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Abstract

For an odd prime p, we compute the p-invariant of the anticyclotomic Katz
p-adic L-function of a p-ordinary CM field if the conductor of the branch char-
acter is a product of primes split over the maximal real subfield. Except for rare
cases where the root number of the p-adic functional equation is congruent to —1
modulo p, the invariant vanishes.
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1. Introduction

We fix a rational prime p. In our book [Hid04, 4.2.4 and 8.4], we computed
the monodromy group at p inside the automorphism group % of the arithmetic
automorphic function field of the Shimura variety of symplectic and unitary type.
In this paper, we shall carry out a similar computation of the monodromy group
of the Serre-Tate deformation space realized as a formal completion of the tower
of the Hilbert modular varieties at an ordinary abelian variety with real multipli-
cation (see Corollary 3.5). This combined with the g-expansion principle enables
us to compute the p-invariant of the anti-cyclotomic Katz p-adic L-function in
an explicit manner. In other words, under mild assumptions, we shall prove the
vanishing of the p-invariant of the p-adic Hecke L-functions constructed by Katz
in [Kat78] (see also [HT93]). Let F be an algebraic closure of F, and W(F) be the
ring of Witt vectors with coefficients in F. We fix a p-adic valuation ring W finite
flat over W([F), and then fix an algebraic closure @p (resp. @) of Q, (resp. Q) and
write @p for the p-adic completion of @p We regard W C @p

To state the result precisely, we first recall nice properties of the p-adic Katz
measure ¢ = @g (of prime-to-p conductor €) interpolating Hecke L-values. Let F
be a totally real number field and M be a totally imaginary quadratic extension of F'
(hereafter such fields will be called CM fields). We write D g for the discriminant
of F. We write O (resp. O) for the integer ring of M (resp. F). We fix two
embeddings throughout the paper: ino : @ — C and i P Q- @p, and suppose the
following ordinary hypothesis:

(ord) Every prime factor of p in F splits in M.

Then, writing ¢ both for complex conjugation of C and of Q induced under i, we
can choose a set of embeddings X of M into @ such that

(cml) U Zc is the set of all embeddings of M into Q;

(cm2) the p-adic place induced by any element of ¥ composed with iy, is distinct
from any of those induced by elements in Y.c.

The set ¥ satisfying (cm1-2) is called a p-adic CM-type. Under (ord), we can
find a p-adic CM-type, and we fix one such X. We write X, for the set of p-adic
places (hence of prime ideals of M over p) induced by the embedding i, o o for
o € X. We fix a finite idele d € M goo) (resp. dp € F, goo)) such that the ideal
corresponding to d (resp. dF) is the different 9y (resp. 0) of M/Q (resp. F/Q).
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Let A : M3 /M> — C* be a Hecke character such that

A(Xoo) = l_[ xc()/é+lcg(1—c))a’

oEY

where k and k, are integers. Then A has values in @ on the finite part M Af(oo) of
M. Moreover, the map A:M oo/ M — @; defined by

i(x) = A(x) 1_[ xék-i—/cg(l—c))o
ogEX
is a well-defined continuous character, which is called the p-adic avatar of A. By
class field theory, we may regard 2 as a Galois character A : Gal(Q/M) — @;.
We can associate to A its dual A* given by A*(x) = A(x€)~!|x|a. Then the p-adic
avatar of A* is given by A *(x) = X(xc)_lN (x)~! for the p-adic cyclotomic char-
acter N. Let  be a prime of M dividing the conductor of A and let dg be a
generator of the different of Mg. We define the local Gauss sum of A at prime
ideals £Q dividing the conductor of A by

(1.1) Gda.l) =Amg3°) Y IAaWwen(wzfdy'w),
ue(Dq/Q°)*

where @ is a prime element of the Q-adic completion Mg, Og is the Q-adic
integer ring of Mgy, Aq is the restriction of A to M3, e is the exponent of Q
in the conductor of A and eps : Ma/M — C* is the standard additive character
normalized as ey (Xoo) = exp(27 v/—1Tr(xo0)). Outside the conductor of A, we
simply put G(dq, Aq) = 1. We can define the complex and the p-adic period
Qoo € (F ®g C)* = (C*)* and Qp € (0 ®z W)™ as in [Kat78] (see §4.4 in the
text for more details). In fact, these numbers are defined uniquely only modulo
Q> but the ratio “Qoo/ Q2 p” is uniquely determined. Finally, we fix an ©-ideal €
prime to p and choose an element 6 € M such that

(d1) 6¢ = -6 and ieo(IM(89)) > O for all o € X;

(d2) The alternating form (x, y) = Try/ (%) induces an isomorphism O A £ =
¢~ 197! for an ideal ¢ prime to p&ec,

where 0 is the different of F/Q. By (d2) above, if £ is prime to ¢, one can choose
dg in (1.1) to be 28 or (26)€. Then we define root numbers:

(12) W) = [] NP6 25 Ap),
Pex,
W'y =[]6@)°.agh [ 6@s. achH [TG@d. a7,
LlF L3 (1}

where we decomposed € = F§.J so that §§, consists of split primes over F, J
consists of inert or ramified primes over F, § 4§, = O and §& D §. We constructed
in [HT93] (following [Kat78] where the case € = 1 is treated) a unique measure ¢
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on the ray class group Z = Z(€) modulo €p> of M characterized by the following
formula:

(1.3)
Jzeorde (¥ Sk Py (kS + k)
o~ O O o ot
x]‘[(l—w:)){ T -2 ] (l—x*wf))}uo,m
gle Pez, Pes,

for all Hecke characters A modulo €p®° such that (i) its conductor is divisible by
all prime factors of §, (ii) the infinity type of A is kX + k(1 — ¢) for an integer k
and k = ) .5 ko0 with integers k, satisfying either k > 0 and k; > 0 or k < 1
and kg > 1 — k. Moreover denoting the measure ¢ for Z(€¢) by ¢, we have the
following functional equation

/ Ady :)LN(c_l)W/(A)/ A do.
Z(¢) Z(e<)

as long as the conductor of A is divisible by all prime factors of §. Here, we used
the following convention for an element & of the formal free module generated by
Y and for x € C* and x € W=:

X = l_[ xto and Tx(§) = ]_[ (o).
oEX oEX

The set X is also identified with the formal sum ) .5, 0, and a € M (including —1)
is considered to be an element of C* via diagonal embedding a > (a%)gex. By
abusing this convention, 7 is considered to be the diagonal element (7)sey in
CZ. We have written X p for the set of prime ideals corresponding to p-adic places
induced by i, oo for 0 € X. The L-functions in (1.3) are always the primitive one
associated with a primitive Hecke character. We also tacitly agree to put A(Q) =0
if 9 divides the conductor of A.

Let A = A(€) be the maximal torsion subgroup of Z(&). A character ' :
A — W is called a branch character. We fix a splitting Z(€) = A x I for a
Z p-free subgroup I' so that ¥ and any function ¢ on I' can be considered to be
a function on Z (<) via pullback by the projections: Z(€) —> A and Z(€) — T.
The y-branch ¢y, of the measure ¢ is defined on I' and is given by

[L#dou= [ Ve

Since T' is isomorphic to Z(1)/A(1), Gal(M/F) acts on I' naturally. We write
n~ for the projection of T onto I'™ = I"/ ["Gal(M /F), on which the generator ¢ €
Gal(M/F) acts by —1: x > x¢ = x7'. We write ¢, = 1, ¢y

| ey = [ sonapy.
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Take a Hecke character A of infinity type k(1 — ¢) for sufficiently large «
(so, k = 0) which is trivial on Ag when we factor through 7~ (such a charac-
ter always exists for a well chosen «). Then the characters {11// X}y for finite
order characters y : '™ — @; span a dense subspace of continuous functions
on I'", because finite order characters span the dense subspace of locally con-
stant functions. The constant Ay y (¢c) ™! W’ (wi x) only depends on ¥ and is equal
to ¥ (c)"'W/(¥). Indeed, because X)((x") = i)((x)_1 (and X)( factors through
I'"), we have WX)((c) = ¥ (c) (by ¢¢ = 0), wi)dgg = Ylox for Q + p, and
i)((wgwgc) = 1 (with wqe = @wg). This implies G(dq, WX)() = G(dg, V) and

YA TIW (YA = v(©) W (y)

as desired. Thus the above functional equation stated for characters is actually
valid for all continuous functions ¢ on I'":

- _ —1 / * - _ —1 / —
[ ey =W [ s dog. =N W) [ gdeg..

where ¢*(x) = ¢p(x¢)N(x)~! = ¢(x) because N(I'") = 1 and ¢ factors through
'™ on which x > x ¢ is the identity map. From this, the functional equation for
¢y, can be stated as an identity of the two measures on I'™:

dey = YN YW ()dey..

Thus the measure Py vanishes modulo myy if the following condition is satisfied:
V) Y* =y modmy and YN HW'(¥) = —1mod my.

If (V) is satisfied, the p-invariant of the measure Py is positive. Our main result
of this paper is as follows:

THEOREM 1. Suppose that p > 2 and that p is unramified in F/Q. Further
suppose that J = 1. Then the p-invariant of Py vanishes, unless (V) is satisfied.
When (V) is satisfied, ;L((pll_,) is finite and positive.

Actually, we prove a stronger result: Theorem 5.1, computing u(cp@) explic-
itly in terms of the branch character i, and /L((plz) is given by p(¥) in (5.27).

The above theorem of course implies the vanishing of j1(¢y ) unless (V) is
satisfied. Even if (V) is satisfied, jt(¢y ) might well vanish, but we only study the
anticyclotomic measure Py in this paper. Indeed, the vanishing of 1 (¢y ) has now
been proven in a preprint [HidO9b]. The condition (V) is rarely satisfied because
it is equivalent to the following three conditions (see Lemma 5.2):

(M1) M/F is unramified at every finite place;
(M2) The strict ideal class of the polarization ideal ¢ in F is not a norm class of

an ideal class of M (& (%) =-1);

C

(M3) ar> (¥ (a)Np/g(a) modmyy) is the character (M—/F) of M/F.
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The last condition (M3) is equivalent to ¥ * = ¥ mod my; (M2) depends on our
choice of the CM-type X, and even if (M1) and (M3) are satisfied, (M2) could fail
(see the example after the proof of the theorem in §5.4).

Basically at the same time when this paper was first written, for imaginary
quadratic field M = Q(+/—D), the p-invariant of the anti-cyclotomic part was
determined by Finis [Fin06] without assuming J = 1, by a different method directly
studying the associated CM elliptic curve (and perhaps, his method can be gener-
alized to general CM fields). Our method does not yield a proof of the vanishing
of p of the restriction to the Galois group of the Coates-Wiles Z p-extension of
an imaginary quadratic field (which was proved in [Gil85]). We will recall the
definition of the p-invariant at the end of this introduction.

Recently, Vatsal in [Vat02], [Vat03] and [Vat06] has proposed an idea proving
the vanishing of the p-invariant for many p-adic L-functions of elliptic modular
forms over an imaginary quadratic field (that is, the p-adic Rankin product of an
elliptic modular form with an elliptic cusp form with complex multiplication by the
imaginary quadratic field). His result also concerns the anticyclotomic restriction
of the p-adic L-function and is a modular generalization of the classical method
of Ferrero-Washington [FW79].

By this theorem, as long as J = 1 and p is unramified in F/Q and (M1-3)
are not satisfied, the main divisibility result in [HT93, Th. I] holds in the Iwasawa
algebra A there, in place of the weaker divisibility in A ®7 Q proven in [HT93]. We
can prove this stronger divisibility even under (M1-3) (see [Hid07]), which results
in a proof of the anticyclotomic main conjecture under some mild assumptions (see
[Hid06]).

In [Sin84], Sinnott gave an algebro-geometric proof of the theorem of Ferrero-
Washington, relying on the analysis of rational functions on Gy, (under transcen-
dental automorphisms of the formal group Gm). Our idea is the use of Hilbert mod-
ular Shimura varieties and Eisenstein series in place of G, and rational functions.
Though the origin of our idea goes back to [Sin84], in order to make it work for the
Shimura variety in place of geometrically easy Gy, we are forced to go through
an extensive study of the g-expansion of Eisenstein series and the geometry of the
moduli space of abelian varieties with real multiplication by O (abbreviated as
AVRM). The g-expansion principle is equivalent to geometric irreducibility of the
mod p fiber of the variety, which was shown by Ribet [DR80, §4] (the study of 4
also yields the irreducibility; see [Hid04, 4.2.4] and [Hid09a]). The datum of an
ordinary CM-type gives rise to an abelian scheme A of the given CM-type over W.
We will construct an Eisenstein series E, indexed by a € 2 for an appropriate
finite subset €2 of automorphisms of the deformation space of A with the following
properties:

1. E, is congruent to an arithmetic Eisenstein series modulo p.
2. Elements in €2 are disjoint modulo the stabilizer of A inside the automor-
phism group of the moduli space (i.e., the Hilbert modular Shimura variety).
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3. The functions a(E,;) = E, oa for a € Q with E; % Omod p are linearly
independent modulo p.

4. The expansion of a nonzero linear combination of {a(E,)}scq With respect
to the canonical variable ¢ of the Serre-Tate deformation space of A coin-
cides with the power series expansion of a given branch of the (anticyclo-
tomic) Katz measure in the theorem.

Some technical reasons aside, the assumption of unramifiedness of p in F'is
made to guarantee the smoothness over Z, of Hilbert modular varieties of level
prime to p. The smoothness might not be necessary, however; so, we might be
able to dispose of this condition by applying our method more carefully.

After proving the theorem in Section 5, we discuss what happens when J # 1.
In this case, Gillard showed that the anticyclotomic p-invariant is positive for some
order p branch characters for infinitely many choices of J ([Gil91, Prop. 2]). We
will reprove this result of Gillard in Section 5.5, employing our technique. This
is included in order to show that the g-expansion of our Eisenstein series fully
reflects divisibility by p of the Katz measure (and also as good evidence for the
reliability of our method). The computation of the w-invariant, when the branch
character is ramified and primitive at a nonsplit prime of M over F, seems far
more demanding than in the case of split-prime level. We hope to come back to
this question in future.

We recall in the rest of the introduction the notion of the p-invariant of p-adic
measures and a brief history of proofs of vanishing of the p-invariant of some
other p-adic L-functions. The space A of p-adic measures on I'” with values
in W is a p-adic Banach algebra under the convolution product induced from the
group structure on I'~. Then A is isomorphic canonically to the continuous group
algebra W[[I""]] via the isomorphism which takes the Dirac measure at y € I'™ to
the element y € W[[I'7]]. Choosing a base of I, this noncanonical identification
with ZE,F:@] induces in turn an isomorphism of W[[I'~]] onto the formal power
series ring over W of [F : Q] variables. Especially, A is regular and a unique
factorization domain. The uniformizer w of W is a prime element in A. The
j-invariant of a measure ¢~ € A is the exponent u such that w* exactly divides
¢~ . In other words,

(A4 (ol = suny| [ gay7| /16l (19l = Sups g0l

where | |, is the normalized absolute value of @p (extended uniquely to @p), and
¢ runs over all continuous functions on I'™ with values in .

In the case of Kubota-Leopoldt p-adic L-functions, the vanishing of the p-in-
variant was predicted by Iwasawa from the point of view of his theory of cyclotomic
Z p-extensions, and the conjecture was proven by Ferrero and Washington [FW79]
later, and more recently a new and simpler proof was given by Sinnott [Sin84].
The idea of Sinnott paved the way of treating the problem even for the elliptic
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Zf,—extensions of imaginary quadratic fields, and a proof of the vanishing of the
Katz-Yager p-adic L-functions for imaginary quadratic fields was then given by
Gillard [Gil85] and Schneps, independently, according to this line. I collaborated
with R. Gillard in the early 1990’s and proved a result similar to the one presented
here for partial Hecke L-functions directly related to Katz’s Eisenstein measure
(see [Gil91]). A new input here is Shimura’s determination ([Shi70b]) of the auto-
morphism group 4 of the arithmetic Hilbert modular function field and the study of
the action of 4 on the Serre-Tate canonical coordinate of the universal deformation
space of a CM abelian variety. This new input combined with a Zariski density
result of a positive dimensional subset stable under the action of an algebraic torus
in ¢ enabled us to prove the linear independence of {a(E,)},eq modulo p (see
Corollary 3.21).

The density result (see Proposition 3.8 and its slight generalization: Proposi-
tion 3.11) is an adaptation of Chai’s density result of a Hecke orbit (see [Cha95,
§5]) to our setting. In earlier versions of this paper, the proof of this density result
relied on a lifting argument of the mod p subvariety to a characteristic 0 formal
scheme. Although lifting works well over the ordinary locus, C.-L. Chai pointed
out to me a flaw in the proof. He suggested using the techniques in his three papers
from [Cha95] to [Cha08] to recover the result. Also in the earlier versions, the
condition (V) was not presented as it is now, and we claimed the vanishing rather
unconditionally. Actually, the author found a discrepancy in the computation of the
g-expansion of the Eisenstein series, which resulted in a better understanding of
the circumstances with nontriviality of p only when (M1-3) (& (V)) are satisfied.

The author would like to thank Ching-Li Chai for his remarks and assistance.
The author would like to also thank Roland Gillard and Jacques Tilouine and the
referees of this paper who read carefully the drafts of this paper and pointed out
several mistakes.

2. Serre-Tate deformation space

In this section, we describe deformation theory of abelian schemes over lo-
cal Wj,-algebras for W, = W/p™W. We follow principally Katz’s exposition
[Kat81].

2.1. A theorem of Drinfeld. Let R be a local W,,-algebra, and R-LR be the
category of local R-algebras. Let G : R—-LR — A B be a covariant functor into the
category AB of abelian groups. When m = oo (that is, Ws, = W), the category
R—-LR is made up of p-adically complete local R-algebras B = l(lnn B/p" B and
morphisms are supposed to be p-adically continuous. For simplicity, we always
assume that rings we consider are noetherian. If we regard G as a functor from
the category of affine R schemes (or formal schemes), it is contravariant. Suppose
that, for any faithfully flat extension of finite type B < C of R-algebras,

1. The group G(B) injects into G(C); that is, G(B) — G(C);
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2.LetC’'=CQpCand C"=C®pCQC.Write; :C = C’' (i =1,2)
for the two natural inclusions (with (1(r) =r ® 1 and 12(r) = 1 ® r) and
tij : C' < C” for the three natural inclusions (i.e. t12(r ®s) =r ®s®1 and
so on). If x € G(C) satisfies y = G(t1)(x) = G(12)(x) and G(t12)(y) =
G(123)(y) = G(113)(y), then x is in the image of G(B).

Such a G is called an abelian sheaf on R—L R under the fppf-topology (or simply
abelian fppf-sheaf). We denote by R—Gp the category of abelian fppf sheaves
over R. If A, is an abelian scheme, then G(B) = A(B) = Homg (Spec(B), A)
(S = Spec(R) or Spf(R)) is an fppf-sheaf.

The following definition of p-divisibility is in a naive sense weaker than Tate’s
notion of p-divisible groups. We call an abelian fppf sheaf G a p-divisible fppf
sheaf if for any x € G(B), there exist a finite faithfully flat extension C of B
and a point y € G(C) such that x = py. If G is an abelian scheme A (including
non- p-torsion points), it is a p-divisible fppf sheaf.

We call a p-divisible fppf sheaf G, a p-divisible group or a Barsotti-Tate
group if G = h_n)ln G[p"] for finite flat group schemes G[p"] = Ker(p" : G — G)
over S with closed immersions G [p"] < G[p™] for m > n and the multiplication
[p™7"] . G[p™] — G[p"] is an epimorphism in the category of finite flat group
schemes. Thus A[p*>°] =J,, A[p"] for A[p"] =Ker(p" : A — A) is a Barsotti-Tate
p-divisible group if A, is an abelian scheme.

Let R be a local W -algebra and I be an ideal of R such that /"T1 =0 and
NI =0 for an integer N equal to a power of p. Define functors G; and G by

G1(B) = Ker(G(B) — G(B/I)) and G(B) = Ker(G(B) — G(B/mg)),

where mp is the maximal ideal of B. When G(B) = Hompg_r(R, B)(= G(B))
for R = R[[T1, ..., Ty]] (that is, G;g = Spf(R),g) and the identity element 0
corresponding to the ideal (771, ..., T,), we call G a formal group. If G is formal,
then the map Homg_7 r(R, B) > ¢ — (¢(T1),...,¢(T,)) identifies G (B) with
the set [ x I x---x I (n times) endowed with a formal group law.

Suppose that G, is formal. Then for any integer m, the endomorphism [m]
of multiplication by m on G induces a continuous algebra endomorphism [m]* :
PR — R; it induces multiplication by m on Qg,gr = (T1,....Ty)/(T1. ..., Ty)?,
hence on the tangent space Tg,/g too. Thus [N](T;) = NT; mod(T1, ..., Ty)?,
and [N](G;(B)) = Gy2(B) because NI = 0. Similarly, we have inductively,
[N](Gra(B)) = Gya+1(B). Thus [N']Gr = Go = {0}. We get

2.1 Gy C G[N"] if G is formal,
where G[m] = Ker([m] : G — G) is the kernel of [m].

THEOREM 2.1 (Drinfeld). Let G and H be abelian fppf-sheaves over R—LR
and I be as above. Let Gy and Hy be the restriction of G and H to R/I-LR.
Suppose

(1) G is a p-divisible fppf sheaf’;
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(ii) H is formal (so, H(B) — H(B/J) is surjective for any nilpotent ideal J).
Then

(1) The modules Hompg.G,(G, H) and Hompg 1.6, (Go, Ho) are p-torsion-free,
where the symbol “Homy_G,” stands for the homomorphisms of abelian
fppf-sheaves over X—LR,

(2) The natural map, so-called

“reduction mod I : Homg.Gp (G, H) — Hompg 1.6, (Go. Ho)
is injective;

(3) For any fo € Hompg,1.6p(Go, Ho), there exists a unique homomorphism
® € Hompg.Gp (G, H) such that ®mod I = NV fo. We write as in [Kat81]
“NV [ for ® even if f exists only in Hompg.g»(G, H) ®7 Q;

(4) Inorder that f € Homg.G,(G, H), it is necessary and sufficient that “N"V f”’
kills G[N"].

Proof. The first assertion follows from p-divisibility, because if pf(x) =0
for all x, taking y with py = x, we find f(x) = pf(y) =0 and hence f = 0.

We have an exact sequence: 0 - Hy — H — Hg — 0; so, we have another
exact sequence:

0 — Hom(G. Hy) — Hom(G, H) % Hom(G. Ho) = Hom(Go. Hy).
which tells us the injectivity since Hy is killed by NV and Hom(G, H) is p-torsion-
free.

To show (3), take fo € Hom(Gy, Hyp). By surjectivity of H(B) — Ho(B/1I),
we can lift fo(x mod /) to y € H(B). The class y mod Ker(H — Hy) is uniquely
determined. Since Ker(H — Hy) is killed by NV, for any x € G(B), therefore NVy
is uniquely determined; so, x — N"y induces functorial map: “N" f”: G(B) —
H(B). This shows (3).

The assertion (4) is then obvious from p-divisibility of G. The uniqueness of
f follows from the p-torsion-freeness of Hom(G, H). O

2.2. A theorem of Serre-Tate. Let s/ be the category of abelian schemes
defined over R. We consider a category Def (R, R/I) of triples (Ao, D, €), where
Ay is an abelian scheme over R/ 1, D is p-divisible, and € : Do = Ao[p°°]. We have
a natural functor s¢,g — Def(R, R/I) given by A+> (Ag = Amod I, A[p°°],id).

THEOREM 2.2 (Serre-Tate). The above functor: d;g — Def(R,R/I) is a
canonical equivalence of categories.

Proof. By Drinfeld’s theorem applied to A[p®°] and A (both abelian fppf-
sheaves), the functor is fully faithful (see [Kat81] for details). It is known that we
can lift Ap to an abelian scheme B over R. This follows from the deformation
theory of Grothendieck ([Mum65, §6.3] and [Mes72, 2.8.1]). Assume that Ag
is ordinary. When R/ is a finite field, by a theorem of Tate, A9 has complex
multiplication. By the theory of abelian varieties with complex multiplication, Ag
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can be lifted to a unique abelian scheme B over R with complex multiplication (the
canonical lift), because isomorphism classes of such abelian varieties of CM-type
corresponds bijectively to lattices (up to scalar multiplication) in a CM field. Thus

we have an isomorphism oz(()p ). Bo[p®°] — Ao[p°°]. Then we have a unique lifting

(by the Drinfeld theorem) that f : B[p®>°] — D of N "oz(()p ), Clearly, f is an isogeny,
whose (quasi) inverse is the lift of N ”(oe(()p ))_1. Thus Ker( f) is a finite flat group
subscheme of B. The geometric quotient of B by a finite flat group subscheme
exists (see [Mum?70, §12]) and is an abelian scheme over R. Then dividing B by
Ker(f), we get the desired A/ € 94 /g. O

2.3. Deformation of an ordinary Abelian variety. Let S = Spec(Og) be an
affine scheme over [, and (A4, w) be a pair of abelian variety over S of relative
dimension g and a basis = w1, ...,wg of HO(A, Qy4/s) over Og. Write 7 :
A — S for the structure morphism. We have the absolute Frobenius endomorphism
Fas : § — §. Let T4/ be the relative tangent bundle, and consider the direct
image 74«7 4,5 over S; so, HO(S, 7+7 4/5) is spanned by the dual base n = n(w).
For each invariant derivation D of O4, by the Leibnitz formula, we have

p
D?(xy) = Z(I?)Dp_jxDjy =xD?y+yDPx.
j=0 "’
Thus D? is again a derivation. The association: D +— D? induces an Fp-linear
endomorphism F* of J4,5. Then we define H(A,w) € Os by F* \¥ 5 =
H(A,w) \® n. Since n(Aw) = "A71n(w) for A € GLg(Oy), we see

g

g g
H(A.dw) [\ 1(w) = F* [\ 1(0w) = F*(det)~" /\ n(0))
g g
= det() P F* \ n(w) = det()) P H(A, ») /\ n(w)
g
= det(A) "7 H(A, ) det(2) /\ n(Aw)

g
= det(1)' P H(4, ) \ (o).
Thus we get
H(A, Aw) = det(V)! P H(A, w).
We call A ordinary if we can embed ,ug into A[p] after a faithfully flat étale base-
change. As in the elliptic curve case (cf. [Hid0O, 2.9.1]), we know
H(A,w) =0 <= A is not ordinary.

Let « be an algebraically closed field over [,,. Let R be a pro-artinian local
ring with residue field x. Write CL, g for the category of complete local R-algebras

with residue field k. We fix an ordinary abelian variety Ag/,. Write A; g for the
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dual abelian scheme (representing Pic}?1 / g) of an abelian scheme A,g. We write
TA[p®°]* for the Tate module of the maximal étale quotient of A[p°°]. We consider
the following deformation functor % : CL,g — SETS:

P 4,(05) = [(A/s.14)| A;s is an abelian scheme and 14 : A Qo k = Ao ] .
Here “[ ]” indicates the set “{ }/ 2" of isomorphism classes of the objects inside the

straight brackets, and f : (4,14)/s = (A", 14/)/s if f: A— A’ is an isomorphism
of abelian schemes with the following commutative diagram:

A®@SK i) A/®@SI(

LAlZ ‘A/lz
The functor % A, 18 representable by the formal torus

Homgz,, (TAo[p®]* x TAY[p™]%, Gm(S)),

and each deformation (A,g,i4) € P 4,(0s) gives rise to the Serre-Tate coordinate
qass : TAg[p™®]® x TAL[p™]* — Gm(S). We give a sketch of the construction
of g4/s. We prepare some facts. Let f : A — B be an isogeny; so, Ker(f) is a
finite flat group scheme over S. Pick x € Ker( f), and let £ € Ker( f?) C B be the
line bundle on B with 05% = Og (S = Spec(0ys) for an artinian R-algebra Oy).
Thus f*% = 04. Cover B by open affine subschemes U; so that £|y, = ¢, loy,.
Since 0% = Og, we may assume that (¢;/¢;) c0p = 1. Since f : A — B is
finite, it is affine. Write V; = f~1(U;) = Spec(Oy;). Then f*&|y, = gol._l@Vi
with ¢; = ¢; o f, and we have, regarding x : S — Ker(f),

piox pio fox _¢i°03 _q

pjox ¢jofox ¢jo0p ’
Thus ¢; o x glues into a morphism [x, ¥] : S — Gy, and we get a pairing

er : Ker(f) x Ker(f*) —> Gp,.

Since A is a Ker( f')-torsor over B, we have A xp A = Ker( f) xs B. Thus for any
homomorphism ¢ : Ker( /) — G,,, we can find a function ¢ : Ker(f) xg B — P!
such that ¢p(y+1) = (t)p(y) for t € Ker( f). This function ¢ gives rise to a divisor
D on B4 = B xgs A. By definition, f£(D) =04xs4 for fa=fx1:AxsA—
B xgs A, and ef (x, £(D)) = {(x). Thus, over A4, ef 4 : Ker(f);4 xKer(f*)/4 —
G 1s a perfect pairing. Since A — S is faithfully flat, we find that the original
ey is perfect. Write A° for the formal completion at the origin of the mod p fiber
of A.

We apply the above argument to f = [p"]: A — A, write the pairing as e,
and verify the following points:

(P1) en(a(x),y) =eu(x,al(y)) fora € End(4,p);
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(P2) Write Ag[p"]° = ,ugn C Ao[p"]. Then e, induces an isomorphism of group
schemes: Ao[p"]° = Hom(A}[p"]*, upn);
(P3) Taking the limits of the above isomorphisms with respect to n, we find
A° = Hom(TA! [p*®°]*, Gn) = Hom(TAL[p™®]%, G )
as formal groups. In particular A° = Gﬁl

We are now ready to describe the Serre-Tate coordinate g4/s5. Since Og €
CL/g is a projective limit of local R-algebras with nilpotent maximal ideal, we
may assume that Og is a local artinian R-algebra with nilpotent maximal ideal mg.
Then A°(S) is killed by p"° for sufficiently large n¢o (applying Drinfeld’s theorem
to I = mg). Taking a lift X € A(S) of x € A(F) (such that x modmg = x), we
see that X is determined modulo Ker(A(S) — A(F)) = A°(S) which is a subgroup
of A[p"] if n > no. By the smoothness of 4,g, a lift X € A(S) of x € A(F)
always exists. Thus p"X € A(S) is uniquely determined by x € A(F). Since

I35 23]

x € A[p"], p"X =“p™”’x € A°(S) by definition, which yields a homomorphism

(7398 /AT N

p"7: A[p"](F) — A°(S). We have an obvious commutative diagram (if n > ng):

~ upn-l-ln
A[p"FIS) —— Ao[p"T(F) —— A°(S)

o| o » I

A[PM(S) ——  Ao[p"I(F) —Z— 4°(S),

which gives rise to a morphism TAg[p®°]®* — A°(S). Thus the structure of the
Barsotti-Tate group A[p®°] is uniquely determined by the extension class of the
exact sequence of fppf sheaves:

o 4
(2.2) 0> A [p°°]/s—>A[p°°]/5—>A[p°°]7tS—>O.
Take x = 1(£1n xn € TA[p®°]® with x,, € A[p"]®". Lift x, to v, € A(S) so that
7 (vy) = Xp. Then, for “p"”: A[p"] - A°,
qn(.x) — “pn”vn c AO(S)

The value g, (x,) becomes stationary if n > ng, and tegdng the limit of g, (x,)
as n — oo, we get ¢(x) € A°(S) = Hom(TAL[p™]®, G;»(S)). Then we define
qa/s(x,y) = q(x)(y) (see [Kat81]).

THEOREM 2.3 (Serre-Tate). We have

(1) A canonical isomorphism
P(0s) = Homz,, (TAo[p™]* x TAG[p™]*. Gm(S))
taking (As,t4) 10 qa/s ().
(2) The functor P is represented by the formal scheme
Homy, (TAo[p™]* x TAY[p®]*, Gm) = GS.
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(3) qa/s(x.y) =qar;s(y, x) under the canonical identification: (A")" = A.

(4) Let fo: Ao/ — Boji be a homomorphism of two ordinary abelian varieties
with the dual map: f{ : BY — A}. Then fy is induced by a homomor-
phism [ : A;s — Bg for A € @AO(@S) and B € @BO(@S) if and only if
q4/s (X, f§ () = qpys(fo(x), y).

