
U
�
x
ˇ̌

Rd nB.x; p/
�ˇ̌̌
�
t

2

�
� C1e

�c2q
d�2t log

�
c3t

q2

�
CC1e

�c2p
d�2t log

�
c3t

p2

�

� 2C1e
�c2q

d�2t log
�
c3t

q2

�
:

The proofs of (44) and (45) are similar and hence omitted. �

9. Proof of Theorem 3 in dimensions 5 and higher

In this section, we assume that d � 5. Our goal is to bound the probabil-
ity of the event ER of having a gravitational flow curve connect @Q.0;R/ with
@Q.0; 2R/, as R!1. The case of dimensions 3 and 4 is slightly more delicate.
In Section 10 we explain what modifications to the proof are required to complete
the proof of Theorem 3 in that case.

9.1. Reduction to a problem on a discrete set of points. Fix the following
parameters:
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B DR8=9;

�D a large constant (depending on d ) whose value will be specified later;

r D� � .logR/2=d ;

�DR�1=10;

s DR
� 1

10.d2C1/ ;

"D
�

sd
logR:

We emphasize that R is the only true parameter here, and the values of all the other
quantities are specified as functions of R.

To control the event ER, we discretize space. Introduce a grid of points in the
region Q.0; 2R/ nQ.0;R/, defined by

S D rZd \ .Q.0; 2R/ nQ.0;R//:

We think of S as an induced subgraph of rZd with the usual lattice structure.
Thus, two points w;w0 2 S are called adjacent if jw �w0j D r . A set W � S
is called connected if the induced subgraph of W in S is connected. Call a set
W � S connectible if W is contained in a set W 0 � S which is connected and
jW 0j � 10d jW j. To each point w 2 S associate an inner box Qin.w/DQ.w; r/

and an outer box Qout.w/DQ.w; 2r/.

LEMMA 20. There exists a constant C15 > 0 such that, for any L � 1, the
number of connectible sets W � S of cardinality L is at most RdCL15.

Proof. This is an immediate consequence of [5, Eq. (4.24), p. 81]. �

Definition 21. Say that w 2 S is bad if there exists a gravitational flow curve
 connecting @Qin.w/ with @Qout.w/ such that at least one of the following con-
ditions hold:

(1) U
�
x j B.x; 3R1=d /

�
< �B

2
for all x 2  , or

(2)
R
 jF.x/j � jdxj<

10dBr
R

:

We wish to show that the “bad” event ER, whose probability we are trying to
bound, implies the occurrence of many bad grid points. This will be true except
on some atypical events which will happen with probability small enough as to be
of no consequence. Define

�1 D
n

max
x2Q.0;2R/

U.x/ > B
o
;

�2 D
n

max
x2Q.0;2R/

ˇ̌̌
U
�
x
ˇ̌

Rd nB.x; 3R1=d /
�ˇ̌̌
�
B

2

o
;

�3 D
n

max
x2Q.0;3R/

ˇ̌̌
D1F

�
x
ˇ̌

Rd nB.x; 3R1=d /
�ˇ̌̌
�

"

8
p
d�

o
:
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LEMMA 22. For some constants C; c > 0 we have, for all R sufficiently large,
that

P.�1/� Ce
�cR4=3 ;(47)

P.�2/� Ce
�cR11=9 ;(48)

P.�3/� Ce
�cR1C1=100d

2

:(49)

Proof. First, we prove (48). Cover Q.0; 2R/ with O.Rd / balls fBj gCR
d

jD1 of
radius 1. For each ball Bj we have by Theorem 19 that

P

�
max
x2Bj

ˇ̌̌
U
�
x
ˇ̌

Rd nB.x; 3R1=d /
�ˇ̌̌
�
B

2

�
� Ce�cR

.d�2/=dB log.cB=R2=d /:

Therefore by a union bound we get that, for some new constant C 0 > 0,

P.�2/� C
0Rde�cR

.d�2/=dB log.cB=R2=d /:

Now substitute the values of the parameters to get (48).
Next, (49) follows from Theorem 19 in the same way as (48).
Finally, to prove (47), let a > 0 be some small positive number such that

a < ..d � 2/=d�d /
1=2 (another condition will be imposed on it shortly). Note that

U.x/D U
�
x
ˇ̌
B.x; a

p
B/
�
CU

�
x
ˇ̌

Rd nB.x; a
p
B/
�
;

and that U
�
x
ˇ̌
B.x; a

p
B/
�
�

d�d
2.d�2/

a2B < B
2

(see eq. (29)), so that on �1 we
have that

max
x2Q.0;2R/

ˇ̌̌
U
�
x
ˇ̌

Rd nB.x; a
p
B/
�ˇ̌̌
>
B

2
:

By a similar argument to that used in the proof of (48) above, the probability of
this is bounded by CRde�ca

d�2Bd=2 log.c=a2/. If a was chosen sufficiently small
this gives the bound (47) upon substituting the values of the parameters. �

LEMMA 23. On the event �c1\�
c
2, if there exists a gravitational flow curve

� connecting @Q.0;R/ and @Q.0; 2R/ (that is, if ER occurred), and if R is large
enough, then there exists a connectible family W � S of bad points, with jW j �
R=10d r .

Proof. Let � W Œ0; T � ! Rd be a flow curve that connects @Q.0;R/ and
@Q.0; 2R/, and assume that �1 [�2 did not occur. In particular, U.�.0// � B .
Observe that the potential U decreases along the curve � , since F.x/D�rU.x/,
and therefore

d

dt
U.�.t//D h P�.t/;rU.�.t//i D hF.�.t//;�F.�.t//i D �jF.�.t//j2:

Let W 0 be the set of points w 2 S such that � intersects both @Qin.w/ and
@Qout.w/. Since � connects @Q.0;R/ and @Q.0; 2R/, clearly we have that jW 0j �
R=r � 2 (the �2 is to account for boundary effects).



GRAVITATIONAL ALLOCATION TO POISSON POINTS 651

}The grid S

02R4R (T1 )Γ

Γ

Figure 6. Schematic illustration of the proof of Lemma 23.

