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Abstract

Motivated by the critical dissipative quasi-geostrophic equation, we prove that
drift-diffusion equations with L2 initial data and minimal assumptions on the drift
are locally Hölder continuous. As an application we show that solutions of the
quasi-geostrophic equation with initial L2 data and critical diffusion .��/1=2 are
locally smooth for any space dimension.

1. Introduction

Nonlinear evolution equations with fractional diffusion arise in many contexts:
In the quasi-geostrophic flow model (Constantin [4]), in boundary control problems
(Duvaut-Lions [9]), in surface flame propagation and in financial mathematics. In
this paper, motivated by the quasi-geostrophic model, we study the equation:

(1)
@t� C v � r� D�ƒ�; x 2 RN ;

div v D 0;

where ƒ� D .��/1=2� . The main two theorems are roughly the following a priori
estimates:

THEOREM 1 (from L2 to L1). Let �.t; x/ be a function in

L1.0; T IL2.RN //\L2.0; T IH 1=2.RN //:

For every � > 0,

�� D .� ��/C:
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If � (and �� ) satisfies for every � > 0 the level set energy inequalities:Z
RN

�2�.t2; x/ dxC 2

Z t2

t1

Z
RN
jƒ1=2��j

2 dx dt

�

Z
RN

�2�.t1; x/ dx; 0 < t1 < t2;

then:

sup
x2RN

j�.T; x/j � C �
k�0kL2

TN=2
:

Remark. That solutions to equation (1) are expected to satisfy the energy in-
equality follows from writing ƒ as the normal derivative of the harmonic extension
of � to the upper half space. Existence theory is sketched in appendix C. In the
case of the quasi-geostrophic equation it can also be seen as a corollary of Córdoba
and Córdoba [7].

Those energy inequalities are reminiscent of the notion of entropic solutions
for scalar conservation laws. Consider a weak solution of (1) lying in L2.H 1=2/

for which we can define the equality (in the sense of distribution for example):

�0.�/v � r� D div.v�.�//;

for any Lipschitz function �. Then � verifies the level set energy inequalities. In
the case of the quasi-geostrophic equation, v 2L2.H 1=2/ and we can give meaning
to:

v � r�.�/:

Indeed, using the harmonic extension, we can show that if � lies in L2.H 1=2/ so
does �.�/. and so r�.�/ lies in L2.H�1=2/.

For the second theorem, (from L1 to C ˛), we need better control of v:

THEOREM 2 (from L1 to C ˛). We define Qr D Œ�r; 0�� Œ�r; r�N , for r > 0.
Assume now that �.t; x/ is bounded in Œ�1; 0��RN and vjQ1 2L

1.�1; 0IBMO/;
then � is C ˛ in Q1=2.

Remark 1. The global bound of � is not really necessary, only local L1 and
integrability at infinity against the Poisson kernel, as we will see later.

Remark 2. Note that both theorems depend only on the resulting energy in-
equality and not on the special form of ƒ.

From these two theorems, the regularity of solutions to the quasi-geostrophic
equation follows.

THEOREM 3. Let � be a solution to an equation

(2)
@t� Cu � r� D�ƒ�; x 2 RN ;

divu D 0;
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with

(3) uj D xRj Œ� �;

xRj a singular integral operator. Assume also that � verifies the level set energy
inequalities stated in Theorem 1. Then, for every t0 > 0 there exists ˛ such that �
is bounded in C ˛.Œt0;1Œ�RN /.

Indeed, Theorem 1 gives that � is uniformly bounded on Œt0;1Œ for every
t0 > 0. Singular integral operators are bounded from L1 to BMO. This gives that
u 2 L1.t0;1IBMO.RN // and, after proper scaling, Theorem 2 gives the result
of Theorem 3.

Remark 1. Higher regularity then follows from standard potential theory, when
we notice that the fundamental solution of the operator:

@t Cƒ� D 0

is the Poisson kernel and that in the nonlinear term we can subtract a constant both
�0 from � and u0 from u, this last one by a change of coordinates:

x� D x� tu0;

doubling its Hölder decay (see appendix).

Strictly speaking, the dissipative quasi-geostrophic flow model in the critical
case corresponds to the case N D 2 and

u1 D�R2�; u2 DR1�;

where Ri is the usual Riesz transform defined from the Fourier transform: bRi� D
i�i
j�j
y� . This model was introduced by some authors as a toy model to investigate the

global regularity of solutions to 3D fluid mechanics (see for instance [4]). When
replacing the diffusion term �ƒ by �ƒˇ , 0 � ˇ � 2, the situation is classically
decomposed into three cases according to the order of diffusion versus transport:
The subcritical case for ˇ > 1, the critical case for ˇ D 1 and the supercritical case
for ˇ < 1.

Weak solutions have been constructed by Resnick in [12]. Constantin and Wu
showed in [6] that in the subcritical case any solution with smooth initial value is
smooth for all time. Constantin Córdoba and Wu showed in [5] that the regularity
is conserved for all time in the critical case provided that the initial value is small
in L1. In both the critical case and supercritical cases, Chae and Lee considered
in [3] the well-posedness of solutions with initial conditions small in Besov spaces
(see also Wu [16]).

Notice that our case corresponds to the critical case and global regularity in
C 1;ˇ , ˇ < 1 is shown for any initial value in the energy space without hypothesis
of smallness. This ensures that the solutions are classical.
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Let us also cite a result of the maximum principle due to Córdoba and Córdoba
[7], results of behavior in large time due to Schonbek and Schonbek [13], [14], and
a criterion for blow-up in Chae [2].

Remark 2. In a recently posted preprint in arXiv, Kiselev, Nazarov, and Vol-
berg present a very elegant proof of the fact that in 2D, solutions with periodic C1

data for the quasi-geostrophic equation remain C1 for all time ([10]).

We conclude our introduction by pointing out that our techniques also can be
seen as a parabolic De Giorgi-Nash-Moser method to treat “boundary parabolic
problems” of the type:

div.ar�/D 0; in �� Œ0; T �;

Œf .�/�t D �� ; on @�� Œ0; T �

that arise in boundary control (see Duvaut Lions [9]). Note also that results similar
to Theorem 1 can be obtained even for systems. (See Vasseur [15] and Mellet,
Vasseur [11] for applications of the method in fluid mechanics.)

2. L1 bounds

This section is devoted to the proof of Theorem 1. The simple proof is based
on a recurrence nonlinear relation between consecutive truncations of � at an in-
creasing sequence of levels. Following the ideas of De Giorgi, this is attained
thanks to the interplay between the energy inequality that controls jr� j by � , and
the opposite effect of the Sobolev inequality that controls � by r� , and the different
homogeneity of these inequalities.