Proof. Here is a brief outline of the proof. Let T/s and E/g be a multiplicative
and an étale p-divisible group over a scheme S, respectively. Consider the sheafi-
fication Ho_meppf(E[p”], T[p")) (resp. E_xt}gfppf(E[p”], T[p"])) of presheaf U +
Homy (E[p"],u. T[p"] vu) (resp. U r—>Extb (E[p"]ju.T[p"]/u)) over the small
fppf site Sgypr over S. Any connected-étale extension T'[p"] — X —» E[p"] in the
category of finite flat Z/ p™ Z-modules over S split over an fppf extension S’/ so,
we have @};{ppf(E[p”], T[p"]) =0 and a splitting X = T[p"] ® E[p"]. Taking a
module section i : E[p"] — X[p"] and projecting down to T'[p"] over S, we get a
homomorphism ¢g- € Homg/(E[p™], T[p™"]). Since S’ > ¢y satisfies the descent
datum, it is a Cech 1-cocycle with values in Ho_meppf(E[ p"1, T[p"™]). Thus we
have a morphism Ext‘lgfppf(E[p”], T[p"]) — Hl(Sfppf, Homsfppf(E[p”], T[p")).
By fppf descent, this is an isomorphism. Applying this to S = Spec(0g), T[p"] =
A[p™]° and E[p"] = A[p"]*, we get

Extl,  (A[p"], A[p"]°) = H' (Stppr. Homg, (A[p"]™, A[p"]").

When S is affine, [Cha03, Prop. 2.4 (iii) and (iv)] tell us

Exty, (A[p™], A[p®]°) = limExt}(A[p"]". A[p"]°)

n

= Homy, (TA! [p®°]* & TA![p®]%, Gn(S)))

since Gm ~ 1<£r_nn Rlzm, Mpn = limn ppn (for @ Sgopr — Se) as sheaves over the
small étale site S¢; (see [Cha03, §2] for more details). Since the residue field « of
Og is algebraically closed, A[p™]** and A’[p"]®* are constant over Og; so, we may
replace TA?[p®°]* and TA![p]* by their special fibers TAo[p®°]* and A)[p>°],
and g4/s completely determines the extension class of the p-divisible group in
(2.2). Therefore, 4,5 determines the isomorphism class of A[p>°],s. Then by the
Serre-Tate theorem in the previous subsection, the deformation 4,g is determined
by (Ao, A[p*°]) and hence by g4,s. This shows the assertions (1) and (2). All
other assertions follows from (P1-3) easily. O

2.4. Abelian variety with real multiplication. Let F/Q be a totally real finite
extension unramified at the fixed prime p. Write O for the integer ring of F, and
put d = [F : Q]. Consider an abelian scheme A over a scheme S of relative
dimension d with an embedding i : O < End(4,g) sending the identity to the
identity automorphism of 4g.
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An abelian scheme A,g can be considered as an fppf sheaf on SCH, g with
coefficients in abelian groups. For any O-module M, the fppf sheaf A ® M which
is the fppf sheafification of the presheaf taking an S-scheme T to A(T) ® 0 M
gives rise to another abelian scheme, written as A ® M. If M = ¢! for an integral
ideal ¢ C O, tensoring A with the exact sequence

0->0—->cl->cl/0—0,
we get another exact sequence:
0— Tori(4,0/¢c) > A—> A®c¢ ! —0.

Thus A ® ¢~ ! is represented by A/A[c], because Torlo (A, O/c¢) = A[c] canonically
(since O is a Dedekind domain).

Here is a brief description of polarization on an abelian scheme A, satisfying
the four conditions (rm1-4) below (called an AVRM). See [Rap78, §1] for more
details on polarizations on an AVRM. An ample line bundle L on A gives rise to
an isogeny Az : A — A as follows (cf. [Mum?70, §6] and [FC90, p. 3]). Pick a
T-point a € A(T) for an S-scheme T. Then by addition, a induces a morphism
Ta:A;7 — A7 sending x to x+a. Then A(T)3a+> T (L)L ' ®a*(L)"'®
0*(L) € Picff1 / 5(T) = AY(T) is a morphism of group functors, which gives rise to
the homomorphism Az : A/ — A?S.

A line bundle is called symmetric if (—1)*L = L. If L is symmetric, A} =Ar.
A polarization is an O-linear isogeny A : A — A’ induced by a symmetric line
bundle L, 4, fiber by fiber over geometric points s € S (cf. [Mum65, 6.3]). If
A:A— A is apolarization, Ker(A) is given by A[¢™1] for an integral ideal ¢~ # 0,
because Ker(1) is self-dual under Cartier duality. Then A induces A’ =~ A ® c. Such
a polarization is called a ¢-polarization. By definition, A; g7 = Ap + Ap/. For
a € O, we see easily that a o Tx = Ty(y)oa and that A« = a’);. The set of
totally positive elements in a square ideal a? is generated over N by square elements
of a. Thus the subset of Hom(A4, A") generated by polarizations forms a positive
cone P(A). If S is a Q-scheme, the module Lie(A4) is a faithful module over
End% (A) = Endp(A) ®7 Q. In particular, F-linear symmetric endomorphisms

End%_ sym
have Endg_sym(A4) = O. Therefore if A is a c-polarization, Homp_gym (A4, Al =
Homp_¢ym(A, A) ® ¢ = ¢, and hence P(A) = ¢ canonically, where ¢ is the cone
inside ¢ made up of totally positive elements.

We consider the following fiber category s{fr of abelian schemes over the

(A) (those fixed by the Rosati involution) are isomorphic to F. Thus we

category of Z(,)-schemes. Here Z(,y C Q is the valuation ring of the p-adic
valuation. An object of sl is the triple (4,g,i : O < End(4/g), A), where

(rml) i =iy is an embedding of algebras taking identity to identity;
(rm2) A is an O-linear symmetric polarization A : A — A’ with p } deg(1);

(rm3) The image of i4 is stable under the Rosati involution induced by A;
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(rm4) As O ®z Og-modules, we have Lie(4) = O ®7 Og locally under the Zariski
topology of S, where the O-module structure of Lie(A) is induced by i.

A morphism ¢ : (4,i,4);s — (A’,i’, 1) /s in the category sl r is an O-linear
morphism ¢ : A/g — A’/S of abelian schemes over S with A = ¢ o 1’ 0 ¢b.

Fix an algebraic closure [ of [F,,. Take an ordinary abelian scheme (Ao, io, A0)
defined over F. We fix a polarization A¢ : A9 — A of degree prime to p. We
consider the following functor defined from CL, () into SETS:

Ej??A(),i(),l() (R)
= [(A/R,LA,i,)L) € &QF|(A,LA) € @AO(R), A and i induce Ao and io] .

Here we call f: (A, A4,t4) — (B, Ap,tp) anisomorphism if f :(A,t4) = (B,tp)
and ffoApgo f = A4. Note that by Theorem 2.1(1) (Drinfeld’s theorem), End(A /R)
is torsion-free, and hence, End(4,r) — End?(4 /r) =End(4,g) ®z Q. We write
a* =251 oa’ 0 for @ € End(A4g) ®7 Q. Since End(4,g) C End(4o) again by
Theorem 2.1(2), the involution keeps End® (4 /R) stable (because on End® (A /R)>
it is given by @* = A7 o &’ 0 ). The Rosati involution & +— a* is known to
be positive (see [Mum70, §21]). The polarization Ay induces an isomorphism
Ao @ A[p™]t = A'[p™]. We identify TAg[p™]® and TA)[p®°]* by A¢. Then
the involution « +— «! in the Serre-Tate theorem (4) is replaced by the positive
involution “x”’; in particular, “x” is the identity map on i (O) (which is the unique
positive involution of the totally real field). Then it is clear from the previous
theorem that, for Op = O ®7 Zp,

Pao,io(R) = Homz,, (TAo[p™]* ® 0, TAo[p ™I, Gm(R)).
PROPOSITION 2.4. We have TAy[p™°]** = O, as O-modules.

Proof. Since Ag and the connected component Ag[p]° of the finite flat group
scheme Ag[p] share the tangent space Lie(Ag) at the origin, as O-modules, they
are free of rank 1 over O ®7 F. Write Ag[p]° = Spec(R) for an [F-bialgebra R.
Then for its unique maximal ideal m C R, we have Lie(4¢) = Homg(m/m?, F).
By Cartier duality (e.g. [Hid0O, 1.7]), we have

Ap[p]* = Homgp sen(Ao[p]°, 11p) — Homscu(Ao[p]°, 1p)
~ Hom.aig(F1]/ (1), R) —> Home g (F11/(t7), R /m?) = m/m?,
Since A[p]° =~ ul‘f over [ for d = dim Ay, it is easy to see that the above morphism

induces A§[p]® ®s, F = HO (A, 24,/r). Then by duality and polarization, we
get Ao[p]® ®r, F = Lie(Ap) as O ®z F-modules. This shows that

(2.3) Lie(Ag) = TAo[p*°]® ®7 F as O ®7 F-modules.
Then by Nakayama’s lemma, we conclude from (rm4) the desired assertion. [

COROLLARY 2.5. Suppose that O is unramified at p. Let S = Gy, ®7 07! =
Spec(Z[O])) for the group algebra Z[O). Then when we identify TAo[p®°] with
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Op, the functor P Ao.i Ao IS represented by the formal scheme S /w > where S is the
formal completion of S along the identity section of G, ®7 071 (F).

Proof. We have seen that the deformation space S is given by
Homz,, (TAo[p™I ® 0, TAo[p™I*, Gm(R))
=~ Homz, (Op, Gm(R)) = Gm(R) ®7 Homz(0,Z) = S(R) (ReCL/y).

Here t ®a € Gy @707 ! corresponds to g : Op — Gm € Homgz , (Op. Gm(R)) with
q(b) = tT@b) This supplies us with the desired identity. d

3. Hilbert modular Shimura varieties

Let G = Resg/q(GL(2)). We write hg : S = Res¢/rGm — G/p for the
homomorphism of real algebraic groups sending a 4+ b+/—1 to the matrix (Z _ab )
We write X for the conjugacy class of sg under G(R). The group G(R) acts on
X from the left by conjugation. Since the centralizer of &y is the product of the
maximal compact subgroup of the identity connected component G(R)+ of the
real Lie group G(R) and its center Z(R), the identity connected component X T
containing 0 = g is isomorphic to the product 3 = $H7 of copies of the upper

half complex plane $) indexed by embeddings / of F into R by g(0) — g(i) for
i=(+/—1,...,+/—1). Here the action of (g5 )gses € G(R) with g5 = (“;’ gg) on

C

. _ aszZg+b
Jis given by z = (z4) — (CZZZHZ

symmetric domain isomorphic to 3, and for an arithmetic subgroup I' C G(Q),
'\ X is a finite union of Hilbert modular varieties.

The pair (G, X) satisfies Deligne’s axiom for Shimura varieties in [Del79,
2.1.1]. The Shimura variety over C is given by

). Thus X is a finite union of the hermitian

(1) She(C) =She(G. X)(C) = lim G(@)\ (36 x G(A(Oo))) /K
K

= G@)\(Xx G(A))/Z(@),

where (y,u) € G(Q) x K acts on (z, g) € X x G(A®)) by y(z, g)u = (y(2), ygu),
Z(Q) is the closure of the center Z(Q) in G(A©). See [Mil90, p. 324]. We
write [z, g] for the point of Sh¢(C) represented by (z, g) € X x G(A©®®)). This pro-
algebraic variety has a unique canonical model Sh(G, X) defined over Q, which we
recall later. In this section, we review the construction of the model, emphasizing
its automorphism group 4. Strictly speaking, the group ¢ we will study is a sub-
group of finite index in the full automorphism group, and the full automorphism
group is a semi-direct product of G with the field automorphism group Aut(F/Q).
As is clear from Shimura’s original construction of canonical models [Shi70a] and
[Shi70b], full knowledge of % is almost equivalent to the existence of the canonical
model itself (see [Shi00, Chap. II]).
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3.1. Abelian varieties up to isogenies. Let V = F? be a column vector space,
and put V(A©)) = Vawo) :=V ®q A We often write Fpo) for F ®q A()
which is the finite part of the adele ring Fa = F ®gA. Then V(A(®)) is an F A (00) -
free module of rank 2. We consider the fibered category &d% over Q-SCH defined
by the following data:

(Object) abelian schemes with real multiplication by O;
(Morphism) Hom% (4, A’) = Homo (4, A') ®7 Q.

For an object 4,5, we take a geometric point s € §, consider the Tate module
TA)=Ts(A) = IEEN A[N](k(s)), and define V(A) = Vy(A) = T(A) @7 A,
The module V' (A) is an Fj (o) -free module of rank 2 and has an O-stable lattice
T(A), where O = 0 ®7 7 = [ e:prime Ot

Picking a geometric point s in each connected component of S, we see that a
full level structure on A is an isomorphism 7 : V(A =~ V;(A) of F A (co)-modules.
For a closed subgroup K C G(A(), a level K-structure is the K-orbit 7 = nK
of n for the right action n — nou (4 € K). Strictly speaking, we consider the
étale (set theoretic) sheaf £(S”) = Isomfg (Vyoo), Vs(A/s/)) (over the small étale
site over ) of level structures of A on which K acts, and 7 is supposed to be an
element of the sheaf quotient £/ K. For many instances, we assume K to be open
compact. Since A[N],s is an étale finite group scheme, the algebraic fundamental
group 1 (S, s) with base point s acts on A[N](k(s)) for any integer N and hence
on the full Tate module Vi(A4) = l(i_r_nN A[N](k(s)) ® Q. The level K-structure is
defined over S if o o ) = 7 for each o € 1 (S, 5). If the compatibility 0 o = 77 is
valid at one geometric point s for each connected component of S, it is valid for
all s € § (see [Hid04, 6.4.1]).

Two polarizations A, A’ : A — A’ are said to be equivalent (written as A ~ A”)
if A = al’ = ) oa for a totally positive a € F. Here a is any fraction in F,
when F is the set of all totally positive elements in F'. Without introducing the
category &Q?} up to isogeny, our notion of polarization classes does not make sense.
The equivalence class of a polarization A defined over S is written as A. If the
class A is defined over S, we can find a polarization A € A really defined over S
(e.g., [Hid04, pp. 100-101]). Our requirement (rm4) in Section 2.4 is often stated
as the condition on characteristic polynomials satisfied by the action of « € O on
the Og-module Lie(A) in papers and books dealing with Shimura varieties of PEL
type (for example, [Kot92, §5] and the condition (det) of [Hid04, 4.2.1]). For an
open compact subgroup K, we consider the following functor from SCH g into

SETS, - .
PL(S) = [(A. X, 7),s with (tm1-4)],

where 7 is a level K-structure as defined above, and [ | = { }/ = indicates the set
of isomorphism classes in &Q% of the objects defined over S in the brackets. For a
compact subgroup K, QP%(S ) is defined by the natural projective limit l(iLnU QP% )
for U running over open compact subgroups containing K. An F'-linear morphism
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¢ € Hom?i (A, A') is an isomorphism between triples (4, A, 7)) /s and (A', A7) /S
if it is compatible with all data; that is,
pof=7 and p' oA =1 0.

Equip V = F? with an alternating form A : V Ap V = F given by (x,y) =
IxJiy for J1 = (97'). We define a Q-alternating pairing (-.-) : V xV — Q@
by Trg/g o A. Suppose that the point s € S is a complex point s € S(C); thus,
we have the Betti homology group Hi(A, Q) := H1(A(k(s)), Q). Then the po-
larization A : A — A’ induces a nondegenerate F-Hermitian alternating pairing
E; : /\2 Hi(A,Q) — Q (the Riemann form; see [Mum70, §§1 and 20]). Here
the word: “F-Hermitian” means E;(ax,y) = E (x,ay) for all @ € F. We
write ey, : H1(A,Q) AF H1(A,Q) = F for a unique alternating form satisfying
Trr/goey = E,. The Hodge decomposition: HY(A,C) = HO(A(k(s)), Q;’l’/’c) &)
HO(A(k(s)). 5270) induces, by Poincaré duality, an embedding 7 = hy : C* =
S(R) — Autg (H1(A, R)) such that

1. h(z)w = zo for all w € Home (H (A (k(s)), Q4/c).C) (and h(z)w = Zw);

2. Ej(x,h(+~/—1)y) is a positive definite Hermitian form on H{(4,R) (=
Vr := V ®q R) under the complex structure given by #.

In the above definition of QP% for an open compact K, missing is a condition usually
required in papers dealing with Shimura varieties:

(pol) There exists an F-linear isomorphism f : V = H;(A, Q) such that f~!o
hq o f is a conjugate of iy under G(R), f = nmod K under the canonical
isomorphism Vy(A4) 2= H(A4,A®)) = H{(4,Q) ®g A and e, (f(x),
f(y)) =a-A(x Ay) for some o« € F*.

Since V and H(A, Q) both have a nondegenerate F -bilinear alternating form, we
can find an F-linear isomorphism fo : V = Hy (A, Q) with ey (fo(x), fo(y)) =

A(x A y). After tensoring A(®) and scaling by an element in F Af(oo), we may
1

assume that g := 1~ o fp belongs in SL,(F AEOO)). By the strong approximation
theorem, we have y € SL,(F) such that g = uy~! for u € K; in other words,
putting f = fyoy, we have f € no K as in (pol). Since G(R) is the full group
of Fy-linear automorphisms of Vg, f ! ohy o f is always conjugate to hg. Thus
this condition (pol) is redundant; thus, we ignore it.

By [Shi66] and [Del71, 4.16-4.21],

(rep) the canonical model Sh(G, X) /g represents the functor 9]’? over Q for the
trivial subgroup 1 made of the identity element of G (A(®).

This fact will be confirmed over C by a straight calculation (see the paragraph
following (3.2)). Through the action of G(A©®®)) on F Af(oo), g € G(A() acts on
the level structure by 1+ 1o g and hence on the variety Sh(G, X) from the right. If
K is open and sufficiently small (so that Aut((4, A, 7)) /s) = {1} for all test objects
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(A, X, n)/s), Shg (G, X) := (Sh(G, X)/K) g (whose complex points are given by
the manifold G (Q)\ (X x G(A©®)))/K) represents @% over Q.
Over C, by (3.1), we have

(3.2) 2.8l =[y(2).ygl (& [y 1 (2). 8] = [z, vg])

for (z, g) € 3 x G(A©)) and y € G(Q), taking the expression
Sh(G, X)(C) = G(@)+\ (3% G(A™)) /Z(@)

and noting X = 3. In the complex uniformization, each point [z, g] corresponds to
the test triple (A, A;, n;0g), where A,(C) =C! /(0O*+ 0z) and 1, (Z ) =bz—a
identifying 7T (A;) = O* + Oz. To see this, we note that the map: [z,g]
(Az,Az,nz o g) sends (3 X G(A("o))) surjectively onto @’%(C) for each open
compact subgroup K. Thus we need to check

(Ay—1(zys Ay1(2)s Ny=1(2) © &) = (Az. Az, 0z 0y g) in AP for y € G(Q) 4

which is equivalent to [y~1(z), g] = [z, y®g]. This is because oy O Ny—1(z) =
Nz o y(®) for the isogeny oy @ Ay—1(;) — Az given via the multiplication by
(—cz+a) on C! (withy = (4 5)).

We now give a very brief outline of the proof of the representability (assuming
that K is open-compact), reducing it to the representability of a functor classifying
abelian schemes up to isomorphisms not up to isogenies. Let G be the derived
group Res;7SL(2) of G. By shrinking K, we may assume that det(K) N O C
(KN Z(Z))?. This is to guarantee that the images of gKg~ ' NG (Q) and gKg~'N
G(@)T in PG(Q) (PG = G/Z) are equal; now, Shg (C) can be embedded into
Shg, (C) for K1 = G1(A©)) N K, because the moduli problem with respect to
K is neat without having any nontrivial automorphisms. Let L C V be an O-
lattice. We may assume that L = a* @ b for a pair (a, b) of two fractional ideals,
where a* is the dual ideal given by {§ € F|Tr(fa) C Z} = a~'0~!. We define the
polarization ideal ¢ by ¢* = A(L A L) C F. For each point &, € X, we have a unique
point z € (C —R)! fixed by &, (C*) (in this way, we identify 3 with the connected
component X1 of X containing /). By changing the F ® R-linear identification
V ®g C = F? ®g C, we may assume that z € X = 3. The action of /,(C>) on
Vr =V ®qaR gives a structure of a complex vector space of dimension g = [F : Q]
on Vg; that is, Vg = C! via (a,b)> —a+bz="(a,b)J;1-'(z,1) for J; = ((1’ _01 )
Then L C Vi gives rise to the lattice £,, and A induces the c-polarization A.
Set L =L Rz 7cC VAfoo) =V Qo A(®) and define an abelian variety A;,c by
A,(C) =C!/%,. Then we have T(A4,) = L, which induces Nz : Vi = V(Az)
and gives rise to a level N-structure ¢ : N"'L/L = A,[N] for any N > 0.

Let CIT(K) = F )/ det(K) F, which is a finite group (by the open prop-
erty of K). We fix a complete representative set {c¢ € F g(oo)} for C1T(K) so that
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c¢ONF = c. We define an O-lattice L.=c¢*®0 CV asabove with A(L.AL.) =c*,
andput L =Lo. Notethat L=L-(§9)in F>=V.

For each isogeny class of (4, A, 7) /S € @%(S ), we can functorially find a
unique triple (4’, 1/, 77) /s and a polarization ideal ¢ (representing a unique class
in CIT(K)) such that 1’ (ic) = T (A). Once this is done, as explained after (pol),
we can find a polarization A’ in A’ so that the alternating pairing induced on 7'(A)
by the polarization coincides with A under 5. See [Hid04, pp. 135-136] for the
details of this process of finding a unique triple (4’, 1’,77") s in the isogeny class
of (A, /\, ﬁ) /S- _

Thus once we have adjusted the c-polarization A’ in A to A for each member
(A, ), 7) € @%(S), we have a unique triple (A", 1", 7),;s with c-polarization A’.
If two such choices are isogenous, the isogeny between them has to be an iso-
morphism keeping the polarization. Thus we get an isomorphism of functors:
@%(S) = P (S) = Ueeart ) 9”K’C(S), where ¢ runs over the ideal classes in

It (K) = F®” /X det(K), and
e (S) = {(A’, V.75 with (rm1-4) | (L) = T(4') and ¢(A') = c} /.

Here 2~ means an isomorphism (not an isogeny) for a chosen polarization integral
over the fixed lattice L in the class of A (in other words, A induces a fixed alternat-
ing form on the space V' integral over L. (up to units in F Ndet(K)). As we now
see, this functor @,K, . is represented by a scheme 9(c, K) over a specific abelian
extension kg of Q dependent on K (see below for a description of kx for some
specific K’s). See [Hid04, §4.2] for details of this process.

Recall Lc=c*®O0CV, L, =1(i£1N L/NL.= L.®77 and L AL = c* by
(a,b) A (d',b")— a’b — ab’. Take the principal congruence subgroup I'«(N) =
Ker(GL(L.) = GL(L./NL¢)) of G(A©®®) for an integer N > 0. We write T'(N)
for To(N). We identify uy with Z/NZ by choosing a primitive Nth root { =
{n of unity in Q[uy]. Then, having a level I'(N)-structure 7 is equivalent to
having a level T'¢((N)-structure 7, because we can identify zc and L via the left
multiplication by (8 (1)) Giving 77’ is equivalent to giving an isomorphism of locally
free group schemes

_ m
ON:(FRuN)X(0ORZ/NZ) =~ N"'L./L.~ A'[N].
Thus 9]’} (N).c is the standard moduli functor classifying the level structure for the
principal congruence subgroup I'¢(N):

N (< ®uN)x(OR®Z/NZ) = A[N]\ , _
ran.o(9) = {42850 oL =
By a standard argument (see [Rap78], [Kat78] and [Hid04, 4.1]), this functor is rep-
resented by a geometrically irreducible quasi projective variety M (c, I'(N)) /q[ux1-
Over krn) = Q[un], the component N(c, I'(N)) of Shrn) (G, X) repre-

sents the functor 9”F (N).c This irreducible component in turn corresponds to the
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component G(Q)\ (X xG(Q) (§9) T (N))/T'(N) C Shry)(C) in (3.1). The
choice ¢ gives rise to the identification Q[uy] = Q[T']/ (P (T)) with Q[{] for the
cyclotomic polynomial ®x (7T') € Z[T], and an automorphism o € Gal(Q[{]/Q)
changes the identification by ¢ + ¢, whose action is induced by ¢n — o (§9)
for a unit ¢ € Z* such that ¢% = ¢°. In other words, the action of (§ 9) € G(A)
on Sh(G, X) g brings

M(O,T'(N))/arg) € Shrw) (G, X)

to its o-conjugate M( O, F(N))‘/’@[;] in Shyr(y) (G, X) /q.
Summing up all these, we have

(3.3) Pran = L] Pr).c over @lun]-SCH,
ceCl}(N)

which implies

(3.4 Shrw) (G, X)japuy] = |_| M(c, [(N)) over Q[un].
ceCl}(N)

Since L. = (Z (6 (1’)_1) NV, this corresponds to the decomposition

GAC)= || G@(§9)TW).

c€ClH(N)

By the Galois action on M(c, I'(N))/q[u]» We can descend the right-hand side
of (3.4) to the base field Q to obtain the model Shry)(G, X) over Q, because
M(c, I'(N)) is quasi-projective as we already mentioned.

To construct p-integral models of Shimura varieties, we use the following
variant (due to Kottwitz [Kot92]) of the functor QP%. We fix a rational prime p
unramified in F/Q. This concerns an open-compact subgroup K maximal at p (i.e.,
K= G(Zp)xK(p)), where O, = O®z7Z,. We have written KP) ={xe K|xp=1}.
Recall AP®) = {x ¢ Alxp = xoo = 0}. We identify the multiplicative group
AP with {x € AX|x, = xo0 = 1}.

(p)

We consider the following fibered category sl " over Zp)-schemes:

(Object) abelian schemes with real multiplication by O;

(Morphism) We define Hom&ggﬂ (A, A") =Homy. (A, A’) ®z Zp), where

Lipy = {?—)\bZerZ = Z} .

This means that to classify test objects, we now allow only isogenies with degree
prime to p (called “prime-to-p isogenies™), and the degree of the polarization A is
supposed also to be prime to p. Two polarizations are equivalent if A =al’ =1/ oa
for a totally positive a € F prime to p.
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Fix an O-lattice L C V = F? with A(L A L) = ¢*, and assume self Op-dual-
ity of L, = L ®z Z, under the alternating pairing A : V AV = F. Consider
test objects (4, A, n(p))/g Here (P : V(AP®) = |V @g AP®) ~ y(P)(4) =
T(A) ®7 APoo) and /\ € A are supposed to satisfy the following requirement:
@A) AV P (1) D FAgpoo) is proportional to A : V AV = F up to scalars in
(F @ AlP®))X Here ¢; is the alternating form induced by the polarization A. We
write the K -orbit of 7 as 7(P). Then we consider the following functor from
Z(p)-schemes into SETS.

(3.5) PP(s) = [(A,X, 7)) s with (rml—4)] .
Let O(X = = O, N F{. Aslong as K is maximal at p, we can identify

CIT(K) = F™/F dew(K) with FP*" /05 det(KP). Thus we may
choose the representatives {c¢} prime to p (and we may assume the self-duality of
L at p). By the same process as bringing ?P isomorphically to %’ K/Q the functor
is equivalent to @IK 1Zem defined over Z( p)—SCH, s, it is representable over Z ),

giving a canonical model Sh%’)(G, X)/z,, over Z(p). The functor P JZim is a
disjoint union of the functors % _indexed by ¢ € CIT(K), where
(3.6)

P (S) = [(A, 2,75 with (mi—4) [gP)(Lo) = TP (4), ¢(h) = c] .
(p)
1Z(p)
is compatible when N varies over integers prime to p, simi-

A subtle point is to relate Sh

() ~
9>F(N) g)/l“(N)/Z

larly, for QPF(N) ~ ‘O])F(N)/@; therefore,

to Sh/g. The equivalence of functors

ShP) ®7, @ = Sh/G(Z,).

The functor %’ for N prime to p is represented by a scheme

T'(N),0/Zpy[un]
M0, F(N))/Z(p)[H«N]

and gives rise to a closed subscheme of Sh{?) . The characteristic 0 fiber
L(N)/Zp)[n]

M(O,T'(N)) ®z,,[1n] Qlen] gives M(O,T'(N))/a[uy] in (3.4). We define a

closed subscheme 91(?) of Sh(?) over the integer ring Zg;_ab = UpJfN Zpylun]

by
T (p)—ab
37  m» .= %m(o,r(zv))/z(m[w] c sh? &y, 25377
p

Similarly, we define a closed subscheme 21 of Shga over the maximal abelian
extension Q% = | ., Q[un] by

3.8) Mg = lim M(O, T'(N))/qpey] C Sh®a O
N>0
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Since L' =~ L for any O-lattice L' C V, it is essential to allow all O-isomor-
phism classes of O-lattices L’ to define @/I‘ (N)* because in the definition of 9’(1’),

only L@ s specified (which does not determine the isomorphism class of L if
the class group of F is nontrivial). This problem is more acute at p because over
Zpy, Tp(A) does not determine L. Indeed the p-adic Tate module of an abelian
scheme of characteristic p has less rank than its characteristic 0 counterpart. The
self-duality at p of L has to be imposed to overcome this point (see the argument
just above Remark 7.4 of [Hid04]). Also we need the density of the derived group
G1(Q) in G1(A©®) (the strong approximation theorem) in order to know that geo-
metrically irreducible components of Sh%’) are indexed by the class group CI™ (K):

@) \ ~ "+
JT()(ShK/@ ~ CI" (K).

Since p is unramified in F/Q (and K (P is sufficiently small), Shg) is smooth
over Zp) by the infinitesimal criterion of smoothness (e.g., [BLR90, Prop. 2.2.6]);
that is, we can show that any characteristic p test object lifts to characteristic 0
infinitesimally. To explain this, let R be a Z,)-algebra with a nilpotent ideal
I C R containing a power of p. Put Rop = R/I. We want to show the existence
of a lifting of a test object (Ao, Ao, ﬁ(()p ) )/Ro to R. The abelian variety A lifts
to an abelian scheme A, (with A ® g Rg = Ap) by the deformation theory of
Grothendieck-Messing-Mumford (cf. [Mes72, V.1.6], [Mum65, §6.3], [Rap78, 1.5—
1.10], [FC90, 1.3], and also [Hid04, Th. 8.8 and the remark after the theorem]).
Since the degree of the polarization is prime to p (here we use the fact that we
can choose a representative ¢ prime to p in a given class in CIT (K)), A also lifts
because we may assume that Ag : A9 — Ag is étale (and hence A’ = A/E for
an étale subgroup E C A lifting Ker(4¢); see [Mil80, 1.3.12]). As for the level

structure n(()p ), it is prime to p and hence étale over Ry. Then it extends uniquely

to a level structure n(?) : VAgp )~ (@) (A) over R. By the deformation theory
of Barsotti-Tate groups (see [Mes72, V.1.6] and [Rap78, 1.5-1.10]), using (rm4),
we can find a deformation A, of Ag,r, with an embedding O — End(A4,g)
compatible with O < End(4¢,/g,)-

We can let g € G(A©®)) act on Sh(G, X)/q by

(3.9) (A2 0,m) = (A, A, i nog),
which gives a right action of G(A(®) on Sh(G, X). Define

G =%4(G,X) = {g € G(A)|det(g) € AXFXFO§+/FXFO§+} :

and write € =€(G, X) = %(G, ¥)/Z(Q)G(R) 4+ (see [Shi70b], [Shi75] and [Shi00,
§81). Here FZ , is the subgroup of totally positive elements in Foo = F ®g R.
By (3.1) (and by our construction), we have 7o(Sh(G, X)(C)) =~ F AX(OO) JFX ~
F/FXFg, = 1<i—111N Cl; (N). The action of g € G(A(®)) permutes transitively
connected components of Sh(G, X)(C).
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The neutral irreducible component of Sh(G, X)(C) is the image of 3 x 1 in
Sh(G, X)(C) under the projection in (3.1) and is given by the complex points 9It(C)
of the closed subscheme M qu of Shga defined in (3.8). Since M(O, I'(N))(C)
is a connected complex manifold for N > 0, 9,qu is geometrically irreducible.
Composing the structure morphism 90t — Spec(@Q?) with the unique morphism
Spec(@) — Spec(Q), we regard 91 as an irreducible (but geometrically reducible)
@Q-scheme. Thus we can think of the rational function field Q(91,g). The field of
definition of 9T (that is, the algebraic closure of @ in the function field Q(9M,q)) is
the maximal abelian extension Q% /@ (thus, Q(Mq) = Q* (M qu)), because the
values of the Weil pairing on all the torsion points of the universal abelian scheme
over M generate @%. Then we can think of the scheme 9 xg Q% (over Q™)
which is no longer connected:

Mxg@ = [ | Mxge, Q"
o €Gal(Q*/Q)
Since Sh is defined over Q and 9/gw C Shga, im‘/’@ab = M xgw ; QP gives

another connected component of S/ ®g Q2°; in other words, the nonconnected
scheme Mt xg @ has an open immersion into Sh(G, X) /@, and the action of g €
G (A©) preserves o (M xg @) if and only if det(g) € AXFXF so The action
of g with det(g) € A* permutes transitively geometrically irreducible components
of Sh through the action of the Artin symbol [det(g), @] on Q® (see [Hid04, Proof
of Th. 4.14]). Thus we may regard ¢ as the stabilizer inside G (A(°®) of the neutral
component 9. Since G (A©) acts transitively on the set 77o(Sh(G, X) /@) the
stabilizer of another component 9t - g in G(A(®®)) is given by g7'%4g. Since ¢
is a normal subgroup of G(A(®®)), & is the stabilizer of any other geometrically
irreducible component of Sh(G, X).