Let T1 2 Œ0; T � be the least time for which U.�.T1//��B , or let T1 D T if no
such time exists (see Figure 6). Certainly, all the points w 2 S for which �ˇ̌

ŒT1;T �

intersects both @Qin.w/ and @Qout.w/ are bad (since, because �c2 occurred, they
satisfy condition (1) in the definition). If there are R=10d r such points, we are
done, since the set of such w is connected and a fortiori connectible. If this
is not so, denote by W 00 the set of those w 2 W 0 for which �ˇ̌

Œ0;T1�
intersects

both @Qin.w/ and @Qout.w/. The family W 00 is a connected set, and we have
jW 00j � jW 0j �R=10d r � 4d >R=2r (for R large; the 4d is again to account for
boundary effects near �.T1/). For each w 2W 00 let �w denote some segment of
�ˇ̌
Œ0;T1�

that connects @Qin.w/ with @Qout.w/ (possibly in the opposite direction)

and that is contained in the interior of Qout.w/ nQin.w/ except for its endpoints.
Note that the segments .�w/w2W 00 are not necessarily disjoint. Replace W 00 by
a subset W 000 � W 00 such that the interiors of .Qout.w//w2W 000 are disjoint (and
therefore also .�w/w2W 000 are disjoint except possibly for their endpoints) and
jW 000j � jW 00j=7d . This can be done using a greedy method, since each point
w 2W 00 added to W 000 eliminates at most 7d � 1 others.

Let k denote the number of w 2W 000 which are not bad. Then
2B � U.�.0//�U.�.T1//

D

Z
�ˇ̌
Œ0;T1�

jF.x/j � jdxj �

Z
S
w2W 000 �w

jF.x/j � jdxj � k �
10dBr

R
:

This gives that k � 2R=10d r , and therefore that the number of bad w 2 W 000 is
� jW 000j � 2R=10d r > 1

2
jW 000j �R=10d r .

Let W be the set of bad w 2 W 000. Then jW j � 1
2
jW 000j � 1

2�7d
jW 00j. Since

W 00 is connected, it follows that W is connectible, so it satisfies the claim of the
lemma. �
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In the next subsection we prove the following theorem.

THEOREM 24. There exist constants C; c > 0 such that, for any familyW � S ,

(50) P

�
�c3\

˚
all w 2W are bad

	�
� Ce�cjW j logR:

Before turning to the proof of Theorem 24, here is how to prove Theorem 3
using it.

Proof of Theorem 3. Let † be the set of connectible families W � S with
jW j �R=10d r . By Lemmas 20, 22, and 23 we have that

P.ER/� P.�1/CP.�2/CP.�3/CP.ER \�
c
1\�

c
2\�

c
3/

� Ce�cR
1C 1

100d2

C

X
W 2†

P

�
�c3\

˚
all w 2W are bad

	�
� Ce�cR

1C 1

100d2

C

X
L�R=10d r

X
W 2†; jW jDL

P

�
�c3\

˚
all w 2W are bad

	�

� Ce�cR
1C 1

100d2

C

X
L�R=10d r

RdCL15e
�cL logR

DO
�
e�cR.logR/1�2=d

�
:

�

9.2. Bounding the probability for a collection of points to be bad. Fix a fam-
ily W � S . Our goal is to prove the inequality (50). First, note that we may assume
without loss of generality that the set W is 12r-separated in the infinity-norm; that
is, that for any w;w0 2W with w¤w0 we have that jjw�w0jj1� 12r . Otherwise,
replace W with a 12r-separated subset of it which has cardinality � jW j=23d (as
in the proof of Lemma 23 above, this can be done using a greedy method, since
each w 2 W that we add to the subset eliminates at most 23d � 1 others), and
prove (50) for that subset. Throughout this subsection, we assume W � S is a
12r-separated family.

The next lemma can be deduced easily from the Besicovich covering lemma
(see [13]). For completeness we include a short direct proof.

LEMMA 25. Given a set of N balls .B.xi ; ri //NiD1, where ri > 1 for all i and
jxi � xj j> 1 for all i; j , there exists a subset .B.xij ; rij //

m
jD1 of pairwise-disjoint

balls satisfying

(51)
mX
jD1

rdij � 6
�dN:

Proof. Assume that the radii ri are arranged in decreasing order. Construct
the subsequence .xij /j sequentially as follows: i1 D 1, and if we define xi1 ,
xi2 ; : : : ; xit , take itC1 to be the least index i > it such that the ball B.xi ; ri /
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is disjoint from [tjD1B.xij ; rij /, or, if there is no such i , set mD t and terminate.
In the last step t Dm, because the radii are decreasing, the fact that there was no
index i satisfying the requirements implies that the set [mjD1B.xij ; 2rij / contains
all the points xi . Therefore, since ri > 1 for all i , we have that

N[
iD1

B.xi ; 1=2/�

m[
jD1

B.xij ; 3rij /:

The balls
�
B.xi ; 1=2/

�N
iD1

are pairwise disjoint, so comparing the volumes of both
sides we get

�d2
�dN � �d

mX
jD1

3d rdij ;

which finishes the proof. �

For each w 2 S , define an event

�4;w D
n

max
x2Q.w;3r/

ˇ̌̌
U
�
x
ˇ̌
B.x; 3R1=d / nB.x; 3r/

�ˇ̌̌
�
B

4

o
[

n
max

x2Q.w;3r/

ˇ̌̌
D1F

�
x
ˇ̌
B.x; 3R1=d / nB.x; 3r/

�ˇ̌̌
�

"

4
p
d�

o
:

Define a random set (depending on the fixed family W )

W0 D
˚
w 2W W�4;w occurred

	
:

Define an event (again depending on W )

�5;W D
n
jW0j>

1

2
jW j

o
:

LEMMA 26. Denote ı D 1
50d

. For some constants C; c > 0 depending only

on d , we have that P
�
�5;W

�
� Ce�cjW jR

ı

.

Proof.

P.�5;W /D P

�
9 subcollection W 0 �W

with jW 0j> jW j=2 and
\
w2W 0

�4;w holds
�

� 2jW j max
W 0�W; jW 0j>jW j=2

P

� \
w2W 0

�4;w

�
:

Therefore it is enough to prove that for some constants C; c > 0, for any subcollec-
tion W 0 �W ,

(52) P

� \
w2W 0

�4;w

�
� Ce�cjW

0jRı :
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Fix a subcollection W 0 �W . Denote ˛ D 1
20.d2C1/

. Define a finite sequence of
scales

R1=d D l1 > l2 > l3 > � � �> lK D r

where we do not care about the precise values of the li and only require that for
each i we have

(53) liC1 �
li

R˛

and that K is a constant depending only on d ; for example, it is possible to define
such li with K D 40d .

