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Abstract

We construct a Teichmüller curve uniformized by a Fuchsian triangle group
commensurable to �.m; n;1/ for every m; n � 1. In most cases, for example
whenm¤ n andm or n is odd, the uniformizing group is equal to the triangle group
�.m; n;1/. Our construction includes the Teichmüller curves constructed by
Veech and Ward as special cases. The construction essentially relies on properties
of hypergeometric differential operators. For small m, we find billiard tables that
generate these Teichmüller curves. We interpret some of the so-called Lyapunov
exponents of the Kontsevich-Zorich cocycle as normalized degrees of a natural
line bundle on a Teichmüller curve. We determine the Lyapunov exponents for the
Teichmüller curves we construct.

1. Introduction

Let C be a smooth curve defined over C. The curve C is a Teichmüller curve
if there exists a generically injective, holomorphic map from C to the moduli space
Mg of curves of genus g which is geodesic for the Teichmüller metric. Consider a
pair .X; !X /, where X is a Riemann surface of genus g and !X is a holomorphic
1-form on X . If the projective affine group � of .X; !X / is a lattice in PSL2.R/,
then C WD H=� is a Teichmüller curve. Such a pair .X; !X / is called a Veech
surface. Moreover, the curve X is a fiber of the family of curves X corresponding
to the map C !Mg . We refer to Section 2 for precise definitions and more details.

Teichmüller curves arise naturally in the study of dynamics of billiard paths
on a polygon in R2. Veech ([35]) constructed a first class of Teichmüller curves
C D Cn starting from a triangle. The corresponding projective affine group is
commensurable to the triangle group �.2; n;1/. Ward ([38]) also found triangles
which generate Teichmüller curves, with projective affine group �.3; n;1/. Sev-
eral authors tried to find other triangles which generate Teichmüller curves, but
only sporadic examples where found. Many types of triangles were disproven to
yield Veech surfaces ([37], [16], [32]).
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In this paper we show that for allm; n there is a Teichmüller curve C.m; n;1/
whose projective affine group is commensurable to �.m; n;1/. It is in fact equal
to �.m; n;1/ is most cases, for example if m ¤ n and one of m and n odd.
(Since Teichmüller curves are never complete ([35]), triangle groups �.m; n; k/
with k ¤1 do not occur.) We use a different construction from previous authors;
we construct the family X of curves defined by C rather than the individual Veech
surface (which is a fiber of X). However, starting from our description, we compute
an algebraic equation for the corresponding Veech surface. The family X is given
as the quotient of an abelian cover Y! P1 by a finite group.

Under the simplifying assumption that m < n <1 and n is odd, we relate
the Veech surface corresponding to the Teichmüller curve C.m; n;1/ to a rational
polygon. This polygon has .mC 3/=2 edges if m is odd and .mC 4/=2 edges if m
is even. This polygon does not have self-crossings if and only if m� 5. Therefore,
for m� 5 we obtain the Veech surface by unfolding a polygon.

From our construction we obtain new information even for the Teichmüller
curves found by Veech and Ward. Namely, we determine the complete decompo-
sition of the relative de Rham cohomology R1f�CX and the Lyapunov exponents
(see below).

There exist Teichmüller curves whose projective affine group is not a triangle
group. McMullen ([24]) constructed a series of such examples in genus g D 2.
It would be interesting to try to extend our method to Fuchsian groups other than
triangle groups. This would probably be much more involved due to the appearance
of so-called accessory parameters.

We now give a more detailed description of our results. Suppose thatm�4 and
m<n�1 or that m� 2 and 3� n <1. We consider a family of N -cyclic covers

Yt W yN D xa1.x� 1/a2.x� t /a3

of the projective line branched at four points. Note that Y defines a family over
C D P1t �f0; 1;1g. It is easy to compute the differential equation corresponding
to the eigenspaces L.i/ of the action of Z=N on the relative de Rham cohomology
of Y (see �4). These eigenspaces are local systems of rank 2, and the corresponding
differential equation is hypergeometric. Cohen and Wolfart ([6]) showed that we
may choose N and ai in terms of n and m such that the projective monodromy
group of at least one of the eigenspaces L.i/ is the triangle group �.m; n;1/.

First consider the case that m and n are finite and relatively prime. Here we
show that the particular choice of N and the ai implies that, after replacing C
by a finite unramified cover, the automorphism group of Y contains a subgroup
isomorphic to Z=N ÌH , where H ' Z=2 � Z=2. If n is infinite the group H
has order 2. This case corresponds to half of Veech’s series of Teichmüller curves
(see �5). If m and n are not relatively prime we replace Y by a suitable G0-Galois
cover of the projective line, where G0 is some subgroup of Z=N � Z=N . The
description of Y in this case is just as explicit (�6).
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THEOREMS 5.2 AND 6.2. The quotient family X WD Y=H is the pullback to
C of the universal family over the moduli space of curves. The curve C is an
unramified cover of a Teichmüller curve.

The proof of this result relies on a Hodge-theoretical characterization of Te-
ichmüller curves ([29]). Another key ingredient of the proof is the characterization
of the vanishing of the Kodaira-Spencer map in terms of invariants of the hyper-
geometric differential equation corresponding to L.i0/ (Proposition 3.2). Here i0
is chosen such that the projective monodromy group of L.i0/ is the triangle group
�.m; n;1/. The statement on the Kodaira-Spencer map translates to the following
geometric property of X. A fiber Xc of X is singular if and only if the monodromy
around c of the local system induced by L.i0/ is infinite (Proposition 4.2). This
is one of the central observations of the paper. This is already apparent in our
treatment of the relatively straightforward case of Veech’s families of Teichmüller
curves in Section 5.

THEOREM 6.12. Suppose m¤ n. Then the projective affine group of X

(a) is the .m; n;1/-triangle group if at least one of m and n is odd,

(b) contains a subgroup of index 2 in the .m; n;1/-triangle group otherwise.

If mD n is odd, then the projective affine group of the translation surface .X; !X /
either equals the .m;m;1/-triangle group or contains it as subgroup of index 2.

We determine the projective affine group of our Teichmüller curves directly
from the construction of the family X and do not need to consider the correspond-
ing Veech surfaces, as done by Veech and Ward. For example, we determine the
number of zeros of the generating differential of a Veech surface corresponding to
C.m; n;1/ in terms of n and m by algebraic methods (Theorem 6.13).

In Section 8 we change perspective, and discuss the question of realizing our
Teichmüller curves via unfolding of rational polygons (or: billiard tables). This
section may be read independently of the rest of the paper. For m � 5 we con-
struct a billiard table T .m; n;1/ and show that it defines a Teichmüller curve, via
unfolding. For m D 2; 3 this gives the triangles considered by Veech ([35]) and
Ward ([38]). For mD 4; 5 we find new billiard tables which are rational 4-gons.
We interpret the Veech surfaces corresponding to these billiard tables as fiber of
the family X! C of curves. A key ingredient here is a theorem of Ward ([38,
Th. C0]) which relates a cyclic cover of the projective line to a polygon, via the
Schwarz-Christoffel map. We then use that certain fibers of X are a cyclic cover
of the projective line (Theorem 6.14).

For m � 6 the same procedure still produces rational polygons T .m; n;1/,
but they have self-crossings and therefore do not define billiard tables. In principle,
one could still describe the translation surface corresponding to T .m; n;1/, but
these would be hard to visualize.
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Our last main result concerns Lyapunov exponents. Let V be a flat normed
vector bundle on a manifold with flow. The Lyapunov exponents measure the rate
of growth of the length of vectors in V under parallel transport along the flow.
We refer to Section 9 for precise definitions and a motivation of the concept. We
express the Lyapunov exponents for an arbitrary Teichmüller curves in terms of
the degree of certain local systems.

Let f W X! C be the universal family over an unramified cover of an arbi-
trary Teichmüller curve. The relative de Rham cohomology R1f�CX has r local
subsystems L.i/ of rank 2. The associated vector bundles carry a Hodge filtration
(see Theorem 2.1). The .1; 0/-parts of the Hodge filtration are line bundles L.i/

and the ratios

�i WD 2 deg.L.i//=.2g.C /� 2C s/ and s D card. xC XC/

are unchanged if we pass to an unramified cover of C .

THEOREM 9.2: The ratios �i are r of g nonnegative Lyapunov exponents of
the Kontsevich-Zorich cocycle over the Teichmüller geodesic flow on the canonical
lift of a Teichmüller curve to the 1-form bundle over the moduli space.

A sketch of the relation between the degree of f�!X=C and the sum of all
Lyapunov exponents has already appeared in [18].

Now suppose that C is an unramified cover of C.m; n;1/ (Theorems 5.2
and 6.2), and let f W X! C be the corresponding family of curves. In Corollaries
5.3 (Veech’s series), 5.6 and 6.9 we give an explicit expression for all Lyapunov
exponents of C . For Veech’s series of Teichmüller curves and for a series of square-
tiled coverings the Lyapunov exponents were calculated independently by Kontse-
vich and Zorich (unpublished). In these cases they form an arithmetic progression.
Example 6.10 shows that this does not hold in general.

It is well-known that the largest Lyapunov exponent �1 D 1 occurs with mul-
tiplicity one. We interpret 1��i as the number of zeros of the Kodaira-Spencer
map of L.i/, counted with multiplicity (see �2), up to a factor. For the Teichmüller
curves constructed in Theorems 5.2 and 6.2, we determine the position of the zeros
of the Kodaira-Spencer map. These zeros are related to elliptic fixed points of the
projective affine group � (Propositions 3.2 and 4.4). For an arbitrary Teichmüller
curve it is an interesting question to determine the position of the zeros of the
Kodaira-Spencer map. Precise information on the zeros of the Kodaira-Spencer
map might shed new light on the defects 1��i of the Lyapunov exponents.

The starting point of this paper was a discussion with Pascal Hubert and Anton
Zorich on Lyapunov exponents. The second named author thanks them heartily.
Both authors acknowledge support from the DFG-Schwerpunkt ‘Komplexe Man-
nigfaltigkeiten’. We thank Frits Beukers for suggesting the proof of Proposition 8.4,
Silke Notheis for cartographic support, and Pat Hooper for pointing out a mistake
in an earlier version and for sending us the manuscript [13].



TEICHMÜLLER CURVES, TRIANGLE GROUPS, AND LYAPUNOV EXPONENTS 143

2. Teichmüller curves

A Teichmüller curve is a generically injective, holomorphic map C !Mg

from a smooth algebraic curve C to the moduli space of curves of genus g which
is geodesic for the Teichmüller metric. A Teichmüller curve arises as quotient C D
H=� , where H! Tg is a complex Teichmüller geodesic in Teichmüller space Tg .
Here � is the subgroup in the Teichmüller modular group fixing H as a subset of Tg
(setwise, not pointwise) and C is the normalization of the image H! Tg !Mg .

Veech showed that a Teichmüller curve C is never complete ([35, Prop. 2.4]).
Let xC be a smooth completion of C and S WD xC XC . In the sequel, rather than
consider Teichmüller curves themselves, it will be convenient to consider finite
unramified covers of C that satisfy two conditions: the corresponding subgroup of
� is torsion free and the moduli map factors through a fine moduli space of curves
(e.g. with level structure M Œn�

g ). We nevertheless stick to the notation C for the
base curve and let f W X! C be the pullback of the universal family over M Œn�

g

to C . We will use Nf W xX! xC for the family of stable curves extending f . See
also [29, �1.3].

Teichmüller curves, or more generally geodesic discs in Teichmüller space,
are generated by a pair .X; q/ of a Riemann surface and a quadratic differential
q 2�.X; .�1X /

˝2/. These pairs are called translation surfaces. If a pair .X; q/ gen-
erates a Teichmüller curve, the pair is called a Veech surface. Any smooth fiber of
f together with the suitable quadratic differential is a Veech surface. Theorem 2.1
below characterizes Teichmüller curves where q D !2 is the square of a holomor-
phic 1-form ! 2 �.X;�1X /. The examples that we construct will have this property,
too. Hence:

From now on the notion ‘Teichmüller curve’ includes ‘generated by a 1-form’.
For a pair .X; !/ we let AffC.X; !/ be the group of orientation preserving

diffeomorphisms of X that are affine with respect to the charts provided by in-
tegrating !. Associating with an element of AffC.X; !/ its matrix part gives a
well-defined map to SL2.R/. The image of this map in SL.X; !/ is called the
affine group of .X; !/. The matrix part of an element of AffC.X; !/ is also called
its derivative. The stabilizer group � of H ,! Tg coincides, up to conjugation,
with the affine group SL.X; !/ ([24]). Throughout this article, we denote the trace
field by K DQ.tr.
; 
 2 �// and let r WD ŒK WQ�. We call the image of SL.X; !/
in PSL2.R/ the projective affine group and denote it by PSL.X; !/.

We refer to [17] and [16] for a systematic description of Teichmüller curves
in terms of billiards.

We recall from [29, Ths. 2.6 and 5.5] a description of the variation of Hodge
structures (VHS) over a Teichmüller curve, and a characterization of Teichmüller
curves in these terms.

Let L be a rank 2 irreducible C-local system on an affine curve C . Suppose
that the Deligne extension E of L˝C O ([9, Prop. II.5.2]) to xC carries a Hodge
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filtration of weight one L WD E.1;0/ � L. We denote by r the corresponding
logarithmic connection on E. The Kodaira-Spencer map (also: Higgs field, or:
second fundamental form) with respect to S is the composition map

(1) ‚ W L! E
r
! E˝�1xC .logS/! .E=L/˝�1xC .logS/:

A VHS of rank 2 and weight one whose Kodaira-Spencer map with respect to some
S vanishes nowhere on xC is called maximal Higgs in [36]. The corresponding
vector bundle E is called indigenous bundle. See [5] or [27] for appearances of
such bundles with more emphasis on characteristic p > 0.