We shall give another description of € due to Deligne. We recall it, because
recently Shimura’s reciprocity is often written using Deligne’s formulation and it
is also easier to describe the action of G(A(%) (up to isogeny) in group theoretic
terms if we use his definition. Write G = G(A©))/Z(Q), T = G(Q)4, and
A = G¥(Q) = G(Q)/Z(Q). We have the projection I' 3 y > ¥ onto a subgroup
T of G and the following commutative diagram of group homomorphisms:

. A

T
(3.10) ml lr
G T) Aut(G).

Here r is the inclusion, ¢ is induced by the projection G(Q) — G*(Q), Aut(G)
is the automorphism group of the group G, and ad(g)(x) = gxg~! for g € G. We
often write ¢(y) for ¢(¥) and by definition, r(§) (§ € A) preserves I as a whole.
Plainly, we have the following two compatibility conditions,
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(a) r(p(y)) =ad(y) for all y € I' (commutativity of (3.10));
(b) p(r(8)(y)) =ad()(p(y)) forall§ € Aandy € T.

We consider the semi-direct product: G x A whose multiplication law is given by

(g.8)(h.€) = (g (r(8)(h)). 8€), and we have (g,8)~! = (r(6~")(¢7").67"). By
computation, we have

&85 T L e)(g. &)~ = (g-r@F Hr@é-e()r@E ™), ad®)(e(1))).
Then again by computation,
g-r@F Hr@é-eNrE ™)
=g-r@FT Hr@FeE N D =g-r@EE e T
=g r@rE HENEOFT ) =rem™.

This shows that I' = {(7 !, ¢(y))|y € I'} is a normal subgroup of the semi-direct
product G x A. We then define

(3.11) G*xr A= (GxA)T.
We have the following commutative diagram with exact rows.
Ker(¢p) _c.Tr % A Coker(¢p)

1| n

Ker(p)

ﬂlSl—»[l,S] ln

G *r A —— Coker(p).
onto

QI +—

g—[g,1]
Then by the (suitably applied) snake lemma, we get a canonical isomorphism

(3.12) T\G = A\(G *r A).

Note that T'\ (¥ x G) = Sh(G, X)(C) by (3.1). By this isomorphism, the amalga-
mated product G *r A acts on T'\(X x G), and the action of [g,8] € G *r A on
the class [z] in T\ (¥ x G) = Sh(G, X)(C) (which is sent to [z, 1] € A\(G *r A))
is given by

3.13) [2]-[g. 8] = [z, 1[g. 8] = [z, 8] = [1, 8][r (&) ~" (z¢), 1] = [ () ™" (z2)].

Thus G *r A acts on the Shimura variety Sh(G, ¥), and by (3.13) combined with
(3.2), the action coincides with the one in (3.9) (see [Del79] and [Hid04, 4.2.2]).
In particular, €(G, X) is identified with the stabilizer of 90t (and of any other geo-
metrically irreducible component of Sh(G, X)) in G *r A. The map

G xr A > (g,ad(y)) > det(g) € Fx'/F*F}

is a well-defined homomorphism, and €(G, X) is identified with the inverse image
of AXFXF 3, /F*F, in G *r A. The following fact (whose proof we have
sketched) has been shown in [Shi70b, 6.5] and [Miy72, Th. 2] (see also [MS81,
4.6 and 4.13] and [Hid04, Th. 4.14]):
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THEOREM 3.1. The stabilizer in G(A) of the geometrically irreducible
component of Sh(G, X) which contains the image of X+ x 1 is given by €(G, ¥).
The right action of (g, ad(y)) € €(G, %) (y € G(Q)) on [z, g'] is given by

281 Iy (2). ('9)™ L.
where (g'g)Y) =y~ (¢'g)y.

Since Shimura does not formulate his result in the language of schemes, it is
hard to say which part of Sh is Shimura’s canonical model, though we can probably
say that the (projective) system {Mg := M/ K} g 7, x) Of quasi-projective va-
rieties irreducible over Q0 (indexed by open compact subgroups K) each regarded
as defined over its field of definition kg (that is, the algebraic closure of Q in
its function field Q(Mk q)) is essentially his canonical model. Since another
geometrically connected component V' of Sh/q is isomorphic to 91 by an action
of g € G(A(), more precisely, Shimura’s canonical models give a system of geo-
metrically irreducible varieties of the form g(9Mk ), with a specific isomorphism
onto Me—1 kg /i, given by each element of g € G(A®)). His theory includes an
explicit determination of kg as an abelian extension of Q via class field theory, the
local reciprocity low at each CM-point on g and an explicit description of the
action of €(G, X) on each member Mg (the global reciprocity law). The above
result is an interpretation in Deligne’s language of the result of Shimura in [Shi70b,
6.5]. When we regard g € €(G, ¥) as an automorphism of Ogj, or Sh(G, X) /@, we
write it as 7(g).

3.2. Shimura’s reciprocity law. Since
Sh(G, %)(C) = G@\(Xx G(A™))/Z (@),

we write [z, g] € Sh(C) for the image of (z, g) € X x G(A(®)). A point x = [z, g]
is called a CM-point if z = (25 )ger € X = (C—R)! C F ®¢ C generates a totally
imaginary quadratic extension My = F[z] C F ®gC of F (a CM field over F). We
write £ = ), for the integer ring of M, and O, = {@ € Oy |a¥,; C £, } (the order
of ; = O*+ Oz). Let Ty = T be the (abstract) group scheme Resy /7Gp, (Which
is an abstract torus over Z[%] for the discriminant D of O). We assume p { D for
the prime p (so, we assume that £, ®77 ), =Ox®7Zp and Ox Q72 p =Ox Q72 p).
The regular representation p; : Tx(Q) = M — G(Q) given by (%) = pz () (7)
gives rise to a representation T ,z11/p] — G,z[1/p] because (1, z) gives rise to a
basis of £, ®z Z[%]. Since (1, z) gives a basis of £, ®z /Z\[%] over /Z\[%] for the
discriminant D of Oy, we may regard p, as a representation p, : T, — G defined
over /Z\[%] Now conjugating by g, we get py : Ty a0 = G a0 defined over
A©) given by px (o) = g1 () g. Here we used the fact that A®®) = Z[%] ®zQ.
We assume that Ay has complex multiplication by O that is, under the action of
Ty (Z) = ﬁx via Dy, L-g N F2 is identified with a fractional ideal of M, prime
to p. On the other hand, the level structure 1, = 7, o g identifies T(Ay) with
L- ‘g = L. fora polarization ideal ¢ prime to p.
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We let G(Q) act on the column vector space V = F? through the matrix
multiplication. The action of T via p; on V makes V a vector space over My of
dimension 1. Then the subspace Vyx = V ®g C on which A acts by its restriction
Wx = hz|G,,x1 is preserved by multiplication by My, yielding an isomorphism
class X of representations of M. Since the isomorphism class ¥ is determined
by its diagonal entries 0; : M, < C, we may identify ¥, with a formal sum
> ;i 0i. Since py X [t = h;, we find that {07, c0;};=1,. 4 (d = [F : Q]) is the
total set I of complex embeddings of M, into C. Taking the fiber A = Ay at
x € Sh(C) of the universal abelian scheme over Sh, we find that A has complex
multiplication by My with CM-type (Mx, Xx). Let (M}, X/) be the reflex of
(My, ) as defined in [Shi98, Chap. IV]. Then a Hoez:; o (a) induces a mor-
phism 7y : T’ = Respr jgGm — Tx C G. The field My is by definition the field
of definition of wy : G;; — G. The map ry can be realized as

y2 Norm
re: Ty =Respr 0Gm — Respyr jqTe — Ty

For each b € TL(A®) = (M ; (o)) > we have the Artin reciprocity image [b, My]

€ Gal(M*™ /M), where M/™ is the maximal abelian extension of M. Since
Tx(R) is the stabilizer of z, [z,yg] = [y !(2). g] = [z, g] for y € Tx(Q), and
hence [z, g] > [z, rx(b)g] only depends on [b, M}] by class field theory. Also we
find that elements of py (Tx(Q)) C G(A) stabilize the CM-point [z, g] under
right multiplication. Now we are ready to state Shimura’s reciprocity law for the
CM-point [z, g] (see [Shi98, 18.6, 18.8] and [Mil90, I1.5.1]):

PROPOSITION 3.2. Let x = [z, g] be a CM-point in Sh(G, X),q. Then the
point x is M)’Cab-mtional, and for any b € TL.(A©), we have

b~', M)([z, g]) = [z, glpx (rx (b)) = [z, Pz (rx (b))g]
and [z, g1px(v) = [z, bz (y)g]l = [y~ (2). gl = [z. g] for any y € Tx(Q).

3.3. Reciprocity law for deformation spaces. We suppose that p is unram-
ified in F/Q. We start with a fixed CM-point x = [z, g] and the associated
abelian variety (Ay, A, i, ) of CM-type (M, =). Unless confusion seems likely,
we write (M, X) for (My, Xx). We suppose that i : O — End(Ay) extends to
i 19 < End(Ay) for the integer ring O of M. Take W = W(Fp) and consider
the reduction Ag modulo (p) of A,. Suppose that A is ordinary. Diagonalizing
the action of M on Lie(Ayx),w, we may assume that 0 € ¥ embeds O into W.
We write v; (i =1,2,---) for the p-adic place of M associated to o0 € X. We
write X, = Xy , for the set of places v;. This condition of A being ordinary is
equivalent to

(ord) Each v € X, is not equivalent to v o ¢ for 1 # ¢ € Gal(M/ F).

This implies that all prime factors of p in F split in M. We pick a base
of Moy over Fyeo and identify Myeo with V(AC)) = F2_ | so that the
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fixed lattice in the definition of 975%7) is a fractional ideal of M. If x = [z, g],
the choice of g is tantamount to the choice of the base of My (0) Over Fp(oo). Then
the polarization A induces an alternating pairing («, 8) = Trps/q(8ac(B)) for the
unique nontrivial automorphism ¢ of M/F. Here § € M is a purely imaginary
element § = ~/—A for a totally positive element A € F with Im(c (§)) > 0 for
all 0 € ¥. We then have A,(C) = L\ (M ®g R) for a fractional ideal L C M
identifying M ®g R with C through a ® t — (0 (a)t)sex. This induces P =
ngl’) 0gP): M @gAP® ~ y(P)(4,).

Since K is maximal at p, we may assume that L, =9, =9 ®z 7, (so, gp €
G(Zp) because £, @77 , = O, inside Mp). We are dealing with Kottwitz’s moduli
problem (as in (3.5) in §3.1). By reduction mod p, n‘? induces a prime-to-p level
structure ngp) on Ag. Let (A, 14, A),r be any deformation of (Ao, to, Ao)/r (F = Fp)
over Spec(R) for an artinian W-algebra R. Since A[N] for N prime to p is étale

over Spec(R), the level structure n(p )

structure ngp ) on A /R- Thus the level structure is insensitive to the deformation of

the underlying triple (Ao, to, A0). Therefore, for the deformation functor:

at the special fiber extends uniquely to a level

QP(R)—[(A i, AP | (A e, i, 4,0 Y) mod mg = (Ao, 1o, o, Ao, n‘P’)],

the forgetful morphlsm (A, 14,1, A, n(p))/R (A, 14,1, A)/R of @ into the original
deformation functor % Ao,io,Ao Induces an isomorphism of functors; so, they have
identical deformation spaces.

We consider the Serre-Tate deformation space S representing P. We take
the Kottwitz model Sh? )(G X),w over W and consider x = [z, g] as a point of
Sh{P)(G, X)(W). Let Sh° = Sh°(G, X) = Sh'P)(G, X)[ L], that is, we invert
over Sh'?) a lift E of a power of the Hasse invariant H. The formal completion
Sh of Sh°™ along Sh{™ = Sh™ @y F is uniquely determined independently of
the choice of E and gives the ordinary locus of A. Writing Sh®™¢ for Sh(? )[%] is
therefore a slight abuse of notation. We assume that x gives rise to a closed point
of Shod,

Since S carries the universal deformation A= (A1i,A, n(p )) /5 which is an
element of 9}’(1’)(§ ), by the universality of the Shimura variety, we have an inclu-
sion

(3.14) ¢ : S < Sh%(G, %) such that p*A° = o

for the universal quadruple A°Y over Sh"rd(G X). Since 7 lacks the information
about Ao[p°°] the identification of S with G,, ®7 0! is not yet specified.

Since S is connected, we have the connected component V,y C Sh%), con-
taining the image of ¢. Then V/f =V ®w [ is the connected component containing
the point x carrying (Ao, Lo, io, Ao, n(p )) We can lift the morphism ¢ to the Igusa

tower over the formal completion V2 of V[ l/w along V/O[Frd = V[%] k- The



70 HARUZO HIDA

Igusa tower Ig,,ou studied in [Hid04, Chap. 8] is given by
IsomO(Fp/Op/ Vgg‘? Aord[p ] Vord)

for the universal abelian scheme A°Y over V2. Strictly speaking, in [Hid04], we
studied principally the Igusa tower on the neutral component of Shggd, but here we
study it over V&fd, because we need to study it over the component containing the
fixed CM-point x € Sh%Y. We can also write

Ig/yo = Isomo (1poe ®7 D/Vo,d,A"rd[p 19 o)

for the connected component A% 4[p>]° of A°4[p™>°] (Cartier duality). Let p =
]_[vezp py for the prime py associated to the valuation v € ¥p. Then J; P~/ /9
=~ A, [(p°)°°], which induces

nprd Op =~ Dp“ Homgz, Qp/Zp, Ax[(p)™]) = TAx[Poo]et-
We can therefore extend 7 to
7 Op x (M ®g AP™)) = TA,[p™] x VP (4y).

Let % be the field of fractions of W. Over the field fiz[u poe], we can further extend
ngrd to np : Op x Op = ) = TA,[p™] by identifying | J; p I /9 = Ax[p™].
This choice is tantamount to the choice of g, which brings the base of L, to the
base given by the two idempotent 1, := (1,0) of Op and 1,c := (0, 1) of Dpc in
Op X Ope = 0p x 0p. We write 1) = 1, x nP) and ¢ = ngrd x (P,

We can think of the deformation of (Ao, , o, Ao, ngrd) /E» for ngrd =n"mod p.
The p-part of the level p- -structure nord provides the canonical identification of
the deformation space S with Gm ®z 0~ L. For any complete local W -algebra C
and any deformation A,c of Ag, A[p™]® is étale over Spec(C); so, again the
deformation is insensitive to the ordinary level structure. Thus we get a canonical
immersion:

(3.15) Ppora - Gm®z0 Ig such that p* A% = %9,

Here A% (resp. s4°™) denotes the universal ordinary quadruple over Ig (resp. the
universal quintuple over 3).

The abelian variety A, = (Ax,i,A,n°9) of CM-type (M, ¥) is the fiber of
s4°" at a point gg € Gm @707} (W). Here qo is an Op-bilinear form on TAo[p>°]".
Since any element a € io(9) C End(4,, /R,) can be lifted to Ay, by the Serre-Tate
theorem, we have

(3.16) qo(i(@)y.y") = qo(y.1(@))") (@ € D),

where @ = c(a) for 1 # ¢ € Gal(M/F) This forces g to be 0, that is, go(y, y)
is the constant 1 of the group Gm®0! identically, because g is also Op-linear
and Op = Oy. Indeed, the connected étale exact sequence of A, [p>°] does split
by complex multiplication, and hence go = 1 by definition.
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We now compute the effect of the isogeny ig(a) : Ao — Ao (Ao = Ax/r and
a € ) on the deformation space S. Pick a deformation A JR of Ag = A for an
artinian R € CL,w, and look into the following diagram with exact rows:

Hom(TAo[p™]*, Gm(R)) < A[p"|(R) = Ao[p"*'(R)
(3.17) af lee
Hom(TAo[p™®]*, Gm(R)) = A[p"I(R) > Ao[p"*(R).
L ot - .
Take u = 1(21” un € TAo[p™]%, and lift it to v = 1(21'1 v, for v, € A(R) (but
v, & A[p"]). Then
q(u) =1(i_r_n51n(un) € Hom(TAo[p*® ]et Gm) for gn (un) =“p""vn.
n

Note that the identification of Hom(TAq[p*°], @m) with the formal group A° of
A is given by the Cartler duality composed with the polarization; so, if « is prime
to p, @ sends q to q = 11m a(“p"a™¢(vy)). Thus the effect of « on ¢ is

given by g — g% . Once the 1dent1ﬁcat10n of S with Gm ® 0~ ! is given (that is,
a level p°°-structure ngrd F,/0p = Ao[p®>]® is chosen), o € O prime to p acts
on the coordinate ¢ (of Gm ®o 1 by t — T

Write ZZ[\O] for the formal completion of Z,[O] at the origin 1 € S(F) for
S = Gy ® 0~ L. Identify Z;[B] with the ring made up of series: ZEGO a(&)et
for a(§) € Z, (here Z/p[\O] & Zp[[(tg1 —1),...,(t% —1)]] for a base £1,...,&4
of O over Z). Let T = Resp;7G,. Since Gm ®z07! = Spf(Zj[B]) for the
completion at the origin 1 € S(F) for § = G, ®7 07!, 0, =T(Zp) acts on S as
follows: We have a character O — Z;[E]X with s — ¢5. Then the variable change
t — t* induces an automorphism of the formal group @m ®z 07!, and all O-linear
automorphisms are obtained in this way. On the points g of the formal scheme
@m ®z 0”1 (W), the action induces g > ¢°.

The inclusion O — ©O induces an identification of p-adic rings Op with O,
which we fix in this paper and use always in the sequel. Note that O, = Op X Ope.
This same inclusion: O — 9 induces an inclusion of Zpy-tori T — Ty. Let

J := Tx/T. By the identification above, the map D?p) — Oy given by o — al™e
induces an injective homomorphism
(3.18) T(Z(p) — OF = T(Zp).

Thereby, the actions of T (Z,) on S and that of 9 I (Z(p)) are compatible. The torus
T(Z(py) is 1somorph10 to the image (under py) of Tx(Z(p)) in €(G, %), and its
action on S factors through the action of €(G, X) on Ig(G, X) via (3.15). The
Op-module structure of S given by ¢ > t° therefore commutes with the isogeny
action of T on S.

By the level structure n;rd (and its dual), we identify A5 with Gm @0 ! and
Ax[p®°]® with F,/O,. In this way, we may identify the torus 7" with the diagonal
torus 7% of SL,. The action of 7 € T(Zp) = O;f on the quotient A [p®]*
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given by the multiplication by ¢ € O;(, and hence the two tori are identified by
T(Zp)>t+— (,—01 (t’) € TS(ZP) C SL2(0p) when we take the lower diagonal
entry of T? as the coordinate of the quotient.

Change of level structure 1°¢ > n®“ o a for a € T(Z,) is given by the action

of an element (“51 2) of the diagonal torus in 7' (i) C SLy(F, ASOO)), which moves
the point x € Ig to a different point y = a(x) étale over the image of x in Shg
(for K = G(Z)) and brings the canonical coordinate at x to that of the image y. In

other words, the action of a by the change of 7° to n°d o a:

(A,i, 1, A, r;ord) [N (A,i,t,k,nordoa)

sends the deformation space S centered at (Ao, o, Lo, Ao, r)grd) on x to the different

deformation space S, centered at (Ao, o, o, Ao, ngrdoa) on y =a(x) (as long as the
two quintuples are not isogenous). The action of py : Ty (@) — G(A(®)) and the
action of T¢ (Zp) via change of level structure are compatible, since the intersection
of the images of the two groups in €(G, X) is trivial (and the p-component 7' (Z »)
and the projection of px(7x(Q)) to the p-component G(Q ) are both diagonal).
By the definition of py given above, we have a o 7° = 1°9 o py () au-
tomatically. If px () € Tx(Z(p)), it acts on Ig(G, X) as an automorphism, while
px (&) € Ty (Q) may expand or shrink Oy, because it would induce a morphism like
the Frobenius map on the special fiber. The action of 7(px(«)) sends the canonical

. . l—¢ .o e .
coordinate 7 into t* * (identifying o with its image in Op = Hpez:,, Op = Op).

~ LEMMA33.Ifhe €(G, X) fixes x and is an image ofl; € G(A)) with
hp € G(Zp), then it is induced by an endomorphism o € End% (Ax) =M, ,and h

. 1—c
induces t — t% .

Proof. Since h fixes x, it has to preserve /g and S by the irreducibility of /g
(a theorem of Ribet; see [Hid04, Th. 4.21]). Take & € G(A() with &, € G(Z )
projecting down to /4. Thus h p is in the upper triangular Borel subgroup B(Z )
by [Hid04, Cor. 4.22]. The Borel subgroup B is upper triangular with respect
to the coordinate given by 7° (and its dual) under which we identified 7 and
T3, By the universality of Sh,q, there exists an isogeny « : Ax — Ay such that
1P oh =aon® and n°oh = aon®. Since @ € End(4y) = O, we have
h = px () modulo Z(Q), and therefore, h is the image of px(x) in €(G, X). The
assertion follows from the above discussion. O

Summing up the above discussion, we have the following fact:
PROPOSITION 3.4. Leta € T(Zp) for T = Resg;7Gm. Then the action:
(A, i, 0, A, 1Y > (A,i,0, A, 1°0a)

induces an isomorphism: S, =S8 sending [ = ZS C(S)Z/S € F(§a, @§a) to fo
at) =3 )t er(s, Og), where t (resp. t') is the canonical coordinate of S
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(resp. Sa). For an isogeny a € End% (Ax) regarded as an element of Ty (Q) by px.,
1—c

we have t o T(px(a)) = 1%

Here is how to relate the characteristic 0 Shimura variety Shy, of level I'1 (p™)
with the characteristic p Igusa tower of level p”. A more localized argument can
be found in [Hid] and [Hid0%a]. Let W =i, L(W(F)) C Q (a strict henselization of

Zp) inside @). We regard Sh(® as a (pro-)scheme over W'. Let ¥ (resp. 37{) be the
field of fractions of W' (resp. W). Consider the quotient Shyy__ /% = Sh(G, X)/ U
for the stabilizer Uso = Up,00 C G(Zp) of the infinity cusp. Thus Uy = (), Un
and U, consists of elements g € G(Z) with g = ((1) I) mod p". Thus Shy__ % =
l(iLnn Shy,, /%, and Shy,, /% (n = 1,2, ..., 00) can be written as the scheme repre-
senting the functor

-1
/sh?)”
because the level p-structure 7, mod U, for a test object (4, A, nmod Ux) /s can
be given by an O-linear closed immersion: jipoo ® 7l A[p™] (& Op(1) =
Tp(ipoe ® 071) <> T, A) if n = oo and an O-linear closed immersion: ppn ®
D/_g — A[p"]/s if n < oo. Here Isomgp(%,p,%,p) for finite flat O-modules
(or Barsotti-Tate O-modules) % and 7 over a base B is a contravariant functor
from B-SCH to SETS which assigns a B-scheme R the set of O-linear closed
immersions §xg R — 3¢ xp R defined over R. By the theory of the Hilbert scheme
(e.g. [Hid04, 6.1.5-6.1.6]), the above functor Isomo (4, g, ¥, p) is representable by
a scheme quasi-finite affine over B if %G and ¥ are finite flat over B, because flatness
and projectivity of §,p and ¥, g (following from finiteness) are the requirements
of representability by the Hilbert scheme. Put

IsomO (,LLpﬂ ® 0 A[pn]/Sh%’{) ) ’

— " -1 n
In = Isomo (up ®0/Sh5%?,A[p Jjsnim)-

We perform the same construction over the category of (p-adic) formal schemes
over Shggd. We then get the formal completion Ig, (G, X) of I, along its special
fiber over [:

Ig, (G, X) =Isomo (ppn ® a/_slhg‘g’ A[p"]/Shgg)

= Isomo (upn @ D/_slhgfg’ A[Pn]r/rgﬁfgg)

=~ Isomgp (A[p" jtShg@ p™"0/O0gpa) (Cartier duality)

for the multiplicative part A[p" f/gllgrd of A°M[p"] /shed (which is only well defined

over the formal scheme Sh%9). The Igusa tower /g/ V4 we discussed earlier is
the pull back of the full Igusa tower /g = l(lnn Ig, (G, X) to the integral formal

subscheme V4 C Shggj. Though Ig, (G, X) is étale finite over Shggj, I, /Sh®
is étale quasi-finite over Sh(®) (because elements I, over nonordinary locus in
characteristic O fiber of I, does not extend to characteristic p fiber). In any case,
by definition I, @ % = Shy,, /%.
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We look at the normalization $, = $, (G, X) of the scheme Sh"ml in Shyy__ /%.

Since I,,/Sh'P) is étale quasi-finite, I, is normal. Thus Or, D @9,1 and Oy, x D
Og,,,x at all closed points x € I,; in other words, Oy, is a localization of Oy, over
the topological space of I,; so, we have an open immersion [/, < $, because of
In ®W 3{ = ShUn/ﬂf'

Since V.2 is a connected component of Sh%Y, 7g/ V4 (defined earlier) is a
closed subscheme of Ig(G, X) (and actually a connected component of Ig(G, X)
by a result of Ribet). The n-th layer

Ig,(G,X) :=Isomg(upn ® 0, ACTd[pnymult )

/Shord ’ /Shord

()
=~ Isomp(O/p" O gpore. Ao [Pn];tshgrod)

is finite étale over the formal scheme Shggj, and Ig(G, X) = l(inn Ig, (G, X). The
isomorphism () is given by sending an isomorphism of the left-hand-side to
its Cartier dual inverse. Each layer Ig, (G, X) is finite over Shggd. As we have
seen, Ig, (G, X) is the formal completion I, of I, along its special fiber I, /f =
Iy @y F =1g,(G,X)/f C $,/r and hence is an open formal subscheme of the
formal completion 3,, of $, along its special fiber. In summary, the special fiber
3, /¢ over [ has Ig, (G, X)/f as an open subscheme of maximal dimension, the
formal scheme Ig(G, X),w is the formal completion of 7o,/ along Ig(G, X),
and 1, oo 18 an open formal subscheme of the formal completion f@\oo along its special
fiber.

The quadruple A, = (Ax, 1, X, 1) of CM-type (M, X) gives a unique point
x € Sh(G, X)(K[ppoe]) and the ordinary quadruple A, = (Ay, 1, A, 1) gives a
unique integral point x € $o,(W’). Consider the W-point x € $o,. Then writing
Oy for the stalk at the closed point X = (x mod myy) € $oo(F) (for the maximal
ideal myy C W), we have an isomorphism S= Spf(@x /w ), where 0y = l(lnn Ox/m7
for the maximal ideal my of Oy . Since S = @m ®z 0~ !, the endomorphism ring
End(g) as a formal group is isomorphic to M;(Zp). By t — t%, a € Op acts on S:
S0, we write End0(§) for the commutant of Resgp, /7, Ga(Zp) in End(§). Then
End0(§) >~ Op. Foreach f €0g anda € 0;, we write a( f) = f oa. Recall the
torus J defined by Tx/T. We may consider the reversed exact sequence of tori
over Z(py: 1 > T — Ty SN (N 1, where the map “norm” is induced by the
norm map: D?p) — O(XP). The character Ty > a — !~ factors through J with
kernel 7'. The inclusion py : Tx <> G (over A(®)) induces p: M *—%(G,X) (and
by abusing the symbol, we have p : T(Q) = px (Tx(Q))/ Z(Q) — €(G, X)). Let
9 be the stabilizer in €(G, X) of the generic point of the irreducible component of
Ig(G, X)/f containing x. As seen in [Hid04, Cor. 4.22], we may identify % with

{h € 4(G, %)‘hp is upper triangular and det(h) € @XZ(@)Z([R{)+}
Z(@G[R)+




THE IWASAWA p-INVARIANT OF p-ADIC HECKE L-FUNCTIONS 75

Here % contains px (7x(Q)), px(h)p (h € My ) is in the diagonal torus in % and
Px(T(Q)) is a discrete subgroup of %.

COROLLARY 3.5. Ifa € D?p) (= Tx(Z(p))), then t(px(at)) fixes x and pre-
serves Oy . If T(h) for h € €(G,X) fixes x, then h is in the image of M.
Moreover writing 1 for the embedding Oy iy < Og associated to (Ax, A, 1, n°9),
we have o'~ (L(f)) = t(FPx@) £ The effect of px(e) € €(G,X) (fora € M)
on the canonical coordinate t € S is given by t +— t% -

Since the action of Ty (Q) (x = [z, g]) on S factors through T, (Q)/T(Q) =
T(@) by a — a'7¢, we regard p(T (Z(p))) as the isotropy group in €(G, %) of
S Ig(G, X) (by Lemma 3.3). However we need to keep in mind the fact that the
image of @ € Tx(Zp)) in T (Zp)) acts on S through the action of 7(p(«)) whose
actionon g € Sis given by g — q“lfc.

3.4. Rigidity for formal p-divisible groups. We set up some notation to quote
a result of Chai (Theorem 4.3 in [Cha08] and Theorem 6.6 in [Cha03]). Let k be an
algebraically closed field of characteristic p > 0. Let T be a finite dimensional p-di-
visible smooth formal group over k. Let Ez,, = End(T), andlet £ = E7, ®7, Qp.
Denote by E™ the linear algebraic group over @, whose Q p-rational points are
E*. Let G be a connected linear algebraic group over Q,, and let p : G — E*
be a homomorphism of algebraic groups over Q. Let G(Z,) = p~ ! (Egp). The
compact p-adic group G(Z ) operates on the p-divisible formal group T via p.

THEOREM 3.6 (C.-L. Chai). Assume that the trivial representation is not a
subquotient of the linear representation (p, E). Suppose that % is an integral
closed formal subscheme of the p-divisible formal group T which is closed under
the action of an open subgroup U of G(Zp). Then % is stable under the group law
of T and hence is a p-divisible smooth formal subgroup of T.

A proof of this fact is given as [Cha03, Th. 6.6] (see also [Cha08, Th. 4.3]).
We now interpret this result in the following setting. In the sequel, k = F = Fp.
We keep the notation introduced in the previous subsection. In particular, we recall
the torus J fixing the CM-point x. Let L be a Z,-free module of finite rank on
which J(Zp) acts by a Qp-rational linear representation. We take (G/q,,, T /k) in
the theorem to be (g/@p,TL/[F = @m ®z, L). Then TL/[F inherits the action of I
from L; so, we get p : I g, — E for E = End(TL) = Endz, (L). Then we get
from the theorem the following lemma:

LEMMA 3.7. Suppose that the trivial representation of I(Zp) is not a sub-

quotient of L @z, Qp. If 03 /F s an integral closed formal subscheme of TL stable
under the action of an open subgroup U of T(Zp). Then there exists a Z p-direct
summand Lz C L stable under I(Zp) such that % = Gm ®z, Lz in particular,

% is a smooth formal subtorus of Ty..
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We recall the definition of Tate-linear subvarieties in the Hilbert modular va-
riety given in [Cha03, §5]. Fix a closed point x € Sh°rd (F = Fp) carrying a triple
(Ax, A, n(P)) (thus Ay is of CM-type (M, ¥) and satlsﬁes (ord) in 3.3). Let V be
the irreducible component of Sh;p ) containing x, and put Vo4 =V N Sh°Y, Let

m > 1 be a positive integer. Suppose that % is an irreducible closed subvariety of
(vordym — pord s ord ... 5 1o defined over F.

(T1) Letz = (z1,...,2zm) (zj € V°d) be any closed point of %. We say that % is
Tate-linear at z if the formal completion of % at z is a formal subtorus of the

Serre-Tate formal torus ]_[]_1 VOrd o~ (Gm ®z O)™,
(T2) We say that % is Tate-linear if it is Tate-linear at every closed point of %.

(T3) Denote by f : Y — % the normalization of . We say that % is weakly
Tate-linear if for every closed point y of Y, the morphism induced by f on
the formal completion fy of Y along y is an isomorphism of IA’y to a formal
subtorus of the Serre-Tate formal torus (Gm ®z 0O)™ (at f(y) e V™).

Obviously, we can modify the above definition to define Tate O-linearity insist-
ing O-linearity in (T1-3). In [Cha03], the definition of Tate linear subvarieties is
given for a closed subvariety of the ordinary locus of the Siegel modular variety.
Since (V°)™ has a canonical closed immersion into a Siegel modular variety (e.g.,
[Hid04, Cor. 7.2 and 8.4.2]), this definition is equivalent to Chai’s definition for
closed subvarieties of the Hilbert modular variety. It is conjectured by Chai that
a weakly Tate linear subvariety is actually Tate linear (see [Cha03, 5.3.1]), which
has been shown to hold for our V C Sh(p ) (see [Cha03, Th. 8.6]).