We use the truncation energy inequality for the levels:

�D Ck DM.1� 2
�k/;

where M will be chosen later. This leads to the following energy inequality for the
truncation function �k D .� �Ck/C:

(4) @t

Z
RN

�k
2 dxC 2

Z
RN
jƒ1=2�kj

2 dx � 0:

Let us fix a t0 > 0, we want to show that � is bounded for t > t0. We introduce
Tk D t0.1� 2

�k/, and the level set of energy/dissipation of energy:

Uk D sup
t�Tk

�Z
RN

�k
2 dx

�
C 2

Z 1
Tk

Z
RN
jƒ1=2�kj

2 dx dt:

Integrating (4) in time between s, Tk�1 < s < Tk , and t > Tk and between s and
C1 we find:

Uk � 2

Z
RN

�k
2.s/ dx:
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Taking the mean value in s on ŒTk�1; Tk� we find:

(5) Uk �
2kC1

t0

Z 1
Tk�1

Z
RN

�k
2 dx dt:

We want to control the right-hand side by Uk�1 in a nonlinear way. Sobolev and
Hölder inequalities give:

Uk�1 � Ck�k�1k
2

L
2.NC1/
N .�Tk�1;1Œ�RN /

:

Note that if �k > 0 then �k�1 � 2�kM . So,

1f�k>0g �

 
2k

M
�k�1

!2=N
:

Hence:

Uk �
2kC1

t0

Z 1
Tk�1

Z
RN

�2k�11f�k>0g dx dt

� 2
2
NC2
N

k

t0M 2=N

Z 1
Tk�1

Z
RN

�
2NC1
N

k�1
dx dt � 2C

2
NC2
N

k

t0M 2=N
U
NC1
N

k�1
:

For M such that M=tN=20 is big enough (depending on U0) we have Uk which
converges to 0. This gives � �M for t � t0. The same proof on �� gives the same
bound for j� j. Note that U0 � k�0k2L2 . The scaling invariance �".s; y/D �."s; "y/
gives the final dependence with respect to k�0kL2 . �

This theorem leads to the following corollary.

COROLLARY 4. There exists a constant C � > 0 such that any solution � of
(2), (3) verifies:

sup
x2RN

j�.T; x/j � C �
k�0kL2.RN /

TN=2
;

ku.T; �/kBMO.RN / � C
�
k�0kL2.RN /

TN=2
:

Proof. First note that the property on u follows directly from the property on
� and the imbedding of the Riesz function from L1 to BMO. We make use of the
following result of Córdoba and Córdoba (see [7]): for any convex function � we
have the pointwise inequality:

��0.�/ƒ� � �ƒ.�.�//:

Making use of this inequality with:

�k.�/D .� �Ck/C D �k
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leads to:

@t�kCu � r�k � �ƒ�k :

Multiplying by �k and integrating in x give (4), when u is divergence free. �

Remark. We point out that the level set energy inequalities we assume in
Theorem 1 are heuristically general facts (see Appendix C).

3. Local energy inequality

In order to develop the Hölder regularity method, it is necessary to localize by
space and time truncation the energy inequality above. Due to the nonlocality of
the diffusion operator, this appears complicated. Fortunately, ƒ� can be thought
as the normal derivative of a harmonic extension of � (the Dirichlet to Neumann
operator of �). This allows us to realize the truncation as a standard local one in
one more dimension: We introduce first the harmonic extension L defined from
C10 .R

N / to C10 .R
N �RC/ by:

��L.�/D 0 in RN � .0;1/;

L.�/.x; 0/D �.x/ for x 2 RN :

(This extension consists simply in convolving � with the Poisson kernel of the
upper half space in one more variable. See [1] for a general discussion.) Then the
following result holds true: consider � defined on RN . Then:

(6) ƒ�.x/D @� ŒL��.x/;

where we denote @� ŒL�� the normal derivative of L� on the boundaryn
.x; 0/jx 2 RN

o
:

In the following, we will denote the harmonic extension of � by:

(7) ��.t; x; z/D L.�.t; �//.x; z/:

We denote Br D Œ�r; r�N a cube in the x variable only, B�r D Br � .0; r/ 2
RN � .0;1/ a cube in the x; z variables, sitting on the z D 0 plane, and Œy�C D
sup.0; y/.

The rest of this section is devoted to the proof of the following proposition, a
local energy inequality in the x; z variables. The effect of the nonlocal part of ƒ
becomes encoded locally in the extra variable. At this point, we know already that
for any positive time T > 0:

k�kL2.RN /Ck�kL1.RN / � C
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uniformly in t > T , and for the application we have in mind, the quasi-geostrophic
equation, this implies that

kvkL2.RN /CkvkBMO.RN / � C;

uniformly in t > T . This is, therefore, the main hypothesis below.

PROPOSITION 5. Let t1; t2 be such that t1<t2 and let � 2L1.t1; t2IL2.RN //
with ƒ1=2� 2 L2..t1; t2/�RN /, be solution to (1) with a velocity v satisfying:

(8) kvkL1.t1;t2IBMO.RN //C sup
t1�t�t2

ˇ̌̌̌Z
B2

v.t; x/ dx

ˇ̌̌̌
� Cv:

Then there exists a constant ˆ (depending only on Cv) such that for every t1 � t �
t2 and cut-off function � such that the restriction of �Œ���C on B�2 is compactly
supported in B2 � .�2; 2/:Z t2

t1

Z
B�2

jr.�Œ���C/j
2 dx dz dt C

Z
B2

.�Œ��C/
2.t2; x/ dx(9)

�

Z
B2

.�Œ��C/
2.t1; x/ dxCˆ

Z t2

t1

Z
B2

.Œr��Œ��C/
2 dx dt

C2

Z t2

t1

Z
B�2

.Œr��Œ���C/
2 dx dz dt:

Remark. Note that, as a difference with the standard parabolic estimates, this
energy inequality controls k��kL1t .L2x/ and kr.���/kL2t .L2xz/. We are missing,
in some sense, k���kLpt .L2xz/ that would provide the link between r.���/ and
�� . In order to control ��� we will have to make a careful decomposition of
��� as the part coming from �� as boundary value, and the rest coming from
“far away”. (Step 5: Propagation of the support property (12) and the proof of
Lemma 6, below.)

