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Abstract

We generalize the small cancellation theory over ordinary hyperbolic groups to
relatively hyperbolic settings. This generalization is then used to prove various em-
bedding theorems for countable groups. For instance, we show that any countable
torsion free group can be embedded into a finitely generated group with exactly
two conjugacy classes. In particular, this gives the affirmative answer to the well-
known question of the existence of a finitely generated group G other than Z=2Z

such that all nontrivial elements of G are conjugate.

1. Introduction

Originally the notion of relative hyperbolicity was proposed by Gromov [11]
in order to generalize various examples of algebraic and geometric nature such as
Kleinian groups, fundamental groups of hyperbolic manifolds of pinched negative
curvature, small cancellation quotients of free products, etc. It has been extensively
studied in the last several years from different points of view. The main aim of this
paper is to generalize the small cancellation theory over hyperbolic groups devel-
oped by Olshanskii [23] to relatively hyperbolic settings. Our approach is based on
author’s papers [28], [26], [27], where the necessary background is provided. In
the present paper we apply small cancellations over relatively hyperbolic groups
to prove embedding theorems for countable groups. Further applications of our
methods can be found in [2], [1], [4], [19], [20], [25].

In the paper [13], Higman, B. H. Neumann, and H. Neumann proved that any
countable group G can be embedded into a countable group B such that every two
elements of the same order are conjugate in B . We notice that the group B in
[13] is constructed as a union of infinite number of subsequent HNN-extensions
and thus B is never finitely generated. On the other hand, any countable group
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can be embedded into a 2-generated group [13]. Our first theorem is a natural
generalization of both of these results. For a group G, we denote by �.G/ the set
of all finite orders of elements of G.

THEOREM 1.1. Any countable group G can be embedded into a 2-generated
group C such that any two elements of the same order are conjugate in C and
�.G/D �.C /.

COROLLARY 1.2. Any countable torsion-free group can be embedded into a
(torsion-free) 2-generated group with exactly 2 conjugacy classes.

Since the number of finitely generated subgroups in any 2-generated groups
is at most countable and the number of all torsion-free finitely generated groups is
uncountable, we have

COROLLARY 1.3. There exists an uncountable set of pairwise nonisomorphic
torsion-free 2-generated groups with exactly 2 conjugacy classes.

We note that the question of the existence of any finitely generated group
with exactly two conjugacy classes other than Z=2Z was open until now. It can be
found, for example, in [17, Prob. 9.10] or in [3, Prob. FP20]. (A positive solution
has been announced by Ivanov in 1989 [14], [15] but the complete proof has never
been published.) Corollary 1.3 provides the first examples of such groups. Starting
with the group G D Z=pn�2Z�H for n� 3, where p is a prime number and H
is a torsion-free group, we can generalize the previous result.

COROLLARY 1.4. For any n 2 N, n� 2, there is an uncountable set of pair-
wise nonisomorphic finitely generated groups with exactly n conjugacy classes.

For large enough prime numbers n, the first examples of finitely generated in-
finite periodic groups with exactly n conjugacy classes were constructed by Ivanov
(see [21, Th. 41.2]) as limits of hyperbolic groups (although hyperbolicity was not
used explicitly). Here we say that G is a limit of hyperbolic groups if there exists a
finitely generated free group F and a series of normal subgroups N1CN2C : : : of

F such that G Š F=N for N D
1S
iD1

Ni and each of the groups F=Ni , i D 1; 2; : : :

is hyperbolic. In contrast it is impossible to construct a finitely generated group
other than Z=2Z with exactly two conjugacy classes in this way.

Indeed suppose that a finitely generated group G has exactly two conjugacy
classes. If G is not torsion-free, then G is a group of exponent p for some prime
p as the orders of all nontrivial elements of G are equal. If p D 2, G is abelian
and hence is isomorphic to Z=2Z. In case p > 2, there exist nontrivial elements
g; t 2G such that

(1) t�1gt D g2:

The equality g2
p�1 D t�pgtpg�1 D gg�1 D 1 implies 2p � 1 � 0.mod p/.

However, by the Fermat Little Theorem, we have 2p � 2 � 0.mod p/, which
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contradicts the previous equality. Assume now that G is torsion-free. If G is a limit
of hyperbolic groups F=Ni , i D 1; 2; : : : , then for some i large enough, there are
elements g; t 2 F=Ni of infinite order that satisfy (1). This leads to a contradiction
again since the equality of type (1) is impossible in a hyperbolic group if the order
of g is infinite [10], [11].

Another theorem from [13] states that any countable group G can be embed-
ded into a countable divisible group D. We recall that a group D is said to be
divisible if for every element d 2 D and every positive integer n, the equation
xn D d has a solution in D. A natural example of a divisible group is Q. The
question of the existence of a finitely generated divisible group was open during a
long time. The first examples of such a type were constructed by Guba [12] (see
also [21]).

Later Mikhajlovskii and Olshanskii [18] constructed a more general example
of a finitely generated verbally complete group, that is a group W such that for
every nontrivial freely reduced word w.xi / in the alphabet x˙11 ; x˙12 ; : : : and every
v 2W , the equation w.xi /D v has a solution in W . That is, there are elements
v1; v2; � � � 2W such that w.vi /D v in W , where w.vi / is the word obtained from
w.xi / by substituting vi for xi , i D 1; 2 : : : . Comparing these results one may ask
whether any countable group can be embedded into a finitely generated divisible
(or verbally complete) group. The next theorem provides the affirmative answer.

THEOREM 1.5. Any countable group H can be embedded into a 2-generated
verbally complete group W . Moreover, if H is torsion-free, then W can be chosen
to be torsion-free.

Note that the condition �.G/ D �.W / can not be ensured in Theorem 1.5.
Indeed, it is easy to show that if a divisible group W contains a nontrivial element
of finite order, then �.W /D N. As above, we obtain

COROLLARY 1.6. There exists an uncountable set of pairwise nonisomorphic
2-generated verbally complete groups.

2. Outline of the method

In this section we give the proofs of Theorem 1.5 and Theorem 1.1 modulo
technical results which are obtained in Sections 4–8. We assume the reader to
be familiar with the notion of a relatively hyperbolic group and refer to the next
section for precise definitions.

Let G be a group that is hyperbolic relative to a collection of subgroups
fH�g�2ƒ. We divide the set of all elements of G into two subsets as follows.
An element g 2 G is said to be parabolic if g is conjugate to an element of H�
for some � 2ƒ. Otherwise g is said to be hyperbolic. Recall also that a group is
elementary if it contains a cyclic subgroup of finite index. The following result
concerning maximal elementary subgroups is proved in [26, Th. 4.3, Cor. 1.7].
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THEOREM 2.1. Let G be a group hyperbolic relative to a collection of sub-
groups fH�g�2ƒ, g a hyperbolic element of infinite order of G. Then the following
conditions hold:

1. The element g is contained in a unique maximal elementary subgroup EG.g/
of G, where

EG.g/D ff 2G W f
�1gnf D g˙n for some n 2 Ng:

2. The group G is hyperbolic relative to the collection fH�g�2ƒ[fEG.g/g.

Given a subgroup H �G, we denote by H 0 the set of all hyperbolic elements
of infinite order in H . Recall also that two elements f; g 2 G0 are said to be
commensurable (in G) if f k is conjugate to gl in G for some nonzero k; l .

Definition 2.2. A subgroup H �G is called suitable, if there exist two non-
commensurable elements f1; f2 2H 0 such that EG.f1/\EG.f2/D 1.

The next lemma is proved in Section 8.

LEMMA 2.3. Let G be a group hyperbolic relative to a collection of sub-
groups fH�g�2ƒ, H a suitable subgroup of G. Then there exist infinitely many
pairwise noncommensurable (in G) elements h1; h2; � � � 2 H 0 such that for all
i D 1; 2; : : : , EG.hi / D hhi i. In particular, EG.hi /\EG.hj / D f1g whenever
i ¤ j .

Our main tool is the following theorem proved in Section 8. The proof is
based on a certain small cancellation techniques developed in Sections 4–7.

THEOREM 2.4. Let G be a group hyperbolic relative to a collection of sub-
groups fH�g�2ƒ, H a suitable subgroup of G, and t1; : : : ; tm arbitrary elements
of G. Then there exists an epimorphism �WG! xG such that:

1. The group xG is hyperbolic relative to f�.H�/g�2ƒ.

2. For any i D 1; : : : ; m, we have �.ti / 2 �.H/.

3. The restriction of � to
S
�2ƒ

H� is injective.

4. �.H/ is a suitable subgroup of xG.

5. Every element of finite order in xG is an image of an element of finite order in
G. In particular, if all hyperbolic elements of G have infinite order, then all
hyperbolic elements of G have infinite order.

The next theorem is proved in [13, Cor. 1.4]. For finitely generated groups
this result was first proved by Dahmani in [7]. It is worth noting that we use the
theorem for infinitely generated groups in this paper.
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THEOREM 2.5. Suppose that a group G is hyperbolic relative to a collection
of subgroups fH�g�2ƒ [ fKg and for some � 2ƒ, there exists a monomorphism
�WK!H� . Then the HNN-extension

(2) zG D hG; t j t�1kt D �.k/; k 2Ki

is hyperbolic relative to fH�g�2ƒ.

Theorems 1.5 and 1.1 can be obtained in a uniform way from the following
result.

THEOREM 2.6. Suppose that R is a countable group such that for any ele-
mentary group E satisfying the condition �.E/ � �.R/, there exists a subgroup
of R isomorphic to E. Then there is an embedding of R into a 2-generated group
S D S.R/ such that any element of S is conjugate to an element of R in S . In
particular, �.S/D �.R/.

Proof. The desired group S is constructed as an inductive limit of relatively
hyperbolic groups as follows. Let us set

G.0/DR �F.x; y/;

where F.x; y/ is the free group of rank 2 generated by x and y. We enumerate all
elements of

RD f1D r0; r1; r2; : : : g

and
G.0/D f1D g0; g1; g2; : : : g:

Suppose that for some i � 0, the group G.i/ has already been constructed
together with an epimorphism �i WG.0/ ! G.i/. We use the same notation for
elements x; y; r0; r1; : : : ; g0; g1; : : : and their images under �i in G.i/. Assume
that G.i/ satisfies the following conditions. (It is straightforward to check these
conditions for G.0/ and the identity map �0WG.0/!G.0/.)

(i) The restriction of �i to the subgroup R is injective. In what follows we identify
R with its image in G.i/.

(ii) G.i/ is hyperbolic relative to R.
(iii) The elements x and y generate a suitable subgroup of G.i/.
(iv) All hyperbolic elements of G.i/ have infinite order. In particular, �.G.i//D

�.R/.
(v) The elements g0; : : : ; gi are parabolic in G.i/.

(vi) In the group G.i/, the elements r0; : : : ; ri are contained in the subgroup gen-
erated by x and y.

The group G.i C 1/ is obtained from G.i/ in two steps.
Step 1. Let us take the element giC1 and construct a group G.i C 1=2/ as

follows. If giC1 is a parabolic element of G.i/, we set G.i C 1=2/ D G.i/.
If giC1 is hyperbolic, the order of giC1 is infinite by (iv). Furthermore, since
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�.EG.i/.giC1//��.G.i//D�.R/, there is a monomorphism �WEG.i/.giC1/!R.
Then we take the HNN-extension

G.i C 1=2/D hG.0/; t j t�1et D �.e/; e 2EG.i/.giC1/i:

In both cases G.i C 1=2/ is hyperbolic relative to R. Indeed this is obvious in
the first case and follows from the second assertion of Theorem 2.1 and Theorem
2.5 in the second one. Note also that all hyperbolic elements of G.i C 1=2/ have
infinite order. (In the second case this immediately follows from the description of
periodic elements in HNN-extensions [16, Ch. IV, Th. 2.4].)