THEOREM 2.1. (a) Let f W X! C be the universal family over a finite unram-
ified cover of a Teichmüller curve. Then we have a decomposition of the VHS of f
as

(2) R1f�QDW˚M and W˝Q CD

rM
iD1

Li :

In this decomposition the Li are Galois conjugate, irreducible, pairwise nonisomor-
phic, C-local systems of rank 2. The Li are in fact defined over some field F � R

that is Galois over Q and contains the trace field K. Moreover, L1 is maximal
Higgs.

(b) Conversely, suppose f W X! C is a family of smooth curves such that
R1f�C contains a local system of rank 2 which is maximal Higgs with respect to
the set S D xC XC . Then f is the universal family over a finite unramified cover
of a Teichmüller curve.

Note that ‘maximal Higgs’ depends on S . We will encounter cases where
L extends over some points of S and becomes maximal Higgs with respect to
a smaller set Su � S , but it is not maximal Higgs with respect to S . See also
Proposition 4.2 and Remark 4.3.

3. Local exponents of differential equations and zeros of the
Kodaira-Spencer map

In this section we provide a dictionary between local systems plus a section on
the one side and differential equations on the other side. In particular, we translate
local properties of a differential operator into vanishing of the Kodaira-Spencer
map. In Sections 5 and 6 we essentially start with a hypergeometric differential
equation whose local properties are well-known. Via Proposition 3.2 the vanish-
ing of the Kodaira-Spencer map of the corresponding local system is completely
determined. This knowledge is then exploited in a criterion (Proposition 4.2) for a
family of curves f W X! C to be the universal family over a Teichmüller curve.

Let L be a irreducible C-local system of rank 2 on an affine curve C , not
necessarily a Teichmüller curve. Let C ,! xC be the corresponding complete curve,
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and let E be the Deligne extension of L (see �2). We suppose that L carries a
polarized VHS of weight one and choose a section s of .L˝C OC /

.1;0/. Let t be a
coordinate on C . We denote by D WD r.@=@t/. Since L is irreducible, the sections
s and Ds are linearly independent. Hence s satisfies a differential equation Ls D 0,
where

LDD2Cp.t/DC q.t/;

for some meromorphic functions p; q on xC . Note that we may interpret L as a
second order differential operator L W OC ! OC , by interpreting D as derivation
with respect to t .

Conversely, the set of solutions of a second order differential operator L W
OC ! OC forms a local system Sol� OC . If L is obtained from L then SolŠ L_

([9, �1.4]). The canonical map

' W Sol ˝C OC ! OC ; f ˝g 7! fg

hence defines a section s D s' of L˝C OC .
A point c 2 xC is a singular point of L if p or q has a pole at c. In what

follows, we always assume that L has regular singularities. Let t be a local pa-
rameter at c 2 xC . Recall that L has a regular singularity at c if .t � c/p and
.t � c/2q are holomorphic at c, by Fuchs’ theorem. Note that there is a difference
between the notions ‘singularity of the Deligne extension of the local system L’ and
‘singularities of the differential operator L’. We refer to [15, �11], for a definition
of the notion regular singularity of a flat vector bundle. (The essential difference
between the two notions is that the basis of [15, (11.2.1)], need not be a cyclic
basis ([15, �11.4]).) Unless stated explicitly, we only use the notion of singularity
of the differential operator.

The local exponents 
0, 
1 of L at c are the roots of the characteristic equation

t .t � 1/C tp�1C q�2 D 0;

where p D
P1
iD�1 pi .t � c/

i and q D
P1
iD�2 qi .t � c/

i . The table recording
singularities and the local exponents is usually called Riemann scheme. See, e.g.,
[42, �2.5] for more details.

Note that L and the local exponents not only depend on L but also on the
section chosen. Replacing s by ˛s shifts the local exponents at c by the order of
the function ˛ at c. The exponentials e2�it1 and e2�it2 of the local exponents are
the eigenvalues of the local monodromy matrix of L at c. The following criterion
is well-known (e.g. [42, I.2.6]).

LEMMA 3.1. All local monodromy matrices of Sol are unipotent if and only
if both local exponents are integers for all c 2 xC .

In the classical case that xC Š P1 the differential operator L is determined by
the local exponents exactly if the number of singularities is three; this is the case of
hypergeometric differential equations. We will exploit this fact in the next sections.
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If the number of singularities is larger than three, L is no longer determined by
the local exponents and the position of the singularities, but also depends on the
accessory parameters ([42, �I.3.2]).

In the rest of this section we suppose that all local monodromy matrices of L
are unipotent. We define Su D xC �C as the set of points where the monodromy is
nontrivial. Let S � xC be a set containing the singularities of the Deligne extension
of L. The reader should think of S being the set of singular fibers of a family of
curves over xC . In particular S � Su.

The following proposition expresses the order of vanishing of the Kodaira-
Spencer map .1/ at c 2 xC in terms of the local exponents at c. If c 2 C we
suppose that the section s is chosen such that the local exponents are .0; nc/ with
nc � 0. This is always possible, multiplying s with a power of a local parameter
if necessary.

PROPOSITION 3.2. (a) Let c 2 C . Then nc � 1.
(b) Suppose that c 62 S . The order of vanishing of ‚ at b is nc � 1.
(c) Suppose that c 2 S XSu. The order of vanishing of ‚ at b is nc .
(d) If c 2 Su then ‚ does not vanish at c.

Proof. Suppose that c 2 C . Our assumptions imply that the local exponents
.0; nc/ at c are nonnegative integers. Since L is a local system on C , it has two
linearly independent algebraic section in a neighborhood of c. This implies that
nc � 1 ([42, �I.2.5]). This proves (a).

If c 62 S the differential operator L has solutions s1; s2 with leading terms 1
and tnc , respectively ([42, I,2.5]). We want to determine the vanishing order of
D.s/ in E=.s˝C OC /. By the above correspondence between the local system and
the differential equation we may as well calculate the vanishing order of D.'/ in
.Sol_˝C OC /=.'˝C OC /. A basis of Sol_˝C OC around c is

s_i W s1˝g1C s2˝g2 7! sigi .i D 1; 2/:

By definition of the dual connection and the flatness of si one calculates that D.'/
is the class of

s1˝g1C s2˝g2 7! g1s
0
1Cg2s

0
2

in .Sol_˝C OC /=.'˝C OC /. Since both ' and s1 do not vanish at c, we conclude
that the order of vanishing of D.'/ at c is nc � 1. This proves (b).

In the case that c 2 S we should consider the contraction against t@=@t . This
increases the order of vanishing of ‚ by one. This proves (c).

We now treat the case that c 2 xC XC . Consider the residue map Resc.r/ 2
End.Ec/. Suppose that the Kodaira-Spencer map vanishes at c. This implies that
Resc.r/ is a diagonal matrix in a basis consisting of an element from Lc and an
element from its orthogonal complement. But Resc.r/ is nilpotent ([8, Prop. II.5.4
(iv)]), hence zero. This implies that two linearly independent sections of L extend
to c. This contradicts the hypothesis on the monodromy around c. This proves (d).

�
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The ratios �.L; S/ WD 2 deg.L/=�1
xC
.logS/ will be of central interest in the

sequel. The factor 2 is motivated by Section 9, where we interpret the �.L; S/
as Lyapunov exponents. Therefore we call the �.L; S/ from now on Lyapunov
exponents. We will suppress S if it is clear from the context.

Remark 3.3. We will only be interested in local C-systems L that arise as
local subsystems of R1f�C for a family of curves f W X! C . In this case a Hodge
filtration exists on L and is unique ([8, Prop. 1.13]). Therefore we only have to
keep track of the local system, but not of the VHS.

The following lemma is noted for future reference. The proof is straightforward.

LEMMA 3.4. The ratio �.L; S/ does not change by taking unramified coverings.

4. Cyclic covers of the projective line branched at four points

Let N > 1 be an integer, and suppose given a 4-tuple of integers .a1; : : : ; a4/
with 0 < a� < N and

P4
�D1 a� D .k C 1/N , for some integer k. We denote

by P1 the projective line with coordinate t , and put P� D P1 � f0; 1;1g. Let
P ' P1 �P� ! P� be the trivial fibration with fiber coordinate x. Let x1 D 0,
x2 D 1, x3 D t , x4 D 1 be sections of P! P�. We fix an injective character
� W Z=N ! C�. Let g W Z! P� be the N -cyclic cover of type .x�; a�/ ([3, Def.
2.1]). This means that Z is the family of projective curves with affine model

(3) Zt W zN D xa1.x� 1/a2.x� t /a3 :

We suppose, furthermore, that gcd.a1; a2; a3; a4; N / D 1. This implies that the
family is connected. The genus of Zt is N C 1� .

P4
�D1 gcd.a�; N //=2.

In this section, we collect some well-known facts on such cyclic covers. We
write

��.i/D hia�=N i D a�.i/=N;

where h�i denotes the fractional part. Let k.i/C 1 D
P4
�D1 ��.i/. We fix an

injective character � W Z=N ! C� such that h 2 Gal.Z=P/Š Z=N acts as h � z D
�.h/z.

LEMMA 4.1. For 0 < i < N , we let s.i/ be the number of a� unequal to
0 mod N= gcd.i; N /. Put L.i/DH 1

dR.Z=P�/. Then

(a) dimC L.i/D s.i/� 2.

(b) rankg�.�1Z=P�
/�i D s.i/� 2� k.i/, rank.R1g�OZ/�i D k.i/:

(c) If k.i/D 1, then

!i WD
zi dx

x1CŒi�1�.x� 1/1CŒi�2�.x� t /1CŒi�3�
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is a nonvanishing section of g�.�1Z=P�
/�i . It is a solution of the hypergeomet-

ric differential operator

L.i/ WD r

�
@

@t

�2
C
.A.i/CB.i/C 1/t �C.i/

t.t � 1/
r

�
@

@t

�
C
A.i/B.i/

t.t � 1/
;

where

A.i/D 1� �3.i/; B.i/D 2� .�1.i/C �2.i/C �3.i//;

C.i/D 2� .�1.i/C �3.i//:

Proof. The second statement of (b) is proved in [2, Lemma 4.3]. The first
statement follows from Serre duality and [2, Lemma 4.5]. Part (a) follows im-
mediately from (b). The statement that !i is holomorphic and nonvanishing is a
straightforward verification. The statement that L.i/!i D 0 in H 1

dR.Z=P�/�i is
proved for example in [4, Lemma 1.1.4]. �

The differential operator L.i/ corresponds to the local system

L.i/DH 1
dR.Z=P�/�i

together with the choice of a section !i via the correspondence described at the
beginning of Section 3. It has singularities precisely at 0, 1, and 1. Its local
exponents are summarized in the Riemann scheme

(4)

24 t D 0 t D 1 t D1

0 0 A.i/


0 WD 1�C.i/ 
1 WD C.i/�A.i/�B.i/ B.i/

35 :
A (Fuchsian) .m; n; p/-triangle group form; n; p 2N[f1g satisfying 1=mC

1=nC1=p < 1 is a Fuchsian group in PSL2.R/ generated by matrices M1;M2;M3

satisfying M1M2M3 D 1 and

tr.M1/D˙2 cos.�=m/; tr.M2/D˙2 cos.�=n/; tr.M3/D˙2 cos.�=p/:

A triangle group is determined, up to conjugation in PSL2.R/, by the triple .m; n; p/.
It is well-known that the projective monodromy groups of the hypergeometric dif-
ferential operators L.i/ are triangle groups under suitable conditions on A.i/, B.i/,
C.i/. These conditions are met in the cases we consider in Section 5 and 6.

We are interested in determining the order of vanishing of the Kodaira-Spencer
map. Note that if k.i/D 0 or k.i/D 2 then the Hodge filtration on the correspond-
ing eigenspace is trivial and hence the Kodaira-Spencer map is zero.

Let x� W xC ! P1 be a finite cover, unbranched outside f0; 1;1g, such that the
monodromy of the pullback of Z via x� is unipotent for all c 2 xC .

Let SuDSu.i/��
�1.0; 1;1/ be the set of points such that L.i/ has nontrivial

local monodromy. Our assumption implies that the monodromy at c 2 Su is infinite.
In what follows, the set Su will be nonempty. It is therefore no restriction to suppose
that ��1.1/ is contained in Su. In terms of the invariants a� this means that



TEICHMÜLLER CURVES, TRIANGLE GROUPS, AND LYAPUNOV EXPONENTS 149

a3.i/C a4.i/ � 0 mod N . It follows that A.i/ D B.i/. Let b0 (resp. b1) be the
common denominator of the local exponents 
0.i/ (resp. 
1.i/) for 1 � i < N .
Write j
0.i/j D n0.i/=b0 and j
1.i/j D n1.i/=b1. Note that ��1.t D �/� Su.i/

if and only if 
�.i/D 0. Therefore Su.i/D �
�1.f0; 1;1g/ if and only if 
0.i/D


1.i/D 0. It easily follows that the set Su is in fact independent of i .
The following proposition is the basic criterion we use for constructing Te-

ichmüller curves.

PROPOSITION 4.2. Consider a family of curves Z! P�t as in (3). Let 0 <
i0 <N be an integer such that

(5) 
�.i0/D 1=b� for all � 2 f0; 1g with 
�.i0/¤ 0:

There is a finite cover � W xC ! P1t branched of order exactly b� at t D � 2 f0; 1g
for all � such that 
�.i0/¤ 0. Moreover, we require that the local monodromy of
the pullback of L.i0/ to xC is unipotent, for all c 2 xC . Write ZC for the pullback of
Z to C .

Choose a subgroup H of Aut.ZC / and define X WD ZC =H . Suppose that

� X extends to a smooth family over zC WD xC XSu,

� there is a local system L isomorphic to L.i0/ which descends to X.

Then the moduli map zC !Mg is an unramified cover of a Teichmüller curve.

This criterion will be applied to subgroups H that intersect trivially with
Gal.ZC =PC /.

Proof. If 
�.i0/ ¤ 0 the monodromy of g at t D � becomes trivial after
pullback by a cover which is branched at t D� of order b if and only if b�jb. Hence
if the cover x� is sufficiently branched at points over Su, the local monodromy of
the pullback of L.i0/ to C is unipotent by Lemma 3.1.

