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Abstract

We introduce complex cones and associated projective gauges, generalizing
a real Birkhoff cone and its Hilbert metric to complex vector spaces. We de-
duce a variety of spectral gap theorems in complex Banach spaces. We prove a
dominated complex cone contraction theorem and use it to extend the classical
Perron-Frobenius Theorem to complex matrices, Jentzsch’s Theorem to complex
integral operators, a Kreı̆n-Rutman Theorem to compact and quasi-compact com-
plex operators and a Ruelle-Perron-Frobenius Theorem to complex transfer op-
erators in dynamical systems. In the simplest case of a complex n by n matrix
A 2Mn.C/ we have the following statement: Suppose that 0 < c <C1 is such
that jImAij xAmnj< c � ReAij xAmn for all indices. Then A has a ‘spectral gap’.

1. Introduction

The Perron-Frobenius Theorem [Per07], [Fro08] asserts that a real square
matrix with strictly positive entries has a ‘spectral gap’, i.e. the matrix has a positive
simple eigenvalue and all other eigenvalues are strictly smaller in modulus. More
generally, let A be a bounded linear operator acting upon a real or complex Banach
space and write rsp.A/ for its spectral radius. We say that A has a spectral gap if
(1) it has a simple isolated eigenvalue �, the modulus of which equals rsp.A/ and
(2) the remaining part of the spectrum is contained in a disk centered at zero and
of radius strictly smaller than rsp.A/.

Jentzsch generalized in [Jen12] the Perron-Frobenius Theorem to integral op-
erators with a strictly positive continuous kernel. Kreı̆n-Rutman [KR48, Th. 6.3]
(see also [Rut40] and [Rot44]) gave an abstract setting of this result by consider-
ing a punctured, real, closed cone mapped to its interior by a compact operator.
Compactness of the operator essentially reduces the problem to finite dimensions.
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Birkhoff, in a seminal paper [Bir57], developed a more elementary and in-
tuitive (at least in our opinion) Perron-Frobenius ‘theory’ by considering the pro-
jective contraction of a cone equipped with its associated Hilbert metric. Birkhoff
noted that this projective metric satisfies a contraction principle, i.e. any linear map
preserving the cone is a contraction for the metric and the contraction is strict and
uniform if the image of the cone has finite projective diameter.

All these results, or rather their proofs, make use of the ‘lattice’-structure
induced by a real cone on a real Banach space (see [Bir67] and also [MN91]). On
the other hand, from complex analysis we know that the Poincaré metric on the unit
disk, DDfz 2C W jzj<1g, and the induced metric on a hyperbolic Riemann surface
enjoy properties similar to the Hilbert metric, in particular a contraction principle
with respect to conformal maps. More precisely, if � W U ! V is a conformal map
between hyperbolic Riemann surfaces then its hyperbolic derivative never exceeds
one. The map is a strict contraction unless it is a bijection (see e.g. [CG93, Ch. I.4:
Ths. 4.1 and 4.2]). By considering analytic images of complex discs Kobayashi
[Kob67], [Kob70] (see also [Ves76]) constructed a hyperbolic metric on complex
(hyperbolic) manifolds, a tool with many applications also in infinite dimensions
(see e.g. [Rug02, App. D]).

Given a real cone contraction, perturbation theory allows one on abstract
grounds, to consider ‘small’ complex perturbations but uniform estimates are usu-
ally hard to obtain. Uniform complex estimates are needed e.g. when (see e.g.
[NN87], [BRS05]) proving local limit theorems and refined large deviation the-
orems for Markov additive processes and also (see e.g. [Rue79], [Rug02]) for
studying the regularity of characteristic exponents for time-dependent and/or ran-
dom dynamical systems (see �10 below). It is desirable to obtain a description
of a projective contraction and, in particular, a spectral gap condition for complex
operators without the restrictions imposed by perturbation theory. We describe in
the following how one may accomplish this goal.

In Section 2 we introduce families of C-invariant cones in complex Banach
spaces and a theory for the projective contraction of such cones. The central idea
is simple, namely to use the Poincaré metric as a ‘gauge’ on two-dimensional
affine sections of a complex cone. At first sight, this looks like the Kobayashi
construction. A major difference, however, is that we only consider disk images
in two-dimensional subspaces. Also we do not take infimum over chains (so as to
obtain a triangular inequality, see Appendix A). This adapts well to the study of lin-
ear operators and makes computations much easier than for the general Kobayashi
metric. Lemma 2.3 shows that this gauge is indeed projective. The contraction
principle for the Poincaré metric translates into a contraction principle for the gauge
and, under additional regularity assumptions, developed in Section 3, into a projec-
tive contraction, and finally a spectral gap, with respect to the Banach space norm.
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In Sections 4 and 5 we consider real cones and define their canonical complex-
ification. For example, Cn

C
D fu 2 Cn W jui Cuj j � jui �uj j;8 i; j g D fu 2 Cn W

Reuiuj � 0;8 i; j g is the canonical complexification of the standard real cone,
Rn
C

. We show that our complex cone contraction yields a genuine extension of the
Birkhoff cone contraction: A real Birkhoff cone is isometrically embedded into
its canonical complexification. It enjoys here the same contraction properties with
respect to linear operators. We obtain then in Section 6 one of our main results:
When a complex operator is dominated by a sufficiently regular real cone contrac-
tion (Assumption 6.1) then (Theorem 6.3) the complex operator has a spectral gap.
It is of interest to note that the conditions on the complex operator are expressed in
terms of a real cone and, at least in some cases, are very easy to verify. Sections 7–9
thus present a selection of complex analogues of well-known real cone contraction
theorems: A Perron-Frobenius Theorem for complex matrices (as stated at the
end of the abstract), Jentzsch’s Theorem for complex integral operators, a Kreı̆n-
Rutman Theorem for compact and quasi-compact complex operators and a Ruelle-
Perron-Frobenius Theorem for complex transfer operators. In Section 10 we prove
results on the regularity of characteristic exponents of products of random complex
cone contractions. Finally, in Section 11 we discuss how our results compare to
those of perturbation theory.

2. Complex cones and gauges

Let �C D C [ f1g denote the Riemann sphere. When U � �C is an open
connected subset avoiding at least three points one says that the set is hyperbolic.
We write dU for the corresponding hyperbolic metric. We refer to [CG93, Ch. I.4]
or [Mil99, Ch. 2] for the properties of the hyperbolic metric which we use in the
present paper. As normalization we use ds D 2jdzj=.1� jzj2/ on the unit disk D

and the metric dU on U induced by a Riemann mapping � WD! U . One then has:

(2.1) dD.0; z/D log
1Cjzj

1� jzj
; jzj D tanh

dD.0; z/

2
:

Let E be a complex topological vector space. We denote by Spanfx; yg D
f�xC�y W �;� 2Cg the complex subspace generated by two vectors x and y in E.

Definition 2.1. (1) We say that a subset C�E is a closed complex cone if it
is closed in E, C-invariant (i.e. CD C C) and C¤ f0g.

(2) We say that the closed complex cone C is proper if it contains no complex
planes, i.e. if x and y are independent vectors then Spanfx; yg 6� C.

Throughout this paper we will simply refer to a proper closed complex cone
as a C-cone.
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Let C be a C-cone. Given a pair of nonzero vectors, x; y 2 C� � C�f0g, we
consider the subcone: Spanfx; yg\C. We wish to construct a ‘projective distance’
between the complex lines Cx and Cy within this subcone. We do this by consid-
ering the complex affine plane through 2x and 2y, choosing coordinates as follows
(Lemma 2.3 below implies that the choice of affine plane is of no importance):

(2.2) D.x; y/�D.x; yIC/D f� 2�C W .1C�/xC .1��/y 2 Cg ��C;
with the convention that 1 2 D.x; y/ if and only if x � y 2 C. The interior of
this “slice” is denoted Do.x; y/ (for the spherical topology on �C). Continuity of
the canonical mapping C2 ! Spanfx; yg implies that D D D.x; y/ is a closed
subset of �C. As the cone is proper, D ��C is a strict subset so that �C�D is open
and nonempty, whence it contains (more than) three points. If, in addition, Do is
connected it is a hyperbolic Riemann surface ([CG93, Th. I.3.1]).

Definition 2.2. Given a C-cone, we define the gauge, dC WC
��C�! Œ0;C1�,

between two points x; y 2 C� as follows: When two vectors are co-linear we set
dC.x; y/D 0. If they are linearly independent and �1 and 1 belong to the same
connected component U of Do.x; y/ we set:

(2.3) dC.x; y/� dU .�1; 1/ > 0:

In all remaining cases, we set dC D1.
When V � C is a (sub-)cone of the C-cone C we write

diamC.V
�/� sup

x;y2V �
dC.x; y/ 2 Œ0;C1�

for the projective ‘diameter’ of V in C. We call it a diameter even though the
gauge need not verify the triangular inequality, whence it need not be a metric (see
Appendix A for more on this issue).

LEMMA 2.3. Let C be a C-cone. The gauge on the cone is symmetric and
projective, i.e. for x; y 2 C� and a 2 C�:

dC.y; x/D dC.x; y/D dC.ax; y/D dC.x; ay/:

Proof. For .1C�/aC .1��/¤ 0 we write

.1C�/axC .1��/y D
.1C�/aC .1��/

2
..1CR/xC .1�R/y/

with

RDRa.�/D
.1C�/a� .1��/

.1C�/aC .1��/
:

Then Ra extends to a conformal bijection Ra W � 2D.ax; y/ 7!Ra.�/ 2D.x; y/

(a Möbius transformation of �C) preserving �1 and 1. The hyperbolic metric is
invariant under such transformations so indeed dC.x; y/ D dC.ax; y/ (but both
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could be infinite). Similarly, the map � 7! �� yields a conformal bijection between
the domains D.x; y/ and D.y; x/, interchanging �1 and 1, and the symmetry
follows. �

LEMMA 2.4. Let T WE1!E2 be a complex linear map between topological
vector spaces and let C1 � E1 and C2 � E2 be C-cones for which T .C�1/� C�2 .
Then the map,

T W .C�1; dC1/! .C�2; dC2/;

is a contraction. If the image has finite diameter, i.e. � D diamC�2
TC�1 < 1,

then the contraction is strict and uniform. More precisely, there is �D �.�/ < 1
(depending on � only) for which

dC2.T x; Ty/� � dC1.x; y/; 8x; y 2 C�1 :

Proof. Let x; y 2 C�1 and set D1 D D.x; yIC1/ and D2 D D.T x; TyIC2/
for which we have

f�1; 1g �D1 �D2 ��C:
Suppose that T x; Ty 2 C�2 are linearly independent and that D2 and D1 are hyper-
bolic (if not, dC2.T x; Ty/ vanishes and we are through). Since shrinking a domain
increases hyperbolic distances, it follows that dC2.T x; Ty/� dC1.x; y/ (although
both could be infinite).

Suppose now that � <C1. Then �1 and 1 belong to the same connected
component, V , of Do.T x; Ty/. We may suppose that �1 and 1 also belong to
the same connected component, U , of Do.x; y/ (or else dC1.x; y/D1/ and we
are through). Our assumptions imply that U � V is a strict inclusion and that
diamV .U /��. Choose � 2 U and pick p 2 V nU for which dV .�; p/�� (this
is possible as the inclusion U � V is strict and the diameter of U did not exceed �).
The inclusion U ,! V �fpg is nonexpanding and the inclusion V �fpg ,! V is
a contraction which has hyperbolic derivative uniformly smaller than some � D
�.�/ < 1 on the punctured �-neighborhood, BV .p;�/�, of p (see Remark 2.5).
In particular, the composed map (see Figure 1) U ,! V �fpg ,! V has hyperbolic
derivative smaller than �.�/ at � 2BV .p;�/�. As � 2U was arbitrary this is true
at any point along a geodesic joining �1 and 1 in U so that

dC2.T x; Ty/D dV .�1; 1/� � dU .�1; 1/D � dC1.x; y/: �

Remark 2.5. An explicit bound may be given using the expression ds D
jdzj=.jzj log 1

jzj
/ for the metric on the punctured disk at z 2 D� (see e.g. [Mil99,

Ex. 2.8]). Denoting, t D tanh�=2, we obtain the bound, �.�/ D 2t
1�t2

log 1
t
D

sinh.�/ log.coth �
2
/ < 1. Often, however, it is possible to improve this bound.

For example, suppose that U is contractible in V (e.g. if V is simply connected)
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V − {p} V

p p
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Figure 1. The sequence of inclusions U ,! V �fpg ,! V in the
proof of Lemma 2.4

and that U is contained in a hyperbolic ball of radius 0 < R <1. Lifting to the
universal cover we may assume that V D D and that U D fz 2 D W jzj < tg with
0 < t D tanh R

2
< 1. The inclusion .U; dU / ,! .D; dD/ has hyperbolic derivative

t 1�jzj
2=t2

1�jzj2
� t for z 2 U . We may thus use � D tanh R

2
< 1 for the contraction

constant. Recall that for a real Birkhoff cone [Bir57] one may take �D tanh �
4

(an
open interval in R of diameter � is a ball of radius �=2 in R).

3. Complex Banach spaces and regularity of C-cones

Let X be a complex Banach space and let C � X be a C-cone (Definition
2.1). We denote by X 0 the dual of X and we write h�; �i for the canonical duality
X 0�X!C. We will consider a bounded linear operator T 2L.X/ which preserves
C� and is a strict and uniform contraction with respect to our gauge on C. We seek
conditions that assure: (1) The presence of an invariant complex line (existence of
an eigenvector of nonzero eigenvalue) and (2) A spectral gap. In short, an invariant
line appears when the cone is not too ‘wide’ and the spectral gap when, in addition,
the cone is not too ‘thin’.