Step 2. First we wish to show that the subgroup generated by x and y is suit-
able inG.iC1=2/. This is obvious in case giC1 is parabolic inG.i/, so we consider
the second case only. Since hx; yi is suitable in G.i/ by (iii), Lemma 2.3 yields
the existence of infinitely many pairwise noncommensurable (in G.i/) hyperbolic
elements hj 2 hx; yi of infinite order, j D 1; 2 : : : , such that EG.i/.hj / D hhj i.
At most one of these elements is commensurable with giC1 in G.i/. Therefore,
there exist two noncommensurable in G.i/ hyperbolic elements of infinite order,
say h1; h2 2 hx; yi, such that hj is not commensurable with giC1 in G.i/ for
j D 1; 2. In particular, hj , j D 1; 2, is not conjugate to an element of EG.i/.giC1/
as hgiC1i has finite index in EG.i/.giC1/. According to Britton’s Lemma on
HNN-extensions [16, Ch. 5, �2], this implies that h1 and h2 are hyperbolic and
noncommensurable in G.i C 1=2/. Furthermore, if for some j D 1; 2, n 2 N, and
u2G.iC1=2/, we have u�1hnj uD h

˙n
j , then u2G.i/ by Britton’s Lemma. Thus

the explicit description of maximal elementary subgroups from the first assertion of
Theorem 2.1 yields the equality EG.iC1=2/.hj /DEG.i/.hj / for j D 1; 2. Finally
since EG.i/.hj /D hhj i and h1, h2 are noncommensurable, we have

EG.iC1=2/.h1/\EG.iC1=2/.h2/DEG.i/.h1/\EG.i/.h2/D hh1i \ hh2i D f1g:

By Definition 2.2 this means that the subgroup generated by x and y is suitable in
G.i C 1=2/.

We now apply Theorem 2.4 to the group G D G.i C 1=2/, the subgroup
H Dhx; yi�G.iC1=2/, and the set of elements ft; riC1g. LetG.iC1/D xG, where
G is the quotient group provided by Theorem 2.4. Since t becomes an element of
hx; yi in G.iC1/, there is a naturally defined epimorphism �iC1WG.0/!G.iC1/.
Using Theorem 2.4 it is straightforward to check properties (i)–(vi) for G.i C 1/.
This completes the inductive step.

Let Ni denote the kernel of �i . Observe that N1; N2; : : : form an increasing
normal series and set S DG.0/=N , where N D

S1
iD1Ni . By (i) the subgroup R

is embedded into S . Further it is easy to see that S is 2-generated. Indeed, G.0/
is generated by x; y; r1; r2; : : : . Condition (vi) yields ri 2 hx; yi in S for any
i 2N. Thus S is generated by x and y. Finally let s be an element of S . We take
an arbitrary preimage g 2 G.0/ of s. Then the image of the element g becomes
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parabolic at a certain step according to (v). Thus s is conjugate to an element of R
in S . The theorem is proved. �

It remains to derive Theorems 1.1 and 1.5.

Proof of Theorem 1.1. Let E denote the free product of all elementary groups
E (taken up to isomorphism) such that �.E/� �.G/. We set G� DG �E. By a
theorem from [13], we can embed G� into an (infinitely generated) group R such
that all elements of the same order are conjugate in R and

(3) �.R/D �.G�/D �.G/:

We now apply Theorem 2.6 and embed the group R into a 2-generated group
C D S.R/ such that any element of C is conjugate to an element of R. As all
elements of the same order are conjugate in R, this is so in C . The equality �.C /D
�.G/ follows from (3) as �.C /D �.R/ by Theorem 2.6. �

Proof of Theorem 1.5. First note that any countable group G can be embedded
into an infinitely generated countable verbally complete group R in the following
way. (The idea comes from the proof of the Higman-Neumann-Neumann theorem
on embeddings into divisible groups.) We denote by F D F.a1; a2; : : : / the free
group with basis a1; a2; : : : . Let us enumerate the set of all pairs

fp1; p2; : : : g D f.v; g/ W v 2 F n f1g; g 2G n f1gg:

Starting with the group G we first set G� D G if G is torsion-free, and G� D
G �E1 �E2 � : : : , where fE1; E2; : : : g is the set of all elementary groups (up to
isomorphism), otherwise. Further we construct a sequence of groups G� D U0 �
U1 � : : : as follows. Suppose that for some i � 0, the group Ui has already been
constructed and take piC1 D .v; g/. There are two possibilities to consider.

1) The element g has infinite order. Then we define UiC1 to be the free
product of Ui and F with the amalgamated subgroups hgi and hvi.

2) The order of g is n <1. It is well-known [16, Ch. 4, Th. 5.2] that the
order of the element v in the group H D ha1; a2; : : : j vn D 1i equals n. Thus the
free product of Ui and H with amalgamated subgroups hgi and hvi is well-defined.
We set UiC1 D Ui �hgiDhviH .

Now let U.G�/D
1S
iD0

Ui . Obviously G� embeds in U.G�/, U.G�/ is count-

able and torsion-free whenever G� is torsion-free, and any equation of type w.xi /
Dg, where w.xi / is a word in the alphabet x˙11 ; x˙12 ; : : : and g 2G, has a solution
in U.G�/. Finally we consider the sequence of groups R1 � R2 � : : : , where

R1 D U.G
�/ and RiC1 D U.Ri /, i D 1; 2 : : : . Clearly the group R D

1S
iD0

Ri is

countable, verbally complete, torsion-free whenever G is torsion-free, and contains
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a copy of every elementary group E such that �.E/� �.G/. Let W D S.R/ be
the group provided by Theorem 2.6.

Consider an equations w.xi / D v for some v 2 W . By Theorem 2.6, there
is an element t 2W such that t�1vt 2 R. Since R is verbally complete, there is
a solution x1 D r1, x2 D r2, : : : to the equation w.xi / D t�1vt in R. Clearly
x1 D t r1t

�1, x2 D t r2t�1, : : : is a solution to the equation w.xi /D v. �

3. Preliminaries

Some conventions and notation. We write W � V to express the letter-for-
letter equality of words W and V in some alphabet. If a word W decomposes as
W � V1UV2, we call V1 (respectively, V2) a prefix (respectively, suffix) of W . For
elements g, t of a group G, gt denotes the element t�1gt . Recall that a subset X of
a group G is said to be symmetric if for any x 2X , we have x�1 2X . In this paper
all generating sets of groups under consideration are supposed to be symmetric.

All paths considered in this paper are combinatorial paths. Recall that a com-
binatorial path p in a CW-complex is a sequence of edges (i.e., 1-dimensional
cells) e1e2 : : : ek , where .ei /C D .eiC1/�. If edges of the complex are labeled, we
define the label of p by Lab .p/� Lab .e1/Lab .e2/ : : :Lab .ek/, where Lab .ei /
is the label of ei . We also denote by p� D .e1/� and pC D .ek/C the origin and
the terminus of p respectively. The length l.p/ of p is the number of edges of p.

Word metrics and Cayley graphs. Let G be a group generated by a (sym-
metric) set A. Recall that the Cayley graph �.G;A/ of a group G with respect
to the set of generators A is an oriented labeled 1-complex with the vertex set
V.�.G;A//DG and the edge set E.�.G;A//DG�A. An edge eD .g; a/ goes
from the vertex g to the vertex ga and has label Lab .e/� a. As usual, we denote
the origin and the terminus of the edge e, i.e., the vertices g and ga, by e� and eC
respectively.

Associated to A is the so-called word metric on G. More precisely, the length
jgjA of an element g 2 G is defined to be the length of a shortest word in A

representing g in G. By abuse of notation, we also write jW jA to denote the
lengths of the element of G represented by a word W in the alphabet A. This is to
be distinguished from the length of the word W itself, which is denoted by kW k.

The word metric on G is defined by distA.f; g/D jf �1gjA. We also denote
by distA the natural extension of the word metric to the Cayley graph �.G;A/.

van Kampen diagrams. Recall that a van Kampen diagram � over a presen-
tation

(4) G D hA j Oi

is a finite oriented connected 2-complex endowed with a labeling function Lab W
E.�/!A, where E.�/ denotes the set of oriented edges of�, such that Lab .e�1/
� .Lab .e//�1. Labels and lengths of paths are defined as in the case of Cayley
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Figure 1. �0 is a 0-refinement of the diagram � over the presen-
tation ha; b j a3 D 1i.

graphs. Given a cell … of �, we denote by @… the boundary of …; similarly, @�
denotes the boundary of �. The labels of @… and @� are defined up to a cyclic
permutation. An additional requirement is that for any cell … of �, the boundary
label Lab .@…/ is equal to a cyclic permutation of a word P˙1, where P 2 O.

Sometimes it is convenient to use the notion of the so-called 0-refinement,
which enables us to assume that all diagrams are homeomorphic to a disc. Roughly
speaking, making a 0-refinement of a diagram � just means replacing every edge
e 2E.�/ with a rectangle labeled Lab .e/1Lab .e/�11, and replacing every vertex
of � with a polygon (2-cell) labeled by 11 : : : 1. Here 1 means the empty word.
The rectangles are then attached to the polygons along edges labeled by 1 (see
Figure 1). The lengths of edges labeled by 1 is supposed to be 0. This notion is
quite standard and we refer the reader to [21, Ch. 4] for details.

The van Kampen Lemma states that a word W over the alphabet A represents
the identity in the group given by (4) if and only if there exists a simply-connected
planar diagram � over (4) such that Lab .@�/�W [16, Ch. 5, Th. 1.1].

For every van Kampen diagram � over (4) and any fixed vertex o of �, there
is a (unique) combinatorial map  WSk.1/.�/! �.G;A/ that preserves labels and
orientation of edges and maps o to the vertex 1 of �.G;A/.

Hyperbolic spaces. Here we briefly discuss some properties of hyperbolic
spaces used in this paper. For more details we refer to [6], [10], [11].

One says that a metric space M is ı-hyperbolic for some ı � 0 (or simply
hyperbolic) if for any geodesic triangle T in M , any side of T belongs to the
union of the closed ı-neighborhoods of the other two sides.

Recall that a path p in a metric space is called .�; c/-quasi-geodesic for some
� > 0, c � 0, if dist.q�; qC/ � �l.q/ � c for any subpath q of p. Let p be a
path in a van Kampen diagram � over (4). We need the following result about
quasi-geodesics in hyperbolic spaces (see, for example, [6, Ch. III. H, Th. 1.7]).

LEMMA 3.1. For any ı� 0, �> 0, c � 0, there exists a constant �D �.ı; �; c/
with the following property. If M is a ı-hyperbolic space and p; q are .�; c/-
quasi-geodesic paths in M with same endpoints, then p and q belong to the closed
�-neighborhoods of each other.
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The next result can be easily derived from the definition of a hyperbolic space
by drawing the diagonal.

LEMMA 3.2. Let M be a ı-hyperbolic metric space, Q a geodesic quadrangle
in M . Then each side of Q belongs to the closed 2ı-neighborhood of the other
three sides.

From Lemma 3.1 and Lemma 3.2, we immediately obtain

COROLLARY 3.3. For any ı � 0, � > 0, c � 0, there exists a constant K D
K.ı; �; c/ with the following property: Let Q be a quadrangle in a ı-hyperbolic
space whose sides are .�; c/-quasi-geodesic. Then each side of Q belongs to the
closed K-neighborhood of the union of the other three sides.

Indeed it suffices to set K D 2.�C ı/, where � is provided by Lemma 3.1.
The proof of the next lemma is also straightforward (see [23, Lemma 1.7]).

LEMMA 3.4. Let Q be a geodesic quadrangle with sides a; b; c; d in a ı-hy-
perbolic space. Suppose that l.a/ � 4maxfl.b/; l.d/g. Then there exist sub-
segments p, q of the sides a and b, respectively, such that minfl.p/; l.q/g �
7
20
l.a/� 8ı and dist .p˙; q˙/� 8ı.