The local exponents of the pullback of L.i0/ to xC are the original ones mul-
tiplied by the ramification index. Hence, for all c 2 zC , the local exponents are
.0; 1/. By definition, the same holds for the local exponents of the bundle L. The
hypothesis on the singular fibers of X implies that c 2 zC is not a singularity of the
flat bundle L ([15, �14]). Therefore we may apply Proposition 3.2 (b) and (d) to L

with S D Su. We conclude that the Kodaira-Spencer map of L vanishes nowhere.
The proposition therefore follows from Theorem 1.1. �

Remark 4.3. The structure of the stable model g xC of the family gC W ZC ! C

is given in the next subsection. It implies that all fibers of preimages of f0; 1;1g
are singular. Hence applying Proposition 4.2 to g xC with H D f1g, we find that g xC
defines a Teichmüller curve if and only if Su D �

�1.f0; 1;1g/. This happens for
example for the families

y2 D x.x� 1/.x� t / and y4 D x.x� 1/.x� t /:



150 IRENE I. BOUW and MARTIN MÖLLER

Here xC D P1t , and the uniformizing group is the triangle group �.1;1;1/.
Clearly, this is a very special situation.

PROPOSITION 4.4. Let 0 < i < N be an integer with k.i/ D 1. Denote by
L.i/ the .1; 0/-part of the local system L.i/ over C . Then

deg L.i/D
deg.�/
2

�
1�

n0.i/

b0
�
n1.i/

b1

�
with the convention that 1=b� D 0 if n� D 0. In particular, the Lyapunov exponent

�.L.i/; Su/D

�
1�

n0.i/

b0
�
n1.i/

b1

�.�
1�

1

b0
�
1

b1

�
is independent of the choice of x� .

Proof. We only treat the case that both n0.i/ and n1.i/ are nonzero, leaving
the few modifications in the other cases to the reader. One checks that

deg�1xC .logSu/D deg.x�/
�
1�

1

b0
�
1

b1

�
is independent of the ramification order of g over t D 1. It follows from the
definition (1) of the Kodaira-Spencer map ‚ that 2 deg L�i �deg�1c.logSu/ is the
number of zeros of ‚, counted with multiplicity. Therefore the proposition follows
from Proposition 3.2. �

4.1. Degenerations of cyclic covers. We now describe the stable model of the
degenerate fibers of Z. For simplicity, we only describe the fiber Z0 above t D 0.
The other degenerate fibers may be described similarly, by permuting f0; 1; t;1g.
A general reference for this is [39, �4.3]. However, since we consider the easy
situation of cyclic covers of the projective line branched at four points, we may
simplify the presentation.

As before, we let P! P� be the trivial fibration with fiber coordinate x. We
consider the sections x1D 0; x2D 1; x3D t; x4D1 of P!P� as marking on P.
We may extend P to a family of stably marked curves over P.DP1t /, which we still
denote by P. The fiber P0 of P at t D 0 consists of two irreducible components
which we denote by P 10 and P 20 . We assume that x1 and x3 (resp. x2 and x4)
specialize to the smooth part of P 10 (resp. P 20 ). We denote the intersection point
of P 10 and P 20 by �. It is well-known that the family of curves f W Z! P over
P� extends to a family of admissible covers over P1t . See for example [12] or [40].
For a short overview we refer to [41, �2.1].

The definition of the type of a cover ([3, Def. 2.1]) immediately implies that
the restriction of the admissible cover f0 W Z0 ! P0 to P 10 (resp. P 20 ) has type
.x1; x3; �I a1; a3, a2 C a4/ (resp. .x2; x4; �I a2; a4; a1 C a3/). (In our situation,
admissibility amounts to .a1Ca3/C.a2Ca4/� 0 mod N .) LetZj0 be a connected
component of the restriction of Z0 to P j0 . Choosing suitable coordinates, Z10
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(resp. Z20 ) is a connected component of the smooth projective curve defined by the
equation zN D xa1.x� 1/a3 (resp. zN D xa2.x� 1/a4).

Denote by H j D Gal.Zj0 ; P
j
0 / � H ' Z=N the subgroups obtained by re-

stricting the Galois action. Then Z0 is obtained by suitably identifying the points
in the fiber above � of IndH

H1 Z
1
0 and IndH

H2 Z
2
0 .

Proposition 4.5 follows from the explicit description of the components of Z0.
Put ˇ1 D gcd.a1; a3; N / and ˇ2 D gcd.a2; a4; N /.

PROPOSITION 4.5. (a) The degree of Z10 ! P 10 (resp. Z20 ! P 20 ) is N=ˇ1
(resp. N=ˇ2).

(b) The genus of Z10 (resp. Z20 ) is

.N � gcd.a1; N /� gcd.a3; N /� gcd.a1C a3; N //=2ˇ1

(resp. .N � gcd.a2; N /� gcd.a4; N /� gcd.a1C a3; N //=2ˇ2).

(c) The number of singular points of Z0 is gcd.a1C a3; N /.

5. Veech’s n-gons revisited

In this section we realize the .n;1;1/-triangle groups as the affine groups
of a Teichmüller curve. This result is due to Veech, but our method is different. An
advantage of our method is that we obtain the Lyapunov exponents in Corollary
5.3 with almost no extra effort. The reader may take this section as a guideline to
the more involved next section. In this section the family of cyclic covers which
we consider has only one elliptic fixed point. A .Z=2Z/-quotient of this family is
shown to be a Teichmüller curve. In the next section there are two elliptic fixed
points and we need a .Z=2Z/2-quotient. Moreover, in the next section, common
divisors of m and n make a fiber product construction necessary, that does not show
up here.

Let nD 2k � 4 be an even integer and fix a primitive n-th root of unity �n.
We specialize the results of Section 4 to the family g W Z! P� of curves of genus
n� 1 given by the equation

Zt W zn D x.x� 1/n�1.x� t /;

i.e., we consider the case that N D n, a1 D a3 D 1, and a2 D a4 D n� 1. Let

'.x; y/D .x; �ny/

be a generator of Gal.Z=P/. The geometric fibers of g admit an involution covering
x 7! t=x. We choose this involution to be

�.x; y/D

8̂̂<̂
:̂
� t
x
;
t2=n.x� 1/.x� t /

xy

�
if k is even;� t

x
; �n

t2=n.x� 1/.x� t /

xy

�
if k is odd:
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LEMMA 5.1. The exponents ai are chosen such that

(a) condition (5) is satisfied for i D .nC 1/=2,

(b) the projective monodromy group of the local systems

L..n� 1/=2/ and L..nC 2/=2/

is the triangle group �.n;1;1/.

Proof. Part (a) follows by direct verification. Part (b) is proved in [6]. �

Let � W C ! P� be defined by s D tn=2. Then � extends to an automorphism
of the family of curves gC W ZC ! C . As before, we let x� W xC ! P1 be the
extension of � to a smooth completion. Moreover, the local monodromy matrices
of the pullback of the local systems L.i/ to xC are unipotent.

Let f WXDZ=h�i!C and let Nf W xX! xC be the stable model of f . Our goal
is to show that the fibers Xc of Nf are smooth for all c 2 zC WD x��1.P1 X f1;1g/.
This allows us to apply the criterion (Proposition 4.2) for zC to be the cover of a
Teichmüller curve.

THEOREM 5.2. Let g D .n� 2/=2. The natural map m W zC !Mg induced by
Nf exhibits zC as the unramified cover of a Teichmüller curve.

Proof. We first determine the degeneration of gC at c 2 xC with x�.c/ 2
f0; 1;1g. Our assumption on the local monodromy matrices implies that the fiber
Zc is a semi-stable curve, and we may apply Proposition 4.5. For x�.c/ 2 f1;1g
the fiber Zc consists of two irreducible components, which have genus 0. The local
monodromy matrices of L.i/ at c are unipotent and of infinite order for all i , as
can be read off from the local exponents.

Similarly, the local monodromy at c with x�.c/D 0 is finite. The definition
of C implies therefore that it is trivial. The set Su � xC (notation of �4) consists
exactly of x��1f1;1g.

One checks that � acts on the holomorphic 1-forms !i (Lemma 4.1(c)) as
follows:

(6) ��!i D .�1/
id.i/!n�i for i ¤ n=2; ��!n=2 D�!n=2;

where d.i/D t2i=n�1 if k is odd and d.i/D t2i=n�1�in if k is even. This implies
that the generic fiber of X has genus n=2� 1.

We claim that Xc is smooth for all c 2 xC �Su. We only need to consider c 2 xC
such that �.c/D 0. Proposition 4.5 implies that the degenerate fiber Zc consists of
two components of genus n=2� 1. Note that � acts as the permutation .01/.1 t/
on the branch points of Z! P. Hence � interchanges the two components of Zc .
We conclude that the quotient Xc of Zc by � is a smooth curve of genus n=2� 1.

Consider the local system MDL..n�2/=2/˚L..nC2/=2/ inR1.gC /�C onC .
It is invariant under � . The part of M on which � acts trivially is a local subsystem
L�M. This L is necessarily of rank 2, since !.n�2/=2C d..n� 2/=2/!.nC2/=2 is
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� -invariant (resp. anti-invariant), if k is odd (resp. even). Furthermore, !.n�2/=2�
d..n� 2/=2/!.nC2/=2 is �-anti-invariant (resp. invariant) for k odd (resp. even).
This also implies that the compositions

L! L..n� 2/=2/˚ L..nC 2/=2/! L..n� 2/=2/

and
L! L..n� 2/=2/˚ L..nC 2/=2/! L..nC 2/=2/

are nontrivial. Since the monodromy group � of both L..n�2/=2/ and L..nC2/=2/

contains two noncommuting parabolic elements, we conclude that L..n� 2/=2/ is
an irreducible local system, and hence that

LŠ L..n� 2/=2/Š L..nC 2/=2/:

From Proposition 4.2 and Lemma 5.1(a) we conclude that X is the universal
family over an unramified cover of a Teichmüller curve as claimed. �

Corollary 5.3 follows from Proposition 4.4.

COROLLARY 5.3. The VHS of the family f W X! C decomposes as

R1f�CŠ

.n�2/=2M
jD1

Lj ;

where Lj is a rank 2 local system isomorphic to L..n� 2j /=2/. Moreover,

�.Lj /D
k� j

k� 1
:

Anton Zorich has communicated to the authors that he (with Maxim Kontse-
vich) independently calculated these Lyapunov exponents.

Remark 5.4. The trace field of �.n;1;1/ is K DQ.�nC �
�1
n /, hence r D

ŒK W Q� � �.n=2/. Corollary 5.3 allows to decompose the VHS of X completely
into rank 2 pieces. This is much finer than Theorem 2.1 that predicts only r pieces
of rank 2 plus some rest.

Each fiber Zt admits an extra isomorphism, namely

�.x; y/D

�
x� t

x� 1
; y

t � 1

.x� 1/2

�
:

It extends to an automorphism of the family g zC W Z zC ! zC . One checks that � and
� commute. Hence � descends to an automorphism of X, which we also denote
by � . Let p WUD .xXj zC /=h�i ! zC be the quotient family. One calculates that

��!i D .�1/
iC1!i :

From this we deduce that the fibers of X are Veech surfaces that cover nontrivially
Veech surfaces of smaller genus, the fibers of the fibers of p.
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THEOREM 5.5. (a) The moduli map zC !Mg.U/ of the family of curves p W
U! zC is an unramified covering of Teichmüller curve. Its VHS decomposes as

R1p�CŠ

t.n/M
jD0

L.1C 2j /;

where L.j / is the local system appearing in the VHS of f and t .n/D .n� 6/=4 if
k is odd (resp. t .n/D .n� 4/=4 if k is even).

(b) The genus of U is t .n/C 1 and

�.L.1C 2j //D
k� .1C 2j /

k� 1
:

Proof. Both for k odd and k even the generating holomorphic 1-form in L.1/

is �-invariant. Hence this local system descends to U. The property of being a
Teichmüller curve now follows from Proposition 4.2. The remaining statements
are easily deducted from Corollary 5.3. �

Let U be a fiber of U. We denote by !X 2 �.X;�1X / (resp. !U 2 �.U;�1U /)
the differential that pulls back to !.n�2/=2˙ d.i/!.nC2/=2 on Zc , where the sign
depends on the parity of n and refer to it as the generating differential of the Te-
ichmüller curve.

COROLLARY 5.6. The Teichmüller curve X is the one generated by the regu-
lar n-gon studied in [35].

Proof. Let c be a point of xC with �.c/ D 0. The fiber Zc consists of two
components isomorphic to

X0 W y
n
D x.x� 1/

which are interchanged by � . The generating differential !X specializes to the
differential

!0 D y
.n�2/=2 dx=x.x� 1/

on X0. There is an obvious isomorphism between the curve wn�1Dz2 and X0 such
that !0 pulls back to the differential dw=z considered by Veech ([35, Th. 1.1]). �

Actually the family X is isomorphic (after some base change) to

y2 D pt .z/D

nY
iD1

.x� �in� t�
�1
n /:

This was shown by Lochak ([20]; see also [26]).
The following proposition is shown in [35, Th. 1.1]. We give an alternative

proof in our setting.

PROPOSITION 5.7. The projective affine group of a fiber of X together with
the generating differential contains the .n;1;1/-triangle group. The same holds
for the fibers of U.
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Proof. We first consider X. We have to show that the moduli map C !Mg

given by X factors through � W C ! P�. That is, we have to show that two
generic fibers Xp and X Qp with p; Qp 2 C such that �.p/ D �. Qp/ are isomorphic.
Equivalently, we have to show that for p; Qp as above there is an isomorphism
i0 W Zp! Z Qp which is �-equivariant. It suffices to show the existence of i0 after
any base change � W C 0! P� such that � is defined on YC 0 . We may suppose that
x� W C 0 Š P1s ! P1t is given by t D sn=2. The hypothesis �.p/D �. Qp/ implies that
p D �2en Qp, for some p. It follows that the canonical isomorphism i W Zp ! Z Qp,
given by .x; y/ 7! .x; y/, satisfies

� ı i D '2e ı i ı �:

Hence i0 D 'e ı i is the isomorphism we were looking for.
The proof for the family U is similar. �

We record for completeness:

COROLLARY 5.8. All .n;1;1/-triangle groups for n� 4 arise as projective
affine groups.