If % is a variety with a morphlsm Jr % — (Vo™ and if for a closed point
z € %, w induces an embedding of ZZZ into the formal completion of (V°¢)” at
7(z), we can still speak of Tate-linearity (and weak Tate-linearity) at z of % (we
shall abuse this notation often later).

3.5. Linear independence. We prove a key result on linear independence of
arithmetic modular functions (Theorem 3.20 below), respectively, forms (Corollary
3.21 below) and their image under a transcendental automorphism of the deforma-
tion space S over W. We keep the assumption of unramifiedness of p in F/Q and
the notation introduced in Section 3.3. Thus D;l = Op, and we have

§=6n®70 ' =G6n®7,0,' =G6mn®7, 0p = G ®7 0,

where G,, denotes the completion of G, over W along the origin O in the special
fiber at p. Thus the definition of the Tate linearity of the previous section applies
to this case. Recall that M/F is the fixed CM quadratic extension of F with
integer ring O, and x € Ig(F) is the CM-point corresponding to an ordinary abelian
variety with complex multiplication of type (M, X). We may assume that the point
x has expression x = [z,g] = [z,1] - g for g € G(Z, x AP Indeed, we
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can choose the CM abelian variety A, so that its lattice L = £, - g (which is
a fractional M -ideal prime to p) is given by ¢* + Oz for a fractional F-ideal ¢
prime to p. By our choice, £, ®7 Z, = Op = Op @ Opc; so, we may choose
g with nxy = n; o g so that g, € G(Z,) is the matrix of change of base from
(1,z) € sz to the basis (1p, 1pc) € sz for the idempotents 1, € Op and 1, €
Ope. The level p>-structure n;rd (of Ax) sends a € Oy to a - 1 identifying
Ax[p]® with Mpe /Ope by £, @772, = Op @ Ope. For this choice x = [z, g], we
recall the representation py : Tx — G defined over A(®) given at the beginning of
Section 3.2 and the quotient torus T (Z(,)) = Tx(Z(p))/ T (Z(p)) defined just above
(3.18). As studied in Lemma 3.3, px (7 (Z(p))) gives the stabilizer of x = [z, g] in
G(Zp x Alpoo)y /7 (Z(p)). We simply write p for py hereafter.

For each open compact subgroup K of G(A) such that K = K, px K () with
K, = GL2(0p), let Vk be the geometrically irreducible component containing x
in the reduction (Sh(p ) /K)r modulo p of the Kottwitz model. Let V' = 1<an Vk

for K running through open compact subgroups of G(A(®®)) maximal at p. Strictly
speaking, the point x gives rise to a projective system of points xg € Vg (F) (the
image of x in V), but we write this point as x € Vg (F).

The formal completion Sof Vv along x is isomorphic to Gm ® O whose
automorphism group is isomorphic to O;(. Through the injective homomorphism
(3.18): a = =€, we regard T (Zp)) as a subgroup of O, identifying O, with
O, by the inclusion O — O.

Let Oy x = H_r)nK Oy, x be the stalk of V at x, and let S = Spec(Oy ). The
local ring Oy x is a dense subring of the affine ring 65 of S.

Take ay,...,am € O;(. By the action of a; on S (and hence on 65), we have an
algebra homomorphism

m
(3.19) ¢ : 0y, ® - ®F Opx — Og sending fi @+ ® fm to | [ a;(f) € Os.

j=1
If a;’s (j = 1,...,m) are pairwise distinct modulo J(Z(,)), we would like to
prove that ¢ is injective. Thus for a nonconstant modular function f € Oy,
{a1(f),...,am(f)} are linearly independent over F. Since f is a ratio of two
modular forms, this is not too far from the claim (made in the introduction) that
{a1(E),...,am(E)} are linearly independent over F for a suitable Eisenstein se-

ries E. Thus we study Ker(¢) foray,...,am € 0;.

Since p(T(Z(p))) fixes x (Lemma 3.3), J(Z,)) acts on Og by ring auto-
morphisms, and by Corollary 3.5, this action is compatible with the action of 0;
via the embedding 7(Z(,)) < O,. Thus we have ¢(a(f1) ® -+ ® a(fm)) =
' "(Pp(f1® - ® fm)) forall o € T (Z(p))- In other words, the closed subscheme
Spec(Im(¢)) C S™ = § x---x S is stable under the diagonal action of T (Z())
on S™. Thus we study in the following couple of propositions the (local) structure
of a closed subscheme of S™ stable under the diagonal action of J(Z,)). After
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determining the structure of such formal subschemes, we will globalize the result
to reach our desired conclusion of the injectivity of ¢ if a;s are independent.
Since Ker(¢) is a prime ideal of Oy » ® --- ® Oy, stable under the diagonal
action of J(Z(p)), it is induced by an irreducible closed (pro-)subscheme X C V
passing through x™ = (x, x, ..., x). In other words, X is the Zariski closure in
V™ of Spec(Oy,x ®--- ® Oy,x/b) for the prime ideal b = Ker(¢). We take a more
general setting specified as follows (using the following notation throughout).

(NO) Let S = Spec(@y x)/Fand Sg = Spec(@VK x) /¢ with their formal completion
S and SK along x isomorphic to Gm ®z07! Gm ®z O;

(N1) For a prime ideal b C (Oy x ® - - ® Oy ) (the m-fold tensor product) stable
under a p-adically open subgroup T of J(Z,)), we write

%/r =Spec(Oy,x ®--- @0y, /b) C S™
and let Y —> ¥ be the normalization;
(N2) X c 8™ is a formal completion of & along its closed point x* = (x, ..., x);

(N3) X/p is the Zariski closure of & in V™ (so, X is stable under T and X is
the formal completion of X along x™). Let Y — X be the normalization.
Write X = 1<i_r_nK Xg C V™ with irreducible closed subschemes Xg C Vg’
(the image of X in VI'(”) and Yx — X for the normalization of Xg (so,
Y= l(iLnK Yk ), where K runs over open compact subgroups with K = K () x
G(Zp).

We first deal with the simplest case of m = 1. We start with an irreducible
closed (pro-)subscheme X C V passing through x stable under the action of a
subgroup T of T (Zp)) as above. Define X = X NV and Xg¢ = Xg NV
We want to prove that X = V if dim X > 0, and, as we will see after the followmg
proposition, this implies injectivity of ¢. By the étaleness of Oy /Oy, x. X is
canonically isomorphic to the formal completion Xk of Xk at x.

PROPOSITION 3.8. Let the notation and the assumption be as in (NO-3) with
m = 1. If dim X 5 > 0, then Xy = V)p and Xk jr = Vg f.

Proof. We first follow the argument in [Cha95, §8§4 and 5]. By the Serre-Tate
deformation theory and unramifiedness of p in F/Q (which implies 9, = O,), we
have a canonical identification:

?/E§§:6m® Gm ®Zpapl 1_[ Gm ®Zp Op,
peZ)

where V is the formal completion of V' along x. For an open compact subgroup
K maximal at p (so that Ig/ VI‘}rd is étale at x), the above identity induces

Vip=8=Gnez0" = [[ Gnu®z, Oy
peXp
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Since Oy, x is a localization of an [-algebra of finite type, it is an excellent ring
(see [GD, IV.7.8.3 (ii) and (iii)]). Since Oy, x is an excellent integral domain,
X = X g = Spf(Ox x) is reduced (see [GD, 1V.7.8.3 (vii)]).

As we have seen, an element « € M prime to p acts on the Serre-Tate
canonical coordinate by ¢ — %'~ for the generator ¢ of Gal(M/F). By the
stability of X under T, the formal completion X along the point x is stable under
the closure T of T. Since X =~ X k 1s a noetherian reduced formal scheme, it has
only finitely many irreducible components. Thus the stabilizer of each irreducible
component of X is an open subgroup of T and hence is an open subgroup of

J(Z p) Applymg Lemma3.7t0 8 =Tz (L = Op) and an irreducible component
ITof X=X kx (which is reduced as we already remarked), we find

I = 1_[ Gm@ZpOp

pEES

for a subset E7 C X,. The formal scheme I is a smooth formal subgroup of S.

The group J(Z(p)) acts naturally on the normalization ¥ = LiLnK Yg of X.
For a closed point y € Yk over x, Oy, , (which is finite type over Ox, x) is
excellent, and the formal completion ?K is integral ([GD, IV.7.8.3 (vii)]). Thus
there is a unique point y; € Y over x € X such that the projection Yx — Xk
induces an isomorphism of the formal completion }A’y , along yy onto /.

Let U be any of the (pro-)varieties /g, V and Vg. On U, the tangent bundle
Oy is decomposed into the direct sum of eigenspaces under the O-action:

(3.20) Oy = Oy ®z O locally, and Oy = ) Oy,
peXp

where Oy, is a locally free Oy ®z, Op-module of rank 1 (see [Cha95, p. 473]).
To see this, let f : A — Z be an AVRM over a scheme Z z. Then we have the
Kodaira-Spencer map « : f«Q4,7z ® 08,0, f+Q4/z — Qz/r (see [Kat78, 1.0]).
The Kodaira-Spencer map « is an isomorphism if A is the universal abelian scheme
over Z = U (see [Kat78, (1.0.21)]); hence, f«Q2z/f = O ®70z and, when we take
the dual, Oy =~ O ®7 0z. Therefore Oy = @pezp Oy, for the Oy ®7 0z-eigen
sub-bundles ® ;,, and we obtain the expression (3.20).

Let A be the universal abelian scheme over Vi, and write A = A Xy, Yx. We
again have the Kodaira-Spencer map ky : fx$24, vy, R0®,0v, SRy = Lygr-
Since I = ]_[p€~ Gm Q2 ,» Oy, after taking the formal completion along yy, this
map induces an isomorphism

(f*QA/YK ®0®,0y, f*QA/YK) ®o 1_[ Op = QYK,y,/[F-

peEl/

By this expression, via the normalization map: ¥ — X, the tangent space ® of Y
at yy is identified with ®pez, (©p Q¢ ’©\y,y,), where ©, = Oy . By faithfully
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flat descent, we have Oy ®q, Oy,y; = ®pez,; (Op Qg Oy,y,;). Thus on an open
dense subscheme Y; C Y with y; € Y7, we have

®Y1 = GapEE] (®p ®@V ©Y[)'

Since Y is irreducible, Ny Y7 for I running over all irreducible components of X
is still open dense in Y. This implies that Z; is independent of I; hence, X is
integral and smooth, and we have
(3.21) Y=X=]]Gn®z, 0,

peE
for a subset & of X. Therefore, X is smooth at x.

Suppose that E # X, and let p € ¥, —E. We only need to prove that Vx = Xg
for a choice of an open subgroup K maximal at p. Choosing K sufficiently small,
we may assume that Vg is smooth over F = F,. Recall the universal abelian
scheme Ay, . Define A = Ax = A Xy, Xg. Write pr = F Np, and consider the
p F-divisible group A[pF].

We need here a lemma (Lemma 3.10 below) about an ordinary AVRM: 4 — Z.
In our setting, Z = Xk, which is an irreducible excellent affine scheme. Since p ¢ &,
the p-divisible group A[p%] e splits canonically into a direct sum A[pF]°
A[p%o];%(\ . By the lemma, on an open dense subscheme Ug C Xk the p-divisible

group A[p% /v, splits canonically into a direct sum A[pF]° & A[pF ‘;tUK for the
connected component A[p%]° and the étale quotient A[p%]*". We now follow the
proof of Theorem 8.6 in [Cha03] to get a contradiction (and hence we conclude
E = Xp). Consider the decomposition A[p*>°],y, = ]_[p e, Alp F]/UK of the
Barsotti-Tate group A[p*°],y, over Uk. This étale-connected splitting of A[p%F]
over Uk gives two orthogonal idempotents ¢ and e® in Endy, (A[p%]), with the
following properties.

* The idempotents e° and e® commute with the action of O on A[p%F],

* ¢° +e® =id € Endy, (A[pF]),

¢ The image of ¢° is the multiplicative part of A[p%], and the image of e
naturally isomorphic to the maximal étale quotient of A[pF].

Thus, we have
(%) Endo (A[p™],u,) D (@ O,J) @ (Ope® ® Ope) 2 Op.
p#Ep
On the other hand, Theorem 2.6 of [dJ98] tells us that
Endo(A[p"o]/UK) = EIldO(A/UK) Xz Zp.

The endomorphism algebra End® (A Jux) = Endo(A4,y,) ® Q is isomorphic to

either a CM quadratic extension or F itself. Since E # @ (<& dimX > 0),

Endo (A[p’z “l/us) = Oy for p’ € 8, because A[p/FOO]/G 20, 1S the univer-
m p/

sal Barsotti-Tate group over Gm ® Oy C X deforming A x[p/FOO] /F and hence
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Alp'r%1° < A[pn ] — A[p'z *°]*! is nonsplit over Ug. Thus End®(4,y,.) can-
not be a CM quadratic extension; so, End® (4 JUx) = F. This is a contradiction
(against (x)), hence E = X, and Xg = Vg as desired. O

COROLLARY 3.9. Let the notation and the assumption be as in (NO-3) and
as in Proposition 3.8. In particular, m = 1 and b C Oy x is a nonmaximal prime
ideal stable under T. Let b be the unique prime ideal of Oy4 x above b, and write
% = Spec(Oy x/b). Then b =0, b=0and % = Spec(Oy x); in particular, ¢ for
m = 1in (3.19) is injective.

Proof. Let by = bN Oy, x. Since Ojg y is €tale over Oy, x, we have a unique
prime ideal bC Org,x which is over bg. Thus b is also stable under T, and we
have b =04 b=0<« bg =0 for any open compact subgroup K maximal at p.
We consider the Zariski closure Xg of Spec(Oyy,x/bg) in Vi p.

For any Zariski open neighborhood U C Vi of x, put Oy N bg = Ker(Res :
Oy — Oyg x/bk). Then U N Xk is given by the spectrum relative to U:

Specy (Oy /Oy Nbk).
Since Oy N bk is a (sheaf) prime ideal of Oy, U N Xk is irreducible reduced, and
hence X is irreducible reduced. Thus

X=V&b=0(cb=0)<bgr=0< Xg=Vk.

The irreducible reduced T-invariant closed subscheme X is either a single point
{x} or V itself by the above proposition. Hence we conclude b = 0; in particular,
Ker(¢p) = 0, taking b to be Ker(¢). d

LEMMA 3.10. Let A — Z be an ordinary AVRM with real multiplication
by O over a reduced excellent affine base scheme Z over Fp. For a closed point
S Z(Fp) and a formal completion 4 along s, if the p-divisible group A[pF] <z
Z splits into a product of its connected component A[p%o];/z\ and étale quotient

A[p%o]f/’t,z\, then on an open subscheme U C Z containing s, the p-divisible group

A[pF1/u canonically splits into A[pF]° ® A[P%o]‘;tU for the connected component
AlpR15y, and the étale quotient AlpF]5,.

Proof. The splitting, if it exists, is canonical, because Z is reduced. Indeed,
such splitting is canonical over an algebraically closed field (cf. [Mum70, §14,
specifically, p. 136]), and if the base scheme is reduced, under the existence of
the splitting over the base, it has to be unique at all geometric points (and hence
unique over the reduced base scheme). Replacing Z by its irreducible component
containing s, we may assume that Z is irreducible. The p g-part of the Serre-Tate
coordinate 7, around s measures the degree of nonsplitting of the exact sequence
APpFI° — APF] - A[p%o]‘;t,z\ Because of the splitting over Z, we find that

to(AlpF] //Z\) = 0. By assumption, Z = Spec(%) for an excellent integral domain 9R.
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Then by [Cha03, Prop. 8.4 (ii)], there exists an open neighborhood U of s in Z
over which we have a splitting A[p%o]° @ A[p%o]f/:tU. 0

Our goal is to prove the injectivity of ¢ for general m > 1 in (3.19) under the
assumption that the a;’s are pairwise distinct modulo J(Z(,)). The injectivity is
equivalent to Spec(Im(¢)) = S™; so, we study the local property of Spec(Im(¢))
to show that dim(Im(¢)) < dim S™ implies the equality of two of the a;’s modulo
T (Z(py). The following result dealing with the local structure of Spec(Im(¢))
when m > 1 is a key to proving the linear independence.

PROPOSITION 3.11. Let the notation be as in (N0O-3), Proposition 3.8 and its
proof. In particular, for a positive integer m, let X be a closed integral subscheme
of S™ containing x™ = (x,Xx,...,x) for the closed point x € S, and let Ty :
Y — % be the normalization of X. Write S™ = S’ x 8" for the first (m — 1)-factor
S’ = §™=1 c 8™ and the last factor S” = S. Suppose that the projection to S’
induces a dominant morphism wy : X — S;F. Suppose further that & is stable under
the diagonal action of a subgroup T of T(Z(p)) C Aut(Oy,x) whose p-adic closure
is open in J(Zp). Then,

(1) Y has ﬁmtely many poznts y over x™, is Tate O-linear at every point y
over x™; so, ny = Gm ®z, L for an Op-direct summand L of X*(Sm).
Moreover the isomorphism class of L as an Op-module is independent of y.

(2) Y is smooth over [ and is flat over S’.

(3) Either ¥ = S™ or ¥ is finite over S’ via wy. If ¥ is finite over S’, Y is finite
flat over S’.

(4) If g o oy induces a surjection of the tangent space at one y € Y over x™
onto that of S" at x™~! and ¥ is a proper subscheme of S™, then 1y o Iy :
Y — S’ is étale.

Comment. In Proposition 3.8 dealing with the case of m = 1, the factor S is
equal to Spec([F). Later in Corollaries 3.16 and 3.19, we prove that & is smooth;
so, ¥ =#«.

Proof. By Serre-Tate theory, we have = @m ®z, Op. Since the case m = 1
has already been taken care of by Proposition 3.8, we may assume that m > 2. Since
% is dominant over S’, we have dim% > 0. Let K be an open compact subgroup of
G(A®)) maximal at p, and recall Sg = Spec(Oyy x). We assume that K is small
so that §/ Sk is étale. Consider the image of ¥k of & in S¥’. Then ¥x = Spec(% k)
for an integral domain R g and ¥ = Spec(R) for R = lim Rg. Since Rk is a
localization of an integral domain of finite type over [, %K is excellent ([GD,
IV.7.8.3 (ii) and (iii)]). Thus its formal completion %K ~ % along x™ is reduced
([GD, IV.7.8.3 (vii)]).

Since & is stable under the diagonal action of the subgroup T of J(Z,)) C
Aut(Oy,x) and & is integral, by Lemma 3.7, % is a union of finitely many formal
Op-submodules of S§™ of the form Gm ® L for Op-direct summands L of the
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cocharacter group X (§m) ~ 0" % = Urer Gm ® L for a finite index set I of
O,-direct summands L of X(S™).

In particular, % is stable under the action of J I(Z(p)y) (not just T) diagonally
embedded into Autp (S )™, and & and X are stable under J(Z(p)). The normaliza-
tion Y — ¥ is given by LiLnK Yg for the normalization Yg of Xg. Naturally the
semigroup Endscy (%) of endomorphisms of the scheme ¥ acts on %¥; in particular,
T (Z(p)y) acts on Y. The formal completion @y along y for each point y € Y over
x™ is isomorphic to the formal completion Yy K,y of Wk along the image of y
in Yg. The scheme Yk is excellent, because Y 1s finite over *x ([GD, 1V.7.8.3
(>i1), (vii)]). Since Yy K,y 1s the normalization of 9€K and ¥ K,y 1is integral ([GD,
1V.7.8.3 (vii)]), points y7, of Y over x" are indexed by the irreducible components
of % and hence by L € I so that @K,yL = Gm ® L. Since ¥ — S’ is dominant, for
at least one Lg € I, the projection Lo ® o F — X« (3”) ®o F is surjective (i.e.,
the image of Ly is of finite index in X (§/)).

Recall that we denote by X the Zariski closure of ¥ in V" and the normal-
ization IT : ¥ — X of X. Again Endscu(X) acts on Y'; in particular, J(Z(p))
actson Y. We have Y = l(iLnK Yk for the normalization Yx of Xg. We look at

the tangent bundle ® 7 for Z = V™, Y, X, S and S™_Since V™ carries the self
product of the universal abelian scheme A", by the Kodaira-Spencer map with
respect to A/ V™ Qamjym @ 0mg,0, m) 2am/ym = Qym, and taking dual, we
have the diagonal action of O on ®ym (actually O™ acts on ®ym). We have the
tangent bundle ®x C ®ym (which is stable under O), but ®x may not be locally
free around x™ since X may have a singularity at x". The action of O on Oy
extends to @y compatibly. Let y; € Y be a point above x™ with ?y ;= Gm®L.
Since Y is stable under J(Z,)) and ?y , = (A;m ® L for each point y; € Y above
x™, we have Oy = P, Oy, for Oy-eigen sub-bundle Oy,y,. Since I?yL =Gm®L,
®f,yL =L Q®y @fyL, and rankzp L ®o Oy = rankg, Oy, = rankzp Lo ®0 Oy.

Thus L = Lo as Op-modules for all L € I, and Y is equidimensional (the equidi-
mensionality also follows from the excellency of ¥k by [GD, IV.7.8.3 (x)]). This
proves (1).

If Lo®o F = X*(§m) ®o F, then X = S™, and we are done. Hereafter
we assume rankz, Lo < rankz, X*(f’”) (& Lo®o F # X*(§m) Qo F); so,
rankz, L <rankz, X (§™) for all L € I. Recall the decomposition ™ = S’ x S”
with the last factor §” = S. Similarly we decompose V" = V' x V" for the product
V' of the first (m — 1) copies of V and the last copy V' =V.If 7 :Gm®L — S’ is
not dominant for L € [, the image n(@m ® L) is a proper closed formal subscheme
of §’. In particular, ¥ — S’ is not flat over (G ® L) ¢ §'. Define the nonflat
locus Y/ C Y as the Zariski-closure of the set of closed points y € ¥ such that Oy,y
is not flat over Oy ,, for the image v € V'’ of y. The nonflat locus yy, € Yy cy
is a nonempty proper closed subscheme, because Gm ® Lo C Y= ?y 1, 1s flat over
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S’ and flatness is an open property. Since the formal completion of Y™ at yL
contains Gm ® L, dim Y =dim Y; so, Y cannot be irreducible (because Yn/ is
a proper closed subscheme of Y'), a contradiction. Thus Gm ® L — §' is flat for
all L € I, and hence @ is flat over S'. Since 8’/ is faithfully flat, % is flat over
S’. In particular, for all L € I, @m ® L is dominant finite over S’. This proves (2).

Since 7 : ¥ — S induces a surjection 74 : L ®o F — X*(§/) ®o F, the
intersection S” N (Gm ® L) has dimension equal to rankz,, Lo + rankz, X« (§ ) —
rankz, X+ (S™) for all L € I. Then §” N (G ® L) is a formal Op-submodule
isomorphic to ]_[pe = Gm® Opin § §” = §, where E is the set of all primes p € X,
such that ranko, Lo ®0 Oy > m — 1. By Proposition 3.8 (applied to an irreducible
component of ¥ N S”), we have either E; =X, or E;, = @. If 1 = X, we have
rankz, Lo = rank X (§m), and hence ¥ = §™; so, we are done. Since L == Ly
as Op-modules for all L € I, we actually knew that §” N (G, ® L) and that
E = B/ (indexed by L) are independent of L € I, and ¥NS” = 8" N (Gm ® L)
for all L € I (though we did not use this fact). We hereafter assume that £ = &.
Since 7 : Gy ® L — S’ is dominant and dimG,, ® L = dim S’ = rankz , L,
T Gm ® L — S is finite flat for all L € I. Thus & — S’ is finite, and % is finite
flat over S’. This proves (3).

To prove (4), consider the differential sheaf Q2y,s,. We may assume that
(g o Tlgy) 5 : Oy — Og is surjective at yg = yr,. Since ?y0/§’ is finite flat, ?yo
is étale over S/, and hence Yy,/S" is étale. Thus Qyg|v, =0, and hence Qy /s
vanishes on a nonempty open subscheme of Y. Thus the support Y™™ C Y of
Qy s is a proper closed subscheme of Y. If %y, /S is not étale, ¥,, C Y™™ Thus
Y™™ ig a closed subscheme of dimension equal to dim Y; so, it is an irreducible
component of Y, and hence Y is reducible, a contradiction. Thus Y — S’ is étale
finite. O

Remark 3.12. Let the notation and assumption be as in Proposition 3.11. We
suppose m = 2 and that Y — % < S? has two dominant projections onto the left
and the right factor S of S2. We write the Serre-Tate coordinate (induced by the
ordinary level structure on Ay) of the left factor (resp. the right factor) of 52 as
t (resp. t’ ). Then by Lemma 3.7, the formal completion @y of %Y along a point y
above x2 = (x, x) is canonically isomorphic to a formal subtorus of 52 given by
Gm ® L for an Op-free direct summand L of 02 Thus if dim¥ = dim V, ny is
defined by the equation 1% = ¢'” for nonzero- d1v1sors u,v € 0p withuOp +v0, =
Op, and L C O is given by L = {(x, y) € O7|ux = vy}. If two projections are
étale, (u, v) can be chosen to be (1,a) for aunita = v/u € O;,(.

COROLLARY 3.13. Let b = Ker(¢) for ¢ as in (3.19). Let y € Y be a point
above x™ and ?y be the formal completion of Y along y. Then ?y for at least one
y €Y contains A= {(l“’l L tm)|t e §} andfori =1,2,...,m, writing S for
the i-th copy ofS in §m, the projection X*(Yy) — X« (S,) is sur]ecnve regarding
Y c 8™ In particular, if m = 2 and mty is finite, ¥ — S’ is étale finite.
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Proof. We have the following commutative diagram

q) ~
Oyx ®F - ®FOyxy —— Og

(3.22) Ll ||l

Oy,x ®F - ®F Oy x % Os,

where 6V,x =0, DA Q fm)= ]_[7;1 a;( f;) and the map ¢ is the tensor
product of the natural inclusion Oy, C /@V, x- Thus Ker(®) D t((b). Note that
Spf(@\vj x RF--- ®[F6u x/ Ker(®)) is the skew diagonal image Ain S™. Taking the
formal completion along x™, the map ¢ brlngs A into ¥ because Ker(®) D «(b).
Thus an irreducible component Gm & L of % contains A. In particular, if m = 2,
7o, (L) contains o (X *(A)) = X« (S ). Then the rest follows from (4) of the
above proposition. O

We keep the assumption and the notation in (NO-3) for b = Ker(¢) (¢ as in
(3.19)). We have globalized & taking its Zariski closure X in V™. We start with
the simplest case where m = 2. There are two possibilities by the above result that
dim% = dim V or X = V2. The latter case implies ¢ is injective as desired; so, we
are done. Assuming dim¥ = dim V, we take the Zariski closure X of ¥ in V' x V
and its normalization IT : ¥ — X. We study X (resp. Y) as a global irreducible
subvariety of the self product V' x V (resp. as a correspondence V <— Y — V).
We will show in Corollary 3.16 after two preparatory propositions that X = Y and
that the variety X is the graph of an automorphism of V' given by an action of an
element in G (A?%)) (in other words, a1 /ax has to be in T (Z(py))- In this process
of showing that X is a graph of an automorphism, we repeatedly use the fact that
the diagonal action of J(Zp)) preserves X in V x V' and extends to Y.

The subvariety X is a graph of an automorphism of V' (as a correspondence in
V' x V) if and only if the projections 7; : X — V (j =1, 2) are isomorphisms. The
only information we have is: (i) X is stable under the diagonal action of T (Z())
(or a finite index subgroup thereof) and (ii) the formal completion % at any point
y €Y over (x, x) € X has isomorphic projections to the formal completion of V
at x (that is, we know that the two projections I1; = ITon; of ¥ to V are étale
infinitesimally around y). Thus from (i) and (ii), we need to show that 7z; (j =1, 2)
are isomorphisms. We do this using following two steps:

Step 1. We show that IT; is étale over a dense open subscheme of V' (this is
basically achieved by Propositions 3.14 and 3.15).

Step 2. We show that the two pullbacks Y; := H;'.‘A (j =1, 2) of the universal
abelian scheme A,y by IT; are isogenous over Y. Writing the prime-to-p level
structure of Y; as 5; 1= H;’.‘n, for the isogeny ¢ : Y1 — Y, we have g o gp; =
1, o g for some g € G(AP*) and we conclude Y = X and X is the graph
A1,e C(V xV)of t(g) (Corollary 3.16).
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After finishing the case m = 2, we proceed by induction on m and show that
aj/aj € T(Z(py) (for some i # j)if X # V™:

Step 3. Under a suitable assumption on X C V™, by induction on m, we
show that an irreducible subvariety X C V™ (containing (x, x, ..., x)) stable under
the diagonal action of J(Z(,)) (or its p-adically open subgroup) is contained in
Vm=2 x Ay, g after we permute the components V. We get this result by applying
Step 2 to the projected image of X to the product V' x V of the last two factors in
V™ (Corollary 3.19).

Then the linear independence of {a1(Eq,),...,am(Eq,,)} for elements, a;’s,
mutually distinct modulo J(Z(,)) in the introduction follows easily from this
(Corollary 3.21).

In Step 2, the two AVRMs Y,y are (O-linearly) isogenous if and only if
End% (Y/y) = Ma(F) for Y := Y1 xy Yz. Our argument is by contradiction,
supposing End% (Y,y) = F x F. Since Vi (for an open subgroup K C G(/Z\)) is
actually defined over a finite field, the generic fiber of Y,y is an abelian scheme
over a field of finite type over the prime field [F,; so, generically, we can use the
finiteness theorem of Zarhin-Tate on the endomorphism ring of the abelian scheme
over a field of finite type over . Since 7; is €tale over a big open subset, we can
then study Y; Xy Y, specializing it to many CM-points, and in such a way, we
exhibit a contradiction against the assumption End(Y,y) = F x F. This type of
arguments just studying & is impossible because the scheme % has only one closed
point and the function field of & is not a finite type over .

The main tool in Step 1 is the local information from the Serre-Tate coordi-
nates we have studied above and Zariski’s main theorem (or equivalently, the Stein
factorization of the projections X — V'), which requires us to have a smooth com-
pactification (a toroidal compactification V of V). Though the minimal (Satake)
compactification V* of V is easy (and we still have the action of €(G, X) on the
compactification), we lose smoothness which is vital in the use of Zariski’s main
theorem. This point adds some technicalities to our arguments.

For a sufficiently small open compact subgroup K so that Vx is smooth over F,
we take a smooth toroidal compactification V. The toroidal compactification de-
pends on a choice of a simplicial cone decomposition 6 of the totally positive
cone Fy = {a € Fla > 0} into a disjoint union F = | |cgq, C stable under
multiplication by OX. Fix such a decomposition for K. For smaller K’ < K, we
may take the smooth toroidal compactiﬁcation Vi associated to the same decom-
posmon %k. Then K/K' acts faithfully on Vi extending its action on Vg, and
VK/ — VK is a finite morphlsm compatible with the action of K ([FC90, I1V.6.7]).
Then we construct V = 1(£n Vk so that the starting maximal compact subgroup

acts on V compatibly with the projection V — V* ([FC90, V.2.5)).
Let x € Vo9F) = (V N Sh°Y)(F). The fiber at x of A,y is a test object

(A, Ay, n(p )) The abelian variety Ay has complex multiplication by a CM
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field M/ F (by a theorem of Tate: [Mum?70, §22]). Thus we have an embedding
p:Tx(Z(py)) — G (AP>)) given by an(p) = nﬁcp) («). Since the test object A,

given in our application, the point of Sh(p ) at which A, is realized as a fiber of A
may not be in the neutral component, but it is the image of the neutral component
under the right action by g € G(A(®%)). The point x is therefore of the form
[z, g] whose level structure 7y is of the form 7, o g (g # 1; otherwise, the image
of Q-anisotropic torus Ty under p, cannot be diagonal at p in G(A(®®))). Recall
p = px : Tx(Z(p)) = G(AP>®) in Section 3.2 with Im(p) in G(AP®))/Z(Z )
giving the stabilizer of the point x = [z, g] (Lemma 3.3).
We start with the more general setting of (NO-3) with m = 2: Let
XpCVxV

be an irreducible subscheme with (x, x’) € X°4(F) (X4 = X N (Vo4 x Vord))
stable under the diagonal action of a p-adically open subgroup T in J(Z,)). We
write V for a smooth toroidal compactification of V, X for the Zariski closure of
XinV x 17, and T1 : ¥ — X for the normalization ¥ of X. The action of T on
X extends to Y. For an open compact subgroups K, K» C G(A® oo)) we write
V12 for VK1 X VKz, and we define X5 for the image of X in V15 and X 12 for the
1mage of X in V12 = VKl X VK2 We write Y12 for the normalization of X 12. Thus

Y = l(an1 <K Y12 We suppose (see Proposition 3.11(3))

(DE) The two projections 111,11, : Y — V are finite at a point y € Y above a
point (x,x") in V(F) x V(F) fixed by the diagonal action of Tx(Zp)).