Definition 3.1. Let C � X be a closed complex cone in a complex Banach
space (in �4 we will use the very same definition for a real cone in a real Banach
space). When m 2X 0 is a nonzero functional, bounded on the vector space gener-
ated by C, we define the aperture of C relative to m:

K.CIm/D sup
u2C�

kmk kuk

jhm;uij
2 Œ1;C1�:

We define the aperture of C to be: K.C/D inf
m2X 0;m¤0

K.CIm/ 2 Œ1;C1�. When

K.C/ <C1 we say that C is of bounded aperture (or of K-bounded aperture with
K.C/�K <C1 if we want to emphasize a value of the bounding constant).

Definition 3.2. (1) We call C inner regular if it has nonempty interior in X .
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We say that C is reproducing (or generating) if there is a constant g <C1
such that for every x 2X we may find x1; x2 2 C for which x D x1C x2 and

(3.4) kx1kCkx2k � g kxk:

We say that C is T -reproducing (or T -generating) if there are constants g <
C1, q 2 N[f0g and 2� p <C1 such that for every x 2X and " > 0 there are
y1; : : : ; yp 2 C with

ky1kCky2kC � � �C kypk � gkxk

and
ky1Cy2C � � �Cyp �T

qxk< ":

(2) We say that C is outer regular if K.C/ < C1. We say that C is of
K-bounded sectional aperture or of bounded sectional aperture (with a bound-
ing constant 1 � K < C1) if and only if for every pair x; y 2 X , the subcone
Spanfx; yg\ C is of K-bounded aperture, i.e. there is a nonzero linear functional,
mDmfx;yg 2 Spanfx; yg0, such that

(3.5) jhm;uij �
1

K
kuk kmk; 8u 2 Spanfx; yg\C:

(3) We say that C is regular if and only if the cone is inner and outer regular.

Remarks 3.3. When a cone is of bounded aperture then the cone has a bounded
global transverse section not containing the origin. This is often a too strong re-
quirement. For example, in L1-spaces this is usually acceptable but not in Lp

with 1 < p �C1 unless we are in finite dimensions. Being inner regular means
containing an open ball and this typically fails in Lp for 1� p <C1, again with
the exemption of the finite-dimensional case. The notions of being (T -)reproducing
and of bounded sectional aperture, respectively, are more flexible and may circum-
vent the two above-mentioned restrictions. We illustrate this in Example 4.9 and
Theorem 7.2. Obviously, ‘inner regular’) reproducing) T -reproducing. Also,
‘outer regular’) bounded sectional aperture.

It is necessary to create a passage between the cone gauge and the Banach
space norm. The regularity properties defined above will enable us to do so in the
following two lemmas:

LEMMA 3.4. Let C be a closed complex cone of K-bounded sectional aper-
ture. Then C is proper, whence a C-cone (Definition 2.1). If x; y 2 C� and
mDmfx;yg is a functional associated to the subcone Spanfx; yg\C as in equation
(3.5) then:  x

hm; xi
�

y

hm; yi

 � 4K

kmk
tanh

dC.x; y/

4
� K

dC.x; y/

kmk
:
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Proof. We normalize the functional so that kmk DK. Then kuk � jhm;uij �
Kkuk for all u 2 Spanfx; yg\C. Denote yx D x

hm;xi
and yy D y

hm;yi
and consider,

as a function of � 2 C, the point u� D .1C �/yx C .1� �/yy. When u� 2 C the
properties of m show that ku�k� jhm;u�ij D j.1C�/C.1��/j � 2 and therefore,

j�j kyx� yyk � ku�kC .kyxkCkyyk/� 4:

Setting R D 4
kyx�yyk

2 Œ2;C1� we see that D.yx; yy/ � B.0;R/. The radius R is
bounded if and only if x and y are independent so the cone is proper. Enlarging a
domain decreases hyperbolic distances and so

dC.x; y/D dDo.yx;yy/.�1; 1/� dB.0;R/.�1; 1/D dD

� 1
R
;�

1

R

�
D 2 log

1C 1
R

1� 1
R

:

Therefore, kyx�yyk
4
D

1
R
� tanh dC.x;y/

4
�
dC.x;y/
4

, and the stated bound follows. �

LEMMA 3.5. Let C be a C-cone of a K-bounded sectional aperture and let
x 2 C�, y 2 X . Suppose that there is r > 0 such that xC t y 2 C� for all t 2 C

with jt j< r . Then

dC.x; xC s y/�
2

r
jsjC o.jsj/ as s! 0(3.6)

and

kyk �
K

r
kxk:(3.7)

Proof. Let jsj< r . Using the scale-invariance of the cone we see that

D.x; xC s y/D f� 2�C W .1C�/xC .1��/.xC sy/ 2 Cg

D

n
� 2�C W xC .1��/ s

2
y 2 C

o
:

Our hypothesis implies that D.x; xC s y/ contains a disc of radius 2r
jsj

, centered
at 1. Shrinking a domain increases hyperbolic distances, whence

dC.x; xC s y/� dB.1; 2r
jsj
/.�1; 1/D dD

�
0;
jsj

r

�
D log

1Cjsj=r

1� jsj=r
D
2

r
jsjC o.jsj/:

Choose m associated to the subcone Spanfx; yg \ C as in equation (3.5),
normalized so that kmk D K. As m is nonzero on the punctured subcone, 0 <
jhm; xC t yij D jhm; xiC thm; yij for all jt j< r , and this implies that r jhm; yij �
jhm; xij. Possibly after multiplying x and y with complex phases we may assume
that hm; xi � hm; ryi> 0. But then

2rkyk � kxC rykCkx� ryk � hm; xC ryC x� ryi � 2Kkxk: �

THEOREM 3.6. Let C be a C-cone of K-bounded sectional aperture. Let T 2
L.X/ be a strict cone contraction, i.e. T W C�! C� with �D diamCT .C

�/ <1.
Let � < 1 be as in Lemma 2.4. Then:
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(1) C contains a unique T -invariant complex line, Ch.

We define � 2 C� by setting T hD �h.

(2) There are constants R; zC <C1 and a map c W C! C so that for any x 2 C

and n� 1:

k��nT nx� c.x/hk � zC �n�1kxk;(3.8)

kc.x/hk �R kxk:(3.9)

Proof. Let x0 2C� and set e1DT x0=kT x0k2T .C�/�C�. We will construct
a Cauchy-sequence .en/n2N recursively. Given en, n� 1 choose, as in Definition
3.2 (2), a functional mn 2 X 0 normalized so that kmnk D K, associated to the
subcone Spanfen; Teng\C. Set �nD hmn; Teni=hmn; eni (for which we have the
bound 0 < j�nj � kT kK) and define the next element in our recursion:

enC1 D
��1n Ten

k��1n Tenk
2 T nC1C�:

Using Lemma 3.4 and then Lemma 2.4 (with a contraction constant � < 1) we
obtain for n� 1:

(3.10)
 en

hmn; eni
�

Ten

hmn; Teni

 � dC.en; Ten/ � diamT nC� ���n�1:

As 1� jhmn; enij �K and jhmn; Tenij � kT kK we get:

(3.11) ken���1n Tenk � K � �n�1 and k�nen�Tenk � kT kK � �n�1:

Noting that kenk D 1, the first inequality implies:

(3.12) ken� enC1k � 2K � �n�1:

The sequence, .en/n2N, is therefore Cauchy, whence has a limit,

(3.13) hD lim
n
en 2 C�; khk D 1:

The limit belongs to C because the cone was assumed closed. Writing

.�nC1��n/enC1 D .T ��n/enC .�nC1�T /enC1C .T ��n/.enC1� en/

and using the second inequality in (3.11) as well as (3.12) and j�nj � kT kK we
obtain

(3.14) j�n��nC1j � .1C �C .2C 2K// kT kK � �n�1;

so that the limit �D limn �n exists also. But kT h��hkD limn kTen��nenkD 0
shows that T h D �h 2 C� which implies that � ¤ 0, whence that Ch � C is a
T -invariant complex line. Suppose also that Ck � C (with k ¤ 0) is T -invariant.
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Then dC.h; k/D dC.T h; T k/� � dC.h; k/� ��<C1 and this implies dC.h; k/

D 0 so that the two vectors must be linearly dependent. Thus, Ch is unique.
To see the second part, let x 2 C� and define for n � 1: xn D T nx. This

time we pick mn 2 X 0 associated to the subcone Spanfxn; hg \ C and set cn D
hmn; �

�nxni=hmn; hi for which jcnj �Kk��nxnk. As in (3.10) we get xn

hmn; xni
�

h

hmn; hi

� K

kmnk
dC.T

nx; T nh/(3.15)

�
K

kmnk
diamT nC� �

K

kmnk
��n�1:

Thus, k��nxn� cnhk �Kk��nxnk��n�1 and

k��n�1xnC1��
�nxnk D k�

�1T .��nxn� cnh/� .�
�nxn� cnh/k

� .1Ck��1T k/K k��nxnk��
n�1:

Then k��n�1xnC1k �
�
1C .1Ck��1T k/K ��n�1

�
k��nxnk so we get the fol-

lowing uniform bound in n� 1:

k��nxnk �
Y
k�0

�
1C .1Ck��1T k/K ��k

�
k��1x1k(3.16)

� exp
�
.1Ck��1T k/

K�

1� �

�
k��1 T k kxk �R kxk:(3.17)

Writing .cnC1� cn/hD .cnC1h���n�1xnC1/C .��1T /.��nxn� cnh/ we
obtain

jcnC1� cnj D kcnC1h� cnhk �
�
�Ck��1T k

�
K��n�1R kxk:

Therefore, c� D lim cn 2 C exists and by re-summing to1,

jc�� cnj �
�Ck��1T k

1� �
K ��n�1R kxk:

Then also

k��nxn� c
�hk �

1Ck��1T k

1� �
K ��n�1R kxk � zC �n�1kxk

which implies that c.x/� c� depends only on x (and not on the choice of mn’s).
We also have: jc.x/j D kc.x/hk D limn k��nxnk � supn k�

�nxnk �R kxk. �

THEOREM 3.7. Let T 2 L.X/ and let C be a C-cone which is a K-bounded
sectional aperture and which, in addition, is reproducing. Suppose that T is a
strict cone contraction, i.e. T W C�! C� with �D diamCT .C

�/ <1. Then T has
a spectral gap.
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Proof. Let x 2 X and let g be the ‘reproducing’ constant from (3.4). Pick
x1; x2 2 C with x D x1C x2 and kx1kC kx2k � gkxk. We apply the previous
theorem to x1 and x2 and set c� D c.x1/C c.x2/ for which jc�j � R kx1k C
R kx2k � gRkxk. In a similar way we obtain k��nT nx � c�hk � g zC �n�1kxk,
n � 1. Letting n ! 1, we see that c.x/ � c� depends on x but not on the
choice of the decomposition. Linearity of T furthermore implies that the mapping
x!h�; xi� c.x/2C must be linear, and, as a linear functional, � 2X 0 is bounded
in norm by A� gR. We have shown that

(3.18) k��nT nx� hh�; xik � C�n�1kxk; 8 x 2X; n� 1;

with C <C1. Therefore, � is a simple eigenvalue of T corresponding to the eigen-
projection, x! hh�; xi and the remainder has spectral radius not exceeding � j�j.

In the more general case, when C is T -reproducing, we let g; p; q be con-
stants from Definition 3.2. For x 2 X and fixed k � 1, set " D 1=k and choose:
y1; : : : ; yp 2C with ky1kCky2kC � � �Ckypk � gkxk and ky1Cy2C� � �Cyp�
T qxk < 1

k
. Setting c�

k
D c.y1/C � � � C c.yp/ we obtain in this way a sequence

.c�
k
/k�1 for which k��nT nCqx�c�

k
hk� g zC�n�1kxkC 1

k
k��nT nxk, n� 1. The

sequence is bounded so we may extract a convergent subsequence c�
km
! c� and

conclude that k��nT nCqx � c�hk � g zC�n�1kxk, 8n � 1. Again, h�; xi � c�

depends linearly on x and T has a spectral gap. �

Remark 3.8. Some explicit estimates for the constants in Theorem 3.7 when
C is reproducing:

kc�k � A� g k��1 T k exp
��
1Ck��1 T k

� K�
1��

�
(3.19)

and

C D
�
1Ck��1 T k

� K�
1��

A:

Note, however, that in this setting there is no a priori lower bound on j�j. In
particular, to get an explicit bound on k��1 T k one needs further information on
the map T and the cone C.

Example 3.9. Let X be a complex Banach space and consider e 2X , ` 2X 0

with h`; ei D 1. We write P D e˝ ` for the associated one-dimensional projection.
For 0 < � <C1 we set

(3.20) C� D
n
x 2X W k.1�P /xk � �kPxk

o
:

Then B
�
e; �kek
1C.1C�/kP k

�
� C� and K.C� / � .1C �/kP k so that C� is a regu-

lar C-cone. Furthermore, if 0 < �1 < � < C1, then a calculation shows that
diamC�C��1 <C1.
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Remark 3.10. We have the following characterization of the spectral gap prop-
erty: A bounded linear operator, T 2 L.X/, has a spectral gap if and only if it is a
strict contraction of a regular C-cone. Sketch of proof: One direction is the content
of Theorem 3.7 (since a regular cone in particular is of uniformly bounded sectional
aperture). For the other direction one uses the spectral gap projection P to construct
an adapted norm (equivalent to k�k): kxk� DkPxkC

P
k�0 �

�kkT k.1�P /xk for
some fixed choice of � 2 .�; 1/. Using this norm to define the cone family in (3.20),
it is not difficult to see that T is a strict and uniform contraction of C� , � > 0.