Passing from geodesic to quasi-geodesic quadrangles one can easily obtain
the following. The proof is straightforward and consists of replacing the quasi-
geometric quadrangle with a geodesic one having the same vertices, application of
Lemma 3.4, and then Lemma 3.1. We leave details to the reader.

COROLLARY 3.5. Let Q be a .�; c/-quasi-geodesic quadrangle with sides
a; b; c; d in a ı-hyperbolic space, � D �.�; c/ the constant provided by Lemma 3.1.
Suppose that l.a/ � .4maxfl.b/; l.d/g C c/=�. Then there exist subsegments p,
q of the sides a and b, respectively, such that minfl.p/; l.q/g � 7

20
.�l.a/� c/�

8ı� 2� and dist.p˙; q˙/� 8ıC 2�.

The following lemma is also well-known (see, for example, [6, Ch. III. H, Th.
1.13]). Recall that a path in a metric space is said to be k-local geodesic if any of
its subpaths of length at most k is geodesic.

LEMMA 3.6. Let r be a k-local geodesic in a ı-hyperbolic metric space for
some k > 8ı. Then r is .1=3; 2ı/-quasi-geodesic.

The next lemma can be found in [22, Lemma 25].

LEMMA 3.7. There are positive constants c1D c1.ı/ and c2D c2.ı/ such that
for any geodesic r-gon P in a ı-hyperbolic space, the following holds: Suppose
that the set of sides of P is divided into three subsets N1; N2; N3 and �i is the sum
of lengths of sides from Ni , i D 1; 2; 3. Assume that �1 > ar and �3 < 10�3ar
for some a � c2. Then there exist different sides p1 2 N1 and p2 2 N1 [N2 and
subsegments qj of pj , j D 1; 2, of lengths at least 10�3a such that

maxfdist..q1/�; .q2/�/; dist..q1/C; .q2/C/g � c1:
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Relatively hyperbolic groups. There are many equivalent definitions of rela-
tively hyperbolic groups (see [5], [8], [28] and references therein). In this paper
we use the isoperimetric characterization given in [28].

More precisely, let G be a group, fH�g�2ƒ a collection of subgroups of G,
X a subset of G. We say that X is a relative generating set of G with respect
to fH�g�2ƒ if G is generated by X together with the union of all H�. (In what
follows, we assume X to be symmetric.) In this situation the group G can be
regarded as a quotient group of the free product

(5) F D .��2ƒH�/�F.X/;

where F.X/ is the free group with the basis X . Let N denote the kernel of the
natural homomorphism F !G. If N is the normal closure of a subset Q�N in
the group F , we say that G has relative presentation

(6) hX; H�; � 2ƒ j Qi:

If ]X < 1 and ]Q < 1, the relative presentation (6) is said to be finite and
the group G is said to be finitely presented relative to the collection of subgroups
fH�g�2ƒ.

Set

(7) HD
G
�2ƒ

.H� n f1g/:

Given a word W in the alphabet X [H such that W represents 1 in G, there exists
an expression

(8) W DF

kY
iD1

f �1i Q˙1i fi

with the equality in the group F , where Qi 2 Q and fi 2 F for i D 1; : : : ; k. The
smallest possible number k in a representation of the form (8) is called the relative
area of W and is denoted by Arearel.W /.

Definition 3.8. A group G is hyperbolic relative to a collection of subgroups
fH�g�2ƒ if G is finitely presented relative to fH�g�2ƒ and there is a constant
L> 0 such that for any word W in X [H representing the identity in G, we have
Arearel.W /� LkW k.

In particular, G is an ordinary hyperbolic group if G is hyperbolic relative
to the trivial subgroup. An equivalent definition says that G is hyperbolic if it is
generated by a finite set X and the Cayley graph �.G;X/ is hyperbolic. In the
relative case these approaches are not equivalent, but we still have the following
[28, Th. 1.7].

LEMMA 3.9. Suppose that G is a group hyperbolic relative to a collection of
subgroups fH�g�2ƒ. Let X be a finite relative generating set of G with respect to
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fH�g�2ƒ. Then the Cayley graph �.G;X [H/ of G with respect to the generating
set X [H is a hyperbolic metric space.

Observe also that the relative area of a word W representing 1 in G can be
defined geometrically via van Kampen diagrams. Let G be a group given by the
relative presentation (6) with respect to a collection of subgroups fH�g�2ƒ. We
denote by S the set of all words in the alphabet H representing the identity in the
groups F defined by (5). Then G has the ordinary (nonrelative) presentation

(9) G D hX [H j S[Qi:

A cell in van Kampen diagram� over (9) is called a Q-cell if its boundary is labeled
by a word from Q. We denote by NQ.�/ the number of Q-cells of �. Obviously
given a word W in X [H that represents 1 in G, we have

Arearel.W /D min
Lab .@�/�W

fNQ.�/g;

where the minimum is taken over all van Kampen diagrams with boundary label W .

H�-components. Finally we are going to recall an auxiliary terminology in-
troduced in [28], which plays an important role in our paper. Let G be a group,
fH�g�2ƒ a collection of subgroups of G, X a finite generating set of G with
respect to fH�g�2ƒ, q a path in the Cayley graph �.G;X [H/. A subpath p
of q is called an H�-component for some � 2 ƒ (or simply a component) of q,
if the label of p is a word in the alphabet H� n f1g and p is not contained in a
bigger subpath of q with this property. Two H�-components p1; p2 of a path q
in �.G;X [H/ are called connected if there exists a path c in �.G;X [H/ that
connects some vertex of p1 to some vertex of p2 and Lab .c/ is a word consisting
of letters from H� n f1g. In algebraic terms this means that all vertices of p1 and
p2 belong to the same coset gH� for a certain g 2 G. Note that we can always
assume c to have length at most 1, as every nontrivial element of H� is included
in the set of generators. An H�-component p of a path q is called isolated if no
distinct H�-component of q is connected to p.

The lemma below is a simplification of [28, Lemma 2.27].

LEMMA 3.10. Suppose that G is a group that is hyperbolic relative to a
collection of subgroups fH�g�2ƒ, X a finite generating set of G with respect to
fH�g�2ƒ. Then there exists a constant K > 0 and a finite subset � � G such
that the following condition holds. Let q be a cycle in �.G;X [H/, p1; : : : ; pk a
set of isolated H�-components of q for some � 2ƒ, g1; : : : ; gk the elements of G
represented by the labels of p1; : : : ; pk respectively. Then for any i D 1; : : : ; k, gi
belongs to the subgroup h�i � G and the lengths of gi with respect to � satisfy
the inequality

kX
iD1

jgi j� �Kl.q/:
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4. Small cancellation conditions

The main aim of this and the following four sections is to generalize the small
cancellation theory over hyperbolic groups developed by Olshanskii in [23] to rel-
atively hyperbolic groups. The fact that the Cayley graph �.G;X/ of a hyperbolic
group G generated by a finite set X is a hyperbolic metric space plays the key
role in [23]. Lemma 3.9 allows to extend this theory to the case of relatively
hyperbolic groups. However this extension is not straightforward as the Cayley
graph �.G;X [H/ defined in the previous section is not necessary locally finite.

Roughly speaking, one can divide results about small cancellation conditions
from [23] into three classes. The first class consists of results about diagrams
over presentations satisfying small cancellation conditions, which do not use local
finiteness of Cayley graphs at all. They can be stated and proved in our settings
without any essential changes. The main result of this kind is Lemma 4.4 stated
below.

Proofs of results from the second class do not use local finiteness of the Cayley
graph either, but they do employ certain facts concerning geometric and algebraic
properties of ordinary hyperbolic groups. These results can also be reproved with
minor changes modulo the paper [28], where the corresponding facts about rela-
tively hyperbolic groups are contained. For convenience of the reader we provide
self-contained proofs in Sections 5 and 6.

Finally results of the third type explain how to choose words of some specific
form satisfying small cancellation conditions. Unlike in ordinary small cancella-
tion theory over a free group, verifying small cancellation conditions over hyper-
bolic groups is much harder and local finiteness of Cayley graphs is essentially
used in [23]. Our approach here is different and is explained in Section 7.

Given a set of words R in an alphabet A, we say that R is symmetrized if for
any R 2R, R contains all cyclic shifts of R˙1. Further let G be a group generated
by a set A. We say that a word R is .�; c/-quasi-geodesic in G, if any path in the
Cayley graph �.G;A/ labeled R is .�; c/-quasi-geodesic.

Definition 4.1. Let G be a group generated by a set A, R a symmetrized set
of words in A. For " > 0, a subword U of a word R 2 R is called an "-piece if
there exists a word R0 2R such that:

(1) R� UV , R0 � U 0V 0, for some V;U 0; V 0;

(2) U 0 D Y UZ in G for some words Y;Z in A such that maxfkY k; kZkg � ";

(3) YRY �1 ¤R0 in the group G.

Similarly, a subword U of R 2R is called an "0-piece if:

(10) R� UV U 0V 0 for some V;U 0; V 0;

(20) U 0 D Y U˙1Z in the group G for some Y;Z satisfying maxfkY k; kZkg � ".
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Figure 2. Contiguity subdiagrams.

Recall that a word R in A is said to be .�; c/-quasi-geodesic, if some (equiv-
alently, any) path labeled by R in �.G;A/ is .�; c/-quasi-geodesic.

Definition 4.2. We say that the set R satisfies the C."; �; �; c; �/-condition
for some "� 0, � > 0, � > 0, c � 0, � > 0, if

(1) kRk � � for any R 2R;

(2) any word R 2R is .�; c/-quasi-geodesic;

(3) for any "-piece of any word R 2R, the inequality maxfkU k; kU 0kg< �kRk
holds (using the notation of Definition 4.1).

Further the set R satisfies the C1."; �; �; c; �/-condition if in addition the condition
.3/ holds for any "0-piece of any word R 2R.

Suppose that G is a group defined by (4). Given a set of words R, we consider
the quotient group of G represented by

(10) G1 D hA j O[Ri:

A cell in a van Kampen diagram over (10) is called an R-cell if its boundary label
is a word from R.

Let � be a van Kampen diagram over (10), q a subpath of @�. Let also …,
† be R-cells of �. Suppose that there is a simple closed paths

(11) p D s1q1s2q2

in �, where q1 is a subpath of @…, q2 is a subpath of q (or @†), and

(12) maxfl.s1/; l.s2/g � "

for some constant " > 0. By � we denote the subdiagram of � bounded by p (see
Figure 2). If � contains no R-cells, we say that � is an "-contiguity subdiagram
(or simply a contiguity subdiagram if " is fixed) of … to the subpath q of @� (or
to †, respectively) and q1 is the contiguity arc of … to q (respectively, †). The
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ratio l.q1/=l.@…/ is called the contiguity degree of … to q (respectively, †) and
is denoted by .…; �; q/ (respectively, .…; �;†/). In case q D @�, we talk about
contiguity subdiagrams, etc., of … to @�.

A van Kampen diagram � over (10) is said to be reduced if � has minimal
number of R-cells among all diagrams over (10) having the same boundary label.

The lemma below may be seen as a geometric reformulation of the small
cancellation condition (see [23, Lemma 5.2]). We provide the proof here for the
sake of completeness.

LEMMA 4.3. Suppose that R satisfies the C."; �; �; c; �/-condition for some
values of the parameters. Let � be a reduced diagram over (10). Then for every
"-contiguity subdiagram � of a cell … to another cell †, we have

(13) maxf.…; �;†/; .†; �;…/g< �:

Proof. Let @� D s1q1s2q2 as above (see Figure 2). Let @… D q1a and
@† D q2b. Then the word U � Lab .q1/ is an "-piece. Indeed the first two
conditions in Definition 4.2 are satisfied. If the third condition is not, then

Lab .s1/Lab .@…/Lab .s1/�1 D Lab .@†/:

That is, Lab .s1q1as�11 bq2/ D 1 in G. Hence we can cut the subdiagram of �
bounded by s1q1as�11 bq2 and fill the obtained hole with a diagram over (4) without
R-cells reducing the number of R-cells by 2. This contradicts the assumption that
� is reduced. Thus U is an "-piece, and (13) follows from the C."; �; �; c; �/-
condition. �

When dealing with a diagram � over (10), it is convenient to consider the
following transformations. Let † be a subdiagram of � which contains no R-
cells, †0 another diagram over (4) with Lab .@†/D Lab .@†0/. Then we can cut
off † and fill the obtained hole with †0. Note that this transformation does not
affect Lab .@�/ and the number of R-cells in �. If two diagrams over (10) can
be obtained from each other by a sequence of such transformations, we call them
O-equivalent.