Proof. We have for every t1 < t < t2:

0D

Z
B�2

�2Œ���C��
� dx dz

D�

Z
B�2

jr.�Œ���C/j
2 dx dzC

Z
B�2

jr�j2Œ���2C dx dzC

Z
B2

�2Œ� �Cƒ� dx:

Using equation (1), we find that:

�

Z
B2

�2Œ� �Cƒ� dx D
@

@t

 Z
B2

�2
Œ� �2
C

2
dx

!
�

Z
B2

r�2 � v
Œ��2
C

2
dx:
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This leads to:Z t2

t1

Z
B�2

jr.�Œ���C/j
2 dx dz dsC

Z
B2

�2
Œ� �2
C
.t2/

2
dx

�

Z
B2

�2
Œ� �2
C
.t1/

2
dxC

Z t2

t1

Z
B�2

jr�j2Œ���2C dx dz ds

C

ˇ̌̌̌Z t2

t1

Z
B2

�r� � vŒ��2C dx ds

ˇ̌̌̌
:

To dominate the last term, we first use the trace theorem and Sobolev imbedding
to find:

k1fB2g��Ck
2

L
2N
N�1 .RN /

� Ck1fB2g��Ck
2
H1=2.RN /

D C

Z
B2

.��C/ƒ.1fB2g��C/ dx

D C

Z 1
0

Z
RN
jrL.1fB2g��C/j

2 dx dz

� C

Z 1
0

Z
RN
jrŒ1fB�2 g�.�

�/C�j
2 dx dz

D C

Z
B�2

jrŒ�.��/C�j
2 dx dz:

In the last inequality, we have used the support property of �.��/C. In the second
to the last inequality we have used the fact that L.1fB2g��C/ is harmonic and has
the same trace as 1fB�2 g�.�

�/C at z D 0. Therefore we split:ˇ̌̌̌
ˇ
Z t2

t1

Z
RN
r�2 � v

Œ��2
C

2
dx ds

ˇ̌̌̌
ˇ� "

Z t2

t1

k��Ck
2

L
2N
N�1 .RN /

ds

C
1

"

Z t2

t1

kŒr��vŒ��Ck
2

L
2N
NC1 .RN /

ds:

The first term is absorbed by the left. The second can be bounded, using Hölder
inequality, by:

1

"
kvk2

L1.t1;t2IL2N .B2//

Z t2

t1

Z
RN
jŒr��Œ��Cj

2 dx ds;

which gives the desired result. �

4. From L2 to L1

In these two sections (4 and 5) we follow De Giorgi’s ideas in his classical
proof of the Hölder continuity of solutions to elliptic equations (see [8]). The first
step is a local, scalable version of the L1 bound above. It establishes that the
space time localization of a level truncation of � is bounded by the L2 norm. The
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second step is the so-called “oscillation lemma”. We give a rough description of
this lemma. Suppose that � oscillates in Q1 D Œ�1; 0��B1 between �2 and 2,
but is negative most of the time. In particular, if k�CkL2 is very small, then the
local L2 to L1 bound mentioned above, will imply that (in a small domain) �C is
very small. In particular, we prove that �CjQ1=2DŒ�1=2;0��B1=2 � 2��, effectively
reducing the oscillations of � by � (see Lemma 6). Of course, we do not know
a priori that k�CkL2 is very small.

But we do know that in Q1, � is at least half of the time positive, or negative,
say negative. We then have to reproduce a version of De Giorgi’s isoperimetric
inequality which says that to go from zero to one � needs “some room” (�5).
Therefore the set f� � 1g is “strictly larger” than the set f� � 0g (see Lemma 8).
Repeating this argument at truncation levels Ck D 2� 2�k , we fall, after a finite
number of steps, k0, into the first case, effectively diminishing the oscillations of
� by �2�k0 . This implies Hölder continuity (��6 and 7).

This section is devoted to the first step of the proof, the L2 to L1 lemma. It
says that, under suitable conditions on v, we can control the L1 norm of � from
the L2 norm of both � and �� locally.

LEMMA 6. We assume, as in Section 3, that

kvkL1.�4;0IBMO.RN //C sup
�4�t�0

ˇ̌̌̌Z
B4

v.t; x/ dx

ˇ̌̌̌
� Cv:

Then, there exists "0 > 0 (depending only on N and Cv), and � > 0 (depending
only on N ) such that for every � solution to (1) the following property holds true.

If
�� � 2 in Œ�4; 0��B�4 ;

and Z 0

�4

Z
B�4

.��/2C dx dz dsC

Z 0

�4

Z
B4

.�/2C dx ds � "0;

then:
.�/C � 2�� on Œ�1; 0��B1:

Remark. Note that this is not a “pure” L2 to L1 estimate, since we assume
that �� is already bounded by 2. Nevertheless, since our final objective is an
improvement of the oscillation of ��, the gain from 2 to 2�� will suffice.

Proof. We split the proof of the lemma into several steps. Steps 1 and 2
are preliminary views. We construct auxiliary barriers and recurrence constants.
Step 3 describes which is the recurrence relation we are aiming for. The actual
proof really starts in Step 4. As in the proof of Theorem 1 at the beginning of the
paper, we will now consider a sequence of truncations for an increasing sequence
of levels Ck converging to 2��, and will prove that by the time we reach 2��,
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the corresponding truncation has zero energy and is, thus, identically zero. Before
giving into the proof, we give an informal description of the arguments involved. In
principle, we would like to prove that if ��

C
is less than 2 in the cylinder B�4 �Œ�4; 0�

and both ��
C

and �C have very small L2 norm, then they are both less than 2��
in B�1 � Œ�1; 0�. Thanks to the barrier b1 below, we notice that it is enough that �C
be below 2��, since ��

C
is bounded by b1 plus the harmonic extension of �C. The

second observation we make is that if the L2 norm of �C is small, ��
C

dips to very
small values for z small (proportionally in some way to k�CkL2). Indeed, the part
corresponding to b1 goes linearly to zero while the Poisson kernel smoothes �C. In
other words the influence of the global part of ƒ, reflected by b1, decays linearly
as z goes to zero, and we can almost eliminate as we truncate � at increasing
levels (Step 5, propagation of the support property). This eliminates the need of
a truncation in z and almost eliminates the influence of the global part of ƒ. It
only remains on the small “lateral edges”, that is where the space truncation takes
place and for very small z, and that has exponential decay (barrier b2). That is
what allows us to obtain the appropriate recurrence relation for Ak , that implies
that “�1 D 0” on B1 � Œ�1; 0�, i.e. � � 2��.

Step 4 is a first “long jump” to k � 12N , that puts us into the appropriate
configuration described above, to start the inductive process provided �C is small
enough.

Step 1. Useful barrier functions. The following two barrier functions, b1 and
b2, will be used to control how the values of �� far from the “disc” D�1 DB1�f0g
influence �� near D�1 .

Consider the function b1, defined by:

�b1 D 0 in B�4

b1 D 2 on the sides of the cube B�4 except for z D 0
b1 D 0 for z D 0:

Then there exists � > 0 such that:

b1.x; z/� 2� 4� on B�2 :

This result follows directly from the maximum principle.
We consider now b2 harmonic function defined by:

�b2 D 0 in Œ0;1Œ�Œ0; 1�;

b2.0; z/D 2 0� z � 1;

b2.x; 0/D b2.x; 1/D 0 0 < x <1:

Then there exists xC > 0 such that:

(10) jb2.x; z/j � xCe
�x=2:
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Notice that xC is universal. Indeed we can see easily that

b2.x; z/� 2
p
2 cos.z=2/e�x=2;

since this function is harmonic and bigger than b2 on the boundary.