For each w 2W and each 1� i < K, define the event

Aiw D
n

max
x2Q.w;3r/

ˇ̌̌
U
�
x
ˇ̌
B.x; 3li / nB.x; 3liC1/

�ˇ̌̌
�

B

4.K � 1/

o
[

n
max

x2Q.w;3r/

ˇ̌̌
D1F

�
x
ˇ̌
B.x; 3li / nB.x; 3liC1/

�ˇ̌̌
�

"

4.K � 1/
p
d�

o
:

We have, using Theorem 19, that, for some constants c2; c3 > 0, the estimate

P.Aiw/�Cr
d exp

�
�c1l

d�2
iC1 B log

� c2B
l2iC1

��
CCrd exp

�
�c1l

d
iC1

"

�
log

�c3"
�

��
holds. Using (53) and substituting the values B D R8=9, r D� � .logR/2=d , and
"
�
DRd=.10.d

2C1// logR, we obtain

P.Aiw/� C exp
�
�c4l

d�2
i R8=9�˛.d�2/

�
CC exp

�
�c4l

d
i R

d=10.d2C1/�d˛
�(54)

� C exp
�
�c4l

d
i R

8=9�˛.d�2/�2=d
�
CC exp.�c4ldi R

ı/

� C exp
�
�c4l

d
i R

ı
�
:

Note also that �4;w �
SK�1
iD1 A

i
w . Therefore

P

� \
w2W 0

�4;w

�
� P

� \
w2W 0

K�1[
iD1

Aiw

�
D P

� [
i WW 0!f1;2;:::;K�1g

\
w2W 0

Ai.w/w

�(55)

�K jW
0j max
i WW 0!f1;2;:::;K�1g

P

� \
w2W 0

Ai.w/w

�
:

Fix a function i WW 0! f1; 2; : : : ; K � 1g. We extract from the family of events˚
A
i.w/
w

	
w2W 0

a subfamily
˚
A
i.w/
w

	
w2W 00

of independent events, by using Lemma
25. By the definition of Aiw , such a subfamily will be independent if the balls�
B.w; 7

p
dli.w//

�
w2W 00

are disjoint. By Lemma 25 we can obtain such a subfam-
ily with

P
w2W 00 l

d
i.w/
� .42

p
d/�d jW 0j. This gives, continuing (55) and using
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(54), that

P

� \
w2W 0

�4;w

�
�K jW

0jC jW
0j max
i WW 0!f1;2;:::;K�1g

C exp
�
� c0

X
w2W 00

ldi.w/R
ı

�
� C exp

�
� c0 � .42

p
d/�d � jW 0jRı

�
:

This proves (52) and finishes the proof of the lemma. �

For each w 2 S introduce two subgrids of points

Sw D sZ\ .Q.w; 2r/ nQ.w; r//;

Tw D �Z\ .Q.w; 2r/ nQ.w; r//:

For w 2 S , two subgrid points x; x0 2 Sw are called adjacent if jx� x0j D s.
A chain is a sequence of points such that each two consecutive points are adjacent.
A point x 2 Sw is called an inner point of Sw if dist.x; @Q.w; r// < s, and it is
called an outer point of Sw if dist.x; @Q.w; 2r// < s.

Definition 27. A point x 2 Rd is called ˛-crowded if Q.x; ˛s/ contains a
star. A point w 2 S is called percolating if there exists a chain of distinct points
.xi /0�i�k � Sw such that x0 is an inner point of Sw , xk is an outer point of Sw ,
and at least a 9=10-fraction of the xi ’s are 8-crowded.

With W � S as above a 12r-separated family, define a random set (again
depending on W )

W1 D
˚
w 2W W w is percolating

	
:

Define an event
�6;W D

n
jW1j>

1

2
jW j

o
:

LEMMA 28. For some constants C; c; ˛ > 0 depending only on d , we have
that

P
�
�6;W

�
� Ce�cjW jR

˛

:

Proof. For any x 2 Rd we have, for some constant c1 > 0, that

P.x 8-crowded/D 1� e�.16s/
d

� c1s
d :

Fix a w 2 S . For each k, the number of chains of distinct points .xi /0�i�k � Sw
such that x0 is an inner point of Sw and xk is an outer point of Sw is at most
2d � .2r=s/d�1 � .2d/k . Note that such chains can only exist if k � r=s, so in
particular, the number of such chains is � C k2 for some constant C2 > 0. For
each such chain C, there are � 2k subsets of it of size at least 9k=10. Given
such a chain C and such a subset C0 of it, one may choose using a greedy method
(as in the beginning of this subsection) a further subset .x0i /0�i�k0 of C0 with
k0 � 9k=.10 � 31d /, such that for each i ¤ j we have that jjx0i � x

0
j jj1 � 16s.
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Therefore the events
�
fx0i is 8-crowdedg

�
0�i�k0

are independent. Therefore we
have the bound

P.w percolating/�
1X

kDb r
s
c

2kC k2

�
c1s

d
� 9

10�31d
�k
� C3

�
C4s

d
��C5r

s

�
� C6e

�c7R
˛

for some C3; C4; C5; C6; c7; ˛ > 0 and all R large enough. Now, because of the as-
sumptions that the points ofW are 12r-separated, the events

�
fw percolatingg

�
w2W

are independent. Therefore

P

�
�6;W

�
D P

�
9 subcollection W 0 �W with jW 0j> jW j=2

and all w 2W 0 are percolating
�

� 2jW j
�
C6e
�c7R

˛
�jW j=2

� C8e
�c9jW jR

˛

: �

Definition 29. If w 2 S , a point x 2 Tw is called black if there exists a point
y 2Q.x; 2�/ such that either jF.y/j< 10000dB

R
or U

�
y
ˇ̌
B.y; 3R1=d /

�
< �B

2
.

LEMMA 30. If w 2 S is bad and not percolating, then the subgrid Tw contains
at least r

100d�
points which are black and not 4-crowded.

Proof. Let w 2 S be bad and not percolating. Let  be a gravitational flow
curve connecting @Q.w; r/ with @Q.w; 2r/ such that at least one of the conditions
(1), (2) in Definition 21 holds. Let I be the set of points x 2 Tw such that some
segment of  crosses from @Q.x; �/ to @Q.x; 2�/. Let J be the set of points
x 2 Sw such that some segment of  crosses from @Q.x; s/ to @Q.x; 2s/. Note
that jJj � r

s
� 2� 0:95r

s
(with the rightmost inequality holding for R sufficiently

large), and for each x 2 J we have that jI\ .Q.x; 2s/ nQ.x; s//j � s
�
� 2� 0:9s

�
,

with the rightmost inequality holding for R sufficiently large.
First, we prove that the number � of x 2 I which are not black is at most

r
100�9d�

. If condition (1) in Definition 21 holds for  , then for all x 2I, for some z 2

Q.x; 2�/nQ.x; �/ which is in the range of  , we have that U
�
z
ˇ̌
B.z; 3R1=d /

�
<

�B=2, so x is black. So we have shown that if condition (1) in Definition 21 holds,
all x 2 I are black. The other possibility is that condition (2) in Definition 21 holds
for  . In that case, denote by  0 the union of those segments of  crossing from
@Q.x; �/ to @Q.x; 2�/ for those x 2 I which are not black. It is not difficult to see
that len. 0/ � � �

7d
(by taking, using a greedy method as in the beginning of this

subsection, a subcollection of � �=7d such segments which are pairwise disjoint
except for their endpoints). So, because of the definition of blackness we have that