The following is an analogue of the well-known Greendlinger lemma. Re-
call that a path p in � is called .�; c/-quasi-geodesic, if its label is .�; c/-quasi-
geodesic, i.e., some (equivalently, any) path in �.G;A/ with the same label is
.�; c/-quasi-geodesic.

LEMMA 4.4. Let G be a group with a presentation G D hA jOi. Suppose
that the Cayley graph �.G;A/ of G is hyperbolic. Then for any � 2 .0; 1�, c � 0,
and � 2 .0; 1=16�, there exist " � 0 and � > 0 with the following property. Let R

be a symmetrized set of words in A satisfying the C."; �; �; c; �/-condition, � a
reduced van Kampen diagram over the presentation (10) whose boundary is .�; c/-
quasi-geodesic. Assume that � has at least one R-cell. Then there exists a diagram
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�0 which is O-equivalent to �, an R-cell … in �0, and an "-contiguity subdiagram
� of … to @�0 such that

.…; �; @�0/ > 1� 13�:

The proof of this lemma is actually given in [23, Lemma 6.6] (see also the
addendum in [24]) under the additional assumption that A is finite (i.e., the group
G is hyperbolic). However the finiteness of A was not used in the proof, so the
same proof works in our case without any changes. Following the referee’s recom-
mendation, we provide a self-contained proof of Lemma 4.4 in Appendix.

5. Relative hyperbolicity of the quotient

Our next goal is to show that adding relations satisfying sufficiently strong
small cancellation conditions preserves relative hyperbolicity. Throughout the rest
of the paper (except the appendix), let G be a group hyperbolic relative to a col-
lection of subgroups fH�g�2ƒ, X a finite relative generating set of G with respect
to fH�g�2ƒ. We set A D X [H and O D S[ Q, where S and Q are defined as
in (9). In the proof of the lemma below we follow the idea from [23, Lemma 6.7]
with little changes.

LEMMA 5.1. For any �2 .0;1�, c�0,N>0, there exist �>0, "� 0, and � > 0
such that for any finite symmetrized set of words R satisfying the C."; �; �; c; �/-
condition, the following hold:

1. The group G1 defined by (10) is hyperbolic relative to the collection of images
of subgroups H�; � 2 ƒ, under the natural homomorphism G ! G1. In
particular, the Cayley graph of G1 with respect to the generating set A is
hyperbolic.

2. The restriction of the natural homomorphism  WG ! G1 to the subset of
elements of length at most N with respect to the generating set A is injective.

Proof. Let us fix �; c > 0 and sufficiently small � < 1=16. The exact value
of � required can be easily extracted from the proof. In what follows, we assume
that � is small enough comparably to �. Further we choose the constants " and
� according to Lemma 4.4. Since the C."; �; �; c; �/-condition becomes stronger
as � increases, we may increase � if necessary without violating the conclusion of
Lemma 4.4. The exact lower bound can be easily extracted from our proof.

For a word W in the alphabet X [H that represents 1 in G1, we denote by
Arearel

1 .W / its relative area, that is the minimal number k in a representation of type

W DF

kY
iD1

fiR
˙1
i f �1i

with the equality in the group F defined by (5), where Ri 2R[Q. Similarly, by
Arearel.W / we denote the relative area of a word W representing 1 in G, i.e., the
minimal number k in the above decomposition, where Ri 2R.
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As G is hyperbolic relative to fH�g�2ƒ, there exists a constant L > 0 such
that for any word W in X [H representing 1 in G, we have Arearel.W /� LkW k.
To prove the lemma it suffices to show that there is a constant ˛ > 0 such that for
any word W representing 1 in G1, Arearel

1 .W / � ˛kW k. We are going to prove
this inequality for

˛ D
3L

�� 27�
:

We proceed by induction on the length of W . Let p be a path labeled by W
in �.G;X [H/. Suppose first that p is not .1=2; 0/-quasi-geodesic. Passing to
a cyclic shift of W if necessary, we may assume that p D p0p1, where p0 is a
subpath of p such that distX[H..p0/�; .p0/C/ < l.p0/=2. Let q be a geodesic
path in �.G;X [H/ that goes from .p0/� to .p0/C. Thus l.q/ < l.p0/=2. We
denote by U0, U1, and V the labels of p0, p1, and q respectively. Then

W DF .U0V
�1/.V U1/;

where U0V �1 represents 1 in G and V U1 represents 1 in G1. Obviously we have

kV U1k � l.p/� l.p0/C l.q/ < kW k�
l.p0/

2
and

kU0V
�1
k � l.p0/C l.q/ <

3l.p0/

2
:

Using the inductive hypothesis, we obtain

Arearel
1 .W /� Arearel

1 .V U1/CArearel.U0V
�1/

< ˛
�
kW k�

1

2
l.p0/

�
C
3

2
Ll.p0/ < ˛kW k

as ˛ > 3L.
Now suppose that p is a .1=2; 0/-quasi-geodesic path in �.G;X [H/. Since

C."; �; �; c; �/-condition implies C."; �; 1=2; c; �/ whenever � > 1=2, it suffices
to prove the lemma for �� 1=2. So we may assume that p is .�; c/-quasi-geodesic
as well. Let � be a reduced diagram over (10) such that @� is labeled W . Assume
that � has at least one R-cell. (Otherwise the lemma is obviously true.) Passing to
an O-equivalent diagram if necessary and using Lemma 4.4, we can find an R-cell
… and a contiguity subdiagram � of … to @� with .…; �; @�/ > 1� 13�. Let
@� D s1q1s2q2, where q1 (respectively q2) is a subpath of @… (respectively @�)
and maxfks1k; ks2kg � ". Let also @…D q1u and @�D wq2.

Note that perimeter of the subdiagram „ of � bounded by the path s�12 us�11 w

is smaller than perimeter of � if � is large enough and � is close to zero. Indeed
as � contains no R-cells, we can regard s1q1s2q2 as a cycle in the Cayley graph
�.G;X [H/. Thus,
(14)
l.q2/� distX[H..q2/�; .q2/C/� distX[H..q1/�; .q1/C/� 2"� �l.q1/� c � 2"

� �.1� 13�/l.@…/� c � 2"� �.1� 13�/�� c � 2":
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(Recall that l.@…/� � by the C."; �; �; c; �/-condition.) On the other hand,

(15) l.s�12 us�11 /� 2"C 13�l.@…/� 2"C 13��:

If � is big enough and � is small enough, the right side of (14) is greater than the
right side of (15) and hence l.@„/ < l.@�/.

Therefore, by induction the total number n1 of R- and Q-cells in „ is at most

(16) n1 � ˛l.@„/� ˛
�
kW k� l.q2/C l.s

�1
2 us�11 /

�
� ˛

�
kW k� l.@…/.�� 26�/C cC 4"

�
:

Furthermore, as q2 is .1=2; 0/-quasi-geodesic in �.G;X [H/, we have

l.q2/� 2distX[H..q2/�; .q2/C/� 2.distX[H..q1/�; .q1/C/C2"/� 2l.@…/C4":

Therefore, the perimeter of � satisfies

l.@�/� 2"C l.q1/C l.q2/� 3l.@…/C 6":

Hence we may assume that the number n2 of Q-cells of � is at most

(17) n2 � Ll.@�/� 3L.l.@…/C 2"/� ˛.l.@…/.�� 27�/C 2"/:

Finally, combining (16) and (17), we obtain

Arearel
1 .W /� n1Cn2 � ˛.kW k��l.@…/C cC 6"/� ˛kW k

whenever � is big enough. This completes the proof of relative hyperbolicity of
G1. The hyperbolicity of the Cayley graph follows from Lemma 3.9.

Note that if � < 1=30, the inequality (14) implies

kW k �
1

2
��� c � 2"

for every nontrivial word W which is geodesic in G and represents 1 in G1. There-
fore, the second statement of the lemma holds if we assume � � 2.N C cC 2"/=�.

�

6. Torsion in the quotient

We keep all assumptions and notation introduced in the beginning of the pre-
vious section. Our next goal is to describe periodic elements in the quotient group
(10) of a relatively hyperbolic group G. To this end we need an auxiliary result.

Recall that for an element g 2G, the translation number of g with respect to
A is defined to be

�A.g/D lim
n!1

jgnjA

n
:

This limit always exists and is equal to inf
n
.jgnjA=n/ [9]. The lemma below can be

found in [28, Th. 4.43].

LEMMA 6.1. There exists d > 0 such that for any hyperbolic element of infi-
nite order g 2G we have �X[H.g/� d .



RELATIVELY HYPERBOLIC GROUPS AND EMBEDDING THEOREMS 19

For our goals, even a stronger result is necessary.

LEMMA 6.2. There exist 1 � ˛ > 0 and a � 0 with the following property.
Suppose that g is a hyperbolic element of G of infinite order such that g has the
smallest length among all elements of the conjugacy class gG . Denote by U a
shortest word in the alphabet X [H representing g. Then for any n 2N, any path
in �.G;X [H/ labeled U n is .˛; a/-quasi-geodesic.

Proof. Recall that �.G;X [H/ is hyperbolic by Lemma 3.9. First suppose
that jgjX[H D kU k > 8ı, where ı is the hyperbolicity constant of �.G;X [H/.
Since g is a shortest element in gG and U is a shortest word representing g, there
exists k > 8ı so that the path p labeled U n is a k-local geodesic in �.G;X [H/

for any n. Therefore, by Lemma 3.6, p is .1=3; 2ı/-quasi-geodesic.
Further if jgjX[H D kU k � 8ı, then for any n 2 N, we have

jgnjX[H � n inf
i

�
1

i
jgi jX[H

�
� nd �

d

8ı
njgjX[H;

where d is the constant provided by Lemma 6.1. Hence the path p labeled U n is�
d
8ı
; 8ı

�
-quasi-geodesic. It remains to set ˛ Dmin

˚
1
3
; d
8ı

	
and aD 8ı. �

LEMMA 6.3. For any � 2 .0; 1�, c � 0 there are � > 0, "� 0, and � > 0 such
that the following condition holds. Suppose that R is a symmetrized set of words
in A satisfying the C1."; �; �; c; �/-condition. Then every element of finite order
in the group G1 given by (10) is the image of an element of finite order of G.

Proof. Let us fix �; c > 0. Observe that the C1."; �; �; c; �/-condition be-
comes stronger as � increases and c decreases. Hence it suffices to prove the
lemma assuming that � < ˛ and c > a for ˛ and a provided by Lemma 6.2. Let
us choose constants 1=16 > � > 0, " > 0, � > 0 such that

(�) the conclusion of Lemma 4.4 holds.

Again as in the proof of Lemma 5.1, we note that the C1."; �; �; c; �/-condition
becomes stronger as � decreases and "; � increase. Hence we may decrease � and
then increase � and " if necessary without violating (�). In particular, without loss
of generality, we may assume that

(18) " > 2�C 8ı;

where �D �.�; c/ is the constant provided by Lemma 3.1 and ı is the hyperbolicity
constant of �.G;X [H/. We fix " from now on.

Suppose that g is an element of order n > 0 in G1 such that its preimage has
infinite order in G. Assume also that g has the smallest length among all elements
from the conjugacy class gG1 . Denote by U a shortest word in the alphabet X [H

representing g in G1. Then there exists a diagram � over (10) with boundary label
U n. By Lemma 6.2, the label of @� is .�; c/-quasi-geodesic (in G) and � contains
at least one R-cell. (For otherwise � is a diagram over (4) and U nD 1 in G.) Note
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that passing from � to an O-equivalent diagram does not affect @� and the number
of R-cells. Thus by Lemma 4.4 we can assume that there exists an R-cell … in �
and "-contiguity subdiagram � of … to @� such that .…; �; @�/ > 1� 13�.