Remark 5.9. For n odd the same construction works with N and ai chosen
as above. The local exponents of .L.i/; !i / at t D 0 are then 1� 2i=n. The local
system L.i0/ becomes maximal Higgs for i0 D .nC 1/=2, after a base change
� W C ! P� whose extension to xC ! P1 is branched of order n at 0. The quotient
family f W X D Z=h�i ! C may be constructed in the same way as above. Its
moduli map yields as above a Teichmüller curve zC!Mg where gD .n�1/=2. The
corresponding translation surfaces are again the ones studied in [35]. Veech also de-
termines that the affine group is not �.n;1;1/ but the bigger group �.2; n;1/,
containing �.n;1;1/ with index 2. We obtain the same family of curves also as
a special case of the construction in Section 6, by putting mD 2. For this family
we calculate, using Proposition 4.4, that

�.L.i//D
2i

n� 1
; i D 1; : : : ; .n� 1/=2:

6. Realization of �.m; n;1/ as projective affine group

Let m; n > 1 be integers with mn� 6. Let

�1 D
nmCm�n

2mn
; �2 D

nm�mCn

2mn
; �3 D

nmCmCn

2mn
; �4 D

nm�m�n

2mn
;

and let N be the least common denominator of these fractions. Let ai DN�i and
consider the family of curves g W Z! P� given by

Zt W zN D xa1.x� 1/a2.x� t /a3 :

The family g cyclically covers the constant family PŠ P1x �P�! P�.D P1t �

f0; 1;1g/.
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The plan of this section is as follows. We construct a cover Y! Z such that
the involutions

�.x/D .t.x� 1/=.x� t // ;(7)

�.x/D .t=x/

of P! P� lift to involutions of the family YC ! C obtained from Y! P� by
a suitable unramified base change � W C ! P�. We denote these lifts again by �
and � . If m and n are relatively prime then in fact Y equals Z.

Remark 6.1. The exponents ai are chosen such that the local system L� has
as projective monodromy group the triangle group �.m; n;1/; see again, e.g., [6].
We modify the lifts � and � by appropriate powers of a generator of Aut.Z=P/

such that the group H D h�; �i is still isomorphic to .Z=2/2 and such that � , � , and
�� DW � have ‘as many fixed points as possible’.

We consider the quotient family f W X D Y=H ! C . Its stable model Nf W
xX! xC has smooth fibers over zC D x��1.P1Xf1g/, where x� W xC !P1 extends � .

Together with an analysis of the action of H on differentials we can apply
Proposition 4.2 to produce Teichmüller curves.

THEOREM 6.2. Via the natural mapm W zC !Mg induced from Nf , the curve zC
is an unramified cover of a Teichmüller curve. The genus g is given in Corollary 6.6.

As corollaries to this result we calculate the precise VHS of f and the projec-
tive affine group of the translation surfaces corresponding to f . In Section 6.1 we
show that for mD 3 we rediscover Ward’s Teichmüller curves ([38]).

Remark 6.3. The notation in the proof of Theorem 6.2 is rather complicated,
due to the necessary case distinction. We advise the reader to restrict to the case
that m and n are odd and relatively prime on a first reading. This considerably
simplifies the notation, but all main features of the proof are already visible. In this
case YD Z, mDm0, nD n0, 
 D ˇ D 1, and N D yN .

We start with some more notation. We write Z (resp. P , X , Y ) for the geo-
metric generic fiber of Z (resp. P, X, Y). We choose a primitive N -th root of unity
�N 2 C and define the automorphism '1 2 Aut.Z=P/ by

'1.x; z/D .x; �N z/:

We need to determine the least common denominatorN of the �i , i D 1; : : : ; 4,
precisely. Let mD 2�m0, nD 2�n0 with m0; n0 odd. We may suppose that �� �.
Define


1 D gcd.2mn;mnCm�n/; 
2 D gcd.2mn;mnCmCn/; 
 D gcd.m; n/;
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and write 
 D 2�
 0. We determine N D 2mn= gcd.
1; 
2/. For this we need to
distinguish four cases.

Case O �D � D 0; N D 2mn=
; yN DN=
 D 2ım0n0=
 02I

Case OE � > � D 0; N D 2mn=
; yN DN=
 D 2ım0n0=
 02I

Case DE � > � > 0; N D 2mn=
; yN D 2N=
 D 2ım0n0=
 02I

Case S �D � ¤ 0; N Dmn=
; yN DN=
 Dmn=
2:

It is useful to keep in mind that 
 D gcd.
1; 
2/, except in case S where 2
 D
gcd.
1; 
2/. Let ı WD 0 in case S, and ı WDminf�� �C 2; �C 1g, otherwise.

Our first goal is to determine the maximal intermediate covering of Z! P

to which � lifts. This motivates the definition of yN . Let 0 < x̨ < yN be the integer
satisfying

x̨ � 1 mod m0=
 0; x̨ � �1 mod n0=
 0; and

x̨ �

8<: 1 mod 2ı cases O, OE, S,
n0C 2���m0

n0� 2���m0
� 1C 2ı�1 mod 2ı case DE:

For convenience, we lift x̨ to an element ˛ in Z=NZ such that ˛2 D 1. Note that
x̨ may be one.

Recall that for a rational number � , we write �.i/ WD hi�i (the fractional part).
Similarly, for an integer a we write a.i/D a.i I �/D �hia=�i, where � is mostly
clear from the context. For each integer 0 < i < N which is prime to N , we write

z.i/D
zi

xŒi�1�.x� 1/Œi�2�.x� t /Œi�3�
;

hence
z.i/N D xa1.i/.x� 1/a2.i/.x� t /a3.i/:

LEMMA 6.4. (a) In the cases O, OE and DE the covering Z ! P has
ramification order 
N=
1 (resp. 
N=
2) in points of Z over x D 0; 1 (resp.
x D t;1). In case S the ramification orders are 
N=2
1 (resp. 
N=2
2).
Therefore

g.Z/D

�
1CN � .
1C 
2/=2
 case S;
1CN � .
1C 
2/=
 other cases:

(b) The automorphism � of P lifts to an automorphism � of Z of order 2.
(c) The automorphism � of P lifts to an automorphism � of order 2 of yZ WD

Z=h'
yN
1 i. Moreover, we may choose the lifts such that �; � commute as ele-

ments of Aut. yZ/.
(d) We may choose the lifts �; � such that, moreover, � has 4m=
 fixed points

(resp. 2m=
 in case S) and such that � WD �� has 4n=
 fixed points on yZ
(resp. 2n=
 in case S).

(e) With � and � chosen as in (d) the automorphism � has no (2 in case S) fixed
points both on Z and on yZ.
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Proof. The statements in (a) are immediate from the definitions. For (b) and
(c) we choose once and for all elements t1=n; .t � 1/1=m 2 C.t/. Define

(8) c D .t � 1/�2C�3 ; d D t�1C�3 :

Then

�.z/D cd
x.x� 1/

z.x� t /
D cd

z.N � 1/

.x� t /2

defines a lift of � to Z, since �1C�2D �3C�4D 1. Moreover, this lift has order 2.
We denote it again by � . The quotient curve yZ is defined by the equation

Nz
yN
D x Na1.x� 1/ Na2.x� t / Na3 ;

where Nai denotes ai mod yN . Put N�i D Nai= yN . One computes that ˛ satisfies:

(9) . Na1.˛/; Na2.˛/; Na3.˛/; Na4.˛//D . Na4; Na3; Na2; Na1/:

This implies that

�. Nz/D .�1/ Na2CNa3 t N�1CN�3
Nz.˛/

x2

defines a lift of � to yZ which has order 2. Note that Na2C Na3 is odd in case S and
even in all other cases. Moreover,

N�1C N�3 �

(

=n mod yN in cases O, OE and S;


=2n mod yN in case DE:

It is easy to check that � commutes with the image of � on yZ. This proves (b).
Furthermore, one checks that � is an involution and that

(10) �'1� D '
˛
1 2 Aut. yZ/ and �'1� D '

�1
1 2 Aut.Z/:

This proves (c).
We start with the proof of (d). Let x1 D

p
t be one of the fixed points of �

on P and let R be a point in the fiber of yZ! P over x1. We may describe the
whole fiber by Ra WD 'a1R for aD 0; : : : ; yN � 1. Suppose that �RD Ra0 , hence
�RaDRa0C˛a. Since � is an involution, a0 satisfies necessarily a0� 0 mod m0=
 0

and 2a0 � 0 mod 2ı . Furthermore, Ra is a fixed point of � if and only if
(11)
a0 � 2a mod n0=
 0 and a0 � 2

���C12ı�1a mod 2ı (case DE only):

Hence if � has a fixed point in this fiber, it has precisely 2m=
 fixed points in this
fiber (m=
 in case S). Since � and � commute, � bijectively maps fixed points of
� over x1 to fixed points of � over x2 D�

p
t . Hence, if � has a fixed point, then

the number of fixed points is as stated in (d).
Similarly, let x3D 1C

p
1C t be one of the fixed points of � on P and let S be

a point in the fiber over x3. Write Sb D 'b1S for the whole fiber. Write �S D Sb0 .
As above we deduce that b0 � 0 mod m0=
 0. In case DE, we have moreover that
b0 � 0 mod 2. The point Sb is fixed by � if and only if
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(12) b0 � 2b mod m0=
 0 and b0 �

(
2b mod 2ı cases O, OE, S;

.2C 2ı�2/b mod 2ı case DE:
Analogous to the argument for � , one checks that if � has a fixed point, then it has
as many fixed points as claimed in (d).

Note that we may replace � by 'i1� and � by 'j1 � such that they still commute,
and without changing the orders of these elements, if the following conditions are
satisfied:
(13) j.1C˛/� 0 mod yN; .i � j /.1�˛/� 0 mod yN:

The only obstruction for � and � to have fixed points consists in a condition
modulo 2ı . We check in each case that we can modify � and � respecting (13)
such that this obstruction vanishes. This proves (d).

For (e) we check, with the same argument as above, that � has 0 or 4 (resp. 0
or 2 in case S) fixed points. Checking case by case one finds that yZ! P is totally
ramified over f0; 1; t;1g. Hence g. yZ/D yN � 1. The Riemann-Hurwitz formula
implies that � does not have fixed points on yZ, hence also not on Z in cases O,
OE, and DE. The number of fixed points of � in case S may be checked directly
by counting fixed points of � on yZ. �

Let Z� be the conjugate of Z under � . Define Y as the normalization of
Z� yZZ

� . As remarked above, the definition of yN implies that yZ!P is the largest
subcover of Z! P such that � lifts to yZ. In other words, Y ! yP WD P=h�; �i

is the Galois closure of Z! yP . This implies that Y is connected. The particular
choice of yN is used precisely to guarantee that the Veech surfaces constructed in
Theorem 6.2 are connected.

By construction, � lifts to Z acting on both Z and Z� and � lifts to Z by
exchanging the two factors of the fiber product. These two involutions commute
and � WD �� also has order 2. We have defined the following coverings. The
labels indicate the Galois group of the morphism with the notation introduced in
the following lemma.

Y
h 2i

~~

h 
yN
1
 �1
2
i

  
Z

h'
yN
1
i ��

Z�

h'
yN
2
i~~

yZ

h'1 mod yN iDh'2 mod yN i
��
P

h�;�i

��
yP
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LEMMA 6.5. (a) We may choose a generator '2 of Aut.Z�=P / such that the
Galois group, G0, of Y=P is

G0 Š f.'
i
1; '

j
2 /; i; j;2 Z=NZ; i � j mod yN g � h'1i � h'2i Š .Z=NZ/2:

We fix generators  1 D .'1; '2/ and  2 D .0; '
yN
2 / of G0. The Galois group,

G, of the covering Y= yP is generated by  1;  2; �; � , satisfying

 N1 D  
ˇ
2 D �

2
D �2 D 1; Œ 1;  2�D Œ�; ��D 1;

� i� D  
�1
i .i D 1; 2/; � 1� D  

˛
1 ; and � 2� D  

˛N
1  �˛2 .D .'˛N1 ; 0//:

(b) The genus of Y is g.Y /D 1CNˇ�2ˇ, where ˇD 
=2 in case DE and ˇD 

in the other cases.

(c) The number of fixed points of � on Y is 4m in case O and OE (resp. 2m in
case DE and S).

(d) The number of fixed points of � on Y is 4n in case O and OE (resp. 2n in case
DE and S).

(e) The involution � has no fixed points on Y .

Proof. The presentation in (a) follows from the above construction. To prove (b),
we remark that Z� is given by the equation

QzN D xa4.x� 1/a3.x� t /a2 ;

compare to (9). Recall that yZ! P is totally ramified over f0; 1; t;1g. Hence at
each of the 
1=
 points (resp. 
1=2
 in case S) over 0 and 1 in Z the map Z! yZ
is branched of order 
2=
1 (resp. 2
2=
1 in case S and 
2=2
1 in case DE). The
other covering Z� ! yZ is branched at the corresponding 
1=
 (resp. 
1=2
 in
case S) points of order 
2=
2 (resp. 2
2=
2 in case S and 
2=2
2 in case DE).
Over t and1 instead of 0 and 1 the roles of 
1 and 
2 are interchanged.

It follows from Abhyankar’s lemma that Y ! yZ is ramified in all cases at
each point over 0; 1; t;1 of order ˇ. Hence these fibers of Y ! P consist of ˇ
points in each case.

For (c), (d), and (e) note that Z! P is unramified over the fixed points of
� , � , and �. Hence Y is indeed the fiber product in neighborhoods of these points.
Since � interchanges the two factors, exactly ˇ of the ˇ2 preimages in Y of a fixed
point of � on Z will be fixed by the lift of � to Y . This completes the proof of (c).