Step 2. Setting of constants. In this step we fix a set of constants. We make the
choice to set them right away to convince the reader that the proof is not circular.

LEMMA 7. There exist 0 < ı < 1 and M > 1 such that for every k > 0:

2N xCe
� 2�k

4.
p
2C1/ık � �2�k�2;

M�k=2

ı
N.kC1/

2

kP.1/kL2 � �2
�k�2;

M�k � C k0M
�.1C1=N/.k�3/ k � 12N;

where xC is defined from Step 1, P.1/ is the the value at z D 1 of the Poisson kernel
P.z/.x/, and C0 is defined by (16).

The proof is easy. We first construct ı to verify the first inequality in the
following way. If ı < 1=4, the inequality is true for k > k0 due to the exponential
decay. If necessary, we then choose ı smaller to make the inequality also valid
for k < k0. Now that ı has been fixed, we have to choose M large to satisfy the
remaining inequalities. Note that the second inequality is equivalent to:�

2

ıN=2
p
M

�k
�

�ıN=2

4kP.1/kL2
:

It is, thus, sufficient to take:

M � sup
�

2

ıN=2
;
8kP.1/kL2

�ıN

�2
:

The third inequality is equivalent to:�
M

CN0

�k=N
�M 3.1C1=N/:

For this case it is sufficient to takeM�sup.1; C 2N0 /. Indeed, this ensuresM 2=C 2N0
�M and so: �

M

CN0

�k=N
�M k=.2N/

�M 6;

for k � 12N . But M 6 �M 3.1C1=N/ for M � 1 and N � 2.
Therefore we can fix:

M D sup

 
1; C 2N0 ;

�
2

ıN=2

�2
;

�
8kP.1/kL2

�ıN

�2!
:
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The constant �, ı, and M are now fixed for the rest of the proof. The constant
"0 will be constructed from these.

Step 3. Induction. We set:

�k D .� �Ck/C; �k
�
D .���Ck/C;

with Ck D 2��.1C 2�k/. Note that �k
�
¤ .�k/

�. We consider a cut-off function
in x only such that:

1fB
1C2�k�1=2

g � �k � 1fB
1C2�k

g and jr�kj � C2
k :

We denote:

Ak D

Z 0

�1�2�k

Z ık

0

Z
RN
jr.�k�

�
k /j

2 dx dz dt C sup
t2Œ�1�2�k ;0�

Z
RN
.�k�k/

2 dx:

We want to prove simultaneously that for every k � 0:

Ak �M
�k(11)

�k�
�
k D 0 for ık � z � inf.2; ık�1/:(12)

Step 4. (Initial step). We prove in this step that if "0 is small enough, then
(11) is verified for 0 � k � 12N , and that (12) is verified for k D 0. We use the
energy inequality (9) with cut-off function �k.x/ .z/ where  is a fixed cut-off
function in z only. Taking the mean value of (9) in t1 between �4 and �2, we find
that (11) is verified for 0� k � 12N if "0 is taken such that:

(13) C224N .1Cˆ/"0 �M
�12N :

We have used that jr�kj2 � C224N for 0 � k � 12N . Let us consider now the
support property (12). By the maximum principle, we have:

�� � .�C1B4/�P.z/C b1.x; z/;

in RC�B�4 , where P.z/ is the Poisson kernel. Indeed, the right-hand side function
is harmonic, positive and the trace on the boundary is bigger that the one of ��.

From Step 1 we have: b1.x; z/� 2� 4�. Moreover:

k�C1B4 �P.z/kL1.z�1/ � CkP.1/kL2
p
"0 � C

p
"0:

Choosing "0 small enough such that this constant is smaller that 2� gives:

�� � 2� 2� for 1� z � 2; t � 0; x 2 B2;

and so:

��0 D .�
�
� .2� 2�//C � 0 for 1� z � 2; t � 0; x 2 B2:

Hence �0��0 vanishes for 1D ı0 � z � 2.
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Step 5. Propagation of the support property (12). Assume that (11) and (12)
are verified at k. We want to show that (12) is verified at .kC 1/. We will show
also that the following is verified at k:

(14) �kC1�
�
kC1 � Œ.�k�k/�P.z/��kC1; on xB�k ;

where xB�
k
D B1C2�k � Œ0; ı

k�. We want to control ��
k

on this set by harmonic
functions taking into account the contributions of the sides one by one. Consider
B1C2�k�1=2 � Œ0; ı

k�. On z D ık we have no contribution thanks to the induction
property (12) at k (the trace is equal to 0). The contribution of the side z D 0 can
be controlled by: �k�k �P.z/. (It has the same trace as �k on B1C2�k�1=2 .)

On each of the other sides we control the contribution by the function of
x D .x1; ��; xN /:

b2..xi � x
C/=ık; z=ık/C b2..�xi C x

�/=ık; z=ık/;

where xC D .1C 2�k�1=2/ and x� D �xC. Indeed, b2 is harmonic, and on the
side xCi and x�i it is bigger than 2. Finally, by the maximum principle:

��k �

NX
iD1

h
b2..xi � x

C/=ık; z=ık/C b2..�xi C x
�/=ık; z=ık/

i
C.�k�k/�P.z/:

From Step 1, for x 2 B1C2�k�1 :

NX
iD1

h
b2..xi � x

C/=ık; z=ık/C b2..�xi C x
�/=ık; z=ık/

i
� 2N xCe

� 2�k

4.
p
2C1/ık � �2�k�2;

(thanks to Step 2). This gives (14) since:

��kC1 � .�
�
k ��2

�k�1/C:

More precisely,
��kC1 � ..�k�k/�P.z/��2

�k�2/C:

Now,
�kC1�

�
kC1 � ..�k�k/�P.z/��2

�k�2/C:

From the second property of Step 2, we find for ıkC1 � z � ık:

j.�k�k/�P.z/j �
p
AkkP.z/kL2

�
M�k=2

ı.kC1/N=2
kP.1/kL2 � �2

�k�2:

The last inequality makes use of Step 2. Therefore:

�kC1�
�
kC1 � 0 for ıkC1 � z � ık :
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Note, in particular, that with Step 4 this gives that (12) is verified up to kD 12NC1
and (14) up to k D 12N .

Step 6. Propagation of Property (11). We show in this step that if (12) is true
for k� 3 and (11) is true for k� 3, k� 2 and k� 1 then (11) is true for k.

First notice that from Step 5, (12) is true at k� 2, k� 1, and k. We just need
to show that:

(15) Ak � C
k
0 .Ak�3/

1C1=N for k � 12N C 1;

with:

(16) C0 D C
21C2=N

�2=N
:

Indeed, if we use the third inequality of Step 2, this will give us the result.