Let @� D s1q1s2q2 as on Fig. 1. Since � has no R-cells, we may think of
s1q1s2q2 as a quadrangle in �.G;X [H/, where qi is .�; c/-quasi-geodesic, and
l.si /� " for i D 1; 2. Therefore we have
(19)
l.q2/� distX[H..q2/�; .q2/C/� distX[H..q1/�; .q1/C/� l.s1/� l.s2/

� �l.q1/� c � 2"� �.1� 13�/l.@…/� c � 2"� �.1� 13�/�� c � 2":

(Recall again that l.@…/ � � by the C1."; �; �; c; �/-condition.) In particular,
choosing � large enough we can make l.q2/ as large as we want.

Passing from U to a cyclic shift of U˙1 if necessary, we may assume that
Lab .q2/ is a prefix of U n. We now have three cases to consider. Our goal is to
show that neither of them is possible whenever � is small enough and � is large
enough.

Case 1. Suppose that l.q2/ � 4kU k=3. This allows us to find two long
disjoint equal subwords of Lab .q2/. More precisely, we decompose Lab .q2/ as
Lab .q2/�W V1W V2, where

�2l.q2/=5� kW k � �
2l.q2/=4

and
kV1k> l.q2/=3:

Let q2 Dw1v1w2v2 be the corresponding decomposition of the path q2. Corollary
3.3 applied to the quadrangle s1q1s2q2 implies that there is a point o 2 q1 such that
distX[H.o; .w1/C/�KC ", where K depends on �, c, and ı only. Let q�11 D r1t ,
where .r1/C D o. Thus we have

(20) distX[H..r1/˙; .w1/˙/�KC ":

Similarly one can find a subpath r�2 , � D˙1, of q�11 such that

(21) distX[H..r
�
2 /˙; .w2/˙/�KC ":

We note that r1 and r2 are disjoint. Indeed, otherwise r1 passes through .r2/�
or .r2/C. For definiteness, assume that .r2/� 2 r1. Then we have

l.r1/�
1

�
.distX[H..r1/�; .r1/C/C c/�

1

�
.l.w1/C 2"CKC c/

D
1

�
.kW kC 2"CKC c/� �l.q2/=4C .2"CKC c/=�:

On the other hand,

l.r1/� distX[H..r1/�; .r2/�/� �l.w1v1/� c � 2"�K

� �kV1k� c � 2"�K � �l.q2/=3� c � 2"�K:
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These inequalities contradict each other if l.q2/ is large enough. As explained
before, the later condition can always be ensured by choosing sufficiently large �
(see (19)).

Thus we have a decomposition q�11 D r1t1r
�
2 t2, � D˙1. Let Lab .q1/�1 �

R1T1R2T2 be the corresponding decomposition of the label. By (20) and (21), we
have R1 D Y1WZ1 and R2 D Y2W ˙1Z2 in G, where kYik; kXik � K C " for
i D 1; 2. Hence R1 D YR˙12 Z in G, where kY k; kZk � 2.KC "/. Without loss
of generality, we may assume that words Y and Z are geodesic in G. Let aybz be
the corresponding rectangle in �.G;X [H/, where Lab .a/�R�11 , Lab .y/� Y ,
Lab .b/�R˙12 , Lab .z/�Z. Recall that R1; R2 are subwords of the .�; c/-quasi-
geodesic word Lab .@…/. Hence a; b are .�; c/-quasi-geodesic. Using (19) and
the triangle inequality, we obtain

(22) l.a/D kR1k � distX[H..r1/�; .r1/�/

� distX[H..w1/�; .w1/C/� l.s1/� distX[H..r1/C; .w1/C/

� �l.w1/� c � 2"�K D �kW k� c � 2"�K

� �3l.q2/=5� c � 2"�K

� �3Œ�.1� 13�/�� c � 2"�=5� c � 2"�K:

Clearly we can ensure l.a/ > .4maxfl.y/; l.z/gC c/=� by taking � large enough.
This allows us to apply Corollary 3.5. Thus we obtain subsegments a0; b0 of the
sides a and b, respectively, such that the distances between the corresponding ends
of these subsegments is at most 8ıC 2�. Let AD Lab .a0/, B D Lab .b0/. Then
AD CB˙1D in G, where kCk; kDk � 8ıC 2� < " by (18). Using this and (22),
we obtain

minfkAk; kBkg �
7

20
.�l.a/� c/� 8ı� 2� � �� � �l.@…/

if � is small enough and � is large enough. Since A and B are disjoint subwords
of Lab .@…/, this contradicts the C1."; �; �; c; �/-condition.

Case 2. Suppose that kU k � l.q2/� 4kU k=3, i.e. Lab .q2/� UV for some
(may be empty) word V , kV k � kU k=3. Note that Lab .q2/D Lab .s�12 us�11 / in
G1, hence g D Lab .s�12 us�11 /V �1 in G1. Since U is the shortest word represent-
ing g in G1, we obtain

kU k � 2"C 13�l.@…/CkV k � 2"C 13�l.@…/CkU k=3:

Consequently,

(23) kU k � 3.2"C 13�l.@…//=2� 3.2"C 13��/=2:

On the other hand, using (19) we obtain

kU k � 3l.q2/=4� 3.�.1� 13�/�� c � 2"/=4:
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The later inequality contradicts (23) whenever � is small enough and � is large
enough.

Case 3. Suppose that l.q2/ < kU k, i.e., Lab .q2/ is a subword of U . Again
since U is the shortest word representing g in G1, we have kLab .q2/k � kQk for
every wordQ such thatQDLab .q2/ inG1. In particular, forQ�Lab .s�12 us�11 /,
we obtain

(24) kQk � kLab .q2/k D l.q2/� �.1� 13�/�� c � 2"

by (19). On the other hand, we obviously have kQk� 2"C13�l.@…/<2"C13��,
which contradicts (24) if � is small enough and � is large enough. �

7. Words with small cancellations

Recall that G denotes a group hyperbolic relative to a collection of subgroups
fH�g�2ƒ, X denotes a finite relative generating set of G with respect to fH�g�2ƒ.
As above we set A D X [H. Our main goal here is to show that a certain set
of words over the alphabet A satisfies the small cancellation conditions described
above.

More precisely, suppose that W is a word satisfying the following conditions.

(W1) W � xa1b1 : : : anbn for some n� 1, where:

(W2) x 2X [f1g;

(W3) a1; : : : ; an (respectively b1; : : : ; bn) are elements of H˛ (respectively Hˇ ),
where H˛ \Hˇ D f1g;

(W4) the elements a1; : : : ; an; b1; : : : ; bn do not belong to the set

(25) FD F."/D fg 2 h�i W jgj� �K.32"C 70/g;

where " is some nonnegative integer and the set � and the constant K are
provided by Lemma 3.10.

Let SW denote the set of all subwords of cyclic shifts of W ˙1. As in [28], we
say that a path p in �.G;X [H/ is a path without backtracking if all components
of p are isolated.

LEMMA 7.1. Suppose p is a path in �.G;X [H/ such that Lab .p/ 2 SW.
Then
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1) p is a path without backtracking.

2) p is .1=3; 2/-quasi-geodesic.

Proof. 1) Suppose that p D p1sp2tp3, where s and t are two connected
components. Passing to another pair of connected components of p if necessary,
we may assume that p2 is a path without backtracking. For definiteness, we also
assume that s and t are H˛-components. Let e denote a path of length at most 1 in
�.G;X [H/ connecting sC to t� and labeled by an element of H˛ (see Figure 3).
It follows from our choice of W and the condition H˛ \Hˇ D f1g that l.p2/� 2.
Thus p2 contains m� l.p2/=2� 1 Hˇ -components, say r1; : : : ; rm, and all these
components are isolated components of the cycle d D ep�12 . Let g1; : : : ; gm be
elements of G represented by the labels of r1; : : : ; rm. By Lemma 3.10, gi 2 h�i,
i D 1; : : : ; m. According to (W4), we have

mX
iD1

jgi j� � 70Km� 35Kl.p2/ > K.l.p2/C 1/DKl.d/:

This contradicts Lemma 3.10.
2) Since the set SW is closed under taking subwords, it suffices to show that

distX[H.p�; pC/ � l.p/=3� 2. In case l.p/ � 6 this is obvious, so we assume
l.p/ > 6. Suppose that distX[H.p�; pC/ < l.p/=3� 2. Let c denote a geodesic
in �.G;X [ H/ such that c� D p� and cC D pC. Since p is a path without
backtracking, any H˛-component of p is connected to at most one H˛-component
of c. Obviously the path p contains at least l.p/=2�1 H˛-components. Therefore,
at least

k D l.p/=2� 1� l.c/ > l.p/=2� 1� .l.p/=3� 2/ > l.p/=6 > 1

of them are isolated H˛-components of the cycle pc�1. Let f1; : : : ; fk be the
elements of G represented by these components. Then as above we have fi 2 h�i,
i D 1; : : : ; k. By (W4), we obtain

kX
iD1

jfi j� � 70Kk > 2Kl.p/ > Kl.pc
�1/:

This leads to a contradiction again. �

LEMMA 7.2. Suppose upv�1q�1 is an an arbitrary quadrangle in �.G;X[H/

satisfying the following conditions:

(a) Lab .p/� Lab .q�1/ 2 SW;

(b) maxfl.u/; l.v/g � ";

(c) l.p/D l.q/� 6"C 22.

Then the paths p and q have a common edge.
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The proof of Lemma 7.2 is based on the following two results. (We keep the
notation of Lemma 7.2 there.)

LEMMA 7.3. Let us divide p into three parts p D p1p0p2 such that

(26) l.p1/D l.p2/D 3"C 6:

Suppose that s is a component of p0. Then s can not be connected to a component
of paths u or v.

Proof. Suppose that a component s of p0 is connected to a component t of u.
Then distX[H.sC; tC/� 1. Recall that the segment Œp�; sC� of p is .1=3; 2/-quasi-
geodesic by Lemma 7.1. Hence,

l.p1/ < l.Œp�; sC�/� 3.distX[H.p�; sC/C 2/

� 3.distX[H.p�; tC/C distX[H.tC; sC/C 2/

� 3.l.u/� 1C 1C 2/� 3"C 6:

However, this contradicts (26). Similarly s can not be connected to a component
of v. �

LEMMA 7.4. Let s1; : : : ; sk be consecutive components of p0. Then q can be
decomposed as q D q1t1 : : : qktkqkC1, where

1) ti is a component of q connected to si , i D 1; : : : ; k;

2) qi contains no components for i D 2; : : : ; k, i.e. either Lab .qi /� x or qi is
trivial.

Proof. To prove the first assertion of the lemma we proceed by induction.
First let us show that s1 is not isolated in d D upv�1q�1.

Indeed assume s1 is isolated in d . Suppose for definiteness that s1 is an H˛-
component. We consider the maximal subpath s of p0 such that s contains s1 and
all H˛-components of s are isolated in d . By maximality of s, either s� D .p0/�,
or s� D rC for a certain H˛-component r of p0 such that r is not isolated in d .
(According to Lemma 7.3 this means that r is connected to an H˛-component
of q.) In the first case we denote by f1 the path up1. In the second case, let f1 be
a path of length � 1 that connects an H˛-component of q to r . In both cases we
have l.f1/� 4"C 6. It follows from the choice of s that no H˛-component of s is
connected to an H˛-component of f1. Similarly we construct a path f2 such that
.f2/� 2 q, .f2/C D sC, l.f2/� 4"C 6, and no H˛-component of s is connected
to an H˛-component of f2.