4. Real cones

Let XR denote a real Banach space. Recall that a subset CR �XR is called a
(real) proper closed convex1 cone if it is closed and convex and if

RCCR D CR;(4.21)

CR\�CR D f0g:(4.22)

The real cone is said to be reproducing (or generating) provided CRC .�CR/D

XR. By Baire’s Theorem and convexity of CR it is not difficult to see that this is
equivalent to the existence of g <C1 such that every x 2 XR decomposes into
x D xC� x� with xC; x� 2 CR and such that

(4.23) kxCkCkx�k � g kxk:

Remark 4.1. A possible generalization: As in Definition 3.2 (1) we may say
that CR is T -reproducing (or T -generating) if there is g <C1 and q 2 N so that
for every x 2XR and " > 0 there are y

C
; y
�
2 CR (CR is convex) with

(4.24) ky
C
kCky

�
k � g kxk and ky

C
�y
�
�T qxk< ":

In the following, we will refer to a real proper closed convex cone as an
R-cone. We assume throughout that such a cone is nontrivial, i.e. not reduced to
a point. Given an R-cone one associates a projective (Hilbert) metric for which
we here give two equivalent definitions (for details we refer to [Bir57], [Bir67]).
The first, originally given by Hilbert, uses cross-ratios and is very similar to our
complex cone gauge: Let �RDR[f1g denote the extended real line (topologically
a circle). For x; y 2 CR

�
� CR�f0g, we write

(4.25) `.x; y/D
n
t 2�R W .1C t /xC .1� t /y 2 CR[�CR

o
with the convention that12 `.x; y/ if and only if x�y 2 CR[�CR. Properness
of the cone implies that `.x; y/D�R if and only if x and y are co-linear. In that case

1 Convexity of a real cone often is a useful property that a fortiori is lost when dealing with
complex cones.
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we set their distance to zero. Otherwise, `.x; y/ is a closed (generalized) segment
Œa; b���R containing the segment Œ�1I 1�; see Figure 3 in Section 5.

The logarithm of the cross-ratio of a;�1; 1; b 2�R,

(4.26) dCR
.x; y/DR.a;�1; 1; b/D log

a� 1

aC 1

bC 1

b� 1
;

then yields the Hilbert projective distance between x and y. Birkhoff [Bir57] found
an equivalent definition of this distance: For x; y 2 CR

�
� CR�f0g, one defines

(4.27) ˇ.x; y/D inff� > 0 W �x�y 2 CRg 2 .0;C1�

in terms of which:

(4.28) dCR
.x; y/D log .ˇ.x; y/ˇ.y; x// 2 Œ0;C1�:

A simple geometric argument shows that indeed the two definitions are equivalent.
Given a linear functional, m 2 X

0

R, the image of the cone, hm;CRi, equals
either f0g, RC, R� or R. One defines the dual cone as

(4.29) C
0

R D fm 2X
0

R WmjCR
� 0g:

Using Mazur’s Theorem, cf. e.g. [Lan93, p. 88], one sees that the R-cone itself
may be recovered from:

(4.30) CR D fx 2XR W hm; xi � 0; 8m 2 C
0

Rg:

Given an R-cone CR we use Definition 3.1 (replacing C by R, complex by
real) to define the aperture of CR. It is given as the infimum of K-values for which
there exists a linear functional m 2X

0

R satisfying (see Figure 2)

(4.31) kuk � hm;ui �Kkuk; u 2 CR:

LEMMA 4.2. The aperture, K.CR/ 2 Œ1;C1�, of an R-cone, CR � XR, is
determined by

(4.32)
1

K.CR/
D inf

�
kx1C � � �C xnk

kx1kC � � �C kxnk
W xi 2 C�R; n� 1

�
:

Proof. Let x1; : : : ; xn 2 C�R and note that a D
Pn
1 xi=

Pn
1 kxik belongs to

A � Conv.CR \ @B.0; 1//, the convex hull of cone elements of norm one. The
reciprocal of the right-hand side in (4.32) therefore equals r D inffkak W a 2 Ag 2
Œ0; 1�. Suppose that r > 0. Then B.0; r/ and Cl A are disjoint convex subsets. The
vector difference, Z D fa� b W a 2 Cl A; b 2 B.0; r/g, is open, convex and does
not contain the origin, whence [Lan93, Lemma 2.2, p. 89] there is ` 2X 0R whose
kernel does not intersect Z. We may normalize ` so that

B.0; r/� f` < 1g and Cl A� f`� 1g:



1720 HANS HENRIK RUGH

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

m� 1

1
K

1

CR

Figure 2. A real cone CR of K-bounded sectional aperture

Then

(4.33) kxk � h`; xi �
kxk

r
; 8x 2 CR

�;

and therefore K.CR/ �
1
r

. To get the converse inequality let m be positive and
verify (4.31). Then

P
kxik �

P
hm; xi i D hm;

P
xi i �Kk

P
xik. �

LEMMA 4.3. Let CR � XR be a d -dimensional R-cone of K-bounded sec-
tional aperture. Then CR itself is of dK-bounded aperture.

Proof. Let F � Rd . By a theorem of Carathéodory, a point in the convex
hull, ConvF , is a fortiori in the convex hull of d C 1 points in F (see e.g. [Rud91,
p. 73]). If x 2 @ ConvF , we may even write it as a limit of convex combinations
of d points in F . Now, apply this to the set A in the proof of the previous lemma.
In the formula, (4.32), it thus suffices to consider d cone elements which we may
order decreasingly according to their norm, kx1k � kx2k � � � � � kxdk. Using
Lemma 4.2 with nD 2, the K-bounded sectional aperture implies that

kx1C� � �Cxdk�
1

K
kx1kC

1

K
kx2C� � �Cxdk�

1

K
kx1k�

1

K

kx1kC � � �C kxdk

d
:

Thus
kx1C � � �C xdk

kx1kC � � �C kxdk
�

1

dK
;

and in view of Lemma 4.2, we see that CR is of dK bounded aperture. �

LEMMA 4.4. Let CR � Rd be an R-cone. Then CR is outer regular.

Proof. As in the previous lemma it suffices to look at the supremum in (4.32)
over d -tuples. The set A� fx1; : : : ; xd 2 CR W kx1kC � � �Ckxdk D 1g is compact
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and kx1C� � �Cxdk is continuous and nonvanishing on A, whence has a minimum,
r > 0. It follows that K.CR/�

1
r
<C1. �

Remark 4.5. In the literature, an R-cone CR is said to be norm-directed (with
a constant 1 � K < 1) if kx � yk � Kkx C yk, 8x; y 2 CR. For an R-cone
our notion of uniformly bounded sectional aperture is equivalent (up to a small
unavoidable loss in constants) to that of being norm-directed. To see this note that
if CR is of K-bounded sectional aperture and ` verifies (4.33) then 8x; y 2 CR:

kx�yk � kxkCkyk � h`; xiC h`; yi D h`; xCyi �KkxCyk;

which shows that CR is K-norm-directed. Conversely, if CR is K-norm-directed
then

kxkCkyk � kxCykCkx�yk � .1CK/kxCyk

and Lemma 4.2 shows that CR is of .KC1/-bounded sectional aperture. For exam-
ple, .Rd

C
; k�k1/ is 1-norm directed and of 1-bounded aperture, whereas .Rd

C
; k�k1/

is 1-norm directed, of 2-bounded sectional aperture but only of d bounded aperture.
Lemma 3.5 is a complex cone analogue of being norm-directed.

THEOREM 4.6. Let A 2 L.XR/ and let CR � XR be a reproducing R-cone
which is K-norm-directed. Suppose that A is a strict cone contraction, i.e. A W
C�R ! C�R with �A D diamCR

A.CR
�/ < C1. Then A has a spectral gap. More

precisely, there are � > 0 and a one-dimensional projection P for which ��1A�P
has spectral radius not greater than tanh �A

4
< 1.

Proof. The statement of this theorem is very close to Birkhoff’s Theorem 4
in [Bir57]. The proof of that theorem may be adapted to the present case. Al-
ternatively, we may here simply use Remark 5.10 below. Our Theorem 4.6 also
generalizes easily to the case when ‘reproducing’ is replaced by ‘T-reproducing’,
equation (4.24). We omit the proof.

COROLLARY 4.7. Let CR be an R-cone in Rd , d < C1 and suppose that
A 2 L.XR/ verifies A.C�R/� Int CR. Then A has a spectral gap.

Proof. Implicitly it is assumed that CR has nonempty interior. Lemma 4.4
shows that CR is outer regular, in particular, norm-directed. As is easily shown, the
map x; y 2 CR

�
7! dCR

.x; y/ is continuous. Compactness of CR\fjxj D 1g then
implies that diamCR

A.CR
�/ <C1 so the corollary follows from Theorem 4.6. �

Let CR � XR be an R-cone. It is standard to write x � y , y � x 2 CR

for the induced partial ordering of x; y 2 XR. For A;B 2 L.XR/, we also write
A� B,8x 2 CR W A.x/� B.x/.

The following dominated cone contraction theorem is trivial in the context of
an R-cone contraction. In Section 6 we show that a similar (nontrivial) result holds
in the complex case.
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THEOREM 4.8. Let A;P 2L.XR/ be contractions of the R-cone CR. Suppose
that there are constants 0 < ˛ � ˇ <C1 for which ˛P � A� ˇP . Then

diamCR
A.CR

�/� 2 log
ˇ

˛
C diamCR

P.CR
�/:

Proof. Given x; y 2CR
�, suppose that �; �0>0 are such that �Px�Py 2CR,

�0Py �Px 2 CR. Then also �ˇAx�˛Ay 2 CR and �0ˇAy �˛Ax 2 CR so that

dCR
.Ax;Ay/� 2 log

ˇ

˛
C log.��0/

and the claim follows by Birkhoff’s characterization (4.28). �

Example 4.9. (1) Let A 2Mn.R/ and suppose that 0 < ˛ � Aij � ˇ <C1
for all indices. Setting Pij � 1 we see that

P
�
.RnC/

�
�
D f.t; : : : ; t / W t > 0g

which is of zero projective diameter in Rn
C

. By Theorem 4.8 we recover the stan-
dard result:

diamRn
C
A
�
.RnC/

�
�
��A D 2 log

ˇ

˛
:

The cone Rn
C

is regular and so Theorem 4.6 applies. If �1 > 0 and j�2j denote the
leading eigenvalue and the second largest eigenvalue (in absolute value), respec-
tively, then j�2j

�1
� tanh �A

4
D

ˇ�˛
ˇC˛

.
(2) The standard Perron-Frobenius Theorem generalizes to integral operators;

cf. Jentzsch’s Theorem [Jen12] and the generalization given by Birkhoff in [Bir57].
We present a somewhat different generalization: Let .�;�/ be a measure space
and let XRDL

p �Lp.�;�/, 1�p�C1. Let h2Lp
C

(h> 0, a.e.) and m2Lq
C

(m> 0, a.e.) with q D p=.p� 1/ 2 Œ1;C1� being the conjugated exponent so that
0 <

R
� h m d� <C1. Let kA W���! RC be a �˝�-measurable map. We

suppose there are constants 0 < ˛ � ˇ <C1 so that for �-almost all x; y 2�:

˛ h.x/m.y/� kA.x; y/� ˇ h.x/m.y/:

LetA2L.XR/ be the integral operator defined byA�.x/D
R
� kA.x; y/�.y/ d�.y/.

Then A has a spectral gap (again with a contraction rate given by ˇ�˛
ˇC˛

).

Proof. We write CRDL
p
C
.�;�/ for the cone of positive Lp-functions (��0,

a.e.) and compare the operator A with the one-dimensional projection P� D
h
R
�m� d�. Our assumption,

R
hmd� > 0 shows that P W C�R! C�R and that

�P D 0. By Theorem 4.8, diamCR
A.CR

�/� 2 log ˇ
˛

.
CR is (trivially) reproducing with a constant g D 21�1=p � 2. To see that

CR is of uniformly bounded sectional aperture let f; g 2 CR be of unit norm in
L
p
C

, 1 � p < C1, and pick Qf ; Qg 2 Lq
C
.�/ with k Qf kq D k Qgkq D 1 (the case



CONES AND GAUGES IN COMPLEX SPACES 1723

p D 1, q D 1 should be treated separately; we leave this to the reader) andR
Qf f d� D

R
Qg g d� D 1. The functional m.u/ D

R
. Qf C Qg/u d� then verifies

kukp � m.u/ � 2kukp for all u 2 CR \ Spanff; gg. Thus CR is of 2-bounded
sectional aperture.

5. The canonical complexification of a real Birkhoff cone

A complex cone yields a genuine extension/generalization of the cone con-
traction described by Birkhoff [Bir57], [Bir67]. More precisely, we will show that
any Birkhoff cone may be isometrically embedded in a complex cone, enjoying
qualitatively the same contraction properties.

Let XR be a Banach space over the reals. A complexification XC of XR is a
complex Banach space, equipped with a bounded anti-linear complex involution,
J WXC!XC, J 2D Id (the identity map), J.�x/D�J.x/, J.xCy/DJ.x/CJ.y/,
� 2 C, x; y 2 XC, for which XR D

1
2
.IdC J /XC is the real part. Then XC D

XR˚ iXR is a direct sum. (Note that this is not the same as regarding XC as a
real Banach space. For example, Cn is a complexification of Rn for any `p-norm,
1� p �1, while the real dimension of Cn is 2n.)

For simplicity we will assume that J is an isometry on XC in which case the
canonical projections, ReD 1

2
.IdCJ / and ImD 1

2i
.Id�J /, have norm one. We note

that any real Banach space, .XR; k�kR/, admits a complexification, XCDXR˚ iXR

as follows: We adopt the obvious rules for multiplying by complex numbers, set
J.xC iy/D x� iy and introduce a norm e.g. using real functionals,

kxC iykC D supfjh`; xiC ih`; yij W ` 2X
0

R; k`kR � 1g:

The latter norm is equivalent (within a factor of 2) to any other conjugation invariant
norm on XC having as real part the given space .XR; k � kR/. For the rest of this
section XR will denote the real part of a complex Banach space XC. A real linear
functional, m2X

0

R, extends to a complex linear functional by setting hm; xC iyiD
hm; xiC ihm; yi for xC iy 2XR˚ iXR.