Step 7. Proof of (15). Since �k��k 1f0<z<ık�1g has the same trace at z D 0 as
.�k�k/

� and the latter is harmonic we have:Z ık�1

0

Z
RN

Z
jr.�k�

�
k /j

2
D

Z 1
0

Z
RN
jr.�k�

�
k 1f0<z<ık�1g/j

2

�

Z 1
0

Z
RN
jr.�k�k/

�
j
2
D

Z
RN
jƒ1=2.�k�k/j

2:

Note that we have used (12) in the first equality. Sobolev and Hölder inequalities
give:

Ak�3 � Ck�k�3�k�3k
2

L
2.NC1/
N .Œ�1�2�k�3;0��RN /

:

From (14):

k�k�2�
�
k�2k

2

L
2.NC1/
N

� kP.1/k2
L1
k�k�3�k�3k

2

L
2.NC1/
N

:

Thus,

Ak�3 � Ck�k�2�
�
k�2k

2

L
2.NC1/
N

CCk�k�3�k�3k
2

L
2.NC1/
N

� C

�
k�k�2�

�
k�1k

2

L
2.NC1/
N

Ck�k�2�k�1k
2

L
2.NC1/
N

�
:

Using (12) and the fact that �k is a cut-off function in x, we have that �k��k vanishes
on the boundary of B1C2�k � Œ�ı

k; ık�. We can then apply Proposition 5 on
�k�
�
k

1f0<z<ık�1g. Taking the mean value of (9) in t1 between �1� 2�k�1 and
�1� 2�k , we find:

Ak � C2
2k.ˆC 2/

�Z ık

0

Z
�2k�1�k

2
C

Z ık

0

Z
�2k�1�

�
k
2

�
:
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We have used here the fact that jr�j2 � C22k�2
k�1

. If �k > 0 then �k�1 � 2�k�.
Now,

1f�k>0g �
C2k

�
�k�1;

and

1f�k�1>0g1f�k>0g �
C2k

�
�k�2�k�1:

Therefore:Z
�2k�1�k

2
C

Z
�2k�1�

�
k
2

�
C22k=N

�2=N

�Z
.�k�2�k�1/

2.NC1/
N C

Z
.�k�2�

�
k�1/

2.NC1/
N

�
:

and so:

Ak �
C2k.2C2=N/

�2=N
A
1C1=N

k�3
:

This gives (15), for C big enough compared to �2=N . �

5. The second technical lemma

At this moment we have proven that if � , �� are less than 2, and their L2 norm
is very small in B4 � Œ�4; 0� then both � , �� are less than 2� � on B1 � Œ�1; 0�.
That is, their oscillation decreased. We need to prove now that it is enough that

jf�� � 0gj �
jQ4j

2

to imply that � , �� are less than 2�� in B1 � Œ�1; 0�, since this is our induction
hypothesis. This is based on the fact that, due to the energy inequality, there must
be a quantitative decay in measure between the consecutive level sets f� � 0g,
f� � 1g, f� � 2� 1=2g, f� � 2� 1=4g, etc. . . . Lemma 8 below measures this
quantitative separation between f� � 0g and f� � 1g, i.e. if f0 < �� < 1g is small
then .��� 1/C is very small.

We set Qr D Br � Œ�r; 0� and Q�r D B
�
r � Œ�r; 0�.

LEMMA 8. For every "1 > 0, there exists a constant ı1 > 0 with the following
property: For every solution � to (1) with v verifying (8) and:

�� � 2 in Q�4 ;ˇ̌
f.x; z; t/ 2Q�4 I �

�.x; z; t/� 0g
ˇ̌
�
jQ�4 j

2
;

we have the following implication: Ifˇ̌
.x; z; t/ 2Q�4 I 0 < f�

�.x; z; t/ < 1g
ˇ̌
� ı1;
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then: Z
Q1

.� � 1/2C dx dt C

Z
Q�1

.��� 1/2C dx dz dt � C
p
"1:

Note that ı1 depends only on N and Cv in (8).

Proof. Take "1� 1. From the energy inequality (9) and using that �� � 2 in
Q�4 , we get: Z 0

�4

Z
B�1

jr��Cj
2 dx dz dt � C:

Let:

K D
4
R
jr��
C
j2 dx dz dt

"1
:

Then:

(17)

ˇ̌̌̌
ˇft j

Z
B�1

jr��Cj
2.t/ dx dz �Kg

ˇ̌̌̌
ˇ� "14 :

For all t 2 ft j
R
B�1
jr��
C
j2.t/ dx dz � Kg, the De Giorgi lemma (see appendix)

gives that:
jA.t/jjB.t/j � jC.t/j1=2K1=2;

where:

A.t/D f.x; z/ 2 B�1 j �
�.t; x; z/� 0g;

B.t/D f.x; z/ 2 B�1 j �
�.t; x; z/� 1g;

C.t/D f.x; z/ 2 B�1 j 0 < �
�.t; x; z/ < 1g:

Let us set
ı1 D "

8
1;

I D ft 2 Œ�4; 0�I jC.t/j1=2 � "31 and
Z
B�1

jr��Cj
2.t/ dx dz �Kg:

First we have, using the Tchebichev inequality:ˇ̌̌
ft 2 Œ�4; 0�I jC.t/j1=2 � "31g

ˇ̌̌
�
jf.t; x; z/ j 0 < �� < 1gj

"61
�
ı1

"61
� "21 � "1=4:

Hence jŒ�4; 0�nI j � "1=2. Secondly we get for every t 2 I such that jA.t/j � 1=4:

(18) jB.t/j �
jC.t/j1=2K1=2

jA.t/j
� 4C"

5=2
1 � "21:

In particular: Z
B�1

��C
2
.t/ dx dz � 4.jB.t/jC jC.t/j/� 8"21:
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But Z
B1

�2C.t/ dx D

Z
B1

��C
2
.t; x; z/ dx� 2

Z z

0

Z
B1

��C.t/@z�
� dx d Nz;

for any z. And so, integrating in z on Œ0; 1�, we find:Z
B1

�2C.t/ dx �

Z
B�1

��C
2
.t; x; z/ dx dzC 2

p
K

sZ
B�1

��
C

2.t/ dx dz � C
p
"1:

We want to show that jA.t/j�1=4 for every t2I \ Œ�1; 0�. First, since

jf.t; x; z/ j �� � 0gj � jQ�4 j=2;

there exists t0 � �1 such that jA.t0/j � 1=4. So for this t0,
R
�2
C
.t0/ dx � C

p
"1.