Since x and x” are fixed by p(Tx(Z(p))), Ax and A/ are isogenous and have
complex multiplication of the same type (M, X) (cf. [Del69, §7]). We also have
dimy Y = dimg X = dimg V and dimg ¥, = dim X;5 = dim Vg. If T1; is not
étale at (x, x’), Hj,*(X*(?y)) C X« (§) = O, is an Op-submodule of finite index,
and we find @ € Ty (Z,)) such that @' =€ X(S) = I1; «(X«(Y})) in X.(S) = O
Then p(a~!) o T1; is étale (by Proposition 3.11 (4)). The action of p(«) for a
p-adic nonunit o'~ is not an automorphism of V but a “radiciel” endomorphism
of V. Indeed, ((1) g) acts on Sh'?) as the relative Frobenius map of degree p, and
hence if px (), K = (¢ ) K. the action of p(a) coincides with the Frobenius map
composed with py (@) on Shg. Since any statement concerning the underlying
topological space of our schemes is not affected by “radiciel” endomorphisms, we
may assume (for such statements)
(A) TI; and I1, are étale finite at any point y € Y above (x, x’),

by modifying IT; by p(«) for o« € M *. This condition follows from Proposition
3.11(4) and Corollary 3.13 in the case of our interest: b = Ker(¢).

As already remarked, we will show that X is the graph of the action by an ele-
ment g € G(AP%)). In this process, we may also assume the following condition
without losing generality:

B) x =x".
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By moving X under the automorphism 1 x p(b®)) of V x V for suitable b € M,
we can bring x’ to x, and hence we may assume (B).

Let V; = 1<i_r_nKj Vk,,resp. V; = l<i_r£1Kj Vk, (j = 1,2) be the j-th factor in
V xV, resp. in V x V. We now study the finite locus ﬁVj = LiLnKj ﬁVKj. in V; of

the projection I1; : ¥ — V; for j = 1,2. By definition, the nonfinite locus " Vi I8

the closure of all closed points v € 171;/. such that @f’K_/ > is not finite over @Vk_i .
: -1 iy, _ v fifr L

for at least one point y € lj[, y (v). We put "Vk, = Vg, —"Vg,. Slmllarly, we

define the nonflat locus ™ Vk; by the closure of all closed points v € Vi, such

- . - . _1 .
that @YK_,- y 1s not flat over @Vk_i,v for at least one point y € I y (v). Since a

flat morphism is an open map, " Vi , 1s a proper closed subscheme of Vi ;- Let
ﬂI7Kj = I7Kj —“ﬂVKj. Thus 1 : ﬁj_l(ﬂVKj) — ﬂI7Kj induced by TI; is flat.
Since 1TI K 1s proper, flat and generically finite, each fiber of i K; 1s noetherian
of dimension-zero (by [Har77, 111.9.5]); so, 7] K; is proper and quasi-finite; so, it
is finite. Thus the nonflat locus ™ I7K ¢ contains the nonfinite locus " I7K 5 80

(3.23) nfi I7K is a proper, closed subscheme of I7K. inside ™ I7K

Thus the finite-flat locus VK _nflyy Vk; is a nonempty open subscheme. Similarly,
we define © Vk; by the maximal open subscheme of Vi, over which II; is étale
(the cuspidal divisors ramify in Vj over Vk 5 80, the étale locus is in V;). Any of the
properties ? =et, fi, nfl, nfi..., we write ?VKj =Vk, N ?VK]., ?I/j = 1(i£1Kj ?VK_].
and V' =] NV, (in other words, over V¢, I1; and I1, are both étale).
PROPOSITION 3.14. Suppose (DE). Then we have
1. The nonfinite loci " and nonflat loci 7 ofﬁj Y >V (j=12)in v
are of codimension at least 2, and nfij7 - nflj7,
2. If 11 :Y — S and T, : Y — S are étale, V' =V; NV, is an open dense
subscheme of V' containing (x, x) stable under T.

Proof. As explained before, we may assume (A) and (B). We first show that
we have a very big open subscheme ﬁVj = lim ‘ ﬁVK C V; so that each Yo
1

is finite over 1L‘VK (j = 1,2) under the two projections IT; : Y15 — VK The
projection H Y, — VK isa coverlng generically finite étale; so, over a dense
open subscheme ﬁVK C VK ; j 1s finite. Let K/ C K be open subgroups
maximal at p. Let X! 12 (resp. Y {,) be the image of X in VKi X VKé (resp. the
normalization of X|,). We have the commutative diagram:

= ﬁmte ~
/ v/
Y — Xip — VK}

(3.24) l lﬁnite ﬂlﬁnite

finite 4
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The middle down-pointed arrow is finite because I7K1 X I7K§ — I7Kl X I7K2 is finite.
From this, the left-most down-pointed arrow is finite. Thus ﬁI7K/ =n 1 Vi )
Put Vg, ﬁVK NVk,. Then we haveﬁVK/ =n"1("Wk;), and "V; —thj 79
C V (for j =1,2) is a dense open subscheme of V' whose image in Vk; is ﬁVKj.

In other words, the projection Vg» —> Vi, induces surjective projection of the
¥ .
finite loci

(3.25) Wi, = ("V,;) = "k, for K} C K; for a fixed K,

and the image of the nonfinite locus ™7/ VK/ = VK/ — VK/ in VK is a proper closed
subscheme independent of K ' C K; (for a fixed open compact subgroup K1 x K5 C

G(A©®)) maximal at p). The scheme “ﬁVJ = Lln nfi |7 Vi is the nonfinite locus
J

K’
of I : X — V (j =1,2). Put"Y; = ;7' ("V)). Then I1; : 1Y; — V; is finite
for j = 1,2, and ﬁVj is the maximal open subscheme of V' with this property.
By definition, H Y12 — VK is the normalization of 7; : X 12 — VK Since

Vip — VK is projective, 7; : X1 — VK is projective. Since the projection:

Y12 — X1, is finite, it is projective; so, ; ;j 1s projective, and we can take the Stein
Hﬁ
factorization of Y 12 —~>Y 1“2 N VK of H (see [Har77, II1.11.5]). Thus we have

(3.26) Yi2 X7 "Wk, =Y X, ﬁI7Kj,
because over 171( Y 12 —> YSt is birational with connected fiber.

We consider the nonfinite locus “ﬁV C V and nonflat locus rlﬂV Cc V of
o; i Y > V. As we already remarked before stating the proposmon “ﬁV c VJ
and " Vj is a proper closed subscheme of V/. Since H;.‘ : Y — Y™ is birational and
Y st is projective and normal, H;t_l is well-defined outside the closed subscheme
it (of Vk,) C Y35 of codimension > 2 (see [Har77, V.5.11). Since IT§ is finite,
nfi 171( g (e 171( j) is at least of codimension 2 in I7Kj. The projection VKJ’ —> I7K g
again sends ™ I7K_; into ™ I7K_]., “ﬁf/} = 1<i£1Ki nfl VK]. is a closed pro-subscheme of
codimension 2 of the pro-variety 14 by the .stability (3.25) of the nonfinite locus
with respect to K’ (and by [GD, 1V.8.2.9]).

The scheme Y% is normal dominant finite over Vk; (and is generically étale
finite). Since Vg, is smooth if Kj is sufﬁciently small, the ramified (non-étale)
locus ""Vk, = Vg; —etVKj of Y5 over VK is a divisor of Vk;; so, it is of at

least codimension 1 for a given K. Since VK — Vk; is the cuspidal divisor, the
ramified (non-€étale) locus ™™ Vk; C Vk; of thz over Vk; is a divisor of Vk;;

it is of at least codimension 1 for a given K;. To extend this result to the pro—
variety V;, we need to show that ™™ VK} is sent into ™™ Vg . under the projection



90 HARUZO HIDA

map VK} —» Vi ;. To show this, we look into the following commutative diagram
similar to (3.24) (removing cuspidal divisors):

finite —
Y, — X{, — Vi x Vg,

Ty J{ﬁnite TX lﬁnite 4 létale

Yi2 —— X2 — s Vi, x Vk,.

Taking fiber products, we get morphisms (from the commutativity of the above
diagram):

/ / /
Y12—>Y12 XX12 XIZ’ X12—>X12 X(VI(IXVI(Z) (VK; XVK&)

and

Y12 X, xVi,) (Vk; X Viy) = X12 X xvie,) Vi X V).
Since the pull-back X2 X (Vi xVi,) (VK; X VKé) of X132 to VK; X VKé is a closed
subscheme of VK{ X VK; étale over X1 containing (x, x). Thus by definition, X],
is a closed irreducible subscheme of X, X (Vi xVi,) (VKi X VKé) of the same
dimension. Thus X, is the irreducible component of X1, X (Vi xVk,) (VK; X
VKé) containing (x, x) and covering X5, and my is étale finite. Thus we have a

commutative diagram:

étale
Y12 XX12 X12 — Y12

J{ lnormalization

/
X5 — X12.
étale

Since étale morphisms are isomorphisms at the level of completed local rings, they
commute with the formation of normalization. Thus Y7, is an irreducible com-
ponent of Y15 xx,, X { ,» and therefore my is étale finite. Hence, the projection
VK/ —»> Vi, sends ™"V into ""Vg , and "MV = thA Mk, is a closed
pro-subscheme of codlmenswn 1 (by [GD, IV.8.2.9]) of the pro-variety V; (whose
image in Vg is contained in "™V ).

By (3.26), ©'V; contains V; — (“ﬁVJ U™MV;) which is an open dense subscheme
of V}, and hence V' = €'V} NV, is open dense in V. By our assumption, (x, x) €
Ve and V*® is stable under T, since étaleness is preserved by the action of T. O

Let v be a closed point of Y/"[Frd Y xp2 (Vo2 above (v, v2) € V2. We con-
sider the formal completion Yy (resp. V1, (v)) along v (resp. IT;(v)). If ITy x II»
embeds Yy into V', x V', and the equation defining Yy in Vi1, ) X Vi, (v) 18
given by 1 = zé’ for the Serre-Tate coordinate #; of /17,)_/. ,wecall Y O-linear at v.
Write Yiin C Y °"(F) for the subset of all closed O-linear points.

PROPOSITION 3.15. Suppose (DE), and let the notation be as in (NO-3) above
Proposition 3.8 for m = 2. In particular, let X be a Zariski-closure of X in V x V
and Y — X be the normalization of X. The subset Yiin C Y of O-linear points as
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defined above contains the set of all closed points of an open dense subscheme Y™
in Y°'4. In other words, at each closed point y' € Y'"™(F), the formal completion
of Y along y' is defined by a linear equation.

In the following corollary, we will find that the subvariety X is a graph of the
action of an element in G (A(?%)); so, we conclude Y "= Xlin= yord Since x°d s
Tate-linear at densely populated v in the image of Y'"", by [Cha03, Prop. 5.3], X °¢
is weakly Tate O-linear; so, Y ° is Tate O-linear. We shall give here an argument
(again suggested by Chai) sufficient to prove the weaker version as stated above.

Proof. Modifying IT; by p(«) for « € M does not affect O-linearity at
the closed point of ¥ over (x, x’); so, by changing IT; by p(«;) o IT; for o €
M* if necessary, we assume (A) and (B) (thus, I1; is étale for j = 1,2). An
endomorphism ax € End(Ay) induces an endomorphism of the deformation space
S = /Vx = Gm ® O. Modifying ay by the central action of Op,, we may assume
that ay is the identity on the connected component of A [p°°] without affecting
the endomorphism of the deformation space S induced by ax. We fix an ordinary

level p-structure n;’,rd on Ay. Identifying Endgp (§ ) = Op by ngrd, the action of

ax on S is then given by the action of a, over the étale quotient Ax[p®°]. By
Proposition 3.11(1), ¥ is O-linear at a point y € Y above (x, x), and hence, by
Remark 3.12, we may assume that the formal completion Y ) along y is defined by
™M=t u,ve0,= Endo(S)) for the Serre-Tate coordinate (z, 1) of S x S for
S=V x> Where ¢ and t” are associated to the ordinary level structure n;’)rd. Since
the two projections I1q, I, : Y — V are étale at y (by (A)), a = v/u is a unit in
Op, and ?y is defined by ¢’ = t¢. We write ax € End(Ax) ®7Z, = End(Ax[p*°])
for the endomorphism inducing a € End(§ ) as normalized above. Then ay is a
unit in Endo (Ax[p°°]).

We consider the universal abelian scheme A /y,. We pull it back to IT: Y —
X CVxV:Yy=II7A and Y, = ITJA. Identifying A, with the fibers Y , of
Y; (j =1,2) at y, we regard the unit ay € End(Ax[p°°]) as a homomorphism
ax 1 Arx[p®] = Ax[p™] = Ax[p™] = Az x[p™].

We now reduce the existence of the desired nonempty open subscheme Y'i" C
Y to the existence of an étale irreducible covering U over an open dense sub-
scheme U C Y °Y containing the given point y € Y ° such that a, extends to an
isomorphism a : Y [p®°] i Y2 [p®] Wi of Barsotti-Tate groups over U. Thus

supposing the existence of the open subscheme U and such an extension @ over U,
we specify the open subscheme Y'". Shrinking U C Y ° (keeping y inside U),
we may assume that the projections IT; : U — V (j = 1,2) are both étale (cf.
Proposition 3.14), because the projections are étale at the specific point y. Then
the formal completion Yy along u € U with IT(u) = (u1,uz) € V x V is isomor-
phic by IT; (j = 1,2) to the universal deformation space of the p-divisible O-
module A, [p°°] carrying the universal deformation Y [p®°] 9, = A;[p™] /f’\uj
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via IT; Y=V, - Choose an ordinary level structure n"rd Fp/Op = Ay, [p™].
Then the canonical coordinate #; of A[p°°]/V >~ Y[p*® ]/? is given by 1, =

limy o0 "”(n"rd (p™™)) for the Drinfeld lift “ p”” in Theorem 2.1. Another level

structure d o r)‘l’“}) of Ay, [p™] gives rise to the coordinate t2“ for a unit a,, € O;(

because Auto(Yu) = OX Thus we get the relation ¢, = zg * valid on 17”, because a
sends the #; = lim,“ "”(nord (p™)) to 13" = lim,* p””(a(nOrd (p™™))). In other
words, ?u is contained in the O-linear formal subscheme Y’ defined by #; = t2 .
Since Yu — Vu1 X Vu2 is a smooth formal subscheme with two isomorphisms
Yu o~ Vu induced by IT;, we find Yu = Y and hence Yu is defined by #; = t2 .
Thus we may put Y'" = U,

Next we shall show that a, extends to @ : Y{[p™] — Y3[p*>°] over ?y.
Identifying A, with the fibers Y,y of Y; (j = 1,2) at y, we regard the unit
ax € End(Ax[p™>]) as a homomorphism ay : Y1,,[p™°] = Ax[p™] — Ax[p™°] =
Yz,y[ ]. As pointed out by one of the referees of this paper, the formal comple-
tion ¥ = Y of Y along y is the maximal subscheme of S x § over which this ay
extends to a homomorphism a : Y;[p®°] e Ya[p°] % of Y- -group schemes. To
find a, as above, we identify @ with an element of O, by projecting ax down to
Endo (Ax[p®°]®") = O, for the maximal étale quotient Ax[p°°]*" of the p-divisible
group. The isogeny action p(«) : A,y — A,y for o € End(A4x) = ©O induces p(a) :
Vilp"lp > Al 5 = Al

"]/V —>Y2[p ]/Ylfa—amodp"D forp =

[lpex, p and if & = 1 mod p"Ope. Choose o as above, and write it as a,. There-
fore the isogeny action of p(a,) on A gives rise to o, : Y [p”]/?n —->Y> [p”]/f,n well
defined over an infinitesimal neighborhood Y, of y (isomorphic to the connected

component of Ax[p"]). Indeed the embedding ¥ <> § x § is given by (¢,1%),

p(ay) sends Yy v[Pn]/Y A[p ]’17” to Y2,,0(05,1),;(1))[ ]/yn m Alp" ]/V , and

= p(ap)p(v) as long as v € Y,. Here ?n is the infinitesimal neighborhood
of x isomorphic to the connected component of Ax[p”"]), p(on)p € G(Q)p) is the
p-component of p(ay), and o, gives rise to aly, [pn] after base-change to Y. By
taking the limit @ = limy, o0 A "5, with respect to n, we find out that ay

gives rise to a unique homomorphism a : Y, [p*°] 7 Y2 [p™] % of Barsotti-Tate

groups over Y.

To show the existence of U, we follow an argument of Chai in the proof
of [Cha03, Prop. 8.4]. We choose a sufficiently small open compact subgroup
K1 x Ky C G(/Z\)2 maximal at p so that f’\lz,y = fy. Since Yloéd is irreducible,
we only need to find a nonempty open subscheme Uyy C Yloéd with the required
property (then U is given by the pull back of Uy, to ¥ °9). We have @ well defined
over ¥ = ?12, y. For any reduced local Oy, ,, y-algebra R, an O-linear isomorphism
a:Y1[p™®]/@ — Y2[p™] s inducing ax on Ax[p™°] (if it exists) is unique. Write
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simply O for 61/12 y = Oy .y and 0 for Oy,, . Since 0®00 is reduced, the pullbacks
of @ by the two projections 7; : Y x¢ ¥ — Y coincide by the above uniqueness;
that is, @ satisfies the descent datum (relative to O / 0). By faithfully flat descent, @
descends to 0 and hence we can find an open Zariski neighborhood Uy, C Yloéd of
y over which we have an extension @ of a,. Then U = Uj, xy,, Y does the job.

There is an alternative argument: By M. Artin’s approximation theorem in
[Art69] (see also [BLR9O Th. 16 in 3.6]) applied to the truncated a, = a lv, [p"]
defined over ¥ = Y12 ,y» we can find an étale nelghborhood U,, of y such that we
have an extension &, over Un The two pullbacks of @, to Un Xy s Un coincide by

the uniqueness of the extension of a, because of the reducedness of Un xyﬁd Un,

so, this time by étale descent, we get the desired open dense subscheme U,,. Since
Isomyga (Y1[p™], Y2[p™]) for m > n is finite flat over ISOmYlo;d Y1[p™], Y2[p"]),
the open set U, stabilizes as n grows. Taking the intersection U, = ("), U, with
respect to n, we get the desired open dense subscheme Uj, C Yl"éd. O

COROLLARY 3.16. Let the notation and the assumption be as in Proposition
3.15. Then X is everywhere smooth and X =Y. Moreover, if (DE) is satisfied,
there exist nonzero «, ﬂ € O (p) such that X coincides with the skew diagonal

Ag,p = {(p(@)(v), p(B)(v))[v € V}.
If 111 and T1; are étale finite, we may assume that (o, B) = (1, B) with 8 € D(p)

Proof. If (DE) fails, Y = X = V? by Proposition 3.11(3); so, the assertion
follows trivially. We may assume (DE), (A) and (B) as indicated after stating (DE).
We follow an argument of Chai which is a version of the argument in [Cha03,
§8] adjusted to our self-product of the Hilbert modular variety. Since the two
projections I1; : ¥ — V; are dominant, we have End(Y;) ® Q = F for Y; =
H;.‘A =Axy, 1, Y. Let Y,y =Y Xy Y3. Thus there are only two possibilities
for End®(Y) = End(Y,y) ® Q: Either End®(Y) = F x F or End®(Y) = M, (F).
Suppose that End®(Y) = M, (F). By semi-simplicity of the category of abelian
schemes, we have two commuting idempotents e; € End®(Y) such that e; i (Y) =
Since End®(Y) = M2(F ), we can find an invertible element ,B in GL2(O¢ p)) C
M>(F) such that ,3 oe1 = e3; S0, ,g 1 Y1 — Y; is an isogeny, whose specialization
to the fiber of Y; (j = 1,2) at y gives rise to an endomorphism 8 € End(4x) ® Q.
Thus the isogeny ,g is induced by p(B) (this point is explained more carefully after
proving End®(Y) = M, (F)).

We suppose End® (Y) = F x F and try to get a contradiction (in order to prove
that End®(Y) = M, (F)). We pick a sufficiently small K; = K» = K C G(AP>))
maximal at p so that Vk is smooth. For the moment, we assume that K is open
compact. The variety Vi is naturally defined over a finite extension F, /[, as the
solution of the moduli problem Q)IK, . In (3.6) for the polarization ideal ¢ of Ay (the
minimal choice of [ is the residue field of W N kg for Shimura’s field kg of defi-
nition of Vg C Shg/g). The universal abelian scheme A is therefore defined over
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Vk r,» and Ak is a variety of finite type over ;. Replacing ¢ by its finite power, we
may assume that X12 C Vk X Vg/g,, is stable under the Galois action Gal(F/[F4), and
hence it has a unique geometrically irreducible model X1, /p, C Vg X Vi /p, defined
over F4. Let Y155, be the normalization of X5/, . Then Y12 = Y15/, X5, F. We
write Yi2/y,, JFa for the abelian scheme A%( X (Vg xVg) Y12. Then Yq5 is an abelian
scheme over the variety Y1, g, of finite type over Fg4. Let 7 be the generic point of
Y12/r,, and write 7 for the geometric point over 1 and F4 (77)*P for the separable
algebraic closure F, ()P of F,(n) in F4 (7). Take an odd prime £ # p, and consider
the {-adic Tate module T;(Y7) for the generic fiber Yy of Y. We consider the
image of the Galois action Im(Gal(F4()**?/F4(n))) in GLo,x0,(T¢(Y7)). Then
by a result of Zarhin ([Zar75] and [FC90, Th. V.4.7]), the Zariski closure over @ of
Im(Gal(F, (17)*P/F4(n))) is a reductive subgroup 4 of GLF,x r, (T¢(Y7) ® Q), and
Im(Gal(F, (7)**/Fq4(n))) is an open subgroup of 4(Qy). Moreover, by Zarhin’s
theorem, the centralizer of % in GLF,xr, (T;(Y7) ® Q) is End(Y) ® Q. Since
the reductive subgroups of GL(2) are either tori or contain SL(2), the derived
group 41 (Qy) of 4(Qy) has to be SL,(F; x Fy). By Chebotarev’s density, we
can find a set of closed points u € Yi,(F) with positive density such that the
Zariski closure in % of the subgroup generated by the Frobenius element Frob,, €
Im(Gal(F4 (17)*P/F4(n))) at u with IT(u) = (u1,u2) (u; € V(F)) is a torus con-
taining a maximal torus 7y, = (T3, % Ty,) N9 of the derived group %; of 4. In
particular the centralizer of Ty, in 9 is itself. Thus Y, is isogenous to a product
of two nonisogenous absolutely simple abelian varieties Y1 = A, and Y> = A4y,
with multiplication by F' defined over a finite field. The endomorphism algebra
M; = End@(Yj) is a CM quadratic extension of F' generated over () by the relative
Frobenius map ¢; induced by Frob,. The relative Frobenius map Frob,, acting on
X (/I}ul) = Op has [F : Q] distinct eigenvalues {¢§1_C)G|o € X1} for the CM-type
3 of Y7, which differ from the eigenvalues of ¢ € End(Y>) on X (?uz) = Op.

Since we have proven that over the open dense subscheme U = Y'i" of Y,
the formal completion of U at u € U with u = (uy,u2) € X C V2 is canonically
isomorphic to a formal subtorus ZcC /17,,1 X /I}uz with co-character group X (2 )
Op, we may assume that our point ¥ = (u1,u2) as above is in the (open dense)
image U1, of U in X1, (because the set of such u’s has positive density). Projecting
Xx (2 ) down to the left and the right factors Vx, we see that the projection map
X (2) - X *(/17“ ) is actually an injection commuting with the action of Frob,,.
Thus Frob, has more than [F : Q)] distinct eigenvalues on X, (2), which is a
contradiction. Thus we conclude that End®(Y) = M, (F) for any choice of small
open compact subgroups K maximal at p. Passing to the limit, we may assume
that K = G(Zp) (as we do hereafter), and we still have End®(Y) = M, (F).

As remarked at the beginning, End®(Y) = M, (F) implies that we have an

isogeny ,E : Y1 — Y, over Y. Writing nﬁp ) for the prime-to-p level structure of
Y; inducing the prime-to-p level structure already chosen for Ay =Yy, =VY5
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at y € Y, we find that ﬂ o ngp) = ngp) ogforge G(A(Poo)) Specializing at y, we
have g = p(ﬂ) for B € End®(A,) = M. Thus Y cSxSis given by the equation
t' =18 for nonzero B € O(p) for the Serre-Tate coordinate ¢ resp. " with respect
to the ordinary level p-structure nord of Ay =Y,y resp. Yz 5. By (A) (and Remark

3.12), Bl=¢ ¢ O>< so, we may assume that 8 € D (») (and hence ,gis a prime-to- p

isogeny). As in the proof of Proposition 3.11(1), we have f(x,x) =Urer Gm®L
for finitely many Op-direct summands L of X «(S 2). As shown in the proof of
Proposition 3.11(1), points of Y above (x, x) are indexed by L € I. Suppose that
y corresponds to L. Then ?y C §x 8§ coincides with ém ® L. On the other hand, we
have the skew-diagonal Ag = A g ={(z, p(B)(z))|z € V} C V x V. The formal
completion A g along (x, x) therefore coincides with ?y and Gm ®LCX (x,x)
inside S2. Thus A g C X. By the irreducibility of X', we conclude X = Ag. Since
Ag is smooth, A g =Y, and hence X is smooth everywhere.

If Condition (A) fails, as explained after the statement (DE), the morphisms
p(a)~! o Iy and p(B')~! o I, for suitable nonzero a, B € O, are étale; so,
(p(a) x p(B)"H(X) = A1,p by the above argument; then X = A, g/g. This
finishes the proof. O

Here are two technical lemmas, before we go into the case where m > 2.

LEMMA 3.17. Let N; = A for a commutative ring A (i =1,2,...,m). Let
N C Ny X Nyx--+X Ny, = A™ be an A-free submodule of A™ withm >2. If Ais a
product of finitely many local rings and the projection of N to N; X Ny, is surjective
foralli =1,2,...,m—1 and the projection t’ of N to N’ := N1 x Ny X+ +-X Npy—1
is surjective, we have N = A™.,

Proof. We may assume that A is a local ring. Tensoring its residue field, by
Nakayama’s lemma, we may assume that A is a field k. Suppose thatdim N <m—1.
Since 7’ is surjective, " is an isomorphism, and N N (N’ X z,,) is either empty
orz € N N (N’ X zy,) is a unique point with 7'(z) = z,,. Since N — N1 X Ny, is
surjective, there exist at least two points in N N (N’ X z,,), a contradiction. Thus
dimN =m and N = k™. d

For a scheme morphism f : Z — Z’, write f(Z) for the Zariski-closure in
Z' of the image of the topological space of Z by f with reduced scheme structure.

LEMMA 3.18. Let the assumption be as in (NO=3). Let S*> C S™ be a factor
and 7w : S™ — S? be the projection. Write n(¥X) = Spec(By) for a local ring
Bo C Og (with maximal ideal mo). Write X = \J; c; Gm ®z,, L. Then

(1) For By = 1<lr_nn Bo/m{, there exists a finite set 11 of Op-direct summands
€ C X+(S2) such that Spf(Bo) = Uyes, Gm ®2z,, L. and rankz,, £ = dim B,
(2) rankz, m«(L) is independent of L € I and is equal to dim By = dim 7 (%).
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Proof. From the definition of the image 7 (¥), By is given by the image of the

composite Og> LN Ogm — Og. Let Xg C VI’(" be as in (N3) such that )?K =X.
Then 7(Xg) is an excellent scheme since it is of finite type over a field F ([GD,
IV.7.8.3 (ii)]). For the projection ¥g of & to SE, write n(¥g) = Spec(Bo,x).
Then By g is a localization of w(Xg) at (x, x) € SIZ( (Sk = Spec(Oyy x)) and is
an excellent integral local ring ([GD, IV.7.8.3 (ii)]). By [GD, IV.7.8.3 (vii) and (x)],
§0 = B\o, x is reduced, equidimensional. Since 7(¥) C S? is irreducible and stable
under T, Spf(§0) = Ueeh Gm ®z,, € with rankz , £ = dim By, by Proposition
3.11(1), for finitely many O,-direct summands £ C X (3’2). This proves (1).

Write & = Spec(Ap), Y = Spec(A) and Spec(B) (resp. Spec(Bg)) for the
normalization of (%) (resp. 7(¥k)). Then Spec(Bg)/Spec(By, k) is finite ([GD,
1V.7.8.3 (vi)]) and hence Spec(B)/Spec(By) is finite. We have the commutative
diagram:

s c ~
By —— Ag —— Ap

oLl

B — A ——
— C

Here A = Linn A/ m%oA (so, Y = Spf(/f)). Write 7¢(Z) for the set of connected
components of a scheme Z. Since I = (Spf(ff)) and /1 = g (Spf(l? )), we have a
natural surjection I = 7 (Spf(ff)) I 0 (Spf(§)) =1I1,and L, L’ € I corresponds
to a single £ if 74 (L) ®p F CL Qo F and nx(L") ®p F C L Q¢ F. We have
A=Tlpes AL with G ® L =Spf(AL) and B =[];;, B¢ with G ® L = Spf(By).
Fix £ and let J C I be the collection of all L € I such that 74« (L)®o F CL Qo F.
Then we have a morphism By — Ay :=[[;c; AL, and the projection By — A,
to the L-component is an injection. Indeed, the image By, of By in Ay is given by
l(iLnn B/(m7 N B) for the maximal ideal mz, of Ay . Since B/(m} N B) is a finite-
dimensional F-vector space, with m = my, N B = my N B for the maximal ideal
my of By, it is killed by m¥ (0 < N € Z). Thus m" C (m? N B). The filtrations
{m7 N B}, and {m"}, give the same topology on B, since m" C m} N B. Thus
By = 1211,, B/m" ~ 1<lr_nn B/(m} NB) = By. The ring By is the power series ring
over [F with d variables for d = rankz, 7« (L), and By is the power series ring with
rankz , £ variables. This shows dim By = rankz, { = dim By = rankz,, (7« (L)) as
desired.

We can give a more elementary proof of (2). Let my : V¢ — Vlg be the
projection which induces 7. Let U = Spec(Bo) C 7(Xg) be a sufficiently small
affine open neighborhood of (x, x) such that its normalization /% is finite. We
can find such B¢ because B/ By is finite by (1). We take an affine open neigh-
borhood U’ = Spec(sdo) C 7y, 1(U) of x™ such that the normalization 4/ is
finite and s is of finite type over MBo; so, o is a noetherian domain of finite
type over . As already explained, s and B are excellent. Let U= Spec(%)
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and U’ = Spec(sd). Since B C o and o« and B are integral domains, the mor-
phism: Spec(sf) — Spec(®) is generically flat. The nonflat locus U/ f (which

is the Zariski closure of {P € (7’|&ﬁp is not flat over %B,/(p)}) is a proper closed
subscheme of U’. If ranky » Tx(L) < rankz, £, the formal completion Gm QL
of o along the point y; € U’ corresponding to L is not flat over the formal
completion Gm ® L of B along the image (yz). Thus U’ nf contains a closed

subscheme of maximal dimension, a contradiction against the irreducibility of U
Thus rankz,, m«(L) = rankz, £ as desired. O

Here is the corollary showing ¥ = X = V"2 x A(q,p) form > 2:

COROLLARY 3.19. Let the notation be as in (NO-3) and the assumption be
as in Proposition 3.11. Then X is smooth everywhere, and X°™ is Tate O-linear. If
% is finite over S', X is given either by V™~ x {x} or identical to V"2 x Aa,p)
for some nonzero a, B € O ) (after permutation of the first m — 1 factors).

Proof. We use the symbols introduced in Proposition 3.11 and its proof; in par-
ticular, S = Spec(Oyx) and S™ = S/ x S” C V™ with §” = S. By Proposition 3.8
(m = 1) and by Corollary 3.16 (m = 2), we may assume that m > 2. Assume that
¥ # S™. If the projection of ¥ to S” is a proper closed subscheme in S”, by
applying Proposition 3.8 to the image of ¥ in S”, we find that ¥ = S’ x {x}; so,
we are done. Thus we may assume that the projection of ¥ to S is dominant and
that % is finite over S’ (Proposition 3.11(3)).

There are two ways to prove the assertion now. We first describe a way of
reducing the assertion to Corollary 3.16 which is closer to the treatment in the
earlier version of this paper (putting off a brief description of the second method
due to Chai after the first). Let IT: Y — X and Iy : Y — & be the normalization.
Then by Proposition 3.11(3), % is finite flat over S/, and Y is Tate O-linear at every
point y € Y above x" € X (abusmg the termlnology)

Pick a point y € ¥ above x™, and write Y, = G,y @ L and X = J; o; Gm® L.
We let S; = S be the i -th component of S™. Let 7tj p, : S™ — S; x S” where i <m
is the projection. We regard ?y =Gn®LCS™ If

Timw:L®0F = X«(8; x8")®0 F

is surjective for all i < m, by Lemma 3.17 applied to A = Op ® o F' = F), and
N; = X«(8;) ®0 F, we find that L ®p F = X+«(5™) ® ¢ F. Thus, ¥, = 8™,
and hence ¥ = X = V™™, and we are done. Now we assume that the projection
Tims:L®o F — X+(Si x 8”)®0¢ F is not surjective for an i < m, and

rankz,, 7 m (L) <rankz, X« (S; x 8.