Clearly all H˛-components of s are isolated in the cycle

c D f1sf
�1
2 Œ.f2/�; .f1/��;
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where Œ.f2/�; .f1/�� is a segment of q˙1. We have

(27) distX[H..f1/�; .f2/�/� l.f1/C l.s/C l.f2/� 8"C 12C l.s/:

Consequently,

(28) l.Œ.f1/�; .f2/��/� 3distX[H..f1/�; .f2/�/C 2/� 24"C 42C 3l.s/:

Finally,

(29) l.c/� l.f1/C l.s/C l.f2/C l.Œ.f1/�; .f2/��/� 32"C 54C 4l.s/:

Let g1; : : : ; gm denote the elements represented by H˛-components of s. Note that
l.s/� 2mC 2. Applying Lemma 3.10, we obtain gi 2 h�i, i D 1; : : : ; m, and

(30)
mX
iD1

jgi j� �Kl.c/�K.32"C 54C 4l.s//�K.32"C 62C 8m/:

Therefore, at least one of the elements g1; : : : ; gm has length at least

(31)
1

m
K.32"C 62C 8m/�K.32"C 70/

that contradicts (W4). Thus s1 is not isolated in d . By Lemma 7.3 this means that
s1 is connected to an H˛-component t1 of q.

Now assume that we have already found components t1; : : : ; ti of q, 1� i < k,
that are connected to s1; : : : ; si respectively. The inductive step is similar to the
above considerations. For definiteness, we assume that si is an H˛-component.
Then siC1 is an Hˇ -component by the choice of W . We denote by f1 a path of
length � 1 labeled by an element of H˛ that connects .ti /C to .si /C (Figure 4). If
siC1 is isolated in the cycle c D f1Œ.si /C; pC�v�1ŒqC; .ti /C�, we denote by s the
maximal initial subpath of the segment Œ.si /C; .p0/C� of p0 such that s contains
siC1 and all H˛-components of s are isolated in c. As above, we can find a path
f2 such that .f2/� 2 q, .f2/CD sC, l.f2/� 4"C6, and no H˛-component of s is
connected to an H˛-component of f2. The inequalities (27)–(31) remain valid and
we arrive at a contradiction in the same way. Thus siC1 is not isolated in c, i.e., it
is connected to a component tiC1 of the segment Œ.ti /C; qC� of q. This completes
the inductive step.
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Let us prove the second assertion of the lemma. Suppose that si ; siC1 are two
subsequent components of p0 and such that qiC1 contains at least one component
(say, an H˛-component). As above for definiteness we assume that si (respectively
siC1) is an H˛-component (respectively Hˇ -component). Let e1, e2 be the paths
of lengths � 1 labeled by elements of H˛ and Hˇ respectively such that .e1/C D
.si /C, .e1/� D .qiC1/�, .e2/C D .siC1/�, .e2/� D .qiC1/C (see Figure 5). As
q is a path without backtracking, each H˛-component of qiC1 is isolated in the
cycle e D qiC1e2Œ.siC1/�; .si /C�e�11 , where Œ.siC1/�; .si /C� is a segment of p�1.
Notice that l.Œ.siC1/�; .si /C�/ � 1 as si and siC1 are subsequent components of
p0. We denote by f1; : : : ; fm the elements represented byH˛-components of qiC1.
By Lemma 3.10, we have fj 2 h�i, j D 1; : : : ; m, and

mX
jD1

jfj j� �Kl.e/�K.3C l.qiC1//�K.3C 2mC 2/� 7mK:

This contradicts (W4) again. �

Proof of Lemma 7.2. We keep the notation introduced in Lemmas 5.3 and 5.4.
Let also

p0 D p1s1 : : : pkskpkC1

for some (may be trivial) subpaths p1; : : : pkC1 of p0.
According to (26) and condition c) of Lemma 7.2, we have

l.p0/� 6"C 22� l.p1/� l.p2/� 10:

Since s1; : : : ; sk are subsequent components and Lab .p0/ is a subword of a cyclic
shift ofW ˙1, at most one of the paths p2; : : : ; pk is nontrivial. Therefore, there are
at least 5 subsequent components si ; : : : ; siC4, such that piC1; : : : ; piC4 are trivial.
Without loss of generality we may assume i D 1. Similarly, by Lemma 7.4, we
can find at least three subsequent components among t1; : : : t5, say t1; t2; t3, such
that .t1/C D .t2/� and .t2/C D .t3/�. Let w be an element represented by the
label of any path that goes from .t1/C D .t2/� to .s1/C D .s2/�. For definiteness
we assume that t1 and s1 are H˛-components. Since t1 and s1 are connected, we
have w 2H˛ . On the other hand, the Hˇ -components t2 and s2 are also connected.
Hencew 2Hˇ . Thusw 2H˛\Hˇ Df1g, i.e. the vertices .t2/� and .s2/� coincide.
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Similarly the vertices .t2/C and .s2/C coincide. In particular, t2 and s2 are edges
labeled by the same element of Hˇ , i.e., t2 and s2 coincide. �

Now we are ready to prove the main result of this section.

THEOREM 7.5. Suppose that W is a word in A satisfying the conditions
(W1)–(W4) and, in addition, ai ¤ a˙1j , bi ¤ b˙1j whenever i ¤ j and ai ¤ a�1i ,
bi ¤ b

�1
i , i; j 2 f1; : : : ; ng. Then the set W of all cyclic shifts of W ˙1 satisfies the

C1.";
3"C11
n

; 1
3
; 2; 2nC 1/ small cancellation condition.

Proof. The first two conditions from Definition 4.2 follow from the choice of
W and Lemma 7.1. Suppose that U is an "-piece of a word R 2W. Assume that
maxfkU k; kU 0kg � �kRk for �D 3"C11

n
, that is,

maxfkU k; kU 0kg �
3"C 11

n
.2nC 1/ > 6"C 22:

(Here and below we use the notation of Definitions 4.2 and 4.1.) Without loss of
generality we may assume that kU k � 6"C 22. By the definition of an "-piece,
there is a quadrangle upv�1q�1 in �.G;X [H/ satisfying conditions (a)–(c) of
Lemma 7.2 and such that labels of p and q are U and U 0 respectively.

Let e be the common edge of p and q. Then we have

R� U1Lab .e/U2V
and

R0 � U 01Lab .e/U 02V
0;

where U1Lab .e/U2 � U and U 0 � U 01Lab .e/U 02. Since Lab .e/ appears in W ˙1

only once, R, R0 are cyclic shifts of the same word W ˙1 and

U2V U1 � U
0
2V
0U 01:

Note also that

Y D U 01U
�1
1

in G as Y �1U 01U
�1
1 is a label of a cycle in �.G;X [H/. Therefore, the following

equalities hold in the group G:

YRY �1 D U 01U
�1
1 U1Lab .e/U2V U1.U 01/

�1
D U 01Lab .e/U 02V

0U 01.U
0
1/
�1
DR0

that contradicts the third condition from Definition 4.2.
Similarly, if U is an "0-piece, thenR�UV U 0V 0 for some U;U 0; V; V 0, where

both subwords U and U 0 contain a certain letter from X [H. In this case we arrive
at a contradiction again as any letter a 2X [H appears in R only once, and if a
appears in R, then a�1 does not. �

Finally we note that the condition x 2 X [ f1g in Theorem 7.5 is not really
restrictive since we can always add any element x 2G to the setX without violating
relative hyperbolicity.
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8. Suitable subgroups and quotients

Throughout this section, we keep the assumption that G is hyperbolic relative
to a collection of subgroups fH�g�2ƒ. The proof of Lemma 2.3 is based on the
following auxiliary result.

LEMMA 8.1. Suppose that for some �;� 2 ƒ, � ¤ �, H� and H� contain
elements of infinite order and H� \H� D f1g. Then there are f 2H�, g 2H�
such that fg is a hyperbolic element of infinite order and EG.fg/D hfgi.

Proof. We set "D 2.�C ı/, where � D �.ı; 1=3; 2/ is the constant provided
by Lemma 3.1 and ı is the hyperbolicity constant of �.G;X [H/. It is convenient
to assume that �; ı 2 N.

Let F D F."/ be the set defined by (25). Since � is finite, F is finite, and
hence there are elements f 2H� nF and g 2H� nF of infinite order. In particular,

(32) f 2 ¤ 1; g2 ¤ 1:

Note that the word W D .fg/m satisfies conditions (W1)–(W4). (Here f and g
are regarded as letters of H.) By Lemma 7.1, for any m 2 N, the word .fg/m is
.1=3; 2/-quasi-geodesic in �.G;X [H/. In particular, fg is a hyperbolic element.
Indeed otherwise the length j.fg/mjX[H would be bounded uniformly on m.

Now suppose that a2EG.fg/. Then by Theorem 2.1, a.fg/ma�1D .fg/˙m

for some m 2 N. Passing to a multiple of m if necessary, we may assume that

(33) m� 3jajX[HC 12.�C ı/C 20:

Let a1b1a2b2 be a quadrangle in �.G;X [H/ such that a1, a2 are geodesic,
the labels Lab .a1/D Lab .a�12 / represent a in G, and Lab .b1/D Lab .b�12 /�

.fg/˙m. Let also b1 D b01pb
00
1 Figure 6, where

(34) l.b01/D l.b
00
1/D 3.l.a1/C 2.�C ı/C 3/:

As b1 is .1=3; 2/-quasi-geodesic, we have

(35) distX[H.p˙; .b1/˙/�
1

3
l.b01/� 2� l.a1/C 2.�C ı/C 1:

Further by Corollary 3.3, there is a point s 2a1[b2[a2 such that distX[H.s; p�/�

2.�C ı/. If s 2 a1, then we have

distX[H.p�; b�/� distX[H.p�; s/C distX[H.s; b�/� 2.�C ı/C l.a1/

that contradicts (35). For the same reason s can not belong to a2. Thus s 2 b2.
Without loss of generality, we may assume that s is a vertex of �.G;X [ H/.
Similarly there exists a vertex t 2 b2 such that distX[H.t; pC/� 2.�C ı/. Let u; v
be geodesics in �.G;X [H/ connecting s to p� and t to pC respectively and let
q denote the segment Œs; t � of b�12 .
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According to (33) and (34), we have

l.p/� 2m� 6.l.a1/C 2.�C ı/C 3/� 12.�C ı/C 22:

Hence we may apply Lemma 7.2 for the quadrangle upv�1q�1 and "D 2.�C ı/.
Thus there exists a common edge e of p and q. In particular, this and (32) imply
that a.fg/ma�1 D .fg/m (not .fg/�m).

There are two options for labels of the segments Œ.b1/�; e�� and Œ.b2/C; e��
of b1 and b�12 respectively. Namely both these labels are either of the form .fg/n

(possibly for different n) or of the form .fg/kf . In both cases a D .fg/l for a
certain l , as labels of a1 and Œ.b2/C; e��Œ.b1/�; e���1 represent the same element
of G. Thus a 2 hfgi and EG.fg/D hfgi. �

Proof of Lemma 2.3. Let f1; f2 2H 0 be noncommensurable elements of H
such that EG.f1/\EG.f2/D f1g. By Theorem 2.1, G is hyperbolic relative to
the collection fH�g�2ƒ[EG.f1/[EG.f2/.

We construct a sequence of desired elements h1; h2; : : : by induction. By
Lemma 8.1, there are f 2 EG.f1/, g 2 EG.f2/ such that the element h1 D fg
is hyperbolic (with respect to the collection fH�g�2ƒ [EG.f1/[EG.f2/) and
EG.h1/D hh1i. Theorem 2.1 implies that G is hyperbolic relative to the collection
fH�g�2ƒ[EG.f1/[EG.f2/[EG.h1/. Further we construct a hyperbolic (with
respect to fH�g�2ƒ [EG.f1/[EG.f2/[EG.h1/) element h2 as a product of
an element of EG.f1/ and an element of EG.f2/ as above. As h2 is hyperbolic,
it is not commensurable with h1. Applying Theorem 2.1 again we join EG.h2/
to the collection of subgroups with respect to which G is hyperbolic and so on.
Continuing this procedure, we get what we need. �

To prove Theorem 2.4, we need the following two observations. The first one
is a particular case of Theorem 2.40 from [28].