Definition 5.1. Given an R-cone CR �XR we define its canonical complexi-
fication:

(5.34) CC D

n
u 2XC W Re hm;ui h`; ui � 0; 8m; ` 2 C

0

R

o
:

PROPOSITION 5.2. We have the following polarization identity:

(5.35) C�C D f�.xC iy/ W � 2 C; x˙y 2 C�Rg:

Proof. Let u 2 C�
C

. Our defining condition (5.34) means that hm;ui (assume
here it is nonzero) must have an argument that varies within a �=2 angle as m 2
C
0

R varies. Normalizing appropriately, we may write u D �v with � 2 C� and
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Arghm; vi � �=4. If we set v D xC iy with x; y 2XR then jhm; yij � hm; xi for
all m 2 C

0

R. Hence, hm; x˙ yi � 0 for all such functionals and by (4.30) this is
equivalent to x˙y 2CR. If x D y (or x D�y) then we may write uD �.1C i/ x
(or uD �.1� i/ x) so that we may always assume x˙y 2 C�R. �

LEMMA 5.3. Let CR be an R-cone of K-bounded aperture. Then its canonical
complexification, CC, is of 2

p
2K-bounded aperture.

Proof. Let ` 2 X 0R satisfy kxk � h`; xi � Kkxk; x 2 CR and extend ` to a
complex linear functional. When u 2 CC we use polarization, Proposition 5.2, to
write uD�.xCiy/with h`; x˙yi�0. Then kx˙yk�h`; xi˙h`; yi�Kkx˙yk,

from which kxk � h`; xi and kyk � h`; xi so that 1
2
kxC iyk � h`; xi � jh`; xiC

ih`; yij. As jh`; yij � h`; xi we also have jh`; xC iyij �
p
2 h`; xi �

p
2Kkxk �

p
2KkxC iyk. Therefore, 1

2
kuk � jh`; uij �

p
2K kuk and the result follows. �

PROPOSITION 5.4. Let CR be an R-cone. If CR is (1) inner regular / (2)
reproducing / (3) outer regular/ (4) of bounded sectional aperture, then so is its
canonical complexification.

Proof. (1) One checks that if CR contains an open ball BXR
.h; r/ then CC

contains BXC
.h; r=2/.

(2) Note that when u; v 2 CR then by Proposition 5.2,

uC iv D .1C i/

�
1� i

2
uC

1C i

2
v

�
D .1C i/

�
uC v

2
C i

u� v

2

�
2 CC;

because uCv
2
˙
u�v
2
2 CR. Now, let w D uC iv 2 XR˚ iXR and use that CR is

reproducing inXR to write uDuC�u� and vDvC�v� with uC; u�; vC; v� 2CR

and kuCkCku�k � gkuk and kvCkCkv�k � gkvk. Then

w D .uCC ivC/� .u�C iv�/ 2 CCCCC

and

kuCC ivCkCku�C iv�k � kuCkCku�kCkvCkCkv�k

� g.kukCkvk/� 2gkwk:

(3) As shown in Lemma 5.3, if CR �XR is of K-bounded aperture then CC

is of 2
p
2K-bounded aperture.

(4) Let u1; u2 2C�
C

and writeW D SpanCfu1; u2g\CC for the subcone gener-
ated by these two elements. We also write F D SpanRfReu1; Imu1;Reu2; Imu2g

and VRDF \CR which is an at most four- and at least one-dimensional R-subcone
of CR. Now, if w 2W then w D �0.x0C iy0/ with x0˙ y0 2 CR and clearly also
x0; y0 2F . But then x0˙y0 2 VR so that also w 2 VC, with VC the complexification
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of VR. By Lemma 4.3, VR is of 4K bounded aperture so by Lemma 5.3, VC and
therefore also W , are of 8

p
2K bounded (complex) aperture. �

THEOREM 5.5. Let CR be an R-cone and let CC denote its canonical complex-
ification (5.34). Then CC is a C-cone (Definition 2.1). With dCC

for our projective
gauge on the complex cone, the natural inclusion,�

C�R; dCR

�
,!

�
C�C; dCC

�
;

is an isometric embedding.

Proof. The set CC is clearly C-invariant. Consider independent vectors, x,
y 2CR

�. By Lemma 4.4 any finite-dimensional subcone of CR is outer regular, and
so is in particular of uniformly bounded sectional aperture. Our previous lemma
shows that the corresponding complex cone is of bounded sectional (complex) aper-
ture. But then CC must be proper by Lemma 3.4.

Regarding the embedding we may normalize the points so that `.x; y/D Œa; b�
is a bounded segment in R. Define the ‘boundary’ points, x0D .1Ca/xC .1�a/y
and y0D .1Cb/xC .1�b/y. For any " > 0 the point �"x0C .1C"/y0 is outside
the closed convex cone CR. By Mazur’s Theorem, [Lan93, p. 88], we may separate
this point from CR by a functional `2C

0

R. For any ">0 we may then findm; `2C
0

R

for which

hm; x0i D h`; y0i D " and hm; y0i D h`; x0i D 1:

Then u D �x0C �y0 2 CC only if Re ."�C �/."�C x�/ � 0 for any 0 < " � 1
whence only if

Re � x�� 0 , j�C�j2 � j���j2:

Conversely, when Re� x�� 0 and m; ` 2 C
0

R then

Re hm;ui h`; ui � Re .� x�/ . hm; y0i h`; x0i C hm; x0i h`; y0i / � 0;

so this condition is also sufficient. We thus have: D.x0; y0/DSD. Therefore D D
D.x; y/��C is a generalized disc, symmetric under complex conjugation for which
`.x; y/DD.x; y/\�R (see Figure 3). In this situation we know explicit formulas
for both (4.26) the real and (2.1) the complex hyperbolic metrics in terms of cross-
ratios; so we get dCC

.x; y/DdDo.x;y/.�1; 1/D logR.a;�1; 1; b/DdCR
.x; y/. �

COROLLARY 5.6. For n� 1 the set

CnC D fu 2 Cn W Re uiuj � 0; 8i; j g D fu 2 Cn W jui Cuj j � jui �uj j; 8i; j g

is a regular C-cone. The inclusion, ..Rn
C
/�; dRn

C
/ ,! ..Cn

C
/�; dCn

C
/ is an isometric

embedding.
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−1 −1
ab a b

1 1

Figure 3. Illustration of two possible configurations of D.x; y/
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Re z1

Im .z1C z2/

Re z2

Figure 4. An attempt to illustrate the canonical complexification
C2
C

of R2
C

in the coordinate system .Re z1, Re z2, Im .z1C z2//

where Im .z1 � z2/D 0. We show the part of the cone contained
in the region .Re .z1C z2//2C .Im .z1C z2//

2 � 1 The shaded
region shows the intersection with the real cone, R2

C
.

Proof. Let `i 2 .Rn/0, i D 1; : : : ; n denote the canonical coordinate projections.
Then

RnC D fx 2 Rn W h`i ; xi � 0; 8 ig

and

CnC D fu 2 Cn W Re h`i ; uih j̀ ; ui � 0; 8 i; j g:

Thus, Cn
C

is the canonical complexification of the standard real cone Rn
C

. See
Figure 4 for an illustration of C2

C
. �
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Below we shall need the following complex polarization:

LEMMA 5.7. Let x˙y 2 C�R be at a distance �D dCR
.x�y; xCy/ <C1.

We may then find ˛ 2 R so that the ‘rotated’ vector x0 C iy0 D ei˛.x C iy/, or
equivalently:

x0 D x cos˛�y sin˛;

y0 D x sin˛Cy cos˛

verifies:

x0� ty0 2 CR; 8 jt j � coth
�

4
:

In particular, x0˙y0 2 C�R and we have for all ` 2 C
0

R:

(5.36) jh`; y0ij �
�

tanh
�

4

�
h`; x0i and

1
p
2
h`; xi � h`; x0i �

p
2h`; xi:

Proof. We have that

`.x�y; xCy/D ft 2�R W .1C t /.x�y/C .1� t /.xCy/ 2 CR[�CRg

D ft 2�R W x� ty 2 CR[�CRg:

Now write t D tan.�/, � 2 R and set

‚.x; y/D f� 2 R W x� tan � y 2 CR[�CRg(5.37)

D f� 2 R W cos � x� sin � y 2 CR[�CRg

D f� 2 R W Re ei� .xC iy/ 2 CR[�CRg:

Let Œ�1; �2� denote the connected component of ‚.x; y/ containing Œ��=4I�=4�.
Then ��1; �2 2��4 ;

3�
4
Œ and �2��1 <� . When we insert aD tan �1 and bD tan �2

in equation (4.26) (see Figure 5) standard trigonometric formulae show that the
projective distance between x�y and xCy may be written as

d.�1; �2/� log
�

sin �2C cos �2
sin �2� cos �2

�
sin.��1/C cos.��1/
sin.��1/� cos.��1/

�
:

If we do a complex rotation, x0C iy0 D ei˛.xC iy/ then the last expression
in (5.37) shows that ‚.x0; y0/D Œ�1�˛; �2�˛�. Here, the interval J of allowed
˛-values is such that ‚.x0; y0/ contains Œ��=4; �=4�. Now, J D ��1 C �

4
; �1 C

3�
4
Œ \ ��2 �

3�
4
; �2 �

�
4
Œ. The derivative of ˛ 2 J ! dCR

.x0 � y0; x0 C y0/ D

d.�1�˛; �2�˛/ equals

2

cos.2.�1�˛//
�

2

cos.2.�2�˛//
;

which vanishes precisely at ˛ D�.�2C �1/=2. So the minimal distance between
x0�y0 and x0Cy0 is obtained for this value of ˛ and corresponds to a symmetric
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t

�1 < 0 �2 > 0

xCy x�y

C1�1aDtan.�1/ bDtan.�2/

Figure 5. The subcone CR \ Spanfx; yg viewed in the x,y-
coordinate system.

configuration in which `.x0�y0; x0Cy0/D Œ�L;L� with LD tan �2��1
2

> 1 and
�� d.x0�y0; x0Cy0/D 2 log LC1

L�1
or equivalently,

L� coth
�

4
:

Thus x0� ty0 2 CR whenever jt j � L and we have obtained the first claim. Since
h`; x0 � ty0i � 0 for all �L � t � L we also get the first inequality in (5.36). To
see the last inequality note that h`; x˙yi � 0 implies that h`; x0i D cos˛ h`; xi�
sin˛ h`; yi�

p
2 h`; xi. Similarly h`; xiD cos˛ h`; x0iCsin˛ h`; y0i�

p
2 h`; x0i

(because h`; x0˙y0i � 0). �

LEMMA 5.8. Let x1; x2 2 CR be at a distance � D dCR
.x1; x2/ < C1.

Through a positive real rescaling, e.g. replacing x1 by tx1 for a suitable t > 0,
we may assure that 8` 2 C

0

R:

h`; x1i � e
�=2
h`; x2i; h`; x2i � e

�=2
h`; x1i

and

jh`; x1� x2ij �
�

tanh
�

4

�
h`; x1C x2i:

Proof. From the Birkhoff characterization (4.28) of the projective distance we
may rescale, say x1, to obtain e�=2x1 � x2 2 CR and e�=2x2 � x1 2 CR. Then
h`; x1i � e

�=2h`; x2i and h`; x2i � e�=2h`; x1i. From this we get:

.e�=2� 1/.h`; x1iC h`; x2i/� .e
�=2
C 1/.h`; x1i � h`; x2i/

D 2.e�=2h`; x2i � h`; x1i/� 0

and similarly with x1 and x2 interchanged. Rearranging terms yields the claim. �
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PROPOSITION 5.9. Let C1R � CR be an inclusion of R-cones and denote
by C1

C
� CC the inclusion of the corresponding complexified cones. Let �R D

diamCR
.C1R/

� 2 Œ0;C1� and �C D diamCC
.C1

C
/� 2 Œ0;C1� be the projective

diameters of the respective inclusions. Then �R is finite if and only if �C is finite.

Proof. From the embedding in Theorem 5.5 we see that �R � �C which
implies one direction. To see the converse, suppose that �D tanh�R=4 < 1 and
let u1; u2 2 C1

C

�. We write u1 D �1. Qx1C i Qy1/ with Qx1˙ Qy1 2 C1R (and similarly
for u2). Possibly after applying a real rescaling of e.g. u1 we may by Lemma 5.8
assume that:

(5.38) h`; Qx1i � e
�R=2h`; Qx2i and h`; Qx2i � e�R=2h`; Qx1i:

Rotating the complex polarization of Qx1 C i Qy1 and Qx2 C i Qy2, we may by
Lemma 5.7 assume that u1 D x1C iy1 and u2 D x2C iy2 with

(5.39) jh`; y1ij � �h`; x1i and jh`; y2ij � �h`; x2i

for all ` 2C
0

R. The complex rotation may, however, push x1 and x2 out of the small
cone2 but using the second inequality in (5.36) as well as (5.38) we still have the
bound:

(5.40) h`; x1i � 2e
�R=2h`; x2i and h`; x2i � 2e�R=2h`; x1i:

Proceeding as in the proof of Lemma 5.8 we see that

(5.41) jh`; x1� x2ij � �h`; x1C x2i with � �
2e�R=2� 1

2e�R=2C 1
< 1:

Let us write u�D .1C�/u1C.1��/u2, �2C, and similarly for x� and y�. In
order to prove our claim it suffices to find a fixed open neighborhood U D U.�R/

of the segment Œ�1I 1� � C, depending on �R but not on u1 and u2, such that
u� 2 CC for every � 2 U . Let �1 � t � 1. Then jh`; yt ij � �h`; xt i and we get
(with `1; `2 2 C

0

R) (a):

Reh`1; ut ih`2; ut i D h`1; xt ih`2; xt iC h`1; yt ih`2; yt i � .1��2/h`1; xt ih`2; xt i

as well as (b): jh`; ut ij �
p
1C �2h`; xt i.