Recall that f(Z) denotes the Zariski-closure in Z’ of the image of the underly-
ing topological space of Z for a morphism f : Z — Z' of schemes. If Z = Spec(A)
and Z’ = Spec(B), then the topological space of f(Z) is that of Spec(f*(B)).
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Write I1;  := 7 mo I1:Y — S; x S”. By Lemma 3.18(2),
(3.27) dim 7 4, (X) =rankz , 7 m, (L) <rankz, (X« (SA'Z X §“)) =dim(S; xS").

By (3.27), the reduced image 7; ,(¥) C S; x S” is an irreducible proper
closed subscheme invariant under T. Applying Corollary 3.16 to 7; (%), we find
that 77 ;m (¥X) = Spec(Op, 4,x2) and 7; ;m (X) C Ag,g for some nonzero B €O
Permuting indices to bring i to m — 1, we conclude

X Crapli(Dap)=V"2x Ay p.

Since dim X = (m — 1) dim V (by Proposition 3.11(3)), we conclude by irreducibil-
ity X = V™2 x A, p as desired.

Here is a brief sketch of the second proof, which is based on the argument in
[Cha03, §8]. By using Chai’s globalization of the Serre-Tate coordinate in [Cha03,
§2], we find a dense open subscheme Y'i" ¢ ¥ (y € Y'i") such that Y is Tate
O-linear at every closed point of Y'" The existence of Y'!i" C ¥ follows basically
from Proposition 5.3 in [Cha03] and its proof (applied to Y not X). Consider
the abelian scheme Y = A™ xym Y. Then End@(Y/Y) is either isomorphic to
F™ or F™=2 x M,(F), because Y is dominant over V""~! and V by the two
projections. Then in a manner similar to the proof of Corollary 3.16, we can prove
the impossibility of End@(Y/y) >~ F™. Thus we have End®(Y jy) = F m=2
M5 (F); in other words, for an index i < m, the i-th factor Y; obtained by pulling
back the i-th factor A of A to Y is isogenous to the last factor Y,,. This isogeny
is induced by a nonzero o/ € M =~ End% (Ay) with o, B € O. Then we conclude
that & D §"~1 x A 4 p) for A(a,p) Plugged in the product of the i -th and the m-th
copy of V in V™ and hence X has the desired form. O

The subgroup Dz‘p) = p(T(Z(p))) in €(G, %) fixes x € Ig(F) (Lemma 3.3)
and hence acts on the stalk Oy, and the stalk O;g  of x on the Igusa tower Ig V-
The group J(Z,)) is embedded into T'(Zp) = O;,( as in (3.18). Then the action
of J(Z(p)) extends to its p-adic completion O;,( =T(Zp) = Aut(§ ) for S =
Spf(@\v,x) = Spf(@lg,x). Eacha € O;f acts on the formal completion 61g,x as an
automorphism sending the canonical coordinate ¢ to ¢ fora € I(Z,) = O;,(. Each
diagonal element g = diag[a, d] € T*(Z p) for the diagonal torus T8 C G also acts
on /g by the change of level structure n;’,rd > n;’,rd o g. The image of T (Zp)NGin
€(G, ¥) has trivial intersection with T (Z(p)y) inside €(G, X¥), because Ty (Z(py) is
embedded diagonally in G(A©) by p = px, while each element of T8 (7 p) has
only a nontrivial component at p. Thus the two actions of a € T(Zp) = O;; fixing
x and that of g € T%(Z p) N% moving x are compatible. In the following theorem,
a€J(Zp) =0, acts on 6Ig,x via t — t* for the canonical coordinate . We are
now ready to prove:

THEOREM 3.20. Let [ be the residue field of W (so it is an algebraic closure
of Fp). Let x € 1g(F) be a closed point (which is fixed by the action of T(Zp))
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embedded in %(G, X) by p). Letay,...,am € I(Zp), and assume that a,'a/-_1 g
T(Zpy) forall i # j. Then aj(Org x/r) (j = 1,2,...,m) are linearly disjoint
over I in 6Ig,x/[Fa where Opg x is the stalk at x of the Igusa tower over V.

Let b = Ker(¢) be the kernel of the homomorphism ¢ in (3.19). Let b be the
unique prime ideal of O7g x ® -+ ® Oy  over b. Then b is the kernel of the map
(Z defined in exactly the same way as ¢, replacing Oy x by Oy . The assertion of
the theorem is equivalent to b=0.Sinceb=0<b=0 by the same argument as
in the proof of Corollary 3.9, it is enough to prove b = 0.

Proof. We first suppose that m = 2. We use the symbols introduced in the
proof of the above two propositions. In particular, V = 1<i£1K Vi for K maximal
at p. For simplicity, we write 0= @§/[F, S = Spec(0) and S=Gm®sO0. Suppose
b #£ 0. Apply Proposition 3.11(3) to the two projections § x § — S and ¥ =
Spec(%) which have two domlnant projections onto S = Spec(0). Then the formal
completion % of X along x? = (x, x) is a formal torus defined by ¢"#2 = %! for
up,uz2 € Op N pr (Corollary 3.16). By our definition of b, we have us/u; =
az/ai € O); so, we may choose 11 and up so that u; = 1 and u; € 01);‘ Let
X be the schematic closure of & in V x V. Then by Corollary 3.16, we find
that X = A4 and hence u, = a!~¢ for a € D?p). Since a1 7¢ € T(Z(p)), this
contradicts ay/az ¢ T(Z(p)). Thus X = V2, and a1(0) and a(0) are linearly
disjoint over F.

We now deal with the case where m > 2. Recall

m
$:00r0QF-- R0 —>0

in (3.19) which is the F-algebra homomorphlsm givenby f1® L Q- Q fin >

ﬂ/_laj(fj) c0@wF. Let ® = Im(¢) C O @ F. We regard ¥ = Spec(@i)
as a closed subscheme of S™ for S = Spec(0). Take the schematic closure X
of ¥ in V™. By the induction hypothesis on m, ¥ surjects onto S" and S”. By
Proposition 3.11(3), ¥ is either finite over S’ or ¥ = S™. In the latter case, we
are done; so, we assume that ¥ is finite over S’. Then by Corollary 3.19, there
exists an index 0 < i < m so that 7;(X) = Ay g inside V2 = V; x V" for the
i-th factor V; = V in V™. Now, 2O Ain Corollary 3.13, and we conclude that
O; =9J(Zp) > aj/am = (¢/B)' ¢ € T(Q), which is a contradiction (because
T(Zpy) = T(Zp) NT(Q)). Thus £ = §™ (and hence b=0)and X = V™. 0O

We can add the datum of a nowhere vanishing differential to our classification
problem, looking into the following functor Q. :
(3.28)
Ui [(A, 2,079, 0)u|A e P U) PP W), 7240 = Oy &2 O)a)] ,

where K is an open compact subgroup of G(A(o")) maximal at p and where A =
(A, A, i,7P)) is chosen in P%(U) in (3.6). Then 2 is represented by a T-torsor
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Mg (G, X) over Sh?) (G, X)/K. The torus T =Resg7Gm acts on g by w —tw
fort € T(Oy) = (Oy ®z 0). Over W, assuming A, to be ordinary and choosing

alevel p®-structure r);rd, it naturally induces an isomorphism of formal group 7 :

AS = Gm®z07 ! = Spf(W[qS]geo). In other words, n* ‘f]—q gives rise to a canonical
differential. Choose a nowhere vanishing differential wg on A9 = Ax ®w [, and
consider the formal completion Mg of Mg along its closed point corresponding
to (Ao, XO, io, r]grd, o), which is a formal T-torsor over S = /Vx Here T is the
formal completlon of T along the 0r1g1n Then the formal T -torsor J(/LK splits
into a product T XWw S over S =~ Gm ® ?~L. In other words, if we consider the
deformation functor:

UC) = [(A, X, i, 1% w) /e [(A, 4,1, 1, @) x¢ F = (Ao, Xo, io, 139, 0)]

for artinian local W -algebras C with residue field [, 9 is prorepresented by SxT.
In the above discussion, we may actually allow K of p-power level in (3.28) as long
as K contains the monodromy group Us of the infinity cusp in G(Z,) N4(G, X)
by replacing Sh(? (G, x) by the Igusa tower Ig(G, X) and the level structure 7(7) =
n(p)K (») by n°K (P)_ 1In this shghtly more general case, the functor is represented
by a formal scheme Mg which is a T-torsor over S C Ig(G, X)/ K. Therefore in
the sequel, we allow modular forms of finite p-power level of type I'1 (p”).

We identify the character group X *(7') of T with the module of formal linear
combinations k = ) ks0 (ks € Z) for field embeddings o : F — @ so that
x* =], o(x)“ (x € T(Q)). For each character k of T and a p-adic W -algebra C,
we write G, (C) for the k~!-eigenspace of Ou/c- Thus G, (C) is the union of
C-integral modular forms of weight « and of finite level (of I'; (N)-type for all
positive integers N). Since p is unramified in O, T is smooth over Z, and is
diagonalizable over Z,. Therefore we have O w = @, G« (W). By the above
splitting, we may regard G(C) C Og /c In particular, a € Tx(Zp) acts on f €

G (F) through the identification J(Z,) = AutO(S/[F) and we have a(f) € @S/[F.

We write £ — 1 = (t; — 1); for the parameter at 1 of S. Bach ¢ € G,(C) has
t-expansion given by

p(t) = p(4™) e C[r —1]].

The Hasse invariant H satisfies H(t) € F* (because @g ~ (ém ®z D_l) XWw S
for the universal deformation s / §)- Since H is invertible on Sh°™, for any given
parallel weight k=) ko (ke€Z), we have H € G, (F) such that H(¢t)=1. Indeed,
for k > 0, we can lift H to E € G, (W) of level prime to p with E = H mod my by
the ampleness of the weight x automorphic line bundle. Then allowing p-power
level, we can find H, r of any parallel positive weight k by the p-adic density
of modular forms of level prime to p in the space of p-adic modular forms (see
[HidO4, Th. 4.10]). The form H, f € G, (F) may not have a characteristic 0 lift if
k = 1 even if we allow the level N divisible by p.
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COROLLARY 3.21. Fix a parallel weight k, and let H, € G (F) be the mod p
modular form with H(t) = 1. Let ay, ..., an € Tx(Zp) and suppose that a,-aj_l g
Tx(Q) foralli # j. Let I C {0,1,2,...,n} be a subset of indices. Then if
{H. fij € Ge(F)};j, for a fixed k # 0, are linearly independent over F for each
i€l,then{ai(fij)}ier,jin ©§/[F are linearly independent over F.

Proof. Note that a(H)(t) = H(t%) = 1. The division by a(H,) brings the
module a (G (F)) isomorphically into the ring (074, x/5), and we may assume that
k = 0. Then Theorem 3.20 implies the desired result. O

In the introduction, we mentioned linear independence of a;(Eq;) = Eq; o
a; for Eisenstein series E,; of weight . Strictly speaking, in our application,
we prove linear independence of E,; and H, by the g-expansion principle, and
then apply the above corollary to { Hy, Eg; € G (F)}; to show that {a;(Eq;)}; is
linearly independent over [.

4. Eisenstein and Katz measure

We recall the Fourier expansion of classical Eisenstein series and Eisenstein
measure from [HT93, §§2 and 3]. This is based on Katz’s theory in [Kat78], but
our exposition differs slightly from it in a fashion adapted to our application. In
this section, we do not assume that p is unramified in F/Q.

4.1. Geometric modular forms. Let F/Q be a totally real finite extension
with integer ring O. Recall the different ? of F/Q, and that for each ideal a
we have written a* = a~107!. Thus O* = 0. For a nonzero ideal 0 of O, we
define a group scheme gy over Z as the Cartier dual of the constant group O /.
If 91 is generated by an integer n > 0), um = O* ®z 4, canonically by the trace
pairing on O* x O and the duality between u, and Z/nZ. In general, we can
identify pgy with {x € O* ® u,|ax =0 for all @ € N} choosing a positive integer
n € M. For a fixed fractional ideal ¢ of F and an ideal 1 prime to ¢, the Hilbert
modular variety 91(c, 1) classifies the following triples (4, A,i),s formed by

¢ An abelian scheme 7 : A — § with an algebra homomorphism: O —
End(A,s) making 7.(£24,s) a locally free O ®z Og-module of rank 1;

e An O-linear polarization A : A’ =~ A ® ¢. By A, we identify the O-module
of symmetric O-linear homomorphisms Homgym (4, A? §) with
¢= Homsym(A/S’ A/S) ®o ¢.

Then we require that the (multiplicative) monoid P (A) of symmetric isoge-
nies induced locally by an ample invertible sheaf be identified with the set
of totally positive elements ¢4 C c;

e We have an O-linear closed immersion i = i : gy < A[I] of group
schemes.
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Thus 91(c, N) is the coarse moduli scheme of the functor P(S) = [(A, A1)y S]
from the category of schemes S into the category SETS, where [ | ={ }/ =
is the set of isomorphism classes of the objects inside the brackets, and we call
(A, A,i) = (A", },i’) if we have an O-linear isomorphism ¢ : A/5 — A’/S such
that ' = (¢ ® 1) oA o’ and ¢ oi =i’. The scheme M(c,N) is a fine modulus if
N is sufficiently deep. In [Kat78] and [HT93], the moduli 9t(c, 1) is described as
an algebraic space, but it is actually a quasi-projective scheme (e.g. [Cha90] and
[Hid04, Chap. 4]).

We could insist that 774 (24,5 ) be free over Og ®z O, and taking a generator @
with 74 (24/5) = (Os ®z O)w, we may consider the functor classifying quadruples
(A, 1,1, w):

4.1) 2AS) =[(4. 1, i,0)/5]-

Let T = Resg;7Gm. We leta € T(S) = HY(S, (05 ®z 0)*) act on 2(S) by
(A,A,i,w) — (A, A,i,aw). By this action, 2 is a T-torsor over P; so, 2 is rep-
resentable by a scheme Jl = (¢, M) affine over 0T = MN(c, N). By definition, M
is a T-torsor over 9. For each character k € X*(T') = Homgp scn (7, G;») and a
given ring R, if F # Q, the x~!-eigenspace of HO(M/R, O,/r) is the space of
modular forms of weight « integral over R, where .l; g = M %7 Spec(R). We write
G (¢, 91; R) for this space of R-integral modular forms, which is an R-module of
finite type. When F' = (), as is well known, we need to take the subsheaf of sections
with logarithmic growth towards cusps. To simplify our argument, hereafter in this
section, we often assume that F # Q, since we do not need to insist on logarithmic
growth by the Koecher principle, if we assume this condition (in any case we just
need to add this growth condition in the elliptic modular case; see [Hid0O, Chaps. 2
and 3]). Thus f € G (¢c,; R) is a rule assigning an element in an R-algebra C
to each quadruple (4,A,i,w),c (defined over the R-algebra C) satisfying the
following three conditions:

(Gl) f(A N i,w)= f(AN,i',&)eCif (A4, A,i,0)= (A, N,i' &) over C,
(G2) f((A, A, i,0)®c,pC")=p(f(A,A,i,w)) for each p € Hompg_4,(C, C);
(G3) f(A, A, i,aw) =«(a)"! f(A,A,i,w) fora e T(C).
The sheaf of k~!-eigenspace O, [x '] under the action of T is an invertible sheaf
of weight x on 2. We write this sheaf as @“. Then we have

Gie(c. 9 R) = H®(M(c, M), )

as long as M(c, N) is a fine moduli space. Writing A = (A, A, i, @) for the universal
abelian scheme over Jl, s = f(A)w* gives rise to the section of w*. Conversely,
for any section s € H (M (c, N), 0*), taking a unique morphism ¢ : Spec(C) — M
such that *A = A for A= (A, A,i,w),c, wecandefine f € G, by ¢*s = f(A)w".

Fix a prime p. We fix a fractional ideal ¢ prime to 91p and take two ideals a
and b prime to M p such that ab—! = ¢. To this pair (a, b), we can attach the Tate
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AVRM Tateq p(q) defined over the completed group ring Z((ab)) made of formal
series f(q) = Z$>>—oo a(£)q% (a(£) € Z). Here £ runs over all elements in ab, and
there exists a positive integer C (dependent on f) such thata(§) =0if o (§)+C <0
for some o € 1. We write R[[(ab)>¢]] for the subring of R[[ab]] made of formal
series f (having coefficients in R) with a(§) = 0 for all £ with (&) < 0 for at
least one embedding o : F — R. Actually, we skipped a step of introducing the
toroidal compactification of 99t whose (completed) stalk at the cusp corresponding
to (a, b) actually carries Tate, p(¢). However to make exposition short, we ignore
this technically important point, referring the (attentive) reader to the treatment in
[Kat78, Chap. I], [Cha90], [HT93, §1] and [Hid02, §4]. The scheme Tate(g) can
be extended to a semi-abelian scheme over Z[[(ab)>¢]] with special fiber G, ® a*
at the augmentation ideal 2. Since a is prime to p, ap = Op. Thus if R is a
Z p-algebra, we have a canonical isomorphism:

Lie(Tateq p(¢) mod2l) = Lie(Gp ® a*) = R®za* =~ R®7 O*.

By Grothendieck-Serre duality, we have Qrye, , (¢)/RI[(ab)=0]] = RI[[(ab)>0]]. In-
deed we have a canonical generator wcan Of $21y(q) Which induces # ® 1 on
Gm ® a* (with G, = Spec(Z[t,t1]); see [Kat78, (1.1.17) and (1.2.11)]). Since
a is prime to 91p, we have a canonical inclusion pum C u, ®z O* = u, ®z a*
(for an integer 0 < n € N prime to a) into G,, ® a*, which induces a canonical
closed immersion i, @ ot <> Tate(q). As described in [Kat78, (1.1.14)] and
[HT93, p. 204], Tateq, s(g) has a canonical c-polarization Acan. Thus we can eval-
uate f € G(c, M R) at (Tateqp(q), Acan, icans @Wcan). The value f(q) = fq,6(q)
actually falls in R[[(ab)>o]] (if F # Q: Koecher principle) and is called the g-
expansion at the cusp (a, b). When F = Q, we require f to have values in the
ring R[[(ab)>o]] when we define modular forms (this is the logarithmic growth
condition):

(G4) fa(q) € R[[(ab)xo]] for all (a, b).
Suppose that 91 is prime to p. We can think of a functor

P(R) = [(A, A, ip, in)/R]

similar to % defined over the category of p-adic rings R = 1(£1n R/p™R. The
only difference here is that we consider an isomorphism of ind-group schemes iy :
Hpoo ®7 O* = A[p®°]° (in place of a differential ), which induces Gm®0* = A
for the formal completion V at the characteristic p-fiber of a scheme V' over Z.
It is a theorem (due to Deligne-Ribet and Katz) that this functor is representable
by the formal completion iﬁt(c, M p°) of M(c, Np*>) = 1(£1n M(c, Np™) along
its mod p fiber. Thus we can think of p-adic modular forms f;g, for a p-adic ring
R, which are functions of (A4, A, ip,im),/c (for any p-adic R-algebra C) satisfying
the following conditions:

(Gp1) f(A,)t,ip,im)=f(A’,)L’,iI/,,i§I)eC if(A,/\,ip,im)/cz(A’,)L’,il’,,i[n)/c;
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(Gp2) f((A,A,ip,im) ®C,p C') = p(f(A.A,ip,im)) for each p-adically continu-
ous R-algebra homomorphism p: C — C’;

(Gp3) fa,6(q) € R[[(ab)>o]] for all (a, b) prime to INp.

We write V (¢, 9; R) for the space of p-adic modular forms satisfying (G, 1-3).
This V(¢,DT; R) is a p-adically complete R-algebra.

We have the g-expansion principle valid both for classical modular forms and
p-adic modular forms f,

(g-exp) The g-expansion: f +— fqp(q) € R[[(ab)>o]] determines f uniquely.

This follows from the irreducibility of the Hilbert modular Igusa tower proven in
[DR80] (see also [Hid04, Th. 4.21] and [Hid09a] for other proofs).

Since G, ® 0! = Spec(Z][tf] gc0) has a canonical invariant differential %,
we have ), = ip,*% on A. This allows us to regard each f € G (¢, M; R) a p-adic
modular form by putting

JA A ip.im) = f(A. A, in. @p).
By (g-exp), this gives an injection of G, (¢, d1; R) into the space of p-adic modular
forms V' (¢, D1; R) (for a p-adic ring R) preserving g-expansions.

Over C, the category of quadruples (A4, A, i, ) is equivalent to the category
of triples (£, A, i) made of the following data (cf. [Mum?70, I]): & is an O-lattice
in O ®7 C = C!, an alternating form A : Ao L = ¢* and i : N*/O0* — FL/ <.
The form A is supposed to be positive in the sense that A(u, v)/ Im(uv°) is totally
positive in O ®7 R = R!. Via polarization A, we can define theta functions as
described in [Mum70, Chap. I] by which we can embed the complex torus C! /<%
into a projective space PV (C) for sufficiently large dimension N. Then by Chow’s
theorem, the image A is a projective algebraic variety defined over C with group
structure, in short, an abelian variety over C. The differential w can be recovered
by ¢ : A(C) = C! /< so that w = (*du where u = (1g)ger is the variable on C7 .

Conversely, if we start with a triple (4,1, ) ¢,

Py = {[ e 0®Z@‘y € H\(A(C),7)
Y

is a lattice in C’, and the polarization A : A’ =~ A ® ¢ induces £ A £ == c*.

Using this equivalence, we can relate our geometric definition of Hilbert mod-
ular form to the classical analytic definition. Recall 3 which is the product of /
copies of the upper half complex plane: 3 = §7 for

H={z=x++/—1y eCly =Im(z) > 0}.

Weregard 3C O®zC = C! made up of z = (z4)gey With totally positive imaginary
part. Thus we can think of the submodule bz C F ®¢g C = C! for a cusp (a, b).
For each z € 3, we define £, = 2w +/—1(bz + a*) C C/,

A Q2n~—1(az +b),2nvV—1(cz +d)) = —(ad —bc) € ¢*
and i; : N*/0* = Na)*/a* > FL, /%L, by i;(amod O*) =2n+/—lamod £,.



THE TWASAWA j-INVARIANT OF p-ADIC HECKE L-FUNCTIONS 105

Consider the following congruence subgroup I'11 (); a, b) given by
{(g b) eSLy(F)|a,d € 0, b € (ab)*, ¢ € Nabd and d — 1 e‘ﬁ}.

Write T'11(c;0) = T11(1; 0, ¢ ). We let g = (go) € SLa(F ®g R) = SL»(R)!
act on 3 by linear fractional transformation of g5 on each component z,. Then

(L, A2,07) = (Ly, Ay, lw) <= w=y() fory e 11D a,b).

Here an isomorphism between (£;,A;,i;) and (£, Ay, iy) is supposed to pre-
serve the decomposition £, =~ £, = b@a*. The set of pairs (a, b) with ab™! =ciis
a bijection with the set of cusps of I'11(c; 1). Two cusps are equivalent if they trans-
form each other by an element in "1 (¢c; 91). A standard choice is (O, ¢~!), which
we call the infinity cusp of Mt(c,M). For each ideal t, (t,t~!¢~!) gives another
cusp. The two cusps (t, t"1¢™!) and (s, 5 !¢~ !) are equivalent under I'yq (¢c; M) if
t = s for an element @ € F* with @ = 1 mod 9 in Fg;. We have

M(c, MN(C) = T'11(c; M)\ 3, canonically.

Let G = Resp;7GL(2). Take an open compact subgroup K C G (A©)) such
that ¥ € K if and only if the following two conditions are satisfied:

Lue(y (1))_1 G(Z) (% 9) for an idele df € O with dp O =1;

-1 . . .
2. (d({ (1’) U (d({ (1’) modulo 91 is congruent to an upper unipotent matrix

in GL(0O/9%) modulo .

Then taking an idele ¢ with cO =%, we see that

MW c (69K (597 N6@+) O TEm

for G(Q)+ made up of all elements in G(Q) with totally positive determinant.
Choosing a representative set of the strict ray class group Clg (91) by finite ideles
in F, we find by the approximation theorem that

G = || c@(§9)K-G®)+
ceClgp (D)
for the identity connected component G(R)+ of the Lie group G(R). This shows
4.2)
G@\(X x GA®)/K = G@4+\BxGAC)) /K= | | MO,
ceClyp (O
where G(A) 4+ = G(A©®))G(R)4 and X and 3 is as in (3.1). The Clg (9)-tuple
(fo)e with f. € G (c,91; C) can be viewed as a single automorphic form giving a
section of a line bundle over Shx (C) = G(Q) 1\ (3 x G(A())/K.
Recall the identification X *(7') with Z[/] so that k (x) = [ [, o(x)*’. Regard-
ing f € G, (c,M; C) as a holomorphic function of z € 3 by f(z) = f(£;,Az,iz),
we see that this satisfies the following automorphic property:

@3  fy@) =] ]z +d%) e forally =(25) €T (aN).
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The holomorphy of f is a consequence of the functoriality (G2). Each f €
G (¢, 91; C) has the Fourier expansion

f@)= > aler(E:)

é€(ab)>0

at the cusp corresponding to (a, b). Here ef (§2) = exp(Zn\/—_IZU £%z4). This

Fourier expansion equals the g-expansion f, p(¢) replacing er (£z) by gt.
Shimura, in his theory of arithmetic of Hecke L-values, studied the effect on

modular forms of the following differential operators on 3 indexed by « € Z[I]:

() Tl )

(e

4.4) 87

where k € Z[I] with ks > 0. An important point is that the differential operator
preserves the rationality property at CM-points of (arithmetic) modular forms, al-
though it does not preserve holomorphy (see [Shi00, III] and [Shi75]). To descrlbe
the rationality, we recall the two embeddings in : @ < C and ip : Q— @p
fixed in the introduction. Recall W =i, L(W), which is a discrete valuation
ring. Let (4,A,w,7)/y be an ordinary quadruple of CM-type (M, X) (having
complex multiplication by the integer ring O C M). The complex uniformization:
t: A(C) = C¥/=(2) induces a canonical base weo = t*du of Qy/c over O ®7 R,
where u = (U )gey is the standard variable on C¥ and () = {(0(a))oex €
CZ|a e2}. We define the periods Qoo € C¥ = 0®7Cby w = Qooa)oo The level p-

structure ip : ppoo ® 01 <> A[p®] induces an isomorphism ¢ : Spf(W[q leco) =
Gm ®7071 = A for the p-adic formal group ff/W at the origin. Then w = Qp,w)

(Qp,eO0@z W = WZ) for wp = p, * . Here is the rationality result of Shimura
for f € Ge(c, W)

K £)(A, X, oo, i)

) e

=6k ) (AN w.i) €.

Katz interpreted the differential operator in terms of the Gauss-Manin connec-
tion of the universal AVRM over 91 and gave a purely algebro-geometric definition
of the operator (see [Kat78, Chap. II] and [HT93, §1] for a summary of the result
of Katz). Using this algebraization of 8,’5, he extended the operator to geometric
modular forms and p-adic modular forms. We write his operator corresponding
to Shimura’s operator 85 as d¥ : V(c,M; R) — V(c,9; R). An important formula
given in [Kat78, (2.6.7)] is: for f € G, (c, 9T, W),

(d* f)(A A, wp, i)

(K)
+2k
2p

=@d*f) (A1 0.0) =65 )A N wi)ew.

Let ¢ be the canonical variable of the Serre-Tate deformation space S. Identifying
S with G, ®7 97!, we note that ¢ is the character | € O = X*(G,, @707 !) =
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Hom(G,, ®7 07, G,,). Write S = G,, ®7 0~!. We have S = Spf(m])
for the completion m] at the augmentation ideal of the monoid algebra
WI[X(S)]=WI[O] (X(S) = X*(S) = Homyg.gp(S, Gp)), where W[O] is the ring
made up of formal finite sums ZSGO a(&)té (a(&) € W). We have the following
interpretation of d*:

(4.5) d* > a@®rf =) a@E .
B B

To see this formula, let us recall the construction of d*. Let o = (A, i ) be the uni-
versal deformation of A = (A4,A,i) on S. Since A is ordinary, the level p-structure

ip:ipo @70 1 < o gives the identification of formal groups i D G ® D/_l =~ d.

Note that Gm ® D/§ is isomorphic to S X W S over W so, we write the standard

variable on the base S as ¢ and on the fiber S as s. Then for each a € Op, we
have a unique section w(a) = (azp)* of @5 The action of a is just s > s¢

so, w(a) = £5. By [Kat81, 4.3.1], the differential operator is S-invariant, and the
canonical Varlable ¢t is normalized so that dt? = at? < d = t%. In other words,
by the construction of d, choosing a parameter ¢ of S so that § = Spf(W [t£] £€0)s
_ltgl on S for a unit a € W*. Thus changing ¢ by t%, we have
an exact identity as above. This change of variable does not cause much trouble
in the computation we execute later (because everything involving ¢ is brought to
that of 7 by the variable change). Thus we may assume d*r& = £<¢£,

There is another shortcut showing (4.5): It is known that d induces a base of
invariant differentials on the base Spf( m]) of the Tate AVRM, regarding it as
@m ® (ab); so, d? coincides with §3. From this, we can also conclude that d*
induces an invariant differential.

For each f € V(c,9M; R) (for a p-adic algebra R), we call the expansion

f@) = f, A1) =" a, f)if

€0

we have d = a

as an element of R/[B] a t-expansion of f. Hereafter, we write this ring symbol-
ically as R[[tg]]geo. When we choose a Z-base {a;} of O, T; =t% —1 gives
a complete set of local parameters at the point x € (¢, ), g given by A and
R/[a] >~ R[[T1,...,T4]]. We have the following ¢-expansion principle:

(t-exp) The t-expansion: f +— f(t) € R[[t¢ lleco determines f uniquely.

The Taylor expansion of f with respect to the variables 7' = (7} ) can be computed
by applying differential operators d; = 337] and evaluating the result at x = A. Since

d; is a linear combination of the d“’s in the field of fractions of R as long as R is
of characteristic 0, we have, for f,g € V(c,91; W),

(4.6) d* f(A) = d*g(4) forall k > 0 < f(1) = g(t).
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What we have described is actually an oversimplified description of Katz’s
theory, and the reader is referred to [Kat78] and [HT93, §1] for a more rigorous
explanation on the subject.

4.2. q-Expansion of Eisenstein series. Let ¢ : {0, x (0O/f)} x{O0p x(0/f")}
— C be a locally constant function such that ¢ (¢~ 1x, ey) = N(e)k¢ (x, y) for all
& € O*, where k is a positive integer and ' and §” are integral ideals prime to
p. We put f = f' N{” and suppose that all a, b and ¢ are prime to fp. We regard
¢ as a function on X x Y with X =Y = O, x (O/f) via the natural projection

of {Op x (0/)} x{0p x (0/f)} t0 {Op x (O/f)} x {O0p x (0O/f")}. We put
Xo = (0/p*0) x (O/f) and define the partial Fourier transform

Po: (A 05 10 Y = | o7/ 0f <y

of ¢, taking « so that ¢ factors through X, x Y, by
4.7)

Po(r.y) = 1P INGT! Taex, (@ ylerax) ifx e pmf/0",

’ 0 if x & p~o§*/ 0%,
where er is the standard additive character of Fp restricted to the local component
Fys at pf. This definition does not depend on the choice of «.

We construct an Eisenstein series Ej (z; ¢) for a positive integer k and ¢ as
above as a function of triples (£, A, i) we have studied in the previous subsection.
Actually k indicates the parallel weight }_, ko. Here i : F)/O, x ()*/0* —
PTRL/L x §T1L/P is the level p®f2-structure. The f-part is of i induces, via
polarization, the dual map i f/ : &£/§& — O/}, and hence having i5 is equivalent to
having a pair (iy, i f’), which is literally of level {2 (not just of level f). We define an
Ojsp-submodule PV (¥) C £ ®p Fjp specified by the following conditions:

(pvl) PV(£) D L®0 Osp;
(pv2) PV(L)/ (£®0 Osp) = Im(i).
By definition, we may regard

iT' PV(E) > PV(D)/ (£®0 Opp) = Fp/ 0y x /0.
By Pontryagin duality under Tro A, the dual map i’ of i gives rise to
i": PV(L) = 0, x (0/9).

See [HT93, p. 206] for details for i” which is written as 7’ there. Then we may
regard P¢ as a function on p~®f1LN PV(L) = (U, p~ % 1L) N PV(X) by
Po(i~Y(w),i"(w)) if (wmod¥) e Im(i),

otherwise.