LEMMA 8.2. Suppose that a group G is hyperbolic relative to a collection of
subgroups fH�g�2ƒ[fS1; : : : ; Smg, where S1; : : : ; Sm are finitely generated and
hyperbolic in the ordinary (nonrelative) sense. Then G is hyperbolic relative to
fH�g�2ƒ.

The next lemma is a particular case of Theorem 1.4 from [28].
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LEMMA 8.3. Suppose that a group G is hyperbolic relative to a collection of
subgroups fH�g�2ƒ. Then

(a) For any g 2G and any �;� 2ƒ, �¤ �, the intersection Hg

�
\H� is finite.

(b) For any � 2ƒ and any g …H�, the intersection Hg

�
\H� is finite.

Proof of Theorem 2.4. Obviously it suffices to deal with the case mD 1. The
general case will follow if we apply the theorem for mD 1 several times.

Let t 2 G be an arbitrary element. Passing to a new relative generating set
X 0 D X [ ftg if necessary, we may assume that t 2 X . By Lemma 2.3 there
are noncommensurable elements h1; h2 2H 0 such that EG.h1/ and EG.h2/ are
cyclic. According to Theorem 2.1, G is hyperbolic relative to fH�g�2ƒ[EG.h1/[
EG.h2/.

Let �; "; � be constants such that the conclusions of Lemmas 5.1 and 6.3 are
satisfied for �D 1=3, c D 2, N D 1. By Theorem 7.5, there are n and m1; : : : ; mn
such that the set R of all cyclic shifts and their inverses of the word

R� th
m1

1 h
m1

2 : : : h
mn

1 h
mn

2

in the alphabet A D X [ H [ .EG.h1/ n f1g/ [ .EG.h2/ n f1g/ satisfies the
C.1=3; 2; "; �; �/-condition (here hmj

i is regarded as a letter in EG.hi / n f1g, i D
1; 2, j D 1; : : : ; n). Indeed it suffices to choose large enough n and m1; : : : ; mn
satisfying mi ¤˙mj whenever i ¤ j . Let G1 be the quotient of G obtained by
imposing the relation RD 1 and � the corresponding natural homomorphism.

By Lemma 5.1, G1 is hyperbolic relative to the images of H�; � 2 ƒ and
EG.h1/, EG.h2/. As any elementary group is hyperbolic, G1 is also hyperbolic
relative to f�.H�g�2ƒg according to Lemma 8.2. The inclusion �.t/ 2 �.H/
follows immediately from the equality R D 1 in G1. The third assertion of the
theorem follows from Lemma 5.1 b) as any element from the union

S
�2ƒ

H� has

length 1.
Similarly as � is injective on EG.h1/ [ EG.h2/, �.h1/ and �.h2/ are ele-

ments of infinite order. Note also that �.h1/ and �.h2/ are not commensurable in
G1. Indeed otherwise the intersection

�
�.EG.h1//

�g
\ �.EG.h2// is infinite for

some g 2 G contradictory to the first assertion of Lemma 8.3. Assume now that
g 2 EG1

.�.h1//, where EG1
.�.h1// is the maximal elementary subgroup of G1

containing �.h1/. By the first assertion of Theorem 2.1,
�
�.hm1 /

�g
D �.h˙m1 / for

a certain m ¤ 0. Therefore,
�
�.EG.h1//

�g
\ �.EG.h1// contains �.hm1 / and in

particular this intersection is infinite. By the second assertion of Lemma 8.3, this
means that g 2 �.EG.h1//. Thus we proved that �.EG.h1//DEG1

.�.h1//. The
same is true for h2. Finally, using injectivity of � on EG.h1/[EG.h2/ again, we
obtain

EG1
.�.h1//\EG1

.�.h2//D �.EG.h1//\ �.EG.h2//

D �
�
EG.h1/\EG.h2/

�
D f1g:
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This means that the image ofH is a suitable subgroup of G1. To complete the proof
it remains to note that the last assertion of the theorem follows from Lemma 6.3.

�

9. Appendix. The proof of Lemma 4.4

Following the referee’s recommendation, we provide here the proof of Lemma
4.4, which is a particular case of Lemma 9.7 below. As we mentioned in Section 4,
Lemma 4.4 (as well as Lemma 9.7) is, in fact, proved in [23], although it is stated
in a slightly different way there. The proof below follows [23] with little improve-
ments. We stress that all results of this section should be credited to Olshanskii.

Throughout the appendix, let G denote a group with a presentation (4). Sup-
pose that the Cayley graph �.G;A/ of G is hyperbolic.

We start with an auxiliary result. Recall that a graph is simple if it has no
loops and multiple edges.

LEMMA 9.1. Let „ be a simple planar graph. Suppose that some nonnegative
weights �.o/, �.e/ are assigned to each vertex o and each edge e of „. Assume
also that there exists a constant a such that �.e/ � a�.o/ for any incident edge e
and vertex o. Then the sums �0, �1 of the weights of all vertices and edges of ˆ,
respectively, satisfy �1 � 5a�0.

Proof. By the well-known consequence of the Euler Formula, every simple
planar graph contains a vertex of degree at most 5. The statement of the lemma
easily follows from this by induction. �

The proof of Lemma 4.4 is divided into a sequence of lemmas. In what fol-
lows, let G be a group given by (4) such that the Cayley graph �.G;A/ of G is
hyperbolic. We fix � 2 .0; 1�, c � 0, � 2 .0; 1=16/ and take

(36) " > c1C 2�;

where c1 D c1.ı/ and � D �.ı; �; c/ are the constants provided by Lemmas 3.7
and 3.1 respectively. Let (10) be a presentation that satisfies the C."; �; �; c; �/-
condition, where � is sufficiently large. (The exact lower bound for �, which en-
sures that all arguments below are correct, can be easily extracted from the proofs.)

Let also � be a diagram over (10). Below we prove Lemma 4.4 by induction
on the number of R-cells in �. To complete the inductive step, we will have to
deal with the case when @� consists of at most 4 quasi-geodesic segments. More
precisely, let @�D q1 : : : qr for some 1� r � 4, where q1; : : : ; qr are .�; c/-quasi-
geodesic. We call the subpaths q1; : : : ; qr sections of @�.

Definition 9.2. A set M of "-contiguity subdiagrams of cells to cells or cells
to sections of @� is called distinguished, if

(a) Distinct subdiagrams in M are disjoint.
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Figure 7. A distinguished set of "-contiguity subdiagrams (dark
gray) in a diagram � with five R-cells (white) and the correspond-
ing graph ˆ0M.

(b) The sum of lengths of contiguity arcs of all subdiagrams from M is not less
than the same sum for any other collections satisfying (a).

(c) M contains minimal number of subdiagrams among all collections satisfying
(a), (b).

Further let � 2 M be a "-contiguity subdiagram whose boundary is decom-
posed according to (11) and (12). The paths s1; s2 are called side arcs of � . If �
is an "-contiguity subdiagram of a cell …1 to a section of @�, the contiguity arc
q1 of @… (and all its edges) is called outer. If � is an "-contiguity subdiagram of
a cell …1 to a cell …2, q1 (and all its edges) is called inner. The edges of …1 that
are neither inner nor outer are called unbound. Every maximal subpath of @…1
consisting of unbound edges is called an unbound arc of …1. The notion of an
unbound arc of a section of @� is defined in the same way.

To each distinguished set M of "-contiguity diagrams, we associate a planar
graph ˆM as follows. Choose a point o.…/ inside every R-cell … of �. The set of
vertices of ˆM consists of all such o.…/. If there exists an "-contiguity subdiagram
� 2M of a cell …1 to a cell …2, the two vertices o.…1/ and o.…2/ are connected
by an (unoriented) edge through � . Further let ˆ0M be the graph obtained from ˆM

in the following way. For each i D 1; : : : ; r , we add to ˆM a vertex Oi outside of
� and for each "-contiguity subdiagram � of a cell … to qi , we connect o.…/ to
Oi by an edge passing through � . Clearly ˆ0M is also planar (see Figure 7).
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Let now � be a reduced diagram over (10), which has n � 1 R-cells. The
next four results are proved under the following additional assumption. It will be
eliminated later in Corollary 9.6.

.�/ For any distinguished system of "-contiguity subdiagrams M in �, the graph
ˆM is simple and inside every 2-gon of ˆ0M, there is a vertex of ˆM.

Let also M be a distinguished system of "-contiguity subdiagrams of �. Cut-
ting off all R-cells and subdiagrams � 2M, we obtain a set of diagrams�1; : : : ; �d
over (4) (see Figure 7). Each of them may have holes. The boundary @�i of each
diagram may be thought of as a union of ni arcs, where each arc is of one of the
following types:

(A1) An unbound arc of an R-face.
(A2) An unbound arc of @�.
(A3) A side arc of some "-contiguity subdiagram from M.

LEMMA 9.3. Suppose that � satisfies (�). In the notation introduced above,

we have
dP
iD1

ni � 53n.

Proof. Let v; e; f denote the number of vertices, edges, and regions of (the
planar realization of) ˆ0M, respectively. By (�), every region of it (except possibly
for the outer one) has degree at least 3. Hence f � 2e=3C1. By the Euler formula,
we have e� vCf �2� vC2e=3�1. This implies e� 3.v�1/� 3.nC3/� 12n.

Since unbound arcs of boundaries of R-cells and sections of @� are separated
by contiguity arcs, the total number of arcs of type (A1) or (A2) in � is not greater
than

2jMjCnC r � 2eCnC 4� 24nCnC 4� 29n:

Clearly the number of arcs of type (A3) is at most 2jMj D 2e � 24n. So the total
number of arcs of types (A1)–(A3) is at most 53n. �

All results below are proved up to passing from � to an O-equivalent diagram
(see the definition before Lemma 4.4).

LEMMA 9.4. Suppose that � satisfies (�). Let S denote the sum of lengths of
all unbound arcs of type (A1) in �. Then S < n

p
�.

Proof. Let Si denote the sum of lengths of all arcs of type (A1) in @�i ,
i D 1; : : : ; d . Assume that S � n

p
�. Then

(37) Si � ni
p
�=60

for some i . Indeed, otherwise we have

S D

dX
iD1

Si �

p
�

60

dX
iD1

ni < n
p
�

by Lemma 9.3.
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For every i D 1; : : : ; d , the diagram �i has at most ni holes. Hence we can
cut it by l � ni paths t1; : : : ; tl into a simply connected diagram f�i . We assume

that the collection of cutting paths t1; : : : ; tl is chosen so that the sum
lP
iD1

l.ti / is

minimal. The boundary of f�i decomposes into ki subpaths, each of which is either
t˙1j for some j D 1; : : : ; l , or an arc of one of the types (A1)–(A3) (or a part of
such an arc arising after cutting along t1; : : : ; tl ). Therefore,

(38) ki � 4ni :

Note also that passing to a diagram which is O-equivalent to � if necessary,
we may assume that the labels of ti ’s are geodesic in G without loss of generality.
Indeed if wi is a geodesic word representing the same element as Lab .ti / in G,
let †i be a diagram over (4) with boundary label wi .Lab .ti //�1. Further let
„i be the diagram obtained by gluing †i and its mirror copy along wi . Clearly
Lab @.„i /D Lab .ti /.Lab .ti //�1. We can use 0-refinement (see the subsection
“van Kampen diagrams” in Section 3) to create a copy t 0i of the paths ti in � with
the same label and endpoints such that ti .t 0i /

�1 bounds a subdiagram consisting
of 0-cells. Further we cut this subdiagram and fill in the obtained hole with „i .
After this transformation, the vertices .ti /� and .ti /C are connected by a path
whose label wi is geodesic in G, and we can replace ti with that paths. Note
that this transformation does not affect @�, R-cells, and distinguished "-contiguity
subdiagrams.