Using the energy inequality (9), for any r > 0 (where r� is of order 1=r), we have
for every t � t0:Z

B1

�2C.t/ dx �

Z
B1

�2C.t0/ dxC
C.t � t0/

r
CCr:

Let us choose r such that

Cr CC
p
"1 � 1=128:

So for t � t0 � ı� D r=.128C / we have:Z
B1

�2C.t/ dx �
1

64
:

(Note that the ı� do not depend on "1. Hence we can suppose "1� ı�.) We have:

��C.z/D �CC

Z z

0

@z�
�
C d Nz

� �CC
p
z

�Z z

0

j@z�
�
Cj
2 d Nz

�1=2
:

So, for t � t0 � ı�, t 2 I and z � "21 we have for each x:

��C.t; x; z/� �C.t; x/C

�
"21

Z 1
0

j@z�
�
Cj
2 d Nz

�1=2
:

The integral, in x only, of the square of the right-hand side term is less than 1=8C
C
p
"1 � 1=4. So by Tchebichev, for every fixed z � "1:

jfx 2 B1; �
�
C.t; x; z/� 1gj �

1

4
:
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Integrating in z on Œ0; "21� gives:

jfz � "21; x 2 B1; �
�
C.t/� 1gj �

"21
4
:

First we work in B1 � Œ0; "21�. Since jC.t/j � "61, this gives

jA.t/j � jB1j"
2
1� jfz � "

2
1; x 2 B1; �

�
C.t/� 1gj � jC.t/j

� "21.1� 1=4/� "
6
1 � "

2
1=2:

In the same way as in (18) we find:

jB.t/j �
jC.t/j1=2K1=2

jA.t/j
� C
p
"1;

and:

jA.t/j � 1� jB.t/j � jC.t/j

� 1� 2
p
"1� "

6
1 � 1=4:

Hence, for every t 2 Œt0; t0Cı��\I we have: jA.t/j � 1=4. On Œt0Cı�=2; t0Cı��
there exists t1 2 I (ı� � "1=4). And so, we can construct an increasing sequence
tn, 0� tn � t0Cnı�=2 such that jA.t/j � 1=4 on Œtn; tnC ı��\I � Œtn; tnC1�\I .
Finally on I \ Œ�1; 0� we have jA.t/j � 1=4. This gives from (18) that for every
t 2 I \ Œ�1; 0�: jB.t/j � "1=16. Hence:

jf�� � 1gj � "1=16C "1=2� "1:

Since .��� 1/C � 1, this gives that:Z
Q�1

.��� 1/2C dx dz dt � "1:

We have for every t; x fixed:

� � ��.z/D�

Z z

0

@z�
� dz:

So:

.� � 1/2C � 2

 
.��.z/� 1/2CC

�Z z

0

jr��j dz

�2!
for any z. Hence

.� � 1/2C �
2
p
"1

Z p"1
0

.��� 1/2C dzC 2
p
"1

Z p"1
0

jr��j2 dz:

Therefore: Z
Q1

.� � 1/2C dx ds � C
p
"1: �
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6. Oscillation lemma

In the first technical lemma, we have established that if 0 � �� � 2 and its
energy or norm is very small, in B�4 , then, �� � 2� � in B1; i.e., the oscillation
of � actually decays. We want now to get rid of the “very small” hypothesis. This
second lemma proves that if �� � 0 “half of the time” and it needs very little
room, ı, to go from f�� � 0g to f� � 1g, it is because .� � 1/C has very small
norm to start with. This produces a dichotomy: or the support of � decreases
substantially, or � becomes small anyway.

PROPOSITION 9. There exists �� > 0 such that for every solution � of (1) with
v verifying (8), if :

�� � 2 in Q�1 ; jf.t; x; z/ 2Q�1 I �
�
� 0gj �

1

2
;

then:

�� � 2��� in Q�1=16:

Note that �� depends only on N and Cv in (8).

Proof. For every k 2 N, k � KC D E.1=ı1C 1/ (where ı1 is as defined in
Lemma 8 for "1 such that 4C

p
"1 � "0, with "0 defined as in Lemma 6), we define:

N�k D 2. N�k�1� 1/ with N�0 D �:

So we have: N�k D 2k.� � 2/C 2. Note that for every k, N�k verifies (1), N�k � 2 and
jf.t; x; z/ 2Q�1 j

N�k � 0gj �
1
2

. Assume that for all those k, jf0 < N��
k
< 1gj � ı1.

Then, for every k:

jf N��k < 0gj D jf
N��k�1 < 1gj � jf

N��k�1 < 0gjC ı1:

Hence:

jf N��KC � 0gj � 1;

and N��KC < 0 almost everywhere, which means: 2KC.��� 2/C 2 < 0 or

�� < 2� 2�KC :

And in this case we are done.
Otherwise, there exists 0 � k0 �KC such that: jf0 < N��

k0
< 1gj � ı1. From

Lemma 8 and Lemma 6 (applied on N�k0C1) we get . N�k0C1/C � 2�� which means:

� � 2� 2�.k0C1/�� 2� 2�KC�;

in Q1=8.
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Consider the function b3 defined by:

�b3 D 0 in B�1=8;

b3 D 2 on the sides of the cube except for z D 0

b3 D 2� 2
�KC inf.�; 1/ on z D 0:

We have b3<2��� in B�
1=16

. And from the maximum principle we get ���b3. �

7. Proof of Theorem 2

We fix t0 > 0 and consider t 2 Œt0;1Œ�RN . We define:

F0.s; y/D �.t C st0=4; xC t0=4.y � x0.s///;

where x0.s/ is solution to:

Px0.s/D
1

jB4j

Z
x0.s/CB4

v.t C st0=4; xCyt0=4/ dy

x0.0/D 0:

Note that x0.s/ is uniquely defined from the Cauchy-Lipschitz theorem. We set:

Q��0 .s; y/D
4

supQ�4 F
�
0 � infQ�4 F

�
0

�
F �0 �

supQ�4 F
�
0 C infQ�4 F

�
0

2

�
:

v0.s; y/D v.t C st0=4; xC t0=4.y � x0.s///� Px0.s/;

and then for every k > 0:

Fk.s; y/D Fk�1. Q�s; Q�.y � xk.s///;

Q��k .s; y/D
4

supQ�4 F
�
k
� infQ�4 F

�
k

�
F �k �

supQ�4 F
�
k
C infQ�4 F

�
k

2

�
;

Pxk.s/D
1

jB4j

Z
xk.s/CB4

vk�1. Q�s; Q�y/ dy;

xk.0/D 0;

vk.s; y/D vk�1. Q�s; Q�.y � xk.s///� Pxk.s/;

where Q� will be chosen later. We divide the proof in several steps.