For (d) note that id� � W Z � yZ Z
� ! Z � yZ Z

� is an isomorphism and we
may now argue as in (c).

If � has a fixed point on Y it has a fixed point on Z. This implies (e) for cases
O, OE and DE. In case S we argue as in the proof of Lemma 6.4, and conclude
that � has zero or two fixed points in Y above each fixed point in yZ. We deduce
the claim from the Riemann-Hurwitz formula applied to Y ! Y=H . �
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COROLLARY 6.6. The genus of X D Y=H is

g.X/D

8̂<̂
:
.mn�m�n� 
/=2C 1 in cases O and OE;

.mn�m�n� 
/=4C 1 in case DE;

.mn�m�n� 2
/=4C 1 in case S:

Notation 6.7. Until now we have been working on the geometric generic fiber
of g W Y! P�, etc. Let � W C ! P� be the unramified cover obtained by adjoining
the elements c and d defined in (8) to C.t/. Then H D h�; �i is a subgroup of
Aut.YC /. Passing to a further unramified cover, if necessary, we may suppose that
the VHS of the pullback family hC W YC ! C is unipotent. We write x� W xC ! P1t
for the corresponding (branched) cover of complete curves. Then hC extends to a
family hC W xYC ! xC of stable curves over this base curve.

The following lemma describes the action of H on the degenerate fibers of hC .

LEMMA 6.8. Let c 2 xC be a point with �.c/ 2 f0; 1g. The quotient Xc WD

.YC /c=H is smooth and

g.Xc/D

8̂<̂
:
.mn�m�n� 
/=2C 1 cases O and OE;

.mn�m�n� 
/=4C 1 case DE;

.mn�m�n� 2
/=4C 1 case S:

Proof. Choose c 2 ��1.0/. The case that c 2 ��1.1/ is similar, and left to the
reader. By Proposition 4.5 the fiber .ZC /c consists of two irreducible components
which we call Z10 and Z20 ; we make the convention that the fixed points x D 0; t of
'1 on ZC specialize to Z10 . Choosing suitable coordinates, the curve Z10 is given
by

(14) zN0 D x
a1
0 .x0� 1/

a3 :

The components Z10 and Z20 intersect in 2m=
 points (resp. m=
 in case S). We
write P j0 for the quotient of Zj0 by h'1i Š Z=N .

We claim that the fiber .YC /c consists of 2 irreducible components Y 10 ; Y
2
0 ,

as well. Let N be the normalization of the fiber product .ZC /c �. NZC /c .ZC /
�
c .

By Abhyankar’s lemma, N! .ZC /c is étale at the preimages of the intersection
point of the two components of .PC /c . Hence N consists of two curves: the fiber
products over Zj0 =h'

yN
1 i of Zj0 with its � -conjugate, for j D 1; 2. These two curves

intersect transversally in 2mˇ=
 (resp. mˇ=
 in case S) points. This implies that
N is a stable curve and indeed the fiber .YC /c .

One computes that g.Y j0 /D 1Cmnˇ=
 �mˇ=
 �ˇ in cases O, OE, and DE,
and g.Y j0 /Dmn�m=2C 1� 
 in case S. Since � acts on the points f0; 1; t;1g
as the permutation .0 t/.11/ we conclude that � fixes the components Y j0 while
� and � interchange them. Clearly, for a coordinate x0 as in (14) we have that
�.x0/D 1� x0, i.e. � fixes the points 1=2. This is a specialization of one of the
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two fixed points 1˙
p
1� t 2 P . Since, by Lemma 6.5, the automorphism � fixes

2n (n in case S) points in Y above each of these points of P it follows that � fixes
2n (resp. n) points of Y j0 with x0 D 1=2. It remains to compute the number r1 of
fixed points of � over x0 D1.

Suppose we are not in case S. Then by the Riemann-Hurwitz formula

g.Xc/D g.Y
j
0 =h�i/D .mn�m�n� 
/ˇ=2
 C 1� r1=4:

Applying the Riemann-Hurwitz formula to the quotient map Zj0 ! Z
j
0 =h�i, we

conclude that r1 � 0 mod 4. Represent the fiber of Zj0 over 1 as 'b1R, for
b D 1; : : : ; 2m=
 . As in the proof of Lemma 6.4, we conclude that r1 equals zero
or two. It follows that r1 D 0.

In case S we have

g.Xc/D .mn�m�n� 2
/=4C 1� r1=4:

and we conclude as above that r1 D 0. Genus comparison shows that the fiber
.ZC /c is smooth. �

Proof. We now prove Theorem 6.2. We have shown in Lemma 6.8 that xXc
is smooth for c 62 Su D �

�1.1/. We have to show that the VHS of f W X! C

contains a local subsystem of rank 2 which is maximal Higgs.
We decompose the VHS of g into the characters

�.i; j / W

8̂<̂
:
G0 ! C

 1 7! �iN
 2 7! .�

yN
N /

j :

We let L.i; j / � R1h�C be the local system on which G acts via �.i; j /. Local
systems with j D 0 arise as pullbacks from Z. By Lemma 4.1 the local systems
L.i; 0/ are of rank 2 if i does not divide N . Using the presentation of G one checks
that ��L.i; j /D L.�i;�j / and ��L.i; j /D L.�˛i; ˛.i � j //.

The local exponents of .L.1; 0/; !1/ at t D 0 (resp. t D 1) are .0; 1=n/ (resp.
.0; 1=m/). Therefore, the definition of x� W xC ! P1t (Notation 6.7) implies that
condition (5) is satisfied for L.1; 0/.

Consider the local system

M WD L.1; 0/˚ L.�1; 0/˚ L.�˛; ˛/˚ L.˛;�˛/

on ZC . Since H permutes the four factors of M transitively, we conclude that for
each character � of H there is a rank 2 local subsystem of M on which H acts via � .
Moreover the projection of the subsystem L WDMH to each summand is nontrivial.
Since the four summands of M are irreducible by construction, this implies that

LŠ L.1; 0/Š L.�1; 0/Š L.�˛; ˛/Š L.˛;�˛/:
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Hence L descends to X and is maximal Higgs with respect to Su. Proposition 4.2
implies that the extension of f to ��1.P1 X f1g/ is the pullback of the universal
family of curves to an unramified cover of a Teichmüller curve. �

The proof of Theorem 6.2 contains more information on the VHS of f and
on the Lyapunov exponents �.Li /. We work out the details in the most transparent
case that m and n are odd integers which are relatively prime. The interested reader
can easily work out the Lyapunov exponents in the remaining cases, too. In this
case the curves Z and Y coincide (Remark 6.3) and the local system L.i; j / is L.i/

in the notation of Lemma 4.1.
We deduce from the arguments of the proof of Theorem 6.2 that, for each i

not divisible by m or n, there is an H -invariant local system Li with

Li Š L.i/Š L.˛i/Š L.�˛i/Š L.�i/:

Since those i fall into .m�1/.n�1/=2 orbits under h˙1;˙˛i, we have the complete
description of the VHS of h. Let cj .i/D �j .i/C �3.i/� 1.

COROLLARY 6.9. Let m and n be odd integers which are relatively prime.

(a) The VHS of f splits as

R1f�CŠ
M
j2J

L.j /;

where L.j / is an irreducible rank 2 local system and j runs through a set of
representatives of

J D f0 < i < N;m − i; n − ig=�; where i ��i � ˛i ��˛i:

(b) The Lyapunov exponents are

�.L.i//D
mn� e1.i/m� e2.i/m

mn�m�n
;

where e1.i/D njc1.i/j and e2.i/Dmjc2.i/j:

Proof. This follows directly from Proposition 4.4. �

Example 6.10. We calculate the Lyapunov exponents explicitly for mD 3 and
nD 5. Then N D 2nmD 30 and hence ˛ D 19. We need to calculate the �.L.i//
only up to the relation ‘�’ and hence expect at most four different values. One
checks:

�.L.i//D

8̂̂<̂
:̂
7=7 if i � 1;

4=7 if i � 2;

2=7 if i � 4;

1=7 if i � 7:

In particular, we see that in general the �.L.i// do not form an arithmetic progres-
sion as one might have guessed from studying Veech’s n-gons.
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Remark 6.11. Note that K WDQ.cos.�=n/; cos.�=m// is the trace field of the
�.m; n;1/-triangle group. Hence r D ŒK W Q� � �.mn/=4 � .m� 1/.n� 1/=4.
Here again the decomposition of the VHS is finer than predicted by Theorem 2.1;
cf. the remark after Corollary 5.3.

Let X be any fiber of f . We denote by !X 2 �.X;�1X / a generating dif-
ferential, i.e., a holomorphic differential that generates .1; 0/-part of the maximal
Higgs local system when restricted to the fiber X . This condition determines !X
uniquely up to scalar multiples.

THEOREM 6.12. Suppose m ¤ n. Then the projective affine group of the
translation surface .X; !X /

(a) is the .m; n;1/-triangle group if at least one of m and n is odd (i.e. in the
cases O and OE);

(b) contains a subgroup of index 2 in the .m; n;1/-triangle group in the case DE
and S.

(c) If mD n is odd, then projective affine group of the translation surface .X; !X /
equals the .m;m;1/-triangle group or equals a triangle group that contains
the .m;m;1/-triangle group as a subgroup of index 2.

Hooper has shown in [13] that this result is close to optimal concerning the
realization of triangle groups: he shows that the triangle groups �.m; n;1/ in
case S and in case DE with � D 1 cannot occur as projective affine groups.

Proof. We first determine when the projective affine group of .X; !X / con-
tains the triangle group �.m; n;1/. As in the proof of Proposition 5.7, we take
two fibers Yp and Y Qp with �.p/ D �. Qp/. We need to show the existence of an
isomorphism Yp! Y Qp which is equivariant with respect to H . By construction
of � and � , it suffices to find i0 W Zp! Z Qp which is equivariant with respect to �
and '1, and such that the induced isomorphismbi0 WbZp!bZ Qp is equivariant with
respect to � .

Since �.p/ D �. Qp/, the map .x; z/ 7! .x; z/ defines an isomorphism i W

Zp! Z Qp. We try i0 WD '
j
1 ı i , for a suitably chosen j . Then i0 is automatically

'1-equivariant. Let �1 (resp. �2) denote the maps from C to the intermediate cover
given by sn1 D t (resp. sm2 D .t�1/). By hypothesis we have �1.p/D �

e1
n �1. Qp/ and

�2.p/D �
e2
m �2. Qp/ for some integers e1, e2, where �m WD �

N=m
N (resp. �n WD �

N=n
N )

is a primitive m-th (resp. n-th) root of unity. By the definition of e1 and e2 we have

i.s1/D �
e1
n s1 D �

e1N=n
N and i.s2/D �

e2
m D �

e2N=m
N s2:

We conclude that

� ıbi D 'k1 ıbi ı �; and � ı i D '
e1N=nCe2N=m
1 ı i ı �;
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with

k �

8̂<̂
:
e12m=
 mod yN in cases O and OE;

e1m=
 mod yN=2 in case DE;

e1m=
 mod yN in case S:

Recall that '1. Nz/D �
N= yN
N Nz.

The equivariance properties for i0 D '
j
1 ı i together with the conjugation

formulas in (10) impose the two conditions on j :

j.˛� 1/C k � 0 mod yN and � 2j C e1N=nC e2N=m� 0 mod N:

Recall that yN D 2ım0n0=.
 0/2 with gcd.m0=
 0; n0
 0/D 1. We start by solving
these congruences modulo m0=
 0 and n0=
 0. Modulo m0=
 0 the first condition is
trivial and the second condition is solvable. Modulo n0=
 0 both conditions are
identical and solvable.

It remains to solve the conditions modulo 2ı . In case O and OE the first
condition is trivial modulo 2ı and the second condition is solvable modulo 2ı .
In case DE the first condition is solvable if and only if e1 is even. The second
condition is solvable. In case S the first condition is trivial, since yN is odd. The
second condition becomes

�2j C e1m=
 C e2n=
 � 0 mod 2� :

This condition is solvable if and only if e1C e2 is even, since m=
 and n=
 are
both odd.

So far we have shown that in the cases O and OE the projective affine group
contains �.m; n;1/ and in the cases S and DE it contains an index 2 subgroup.

To see that the projective affine group is not larger than �.m; n;1/ in the
cases O and OE, we note that a larger projective affine group is again a triangle
group. Singerman ([33]) shows that any inclusion of triangle groups is a composi-
tion of inclusions in a finite list. Only the cases where mD n fit into his list. This
proves (a) and the second part of the theorem. �

We determine the basic geometric invariant of the Teichmüller curves con-
structed in Theorem 6.2.

THEOREM 6.13. In cases S and DE the generating differential !X has 
=2
zeros and in the cases O and OE the generating differential !X has 
 zeros.

Proof. We only treat the cases O and OE. The cases S and DE are similar. We
calculate the zeros of the pullback !Y of !X to the corresponding fiber Y of Y. The
differential !i on Z has zeros of order a1.i/
=
1� 1 (resp. a2.i/
=
1� 1) at the

1=
 points over 0 (resp. 1). It has zeros of order a3.i/
=
2�1 (resp. a4.i/
=
2�1)
at the 
2=
 points over t (resp.1). Therefore, the pullback of !i to Y has zeros
of order a�.i/� 1 at the 
 preimages of � D 0; 1; t;1. The differential !Y is
a linear combination with nonzero coefficients of !1, !�1, and two differentials
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that are pulled back from Z� . The vanishing orders of these differentials on Z�

are obtained from those of !1 and !�1 on Z by replacing a1 by a4, a2 by a3, and
conversely. Since the a� are pairwise distinct, we conclude that !Y vanishes at the
(in total) 4
 preimages of f0; 1; t;1g of order minfa1; a2; a3; a4g � 1 D a4 � 1.
Since !Y vanishes also at the 4mC4n ramification points of Y !X we deduce that
it vanishes there to first order and nowhere else. The 4
 zeros at the nonramification
points yield the 
 zeros of !X . �

6.1. Comparison with Ward’s results. In this section we compute an explicit
equation for one particular fiber of the family Nf D Nf .m; n/ W X! xC . This fiber,
Xc , is chosen such that Xc is a cyclic cover of a projective line. This result is used
in Section 8 to realize Xc via unfolding a billiard table, for small m. In this section
we show moreover that for mD 3, the family Nf W X! xC coincides with the family
of curves constructed by Ward [38].