4.8) P (w) =

For each w = (wy) € F ®g C = C!, the norm map N(w) = [[oes wo is well
defined. Writing & = (&£, A, i) for simplicity, we define the value Ey(£; ¢, ¢) by
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4.9)
{(—=D*T (k + 5)}F@ ' Po(w)
Er(&;p,0) =
K90 IDF]| wep—corag o« NWKIN@)[?* ls=0

Here “""” indicates that we are excluding w = 0 from the summation. As shown
by Hecke, this type of series is convergent when the real part of s is sufficiently
large and is continued to a meromorphic function well defined at s = 0 (as long as
either k > 2 or ¢p(a, 0) = 0 for all a). If either k > 2 or ¢(a, 0) = 0, for all a, then
the function Ex(c,¢) gives an element in G,(c,f2p>®;C) (k = k Y 6 Fg0)s
whose g-expansion computed in [HT93, §2] is given by

4.10)  N(@) ' Ex (¢, )ap(q) =2 IL(1—k; p, 0)
N(a)k
b
22 eehgena

0ké&€ab (a,b)e(axb)/O*
ab=§&

where L(s; ¢, a) is the partial L-function given by the Dirichlet series:

(5)) -
ge(a_%)/oxd)(é )(|N(g)| NI

4.3. Eisenstein measure. We recall the definition of the Eisenstein measure
with values in V(c, fs; W) for a p-adic algebra W given below. Recall the fixed
algebraic closure [ of [, and the ring W(F) of Witt vectors with coefficients in F.
We consider W(F) as a subring of the p-adic completion @p of @p. Let W be a
discrete valuation ring finite flat over W ([F) inside @p. For any fractional ideal a,
write its prime decomposition as [ | q q°9; so, &4 is an integer with & = 0 for primes
q which do not show up in the prime decomposition. We denote &(a) = {&4}4 for
this set of exponents. We abbreviate the product [ | q gée as g°®, which is equal
to a.

Let s|f be two integral ideals of F prime to p. We consider the space O =
(Opx(0/5))x(0px(0/s)) and write the variable on O as (x,a;y,b)forx,yec O,
anda € O/fand b € O/s. We regard Dasa ring; then O% is the group of invertible
elements in O. Embedding O into 5} dlagonally, we can take the closure O*
under the profinite topology of O. We also write 7 = (O, x(0/§))x (0, x(0/3)).
We let e € O act on O by e(x,a;y,b) = (ex,ea; ey, eb). Then we define T =
T/O0Xand T* = O% /OX. These are the profinite compact spaces carrying the
Eisenstein measure.

For each continuous function ¢(x, a; y, b) on T, we consider the following
partial Fourier transform:

@11 ¢°(xayb) = Y d(x L uy ber(—uaw D),
ueO/f
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where we have chosen for each prime q of F, a prime element @ in F, qX C Fy
and put w* =[] wg“ in F for each exponent e = {eq € Z}4 with eq = 0 almost
everywhere (that is, except for finitely many primes). The map ¢ > ¢° is a linear
operator acting on the space %(T; W) of all continuous functions on T with values
in W (and is invertible by the Fourier inversion formula). If ¢ factors through 7',
then ¢° satisfies the following property

¢°(ex,ea;e 1y, e71b) = ¢°(x,a; y,b) forall e € O%.

This is the property required to define Eisenstein series (for even weight k) in
the previous subsection. Then there exists a unique measure E, : €(T; W) —
V(c, fs; W) with the following two properties:

(E1) If ¢ has values in @ equipped with the discrete topology, then for each posi-
tive integer k > 0,

E(N"*¢) = Ex(¢°:0),
where N : T — Z; is given by N(x,a;y,b) = Np,q(x) for the norm map
NF/q: Op — Zp. Note here that N —k ¢° (for any positive integer k) factors

through T <= ¢° satisfies invariance under O™ required for the definition
of the Eisenstein series;

(E2) The g-expansion of E.(¢) at the cusp (a, b) is given by
N@ Y 4 > ¢°(a:b)|N(a)|™".

0kKEeab (a,b)e(axb)/O*,ab=£&

where | N(a)| is the (complex) absolute value of the norm N(a) ofa €a,axb
is embedded in T by (a,a modf; b, b mods), and ¢ € O™ acts on (a, b) by
(a,b) — (ca, e 1b).

The existence and the uniqueness of the measure satisfying (E1), (E2) is a conse-
quence of the g-expansion principle and the g-expansion of the classical Eisenstein
series given in the previous section (see [Kat78, Chap. III] and [HT93, §3]). Al-
though it is assumed that § = s in [HT93], there is no difficulty extending the
construction to the general case, since for any function factoring through 7 as in
(E1), the corresponding Eisenstein series can be checked to be of level js.

When confusion is unlikely, we write E(¢) for Eq(¢; ¢) to simplify our nota-
tion (though E(¢) fully depends on c).

4.4. Katz measure. We can evaluate p-adic modular forms f at any test object
(A, A,i);w defined over W. This gives rise to a linear form Ev : V(c, fs; W) — W
given by Ev(f) = f(A, A,i). Thus we can think of the evaluation Ev o E., which
is a bounded measure on 6(7; W) with values in W.

Now we choose a specific test object. Let x = [z, g] be an ordinary CM-
point of the Shimura variety. We take the abelian scheme (A4, A, i) sitting over
x € M(c, fs). Thus A has complex multiplication by a CM field M = M, with
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a CM-type . We write M’ for the reflex field of (M, X) (see [Shi98, §8]). We
suppose that p is unramified in M (and hence in M’). The complex manifold A(C)
is given by C*/ X () for a lattice 20 C M, and we can find a model 4 defined over
an abelian extension k of M’ such that all torsion points of A are rational over an
abelian extension of M’ ([Shi98, 18.6 and 21.1]). The model is unique if the field
contains the field of moduli of the sufficiently deep level structure i. By a theorem
of Serre-Tate, making i deep (for example, making it of level 1 for a deep 91 prime
to p), A has good reduction over W N k. Here we can insist that k is unramified at
p if M is unramified at p. Thus we may assume that (A4, A, i) is defined over W,
and if p is unramified in F/Q, we may assume that W = W(F). We further assume
that the special fiber Aat p of A is an ordinary abelian variety. Since the residue
field F of W is algebraically closed, A[p™] = (poe ® 0~') x (F,/Op). Thus A
has level p°° structure iy defined over F. By Serre-Tate deformation theory, A sits
at the origin 1 € S. Thus we can uniquely lift ig to a level p®-structure i,; so, we
may assume that i contains a level p® structure defined over W.

We would like to recall briefly the construction of the Katz measure interpo-
lating the L-values of arithmetic Hecke characters of the conductor dividing €p°°,
where € is an integral ideal of M prime to p. We write O for the integer ring of M.
We decompose € = FF.J. Here J consists of inert or ramified primes over F, §§¢
consists of split primes over F and

F+Te=F+3 =Fc+3F.=9 and T DF*.
Weputf=FINF,s=F.NFandi=TNF. Wehave O, =0 ®z7Z, =OpxOpe,
where Op = H‘:Be z, Oq. We suppose the following four conditions:

1. The lattice 2 is a fractional ideal of M prime to € p; so, we write A = A(2)
(s0, A@)(C) = C>/ T (A)).

2. Choose § € M so that §¢ = —§ and Im(o(§)) > O for all o € X, and have
the alternating form (u,v) = (u€v —uv¢)/28 induce O A O = o~ 1L
Then this pairing induces ¢(AA¢)~-polarization A = A(2).

3. The inclusion F' < M induces a canonical isomorphism O, = O, which
in turn induces iy, : F /0, = Fp/Op = M5 /AD, C CZ/ 2 (2A). We put
ip(A)(x) = i; (26x). This is the p-part of the level structure i ().

4. The prime-to-p part i (?) of i () is defined as follows. Choose an idele
dp of F such that dp O =, the prime-to-f pd component d](,jp ® s trivial
and dF q = (28)q for prime ideal Q with Q|§, where ¢ = Q N F. Then
x > dFx induces (f2)*/O* < (Fi)~221/2, which is the ij.

In addition to the data (A(2(), A(2A), i (R)), assuming that p is unramified in F/Q,
for our later use, we choose the differential w(2() on A(2l) as follows:

(5) We choose and fix a differential @ = w(9) on A(O) 4 so that
H(A(D), Quo)/w) = (W &z O)o.
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Since A, = Op, A(O N2A) is an étale covering of both A(A) and A(D);
s0, w(9) induces a differential w(2A) first by pull-back to A(D N2A) and
then by pull-back inverse from A(O NA) to A(A).

As long as the projection 7 : A(OD N2A) — A(X) is étale, the pull-back inverse
(77 1:Q A©On)/w —> 420w 18 a surjective isomorphism. We thus have

H(A®), Qacoyw) = (W ®z 0)w ().

Let Cls (i) be the ideal class group of M modulo i and CI™ (i) be the quotient
of Clps (i) by the image of (O/i)*. Identifying Op (resp. Opc) with the first (resp.
last) component of O, of O and embedding O/f into ©/§FT (resp. identifying O/s
with O /F.)) through the inclusion O < O, we embed T into Z = Clps (€p>°) =
l(iLnn Clps (€p™). Then we have the exact sequence:

T* 5 7 — ClI™ (i) — 1,

and the kernel of ¢ is a finite group. We write [2(] for the image of the class of an
ideal 2l prime to €p in Z. For a € O, we have [(«)] = o', where the right-hand
side is the image of the inclusion Dép — Z. Choosing a complete representative
set {2} for C1™ (i), we have a decomposition

Z =| |m@[ag~".
A

For each function ¢ € 6(Z; W), we define ¢go € €(T; W) in the following way:
dau(t) = ¢p(t[A]™Y) for t € T and extend it by 0 outside 7. Next, we define

(4.12) | 9o =3 [ dndBe, . A@0.i@0),
A

where cg = c(AA) 1. We write Eg(¢) for Eqy (¢) for functions ¢ € 6(T*; W).

In [Kat78, Chap. V] and [HT93, §4], computation of f 7z Ad ¢ is made for the
p-adic avatar A of an arithmetic Hecke character A of conductor a factor of ¢ D
The result is as described in the introduction. Since there are many misprints in
[HT93] (though all minor), we have added at the end of this paper a correction
table of misprints in [HT93].

5. Proof of Theorem I

Recall the quadratic CM extension M/ F introduced in Section 1, and write
X (resp. Xp) for the CM-type (resp. the p-adic CM-type) we fixed there. We
now prove Theorem I; the proof concludes in Section 5.4. We assume that p is
unramified in F/Q and write W = W(F).
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5.1. Splitting the Katz measure. We start with a general argument. We as-
sume that p > 2. Let the triple (A(2A), A(2),i(2)) be the abelian variety of CM-
type (M, X) as in Section 4.4. We consider the measure

Ex: > /T dEey (AR). A(2). 1))

(on the image of T in Cly (€ p™)) for the polarization ideal cg = c(AA€) 1. For
o € M prime to €p, u — au induces an isomorphism: A(2A) = A(«2). This
multiplication by o sends i (2() (resp. A(2() and w(2l)) to « o i (a2l) which sends
an element x € (F,/0*) x (f3)*/O* to ad px mod oA (resp. aaA(2) = A(aA)
and aw(a2l)). This shows that

G0 | #anaeso = [ p0)dEao.

where a(x,a; y,b) = (ax,aa;ay,abh) for t = (x,a; y,b). This tells us how the
piece of the integral corresponding to 2 in the definition of the Katz measure d¢
transforms if we change 2{ in its ideal class.

This formula (5.1) can be verified functorially using the fact:

(A(a20), A(a2), ai (@) = (A®L), (@ax)A(RL),i () by au — u,

but there is an easy shortcut: for k > 0,

| N E B0 = 3 PO ER G ). )

weA

= 3 PV i w). e (w))

weaA

=/ &N Kax,a ¢y, 0 a,a b)Y dEqy
T
= [ ov @ dEa),

T

where N(x,a;y,b) = N(x) =[], o(x). For each function ¢ on Im(:)[2] ™!, we
define ¢o(x) = ¢ (x[A]™!). Now we decompose, for an open subgroup H of T*
containing Ker(t),

(TR = i) BT = T = |H[B ']
B B
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Thus, we have

| #a0aEa = D | 2t
=3 [ xnBa hemima DaES)
B /T

= dE ,
; /T $1 (b (D) dEss(1)

where y g is the characteristic function of H. Note here that we have B = o% for
aeM™.

For the moment, we assume that € is stable under complex conjugation c. For
simplicity, we write Z for Clas (€p>°). We take a subgroup I' = I'e C Z of finite
index satisfying the following two conditions:

1. Z =T x A with torsion-free I" and a finite group A = Ag;

2. T and A are stable under c.

Under the assumption: p > 2, we can choose the splitting Z = I" x A stable under c.
This fact can be shown as follows: We can first split Z = Z, x A’ so that Z, is the
maximal p-profinite subgroup. This splitting is canonical; so, it is stable under c.
Since p is odd, we can split Z, = Z ; X Z, so that ¢ acts through multiplication
by £1on Z ;t. Then we just split Z ;E = I'* x A4 for torsion-free I'* and finite
groups A. Thus we can achieve c-stability of [ = ('t xI'™) C Z.

For each z € Z, we define n_(z) = [z]” := z!7¢. Recall the torus Ty =
Respr/@Gm C G fixing the closed point x € Sho over (A(D), A(D),i(D)) €
M (c, 2 p*°) and its quotient T as in (3.18) (with the injection: TLpy) =T (Zp)=
O; sending a € Tx(Zp)) to al=¢e 0;). We have a natural exact sequence:

1— (D, x (O/€)*) /O - Z - Clyy — 1,

where Clyy is the class group of M. Since O™ is a subgroup of O of finite index
and p is unramified in M/Q, 7_ (D) is a finite group of order prime to p. By
this fact, we see that

I N ((o; x (D/€)%) /W) < OX[-1] = 0%,

where O [—1] = {a € O |c(a) = a~'}. In particular, when we identify Op, with
O, for a principal ideal («) prime to €p, [(@)]” = ag_l €T(Zp) =90, = 0,
where p = ]_[pe 5, P- Therefore, writing [2A] for the image in Z of an ideal 2 prime

to €p, we have, regarding 7 (Z(,)) C T(Zp) = O, by (3.18),
(5.2) [A]” € T(Z(p) <= R €[Of,e] (T xAT),

where A* = H%(Gal(M/F), A), and O(pey C M is the localization (not the
completion) of O at pC.
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We now allow the case € # €. In any case, we have a canonical splitting of
Z into the prime-to-p subgroup A® and the p-profinite subgroup Z,. We fix a
splitting Z, = A, x I'¢ so that the natural projection 7 : Z — Clps (p°°) induces
an isomorphism of ¢ onto the torsion-free part I' = ' of Clps(p°°) we have
already chosen in the above discussion. We then define A¢ = AP) x Ap.

The translation ¢ (z) — ¢(z¢) by ¢ € A¢ gives an action of Ag on the space
of continuous functions €(Z; W) on Z with values in W. For each character v
of Ag, we write 6(Z;0)[y] for the -eigenspace for the action of Ag. Then
the restriction of continuous functions on Z to I'¢ gives rise to an isomorphism
Resy : 6(Z; W)[y] = €(Ce; W). We write Infy, for Res;l.

For a given measure ¢ on Z, the y¥-component ¢ € W[[I']] is defined by

[ #doy = [ 1wty gaq.

In terms of group algebras, fﬁ . Z — WJ[T']] given by J(Cy) = Y (On(y) for
y € I'e¢ and ¢ € A¢ induces a continuous W -algebra homomorphism W [[Z]] —
W[T]] (still written as ¥/), and we can verify that Oy = V(). If one chooses
another splitting of Z into a product of a torsion-free group and a finite group,
they differ by a character of I into A¢. In other words, i’i ~! = ¢ is a character of
I for two sections ,i" : T' — Z of the projection: Z — TI". Then Infy, ¢ for two
different splittings differs by multiplication by v o ¢; hence, the invariant (¢ )
is independent of the choice of splitting. Hereafter we stop worrying about the
choice of splitting, fixing it once and for all. We write A for A¢ hereafter.

5.2. Good representatives. We would like to choose a representative set D
for A so that the projection A : Z — A induces an isomorphism D =~ A if
p 4t |Clas]. In general, D =~ Z /T’ for the intersection I'" of T and the image
of Dép. We would like to choose D so that our computation of g-expansion (of
Eisenstein series) becomes easier.

Let $(Cp) be the group of fractional ideals of M prime to €p, and define

s@Ep)t ={Aeg@p)|A' " =a'"Ofora e M*}.

Suppose for the moment that € does not contain primes ramifying in M/ F. Since
2 is prime to € p, !~ is prime to ¢ p. Thus if a prime factor Q of ¢ p divides the
principal ideal (&), its conjugate Q¢ divides («) with the equal multiplicity. Thus
a = By for y € F* with B prime to € p. In other words, (817¢) = (a!7¢) = A€,
and hence we can write
(53) $@Ep)t = (e 9(@1))}2[1 ¢ = oy O for ag € M prime to ¢p}
if € does not contain primes ramifying in M/F. Without assuming the above
condition, we can always write

$@p)t ={Ae 9 (€p)|A'¢ = ay O for ag € M prime to €'p},

where € is the maximal factor of € prime to the relative discriminant of M/ F.
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The quotient of $(€p)™ by principal ideals prime to ¢ p is a subgroup of the
class group Clps of M, which we write Clj‘;. We see easily that

Clp = the image of Cly C Cly, C H%(Gal(M/F), Cly).

If the group O of totally positive units of O coincides with the group of square
units, the equality CI, = H%(Gal(M/F), Clys) holds. If further the class number
of M is odd, the three groups are all equal. We take a complete representative set
D~ (resp. D) for Clps /Cly (resp. Cl3, in $(€p)™).

When the class number of M is odd, we choose D among fractional ideals of
F and D™ among primes of M split over F'. If the class number is even, supposing
that ¢ is prime to the discriminant of M/ F, we choose D+ U D™ among primes
of M split over F'.

We write I'” for the intersection of I" with the image of Dép in the group Z =
Clas (€p°°). Then we put @ for a complete representative set in the localization
(not the completion) DE(@) for m(Dg,)/ I’ with the projection 7 : Ogp, > Z if
¢ does not contain primes ramifying in M/F. When € is divisible by a prime
ramified in M/ F, things get more complicated, because we need to include in &
elements o € O divisible by some ramified primes in €. So until Section 5.5, we
assume that € is prime to the relative discriminant of M/ F. Then we have

[oae=3 2 ¥ [ trun)dEon,
z AeD+ €D BeD— I

We compute (A(BA), A(AB), i (AB)) for A C F. Since we have
A(BA)(C) =CZ/S(AB) =CZ/Z(B)®0 A= A(B)(C) ®0 U,

we conclude A(AB) = A(B) ® o A. There is another construction if we choose
20 C O: Tensoring A(®B) to the exact sequence: 0 —> A — O — O/ — 0, we get
another exact sequence:

0 = Tor; (0/2, A(B)) 5> A(B) 0 A — A(B) — 0.
Since O is a Dedekind domain, we have Tor; (O/2(, A(28)) == A(B)[2] canonically.
Thus i brings A(B)[2(] onto (A(B) ® o A)[A]. Since A(B) is a cy-polarization
A
for cs = ¢(BBC) ™!, we have A(B)’ ﬂ A(2B) ® cos. This induces

A(B) @2 : (A(B) @A) = A(B) /A(B)'[2]
>~ (A(B) ®0 c3) ®0 A™" = (A(B) ®0 A) ® cams.

We can check that A(28) @ 2 = A(AB). Since A is prime to €p, the quotient pro-
cess by the 2A-torsion subgroup does not alter the level structure; so, i (25) induces
i(AB) =i(B) .
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The above process of making (A(2B), L(AB), i (AB)) can be performed
(without any modification) for general triples (A4, A, i) (even without complex mul-
tiplication) and yields a functorial map from test objects (A4, A, i) with polarization
ideal ¢ to test objects (A ®o A, A ® A, i ® A) with polarization ideal ¢2A~2. For a
p-adic modular form f € V(c2~2,9; R), we define f|(2) € V(c,MN; R) by

(5.4) SHA(A A1) = f(ARo A AR i @A)
for a fractional ideal 2 of F' prime to 1 (see [Hid04, 4.1.9]). This shows

655 [ damdBan = (BGrdam](2) (). A(B).1(B) it F,

where E=E, ..

By adding level, another operator, [q] : V(cq,9t; R) — V(c,MNq; R), can be
constructed in the following way. Here we assume that q is an integral ideal prime
to ¢p. This goes as follows: For each test object: (4,A,w,i);c (over a p-adic
R-algebra C) of level Dtqp®° with polarization ideal ¢, we define a new test ob-
ject (A’, M, @’,i’). First define A’ = A/i(q*/0*). The quotient exists over C,
since i (q*/0™) is an étale subgroup of A (because C is a p-adic ring). The level
structure

i:(Fp/0p)x((MNg)*/0*) — A

composed with the quotient map 7 : A — A’ induces, modulo q*/0*, the level
structure i1 Fjp /O x0M* /O* — A’ defined over C. The cg-polarization A" : A ~
A’ ® cq is defined as follows: Tensoring the exact sequence 0 —q— O — O/q—0
with A = A ® ¢, we have another exact sequence:

0>AQcq[qg > A®cq—> AR c— 0.

Taking dual of the quotient map 7 : A — A’, we have one more exact sequence:

t
0 — Hom(i(q*/0*),Gp) — A" =5 A' — 0,

which gives rise to the following exact sequence

Aor!
0 — Hom(i (q*/0*), Gm) — A" [q] = i(q*/0*) ® ¢ — 0.

Since q is prime to ¢, the kernel of the composite: (7 ® id) oA ox? : A" > A Q¢
is the entire g-torsion subgroup A’*[q]. Since A”*/A""[q] = A" ® q~!, we have
constructed an isomorphism:

(T ®id)oAon’ :A/I(X)q_1 ~A ®ec.

Tensoring q with this isomorphism, we get the desired A’ : A" >~ A’ ® cq. Since
q is prime to p, on a p-adic algebra C, Lie(A) = Lie(A’), which implies that
o' = m*w is a well-defined generator of Q4//¢. The association (4,A,w,i)/c —
(A", ), ', i"),c is functorial (i.e., a morphism between the functors 9 in (4.1)
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with respect to (¢, 91qp°°) and (c¢q, N1 p°°)). We have
[q] : V(cq, 9T, R) = V(c,Nq; R) and [q] : G (cq, DT R) = Gi(c,q; R)

by fllal(A. A, w.i) = f(A", A, ', i").

We compute [q](A(RL), A(2A), i () s for a fractional ideal A C M, supposing
that all prime factors of g are split in M/ F. Choose an integral ideal £ in M such
that the inclusion O < © induces O/q =~ O/9. Then Q + Q¢ = O. Consider
(A0, A(20),i(A)) with the level fsqp®°-structure i (2A) sending x € q*/O0* to
286x € Q71A/A. Then AR)[Q] =i (A)(q*/O*) and hence A(A)/i(A)(q*/O*) =
ARAQ ™) and i (A) =i (AQ '), which are the level fs p>-structures. Since q is
prime to pc, using the fact that Q¢ = q, we can verify that
(5.6)

[9] (A0, A(R0), (@), i () j = (ARQ™1), ARAQ7), @271, i (AQ7) jar,

where i (2) is the level fq p™-structure as above and i (AQ~!) is the induced level
f p-structure. We can always choose Q € DV so that Q¢ +Q = O and O/Q =
O/q for ¢ = QN F. This shows

(5.7 /r P 15dEq-19 = (E(xr¢a-15)[a]) (A(B), A(B),(B))
for 9 and q as above,

where E = E,,, . As for the effect of « € M, we may assume either « € O or
a € O — 0. Then we have, for the characteristic function yr- of I'/,

58) [ dumdEum = (Bt dum)| (@) (A(B).A(B).1(B) if a € 01 F*,

(5.9) /I:/(p(x—‘%dEa_l%z (EGtr ¢o—10)[[0a]) (A(B), A(B),i(B)) if « ¢ O,
where E = E for ¢ = ¢4 for (5.8) and ¢ = ¢,—1 for (3.9).

5.3. Computation of q-expansions. Pick an element g € G(A(®)) with totally
positive det(g) € F. Then g induces an automorphism of the Shimura variety (see
(3.9)), and hence the functorial action of g on test objects. We write

g(AvA’l) = (A’A’g’ig)

for the image of a test object (A, A, i) under the action of g. Here, writing 7'(A)

1(i£1N A[N] for the Tate module, the level structure is an isomorphism i : F A%(Oo) ~

T(A) ®g A, where F A%(OO) is made up of row vectors on which G(A(®)) acts
from the right. Then we have iy =i og and Ag =det(g)A. When g =y € G(Q)+4,
we have an isogeny ¥ : (4", 1,y oi’) = (A, A,,i, =i oy) for a suitable A" (see
below). Thus we can interpret the action as an action of an isogeny in this case.
This follows from the following three facts for y € G(Q)+ and test objects over C:
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(L1) Writing 5% = (b, a*)!(z, 1) = bz + a* and
iz(h,a)modb®a*) =bz+a modgg"‘*,
b, * —1 ~ , * _
we have 585,(;) 7T = 5 by wis w(cz +d)7, where y = (7 27)-

*Y,,—1
(L2) iyzy = (cz +d)izoy;s0, A = qjl/ggib(v;) 7 and

¥ (w mod &B;b(’;)*)y_l) = (cz+d) 'wmod SES’C‘*.

(L3) We have the identity of the Tate module via i:
T(C! /2% ) 2 b a* and T(Tateqp(q)) =b®a* T=1®z72).

If we have an isogeny « : A — A, we have a(A4,A,i) = (4, 1/,i’) given by A/ =
aa*X and i’(x) = ai(x). Here a* = A o’ o A1, which is e * c-polarization. In
other words, defining p(«) € G(Q) 4 by ai =iop(e), we find that p(e) (e (A, A, 1))
= (A, A,i). Since the Shimura variety classifies the triples up to isogeny, c(A, A, i)
and (A, A, i) are equal as a point of Sh(G, X), and Im(p) gives rise to the stabilizer
of the point of Sh(G, X) represented by (A4, A, i) (see Corollary 3.5).

When we consider the level structure i modulo a compact subgroup K C
G(A©), we write (4, A, ix). Then for g € G(A) with det(g) € F¥,g(A A ig)
= (A4, 4g, (i ©g)g-1k,) is well defined (solely depending on g).

We now consider the Tate AVRM: Tate, p(¢g). For each positive integer N,
we have a canonical exact sequence:

1 - puny ®a* — Tateq p(q)[N] — b/Nb — 0.

We therefore have a canonical level structure i.,, modulo an (integral) upper unipo-
tent subgroup U = U(Z) C G(A(®), which is represented by the following exact
sequence tensored by A (over 7):

0— c?"(l) — T'(Tateq,p(q)) — b—0,
where b =7 ®7 b an(’i\c/f\"(/l\) = /Z\(l) ®z a*. Let K C G(A(®)) be the stabilizer of
the row vector space b @ a*; that is,
K=Kqp= {g eGA®)|(baa*)g=bea c?‘} .
Thus I'11(0; a,b) = SLa(F) N K p. Define
KO = Kap(M) = {(g_ b) € Koplc € MNabd, a=d = 1modm6} .

Then we have ;11 (0 a, b) = SL,(F) N K(M). For each given g € G(A©®)) with
totally positive det(g) € F (so, g € €(G, X)), we can find finite ideles a(g), b(g) €
A(®) guch that g = u(g) (b(og) a(*g)) with u(g) € KNSL,(Fa) and ((1) 1 ) €K. Let
(A, A,i) be as in (L1-3), and put ig (9 = (i mod K(N)). Having (A, A, ig(e)) is

equivalent to having 7'(4) = i (b ® a*) and i k(o : (Na)*/a* — A[MN]. The ideles
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a(g) and h(g) are determined uniquely modulo multiples of units in O. We assume
here that a(g)m = b(g)mn = 1.
Write simply @’ = a(g) 'a and b’ = b(g)b and K& = g7 Kg. We have a
canonical identification b’ @ o’* (1) = T (Tatey,(q)) and
i;a/r’f}(g Cum® Na)*/a'x = Gy @ (a')* — Tatey y ().
Since b’ @ a’* and b @ a* are commensurable, the two Tate AVRM’s Tateq,5(q)
and Tatey i (q) are in the same isogeny class (over Z[[(ab + a’b’)>¢]]). Since

(ajg—\)a*) =a(g)~'a* and b(g)ﬁ = @J, up to isogenies, we have from (L3)

.a,b
(5.10) g(Tateqp(q), A%0, l;m,K(m)

. -1 . ~la,b(g)b
= (Tateq(g)1a b(gyo(4)- det(@)AGhi = A& PO P&} B2 ou(g)).

If g € F*, then a(g) = b(g) = g, and we have an isogeny

. b -ab “lagb g7 la,gb
g : (Tateq5(q), Adan» fegn) — (Tateg—14 4p(q), A&y 87, g 008, “57)

induced by ¢ — ¢# (or equivalently, by G,, ® a* — G,, ® (g~ 'a*) given by
X ®a > x ® ga). Therefore the central rational element acts on the Tate AVRM
trivially.

For the Eisenstein series E(¢) = Eo(¢; ¢) (weight 0) of a function ¢ (x, a; y, b)
((x,a;y,b) € (ap x (a/fa)) x (by x (b/fb))), we find from the above computation
(assuming a(g)m = b(g)m = 1 for N = pf):

(5.11)  E(¢)(g(Tateqp(q), 250, i%5))
—1 . —1
= E(¢|u(g))(Tatey(g)-1 4 p(g)p(q). ALE) +0E@0 ja&) " ablg)b)

where ¢lu(g)(x,a;y,b) = P Y (P¢((x,a;y,b)u(g)) (letting the 2 x 2-matrix
u(g) act from the right on the row vector (x, a; y, b)) for the partial Fourier trans-
form ¢ — P¢ as in Section 4.2.

We compute the g-expansion of E(¢)|(2() for a fractional ideal 2 of F. This
is the special case of (5.10) when g is a scalar matrix (& 9) with agx = 1 (and
a0 = 5(). By construction, we have a homomorphism ¢ : b < G,, ®7 a*, since
the A-torsion points of Tatey p(q) are given by ¢(bA~1/b) & (um ® a*) [2A]. Thus

Tateq,(q) ® A" = Tateq5(¢)/ Tateq,s(q)[2A] = Tate o po-1(4).

From this, it is easy to see (cf. [Hid04, (4.53)])
(5.12)

b ja,b - A1 620 aA™! bA
(Tatea,h(Q) ® Ql’ /\gan ® Ql’ lcim ® Ql) - (Tatean*I ,le(‘I)’ )Lgan ’ lcczm )’
where the superscript: “a, b is to indicate that the attached object is relative to the

Tate curve Tateq (q).
We compute [q](Tateq,5(¢), Acans @can, ican) for an ideal g C O. Recall that

Tateq,6(q) = Gm ® a*/q(b).
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-1

Tensoring G,, ® a* with the exact sequence: 0 — O — q~ ' — q~1/0 — 0, we

have another exact sequence:
0— (Gm®a*)[q] > G ® a* — Gp ® (ag)* — 0.

Taking the quotient by ¢(b), we get the following exact sequence:

0— (G’m ® ﬂ*) [q] Lo, Tateq,5(q) — Tateaq,6(q) — 0.

Then going back to the construction of the Tate quadruples in [Kat78, 1.1] (and
[HT93, 1.7]), we can verify

(513) [q](Tatea,b(Q) Acan’ can’ lCdn K, h(‘)’tq))

(Tateaq b(CI) A’ggnb’ (?;nh’ ican Kuq h(‘)”t))
The above action [q] corresponds to the action of g = ((1) e ) for a finite
idele g with q@ =1 and g9 = 1. This follows from (5.10) combined with the fact
that Ka,b(‘ﬂq)g = Kaq,b((ﬂ).
Now we further suppose that K, pg = Kqpy for y € G4 (Q) and g, = 1.
Then u = gy~ ! € Kqp, and hence ug = yg;'. This shows

(5.14) gy~ N(Tateqp, A%0, 020, ican K, 4 ()

— u,
= (Tatea,ba Ac‘mv can’ lcan Koo (9D © Vm )

5.4. Linear independence of Eisenstein series. Recall that D =~ Z /T for the
intersection I'' (in Z) of I" with the image of Dép. Let yr’ be the characteristic
function of I'" C Z. We put ¢ = Infy, yr- for a character  : A — W>. We
regard v as a character of Z composing with the projection: Z — A. Although
the Eisenstein series E (¢) is of weight 0 and is not classical, we actually take
E.(N*¢) for a positive k so that N"¥ = 1mod p on Z. Then E(N ¥¢) =
E.(¢) mod p, and hence, just to compute the g-expansion mod p, we can treat
E.(¢) as if it is classical. Thus we can apply Corollary 3.21 to E(¢). Recall that
we have written E(®°) for Eo(®°;¢) = E (D) for a suitable choice of ¢ in this
context (making ¢ explicit is left to the reader since it complicates the symbols
attached to the Eisenstein series).