Similarly we may assume that for every (sub)arc p of an arc of type (A1)–
(A3) in @f�i , the diagram f�i contains a path Np with the same endpoints as p such
that Lab . Np/ is geodesic in G and p. Np/�1 bounds a subdiagram over (4). Sincef�i is a simply connected diagram over (4), its 1-skeleton can be naturally mapped
to �.G;A/ by a map preserving labels and orientation. In what follows we keep
the same notation t˙1i , p, etc., for the images of the paths t˙1i , p, etc., in �.G;A/
(although t�1i is not the inverse path of ti there). In particular, p and Np belong to
the closed �-neighborhoods of each other in �.G;A/ by Lemma 3.1.

In the notation of Lemma 3.7, let N2 consist of images of segments t˙1i , i D
1; : : : ; l , in �.G;A/ and images of Np for (sub)arcs p of type (A2). Further let N1
and N3 consist of images of Np for (sub)arcs p of type (A1) and (A3), respectively.

Clearly �3 � "ki . On the other hand, by (37) and (38) we obtain

�1 D
X
Np2N1

l.p1/�
X
Np2N1

.�l.p/� c/� �Si � kic > �ni
p
�=60� kic

� �ki
p
�=240� kic D ki .�

p
�=240� c/:

Taking � large enough, we may assume that aD �
p
�=240� c >maxf1000"; c2g.

Hence by Lemma 3.7, there exist subsegments Nqj , j D 1; 2, of some Np1 2N1 and
Np2 2 N1 [N2, respectively, such that l.pj / � 10�3a, j D 1; 2, and the distance
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Figure 8. Replacing a cutting path with a shorter one.

between the respective endpoints of p1 and p2 is at most c1. This means that there
exist subsegments qj of pj , j D 1; 2, of lengths at least 10�3a� 2� such that

(39) maxfdistX[H..q1/�; .q2/�/; distX[H..q1/C; .q2/C/g � 2�C c1 < ":

The latter inequality uses (36). Now there are two cases to consider.

Case 1. Np2 2 N1. That is, q1 and q2 are subpaths of boundaries of some
R-cells in �. After passing to an O-equivalent diagram if necessary, we may as-
sume that there exists a subdiagram � of � such that @� D q1s1q

�1
2 s2, where

l.sj / < ", j D 1; 2, and � does not intersect R-cells and distinguished "-contiguity
subdiagrams. This contradicts the maximality of M.

Case 2. Np2 2 N2. If q2 is a subpath of @�, we get a contradiction as above
by constructing a new "-contiguity subdiagram of an R-cell to @�. Thus we only
need to deal with the case p2 D t˙1j . Without loss of generality, we may assume
that p2 D tj . Let tj D uq2v. By (39), after passing to an O-equivalent diagram
if necessary, we can find a paths s of lengths at most " in � connecting .q2/� to
.q1/� (see Figure 8). Note that

l.us/� l.tj /� l.q2/C "� l.tj /� .10
�3.�
p
�=240� c/� 2�/C " < l.tj /

if � is large enough. This contradicts our assumption that
lP
iD1

l.ti / is minimal.

Thus in both cases we obtain a contradiction. Hence S < n
p
�. �

LEMMA 9.5. Suppose that � satisfies (�). Let †0 and † denote the sum of
lengths of all outer arcs and the sum of perimeters of all R-cells in �, respectively.
Then †0 > .1� 11�/†.

Proof. For each R-cell … of �, we assign the weight �.o/ D l.@…/ to the
corresponding vertex o of the estimating graph ˆM. Clearly the sum of weights
of all vertices in ˆM equals †. Further let � 2M be a distinguished "-contiguity
subdiagram with @� D s1q1s2q2, where q1; q2 are the contiguity arcs. We assign
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the weight �.e/D l.q1/C l.q2/ to the edge e corresponding to � . Note that the
sum of weights of all edges in � 2M is equal to the sum of lengths †inn of all
inner arcs in �.

By Lemma 4.3, �.e/� 2��.o/ whenever o and e are incident. Hence †inn �
10�† by Lemma 9.1 and .�/. By Lemma 9.4, we have S < †=

p
�, where S is

the sum of lengths of all unbound arcs, since the perimeter of every R-cell in � is
at least � by the C."; �; �; c; �/-condition. Therefore,

†0 D†�†int �S > †� 10�†�†=
p
� > .1� 11�/†

if � > ��2. �

The following corollary is immediate.

COROLLARY 9.6. Suppose that � satisfies (�). Passing to an O-equivalent
diagram if necessary, we can find an R-cell … of � and disjoint "-contiguity sub-
diagrams �i;j of … to sections qj , j D 1; : : : ; r of @� such thatX

i;j

.…; �i;j ; qj / > 1� 11�:

We are now ready to eliminate assumption (�) and prove the main result of
the appendix, of which Lemma 4.4 is a particular case corresponding to r D 1. For
convenience, we recall all assumptions here.

LEMMA 9.7. Let G be a group with a presentation (4). Suppose that the
Cayley graph �.G;A/ of G is hyperbolic. Then for any � 2 .0; 1�, c � 0, and
� 2 .0; 1=16�, there exist " � 0 and � > 0 with the following property. Let R

be a symmetrized set of words in A satisfying the C."; �; �; c; �/-condition, � a
reduced van Kampen diagram over the presentation (10) such that @�D q1 : : : qr
for some 1� r � 4, where q1; : : : ; qr are .�; c/-quasi-geodesic. Assume that � has
at least one R-cell. Then up to passing to an O-equivalent diagram, the following
conditions hold.

(a) The diagram � satisfies (�).

(b) There is an R-cell … of � and disjoint "-contiguity subdiagrams �j of …
to sections qj , j D 1; : : : ; r , of @� (some of them may be absent) such that
rP

jD1

.…; �j ; qj / > 1� 13�.

Proof. We proceed by induction on n, the number of R-cells in �.
(a) Suppose that there are multiple edges in ˆM. That is, there are two distin-

guished "-contiguity subdiagrams ‚1 and ‚2 between some R-cells …1 and …2.
Consider a subdiagram „ in � such that: (i) @„D s1t1s2t2, where sj is a side arc
of ‚j and tj is a subpaths of @…j , j D 1; 2; (ii) „ does not contain …1 and …2.
By the definition of M, we can not include ‚1 and ‚2 into a single "-contiguity
subdiagram of …1 to …2. This means that „ contains at least one R-cell. On the
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other hand, the number of R-cells in „ is smaller than n according to (ii). Hence by
the inductive assumption, there is an R-cell … in „ and "-contiguity subdiagrams
�1; : : : ; �4 of … to s1; t1; s2; t2, respectively, such that

.…; �1; s1/C � � �C .…; �4; t2/ > 1� 13�:

On the other hand .…; �2; t1/C .…; �4; t2/ < 2� by Lemma 4.3 since �2 and
�4 are "-contiguity subdiagrams of … to …1 and …2, respectively. Further if u is a
contiguity arc of … to s1, then l.u/� ��1.3"C c/ since u is .�; c/ quasi-geodesic
and l.s1/� ". Therefore, .…; �1; s1/D l.u/=l.@…/ < l.u/=� < �=2 if � is large
enough. Similarly .…; �3; s2/ < �=2. Thus

.…; �1; s1/C � � �C .…; �4; t2/ < 3�:

We obtain a contradiction since 1� 13� > 3� for � < 1=16.
Thus the graph ˆM does not have multiple edges. Arguing as above, it is

easy to show that ˆM can not contain loops either. The only difference is that the
subdiagram „ will be bounded by st , where l.s/ < " and t is a subpaths of @…1.
(Here …1 is the R-cell of � such that there is a lop incident to the corresponding
vertex in ˆM.)

Finally inside every 2-gon ef of ˆ0M there is a vertex of ˆM since otherwise
one can include the "-contiguity subdiagrams corresponding to the edges e and f
of ˆ0M into a single "-contiguity subdiagram in the obvious way, contrary to the
definition of M.

(b) By (a), we can choose an R-cell … in � (passing to an O-equivalent dia-
gram if necessary) and subdiagrams �i;j satisfying the inequality in Corollary 9.6.
Let us consider the subdiagram �1 of � such that: (i) @�1D s1t1s2t2, where s1; s2
are side arcs of some of �i;1’s and t1; t2 are subpaths of @… and the section q1 of
@�, respectively; (ii) �1 contains all �i;1’s. Let m1 be the number of R-cells in
�1. We similarly construct �2; : : : ; �r and define m2; : : : ; mr .

Suppose that the cell … is chosen in such a way that the sum m.…/Dm1C

� � �Cmr is minimal among all cells satisfying the conditionX
i;j

.…; �i;j ; qj / > 1� 11�:

If m1D � � � Dmr D 0, then each of the sets f�i ; 1g, : : : , f�i ; 1g consists of at most
one diagram. Indeed otherwise one could include at least 2 of them into a single
"-contiguity subdiagram, which contradicts the definition of M.

Thus we may assume that m1 > 0. Then by Corollary 9.6 and the inductive as-
sumption, the subdiagram �1 contains an R-cell …0 and "-contiguity subdiagrams
� 0i;1; : : : ; �

0
i;4 of …0 to s1, t1, s2, t2, respectively, such that

(40)
k1X
iD1

.…0; � 0i;1; s1/C � � �C

k4X
iD1

.…0; � 0i;4; t2/ > 1� 11�:
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Note that k2 � 1 since all � 0i;2’s are "-contiguity subdiagrams of …0 to … and
� satisfies (�) by (a). If k2 D 1, we have .…0; � 01;2; t1/ < � by Lemma 4.3.
Further if k1 � 1, we can construct an "-contiguity subdiagram � of …0 to t1
such that: (i) @� D st , where l.s/� 3" and t is a subpaths of @…0; (ii) � contains
at least one R-cell. This leads to a contradiction as in part (a). Thus k1 � 1 and
if k1 D 1 we obtain .…0; � 0i;1; s1/ < �=2 as in part (a). Similarly k3 � 1 and if
k3 D 1, we have .…0; � 0i;3; s2/ < �=2. These inequalities together with (40) imply
k4P
iD1

.…0; � 0i;4; t2/ > 1� 13�. However m.…0/ < m.…/ since the cell …0 counts in

m.…/ but not in m.…0/. This contradicts the choice of …. �
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László Erdős, Benjamin Schlein and Horng-Tzer Yau. Derivation of

the Gross-Pitaevskii equation for the dynamics of Bose-Einstein
condensate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291–370

L. Hakan Eliasson and Sergei B. Kuksin. KAM for the nonlinear
Schrödinger equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371–435

Miriam Briskin, Nina Roytvarf and Yosef Yomdin. Center conditions
at infinity for Abel differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437–483

Igor Krichever. Characterizing Jacobians via trisecants of the Kummer
variety. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485–516

Marc Burger, Alessandra Iozzi and Anna Wienhard. Surface group
representations with maximal Toledo invariant . . . . . . . . . . . . . . . . . . . . . . . . . . . 517–566

Tim Dokchitser and Vladimir Dokchitser. On the
Birch-Swinnerton-Dyer quotients modulo squares . . . . . . . . . . . . . . . . . . . . . . . . 567–596

Dmitri Beliaev and Stanislav Smirnov. Random conformal
snowflakes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597–615

Sourav Chatterjee, Ron Peled, Yuval Peres and
Dan Romik. Gravitational allocation to Poisson points . . . . . . . . . . . . . . . . . 617–671

Radu Laza. The moduli space of cubic fourfolds via the period map . . . . . . . 673–711
Narutaka Ozawa and Sorin Popa. On a class of II1 factors with at most

one Cartan subalgebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 713–749
Minhyong Kim. p-adic L-functions and Selmer varieties associated to

elliptic curves with complex multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 751–759

V
ol.

172,
N

o.
1

annals
of

m
athem

atics
July,

2010


	
	
	