We also obtain the estimates (c): jh`; u1�u2ij �
p
�2C �2 h`; x1C x2i and

(d): jh`; xt ij � .1��jt j/h`; x1Cx2i � .1��/h`; x1Cx2i. Let us write �D tCz
with �1� t � 1 and z 2 C. Using the expansion h`; u�i D h`; ut iC zh`; u1�u2i

2I am grateful to Loïc Dubois for having pointed this out to me.



1730 HANS HENRIK RUGH

and inserting the estimates (a)–(d) we obtain

Reh`1; u�ih`2; u�i � .1� �
2/h`1; xt ih`2; xt i

�jzj

q
�2C �2

q
1C �2 .h`1; xt ih`2; x1C x2iC h`1; x1C x2ih`2; xt i/

�jzj2.�2C �2/h`1; x1C x2ih`2; x1C x2i

� h`1; xt ih`2; xt i

 
2�

�q
1C �2Cjzj

p
�2C �2

1� �

�2!
:

This remains positive when jzj � r0 where r0 D
p
2�
p
1C�2

p
�2C�2

.1� �/ > 0 depends

upon �R only. The set, U , of such � D t C z-values is the r0-neighborhood, of
the segment Œ�1I 1�� C. Since enlarging a domain decreases hyperbolic distances,
we conclude that �C � dU .1;�1/ <1. �

Remark 5.10. Suppose that T is a real, bounded, linear operator, that CR is a
reproducing K-norm-directed cone and that TC�R has finite projective diameter in
CR. By Theorem 4.6 the operator has a spectral gap. In view of Remark 4.5 and
the properties of the canonical complexification shown above, the same conclusion
follows when considering the complexified operator acting on the canonically com-
plexified cone. Our complex cone contraction thus contains the real contraction as
a special case (but, of course, with a more complicated proof).

6. Dominated complex cone contractions

A real operator P which contracts a real cone CR contracts a fortiori the
corresponding complexified cone CC (easy). It is then natural to ask if this com-
plex contraction may be preserved when adding an imaginary part to the operator.
Several of our applications below are cast over this idea and, has led us to state an
abstract assumption for the action upon CR and a corresponding complex contrac-
tion theorem for complexified cones:

Assumption 6.1. Let P 2 L.XR/ be a contraction of an R-cone CR. Let M 2
L.XC/ be an operator acting upon the corresponding complex Banach space. We
say that M is dominated by P with constants 0�  < ˛ � ˇ <C1 provided that
for all `1; `2 2 C

0

R and x1; x2 2 CR:

Reh`1;Mx1ih`2;Mx2i � ˛h`1; P x1ih`2; P x2i;(6.42)

Reh`1;Mx1ih`2;Mx2i � ˇh`1; P x1ih`2; P x2i;(6.43)

jImh`1;Mx1ih`2;Mx2ij � h`1; P x1ih`2; P x2i:(6.44)

Remark 6.2. The above conditions are RC-invariant and also stable when tak-
ing convex combinations. It thus suffices to verify that these conditions hold for
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subsets, V � CR and W � C
0

R which are generating for the cone and the dual cone,
respectively, i.e. for which:

CR D Cl Conv.RC �V /D fx 2XR W h`; xi � 0; 8 ` 2W g :

When  D 0 an operator M verifying the above assumption is essentially real.
Possibly after multiplication with a complex phase the operator maps CR into CR

itself. The above condition then reduces to the real cone dominated condition of
Theorem 4.8. Our goal is here to show that the conclusion of that theorem also
applies when M is allowed to have a nontrivial imaginary part. It turns out that
the allowed ‘amount’ of imaginary part depends on the rate of contraction of P .

THEOREM 6.3. Let CR � XR be a proper convex cone and let P W C�R !

C�R be a strict cone contraction; i.e. �P D diamCR
P.C�R/ < C1. Write CC for

the canonical complexification of CR. Suppose that M 2 L.XC/ is P -dominated
(Assumption 6.1) with constants that satisfy:

(6.45)  cosh
�P

2
< ˛:

Then M W C�
C
! C�

C
and diamCC

M.C�
C
/ <C1. If , in addition, CR is reproducing

and of uniformly bounded sectional aperture then M has a spectral gap.

Proof. Let u 2 C�
C

and `1; `2 2 C
0

R. We write � D tanh �P
4
< C1. The

first step is to establish the following inequality (which, in particular, implies that
M W C�

C
! C�

C
):

(6.46) Reh`1;Muih`2;Mui �

�
˛

cosh.�P =2/
� 

�
jh`1; P uijjh`2; P uij:

We will use polarization twice to achieve this. First, write uD ei� .xC iy/ with
� 2 R and x˙y 2 C�R. Then

h`1;Muih`2;Mui D h`1;M.xCiy/ih`2;M.x�iy/i

D
�
h`1;Mxih`2;MxiC h`1;Myih`2;Myi

�
C i

�
h`1;Myih`2;Mxi � h`1;Mxih`2;Myi

�
D
1

2

�
h`1;M.xCy/ih`2;M.xCy/iCh`1;M.x�y/ih`2;M.x�y/i

�
C
i

2

�
h`1;M.xCy/ih`2;M.x�y/i�h`1;M.x�y/ih`2;M.xCy/i

�
�
1

2
ŒA�C

i

2
ŒB�:
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Since x˙y 2 CR we may use inequality (6.42) of our assumption to deduce:

Re A � ˛ h`1; P.xCy/ih`2; P.xCy/iC˛ h`1; P.x�y/ih`2; P.x�y/i

D 2˛ h`1; P xih`2; P xiC˛h`1; Pyih`2; Pyi

D 2˛ Re h`1; P.xC iy/ih`2; P.x� iy/i

D 2˛ Re h`1; P uih`2; P ui:

For the second term we have by (6.44)

jIm Bj �  h`1; P.xCy/ih`2; P.x�y/iC  h`1; P.x�y/ih`2; P.xCy/i

D 2 .h`1; P xih`2; P xi � h`1; Pyih`2; Pyi/

� 2 jh`1; P.xC iy/ij jh`2; P.x� iy/ij

D 2 jh`1; P uij jh`2; P uij;

where for the last inequality we used Schwarz’ inequality. From these two esti-
mates we get:

(6.47) Reh`1;Muih`2;Mui � ˛ Reh`1; P uih`2; P ui� jh`1; P uij jh`2; P uij:

We note that (6.47) is here independent of the choice of polarization. Since
x˙ y 2 C�R we see that the elements P.xC y/ 2 C�R and P.x�y/ 2 C�R are at a
projective distance not exceeding �P . We may then use Lemma 5.7 to rotate the
polarization again and write PuD ei˛.x0C iy0/ where jh`; y0ij � �h`; x0i for all
` 2 C

0

R. But then

Reh`1; P uih`2; P ui� h`1; x0ih`2; x0iCh`1; y0ih`2; y0i� .1��2/h`1; x0ih`2; x0i:

We also obtain jh`; Puij D
p
h`; x0i2Ch`; y0i2 �

p
1C �2 h`; x0i so that

Reh`1; P uih`2; P ui �
1� �2

1C �2
jh`1; P uij jh`2; P uij

D

�
cosh

�P

2

��1
jh`1; P uij jh`2; P uij:

Together with (6.47) this establishes (6.46).
In order to obtain an estimate for diamCC

M.C�
C
/ we also need the following

inequality:

(6.48) jh`;Muij �
p
ˇC  jh`; Puij; 8` 2 C

0

R; u 2 CC:

This follows by setting `1 D `2 D ` in the expression for A and B above and using
the upper bounds (6.43) and (6.44) of our assumption:

A�ˇ.h`; P.xCy/i2Ch`; P.x�y/i2/D2ˇ.h`; Pxi2Ch`; Pyi2/D2ˇ jh`; Puij2

and the bound jBj D jImBj � 2 jh`; Puij2 as before.
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Consider u1; u2 2 C�
C

. Using the polarization identity, equation (5.35), we
may assume that u1 D x1C iy1 with x1˙ y1 2 C�R so that jh`; Py1j � h`; Px1i.
Then also h`; Px1i � jh`; Pu1ij �

p
2h`; Px1i and with the same bounds for

u2 D x2C iy2. Through a real rescaling, Lemma 5.8, we may also assume that
jh`; P.x1�x2/ij � �h`; P.x1Cx2/i. We also write u� D .1C�/u1C .1��/u2
with � D t C z, �1 � t � 1 (and similarly for x� and y�). By the choice of
polarization, xt ˙ yt 2 CR so that ut 2 CC, i.e. belongs to the complex cone for
all �1 � t � 1. We want to show that when jzj is small enough the same is true
for MutCz .

First note that h`; Pxt i � .1� �jt j/ h`; P.x1C x2/i. Applying the inequality
(6.48) we deduce that jh`;Mut ij �

p
2 .ˇC / h`; Pxt i and jh`;M.u1�u2/ij �p

2 .ˇC /h`; P.x1 C x2/i �
p
2 .ˇC / h`;Pxt i

1��jt j
. Using (6.46) on ut and the

expansion h`;MutCzi D h`;Mut iC zh`;M.u1�u2/i, we obtain the inequality
(6.49)
Re h`1;MutCzi h`2;MutCzi � Re h`1;Mut i h`2;Mut i

� jzj
�
jh`1;Mut ij jh`2;M.u1�u2/ij C jh`2;Mut ij jh`1;M.u1�u2/ij

�
� jzj2 jh`1;M.u1�u2/ij jh`1;M.u1�u2/ij

� h`1; P xt i h`2Pxt i

�

 
˛

cosh.�P =2/
�  C 2.ˇC /� 2.ˇC /

�
1C

jzj

1� �jt j

�2!
:

When condition (6.45) is satisfied, the set of t C z values, �1 � t � 1 for which
the quantity (6.49) is nonnegative contains an open neighborhood,

(6.50) U D U
�ˇ
˛
;


˛
;�P

�
of the segment Œ�1I 1�� C. It follows that diamCC

M.C�
C
/� dU .�1; 1/ <C1.

When CR is reproducing and of uniformly bounded sectional aperture then
so is CC by Proposition 5.4. Thus, the conclusion follows from our spectral gap
theorem, Theorem 3.7. �

7. Applications

The most striking application is also the simplest. A complex Perron-Frobenius
Theorem (see also Appendix 11):

THEOREM 7.1. Let A 2Mn.C/ and suppose there is 0 < c <C1 for which
jImAij xAmnj< c � ReAij xAmn for all indices. Then A has a spectral gap.

Proof. The cone CR D Rn
C

is regular in Rn. By Corollary 5.6, CC D Cn
C

is
regular in Rn. We will compare M with the constant matrix Pij � 1 with respect
to the real cone Rn

C
. As in Example 4.9(1), �P D 0. The canonical basis and its
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dual generates the cone and its dual, respectively; cf. Remark 6.2. The constants
from Assumption 6.1 then become (sups and infs over all indices) (a) ˛ D ˛.A/D
inf ReAij xAkl , (b) ˇDˇ.A/D sup ReAij xAkl and (c)  D .A/D sup jImAij xAkl j.
Our spectral gap condition of Theorem 6.3 simply reads  <˛ and by finiteness of n
this is equivalent to the stated assumptions on A. We also note that the ‘contraction
constant’ for the spectral gap, �D �.ˇ=˛; =˛/ < 1 from Lemma 2.4, cf. equations
(6.49) and (6.50), only depends on the ratios ˇ=˛ � 1 and =˛ < 1. �

In the following, denote by osc.h/D ess sup.h/�ess inf.h/ the essential oscil-
lation of a real valued function h on a measured space. Theorem 7.1 may (almost)
be viewed as a special case of the following complex version of a result of Jentzsch
[Jen12]:

THEOREM 7.2. Let .�;�/ be a measure space and let X D Lp.�;�/, with
1 � p �C1. Let h 2 Lp, h > 0 a.e. and m 2 Lq , m> 0 a.e. with 1

p
C
1
q
D 1 so

that 0 <
R
hmd� <C1; cf. Example 4.9(2). Given g 2 L1.���/ we define

the integral operator, Mg 2 L.X/:

(7.51) Mg�.x/D h.x/

Z
�

eg.x;y/�.y/m.y/�.dy/:

Set � D osc.Im g/ and ƒ D osc.Re g/. Suppose that � < �=4 and that tan � <
exp.�2ƒ/. Then Mg has a spectral gap.

Proof. As in Example 4.9(2) we consider the R-cone CRDf�2XR W�� 0.a:e:/g
and we compare with P� D h

R
� � md�. We have that P WC�R!C�R and �P D 0.

We obtain the following estimate for the constants

Re eg.x;y/Cg.x
0;y0/
� ˛ � e2ess inf Re g cos �

and

Im eg.x;y/Cg.x
0;y0/
�  � e2ess sup Re g sin �:

The cone CR is reproducing. As shown in Example 4.9 (2) the real cone has
uniformly bounded sectional aperture. The spectral gap condition of Theorem 6.3
then translates into the stated condition on � and ƒ. �

8. A complex Kreı̆n-Rutman Theorem

Let X be a complex Banach space. We denote by Gr2.X/ the set of complex
planes in X , i.e. subsets of the form CxCCy with x and y independent vectors
in X . If we write S.X/ for the unit sphere in X then

d2.F; F
0/D distH

�
F \S.X/; F 0\S.X/

�
; F; F 0 2 Gr2.X/
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defines a metric on Gr2.X/. In the following let us fix a norm on Cn. The
choice may affect the constants below but is otherwise immaterial. The space
.Gr2.Cn/; d2/ is then a compact metric space.