Recall the decomposition € = §§.J in the introduction satisfying

(5.15) F+3° =9, F+3c=9, §c+3.=9 and Fc D F°,
(5.16) every prime factor of J is inert or ramified over F'.
Recall f=FINF,s=FNF and T = (0 x(0/))x(0, x(0/s))/ O*. Then the

variable on T is written as (x,a; y,b) with x, y € O,. Write prime decomposition
of f as ]_[q q¢‘@. We choose a prime element @y in Oy, and we define w® as an
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idele whose g-component is given by wg @ et

. ' _ -1 __ua
xr(x.a;y,b) = Z xr(x ,u,y,b)eF( ZUe(af))
ue0/f

=x(x,1;y,b)eF <_#>’

where e : Fa/F — Q@ is the standard additive character having the value e  (xoo)
= exp(2w v/ —1Tr(xs)) at 0o, and y is the characteristic function of

{(x,a;y,b)|m(x,1;y,b) €T’} form: Dép —Z.

We further split @ = | |,cq- @@ where @7 is the subset of 9 represented
by elements of F*:

gt = {a € Dlal” = BT’ with B € F* mogp}.

Recall that we assumed that € is prime to the relative discriminant © of M/F.
We choose a € ¥~ so that (o) = £Q is a prime ideal split in M over F. Then
Kqpp(a) = Ko pga for gq = ((1, 2) for a finite idele ¢g € O with qﬁ = 99°¢ and
gep = 1. Define % (resp. ¥) by a subset {a¢p|a € DT} (resp. {,pr‘ﬁ €P7})in
the completion O, (resp. D;‘P).

Hereafter until 5.5, we assume J = 1. By (5.5), (5.8) and (5.14), we see that

S WBTTEGRIB))B = E(®S).

BeaTt

where “|8” is the action of the scalar element 8 € Z(Q), and

(5.17) O (x,a:y,b) = YY) x° (s T a)is (v, b)),

SEY

since s = Bjp € ¥ C D)(Xp (for B € %) by (5.14). Here note that ¥ (s) = ¥ (B) !
because s = fB5,. We further sum over 9~:

(5.18) Y Y(@E@)][aa’]|p(e) ™! = E(9°),

€D
where we have chosen (@) to be an integral ideal with O/(«) = O/((@) N F) and
() N F = (xa®), and O° is given by

(5.19) O°(x,a3y,b) =) Y(r) T BL(r(x, a5 .b)),
reR
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because ¥/ (r) = ¥ ()~} (r = agp € O¢p). Since we have E(®% (r(x,a;y,b))) =
E(®%)|p(r) for p(r) € Kqp, we have by (5.14) that

5200 Y wa)( ) W(ﬂ)‘lE(X%/)Hﬂ)Iﬂ)I[aacllp(a)‘l

aED™ Bewt

=2 v TE@De() ™
reR

We have computed E(®°) as a linear combination of transforms of the Eisenstein
series E(xT). On the other hand, by definition of @y, ® as above is the restriction
of Infy, xr/ to Zp = (D; x (D/€)%) /OX C Z.

Recall that 2 € D™ is chosen out of fractional ideals of F if |Clyy| is odd;
S0, in such a case, the operator (1) makes sense. Similarly, if |Clps| is even, we
have chosen 2 € D+ U D™ among prime ideals of M split over F'; so, the operator
[AA(€] regarding 2AA€ as a prime ideal of F also makes sense.

THEOREM 5.1. Suppose p > 2. Let t be the canonical variable of the Serre-
Tate deformation space S=Gn®s07! of (A(D), A(9D).i(D));w so that the
parameters (141 —1,...,t% —1) (for a base {a; }; of O over 7) give the coordinate
around the origin 1 € S. Suppose that J = 1, and write ® for the restriction of
Infy xr’to Zo C Z. Put for each®B € D™

Ex()= Y @ 'E@°)|(A)() €O

AeD Tt

if the relative class number of M/ F is odd, where we have chosen 2l C F prime to
&C p. Otherwise, we put for each B € D~

Eg()= ) Y)E(@)|[RA)|p(e) ™" (t) € O,
AeD+

where [A]” = Ot%(_c with ag € M prime to €&€ p. Then the t-expansion of

€= ) ¥(B)Ex|[BB))
BeD—
at (A(D), A(D),i (D)) gives (up to an automorphism of W[[Z]]) the t-expansion
of the anticyclotomic measure Py o In particular, supposing that p > 2 is unram-
ified in F/Q, we have the vanishing of the j-invariant: /L((pl;’¢) = 0, unless the
following three conditions are satisfied:

(M1) M/ F is unramified everywhere (so the strict class number of F is even);

(M2) The strict ideal class of the polarization ideal ¢ in F is not a norm class of
an ideal class of M (& (M/F) =—1);

c

M3) ar (¥ (a)Np/g(a) modmy ) is the quadratic character of M/ F, which is
equivalent to ¥™* = ¢ mod myy.

Under (M1-3), the invariant “(901; ¢) 1s positive and is given by |1 () in (5.27).
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The Eisenstein series Egs defined in the theorem really depends on B € D™
since the polarization ideal of E(®°) in the sum depends on %B.

Proof. We first show that the 7-Expansion of € gives (up to an automorphism
of W[[Z]]) the t-expansion of the Katz measure. We said “up to an automor-
phism of W[[Z]]”, because of the following reason: In the definition of the level
structure i (A), x € (f2)*/O* is sent to 26x € F~2/2A. This has the following
harmless effect: The z-expansion of E(®% ((x,a; y,b) diag[24, (26)"11)) actually
coincides with the ¢-expansion of the measure. The variable change (x,a; y,b) —
(x,a;y,b)diag[28,28~!] corresponds to the automorphism: z > 28z of the topo-
logical space Z (since 2§ is chosen to be prime to p¢€), which gives rise to an
automorphism of W[[Z]]. So we forget about the effect of this unit 24.

Since the argument is simpler in the case where the relative class number is
odd, for the moment, we assume that the relative class number is even, though
we return to the odd case later. We are going to compute the «-derivatives of the
Eisenstein series at A(2~!) for applying the f-expansion principle. Let ¥, be a
unique Hecke character of Z such that ¥ (8) = B~y (B) forall B =1 mod € p,
Yila = ¥ and ¥ (A) = ag_c)'{ with ag as in (5.3) for all 2 as above, choosing
2l € DT so that []~ € I''. We write (z) for the projection of z € W(F)* to the
p-profinite part of W(F)*. Then we have

(00 D) = (1 yeg)” = (g
We now replace each term ¥ (af™1) E(x2.)|(B)|Blleac]|p(e) " of (5.20) by

(5.21) Y (@B Hd*(E(xp)I(B)Bllea’T|p(e) " H(AR™)

D Y @B )@YV E(xp) (i leB D) A pa)

= Y(@B @B Y CVE(T Y (rr o (@B (A pHA))

) e @B E((( ) ) ) ° e~ D) (A pah))

= Y@ HECT ) ) NA@™),

where ¢|[o](x,a;y,b) = p(a ' x, e a;ay, ab), poa(t) = ¢(at) fort € T and
A = (A, A7), i1 (A7), The above equality indicated by (x) (resp.
(*3x)) follows from (5.1) and the formulas: d“(¢*”) = (xy)“q*> and d*(t?) =
a®t? (resp. the fact that yp o (B~ !) is the characteristic function of (=1 8)I""). To
avoid this type of complicated computation for g, we choose 2 so that ((xé[_c) =
aél_c and [A]~ € '/ (this is always possible). Let & = (Infv, ((x_ly)")(p/) |Zo)° =
((xy)“)®°. By the computation given in [HT93, (4.9)] (where the ideal denoted
by 2 is actually ™! in this paper), the partial L-value for the character v/, and

for the ideal class of A" is given for E(F) = E,_, (¥), by

Ve @)EF)AR) = Y (0)d" (E(D°)|[RA2A°] | pler) ™) (A(D))
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and

(5.22) d*E(A©) = Y Yi@Q)E@F)ARA™)

AeD+

for all ¥k > 0. This is because p(ag) fixes the test object (A(D), A(D), (D)) and
converts the variable ¢ into t¢' ¢ (o = agq; Corollary 3.5). Hence we have

E(@)|[224]|p(a20) ™! (A(D)) = E($)(AR™)).

In [HT93, bottom of p. 215], a¢~D2¢ appears instead of the single power a¢~1¥
(a = ail in our computation here), but as can be easily checked (and as is obvious
from the evaluation formula of the Katz measure in the introduction), this is a
misprint, and the above single power a¢ V¥ is the correct one.

Now we apply the operator [B8¢] and make variable change: ¢ — ¢!®!” in
(5.22). We may again assume that [B]~ € I'". The operator [B9B¢] (resp. the
variable change: ¢ > ¢[B17) plays the role of [AA¢] (resp. p(agy) ™)) in the above
computation, and we obtain by the effect of the differential operator d* again

(523)  d*(Es|[BBNP NUAD) = ) v @AB)E@F)(A@AB) ).

AeD+

This combined with the evaluation formula (1.3) (and [HT93, (4.9)]) shows that
the function in the theorem, after we apply d* and evaluating at A(9), has the
property satisfied by the measure Py ¢ SO, the first assertion follows from (4.6).

As explained above Corollary 3.21, we have a unique element H, € G, (F)
whose 7-expansion is the constant 1 (identical to the #-expansion of the Hasse invari-
ant). Abusing terminology, we call H, the Hasse invariant. We want to apply Corol-
lary 3.21 taking {a;}; = {[B] }sep— and { fi;} = { Ex|[BB] mode}lBeD—.
Here for each index i with a; = [B]™, { f;;} is given by the single element E s :=
(E%H%%c] mode).

To verify the assumption (of Corollary 3.21) of linear independence (over [)
of {H,, fij}; for each i, we need to show that for each B € D™, Eg is lin-
early independent from the Hasse invariant H, (¢) = 1, unless (M1-3) are satisfied.
Here we use t-expansion principle and the g-expansion principle. Once this is
done, by Corollary 3.21, {Ex(1[®1")}sep- is linearly independent over [, and
hence we conclude the nonvanishing of € (i.e., the vanishing of the u-invariant) by
Corollary 3.21 (which requires the unramifiedness of p in F/Q), since elements in
{[B]” }mep— are distinct modulo Ty (Q). We show the linear independence of Eq
from H, by finding a totally positive £ € F such that the g-expansion coefficient
a(&, Ex) # 0mod myy.

We may assume that ¥ has conductor divisible by €. Write 77 : T — A for the
projection Z — A composed with ¢ : T — Z. Let W be the function on 7 given
by W(x,a;y,b) = ¥ om(x~',a™'; y,a). By our assumption, ®°(x,a;y,b) =
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G (y;)W, where the Gauss sum G () is given by

> v er (—um ).

u mod f

This number is a p-adic unit; so, for our purpose, we can forget about it. The
g-expansion coefficient of £ € ab of E (W) at the cusp (a, b) is given by

> W(a,b)|N(a)| ™.

(a,b)e(axb)/O*,ab=§

We fix 8 € D™. This determines cz—1 which is the polarization ideal of
A(B~1) on A(B~1). If we write ¢ for the polarization ideal of A(9), we know
c—1 = c(BB). We choose 1 0 be a prime [ prime to pf (this is possible by
changing it in its strict ideal class and choosing § € M suitably).

We first assume that the class number is even. We have chosen 2l to be a prime
9 of M split over F. Then Q'~¢ = {5¢, and Qo' is a product of primes in F
and ramified primes in M/ F. If Qa51 = u does not contain ramified primes, then
the operator [Q9Q€] = [q] (9 = QN F) is given by g € G(A©®) with gpj =1, and
pan)g! € Kap(fs)Z(AC), Thus f|[Q0Q°]|p(ag) ™" = f|(u) for an integral
ideal u of F and modular form f on Kg p(fs).

We assume that Qa51 contains ramified primes. Then we may assume that
Qa51 = u!R for a square-free product R of ramified primes £ and an ideal u C F.
For each ramified prime £, we may assume that

P09 = {( 5%, 5 )la.be O

where [ = £N F. Let g € G(A(®) be the element whose action on the Hilbert

modular variety coincides with [q]. As already seen, g(® = 1 outside q and gq=

((1, w.(:—l ) Recalling the relative discriminant ® of M/ F, by the definition of

the level-g-structure of A(®8), we find that g_l,o(on)(@) € Kqp(fs)Z (A)) and
writing R = [ [ ¢ £ for ramified primes £ in M/ F, we may assume that ,o(on)[_1 e
(Zg[ (1)) for each prime factor [ of t =93 N F. Note that K (fs) [,0(019)[_1 = ( s (1))
Therefore, f|[q]|p(cn) ™! = f|{u)] (wg(t) ‘1)), and the operator p(aqy) ™! o[q] brings
Tateq,u(q) to Tate,—1 4 ,p.(¢q) (see (5.10)). We can thus rewrite the sum defining Ess
in the theorem as:

(5.24) Eg=)Y v 'Y y@R)E@)|(w)[],

where u runs over a complete representative set (of F-ideals) for the image ¢ (ClF)
of Clg in Clps, t = SR N F, and v runs over a complete representative set for
CI]‘L,I/ t(Clr) made of square-free factors of ©. To make our treatment uniform,
even if the class number is odd, we change notation in the sum defining Es and
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rewrite it as

(5.25) Eg =Y ¢ "E®)|(u),

where u runs over a complete representative set (of F-ideals) for the image ¢ (ClF)
of ClFr in Clys. Hereafter we use the notation u to indicate an ideal representing a
class in ((ClF) and stop assuming that the class number is even.

We now take a totally positive 0 < & € O so that (§) =In ([ = c%l_lz a prime
by our choice) for an integral ideal n prime to € p®. We pick a pair (a,b) € F?
with ab = £ fora € u~! and b € lur. Then (a) = u™'x for an integral ideal ¢ and
(b) = ulry. Since (ab) = In, we find that ty = n and hence v = O because n is
prime to ®. Thus for each factor ¢ of n, we could have a pair (a;, b;) with a,b, =&
such that

(@) =uz e, (by) = (ap ') = wdm ™)

for u; € D™ representing the ideal class of the ideal . We then write the g-expan-
sion coefficient of qg at the cusp (O, ) of Ex as in the theorem:

(526)  Gp~'a. Ew) =Gy Y v waE, E(°)|(uy)

tn
© YNy ) staus o)
fn ¢
1
=y )Y Nu) 'y (up)Vrelad) o
fn r
1
_ —1
Ve O L SN
e(q) .
=yz' O D w@N@)™
qln \/=0
1— N e(q)+1
— ws—cl (é)W(n)_lN(n)_l 1_[ (W(CI) (q))

1 =¥ (q)N(q)

gqln

where n = ]_[q|n 4@ is the prime factorization of n.

Suppose that n is a prime q. Then by (5.26), we have G(wf)_la(é, Ey) =
Y E A+ @ (@N(@) ™). If Y (q)N(q) = —1 mod myy for all prime ideals q in
the strict class of ¢g—1, the character a — v (a) N(a) mod myy is of conductor 1,
and the strict class number has to be even.

We define, for the valuation v of W (normalized so that v(p) = 1),

-y
52 == fn )
20 p = ”(lm_[ I @N@
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where n runs over all integral ideals prime to © of the form c¢(A(¢) for ideals
of M. Here c is the polarization ideal of A(9). Then, by moving around B in D,
the p-invariant ;L(golz) of the y-branch of the anticyclotomic Katz measure ¢~ is
less than or equal to (), and M(QO,;) = u(y¥) if M/ F is everywhere unramified.

In particular, if 1; = YN mod myy, as a character of F A§<, has nontrivial conductor,
0< M((pll_f) < u(y) = 0. We may therefore assume that ¥ has conductor 1 and
that ¥ (c) = —1.

We now recall the conditions (V) and (M1-3) stated in the introduction:

(V)  y*=vymodmy and N(o) 'y (cHW'(¥) = —1 mod my
and

(M1) M/F is unramified at every finite place;
(M2) The strict ideal class of the polarization ideal ¢ in F is not a norm class of
an ideal class of M (& (%) =-1);

C

M3) ar (Y (a)Np/g(a) mod my ) is the character (M—/F) of M/ F.

We first give a direct proof of the equivalence of (V) and (M1-3) as a lemma
(following the suggestion of one of the referees of this paper), and after that, we
shall give an indirect proof of the same fact using () defined above.

LEMMA 5.2. Let the assumption be as in Theorem 1. Then we have an equiv-
alence: (V) <= (M1-3).

Proof. Suppose (M1-3). Write ¥ = (¥ modmy/) and & = (Npjgmodm).
Then &(xx€) = N (x) := (N(x) mod my) for the p-adic cyclotomic character N
of M. By (M3) and class field theory, we have @ (xx¢) = 1 for x € M;*. This im-
plies ¥*(x) = ¥ (x )N (x) ™! = ¥ (x)@(xx°)N (x)~! = ¥ (x), which proves the
first part of (V). By (M2-3), IZ(C) = ¥ N (c) = —1; so, we need to prove W' () =
1 mod myy. Since ¥* =, we have ¥ (x) = ¥ (x ~¢) for x € O with xp = 1. Thus
for a prime ideal Q|¢ of M outside p, q = Q N F splits as q = Q9 in M. Identi-
fying O ;_Oq ;95 and w_riting g(w) = Z_ue(gg/ge)x Aam)ey (waytdg'u),
we have g(F)g(Fg) = g(Fa)g(¥3") by ¥(u) = ¥ (u~°), and hence, we get
g(l;g)g(lzﬁ) = N(Q%)Y¥a(—1). Since ¥ = ¥ N is everywhere unramified by
(M1), we have Yq(—1) = 1; so, finally we get g(Vn)g(¥g) = N(Q¢). We may
take wy = @ in the definition of G(dg, V7). Then we have

_ - _ - M/F
V(@) ¥ (wg)N(Q) =¥ (Nyyr(wa))o(Nyyr(wg)) = (m)
Since G(da, V)G (dg. ¥q) = ¥ (@ ¥ (@ g (¥a)g(Vg) (f Q° || €), we find
that G(dq, ¥a)G(dg, ¥g) = I modmy for all Q|¢ prime to p. Thus we get
W'(¥) = [T G(da. Y)G(dg. ¥g) = I modmy. )

Now we assume (V). Since ¥ *(x) = ¥ (x )N (x)~! = ¥ (x), we find that
¥ (xx€) = N(x)~! = @(xx°)~!, which implies ¥ @ is a global Hecke character
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trivial on Npz/p(My'). Then by class field theory, V@ is either trivial or equal

to M

). Since ¥ is a character of totally imaginary M with connected M,
Yoo = 1. Since w is nontrivial at oo (because F' is real and p > 2), we find that

Vo = (M—/F> Since the conductor of ¥ @ is concentrated on ¢ p which is prime

to the conductor of (M—/F) (because p€ is made up of split primes in M/ F),

we find that ( 22£) is everywhere unramified. Thus we get (M1) and (M3). B
y g y

N(@©) 'y (cHY)W'(¥) = —1 mod myy, the condition (M2) follows from the fact
W'(¥) = 1 mod my by the computation of the first part which uses only (M1) and
(M3) already proven. O

Here is the indirect argument: We are going to show that if u(y) >0, M/ F is
unramified everywhere and 1; = (M—/F) mod myy. We have already proven before

the lemma that if ;() > 0, ¥ is unramified and ¥ (c) = —1 We now choose two
prime ideals q and ¢ so that [qq’ = (€). Then by (5.26), we have

-1 — —1 ;)( ;)
(528) Gy~ Ew) = v3, (5>(1+¢(qw(q> @)

Since ¥ (qq’) = ¥ (I"!) = —1, we find that if a(&, Egs) = 0mod myy,
~1=9/a) =V (HP @) =~V (@),
Since we can choose q arbitrary, we find that @ is quadratic.

The polarization ideal of A(B~1) is ¢(BBC) as already remarked. Since
the strict ideal classes {[BB¢]}mep- together with Cl%; cover all the classes
in Np/F(Clpy) in the strict ideal class group Clg, we find that —1 = J(c) =
J(C(EBSBC)) implies that 1; is trivial on Nz, (Clps) but nontrivial on Clg. This

implies, by class field theory, that 1/~f is the quadratic character (M—/F) of the qua-

dratic extension M/ F. In particular, M/ F is unramified everywhere.

Since (M1) and (M3) are established under the condition w(y) > 0, by the
above lemma (or rather by its proof), we have W’/(¥) = 1 mod my,. We thus find
,u(goiz) > 0 & the three conditions (M1-3) are satisfied. Under these three condi-
tions, by the g-expansion principle, we find () = M((plz), which is finite.

We show w () > 0 under (M1-3) (without using the identity: pu(y) = M(@IZ)).

Since ¥ (n) = (M—{F) = —1 for n appearing in the definition of (1), for an odd

number of prime factors q|n has odd exponent e(q). Thus 1Z(q)e(q)"'1 =1, and
hence the factor 1 — (w(q)N(q))e("')"'1 in the definition vanishes; so, w(y) > 1.
This finishes the proof. O

To show that the condition (M2) really depends on the CM-type X, we give
an example. We take F = Q[+/21]. This real quadratic field has strict class
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number 2 (so has class number 1). We thus have a unique everywhere unrami-
fied CM quadratic extension M = Q[+/—3, ~/—7]. Define two CM-types of M:
Y3 (resp. X7) to be the inflation to M of the identity inclusion of Q[v/—3]
(resp. @[+/=7]) into C. Then we can choose § = &, for X, to be v/—{. Since

(280)" =041/ (28)" = 1071, we find ¢ = (7 + v21)~/21 ') for 37 and
hence (M—iF) = —1 in this case because (7 + +/21) is totally positive. Contrary

to this, we find ¢ = (3 + v21)~v/21 ) and (M—{F) = 1 for Z5.

5.5. Nonvanishing of the p-invariant. Define
(5.29)
To(Ma,b) = {(95)eGLa(F)|ad —bc >0, a.d € O, c €Nabd, be(ab)*},

where a > 0 indicates that a is totally positive. We let the congruence subgroup
Io(fs; a, b) act on

PV(T) ={(y.x)|x € Fp x ((fa)*/a*), y € b, x (b/sb)}

by (y,x) — (¥, x)y. It is easy to check that this action is well defined. Note that
for a function ¢ on T, we have E(¢)|y = E(P~"Y(P¢oy)) if y € GLo(F) has
det(y) > 0 and preserves the lattice ’(a* @ b) made of column vectors.

We give an example of a branch with positive p-invariant if € contains a prime
inert in M/ F. We assume that £ is a prime factor of J prime to J/£ such that
Yq = 1; so, ¥ is imprimitive at . For the moment, we further assume that 9 is
an inert prime of M over F generated by a totally positive element w € O. This
assumption of principality is for simplicity in order to have well defined Hecke
operator 7(q) (q = QN F) acting on G (I'o(M; a, b)), because otherwise T'(q)
brings G (Fo(91; a, b)) into G (To(D; g~ La, b)).

We put f = E(®%,) asin (5.17). Since P S oy = (d) PP fory=(495) ¢
To(fp”; a, b) (for a suitable r > 0), we know f|y = ¥ (y) f, where ¥ (y) = ¥ (d).

The number r is the exponent such that the character: Z — A i) W> factors
through Clps (€p").

We are going to see that f > Y ,cq f|lea€]|p(e) ™!, with the notation (in
particular R) in (5.19), factors through the level-lowering trace operator Tr from
Co(fp”; a, b) to its subgroup I'o(fp” /q; a, b). The regular representation p : O —
M>(0q) induces p : O/Q — M>(0/q). Let C = p((9/Q)*). We have the
following decomposition:

GL»(0/q) = BC =CB

for the upper triangular Borel subgroup B. Note that the image of C in PGL(2)
is the maximal quotient (we call the “—" quotient) on which ¢ € Gal(M/ F) acts
by —1. The “—” quotient has order N(q) + 1. By this Iwasawa decomposition, it
is easy to see that (g|[q])|Tr = N(q)g|T (q) for the Hecke operator T'(q) (of level
prime to q).
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Since &~ C M*/F*, complex conjugation acts on @~ by “—1” (writing
additively). Thus we can identify 9~ with the “—” quotient of 7 (Os,)/ T for the
natural map 7 : D;; — Z. So ignoring the effect of the action of the finite group
DX /0>, we can decompose % into a product of subsets R for prime factors [|fp:

|_| &R = ]‘[% =R
£€D*/ 0% llfp

with R C OF.
The sum over R in (5.20) is still valid even if J # 1, and we have

> v () Elp(r) Tt = (0% 097! (Z w<r)—1E|p<r)—1) :
re® re®’

Defining the trace map by the summation of translation by p(r) over r € Ry = C
modulo center, we then have

S v Elp(r) Tt = (0% 097! ( > w<r)—1E|p<r)—1) I Tr,
reR rexr’”

where R =[], Rr. The prime factor of (O : O) is either even or ramified
in M, which is excluded by our assumption; so, division by the index is harmless
for us (in the computation of the p-invariant).

For simplicity, we write ® for ®¢ and write @, for the restriction of @ to the
factor (O/q). Then we see

~1 ifae(0/q)%,

P D= N -1 ifa=0in0/q.

This shows that, f = g|[q] — g for g = E(¢), where ¢ is the function @7 of
outside- p-level f/q defined for the character ¥ modulo (¢€/Q)p” inducing the

character: Z — A i) W>*. We can check

%(Q))
5.30 T(q)=11 ,
(5:30 dr@=(1+53) ¢

since the partial Fourier transform P¢ at sf is basically a constant multiple of
Vo551 (O/F) x (0/s)* — W™ (up to translation by an sf-adic unit) on

PV(L)5/ Ker(if™ . i3)) = (O/f) x (O/s)
for test objects (¥, A,i). Thus we see
Te(f) = N(@)g|T(q) — (N() + Dg
= N@ 1+ Yo@N@ g —(N(@) + g = Yo(Q) — g.

This shows that the function in (5.20) just vanishes if ¥o(Q) = 1.
The above argument works without our assuming the principality of the prime
1, after we sum up over Clj'\;. We explain briefly the reason. For each split prime
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Aec$(Tp)*, put for= E(CD‘_’,_)l[QlQlc]|p(ag[)_1 where aé(_c = [A]~. Then fy only
depends on the class of 2l in CLys = Clps(1). Then we find

ga = E()|[2%]|p(a) " € G (T'o(f/q; a2, b))
such that fo = ga__, |[a] — g2 and

galT(@) = (1+Yo(@N (@) g,

where 2 — 2, is the permutation on Cl;(,[(l) induced by A > Q. We make a
sum over the ideal classes in Cl;{l:

Y V@) (ga_ l[a] - ga)|Tr
A
=Y VAN IT@—N@+1D Y v@)ga
A A
=Y YN@A +Yo@N@ Hga— (N@+1) Y ¥ (A)ga
A A

=Wo(Q -1 _ ¥ @)ga.
A

We get the following fact for inert primes J observed first by Gillard ([Gil91,
Prop. 2]):

PROPOSITION 5.3. Let Q be a prime of M inert over F and assume that
¢ =&¢'Q with € + Q = O. Suppose the following two conditions are satisfied:

(11) ¥ mod myy is imprimitive (induced by a character modulo €' p®°). Thus =
Yo mod myy for a character Y of Clpg (€' p);

(I12) Yo(Q) = 1 mod myy.

Then the anti-cyclotomic branch Py i has positive -invariant. If further  itself is
imprimitive induced by a character Yy of Clpg (¢ p*°) and T = Q (so, €' is made
up of split primes), the invariant M(gz)];) is given by the sum of the additive p-adic
valuation of (Yo(Q) — 1) and u(Yo) as in (5.27).

The condition (I1) implies that the order of v is divisible by p if i is primitive
at i; so, either N(q) — 1 or N(q) + 1 is divisible by p.

Proof. When v itself is imprimitive, by the above calculation, the positivity:
/L((p;) > 0 is clear. The last assertion is a consequence of the linear independence
of go (for 2 running through Cl;{,[) over [F, which follow from an argument similar
to the proof of Theorem 5.1. When  is primitive at £, we choose a character g
of Clps (€' p°) with ¥ = g mod my,. Then Py.¢ = Py, e SO, the positivity of
the p-invariant of Py.c follows from that of s O

Ramified primes J can be treated by modification of above argument. Here
we shall give a sketch of the argument: suppose that J is a ramified prime. For
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simplicity, we assume that i = J N F is unramified in F/Q. By the definition of
the level structure i =i (), we have i (i1/0)®J371/O =i"1/9. Thus writing
O =a*+ bz = &, for fractional ideals a and b of F prime to cip, we may assume
that (z) = Jx for ¢ prime to J. The stabilizer in SL,(F) of the lattice O = £, is

given by I'g(i; a, b). Since zb C J and b is prime to i, we find that p(£5) is made of

a wib
b a

complex conjugation acts on (9 /J)* trivially, @~ is made of two elements 1 and
z as above. In other words, r!™¢ 1=¢_and we may assume that the operator
p(z) " o[rx¢] is the action of the normalizer T = (9 %) of To(i; a, b). Note that we
have a natural map Clg (i) — Clps(J). Let ¢ be an imprimitive character modulo

a p-power. Writing
fa=E@D)|[22A]|pla) ™" = o1 [[i] — g2

for go with go(|[i]|T = ¥0(J)gs,, we do the same computation as in the inert case:

matrices ( ) for a, b € O;. We also suppose that € = J for simplicity. Since

=z

Doy (ga, |l - gl
A
=Y v @)YoMga—Y v @ga= Yo -1 ¥ (@ga
A A A

This formula (and its generalization for € = J) for imprimitive character proves
the following fact whose proof is left to the reader:

PROPOSITION 5.4. Let Q be a prime of M ramified over F and assume that
¢ =&'Q with € + Q = O. Suppose the following two conditions are satisfied:

(R1) ¢ mod myy is imprimitive (induced by a character modulo €' p®°). Thus ¢ =
Yo mod myy for a character ¥ of Clyy (€' p®°);

(R2) ¥o(Q) =1 modmyy.

Then the anti-cyclotomic branch Py.c has positive -invariant. If further  itself
is not primitive induced by a character Yo of Clp (€' p®>°) and T = Q (so €' is
made up of split primes), we have ;L((p;) is given by the sum of the additive p-adic
valuation of (Yo(Q) — 1) and u(Yo) as in (5.27).

Presumably, if one is able to carry out the computation of the g-expansion of
the sum £ = E(P°), one should be able to get an exact formula for the p-invariant
of Py without restriction to its conductor. However, the g-expansion is rather
complicated, or at least, the process of computation looks rather involved (when
¥ is primitive at some inert or ramified primes). This is natural since we have the
cases of positive p-invariant as described above. We hope to come back to this
question in the future, hopefully proving the conjecture by Gillard asserting the
vanishing of M((p; ) (except in the case specified by (M1-3)) when v is primitive
of order prime to p (see [Gil91, Conj.]).
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Here is a table of misprints in [HT93], and “P.3 L.5b” indicates fifth line from

HARUZO HIDA

6. Appendix: Correction to [HT93]

the bottom of the page three.

page and line ‘ Read ‘ Should Read
P192 L.1b [1y5 G((29)°, ATh [1q5 G((28)¢, Agh
P.194 L.13b Xq Xo
P.199 L.5b (X)) Q@ w(X°) (X)) P w(X°)
P199 L.1b 8k, px)(f(X, A, w,i)) 8k, p)? (f(X, A, w,1))
P.200 (1.12) ©, ® Uy, ©, ® Uy,
P201 L.3b ! c*
P202 L.1 ab)* (ab)*
P202 L.10 Oy O3
P.204 L.7 Tateq,6(q) Tateq,5(q)[M]
P.206 L.3b 2mi(a*z + b) 2mi(bz 4+ a*)
P206 L.1b JFr IDF]|
P.207 L.10b Y aca Cr(1,2,5) Y uea Crla,z,s)
P207 L.4b er(x,ap) er(xap)
P208 L.5 er(x,bz) er(xbz)
P211L.1 QI3 QIFp
P211L.2 T2/ @F)2A/AG=TNF)
P213L.3b [Mez(1=A*(€ =257 | TTeza (1 =A% (L) ~!
P214L.12 As(xp) A5 (xp)
P215L.2 A%lc (fzfp)lqglam) Agc (aAqgc))kq}l (asp)
P25@49) | Loeict oo
4 p
P215L.7b, 3b 4—moE—2d(1-¢) 4—moE—d(1—c)
P.217L.11b,9b
P216 L8 K (ag). NP ywlag) — NP
P235L.1b Ap(x) A(x)
n(wq) + ' (wyq)
P241L.9 n(@q) + n(wy) or n(wy)
P241 L.14 (1= &g B X) (1 — g B, X) (1 “;ﬁ;g{)ofzﬁqg
P241L.14 spherical minimal principal
P241L.15 special minimal special
P.241 L.15b L(s,f) L(s, Ad(f))
P241L.2b qe & qeE=8,UE,
P245 L.4b Yac [Tyc
P249 L.1b (v%c)_1 (vgoc)™!
P.250 L.8b 2F er
P.250 L.4b (B(Ap)) W'(6(Ap))
P251L.10 (A% ¢) at three places (Apoc)
P.256 L.14b ¥*(Cr) Y (Cy)
P.257 L.12b wpn XP"
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