The assumptions on m and n in the following theorem are not necessary. We
include them to avoid case distinctions. The reader can easily work out the corre-
sponding statement in the general situation, as well. We use the same notation as
in the rest of this section. In particular, x� W xC ! P1t denotes the natural projection
of xC to the t -line defined in Notation 6.7. One may of course interchange the role
of m and n in the theorem. In that case one should consider the fiber of X in a
point of xC above t D 1, instead.

THEOREM 6.14. Suppose that m and n are relatively prime and n is odd.
Then a fiber of Nf W xX ! xC over a point of x��1.0/ is a 2n-cyclic cover of the
projective line branched at .mC 3/=2 points if m is odd and .mC 4/=2 points if m
is even.
(a) For m odd this cover is given by the equation

X0 W y2n D .u� 2/

.m�1/=2Y
kD1

�
u� 2 cos

�
2k�

m

��2
:

The generating differential of the Teichmüller curve is

!0 D
y du

.u� 2/
Q.m�1/=2

kD1
.u� 2 cos.2k�=m//

:

(b) For m even this cover is given by the equation

X0 W y2n D .u� 2/n
m=2Y
kD1

�
u� 2 cos

�
.2k� 1/�

m

��2
:

The generating differential of the Teichmüller curve is

!0 D
y du

.u� 2/
Qm=2

kD1
.u� 2 cos..2k� 1/�=m//

:

(c) For mD 3 the surface .X0; !0/ is the translation surface found by Ward.
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Proof. Our simplifying assumptions imply that 
 D 1 and Z Š Y (Remark
6.3). Let c be a point of xC with x�.c/ D 0. Then the fiber Yc of Y consists of
two isomorphic irreducible components, Y j0 , given by the affine equation yN D
xa1.x � 1/a3 . Note that Y 10 ! P1x is branched at x D1 of order m. The fiber
X0 WD Xc of X is the quotient of Y 10 by �.

From the presentation of G (Lemma 6.5) we deduce that 'k1 commutes with
� if and only if k is a multiple of m. We denote by A the abelian subgroup of
Aut.Y 10 / generated by � and 'm1 . One computes that the quotient of Y 10 by h'm1 i
has genus zero. We denote this quotient by P1z . Here z is a parameter on P1z such
that P1z! P1x is given by

zm D

�
x� 1

x

�n
:

Let P1u be the quotient of Y 10 by A. The subscript u denotes a coordinate which is
defined below. We obtain the following diagram of covers

Y 10
h'm1 i

p2 ��

h�i

p1��
X0

q1 ��

P1z

q2��

h'1 mod mi

  
P1u P1x :

Suppose thatm is odd. After replacing y by z.nC1/=2=y, we find that Y 10 !P1z
is given by

(15) y2n D
.zm� 1/2

zm
:

Here we use that n is odd. Recall that � 2 Aut.P1x/ is given by �.x/D 1� x. It
follows from Lemma 6.4 that � lifts to an automorphism of order 2 of P1z which
has one fixed point in the fiber above x D 1=2. Without loss of generality, we may
assume that �.z/D 1=z. Therefore, u WD zC 1=z is an invariant of � and it is a
parameter on P1u. We find an equation for X0 by rewriting (15) in terms of y and
u. Noting that

u� .�imC �
�i
m /D

.z� �im/.z� �
�i
m /

z
;

we find the equation in (a). The differential form !0 in (a) is a holomorphic differ-
ential form with a zero only in uD 0. Therefore Theorem 6.13 implies that !0 is
a generating differential form.

Specializing to mD 3, we find the equation found by Ward ([38, �5]). This
proves (c).
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Suppose now that m is even. After replacing y by zm=2=y, we find that
Y 10 ! P1x is given by

y2n D
.zm� 1/2

zmCn
:

In this case the automorphism � of P1x lifts to an automorphism of P1z with two
fixed points in the fiber above xD 1=2. Without loss of generality, we may suppose
that �.z/ D �m=z. Therefore, u WD ��12mzC �2m=z is an invariant of � which we
regard as parameter on P1u. Here �2m is a square root of �m. One computes that

u� .�2i�12m C ��2iC12m /D ��12m
.z� �im/.z� �

1�i
m /

z
; and u� 2D ��12m

.z� �2m/
2

z
:

After replacing y by c.z��2m/=y for a suitable root of unity c, we find the equation
for X0 which is stated in (b). The expression for !0 follows as in the proof of (a).

�

7. Primitivity

A translation covering is a covering q WX ! Y between translation surfaces
.X; !X / and .Y; !Y / such that !X D q�!Y . A translation surface .X; !X / is called
geometrically primitive if it does not admit a translation covering to a surface Y
with g.Y / < g.X/.

A Veech surface .X; !/ is called algebraically primitive if the degree r of
the trace field extension over Q equals g.X/. Algebraic primitivity implies geo-
metric primitivity, but the converse does not hold ([28]). In [loc. cit., Th. 2.6] it is
shown that a translation surface of genus greater than one covers a unique primitive
translation surface.

Obviously the Veech examples (p WU! zC in the notation of Theorem 5.5)
for nD 2` and ` prime and those for .2; n;1/ (cf. Remark 5.9) are algebraically
primitive. We will not give a complete case by case discussion of primitivity of the
.m; n;1/-Teichmüller curves, but restrict to the case that m and n are odd and rel-
atively prime. Comparing the degree of the trace field ŒQ.�mC ��1m ; �nC �

�1
n / WQ�

D r � �.m/�.n/=4 with the genus (Corollary 6.6), we deduce that the fibers of
X! C are never algebraically primitive. Nevertheless, we show that there are
infinitely many geometrically primitive ones.

THEOREM 7.1. Let m and n be distinct odd primes. Then the Veech surfaces
arising from the .m; n;1/-Teichmüller curve f W X! C of Theorem 6.2 are geo-
metrically primitive.

Proof. Let .X; !X / be such a Veech surface and suppose there is a translation
covering q W X ! Y . Then g.Y / � r , by [28, Th. 2.6]. Theorem 6.13 implies
that the generating differential has only one zero on Xc . Therefore the cover q
is totally ramified at this zero, and nowhere else. This contradicts the Riemann-
Hurwitz formula. Namely, a degree two cover cannot be branched in exactly one
point. If the degree d of q is larger than 2, we obtain a contradiction with g.Y /� r .

�
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Remark 7.2. At the time of writing the authors are aware of the following
series of examples of Teichmüller curves: the triangle constructions in [35] and
[38] and the Weierstrass eigenform or Prym eigenform constructions in [24] and
[25]. Besides them there is a finite number of sporadic examples.

COROLLARY 7.3. The Veech surfaces arising from the case .m; n;1/ with
m and n sufficiently large distinct primes are not translation covered by any of the
Veech surfaces listed is Remark 7.2.

Proof. Recall that translation coverings between Veech surfaces preserve the
affine group up to commensurability. In particular, they preserve the trace field.

Choose m and n sufficiently large such that the trace field K of the .m; n;1/-
triangle group is none of the trace fields occurring in the sporadic examples and
such that the genus of the Veech surface is larger than 5. This implies that the
surface cannot be one of examples in [24] and [25]. There is only a finite list of
arithmetic triangle groups ([34]). We choosem>3 and n>5 such thatK is not one
of the trace fields in this finite list. Nonarithmetic lattices have a unique maximal
element ([21]) in its commensurability class and the .m; n;1/-triangle groups are
the maximal elements in their classes. Since the .2; n;1/- and .3; n;1/-triangle
groups are the maximal elements in the commensurability classes of the examples
of [35] and [38], these examples cannot be a translation cover of the examples
given by Theorem 6.2 for .m; n/ chosen as above. �

Remark 7.4. Even in the cases that the Veech surfaces with affine group
�.m; n;1/ are geometrically primitive, Theorem 2.6 of [28] does not exclude
that there are other primitive Veech surfaces with the same affine group. Such
examples are provided by Theorem 3’ of [14] for nD1. By Remark 3.3 we know
a rank 2r subvariation of Hodge structures of the family of curves generated by
such a Veech surface. In particular, we know r of the Lyapunov exponents �.Li /.

8. Billiards

In this section we approach Teichmüller curves uniformized by triangle groups
in the way Veech and Ward did in [35] and [38]. We start by presenting two series
of billiard tables T .m; n;1/, formD 4; 5. These tables are (rational) 4-gons in the
complex plane. We show that the affine group of the translation surface X.m; n;1/
attached to T .m; n;1/ is the .m; n;1/-triangle group, for m D 4; 5. This part
is independent of the previous sections, and requires only elementary notions of
translation surfaces (see [23] or �2). The proof we give that these billiard tables
define Teichmüller curves is combinatorially more complicated than the analogous
proof for the series of Teichmüller curves found by Veech and Ward. This suggests
that it would have been difficult to find these billiards by a systematic search among
4-gons.

In Section 8.3 we relate these explicitly constructed billiard tables to our main
realization result (Theorem 6.2). Denote by f D f .m; n/ W X! C the family
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of curves constructed in Section 6. This family defines a finite map from C to
Mg , for a suitable integer g � 2. The image of this map is a Teichmüller curve
whose (projective) affine group is the .m; n;1/-triangle group. We have shown
in Theorem 6.14 that a suitable fiber Xc of X is a 2n-cyclic cover of the projective
line which we described explicitly. In this situation, one may use a result of Ward
to find the corresponding billiard table T Œm; n;1�. We show that T Œm; n;1� may
be embedded in the complex plane (i.e., without self-crossings) if and only if m� 5.
For mD 2; 3 we find back the billiard tables found by Veech and Ward. We show
that the tables we obtain for mD 4; 5 are the ones we have already constructed.

Consider a compact polygon P � R2 Š C in the plane whose interior angles
are rational multiples of � . The linear parts of reflections along the sides of the
polygon generate a finite subgroup G �O2.R/. If s is a side of P we write �s for
the linear part of the reflection in the side s. One checks that for sides s and t of
P we have ��s.t/ D �s�t�s:

We define an equivalence relation on G as follows. We write �1 � �2 if the
reflected polygons �1.P / and �2.P / differ by a translation in C. Let G0 � G
represent the equivalence classes of this relation. By gluing copies of P we obtain
a compact Riemann surface

X D

0@ a
g2G0

gP

1A =�;
where � denotes the following identification of edges: if gP is obtained from QgP
by a reflection � along a side s of QgP , then s is glued to the edge �.s/ of gP by
a translation.

The holomorphic 1-form dz on P and its copies are translation invariant,
hence define a 1-form ! on X . We say that the translation surface .X; !/ is
obtained by unfolding P . The trajectories of a billiard ball on P correspond to
straight lines on X . In [24] X is called the small surface attached to P . The
translation surface has a finite number of points where the total angle exceeds 2� .
These are called singular points. They correspond to the zeros of !.

8.1. The tables T .5; n;1/. Let n� 7 be an odd integer which is not divisible
by 5. We define a billiard table T .5; n;1/ as follows (Figure 1). The billiard table
T .5; n;1/ is a 4-gon in the complex plane with angles ˛DˇD�=n and 
D�=2n,
as indicated in the picture. We denote by I1; : : : ; I4 the vectors corresponding to
the sides of the polygon which we regard as complex numbers. We rotate and scale
the billiard table such that I4 D 1 and

jRe.I3/j D cos.�=n/C cos.�=5/:

In particular, I4 points in the direction of the positive x-axis. This determines the
table uniquely.
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a
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g d

I1

I
2

I
3

I
4

Figure 1. Billiard table T .5; n;1/, for nD 9

We now construct the translation surface obtained by unfolding the table
T .5; n;1/ (Figure 2). Reflecting the billiard table 2n times in the (images of
the) sides I2 and I3 yields the upper star; it consists of alternating long and short
points. The second star is obtained by reflecting the first star in the side I4 of the
billiard table (this is the side marked by 15 in Figure 2). The two stars can be glued
together to a translation surface X WDX.5; n;1/: sides denoted by the same letters
or numbers are glued by translations. Note that the tips of the ‘long points’ (resp.
the ‘short points’) of the stars correspond to one point of the translation surface X ;
both points of X are not singularities, since the total angle is 2� . There is one
singularity; it corresponds to the angle ı. The genus of X is g D 2.n� 1/.

THEOREM 8.1. Let n� 7 be odd and not divisible by 5. Then the affine group
of X.5; n;1/ contains the elements

RD

�
cos.�=n/ � sin.�=n/
sin.�=n/ cos.�=n/

�
and T D

 
1 2 cos.�=n/Ccos.�=5/

sin.�=n/
0 1

!
:

The elements R; T 2 PSL2.R/ generate the Fuchsian triangle group �.5; n;1/.
In particular, X.5; n;1/ is a Veech surface.

Proof. Rotation around the center of the stars defines an affine diffeomorphism
of the surface X.5; n;1/. Its derivative is R.

We rotate X.5; n;1/ as in Figure 1 and Figure 2, i.e., such that the edge I4
resp. the one with label 15 is horizontal and to the left of the center of the star.

We now consider the horizontal foliation defined by !. Recall that a saddle
connection is a leaf of the foliation that begins and ends in a singularity. In a dense
set of directions, the saddle connections divide X into metric cylinders, see for
example [23, �4.1]. We claim that, in the horizontal direction, X decomposes into
gD 2.n�1/ metric cylinders. We distinguish two types of cylinders. Each cylinder
corresponds to one shading style in Figure 2.