10dBr

R
>

Z


jF.x/j � jdxj �

Z
 0
jF.x/j � jdxj �

10000dB

R
len. 0/

�
10000dB

R
�
� � �

7d
;

and therefore � � r
100�9d�

, as claimed.
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Next, because of the assumption that w is not percolating, at least a 1=10-
fraction of the points x 2 J are not 8-crowded (minus 2 to account for boundary
effects), or in absolute terms at least 0:94r

10s
points in J. Again using the greedy

method, we can choose a further subset J0 � J of those points of J which are not
8-crowded, which is 5s-separated and such that jJ0j � 0:94r

10�9d s
. By the remark in

the first paragraph of the proof, for each such x 2 J0, we have at least 0:9s
�

points
y 2 I\ .Q.x; 2s/ nQ.x; s//, and these y are not 4-crowded. That gives a total
of at least 0:8r

10�9d�
points y 2 I which are not 4-crowded, and these points are all

distinct because J0 is 5s-separated. Since as we proved above at most r
100�9d�

of
them are not black, it follows that there are at least r

100d�
points y 2 I which are

black and not 4-crowded, as claimed. �

Let W � S be a 12r-separated family. Denote

�7;W D�
c
3\

\
w2W

�c4;w

\

\
w2W

n
at least r

100d�
points x 2 Tw are black and not 4-crowded

o
:

LEMMA 31. For some constants C; c > 0, we have

P.�7;W /� Ce
�cjW j logR:

Proof. Let N D jW j � jS j � .4R=r/d , let W D fw1; w2; : : : ; wN g be some
arbitrary ordering of the points of W , and define a random variable

XW D #
n
.x1; x2; : : : ; xN / 2

NY
jD1

Twj
ˇ̌
xj are all black and not 4-crowded

o
:

Then, by Markov’s inequality,

(56) P.�7;W /� P

��
XW �

�
r

100d�

�N�
\�c3\

\
w2W

�c4;w

�

�

�
r

100d�

��N X
.x1;:::;xN /2

QN
jD1 Twj

P

� N\
jD1

�
�c3\�

c
4;wj
\fxj black, not 4-crowdedg

��

D

�
r

100d�

��N X
.x1;:::;xN /2

QN
jD1 Twj

E

� NY
jD1

1Aj;xj

�
;

where Aj;xj D�
c
3\�

c
4;wj
\fxj is black and not 4-crowdedg. Denote

�D 2.d=�d /
1=d .logR/1=d :

This value is chosen so that, if E is a ball of radius �, then the probability that
E does not contain a star is � 1=.3Rd /. Fixing .x1; : : : ; xN / for the moment to
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simplify the notation, for 1� j �N , denote

A0j D

�
max

x2Q.xj ;2�/

ˇ̌̌
U
�
x
ˇ̌
B.x; 3r/ nB.x; 3s/

�ˇ̌̌
>
B

4

�
[

�
max

x2Q.xj ;2�/

ˇ̌̌
D1F

�
x
ˇ̌
B.x; 3r/ nB.x; 3s/

�ˇ̌̌
>

"

16
p
d�

�
[
˚

no star in B.xj ; �/
	
;

A00j D
˚
jF.xj /j< "; some stars in B.xj ; �/

	
:

We claim that

(57) Aj;xj � A
0
j [A

00
j :

Here is the proof: assume Aj;xj holds. If, for some y 2Q.xj ; 2�/, we have that

jF.y/j< 10000dB
R

, which for R sufficiently large implies jF.y/j< "
16

, then: either
A0j occurred, or, if not, then from the definitions of 4-crowdedness and of the events
�c3; �

c
4;wj

, and .A0j /
c , it follows that for R large enough,

max
x2Q.xj ;2�/

jD1F.x/j � max
x2Q.xj ;2�/

ˇ̌̌
D1F.x j B.x; 3s//

ˇ̌̌
C max
x2Q.xj ;2�/

ˇ̌̌
D1F.x j B.x; 3r/ nB.x; 3s//

ˇ̌̌
C max
x2Q.xj ;2�/

ˇ̌̌
D1F.x j B.x; 3R

1=d / nB.x; 3r//
ˇ̌̌

C max
x2Q.xj ;2�/

ˇ̌̌
D1F.x j Rd nB.x; 3R1=d //

ˇ̌̌
�
p
d�d C

"

16
p
d�
C

"

4
p
d�
C

"

8
p
d�

<
15"

32
p
d�

(the term
p
d�d comes from equation (30); note that

p
d�d is� "=� for large R).

Therefore jF.xj /j < "
16
C 2�
p
d � 15"

32
p
d�
D ", and since A0j did not occur, there

are stars in B.xj ; �/ and therefore A00j occurred.
The other possibility by blackness of xj is that for some y 2Q.xj ; 2�/ we

have that U
�
y
ˇ̌
B.y; 3R1=d /

�
< �B

2
. Then, because of �c4;wj , we also have that

U
�
y
ˇ̌
B.y; 3r/

�
<�B

4
, and because xj is not 4-crowded, we can write equivalently

U
�
y
ˇ̌
B.y; 3r/nB.y; 3s/

�
<�B

4
, soA0j occurred. This completes the proof of (57).

Note that each A0j is measurable with respect to the locations of the stars in
Q.wj ; 5:5r/. Therefore, because the wj are 12r-separated, .A0j /j is an indepen-
dent family of events. By Theorem 19 we have for each j that, for sufficiently
large R,

P.A0j /� Ce
�csd�2B log

�
c3B

s2

�
CCe

�csd "
�

log
�
c3"

�

�
C e��d�

d

�
1

Rd
:
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Also, for any integers 1 � b1 < b2 < � � � < bi � N , by Theorem 10 we have that
almost surely

P

�
A00b1 \ � � � \A

00
bi

ˇ̌̌
Fb1;:::;bi

�
�

�
"dC�d

2�d
�i
;

where Fb1;:::;bi is the � -algebra generated by the locations of the stars in�
B.xb1 ; �/[B.xb2 ; �/[ � � � [B.xbi ; �/

�c
;

provided that the assumptions of that theorem hold; because of the values chosen
for the parameters r and �, this is true if � is chosen to be a sufficiently large
constant. This is the only place where the value of � is important. So we can
write, for sufficiently large R,