LEMMA 8.1. Let V � X be a C-cone and let F 2 Gr2.X/. Suppose there is
u 2 F , r > 0 such that B.u; r/\V D∅. Then VF D F \V has at most 1C kuk

r

bounded aperture.

Proof. Let m 2 .F /0 be a linear functional with u 2 kerm and kmk D 1.
Choose x 2 F for which jhm; xij D kxk. If axC bu 2 VF then uC a

b
x … B.u; r/

so that jbj � jaj
r
kxk and therefore,

kaxC buk � jaj kxk

�
1C
kuk

r

�
D jhm; axC buij

�
1C
kuk

r

�
:

The two-dimensional space F is spanned by u and x so K.VF /� 1C
kuk
r

. �

LEMMA 8.2. Let V � Cn be a C-cone. Then there is K <1 so that V is of
K-bounded sectional aperture.

Proof. Suppose that this is not the case. Then we may find a sequence Fn of
planes for which the aperture K.V \Fn/ diverges. Taking a subsequence we may
assume that Fn converges in Gr2.X/ to a plane F . As V is proper, V \ F is a
strict subset of F . Thus there is u 2 F �V . But V is closed in Cn so there is r > 0
so that B.u; r/ is disjoint from V as well. Given another complex plane, F 0, we
may find u0 2 F 0 for which ku�u0k � kukd2.F; F 0/. When F and F 0 are close
enough, r 0 D r �kukd2.F; F 0/ > 0 and B.u0; r 0/ is also disjoint from V . By our
previous lemma, V \F 0 is of aperture not exceeding 1Ckuk=.r �kukd2.F; F 0//.
But this contradicts the divergence of K.V \Fn/ as Fn! F . �

LEMMA 8.3. Let V � Cn be a C-cone and let W � V be a closed complex
subcone with W � � Int V . Then there is � D �.W; V / < C1 such that for
x; y 2W �:

dW .x; y/ <C1) dV .x; y/��:

Proof. We denote by � W Cn � f0g ! CP n�1 the canonical projection to
complex projective space. We consider CP n�1 as a metric space with the metric
dCPn�1 as in equation (A.82). The projected image, �.W �/, is compact in the open
set �.Int V �/�CP n�1 so there is "D ".W; V / > 0 for which the "-neighborhood
of �.W �/ is contained in �.V �/.

Let x; y 2W � be linearly independent and suppose that dW .x; y/ <C1. Let
F 2Gr2.Cn/ be the complex plane containing x and y. Denote by C the connected
set in �.F �/ containing x and y. Let �i 2C , i 2 J , be an "=3-maximally separated
set in C . Thus, the balls B.�i ; "6/, i 2 J , are all disjoint and

S
i2J B.�i ;

"
3
/ D

CP n�1. The cardinality of J is bounded by a constant depending on " only. Then
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B.�i ;
2"
3
/� �.V �/, i 2 J , so by Lemma A.1(2) each B.xi ; "3/, i 2 J is of radius

not greater than log 1C1=2
1�1=2

D log 3 for the dV -metric. Also [i2JB.�; "3/ contains
C which is connected. It follows that dV .x; y/ does not exceed 2 log 3 Card.J /.
which is bounded by a constant depending on " only. �

THEOREM 8.4. Let V � Cn be a closed subset which is C-invariant and con-
tains no complex planes (in terms of Definition 2.1, V is a C-cone). Suppose that
A W Cn! Cn is a linear map for which A.V �/� Int V . Then A has a spectral gap.

Proof. We write W D A.V / for the image of V and use the notation and
constants from the two previous lemmas. First note that for x; y 2 V ,

dV .x; y/ <1) dV .Ax;Ay/� � dV .x; y/ and dV .Ax;Ay/��:

To see this note that when dV .x; y/ <1 then dV .Ax;Ay/ <1 so by Lemma 8.3,
dV .Ax;Ay/��. If C� denotes the connected component of F \V � containing
x and y then also diamVA.C�/��. By Lemma 2.4, dV .Ax;Ay/� � dC.x; y/�

�dV .x; y/. Iterating this argument we see that diamVAn.C�/���n�1, n� 1. By
Lemma 8.2, V is of K-bounded sectional aperture, so Lemma A.1(1) assures that
diamCPn�1A

n.C�/� 2K��n�1. Fix n1 <C1 so that 2K��n1�1 � "=3.
Now let �i , i 2 J , be an "=3-maximally separated set in W . Setting Vi D

��1B.�i ; "/ with i 2 J we see that diamCPn�1A
nV �i � "=3, n � n1. It follows

that there is a map, � W J ! J so that AnV �i �W�.i/� �
�1B.��.i/; 2"=3/, n� n1.

Since J is of finite cardinality, � must have a cycle. Thus, there are i1 2 J and
n1 < C1 for which An1.Vi1/ � Wi1 . The cone Wi1 is regular (easy) and of
bounded diameter in Vi1 so that An1 has a spectral gap and therefore also A. �

When the operator is sufficiently regular one may weaken the assumptions
on the contraction and the outer regularity of the cone. This is illustrated by the
following complex version of a theorem of Kreı̆n and Rutman [KR48, Th. 6.3]:

THEOREM 8.5. Let C�XC be an inner regular C-cone in the Banach space
XC. Let A 2 L.XC/ be a quasi-compact operator or a compact operator of strictly
positive spectral radius and suppose that AC� � Int C. Then A has a spectral gap.

Proof. Let P be the spectral projection associated with eigenvalues on the
spectral radius circle, f�2C W j�jDrsp.A/g. By hypothesis imP is finite-dimensional
and we may find � 2 R such that

rsp.A.1�P // < � < rsp.A/:

We claim that C�\ imP is nonempty: Let x 2 C� and define en D Anx=kAnxk 2
C�; n 2 N.

Suppose first that Px ¤ 0. Then limn!1 kAn.1�P /xk=kAnPxk D 0 so
that the distance between en and imP tends to zero. Since imP is locally compact
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and en is bounded we may extract a convergent subsequence e�D lim enk 2 imP \
C�. Suppose instead that Px D 0; then Ax 2 Int C so there is r > 0 for which
B.Ax; r/ 2 C. We may then replace x by AxC u where u 2 imP , kuk < r and
we are back in the first case. Thus C�P D C�\ imP ¤∅. Now,

A W C�P ! .A C�/\ imP � Int C\ imP D Int CP ;

the latter for the topology in imP . In particular, Int CP is nonempty so that CP
is an inner regular C-cone in a finite-dimensional space and A W C�P ! Int CP .
We may then apply the finite-dimensional contraction theorem, Theorem 8.4, to
AP D AjimP 2 L.imP /. It follows that AP , whence also our original operator A
has a spectral gap. �

Remark 8.6. In the real cone version (replacing C by R) of Theorem 8.5 it is
not necessary to assume that the spectral radius of A is strictly positive. This forms
part of the conclusion. To see this pick x 2 C� of norm one. Then Ax 2 Int C so
that there is � > 0 for which B.Ax; �/ � C. Therefore, Ax � �x 2 C and then
also B.A2x; �2/D A.Ax��x/C�B.Ax; �/� C by the properties of an R-cone.
More generally, B.Anx; �n/� C. As 0 2 @C it follows that

rsp.A/� lim sup n
p
jAnxj � � > 0:

The fact that this conclusion is nontrivial is illustrated e.g. by the operator, A�.t/DR s
0 �.s/ ds, 0 � t � 1, which is compact when acting upon � 2 X D C 0.Œ0; 1�/.

It contracts (but not strictly) the cone of positive elements but has spectral radius
zero.

In the complex setup, if one assumes that C is ofK-bounded sectional aperture
then strict positivity of rsp.A/ also comes for free: Suppose that x 2C, jxj D 1 and
B.Ax; r/�C, r > 0. Then AxC�x 2C�, 8j�j< r and also AnC1xC�Anx 2C�

for such �-values. By Lemma 3.5. we see that jAnC1xj � r
K
jAnxj> 0 from which

rsp.A/�
r
K
> 0.

9. A complex Ruelle-Perron-Frobenius Theorem

The Ruelle-Perron-Frobenius Theorem, [Rue68], [Rue69], [Rue78] (see also
[Bow75]), ensures a spectral gap for certain classes of real, positive operators with
applications in statistical mechanics and dynamical systems. Ferrero and Schmitt
[FS79], [FS88] used Birkhoff’s Theorem on cone contraction to give a conceptually
new proof of the Ruelle-Perron-Frobenius Theorem. See also [Liv95] and [Bal00]
for further applications in dynamical systems. We present here a generalization to
a complex setup.

Let .�; d/ be a metric space of finite diameter, D <C1. We write C 0.�/
for the Banach space of (real- or complex-valued) continuous functions on � under
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the supremum norm, j � j0. When � W�! R (or C) we write

Lip.�/D sup
x¤y

j�x ��y j=d.x; y/ 2 Œ0;C1�

for the associated Lipschitz constant. Then

XR D f� W�! R j k�k � j�j0CLip.�/ <C1g

(and similarly for XC) is a Banach algebra.
Let U �� and let f W U ! � be an unramified covering map of � which

is uniformly expanding. For simplicity, we will take it to be of finite degree (it is
an instructive exercise to extend Theorem 9.1 below to maps of countable degree).
More precisely, we assume that there are 0 < � < 1 and a finite index set J so
that for every couple y; y0 2� we have a pairing P.y; y0/D f.xj ; x

0
j / W j 2 J g of

the pre-images, f �1.y/D fxj gj2J � U and f �1.y0/D fx0j gj2J � U , for which
d.xj ; x

0
j /� � d.y; y

0/, j 2 J .
Fix an element g 2XC and define for � 2 C 0.�/ (or � 2XC):

Mg�.y/D
X

xWf .x/Dy

eg.x/�.x/; y 2�:

The norm of Mg when acting upon C 0.�/ (in the uniform norm) is given by

jjjMg jjj0 D sup
y2�

X
xWf .x/Dy

eReg.x/;

and a straightforward calculation shows that Mg 2 L.XC/ with

kMk � jjjM jjj0.1C � Lip g/:

THEOREM 9.1. Denote aDLip Reg, bDLip Img and � D osc Img. Suppose
that �

� C
2 �2D b

1� �C �2D a

�
exp

�
1 C �

1C �

1� �
D a

�
4

1� �
< 1:

Then Mg 2 L.XC/ has a spectral gap.

Proof. We will compare Mgwith the real operator PDMRe g . For �>0 the set,

(9.52)
C�;R D f� W�! RC j h`y;y0 ; �i � �.y/� e

��d.y;y0/�.y0/� 0; 8y; y0 2�g;

defines a proper convex cone in XR which in addition is regular. Inner regularity:
Let 1.x/� 1, x 2� and h2XR. Then 1Ch2C�;R provided Lip h=.1�jhj0/� � ,
whence B.1;min.�; 1// � C�;R. Outer regularity: Pick x0 2 � and set `0.�/ D
�.x0/. For � 2 C�;R we have Lip� � � j�j0 so that

k�k � .1C �/j�j0 � .1C �/e
�D`0.�/;

and this shows outer regularity.
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Let 0 < � 0 < � and �1; �2 2 C�� 0;R. As in (4.27) let ˇ� .�1; �2/D inff� > 0 W
��1��2 2 C�;Rg. A calculation using the defining properties of the cone family
yields:

ˇ� .�1; �2/� sup
d>0

1� exp.�.� C � 0/d/
1� exp.�.� � � 0/d/

sup
y2�

�2.y/

�1.y/
�
� C � 0

� � � 0
sup
y2�

�2.y/

�1.y/
;

and we get the following bound for the diameter �R D diamC�;RC�� 0;R (cf. (4.28)):

�R � 2 log
� C � 0

� � � 0
C sup
y;y02�

log
�2.y/

�1.y/

�1.y
0/

�2.y0/
� 2 log

� C � 0

� � � 0
C 2 D � 0 <C1:

The injection C� 0;R ,! C�;R is thus a uniform contraction for the respective projec-
tive metrics. Given � 2 C�;R and using the pairing P.y; y0/ we get for the operator
P DMReg :

P�.y/D
X

xWf .x/Dy

eRe g.x/�.x/

�

X
x0Wf .x0/Dy0

eRe g.x0/�.aC�/d.x;x0/�.x0/� e��.aC�/d.y;y
0/P�.y0/:

This implies that P WC�;R!C� 0;R with � 0D�.aC�/. If we choose � >a�=.1��/
then P becomes a strict cone contraction of the regular cone C�;R. We also get
the estimate (to obtain an a priori estimate for the contraction one may here try to
optimize for the value of � ):

(9.53)
�P

2
� log

� C �.� C a/

� � �.� C a/
CD � .� C a/:

By Theorem 4.6, P 2L.XR/ has a spectral gap (see [Rue68], [FS79] and also
[Liv95]).

Returning to the complex operator, Mg , we fix y; y0 2� and the correspond-
ing pairing of pre-images P.y; y0/ as described above. Let � 2 C�� 0;R and write
h`y;y0 ;Mg�i D

P
j h�j .g/; �i with

h�j .g/; �i � e
g.xj /�.xj /� e

��d.y;y0/Cg.x0
j
/�.x0j /; j 2 J:

In order to compare with the real operator, we define complex numbers wj , j 2 J ,
through the relation

h�j .g/; �i D e
i Im g.xj /wj h�j .Re g/; �i:

Equivalently (when the denominator is nonzero):

ei Im g.xj /wj D
eg.xj /�.xj /� e

��d.y;y0/Cg.x0
j
/�.x0j /

eRe g.xj /�.xj /� e
��d.y;y0/CRe g.x0

j
/�.x0j /

:
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We may apply Lemma 9.3 below with the bounds

Re.z1� z2/� .� � �.� C a// d.y; y0/

and jIm.z1� z2/j � �b d.y; y0/ to deduce that

(9.54) jArg wj j � s0 �
�b

� � �.� C a/
: and 1 � jwj j

2
� 1C s20 :

Given i; j 2 J and �1; �2 2 C�� 0;R we obtain:

h�j .g/; �1ih�i .g/; �2i

D

�
ei.Im g.xj /�Im g.xi //wjwi

�
h�j .Re g/; �i h�i .Re g/; �i:

The two last factors are real and nonnegative (because � � �.� C a/ > 0) and the
complex pre-factor belongs to the set

AD freiu W 1� r � 1C s20 ; juj � � C 2s0g:

Summing over all indices we therefore obtain

h`y;y0 ;Mg�1ih`w;w 0 ;M g�2i DZh`y;y0 ; P�1ih`w;w 0 ; P�2i;

in which Z is an average of numbers in A and thus belongs to Conv.A/, the convex
hull of A.