The cylinders of type 1, denoted by Ci , are those that are glued together from
pieces from both stars. An example is the checkered cylinder. Since the second
star is obtained from the first by reflection, the cylinders Ci appear in pairs, as can
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Figure 2. Cylinder decomposition of X.5; 9;1/

be seen from Figure 2. There is a bijection between the cylinders of type 1 and
pairs of long points. For example, the checkered cylinder corresponds to the long
points 17-18 and 5-6. Here a ‘pair’ consists of an orbit of length twp of long points
under the reflection in the vertical axis. The two vertical long points correspond
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to orbits of length one, and hence do not correspond to a cylinder of type 1. We
conclude that the number of cylinders of type 1 is n� 1.

The cylinders of type 2, denoted by zCi , are those consisting of pieces of one
star. An example is the black cylinder. These cylinders also come in pairs. There
is a bijection between cylinders of type 2 and pairs of short points. Therefore the
number of cylinders of type 2 is also n� 1.

The width and the height of a pair of cylinders of type 1, for an appropriate
numbering, is given by

wk D 2jI3j cos
.n� 2k/�

2n
and(16)

hk D jI4j

�
sin

.nC 1� 2k/�

2n
� sin

.n� 1� 2k/�

2n

�
D 2jI4j sin

�

2n
cos

.n� 2k/�

2n

for k D 1; : : : ; .n� 1/=2. This is seen by cutting the points of the stars into pieces,
and translating these pieces so that one obtains 2.n� 1/ connected cylinders, one
for each shading style. One then uses the rotation and reflection symmetries of the
original star.

Similarly, the widths and heights of pairs of cylinders zCi , for an appropriate
numbering, are given by

zwk D 2jI2j cos
.n� 2k/�

2n
and(17)

Qhk D jI1j

�
sin

.nC 2� 2k/�

2n
� sin

.n� 2� 2k/�

2n

�
D 2jI1j sin

2�

2n
cos

.n� 2k/�

2n

for k D 1; : : : ; .n� 1/=2.
The moduli of these cylinders are

mk WD hk=wk D jI4j sin
�

2n
=jI3j and zmk WD Qhk= zwk D jI1j sin

2�

2n
=jI2j:

Note that mk and zmk are independent of k.
We claim thatmk= zmkDjI4jjI2j sin.�=n/=jI3jjI1j sin.�=2n/D 1, that is that

the moduli of all the cylinders are identical. This is equivalent to

(18)
jI2j

jI1j
D
jI3j

jI4j

sin.�=n/
sin.�=2n/

:

Since we assumed that I4 D 1, the right-hand side is equal to 2jRe.I3/j.
Using the geometry of the billiard table one shows that

jI2j cos.3�=2n/� jI1j cos.5�=2n/D jRe.I3/j � jI4j D jRe.I3/j � 1;

jI2j sin.3�=2n/� jI1j sin.5�=2n/D Im.I3/D Re.I3/ tan.�=2n/:
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This implies that

(19)
jI2j

jI1j
D
�.Re.I3/� 1/ sin.5�=n/CRe.I3/ tan.�=2n/ cos.5�=n/
�.Re.I3/� 1/ sin.3�=n/CRe.I3/ tan.�=2n/ cos.3�=n/

:

The minimal polynomial of Re.I3/ over Q.cos.�=n// is

(20) X2� .2 cos.�=n/C 1=2/X C .cos2.�=n/C cos.�=n/=2� 1=4/:

One deduces (18) from (19), (20), and the addition laws for sines and cosines.
From the claim (18), we deduce that T is contained in the affine group of X .

Namely, fixing the horizontal lines and postcomposing local charts of the cylinders
by T defines an affine diffeomorphism whose derivative is T (cf. [35, Prop. 2.4]
or [24, Lemma 9.7]).

It remains to prove that R and T generate the .5; n;1/-triangle group. One
constructs the hyperbolic triangle in the extended upper half-plane with corners
i1; i , and

z0 D
cos.�=n/C cos.�=5/

sin.�=n/
C i

sin.�=5/
sin.�=n/

bounded by the vertical axes through i and z0 and the circle around cot.�=n/ with
radius 1= sin.�=n/. The interior angles at i and z0 are indeed �=n and �=5. By
Poincaré’s theorem this triangle plus its reflection along the imaginary axis is a
fundamental domain for the group generated by R and T .

The last claim follows now from the standard criterion to detect Teichmüller
curves; see e.g., [24, Cor. 3.3]. �

Remark 8.2. Assuming the comparison results which will be proved in Sec-
tion 8.3 below, the number of cylinders in, say, the horizontal direction is already
determined by results of the previous sections.

Consider the family of translation surfaces diag.et ; e�t / � .X0; !0/, where
.X0; !0/ is as in Theorem 6.14. This family converges for t !1 to a singular
fiber of Nf W xX! xC and by [22] the number of cylinders in the horizontal direction
equals the number of singularities of the singular fiber X1.

Since all the local systems Li as in the proof of Theorem 6.2 have nontrivial
parabolic monodromy around points in x��1.1/, the arithmetic genus of X1 is
zero. Since !0 has only one zero, X1 is irreducible and hence the number of
singularities of the fiber X1 equals g.X1/.

8.2. The tables T .4; n;1/. Let n � 5 be odd. We define a billiard table
T .4; n;1/ as follows. The billiard table is again a 4-gon in the complex plane
with angles ˛ D �=2 and ˇ D 
 D �=n, as indicated in Figure 3. We denote by
I1; : : : ; I4 the vectors corresponding to the sides of the polygon. We regard these
vectors as complex numbers. We scale and rotate the billiard table such that I4 D 1
and such that jI3j D 2.cos.�=n/C cos.�=4//: This determines the table uniquely.

The translation surface X WDX.4; n;1/, obtained by unfolding T .4; n;1/,
looks similar to the one obtained from T .5; n;1/. It can be obtained by identifying
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Figure 3. Billiard table T .4; n;1/, for nD 9

Figure 4. Billiard table T .4; 9;1/, partially unfolded

parallel sides of two stars. The first star is illustrated in Figure 4. The second star is
obtained from the first by reflection in the horizontal axis. The translation surface
X.4; n;1/ has one singularity which corresponds to the vertex of the billiard table
with angle ı. Its genus is g D 3.n� 1/=2.

THEOREM 8.3. Let n � 5 be odd. Then the affine group of X.4; n;1/ con-
tains the elements

RD

�
cos.�=n/ � sin.�=n/
sin.�=n/ cos.�=n/

�
and T D

 
1 2 cos.�=n/Ccos.�=4/

sin.�=n/
0 1

!
:

The elements R; T 2 PSL2.R/ generate the Fuchsian triangle group �.4; n;1/.
In particular, X.4; 9;1/ is a Veech surface.

Proof. Rotation around the center of each of the stars defines an affine diffeo-
morphism of X.4; n;1/ whose derivative is R, as in the case .5; n;1/.

We describe the cylinders in the horizontal direction. As for X.5; n;1/, we
distinguish two types of cylinders. The cylinders of type 1, denoted by Ci , are
those that are glued together from pieces of both stars. They correspond to pairs of
sides which connect two points. Here a pair of sides consists of two distinct sides
which are interchanged by reflection in the vertical axis. There are .n� 1/=2 such
cylinders. The widths and heights of these cylinders, in an appropriate numbering,
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are given by

wk D 4jI2j cos
�
.n� 2k/�

2n

�
and hk D 2jI1j sin

�
k�

n

�
; kD 1; : : : ; .n�1/=2:

There are two cylinders with the same width and height, due to the symmetry.
The cylinders of type 2, denoted by zCi , are those that consist of pieces of one

star only. They correspond to pairs of points of the stars. Here we use the same
convention for pairs as above. The number of such cylinders is also .n� 1/=2. The
widths and heights of these cylinders are

zwk D 2jI3j cos
�
.n� 2kC 2/�

2n

�
and

Qhk D 2jI4j cos
�
.n� 2kC 2/�

2n

�
sin
��
n

�
; k D 1; : : : ; .n� 1/=2:

The moduli of the cylinders are

mk WD hk=wk D jI1j=2jI2j and zmk D Qhk= zwk D jI4j sin
�

n
=jI3j:

As in the proof of Theorem 8.1, one checks that

mk= zmk D jI1jjI3j=2jI2jjI4j sin .�=n/D 1;

by using the geometry of the billiard table and the minimal polynomial of 2.cos.�=n/
C cos.�=4// over Q.cos.�=n//. The rest of the proof is analogous to the proof of
Theorem 8.1. �

8.3. Comparison with Theorems 6.2 and 6.14. In this section we relate the
billiard tables constructed in Sections 8.1 and 8.2 to the families of curves con-
structed in Section 6. For simplicity we suppose that 1 < m < n are relatively
prime integers such that n is odd. This assumption avoids a case distinction. It is
easy to work out the general statement.

In Theorem 6.2 we constructed a Teichmüller curve with projective affine
group �.m; n;1/. We constructed a concrete finite cover, C , of this Teichmüller
curve. We denote by xC the corresponding projective curve. Over xC there exists
a universal family f W xX! xC of semistable curves. In Theorem 6.14 we showed
that there exist points c of xC such that the fiber X0 WD Xc is a smooth curve which
is a 2n-cyclic cover of the projective line branched at .mC 3/=2 (resp. .mC 4/=2)
points if m is odd (resp. even). There also exist fibers of X which are 2m-cyclic
covers of the projective line branched at .nC3/=2, but we do not regard these here
since it is convenient to have as few branch points as possible, for our purposes.
One may check that this is the most efficient way to represent a fiber of X as an
abelian cover of the projective line. This representation allows us to use Schwarz-
Christoffel maps ([38, Th. C0]) to represent the fiber X0 of X as the unfolding of a
billiard table, under certain conditions (see below).
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We first suppose that m is odd. The 2n-cyclic cover X0! P1u of Theorem
6.14(a) is branched at the real points 2 cos.2k�=m/. The Schwarz-Christoffel map
is defined as

SC.w/D
Z w

0

.u� 2/
1
2n
�1

.m�1/=2Y
kD1

.u� 2 cos.2k�=m//
1
n
�1 du:

The integrand is the generating differential form !0.
The Schwarz-Christoffel map maps the real axis to a .mC 3/=2-gon which

we denote by T Œm; n;1�. If T Œm; n;1� has no self-crossings then SC maps the
upper half-plane bijectively to the interior of this .mC 3/=2-gon. The interior
angles of T Œm; n;1� are .m� 1/=2 times �=n and once �=2n, in this order. The
remaining angle is 2��m�=2n mod 2� (resp. ��m�=2n) if m� 1 mod 4 (resp.
m� 3 mod 4). The number of self-crossings is therefore .m�5/=4 ifm� 1 mod 4
and .m� 3/=4 if m � 3 mod 4. In particular, this number is zero if and only if
m D 3; 5. For m � 7 it is therefore unclear whether one can obtain .X0; !0/ by
unfolding a billiard table. However, it follows from our results that one cannot
do this via the usual theory of Schwarz-Christoffel maps. Namely, for m� 7 one
cannot represent a smooth fiber of xX as a cyclic cover of the projective line, such
that the corresponding polygon does not have self-crossings.

If mD 3 or 5, Theorem C0 of [38] implies that the Veech surface .X0; !0/ is
obtained by unfolding the billiard table T Œm; n;1�. For mD 3, we obtain Ward’s
family (cf. Theorem 6.14(c)). For mD 5, the angles of the 4-gon T Œ5; n;1� coin-
cide with those of the billiard table T .5; n;1/ which we constructed in Section 8.1.
We show below that both 4-gons are similar.

The case that m even is analogous. The Schwarz-Christoffel map

SC.w/D
Z w

0

.u� 2/
1
2
�1

m=2Y
kD1

.u� 2 cos..2k� 1/�=2m//
1
n
�1 du

maps the real axis to a .mC 4/=2-gon T Œm; n;1�.
The interior angles of T Œm; n;1� are once �=2 and m=2 times �=n, in this

order. The remaining angle is .3n�m/�=2n if m� 0 mod 4 and ..n�m/�=.2n/
if m � 2 mod 4. We conclude that the number of self-crossings is .m � 4/=4
(resp. .m � 2/=4) if m � 0 mod 4 (resp. m � 2 mod 4). Therefore the number
of self-crossings is zero if and only if mD 2; 4. The case mD 2 corresponds to
Veech’s family [35] (see �5). We show below that the case mD 4 corresponds to
the billiards constructed in Section 8.2.

We leave it to the reader to use Theorem 6.2 and the techniques of Theo-
rem 6.14 to construct billiard tables with projective affine group �.4; n;1/ and
�.5; n;1/ also in the case that n is even or divisible by 5, or both.

PROPOSITION 8.4. Let m be either 4 or 5. The billiard table T Œm; n;1� is
similar to the billiard table T .m; n;1/.
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Proof. Suppose that m D 5. The case that m D 4 is similar, and left to the
reader.

Recall that the interior angles of the 4-gons T .5; n;1/ and T Œ5; n;1� are
the same, and also occur in the same order. Therefore we only have to compare
the lengths of the sides of T Œ5; n;1� to those of T .5;m;1/. Since the sides of
T Œ5; n;1� are expressed in terms of the Schwarz-Christoffel map, it suffices to
show that

(21)
jSC.2 cos.2�=5//�SC.2/j
jSC.1/�SC.2/j

D
jI3j

jI4j
D

cos.�=n/C cos.�=5/
cos.�=2n/

:

Here I3; I4 are the vectors corresponding to the sides of the 4-gon T Œ5; n;1� as
indicated in Figure 1.