(58) E

24 NY
jD1

1Aj;xj

35� E

24 NY
jD1

�
1A0
j
C 1A00

j

�35
�

NX
iD0

 
N

i

!
max

a1 < � � �< aN�i
b1 < � � �< bi
8j; ` aj ¤ b`

P

�
A0a1 \ � � � \A

0
aN�i

\
A00b1 \ � � � \A

00
bi

�

�

NX
iD0

 
N

i

!
1

Rd.N�i/
max

a1 < � � �< aN�i
b1 < � � �< bi
8j; ` aj ¤ b`

P

�
A00b1 \� � �\A

00
bi

ˇ̌̌
A0a1 \� � �\A

0
aN�i

�

�

NX
iD0

 
N

i

!
1

Rd.N�i/

�
"dC�d

2�d
�i

�

�
1

Rd
CR

� d
10
C d2

10.d2C1/
C 1

20.d2C1/

�N
�

�
2R
� d
10
C d2

10.d2C1/
C 1

20.d2C1/

�N
(since for large R the polylogarithmic factor in "dC�d

2�d can be bounded by

R
1

20.d2C1/ ). Now (58) gives, using (56), that for sufficiently large R we have

P.�7;W /�

�
r

100d�

��N � r
�

�dN �
2R
� d
10
C d2

10.d2C1/
C 1

20.d2C1/

�N
�

�
Crd�1R

d�1
10

�
2R
� d
10
C d2

10.d2C1/
C 1

20.d2C1/

��N
� Ce

� 1

40.d2C1/
N logR

� Ce�cjW j logR: �

The only step remaining to complete the proof of Theorem 3 in dimensions 5
and higher is the following.
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Proof of Theorem 24.. As noted above, we assume that W is a 12r-separated
family. For an event A, denote P0.A/ D P.A \�c3/. The idea of the proof is
roughly as follows. Because of Lemma 26, we may replace W by a subset W 0 so
that jW 0j � jW j=2 and such that \w2W 0�c4;w occurred. Because of Lemma 28,
we may replace W 0 by a further subset W 00 �W 0 so that jW 00j � jW 0j=2 and all
w 2W 00 are not percolating. Finally, by Lemmas 30 and 31, the probability that
all w 2W 00 are bad is � Ce�cjW j logR.

Formally, we have

(59) P0
� \
w2W

n
w bad

o�
� P0.�5;W /CP0

�
�c5;W \

\
w2W

fw badg
�

� Ce�cjW jR
ı

C

X
W 0 �W;

jW 0j � jW j=2

P0
� \
w2W 0

�
fw badg\�c4;w

��

� Ce�cjW jR
ı

C 2jW j max
W 0 �W;

jW 0j � jW j=2

P0
� \
w2W 0

�
fw badg\�c4;w

��
:

For any W 0 we have

(60) P0
� \
w2W 0

�
fw badg\�c4;w

��
� P0

�
�6;W 0

�
CP0

�
�c6;W 0 \

\
w2W 0

�
fw badg\�c4;w

��
�Ce�cjW

0jR˛
C

X
W 00 �W 0;

jW 00j � jW 0j=2

P0
� \
w2W 00

�
fw bad, not percolatingg\�c4;w

��

�Ce�cjW
0jR˛
C2jW

0j max
W 00 �W 0;

jW 00j � jW 0j=2

P0
� \
w2W 00

�
fw bad, not percolatingg\�c4;w

��
:

For any W 00 we have, by Lemmas 30 and 31,

P0
� \
w2W 00

�
fw bad, not percolatingg\�c4;w

��
� Ce�cjW

00j logR:(61)

Combining (59), (60), and (61), and remembering that jW 00j � jW 0j=2 � jW j=4,
we get

P0
� \
w2W

fw badg
�
� Ce�cjW j logR: �
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10. Proof of Theorem 3 in dimensions 3 and 4

In this section, we prove Theorem 3 in dimensions 3 and 4. Much of the proof
in dimensions 5 and higher remains unchanged. However, new large deviations
estimates are required, as well as the introduction of a new function, the potential
difference function.

10.1. The potential difference function. First, it is instructive to understand
why the proof in Section 9 fails in dimensions 3 and 4. The difficulty is that
the stationary potential function U.x/ cannot be defined. This can be seen from
equation (24): in dimension 3 the variance of Up;q diverges like a constant times
p as p!1, and in dimension 4 like a constant times logp.

However, the proof in Section 9 for the most part does not use the full sta-
tionary potential. After discarding the atypical events �1; �2, only the partial
potential U.x j A/ is used for various sets A�B.x; 3R1=d /. So, to adapt the proof
to dimensions 3 and 4, we replace these events with suitable adaptations of them.

Assume for the rest of this section that d D 3 or 4. Define the potential
difference function U diff W Rd �Rd ! R by

(62) U diff.x; y/D
1

d � 2

X
jzi j"

�
�1

jzi �yjd�2
�

�1

jzi � xjd�2

�
C
�d

2

�
jxj2� jyj2

�
where the sum is in order of increasing jzi j. We need to check that this sum con-
verges a.s. This is true because, defining

(63) U diff
p;q .x; y/D

X
jzi j<p;

jzi �xj> q; jzi �yj> q

�
�1

jzi �yjd�2
�

�1

jzi � xjd�2

�
;

it is easy to check, as in Section 7, that if jxj; jyj< p� q and jx�yj> 2q then

EŒU diff
p;q .x; y/�D

Z
B.0;p/nB.x;q/nB.y;q/

�
�1

jz�yjd�2
�

�1

jz� xjd�2

�
dz

D
.d � 2/�d

2

�
jyj2� jxj2

�
;

Var
h
U diff
p;q .x; y/�U

diff
p0;q.x; y/

i
DO

�
1

pd�2
C

1

p0d�2

�
; p; p0!1:

Similarly, using the methods of Section 5, it is not difficult to prove the following.

LEMMA 32. The series on the right-hand side of (62) converges a.s. simulta-
neously for all x; y 2 Rd n fzigi , and defines a centered process that a.s. is differ-
entiable where it is defined and satisfies rx U diff.x; y/ D F.x/, ry U diff.x; y/ D

�F.y/.

Remark. The potential difference can in fact be defined for all dimensions
d � 3, and for dimensions d � 5 we have that U diff.x; y/D U.y/�U.x/.
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For a bounded set A� Rd , denote

U diff.x; y j A/D
1

d � 2

X
zi2A

�
�1

jzi �yjd�2
�

�1

jzi � xjd�2

�

�
1

d � 2

Z
A

�
�1

jz�yjd�2
�

�1

jz� xjd�2

�
dz:

For a set A� Rd whose complement is bounded, denote

U diff.x; y j A/D U diff.x; y/�U diff.x; y j Rd nA/:

Again, it can be verified that if A�Rd is an annulus of the form B.v; p/nB.v; q/,
where v 2 Rd and 0� q < p �1, then

rxU
diff.x; y j A/D F.x j A/; ryU

diff.x; y j A/D�F.y j A/:

10.2. Large deviations estimates in dimensions 3 and 4. The large deviations
estimates which we prove in this subsection will complement the estimates in Sec-
tion 8.