When � C 2s0 < �=4 we conclude that the bounds in Assumption 6.1 are
verified for the constants ˛D cos.�C2s0/, D .1Cs20/ sin.�C2s0/ and ˇD1Cs20 .
The spectral gap condition in Theorem 6.3 then reads as follows:

(9.55)
�
1C s20

�
tan.� C 2s0/ cosh

�P

2
< 1:

Now, in order to get a more tractable and explicit formula we make the fol-
lowing (not optimal) choice for � :

� D
2a�

1� �
C

1

�D
:

Then � 0 D �.a C �/ � 1C�
2
� so that .� C �.a C �//=.� � �.a C �// �

.3C �/=.1� �/. Using (9.53) we obtain

cosh
�P

2
� e�P =2 D

3C �

1� �
exp

�
1C 2aD�

1C �

1� �

�
:

One also checks that .�C2s0/ 4
1��

< 1 implies that .1C s20/ tan.�C2s0/
3C�
1��

< 1 so we may replace (9.55) by the stronger condition

.� C 2 s0/ exp
�
1C �

1C �

1� �
D a

�
4

1� �
< 1:
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Finally inserting s0 D �2D b=.1� �C �2D a/ we obtain the claimed condition
which thus suffices to ensure a spectral gap. �

Remark 9.2. In the literature, one often includes a statement on Gibbs mea-
sures as well. If we let �h˝� denote the leading spectral projection of P DMRe g ,
then positivity of P implies that the ‘state’ � 2XR 7! �.�/D �.�h/ is uniformly
bounded with respect to j�j0. By continuity, � extends to a linear functional on
C 0.�/. If, in addition, we assume � compact, then by Riesz, this functional de-
fines a Borel probability measure d� on �. The measure is invariant and strongly
mixing for f . It is known as a Gibbs measure for f and the weight g. This part of
the theorem, however, needs the partial ordering induced by the cone of positive
continuous functions and does not extend to a complex setup (in general, it is even
false there).

In the proof we made use of the following complex estimate:

LEMMA 9.3. Let z1; z2 2 C be such that Re z1 > Re z2 and define w 2 C

through

ei Im z1w �
ez1 � ez2

eRe z1 � eRe z2
:

Then

jArg wj �
jIm .z1� z2/j

Re .z1� z2/
and 1� jw2j � 1C

�
Im .z1� z2/

Re .z1� z2/

�2
:

Proof. Writing t D Re .z1� z2/ > 0 and s D Im .z1� z2/ we have:

w D
1� e�t�is

1� e�t
:

Taking real and imaginary parts, Re w D 1�e�t cos s
1�e�t

and Im w D e�t sin s
1�e�t

, we get

jwj2D1C sin2.s=2/
sinh2.t=2/

�1C. s
t
/2. Also j @

@s
logwjDj 1

w
@w
@s
jD

e�t

j1�e�t�is j
�

e�t

1�e�t
�
1
t

so that jArg wj � jsj
t

. �

10. Random products of cone contractions

A conceptual difference between standard perturbation theory and cone con-
tractions is the behavior under compositions. Composing a sequence of operators
that uniformly contracts the same cone, one obtains again a contraction, even with
a sub-multiplicative bound for the contraction rate. This is extremely useful when
studying time-dependent and/or random products of such operators as it allows for
the use of an implicit function theorem. In [Rue79], Ruelle showed the real-analytic
behavior of the characteristic exponent of a product of random positive matrices.
He did not use Birkhoff’s cone contractions (which would have simplified some
estimates and avoided some unnecessary assumptions) but the central part of his
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proof may still be viewed as an argument based upon real ‘cone contractions’. We
will here show how results similar to [Rue79] hold for complex cone contractions.
The resulting theorems and examples of this section may not be deduced from
either real cone contractions, nor from standard analytic perturbation theory.

In the following we will assume that the C-cone C is regular (Definition 3.2).
This is convenient (if not necessary). In particular, for � > 0 sufficiently small the
(closed) subcone

(10.56) C.�/� f� 2 C W B.�; � k�k/� Cg

is nontrivial (not reduced to f0g). We fix such a value of � > 0 in the following.
Also let �<C1 be arbitrary but fixed. We write �D �.�/ < 1 for the contraction
constant from Lemma 2.4.

Definition 10.1. Let MDM.�; �/� L.X/ be the (nonempty) family of cone
contractions: M 2 L.X/, M W C�! C� subject to the following uniform bounds:
diamCM.C

�/ � � and M.C/� C.�/.

Let .�;�/ be a probability-space and � W�!� a �-ergodic transformation.
We denote by E an average taken with respect to �. When A is a subset of some
Banach space Y we write E.�;A/ for the set of Bochner-measurable maps from �

into A (the image of a set of full measure has a countable dense subset). We write
B.�; Y /� E.�; Y / for the Banach space of (�-essentially) bounded measurable
maps equipped with the (�-essential) uniform norm of Y . For M 2 E.�;M/ we
write M.n/

! D M! � � �M�n�1! for the product of operators along the �-orbit of
! 2�. It is again an element of E.�;M/. Our goal here is to show the following:

THEOREM 10.2. Let t 2 D 7!M.t/ 2 E.�;M/ be a map for which

(1) .t; !/ 2D�� 7!M !.t/ 2 L.X/ is measurable and 8! 2�: t 7!M!.t/ is
analytic.

(2) sup
n d
dt

M !.t/
 = kM !.t/k W ! 2�; t 2 D

o
<C1.

(3) E

� ˇ̌
log kM !.0/k

ˇ̌�
<C1.

Then for each t 2 D the following limit exists �-a.s. and is �-a.s. independent
of ! 2�:

(10.57) �.t/D lim 1

n
log

M.n/
! .t/

:
The function t 2 D 7! �.t/ 2 R is real-analytic and harmonic.

We first use our theory for complex cone contractions to get some necessary
uniform bounds. Using outer regularity we find (and fix throughout) m 2 X 0 of
norm one and K <C1, such that

(10.58) kuk � jhm;uij �
1

K
kuk; 8u 2 C:
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For M W C�! C� a (linear) cone contraction, we write

(10.59) �M .u/D
Mu

hm;Mui
; u 2 C�;

for the natural projection of Mu onto the (bounded) subset:

CmD1 � C\fhm;ui D 1g:

LEMMA 10.3. Given a sequence of matrices, .Mn/n2N � M, let M .n/ D

M1 � � �Mn and write �.n/ � �M .n/ D �M1 ı � � � ı�Mn . Suppose that h 2 C.�/ and
jhm; hij D 1. Then for �1; �2 2 C� and � 2X :

k�.n/.�1/��
.n/.�2/k �K �

n�1�I(10.60)

k�.n/.hC�/��.n/.h/k �K �n
�
2

�
k�kC o.k�k/

�
; as �! 0:(10.61)

Proof. Using Lemma 3.4 and then Lemma 2.4 we see that the left hand side
in (10.60) is bounded by K dC.M

.n/�1;M
.n/�2/ � K �

n�1�. For the second
inequality, equation (10.58) and our assumption on h show that khk � 1 and then
that B.h; �/� C. The first part of Lemma 3.5 implies that dC.hC�; h/�

2
�
k�kC

o.k�k/. We then use Lemmas 3.4 and 2.4 as before. �

LEMMA 10.4. For any M 2M and u 2 CŒ���,

(10.62) 1

K

ˇ̌̌̌
hm;Mui

hm;ui

ˇ̌̌̌
� kMk �

K2

�

ˇ̌̌̌
hm;Mui

hm;ui

ˇ̌̌̌
:

Proof. Let � 2 X�. The assumption on u implies that uC t � 2 C� when
jt j k�k<�kuk, i.e. for jt j< r D �kuk=k�k. Then also MuC tM� 2C� whenever
jt j < r . By Lemma 3.5, kM�k � K

r
kMuk D k�k K

�
kMuk
kuk
� k�k K

2

�

ˇ̌̌
hm;Mui
hm;ui

ˇ̌̌
where the last inequality is a consequence of the properties in (10.58) of m. We
also have: jhm;Muij � kMk kuk � kMk jhm;uijK. �

LEMMA 10.5. LetM 2M and h2C with hm; hiD 1. Suppose that U 2L.X/
and � 2X verify kU k=kMk � �

4K3
and k�k � �

4K2
. Then

(10.63) jhm; .M CU/.hC�/ij � kMk
�

4K2

and

(10.64) k�
MCU

.hC�/k �
16K3

�
:
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Proof. We need to show that the denominator in (10.59) stays uniformly
bounded away from zero:

jhm; .M CU/.hC�/ij � jhm;Mhij � kMk k�k�kU k.khkCk�k/

� kMk
�

K2
.1�

1

4
�
1

4
.1C 1//� kMk

�

4K2

(we have used: khk �Kjhm; hij DK and k�k � �=4K2 �K). Then:

k�
MCU

.hC�/k �
kMk � 2 � 2K

kMk .�=4K2/
D
16K3

�
: �

We define for t 2 D the (measurable) map � t W E.�;C�/! E.�;CmD1/

through:
(10.65) .� t .h//! D �M!.t/.h�!/; ! 2�; h 2 E.�;C�/:

LEMMA 10.6. For each t 2 D the map � t has a unique fixed point h�.t/ in
E.�;CmD1/�B.�;X/.

Proof. The subsets � n
t .E.�;CmD1//, n� 1 form a decreasing sequence in

E.�;CmD1/�B.�;X/. By (10.60) the diameters verify: diam �nt .E.�;CmD1//

� K�n�1�. Pick h0 2 CmD1 and define .h0.t//! D h0, ! 2 �. The sequence,
hnC1.t/D � t .hn.t// 2B.�;X/, n� 0, is thus Cauchy so the map has a (clearly
unique) fixed point h�.t/D � t .h�.t// 2 E.�;CmD1/. �

Recall that hm;h!.t/i D 1 for all ! 2 �. We define the map p W t 2 D!

E.�;C/ by

(10.66) p!.t/D
hm;M !.t/h�!.t/i
hm;h!.t/i

D hm;M !.t/h�!.t/i; ! 2�:

LEMMA 10.7. We have for every t 2 D: �.t/D
R

log jp!.t/j d�.!/.

Proof. By Lemma 10.4, jp!.t/j is equivalent to kM !.t/k (within uniformly
bounded constants). Assumption (2) in Theorem 10.2 implies that it is also equiv-
alent to kM !.0/k which, by Assumption (3) of that theorem, is log integrable. It
follows that .! 2� 7! log jp!.t/j/ 2 L1.�;�/. Our uniform bounds in Lemma
10.4 show that for every ! 2�:

1

n
log

M.n/
! .t/

D 1

n
log

ˇ̌̌̌
ˇhm;M.n/

! .t/h�n!.t/i
hm;h!.t/i

ˇ̌̌̌
ˇCO�1n�
D
1

n

n�1X
kD0

log jp�k!.t/jCO
�
1

n

�
:

The latter sum is a ‘Birkhoff’-average of the L1-function log jp.t/j so the almost-
sure convergence follows from Birkhoff’s Ergodic Theorem. This a.s. limit is (a.s.)
independent of ! 2� since � was supposed ergodic. �
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LEMMA 10.8. The map t 2 D 7! h�.t/ 2B.�;X/ is analytic.

Proof. Pick t0 2D. It suffices to show that h�.t/ is analytic in a neighborhood
of t0. Using Assumption (2) of Theorem 10.2 we may find ı > 0 so that for
jt � t0j< ı:

(10.67) kM !.t/�M !.t0/k �
�

4K3
kM !.t0/k; ! 2�:

By Lemma 10.5 the map,

(10.68) .t;h/ 2 B.t0; ı/�B
�

h�.t0/;
�

4K2

�
7! � t .h/ 2B.�;X/

is analytic (because it is fiber-wise analytic and uniformly bounded). We denote
by T0 D Dh� t0.h�.t0// 2 L.B.�;X// the derivative of � t0 at the fixed point
h�.t0/. By linearization of the uniform bound in (10.61) we see that for each n� 1,
Dh�

.n/
t0
.h�.t0//D T n0 2 L.B.�;X// verifies: kT n0 k � .2K=�/�

n. It follows that
rsp.T0/ � � < 1. The derivative, 1� T0 2 L.B.�;X// of h 7! h�� t0.h/ at the
fixed point h�.t0/ is therefore invertible.