We first express the length of the vector I4 in terms of Beta integrals:

jI4j D

Z 1
2

.u� 2/
1
2n
�1.u� 2 cos.2�=5//

1
n
�1.u� 2 cos.4�=5//

1
n
�1 du(22)

D

Z 1
1

z1�
5
2n .z5� 1/

1
n
�1.zC 1/ dz:

Here we used the substitution uD zC 1=z; cf. the proof of Theorem 6.14. Substi-
tuting z D 1=t , we recognize this integral as the sum of two Beta integrals:

(23) jI4j D
1

5

�
B
�
2

5
�
1

2n
;
1

n

�
CB

�
3

5
�
1

2n
;
1

n

��
:

Similarly, one finds that
(24)

jI3j D
1

5

��
�1C �25�

�1
2n

�
B
�
2

5
�
1

2n
;
1

n

�
C
�
�1C �35�

�1
2n

�
B
�
3

5
�
1

2n
;
1

n

��
:

Equation (21) follows from (23) and (24) by expressing the Beta integrals in terms
of Gamma functions, using that �.z/�.1 � z/ D �= sin.�z/, and applying the
addition formulas for sines and cosines. �

One may give an alternative proof for the statement that the 4-gons T Œ5; n;1�
and T .5; n;1/ are similar by showing the following. Let P be any 4-gon with the
prescribed angles, and let X be the corresponding translation surface. Suppose that
the affine group of X contains R and T . Then P is similar to T .5; n;1/. This can
be shown by first deducing from the geometry of P that an affine diffeomorphism
with derivative R has to fix each saddle connection.

Remark 8.5. Several authors ([38], [37], [16], [32]) have classified the Teich-
müller curves that are obtained by unfolding a rational triangle, under certain con-
ditions on the angles of the triangle. We have obtained the translation surfaces
X.m; n;1/ for m D 4; 5 by unfolding 4-gons. The corresponding families of
Teichmüller curves have not been found by Ward et. al. This suggests that the
translation surfaces X.m; n;1/ for m D 4; 5 may not be obtained by unfolding
triangles, but of course we have not shown this.



TEICHMÜLLER CURVES, TRIANGLE GROUPS, AND LYAPUNOV EXPONENTS 179

Remark 8.6. For n > m � 6 we have not been able to obtain the translation
surface X.m; n;1/ by unfolding a billiard table, since the corresponding polygon
T Œm; n;1� may not be embedded in the complex plane. However, it should in
principle be possible to give a concrete description of X.m; n;1/ as obtained by
gluing certain cylinders, analogous to the description in the case of mD 4; 5 (��8.1
and 8.2). As for mD 4 and 5, it follows from Corollary 6.9 that we would need
g.X0/ cylinders, which is approximately .m � 1/.n � 1/=2: it will be difficult
to visualize the result. Therefore it seems more natural to us to represent these
Teichmüller curves via the algebraic description from Section 6.

9. Lyapunov exponents

Roughly speaking, a flat normed vector bundle on a manifold with a flow, i.e.
an action of RC, can sometimes be stratified according to the growth rate of the
length of vectors under parallel transport along the flow. The growth rates are then
called Lyapunov exponents. In this section we will relate Lyapunov exponents to
degrees of some line bundles in case that the underlying manifold is a Teichmüller
curve.

For the convenience of the reader we reproduce Oseledec’s theorem ([30]) that
proves the existence of such exponents. We give a restatement due to Kontsevich
([18]) in a language closer to our setting.

9.1. Multiplicative ergodic theorem. We start with some definitions. A mea-
surable vector bundle is a bundle that can be trivialized by functions which only
need to be measurable. If .V; jj � jj/ and .V 0; jj � jj/ are normed vector bundles and
T W V ! V 0 is a linear map, then we let jjT jj WD supjjvjjD1 jjT .v/jj. A reference
for notions in ergodic theory is [7].

THEOREM 9.1 (Oseledec). Let Tt W .M; �/! .M; �/ be an ergodic flow on a
spaceM with finite measure �. Suppose that the action of t 2RC lifts equivariantly
to a flow St on some measurable real bundle V on M . Suppose there exists a (not
equivariant) norm jj � jj on V such that for all t 2 RCZ

M

log.1CjjSt jj/� <1:

Then there exist real constants �1 � � � � � �k and a filtration

V D V�1 � � � �V�k � 0

by measurable vector subbundles such that, for almost all m 2 M and all v 2
Vm X f0g, one has

jjSt .v/jj D exp.�i t C o.t//;

where i is the maximal value such that v 2 .Vi /m.
The V�i do not change if jj � jj is replaced by another norm of ‘comparable’

size (e.g. if one is a scalar multiple of the other).
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The numbers �i for i D 1; : : : ; k� rank.V / are called the Lyapunov exponents
of St . Note that these exponents remain unchanged if we replace M by a finite
unramified covering with a lift of the flow and the pullback of V . We adopt the
convention of repeating the exponents according to the rank of Vi=ViC1, such that
we will always have 2g of them, possibly some of them equal. A reference for
elementary properties of Lyapunov exponents is, e.g., [1].

If the bundle V comes with a symplectic structure the Lyapunov exponents
are symmetric with respect to 0 ([1, Prop. 5.1]); i.e., they are

1D �1 � �2 � � � � � �g � 0� ��g � � � � � ��1 D�1:

We specialize these concepts to the situation we are interested in. Let �M �g
be the bundle of nonzero holomorphic 1-forms over the moduli space of curves. Its
points are translation surfaces. The 1-forms define a flat metric on the underlying
Riemann surface and we let �1Mg � �M

�
g be the hypersurface consisting of

translation surfaces of area one. As usual we replace Mg by an appropriate fine
moduli space adding a level structure, but we do not indicate this in the notation.
This allows us to use a universal family f W X!Mg .

Over �1Mg , we have the local system VRDR
1f�R, whose fiber over .X; !/

is H 1.X;R/. We denote the corresponding real C1-bundle by V . This bundle
naturally carries the Hodge metric

H.˛; ˇ/D

Z
X

˛^�ˇ;

where classes in H 1.X;R/ are represented by R-valued 1-forms, and where � is
the Hodge star operator. We denote by jj � jj WD jj � jjT the associated metric on V .

There is a natural SL2.R/-action on �1Mg obtained by post-composing the
charts given by integrating the 1-form with the R-linear map given by A 2 SL2.R/
to obtain a new complex structure and new holomorphic 1-form (see e.g., [24]
and the references there). The geodesic flow Tt on �1Mg is the restriction of the
SL2.R/-action to the subgroup diag.et ; e�t /. Since V carries a flat structure, we
can lift Tt by parallel transport to a flow St on V . This is the Kontsevich-Zorich
cocycle. The notion ‘cocycle’ is motivated by writing the flow on a vector bundle
in terms of transition matrices.

Lyapunov exponents can be studied for any finite measure � on a subspace M
of �1Mg such that Tt is ergodic with respect to �. Starting with the work of Zorich
([43]), Lyapunov exponents have been studied for connected components of the
stratification of �1Mg by the order of zeros of the 1-form. The integral structure
of �M �g as an affine manifold can be used to construct a finite ergodic measure �.
Lyapunov exponents for .�1Mg ; �/ may be interpreted as deviations from ergodic
averages of typical leaves of measured foliations on surfaces of genus g. The reader
is referred to [18], [10], and the surveys [19] and [11] for further motivation and
results.
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9.2. Lyapunov exponents for Teichmüller curves. We want to study Lyapunov
exponents in case of an arbitrary Teichmüller curve C or rather its canonical lift
M to �1Mg given by providing the Riemann surfaces parametrized by C with
the normalized generating differential. The lift � WM ! C is an S1-bundle. We
equip M with the measure � which is induced by the Haar measure on SL2.R/,
normalized such that �.M/D 1. Locally, � is the product of the measure �C coming
from the Poincaré volume form and the uniform measure on S1, both normalized
to have total volume one.

We can apply Oseledec’s theorem since �M is ergodic for the geodesic flow
([7, Th. 4.2.1]).

We start from the observation that the decomposition .2/ of the VHS in Theo-
rem 2.1 is SL2.R/-equivariant and orthogonal with respect to Hodge metric. This
implies that the Lyapunov exponents of V are the union of the Lyapunov exponents
of the Li with those of M.

Let Li WD .Li /
1;0 be the .1; 0/-part of the Hodge filtration of the Deligne

extension of Li to xC . Denote by di WD deg.Li / the corresponding degrees. Recall
from Theorem 2.1 that precisely one of the Li , say the first one L1 is maximal
Higgs. Recall that S D xC XC is the set of singular fibers.

THEOREM 9.2. Let �M be the finite SL2.R/-invariant measure with support
in the canonical lift M of a Teichmüller curve to �1Mg . Then r of the Lyapunov
exponents �i satisfy

�i D di=d1 D �.Li ; S/:

In particular, these exponents are rational and nonzero.

Proof. We write .Li /R for the local subsystem of R1f�R such that

.Li /R˝R CD Li

and let Li be the C1-bundle attached to .Li /R. We apply Oseledec’s theorem to
Li . Then

�i D lim
t!1

1

t
log jjSt .vi /jj;

for vi 2 Li X .Li /��i . By averaging, we have

�i D lim
t!1

1

t

Z
G.Li /

log jjSt .vi /jjd�G.Li /.vi /;

where � WG.Li /!M is the (Grassmann) bundle of norm one vectors in Li . This
bundle is locally isomorphic to S1�M . The measure �G.Li / is locally the product
measure of � with the uniform measure on S1.

Following the idea of Kontsevich ([18]) also exploited in Forni ([10]), we
estimate the growth of the length of vi not only as a function on the Tt -ray through
�.vi / (given as the parallel transport of the corresponding vector) but as a function
on the whole (quotient by a discrete group of a) Poincaré disc D�.vi / in M . For
this purpose we write z D ei�r (� 2 Œ0; 2�// for z in the unit disc D and lift
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it to �� diag.et ; e�t / 2 SL2.R/, where �� is the rotation matrix by ‚ and t D
.1=2/ log..1C r/=.1� r//. Using this lift D! SL2.R/ we obtain our disc D�.vi /
in M using the (left) SL2.R/-action on M .

Consider the following functions

fD WD fD;i W

�
.��Li X f0g/�D ! R

.vi ; z/ 7! log jjz � vi jj;

where z � vi is the parallel transport of vi over the disc D�.vi /. This is well-defined
since the monodromy of Li acts by matrices in SL2.Z/D Sp2.Z/ and symplectic
transformations do not affect the Hodge length. Note that by definition

(25) fD.vi ; z/D fD.z � vi ; 0/:

On the discs D�.vi / we may apply the (hyperbolic) Laplacian �h to the func-
tions fD�.vi / with respect to the second variable, i.e. consider

hD WD hD;i W

�
.��Li X f0g/�D ! R

.vi ; z/ 7! .�hfD.vi ; �//.z/:

Using (25) and the invariance of �h under isometries one deduces that there is a
function h W ��Li X f0g ! R, such that

(26) hD.vi ; z/D h.z � vi /:

Since obviously
R
G.Li /

h.Stvi /d�G.Li /.vi / D
R
G.Li /

h.vi /d�G.Li /.vi / for
any t , we can apply [19, Eq. (3)] (see also [10, Lemma 3.1] to obtain

(27) �i D

Z
G.Li /

h.vi /�G.Li /.vi /:

We want to relate this expression to the degree di of the line bundles Li .
Suppose si .u/ is a holomorphic section of Li over some open U � C . Recall that
Li has unipotent monodromies, by assumption. Therefore [31, Prop. 3.4] implies
that the Hodge metric grows not too fast near the punctures and we have

(28) di D
1

2�i

Z
xC

@@ log.jjsi jj/:

Here as usual, if there is no global section of Li the contributions of local holo-
morphic sections are added up using a partition of unity.

Instead of considering a holomorphic section si , we now consider a flat section
vi .u/ of Li over U . Then, in .^2.Li /C/˝2.U / one checks the identity

(29) .vi ^�vi /˝ .si ^ si /D
1

2
.vi ^ si /˝ .vi ^ si /:

We integrate this identity over the fibers Xc of f W X! C , take logarithms
and the Laplacian 1

2�i
@@. Note that

(30)
1

2�i
@@ log

1

2
.vi ^ si /˝ .vi ^ si /D 0:
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Let F be a fundamental domain for the action of the affine group � in a Poincaré
discs D ,!M . Then (28) and (30) implies that for any flat section vi of Li , we
have

di D
�1

2�i

Z
F

@@ log.jjvi jj/:

The differential operator @@ coincides, up to a scalar, with �h.�/!P , where !P is
the Poincaré area form. Therefore we obtain for each vi 2 .� ı �/�.Li X f0g/ that

di D
1

4�

Z
F

�h log jjvi .z/jj!P .z/;

where vi .z/ is obtained from vi via parallel transport. Hence by integrating over
all G.Li / and taking care of the normalization of �G.Li /, we find that

(31) di D
1

4�
vol.C /

Z
G.Li /

�h log jjvi jj�G.Li /.vi /:

The statement of the theorem now follows by comparing (31) with (27). �

COROLLARY 9.3. At least r of the Lyapunov exponents are nonzero.

Proof. By Theorem 9.2, it is sufficient to show that for Li WD .Li /
.1;0/ the

degree deg.Li /¤ 0. If Li D 0 then, by Simpson’s correspondence ([36, Th. 1.1]),
Li would be a reducible local system. But since Li is Galois conjugate to L1, this
is a contradiction. �

Remark 9.4. If r � g � 1 all the Lyapunov exponents are known. In fact in
this case we can identify the remaining Lyapunov exponent by the formula ([18],
[10, Lemma 5.3])

gX
iD1

�i D
deg.f�!X=C /
2g� 2C s

:

In the case of Teichmüller curves associated with triangle groups constructed
in Sections 5 and 6, the proof of Theorem 9.2 yields more. Since for these curves
the VHS decomposes completely into subsystems of rank 2 (Remark 6.11) we can
determine all the Lyapunov exponents.

PROPOSITION 9.5. Suppose that the local system M, as in Theorem 2.1 con-
tains a rank 2 local subsystem Fi , whose .1; 0/-part is a line bundle, denoted by
Fi . Then the Lyapunov spectrum contains (in addition to the di=d1) the exponents

deg.Fi /=d1:

By Theorem 9.2 and Proposition 9.5 it is justified to call �.Li / Lyapunov
exponents.
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