THEOREM 33. In dimension d D 4, there exist constants C1; c2; c3 > 0 such
that, for all x; y 2 Rd and p > q > 2 satisfying p > 3q; jxj; jyj < p=2, and
jx�yj> 3q, that

(64) P

�ˇ̌̌
U diff�x; y ˇ̌ B.0; p/ n .B.x; q/[B.y; q//�ˇ̌̌> t�� C1e�c2q2t log

�
c3t

q2

�

for all t above a threshold that depends on q and jx�yj, as follows:

(65) t � C1q
2 and t � C1q

2 log
�
C1t

q2

�
log

�
jx�yj

q

�
:

Similarly, in dimension d D 3, there exist constants C1; c2; c3 > 0 such that, for all
x; y 2 Rd , p > q > 2 and t > 0 satisfying p > 3q; jxj; jyj< p=2, and 2 < q < t <
1
3
jx�yj,

(66) P

�ˇ̌̌
U diff�x; y ˇ̌ B.0; p/ n .B.x; q/[B.y; q//�ˇ̌̌> t�� C1e� c2t

2

jx�yj :

Proof. The proof is modeled after the proof of Theorem 16. Fix x; y; p, and q.
Denote B D B.0; p/ nB.x; q/ nB.y; q/. Let W be a uniform random point in B ,
let N be the number of stars in B , and let

U diff
D

X
i W zi2B

�
�1

jzi�yjd�2
�

�1

jzi�xjd�2

�
D U diff

p;q .x; y/

as defined in (63), so that

U diff�x; y ˇ̌ B.0; p/ n .B.x; q/[B.y; q//�D 1

d�2
.U diff

� EŒU diff�/:

Let
V D jW � xj�.d�2/� jW �yj�.d�2/:
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Then for any u > 0,

P.jV j> u/� P

�
1

jW �xjd�2
> u

�
CP

�
1

jW �yjd�2
> u

�
(67)

�
2�d

Vol.B/ud=.d�2/
:

Suppose now d D 4. Noting that jV j � 2=q2, for any integer k � 3, we have
exactly as in (34) that, for some constant C7 > 0,

E.jV jk/D

Z 2=q2

0

kuk�1P.jV j> u/du�
C7

Vol.B/q2k�4
:

Evidently, we need a better tail bound for jV j to get anything useful for k D 2. To
that end, note that

jV j D

ˇ̌
jW � xj2� jW �yj2

ˇ̌
jW � xj2 � jW �yj2

�
jx�yj.jW � xjC jW �yj/

jW � xj2 � jW �yj2

D jx�yj

�
1

jW �xj�jW �yj2
C

1

jW �yj � jW � xj2

�
:

Now, if jW � xj and jW �yj are both bigger than .2jx�yj=u/1=3, then a simple
verification using the above inequality shows that jV j � u. Thus,

P.jV j> u/� P

�
jW � xj �

�
2jx�yj

u

�1=3 �
(68)

CP

�
jW �yj �

�
2jx�yj

u

�1=3 �
� C8

jx�yj4=3

Vol.B/u4=3
:

Combining the bounds from (67) and (68), and using the assumption that jx�yj>
3q, we get that

EjV j2�

Z jx�yj�2
0

2u
C8jx�yj

4=3

Vol.B/u4=3
duC

Z 2q�2

jx�yj�2
2u

2�4

Vol.B/u2
du�

C9 log
�
jx�yj
q

�
Vol.B/

:

Thus, we have, for any � � 0, that

E.e�V /� 1C �E.V /C �2
C9 log

�
jx�yj
q

�
2Vol.B/

C
C7q

4

Vol.B/

1X
kD3

.�=q2/k

kŠ

� 1C �E.V /C �2
C9 log

�
jx�yj
q

�
2Vol.B/

C
C7q

4

Vol.B/
e�=q

2

:

Now proceed as in the proof of Theorem 16. Conditionally on N , the stars in B
are a vector of N i.i.d. points distributed uniformly in B , and therefore

E

h
e�U

diff ˇ̌
N
i
�

�
1C �E.V /C �2

C9 log
�
jx�yj
q

�
2Vol.B/

C
C7q

4

Vol.B/
e�=q

2

�N
:
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This implies as before that

E

�
e�.U

diff�E.U diff//
�
� exp

�
1

2
C9�

2 log
�
jx�yj

q

�
CC7q

4e�=q
2

�
;

whence, for any t � 0 and � � 0 we have

P
�
U diff

� EŒU diff�� t
�
� exp

�
� � t C

1

2
C9�

2 log
�
jx�yj

q

�
CC7q

4e�=q
2

�
:

Take � D q2 log.t=C7q2/. Then, if we assume (65) for some sufficiently large
constant C1 > 0, we get that

1

2
C9�

2 log
�
jx�yj

q

�
�
� t

2
;

and that therefore

P
�
U diff

� EŒU diff�� t
�
� exp

�
�
� t

2
CC7q

4e�=q
2

�
� e
� 1
2
q2t log

�
t

C7q
2

�
Cq2t

D e
� 1
2
q2t log

�
t

e2C7q
2

�
:

In a similar way, one obtains the bound for the negative tail, and this concludes the
proof of (64) and the case d D 4.

Turn now to the case d D 3. From (67) and the fact that V � 2=q2, we get as
above that, for some C7 > 0, we have for any integer k � 4 that

E.jV jk/D

Z 2=q2

0

kuk�1P.jV j> u/du�
C7

Vol.B/qk�3
:

To get useful bounds for k D 2 and k D 3, observe that

jV j D

ˇ̌̌̌
1

jW � xj
�

1

jW �yj

ˇ̌̌̌
D

ˇ̌̌
jW � xj � jW �yj

ˇ̌̌
jW � xj � jW �yj

�
jx�yj

jW � xj � jW �yj
:

Therefore

P.jV j> u/� P

 
jW � xj �

�
jx�yj

u

�1=2!

C P

 
jW �yj �

�
jx�yj

u

�1=2!
� C8

jx�yj3=2

Vol.B/u3=2
:

This gives that

E.jV j3/�

Z jx�yj�1
0

3u2
C8jx�yj

3=2

Vol.B/u3=2
du

C

Z 2q�2

jx�yj�1
3u2

2�3

Vol.B/u3
du�

C9 log.jx�yj=q/
Vol.B/

;
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and similarly,

E.jV j2/�

Z jx�yj�1
0

2u
C8jx�yj

3=2

Vol.B/u3=2
du

C

Z 2q�2

jx�yj�1
2u

2�3

Vol.B/u3
du�

C10jx�yj

Vol.B/
:

Combining these bounds and proceeding with the same technique as above, we
deduce that for any t � 0 and � � 0 we have

P.U diff
� EŒU diff�� t /

� exp
�
� � t C

C10

2
�2jx�yjC

C9

6
�3 log

�
jx�yj

q

�
CC7q

3
1X
kD4

.�=q/k

kŠ

�
:

Take � D At
jx�yj

, where A is a constant such that 0 < A < 1
10.C7_C9_C10_1/

. From
the assumptions 2 < q < t < jx�yj, we get

� t D
At2

jx�yj
;

C10�
2jx�yj

2� t
D

C10A
2t2

2jx�yj� t
D
1

2
C10A <

1

10
;

C9�
3 log

�
jx�yj
q

�
6

� t D
C9A

2t log
�
jx�yj
q

�
6jx�yj2

� C9A
2 <

1

10
;

and similarly

C7q
3
P1
kD4

.�=q/k

kŠ

� t
�

C7

24� t
q3
1X
kD4

.�=q/k D
C7�

3

24qt

1

1� �=q
�
C7A

3

12
�
1

10

(note that �=q � 1=2). Therefore we get

P.U diff
� EŒU diff�� t /� exp

�
� � t C

3

10
� t

�
D exp

�
�7At2

10jx�yj

�
:

The bound for the negative tail is obtained similarly. This completes the proof of
(66). �

COROLLARY 34. In dimension d D 4, there exist constants C1; c2; c3 > 0
such that, for all x; y 2 Rd and p > q > 2 satisfying p > 3q; jxj; jyj < p=2, and
jx�yj> 3q, we have that

P

�
max

u2B.x;1/;v2B.y;1/

ˇ̌̌
U diff�u; v ˇ̌ B.0; p/ n .B.u; q/[B.v; q//�ˇ̌̌> t�

� C1e
�c2q

2t log
�
c3t

q2

�
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for all t that satisfy (65). Similarly, in dimension d D 3, there exist constants
C1; c2; c3 > 0 such that, for all x; y 2 Rd , p > q > 2, and t > 0 satisfying
p > 3q; jxj; jyj< p=2, and 2 < q < t < jx�yj, we have that

P

�
max

u2B.x;1/;v2B.y;1/

ˇ̌̌
U diff�u; v ˇ̌ B.0; p/ n .B.u; q/[B.v; q//�ˇ̌̌> t�

� C1e
�
c2t
2

jx�yj CC1e
�c2q

2t log
�
c3t

q

�
:

Proof. This follows from Theorem 33 in the same way that Theorem 19
follows from Theorem 16. We omit the proof. �

We also need large deviations estimates for the truncated potential function.
This differs from our estimates in dimensions 5 and higher in that the estimates are
valid only in a restricted range of the parameters, depending on the dimension.

THEOREM 35. There exist constants C1; c2; c3>0 such that, for all p>q >0,
we have that

(69) P

�ˇ̌̌
U
�
0
ˇ̌
B.0; p/ nB.0; q/

�ˇ̌̌
> t
�
� C1e

�c2q
d�2t log

�
c3t

q2

�

for all t above a threshold that depends on d; p, and q, as follows:8<:t � C1q2t � C1q
2 log

�
C1t
q2

�
log

�
p
q

� in dimension d D 4I(70)

8̂̂̂<̂
ˆ̂:
t � C1q

2

t � C1q
2
�

log
�
C1t
q2

��2
log

�
p
q

�
t � C1pq log

�
C1t
q2

� in dimension d D 3:(71)

Proof. Let d D 4. In the notation of Theorem 16, we now have that (34) holds
only for k � 3. For k D 2 we have

EjV j2 D EjWp;qj
�4
D

4

Vol.B/

Z p

q

�4t
3t�4dt D

4�4

Vol.B/
log

�p
q

�
:

Now proceed exactly as in the proof of Theorem 33 above.
For d D 3, we have, still in the notation of Theorem 16, that (34) holds only

for k � 4. For k D 2 we have

EjV j2 D EjWp;qj
�2
D

3�3

Vol.B/

Z p

q

t2t�2dt D
3�3.p� q/

Vol.B/
�

3�3p

Vol.B/
;

and similarly for k D 3 we have

EjV j3 D
3�3

Vol.B/
log

�p
q

�
:



GRAVITATIONAL ALLOCATION TO POISSON POINTS 667

Proceeding as in the proofs above, this leads to the inequality

P.Up;q � EUp;q � t /� exp
�
� � t CC20�

2pCC30�
3 log

�p
q

�
CC40q

3e�=q
�

valid for all t � 0 and � � 0. Taking � D q log
�

t
C40q2

�
, this easily gives the

positive-tail half of (69) under the assumptions (71). As before the negative-tail
half is proved similarly. �

THEOREM 36. There exist constants C1; c2; c3; C4 > 0 such that, for all p >
q > 0, we have that, if t � C4p2, and if the same assumptions (70) and (71) as in
Theorem 35 hold, then we have

(72) P

�
max

x2B.0;1^q2 /

ˇ̌̌
U
�
x
ˇ̌
B.x; p/ nB.x; q/

�ˇ̌̌
> t

�
� C1e

�c2q
d�2t log

�
c3t

q2

�
:

Proof. This follows from Theorem 35 in the same way that Theorem 19
follows from Theorem 16. �

10.3. Dimension 4. Let B , �, r , �, s, and " be the same as in Section 9.1.
We redefine the events �1 and �2, as follows:

�� D
n

max
x2Q.0;2R/

U
�
x
ˇ̌
B.x; 3R1=d /

�
>
B

2

o
;

��� D
n

max
x2Q.0;2R/

�
# of stars in B.x; 3R1=d /

�
�

BR

10 � 100d

o
;

�1 D��[���;

�2 D
n

max
x; y 2Q.0; 2R/;

jx�yj �R=100

ˇ̌̌
U diff

�
x; y

ˇ̌̌
Rdn

�
B.x; 3R1=d /[B.y; 3R1=d /

��ˇ̌̌
>
B

2

o
:

Let�3 remain the same as in Section 9.1. The following lemma replaces Lemma 22.

LEMMA 37. In dimension 4, for some constants C; c > 0, we have for all
R > 2 that

P.�1/� Ce
�cR17=9 ;(73)

P.�2/� Ce
�cR11=9 ;(74)

P.�3/� Ce
�cR1C1=100d

2

:(75)

Proof. First, note that �� D∅ for R sufficiently large, since the only positive
contribution to U

�
x
ˇ̌
B.x; 3R1=d /

�
comes from its expected value .9d�d=2/R2=d

(see (23)).
Next, in order to estimate the probability of ���, cover Q.0; 2RC 3R1=d /

with O.Rd�1/ balls of radius 6R1=d so that, for each x 2 Q.0; 2R/, the ball
B.x; 3R1=d / is contained in one of them. In each of these balls, we need to estimate
the probability that a Poisson random variable with mean C �R (for some constant
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C > 0) is � BR=.10 � 100d /. By Lemma 4, this probability is O
�
e�cBR logR

�
for

some constant c > 0.
Finally, the estimate for the probability of �2 follows from Corollary 34 in

the same way that (48) follows from Theorem 19. �

With these new definitions, the only further change required in the proof of
Theorem 3 is the following revised proof of Lemma 23. All the other proofs remain
correct as written, with appeals to (43) being replaced by using (72) instead. (One
has to verify that the conditions under which (72) may be used actually hold, but
this is easy.)