We may apply the implicit function theorem and conclude that there is 0 <
ı1 < ı and an analytic function

(10.69) t 2 B.t0; ı1/ 7! h�.t/ 2 B
�

h�.t0/;
�

4K2

�
�B.�;X/

for which h�.t/�� t .h�.t//D 0 2B.�;X/ for all jt � t0j< ı1. �

Proof of Theorem 10.2. For fixed ! 2� the map t 2 D 7! p!.t/ 2 C is holo-
morphic (being a continuous bilinear form composed with analytic functions). The
difficulties here are that the images need not be uniformly bounded (with respect
to !) and that we want to define a complex logarithm in a consistent way. We
proceed as follows: For t 2 B.t0; ı1/,

jp!.t/�p!.t0/j � kM !.t/�M !.t0/k � kh�!.t/k
CkM !.t0/k � kh�!.t/�h�!.t0/k

�

� �

4K3
KC

�

4K2

�
kM !.t0/k

D
�

2K2
kM !.t0/k:

Lemma 10.4 shows that jp!.t0/j � �

K2
kM !.t0/k so we conclude that

(10.70)
ˇ̌̌̌

p!.t/
p!.t0/

� 1

ˇ̌̌̌
�
1

2
; ; ! 2�; jt � t0j< ı1:

The difference,

(10.71) �.t/��.t0/D

Z
log

ˇ̌̌̌
p!.t/
p!.t0/

ˇ̌̌̌
d�.!/;
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is thus the real part of the following holomorphic function (with the usual logarithm
on C�R�):

(10.72) H.t/D

Z
log

�
p!.t/
p!.t0/

�
d�.!/; jt � t0j< ı1:

Therefore, �.t/ is harmonic, whence real-analytic. �

Theorem 10.2 applies to certain classes of dominated complex cone contrac-
tions as defined in Section 6. We need to impose a further:

Assumption 10.9.

(1) We assume that CR � XR is a regular cone in a real Banach space. (The
real-subcones CR.�/, � > 0, are then defined analogously to (10.56)).

(2) Let P 2 L.XR/, P W C�R ! C�R. We assume that there is �0 > 0 such that
P.CR/� CR.�0/. (And also that �P D diamCR

P.C�R/ <C1).

Given a complex operator M 2 L.XC/, which is dominated by P , we write
˛.M/, ˇ.M/ and .M/ for the optimal constants in Assumption 6.1. Now, let
0 < � < 1 and define the following subset of complex operators:

(10.73) M � D

�
M 2 L.XC/ W 1�

˛.M/

ˇ.M/
< � ; 0�

.M/

˛.M/
cosh

�P

2
< �

�
:

THEOREM 10.10. Suppose that Assumption 10.9 holds. The class of opera-
tors M � � L.XC/ defined in (10.73) verifies the uniform bound in Definition 10.1
(for suitable values of � and �). So Theorem 10.2 applies when MDM � .

Proof. The bound (6.50) in the proof of Theorem 6.3 shows that there is
�D �.�;�P / <1 (depending upon � and �P only) so that for any M 2M � :
diamCC

M.C�
C
/��. We still need to show thatM 2M � maps CC uniformly into its

interior: CR is assumed regular. Proposition 5.4 shows that CC is then also regular.
We may assume that we have found m 2 C

0

R, extended to m 2 X 0
C

which verifies
(10.58). By the assumption on P we have for any u 2 CR: B.Pu; �0kPuk/� CR.
When ` 2 CR

0 is of norm one this implies: h`; Pui � �0 kPuk. Using the bound
(6.48) we then get for x 2 CR:

kMxk �Kjhm;Mxij �K
p
ˇC kPxk �

K
p
ˇC 

�0
h`; Pxi:

Let u2C�
C

and (by Proposition 5.2) write uD ei� .xCiy/with � 2R and x˙y 2C�R.
Then

kMuk � kM.xCy/kCkM.x�y/k

�
K
p
ˇC 

�0
h`; P.2x/i �

2K
p
ˇC 

�0
jh`; Puij:
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Denote �2 D . ˛

cosh �P
2

� /=.ˇC / 2 �0; 1Œ and let `1; `2 2 C
0

R be of norm 1.

Given � 2XC we use (6.46) to obtain:

Reh`1;MuC�ih`2;MuC�i

�

� ˛

cosh �P
2

� 
�
jh`1; P uijjh`2; P uij � 2k�k jh`;Muij � k�k2

� �2
�2

4K2
kMuk2� 2k�k kMuk�k�k2:

This is nonnegative when k�k=kMuk � ��

q
1C �2

�20
4K2
� 1. Thus,

B.Mu; �kMuk/ 2 CC: �

COROLLARY 10.11. In the case of finite-dimensional matrices Assumption
10.9 is indeed verified. The class of matrices in (10.73) then reduces to (see Theo-
rem 7.1):

M� D

(
A 2Mn.C/ W 1�

inf ReAij xAkl
sup ReAij xAkl

< � ; 0�
sup jImAij xAkl j
inf ReAij xAkl

< �

)
:

Theorem 10.2 thus applies when MDM� .

Example 10.12. Let .�n/n2N be a sequence of independent and identically
distributed random variables with values in D. For t 2 D define:

Mn.t/D

�
8� t 7C �n
7� i�n 6C i t

�
:

One checks that (see e.g. the calculation leading to (11.78) below) each Mn.t/ 2

M�D0:75, t 2D. By the previous corollary, a.s. �.t/D lim 1

n
log kM1.t/ � � �Mn.t/k

exists and defines a harmonic function of t 2 D.

For a closely related result we mention [Rue79] in which Ruelle was able to
show that the characteristic exponent of a product of random real matrices (under
additional assumptions) behaves real-analytically with respect to the matrices. Us-
ing Corollary 10.11 above, it is possible to recover the result of Ruelle together
with an explicit estimate for the analytic extension.

It seems plausible that a result similar to Theorem 10.2 should hold for inte-
gral operators of the type given in our Theorem 7.2 (a complex generalization of
Jentzsch’s Theorem), but our proofs are insufficient as the cones needed in Theorem
10.2 are not regular.
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11. Complex cone contraction versus perturbation theory

The applications in Sections 7 and 9 were based upon Theorem 6.3 on dom-
inated complex cone contractions. In Theorem 6.3 one may view the complex
operator M as a ‘perturbation’ of a real operator P . It is natural to ask what
are then the benefits from our above-mentioned applications relative to applying
standard analytic perturbation theory when looking for a spectral gap for one fixed
(real) operator. We address this question here.

We consider the case of an operator T contracting a regular real cone so that
T D �P CR where P is a projection of rank 1, � > 0 and the residual operator R
verifies RP D PR D 0 and k��nRnk � C�n�1, n � 1 for some C <C1 and
0� � < 1. Now, recall what can be obtained within the framework of perturbation
theory; see e.g. Kato [Kat95, III.�6.4 and IV.�3.1]: If we perturb T then the spectral
gap persists provided that the perturbation is ‘small’ compared to the resolvent on
a suitable separating circle. To be more precise, for z … �sp.T / we have:

(11.74) R.z; T /D .z�T /�1 D .z��/�1P C .z�R/�1.1�P /:

When � > jzj> ��, one has:

(11.75) R.z; T /D .z��/�1P C z�1.1�P /C
X
n�1

z�n�1Rn:

Using the estimate for the residual operator and re-summing we get:

(11.76) kR.z; T /k �
kP k

j�� zj
C
k1�P k

jzj
C

C�

jzj .jzj �� �/
:

Consider now the closed curve (our not necessarily optimal choice for a separating
circle), � D fz 2 C W jzj D �1C�

2
g. For z 2 �:

(11.77) kR.z; T /k �
2kP k

�.1� �/
C
2k1�P k

�.1C �/
C

4C

� .1� �2/
�

1

��
:

When kSk< ��, the von Neumann series

.z�T �S/�1 DR.z; T /CR.z; T /SR.z; T /C � � �

converges normally on � . It follows that [Kat95, II,�1.3 and IV.�3.1] the spectral
projections on the two components of C �� depend analytically on S . In particular,
the algebraic dimension of the spectral projection on the unbounded component
stays constant, i.e. equals one. In other words the spectral gap persists.

To be more concrete, consider then the case of a real matrix T 2Md .R/ and
constants 0 <m�M <C1 such that m� Tij �M for all indices. Let us perturb
by a purely imaginary matrix iS with S 2 Md .R/ and such that jSij j < r

for all indices. The matrix AD T C iS then verifies Re Aij Akl � m2 � r2 and
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Im Aij Akl � 2Mr . Thus, the condition in Theorem 7.1 simply reads: 2rM �
m2� r2. Consequently if

(11.78) r �
m2

M C
p
M 2Cm2

;

then A has a spectral gap. For example if m D 3 � Tij � M D 4 then jSij j <
r D 9p

25C4
D 1 suffices to proved a spectral gap. Also, one cannot take r to be

bigger than 3 or else
�
3C3i 3�3i
3�3i 3C3i

�
provides a counter-example of a matrix without

a spectral gap.
Perturbation theory works well in a special case, namely when T is itself of

rank one. For example, suppose that Tij D 1, so that (by the Euclidean norm)
mDM D 1, kP kD k1�P kD 1 and �D d . In this case C D �D 0 so that setting
jzj D d=2 we obtain from (11.76):

(11.79) kR.z; T /k �
kP k

j�� zj
C
k1�P k

jzj
�
4

d
�

1

��
:

Thus, if we add S 2Md .R/ with kSk< �� D d=4 then T C iS has a spectral gap.
In particular, when jSij j< r then kSk � rd so one needs r < 1=4 in order to apply
this result. By comparison, the bound obtained from the complex cone contraction
(11.78) is r < 1

1C
p
2

. On the other hand, and in favor of the perturbation result,
note that it applies to some perturbations which are not immediately seen by the
complex cone contraction, e.g. when only one element of Sij is nonzero, and this
element is strictly smaller than d=4.

Consider now the case when the original matrix T is not of rank one. In order
to make a computation within perturbation theory note that the matrix contracts the
real standard cone Rn

C
. Given the constants 0<m�M <C1 from above, one has

(see Example 4.9): diamRn
C
.TRn

C
/��D 2 log M

n
. From this, �D tanh �

4
D
M�m
MCm

and 1� � D 2m
MCm

. Using kT k �Md and � � md we also see that k��1 T k �
M=m. One also has kP k � M

m
. In order to get a bound on C we may use the

constants in Remark 3.8, equation (3.19), which were obtained for the complex
cone but apply equally well to the real case. With the Euclidean norm on Rn one
has KDgD

p
2 and

(11.80)

AD
p
2
M

m
exp

��
1C

M

m

� .p2/ 2 log M
m

2m
MCm

�
; C D

�
1C

M

m

� .p2/ 2 log M
m

2m
MCm

A:

When jzj D �1C�
2

we have the bound:

(11.81) kR.z; T /k �
M.M Cm/

dm3
C
.M Cm/2

dMm2
C
C.M Cm/2

dMm2
�

1

��
:
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When m D 3 and M D 4 we obtain from these estimates that r D ��=d D
0:01835 : : : ensures a spectral gap. This is within two orders of magnitude to r D 1
which we obtained above from equation (11.78).

Increasing, however, the ratio of M to m substantially deteriorates the pertur-
bative bounds. When e.g. m D 10 and M D 100 we obtain r � 2 � 10�175 (!!)
from (11.80) and (11.81). This should be compared to the bound r D 0:4987 : : :
obtained from equation (11.78) when using the complex cone contraction.

Appendix A. Projective space

Let X be a complex Banach space. Given nonzero elements x; y 2 X� �
X �f0g we write x � y if and only if Cx D Cy. Let � WX�!X�=� denote the
quotient map and write Œx�D C�x for the equivalence class of x 2X�. We equip
the quotient space �.X�/ with the following metric

d�.X�/.Œx�; Œy�/D distH .Cx\S;Cy \S/(A.82)

D inf
� �x

k�xk
�
�y

k�yk

 W �; � 2 C�
�
; x; y 2X�

in which distH is the Hausdorff distance between nonempty sets and S D S.X/ is
the unit-sphere.

LEMMA A.1. (1) Let C� X be a C-cone of K-bounded sectional aperture.
Then for all x; y 2 C�:

d�.X�/.Œx�; Œy�/� 2KdC.x; y/:

(2) Let x 2X�, 0< r <1 and set V D��1B�.X�/.Œx�; r/. Then for all y 2V �

dV .x; y/� log
r C d�.X�/.Œx�; Œy�/

r � d�.X�/.Œx�; Œy�/
:

Proof. Using the inequality

(A.83)
 x

kxk
�

y

kyk

� 2kx�ykmin
�
1

kxk
;
1

kyk

�
; x; y 2X�;

we obtain from Lemma 3.4: x=hm; xi

kx=hm; xik
�

y=hm; yi

ky=hm; yik

� 2kmk  x

hm; xi
�

y

hm; yi

� 2KdC.x; y/

and the first conclusion follows.
For the second claim, normalize so that d�.X�/.Œx�; Œy�/D kx � yk< r and

kxkDkykD1. Let u�D 1C�
2
xC 1��

2
yDxC 1��

2
.y�x/. By (A.83), k u�

ku�k
�xk�

j1��j
2
ky�xk which remains smaller than r when j1��j< 2r

kx�yk
� 2R 2 .2;C1�.

Then dV .x; y/� dBC.1;2R/.�1; 1/D dD.0;
1
R
/D log RC1

R�1
. �
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Given any two points x; y 2 C� we may follow Kobayashi [Kob67], [Kob70]
and define a projective pseudo-distance between x and y through:

QdC.x; y/D inff
X

dC.xi ; xiC1/ W x0 D x; x1; : : : ; xn D y 2 C�g:

Since d�.X�/ is a (projective) metric, the previous lemma implies that

THEOREM A.2. Suppose that C is of K-bounded sectional aperture in X .
Then the inclusion map, .C�; QdC/! .C�; d�.X�// is 2K-Lipschitz.

In other words, this new distance does not degenerate when taking the inf over
finite chains, so distinct complex lines in C have a nonzero QdC-distance. This is
conceptually very nice, but, in our context, not particularly useful. The reason is
that even if T 2L.X/ maps C� into a subset of finite diameter in C� for the metric
Qd , this does not seem to imply a uniform contraction of T , i.e. no spectral gap. We

leave a further study of this metric to the interested reader.

Acknowledgments. I am grateful to A. Douady for a key suggestion in the
proof of Lemma 2.4, to Oscar Bandtlow for suggesting the use of ‘reproducing’
complex cones, to Loı̈c Dubois for discovering errors in previous versions of the
paper and to anonymous referees for several valuable suggestions and corrections.
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