Step 1. For k=0, Q�0 is solution to (2) in Œ�4; 0��RN , kv0kBMO D kvkBMO,R
v0.s/ dy D 0 for every s and j Q�0j � 2. Assume that it is true at k� 1. Then:

@sFk D Q�@s Q�k�1./� Q� Pxk.s/ � r Q�k�1:
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So Q�k is solution of (2) and j Q�kj � 2. By construction, for every s we haveR
B4
vk.s; y/ dy D 0 and kvkkBMO D kvk�1kBMO D kvkBMO. Moreover we have:

j Pxk.s/j �

Z
B4

vk�1. Q�.y � xk.s/// dy � Ckvk�1. Q�y/kLp

� C Q��N=pkvk�1kLp � Cp Q�
�N=p

kvk�1kBMO:

So, for 0� s � 1, y 2 B4 and p > N :

j Q�.y � xk.s//j � 4 Q�.1CCp Q�
�N=p/� C Q�1�N=p:

For Q� small enough this is smaller than 1.

Step 2. For every k we can use the oscillation lemma. If jf Q��
k
� 0gj � 1

2
jQ�4 j

then we have Q��
k
� 2���. Otherwise, we have jf� Q��

k
� 0gj � 1

2
jQ�4 j and applying

the oscillation lemma on � Q��
k

gives Q��
k
� �2C��. In both cases this gives:

j sup Q��k � inf Q��k j � 2��
�:

and so:
j sup
Q�1

F �k � inf
Q�1

F �k j � .1��
�=2/kj sup

Q�1

F �0 � inf
Q�1

F �0 j:

Step 3. For s � Q�2n:
nX
kD0

Q�n�kxk.s/� Q�
2n

nX
kD0

Q�n�k

Q��N=p
�
Q�n

2
;

for Q� small enough thatˇ̌̌̌
ˇ̌ sup
Œ� Q�2n;0��B�

Q�n=2

��� inf
Œ� Q�2n;0��B�

Q�n=2

��

ˇ̌̌̌
ˇ̌� .1���=2/n:

This gives that �� is C ˛ at .t; x; 0/, and so � is C ˛ at .t; x/. �

Appendix A. Proof of the De Giorgi isoperimetric lemma

Let ! 2H 1.Œ�1; 1�NC1/. We denote:

AD fxI !.x/� 0/g;

BD fxI !.x/� 1/g;

CD fxI 0 < !.x/ < 1/g;

and
�D 1fy1Cs.y1�y2/=jy1�y2j2Cg:
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We have:

jAjjBj �

Z
A

Z
B
.!.y1/�!.y2// dy1 dy2

D

Z
A

Z
B

Z jy1�y2j
0

r!.y1C s
y1�y2

jy1�y2j
/ �
y1�y2

jy1�y2j
ds dy1 dy2

D

Z
A

Z
B

Z jy1�y2j
0

�r!.y1C s
y1�y2

jy1�y2j
/ �
y1�y2

jy1�y2j
ds dy1 dy2

�

Z
A

Z
B

Z 1
0

�

ˇ̌̌̌
r!.y1C s

y1�y2

jy1�y2j
/

ˇ̌̌̌
ds dy1 dy2

�

Z
B1

Z
B1

Z 1
0

�

ˇ̌̌̌
r!.y1C s

y1�y2

jy1�y2j
/

ˇ̌̌̌
ds dy1 dy2

�

Z
SN�1

Z
B1

Z 1
0

jr!.y1C s�/j

sN�1
1f.y1Cs�/2Cgs

N�1 d� ds dy1

� C

Z
B1

Z
B1

jr!.y1Cy2/j

jy2jN�1
1fy1Cy22Cg dy2 dy1

� Ckr!kL2 jCj
1=2: �

Appendix B. Higher regularity

We give the proof of the following theorem.

THEOREM 10. Let � be a solution of the quasi-geostrophic equations (2), (3)
satisfying the regularity properties of Theorem 3:

� 2 L1.0;1IL2/\L2.0;1IH 1=2/

\L1.Œt0;1Œ�RN /\C ˛.Œt0;1Œ�RN /;

for every t0 > 0. Then � belongs to C 1;ˇ .Œt0;1Œ�RN / for every ˇ < 1 and t0 > 0
and is therefore a classical solution.

Proof. We want to show the regularity at a fixed point

y0 D .t0; x0/ 2�0;1Œ�RN � Rm

where mDN C1. Note that changing �.t; x/ by �.t; x�u.t0; x0/t/� �.t0; x0/ if
necessary, we can assume without loss of generality that �.y0/D 0 and u.y0/D 0.
The fundamental solution of:

@t� Cƒ� D 0

is the Poisson kernel:

P.t; x/D
Ct

.jx2jC t2/
NC1
2

;
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a homogeneous function of order �N if extended for t negative. The solution �
of (2) can be represented as the sum of two terms.

(19) �.t; x/D P.t; �/� �0�g.t; x/;

where:

g.t; x/D

Z t

0

Z
RN

P.t � t1; x� x1/div.u.t1; x1/�.t1; x1// dt1 dx1

D

Z 1
0

Z
RN
rx zP .y �y1/ �u.y1/�.y1/ dy1:

In the last inequality, we denoted y D .t; x/, zP the extension of P for negative t
with value 0, and we passed the divergence on zP , which becomes a singular integral.
The first term in (19) is smooth for t > 0 and depends only on the initial data.
Focusing on the second one g.y/, we fix e 2 Sm, and estimate g.y0Che/�g.y0/
for h > 0 in the standard way. We split the integral:

(20) g.y0/�g.y0C he/D

Z 1
0

Z
RN

Q0.y0�y1; he/u.y1/�.y1/ dy1

where:
Q0.y; he/Drx zP .y/�rx zP .yC he/;

into two parts, one on the ball B10h centered to y0 and radius 10h, and the second
on the complement. The first part has no cancellation so we separate the integrals:Z

B10h

1ft1�0gŒrx zP .y0�y1/�rx zP .y0C he�y1/�u.y1/�.y1/ dy1

D

Z
B10h

1ft1�0grx zP .y0�y1/u.y1/�.y1/ dy1

�

Z
B10h

1ft�0grx zP .y0C he�y1/u.y1/�.y1/ dy1:

If � is C ˛, ˛ > 0, from the Riesz transform u, is also C ˛, and since �.y0/ D
u.y0/D 0, we have:

(21) ju.y1/�.y1/j � inf.jy1�y0j2˛; C /:

So the first integral is convergent and bounded by Ch2˛. To deal with the second
one, notice that rx zP have mean value zero on any slice t D C of B10h, so we can
add and subtract �.y0C he/u.y0C he/. Now,

j�.y1/u.y1/� �.y0C he/u.y0C he/j � Ch
˛
jy0C he�y1j

˛;

where we have used again that u.y0/D �.y0/D 0. Hence the integral is also con-
vergent and bounded by Ch2˛. Thus, the contribution of B10h on (20) is smaller
that Ch2˛.
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Outside of a neighborhood of size 10h we use the cancellation of rx zP . Up
to Lipschitz regularity

jrxŒ zP .y1�y0/� zP .y1C he�y0/�j �
h

jy1�y0jmC1
;

and we integrate against ju� j which verifies (21). This gives the bound:Z
jy1�y0j�10h

h

jy1�y0jmC1�2˛
dy1 � Ch

2˛;

provided that 2˛ < 1. Altogether, this gives that if � 2 C ˛ with 2˛ < 1, then

jg.y0/�g.y0C he/j � Ch
2˛:

Bootstrapping the argument gives that � is C ˛ for any ˛ < 1.
To go beyond Lipschitz we consider a second order increment quotient:

Q1.y; he/D jrŒ zP .yC he/C zP .y � he/� 2 zP .y/�j:

Now,

g.y0Che/Cg.y0�he/�2g.y0/D

Z
Rm

1ft1�0gQ1.y0�y1; he/u.y1/�.y1/ dy1:

Note that Q1.y; he/ D Q0.y; he/�Q0.y � he; he/, so that for jyj < 20h, the
local estimate of the previous argument together with the C ˛ property of � and u
gives: Z

B20h

jQ1.y0�y1/u.y1/�.y1/j dy1 � Ch
2˛:

For jyj> 20h and y not in the strip Th D Œt0� h; t0C h��RN , we have:

jQ1.y0�y1; he/j � C
h2

jy0�y1jmC2
:

and the corresponding integral:Z
jy0�y1j�20h

1fy1…ThgjQ1.y0�y1/u.y1/�.y1/j dy1

� C

Z
jyj�20h

h2

jyjmC2
.jyj2˛ ^ 1/ dy � Ch2˛;

whenever 2˛ < 2. It remains to control the contribution of the strip Th nB20h. The
estimate on Q0 gives that on this strip:

jQ1.y1�y0; he/j � C
h

jy1�y0jNC2
� C

h

jx1� x0jNC2
:
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Note that on Th nB20h we have jx1� x0j � h. So the contribution of this strip is
bounded byZ t0Ch

t0�h

Z
jx1�x0j�h

h

jx1� x0jNC2�2˛
dx1 dt1 � C

h2˛

h

Z t0Ch

t0�h

dt1 � Ch
2˛;

whenever 2˛ < 2. That goes all the way to C 1;ˇ for every ˇ < 1. �

Appendix C. Existence of solutions to equation (1)

In this appendix we sketch the existence theory of the approximate solution
of the equation (1) satisfying the truncated energy inequalities in the hypothesis
of Theorem 1. We start by restricting the problem to B1 � Œ0;1� and adding an
artificial diffusion term "�. We will use the eigenfunctions �k and eigenvalues �2

k

of the Laplacian in B1; that is:

��kC�
2
k�k D 0:

Note that ��
k
.x; z/ D �k.x/e

��kz is the harmonic extension of �k for the semi-
infinite cylinder Q1 D B1 � Œ0;1� with data 0 in the lateral boundary, and:

�k�k.x/D @��
�
k .x; 0/;

where @� is the normal derivative. Also:Z
Q1

�k�
2
k dx dz D

Z
@Q1

��k @��
�
k dx D

Z
Q1

jr��k j
2 dx dz;

and this formula is also correct for any series

g.x/D
X

fk�k.x/;

provided that
P
f 2
k
�k converges, i.e., g 2H 1=2.B1/.

We want to solve then in Œ0;1Œ�B1 the equation:

(22) @t� C div.v�/D "�� � .��1=2/�;

where ��1=2� is understood as the operator that maps �k to �k�k D @���k . For,
say, v bounded and divergence-free, this is straightforward by the Galerkin method:
Let us restrict (22) to �k , with 1� k � k0; i.e., we seek a function:

� D �";k0 D

k0X
1

fk.t/�k.x/



1928 LUIS A. CAFFARELLI and ALEXIS VASSEUR

that is a solution of the equation when tested against �k , 1� k � k0. The functions
fk are solutions to the following system of ODEs:

f 0k.t/D�Œ"�
2
kC�k�fk.t/C

k0X
lD1

aklfl.t/; 1� k � k0;

with initial value:

fk.0/D

Z
B1

�0.x/�k.x/ dx;

where:

akl D

Z
B1

v.t; x/ � r�k.x/�l.x/ dx:

Note that, since v is divergence-free, the matrix akl is antisymmetric. This leads
to the estimate:

k0X
kD1

f 2k .t2/C

Z t2

t1

k0X
kD1

."�2kC�k/f
2
k .s/ ds D

k0X
kD1

f 2k .t1/:

In particular �";k0 satisfies the energy inequality:

k�";k0.t2/k
2
L2.B1/

C

Z t2

t1

�
k�";k0.s/k

2
PH1=2.B1/

C "k�";k0.s/k
2
PH1.B1/

�
ds � k�";k0.t1/k

2
L2.B1/

:

Notice also that what we call H 1=2.B1/ corresponds to the extension of � to the
half cylinder, and is such that

k�k PH1=2.B1/
� k�k PH1=2.RN /

:

We now pass to the limit in k0 and denote �" the limit. If we test �";k0 with
a function  2 L1.0; T IL2.B1// \ L2.0; T IH 1.B1//, there is no problem in
passing to the limit in the term:Z t2

t1

Z
B1

.r/v�";k0 dx ds;

since �";k0 converges strongly in L2.Œ0; T ��B1/. In particular, for  D .�"��/CD
�";� the term converges to:Z t2

t1

Z
B1

rŒ�";��
2v dx ds D 0;

provided that v is divergence-free. This leads to the following corollaries:
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COROLLARY 11. The function �" satisfies the hypothesis of Lemma 6 inde-
pendently of ", and therefore:

k�".T /kL1.B1/ �
C

TN=2
k�".0/kL2.B1/:

COROLLARY 12. The same theorem is true for v 2 L2.Œ0; T ��B1/ indepen-
dently of the L2 norm of v.

Proof. We approximate v by a mollification vı . �

COROLLARY 13. For �0 prescribed in L2.RN /, the same result is true in
Œ0; T ��RN .

Proof. We may rescale the previous theorems to the ball of radius M by
applying them to �.t; x/DMN=2�.Mt;Mx/. This change preserves the L2 norm,
and so we get:

sup
BM

MN=2�.s; y/�
C

.s=M/N=2
;

or
sup
BM

�.s; y/�
C

.s/N=2
;

provided that v 2 L2.BM / is divergence free. Then letting M go to infinity gives
the result. �

Final remark. Since all the estimates are independent of " we may let " go to
zero for the limit to be a weak solution of the limiting equation, and satisfying the
truncated energy inequalities.

Note also that the same approach can be taken for higher regularity. Indeed,
the proof of higher regularity depends only on the truncated and localized energy
inequality that is also satisfied by the "-problem. We may then pass to the limit in
" and find a classical solution of the limiting problem.
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