Proof of Lemma 23 in dimension 4. Let � W Œ0; T �! Rd be a gravitational
flow curve that connects @Q.0;R/ and @Q.0; 2R/, and assume that �1[�2 did
not occur. The potential difference U diff.�.0/; �.t// decreases as a function of t .
Let T0 D sup

˚
t 2 Œ0; T � W

ˇ̌
�.t/ � �.0/

ˇ̌
�

R
100

	
. Let W 0 be the set of points

w 2 S such that �ˇ̌
ŒT0;T �

intersects both @Qin.w/ and @Qout.w/. Since � connects

@Q.0;R/ and @Q.0; 2R/, we have that jW 0j � 99R=100r � 2 (again the �2 is to
account for boundary effects).

Let T1Dsup
˚
t2ŒT0; T � WU

diff.�.0/; �.t//��2B
	
. Now, if xD�.t/ for some

t >T1, then by the definition of T1, we have U diff.�.0/; x/� �2B , and by �c2,ˇ̌̌
U diff

�
�.0/; x

ˇ̌̌
Rd n

�
B.�.0/; 3R1=d /[B.x; 3R1=d /

��ˇ̌̌
�
B

2
:

Therefore, alsoˇ̌̌
U diff

�
�.0/; x

ˇ̌̌
B.�.0/; 3R1=d /[B.x; 3R1=d /

�ˇ̌̌
� �

3B

2
:

But

U diff
�
�.0/; x

ˇ̌̌
B.�.0/; 3R1=d /[B.x; 3R1=d /

�
D U

�
x
ˇ̌̌
B.x; 3R1=d /

�
�U

�
�.0/

ˇ̌̌
B.�.0/; 3R1=d /

�
C U

�
x
ˇ̌̌
B.�.0/; 3R1=d /

�
�U

�
�.0/

ˇ̌̌
B.x; 3R1=d /

�
;

and by �c1, we have that

�U
�
�.0/

ˇ̌̌
B.�.0/; 3R1=d /

�
� �

B

2

and thatˇ̌̌̌
U
�
x
ˇ̌̌
B.�.0/; 3R1=d /

�
�U

�
�.0/

ˇ̌̌
B.x; 3R1=d /

�ˇ̌̌̌
�

BR

10 � 100d
�

1

.R=100/d�2
�
B

10
:

Therefore we get that, for x D �.t/; t > T1, we have

U
�
x
ˇ̌
B.x; 3R1=d /

�
� �

9B

10
< �

B

2
:
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By the above, it follows that all the points w 2 S for which �ˇ̌
ŒT1;T �

intersects both

@Qin.w/ and @Qout.w/ are bad, since they satisfy condition (1) in the definition. If
there are R=10d r such points, we are done, since the set of such w is connected
and a fortiori connectible. If this is not so, denote by W 00 the set of those w 2W 0

for which �ˇ̌
ŒT0;T1�

intersects both @Qin.w/ and @Qout.w/. The family W 00 is a

connected set, and we have jW 00j � jW 0j�R=4r �1� 74R=100r �4 >R=2r . As
in Section 9.1, replace W 00 by a subset W 000 �W 00 such that jW 000j � jW 00j=5d and
all the interiors of .Qout.w//w2W 000 are disjoint. Repeating the same argument as
in Section 9.1, we get that the set W of bad w 2W 000 is connectible and contains
�R=10d r points. �

10.4. Dimension 3. Let d D 3. All the foregoing discussion for dimension 4
remains valid, except the estimate (74). In dimension 3 we only get the weaker
estimate P.�2/ � Ce

�cR7=9 for some constants C; c > 0. Thus, while all the
elements of the proof still function, what we actually proved was an upper bound
for P.ER/ which is of the form Ce�cR

7=9

.
To get the better bound stated in Theorem 3, we modify the value of the

parameters. Here are the new values:

B D
R

.logR/ˇ
;

r D .logR/1=3 log logR;

�D
1

.logR/
;

s D
1

.logR/ı
;

"D
�

s3
log logR;

�D
p

log logR:

Here ˇ,  , and ı are positive constants. The proof in Section 9, together with
the adjustments of Section 10.3, will work almost verbatim with these modified
parameters, provided that several conditions are met:
� � < c r

.logR/1=3
for some constant c > 0 and all sufficiently large R. This is

required when using Theorem 10, and holds with our choice of parameters.
� " > C B

R
for some constant C > 0. This is used in the proof of Lemma 31,

when we deduce from jF.y/j< CB=R that in fact jF.y/j< "=8. It will hold
if  < ˇC 3ı, and in particular if  < ˇ.

�
�
r
�

�d�1
"d�d

2�d � 1. This is required when using Markov’s inequality to
ensure that the probability per site w 2 W to have � r

100d�
points x 2 Tw

which are black and not 4-crowded (Lemma 31) is� 1. This condition holds
for any  > 2

3
C 9ı, and in particular for any  > 2

3
if ı is sufficiently small

(as a function of  ).
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�
sd "
�
� 1. This is required in the proof of Lemma 31 to make sure that P.A0j /

�
1
Rd

.

With this choice of parameters, following the steps of the proof in Section 9 to-
gether with the changes outlined in SubSection 10.3, we get that in Lemma 37 the
estimates (73) and (75) still hold. The estimate (74) is replaced by the following
estimate, whose proof again uses Corollary 34:

(76) P.�2/� Ce
�c R

.logR/2ˇ :

Lemma 31 will be weakened to the following lemma, whose proof is a repetition
of the same steps with the new parameter values.

LEMMA 38. For some constants C; c > 0, we have

P.�7;W /� Ce
�cjW j log logR:

As a result, Theorem 24 will be weakened to the following theorem.

THEOREM 39. There exist constants C; c > 0 such that, for any familyW � S ,
we have

(77) P

�
�c3\

˚
all w 2W are bad

	�
� Ce�cjW j log logR:

Therefore, the bound that we get for P.ER/ will be weakened to

P.ER/�P.�1/CP.�2/CP.�3/Ce
�cB

r
log logR

�Ce
�c R

.logR/2ˇ CCe
�c R

.logR/1=3 :

With the constraints ˇC 3ı >  > 2=3C 9ı, the best that one can do is to take ˇ
slightly bigger than 2=3. This gives that, for all ˛ > 4=3,

P.ER/� Ce
�c R

.logR/˛

for some constants c; C > 0 depending on ˛, and all R > 2. This was the claim of
Theorem 3 in dimension 3. �
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